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Abstract

Using the q-version of Zeilberger’s algorithm, we provide a procedure to find mixed recurrence
equations satisfied by classical q-orthogonal polynomials with shifted parameters. These equations
are used to investigate interlacing properties of zeros of sequences of q-orthogonal polynomials.
In the cases where zeros do not interlace, we give some numerical examples to illustrate this.
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1. Introduction

Let 0 < q < 1. The classical q-orthogonal polynomials were introduced by Hahn [8] and
can be written in terms of basic hypergeometric series, as introduced by Heine [9] in 1847. These
polynomials are associated especially to quantum groups (cf. [16, 18, 19]), as introduced in [4, 26].
We list the systems of monic q-orthogonal polynomials considered in this paper (cf. [15]).

1. Askey-Wilson polynomials

p̃n(x; a, b, c, d|q) =
(ab, ac, ad; q)n

(2a)n(abcdqn−1; q)n
4φ3

(
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣∣∣ q; q
)
, x = cos θ, (1)

with a, b, c, d either real, or they occur in complex conjugate pairs, and max(|a|, |b|, |c|, |d|) < 1,
x ∈ (−1, 1);

2. q-Racah polynomials

R̃n(µ(x);α, β, γ, δ|q) =
(αq, βδq, γq; q)n

(αβqn+1; q)n
4φ3

(
q−n, αβqn+1, q−x, γδqx+1

αq, βδq, γq

∣∣∣∣∣∣ q; q
)
, µ(x) = q−x+γδqx+1,

(2)
n ∈ {0, 1, . . . ,N}, αq = q−N or βδq = q−N or γq = q−N , N a nonnegative integer;
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3. Big q-Jacobi polynomials

P̃n(x;α, β, γ; q) =
(αq; q)n(γq; q)n

(αβqqn; q)n
3φ2

(
q−n, αβqn+1, x

αq, γq

∣∣∣∣∣∣ q; q
)
, (3)

with 0 < αq < 1, 0 ≤ βq < 1 and γ < 0, x ∈ (γq, αq);
4. q-Hahn polynomials

Q̃n(x̄;α, β,N|q) =
(αq; q)n(q−N; q)n

(αβqqn; q)n
3φ2

(
q−n, αβqn+1, x̄
αq, q−N

∣∣∣∣∣∣ q; q
)
,

with x̄ = q−x, n ∈ {0, 1, . . . , N}, 0 < αq < 1 and 0 < βq < 1 or α > q−N and β > q−N , x̄ ∈ (1, q−N);

5. Little q-Jacobi polynomials

p̃n(x;α, β|q) = (−1)nq(n
2) (αq; q)n

(αβqqn; q)n
2φ1

(
q−n, αβqn+1

αq

∣∣∣∣∣∣ q; qx
)
, 0 < αq < 1, βq < 1, x ∈ (0, 1);

6. q-Meixner polynomials

M̃n(x̄; β, γ; q) = (−1)nq−n2
γn(βq; q)n 2φ1

(
q−n, x̄
βq

∣∣∣∣∣∣ q;−
qn+1

γ

)
,

with x̄ = q−x, 0 ≤ βq < 1, γ > 0, x̄ ∈ (1,∞);
7. q-Krawtchouk polynomials

K̃n(x̄; p,N; q) =
(q−N; q)n

(−pqn; q)n
3φ2

(
q−n, x̄,−pqn

q−N , 0

∣∣∣∣∣∣ q; q
)
,

with x̄ = q−x and n ∈ {0, 1, . . . , N}, p > 0, x̄ ∈ (1, q−N);
8. q-Laguerre polynomials

L̃(α)
n (x; q) =

(−1)n(qα+1; q)n

qn(n+α) 1φ1

(
q−n

qα+1

∣∣∣∣∣∣ q;−qn+α+1x
)
, α > −1, x ∈ (0,∞);

9. Alternative q-Charlier or q-Bessel polynomials

ỹn(x;α; q) =
(−1)nq(n

2)

(−αqn; q)n
2φ1

(
q−n,−αqn

0

∣∣∣∣∣∣ q; qx
)
, α > 0, x ∈ (0, 1);

10. Al-Salam-Carlitz I polynomials

Ũ (α)
n (x; q) = (−α)nq(n

2) 2φ1

(
q−n, x−1

0

∣∣∣∣∣∣ q;
qx
α

)
, α < 0, x ∈ (α, 1);
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11. Al-Salam-Carlitz II polynomials

Ṽ (α)
n (x; q) = (−α)nq−(

n
2) 2φ0

(
q−n, x
−

∣∣∣∣∣∣ q;
qn

α

)
, 0 < αq < 1, x ∈ (1,∞).

In the above definitions, the basic hypergeometric series rφs is given by

rφs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣ q; z
)

=

∞∑
k=0

(a1, . . . , ar; q)k

(b1, . . . , bs; q)k

(
(−1)kq(k

2)
)1+s−r zk

(q; q)k
,

where the q-Pochhammer symbol (a1, a2, . . . , ak; q)n is defined by

(a1, . . . , ar; q)k := (a1; q)k · · · (ar; q)k, with (ai; q)k =


k−1∏
j=0

(1 − aiq j) if k = 1, 2, 3, . . .

1 if k = 0.

If {pn}
∞
n=0 is a sequence of orthogonal polynomials, the zeros of pn are real and simple and it is

well known that the zeros of pn and pn−1 interlace, i.e., if xn,1 < xn,2 < . . . < xn,n denote the zeros
of pn, then

xn,1 < xn−1,1 < xn,2 < · · · < xn,n−1 < xn−1,n−1 < xn,n.

If polynomials pn and qn are of the same degree, the zeros are said to interlace if either

xn,1 < yn,1 < xn,2 < yn,2 · · · < xn,n < yn,n

or
yn,1 < xn,1 < yn,2 < xn,2 · · · < yn,n < xn,n,

where {yn,k}
n
k=1 denote the zeros of qn.

The separation of the zeros of different sequences of Hahn polynomials of the same or adja-
cent degree was first studied by Levit [20] in 1967, and similar interlacing results followed for
Jacobi polynomials [1, 5], Krawtchouk polynomials [3, 11] and Meixner and Meixner-Pollaczek
polynomials [11]. The different sequences were obtained by integer shifts of the parameters and
in order to prove these results, recurrence equations, following from the contiguous relations for
hypergeometric polynomials [22, p. 71], were used. In the case of Gauss’ hypergeometric function
(cf. [24, Equation 4.21.3]), a useful algorithm in this regard is available as a computer package
[25].

Interlacing results for the zeros of different sequences of q-orthogonal sequences with shifted
parameters are given for q-Laguerre polynomials in [12, 21], for Al-Salam-Chihara, q-Meixner-
Pollaczek and q-ultraspherical polynomials in [12] and for 2φ1 hypergeometric polynomials, as-
sociated with the little q-Jacobi polynomials, in [7]. The recurrence equations necessary to prove
these results were obtained respectively from relationships between polynomials orthogonal to a
positive measure dΨ(x) and those orthogonal to xdΨ(x) (cf. [14]), from the generating functions
of the appropriate polynomials and from the contiguous function relations satisfied by the basic
hypergeometric function (cf. [9]). In order to determine the specific order of the interlacing zeros,
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Markov’s monotonicity theorem (or a consequence of it), is used (cf. [24, Theorems 6.12.1,6.12.2]
or [10, Theorem 7.1.1]).

In this paper, we use mixed recurrence equations, satisfied by different sequences of the appro-
priate q-orthogonal polynomial systems, to study interlacing properties of the zeros of sequences
of orthogonal systems on the q-linear lattice and the q-quadratic lattice, mentioned above, as well
as of the zeros of q-orthogonal systems obtained by limit relations of these polynomials, namely
the big q-Laguerre, quantum q-Krawtchouk, affine q-Krawtchouk, little q-Laguerre (or Wall), q-
Charlier, continuous dual q-Hahn, Al-Salam Chihara, continuous big q-Hermite, continuous q-
Hahn polynomials and the dual q-Hahn polynomials. The necessary equations are obtained using
an algorithmic approach, whereas one may also use contiguous function relations for the basic
hypergeometric series (see e.g. [7, 9, 23]) to get some of these recurrence equations. We use an
adaption of the q-version of Zeilberger’s algorithm which is an extension of Gosper’s algorithm.
Gosper’s algorithm deals with the question how to find an anti-difference sk for given ak, i.e.,
a sequence sk for which ak = ∆sk = sk+1 − sk, in a particular case that sk is a hypergeometric
term, i.e.,

sk+1

sk
∈ Q(k). Given F(n, k), Zeilberger’s algorithm provides a recurrence equation for

sn =

∞∑
k=−∞

F(n, k), where F(n, k) is a hypergeometric term with respect to both n and k. We set

ak = F(n, k) +

J∑
j=1

σ j(n)F(n + j, k) with undetermined variables σ j(n) and apply Gosper’s algo-

rithm to ak. If successful, Gosper’s algorithm finds G(n, k) with G(n, k + 1) −G(n, k) = ak and at
the same time σ j(n), j ∈ {1, 2, . . . , J}. By summation, we have

sn +

J∑
j=1

σ j(n)sn+ j = 0.

We refer the reader to [17] and references there-in for more details about the algorithms of Gosper
and Zeilberger and their q-analogues.

In our case, if we set, for example, ak = F(n, k, α) +

J∑
j=1

σ j(n)F(n + j, k, α + 1), we obtain a

recurrence equation of the form

sn(α) +

J∑
j=1

σ j(n)sn+ j(α + 1) = 0, sn(α) =

∞∑
k=−∞

F(n, k, α).

The q-analogues of Gosper’s and Zeilberger’s algorithms are implemented in the Maple qsum

package [17] which can be downloaded at http://www.mathematik.uni-kassel.de/~koepf/
Publikationen. By applying an adaption of the qsumdiffeq [17, p. 210] procedure of the
qsum package, we wrote codes to derive recurrence equations of type (5) for the q-orthogonal
polynomial systems considered in the sequel.

In section 2, the preliminary results that are used to prove our interlacing results, are listed.
These results are generalizations of [2, Theorem 3], but we prove them here for polynomial sys-
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tems with interlacing zeros and not necessarily polynomial systems that belong to the same or-
thogonal sequence. In each case, our results illustrate the monotonicity of the zeros, that can be
obtained by the theorem of Markov [24, Theorem 6.12.2].

2. Preliminary results

Lemma 1 (cf. [2, 7, 12]). Let (c, d) be a finite or infinite interval and pn and qn polynomials (not
necessarily orthogonal) of degree n, with zeros c < xn,1 < xn,2 < · · · < xn,n < d and c < yn,1 <
yn,2 < · · · < yn,n < d, respectively, satisfying the interlacing property

xn,1 < yn−1,1 < xn,2 < yn−1,2 < · · · < xn,n−1 < yn−1,n−1 < xn,n. (4)

Let a and b be continuous functions on (c, d) and assume that fn is a polynomial of degree n, with
zeros c < zn,1 < zn,2 < · · · < zn,n < d, satisfying the equation

fn(x) = a(x)pn(x) + b(x)qn−1(x). (5)

Then,

(a) if b has constant sign on (c, d), the zeros of fn and pn interlace;
(b) if a has constant sign on (c, d), fn has an odd number of zeros between any two zeros of qn−1.

Proof. Assume that fn has degree n with zeros zn,1 < zn,2 < · · · < zn,n.

(a) We evaluate (5) at xn,k and xn,k+1, k ∈ {1, 2, . . . , n − 1}, two consecutive zeros of pn(x). Then

fn(xn,k) fn(xn,k+1) = b(xn,k)b(xn,k+1)qn−1(xn,k)qn−1(xn,k+1).

By (4) the zeros of pn and qn−1 interlace, therefore qn−1 will differ in sign at xn,k and xn,k+1,
k ∈ {1, 2, . . . , n − 1}, which implies qn−1(xn,k)qn−1(xn,k+1) < 0. Since b(x) has constant sign on
(c, d), we have b(xn,k)b(xn,k+1) > 0 and therefore fn(xn,k) fn(xn,k+1) < 0. fn must therefore have
an odd number of zeros in each interval with endpoints xn,k and xn,k+1, k ∈ {1, 2, . . . , n−1}, and
the interlacing result follows.

(b) We evaluate (5) at yn−1,k and yn−1,k+1, k ∈ {1, 2, . . . , n − 2}, two consecutive zeros of qn−1(x).
Then

fn(yn−1,k) fn(yn−1,k+1) = a(yn−1,k)a(yn−1,k+1)pn(yn−1,k)pn(yn−1,k+1).

From (4) we know that the zeros of pn and qn−1 interlace, therefore pn will differ in sign at
yn−1,k and yn−1,k+1, k ∈ {1, 2, . . . , n − 2}, and pn(yn−1,k)pn(yn−1,k+1) < 0. Since a(x) has constant
sign on (c, d), we have a(yn−1,k)a(yn−1,k+1) > 0 and therefore fn(yn−1,k) fn(yn−1,k+1) < 0, which
implies that fn must have an odd number of zeros in each interval with endpoints yn−1,k and
yn−1,k+1, k ∈ {1, 2, . . . , n − 2}.

If a polynomial pn is monic, then limx→∞ pn(x) = +∞. In the following result, which follows
from Lemma 1, we assume that polynomials pn and qn are monic.
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Corollary 2 (cf. [2, 7, 12, 13]). Let (c, d) be a finite or infinite interval and assume that pn and
qn are monic polynomials (not necessarily orthogonal) of degree n, with zeros c < xn,1 < xn,2 <
· · · < xn,n < d and c < yn,1 < yn,2 < · · · < yn,n < d, respectively, satisfying the interlacing
property (4). Assume that a and b are continuous and have constant sign on (c, d) and that fn is a
polynomial of degree n with zeros c < zn,1 < zn,2 < · · · < zn,n < d, satisfying (5). Then, for each
k ∈ {1, 2, . . . , n − 1},

(a) if a(x) and b(x) have the same sign on (c, d), zn,k < xn,k < yn−1,k < zn,k+1 < xn,k+1;
(b) if a(x) and b(x) differ in sign on (c, d), xn,k < zn,k < yn−1,k < xn,k+1 < zn,k+1.

Proof. Assume that fn has degree n and both a and b have constant sign on (c, d). Then both results
of Lemma 1 are true. From Lemma 1(a), the zeros of fn and pn interlace and either zn,k < xn,k or
xn,k < zn,k for each k ∈ {1, 2, . . . , n}.

Evaluating (5) at yn−1,n−1 and xn,n, we obtain

fn(xn,n) fn(yn−1,n−1) = a(yn−1,n−1)b(xn,n)pn(yn−1,n−1)qn−1(xn,n). (6)

Since, by assumption, pn and qn−1 are monic polynomials with interlacing zeros, pn(yn−1,n−1) < 0
and qn−1(xn,n) > 0.

(a) Assume a and b have the same sign on (c, d). Then a(yn−1,n−1)b(xn,n) > 0 and, since
pn(yn−1,n−1)qn−1(xn,n) < 0, we deduce from (6) that fn(xn,n) fn(yn−1,n−1) < 0. This implies fn

has an odd number of zeros in the interval (yn−1,n−1, xn,n).
Suppose zn,k < xn,k, k ∈ {1, 2, . . . , n}. From (4) we deduce that zn,1 < xn,1 < yn−1,1 and thus one
zero of fn lies to the left of yn−1,1. From Lemma 1(b), we know there is an odd number of zeros
of fn in each of the n − 2 intervals (yn−1,k, yn−1,k+1), k ∈ {1, 2, . . . , n − 2}. If each of the n − 2
intervals between the first and the last zero of qn−1 has exactly one zero of fn, we have n − 1
zeros accounted for. There is only one zero remaining (since fn has n zeros), and we deduce
that only one zero of fn lies in (yn−1,n−1, xn,n), which leads to the configuration

zn,1 < xn,1 < yn−1,1 < zn,2 < · · · < xn,n−1 < yn−1,n−1 < zn,n < xn,n.

Suppose xn,k < zn,k, k ∈ {1, 2, . . . , n}. From (4), we deduce that yn−1,n−1 < xn,n < zn,n. This
contradicts the fact that fn must have an odd number of zeros in the interval (yn−1,n−1, xn,n).

(b) Assume a and b have different signs on (c, d). Then a(yn−1,n−1)b(xn,n) < 0 and we deduce from
(6) that fn(xn,n) fn(yn−1,n−1) > 0, thus fn has either 0 or an even number of zeros in the interval
(yn−1,n−1, xn,n).
Suppose xn,k < zn,k, k ∈ {1, 2, . . . , n}. From (4) we deduce that yn−1,n−1 < xn,n < zn,n and the
only option, counting the zeros, is that

xn,1 < zn,1 < yn−1,1 < xn,2 < · · · < zn,n−1 < yn−1,n−1 < xn,n < zn,n.

Suppose zn,k < xn,k, k ∈ {1, 2, . . . , n}. From (4) we deduce that zn,1 < xn,1 < yn−1,1 and thus
one zero of fn lies to the left of yn−1,1. From Lemma 1(b), we know there is an odd number
of zeros of fn in each of the n − 2 intervals (yn−1,k, yn−1,k+1), k ∈ {1, 2, . . . , n − 2}. If each of
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the n − 2 intervals between the first and the last zero of qn−1 has exactly one zero of fn, we
have n − 1 zeros accounted for. There is only one zero remaining (since fn has n zeros). The
one remaining zero therefore must lie to the right of yn−1,n−1, such that yn−1,n−1 < zn,n < xn,n,
which contradicts the fact that fn must have either 0 or an even number of zeros in the interval
(yn−1,n−1, xn,n).

From Corollary 2 we remark that, once we have a relation of type (5), it is sufficient to know
the sign of a and b to prove our interlacing results.

3. Classical orthogonal polynomials on a q-linear lattice

In this section, we consider interlacing properties of zeros of different sequences of orthogonal
polynomials on a q-linear lattice.

3.1. The big q-Jacobi polynomials
The sequence of big q-Jacobi polynomials {P̃n(x;α, β, γ; q)} is orthogonal for 0 < αq < 1,

0 ≤ βq < 1 and γ < 0 with respect to a continuous weight function, on the interval (γq, αq). As
the parameter α decreases to αq, the interval in which the zeros lie decreases to (γq, αq2) and we
can deduce that the zeros of P̃n(x;α, β, γ; q) decrease as α decreases to αq. Similarly, as γ increases
to γq, the zeros will increase, since the interval in which the zeros lie reduces to (γq2, αq).

The following recurrence equations will be used to prove our results and can be downloaded
from http://www.mathematik.uni-kassel.de/~koepf/Publikationen.

Proposition 3.

P̃n(x;α, β, γ; q) = P̃n(x;αq, β, γ; q) +
α q (qn − 1) (β qn − 1) (γ qn − 1)(
αβ q2 n+1 − 1

) (
α β q2 n − 1

) P̃n−1(x;αq, β, γ; q); (7a)

P̃n(x;α, β, γ; q) = P̃n(x;α, βq, γ; q) −
α β qn+1 (α qn − 1) (γ qn − 1) (qn − 1)(

αβ q2 n+1 − 1
) (
α β q2 n − 1

) P̃n−1(x;α, βq, γ; q);

(7b)

P̃n(x;α, βq, γ; q) = P̃n(x;αq, β, γ; q) +
αq(qn − 1)(γqn − 1)

αβq2n+1 − 1
P̃n−1(x;αq, βq, γ; q). (7c)

Theorem 4. Let 0 < αq < 1, 0 ≤ βq < 1, γ < 0 and denote the zeros of P̃n(x;α, β, γ; q) by
γq < xn,1 < xn,2 < · · · < xn,n < αq, the zeros of P̃n(x;αq, β, γ; q) by yn,1 < yn,2 < · · · < yn,n,
the zeros of P̃n(x;α, βq, γ; q) by zn,1 < zn,2 < · · · < zn,n and the zeros of P̃n(x;αq, βq, γ; q) by
tn,1 < tn,2 < · · · < tn,n. Then, for each i ∈ {1, 2, . . . , n − 1},

(a) yn,i < xn,i < yn−1,i < yn,i+1 < xn,i+1 ,
(b) xn,i < zn,i < zn−1,i < xn,i+1 < zn,i+1 ,
(c) yn,i < xn,i < zn,i < tn−1,i < yn,i+1 < xn,i+1 < zn,i+1.
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Proof. Let 0 < αq < 1, 0 ≤ βq < 1, γ < 0. Since 0 < q < 1, it follows that qn−1 < 0, αqn−1 < 0,
βqn − 1 < 0, αβq2n − 1 < 0, αβq2n+1 − 1 < 0 and γqn − 1 < 0.

(a) Since P̃n(x;αq, β, γ; q) and P̃n−1(x;αq, β, γ; q) belong to the same orthogonal sequence, their
zeros interlace and the interlacing property (4) is satisfied. (7a) is in the form of (5) with
a(x) = 1 and, taking into consideration the restrictions on the parameters, b(x) is a negative
constant and the interlacing follows from Corollary 2 (b).

(b) The polynomials P̃n(x;α, βq, γ; q) and P̃n−1(x;α, βq, γ; q) belong to the same orthogonal se-
quence and their zeros satisfy (4). (7b) is in the form of (5) with a(x) = 1 and taking into
consideration the restrictions on the parameters, b(x) is a positive constant. The result follows
from Corollary 2 (a).

(c) In (b) we have proved that the zeros of P̃n(x;α, β, γ; q) and P̃n−1(x;α, βq, γ; q) interlace for
all α such that 0 < αq < 1, from which we can deduce that the zeros of P̃n(x;αq, β, γ; q)
and P̃n−1(x;αq, βq, γ; q) interlace, satisfying (4). Equation (7c) is in the form of (5) with
a(x) = 1 and taking into consideration the restrictions on the parameters, b(x) is a negative
constant. Applying Corollary 2 (b), we obtain yn,i < zn,i < tn−1,i < yn,i+1 < zn,i+1 for each
i ∈ {1, 2, . . . , n − 1}. Furthermore, yn,i < xn,i < zn,i for each i ∈ {1, 2, . . . , n} (from (a) and (b)),
and the required combined interlacing follows.

Corollary 5. For each i ∈ {1, 2, . . . , n − 1},

(a) xn,i < yn−1,i < xn−1,i < xn,i+1 ,
(b) xn,i < xn−1,i < zn−1,i < xn,i+1.

Proof. We obtain the results by combining the interlacing of the zeros of P̃n(x;α, β, γ; q) and
P̃n−1(x;α, β, γ; q) with the results proved in Theorem 4 (a) and (b), respectively.

Remark 6. (i) In general, the zeros of P̃n(x;α, β, γ; q) do not interlace with the zeros of
P̃n(x;α, β, γq; q) or with the zeros of P̃n−1(x;α, β, γq; q). For example, when n = 4, α = 1, β =

3, γ = −5, q = 0.14, the zeros of P̃n(x;α, β, γ; q) are {−0.6993,−0.1066, 0.0198, 0.1353}, the
zeros of P̃n(x;α, β, γq; q) are {−0.0992, 0.0000, 0.0071, 0.1407} and the zeros of P̃n−1(x;α, β, γq; q)
are {−0.0978, 0.0056, 0.1399};

(ii) When β = 0 in the definition of the monic big q-Jacobi polynomials, we obtain the monic
big q-Laguerre polynomials, i.e., P̃n(x;α, 0, γ; q) = P̃n(x;α, γ; q) [15, Equation 14.5.13].
The interlacing property of the zeros of the big q-Laguerre polynomials, as α decreases to
αq, can thus be obtained from the result obtained for the big q-Jacobi polynomials. Fur-
thermore, we have P̃n(x;α, β; q) = P̃n(x; β, α; q) and the interlacing property as β increases
to βq follows directly. The interlacing results of Theorem 4 and Corollary 5 are therefore
valid, where xn,i, yn,i, zn,i, tn,i, i ∈ {1, 2, . . . , n} are the zeros of P̃n(x;α, γ; q), P̃n(x;αq, γ; q),
P̃n(x;α, γq; q) and P̃n(x;αq, γq; q), respectively.
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3.2. The q-Hahn polynomials
Proposition 7.

Q̃n(x;α, β,N|q) = Q̃n(x;αq, β,N|q) +
α (qn − 1) (β qn − 1)

(
qn − qN+1

)
qN (

αβ q2 n+1 − 1
) (
α β q2 n − 1

) Q̃n−1(x;αq, β,N|q); (8a)

Q̃n(x;α, β,N|q) = Q̃n(x;α, βq,N|q) +
α β qn−N

(
qN+1 − qn

)
(α qn − 1) (qn − 1)(

αβ q2 n+1 − 1
) (
α β q2 n − 1

) Q̃n−1(x;α, βq,N|q);

(8b)

Q̃n(x;α, βq,N |q) = Q̃n(x;αq, β,N|q) +
α(qn − 1)(qn − qN+1)

qN(αβq2n+1 − 1)
Q̃n−1(x;αq, βq,N|q); (8c)

Q̃n (x;α, β,N |q) =

(
αβq2 n+1 − 1

) (
αβqN+2(αqn+1 − 1) − αqN−n+2(qn − 1) − (αq − 1)

)(
αqn+1 − 1

) (
αβqn+1 − 1

) (
αβqn+N+2 − 1

) Q̃n(x;αq, β,N |q)

+
αq (βqn − 1)

(
qn − q1+N

)
(qn − 1)

(
αq2 − x

)
qn (

αqn+1 − 1
) (
αβqn+1 − 1

) (
αβqn+N+2 − 1

) Q̃n−1(x;αq2, β,N|q). (8d)

Theorem 8. Let 0 < βq < 1, 0 < αq < 1, n ∈ {0, 1, . . . ,N}. We denote the zeros of Q̃n(x;α, β,N |q)
by 1 < xn,1 < xn,2 < · · · < xn,n < q−N , the zeros of Q̃n(x;αq, β,N |q) by yn,1 < yn,2 < · · · < yn,n,
the zeros of Q̃n(x;α, βq,N |q) by zn,1 < zn,2 < · · · < zn,n and the zeros of Q̃n(x;αq, βq,N|q) by
tn,1 < tn,2 < · · · < tn,n. Then, for i ∈ {1, 2, . . . , n − 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1,
(b) zn,i < xn,i < zn−1,i < zn,i+1 < xn,i+1,
(c) zn,i < xn,i < yn,i < tn−1,i < zn,i+1 < xn,i+1 < yn,i+1.

Proof. Let 0 < βq < 1, 0 < αq < 1, n ∈ {0, 1, . . . ,N}. Since 0 < q < 1, it follows that qn − 1 < 0,
βqn − 1 < 0, αβq2n − 1 < 0 and αβq2n+1 − 1 < 0. Furthermore, qm < qn for m > n and consequently
qN+1 − qn < 0.

The two polynomials on the right-hand side of each of the equations (8a) and (8b) belong to
the same orthogonal sequence, therefore their zeros interlace and satisfy the interlacing property
(4). Each of these equations are thus are in the form of (5) with a(x) = 1. Furthermore,

(a) in (8a), b(x) > 0 on (1, q−N) and the required interlacing follows from Corollary 2 (a);
(b) b(x) in (8b) is a negative constant and the result follows from Corollary 2 (b);
(c) From the interlacing of the zeros of Q̃n(x;α, βq,N |q) and Q̃n−1(x;α, βq,N|q) for all α such that

0 < αq < 1 (from (b)), the interlacing of the zeros of Q̃n(x;αq, β, γ; q) and Q̃n−1(x;αq, βq, γ; q)
follows directly. Equation (8c) is in the form of (5) with a(x) = 1 and taking into consideration
the restrictions on the parameters, b(x) is a positive constant. Applying Corollary 2 (a), we
obtain zn,i < yn,i < tn−1,i < zn,i+1 < yn,i+1 for each i ∈ {1, 2, . . . , n − 1}. Furthermore, it follows
from (a) and (b) that zn,i < xn,i < yn,i for each i ∈ {1, 2, . . . , n}, and the required combined
interlacing follows.

9



Corollary 9. For each i ∈ {1, 2, . . . , n − 1},
(a) xn,i < xn−1,i < yn−1,i < xn,i+1,
(b) xn,i < zn−1,i < xn−1,i < xn,i+1.

Proof. We obtain the results by combining the interlacing of the zeros of Q̃n(x;α, β,N|q) and
Q̃n−1(x;α, β,N|q) with the results proved in Theorem 8 (a) and (b), respectively.

Remark 10. (i) When we let β = 0 in the definition of the monic q-Hahn polynomials, we
obtain the monic affine q-Krawtchouk polynomials [15, Section 14.16] K̃Aff

n (x̄;α,N; q), or-
thogonal on (1, q−N) if 0 < αq < 1. The interlacing results in Theorem 8 (a) and Corollary
9 (a) follow from (8a) (with β = 0), where xn,i and yn,i, i ∈ {1, 2, . . . , n} are the zeros of
K̃Aff

n (x̄;α,N; q) and K̃Aff
n (x̄;αq,N; q), respectively. Furthermore, when we let β = 0 in (8d),

we find that
xn,i < yn,i < Yn−1,i < xn,i+1 < yn,i+1,

for each i ∈ {1, 2, . . . , n − 1}, where Yn,i, i ∈ {1, 2, . . . , n} are the zeros of K̃Aff
n (x̄;αq2,N; q);

(ii) Since limα→∞ Q̃n(x;α, β,N |q) = K̃qtm
n (x; β,N; q) [15, Section 14.14], we obtain from (8b),

the equation

K̃qtm
n (x; β,N; q) = K̃qtm

n (x; βq,N; q) +

(
qN+1 − qn

)
(qn − 1)

βq2 n+N+1 K̃qtm
n−1(x; βq,N; q),

from which the interlacing results in Theorem 8 (b) and Corollary 9 (b) follow directly, where
xn,i and zn,i, i ∈ {1, 2, . . . , n} are the zeros of the monic quantum q-Krawtchouk polynomials
K̃qtm

n (x; β,N; q) and K̃qtm
n (x; βq,N; q), respectively.

3.3. The little q-Jacobi polynomials
Proposition 11.

p̃n(x;α, β|q) = p̃n(x;αq, β|q) +
α qn (qn − 1) (β qn − 1)(
αβ q2 n+1 − 1

) (
α β q2 n − 1

) p̃n−1(x;αq, β|q); (9a)

p̃n(x;α, β|q) = p̃n(x;α, βq|q) −
α β q2 n (qn − 1) (α qn − 1)(
αβ q2 n+1 − 1

) (
α β q2 n − 1

) p̃n−1(x;α, βq|q); (9b)

p̃n(x;α, β|q) =
(α q − 1)

(
αβ q2 n+1 − 1

)
p̃n(x;αq2, β|q)(

α qn+1 − 1
) (
α β qn+1 − 1

)
+
α q (qn − 1) (βqn − 1)

((
α βq2 n+2 − 1

)
x + qn (α q − 1)

)
p̃n−1(x;αq2, β|q)(

α qn+1 − 1
) (
α βq2 n+2 − 1

) (
α β qn+1 − 1

) ; (9c)

p̃n(x;α, β|q) = −

(
α β qn+1(qn − 1) + 1 − β qn+1

) (
α β q2 n+1 − 1

)
p̃n(x;α, βq|q)(

β qn+1 − 1
) (
α β qn+1 − 1

)
+
α β q2 n

(
β q2x − 1

)
(qn − 1) (α qn − 1) p̃n−1(x;α, βq2|q)(

β qn+1 − 1
) (
α β qn+1 − 1

) (cf. [7, Equation 9]); (9d)

p̃n(x;α, βq|q) = p̃n(x;αq, β|q) +
α qn (qn − 1)
β α q2 n+1 − 1

p̃n−1(x;αq, βq|q) (cf. [7, Equation 10]). (9e)

10



Theorem 12. Let 0 < αq < 1 and βq < 1 and denote the zeros of p̃n(x;α, β|q) by 0 < xn,1 < xn,2 <
· · · < xn,n < 1, the zeros of p̃n(x;αq, β|q) by yn,1 < yn,2 < · · · < yn,n, the zeros of p̃n(x;αq2, β|q)
by Yn,1 < Yn,2 < · · · < Yn,n, the zeros of p̃n(x;α, βq|q) by zn,1 < zn,2 < · · · < zn,n, the zeros of
p̃n(x;α, βq2|q) by Zn,1 < Zn,2 < · · · < Zn,n and the zeros of p̃n(x;αq, βq|q) by tn,1 < tn,2 < · · · < tn,n.
Then, for i ∈ {1, 2, . . . , n − 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1,
(b) zn,i < xn,i < zn−1,i < zn,i+1 < xn,i+1 if β > 0 and xn,i < zn,i < zn−1,i < xn,i+1 < zn,i+1 if β < 0,
(c) xn,i < yn,i < Yn,i < Yn−1,i < xn,i+1 < yn,i+1 < Yn,i+1,
(d) xn,i < zn,i < Zn−1,i < xn,i+1 < zn,i+1 if β < 0,
(e) zn,i < yn,i < tn−1,i < zn,i+1 < yn,i+1 if β < 0.

Proof. Let 0 < αq < 1 and βq < 1. We note that, since 0 < q < 1, qn − 1 < 0, αqn − 1 < 0,
βqn − 1 < 0, αβqn − 1 < 0, for all positive integers n.

The polynomials on the right-hand side of each of the equations (9a) and (9b) belong to the
same orthogonal sequence, therefore their zeros interlace and satisfy the property (4). Each of
these equations are thus are in the form of (5) with a(x) = 1. Furthermore,

(a) b(x) in (9a) is a positive constant and the result follows from Corollary 2 (a);
(b) taking into consideration the restrictions on the parameters, b(x) in (9b) is a positive constant

if β < 0 and b(x) is negative when β > 0. The result follows from applying Corollary 2 to the
different situations.

(c) The polynomials p̃n(x;αq2, β|q) and p̃n−1(x;αq2, β|q) belong to the same orthogonal sequence
and their zeros satisfy (4). (9c) is in the form of (5) and taking into consideration the restric-
tions on the parameters, a(x) is a positive constant.

b(x) =
α q (qn − 1) (βqn − 1)(

α qn+1 − 1
) (
α βq2 n+2 − 1

) (
α β qn+1 − 1

) ((
α βq2 n+2 − 1

)
x + qn (α q − 1)

)
= −k2

((
α βq2 n+2 − 1

)
x + qn (α q − 1)

)
, k ∈ R,

represents a linear function with gradient −k2(α βq2 n+2 − 1) > 0, intersecting the x-axis at
x =

−qn(α q−1)
(αq) (βq)q2 n−1 < 0 for βq < 1. b(x) is thus positive on (0, 1) and from Corollary 2 (a) we

deduce that xn,i < Yn,i < Yn−1,i < xn,i+1 < Yn,i+1 for each i ∈ {1, 2, . . . , n − 1}. Furthermore,
by replacing α with αq in (9a), we obtain yn,i < Yn,i < Yn−1,i < yn,i+1 < Yn,i+1 for each
i ∈ {1, 2, . . . , n − 1} and by combining these two interlacing results with the fact that xn,i < yn,i

for each i ∈ {1, 2, . . . , n}, the required interlacing follows.
(d) Let β < 0. By replacing β with βq in (9b), we obtain zn,i < Zn,i < Zn−1,i < zn,i+1 < Zn,i+1 for each

i ∈ {1, 2, . . . , n− 1} and equation (9d) is in the form of (5). Under the condition that β < 0, the
coefficient of p̃n(x;α, βq|q) is a positive constant. The coefficient of p̃n−1(x;α, βq2|q) is

b(x) =
α β q2 n (qn − 1) (α qn − 1)(
β qn+1 − 1

) (
α β qn+1 − 1

) (
β q2x − 1

)
= −k2

(
βq2x − 1

)
, k ∈ R,

that represents a linear function with positive gradient, intersecting the negative x-axis and
b(x) is thus positive on (0, 1). The result follows from Corollary 2 (a).
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(e) Assume β < 0. From (b) we know that the zeros of p̃n(x;α, β|q) and p̃n−1(x;α, βq|q) interlace.
By replacing α by αq, it follows that yn,i < tn−1,i < yn,i+1 for each i ∈ {1, 2, · · · , n−1}. Equation
(9e) is in the form of (5) with a(x) = 1 and, taking into consideration the restrictions on the
parameters, b(x) is a positive constant. The result follows from Corollary 2 (a).

Corollary 13. For each i ∈ {1, 2, . . . , n − 1},
(a) xn,i < xn−1,i < yn−1,i < xn,i+1,
(b) xn,i < zn−1,i < xn−1,i < xn,i+1 if β > 0 and xn,i < xn−1,i < zn−1,i < xn,i+1 if β < 0,
(c) xn,i < zn,i < yn,i < xn,i+1 < zn,i+1 < yn,i+1 if β < 0.

Proof. (a) We combine the interlacing of the zeros of p̃n(x;α, β|q) and p̃n−1(x;α, β|q) with the
results proved in Theorem 12 (a) to obtain the required interlacing.

(b) We combine the interlacing of the zeros of p̃n(x;α, β|q) and p̃n−1(x;α, β|q) with the result of
Theorem 12 (b).

(c) Let β < 0. This result follows from the interlacing proved in Theorem 12 (a), (b) and (e).

Remark 14. (i) We note that our results differ from the interlacing results for the little q-Jacobi
polynomials, given in [7, Section 3]. In [7, Theorem 2], the values of x, given as the zeros
of the polynomial pn(x;α, β|q), are in actual fact the zeros y of the polynomial pn(qy;α, β|q).
The same is true for the interlacing results in [7, Theorems 4,5,6 and 7];

(ii) When β = 0 in the definition of the little q-Jacobi polynomials, we obtain the little q-
Laguerre (or Wall) polynomials p̃n(x;α|q), that are orthogonal on (0, 1) when 0 < αq < 1.
The interlacing results in Theorem 12 (a) and (c) and Corollary 12 (a) follow from (9a) and
(9c) (with β = 0), where xn,i, yn,i and Yn,i, i ∈ {1, 2, . . . , n} are the zeros of p̃n(x;α|q),p̃n(x;αq|q)
and p̃n(x;αq2|q), respectively.

3.4. The q-Meixner polynomials
We note that in the definition of the q-Meixner polynomials, we let x̄ = q−x, i.e., x = lnx̄

−lnq and
as x increases on (0,∞), x̄ will increase on (1,∞). The variable x in our equations thus represents
x̄ in the definition of the polynomials and for 0 < βq < 1 and γ > 0, the polynomial M̃n(x; β, γ; q)
is orthogonal on (1,∞).

Proposition 15.

M̃n(x; β, γq; q) = M̃n(x; β, γ; q) + γ q−2n+1 (qn − 1) (βqn − 1) M̃n−1(x; β, γ; q); (10a)

M̃n(x; β, γq2; q) = −
(β γ q (qn − 1) − qγ − 1) qnM̃n(x; β, γ; q)

γq + qn

+
γ q−n+1 (βqn − 1) (qn − 1) (γ β q + qnx + γq + 1) M̃n−1(x; β, γ; q)

γq + qn ; (10b)

M̃n(x; β, γ; q) =
(γ β q + qnx) M̃n(x; βq, γ; q)

qn(γ β q + x)
−
γ β (qn + γ) (qn − 1)

q3 n−2(γ β q + x)
M̃n−1(x; βq, γ; q); (10c)

M̃n(x; β, γq; q) = M̃n(x; βq, γ; q) − γq−2n+1 (qn − 1) M̃n−1(x; βq, γ; q). (10d)
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Theorem 16. Let 0 < βq < 1 and γ > 0 and denote the zeros of M̃n(x; β, γ; q) by 1 < xn,1 < xn,2 <
· · · < xn,n < ∞, the zeros of M̃n(x; βq, γ; q) by yn,1 < yn,2 < · · · < yn,n, the zeros of M̃n(x; β, γq; q)
by zn,1 < zn,2 < · · · < zn,n and the zeros of M̃n(x; β, γq2; q) by Zn,1 < Zn,2 < · · · < Zn,n. Then, for
i ∈ {1, 2, . . . , n − 1},

(a) zn,i < xn,i < xn−1,i < zn,i+1 < xn,i+1,
(b) Zn,i < xn,i < xn−1,i < Zn,i+1 < xn,i+1,
(c) zn,i < xn,i < yn,i < yn−1,i < zn,i+1 < xn,i+1 < yn,i+1.

Proof. Let 0 < βq < 1 and γ > 0. Since 0 < q < 1, it follows that qn − 1 < 0 and βqn − 1 < 0.
The polynomials on the right-hand side of each of the equations (10a) - (10d) belong to the

same orthogonal sequence, therefore their zeros interlace and satisfy the property (4). Each of
these equations thus is in the form of (5) with

(a) a(x) = 1 and b(x) > 0 in (10a) and the required interlacing follows from Corollary 2 (a);
(b) a(x) > 0 in (10b) and, taking in consideration the restrictions on the parameters,

b(x) =
γ (βqn − 1) (qn − 1)

qn−1(γq + qn)
(qnx + γ β q + γq + 1)

is a linear function with positive gradient and is positive on (1,∞). The interlacing follows
from Corollary 2 (a);

(c) Taking into consideration the restrictions on the parameters, the coefficients of both polyno-
mials on the righthand side of (10c) are positive on (1,∞), and following Corollary 2 (a),
xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1 for each i ∈ {1, 2, . . . , n − 1}. Furthermore, the coefficients of
both polynomials on the righthand side of (10d) are positive constants and applying Corollary
2 (a) for a second time, we obtain zn,i < yn,i < yn−1,i < zn,i+1 < yn,i+1 for each i ∈ {1, 2, . . . , n−1}.
It is known, from (a), that zn,i < xn,i for each i ∈ {1, 2, . . . , n}, and the required combined inter-
lacing follows.

Corollary 17. For i ∈ {1, 2, . . . , n − 1},

(a) zn,i < zn−1,i < xn−1,i < yn−1,i < zn,i+1,
(b) Zn,i < Zn−1,i < xn−1,i < Zn,i+1,
(c) zn,i < xn,i < xn−1,i < yn−1,i < zn,i+1 < xn,i+1.

Proof. (a) The result follows from Theorem 16 (c) and the interlacing of the zeros of M̃n(x; β, γq; q)
and M̃n−1(x; β, γq; q).

(b) The result follows from Theorem 16 (b) and the interlacing of the zeros of M̃n(x; β, γq2; q) and
M̃n−1(x; β, γq2; q).

(c) We combine the interlacing of the zeros of M̃n(x; β, γ; q) and M̃n−1(x; β, γ; q) with the result of
Theorem 16 (c) to obtain the required interlacing.
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Remark 18. (i) In general, the zeros of M̃n(x; β, γ; q) and M̃n−1(x; β, γq; q) do not interlace.
These polynomials satisfy

M̃n−1(x; β, γq; q) = −
q2 n−1M̃n(x; β, γ; q)

γ q + qn +
b(x)M̃n−1(x; β, γ; q)

q (γ q + qn)

with b(x) = q2nx + γ q (βqn + qn − 1) , which represents a linear function that changes sign
on (1,∞) for 0 < βq < 1 and γ > 0. For example, when n = 2, β = 1, γ = 5, q = 0.1, the
zeros of M̃n(x; β, γ; q) are {42.15, 5413.85} and the zero of M̃n−1(x; β, γq; q) is {5.50};

(ii) When β = 0 in the definition of the q-Meixner polynomials, we obtain the q-Charlier poly-
nomials C̃n(x; γ; q). The interlacing results in Theorem 16 (a) and (b) and Corollary 17 (b)
follow from (10a) and (10b) (with β = 0), where xn,i, yn,i and Zn,i, i ∈ {1, 2, . . . , n}, are the
zeros of C̃n(x; γ; q),C̃n(x; γq; q) and C̃n(x; γq2; q), respectively.

3.5. The q-Krawtchouk polynomials
Proposition 19.

K̃n(x; p,N; q) = K̃n(x; pq,N; q) +
pqn

(
qN+1 − qn

)
(qn − 1)

qN (
1 + pq2 n) (q + pq2 n) K̃n−1(x; pq,N; q); (11a)

K̃n(x; p,N; q) =

(
pq2 n + 1

) (
pqN+1 + 1

)
K̃n(x; pq2,N; q)

(pqn + 1)
(
pqn+N+1 + 1

)
+

p (qn − 1)
(
qN+1 − qn

) (
qN

(
pq2 n+1 + 1

)
x + qn

(
pq1+N + 1

))
K̃n−1(x; pq2,N; q)

qN (pqn + 1)
(
pqn+N+1 + 1

) (
pq2 n+1 + 1

) . (11b)

Theorem 20. Let p > 0, n ∈ {0, 1, . . . ,N} and denote the zeros of K̃n(x; p,N; q) by 1 < xn,1 <
xn,2 < · · · < xn,n < q−N , the zeros of K̃n(x; pq,N; q) by yn,1 < yn,2 < · · · < yn,n and the zeros of
K̃n(x; pq2,N; q) by Yn,1 < Yn,2 < · · · < Yn,n. Then, for each i ∈ {1, 2, . . . , n − 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1,
(b) xn,i < Yn,i < Yn−1,i < xn,i+1 < Yn,i+1.

Proof. Let p > 0, n ∈ {0, 1, . . . ,N}. We note that qn − 1 < 0 and since qm < qn for m > n,
qN+1 − qn < 0. Since the polynomials on the righthand-side of both equations (11a) and (11b)
belong to the same orthogonal sequences, their zeros interlace and both these equations are in the
form of (5). The required interlacing follows from Corollary 2 (a), since

(a) both a(x) and b(x) in (11a) are positive constants;
(b) taking into account the restrictions on the parameters, it is clear that a(x) is a positive constant

and b(x) > 0 represents a linear function that does not change sign on (1, q−N).

Corollary 21. For i ∈ {1, 2, . . . , n − 1},
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(a) xn,i < xn−1,i < yn−1,i < xn,i+1,
(b) xn,i < yn,i < Yn,i < Yn−1,i < xn,i+1 < yn,i+1 < Yn,i+1.

Proof. (a) The result follows directly from Theorem 20 (a) and the interlacing of the zeros of
K̃n(x; p,N; q) and K̃n−1(x; p,N; q).

(b) When we replace p by pq in (11a), we obtain, using the same argument as in the proof of
Theorem 20 (a), that yn,i < Yn,i < Yn−1,i < yn,i+1 < Yn,i+1, for each i ∈ {1, 2, . . . , n − 1}. We
combine this with the interlacing results in Theorem 20 (a) and (b), which leads to the required
result.

3.6. The q-Laguerre polynomials
In [21], relations between different sequences of q-Laguerre polynomials are provided and

interlacing results between the zeros of different sequences of these polynomials are given in
[12, 21].

Proposition 22.

L̃(α)
n (x; q) = L̃(α+1)

n (x; q) − q−2 n−α (qn − 1) L̃(α+1)
n−1 (x; q) cf. [21, Eq (4.12)]; (12a)

L̃(α)
n (x; q) =

(
qα+1 − 1

)
qnL̃(α+2)

n (x; q)

qn+α+1 − 1
+

(
qn+α+1x − qα+1 + 1

)
(qn − 1) L̃(α+2)

n−1 (x; q)

qn+α+1(qn+α+1 − 1)
. (12b)

Theorem 23. Let α > −1. We denote the zeros of L̃(α)
n (x; q) by 0 < xn,1 < xn,2 < · · · < xn,n < ∞, the

zeros of L̃(α+1)
n (x; q) by yn,1 < yn,2 < · · · < yn,n and the zeros of L̃(α+2)

n (x; q) by Yn,1 < Yn,2 < · · · < Yn,n.
Then, for i ∈ {1, 2, . . . , n − 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1 (cf. [21, Theorem 3]),
(b) xn,i < Yn,i < Yn−1,i < xn,i+1 < Yn,i+1.

Proof. Let α > −1. We note that qn − 1 < 0 and qn+α − 1 < 0.

(a) Since L̃(α+1)
n (x; q) and L̃(α+1)

n−1 (x; q) belong to the same orthogonal sequence, the interlacing prop-
erty (4) is satisfied and (12a) is in the form of (5). Both a(x) and b(x) are positive constants
and the result follows from Corollary 2 (a).

(b) The polynomials L̃(α+2)
n (x; q) and L̃(α+2)

n−1 (x; q) belong to the same orthogonal sequence, which
implies (4) is satisfied and equation (12b) is in the form of (5). For the given values of the
parameters, a(x) is a positive constant and

b(x) =
qn − 1

qn+α+1(qn+α+1 − 1)

(
qn+α+1x − qα+1 + 1

)
> 0

on (0,∞) and the interlacing follows from Corollary 2 (a).

Corollary 24. For i ∈ {1, 2, . . . , n − 1},
15



(a) xn,i < xn−1,i < yn−1,i < Yn−1,i < xn,i+1,
(b) xn,i < yn,i < Yn,i < Yn−1,i < xn,i+1 < yn,i+1 < Yn,i+1.

Proof. (a) See [12, Theorem 5.1].
(b) When we replace α by α + 1 in (12a), we obtain, using the same argument as in the proof of

Theorem 23 (a), that yn,i < Yn,i < Yn−1,i < yn,i+1 < Yn,i+1, for each i ∈ {1, 2, . . . , n − 1}. We
combine this with the results in Theorem 23 (a) and (b) to obtain the required result.

Remark 25. In [12], the result in Corollary (24) (a) is extended to also include a continuous
shift of the parameter α. Furthermore, examples are provided to show that, in general, interlac-
ing breaks down between the zeros of: L̃(α)

n (x; q) and L̃(α+3)
n (x; q), L̃(α)

n (x; q) and L̃(α+3)
n−1 (x; q) and

L̃(α+1)
n (x; q) and L̃(α)

n−1(x; q).

3.7. The alternative q-Charlier or q-Bessel polynomials
Proposition 26.

ỹn(x;α; q) = ỹn(x;αq; q) −
α q2 n (qn − 1)(

q + α q2 n) (1 + α q2 n) ỹn−1(x;αq; q); (13a)

ỹn(x;α; q) =

(
αq2 n + 1

)
ỹn(x;αq2; q)

α qn + 1
−
α qn (qn − 1)

(
(α q2 n+1 + 1)x + qn

)
ỹn−1(x;αq2; q)(

α q2 n+1 + 1
)

(α qn + 1)
. (13b)

Theorem 27. Let α > 0. We denote the zeros of ỹn(x;α; q) by 0 < xn,1 < xn,2 < · · · < xn,n < 1, the
zeros of ỹn(x;αq; q) by zn,1 < zn,2 < · · · < zn,n and the zeros of ỹn(x;αq2; q) by Zn,1 < Zn,2 < · · · <
Zn,n. Then, for i ∈ {1, 2, . . . , n − 1},
(a) xn,i < zn,i < zn−1,i < xn,i+1 < zn,i+1,
(b) xn,i < Zn,i < Zn−1,i < xn,i+1 < Zn,i+1.

Proof. Let α > 0. The polynomials on the right-hand side of each of the equations (13a) and (13b)
belong to the same orthogonal sequence and their zeros satisfy (4), therefore these equations are
in the form of (5). Taking into consideration the values of the parameters,
(a) both a(x) and b(x) in (13a) are positive constants and the result follows from Corollary 2 (a).
(b) a(x) in (13b) is a positive constant and b(x) represents a linear function that does not change

sign on (0, 1) and the interlacing follows from Corollary 2 (a).

Corollary 28. For i ∈ {1, 2, . . . , n − 1},
(a) xn,i < xn−1,i < zn−1,i < Zn−1,i < xn,i+1,
(b) xn,i < zn,i < Zn,i < Zn−1,i < xn,i+1 < zn,i+1 < Zn,i+1.

Proof. (a) The result follows from Theorem 27 (a) and (b) and the interlacing of the zeros of
ỹn(x;α; q) and ỹn−1(x;α; q).

(b) When we replace α by αq in (13a), we deduce that zn,i < Zn,i < Zn−1,i < zn,i+1 < Zn,i+1 and
we combine this with the interlacing results in Theorem 27 (a) and (b) to obtain the required
result.
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3.8. The Al-Salam-Carlitz I polynomials
Proposition 29.

Ũ (α)
n (x; q) = Ũ (αq)

n (x; q) + α(qn − 1)Ũ (αq)
n−1 (x; q). (14)

Theorem 30. Let α < 0 and denote the zeros of Ũ (α)
n (x; q) by α < xn,1 < xn,2 < · · · < xn,n < 1

and the zeros of Ũ (αq)
n (x; q) by αq < yn,1 < yn,2 < · · · < yn,n < 1. Then, for i ∈ {1, 2, . . . , n − 1},

xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1.

Proof. Let α < 0. Since Ũ (αq)
n (x; q) and Ũ (αq)

n−1 (x; q) belong to the same orthogonal sequence, the
interlacing property (4) is satisfied and (14) is in the form of (5). Taking into consideration the
values of the parameters, a(x) > 0 and b(x) > 0 are constants on (α, 1) and the result follows from
Corollary 2 (a).

Corollary 31. For i ∈ {1, 2, . . . , n − 1}, xn,i < xn−1,i < yn−1,i < xn,i+1.

Proof. The result follows from Theorem 30 and the interlacing of the zeros of Ũ (α)
n (x; q) and

Ũ (α)
n−1(x; q).

In general, the zeros of Ũ (α)
n (x; q) do not interlace with the zeros of Ũ (αq2)

n (x; q) or with the
zeros of Ũ (αq2)

n−1 (x; q). For example, when n = 2, α = −16 and q = 0.9, the zeros of Ũ (α)
n (x; q)

are {−15.77,−12.78}, the zeros of Ũ (αq2)
n (x; q) are {−12.64,−10.08} and the zero of Ũ (αq2)

n−1 (x; q) is
{−11.96}.

3.9. The Al-Salam-Carlitz II polynomials
Proposition 32.

Ṽ (αq)
n (x; q) = Ṽ (α)

n (x; q) − α q(qn − 1)q−nṼ (α)
n−1(x; q); (15a)

Ṽ (αq2)
n (x; q) =

(
αqn+1 + 1 − α q

)
Ṽ (α)

n (x; q) − αq−n+1 (qn − 1) (qnx + 1 − α q) Ṽ (α)
n−1(x; q). (15b)

Theorem 33. Let 0 < αq < 1. Denote the zeros of Ṽ (α)
n (x; q) by 1 < xn,1 < xn,2 < · · · < xn,n < ∞,

the zeros of Ṽ (αq)
n (x; q) by yn,1 < yn,2 < · · · < yn,n and the zeros of Ṽ (αq2)

n (x; q) by Yn,1 < Yn,2 < · · · <
Yn,n. Then, for i ∈ {1, 2, . . . , n − 1},

(a) yn,i < xn,i < xn−1,i < yn,i+1 < xn,i+1,
(b) Yn,i < xn,i < xn−1,i < Yn,i+1 < xn,i+1.

Proof. Let 0 < αq < 1. Since Ṽ (α)
n (x; q) and Ṽ (α)

n−1(x; q) belong to the same orthogonal sequence,
the interlacing property (4) is satisfied and both (15a) and (15b) are in the form of (5).

(a) Taking into consideration the values of the parameters, both the coefficients of Ṽ (α)
n (x; q) and

Ṽ (α)
n−1(x; q) in (15a) are positive constants and the result follows from Corollary 2 (a).

(b) Taking into consideration the restrictions on the parameters, a(x) in (15b) is a positive constant
and b(x) =

α(1−qn)
qn−1 (qnx − α q + 1) represents a linear function with positive values on (1,∞).

The result follows from Corollary 2 (a).
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Corollary 34. For i ∈ {1, 2, . . . , n − 1},

(a) yn,i < yn−1,i < xn−1,i < yn,i+1,
(b) Yn,i < yn,i < xn,i < xn−1,i < Yn,i+1 < yn,i+1 < xn,i+1,
(c) Yn,i < Yn−1,i < xn−1,i < Yn,i+1.

Proof. (a) The result follows from Theorem 33 (a) and the interlacing of the zeros of Ṽ (αq)
n (x; q)

and Ṽ (αq)
n−1 (x; q).

(b) By replacing α with αq in (15a), we obtain Yn,i < yn,i < yn−1,i < Yn,i+1 < yn,i+1. We combine
this with the interlacing results in Theorem 33 (a) and (b) to obtain the required result.

(c) The result follows directly from Theorem 33 (b) and the interlacing of the zeros of Ṽ (αq2)
n (x; q)

and Ṽ (αq2)
n−1 (x; q).

Remark 35. In general, the zeros of Ṽ (α)
n (x; q) and Ṽ (αq)

n−1 (x; q) do not interlace. These polynomials
satisfy

Ṽ (αq)
n−1 (x; q) = −qn−1Ṽ (α)

n (x; q) + b(x)Ṽ (α)
n−1(x; q)

with b(x) = q−1 (qnx − α q), a function that changes sign on (1,∞) for 0 < αq < 1. However, when
we restrict α in such a way that 0 < αq < qn < 1, the zeros interlace as follows: xn,i < yn−1,i <
xn−1,i < xn,i+1 for each i ∈ {1, 2, . . . , n − 1}.

4. Classical orthogonal polynomials on a q-quadratic lattice

This section is devoted to the study of interlacing properties of the zeros of different sequences
of orthogonal polynomials on a q-quadratic lattice.

4.1. Askey-Wilson polynomials
The weight function of the Askey-Wilson polynomials

w(x; a, b, c, d|q) =
1

√
1 − x2

∣∣∣∣∣∣ (e2iθ; q)∞
(aeiθ, beiθ, ceiθ, deiθ; q)∞

∣∣∣∣∣∣2 , (16)

is clearly independent of the order of the parameters a, b, c and d and by shifting b to bq, c to cq
or d to dq, we obtain the same interlacing results as by shifting a to aq.

Proposition 36.

p̃n(x; a, b, c, d|q) = p̃n(x; aq, b, c, d|q) (17a)

−
a(1 − qn)(1 − cdqn−1)(1 − bdqn−1)(1 − bcqn−1)

2(1 − abcdq2n−1)(1 − abcdq2n−2)
p̃n−1(x; aq, b, c, d|q),

p̃n(x; a, bq, c, d|q) = p̃n(x; aq, b, c, d|q) +
(b − a)(1 − qn)(1 − cdqn−1)

2(1 − abcdq2n−1)
p̃n−1(x; aq, bq, c, d|q). (17b)
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Theorem 37. Suppose a, b, c, d are real and max(|a|, |b|, |c|, |d|) < 1. Denote the zeros of p̃n(x; a, b, c, d|q)
by −1 < xn,1 < xn,2 < · · · < xn,n < 1, the zeros of p̃n(x; aq, b, c, d|q) by −1 < x(a)

n,1 < x(a)
n,2 < · · · <

x(a)
n,n < 1, the zeros of p̃n(x; a, bq, c, d|q) by −1 < x(b)

n,1 < x(b)
n,2 < · · · < x(b)

n,n < 1, the zeros of
p̃n(x; aq, bq, c, d|q) by −1 < x(a,b)

n,1 < x(a,b)
n,2 < · · · < x(a,b)

n,n < 1. Then,

(a) if −1 < a < 0, xn,i < x(a)
n,i < x(a)

n−1,i < xn,i+1 < x(a)
n,i+1, and

if 0 < a < 1, x(a)
n,i < xn,i < x(a)

n−1,i < x(a)
n,i+1 < xn,i+1;

(b) if b − a > 0, x(b)
n,i < x(a)

n,i < x(a,b)
n−1,i < x(b)

n,i+1 < x(a)
n,i+1, and

if b − a < 0, x(a)
n,i < x(b)

n,i < x(a,b)
n−1,i < x(a)

n,i+1 < x(b)
n,i+1.

Proof. Suppose a, b, c, d are real and max(|a|, |b|, |c|, |d|) < 1. Then max(|ac|, |ad|, |bc|, |bd|, |cd|, |abcd|) <
1 and, for n ∈ N, 1 − acqn > 0, 1 − bcqn > 0, 1 − bdqn > 0, 1 − cdqn > 0 and 1 − abcdqn > 0.
Since p̃n(x; aq, b, c, d|q) and p̃n−1(x; aq, b, c, d|q) belong to the same orthogonal sequence, their
zeros interlace and (17a) is in the form of (5), with a(x) = 1 and

(a) b(x) > 0 if −1 < a < 0 and the result follows from Corollary 2 (a) and b(x) < 0 if 0 < a < 1
and the result follows from Corollary 2 (b).

(b) Since by shifting b to bq, we obtain the same interlacing results as by shifting a to aq and we
have xn,i < x(b)

n,i < x(b)
n−1,i < xn,i+1 < x(b)

n,i+1 if −1 < b < 0, and x(b)
n,i < xn,i < x(b)

n−1,i < x(b)
n,i+1 < xn,i+1 if

0 < b < 1. By replacing a by aq, it follows that x(a)
n,i < x(a,b)

n−1,i < x(a)
n,i+1 for each i ∈ {1, 2, . . . , n−1}.

Equation (17b) is in the form of (5), with a(x) = 1, b(x) < 0 if b− a < 0 and the result follows
from Corollary 2 (b), b(x) > 0 if b − a > 0 and the result follows from Corollary 2 (a).

The following result follows directly:

Corollary 38. For i ∈ {1, 2, . . . , n − 1},

(a) if −1 < a < 0 and 0 < b < 1, x(b)
n,i < xn,i < x(a)

n,i < x(a,b)
n−1,i < x(b)

n,i+1 < xn,i+1 < x(a)
n,i+1;

(b) if −1 < b < 0 and 0 < a < 1, x(a)
n,i < xn,i < x(b)

n,i < x(a,b)
n−1,i < x(a)

n,i+1 < xn,i+1 < x(b)
n,i+1.

Remark 39. The following systems of polynomials follow from the Askey-Wilson polynomials:

(i) By setting d = 0, we obtain the monic continuous dual q-Hahn polynomials:

p̃n(x; a, b, c|q) =
(ab, ac; q)n

(2a)n 3φ2

(
q−n, aeiθ, ae−iθ

ab, ac

∣∣∣∣∣∣ q; q
)
, x = cos θ,

orthogonal on (−1, 1) with respect to w(x; a, b, c, 0|q) in (16) where a, b, c are real and
max(|a|, |b|, |c|) < 1;

(ii) By setting c = d = 0, we obtain the monic Al-Salam Chihara polynomials:

Q̃n(x; a, b|q) =
(ab; q)n

(2a)n 3φ2

(
q−n, aeiθ, ae−iθ

ab, 0

∣∣∣∣∣∣ q; q
)
, x = cos θ,

are orthogonal on (−1, 1) with respect to w(x; a, b, 0, 0|q) in (16) where a, b are real and
max(|a|, |b|) < 1;
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(iii) By setting b = c = d = 0, we obtain the monic continuous big q-Hermite polynomials:

H̃n(x; a|q) = (2a)−n
3φ2

(
q−n, aeiθ, ae−iθ

0, 0

∣∣∣∣∣∣ q; q
)
, x = cos θ,

are orthogonal on (−1, 1) with respect to w(x; a, 0, 0, 0|q) in (16) where a is real and |a| < 1.

(iv) By the substitutions θ → θ + φ, a → aeiφ, b → beiφ, c → ce−iφ and d → de−iφ we obtain the
monic continuous q-Hahn polynomials:

p̃n(x; a, b, c, d; q) =
(abe2iφ, ac, ad; q)n

(2aeiφ)n(abcdqn−1; q)n
4φ3

(
q−n, abcdqn−1, aei(θ+2φ), ae−iθ

abe2iφ, ac, ad

∣∣∣∣∣∣ q; q
)
, x = cos (θ + φ) ,

orthogonal on (−π, π) with respect to

w(cos (θ + φ) ; a, b, c, d|q) =

∣∣∣∣∣∣ (e2i(θ+φ); q)∞
(aei(θ+φ), bei(θ+φ), ceiθ, deiθ; q)∞

∣∣∣∣∣∣2 ,
if c = a and d = b and, if a and b are real and max(|a|, |b|) < 1, or if b = a and |a| < 1.
Using the above substitution in (17a), we obtain

p̃n(x; a, b, c, d; q) = p̃n(x; aq, b, c, d; q)

−
a(1 − qn)(eiφ − cdqn−1e−iφ)(1 − bdqn−1)(1 − bcqn−1)

2(1 − abcdq2n−1)(1 − abcdq2n−2)
p̃n−1(x; aq, b, c, d; q)

and it is clear that we can not apply our method to deduce the interlacing properties of the
zeros of p̃n(x; a, b, c, d; q), since it is not possible to determine if eiφ − cdqn−1e−iφ is positive
or negative.

Corollary 40. Suppose a, b, c, d are real and max(|a|, |b|, |c|, |d|) < 1. Then for each of the systems
in (i) - (iii) above, we have, for i ∈ {1, 2, . . . , n − 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1 if −1 < a < 0;
(b) yn,i < xn,i < yn−1,i < yn,i+1 < xn,i+1 if 0 < a < 1,

where −1 < xn,1 < xn,2 < · · · < xn,n < 1 are the zeros of the polynomial p̃n(x; a, b, c|q) in (i)
(Q̃n(x; a, b|q), H̃n(x; a|q)), and −1 < yn,1 < yn,2 < · · · < yn,n < 1 are the zeros of the polynomial
with a shifted to aq, i.e., p̃n(x; aq, b, c|q) (Q̃n(x; aq, b|q), H̃n(x; aq|q)).

4.2. The q-Racah polynomials
The q-Racah polynomials are orthogonal on (0,N) if αq = q−N or βδq = q−N or γq = q−N , and

N a nonnegative integer. In order to prove interlacing results, we make some assumptions on the
parameters.
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Proposition 41.

R̃n(µ(x);α, β, γ, δ|q) = R̃n(µ(x);αq, β, γ, δ|q) (18a)

−
αq(1 − qn)(1 − βqn)(1 − γqn)(1 − βδqn)

(1 − αβq2n)(1 − αβq2n+1)
R̃n−1(µ(x);αq, β, γ, δ|q);

R̃n(µ(x);α, β, γ, δ|q) = R̃n(µ(x);α, βq, γ, δ|q) (18b)

+
βq(1 − qn)(1 − αqn)(1 − γqn)(αqn − δ)

(1 − αβq2n)(1 − αβq2n+1)
R̃n−1(µ(x);α, βq, γ, δ|q).

Theorem 42. We denote the zeros of R̃n(µ(x);α, β, γ, δ|q) by µ(0) < µn,1 < µn,2 < · · · < µn,n <
µ(N), the zeros of R̃n(µ(x);αq, β, γ, δ|q) by µ(0) < µ(α)

n,1 < µ(α)
n,2 < · · · < µ(α)

n,n < µ(N) and the
zeros of R̃n(µ(x);α, βq, γ, δ|q) by µ(0) < µ

(β)
n,1 < µ

(β)
n,2 < · · · < µ

(β)
n,n < µ(N) and we assume that

(1 − αβq2n)(1 − αβq2n+1) > 0, γq < 1 and 0 < δq < 1.

(a) Let αq = q−N > 1. If βq < 1 and βδq < 1, then, for i ∈ {1, 2, . . . , n − 1}, µ(α)
n,i < µn,i < µ(α)

n−1,i <

µ(α)
n,i+1 < µn,i+1;

(b) Let βδq = q−N > 1. If αq < 1 and αqn < δ, then, for i ∈ {1, 2, . . . , n − 1}, µ(β)
n,i < µn,i < µ

(β)
n−1,i <

µ
(β)
n,i+1 < µn,i+1.

Proof. The polynomials on the right hand side of both equations (18a) and (18b) belong to the
same orthogonal sequences, their zeros interlace and these equations are both in the form of (5),
with a(x) = 1.

(a) Let αq = q−N > 1 and assume that βq < 1 and βδq < 1. Then 1 − βδqn > 0, i.e., b(x) < 0 and
the result follows from Corollary 2 (b);

(b) Let βδq = q−N > 1 and assume that αq < 1 and αqn < δ. Then b(x) is a negative constant and
the result follows from Corollary 2 (b).

Remark 43. When we take β = 0, γq = q−N and δ → αδqN+1 in the definition of the q-Racah
polynomials, we obtain the monic dual q-Hahn polynomials, i.e.,

R̃n(µ(x);α, 0, q−N−1, αδqN+1|q) = R̃n(µ(x);α, δ,N|q), n ∈ {0, 1, . . . ,N},

with µ(x) = q−x + αδqx+1, and (18a) becomes

R̃n(µ(x);α, δ,N |q) = R̃n(µ(x);αq, δ,N|q) − αq(1 − qn)(1 − qn−N−1)R̃n−1(µ(x);αq, δ,N |q),

with 0 < αq < 1 and 0 < δq < 1, and, since −αq(1 − qn)(1 − qn−N−1) > 0, the zeros interlace as
follows:

µn,i < µ
(α)
n,i < µ

(α)
n−1,i < µn,i+1 < µ

(α)
n,i+1, i ∈ {1, 2, . . . , n − 1},

where µn,i are the zeros of R̃n(µ(x);α, δ,N |q) and µ(α)
n,i , i ∈ {1, 2, . . . , n}, the zeros of R̃n(µ(x);αq, δ,N |q).

For the monic dual q-Hahn polynomials we also get the following results.
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Proposition 44.

R̃n(µ(x);α, δq,N|q) = R̃n(µ(x);αq, δ,N|q) + αq−N(1 − qn)(qn − qN+1)R̃n−1(µ(x);αq, δ,N|q); (19a)

R̃n(µ(x);α, δq,N |q) =
1 − αδ qx+N+3−n

1 − αδqx+N+3 R̃n(µ(x);αq, δq,N |q) (19b)

+
α (1 − qn)

(
qn − qN+1

) (
1 − δ qN+2−n

)
qN(1 − α δqx+N+3)

R̃n−1(µ(x);αq, δq,N |q).

Theorem 45. Let n ∈ {0, 1, . . . ,N}, 0 < αq < 1 and 0 < δq < 1, and denote the zeros of
R̃n(µ(x);α, δq,N |q) by µ(0) < µ(δ)

n,1 < µ(δ)
n,2 < · · · < µ(δ)

n,n < µ(N), the zeros of R̃n(µ(x);αq, δ,N |q) by
µ(0) < µ(α)

n,1 < µ(α)
n,2 < · · · < µ(α)

n,n < µ(N) and the zeros of R̃n(µ(x);αq, δq,N |q) by µ(0) < µ(α,δ)
n,1 <

µ(α,δ)
n,2 < · · · < µ(α,δ)

n,n < µ(N). Then, for i ∈ {1, 2, · · · , n − 1},

(a) µ(δ)
n,i < µ

(α)
n,i < µ

(α)
n−1,i < µ

(δ)
n,i+1 < µ

(α)
n,i+1,

(b) µ(δ)
n,i < µ

(α,δ)
n,i < µ(α,δ)

n−1,i < µ
(δ)
n,i+1 < µ

(α,δ)
n,i+1.

Proof. Let 0 < αq < 1 and 0 < δq < 1. Then 1 − αδq j > 0, 1 − αq j > 0, 1 − δq j > 0 if j > 0 and
equations (19a)–(19b) are in the form of (5) and under the given assumptions, the results follows
from Corollary 2 (a).

5. Appendix

In this section, some comments on how to use our Maple codes that can be downloaded from
http://www.mathematik.uni-kassel.de/~koepf/Publikationen are given. The first pro-
gram called qMixRec1(F,q,k,S(n),a,s) finds a recurrence equation of the form

S (n, a) =

J∑
j=0

σ jS (n − j, aqs), J ∈ {1, 2, . . .},

where S (n, a) =

∞∑
k=−∞

F, F is a function of k, n and a, and s is a positive integer. The second one

denoted by qMixRec2(F,q,k,S(n),a,s0,b,s1,s2,r) finds a recurrence equation of the form

S (n, a, bqs1) =

J∑
j=0

σ jS (n − j, aqs0 , bqs2+r j), J ∈ {1, 2, . . .}, r ∈ {0, 1},

where S (n, a, b) =

∞∑
k=−∞

F, F is a function of k, n, a and b, and s0, s1, s2 are positive integers.

For example, for the big q-Jacobi polynomials, P̃n(x;α, β, γ; q) =

∞∑
k=−∞

F, where, by (3),

F :=
(αq, γq; q)n(q−n, αβqn+1, x; q)kqk

(αβqn+1; q)n(αq, γq, q; q)k
,
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and equations (7a), (7b) and (7c) are obtained using, qMixRec1(F,q,k,P(n),alpha,1),
qMixRec1(F,q,k,P(n),beta,1) and qMixRec2(F,q,k,P(n),alpha,1,beta,1,0,1), respec-
tively.
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[24] G. Szegö, Orthogonal polynomials, American Mathematical Society, New York, 1959.
[25] R. Vidunas, T. Koornwinder, Algorithmic methods for special functions by computer algebra, Webpage of the

NWO project, http://www.science.uva.nl/˜thk/specfun/compalg.html, 2000.
[26] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613–665.

24


