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Abstract

This paper presents the development and numerical
implementation of a state variable based thermome-
chanical material model, intended for use within a fully
implicit �nite element formulation. Plastic hardening,
thermal recovery and multiple cycles of recrystallisa-
tion can be tracked for single peak as well as multi-
ple peak recrystallisation response. The numerical im-
plementation of the state variable model extends on
a J2 isotropic hypo-elastoplastic modelling framework.
The complete numerical implementation is presented
as an Abaqus UMAT and linked subroutines. Imple-
mentation is discussed with detailed explanation of the
derivation and use of various sensitivities, internal state
variable management and multiple recrystallisation cy-
cle contributions. A �ow chart explaining the proposed
numerical implementation is provided as well as veri�-
cation on the convergence of the material subroutine.
The material model is characterised using two high
temperature data sets for Cobalt and Copper. The
results of Finite Element Analyses using the material
parameter values characterised on the Copper data set
are also presented.
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1 Introduction

To capture the dominant strengthening and softening
mechanisms associated with microstructural changes
in high temperature metal processing requires the im-
plementation of sophisticated material models. To
model material behaviour subject to recrystallisation,
one option could be to link multiple model resolu-
tions. Multi scale recrystallisation modelling strate-
gies could involve linking a �nite element code with
Monte Carlo Potts [23, 25], cellular automaton (CA)
[21, 43], phase �eld (PF) models [10, 39, 53], vertex
or front-tracking [38, 54] as well as level set methods
[7, 22]. In terms of recrystallisation model develop-
ments linked to dislocation density based mechanical
response models, Lee and Im [36] coupled a CA model
to a Kocks Mecking (KM) [32, 33] type dislocation
density based model formulation. Takaki et al. [49]
also recently linked a multi-PF dynamic recrystallisa-
tion model to macroscopic mechanical response using
J2 �ow theory. In their approach the meso-scale mi-
crostructure and large deformation elastoplastic �nite
element values are linked assuming an average disloca-
tion density for each grain, evolving according to a KM
model.

Our primary application of interest is to simulate in-
dustrial metal forming processes such as hot rolling
[28]. Of speci�c interest is the ability to design a rolling
schedule i.e. how many roll passes are required, and
what percentage reduction is required per pass. Our
material model choice should therefore be able to be
integrated into a �nite element environment, result-
ing in a simulation tool that can solve numerous roll
pass schedules e�ciently using standard desktop com-
putational resources. Industrial forming processes typ-
ically do not contain plastic instabilities or localisation,
therefore a material model with an embedded length
scale is not required to obtain mesh independent re-
sults. Furthermore, a process such as hot rolling does
not proceed till failure, therefore the material model
does not require damage or failure descriptions. There-
fore an isotropic continuum or mean �eld constitutive
model is an attractive option for this application, since
it is computationally e�cient. The material model
must however contain all the required deformation me-
chanicsms that are typically active during hot forming.
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The proposed model captures the dominant strength-
ening and softening physics associated with the mi-
crostructural changes of metallic materials. Some of
the physical mechanisms associated with these mi-
crostructural changes include strain hardening, dy-
namic and thermal recovery as well as static and dy-
namic recrystallisation. As foundation for model devel-
opment, the KM formulation is a popular choice in dis-
location density based models. This formulation incor-
porates temperature and rate dependent deformation
mechanisms. The hardening behaviour of a material
can be modelled within this formulation via the average
dislocation density or some other internal state vari-
able (ISV). Such hardening models can even be done
for alloys with multiple phases that is hot worked [17]
or linked to additional evolution equations to model
recrystallisation kinetics [8, 19, 27, 28, 48]. A contin-
uum or mean �eld modelling approach to recrystallisa-
tion could further have critical recrystallisation criteria
that depend explicitly on strain, strain rate or another
critical value of stored energy [3, 42, 45]. If high en-
ergy grain boundaries are the dominant recrystallisa-
tion mechanism, it is also possible to base the model ki-
netics on the mobility of grain and subgrain boundaries
with the driving force provided by the stored energy in
the dislocation structure [11].

Using mean �eld models, macroscopic material re-
sponse can be modelled as an averaged result over a
representative set of spherical grains subject to dis-
continuous dynamic recrystallisation [6, 40]. In these
models, di�erent evolution equations for the disloca-
tion density, stress - strain relationship and grain size
evolution are considered. Each grain has a set of state
variables to represent grain size and dislocation density.
A grain either grows or shrinks as a result of interaction
with the surrounding material, typically idealised using
mean �eld values. During recrystallisation, new grains
are nucleated using a phenomenological rate equation
and hardening follows the KM theory. Chaboche-type
hardening can also be used while new grains nucleate
within existing material once su�ciently high energy
density allows it [44]. Grain growth as a result of grain
boundary energy and pinning as a result of the pre-
cipitation and dissolution of particles are also taken
into account in the mean �eld approach of Riedel and
Svoboda [44].

On the other hand, continuum models using uni�ed
sets of constitutive equations may be developed. Baron
et al. [5] for example use a continuum approach to
model the microstructure evolution with dynamic re-
crystallisation of a high strength martensitic steel. The
strong dependence of the dynamic recrystallisation ki-
netics on the initial microstructure are taken into ac-
count during their model development. Another KM
based continuum material model by Lin et al. [37]
makes use of a normalised dislocation density variable
coupled with evolution equations on the average grain
size as well as recrystallised volume fraction. They
use a set of uni�ed viscoplastic equations to model a

two roll-pass reduction schedule. The same contin-
uum model was also recently used to model the mi-
crostructural evolution during hot cross wedge rolling
[29], illustrating the continued usefulness and relevance
of continuum based recrystallisation models in the �-
nite element simulation of material processing.

In the model for static and dynamic recrystallisation
validated by Brown and Bammann [8], the KM work
hardening theory is again used as foundation to the
constitutive formulation. Statistically necessary dislo-
cation density plays the role of a primary stress-like
ISV. The e�ect of geometrically necessary dislocations
are also included using a stage IV stress-like work hard-
ening variable [35]. Recrystallisation through predom-
inantly high energy grain boundary driven kinetics is
incorporated based on a continuum approximated aver-
age grain boundary mobility and driving pressure [11].
The model has the ability to represent multiple cycles
of recrystallisation.

In this paper, much of the same recrystallisation the-
ory of Chen et al. [11] as used by Brown and Bam-
mann [8] is considered, but within a dislocation den-
sity ratio based modelling framework built in turn on
Estrin's [15] constitutive model and the kinetics of the
Mechanical Threshold Stress (MTS) [18] model. To the
authors' knowledge, these modelling components have
never been combined before in this fashion and it ef-
fectively expands the range of temperatures where the
popular MTS model could be applied. In the model
presented and implemented in this paper, the choice
of internal state variables, evolution equations and ki-
netic equation is therefore di�erent from that of Brown
and Bammann [8].

Speci�c focus is also given in this paper to incorpo-
rating the model into a fully implicit �nite element
environment, which was not done by Brown and Bam-
mann [8]. A fully implicit formulation requires the
stress derivative with respect to the strain increment,
and this paper is the �rst to provide these non-trivial
derivations and implementation. The current imple-
mentation is limited to isothermal analyses, since the
derivative of the stress update with respect to temper-
ature is not yet implemented. The proposed model is
used in plane strain, axisymmetric and full three di-
mensional �nite element analyses. The �nite element
implementation uses e�ective internal state variable
management and an incrementally objective Abaqus
[1] user material (UMAT) framework.

The main structure of this paper is organised into �ve
sections. First the material model framework as seen
from a hypo-elastoplastic treatment of numerical plas-
ticity is discussed in Section 2. The theory and de-
velopment of the constitutive model, ignoring the ef-
fects of recrystallisation, are then covered in Section 3.
Section 4 is devoted to the recrystallisation modelling
approach. The model is characterised to experimental
data in Section 5 and used in a �nite element anal-
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ysis of a compression test in Section 6. The appen-
dices contain a detailed numerical implementation into
an Abaqus UMAT framework and the associated For-
tran subroutines. While Abaqus is used in this paper,
much of the subroutines may be used �as-is� in other
FEA packages where Fortran user materials are pos-
sible. The detailed implementation, �ow charts and
analytical sensitivities may also be used to expedite
implementation into a completely di�erent format.

2 Numerical Material Model

Foundation

The paper derives and implements a model for static
and dynamic recrystallisation as in the work by Brown
and Bammann [8], but within a Mechanical Threshold
Stress (MTS) [18] type model framework. As in the
MTS model, the foundation of our constitutive model
is also based on the KM work hardening theory while
the e�ect of geometrically necessary dislocations is in-
cluded using the stage IV work hardening model of
Kok et al. [35]. This introduces a second internal state
variable namely the average slip plane lattice misori-
entation. The recrystallisation kinetics of the model
is consistent with that of Brown and Bammann [8],
but instead of considering stress like ISVs we base re-
crystallisation on the dislocation density ratio and the
average slip plane lattice misorientation.

As in the incrementally objective implementation of
the MTS model by Mourad et al. [41], this material
model is coded into an elastic trial - radial return type
algorithmic implementation user material (UMAT) for
J2 isotropic hypo-elastoplasticity. The incrementally
objective Abaqus UMAT framework is attached in Ap-
pendix B. This framework is described and successfully
veri�ed against the native Abaqus implementation in
Van Rensburg's PhD thesis [26]. In the user material
framework a purely elastic region is assumed to enclose
the origin in stress space and the total velocity gradi-
ent is additively decomposed into an elastic and plastic
component [46]. All the relevant tensors are corotated
within Abaqus resulting in an incrementally objective
elastoplastic implementation.

In general, the components of the total strain rate ten-
sor ε̇ij within the model framework are additively de-
composed into the elastic ε̇eij and plastic ε̇pij compo-
nents

ε̇ij = ε̇eij + ε̇pij . (1)

The elastic part obeys Hooke's law

ε̇eij = C−1ijklσ̇kl, (2)

where

C−1ijkl =
1

2µ

(
δikδjl −

ν

1 + ν
δijδkl

)
. (3)

σ̇ij is the time derivative of the stress tensor, µ is the
shear modulus, ν is Poisson's ratio and δij represents
Kronecker's delta. The temperature dependent shear
modulus is determined using the model developed by
Varshni [52],

µ(T ) = µr −
Dr

exp (Tr/T )− 1
, (4)

where µr, Dr and Tr are reference material constants
while T is the absolute temperature. The model in
Eq.(4) has previously been used in conjunction with
the KM work hardening theory [4, 20, 35].

The plastic part of the strain rate tensor takes the form
of the Lévy-von Mises equation

ε̇pij =
3

2

α̇

σvM
sij , (5)

where sij are the components of the deviatoric stress,
α̇ is the equivalent plastic strain rate and σvM the von
Mises equivalent stress. Considering plastic isotropy of
the material, the e�ective von Mises plastic strain rate
and stress are determined by

α̇ =

√
2

3
ε̇pij ε̇

p
ij and σvM =

√
3

2
sijsij . (6)

The e�ective yield stress is

σy = σ̂a + Sε(α̇, T )σ̂ε, (7)

where σ̂ε represents the evolving thermal component
of the threshold stress representing the material state.
σ̂a represents the athermal stress component while Sε
is a temperature and equivalent strain rate dependent
scaling function [18].

3 Constitutive model

We have yet to consider options for the scaling func-
tion Sε and the evolving thermal component that de-
�ne the constitutive model within the presented frame-
work. The scaling function Sε is based on the choice of
kinetic equation or evolution of plastic �ow. Three typ-
ical scaling function choices are the power law [31], the
hyperbolic sine form [8] or a scaling function based on
that of the Mechanical Threshold Stress (MTS) model
[18]. In this study we consider the latter which is given
by

Sε(α̇, T ) =
µ

µr

[
1−

[
T

a0µ
ln

(
ε̇0
α̇

)]1/q]1/p
, (8)

with a0 a convenient constant introduced here to re-
place g0b3/kB in the MTS formulation. Here, g0 is
the normalised activation energy, b is the length of the
Burgers' vector and kB is the Boltzmann constant. ε̇0 is
taken as a material constant associated with the mo-
bility of dislocations. Lastly, p and q are statistical
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parameters that characterise the shape of the obstacle
pro�le [18]. p is usually chosen between 0 and 1, while
q is between 1 and 2.

In the classic implementation of an MTS type model,
the evolving thermal stress component σ̂ε in Eq.(7) is
used as an internal state dependent variable. Evolu-
tion of this variable as a result of plastic deformation
is therefore required to complete the constitutive for-
mulation. Following the model development by Estrin
[15], this is achieved by introducing a stress related
constant σ0 at initial dislocation density ρ0. We can
now recast the formulation to a dislocation density ra-
tio % internal state variable. % is the dislocation density
ρ normalised by the initial dislocation density ρ0. The
evolving thermal component of the threshold stress σ̂ε
is then related to the dislocation density ratio ISV by

σ̂ε = σ0
√
%. (9)

The constitutive formulation may now be completed by
using the theory on dislocation density based modelling
to evolve the dislocation density ratio as a function of
plastic deformation. In the MTS model the dislocation
density evolution equation is transformed so that the
threshold stress is a function of itself. One such form
reconcilable with the Kocks-Mecking hardening theory
is the popular Voce [34] hardening law. In the dislo-
cation density ratio based formulation presented here,
the dislocation density ratio is evolved instead of the
threshold stress.

3.1 Statistically stored dislocations

The generation and annihilation of statistically stored
dislocations are included in the Kocks-Mecking evolu-
tion equation [32]. In their equation, the �rst term
corresponds to generation rate, the rate at which dis-
locations become immobilised. This term is assumed
inversely proportional to the mean free path a dislo-
cation travels before being a�ected by impenetrable
obstacles. The second term corresponds to thermally
activated dynamic recovery. This term is assumed pro-
portional to the dislocation density itself.

The hybrid theory of Estrin and Mecking [16] expands
on the KM evolution equation by further assuming that
the mean free path is in�uenced by interactions with
other dislocations and subgrain boundaries due to ge-
ometrically necessary dislocations.

Including an Arrhenius type static or thermal recovery
term similar to that used by Song and McDowell [47],
the evolution equation for statistically stored disloca-
tion density as used by Kok et al. [35] takes the rate
form

ρ̇ = α̇

[
k0
Lg

+
k1
Ls
− k2 (α̇, T ) ρ

]
− k3 (T ) ρr3 . (10)

This evolution equation has material constants k0 and
k1, a dynamic recovery function k2(α̇, T ) and static
recovery function k3(T ) with a dislocation density de-
pendency captured by the exponent r3. Lg is the ge-
ometric mean free path while Ls ∝ 1/

√
ρ is the mean

free path associated with dislocation interactions.

3.2 Geometrically necessary disloca-

tions

While the statistically determined mean free path re-
lates to the total dislocation density through Ls ∝
1/
√
ρ, the geometrically determined mean free path Lg

relates to the average slip plane lattice incompatibility
λ [2, 35]. The relationship between the geometrically
determined mean free path and average lattice incom-
patibility can be modelled in the same way as the sta-
tistical mean free path by Lg ∝ 1/

√
λ. Considering

the net dislocations are arranged in a linear fashion
however, Acharya and Beaudoin [2] used the relation-
ship Lg ∝ 1/λ, leading more generally to the empirical
statement by Kok et al. [35]

Lg ∝
(

1

λ

)rg
, (11)

where 1/2 ≤ rg ≤ 1 is a parameter. Kok et al. [35]
further observed that the evolution of the average slip
plane lattice incompatibility is inversely proportional
to the grain size dx. Using the proportionality constant
Cλ for a speci�c grain size, an evolution equation for
this parameter is simply

λ̇ = α̇Cλ. (12)

3.3 Two state variable model

The average slip plane lattice incompatibility λ is taken
as one of the two ISVs needed to complete the for-
mulation. Considering the dislocation density ratio
% = ρ/ρ0 in Eq.(9) as the other ISV, an evolution equa-
tion for this variable is needed. This is achieved by
replacing ρ in Eq.(10) by ρ0% and taking Eq.(11) into
account. The result of this substitution and grouping
of constants give

%̇ = α̇ (C0λ
rg + C1

√
%− C2(α̇, T )%)− C3(T )%r3 , (13)

where C0 = k0/ρ0 and C1 = k1/
√
ρ0 are now con-

stants associated with the storage terms. For the dy-
namic recovery C2(α̇, T ) in Eq.(13), we consider the
form proposed in the MTS model [18]. An analogue of
the temperature and rate dependent form used in the
MTS model, within a dislocation density ratio formu-
lation is

C2(α̇, T ) = C20 exp

[
− T

a02µ
ln

(
α̇

ε̇02

)]
, (14)

with material constants C20, ε̇02 and a02. As in Eq.(8),
a02 is again a convenient replacement for g02b3/kB
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where g02 represents the normalised activation energy
for dislocation climb. Static thermal recovery is mod-
elled by an expression similar to the one used by Song
and McDowell [47]. An Arrhenius equation for C3(T )
is used implying

C3(T ) = C30 exp
(
−a03
T

)
, (15)

where C30 is a constant and a03 is associated with the
activation energy for self di�usion. Apart from the di-
rect e�ects on the dislocation density ratio ISV and the
evolution of the average lattice slip plane incompatibil-
ity ISV, recrystallisation is also taken into account in
Section 4.

4 Recrystallisation

From the work by Cahn and Hagel [9], the recrys-
tallised volume fraction growth rate is modelled using

ḟx = Axvx, (16)

where Ax is the interfacial area between recrystallised
and unrecrystallised regions. This is multiplied by the
average velocity of the interface sweeping through the
unrecrystallised region vx. The rate of interface mi-
gration is expressed using the driving pressure P for
boundaries with a speci�c energy and mobility M [13]

vx = MP. (17)

As the material deforms, the average misorientation
angle θ̄ across the geometrically necessary subgrain
boundaries increase, which in turn increases the mo-
bility of the boundaries. Chen et al. [11] used the
empirical form

M̄ = M0 exp

(
−QM
RT

)[
1− exp

(
−CM

(
θ̄

θm

)rM)]
(18)

to express the average subgrain boundary mobility M̄
in terms of the average misorientation angle θ̄ for high
energy boundaries (typically θ̄ ≥ θm = 15◦). In
Eq.(18), M0, CM and the exponent rM are constants.
θm is the misorientation angle associated with a high
angle boundary while R is the universal gas constant
and QM the activation energy for grain boundary mo-
bility.

Brown and Bammann [8] replaced the misorientation
angle ratio with a stress like variable related to the
mean free path of geometrically necessary dislocations.
This stress like variable is used as internal state vari-
able in their model to capture geometric e�ects. In our
implementation, the equivalent ISV is the average slip
plane lattice misorientation λ introduced in Eq.(11).

Chen et al. [11] observed the relationship between the
e�ective subgrain diameter d̄x, misorientation θ̄ and

Burger's vector length b to be

d̄xθ̄ ∝ b. (19)

The average distance between geometrically necessary
dislocations is assumed mainly as a result of subgrain
boundaries. The mean free path of geometrically neces-
sary dislocations is therefore proportional to the mean
subgrain boundary diameter Lg ∝ d̄x. Using Eq.(11),
the relationship between the average misorientation an-
gle and the average slip plane lattice misorientation is
θ̄ ∝ λrg . The misorientation angle ratio in Eq.(18) is
now replaced using this proportionality. The average
subgrain boundary mobility is therefore modelled using

M̄ = M0 exp

(
−QM
RT

)
[1− exp (−CMθλ

rMθ )] . (20)

The constant CMθ and exponent rMθ values now dif-
fer from the original formulation to accommodate the
various proportionalities.

The driving force for the motion of the geometrically
necessary boundaries is the stored energy in the dislo-
cation structure. According to Humphreys and Hather-
ley [24], the pressure driving the subgrain boundary
growth can in it's simplest form be expressed as P =
µb2ρ/2. This assumes that the e�ect of the boundary
energy on the driving force is negligible. This pressure
due to the dislocation density ratio ISV is given by

P =
1

2
µb2ρ0%. (21)

Considering multiple recrystallisation cycles, a volume
fraction fxi represents the material volume fraction
that has undergone i cycles of recrystallisation. Similar
to the model of Brown and Bammann [8], fxi − fxi+1

represents the total volume fraction of material that
has been recrystallised i + 1 times. The original un-
recrystallised material has a volume fraction fx0

= 1
(recrystallised i = 0 times).

Each volume fraction fxi − fxi+1 has it's own set of in-
ternal state variables %xi and λxi . The grain boundary
interfacial area between the volume fractions recrys-
tallised i and i+ 1 times is further determined by [8]

g(fxi , fxi+1) = fxi

(
fxi+1

fxi

)rRxa
(

1−
fxi+1

fxi

)rRxb

×

(1 + CRxc (1− fxi)) , (22)

with Ax(fxi , fxi+1
) ∝ g(fxi , fxi+1

). rRxa and rRxb are
exponents used in the empirical relation of the interfa-
cial grain boundary area while CRxc is a constant.

Including all of the above mentioned into a single
expression, the rate of recrystallisation in Eq.(16) is
rewritten for the volume fraction recrystallised i + 1
times

ḟxi+1
= %xiCRx0CRxT (T )CRxλ (λxi) g(fxi , fxi+1

).
(23)
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The function is rewritten so that CRx0 e�ectively con-
tains all the pre-exponential constants. CRxT (T ) sim-
ilarly contains the temperature dependence lumped in
a single function

CRxT (T ) = µ (T ) exp
(
−a0Rx

T

)
, (24)

with a0Rx a grouping similar to the one in Eq.(15). The
function CRxλ (λ) contains the geometric e�ects in the
rewritten function

CRxλ (λ) = 1− exp (−CRxλ0λ
rRxλ) , (25)

where CRxλ0 and rRxλ replaces the constant CMθ and
exponent rMθ in Eq.(20) for subscript consistency.

4.1 Internal state variable evolution

In the absence of recrystallisation, the ISVs evolve ac-
cording to Eqs.(12) and (13). Given a time increment
δt, the �rst (fx1

) and second (fx2
) volume fractions

can both progress, meaning region fx1 − fx2 will in-
crease by δfx1 and decrease by δfx2 . Assuming re-
crystallisation removes the dislocation structure, the
dislocation density ratio within a newly recrystallised
portion δfx1

should be reinitialised. If the region
fx1(t) − fx2(t) − δfx2 hardens or recovers in the ab-
sence of recrystallisation, the dislocation density ratio
at t+ δt is given by

{%x1
}t+δtfx1 (t)−fx2 (t)−δfx2

≈ {%x1
}tfx1 (t)−fx2 (t) +(

α̇
(
C0λ

rg
x1

+ C1
√
%x1
− C2(α̇, T ) %x1

)
− C3(T )%r3x1

)
δt.
(26)

Applying the rule of mixtures gives

{%x1
}t+δtfx1 (t+δt)−fx2 (t+δt)

=

fx1
(t)− fx2

(t)− δfx2

fx1(t)− fx2(t) + δfx1 − δfx2

{%x1}
t+δt
fx1 (t)−fx2 (t)−δfx2

.

(27)

Substituting Eq.(26) into Eq.(27), the general form of
the dislocation density ratio evolution can be rewritten
by taking the limit δt → 0 and substituting i = 1 in
the same way as done by Brown and Bammann [8].
In the event of recrystallisation, the rate form of the
dislocation density ratio evolution equation in Eq.(13)
is replaced by

%̇xi = α̇
(
C0λ

rg
xi + C1

√
%xi − C2(α̇, T ) %xi

)
−

C3(T )%r3xi −
ḟxi

fxi − fxi+1

%xi (28)

for the dislocation density ratio variable associated
with the total volume fraction fxi − fxi+1 . Similarly
for the average slip plane lattice incompatibility ISV,
we have

λ̇xi = α̇Cλ −
ḟxi

fxi − fxi+1

λxi . (29)

In the presence of recrystallisation, the equivalent
threshold stress of Eq.(9) is calculated from the av-
erage dislocation density ratio

%̄ =

nx−1∑
i=0

%xi
(
fxi − fxi+1

)
, (30)

where nx is the total number of active recrystallisation
cycles.

A detailed numerical implementation and Fortran sub-
routines for use in Abaqus or other FEA software with
similar user material ability are given in the appen-
dices. The model is now characterised to experimental
material response data. In the following section the
model is characterised to Cobalt data and various as-
pects of the model are discussed using the characterised
model. The material is modelled using a one dimen-
sional material model that calls the isotropic hardening
subroutine in Appendix C. To test the gradients and
numerical implementation of the isotropic hardening
model with recrystallisation, a single increment is also
covered in detail before using the model within an FEA
environment in Section 6.

5 Model calibration and veri�-

cation

The model outlined and implemented into an isotropic
UMAT framework is now characterised to data where
dynamic recrystallisation is prevalent. This data set is
digitised from a paper on aspects of dynamic recrys-
tallisation in Cobalt at high temperatures by Kapoor
et al. [30]. In their study they used 5mm diameter by
10mm cylindrical test specimens. The wrought Cobalt
rod these specimens were taken from had a chemical
composition of 0.05% Ni, 0.015% Fe, 0.005% Cu, 0.03%
C and 99.95% Co in weight percentages. The material
had an as-received average grain size of 10µm. The
compression tests were done between 600◦C and 900◦C.
They used a time varying ram speed so that a constant
true strain rate was applied. Kapoor et al. [30] used
Aluminium push rods and hexagonal Boron Nitrate as
lubricant while the test chamber was �ushed with Ar-
gon to prevent excessive oxidation at higher tempera-
tures.

From displacement and load cell data they determined
logarithmic true strain and true stress following a vol-
ume preserving area assumption. The combined sam-
ple and machine sti�ness was used to remove the elastic
strain component from the total strain. For our pur-
poses the data was obtained by digitising values ob-
served in their �gures of true stress as a function of
true plastic strain.

The stress vs strain responses for Cobalt at 600◦C,
700◦C, 750◦C, 800◦C, 900◦C and 950◦C were extracted
from the paper for strain rates of 100s−1, 10−1s−1 and
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10−2s−1. The set of preselected tunable material pa-
rameter values are determined using a penalised down-
hill simplex method. Initial parameter estimates are
extracted from literature values and linear regression
on transformed experimental data using the Arrhenius
exponential form of the various temperature dependen-
cies [26]. The material model parameters of the two
ISV model are �rst determined ignoring the softening
part of the experimental data curves. These parameter
values are then �xed while tuning the material param-
eters associated with recrystallisation.

The material parameter values that result in the �t
displayed in Figure 1 are as follow:

• The elastic properties using the shear model re-
lationship in Eq.(4) are µr = 81815MPa, Dr =
6519MPa, Tr = 200K and a Poisson's ratio of ν =
0.31.

• The temperature and rate dependent scaling func-
tion in Eq.(8) is modelled with a0ε = 1.924
K/MPa, pε = 2/3, qε = 3/2 and ε̇0ε = 107s−1.

• The athermal yield stress component and refer-
ence stress values using Eq.(7) are σ̂a = 0MPa
and σ0 = 83.7MPa.

• The average slip plane lattice incompatibility is
a�ected by a constant that can be calibrated in
both Eqs.(25) and (28) where it plays a role and
so the evolution of λ according to Eq.(29) is simply
modelled using Cλ = 1.

• The parameters associated with the evolution of
the dislocation density ratio in Eq.(28) are C0 =
584.64, rg = 1, C1 = 156.61, C20 = 7.566, a02 =
0.496K/MPa, ε̇02 = 1010s−1, C30 = 12121.95s−1,
a03 = 39274.9K and r3 = 7.346.

• The recrystallisation parameters are �nally
CRx0 = 1562.08s−1 for the pre-exponential con-
stant in Eq.(23), a0Rx = 21049.20K in Eq.(24)
with CRxλ0 = 8.442 and rRxλ = 2.321 in Eq.(25).

• The equivalent interfacial subgrain boundary area
function in Eq.(22) is modelled using rRxa =
0.0797, rRxb = 1.339 and CRxc = 19.415.

The recrystallised volume fractions and calculated
equivalent dislocation densities are presented in Fig-
ure 2. Multiple recrystallised volume fractions are vis-
ible in Figure 2(a) as well as a shift of ISVs on two oc-
casions to save memory. As is evident these shifts are
enforced once fx1

> 0.999, as discussed in Section A.1.

The contribution of each recrystallised volume fraction
dislocation density ratio %xi to the equivalent dislo-
cation density ratio %̄ according to Eq.(30) is demon-
strated in Figure 2(b). In this speci�c example, the
equivalent dislocation density ratio and therefore the

(a)

(b)

(c)

Figure 1: Numerical model (solid line) calibrated to
the true stress vs. true plastic strain data for Co at
di�erent temperatures and strain rates of (a) 1s−1, (b)
0.1s−1and (c) 0.001s−1 from Kapoor et al. [30].
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(a)

(b)

Figure 2: (a) Recrystallised volume fractions and (b)
volume fraction averaged dislocation density ratio us-
ing the recrystallisation model calibrated to the cobalt
dynamic recrystallisation data when modelled at 850◦C
and a strain rate of 0.1s−1.

equivalent stress has a multiple peak response that ap-
proaches a steady state solution. This type of response
is also visible in some of the digitised experimental
data.

5.1 Code Veri�cation

Using the material properties determined on the Cobalt
experimental data, the code is veri�ed by inspecting
the convergence of an increment where multiple vol-
ume fractions are active. In this test, 20 increments
of δε = 0.01 and δt = 0.1s (α̇ = 0.1s−1) are analysed
at 850◦C. This corresponds to a total strain of 0.2
in Figure 2(a) with at least three contributing volume
fractions (original and two waves of recrystallisation).
The convergence and results obtained during increment
20 is covered in detail in this subsection.

The values of the residual equation, analytical gradi-
ents as well as the estimated equivalent plastic strain
increment are reported for each iteration. Components
and sensitivities for the various nested solution loops
are also reported for the �nal iteration. Forward �nite
di�erence estimates of various sensitivities are also cal-
culated within the one dimensional test environment
by perturbing the estimated plastic strains or relevant
values by 10−8.

The converged yield stress and internal state variable
values at the end of the 19th and 20th increment are
presented in Table 1. At the end of the 19th increment,
i.e. ε = 0.19, the yield stress is 111.967 MPa as a
result of a volume fraction averaged dislocation density
%̄ = 20.174. Three recrystallised volume fractions are
above the coded minimum of interest (0.001) namely
fx1

= 0.7176, fx2
= 0.08746 and fx3

= 0.00195 and
therefore actively contribute to the stress response.

The recrystallised volume fractions grow to fx1
=

0.76977, fx2
= 0.11641 and fx3

= 0.00351 during the
increment. The internal state variable values at the
end of the increment are %x0 = 38.533 and λx0 =
0.19912 for the unrecrystallised volume fraction while
%x1

= 15.555 and λx1
= 0.05884, %x2

= 7.4652 and
λx2

= 0.03014 as well as %x3
= 3.1301 and λx3

=
0.01453. The incremental update results in a yield
stress of 111.168MPa attributed to the volume frac-
tion averaged dislocation density ratio %̄ = 19.8876.
This volume fraction averaged dislocation density ra-
tio value corresponds to the value of the red line at 0.2
strain in Figure 2(b).

The solution to the 20th increment is obtained to
within a tolerance of 10−8 in �ve iterations as illus-
trated in Table 2. One additional iteration is performed
resulting in a residual value of 1.42×10−13. There is
a quadratic trend in the convergence rate when iter-
ations 4 and 5 are compared while the residual value
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Table 1: Converged values of the yield stress and internal state variables at the end of increment 19 and 20
used to verify the numerical implementation of the material model.

Increment Yield [MPa] ᾱ %̄ λ̄ Fraction αxi %xi λxi fxi+1

19 111.967 0.09326 20.1738 0.08955 0 0.18912 37.844 0.18912 0.71755

1 0.05905 14.127 0.05354 0.08746

2 0.03055 6.7714 0.02786 0.00195

3 0.01540 2.4810 0.01117 0.00010

20 111.168 0.09213 19.8876 0.08774 0 0.19912 38.533 0.19912 0.76977

1 0.06505 15.555 0.05884 0.11641

2 0.03296 7.4652 0.03014 0.00351

3 0.01857 3.1301 0.01453 0.00011

Table 2: Test on the convergence of the equivalent plastic strain increment using the FISOTROPIC subroutine in
Appendix C to indicate the sensitivity using Eq.(50).

Iteration Residual
Approximate Finite Plastic Variation

Sensitivity Di�erence Increment from �nal

0 1379.36 2.638E8 1.844E8 1.000E-8 1.001E-2

1 1300.63 6929.35 6925.62 4.704E-4 9.535E-3

2 1223.36 885.011 891.755 9.623E-3 3.837E-4

3 48.9727 871.341 878.260 1.001E-2 1.79E-10

4 2.280E-5 871.341 878.260 1.001E-2 9.71E-15

5 1.239E-9 871.341 878.260 1.001E-2 1.73E-18

6 1.42E-13 871.341 878.260 1.001E-2 -

from 1.239×10−9 in iteration 5 to 1.42×10−13 in iter-
ation 6 indicates a deviation from the ideal quadratic
convergence. This is however still orders of magnitude
below the desired tolerance.

A reason for the deviation from ideal quadratic con-
vergence is illustrated by an approximate 0.7909% dif-
ference between the sensitivity using Eq.(50) and the
�nite di�erence approximation according to Table 2. If
the sensitivities are determined and implemented cor-
rectly, this di�erence could be partially attributed to
the multiplicative accumulation of variations as a re-
sult of the nested solution loops. The important aspect
illustrated in Table 2 is the satisfactory rate of conver-
gence of the current implementation.

Di�erent aspects of the implemented code are investi-
gated to pinpoint the origin of the variation observed
between the �nite di�erence and approximated sensi-
tivity. Table 4 shows a breakdown of individual com-
ponents as well as the solution to the system of equa-
tions in Eq.(59). Eq.(59) is investigated here within
each volume fraction loop in the code by calls to the
RGET subroutine, with the implication that the �nite
di�erence component of dfxc/dδα can't be compared
directly. Because of this reason Table 4 illustrates the
sensitivity comparisons for a case where dfxc/dδα = 0
removes the last term in Eq.(58). The tabulated val-
ues are shown up to �ve decimal places since that is the
�rst location where there is an observable variation be-
tween the analytical and �nite di�erence sensitivities in
this case.

The values tabulated include the solutions to dx1/dδα
in Eq.(63) and dx2/dδα in Eq.(64) as well as the ef-
fective value of dfxn/dδα in Eq.(54) for all the active
volume fractions considered at the end of the increment
under the test condition dfxc/dδα = 0. Partial deriva-
tives of the internal state variables x1 and x2 with re-
spect to the incremental plastic strain using Eq.(60)
and Eq.(62) with Cλ = 1 are also compared.

In Table 3 the �nite di�erences are calculated from
a call to the FISOTROPIC subroutine so that for this
scenario the dfxc/dδα contribution is included. The �-
nite di�erence contributions to dx1/dδα and dfxn/dδα
in Table 3 now di�ers from the values in Table 4 be-
cause of the inclusion of these other sensitivities. The
fx1

�nite di�erence value of dx1/dδα is now 243.246
instead of 254.675 when dfxc/dδα was ignored while
the fx0

values are the same in the two tables since
dfxc/dδα = 0 is true for this case with fxc ≡ fx0 = 1.
While the analytical and �nite di�erence sensitivities
for the �rst and second volume fractions are closely
similar, the di�erence gets larger for each next volume
fraction contribution.

As illustrated in Table 3 the origin of the 0.7909% dif-
ference in Table 2 is found due to the 1.3202% di�er-
ence between the �nite di�erence and approximated
sensitivity of the second term of Eq.(50). There is pos-
sibly an additional sensitivity not taken into account
for the volume fractions further down the line or a small
numerical error gets compounded by each subsequent
volume fraction contribution. Fortuitously this vari-
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Table 3: Comparison between analytical (AN) approximation and �nite di�erence (FD) sensitivity components
of the equivalent dislocation density sensitivity used in Eq.(53).

Volume dx1/dδα dfxn/dδα Eq.(53)

Fraction AN FD AN FD AN FD % Di�erence

fx0 155.769 155.769 0.58624 0.58624 13.2725 13.2725 -

fx1 242.291 243.246 1.34777 1.35486 146.458 146.972 0.35034

fx2 151.061 167.606 0.10966 0.12127 26.2978 28.1319 6.73934

fx3 93.1513 121.896 4.896E-4 6.139E-4 0.65905 0.79292 18.4398

TOTAL 186.688 189.169 1.32018

Table 4: Comparison between analytical (AN) approximation and �nite di�erence (FD) sensitivity components
and solution to the system of equations in Eq.(59) with dfxc/dδα = 0.

Volume
∂δθx1/∂δα+ ∂δθx1/∂α̇× 1/δt ∂δθx2/∂δα dx1/dδα dx2/dδα dfxn/dδα

Fraction

fx0 AN 179.24711 1.00000 155.76870 1.00000 0.58624

FD 179.24713 1.00000 155.76871 1.00000 0.58624

fx1 AN 284.99108 1.00000 254.67535 0.91628 1.45708

FD 284.99109 1.00000 254.67536 0.91628 1.45708

fx2 AN 269.34973 1.00000 223.02735 0.78806 0.14355

FD 269.34973 1.00000 223.02736 0.78804 0.14355

fx3 AN 211.70035 1.00000 170.61272 0.68506 6.675E-4

FD 211.70035 1.00000 170.61274 0.68506 6.675E-4

ation has very little e�ect on the desired convergence
rate and a close to quadratic trend is observed to within
the desired tolerance.

In Table 5, the convergence of the solution to x1, x2
and fxn using the RGET subroutine in Appendix D is
also illustrated. This is done to �nd the solution of the
internal state variables associated with fx1

, i.e. x1 ≡
%x1

, x2 ≡ λx1
and fxn ≡ fx2

using the �nal strain
increment value δα =0.0100063.

Convergence of the �rst two recrystallised volume
fractions fx1

and fx2
are reported in Table 6.

The iterations indicate the convergence of fx1
using

δα =0.0100063 as well as %x0
= 38.533 and λx0

=
0.19912 while fx2 is solved using %x1 = 15.555 and
λx1 = 0.05884. Comparison of the �nite di�erence
and analytical sensitivities indicate that the solution
is implemented correctly following Eq.(41) with clear
quadratic convergence in both tables.

From the various convergence histories and sensitivity
comparisons tabulated, the subroutines implemented
in Appendix C and D are considered su�ciently accu-
rate. The model is now also characterised on experi-
mental data for Copper and used in Abaqus to simulate
compression experiments.

6 Recrystallisation in Copper

Tanner and McDowell [51] performed compression ex-
periments on 99.99% pure Copper for temperatures
ranging from 25◦C to 541◦C and constant true strain
rates ranging from quasi-static (0.0004s−1) to dynamic
(6000 s−1). For strain rates at or below 1s−1 the tests
were conducted using closed loop servo hydraulic test
machines while high strain rate tests were done on a
split Hopkinson pressure bar. The low strain rate com-
pression specimens had a diameter to height ratio of
1:1.5. Concentric grooves were cut into the ends of the
test specimens. These grooves were �lled with di�er-
ent lubricants depending on the rate and temperature
of the experiment. The specimen sides were also coated
to prevent oxidation at higher temperatures.

As in the Cobalt case presented earlier, the stress as a
function of true strain was digitised from di�erent �g-
ures in Tanner's thesis [50]. The model is now also cali-
brated using the digitised data points for Tanner's Cop-
per experiments. The material parameters are again
determined using initial values from literature and lin-
ear regression on Arrhenius exponential relationships.
The parameter values are then again �ne-tuned using a
penalised downhill simplex algorithm [26]. The mate-
rial parameters resulting in the �t to the Copper data
in Figure 3 are:

• µr = 43.8GPa, Dr = 4.7GPa, Tr = 252K and
ν = 1/3 for the elastic properties using the shear
model relationship in Eq.(4).
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Table 5: RGET residuals and convergence for internal state variables associated with fx1
using δα =0.0100063

Iteration Residual Solution Sensitivity AN FD % Di�erence

1 fR1 1.58693 x1 14.1273 ∂fR1/∂x1 1.12087 1.12155 0.06065

fR2
5.777E-3 x2 5.354E-2 ∂fR1

/∂x2 -4.33533 -4.33542 0.00208

‖fR‖ 1.58694 fxn 0.10882 ∂fR2
/∂x1 9.417E-6 9.541E-6 1.30815

∂fR2/∂x2 1.08475 1.08475 -

2 fR1
1.004E-2 x1 15.5628 ∂fR1

/∂x1 1.13266 1.13265 0.00088

fR2
1.022E-5 x2 5.885E-2 ∂fR1

/∂x2 -3.76881 -3.76787 0.02494

‖fR‖ 1.004E-2 fxn 0.11644 ∂fR2/∂x1 1.290E-5 1.301E-5 0.84909

∂fR2
/∂x2 1.08780 1.08780 -

3 fR1
2.974E-7 x1 15.5548 ∂fR1

/∂x1 1.13261 1.13243 0.01589

fR2 7.92E-11 x2 5.884E-2 ∂fR1/∂x2 1.289E-5 1.301E-5 0.92664

‖fR‖ 2.974E-7 fxn 0.11641 ∂fR2
/∂x1 -3.77138 -3.77187 0.01299

∂fR2
/∂x2 1.08779 1.08779 -

4 fR1 2.22E-16 x1 15.5548 ∂fR1/∂x1 1.13261 1.13398 0.12089

fR2
4.34E-18 x2 5.884E-2 ∂fR1

/∂x2 -3.77138 -3.77165 0.00716

‖fR‖ 2.22E-16 fxn 0.11641 ∂fR2
/∂x1 1.289E-5 1.301E-5 0.92664

∂fR2/∂x2 1.08779 1.08779 -

Table 6: Convergence of the recrystallised volume fractions fx1
and fx2

.

Volume
Iteration Residual

Fraction Sensitivity

Fraction Value AN FD

fx1 1 6.828E-2 0.71755 1.31611 1.31611

2 4.426E-4 0.76943 1.29844 1.29844

3 2.193E-8 0.76977 1.29831 1.29831

4 2.78E-17 0.76977 1.29831 1.29831

fx2 1 2.999E-2 0.08745 1.03153 1.03153

2 1.276E-4 0.11654 1.03955 1.03955

3 1.559E-9 0.11641 1.03955 1.03955
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• a0ε =2.1037K/MPa, pε = 1, qε = 2 , and
ε̇0ε =106s−1 for the temperature and rate depen-
dent scaling function in Eq.(8).

• The athermal yield stress component is
σ̂a =12.519 MPa and reference stress is σ0 =
17.295MPa using Eq.(8).

• Cλ = 1 is used for the evolution of λ̄ according to
Eq.(29).

• Cg = 6378.74, rg = 0.769, C1 = 278.87, C20 =
11.773, a02 = 0.904K/MPa, ε̇02 = 4.0112 ×
1012s−1, C30 = 83.07s−1, a03 = 6370.675K and
r3 =0.8079 for the dislocation density ratio evolu-
tion in Eq.(28).

• CRx0 = 9346.62s−1 in Eq.(23), a0Rx =17634K in
Eq.(24) while CRxλ0 = 47.247 and rRxλ = 3.87 in
Eq.(25). rRxa = 0.1424, rRxb = 1.7677 and CRxc =
393.44 in Eq.(22).

6.1 Finite Element Modelling

The appended subroutines are now used in an example
modelled using Abaqus 6.11 Standard [1]. The com-
pression of a cylindrical billet is modelled subject to
rollover and barrelling at 541◦C using the parameter
values characterised to give the point integration re-
sponse in Figure 3. Where Tanner's experiments were
lubricated do avoid rollover, the simulations in this
subsection are subject to a friction contact component
between the modelled test specimen and die to enforce
it. Instead of replicating Tanner's ideal experimental
cases using FEA, this subsection serves as an exam-
ple of more complex deformation modelled using the
recrystallisation model.

Compression of a billet with an initial height of 15mm
and diameter of 10mm is simulated in Abaqus using a
3D and axisymmetric model. The axisymmetric prob-
lem setup is given in Figure 4 with a 5mm×7.5mm
quarter billet and a 7mm long analytical rigid line to
represent the die. The �rst octant is modelled in the
three dimensional case due to problem symmetry, i.e
half of a π/2 billet section in the all-positive Cartesian
coordinate system, with boundary conditions ensuring
no out of plane movement at each of the three symme-
try planes.

Contact between the die and billet top as well as
the outer billet surface is permitted with hard normal
contact and a friction coe�cient of µfrict = 0.2. In
the three dimensional case an analytical rigid master
surface is used to represent the die while in the ax-
isymmetric case a rigid line is used. In Figure 4 the
rigid line is in contact with the top billet surface at
the start of the simulation and is displaced so that
the axisymmetric test specimen is reduced by 60%.
The 0.6 true strain corresponds to a displacement of

4L = 7.5× [exp (−0.6)− 1] = −3.3839 mm. The same
axial displacement is applied to a reference point in the
three dimensional case while constraining any die ro-
tation or radial displacement.

In the three dimensional case, three simulations are
performed using full integration 20 noded brick ele-
ments (C3D20). In each case the computational do-
main is modelled using a di�erent average element size
set through a maximum allowable edge length parame-
ter. Using a maximum allowable edge length of 0.8mm,
the resulting mesh consists of 315 elements. Similarly,
setting it to 0.5mm results in 1440 elements while a
0.3mm maximum edge length results in 6825 elements.
In the axisymmetric case, a maximum allowable edge
length of 0.3mm results in 425 eight noded square ele-
ments (CAX8) and 850 six noded triangular elements
(CAX6) while a slightly smaller allowable edge length
was chosen for the sti�er four noded square element
resulting in a mesh with 1176 CAX4 elements. Us-
ing each of the six meshes and corresponding formula-
tion, a 60% true reduction with displacement applied
linearly over 0.6s at a temperature of 541◦C is simu-
lated for comparison. Automatic time stepping is used
with an initial and maximum allowable time step size
of 0.01s.

Using the reaction force extracted over time and cor-
responding displacement history, the true stress - true
strain values are determined from

εTrue = ln (L/L0) and σTrue = (F × L)/(A0 × L0),
(31)

where L and F are the instantaneous length and force
while L0 and A0 are the original length and nominal
area. The true stress - true strain curves in all six cases
are displayed in Figure 5. From this �gure all six of the
simulations resulted in similar response curves.

A visual comparison on the internal material state as
a result of each simulation is presented in Figure 6.
The comparison is made for the equivalent dislocation
density ratio ISV between values of 120 and 140. Con-
sidering the three 3D simulations using (b) 315, (c)
1440 and (a,d) 6825 full integration 20 noded brick el-
ements, the solution seems to converge as a result of
mesh re�nement. Further also considering the axisym-
metric result using (e) 425 × CAX8, (f) 850 × CAX6
and (g) 1176 × CAX4, the solution is seen largely unaf-
fected by choice of element type. The main observable
and localised di�erence in ISV contour is seen closest
to the rollover contact area. Depending on the com-
plexity of the problem, element choice should still be
carefully considered given the potential pitfalls of vol-
umetric locking in CAX4 for example.

The e�ect of discontinuous loading is now also illus-
trated using the axisymmetric mesh consisting of 425
CAX8 elements. The same 60% reduction is applied
over 0.6 seconds, broken up into two 0.3 second re-
ductions with a variable stress free inter-compression
time. The simulated die displacement up to -1.6937mm
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Figure 3: Numerical model (coloured lines) calibrated to Tanner and McDowell's OFHC copper data [50, 51]
for di�erent strain rates at 25◦C, 269◦C and 541◦C.

Figure 4: The axisymmetric boundary value problem
setup to model a cylindrical test specimen in compres-
sion.

Figure 5: True stress - true strain curves as a result of
the monotonic compression at 541◦C up to 60% over
0.6 seconds. The boundary value problem is modelled
using di�erent meshes and formulations to illustrate
that the same solution is obtained independent of ele-
ment size and type.
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ρ̄ [ρ0]
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Figure 6: Equivalent dislocation density (ρ̄) contours at
0.6s, 541◦C, 60% compression using di�erent element
types and sizes. Result using (a) 6825× full integration
20 noded brick elements (C3D20) as well as side views
of the result using (b) 315 × C3D20, (c) 1440 × C3D20
and again (d) 6825 × C3D20 to illustrate convergence
within the limit of mesh re�nement. The result using
axisymmetric element types are given in (e) using 425
× CAX8, (f) 850 × CAX6 and (g) 1176 × CAX4. In all
these �gures contours are scaled between ρ̄ = 120× ρ0
and 140×ρ0 where ρ0 is the initial dislocation density,
i.e. the %̄ = ρ̄/ρ0 ISV is scaled between 120 and 140.
Values below 120 are coloured blue while values above
140 are coloured red.

is �rst applied in 0.3 s. The die is then displaced so
that there is no contact between it and the billet for
times of 1s, 10s or 60s. The additional -1.6937mm is
applied in the 0.3s to follow. The von Mises stress con-
tours and processed true stress - true strain are plotted
in Figure 7. The internal state variables related to the
dislocation density as well as the volume fraction of ma-
terial recrystallised at least once (fx1

=STATEV(7)) and
at least twice (fx2

=STATEV(11)) are also illustrated in
Figure 8.

7 Conclusions

The material model developed and implemented in this
paper includes mechanisms for strain hardening, dy-
namic and thermal recovery as well as recrystallisation.
The material model has the ability to simulate single
and multiple peak responses due to recrystallisation
and can represent a large range of temperature and
strain rate responses that can now be modelled using
�nite element analysis in a mean �eld manner.

The complete numerical implementation was derived
and explained in detail. Comparison of the �nite dif-
ference sensitivities and those derived analytically illus-
trate a satisfactory agreement and close to quadratic
convergence for the test increment used during this ver-
i�cation. Given the detailed description and subrou-
tines provided, it is the authors' hope that the material
model implementation will be useful to others for use
in Abaqus [1] or another �nite element package that
makes use of a similar material subroutine structure.
To the best of the authors' knowledge the same mate-
rial subroutines can for example be used in the open
source �nite element solvers Calculix [12] and Code
Aster [14].

As illustrated in this paper, the mean �eld recrystalli-
sation model implemented has the ability to model a
wide range of metal response undergoing isotropic plas-
tic deformation. This was illustrated using high tem-
perature (fcc) Cobalt and Copper data.

Using the model implemented, recrystallisation and in-
ternal material state can now be studied within an FEA
environment using the appended subroutines. If exper-
imentalists also examine cross sections at the end of the
experiment, the modelling may also be validated, im-
proved or characterised better.

Appendices

A Numerical Implementation

The aim of the numerical subroutine is to compute the
stress given a strain increment. In our state variable
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(a) σvM [MPa]

(b) σvM [MPa]

(c) σvM [MPa]

(d)

Figure 7: Von Mises stress contours using 425 ×
full integration 8 noded axisymmetric stress elements
(CAX8) after a two stage compression simulation at
541◦C. A total of 60% total reduction is applied over
0.6s with a varying stress free inter-compression time at
the 0.3s mark. The result using an inter-compression
time of (a) 1s, (b) 10s and (c) 60s illustrate the ef-
fect of static recrystallisation and history dependence
using the model. The true stress - true strain curves
of the continuous as well as interrupted compression
simulations are given in (d).

formulation the stress depends on the evolution of state
variables as a function of temperature as well as incre-
mental strain and time step. The system of di�eren-
tial equations that describe the evolution of the state
variables need to be integrated numerically. Here, we
choose the numerically stable fully implicit Backward
Euler integration scheme.

Integration of the ISVs and associated stresses is imple-
mented into an Abaqus UMAT and linked subroutines.
The UMAT framework in Appendix B resolves the incre-
mental plastic strain using calls to an FISOTROPIC sub-
routine added as Appendix C. In the numerical imple-
mentation, the state variables per active volume frac-
tion in the FISOTROPIC subroutine is solved using calls
to a residual subroutine RGET added as Appendix D.
A �ow diagram of the radial return type UMAT frame-
work in Appendix B is given in Figure 9. This �gure
also illustrates the main variables of interest given as
input and outputs of the subroutine. Details on the
FISOTROPIC and RGET subroutines are covered later.

The model integrates the various values incremen-
tally with previous converged ISV values stored in the
STATEV array. Candidate ISV values are stored inter-
nal to the UMAT in a TEMPSTATEV array. The STATEV

array is updated upon convergence using the values of
the temporary ISV array. Values that are useful in an
analysis apart from the ISVs needed in the recrystalli-
sation and density ratio based evolution include the ac-
cumulated volume fraction averaged equivalent plastic
strain. An ISV for the equivalent plastic strain is there-
fore also assigned per recrystallisation volume fraction
αxi . This is done to keep track of the equivalent plas-
tic strain that accumulates and is reset by each wave of
recrystallisation. If a speci�c recrystallisation volume
fraction fxi is active, the plastic strain increment δα
is added to the volume growth compensated internal
state variable

αxi |t+δt = αxi |t
fxi |t

fxi |t+δt
+ δα. (32)

The values of the volume fraction averaged plastic
strain and misorientation can be calculated following
Eq.(30) to obtain

ᾱ =

nx−1∑
i=0

αxi

(
fxi − fxi+1

)
(33)

and

λ̄ =

nx−1∑
i=0

λxi
(
fxi − fxi+1

)
. (34)

The internal state variables at the end of each time in-
crement is the volume fraction averaged plastic strain
ᾱ, dislocation density ratio %̄ and average slip plane lat-
tice misorientation λ̄. These three averaged ISVs are
followed by four ISVs per volume fraction namely the
fraction speci�c equivalent plastic strain αxi , disloca-
tion density %xi , misorientation λxi and next volume
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(a) (b) (c)

ρ̄ [ρ0] ρ̄ [ρ0] ρ̄ [ρ0]

(d) (e) (f)

fx1 fx1 fx1

(g) (h) (i)

fx2 fx2 fx2

Figure 8: Contours using 425 × CAX8 elements after a two stage compression simulation at 541◦C. A total
of 60% total reduction is applied over 0.6s with a varying stress free inter-compression time at the 0.3s mark.
Contours of the dislocation density ratio (as a function of the original dislocation density ρ0) as a result of (a)
1s, (b) 10s and (c) 60s inter-compression time is given. The volume fraction of material recrystallised at least
once (fx1

) and at least twice (fx2
) are also given for the (d,g) 1s, (e,g) 10s and (f,i) 60s static recrystallisation

cases modelled.

fraction value fxi+1
. All of these ISV values have to be

stored in the STATEV array.

The total length of the state variable array (NSTATV)
is set in an Abaqus input �le with the *DEPVAR card.
The volume fraction averaged equivalent plastic strain,
dislocation density ratio and average slip plane lattice
misorientation are stored in the �rst three entries of
the state variable array STATEV(1:3). Tracking the
evolution of the equivalent plastic strain, dislocation
density ratio, average slip plane lattice misorientation
as well as volume fraction for each recrystallisation cy-
cle implies that four entries in the STATEV array need
to be allocated per volume fraction. This means that
given the maximum number of possible recrystallis-
ing volume fractions (NRRX= nx), the total length of
the STATEV array (NSTATV) as given by the material
de�nition in the Abaqus input �le should be at least
DEPVAR=4*NRRX+3 so that enough memory is allocated
to the problem. The previous converged values of the
volume fraction averaged quantities as well as the ISV
values at the end of the previous increment are stored
in the state variable array sent as input and then re-
turned at the end of the current increment as

STATEV(1 : 4 ∗ NRRX + 3) = {ᾱ, %̄, λ̄, αx0 , %x0 , λx0 , fx1 ,

..., αxnx−1 , %xnx−1 , λxnx−1 , fxnx
}. (35)

Following Brown and Bammann's approach [8], it
makes no sense to evolve and update the ISV values
for the original volume fraction %x0 and λx0 once it has
been fully recrystallised. This happens when the �rst
recrystallised volume fraction in the state variable ar-
ray de�ned above approaches unity fx1

≈ 1. If this is
the case, the state variable values associated with the
�rst recrystallised volume fraction is shifted so that it
is now associated with the new default volume fraction.
If this is the case, the previous converged values in the
state variable array may alternatively be considered as

STATEV(7 : 4 ∗ NRRX + 3) = {fx0
≈ 1, αx0

, %x0
, λx0

, fx1
,

..., αxnx−2
, %xnx−2

, λxnx−2
, fxnx−1

}. (36)

To reduce the amount of allocated memory required,
an ISV shift applied to the STATEV array would result
in a new state variable array where

STATEV(4 : 4 ∗ NRRX + 3) = {STATEV(8 : 4 ∗ NRRX + 3),

0, 0, 0, 0}. (37)

In this implementation, the potential state variable ar-
ray shift happens before calculating the stresses asso-
ciated with the current time increment and additional
evolution of the ISVs.

The maximum number of volume fractions to track is

16



Figure 9: Diagram illustrating some of the inputs and values returned as well as the �ow of calculation in the
radial return type UMAT framework in Appendix B.

set with nx =(NSTATV-3)/4. The value of NSTATV is
set using the *DEPVAR card in the Abaqus input �le,
used to allocate the memory required. The volume
fractions are e�ectively fully recrystallised and ISVs
shifted once fx1 > 0.999. ISV updates also only cy-
cle through each of the following volume fractions as
long as the conditions fxi+1

> 0.001 and i + 1 ≤ nx
are met to save on computational time. This is di�er-
ent from the implementation by Brown and Bammann
[8] in that they evolve all volume fraction state vari-
ables, even before it contributes to the overall material
response.

A.1 Plasticity and internal state evolu-

tion

Considering the current temperature, the shear modu-
lus in Eq.(4) and scale function in Eq.(8) are evaluated
�rst. To determine the yield stress from Eq.(7), the
threshold stress value and therefore average dislocation
density ratio at the end of the current increment are
required as in Eq.(30). The numerical implementation
needs to cycle through each of the recrystallised vol-
ume fractions, evolving the associated ISVs and then
adding the contribution to the average dislocation den-
sity ratio. The aim within the FISOTROPIC subrou-
tine is therefore to cycle through each active volume
fxi > 0.001 to �nd converged values of %xi , λxi and
fxi+1

by resolving calls to the RGET subroutine in Ap-
pendix D.

It is possible to solve the ISVs %xi , λxi and fxi+1 as a
system of three equations or staggered. In the stag-
gered approach followed here, a system of two equa-
tions is solved for %xi and λxi while fxi+1

is solved as
a function of %xi , λxi and itself.

Given that the implementation cycles through the vol-
ume fractions, a single variable is used for values of
the volume fractions, rates and ISVs needed within the
speci�c cycle evaluated in an RGET call. The values
are stored to the temporary state variable array before
continuing to the next cycle. In the next cycle, the
same variables now e�ectively just point to alternate
entries of the state variable array. Here, we use the
subscripts xc and xn to represent the variables associ-
ated with the current c = i and next n = i+ 1 volume
fractions.

To start the �ow rule evaluation, the values associated
with the default volume fraction i = 0 are set from the
known conditions fx0 = 1 and ḟx0 = 0, meaning fxc =
1 and ḟxc = 0. The volume fraction averaged quantities
are also initialised with ᾱ = 0, %̄ = 0 and λ̄ = 0. A
vector x = {%xi , λxi}t+δt represents an estimate of the
ISV values associated with the current volume fraction.
The construction of the various residuals and solutions
necessary to solve the ISV evolution are described next.

Considering that from Eq.(18) the misorientation frac-
tional value θ̄/θm should be below unity, Eq.(25) is
evaluated with this constraint in mind which gives

CRxλ = 1− exp (−CRxλ0 min ([x2, 1])
rRxλ) . (38)

The recrystallised volume fraction growth associated
with the next volume fraction fxn is calculated by �rst
setting the estimated variable value equal to the pre-
vious converged value fxn =

{
fxi+1

}
t

= STATEV(4∗
i + 7). The minimum value fxn ≥ 10−4 is introduced
in the presented implementation in order to avoid a
zero interface surface area when evaluating Eq.(22).
This assumes that nucleation has already started. fxn
is now the current estimate of

{
fxi+1

}
t+δt

and the va-
lidity of this estimate is determined by evaluating the
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residual:

fRx
= fxn −

{
fxi+1

}
t
− δtḟxn = 0, (39)

where the rate of the next volume fraction is computed
from Eq.(23) to give

ḟxn = x1CRx0CRxT (T )CRxλ (x2) gx(fxc, fxn). (40)

The residual equation is solved using the Newton-
Raphson method following

{fxn}k+1
= {fxn}k −

(
1−

x1CRx0CRxT (T )CRxλ (x2)

{
dgx
dfxn

}k)−1
{fRx

}k . (41)

Once the next volume fraction is solved at t + δt, the
residuals on the two ISV estimates can be determined
using the evolution rates of Eqs.(28) and (29). This
gives the following two residuals that depend on x1
and x2:

fR1
(x1, x2) = x1 − %xi |t−

δα
(
C0x

rg
2 + C1

√
x1 − C2(α̇, T )x1

)
+

δtC3(T )xr31 + δt
ḟxc

fxc − fxn (x1, x2)
x1 = 0 (42)

and

fR2
(x1, x2) = x2 − λ|t − δαCλ+

δt
ḟxc

fxc − fxn (x1, x2)
x2 = 0. (43)

The ISV updates are solved by using the initial guess
x = {%xi , λxi}t = {STATEV(4 ∗ i + 5, 4 ∗ i + 6)}, sent
in to the RGET subroutine in Appendix D. The residual
values and sensitivities are returned to the FISOTROPIC
subroutine. The values are updated using the Newton-
Raphson scheme

{x}k+1
= {x}k −

[
{F′R}

k
]−1
{fR}k (44)

where the Jacobian matrix F ′R ij = ∂fRi/∂xj contains
the partial derivatives of the residuals in Eqs.(42) and
(43). Since we have a 2 × 2 system, we compute the
inverse of F′R using the closed form expression

[F′R]
−1

=
1

det(F′R)

[
F ′R 2,2 −F ′R 1,2

−F ′R 2,1 F ′R 1,1

]
(45)

with det(F′R) = F ′R 1,1F
′
R 2,2 − F ′R 1,2F

′
R 2,1. The com-

ponents of the Jacobian matrix are:

∂fR1

∂x1
=1− δα

(
1

2
C1x

−1/2
1 − C2

)
+ δtr3C3x

r3−1
1 +

δt
ḟxc

fxc − fxn
+ δtx1

ḟxc

(fxc − fxn)
2

dfxn
dx1

,

∂fR1

∂x2
=− δαrgC0x

rg−1
2 + δtx1

ḟxc

(fxc − fxn)
2

dfxn
dx2

,

∂fR2

∂x1
=δtx2

ḟxc

(fxc − fxn)
2

dfxn
dx1

,

∂fR2

∂x2
=1 + δt

ḟxc
fxc − fxn

+ δtx2
ḟxc

(fxc − fxn)
2

dfxn
dx2

.

(46)

The derivatives of the next volume fraction with re-
spect to the current ISV estimates are determined from
the residual in Eq.(39) as:

dfxn
dx1

=δtCRx0CRxT (T )CRxλ (x2) gx(fxc, fxn)×(
1− δtx1CRx0CRxT (T )CRxλ (x2)

dgx
dfxn

)−1
dfxn
dx2

=δtx1CRx0CRxT (T )(fxc, fxn)
dCRxλ

dx2
×(

1− δtx1CRx0CRxT (T )CRxλ (x2)
dgx
dfxn

)−1
(47)

and

dCRxλ

dx2
= rRxλCRxλ0x

rRxλ−1
2 [1− exp (−CRxλ0x

rRxλ
2 )]

(48)

if x2 ≤ 1 or zero otherwise.

A.2 Flow rule sensitivity

Before possibly moving to the next volume fraction, the
current volume fraction contribution to the equivalent
dislocation density is needed. This is updated along
with the contribution to the yield stress sensitivity re-
quired to resolve the �ow rule residual and solve the
equivalent plastic strain increment. The contribution
to the average dislocation density ratio is calculated
as in Eq.(30) by updating the value of the equivalent
dislocation density ratio variable. The equivalent dis-
location density ratio variable is initialised %̄ = 0 at the
start of the calculation. For each subsequent volume
fraction solved, the variable is updated following

%̄k+1 = %̄k + x1 (fxc − fxn) (49)

so that %̄k now represents the summation of
the �rst k volume fraction contributions %̄k =∑k
i=0 %xi

(
fxi − fxi+1

)
.

The sensitivity of the yield stress with respect to the
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equivalent plastic strain increment in turn is given by

dσY
dδα

=
σ0
√
%̄

δt

dSε
dα̇

+
Sεσ0
2
√
%̄

d%̄

dδα
, (50)

which requires dSε/dα̇ and d%̄/dδα. The de�nition of
the scaling factor in Eq.(8) leads to

dSε
dα̇

=
T

α̇pqa0µr

(
T

a0µ
ln

(
ε̇0
α̇

))1/q−1

×[
1−

(
T

a0µ
ln

(
ε̇0
α̇

))1/q
]1/p−1

. (51)

The equivalent dislocation density ratio sensitivity is
computed from Eq.(30) to give

d%̄

dδα
=

nx−1∑
i=0

[
d%xi
dδα

(
fxi − fxi+1

)
+

%xi

(
dfxi
dδα
−
dfxi+1

dδα

)]
. (52)

From the �rst volume fraction condition with fx0
= 1,

it is evident that dfx0
/dδα = 0. The incremental con-

tribution to the average dislocation density ratio sen-
sitivity added at each cycle means that given the ini-
tialised variable value {d%̄/dδα}k=0

= 0, the sensitivity
is updated as each cycle evaluation is completed. Fol-
lowing Eq.(49), this gives

d%̄

dδα

k+1

=
d%̄

dδα

k

+
dx1
dδα

(fxc − fxn)+x1

(
dfxc
dδα

− dfxn
dδα

)
,

(53)
where dfxc/dδα = 0 for the �rst volume fraction. Given
the residual in Eq.(39) with ḟxn now a function of x
according to Eq.(40) and a known value for dfxc/dδα,
the required total derivative in Eq.(53) is given by

dfxn
dδα

=
∂fxn
∂x1

dx1
dδα

+
∂fxn
∂x2

dx2
dδα

+
∂fxn
∂fxc

dfxc
dδα

. (54)

In the �rst volume fraction solved the last term in
Eq.(54) is zero since dfxc/dδα = 0 for a constant fxc =
1. If the next volume fraction is active (fxn ≥ 0.001),
the value of dfxn/dδα as calculated in Eq.(54) is trans-
ferred to the variable dfxc/dδα for use in the subsequent
volume fraction contribution.

The sensitivities of x1 and x2 with respect to the equiv-
alent plastic strain increment are approximated in the
presented implementation by again using the residual
equations for the evolution of the ISVs in Eqs.(42) and
(43).

The updated internal state variable associated with the
dislocation density ratio evolution in Eq.(42) is given
by

x1 = %xi |t + δθx1
|t+δt , (55)

where δθx1
|t+δt = δθx1

(δα, δt, α̇, T, x1, x2, fxc) is
solved using the residual subroutine RGET. During a

call to the RGET subroutine, δθx1
|t+δt is mainly seen as

a function of the x1 and x2 values at the end of the
increment since the other values are assumed constant
during a Newton loop.

Further sensitivities are however required so that the
equivalent plastic strain can be determined from within
the user material framework. The total derivative of
x1 with respect to the equivalent plastic strain using
Eq.(55) is determined from the chain rule

dx1
dδα

=
∂δθx1

∂δα
+
∂δθx1

∂α̇

dα̇

dδα
+
∂δθx1

∂fxc

dfxc
dδα

+

∂δθx1

∂x1

dx1
dδα

+
∂δθx1

∂x2

dx2
dδα

. (56)

The derivative of the equivalent strain rate with re-
spect to incremental plastic strain is dα̇/dδα = 1/δt.
The value of dfxc/dδα is equal to zero in the �rst
volume fraction due to fxc = fx0

= 1. If not in
the �rst volume fraction it is carried over from the
preceding volume fraction calculation. The equiva-
lent plastic strain increment sensitivity in this case
is taken as the sensitivity of the next volume frac-
tion as determined in the previous solution loop, i.e.
dfxc/dδα|fxi+1

= dfxn/dδα|fxi .

Rearranging Eq.(56) and noting that ∂fR1
/∂x1 ≡

(1− ∂δθx1
/∂x1) and ∂fR1

/∂x2 ≡ −∂δθx1
/∂x2 in

Equations (46), this implies

∂fR1

∂x1

dx1
dδα

+
∂fR1

∂x2

dx2
dδα

= Γx1
. (57)

Here Γx1 contains all of the sensitivity components in
Eq.(56) not associated with x1 and x2:

Γx1
=
∂δθx1

∂δα
+
∂δθx1

∂α̇

dα̇

dδα
+
∂δθx1

∂fxc

dfxc
dδα

. (58)

Doing the same as in Eq.(57) for dx2/dδα leads more
generally to the system of equations

∂fRi
∂x1

dx1
dδα

+
∂fRi
∂x2

dx2
dδα

= Γxi . (59)

For the �rst residual equation (i = 1) the right hand
side of Eq.(59) is

Γx1
≡− ∂fR1

∂δα
− ∂fR1

∂α̇

dα̇

dδα
− ∂fR1

∂dfxc

dfxc
dδα

=C0x
rg
2 + C1

√
x1 − C2x1 − α̇

dC2

dα̇
+

x1

[
δt

ḟxc

(fxc − fxn)
2 −

1

fxc − fxn

]
dfxc
dδα

, (60)

with

d

dα̇
C2(α̇, T ) = − C20T

α̇a02µ
exp

[
− T

a02µ
ln

(
α̇

ε̇02

)]
, (61)

where Eq.(14) is used for C2 (α̇, T ).
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The second residual has no equivalent plastic strain
rate dependency. The approximate derivative of this
residual equation with respect to plastic strain gives

Γx2
≡− ∂fR2

∂δα
− ∂fR2

∂dfxc

dfxc
dδα

(62)

=Cλ + x2

[
δt

ḟxc

(fxc − fxn)
2 −

1

fxc − fxn

]
dfxc
dδα

.

The values of ∂fRi/∂xj in Eq.(59) are the same compo-
nents used to construct the matrix needed in Eq.(44).
The relevant derivatives of the current volume fraction
ISVs with respect to equivalent plastic strain are then
given by

dx1
dδα

=
1

det(F′R)

(
F ′R 2,2Γx1

− F ′R 1,2Γx2

)
(63)

and

dx2
dδα

=
1

det(F′R)

(
F ′R 1,1Γx2

− F ′R 2,1Γx1

)
. (64)

The individual volume fraction sensitivities of the ISVs
are then used to compute the averaged contributions
of the ISVs.

The current recrystallised volume fraction compen-
sated equivalent plastic strain using Eq.(32) is deter-
mined from αxc|t+δt = αxc|t × fxc|t / fxc|t+δt + δα.
The converged value of the plastic strain for the previ-
ous increment is αxc|t = STATEV(4 ∗ i + 4) while that
for the current volume fraction is fxc|t = STATEV(4 ∗ i
+7). Starting with ᾱk=0 = 0 and λ̄k=0 = 0 , the vol-
ume averaged equivalent plastic strain and average slip
plane lattice misorientation are updated in the same
way as the equivalent dislocation density in Eq.(49):

ᾱk+1 = ᾱk + αxc (fxc − fxn) ,

λ̄k+1 = λ̄k + x2 (fxc − fxn) .
(65)

Once all of the current volume fraction contributions
are accounted for, the current volume fraction values
are stored in the associated temporary state variable
locations

TEMPSTATEV(4 ∗ i + 4) = αxc

TEMPSTATEV(4 ∗ i + 5) = x1

TEMPSTATEV(4 ∗ i + 6) = x2

TEMPSTATEV(4 ∗ i + 7) = fxn.

(66)

A check is performed to decide whether additional
volume fractions need to be considered by evaluating
i ≤ NRRX − 1. In the implementation here, di�er-
ent from the implementation by Brown and Bammann
[8], the condition fxn ≥ 0.001 is also evaluated since
it makes no sense to spend computational power to
evaluate the next volume fraction if it does not con-
tribute to the global response. If both these conditions
are met, the variables are updated for the next vol-
ume fraction evaluation with fxc = fxn, ḟxc = ḟxn,

dfxc/dδα = dfxn/dδα and i = i + 1. Setting the ini-
tial guess x = {STATEV(4 ∗ i + 5, 4 ∗ i + 6)} subject to
x1 ≥ 1 and x2 ≥ 10−4, the evaluation of the next vol-
ume fraction is considered by again starting at Eq.(38).

A �ow chart of the current subsection regarding the
evaluation of the ISV evolution, resulting yield stress
and sensitivity as implemented in Appendix C and D
are displayed in Figure 10.

B : UMAT subroutine

subroutine umat(stress, statev, ddsdde, sse,

& spd, scd, rpl, ddsddt, drplde, drpldt, stran,

& dstran, time, dtime, temp, dtemp, predef,

& dpred, cmname, ndi, nshr, ntens, nstatv,

& props, nprops, coords, drot, pnewdt, celent,

& df0, df1, noel, npt, layer, kspt, kstep, kinc)

c

implicit real*8(a-h,o-z)

character*8 cmname

c

dimension stress(ntens), statev(nstatv),

& ddsdde(ntens, ntens),ddsddt(ntens),

& drplde(ntens), stran(ntens), dstran(ntens),

& predef(1), dpred(1), props(nprops), coords(3),

& drot(3, 3), df0(3, 3), df1(3, 3), flow(6),

& tempstatv(nstatv)

c

parameter(zero=0.d0, one=1.d0, two=2.d0,

& three=3.d0, six=6.d0, enumax=.4999d0,

& newton=10, toler=1.0d-6)

c

c assign temporary state variables

do k1=1,nstatv

tempstatv(k1)=statev(k1)

enddo

c

c elastic properties:

emu0 = props(1)

ed0 = props(2)

et0 = props(3)

enu = props(4)

c temperature dependent shear model

if(temp.gt.et0)then

emu = emu0 - ed0/(dexp(et0/temp)-one)

else

emu = emu0

endif

eg2=two*emu

eg3=three*emu

emod = eg2*(one+enu)

ebulk3=emod/(one-two*enu)

elam=(ebulk3-eg2)/three

c

c elastic stiffness

do k1=1, ndi

do k2=1, ndi

ddsdde(k2, k1)=elam
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Figure 10: Flow chart sequence to solve a yield stress evaluation using the subroutines in Appendix C and D.

end do

ddsdde(k1, k1)=eg2+elam

end do

do k1=ndi+1, ntens

ddsdde(k1, k1)=emu

end do

c

c calculate predictor stress and elastic strain

do k1=1, ntens

do k2=1, ntens

stress(k2)=stress(k2)+ddsdde(k2, k1)*

& dstran(k1)

end do

end do

c

c calculate equivalent von mises stress

smises=(stress(1)-stress(2))**2+(stress(2)-

& stress(3))**2+(stress(3)-stress(1))**2

do k1=ndi+1,ntens

smises=smises+six*stress(k1)**2

end do

smises=sqrt(smises/two)

c

call fisotropic(sy,dsy,zero,dtime,temp,

& statev,tempstatv,nstatv,props,nprops)

c

c determine if actively yielding

if (smises.gt.(one+toler)*sy) then

c

c actively yielding

c separate the hydrostatic from the deviatoric

c calculate the flow direction

shydro=(stress(1)+stress(2)+stress(3))/three

do k1=1,ndi

flow(k1)=(stress(k1)-shydro)/smises

end do

do k1=ndi+1, ntens

flow(k1)=stress(k1)/smises

end do

c

c solve for equivalent von mises stress

c and equivalent plastic strain increment using

c newton iteration

deqpl=zero

do kewton=1, newton

rhs=smises-eg3*deqpl-sy

deqpl=deqpl+rhs/(eg3+dsy)

call fisotropic(sy,dsy,deqpl,dtime,temp,

& statev,tempstatv,nstatv,props,nprops)

if(abs(rhs).lt.toler) goto 10

end do

c

c write warning message to .msg file

write(7,2) newton

2 format(//,30x,'***warning - plasticity ',

& 'algorithm did not converge after ',i3,

& ' iterations')

10 continue

c

c update stress, elastic and plastic strains and
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c equivalent plastic strain

do k1=1,ndi

stress(k1)=flow(k1)*sy+shydro

end do

do k1=ndi+1,ntens

stress(k1)=flow(k1)*sy

end do

c

c formulate the jacobian (material tangent)

c first calculate effective moduli

effg=emu*sy/smises

effg2=two*effg

effg3=three/two*effg2

efflam=(ebulk3-effg2)/three

effhrd=eg3*dsy/(eg3+dsy)-effg3

do k1=1, ndi

do k2=1, ndi

ddsdde(k2, k1)=efflam

end do

ddsdde(k1, k1)=effg2+efflam

end do

do k1=ndi+1, ntens

ddsdde(k1, k1)=effg

end do

do k1=1, ntens

do k2=1, ntens

ddsdde(k2, k1)=ddsdde(k2, k1)+

& effhrd*flow(k2)*flow(k1)

end do

end do

endif

c

c update state variable array

do k1=1,nstatv

statev(k1)=tempstatv(k1)

enddo

c

return

end

c

C : FISOTROPIC Subroutine

subroutine fisotropic(sy,dsy,depl,dtime,temp,

& statev,tempstatev,nstatv,props,nprops)

c

implicit real*8(a-h,o-z)

logical checkrx

dimension props(nprops),statev(nstatv),

& tempstatev(nstatv),xi(2),xj(2),r(2),drdx(2,2),

& fxinfo(3),reps(2),dxdr(2,2),fxnvec(5),xjupd(2)

parameter(zero=0.d0,half=0.5d0,one=1.d0,

& two=2.d0, toler=1.d-4,x10=one,x20=1.d-10,

& fxn0=1.d-4,ratelim=1.d-8)

c

c elastic properties:

emu0 = props(1)

ed0 = props(2)

et0 = props(3)

enu = props(4)

c reference stress values

siga = props(5)

sig0 = props(6)

c scaling function

a0e = props(7)

rate0 = props(8)

qe = props(9)

pe = props(10)

c

rate = depl/dtime

if(rate.lt.ratelim)then

rate = ratelim

endif

c

if(temp.gt.et0)then

emu = emu0 - ed0/(dexp(et0/temp)-one)

sfe0 = temp/(a0e*emu)

else

emu = emu0

sfe0 = one/a0e

endif

emusf = emu/emu0

c

sfel = dlog(rate0/rate)*sfe0

sfe = dabs(one-sfel**(one/qe))**(one/pe)

c isv shift

nrrx = (nstatv-3)/4

if(statev(7).gt.(0.999d0))then

ixvf=1

do while(ixvf.lt.nrrx)

lstskip = 4*(ixvf-1)+3

ixvf = ixvf+1

statev(lstskip+1)=statev(lstskip+5)

statev(lstskip+2)=statev(lstskip+6)

statev(lstskip+3)=statev(lstskip+7)

statev(lstskip+4)=statev(lstskip+8)

enddo

statev(lstskip+5)=zero

statev(lstskip+6)=zero

statev(lstskip+7)=zero

statev(lstskip+8)=zero

endif

c

fxc = one

fxcp = one

fxcr = zero

dfxcde = zero

x1eq = zero

x2eq = zero

dx1eqde = zero

plastic = zero

c

ixvf = 1

checkrx = .true.

do while((ixvf.lt.nrrx).and.(checkrx))

lstskip = 4*(ixvf-1)+3

xeplp = statev(lstskip+1)

x1p = max(statev(lstskip+2),x10)

22



x2p = max(statev(lstskip+3),x20)

fxnp = max(statev(lstskip+4),fxn0)

xi = (/x1p,x2p/)

xj = (/x1p,x2p/)

fxinfo = (/fxc,fxcr,fxnp/)

call rget(r,drdx,fxnvec,reps,xj,xi,fxinfo,

& depl,dtime,temp,props,nprops)

fx = dsqrt(r(1)*r(1) + r(2)*r(2))

fxd = drdx(1,1)*drdx(2,2)-drdx(2,1)*drdx(1,2)

icount = 0

newtmax=15

if(xi(1).eq.(one))then

newtmax = 50

endif

do while((icount.lt.newtmax).and.

& (dabs(fx).ge.toler))

icount = icount+1

if(dabs(fxd).gt.zero)then

dxdr = reshape((/drdx(2,2),-drdx(2,1),

& -drdx(1,2),drdx(1,1)/),(/2,2/))/fxd

xjupd = reshape(matmul(dxdr,reshape(r,(/2,

& 1/))),(/2/))

xj=xj-xjupd

xj = (/max(dabs(xj(1)),x10),max(dabs(xj(2)),

& x20)/)

fxinfo = (/fxc,fxcr,fxnp/)

call rget(r,drdx,fxnvec,reps,xj,xi,fxinfo,

& depl,dtime,temp,props,nprops)

fx = dsqrt(r(1)*r(1) + r(2)*r(2))

fxd = drdx(1,1)*drdx(2,2)-drdx(2,1)*drdx(1,2)

else

xj = (/x1p,x2p/)

fx = zero

endif

enddo

x1 = max(xj(1),x10)

x2 = max(xj(2),x20)

fxn = min(dabs(fxnvec(1)),one)

c

c add fxc contribution to Gamma

rx0 = one/(fxc-fxn)

dxdfxc0 = dfxcde*(dtime*fxcr*rx0*rx0-rx0)

dx1dfxc = dxdfxc0*x1

dx2dfxc = dxdfxc0*x2

reps=reps+(/dx1dfxc,dx2dfxc/)

c

if(fxn.le.(1.d-3))then

checkrx = .false.

endif

fxnr = fxnvec(2)

dfxndx1 = fxnvec(3)

dfxndx2 = fxnvec(4)

dfxndfxc = fxnvec(5)

xepl = xeplp*fxcp/fxc+depl

c

tempstatev(lstskip+1) = xepl

tempstatev(lstskip+2) = x1

tempstatev(lstskip+3) = x2

tempstatev(lstskip+4) = fxn

c

x1eq = x1eq + x1*(fxc-fxn)

x2eq = x2eq + x2*(fxc-fxn)

plastic = plastic + xepl*(fxc-fxn)

c

if(dabs(fxd).gt.0)then

dx1de = dxdr(1,1)*reps(1)+dxdr(1,2)*reps(2)

dx2de = dxdr(2,1)*reps(1)+dxdr(2,2)*reps(2)

dfxnde = dfxndx1*dx1de+dfxndx2*dx2de+

& dfxndfxc*dfxcde

dx1eqde = dx1eqde + dx1de*(fxc-fxn) +

& x1*(dfxcde - dfxnde)

dfxcde = dfxnde

fxc = fxn

fxcp = fxnp

fxcr = fxnr

endif

c endif

ixvf = ixvf+1

end do

c

tempstatev(1) = plastic

tempstatev(2) = x1eq

tempstatev(3) = x2eq

c

sqx1 = dsqrt(x1eq)

sec = sig0*sqx1

sy = siga + emusf*sfe*sec

c partial derivatives

c d(sec)/d(epl)

dsecdepl = half*sig0*dx1eqde/sqx1

c d(sfe)/d(epl)

dsfedepl = (sfe0*(one-sfel**(one/qe)

& )**(one/pe-one)*sfel**(one/qe-one)/

& (pe*qe*rate))/dtime

c total

dsy = emusf*(sfe*dsecdepl+dsfedepl*sec)

return

end

D : RGET Subroutine

subroutine rget(r,drdxj,fxnvec,reps,xj,xi,

& fxinfo, depl,dtime,temp,props,nprops)

c

implicit real*8(a-h,o-z)

dimension props(nprops),r(2),drdxj(2,2),

& fxinfo(3),reps(2),xj(2),xi(2),fxnvec(5)

c

parameter(zero=0.d0,half=0.5d0,one=1.d0,

& two=2.d0,toler=1.d-10,ratelim=1.d-8)

c

c elastic properties:

emu0 = props(1)

ed0 = props(2)

et0 = props(3)
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enu = props(4)

c reference stress values

siga = props(5)

sig0 = props(6)

c scaling function

a0e = props(7)

rate0 = props(8)

c evolution of misorient:

cld = props(11)

c stage 4

cg = props(12)

rg = props(13)

c storage

c1 = props(14)

c dynamic recovery:

c20 = props(15)

a02 = props(16)

rate02 = props(17)

c thermal recovery

c30 = props(18)

r3 = props(19)

a03 = props(20)

c recrystallisation

cx0 = props(21)

a0x = props(22)

cxl = props(23)

rxl = props(24)

rxa = props(25)

rxb = props(26)

cxc = props(27)

c

c get info from previous values:

c contained in fxinfo:

fxc = fxinfo(1)

fxcr = dabs(fxinfo(2))

fxnp = fxinfo(3)

c

rate = depl/dtime

if(rate.lt.ratelim)then

rate = ratelim

endif

c

if(temp.gt.et0)then

emu = emu0 - ed0/(dexp(et0/temp)-one)

r2m = -temp/(emu*a02)

r3c = c30*dexp(-a03/temp)*dtime

r5c0 = cx0*dexp(-a0x/temp)*emu*dtime

else

c use constants:

emu = emu0

r2m = -a02

r3c = c30*dtime

r5c0 = cx0*emu*dtime

endif

c isv's at previous convergence and current guess:

x1p = max(xi(1),one)

x2p = max(xi(2),zero)

x1 = max(xj(1),one)

x2 = max(xj(2),zero)

c

c growth of next recrystallised volume:

cldbar = min(x2,one)

r5c1 = (one-dexp(-cxl*(cldbar)**rxl))

r5c = r5c0*r5c1*(x1)

c interfacial area

fxn = fxnp

rxg = fxc*((fxn/fxc)**rxa)*((one-fxn/fxc)**

& rxb)*(one+cxc*(one-fxc))

drxg = rxa*((fxn/fxc)**(rxa-one))*

& ((one-fxn/fxc)**rxb)*(one+cxc*(one-fxc)) -

& rxb*((fxn/fxc)**rxa)*((one-fxn/fxc)**(rxb-

& one))*(one+cxc*(one-fxc))

fxnr = dabs(r5c*rxg)

ffxn = fxn - fxnp - fxnr

c resolve residual

icount = 0

do while((icount.lt.15).and.(dabs(ffxn).gt.

& toler))

icount = icount+1

dffxn = one - half*r5c*drxg

if(dabs(dffxn).lt.toler)then

dffxn = toler

endif

fxn = min(dabs(fxn - ffxn/dffxn),fxc-toler)

rxg = fxc*((fxn/fxc)**rxa)*((one-fxn/fxc)

& **rxb)*(one+cxc*(one-fxc))

drxg = rxa*((fxn/fxc)**(rxa-one))*

& ((one-fxn/fxc)**rxb)*(one+cxc*(one-fxc)) -

& rxb*((fxn/fxc)**rxa)*((one-fxn/fxc)**

& (rxb-one))*(one+cxc*(one-fxc))

fxnr = dabs(r5c*rxg)

ffxn = fxn - fxnp - fxnr

end do

c partial : change of fxn with respect to x1 and x2:

c partial gradients d(fxn)/d(x1)

ddfxdr = (one-r5c*drxg)

if(dabs(ddfxdr).lt.toler)then

ddfxdr = toler

endif

dfxndx1 = (r5c0*r5c1*rxg)/ddfxdr

dmdx2 = zero

if(x2.lt.one)then

dmdx2 = one

endif

dr5c1dm = rxl*cxl*dexp(-cxl*(cldbar)**rxl)*

& (cldbar)**(rxl-one)

dfxndm = (r5c0*dr5c1dm*x1*rxg)/ddfxdr

c partial gradients d(fxn)/d(x2)

dfxndx2 = dfxndm*dmdx2

c partial d(fxn)/d(fxc)

drxgdfxc = ((fxn/fxc)**rxa)*((one-fxn/fxc)**

& rxb)*(one+cxc*(one-fxc))

& - rxa*((fxn/fxc)**rxa)*((one-fxn/fxc)**rxb)*

& (one+cxc*(one-fxc))

& + rxb*((fxn/fxc)**(rxa+one))*((one-fxn/fxc)

& **(rxb-one))*(one+cxc*(one-fxc))

& - cxc*fxc*((fxn/fxc)**rxa)*((one-fxn/fxc)**

& rxb)

dfxndfxc = r5c*drxgdfxc

c residual equations on the isv values:

c2 = c20*(rate/rate02)**r2m

dc2de = c20*r2m*((rate/rate02)**(r2m-one))/
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& (dtime*rate02)

sqx1p = dsqrt(x1p)

sqx1 = dsqrt(x1)

hx2 = cld

hx1temp = -r3c*(x1**r3+x1p**r3)

hx1 = (cg)*(x2)**rg+c1*sqx1-c2*x1

if(fxn.ge.fxc)then

rx0 = zero

else

rx0 = one/(fxc - fxn)

endif

rfxc = fxcr*rx0

drx = rfxc*rx0

r1 = x1-x1p-hx1*depl-hx1temp+x1*rfxc

r2 = x2-x2p-hx2*depl+x2*rfxc

r = (/ r1 , r2 /)

c partial :

c change in residual with respect to x1 and x2:

dhrdrtemp=-r3*r3c*x1**(r3-one)

dhrdr=half*c1/sqx1-c2

c partial gradients d(fr1)/d(x1)

dr1dr0=one-dhrdr*depl-dhrdrtemp+rfxc

dr1dx1=dr1dr0+x1*drx*dfxndx1

c partial gradients d(fr1)/d(x2)

dr1dx2=-depl*rg*(cg)*(x2)**(rg-one)+

& x1*drx*dfxndx2

c partial gradients d(f2)/d(x1)

dr2dx1 = x2*drx*dfxndx1

c partial gradients d(f2)/d(x2)

dr2dl0= one + rfxc

dr2dx2 = dr2dl0 + x2*drx*dfxndx2

drdxj=reshape((/dr1dx1,dr2dx1,dr1dx2,dr2dx2/)

& ,(/2,2/))

c

dr1de = hx1 - depl*dc2de*x1

dr2de = hx2

reps = (/dr1de,dr2de/)

c exchange new supplementary info using fxinfo:

fxnvec(1) = fxn

fxnvec(2) = fxnr

fxnvec(3) = dfxndx1

fxnvec(4) = dfxndx2

fxnvec(5) = dfxndfxc

c

return

end
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