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Highlights
 Propeller ice impacts are measured on the shaft-line of an ice-going vessel.

 An inverse problem is solved to estimate impact-induced moments at the propeller.

 Five ice-induced load cases are presented.

 The maximum allowed ice-induced propeller torque was marginally not exceeded.

 Regularization methods crucially influence the appraisal of safe design margins.
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Abstract
In order to estimate the forces exerted on ship propellers during ice navigation, the rotational dynamics of the

propulsion system need to be accurately modelled. The blade measurements of ice loads on the propellers of

ships during ice navigation is challenged by the harsh operating environment. Shaft line measurements are

therefore performed inboard, and the required propeller loads are subsequently estimated through the use of

a dynamic model and the solution of an inverse problem. The inverse problem is mathematically ill-posed

and requires the determination of the ice-induced load on the propeller blade from shaft line measurements.

The present study investigated full-scale torsional responses on the shaft line of a polar supply and research

vessel during navigation through sea ice on a 68-day voyage between Cape Town and Antarctica. The vessel

spent almost 11 days in ice with observed concentrations above 90% and a maximum thickness of 3 meters.

The aim was to evaluate the extreme ice-induced moments on the shaft line and thereby determine how

sparsely published operational loadings compare to the design loads of an ice-going vessel. Ice-induced

moments on the propeller were obtained from operational measurements through three previously published

approaches to solving the ill-conditioned inverse problem. The regularization methods used included trun-

cated Singular Value Decomposition, truncated Generalized Singular Value Decomposition and Tikhonov

regularization. The maximum ice-induced external moment was found to be 941.5 kNm, which was just

within the maximum allowed ice-induced torque on the propeller. The duration of ice impacts on the pro-

peller ranged from 25 to 228 milliseconds. A secondary peak was evident in torsional responses obtained

from propeller-ice impacts which is thought to be a shear stress wave that propagates and reflects back in the

shaft line. From the inversely determined ice-induced loads, the number of impacts, the duration, the shape

and the damping of water on the propeller was identifiable. The results obtained were physically reasonable,

indicating that the current methods are suitable for obtaining ice-induced loading on the propeller from shaft

line measurements.

Keywords

Full-scale measurements; Ice-induced propeller loads; Shaft line torque; Inverse problem; Regularization

1 Introduction

Efficient and safe shipping in Arctic regions is an increasing requirement as maritime transport in ice-covered

seas is expected to increase in future decades [1], [2]. The main source of excitation for polar class propulsion
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systems is attributed to propeller-ice interaction [3]. The International Association of Classification Societies

(IACS) [4] which encompasses the Korean Register [5], American Bureau of Shipping [6], Det Norske

Veritas (DNV) [7], Lloyd’s Register [8] and Finnish-Swedish Ice Class Rules’ Guidelines [9], amongst a few,

has formulated rules for Polar Class (PC) ships intended for Arctic navigation. These regulations have been

integrated to obtain the classification of ice going vessels [3]. Detailed and reliable full-scale measurement

data sets assist to improve such regulations, which lead to interest in the effect of ice loads on the propulsion

systems of ships [10, 11].

During ice passage, the first element of the propulsion machinery to interact with ice is the propeller. Sub-

sequently, ice-related loads are transferred to other elements of the transmission system [12]. In a year

long study on Baltic shipping Hänninen [13] reported that 35 % of maritime-related accidents pertained to

propeller damage [13]. Ice navigation subjects the propeller to non-contact loads, which includes the hy-

drodynamic load on the blade experienced in open water conditions and contact loads, which comprise ice

milling, crushing and ice impact [3]. Ice milling is defined as the process during which multiple blades

impact an ice floe [14]. Crushing describes the situation where ice is pressed onto the blade until it crushes

which results in high loads [15]. Smaller ice debris that result in more moderate loads and which are passed

through the propeller are referred to as ice impacts [3].

Propeller loads could ideally be determined directly from blade measurements [1]. However, the challenges

to this approach include the interaction of the blades with the working environment as well as ice impacts

that damage the sensors [16]. Besides this, the installation costs involved are high due to the requirement of

cable ducting through the shaft to the propeller blades [1].

Current full-scale measurements of ice loads rely on shaft line measurements through strain gauges, which

are installed inboard, between the propeller and the engine [11]. With this approach ice-induced moments

are not measured directly and include the dynamic response of the mechanical transmission elements [12].

To determine propeller loads from shaft line measurements, the transfer function between the externally

induced loads and the internal shaft line measured torque is to be determined. One of the most commonly

used methods in torsional vibration analyses includes the simplification of transmission systems to lumped

mass models as shown in studies by Ikonen[1], He [17] and Det Norske Veritas [7]. Inverse methods are

subsequently required to perform indirect force determination of ice-loading on the propeller blades.

The complication with the discretization of inverse problems is that this leads to an ill-conditioned coefficient

matrix for the system of linear equations, which require regularization methods to obtain stable solutions

[18]. Regularization is the procedure whereby a problem is modified to reduce the sensitivity of the response
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and obtain a robust solution [19]. Suominen et al. [20] and Bekker et al. [21] performed inboard shaft

line measurements on the polar supply and research vessel, SA Agulhas II. Ikonen et al. [1] proceeded to

demonstrate the solution of an ill-conditioned inverse problem through three approaches including Truncated

Singular Value Decomposition (TSVD), Truncated Generalized Singular Value Decomposition (TGSVD)

and Tikhonov regularization. The findings indicated that these methods are capable of solving the ice moment

function for a set of verification data and in load cases where up to four consecutive ice contacts were present.

Myklebost and Dahler [22] reported disturbances on the shaft line measurement system of the SA Agulhas

II which inhibited the evaluation of full voyage data. This was rectified by De Waal [23] who installed and

validated a new measurement system on the same vessel, capable of gathering trustworthy data.

The aim of the present investigation was to verify the existing inverse estimation algorithm for ice-induced

torque presented by Ikonen et al. [1] and to use this algorithm to determine and publish propeller-ice loading

from trustworthy shaft line measurements on an operational voyage of the SA Agulhas II to Antarctica. In

particular, ice milling cases and associated ice conditions were investigated as well as the implications of

different regularization methods on the interpretation of extreme loading conditions.

2 Full-scale measurements

2.1 SA Agulhas II

The polar supply and research vessel, SA Agulhas II (SAA II) (Figure 1) is propelled by two Conver Team

electric motors of 4.5 MW each. Each motor is connected to a propulsion shaft with four-bladed variable

pitch propellers [24]. Four 3 MW diesel generators are used to supply propulsion power. The ship was

manufactured in Rauma shipyard in 2012 by STX Finland [21] with an ice-strengthened hull in accordance

with DNV ICE-10. She is classified to Polar Ice Class PC-5 [25] and therefore rated for year-round operations

in medium first-year ice containing old ice inclusions [4]. Further specifications of the vessel are presented

in Table 1.
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Figure 1: SAA II vessel instrumented during the 2015/2016 voyage to Antarctica.

Table 1: Vessel specifications [24].

Gross tonnage 12 897 tons Diesel engine type 6L32
Length 134 m Electric motor type N3 HXC 1120 LL8
Breadth 22 m Speed (n) at MCR 140 rpm
Classification DNV Power (PD) at MCR 4500 kW
Class notation 1A1 PC-5/ICE-10 Nominal torque (QMCR) 307 kNm
Yard/Year STX Finland/2012 Propeller maker Rolls-Royce
Main engine maker Wärtsilä No. of blades/Diameter 4/4.3 m

2.2 Antarctic voyage

Full-scale measurements were performed during the 2015/2016 voyage of the SAA II from Cape Town to

Antarctica. Shear strain and axial strain measurements were captured along with, machine control, radial

bearing vibration, ice conditions and navigation data. The GPS track of the voyage is presented in Figure 2.

During the 2015/2016 voyage:

• The vessel departed Cape Town harbour (1) on 5 December 2015 and headed towards the Greenwich

Meridian, along which she navigated to Antarctica (3).

• Ice was encountered on 11 December 2015 and continued until 16 December when she arrived at the

shelf, Penguin Bukta (3).

• On 22 December she navigated to Akta Bukta near the German Antarctic Research Station, Neumayer.

• From Akta Bukta she headed through heavy pack ice towards the South Sandwich Islands and arrived

at South Thule (4) on 24 December.

• After South Thule, she navigated out of the ice field and reached South Georgia (5) on 30 December

2015. Her journey back to Antarctica started on the same day.
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• She re-encountered ice on 11 January on route to Penguin Bukta (3).

• The voyage back to Cape Town started on 1 February. She left the ice field on 2 February and arrived

in Cape Town on 11 February 2016.

1. Cape Town

2. Bouvet

Island

SANAE IV3.
Neumayer III

4. Thule Island

5. South

Georgia

Figure 2: Round voyage for the SAA II to Antarctica (Blue - outbound, red - return voyage).

The total voyage lasted 68 days, of which 10.7 days were spent navigating in ice, 40 days navigating in open

water and 17.5 days stationary. The pie chart in Figure 3 depicts the operational profile of the vessel. The

ice conditions varied throughout the voyage and are summarised in Figure 3.

(a) (b)

(c) (d)

Figure 3: The (a) operational profile and ice conditions, including (b) thickness (c) concentration and (d) floe
size encountered by the SAAII on the 2015/2016 Antarctic relief voyage.
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2.3 Instrumentation

Strain gauges were installed on the port side intermediate shaft line, 25.9 m from the center of gravity of the

propeller (Figure 4), to determine torque loading from strain gauge measurements. The strain gauges were

connected in a Wheatstone bridge configuration to reject axial strain, compensate for temperature variations

and reject bending. This was achieved by installing two pairs of T-rosette strain gauges on diametrically

opposing sides of the shaft. The gauges were inclined at ±45° with respect to the horizontal mid-plane of

the shaft in order to measure the maximum shear stress on the outer surface (Figure 5a). A V-link lossless

extended range synchronized (LXRS) system, produced by LORD MicroStrain, was installed to transmit

the measurements wirelessly (Figure 5b) to a HBM Quantum mobile data acquisition system. The HBM

Quantum was connected to a laptop via an ethernet cable and recorded through Catman AP V3.5 software at

a sample rate of 600 Hz.

25.9 m
z

x

Figure 4: Location of strain gauges mounted along the shaft line. Adapted from [24].

Q Q

Gauge 2 Gauge 1

Gauge 4 Gauge 3

z
y

x

(a)

V-link

Battery

pack

Shaft

(b)

Figure 5: Shaft line measurements with (a) strain gauge placement (Adapted from [26]) and (b) measurement
setup.

The general equation used for a Wheatstone full bridge configuration [26] is expressed in terms of UE which

is the supply voltage and UA, the bridge output voltage as a result of operational shaft deformations. The

gauge factor, k = 1.99, is supplied on the packaging and εi (where i = 1, 2, 3, 4) represent the strain

measurements from the gauges 1,2,3 and 4 of the Wheatstone bridge. When torque is applied as indicated in

Figure 5b, strain gauge number 2 and 4 will sense negative strain and strain gauge 1 and 3 will sense an equal
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but positive strain. Thus, the absolute value of the measured strains (ε1 to ε4) will be equal and additive.

UA

UE
=
k

4
(ε1 − ε2 + ε3 − ε4) = kε (1)

It can be shown that the torque in the hollow shaft, Qshaft, is related to the Young’s Modulus, E, Poisson’s

ratio, ν, outer- (do) and inner (di) shaft diameters and Wheatstone bridge output voltage:

Qshaft = UA
πE(d4o − d4in)

16UEkdo(1 + ν)
(2)

The shaft dimensions for the SAA II were obtained from engineering drawings by STX Finland [24]. The

material specifications were sourced from Rolls-Royce [27] which provided parameters for numerical cal-

culations during the propulsion system design phase. The dimensions, material properties and shaft related

variables are presented in Table 2. The depth of the propeller centerline, ho, was not directly obtainable from

engineering drawings and was inferred from scaled vessel drawings.

Table 2: Shaft line dimensions, material properties and shaft related variables for the measurement locations
[24, 27, 28, 29, 7].

Description Symbol Value Description Symbol Value
Modulus of elasticity E 210 GPa Max ice thickness Hice 2.0 m
Shear modulus G 81 GPa Ice strength index Sice 1.1 m
Outer diameter do 0.5 m Pitch at P0.7 5.15 m
Inner diameter din 0.175 m Expanded blade area ratio EAR 0.51
Hub diameter dh 1.32 m Depth of propeller centerline ho 3.75 m

3 Method

Ice loading on the propeller is to be determined from shaft line measurements on a polar research vessel. This

is achieved through a two-step process. Firstly, a forward problem is solved whereby the dynamic model is

subjected to a step impulse moment at the propeller. The impulse response function between the externally

applied ice moment on the propeller and the internal torque response in the shaft line is thereby determined at

the measurement location. Secondly, an inverse problem is solved to determine externally applied propeller

moments from the measured shaft line torque and ill-posed inverted impulse response.
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3.1 Dynamic model

A simplified dynamic model of the torsional dynamic response of the SAA II was obtained by using a lumped

mass model documented by Rolls-Royce [30] and Ikonen et al. [1]. This was done to determine the impulse

response function, which describes the strain gauge output when a unit moment is applied, at t = 0, to the

propeller. The governing matrix equation for the torsional response of a mass-damper system is:

J ¨̄θ + C ˙̄θ + Kθ̄ = Q̄(t) (3)

Here, J is a matrix containing entries, which relate to the polar moment of inertia, C, the damping, K, the

rigidity, Q̄, the generalized excitation torque vector and θ̄, the angular displacement vector of the twisting

angles at the system nodes.

A diagram of the lumped-mass model for the SAA II shaft line is presented in Figure 6. J1 represents the

controllable pitch propeller (CPP), J3 the mid-propeller shaft, J5 the sleeve coupling, J7 the oil distribution

box flange, J9 the thrust shaft collar, J11 the electric motor flange and J13 the propulsion motor. The

hydro-dynamic damping on the rotating propeller is modelled by c1 whereas c2, c4, ..., c12 and k2, k4, ..., k12

respectively represent the shaft line damping and torsional stiffness. Qshaft represents the shaft torque,

which can be calculated from full-scale measurements using Eq.2. Inverse methods are subsequently required

to determine the ice-induced moment at the propeller, Qice. The variables used for the dynamic model were

obtained from Rolls-Royce [30] and are presented in the Appendices.

Figure 6: A diagram of the dynamic model for the SAA II shaft line comprising inertia, damping and
torsional spring elements.
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Q Q Q Q

Element i+1

Element i

Qi,1 θi,1 Qi,2 θi,2 Qi+1,1 θi+1,1 Qi+1,2 θi+1,2

Figure 7: Elements and relative nodes. Adapted from Ikonen et al. [1].

The lumped mass model was solved by considering rotational degrees of freedom about the longitudinal shaft

axis (x-axis). The model elements comprised inertia elements and shaft elements, which each contained two

nodes as shown in Figure 7. Each node is associated with a torsional moment, Q, and angular displacement,

θ. Using the governing equation of torsional vibration in Eq. 3, Eq. 4 can be derived for inertia elements

(odd values of i) and Eq. 5 for torsional spring elements (even values of i):

Jiθ̈i,1 + ciθ̇i,1 = −Qi,1 +Qi,2 +Qice (4)

ci

(
θ̇i,2 − θ̇i,1

)
+ ki (θi,2 − θi,1) = Qi,1 (5)

with i being the increment for the thirteen elements of the shaft line system. Subscript (i, 1) denotes the

value of the variable on the left side of the element and subscript (i, 2) on the right side of the element. For

inertia elements, the angular displacement on the right and left side are equal, and therefore θi,1 = θi,2. For

spring elements, the internal torque remains constant and therefore Qi,1 = Qi,2.

Direct integration methods could be used to obtain approximate solutions of dynamic systems [31]. Two

principal approaches to multi-degree of freedom direct integration methods are the explicit and implicit

schemes [32]. For an explicit scheme, previously determined values of displacement, velocity and accelera-

tion are used to determine the response quantities [32]. Implicit schemes combine the equations of motion

with difference equations to calculate the displacement directly [32]. Implicit schemes involve iterative pro-

cedures for each time step, making them more computationally intensive [31]. The disadvantage of explicit

schemes is that they are conditionally stable relative to the size of the selected time step whereas implicit

schemes can be either conditionally or unconditionally stable [31]. Wilson [31] recommends that single-step,

implicit, unconditionally stable methods should be used for step-by-step analysis of practical structures. To

this end the unconditionally stable Newmark-Beta method was used for direct integration in the time domain

as outlined by Ikonen et al. [1].

The dynamic model was solved by first defining an integration formula for the angular velocity θ̇ and angular
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acceleration θ̈ through the Newmark-Beta method [31]. The dynamic problem could then be solved by

combining the Newmark-Beta integration method and an incremental form of the governing equation of

torsional vibration. For a more detailed procedure, the reader is encouraged to refer to [23] and [1]. All

calculations were performed using custom algorithms programmed in MATLAB.

3.2 Inverse method validation

The principle of superposition [33] can be used to model the response of linearly elastic dynamic systems.

The relationship between the shaft torque and ice-induced moment is expressed in Eq. 6, referred to as the

convolution integral, which represents the dependency between the loading on the propeller, Qice, and the

response measured on the shaft line, Qshaft. H is the impulse response function between the loading point

at the propeller and the measurement location on the shaft. The impulse response function is shifted by the

variable of integration Φ to represent a random load history as a series of impulses [33]:

Qshaft(t) =

∫ t

0
H(t− Φ)Qice(Φ)dΦ (6)

Equation 6 can be solved by transforming it into a system of linear equations and discretizing the integral

into time steps, resulting in Eq.7 [19]:

Q̄shaft(t) = H(t)Q̄ice(t) (7)

Here, H is the impulse response matrix representing the transfer function between the loading point at the

propeller and the measurement location on the shaft, and Q̄shaft and Q̄ice respectively represent the shaft-

and ice-induced moment vectors. In order to solve for the unknown ice-induced moment vector, Q̄ice, from

shaft line measurements, Q̄shaft, Eq. 7 is rearranged, as presented in Eq. 8. This results in the requirement

to solve an inverse problem in order to determine the causal factors that produce the observed response.

Q̄ice(t) = H−1(t)Q̄shaft(t) (8)

The complication with the discretization of inverse problems is that this leads to an ill-conditioned coefficient

matrix for the system of linear equations, which require regularization methods to obtain stable solutions

[18]. Regularization is the procedure whereby the initial problem is modified to reduce the sensitivity of

the response towards a robust solution [19]. To this end three inverse methods have been investigated to
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perform inverse moment determination in an impact loading situation of the dynamic shaft line structure. In

keeping with the approach of Ikonen et al. [1] three regularization methods, namely Truncated Singular Value

Decomposition (TSVD), Truncated Generalized Singular Value Decomposition (TGSVD) and Tikhonov

regularization were implemented.

TSVD is a common method used to regularize ill-posed systems. The SVD of H ∈ Rm×n, where m ≥ n,

can be defined as [34]:

H = UΣVT =

n∑
i=1

ūiσiv̄
T
i (9)

Here, U is a matrix of orthonormalized eigenvectors of HHT and V comprises the orthonormalized eigen-

vectors of HTH. Furthermore, Σ is a diagonal matrix containing non-negative singular values of H in

decreasing order. As expressed in Eq.9 the solution of the system depends on the singular values, σi, and

singular vectors (ūi and v̄i) of H. TSVD aims to reduce the rank of the matrix, H, by eliminating small

singular values, thereby obtaining a closest well-conditioned approximation. This is achieved by evaluating

the magnitude of the singular values. If a discontinuity occurs where the singular values decrease rapidly

in magnitude, the larger singular values are retained and the remainder are set equal to zero [35]. Eq. 9 can

be rewritten to obtain the desired solution through the TSVD method, where, j, represents the number of

singular values retained [35] and q̄s is the internal shaft torque:

Q̄ice =

j∑
i=1

ūTi q̄s
σi

v̄i, j ≤ n (10)

Truncated Generalized Singular Value Decomposition (TGSVD) is a more sophisticated method whereby

further information about the desired solution can be incorporated to stabilize the problem [19]. This is

achieved through the regularization matrix, L, which often takes the form of the first or second derivative op-

erator [18]. Ikonen et al. [1] found that the first order regularization matrix (Eq. 11) is well-suited to smooth

the obtained propeller moment solution. It should be noted that, since the elements of the solution correspond

to changes in the ice-induced moment vector, M̄ = [∆m1 ∆m2 ∆m3 ... ∆mn]T the regularization in fact

corresponds to smoothing the solution by the second order derivative.

L =



−1 1 0 · · · 0

0 −1 1 · · · 0

...
...

. . . . . .
...

0 0 · · · −1 1


(11)
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The system can be represented by the real matrix pair (H ∈ Rm×n and L ∈ Rp×n) with m ≥ n ≥ p [36]:

H = U

Σ 0

0 In−p

X−1 (12)

L = V
(
M̄, 0

)
X−1 (13)

Here, U ∈ Rp×r and V ∈ Rq×q, which have orthonormal columns. Therefore, UUT = Ir and VTV = Iq.

Furthermore, X ∈ Rr×r is a non-singular matrix.The desired solution can be obtained by applying TGSVD,

which is similar to TSVD wherein the number of singular values is reduced to j [35]:

Q̄ice =

p∑
i=p−j+1

ūTi q̄s
σi

xi +

n∑
i=p+1

(
ūTi q̄s

)
xi (14)

Another widely used regularization method is Tikhonov’s regularization method, which involves the solution

of a least squares problem. This method is convenient for problems in which both the coefficient matrix and

the required solution can only be determined approximately [18]. This method filters out the unwanted

components corresponding to small singular values by adding damping to each TSVD component of the

solution [18]. The formulation of Tikhonov’s method is [18]:

min{||HQ̄ice − Q̄shaft||22 + λ||LQ̄ice||22} (15)

Here λ is a positive constant referred to as the regularization parameter. The required solution for the ice

moment vector, Q̄ice, minimizes Equation 15.

To validate the custom algorithms in MATLAB, known moment impulses were applied at the propeller and

the associated shaft response was determined (forward problem) [1]. The known moment impulses included

both, a linear moment impulse and a half-sine impulse stimulus to simulate single ice impacts. Consecutive

linear and half-sine moment impulses were also evaluated to investigate multiple impacts. Some noise is

subsequently added to the calculated shaft responses and inverse methods are used to extract the calculated

ice-induced moments.

The inverse calculation of the moment impulse further serves to determine the optimum regularization pa-

rameters. In this step, the L-curve is investigated. This curve expresses the semi-norm as a function of the

residual norm. The optimal level of regularization is located at the "knee" of the curve. Excessive regular-

ization will result in an inversely calculated solution that will not approximate the known moment impulse
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properly. Insufficient regularization will result in a solution, which will approximate the known moment

impulse but will be dominated by the contribution of data errors [34]. The L-curve is therefore used to find

the best compromise between insufficient and excessive regularization..

3.3 Ice-impacts from full-scale measurements

Case studies of ice-impacts were selected from operational data. Specifically, cases were selected to allow

the study of multiple ice impacts and to investigate the maximum torsional loading of the shaft line of the

polar vessel. The stability of the inverse methods is investigated for transient torque values from full-scale

measurement data, Q̄shaft. In order to determine the loading contribution of ice impact, the hydrodynamic

torque was subtracted from the measured internal torque and the direction of the moment inverted to obtain a

positive external ice-induced moment on the propeller. It was further evaluated if the estimated ice moment

could again be inverted to match the measured shaft torque value. This inverted internal torque was obtained

by determining the relevant external moment through the Tikhonov method and using this result as an input

to the dynamic model to obtain the internal torque (by solving the forward problem).

4 Results and analyses

4.1 Dynamic model

I
n
t
e
r
n
a
l
m

o
m

e
n
t

Q
s
h
a
ft

[N
m

]

time [s]

(a)

0 0.2 0.4 0.6 0.8 1

time [s]

(b)

Figure 8: Resultant internal torque on shaft line element 8 from a unit step input applied to the propeller
through the dynamic model. This response was determined without damping. Results obtained by (a) Ikonen
et al. [1] and (b) present research.

A forward problem was solved to determine the internal torque response in shaft line element eight, Qshaft,

for a unit step input, Qice and no damping as presented in Figure 8. This result was compared to the result
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obtained by Ikonen et al. [1] for verification. The two graphs are identical indicating that the current imple-

mentation of the lumped mass model is able to replicate the work of Ikonen et al. [1]. The torsional natural

frequencies of the SAA II shaft line have been determined by Bekker et al. [21] to be 11.2 Hz and 46.3 Hz.

The natural frequencies determined by Ikonen et al. [1] are compared to those determined in the present

study in Table 3.

Table 3: Comparison of natural frequencies determined numerically through current model and by [1] to
natural frequencies determined through full-scale measurements by [21].

Bekker et al. [21] Ikonen et al. [1] Current model
f1 11.2 Hz 11.5 Hz 11.5 Hz
f2 46.3 Hz 48.2 Hz 47.4 Hz
% error f1 2.7% 2.4%
% error f2 4.1% 2.3%

The difference in natural frequencies between the models is attributed to the use of slightly different lumped

mass parameters by Ikonen et al. [1] compared to the variables used in the current model, based on manu-

facturer information [30].

4.2 Ice-impacts from full-scale measurements

The determination of the optimum levels of regularization for the TGSVD and Tikhonov regularization

methods were determined through the L-curve. The optimum number of non-zero eliminated singular values

for TGSVD was determined to be ne = 120 and the optimum regularization parameter for Tikhonov was

determined to be λ = 24.57 · 10−2. These parameters were very different to that of Ikonen et al. [1] as

the compact truncated methods were used for the current model, as well as slightly different lumped mass

model parameters as the current model parameters were directly obtained from Rolls-Royce documentation

[27]. These regularization methods were implemented using algorithms written by Hansen [37]. Note that

the external water damping, c1 was re-instated for the inverse force calculations, although it was omitted in

the step response determination in Section 4.1. More detailed analyses are presented by De Waal [23] and

Ikonen et al. [1].

Five case studies were selected from operational data. The propeller pitch was approximately 88% for all

cases with operating conditions as presented in Table 4. The observed ice concentration, thickness and floe

size for the ten minute period surrounding the ice impacts are additionally reported in the table. Figure 9

presents photographs from the bow-facing view of the Bosch on-board camera system at the time when ice-

impacts are recorded on the propeller. Cases 1, 2, 4 and 5 provide examples of ice impacts for navigation
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in waters with low ice concentration and small ice floes with thicknesses that exceed half a meter. Case 3

presents an example of ice passage through a large floe in an area with higher ice concentration.

Table 4: Operating conditions during four propeller-ice impact conditions. Case 1, 2 and 5 were extracted
from data on 12 December, Case 3 on 13 December 2015 and the maximum ice impact condition, Case 4, on
11 December 2015. Average values of machine control data for the ice contact duration and hydrodynamic
torque, Qh, at the start of the ice contact condition are presented.

Case Start Speed Qh Motor Motor Propeller Average ice Ice Floe
Time speed power pitch concentration thickness size

[hh:mm:ss] [knots] [kNm] [rpm] [kW] [%] [%] [cm] [m]
Case 1 09:27:16 5.0 219.2 109.0 2270.0 88 2 110 60
Case 2 09:52:52 5.4 145.0 94.3 1313.3 88 12 70 30
Case 3 07:46:44 6.6 310.7 130.0 4073.0 88 59 35 2420
Case 4 16:50:47 3.8 222.1 85.1 670.3 70 21 110 15
Case 5 11:32:11 4.7 254.3 104.4 1830.0 88 10 54 60

(a) Case 1 - 12 December 2015 09h27 (b) Case 2 - 12 December 2015 09h52 (c) Case 3 - 13 December 2015 07h46
//

(d) Case 4 - 11 December 2015 16h50 (e) Case 5 - 12 December 2015 16h50

Figure 9: Bow-facing photographs from the Bosch on-board camera system showing the observed ice con-
ditions.

For discussion purposes the five case studies are grouped into moderate ice impacts, Cases 1 to 3 and maxi-

mum conditions, which relate to Cases 4 and 5.
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4.2.1 Moderate ice impacts: Case 1 to 3

The measured internal torque is presented against the inverted torque in Figure 10 for three moderate ice

impacts. The inverted torque follows the measured torque well (Figure 10), although sharp peaks are slightly

damped as expected from the use of regularization methods.

Inverse methods were applied to the measurements from the three moderate propeller-ice impact cases to

determine the relevant external propeller loads Qice, presented in Figure 11. The optimal values for regular-

ization parameters ne and λ were determined through the L-curve and found to be the same as for the known

moment impulses. All three methods provided similar results, except for Case 3 for which the Tikhonov

regularization method resulted in a more oscillatory ice -induced moment (Qice) compared to the TSVD and

TGSVD methods. From the known moment impulses, it was determined that Tikhonov followed the refer-

ence curve the best and therefore should provide the best representation of the inversed external moment.

From the inversely determined external moments, Qice, the number of impacts, the duration, the shape and

the damping of water on the propeller was identifiable. In general, an ice impact initiates a rapid increase in

amplitude followed by a rapid decrease. However, the peak does not immediately damp down to zero for all

cases. In Case 1, there are secondary peaks evident, which are usually smaller than the first. This secondary

peak occurs between 15 and 47 milliseconds after the first peak for the current conditions. The cause of this

secondary peak is explained [1] to be related to the shear stress wave that propagates back and forth from the

propeller to the engine rotor. When this shear stress wave reaches the propeller again, it results in the blade

of the propeller applying an impulsive load to the ice block. The propagation speed of a torsional wave in a

linearly elastic medium is defined by [33]:

cp =
√
G/ρ (16)

where G is the shear modulus of elasticity, ρ the material density and cp the propagation speed. Using the

variables from [27] for G = 81 GPa, ρ = 7850 kg/m3 and [38], the propagation speed is 3212.2 m s−1. For

the 35.1 m long shaft, this translates to a duration of approximately 11 milliseconds, the time it takes the wave

to propagate back and forth along the shaft. This coincides with the smallest duration measured between the

first and second peak in the external ice-induced moments. However, the exact location of the ice impact

on the blade of the propeller and the propagation through the blade and shaft couplings is unknown, which

could account for the longer propagation time for some of the secondary peaks.
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Figure 10: Measured internal torque and inversely determined internal torque for three propeller-ice impact
cases of different durations and varying operating conditions.
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Figure 11: External propeller moment determined through inverse methods TSVD, TGSVD and Tikhonov
regularization.

From the determined ice-induced moments in Figure 11, the number of ice impacts are more easily observed

compared to the measured shaft internal torque in Figure 10. This is partly due to the dynamic response of

the shaft line not being included in the external loads. For the first case, three ice impacts are clearly evident

(numbered 1 to 3) followed by two smaller impacts. For the second case, individual ice impacts were not as

prominent as the effect of milling causes multiple impacts to occur shortly after one another. A total of six
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impacts were confidently determined for this case (numbered 1 to 6). In Case 3 there were seven prominent

ice impacts (numbered 1 to 7). The duration of ice impacts for these three cases ranged from 25 to 228

milliseconds, where the duration was based on the minimum turning point before and after the first peak

caused by the ice impact. From blade measurements performed by Jussila and Koskinen [39] on a car ferry

in the archipelago of Åland, ice impact durations of around 40 milliseconds were recorded, thus similar to

the durations determined for the current cases.

When analysing the maximum amplitudes for external ice-induced moments (Q̄ice) and measured internal

torque (Qshaft) for these cases, the external moments were consistently found to have greater peak values.

This is due to the water damping and dynamic model of the shaft line. For Case 1, Qice was found to be

64.2% greater compared to the relative measured Qshaft. However for Cases 2 and 3, this increase was

found to be 231.0% and 206.6%.

4.2.2 Maximum conditions - Cases 4 and 5

Case 4 presents the maximum recorded ice-induced torque during the 2015/2016 voyage. The time histories

of the internal shaft torque and calculated ice-induced moments are shown in Figure 12 with operational

parameters in Table 4. The ice-induced torque was obtained by subtracting the hydrodynamic load, Q̄h from

the measured signal. The operating conditions for this case as well as the absolute maximum value, including

the hydrodynamic load, is recorded in Table 5. The selected maximum conditions refer to the maximum

recorded shaft line torque for the voyage and do not necessarily translate to the maximum ice-induced torque

on the propeller.
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Figure 12: External propeller moment determined from measured shaft line internal torque on the SAA II
through inverse methods TSVD, TGSVD and Tikhonov regularization.

The maximum ice-induced external torque was determined through inverse methods from the measured

internal torque and presented in Figure 12b. Milling was evident for this case from the multiple ice impacts

occurring shortly after one another. From the external ice-induced torque, six significant peaks are evident

during the ice impact phase between time 2 s and 3 s. The impact frequency is close to the blade frequency

of 5.67 Hz for the shaft line speed of 85.1 rpm and denotes milling through consecutive ice impacts of each

blade. When analysing the measured internal torque, eleven peaks are evident between time 2 s and 3 s, which

correlates to the first natural frequency of the shaft line. The maximum allowed ice-induced torque on the

propeller was determined through the Ice Class Rules, from Equation 18 in the Appendix, to be 1009.9 kNm.

For TSVD and TGSVD, Q̄ice did not exceed this limit, however when using Tikhonov regularization this

limit was exceeded by 12.6%.
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Figure 13: External propeller moment determined from measured shaft line internal torque on the SAA II
through inverse methods TSVD, TGSVD and Tikhonov regularization.

Table 5: Operating conditions during maximum recorded ice-induced torque loading.

Case Maximum Minimum Absolute Maximum
shaft torque shaft torque maximum ice moment

[kNm] [kNm] [kNm] [kNm]
Case 1 117.8 -63.7 337.0 189.0
Case 2 79.8 -6.3 224.7 269.6
Case 3 31.6 -27.4 342.4 73.7
Case 4 270.7 -84.7 492.9 942.1
Case 5 272.9 -105.6 475.3 443.4

A second ice loading case (Case 5) containing large torque oscillations was selected for analysis (Figure 13b).

It is noted from the ice observations that the vessel impacted a large floe field and that the floes noticeably

slowed the ship down at this point. The maximum measured internal torque for this case was 475.3 kNm

and the hydrodynamic load 254.3 kNm. Similar effects are visible for Case 5 compared to Case 4, in which

the same ice impact frequency is observed for the external ice-induced torque (6.5 Hz), which has a strong

correlation to the blade pass frequency of 6.96 Hz. From the measured internal torque, a frequency of 11 Hz
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is evident, denoting an excitation of the first natural frequency of the shaft line.

5 Discussion

In the consideration of operational ice impact case studies it was found that the judgement on whether the

maximum allowed ice-induced torque on the propeller was exceeded or not does depend on the selected regu-

larization method. For TSVD and TGSVD, Q̄ice did not exceed this limit, however when using the Tikhonov

regularization method this limit was exceeded by 12.6%. The evaluation of regularization methods against

simulated ice impacts showed that TGSVD resulted in the recovery of peak responses with greater accuracy

than TSVD and Thikonov regularization. Although TGSVD better represented the peak values, Tikhonov

regularization provided a better general fit of the transient response that follows the ice impact. Therefore

it is recommended that TGSVD should be used for peak value estimation, resulting in the maximum exter-

nal ice-induced moment occurring at 941.5 kNm, which is 6.8% below the maximum allowed ice-induced

torque on the propeller.

It was found that the internal torque for ice infested waters resulted in oscillatory torque responses, with

the inversely determined external propeller-ice loads being characterized by greater peaks overall. The re-

sults obtained were physically reasonable, indicating that the current methods are suitable for obtaining

ice-induced loading on the propeller from shaft line measurements. From the studied cases, it was found that

ice milling conditions resulted in the greatest measured internal torque and determined ice-induced moment

on the propeller. Of the three regularization methods used for inverse force estimation, TGSVD was found

to represent impulse moments the best with a maximum error of -5.4%. Tikhonov regularization matched

the reference moment the best overall with a maximum error of -8.5% during the linear impulse moment.

6 Conclusions

Results from full-scale measurements on-board the SAA II were analysed and discussed. Ice impacts re-

sulted in elevated shaft torque levels, with a maximum torque of 493 kNm. Inverse calculations were val-

idated using three regularization methods, namely TSVD, TGSVD and Tikhonov, which allowed for the

ill-posed problem to be overcome. The optimum levels of regularization were determined and it is was

found that TGSVD better predicts peak responses whereas the Tikhonov method provided a better general

fit of the transient response that follows ice impacts. The maximum ice-induced external moment for the

investigated case studies was found to be 941.5 kNm through the TGSVD, which was 6.8% less than the
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maximum allowed ice-induced torque on the propeller. The duration of these ice impacts ranged from 25

to 228 milliseconds. A secondary peak was evident during propeller-ice impacts which is thought to be

the back-and-forth propagation of a shear stress wave along the shaft line. From the inversely determined

ice-induced loads, the number of impacts, the duration, the shape and the damping of water on the propeller

were identifiable.

For future work, it is recommended to design a numerical model with increased precision. This would

involve parameter optimization to enable closer matching of natural frequencies. Furthermore, additional

measurements on the shaft-line would create greater confidence in the model. Significant future value can be

derived from the concurrent analysis and trending of ice-propeller impacts and operational ship parameters

such as propeller pitch, ship speed and associated vessel maneuvers which would assist vessel operators to

navigate in icy waters with greater safety and efficiency.
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Appendices

Dynamic model variables

Table 6: Mass moment of inertia, torsional stiffness and damping constants used for the dynamic model [30].

Variable Description Value
J1 Propeller 1.347× 104 kg ·m2

J3 Mid propeller shaft 5.590× 102 kg ·m2

J5 Sleeve coupling 5.120× 102 kg ·m2

J7 OD box flange 4.870× 102 kg ·m2

J9 Thrust shaft collar 1.410× 102 kg ·m2

J11 Motor flange 1.740× 102 kg ·m2

J13 Propulsion motor 4.415× 103 kg ·m2

c1 Water damping 1.136× 105 Nm · s/rad
c2,4,...,12 Steel shaft −180 Nm · s/rad
k2 Steel shaft 5.950× 107 Nm · rad
k4 Steel shaft 5.950× 107 Nm · rad
k6 Steel shaft 1.120× 108 Nm · rad
k8 Steel shaft 6.930× 108 Nm · rad
k10 Steel shaft 5.090× 108 Nm · rad
k12 Steel shaft 1.430× 108 Nm · rad

DNV Ice Class Rules

The DNV Ice Class Rules define the requirements for varying types of vessels, which are occasionally or

primarily intended for navigation in ice. According to the DNV Rules, the maximum torque on a propeller

due to ice influence, for a PC-5 rated vessel, can be defined as follows [7]:

For D < Dlimit

Qice,max = N1

(
1− dh

D

)(
P0.7

D

)0.16

(nD)0.17D3 (17)

For D ≥ Dlimit

Qice,max = N2

(
1− dh

D

)
(Hice)

1.1

(
P0.7

D

)0.16

(nD)0.17D1.9 (18)

with

Dlimit = 1.8Hice (19)

where N1 and N2 are equal to 14.7 and 27.93 for open propellers and 10.4 and 19.76 for ducted propellers.

[7] describes three cases containing a sequence of blade impacts, which are modelled as half sinusoidal

functions. This loading profile is used to model the propeller-ice torque excitation for shaft line dynamics.

The torsional excitation is described according to varying conditions as presented in Table 7, with Figure 14
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displaying the torque excitation time histories.
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Figure 14: Modelled torque excitation on the propeller used for shaft line dynamic analysis. These propeller-
ice interactions are for four bladed propellers during (a) 90◦ and (b) 135◦ single-blade impact sequence and
(c) 45◦ double bladed impact sequence. Adapted from [7].

A single blade impact can be described by a half-sine impact function, which is expressed in terms of the

propeller rotation angle using the Cq and αi parameters with the maximum ice-induced torque on the pro-

peller:

For ϕ = [0, αi]

Qice(ϕ) = CqQice,maxsin

(
ϕ

180

αi

)
(20)

For ϕ = [αi, 360◦]

Qice(ϕ) = 0 (21)

αi is expressed in terms of the propeller rotation angle (degrees) versus the duration of propeller-ice in-

teraction and Cq is defined as an empirical coefficient defining the magnitude of these impacts. Transient
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torsional vibration analysis should be used to determine the response torque Qshaft at any component in the

propulsion system through the excitation torque Qice applied at the propeller [7]. The excitation torque Qice

needs to be superimposed on the bollard condition hydrodynamic torque when performing calculations for

all three cases.

Table 7: Torque excitation parameters for different ice cases [7].

Torque excitation Ice-propeller interaction Cq αi

Case 1 Single ice block 0.75 90◦

Case 2 Single ice block 1 135◦

Case 3 Two ice blocks 0.5 45◦
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