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Abstract

Orthomosaics derived from consumer grade digital cameras on board unmanned aerial 
vehicles (UAVs) are increasingly being used for biodiversity monitoring and remote sensing 
of the environment. To have lasting quantitative value, remotely sensed imagery should be 
calibrated to physical units of reflectance. Radiometric calibration improves the quality of 
raw imagery for consistent quantitative analysis and comparison across different calibrated 
imagery. Moreover, calibrating remotely sensed imagery to units of reflectance improves its 
usefulness for deriving quantitative biochemical and biophysical metrics. Notwithstanding 
the existing radiometric calibration procedures for correcting single images, studies on 
radiometric calibration of UAV-derived orthomosaics remain scarce. In particular, this study 
presents a cost- and time-efficient radiometric calibration framework for designing 
calibration targets, checking scene illumination uniformity, converting orthomosaic digital 
numbers to units of reflectance, and accuracy assessment using in situ mean reflectance 
measurements (i.e. the average reflectance in a particular waveband). The empirical line 
method was adopted for the development of radiometric calibration prediction equations 
using mean reflectance values measured in only one spot within a 97 ha orthomosaic for 
three wavebands, i.e. red, green and blue of the Sony NEX-7 camera. A scene illumination 
uniformity check experiment was conducted to establish whether 10 randomly distributed 
regions within the orthomosaic experienced similar atmospheric and illumination 
conditions. This methodological framework was tested in a relatively flat terrain semi-arid 
woodland that is invaded by Harrisia pomanensis (the Midnight Lady). The scene 
illumination uniformity check results showed that at a 95% confidence interval, the 
prediction equations developed using mean reflectance values measured from only one spot 
within the scene can be used to calibrate the entire 97 ha RGB orthomosaic. Furthermore, the 
radiometric calibration accuracy assessment results showed a correlation coefficient r value 
of 0.977 (p < 0.01) between measured and estimated reflectance values with an overall root
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1. Introduction

Orthomosaics derived from consumer grade digital cameras on board unmanned aerial
vehicles (UAVs) are increasingly being used for vegetation mapping (Laliberte et al. 2011;
Pádua et al. 2017; Bonnet, Lisein, and Lejeune 2017). Recently, the UAV remote-sensing
(UAV-RS) approach has been frequently reported as advantageous over spaceborne and
traditional airborne remote-sensing approaches due to the resultant high temporal and
spatial resolution data as well as the survey cost efficiency associated with this approach
(Femondimo et al. 2011; Müllerová et al. 2017; Babapour et al., 2017). Applications of the
UAV-RS approach include inter alia agriculture (Li et al. 2017), precision agriculture
(Primicerio et al. 2012; Gómez-Candón, De Castro, and Lopez-Granados 2014;
Rokhmana 2015; Bagheri 2017), land use (Akar 2017), forestry (Thiel and Schmullius
2017; Torrescan et al. 2017), archaeology (Rinaudo et al. 2012; Fernández-Hernandez
González-Aguiler, Rodriguez-Gonzalvez, and Mancera-Taboada 2015), classification of
native vegetation (Zhang 2014), and mapping of invasive alien plants (IAPs) (Dvořák
et al. 2015; Müllerová et al. 2016; Hill et al. 2017).

UAV-RS imagery are highly influenced by prevailing environmental conditions at the
time of data acquisition (Kelcey and Lucieer 2012; Yang et al. 2017). These environmen-
tal conditions include the atmospheric composition (e.g. water vapour and aerosols) as
well as solar illumination patterns that depend on variations in the earth–sun geometry
for different seasons and times of the day (Nguyen et al. 2015; Honkavaara et al. 2017).
As a result, images of a target scene acquired by the same sensor on different seasons or
times of the day may have different properties (Haghighattalab et al. 2016). On the other
hand, images acquired by the same sensor may contain noise due to lens distortions,
sensor systematic errors, as well as the variation of the camera sensitivity across the
same image (Wang et al. 2006; Hugemann 2010; Del Pozo et al. 2014).

To have lasting quantitative value, it is standard practice to have remotely sensed
data calibrated to physical units of reflectance (Smith and Milton 1999). The radiometric
calibration process converts image digital numbers (DNs) to at-surface reflectance units
so as to enable quantitative analysis across data acquired at different seasons or times of
the day as well as by different sensors. Calibrated data sets may be cross compared
because while image DNs of a target object change depending on environmental factors
such as the incoming irradiance and atmospheric conditions (Honkavaara et al. 2013),

mean square error of 0.063. These findings suggest that given the entire scene being mapped 
is experiencing similar atmospheric and illumination conditions, then prediction equations 
developed using mean reflectance values measured in only one spot within the scene can be 
used to calibrate the entire orthomosaic in semi-arid woodlands. The proposed 
methodological framework can potentially be tested and adapted for use in large-scale crop 
mapping and monitoring in precision agriculture, land-use/land-cover classification as well 
as plant species delimitation, particularly for mapping widespread invasive alien plants such 
as H. pomanensis.
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after radiometric calibration, the spectral characterization of an object becomes possible
(Kelcey and Lucieer 2012; Crusiol et al. 2017). Moreover, radiometric calibration improves
the accuracy of derived vegetation indices as well as biochemical and biophysical
parameters (Nguyen et al. 2015). Nevertheless, studies that applied the UAV-RS for
IAPs monitoring made use of thematic image classification without either conducting
geometric or radiometric calibration (Dvořák et al. 2015; Müllerová et al. 2016; Mafanya
et al. 2017). This is because UAV-RS of biological invasions is optimized to be time and
cost efficient so as to enable mapping of IAPs at the right phenological stage, at an
affordable cost and with a quick turnover (Müllerová et al. 2017; Hill et al. 2017;
Tesfamichael et al. 2017). However, monitoring of IAPs could encompass not only
qualitative thematic mapping but also quantitative image analysis such as image band
mathematics (e.g. vegetation indices) as applied inter alia in agriculture (Li et al. 2017),
precision agriculture (Honkavaara et al. 2013; Candiago et al. 2015; Sonaa et al. 2016),
and forestry (Thiel and Schmullius 2017; Torrescan et al. 2017). Since one of the aims in
UAV-RS is cost reduction, a radiometric calibration framework for UAV-based IAPs
monitoring ought to be cost and time efficient.

UAV-RS radiometric calibration poses different challenges to spaceborne and manned
aircraft remote sensing. The low flight altitudes of mostly less than 200 m due to some
governmental restrictions mean that for the same area of interest there will be more
UAV-RS images acquired due to the associated small footprint than there would have
been if the data was acquired from a satellite platform or from a piloted aircraft
(Grenzdörffer, Engel, and Teichert 2008; Cracknell 2017). This means that it is not feasible
to have at-surface in situ reflectance calibration measurements for all acquired UAV-
derived images as it would be impractical to place enough calibration targets on the
ground for this goal. As a result, most radiometric calibration procedures were devel-
oped for a single image that is usually an aerial view of the calibration site. For instance,
Taylor (2015) successfully demonstrated the process of radiometric calibration of a
modified digital single-lens reflex camera using a single image while Kelcey and
Lucieer (2012) used a single image to demonstrate the radiometric calibration workflow
for a six-band UAV-borne multispectral sensor. Moreover, Wang and Myint (2015) used a
single-sample image to demonstrate a simplified empirical line method (ELM) for radio-
metric calibration of a UAV-derived colour infrared image. Usually, the radiometric
calibrated images are then mosaicked to produce a multi-band orthomosaic as done
in Clemens (2012). However, based on the successful demonstrations of aforementioned
studies, single-image radiometric calibration may become impractical for large-scale
UAV-RS vegetation mapping. This is because it is not feasible to have calibration targets
and at-surface reflectance measurements for every image captured even for small study
areas (Hakala, Suomalainen, and Peltoniemi 2010).

IAPs tend to spread across very large areas (> 90 ha), and this necessitates a radio-
metric calibration framework for large-scale mapping. For instance, the cactus plant
Harrisia pomanensis (commonly known as the Midnight Lady) has been detected invad-
ing an area of not less than 10,000 ha in Limpopo, South Africa (Mafanya et al. 2017).
Following the efforts made in image-by-image radiometric calibration studies (Taylor
2015; Kelcey and Lucieer 2012; Wang and Myint 2015; Crusiol et al. 2017), this study
presents a cost- and time-efficient radiometric calibration framework for converting DNs
of UAV-derived orthomosaics to physical units of reflectance for large-scale mapping of
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H. pomanensis in flat semi-arid woodlands. Included in the framework are procedures for
calibration target design, scene illumination uniformity assessment, prediction equations
derivation, and radiometric calibration accuracy assessment using in situ at-surface mean
reflectance measurements (i.e. the average reflectance in a particular waveband) mea-
sured in only one spot within the scene.

2. Vicarious radiometric calibration framework

2.1. Calibration target design

For radiometric calibration, targets that are homogenous and resemble Lambertian properties
are highly desirable (Del Pozo et al. 2014). While large homogenous natural targets are usually
used for radiometric calibration of satellite imagery, use of artificial targets that are specifically
designed for a project is usually made in UAV-RS. This is because coloured artificial targets are
easy to transport to the field and can be easilymoved to the next study area. Moreover, for the
relatively small UAV-RSorthomosaics, compared to satellite RS scenes, it is oftendifficult tofind
naturally available pseudo-invariant features. The types of materials used in UAV-RS radio-
metric calibration target design include plywood (Kelcey and Lucieer 2012), Masonite hard-
board (Wang andMyint 2015), polyvinyl chloride (PVC) sheets and canvas (Del Pozo et al. 2014;
Crusiol et al. 2017). For radiometric calibration target design, this study made use of the
relatively affordable Masonite hardboards for the radiometric calibration target and a rein-
forced PVC sheet for the check target (Figure 1). The reinforced PVC check target with red,
green, blue, black, and white control colours was also placed in the study area for accuracy
assessment and error analysis.

Figure 1. UAV aerial view of the control target (bottom) and check targets (top) taken by the Sony 
Nex-7 camera on board the UAV flown at a height of 160 m AGL. The L-shaped marker in the 
middle (B01) was considered to be receiving similar irradiance as the radiometric calibration and 
check targets due to spatial proximity.
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With regards to the calibration target design, three standard size Masonite hard-
boards of 244 cm × 122 cm were painted with 1 mm thick super white and black paints
that were further mixed into four colour values of grey (totalling six calibration grey
values). The calibration target was designed to form a grey gradient as follows: white,
20% grey, 40% grey, 60% grey, 80% grey and black. The mean spectral signature for
each grey value is shown in Figure 2, which demonstrates the Lambertian properties of
the created calibration target. The Lambertian properties of the grey gradient painted
Masonite calibration target were first tested in a controlled room under an artificial light
source, and this material was found to be highly Lambertian in the visible region of the
electromagnetic spectrum as also demonstrated by Wang and Myint (2015).

Moreover, white PVC sheets were used to design L-shaped scene illumination uniformity
checkmarkers. Thewhite PVC sheetswere chosen to design the L-shapedmarkers due to ease
of transportation and visibility in both raw images and the orthomosaic. The L-shaped PVC
markers were placed randomly across the scene for orthorectification ground control points
(GCPs) surveying and the scene illumination uniformity check experiment. The calibration
targets were placed in the study area before the UAV flight and the capturing of their spectral
signatures was done before, during, and after the UAV flight. This did not add significant time
to the mapping process as the imagery was acquired at noon together with the spectral
signatures. Also thiswas done so as tominimize the differences in solar illumination conditions
between image data and in situ spectral signatures acquisition. It took almost 43 and 118 min
to acquire image data and in situ spectral signature measurements, respectively.

2.2. Scene illumination uniformity check

Intuitively, a large-scale vicarious radiometric calibrationmethod using radiometric calibration
targets placed in only one region of the study area will require that the prevailing environ-
mental conditions and solar illuminationpatterns (due to sunelevation angle) across the scene

Figure 2. Mean spectral response curves of the Lambertian radiometric calibration targets. The white 
target (curve shown in yellow) has high reflectance while the black target has low reflectance.
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be uniform. To check whether the environmental conditions and solar illumination patterns
are uniform across the scene, 10 L-shaped PVC markers were placed randomly, across the
mapping area in this study (Figure 3). The mean DNs of the L-shaped markers, extracted from
raw UAV images, were used to check whether the illumination patterns and prevailing
environmental conditions across the scene were the same during image data acquisition,
which took about 43 min. Due to the 60% side and 80% forward overlap photo sampling
method employed in this study, each of the L-shaped markers appeared in at least five raw
images. The ArcGIS 10.4 Spatial Analyst Zonal Statistics tool was used to extract the targets
mean pixel DNs from a total of 58 raw images. The B01 marker was considered the reference
illumination check maker because it was the closest marker to the radiometric calibration
target (Figure 1). A two-sample Student’s t-test was conducted to checkwhether themeanDN
of the B01 marker, appearing in 6 images, was the same as the mean DNs of the rest of the 9
other markers that appeared in the remainder 52 images. This scene illumination uniformity
check experiment was deemed necessary because mean reflectance values measured in only
one spot within the scene should be used to calibrate the entire orthomosaic if and only if the
entire orthomosaic is experiencing similar atmospheric and illumination conditions.

2.3. Empirical line method

Vicarious radiometric calibration procedures mainly focus on modelling the relationship 
between image DNs and in situ at-surface reflectance values of the calibration targets. In

Figure 3. Mapped area showing the distribution of the 10 L-targets B01–B10. The target position is 
indicated by centres of the green crosses.
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particular, the ELM is used to obtain image reflectance based on the measured spectral
signatures of calibration targets that are placed on the ground (Honkavaara et al. 2013).
The ELM calibration prediction equations derived using mean target DNs and mean
reflectance per waveband for each colour value of the calibration target were used in
this study. These equations were derived using mean DNs and mean reflectance values
measured from a target located at a single spot of the study area. For in situ spectral
measurements, the Analytical Spectral Devices, Inc. FieldSpec 3 Pro calibrated spectro-
radiometer was used to take 25 spectral signatures (each spectra was a mean of 10
samples) for all the six grey values of the calibration target. An average of the 25 spectra
was taken for each grey value, thus totalling 250 individual measured spectral signatures
for each grey value.

To obtain a single in situ at-surface reflectance measurement for each grey value on the
calibration target, the 1 nm spectral measurements were averaged according to the
spectral response curve of the Sony NEX-7 CMOS sensor. Berra et al. (2015) measured
the spectral sensitivity of the Sony CMOS using a monochromatic light source and the
relative colour channels of the Sony CMOS were found to be approximately 400—490 nm,
491—590 nm, and 591—690 nm for the blue, green, and red colour channels, respectively.
The same method was followed to get mean spectral signatures for the coloured PVC
check targets. To obtain the mean image DN for each grey value of the calibration target,
use of the Zonal Statistics tool within the ArcGIS 10.4 Spatial Analyst extension was made.
Considerable care was taken to create polygons that contain only pixels that belong only
to that particular grey value.

In most studies, a linear relation between image DNs and the at-surface reflectance
values is assumed (Karpouzli and Malthus 2003; Staben et al. 2012). When more than
two calibration targets are used, the relationship between image DN and reflectance
does not have to be assumed to be linear (Smith and Milton 1999). In this study, the
mean DNs were regressed with the mean reflectance values and the relationship
between image DN and reflectance was found to be exponential for all the three
image wavebands as also observed in Wang and Myint (2015). Following the simplified
ELM proposed by Wang and Myint (2015), a natural log transformation was performed
on all the six mean in situ at-surface spectra for each image waveband. The transforma-
tion showed that a linear relationship exists between mean image DNs and the mean
natural log-transformed reflectance values for each waveband. When the y-intercept of
the linear equation is converted back to reflectance, the result is a minimum at-surface
reflectance value for that particular image waveband. Therefore, the y-intercept of each
waveband is the constant radiometric calibration parameter for that particular wave-
band. Furthermore, the y-intercept coordinate can be used as an initial point in a
Cartesian plane. To derive an ELM prediction equation, another point in the Cartesian
coordinate system can be represented by the mean DN and mean at-surface reflectance
of the entire calibration target for each image waveband. These two points can then be
used to calculate the gradient (m) of the calibration equation as shown in Equation (1):

m ¼ By � Ay

Bx
(1)

where Ay is the constant radiometric calibration parameter, Bxis the mean DN of the
calibration target, and By is the natural log-transformed mean reflectance of the
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calibration target (Wang and Myint 2015). The developed ELM prediction equations were
used to convert each waveband of the orthomosaic from DNs to reflectance values
using the raster calculator in QGIS (Quantum GIS development team 2017).
Subsequently, the three image wavebands were stacked together to give a colour RGB
image with reflectance values instead of DNs. The radiometric calibration using the
raster calculator in QGIS took about 30 min and therefore did not delay the mapping
process.

2.4. Radiometric calibration accuracy assessment

The mean reflectance values of the PVC check target with black, blue, green, red, and
white colours were used for accuracy assessment. During the acquisition of the in situ
validation data, 5 spectra (a total of 50 individual spectral signatures) were measured for
each check colour. The Zonal Statistics tool in ArcGIS 10.4 was used to get the mean
reflectance of each coloured check target for each waveband. There were 6 available
mean reflectance values for each coloured check target (i.e. 1 estimated and 1 measured
mean value for each waveband thus totalling 24 values). The estimated image mean
reflectance values and mean reflectance in situ measurements for each coloured target
circle or square were then correlated so as to validate the large-scale radiometric
calibration method used in this study. Error analysis through root mean square error
(RMSE) computations was used to supplement the correlation analysis.

2.5. Radiometric calibration process flow diagram
This framework consists of data acquisition, derived products, and methodological phases
(Figure 4). The first acquisition phase is the capture of GCPs that were observed at the
randomly distributed L-shaped markers for orthorectification and the scene illumination
uniformity check experiment. This is followed by the recording of spectral signatures of the
calibration and the check targets. Target spectral signatures were recorded almost con-
temporary with the UAV flight mission (i.e. the UAV image acquisition phase). Only two
final products are derived when using the proposed framework and those are (1) the raw
orthomosaic in DNs and (2) the radiometric calibrated orthomosaic in physical units of
reflectance. Furthermore, the image processing and statistical methods applicable to this
framework are explained in the H. pomanensis case study.

3. H. pomanensis case study

3.1. Study area

The study area is located near the Alldays town within the Capricon district in the
Limpopo province of South Africa (Figure 5). The area is characterized by (1) a semi-arid
climate, (2) summer rainfall, and (3) average midday temperatures of 22.3°C and 31.9°C
in winter (June–August) and summer (October–February) seasons, respectively (Mzezwa,
Mlisi, and Van Rensburg 2010). The rainfall ranges from a few millimetre in winter and
could escalate to a maximum of approximately 81 mm in summer (Mzezwa, Mlisi, and
Van Rensburg 2010). The 97 ha mapped area is shown in Figure 5(b). The study area is a
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relatively flat terrain with orthometric height values ranging from 800 to 817 m. Tree
species that occur in this heterogeneous semi-arid woodland include Commiphora mollis
(velvet-leaved corkwood), Commiphora neglecta (green-temmed corkwood),
Commiphora schimperi (glossy-leaved corkwood), Commiphora viminea (zebra-bared

Calibration target design
• Masonite hardboards 

and water paint 
sourcing and 
preparation.

• Greyscale hardboards 
painting.

Calibration target with 6 grey 
colour tones

• Calibration target field 
placement.

• L-shaped PVC 
markers field 
placement.

• Coloured validation 
PVC target field 
placement.

Spectral 
signatures 
acquisition

Per band spectral averaging 
and derivation of per band 

reflectance values. 

Exponential regression and 
natural log transformation

UAV image 
acquisition

Image preprocessing
• Image geotagging
• Orthomosaicking
• Orthorectification

RGB Orthomosaic
in DNs

Spectral subsetting to 3 
separate RGB bands

Zonal statistics for scene 
illumination uniformity check 

and per grey target mean 
DNs  

Scene illumination 
uniformity check

t-test statistical 
validation

Conversion of 
bands DNs to 

reflectance

Derivation of prediction 
equations using the Empirical 

Line Method

Accuracy 
assessment

Layer stacking

RGB Orthomosaic in 
units of reflectance

Key

Data 
acquisition

Products

Methods

Figure 4. Proposed radiometric calibration framework for large-scale mapping of H. pomanensis in 
semi-arid woodlands using UAV-derived orthomosaics.
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corkwood), Acacia nilotica (scented pod thorn), Acacia tortilis (umbrella thorn), Acacia
nigrescens (knob thorn), Acacia robusta (broad pod robust thorn), Acacia mellifera (black
thorn), Balanites maughamii (green thorn), Albizia sp. (false thorn), Kirkia acuminata

(a)

(b)

Figure 5. (a) Map of South Africa showing the location of Capricon district within the Limpopo 
province and (b) a subset of the UAV-derived ultra-high spatial resolution (5 cm) RGB orthomosaic.
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(white seringa), Combretum imberde (leadwood), Combretum hereroense (Russet bush
willow), Boscia albitrunca (shepherd’s tree), Berchemia zeyheri (red ivory), Maerua ango-
lensis (bead bean), Lannea sp. (false marula), Sclerocarya birrea (marula), and Opuntia
humifusa (devil’s tongue), amongst others (Mafanya et al. 2017). The H. pomanensis
invasive plant forms dense clusters in the described woodland area and could conse-
quently replace pasture, injure animals, and thus inhibit cropping and grazing (Wilson
et al., 2013). H. pomanensis is a succulent cactus with jointed spiny fleshy stems and
thorny spikes, and when these stems touch the ground, they develop roots and spread.
The plant seeds are spread by birds and monkeys that consume the red fruits of the
plant. H. pomanensis was detected by the South African National Biodiversity Institute:
Invasive Species Programme in 2011 as part of ongoing efforts at incursion response
planning (Wilson, Panetta, and Lindgren 2016).

3.2. Utilized UAV and digital camera

To acquire ultra-high-resolution images (ground sample distance < 5cm) for mapping H.
pomanensis, utility of a customized UAV with a net weight of 1.5 kg (excluding camera
and batteries) and a payload of approximately 5 kg was made (Figure 6). The funda-
mental components of the utilized UAV included a Global Navigation Satellite System
(GNSS) receiver, an Inertial Measurement Unit (IMU) sensor, and a barometer. The UAV
was flown at a ground speed of 14 m/s at 160 m above ground level (AGL). The camera
mounted on the UAV was the Sony NEX-7, which has a Complementary Metal-Oxide
Semiconductor (CMOS) imaging sensor. The Sony NEX-7 is a mirrorless interchangeable
lens camera whose sensor format is the Advanced Photo System type-C CMOS. The
camera exposure settings were set manually (as opposed to auto-exposure) so as to
obtain equally focused images. The camera manual exposure program settings are
shown in Table 1 and were established through a set of trial runs before being used

Figure 6. Utilized fixed wing UAV for autonomous image capturing.
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in this case study. The resultant 611 24-bit single images had 6000 × 4000 pixels each
with ground coverage of 234 m × 156 m. The camera parameters depend on the
prevailing wind speed and flight height and thus should be customized accordingly.

3.3. Image processing

The images, GCPs, and spectral data were acquired on 12 August 2016. This month in
particular is naturally known to be the South African late winter season and thus
regarded as the most appropriate phenological stage for mapping H. pomanensis
(Mafanya et al. 2017). This is because the deciduous background vegetation shed leaves
while H. pomanensis remains evergreen during this season. During image acquisition,
the GNSS/IMU system on board the UAV was logging GPS coordinates of each captured
image as events that were later used to geotag the raw images using Ardupilot’s open
source Mission Planner (Osborne 2016). The side and forward overlap were set to 60%
and 80%, respectively. This image sampling redundancy is not only critical for providing
a basis for checking scene illumination uniformity, as will be demonstrated in this study,
but also for generating 3D point clouds, digital surface models (DSMs), and orthomo-
saics using UAV Structure from Motion (SfM). In particular, SfM is a photogrammetric 3D
reconstruction technique that uses overlapping 2D images to create 3D point clouds,
DSMs, and orthomosaics. SfM involves three stages, namely (1) feature detection, (2)
image matching, and (3) bundle block adjustment (Wang et al. 2014). Furthermore, the
proprietary Agisoft Photoscan (Agisoft LLC 2016) software was used for image mosaick-
ing using UAV-SfM. The geotagged raw images were administered into the Agisoft
Photoscan photogrammetry package together with 10 GCP points to produce the
georectified RGB orthomosaic as done by Coveney and Roberts (2017). SfM does not
require camera exterior orientations or interior orientations but the Agisoft lens software
was used for lens distortion geometric calibration (Fraser et al. 2016). The 10 GCPs were
used to increase the mosaicking speed and image matching accuracy.

3.4. Radiometric calibration results

3.4.1. Scene illumination uniformity check experiment using the Student’s t-test 
Table 2 shows the descriptive statistics used in the two sample Student’s t-test per-
formed between the mean DN of the reference illumination uniformity check marker

Table 1. Manual exposure program of the camera.
Exposure time 1/1000 s
ISO-speed ISO-100
Focal length 16 mm
Maximum aperture f/2.96875

Table 2. Descriptive statistics for reference uniformity check L-shaped markers. 
Statistic B01 marker B02–B10 markers

Mean DN 223.98 222.62
Variance of DNs 34.63 28.63
STD deviation of DNs 5.88 5.35
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(B01) and the other L-shaped markers (B2–B10). In particular, the reference L-shaped
marker (B01) had higher variance, standard deviation, and mean pixel DNs than the
overall variance, standard deviation, and mean pixel DNs of the other scene illumination
uniformity check L-shaped markers. However, the difference of 1.36 between the mean
DNs in Table 2 was not found to be statistically significant at the 95% confidence interval
(p < 0.05). This information can be considered to infer that it is justifiable to calibrate the
entire orthomosaic using ELM prediction equations derived from mean reflectance
values measured in only one spot within the 97 ha RGB orthomosaic. These results
show that the entire scene being mapped is experiencing similar atmospheric and
illumination conditions.

3.4.2. Regression of calibration target image mean DNs and mean in situ spectral 
reflectance
A summary of the regression relationships between image DNs and in situ reflectance 
measurements in the red, green, and blue wavebands is presented in Table 3. The  
regression equations results show that the relationship between image DNs and in situ 
reflectance measurements in all the camera wavebands is exponential (Equations (2)–(4)). 
An exemplary visual depiction of the exponential relationship for the red waveband is 
shown in Figure 7. Furthermore, Figure 8 shows that there exists a linear relationship 
between the natural log transformed reflectance values and image DNs. A similar obser-
vation was also found in Wang and Myint (2015). As a result, the y-intercept 3.423 
(Figure 8 and Equation (8) in Table 3) can be converted to reflectance (0.033), which 
represents the minimum at-surface reflectance that the Sony Nex-7 CMOS sensor used in 
this study can detect in the red waveband colour channel. In addition, the utilized CMOS 
sensor can detect minimum at-surface reflectance values of 0.032 and 0.029 for the green 
and blue wavebands, respectively. The minimum at-surface reflectance values for the 
green and blue wavebands were derived using the constants in Equations (9) and (10).

3.4.3. Empirical line calibration equations
They-intercept value for each linear equation represents the constant calibration para-
meter in the ELM calibration prediction equation of type:

� ln yð Þ ¼ m � ðDNÞ þ C (11)

where y represents reflectance, mbeing the gradient of each image waveband in the
derived ELM calibration equation, and C representing the constant calibration parameter
(Table 4, Equations (12)–(14)). The derived linear Equations (12)–(14) in Table 4 were
used to calibrate the 97 ha RGB orthomosaic image wavebands. Subsequent layer
stacking, quantitative analysis, and image classification can thus be performed on the
calibrated orthomosaic following the procedures outlined by Mafanya et al. 2017 for
mapping H. pomanensis from UAV derived ultra-high spatial resolution RGB imagery.

3.4.4. Error analysis between estimated and in situ measured reflectance values 
To validate the proposed vicarious radiometric calibration methodological framework, 
reflectance values derived from the calibrated image wavebands were regressed against 
in situ measured reflectance values for the check targets. Results shown in Table 5 present 
the comparison between mean reflectance values derived from the calibrated
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Table 3. Summary of regression relationships for each waveband.
Red band Green band Blue band

Regression equation y ¼ 0:032eð0:014DNÞ ð2Þ y ¼ 0:032eð0:013DNÞ ð3Þ y ¼ 0:029eð0:013DNÞ ð4Þ
Coefficient of determination R2 ¼ 0:99 p < 0:01ð Þ ð5Þ R2 ¼ 0:99 p < 0:01ð Þ ð6Þ R2 ¼ 0:98 p < 0:01ð Þ ð7Þ
Linearized equation y ¼ �0:014x þ 3:423 ð8Þ y ¼ �0:013x þ 3:434 ð9Þ y ¼ �0:013x þ 3:518 ð10Þ
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image wavebands (estimated) and their respective in situ at-surface reflectance values
(measured) for the black, blue, green, red, and white check targets. There are three data
points for each check target representing each waveband. The regression between the
reflectance values derived from the calibrated image wavebands and the measured at-
surface reflectance values resulted in a correlation coefficient r value of 0.977 (p < 0.01)
as shown in Figure 9. Furthermore, the RMSE between estimated and measured reflec-
tance values in Table 5, i.e. for all the three wavebands and five check targets, was found
to be 0.063, whereas the waveband specific RMSE values were 0.040, 0.048, and 0.089 for
the red, green, and blue image wavebands, respectively. The aforementioned strong
correlation, coupled with the low overall RMSE, suggests low discrepancies between the
in situ measured mean reflectance values and the reflectance values derived from the
radiometric calibrated image wavebands. In particular, the highest RMSE value of 0.089
reported for the blue waveband could be attributed to the fact that scattering of

y = 0.032e(0.014DN)
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Figure 7. Example of the relationship between image digital numbers and in situ at-surface 
reflectance values for the red waveband.
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Figure 8. Example of the relationship between natural log-transformed reflectance and in situ at-

surface reflectance values for the red waveband.

Table 4. Linear calibration equations for the red, green, and blue wavebands.
Image waveband Radiometric calibration equation

Red � ln yð Þ ¼ �0:01413 � ðDNÞ þ 3:423ð12Þ
Green � ln yð Þ ¼ �0:01385 � ðDNÞ þ 3:434 ð13Þ
Blue � ln yð Þ ¼ �0:01338 � ðDNÞ þ 3:518 ð14Þ
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Table 5. Comparison between check targets (black, blue, green, red, and white) 
mean reflectance values and their respective in situ at-surface reflectance values.

Estimated
reflectance

Measured
reflectance

Black square
Red 0.046607 0.054228
Green 0.044089 0.049955
Blue 0.041845 0.047642
Blue circle
Red 0.046601 0.026515
Green 0.062312 0.066245
Blue 0.361492 0.241355
Green circle
Red 0.088030 0.150555
Green 0.447994 0.362182
Blue 0.132574 0.110585
Red circle
Red 0.557448 0.521022
Green 0.070380 0.070882
Blue 0.074535 0.053538
White square
Red 0.709671 0.759841
Green 0.717760 0.782323
Blue 0.658850 0.815857
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Figure 9. Regression between in situ measured reflectance and the reflectance values derived from 

the calibrated image wavebands (r = 0.977).
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radiation by the atmosphere is greater at shorter wavelengths (Smith and Milton 1999).
Hence, the in situ proximally sensed white target mean reflectance of 0.816 is much
higher than the remotely sensed mean reflectance of 0.659 in the blue waveband colour
channel of the Sony Nex-7 camera. This is because proximal sensing was done at 1 m
above the check targets while remotely sensed images were taken at 160 m AGL,
meaning radiation interacted with more atmospheric particles in the latter case. In
overall, these error analysis and the strong correlation results validate the proposed
radiometric calibration framework for applications in flat terrain semi-arid woodlands.

4. Discussion and conclusion

Radiometric calibration methods are usually developed for single-image samples as
done in Kelcey and Lucieer (2012), Del Pozo et al. (2014), and Taylor (2015). However,
the tendency of IAPs to spread over large areas necessitates the development of
vicarious radiometric calibration methods that can be applied on image data spanning
large spatial extents and this requires large enough calibration targets. This study
demonstrated a radiometric calibration framework for UAV-derived orthomosaics for
application in flat semi-arid woodlands. First, it was demonstrated that the relatively
affordable Masonite hardboards painted with varying grey values of black and white
water paint are highly Lambertian and appropriate for use in calibration target design.
This property was observed both in a controlled room with an artificial light source and
on the field in the semi-arid woodland study area. The Masonite hardboards of 244 cm ×
122 cm were found to be large enough to allow painting of two grey levels in tandem
configuration when the UAV is flown at an altitude of less than 160 m AGL. Some studies
make use of vinyl sheet canvas to design the greyscale calibration targets as done in Del
Pozo et al. 2014), and thus, the target material of choice can be influenced not only by
Lambertian properties but also availability, transportability, and ease of use in different
environmental settings.

Second, a scene illumination uniformity check method was developed in this study to
assess whether the incoming radiant flux is uniform across the orthomosaic. The solar
irradiance within the 97 ha study area was found to be uniform, thus indicating that all
the 611 images taken by the Sony NEX-7 were acquired under the same environmental
conditions. The hypothesis was that under the same environmental conditions the DNs
of the same target material should be similar and this was tested at a 95% confidence
interval. The difference of 1.36 between the mean DNs of the reference L-target and the
other L-targets in Table 2 was found not to be statistically significant at the 95%
confidence interval, and from this, it was inferred that it is justifiable to calibrate the
entire scene using prediction equations derived using mean reflectance values mea-
sured from only a single spot within the mapped area.

Third, this study demonstrated that there exists an exponential relationship between
target DNs and their corresponding at-surface mean reflectance values (Equations (2)–
(4)). However, in most studies, e.g. in Dean, Warner, and Mcgraw (2000), Karpouzli and
Malthus (2003), Levin, Ben-Dor, and Singer (2009), and Berni et al. (2009), the empirical
linear calibration equation were derived by assuming a linear relationship between
image DNs and calibration targets in situ reflectance values. This assumption is usually
made when there is only two calibration targets, e.g. a white and a black target (Smith
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and Milton 1999). In this study, this relationship was found to be exponential with
coefficient of determination R2 values greater than 0.98 (Equations (5)–(7)) as found in
Wang and Myint (2015). Figure 7 is an example of the observed exponential relationship
between image DNs and the mean in situ measured reflectance values of the calibration
targets. Upon transformation of the exponential equations by taking the natural log, the
constant calibration parameters of the empirical linear equations were derived. The
three ELM calibration prediction equations were then derived by first computing the
gradient of the prediction equation using the calibration target average DN and its
average in situ reflectance as well as the constant calibration parameter or y-intercepts
of the linear equations (Table 4).

Finally, the accuracy of at-surface reflectance values in the calibrated image
wavebands was assessed using in situ spectral measurements for white, red, green,
blue, and black reinforced PVC targets, resulting in a correlation coefficient r 0.96
(p < 0.01) and overall RMSE of 0.063. These findings suggest that given the entire
scene being mapped is experiencing similar irradiance flux under similar environ-
mental conditions according to the scene illumination uniformity assessment, then
radiometric calibration using mean reflectance values measured from only one area
of the orthomosaic can be used to calibrate the entire orthomosaic. The proposed
framework is not only important for mapping IAPs but also for use in large-scale crop
mapping applications in precision agriculture, land-use/land-cover monitoring, as
well as vegetation mapping and classification, particularly for mapping widespread
IAPs such as H. pomanensis. The limitation of this research is that it has no way of
showing the largest spatial coverage for which the demonstrated vicarious radio-
metric calibration framework could be applied. This, however, could also depend on
the nature of the environment that is being mapped as well as prevailing weather
conditions. Future research objectives could be to apply this framework for areas
larger than 200 ha as the developments in UAV and battery technology are increas-
ingly enabling these systems to map larger areas. Most studies that applied UAV-RS
for mapping IAPs made use of thematic image classification without conducting
either sensor geometric or image radiometric calibration, for instance, Dvořák et al.
(2015), Müllerová et al. (2016, 2017), Hill et al. (2017), and Mafanya et al. (2017).
Therefore, another future research objective would be to assess whether radiometric
calibration improves the image classification accuracy for mapping and detecting
various IAPs in different environmental settings. Another important research avenue
is quantitative image analysis using radiometric calibrated UAV-RS imagery for
improving the estimation of biophysical and biochemical constituents in plants
from UAV imagery.
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