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Abstract 

 

Pyrodiversity, which describes fire variability over space and time, is believed to increase 

habitat heterogeneity and thereby promote biodiversity. However, to date there is no 

standardised metric for quantifying pyrodiversity, and so broad geographic patterns and 

drivers of pyrodiversity remain unexplored. We present the first generalizable method to 

quantify pyrodiversity, and use it to address the fundamental questions of what drives 

pyrodiversity, which fire attributes constrain pyrodiversity under different conditions, and 

whether pyrodiversity is spatial grain-dependent. We linked the MODIS burned area and 

active fire products to measure fire size, seasonal timing, return interval, and intensity for 

2.2 million individual fires in sub-Saharan Africa from 2000–2015. We then quantified 

pyrodiversity as a four-dimensional hypervolume described by fire attributes within a grid 

cell, for any spatial grain of analysis. Environmental (rainfall, vegetation, soils, and 

topography) and human-associated (cattle biomass, cropland area, and human population 

density) variables were assessed as potential drivers of pyrodiversity. Rainfall was the main 

environmental driver of pyrodiversity, with higher pyrodiversity in drier regions (< 650 mm 

yr-1). Pyrodiversity was not strongly associated with human-associated variables across 

Africa. Rainfall and a human influence index had clear but contrasting effects on the 

variability of fire size, seasonal timing, return interval, and intensity. Our analyses show that 

fire size and seasonal timing constrain pyrodiversity in wetter regions, whereas none of the 

fire attributes pose a strong constraint in drier regions. We found no evidence that 

pyrodiversity was spatial grain-dependent when recalculated at 5-minute grain increments 

from 15 to 120 minutes.  We hypothesise that the strongest positive effect of pyrodiversity 

on biodiversity in all its forms will occur at intermediate precipitation (650–1300 mm yr-1), 
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where fire plays an important role in shaping vegetation structure and where pyrodiversity 

is still quite high. 

 

Introduction 

 

Fire characteristics vary considerably in response to climate, vegetation, herbivory, and 

human activities (Chuvieco et al. 2008, Archibald et al. 2009, Krawchuk et al. 2009, Le Page 

et al. 2010, Aldersley et al. 2011, Hantson et al. 2015), but distinct fire regimes nonetheless 

emerge at landscape to global extents (van Wilgen et al. 2004, Archibald et al. 2013). A fire 

regime is defined as the repeated pattern of fire at a location (Gill 1975, Bond and Keeley 

2005), and is characterised by its typical combination of fire attributes, such as the 

frequency, intensity, size, season, and type of fire (e.g. ground, surface, or crown). Fire 

regime classifications thus tend to focus on average fire attribute values and not on the 

amount of variability in fire attributes over space and time – yet this variability, which is the 

core of pyrodiversity, is increasingly perceived as a fundamental ecological driver 

(Maravalhas and Vasconcelos 2014, Ponisio et al. 2016, Kelly and Brotons 2017).  

 

Martin and Sapsis (1992) first defined pyrodiversity, proposing that the ‘variety in interval 

between fires, seasonality, dimensions and fire characteristics, [produces] biological 

diversity at the micro-site, stand, and landscape-level.’ This view is supported by evidence 

that variation in fire attributes can determine vegetation type and structure (Brockett et al. 

2001, Bond and Keeley 2005, Higgins et al. 2007, Hoffmann et al. 2012), and thus habitat 

heterogeneity that promotes biodiversity in all its forms. Nonetheless, little consensus has 

so far emerged on the ecological consequences of pyrodiversity, in part due to the lack of a 
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standard measure for quantifying pyrodiversity (Faivre et al. 2011). Recent work sought to 

redefine pyrodiversity as the ‘outcome of the trophic interactions and feedbacks between 

fire regimes, biodiversity and ecological processes’ (Bowman et al. 2016), which shifts 

emphasis away from how variation in fire attributes might affect ecosystems. In order to 

test Martin and Sapsis’ original hypothesis that pyrodiversity promotes biodiversity, it is 

necessary to establish a clear pyrodiversity definition and then a standard method for 

quantifying it. Here we propose an approach that is based on the original conceptualisation 

of pyrodiversity by Martin and Sapsis (1992) and derived from the fire attributes they 

identify (fire size, season, return interval, and intensity). 

 

Fire affects the spatial and temporal patterns of abundance of fire-dependent or fire-

sensitive species, and so the level of pyrodiversity in a system may have key implications for 

vegetation, trophic structure, and life-history evolution (Bond and Keeley 2005). A common 

management objective in protected areas is to increase pyrodiversity (e.g., with patch 

mosaic burns; Parr and Brockett 1999, Brockett et al. 2001), with the goal of increasing 

habitat heterogeneity and hence biodiversity (Keith et al. 2002). Support for the hypothesis 

that ‘pyrodiversity begets biodiversity’ (Martin and Sapsis 1992, Parr and Andersen 2006) 

remains limited at landscape extents (Davies et al. 2012, Kelly et al. 2012, Taylor et al. 2012, 

Farnsworth et al. 2014; but see Maravalhas and Vasconcelos 2014). Ambiguities arise 

because many taxa in fire-prone environments are resilient to at least some threshold level 

or form of pyrodiversity (Parr and Andersen 2006). Quantifying pyrodiversity patterns at 

macroecological scales, and exploring which fire traits are more variable under different 

environmental conditions, will allow for exploration of relations between fire and 

biodiversity over different timescales (evolutionary, ecological, and management). 
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Furthermore, an understanding of pyrodiversity patterns provides a tool for assessing the 

extent to which fire can be used to generate habitat diversity within protected areas (Parr 

and Andersen 2006), and to best match fire management resources to the variability of 

different fire attributes within a region. For example, it appears to be easier for people to 

manipulate fire season and fire intensity (which are affected by the by the timing of 

ignitions; Archibald 2016) than to manipulate total area burned (van Wilgen et al. 2004, but 

see also Price 2015).   

 

Environmental context is likely to determine pyrodiversity at large extents, with the 

contribution of different fire attributes to pyrodiversity varying under different conditions. 

Fire characteristics are regulated by fuel attributes, weather conditions, and topography. 

Important fuel attributes include the amount, arrangement in space, and moisture content 

(Govender et al. 2006, Archibald et al. 2009, Bradstock 2010, Pausas and Ribeiro 2013). 

These elements affect whether fire spreads (fire size) and the intensity of a burn (radiative 

power). Environmental conditions constrain the distribution and abundance of different fuel 

types, and the abundance and flammability of fuels in space and time. Grass productivity is 

linked mainly to precipitation (O’Connor et al. 2001, Bai et al. 2008) but also to soil nutrients 

(Augustine et al. 2003), and is a major determinant of fuel accumulation rates, and hence 

fire return intervals and fire intensity. Herbivory can slow fuel accumulation rates, and even 

reduce fuel loads to below the fire-spread threshold, so observed patterns in herbivore rich 

areas will reflect these two factors (e.g. Holdo et al. 2009). Precipitation seasonality further 

constrains how long fuel moisture content is low enough that fire can occur, and thus the 

duration of flammability within a year (fire season length). Weather conditions during a fire 

(wind speed, relative humidity, temperature) influence the intensity, probability of spread, 
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and potential size of a fire. Fire spread and intensity can also be affected by variation in 

topography, vegetation type, herbivore abundance, and land use (Archibald et al. 2010, 

Bowman et al. 2011, Wood et al. 2011, Little et al. 2012). The availability of ignition sources 

also contributes to pyrodiversity. Although currently ignition does not appear to limit 

burned area in human-occupied landscapes, the timing and number of ignitions can still 

strongly affect fire characteristics (Archibald 2016). 

 

The characteristics of individual fires are shaped by processes operating across diverse 

scales, and pyrodiversity is thus contingent on the spatial grain at which it is observed. Fuel 

characteristics, for example, can be determined at the local level by changes in soil moisture 

and nutrient availability along hill slopes (Venter et al. 2003), at the landscape level by the 

seasonal movements of migratory herbivores (McNaughton 1985), and at the continental 

level by El Niño Southern Oscillation effects on precipitation (Nicholson and Kim 1997). 

Investigating the spatial grain-dependence of pyrodiversity may thus provide insights into 

how ecological phenomena at different scales contribute to pyrodiversity. This is relevant to 

attempts to manage fire regimes, e.g. in protected areas – if pyrodiversity is driven at scales 

far larger than management units, then financial resources might be better spent on 

activities other than trying to manipulate pyrodiversity (Govender et al. 2006; Smit et al. 

2013). 

 

We developed a pyrodiversity index to explore how environmental conditions and human 

activities shape pyrodiversity across Africa, and how this changes with spatial grain. It is 

useful to examine factors that drive pyrodiversity in Africa because many ecosystems across 

the continent are fire-prone (Bond and Keeley 2005), and burn frequently enough to 

https://en.wikipedia.org/wiki/El_Niño_Southern_Oscillation
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provide sufficient fire data over the 15-year period for which remotely sensed information is 

available. We linked data from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) on the seasonal timing and size of individual fires to information on the time since 

fire and the energy released from the fire. These novel data (we are not aware of other 

studies linking MODIS products to examine individual fires) allow us to address fundamental 

questions about the drivers and continent-level patterns of pyrodiversity. 

 

We hypothesized that pyrodiversity would be higher in low rainfall areas because longer fire 

return intervals are possible, the dry season is longer, and fire size and intensity can range 

from very large (in years with high rainfall and high grass fuel loads) to very small (low, 

discontinuous fuel loads in dry years). By contrast, we anticipated low pyrodiversity in high 

rainfall areas because fires are frequent (few areas remain unburned for long periods), the 

dry season (period when grasses are flammable) is shorter, and because fire size is more 

likely to be limited by constant factors, such as drainage lines, than by variation in fuel loads. 

We hypothesised that the effects of soil nutrient levels on pyrodiversity would be analogous 

effects to those of rainfall, with positive correlations among soil fertility, the amount and 

continuity of grass fuel loads, and the homogeneity of fire histories. We hypothesized that 

topographic diversity would be positively correlated with pyrodiversity because as 

topographic diversity increases, so does the variety of plant growth conditions and the 

diversity of fire histories. We also hypothesized that local pyrodiversity would increase as 

human population density increases because humans extend the length of the fire season 

(Le Page et al. 2010) and suppress or increase the likelihood and variability of fire (e.g., by 

direct suppression, indirect suppression via high cattle biomass, or burning for grazing or 
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cropland preparation) beyond the ecological range of variation in different regions (Bird et 

al. 2008). 

 

Methods 

 

Fire data 

We used 15 years of remotely sensed data on fires to derive data that summarised the 

characteristics of individual fires across sub-Saharan Africa (south of 10° North). Data were 

available from April 2000 through June 2015 (with one missing month, June 2001). The 500 

m resolution MODIS MCD45A1 burned area product identifies the location and date 

(accurate to within 8 days) when the area represented by individual pixels burned. These 

data can be used to identify individual fires and calculate the size and timing of fires (Roy et 

al. 2008). Validation against higher-resolution LANDSAT data has indicated that the 

MCD45A1 product underestimates total area burned, especially in systems where trees 

obscure detection of fires burning in the ground layer (Tsela et al. 2010). The MODIS 

MCD14ML product (1 km resolution) uses the brightness temperatures of the sensor’s 

infrared bands to locate actively burning fire fronts (Giglio et al. 2003), and can quantify the 

energy released from these fires (Ellicott et al. 2009). The MCD45A1 and MCD14ML 

products have been used to describe various fire characteristics (Archibald 2010, Le Page et 

al. 2010, Hantson et al. 2015), and we linked them to create data on the size, date of burn, 

time since last fire, and intensity of individual fires.  

We identified individual fires with a flood-fill algorithm (Archibald et al. 2009): all 

pixels burned within 5 days of an adjacent pixel were considered one fire event (Fig. 1). This 

algorithm was validated by Hantson et al. (2015) against LANDSAT data: small fires (< 125 



African pyrodiversity | 10 
 

ha) are not well identified but the range of fire sizes is well described by the MODIS data. 

We calculated the size of these fires in km2. We calculated the date of each fire as the 

earliest burn date of all pixels within the fire area (probable date of ignition) and converted 

to cosine of radians for analysis. We quantified fire return period as the mean time since last 

burn across all of the pixels within the fire. Fires early in the time series for which there 

were no data on previous burns or for which fewer than 50% of cells had burned before 

were excluded. This added an element of temporal bias to our data (early fires would have 

shorter intervals than later ones due to censoring), but did not systematically bias the 

spatial pattern that was the focus of this work. This conservative approach also allowed us 

to somewhat mitigate the data that were missing due to cloud cover in the MODIS images, 

which may have led to overestimation of time since last fire. Finally, we linked fire radiative 

power (kW m-1 s-1) from the MODIS active fire product (MCD14ML) to the burned area data 

and used this as an index of fire intensity (see Archibald et al. 2010, Smith and Wooster 

2005).  

MCD45A1 and MCD14ML are produced with different methods: MCD45A1 uses 

changes in reflectance after a burn event to identify a burn scar, and MCD14ML uses 

thermal bands to identify energy released by an actively burning fire. Therefore, some active 

fires are not associated with a burn pixel (fire too small to be identified by the MCD45A1 

algorithm), and many burn pixels do not have active fires (fire was not actively burning in 

the pixel when the TERRA or AQUA satellite passed above). Because our focus was individual 

fires, we used the maximum fire radiative power (fire intensity) of all active fires within 1 km 

of a burned pixel, and within five days of the estimated burn date, for each pixel within the 

individual fire. Each pixel in the fire potentially can be associated with four fire radiative 

power records each day (TERRA and AQUA satellites each circumnavigate the globe twice 
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daily). Therefore, we used the maximum to represent the fire radiative power of the head 

fire, which generally burns the greatest area of any fire. Due to errors of commission and 

omission in both data products (Krawchuk and Moritz 2014, Hantson et al. 2015), not all 

fires were associated with a fire radiative power value, and not all fire radiative power 

values were associated with a fire. In these cases, we omitted the fire from our analysis. 

Because small fires were least likely to have a fire radiative power allocated, some degree of 

bias was introduced (Supplementary material, Appendix 1, Fig. A1).  

 

Pyrodiversity quantification 

Of the approximately 6.8 million fires identified over the 15 years, we had the necessary 

information on size, date (in radians), intensity, and time since last fire for about 2.2 million 

individual fires (Fig. 1). These are analogous to the attributes identified by Martin and Sapsis 

(1992) for characterising pyrodiversity (fire size = spatial extent dimension, date = 

seasonality, intensity = a proxy for severity, which is also associated with their fire 

patchiness dimension, and time since last burn = fire frequency). We first calculated 

logarithms of fire size, intensity, and time since last burning, then centred and scaled each 

attribute. Any given fire therefore can be located as a point within the four-dimensional 

space described by the four fire attributes. For any given spatial grain of analysis, we 

aggregated all fires within a cell, and used the QHull algorithm (Barber et al. 1996) to 

compute the minimum convex hull of the four-dimensional space. The greater the variation 

among fires on the four axes, the greater the hypervolume. In the absence of external 

forcing, we expected the attributes of individual fires within a cell to have a multivariate 

normal distribution, which would result in an increase in the volume of the enclosing convex 

hull as a simple function of the number of fires recorded. Consequently, we used a non-
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parametric bootstrap to correct the volume: we divided the calculated volume by the 

median of 1000 volume calculations that were based on an equivalent number of fires 

selected at random from the entire dataset. This final pyrodiversity index was scaled to have 

a mean of zero such that cells with positive values had relatively high pyrodiversity and cells 

with negative values had relatively low pyrodiversity. We calculated pyrodiversity for all 

cells in sub-Saharan Africa with more than four fires for which all attributes were available, 

starting with a grid of 15 minutes (approximately 28 × 28 km at the equator) and increasing 

the spatial grain in 5 minute increments to 120 minutes (i.e., 2 degrees or 221 × 221 km). 

We used the 30-minute spatial grain for all analyses other than the spatial grain dependence 

analysis. 

 

Drivers of pyrodiversity 

To identify the environmental drivers of pyrodiversity, we fitted a spatially explicit 

conditional autoregressive model explaining pyrodiversity as a function of mean annual 

rainfall (from the WorldClim version 1 dataset, 0.5 minute native resolution, aggregated to 

mean value at 30 minute resolution; Hijmans et al. 2005), vegetation type (derived from 

White 1983; Supplementary material, Appendix 1, Table A1), soil nutrient status (from FAO 

2009; Harmonised World Soils Database version 1.2: SQ1 Nutrient availability, 5 minute 

native resolution, aggregated to mean value at 30 minute resolution) and topographic 

roughness (R raster package: ‘terrain’ function with ‘roughness’ option and ‘neighbours’ = 8; 

Hijmans 2015; calculated at 0.5 minute resolution with elevation data from the U.S. 

Geological Survey, and then aggregated to mean value at 30 minute resolution). We used 

integrated nested Laplace approximation (INLA: Rue et al. 2009) to obtain parameter 

estimates. INLA provides a computationally efficient and accurate approximation to the 
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posterior distribution of parameters in a wide range of Bayesian models, in a fraction of the 

time of other estimation methods such as Markov Chain Monte Carlo (Rue et al. 2009). We 

fitted continuous variables as generalised additive models with two knots (Crainiceanu et al. 

2005). To test hypotheses concerning human associations with pyrodiversity, we fitted 

similar models with cattle density (Robinson et al. 2014), proportion of land used for crops 

(FAO 2006), and human population density (CIESIN 2005) as independent variables. 

Conditional-autoregressive models fitted in INLA allow fitting of complex Bayesian models 

that can account for spatial autocorrelation.  

 

Fire attribute constraints 

Fire attributes have different levels of variability along gradients of rainfall and human-

associated variables, and thus promote or constrain pyrodiversity by varying amounts as 

conditions change. For each of the four fire attributes (i.e. fire size, season, time since last 

fire and intensity), we calculated an index describing the extent to which it constrained 

pyrodiversity in each cell, and then assessed whether the level of constraint varied 

predictably with rainfall or an index of human influence (from Sanderson et al. 2002). The 

degree of constraint on pyrodiversity imposed by each fire attribute is determined by the 

attribute with the smallest range of scaled values in the cell: as the range on any single axis 

approaches zero, so too does the volume, irrespective of variation in other dimensions. 

Thus, to estimate constraint for each focal fire attribute we divided the range of the scaled 

focal attribute by the minimum range of all other scaled attributes for each cell. We then 

used the constraint index for each fire attribute as the response variable in a conditional-

autoregressive model with either mean annual rainfall or the human influence index 

(Sanderson et al. 2002) as predictors. 
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Spatial grain dependence 

We assessed spatial grain dependency by calculating the pyrodiversity at a range of spatial 

grains: every five minutes from 15 minutes to 120 minutes (i.e. two degrees). The extent of 

the analysis at all spatial grains was limited to the geographic area in which 2 degree cells 

contained a minimum of seven 15 minute cells (i.e. > 10%) for which pyrodiversity had been 

calculated (at finer grain cells may not meet the minimum threshold number of fires for 

inclusion). We grouped estimates by three levels of ecologically relevant mean annual 

rainfall ranges (< 650, 650–1300 and > 1300 mm; 650 mm ≈ xeric/mesic savanna transition, 

and 1300 mm approaches the upper rainfall limit of mesic savannas in Africa) and computed 

the mean and 25–75% confidence interval for each spatial grain. 

 

Results 

 

Drivers of pyrodiversity 

Pyrodiversity index calculations at 30 minute spatial grain were possible for ~65% of sub-

Saharan Africa, and revealed clear structure in the associations with fires across this region 

(Fig. 2). Rainfall emerged as a major driver of pyrodiversity on the continent (Fig. 3A), with 

strong support that pyrodiversity increased as rainfall decreased (i.e. < 650 mm MAR; 

neither credible interval for parameter estimate in spatially explicit restricted GAM 

overlapped zero; Table 1). Although overall pyrodiversity was strongly associated with 

rainfall, the amount of variation in pyrodiversity was similar along the rainfall gradient. 

Vegetation type did not have a consistent effect on the overarching rainfall-pyrodiversity 

relation (Fig. 3B). For example, there was no indication that pyrodiversity in forest-grassland 

mosaics was greater than expected for their rainfall range. Similarly, there was limited 
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support for an effect of soil nutrients (Fig. 3C) or topography (Fig. 3D) on pyrodiversity at 

this spatial grain (Table 1). At this grain, the human-associated variables we measured 

appeared to have minimal association with pyrodiversity (Table 2, Fig. 4), despite the fact 

that they are undoubtedly able to shape local- and regional-scale fire regimes (Bowman et 

al. 2011, Le Page et al. 2010, Archibald et al. 2013, Hantson et al. 2015). Neither cattle 

biomass (Fig. 4A) nor the extent of cropland (Fig. 4B) were associated with pyrodiversity, 

whereas human population density had a slight negative association with pyrodiversity (Fig. 

4C).    

 

Fire attribute constraints 

The contribution of different fire attributes to pyrodiversity is contingent on rainfall (Fig. 5 

and Supplementary material, Appendix 1, Fig. A2 and Table A2). Fire size was a stronger 

constraint on pyrodiversity in wetter regions, and was more clearly evident after accounting 

for spatial autocorrelation (Fig. 5A vs. Supplementary material, Appendix 1, Fig. A2A; 

Supplementary material, Appendix 1, Table A2). The seasonal timing of fires was also less 

variable in wetter regions (Fig. 5B), although support for a quadratic term suggested that 

seasonal timing becomes less of a constraint on pyrodiversity in the very wettest parts of 

the continent (Appendix 1, Fig. A2B and Table A2). Fire frequency (Fig. 5C) and intensity (Fig. 

5D) both had weak negative relations with mean annual rainfall, suggesting that these fire 

attributes are more likely to constrain pyrodiversity in dry regions (Supplementary material, 

Appendix 1, Table A2). Overall, however, the strongest patterns in fire attribute constraints 

on pyrodiversity were the limited variability in fire size and seasonal timing of fires in high 

rainfall areas. 
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Fire size places a greater constraint on pyrodiversity as the human influence index 

increased, suggesting that humans tend to homogenise this fire attribute more than others 

(Supplementary material, Appendix 1, Fig. A3A and Table A3). Fire season, frequency, and 

intensity had weak negative relations with the human influence index (Supplementary 

material, Appendix 1, Fig. A3B-D and Table A3). These fire attributes showed slightly higher 

relative variability as human influence index increased, and thus placed less constraint on 

overall pyrodiversity. Although the models provide support for an effect of humans on the 

extent to which different fire attributes shape pyrodiversity, the sizes of these effects are 

small. 

 

Spatial grain dependence 

Pyrodiversity was largely independent of the grain at which it was measured (Fig. 6). If 

anything, there was a subtle decrease in pyrodiversity as spatial grain increased in the 

intermediate (650-1300 mm yr-1; y = -0.002*x – 0.023, p < 0.001, r2 = 0.77) and high rainfall 

regions (> 1300 mm yr-1; y = -0.001*x – 0.278, p = 0.003, r2 = 0.35). If that trend is consistent 

at smaller spatial grains, pyrodiversity may peak at grains smaller than the minimum of 

approximately 28 × 28 km we considered. 

 

Discussion 

 

Our analysis of the attributes of individual fires produced a novel, generalised index of 

pyrodiversity using widely available metrics of principal fire attributes. This marks an 

advance in understanding of pyrodiversity and provides a template for future research in 

savannas and other flammable biomes. We weighted fire size, season, frequency, and 
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intensity equally, but future work might consider whether some fire attributes warrant 

more weight than others. For example, it could be argued that variability in the seasonal 

timing of fire (which results in variation in fire intensity, patchiness, plant phenology etc.) 

should be given greater weight than variability in fire size. 

The value of retaining the original definition of pyrodiversity from Martin and Sapsis 

(1992) is highlighted by our analyses of the drivers and spatial grain dependence of 

pyrodiversity, which would not have been possible under the definition recently proposed 

by Bowman et al. (2016). We suggest that redefining pyrodiversity to be entirely contingent 

on context makes quantification difficult and risks losing insights available from directly 

considering the variability of fire attributes within an ecosystem. The approach we present 

here allows for pyrodiversity and its effects on ecosystems to be compared among regions, which in 

turn will inform the holistic perspective on the trophic dynamics of fire encouraged by Bowman et al. 

(2016). 

Our analysis of pyrodiversity across sub-Saharan Africa is to some extent constrained 

by the quality of the remotely sensed data products that we used. For example, these 

products limit the range of fire sizes and time since last fire that we could record. This 

constraint will diminish with longer recording periods and better sensors, but is unlikely to a 

change the general patterns we observe. Nonetheless, the value of developing a 

pyrodiversity index that incorporates individual fire characteristics into one metric is 

independent of the data quality used in this study. Landscape-scale analyses, for example, 

might choose to use LANDSAT data or field records to quantify pyrodiversity. 
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Environment–pyrodiversity relationships 

Of the environmental variables we measured, mean annual rainfall was the most strongly 

associated with pyrodiversity across sub-Saharan Africa. However, there was substantial 

variability in the level of pyrodiversity at any range of annual precipitation (Fig. 3A), which 

suggests that it may be possible to manipulate pyrodiversity under most environmental 

conditions. Our results suggest that manipulating the size and the seasonal timing of fires 

will produce the greatest increases in pyrodiversity in high-rainfall areas (Fig. 5), although 

the feasibility of doing so may be limited by high grass fuel loads and moisture content 

(Govender et al. 2006). In contrast, the weak negative relations between fire frequency and 

intensity constraints on pyrodiversity suggest that in dry regions, it may be possible to 

manipulate pyrodiversity via any of the four fire attributes we assessed. Nonetheless, 

careful consideration should be given to whether pyrodiversity is being promoted within a 

basis of naturally occurring bounds – and to which local plant and animal communities 

should be adapted – or whether novel fire regimes are being created that may in fact prove 

counter to conservation objectives.  

The lack of spatial grain dependence of pyrodiversity could suggest that 

environmental factors replace each other at different grains, or that pyrodiversity is 

determined by processes operating at smaller grains (i.e. < 15 min). For example, fine-

grained interspersion of low- or non-flammable vegetation associations such as riparian 

zones (Pettit and Naiman 2007), forest patches (Staver et al. 2011), or grazing lawns 

(Waldram et al. 2008, Leonard et al. 2010) can have strong effects on fire attributes. These 

features restrict fire spread and thus directly affect fire size, but also allow fuel 

accumulation (or grazing and decomposition) to continue in unburned patches, which may 
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considerably alter the intensity and frequency of fires in areas in which ignition events are 

limited (Govender et al. 2006). 

 

Humans and pyrodiversity 

In our analyses, human-associated variables had little association with pyrodiversity, in 

contrast to our expectations (Fig. 4). Human activity often is hypothesized to diversify fire 

regimes (Bowman et al. 2011, Bird et al. 2012). However, global analyses suggest that 

humans have homogenised fire regimes, creating very similar fire patterns across very 

different parts of the globe (Archibald 2016). Our data indicated weak support of 

homogenisation at high population densities (Fig. 4C), and no evidence that humans 

recently acted as a diversifying force. This is probably because humans reduce the variability 

of some parameters (e.g. fire size; Supplementary material, Appendix 1, Fig. A3A; Hantson 

et al. 2015), but increase the variability of other parameters (e.g. fire season; 

Supplementary material, Appendix 1, Fig. A3B; Le Page et al. 2010). Assessing human effects 

on pyrodiversity thus may require value judgments about which fire attributes are most 

relevant. Humans can extend fire seasons both by extending the seasonal timing of ignitions 

beyond that of lightning and by intentional ignitions in locations and during weather 

conditions when fires are likely to result. That fire size increasingly constrains pyrodiversity 

as the human influence index increases is likely due to human limitation of fire sizes, either 

by active suppression or by fragmentation that limits fire spread (Archibald 2016). Humans 

may well have stronger effects on pyrodiversity at spatial grains smaller than those studied 

here. 
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Pyrodiversity–biodiversity relationships 

Research interest in pyrodiversity has largely stemmed from the hypothesis that 

‘pyrodiversity begets biodiversity’ (Martin and Sapsis 1992, Parr and Andersen 2006). Data 

for African savannas indicate that fire has more effect on vegetation structure in mesic 

systems, where tree cover and height are determined by fire frequency and fire intensity 

(Higgins et al. 2007, Bond 2008). In arid systems, although fires occur, they have minimal 

impacts on woody structure because of relatively low fuel loads; instead, woody cover is 

controlled by establishment opportunities (density), browsing (sapling escape) and water 

availability (height/biomass; Bond 2008). Shifts in vegetation structure and composition 

have myriad cascading direct and indirect effects on ecosystems, and can strongly reshape 

the array of ecological niches (Bond and Keely 2005, Bowman et al. 2016). Although 

pyrodiversity increased as rainfall decreased, we expect that its effect on biodiversity will be 

greatest in locations with intermediate rainfall, where fire has greater influence on habitat 

heterogeneity. This hypothesis is consistent more broadly with the lack of relation between 

pyrodiversity and the diversity of birds (species richness; Taylor et al. 2012), small mammals 

(species richness; Kelly et al. 2012), and reptiles (alpha, beta and gamma diversity; 

Farnsworth et al. 2014) in the dry parts of south-eastern Australia (220–330 mm yr-1), some 

evidence of a positive relation between pyrodiversity and ant and termite species richness 

in South Africa as rainfall increases from 450 to 550 to 750 mm yr-1 (Parr et al. 2004, Davies 

et al. 2012), and a positive association between pyrodiversity and ant species richness in 

Brazil (1387 mm yr-1; Maravalhas and Vasconcelos 2014). Tests of our hypothesis that 

rainfall mediates the effect of pyrodiversity on biodiversity will need to span a wide rainfall 

gradient and make use of a consistent measure of pyrodiversity. 
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Tables 

 

Table 1. Median and 95% credible intervals of parameter estimates for environmental variables as 

predictors of pyrodiversity at 30 minute spatial resolution. Mean annual rainfall (MAR; mm), soil 

nutrient availability (SNA) and topographic roughness (TOPO) were fitted as generalised additive 

models with two knots, and vegetation type was fitted as a categorical variable. Conditional 

autoregressive models were fitted in INLA and account for spatial autocorrelation within a Bayesian 

framework. ΔWAIC is provided based on difference in WAIC between full model and models lacking 

particular terms; values below -2 are usually considered to indicate strong support. 

 

Environmental 

variable 
Model term 0.025 quantile 0.5 quantile 0.975 quantile ΔWAIC 

      

 Intercept 0.4782 0.6120 0.7456  

Mean annual 

rainfall 

     

MAR 1 0.1830 0.2517 0.3204 -111.8 

MAR 2 -0.4320 -0.3451 -0.2583  

      

Vegetation type Mixed savanna -0.7156 -0.5812 -0.4467 -346.7 

 Grassland -0.6659 -0.5110 -0.3562  

 Caesalpinioid savanna -0.8256 -0.6850 -0.5445  

 Forest-grassland -0.7871 -0.6415 -0.4959  

 Forest -0.8875 -0.7195 -0.5515  

      

Soil nutrient 

availability 

SNA 1 -0.0182 0.0078 0.0338 -7.09 

SNA 2 -0.0390 -0.0159 0.0070  

      

Topographic 

roughness 

TOPO 1 -0.0226 0.0042 0.0310 8.34 

TOPO 2 -0.0271 -0.0005 0.0262  
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Table 2. Median and 95% credible intervals of parameter estimates for human-associated variables 

as predictors of pyrodiversity at 30 minute spatial resolution, while accounting for mean annual 

rainfall. Mean annual rainfall (MAR; mm), cattle biomass (CAT; kg km-2), proportion of cropland 

(CROP) and population density (POP; log(people km-2)) were fitted as generalised additive models 

with two knots. Conditional autoregressive models were fitted in INLA and account for spatial 

autocorrelation within a Bayesian framework. ΔWAIC is provided based on difference in WAIC 

between full model and models lacking particular terms; values below -2 are usually considered to 

indicate strong support. 

 

Environmental variable Model term 0.025 quantile 0.5 quantile 0.975 quantile ΔWAIC 

      

 Intercept -0.0186 -0.0102 -0.0017  

      

Mean annual rainfall (mm) MAR 1 0.2821 0.3276 0.3732 -562.1 

MAR 2 -0.4394 -0.3745 -0.3096  

      

Cattle biomass (kg km-2) CAT 1 -0.0321 0.0516 0.1352 7.64 

CAT 2 -0.1661 -0.0712 0.0236  

      

Cropland (proportion of area) CROP 1 -0.0157 0.0089 0.0335 7.64 

CROP 2 -0.0185 0.001 0.0205  

      

Population density (log scale) POP 1 0.0366 0.1576 0.2786 -139.4 

POP 2 -0.1958 -0.0807 0.0343  
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Figures 

 

Figure 1. The data and methods we used to quantify pyrodiversity. Three fire attribute axes 

are illustrated in part 5 (i.e. time since last burn is excluded), but note that we quantified 

pyrodiversity as the minimum volume in four-dimensional space. 
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Figure 2. Pyrodiversity at 30 minute spatial grain across sub-Saharan Africa. Regions with no 

values did not meet the analysis criteria of having more than four fires for which all fire 

attribute information was available during the 2000–2015 data availability period. 
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Figure 3. Relations between pyrodiversity and A) rainfall, B) vegetation types, C) soil 

nutrients and D) topography. Vegetation types are presented in increasing order of mean 

annual rainfall. Values are medians and interquartile ranges for binned values (rainfall: 10 

mm, soil nutrients and topographic roughness: 0.1) and displayed with locally weighted 

scatterplot smoothing regression lines. All variables were assessed at 30 minute spatial 

grain. 
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Figure 4. Modelled relations between human activity and pyrodiversity: A) cattle biomass 

(kg km-2), B) proportion of cropland area, and C) the log of human population density 

(people km-2). Grey points represent the raw data, solid yellow lines the median model 

projections, and shaded regions the 95% credible intervals. Analyses were conducted at 30 

minute spatial grain. 
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Figure 5. Contribution of different fire attributes to generating pyrodiversity in relation to 

mean annual rainfall (mm). The colour gradient ramp indicates the strength with which each 

fire attribute acts as a constraint on pyrodiversity. Blue is weak, green is intermediate, and 

red is strong. All variables were quantified at 30 minute spatial grain. 
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Figure 6. Values of the pyrodiversity index at different spatial grains and three levels of 

mean annual rainfall. Pyrodiversity was quantified at 5 minute increments and corrected for 

the number of fires per pixel. Median index values and interquartile ranges were calculated 

for areas with mean annual rainfall of < 650, 650–1300, and > 1300 mm.  
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Supplementary material 

Appendix 1 

Supplementary figures 

 

 

Figure A1. Fire attribute frequency distributions for the full data set (A, C, E & G) and for the subset 

of fires used in the analyses (B, D, F & H). Individual fires in the full data set required values for each 

of the four fire attributes in order to be included in the pyrodiversity analyses. 
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Figure A2. Fire attribute constraints on pyrodiversity in relation to mean annual rainfall: A) variation 

in fire size, B) variation in when fires occur within a year, C) variability in the length of time between 

fires, and D) the variation in fire intensity.  Grey points represent the raw data, with median model 

predictions and the associated 95 % credible interval estimate range shown by the solid yellow line 

and shaded region respectively. Analyses were performed at 30 min spatial resolution. Model 

predictions account for spatial autocorrelation in the data, which is the primary reason for the 

apparent poor fit to the raw data in panels A and B.  
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Figure A3. Fire attribute constraints on pyrodiversity in relation to the human influence index 

(Sanderson et al., 2002): A) variation in fire size, B) variation in when fires occur within a year, C) 

variability in the length of time between fires, and D) the variation in fire intensity.  Grey points 

represent the raw data, with median model predictions and the associated 95 % credible interval 

estimate range shown by the solid yellow line and shaded region respectively. Analyses were 

performed at 30 min spatial resolution.  
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Supplementary tables 

 

Table A1. Derivation of vegetation type classifications from White (1983) mapping units. Vegetation 

mapping units were grouped based on broad similarities in the physiognomy of the dominant plant 

groups.  

 

Vegetation types White (1983) mapping units 

  

Caesalpinioid savanna 25, 26, 27, 28 

Forest 1a, 2, 3, 4, 6, 8, 9, 77 

Forest-grassland mosaic 11a, 12, 15, 16, 16a, 16b, 16c, 17, 19a, 19b, 20, 65, 66 

Grassland 58, 59, 60, 61, 64, 75 

Mixed savanna 22a, 24, 29a, 29b, 29c, 29d, 29e, 31, 32, 33, 35a, 35b, 35c, 36, 37, 38, 39, 40, 

42, 43, 44, 45, 47, 48, 56, 62, 63 

Shrubland 50, 51, 52, 53, 54a, 54b, 57a, 57b, 68b, 71, 74 
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Table A2. Median and 95 % credible intervals of parameter estimates for mean annual rainfall as a 

predictor of the constraint that different fire attributes (size, season, frequency and intensity) place 

on overall pyrodiversity, at 30 min spatial resolution. Mean annual rainfall (MAR; mm) was fitted as 

either a linear or quadratic effect; only the best model for each fire attribute is shown. Conditional 

autoregressive models were fitted in INLA and account for spatial autocorrelation within a Bayesian 

framework. ΔWAIC is provided based on difference in WAIC between full model and linear model 

(for fire size and fire season), and between linear and the null model (for fire frequency and fire 

intensity); values below -2 are usually considered to indicate strong support. 

 

Fire attribute model Model term 0.025 quantile 0.5 quantile 0.975 quantile ΔWAIC 

      

Fire size Intercept 0.9386 0.9489 0.9592 -6.81 

 MAR 0.0652 0.0800 0.0947  

 MAR 2 0.0104 0.0201 0.0298  

      

Fire season Intercept 0.8497 0.8665 0.8832 -442.9 

 MAR -0.0477 -0.0271 -0.0061  

 MAR 2 -0.1256 -0.1095 -0.0932  

      

Fire frequency Intercept 0.6466 0.6495 0.6523 -247.7 

 MAR -0.0559 -0.0460 -0.0361  

      

Fire intensity Intercept 0.9287 0.9323 0.9360 248.8 

 MAR -0.0613 -0.0487 -0.0363  
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Table A3. Median and 95 % credible intervals of parameter estimates for the human influence index 

(Sanderson et al., 2002) as a predictor of the constraint that different fire attributes (size, season, 

frequency and intensity) place on overall pyrodiversity, at 30 min spatial resolution. The human 

influence index (HII) was fitted as either a linear or quadratic effect; only the best model for each fire 

attribute is shown. Conditional autoregressive models were fitted in INLA and account for spatial 

autocorrelation within a Bayesian framework. ΔWAIC is provided based on difference in WAIC 

between full model and linear model (for fire size and fire frequency), and between linear and the 

null model (for fire season and fire intensity); values below -2 are usually considered to indicate 

strong support. 

 

Fire attribute Model term 0.025 quantile 0.5 quantile 0.975 quantile ΔWAIC 

      

Fire size Intercept 0.9733 0.9807 0.9881 -1.72 

 HII 0.0344 0.0451 0.0559  

 HII 2 -0.0175 -0.0115 -0.0056  

      

Fire season Intercept 0.7521 0.7587 0.7653 82.5 

 HII -0.0526 -0.0361 -0.0195  

      

Fire frequency Intercept 0.6344 0.6396 0.6449 0.77 

 HII -0.0368 -0.0289 -0.0211  

 HII 2 0.0053 0.0096 0.0139  

      

Fire intensity Intercept 0.9284 0.9320 0.9357 43.84 

 HII -0.0272 -0.0172 -0.0071  

      

 

 


