
A Decision Maxim for Efficient Task Realization within
Analytical Network Infrastructures

M. Gruma,∗, B. Bendera, A.S. Alfab,c, N. Gronaua

aDepartment of Business Informatics, especially Processes and Systems, University of
Potsdam, Potsdam, Germany

bDepartment of Electrical, Electronic and Computer Engineering,University of Pretoria,
Pretoria, Gauteng, South Africa

cDepartment of Electrical and Computer Engineering University of Manitoba, Winnipeg,
Manitoba, Canada

Abstract

Faced with the increasing needs of companies, optimal dimensioning of IT hard-

ware is becoming challenging for decision makers. In terms of analytical infras-

tructures, a highly evolutionary environment causes volatile, time-dependent

workloads in its components, and intelligent, flexible task distribution between

local systems and cloud services is attractive. With the aim of developing a

flexible and efficient design for analytical infrastructures, this paper proposes

a flexible architecture model, which allocates tasks following a machine-specific

decision heuristic. A simulation benchmarks this system with existing strate-

gies and identifies the new decision maxim as superior in a first scenario-based

simulation.

Keywords: Analytics, Architecture Concepts, Cyber-Physical Systems,

Internet of Things, Task Realization Strategies, Simulation

1. Introduction

Faced with an increase in the complexity of company IT infrastructures,

such as an increasing number of networked machines and their heterogeneity

in hardware and software (Polyvyanyy et al. (2017)), companies are often chal-
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lenged regarding capacities for the processing of time-critical analytical tasks.

Furthermore, tasks must be realized at the lowest possible price, selected cus-

tomer focus, and desired flexibility, among others. In this case, a trade-off must

be determined among various and conflicting criteria. A variety of task distribu-

tion approaches within networked infrastructures, each exhibiting characteristic

advantages and disadvantages, complicates the distribution and processing of

analytical tasks. Prominent approaches include the following: edge computing,

which focuses on decentralized processing at the margin of a network, close to

the data-generation location; cloud computing, which subsumes the concepts of

central task processing by using more powerful but additionally paid resources

via the Internet; and fog computing, which focuses on near-user edge devices.

(Lopez et al. (2015)). As an increasing number of devices are connected via

the Internet, external parties can easily be integrated by means of software as

a service (SaaS) concept, so that analytical tasks can be realized in parts, on

behalf of external and internal devices. In light of the complex price models of

external parties, task distribution becomes further complicated (May Al-Roomi

& Ahmad (2013)).

Faced with digitization and dissemination of the Internet of things, physi-

cal objects are often enhanced by cyber-physical systems (Vogel-Heuser et al.

(2009)). With this, common production settings are enriched, and function

as cyber-physical production systems. Here, the variety of processing tasks as

well as the amount of data to be processed increase constantly. Tasks that are

closely related to the physical value-adding production process demand special

requirements regarding real-time task processing and require systems to decide

individually (Kopetz (2011)). In this context, the following research questions

are pertinent:

1. How can task realization approaches in real-world settings be compared?

2. How can analytical tasks be processed efficiently within networked infras-

tructures?
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Building on the design science research methodology (DSRM) of Peffers et al.

(2007), this paper is structured by the Publication Schema of Gregor & Hevner

(2013). Hence, the following section demonstrates the required theoretical foun-

dation with the aid of basic concepts and identifies the research gap. The third

section provides the methodological approach. The fourth section designs the

required artifacts. Hereunder, one can find the mathematical model and new

decision maxim (NDM), and their computational implementation. Simulation

results are provided as a demonstration and evaluated by a performance evalua-

tion framework in the 5th section. This illustrates the functioning of the flexible

architecture concept. Finally, conclusions are provided in the sixth section.

2. Theoretical Foundation

Based on the DSRM, this section provides related concepts required for

gaining improved understanding and the solution design. In addition to the

concepts, a literature overview provides related work and demonstrates the need

for the development of a new decision maxim for efficient task processing within

network infrastructures.

2.1. Underlying Concepts

In this section, relevant concepts within the context of business analytics

infrastructures are identified. Typical IT infrastructure levels are differentiated

as typically found in enterprise setups.

2.1.1. Computing Infrastructures

Although individual company infrastructures may vary, common processing

infrastructure patterns and levels should be used as a basis for optimization.

Following Grozev & Buyya (2014), three typical computing infrastructure levels

can be differentiated in modern enterprises. In general, computing infrastruc-

tures consist of computing systems that can be grouped into the CPS, local

cloud or public cloud level.
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CPS level. This level is at the very bottom and refers to the shop floor level.

According to Gronau et al. (2016), the computing resources located here sub-

sume different machines and components as variations of cyber-physical systems

(CPSs) that are part of the value creation process of a company. Hence, their

concrete hardware configurations vary significantly. Using a manufacturing com-

pany as an example, the CPS level includes production robots, which participate

directly in value creation processes and deal with material flows, and quality

control components, which participate indirectly in value creation processes.

Local cloud level. Above the CPS level, a level known as the local cloud can

be found. This architectural level subsumes the more centrally located pro-

cessing components of an enterprise, which are typically more powerful than a

single CPS (Grozev & Buyya (2014)). Its components are commonly intercon-

nected based on local area network and virtual private network technologies,

and include different locations, being part of an intranet infrastructure (Don-

ahue (2011)). As components are property of the enterprise, they are run and

maintained by its IT departments. From an analytical perspective, this typ-

ically includes data warehouses for storing relevant information centrally as a

basis for downstream systems. Hereunder, business intelligence and reporting

software, including dashboards and similar applications, can be found.

Public cloud level. The top architectural level is known as the public cloud,

which is not part of the company infrastructure. It is maintained by third-

party providers and utilized by the company for computing tasks. Computing

infrastructures on the public cloud level are typically rented from cloud hosting

providers that offer computing resources on demand. In general, such infras-

tructures exhibit high scalability, which provides them with the role as a perfect

supplement to the company infrastructure components (Jadeja & Modi (2012)).

If tasks cannot be computed effectively within the company infrastructure; for

example, because of a small remaining time, high task requirements or comput-

ing efforts, they can be computed on the public cloud level, provided that data
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privacy and security, as well as necessary constraints (e.g., latency), are ensured

(Ren et al. (2012)).

Relationships among levels. The processing of analytical tasks can be carried

out for components of any of the three levels. Taking various individual resource

characteristics into account, Fig. 1 (a) visualizes the three levels and their re-

lationships regarding their computational power. In general, a higher analytical

architecture level will yield a higher level of computing power. Therefore, higher

levels are more suited to heavy, analytical tasks. Furthermore, with increasing

levels, the local proximity to the value creation process declines, which leads to

additional hardware costs and transfer times.

The question as to on which level provides different computing power and

costs of analytical tasks shall be realized remains. Hence, the three identified

levels serve as a reference point for the design of first simulations.

2.1.2. Analytics

EMC-Education-Services (2015) refer to analytics as a group of analytical

techniques dealing with analytical tasks. A first group, known as business intelli-

gence (BI), tends to explain the current or past business behavior by aggregating

and grouping mostly well-structured historical data. A second group, known as

business analytics (BA), tends to explore the future based on the present and

a forward-looking, decision-enabling system. This is generally based on less

structured data emanating from various systems.

Task Types. According Davenport & Harris (2007), analytical tasks can be

mapped to eight task types, as illustrated in Fig. 1 (b). Analytical techniques

consider BI (tasks are visualized by blue circles) and BA (red circles), while a

demonstration considers both. While the name of each task type is placed next

to its circle, corresponding questions can be found in the middle and a sym-

bolic picture of each advantage level on the right. Following the assumption of

Davenport and Harris: a higher degree of intelligence for the technique required

by a task type results in a higher competitive advantage that can be realized
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because of dealing with this task type. Consequently, the effort also increases

and a trade-off between the gained advantage and required effort must be de-

termined by each company individually. The task types serve as framework for

the analytical tasks within the designs and demonstrations of this contribution.
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Figure 1: Abstract model of analytical architectures

Parallelization. Each task type can be parallelized, depending on the paral-

lelization characteristics of the analytical task. In this case, massively par-

allel processing architectures enable parallel data ingestion and analysis. Al-

though these are the preferred approach to processing complex data (Wong

et al. (2013)), it is not clear from a practical point of view which instance

within the analytical infrastructure is best suited best to the processing of a

current task. Therefore, the presented dynamic task realization approach must

distinguish among the distributions of tasks within networking structures, the

processing order in every system, and the corresponding task type.

2.2. Related Literature

In addition to the previously presented concepts, the following research works

are related to the topic addressed in this contribution. Table 1 displays their

categorizations according to the different domains of infrastructure components,

task processing, and dynamics. A dynamic refers to aspects owing to the sit-

uational adequate computation of tasks and environmental changes regarding

6



infrastructure. Considering the variety of related research aspects, their cover-

age is exemplary.

Table 1: Categorization of related work.

Contributions
Hardware

components
Infrastructure
characteristics

Task type
requirements

Algorithmic
aspects

Situational
variations

Environmental
changes

Augonnet et al. (2010) X X
Bender & Grum (2016) X X X

Brooks et al. (2000) X X
Cevher et al. (2014) X X X

Davenport & Harris (2007) X
Gupta & Chow (2010) X X

Grozev & Buyya (2014) X X
Grum et al. (2017) X X X
Pike et al. (2009) X X

Polyvyanyy et al. (2017) X
Wong et al. (2013) X

Zikopoulos & Eaton (2011) X X

On the level of single computing entities, corresponding to the CPS level,

various designs and implementations for efficient computing of several tasks can

be determined. Different algorithm types are optimized with regard to various

demands and hardware architectures (Cevher et al. (2014)). The research also

discusses the design of hardware architectures and its components (Brooks et al.

(2000)). Furthermore, mechanisms for scheduling tasks on single computing

systems have been developed (Augonnet et al. (2010)).

On the level of networked infrastructures, corresponding to the local and

public cloud levels, the coordination and scheduling of distributed task process-

ing has been researched (Pike et al. (2009)). Specialized concepts have evolved

for conducting computation tasks in networked environments and related re-

quirements. Examples can be found in shared memory concepts, distributed

file systems, and computation concepts, such as Hadoop (Zikopoulos & Eaton

(2011)). Therefore, hardware dimensioning has become important. Distributed

computing strategies under constraints such as slow network connections have

also been developed (Gupta & Chow (2010)). As public clouds in particular

incorporate large computing infrastructures, the aspect of energy-efficient com-

puting has become a significant theme (Luo et al. (2012)). While each research

study focuses on a certain problem, in accordance with Grum et al. (2017), each

focuses on a highly specific optimization problem and from a general, system-

wide perspective, only local optima can be identified with each.
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Research regarding the complex distribution of analytical tasks, within a

given dynamic infrastructure and across different levels, is rare. Previously

presented architectural infrastructure levels were identified by Grozev & Buyya

(2014), and combined with task realization strategies on the basis of heuristics in

analytic infrastructures by Bender & Grum (2016). An integration of available

concepts was researched by Grum et al. (2017), with the aim of identifying

global optima in analytical task processing over scenarios and environmental

changes. A quantified benchmark of different task realization strategies, such

as real-world live tests or simulations, remains to be developed.

Research gap. Although single aspects of efficient analytical infrastructures within

modern infrastructures have been thoroughly researched, a combination of these

and benchmark within one common framework is lacking. Each concept is valid

within its research domain, but only several studies have considered individual

infrastructure characteristics and dynamics regarding tasks and infrastructure

changes. None of the identified studies has combined all aspects.

The major contribution of this work is therefore the provision of a flexi-

ble architectural framework allowing for the integration of domain-specific ap-

proaches, overcoming disregarded infrastructure, tasks, and algorithms as well

as dynamics, and therefore developing the basis for efficient task realization

within networked analytical infrastructures.

3. Method

The methodological approach of this research contribution follows the design-

science-oriented method of Peffers et al. (2007).

Fig. 2 illustrates the procedure model as we suggest for improving inefficient

task realization within organizations. The procedure model has been used for

demonstration purposes in this contribution. One can observe 10 sequential

phases and three possibilities for an iterative proceeding that enables a close to

real-world simulation. Each phase of the procedure model is illustrated in the

following.
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1. Project Initiation

2. Agreement on Objectives

3. Recording of Analysis Systems and Connections

4. Definition of Scenarios, Changes and Selection 

5. Identification of Initialization Parameters per Scenario 

6. Establishment of Transfer and Processing Strategies

7. Simulation, Analysis and Comparison

8. Development of Target Concepts 

9. Realization of Selected Concepts

10. Evaluation and Proof of Working

Figure 2: Procedure model

The first phase refers to the acquisition of projects, and includes contrac-

tual issues, sales, and marketing, among others. The second phase defines the

focus of consecutive analyses. Based on a company strategic objectives and con-

straints, efficient task processing is identified. Within the third phase, the entire

setting of analytical systems is recorded and mapped to given layers, which

thus far are the CPS, local cloud, and public cloud levels. In the fourth phase,

a collection of attractive scenarios is identified. Dependencies, similarities, and

differences among scenarios are considered, so that they can be grouped into

sequential transformations. The fifth phase serves to identify initialization pa-

rameters. Thereafter, in the sixth phase, the current customer transfer and

processing strategy is established. The required parameters are collected in in-

terviews with responsible analysis experts of the customer. The seventh phase

realizes the simulation, which includes the transfer of scenarios, and customer-

based and alternative transfer and processing strategies to the computational

model. Based on a system-specific analysis, an analysis across systems, and

a systematic comparison of focused approaches, the best candidates are iden-

tified and concluded regarding the current strategy. Within the eighth phase,

insights from the seventh phase are used to develop concepts that improve the

current customer situation. The ninth phase focuses on the implementation

of selected target concepts. Hardware configuration adjustments, connections

among systems, software modifications, and an adjustment in transfer and pro-
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cessing strategies are included in this phase. The tenth phase evaluates whether

the agreed objectives of the second phase could have been met, or further ad-

justments are required.

As the eighth phase results in insights that have to be verified, an itera-

tive modification of previously set decisions is realized owing to feedback circles

among the fourth, fifth, sixth, and seventh phases. Therefore, further scenarios,

such as changes in initial connections, can be tested (fourth phase), initialization

parameters can be changed, such as the use of stronger machines (fifth phase),

or modified transfer strategies can be tested (sixth phase). Furthermore, feed-

back circles are required for validation purposes. Moreover, they are essential

for highly evolutionary IT environments, as simulations consider changes.

4. Flexible Analytical Architecture Framework

In this section, we provide a mathematical model that will serve as a frame-

work for the simulation and performance evaluation. The second sub-section

presents the design of an NDM, which will be used for any system locally to

decide whether an analytical task is processed on that system or a certain task

is routed to another system. Based on this, a computational model is imple-

mented, in which various task realization strategies can be simulated and their

performance compared (subsection 3).
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Figure 3: Process of flexible task realization

The interplay among the artifacts is organized in three steps (see Fig. 3),

while process steps are visualized by green rectangles and control flow by ar-

rows. Firstly, given available tasks, the situation must be analyzed with the
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aid of analysis criteria. Then, task transfer can be carried out among the given

analytical systems. Finally, the arriving tasks must be processed. Following any

process step, a measurement can be carried out and provides for analyses.

4.1. Mathematical Model

The following steps are realized in the mathematical model development.

Firstly, the system and its parameters are characterized. Thereafter, inter-

relationships are considered within the mathematical model. Furthermore, the

optimization task of the current research is defined.

4.1.1. System Characteristics and Parameters

Firstly, parameters for the model development need to be defined. Con-

sider a system with N CPSs, labeled CCPSi , i = 1, 2, · · · , N . At the upper

layer of the system, there are M local clouds, labeled CLCj , j = 1, 2, · · · ,M .

Finally, at a layer above the local clouds there are K public clouds, namely

CPC1 , CPC2 , · · · , CPCK . Fig. 1 (a) visualizes this 3D schematic of the system.

The following are certain key assumptions that we need to work with:

1. We assume that all jobs at all levels are generated according to the Poisson

distribution, and services follow the exponential distribution.

2. All the CPSs have buffers for storing jobs waiting to be processed, and

the buffer sizes are unlimited.

3. Both the local and public clouds have unlimited buffers for holding jobs.

4.1.2. Inter-relationships for Model

At CPS CCPSi , let there be up to Ni job types that can be generated,

and each one arrives at a rate of λCPSij , j = 1, 2, · · · , Ni. We assume that

jobs generated at CPS levels are independent; however, we can easily include

dependencies at a later stage, if necessary. Jobs that are generated at a CPS

level can be processed at that level or escalated to the local or public cloud level

if required. The respective conditions are discussed later. Let the processing

rate of a type j job on CCPSi be µij = µCPSi , ∀j. By this, we are assuming that
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the processing rates of all jobs are the same on a CPS; however, we distinguish

the jobs only by their priorities.

At the local cloud level, jobs are generated at the rate of λLCj , j = 1, 2, · · · ,M

and we assume that only one type of job is generated at each local cloud. These

jobs are independent of those generated at the CPS level. The processing rate

of jobs at CLCi is µLCi . However, there are also jobs that have been escalated

from the CPS to LC level, and these will be discussed later.

Finally, at the public cloud level, jobs are generated at a rate of λPCj , and

we assume that only one job type is generated at the public cloud. These jobs

are independent of those generated at the LC and CPS levels. The processing

rate of jobs at CPCk is µPCk , k = 1, 2, · · · ,K, and there are also jobs that have

been escalated from the CPS and LC levels to the PC level. These will also be

discussed later. However, note that we do not have control over how, or even if,

jobs move between different public clouds. Thus, we do not allow jobs to move

from one public cloud to another. This is outside the scope of our work.

Jobs generated at the CPS levels may be processed at the CPS levels. How-

ever, some of these may be transferred to other CPSs for processing or escalated

to an LC or even the PC. We have the following:

1. pCPS→CPSi,j,k is the ratio of λCPSij moved to CCPSk , k 6= i.

2. pCPS→LCi,j,k is the ratio of λCPSij moved to CLCk .

3. pCPS→PCi,j,k is the ratio of λCPSij moved to CPCk .

Note that we require that

Ni∑
j=1

[

N∑
k=1;k 6=i

pCPS→CPSi,j,k +

M∑
k=1

pCPS→LCi,j,k +

K∑
k=1

pCPS→PCi,j,k ] ≤ 1, i = 1, 2, ..., N. (1)

If we define λCPS∗i as the total amount of jobs arriving to be processed at CPSi,

then we have

λCPS∗i =

Ni∑
j=1

[1−
N∑

k=1,k 6=i

pCPS→CPSi,j,k −
M∑
k=1

pCPS→LCi,j,k − pCPS→PCi,j ]λCPSij
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+

N∑
v=1,v 6=i

Nv∑
j=1

pCPS→CPSv,j,i λCPSv,j +

M∑
v=1

Ni∑
j=1

pLC→CPSv,j,i λLCv,j +

K∑
v=1

Ni∑
j=1

pPC→CPSv,j,i λPCv,j .

(2)

Consider the local cloud level, and let

1. pLC→LCi,j be the ratio of jobs moved from CLCi to CLCj , i 6= j;

2. pLC→PCi,j be the ratio of jobs escalated from CLCi to CPCj ; and

3. pLC→CPSi,j,k be the ratio of jobs de-escalated from CLCi to CCPSj and pro-

cessed as a type k job.

Furthermore, note that we require that

M∑
j=1;j 6=i

pLC→LCi,j +

K∑
j=1

pLC→CPSi,j,k +

N∑
j=1

Ni∑
k=1

pLC→PCi,j ≤ 1, i = 1, 2, ...,M. (3)

Now, considering each LC, we assume that only one job type is processed there.

Although the jobs may differ in types, we assume that escalated jobs have been

scaled prior to escalation to normalize them, because the escalation cost has

been considered. Let λLC∗i be the arrival rate of jobs for processing at the local

cloud CLCi .

λLC∗i = [1−
M∑

j=1,j 6=i

pLC→LCij −
K∑
j=1

pLC→PCi,j −
N∑
j=1

Ni∑
k=1

pLC→CPSi,j,k ]λLCi

+

N∑
k=1,k 6=i

pCPS→LCk,i (

Nk∑
v=1

λCPSk,v ) +

M∑
j=1,j 6=i

pLC→LCj,i λLCj +

M∑
j=1

pPC→LCj,i λPCj . (4)

Finally, note that we require that

M∑
j=1

PPC→LCi,j +

N∑
j=1

Nj∑
k=1

PPC→CPSi,j,k ≤ 1, i = 1, 2, · · · ,K. (5)

Then, consider the public cloud level and let

1. pPC→CPSi,j,k be the ratio of jobs moved from CPCi to CCPSj , i 6= j as type

k jobs; and
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2. pPC→LCi,j be the ratio of jobs de-escalated from CPCi to CLCj .

Note that we cannot move jobs between public clouds, as that is managed by a

third part. For the public cloud, the rate at which jobs arrive for processing is

λPC∗i = λPCi +

N∑
k=1

Nk∑
j=1

pCPS→PCk,j,i λCPSk,j +

M∑
k=1

pLC→PCk,i λLCk

−[

M∑
i=1

pPC→LCk,i +

N∑
j=1

Nj∑
k=1

pPC→CPSi,j,k ]λLCi . (6)

The queueing model representing this system is actually a multiple set of

single-node heterogeneous queues in parallel, with possible job transfers between

queues. In order for the system to be stable, we require that each be stable;

hence, we require that

max

{
λCPS∗i

µCPSi

, i = 1, 2, · · · , N ;
λLC∗`

µLC`
, ` = 1, 2, · · · ,M ;

λPC∗k

µPCk
, k = 1, 2, · · · ,K

}
< 1.

(7)

When dealing with the compact job type rates, several jobs of a certain type

are compressed to one rate, and the arrival rates λJ can serve for the derivation

of performance criteria, as follows.

Let ωi,j,k =
λJ
i,jp

J
i,j,k

λJ∗
i,j

be the percentage of arriving jobs at a system k from

system i, and job types j, which are all on the CPS level M , on local cloud level

N , and on public cloud level K systems. If we define

1. g∗k,j as the mean generation time after the transfer of jobs on system k

and job type j;

2. r∗k,j as the mean remaining time after the transfer of jobs on system k and

job type j;

3. im∗k,j as the mean importance after the transfer of jobs on system k and

job type j; and

4. d∗k,j as the mean divisibility after the transfer of jobs on system k and job

type j;
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then, following transfer, we have

g∗k,j =

M+N+K∑
i=1

ωi,j,k · gk,j , (8)

r∗k,j =

M+N+K∑
i=1

ωi,j,k · rk,j , (9)

im∗k,j =

M+N+K∑
i=1

ωi,j,k · imk,j , (10)

d∗k,j =

M+N+K∑
i=1

ωi,j,k · dk,j . (11)

4.1.3. Optimal Strategy for Escalation

The rates at which jobs are generated are not within our control. Hence,

all of the arrival rates, λCPSi,j,k , λ
LC
j , and λPCk , are fixed or preset. Similarly,

the processing rates at the nodes are predetermined. However, we can influence

which portions of the jobs are escalated or sent to equivalent nodes. Thus, for

control purposes, we have the ratios as decision variables. Let us define the

following vectors:

pCPS→CPS = {pCPS→CPSi,j,k , ∀(i, j, k)},

pCPS→LC = {pCPS→LCi,j,k , ∀(i, j, k)},

pCPS→PC = {pCPS→PCi,j , ∀(i, j)},

pLC→CPS = {pLC→CPSi,j,k , ∀(i, j, k)},

pLC→LC = {pLC→LCi,j , ∀(i, j)},

pLC→PC = {pLC→PCi,j , ∀(i, j)},

pPC→CPS = {pPC→CPSi,j , ∀(i, j, k)},

pPC→LC = {pPC→LCi,j , ∀(i, j)}.
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Now, let us define the following vectors:

PCPS = [pCPS→CPS , pCPS→LC , pCPS→PC ],

PLC = [pLC→CPS , pLC→LC , pLC→PC ],

PPC = [pPC→CPS , pPC→LC ],

p = [pCPS pLC , pPC ]. (12)

Once we decide on an objective function, such as minimizing the total cost

or any other measure, which we term f(p), we can perform an optimization

problem, as follows:

minpf(p), (13)

s.t. (1), (2) and (3), (14)

0 ≤ p ≤ 1. (15)

Eq. (13) implies that we are attempting to select the vector p that minimizes

the function f(p). Eq. (14) implies that we wish to achieve this subject to

meeting the conditions of the ratios in Eq. (1), (2), and (3), as well as the

stability condition of Eq. (7). Finally, Eq. (15) simply implies that the ratios

must satisfy the non-negativity conditions and must be less than 1.

4.2. New Decision Maxim

In this section, an NDM is provided for identifying the most suitable se-

lection within the computing framework. In the first step, basic options are

presented. Thereafter, allocation criteria are presented and their interplay with

an escalation prioritization in the form of weights is defined. These could be

assigned in order to meet the customer-specific requirements and optimization

selections.
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Table 2: Available allocation options

Option / Level Vertical-up Vertical-down Horizontal Local
CPS level X - X X
Local cloud X X X X
Public cloud - X (X) X

4.2.1. Basic Distribution Options

When faced with an analytical task, a system has four basic options regard-

ing the task distribution within the analytical infrastructures. These can be

grouped into three different categories, as follows.

Firstly, tasks can be computed on a local level. Here, no transfer will be

realized at all, and the jobs remain at the computing or scheduled unit.

Secondly, there are vertical escalations: here, an upward escalation refers

to the transfer of jobs from computing units to a higher and probably more

powerful level. Of course, this is not an option for systems at the very top level.

Furthermore, a downwards reallocation refers to transfers from computing units

to lower level systems, which cannot be applied at the very bottom levels.

Thirdly, tasks can be computed on neighboring systems, which is known

as horizontal distribution from here on. According to the different levels and

distribution options, Table 2 visualizes the limitations of high- and low-level

systems.

4.2.2. Allocation Process

Within the NDM, cl criteria can be used to identify the most preferable

allocation option m, with l = 1, ..., L and m = 1, ...,M . In this work, only

four evaluation criteria are exemplary illustrated in order to demonstrate the

approach; hence, L = 4. These are task effort, priority, divisibility, and current

load as follows: The task effort c1 = ρJi (see Eq. 19) focuses on the task and the

processing unit that is going to deal with that task, and considers its relative

performance. Hence, the effort represents the local task computing capabilities.

The priority is the relevance of a task to the global company goal of the company

(e.g., production process). This includes the importance of a task result c2 =
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imk,j (see Eq. 10) and the remaining time rk,j (see Eq. 9) until the result is

required. The Divisibility c3 = dk,j (see Eq. 11) refers to the aspect of how far a

task can be split among different computing units. A task with low divisibility

cannot be effectively computed in parallel on multiple computing units. A task

with a high divisibility can easily be distributed among multiple computing

units. The current load c4 = wJi (see Eq. 23-25) is a dynamic parameter referring

to the current free capacities of systems to compute additional analytical tasks.

In terms of the prioritization example of Fig. 4, an example task is charac-

terized with a task effort of 0.9, divisibility of 0.2, priority of 0.5, and current

load of 0.5. The available allocation options m of Table 2 can be weighted with

regard to the selected evaluation criteria cl by a customer. Hence, the customer

escalation prioritization of each allocation option can be found in Fig. 4 on the

right, which shows 16 prioritization weights pl,m. The option-specific evaluation

can then be realized following

Evalm =

L∑
l=1

cl · pl,m. (16)

Then, the most suitable allocation option can be identified by means of

maxm(Evalm). (17)

As can be observed in Fig. 4, the most appropriate option for the current ex-

ample task is a vertical upward escalation.

4.3. Computational Model

The computational model transfers the mathematical model of section 4.1 to

a computational simulation model. The described optimization tasks consist of

two decisions, which both affect the performance measurement: decisions that

refer to the transfer of tasks within the systems, and decisions that refer to the

order in which analytical tasks are processed following transfer in individual

systems. The following demonstrates the manner in which strategies of efficient
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Escalation Prioritization

Example 
Task

Local 
Proceccing

Vertical 
Upwards

Vertical 
Downwards

Horizontal 
Escalation

Task Effort 0.9 -0.5 0.9 -0.9 0.0

Divisibility 0.2 0.0 -0.6 0.4 0.6

Priority 0.5 0.15 0.8 -0.8 0.0

Current Load 0.8 -0.9 0.3 0.0 0.0

Evalm -1.095 1.33 -1.13 0.12

max(Evalm) 3 1 4 2

E
va

lu
at

io
n 

C
ri

te
ri

a

Figure 4: Prioritization Example.

task realization approaches, as presented in section 2.2, are transferred to the

computational model. Transfers within the network of systems are realized

according to the following approaches.

• No-transfers-at-all : As no transfers are realized; for example, a company

does not care about transfers, this strategy is realistic. It servers as a

reference point that will be optimized by intelligent task transfers.

• Workshop-based-transfers: This strategy is generated by an analytical

team within a workshop, as required by the sixth phase of the procedure

model (section 3).

• New-decision-maxim: The strategy suggested in section 4.2.

The processing of arrived task types in each system within the network of sys-

tems is realized by the approaches displayed in Table 3.

In the above, 12 processing strategies are displayed, as they were plausible

according to common strategies and some were applied by customers as the

sixth phase of the procedure model (section 3).

5. Evaluation and Discussion

Building on the mathematical model of section 4.1 and its computational

implementation in section 4.3 using Python 2.7, the following demonstrates the
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Table 3: Overview of processing strategies.

Id) Processing strategy Focus of ordering
1) Alphabetically ascending Tasks with smallest id are realized first.
2) Alphabetically descending Reversed order of previous approach.
3) First-in-first-out Tasks with the smallest λJ∗ are realized first.
4) Last-in-first-out Reversed order of previous approach.
5) First-remaining-in-first-out Tasks with smallest rJ∗ are realized first.
6) Last-remaining-in-first-out Reversed order of previous approach.
7) High-importance-in-first-out Tasks with smallest imJ∗ are realized first.
8) Low-importance-in-first-out Reversed order of previous approach.
9) Fastest-in-first-out Tasks with smallest µJ∗ are realized first.
10) Slowest-in-first-out Reversed order of previous approach.
11) Cheapest-in-first-out Tasks with smallest cJ∗ are realized first.
12) Most-expensive-in-first-out Reversed order of previous approach.

simulation results and describes the NDM application as discussed in section 4.2.

As the NDM is displayed alongside further strategies, a benchmark can be cre-

ated in order to compare the approaches. Hence, the first subsection designs

a performance evaluation framework that is used for the benchmark. As the

second subsection demonstrates artifacts following the procedure model of sec-

tion 3, this clarifies its application, and the results are structured by its phases.

The third subsection discusses the simulation results regarding a performance

analysis. Therefore, the simulation results presented here serve as a proof of

concept.

5.1. Performance Evaluation Framework

A framework for the measurement of the observed decision strategy perfor-

mances is developed, as follows. Firstly, key performance indicators are defined.

Thereafter, a common objective function is established. These are applied in a

demonstration and are the foundation of its evaluation.

5.1.1. System-specific Performance Measures

Given the description of the system model, its characteristics and assump-

tions make it clear that the system is actually a multiple set of single-node

heterogeneous queues connected in parallel, with possible job transfers between

queues.
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Let cJ∗i,j be the costs for the realization of task type j of system i at level J ,

which may be the CPS, local cloud or public cloud level:

cJ∗i,j = λJ∗i,jc
J
i,j . (18)

Let ρJi be the traffic intensity for system i on level J , which may be the CPS,

local cloud or public cloud level:

ρJi =
λJ∗i
µJi

. (19)

If we define:r

1. lCPSi and wCPSi as the mean number of jobs waiting, and the mean waiting

times of jobs, respectively, at CCPSi , i = 1, 2, · · · , N . These are indepen-

dent of which job types class they are; i.e., we have lumped them all

together;

2. lLCi and wLCi as the mean number of jobs waiting, and the mean waiting

times of jobs, respectively, at CLCi , i = 1, 2, · · · ,M . These are independent

of which job types class they are; i.e., we have lumped them all together;

3. lPCi and wPCi as the mean number of jobs waiting, and the mean waiting

times of jobs, respectively, at CPCi , i = 1, 2, · · · ,K. These are independent

of which job types class they are; i.e., we have lumped them all together.

Then, using the queuing results from Gross et al. (2008), we have

lCPSi =
ρCPSi

1− ρCPSi

, i = 1, 2, · · · , N, (20)

lLCj =
ρLCj

1− ρLCj
, j = 1, 2, · · · ,M, (21)

lPCk =
ρPCk

1− ρPCk
, k = 1, 2, · · · ,K. (22)

wCPSi = (µi − λCPS∗i )−1, i = 1, 2, · · · , N, (23)

wLCj = (µj − λLC∗j )−1, j = 1, 2, · · · ,M, (24)
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wPCk = (µk − λPC∗k )−1, k = 1, 2, · · · ,K. (25)

Using Eqs. (1) to (14), we can determine the performance of our system, given

the system parameters at a given time step t.

Whichever decision we take at any time step should be guided, in the long

run, by the results of our steady-state (stable) model. For example, if our

optimal PLC→PCij = 0.1, at any time period (t1, t2), only 10% of jobs from local

cloud i will be sent to public cloud j, regardless of how the 10% is achieved.

5.1.2. Derivation of Objective Function

Focusing on the optimization problem of Eq. (13), an optimization may

consider several influencing factors. Based on the design-oriented approach of

Grum et al. (2017), the following refers to a set of factors validated in three

ways by experts providing a high level of expertise in analytical infrastructures.

This set can be found in the following.

• The waiting time wti,j refers to the period that begins at the time step at

which a job part j occurred at a CPS i and ends at the current time step

t.

• The remaining time rtj refers to the period that begins at the current time

step t and ends at that time step, where the result of a current job part j

is required.

• The processing cost cti,j refers to the costs that the processing of job part

j incurs at CPS i. As one assumes these to develop over time because

of market mechanisms, they are time dependent, and we initially assume

these to be constant.

• The importance imt
j of a job part j refers to the criticality of a current

job part at time step t. As one assumes the system to be flexible because

of changing customer requirements, these are time dependent, and we

initially assume these to be constant.
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• The transfer cost trti,j,k refers to the costs incurred because of the transfer

of job part j from CPS i to CPS k at time step t. As one assumes these to

develop over time because of current bottlenecks, they are time dependent,

and we initially assume these to be constant.

The assessment of efficient task processing is based on the empirically validated

objectives of Grum et al. Grum et al. (2017), resulting in the use of Eq. (26).

f(p) =

o∑
t=1

n∑
i=1

mi∑
j=1

ati,jp
t
i,j , (26)

where o is time steps, n = N +M +K, mi is the number of parts of job i, and

ati,j = imt
j

wti,j
rtj

cti,j
min(trti,j,k)

. (27)

As only the processing rates pti,j of each system i can be controlled for job part

j at each time step t, the objective function to be optimized would be Eq. (13).

5.1.3. Performance Measures Across Systems

In addition to the global performance measurement criteria of Eq. (26), the

following demonstrates how the given criteria can be used for performance eval-

uation across all systems. These may provide the foundation for benchmarks.

Considering the costs as they have been used in Eq. (27), costs at a system-

specific level are accumulated in order to obtain the costs at a level across

systems:

CJ∗i,j =

M+N+K∑
i=1

∑
j=1

cJ∗i,j . (28)

Considering the mean number of waiting jobs of Eqs. (20) to (22) at a system-

specific level, the mean number of waiting jobs at a level across systems is

LJ∗i,j =

M+N+K∑
i=1

∑
j=1

lJ∗i,j . (29)

Considering the mean waiting time of jobs of Eqs. (23) to (25) at a system-
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specific level, the mean number of waiting jobs at a level across systems is

W J∗
i,j =

M+N+K∑
i=1

∑
j=1

wJ∗i,j . (30)

Considering the traffic intensity of jobs of Eq. (19) at a system-specific level,

the traffic intensity at a level across systems is

ρJ∗i,j =

M+N+K∑
i=1

∑
j=1

ρJ∗i,j/(M +N +K). (31)

5.2. Demonstration

As demanded by the methodological approach of section 3, a customer was

included in a workshop session. Here, three process experts, five analytical

experts, and two production experts were integrated and faced with two exam-

ples: firstly, a small numerical example considering only four systems in order

to realize a quick understanding and trusted level of working with the NDM,

as presented in the following; and secondly, their company-specific production

setting, which is not presented here.

1) Project initiation: The first example is a theoretical example that was cre-

ated with the intention of developing a small, easily understandable simulation

setting.

2) Objectives: The general objective was to compare the customer current

task realization approach (workshop-based strategies) with NDM-based strate-

gies. Furthermore, task realization with no intervention was achieved as a ref-

erence point (no-transfers-at-all).

3) Systems and connections: For illustrative purposes, consider a system

with two CPSs: one robot and one printer; that is, M = 2. Assume that each

CPS has only one job type, and that we have only one local cloud N = 1 and one

public cloud K = 1. The one-sided connections among all systems are drawn

as Fig. 5 intends to visualize with the aid of arrows. The direction of allowed

transfers is indicated by the visualized arrows.
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Figure 5: Initialization of numerical example

4) Scenario collection: The following two scenarios are selected for consec-

utive phases.

a) The first scenario includes a transfer strategy that demonstrates imbalances.

b) The second scenario compares all three transfer strategies in combination

with all 12 processing strategies as defined in section 4.3.

As these scenarios indicate neither a temporal nor any further relation, they

can be realized independently (both show only a single time step, t = 0).

5a) Initialization parameter: At present, we only consider one task type.

Let λCPS1 = 5, λCPS2 = 7, µCPS1 = 10, and µCPS2 = 15. Throughout this

example, all arrivals and services are rates per unit time. Let us assume only

one local cloud with λLC = 10, µLC = 50 and one public cloud with λPC =

60, µPC = 200. Let us further assume that µCPS1 = 10, µCPS2 = 15, µLC = 50

and µPC = 200. Further initialization, parameters such as gJ , rJ , cJ , imJ ,

and J can be found in Fig. 5 alongside the corresponding system. We do not

include subscripts when there is only one unit in order to avoid unnecessarily

complicated notations.

6a) Transfer and processing strategies: Suppose we have a predetermined

transfer strategy with pCPS→CPS1,2 = 0.2, pCPS→LCP1,1 = 0.1, pCPS→PC1,1 = 0.05 for

the first CPS; for the second CPS, we have pCPS→CPS2,1 = 0.15, pCPS→LCP2,1 =

0.2, pCPS→PC2,1 = 0.1; and finally, for the local cloud, we have pLC→PC1,1 = 0.3.
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7a) Simulation, analysis, and comparison: Applying the results from the

equations above, we have

λCPS∗1 = 4.30, λCPS∗2 = 4.85, λLC∗ = 8.9, λPC∗ = 63.95.

Since µCPS1 = 10, µCPS2 = 15, µLC = 50 and µPC = 200, and we observe

that the stability conditions are met with ρCPS1 = 0.43, ρCPS2 = 0.3233, ρLC =

0.178, and ρPC = 0.31975. Hence, we obtain lCPS∗1 = 0.75, lCPS∗2 = 0.48, lLC∗ =

0.22, and lPC∗ = 0.47. Moreover, wCPS∗1 = 0.175, wCPS∗2 = 0.099, wLC∗ =

0.024, and wPC∗ = 0.007, all of which are in units of time. If the arrivals are in

numbers per second, the waiting times are in seconds per item.

Suppose the processing rate at CCPS1 is actually µCPS1 = 5.0; then, we

observe that ρCPS1 = 0.86, and as a result, we will obtain lCPS∗1 = 6.143 and

wCPS∗1 = 1.429. This immediately indicates an imbalance in the system, as

the performance at CCPS1 is not as effective. In this case, we may need to

change our escalation rates or ratios. With the aid of a small example, we have

demonstrated that this model can be used to obtain the performance of a pre-

set escalation strategy. The second scenario focuses on the manner in which to

plan the escalation optimally.

5b) Initialization parameter: Now, we consider two task types. Let us assume

the initialization parameters to be as found in Fig. 5 alongside the corresponding

system.

6b) Transfer and processing strategies: Suppose we have three transfer strate-

gies, as follows. The first transfer matrix of the “no-transfers-at-all” strategy

resembles an identity matrix, as 100% of each task type remains at its origin

system at position i = j. The second transfer matrix of the “workshop-based”

strategy has been established by the experts previously mentioned, as required

by the procedure model in phase six (section 3). A visualization can be found

in Fig. 6(a). Single transitions can be found in Fig. 5, alongside the corre-

sponding arrows. It should be noted that the same transfer parameters have

been used for both task types. The third transfer matrix, originating from the

“new-decision-maxim,” can be found in Fig. 6(b).

7b) Simulation, analysis, and comparison: The initial configuration results
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(a) Workshop-Based.
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(b) New-Decision-Maxim-Based.

Figure 6: Transfer strategy of numerical example

in a workload ρJ∗i,j (see Eq. 31) can be seen in Fig. 7. Here, it can be observed

that the traffic intensity of any system does not exceed the limit of 1.0. Hence,

no system is overloaded, otherwise it would break down. As the illustrated

traffic intensity is not changed by transfers of the first transfer strategy (no-

transfers-at-all) in this case, its workload following transfers is the same, and a

transfer is not required. Focusing on the traffic intensity of all LC1 and PC1,

one can identify the greatest potential in free capacities, although both CPSs

provide free capacities as well.

As jobs are transferred, the initial workload is changed, and the optimal task

realization runs for each transfer strategy can be observed in Fig. 8. The optimal

runs are characterized by the objective function, as presented in section 5.1.2.
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Figure 7: Initial traffic intensity of numerical example
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(b) New-decision-maxim-based
- First-remaining-in-first-out

Figure 8: Traffic intensity of optimal task realization runs of numerical example

The visualization on the left illustrates the system-specific traffic intensi-

ties following workshop-based transfers. Beginning with the processing of tasks

with the highest priority (high-priority-in-first-out), one can observe a signifi-

cant transfer of tasks of CPS2 to PC1 with increased computing power, so that

prioritized task realization can be achieved. As no system is overloaded and the

constraints were considered fairly effectively, the experts established a working

strategy. The visualization on the right illustrates the system-specific traffic in-

tensities following NDM-based transfers. Beginning with the processing of tasks

with the lowest remaining time (first-remaining-in-first-out), one can observe a

significant transfer of tasks belonging to weak systems to systems with increased

computing power. Here, rapid task realization of tasks with short reaction times

can be achieved, and no system is overloaded in this case either.

8) Target concepts: Based on a comparing of the results of phase 7b), a

change to the NDM is suggested. In this case, the processing strategy demon-

strates minor importance, as all processing strategy combinations and the new

decision strategy improve the customer situation. A detailed explanation can

be found in the following section.

9-10) Further phases: Consecutive phases have not been considered because

of the theoretical nature of the numerical example.
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5.3. Performance Analysis

Building on the demonstration of section 5.2, the following evaluates the

simulated task realization strategies and creates a trade-off among various ap-

proaches. The simulations result in different performance levels for each transfer

strategy. An overview is provided in Table 4.

Table 4: Transfer strategy performance of numerical example

Transfer strategy New-decision-maxim Workshop-based-transfers No-transfers-at-all

Total processing costs 4633.333 4379.4500 4222.0000
Total traffic intensity 0.3413 0.4921 0.5744
Total number of waiting jobs 1.7760 2.8093 3.6441
Total time of waiting jobs 0.5229 0.6262 0.6984
Total job realization with time {7, 8} {5, 6} {2, 3, 4}

It can be observed that the most expensive, system-wide task realization

is caused by NDM transfers, followed by workshop-based transfers and no-

transfers-at-all. Faced with the total number of jobs realized with time, the ad-

ditional costs can be justified. NDM-based transfers realized the highest number

of tasks with time, followed by workshop-based transfers and no-transfers-at-all.

Illustrating 4 systems in the example with 2 job types per system, all 8 jobs

types could only have been realized with time following the NDM, while 5 or 6

out of 8 job types could have been realized following workshop-based transfers.

Only 2, 3, 4 out of 8 job types could have been realized with time following the

no-transfers-at-all transfer strategy. In general, superior results were achieved

because of the transfer focus on more powerful systems. This is why the further

key performance indicators improve, and the number of waiting jobs and total

time of waiting jobs decrease with superior approaches.

Different performance levels could be identified when considering all process-

ing strategies. Table 5 displays the task realization strategies (including transfer

and processing strategies) sorted by the objective function of Eq. 27. Since this

is similar to the sorting on base of the number of task types realized in time

(first criterion) and the total job remaining time (second criterion), this gives

evidence for the objective function working.

NDM-based realization strategies can be identified as superior without ex-

ception, followed by workshop-based realization strategies without exception.
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Table 5: Process strategy performance of numerical example.

Transfer
strategy

Process strategy Com.
obj.
func. ↑

Total job
remaining
time

Total job
realization
with time ↓

Transfer
strategy

Process strategy Com.
obj.
func. ↑

Total job
remaining
time

Total job
realization
with time ↓

N-D-M First-remaining-in-first-out 0.5378 0.4177 8 W-B-T First-in-first-out 1.3712 0.2594 5
N-D-M High-importance-in-first-out 0.5379 0.4163 8 W-B-T Last-remaining-in-first-out 1.3712 0.2594 5
N-D-M Cheapest-in-first-out 0.5379 0.4163 8 W-B-T Slowest-in-first-out 1.3712 0.2594 5
N-D-M Task-type-descending 0.5386 0.3877 8 W-B-T Task-type-ascending 1.3714 0.2563 5
N-D-M Last-in-first-out 0.5387 0.3863 8 W-B-T Most-expensive-in-first-out 1.3972 0.2631 5
N-D-M Fastest-in-first-out 0.5387 0.3863 8 W-B-T Low-importance-in-first-out 1.3984 0.2616 5
N-D-M First-in-first-out 0.6029 0.4691 7 N-T-A-A Last-remaining-in-first-out 1.8987 0.2466 4
N-D-M Slowest-in-first-out 0.6029 0.4691 7 N-T-A-A Low-importance-in-first-out 1.8987 0.2466 4
N-D-M Task-type-ascending 0.6030 0.4678 7 N-T-A-A Task-type-descending 1.9029 0.1897 4
N-D-M Low-importance-in-first-out 0.6038 0.4391 7 N-T-A-A First-in-first-out 2.3549 0.1579 3
N-D-M Most-expensive-in-first-out 0.6038 0.4391 7 N-T-A-A Slowest-in-first-out 2.3549 0.1579 3
N-D-M Last-remaining-in-first-out 0.6039 0.4378 7 N-T-A-A Cheapest-in-first-out 2.3633 0.1135 3
W-B-T High-importance-in-first-out 1.1769 0.1979 6 N-T-A-A Most-expensive-in-first-out 2.3707 0.2312 3
W-B-T Cheapest-in-first-out 1.1779 0.1964 6 N-T-A-A Last-in-first-out 2.3791 0.1868 3
W-B-T Task-type-descending 1.2000 0.2032 6 N-T-A-A Fastest-in-first-out 2.3791 0.1868 3
W-B-T Last-in-first-out 1.2002 0.2001 6 N-T-A-A Task-type-ascending 3.1405 0.1550 2
W-B-T First-remaining-in-first-out 1.2002 0.2001 6 N-T-A-A First-remaining-in-first-out 3.1474 0.0981 2
W-B-T Fastest-in-first-out 1.2002 0.2001 6 N-T-A-A High-importance-in-first-out 3.1474 0.0981 2

Finally, realization strategies based of no-transfers-at-all occur. While a con-

crete ranking of all task realization strategies can be observed in the table, the

superior strategies focus on the remaining time, importance, and processing

costs. Within the provided visualizations, only the optimal candidates per cat-

egory are considered. Detailed insights into every approach can be found in the

attached files.

6. Conclusions

Critical appraisal. In accordance with the design-science research guidelines of

Hevner et al. (2004), this contribution satisfies the requirements for effective

design-science research and is complete, as indicated in Table 6.

Table 6: Design-science research guidelines

Guideline Description

Guideline 1: Design as an artifact
The authors design a flexible architectural framework described by a mathematical formulation and connected to a perfor-
mance evaluation framework. Both frameworks are implemented as a computational model. An NDM is designed that is
benchmarked in simulations with existing task realization approaches.

Guideline 2: Problem relevance
Considering the previously mentioned artifacts, the business problem of complex task realization approaches is overcome by
a simple heuristic. A common framework is presented that can serve for comparison with further task realization approaches,
and be applied to different analytical infrastructures. As the framework is parameter-based, the concrete framework around
contemporary IT is reasonable, given a highly evolutionary environment and the continual application of the framework.

Guideline 3: Design evaluation
The efficacy of the designed artifacts was demonstrated rigorously by means of simulations. The utility and quality of the
NDM was demonstrated by a performance evaluation and benchmarks. The execution precisely followed the documented
mathematical expressions and quantitative criteria. Therefore, validation of the theoretical model and simulation are valid
within a theoretical, small example, and will be transferred to a larger example in a real-life setting as a next step.

Guideline 4: Research contributions
The design-science contributions of this research are the proposed NDM and evaluation results in the form of a simulation
and performance analysis. These contributions advance our understanding of the manner in which to optimize analytical
tasks within modern dynamic analytical infrastructures. In regard to related works of Tab. 1, this integrates relates works,
satisfies categories identified here and contributes to close the research gab.

Guideline 5: Research rigor
Research on task realization strategies has long been based on complex algorithms, such has Hadoop systems, edge computing
or cloud computing (Lopez et al. (2015)). In this contribution, heuristics provide the underlying task realization strategy,
which allows for efficient task realizations (such as processing costs, traffic intensity, total number of waiting jobs, total
time of waiting jobs, and total job realization with time) and enables the development of more context-specific strategies,
benchmarks, and applications.

Guideline 6: Design as a search process
As discussed previously, the implementation of task realization strategies, application, and benchmarking in analytical
environments in iterations is essential. The authors studied variations in realization strategies over a period of 14 months
within the aforementioned company workshops. Creativity and problem-solving capabilities were involved in the construction
of an NDM.

Guideline 7: Communication of research
The presentation of this research is aimed at an audience familiar with queuing theory and analytics. Even so, the contri-
bution provides useful information for managerial audiences. While the authors present a thorough discussion of economic
performance criteria, the contribution provides evidence for both technical implementations and economic reasoning.
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A major contribution lies in the integration of various domain-specific knowl-

edge bases (Tab. 1) in one coherent simulation model. This provides a basis for

the comparison of efficient task realization strategies in analytical infrastruc-

tures, and provides an answer to the first research question. Through its appli-

cation in a demonstration scenario, common strategies are evaluated with regard

to their efficiency (second research question). As a NDM was developed, the

strategy variants of which outperformed common approaches in major points,

helpful guidelines regarding infrastructure optimization can be derived for both

managers and technical experts.

Limitations and lessons learned. Although the results demonstrate clear domi-

nance of the NDM, this cannot yet stand as a generalization since the applied

contexts incorporates only a small scenario. During the workshop, the need for

detailed explanations and the collection of parameters by the moderator became

apparent. Future research should therefore incorporate limitations of the current

work. A tool-based, guided parameter gathering will simplify the scenario char-

acterization during workshops. Considering real-world infrastructures provides

insights regarding the applicability of the approach for complex infrastructures.

Sensitivity analyses allow to demonstrate the applicability and performance of

selected task realization strategies, depending on the environmental conditions.

The question whether the dominance of strategies can be identified remains.

Further work on task realization strategies could improve task distribution and

progessing. Even more specific models, such as the pricing of third parties, can

increase the reference of simulations to reality. Furthermore, the fit of contem-

porary IT and parameter-specified architectural frameworks can be optimized

at various points so that this contribution may advance our understanding of

how to best realize tasks in analytical infrastructures.
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