
Parameterisation of Three-Valued Abstractions
– Proof of Theorem 1

Nils Timm and Stefan Gruner

Department of Computer Science, University of Pretoria, South Africa
{ntimm,sgruner}@cs.up.ac.za

In the following we present the proof of Theorem 1 from the paper ”Parameterisation of Three-Valued

Abstractions”, submitted to the 17th Brazilian Symposium on Formal Methods. For our proof we use the

following Proposition 1 from [1] (pp. 64-65) which establishes the relation between the two-valued Kripke

structure K modelling the concrete system and the three-valued Kripke structure K⊥ modelling the abstract

system.

Proposition 1.

Let Sys = ‖ni=1 Proci be a concurrent system and Spot = Spot(Proc) ∪ Spot(Pred) be a given spotlight

abstraction for Sys. Let K = (S ,R,L,F) over a set AP be a two-valued Kripke structure modelling the

concrete state space of Sys, i.e. every temporal logic property over AP that holds for Sys also holds for K and

vice versa. Let K⊥ = (S⊥,R⊥,L⊥,F⊥) over AP⊥ = Spot(Pred)∪{pci = j | Proci ∈ Spot(Proc)∧ j ∈ Loci}
with AP⊥ ⊆ AP be a pure three-valued Kripke structure modelling the abstract state space corresponding to

Spot. Moreover, let s1 ∈ S and s⊥1 ∈ S⊥ be states representing the initial configuration of Sys in K resp.

K⊥ and let ψ over AP⊥ be an LTL formula. Then the following holds:

1. [K⊥, s⊥1 |= ψ] ≤K3
[K , s1 |= ψ], i.e. every definite verification result obtained for the pure three-valued

Kripke structure K⊥ can be transferred to the two-valued Kripke structure K ,

2. for each path π⊥ ∈ Π(K⊥, s⊥1) there exists a path π ∈ Π(K , s1) with ∀ i > 0 : R⊥(π⊥i , π
⊥
i+1) = true ⇒

R(πi , πi+1) = true ∧ ∀ p ∈ AP⊥ : L⊥(π⊥i , p) ≤K3
L(πi , p),

3. for each path π ∈ Π(K , s1) there exists a path π⊥ ∈ Π(K⊥, s⊥1) with ∀ i > 0 : R(πi , πi+1) 6= false ⇒
R⊥(π⊥i , π

⊥
i+1) 6= false ∧ ∀ p ∈ AP⊥ : L⊥(π⊥i , p) ≤K3

L(πi , p).

Hence, for each path in K⊥ there exists a corresponding ’more or equal definite’ path in K , and for each

path in K there exists a corresponding ’less or equal definite’ path in K⊥. Based on this proposition we can

prove Theorem 1.

Theorem 1.

Let Sys = ‖ni=1 Proci be a concurrent system and Spot = Spot(Proc) ∪ Spot(Pred) be a given spotlight

abstraction for Sys. Let K over AP be a two-valued KS modelling the concrete state space of Sys and let K⊥

over AP⊥ = Spot(Pred)∪{pci = j | Proci ∈ Spot(Proc)∧ j ∈ Loci} with AP⊥ ⊆ AP be a pure three-valued

KS modelling the abstract state space corresponding to Spot. Moreover, let s1 and s⊥1 be states representing

the initial configuration of Sys in K resp. K⊥. Then for any parameterisation K⊥(
m

x) of K⊥ obtained by

applying the rules I and II, and for any safety or liveness LTL formula ψ over AP⊥ the following holds:

[K⊥(
m

x), s⊥1 |= ψ] ≤K3 [K , s1 |= ψ]

1

Proof. (Theorem 1)

Theorem 1 immediately follows from Lemma 1 where we split [K⊥(
m

x), s⊥1 |= ψ] ≤K3 [K , s1 |= ψ] into two

different cases:

Lemma 1.

Let all definitions as in Theorem 1. Then the following holds:

(1) [K⊥(
m

x), s⊥1 |= ψ] = true ⇒ [K , s1 |= ψ] = true.

and

(2) [K⊥(
m

x), s⊥1 |= ψ] = false ⇒ [K , s1 |= ψ] = false

Proof. (Lemma 1)

The proof of Part (1) of Lemma 1 is as follows. We start with the following equivalent transformations (note

that K is two-valued, whereas K⊥ and K⊥(
m

x) are three-valued):

[K⊥(
m

x), s⊥1 |= ψ] = true ⇒ [K , s1 |= ψ] = true

⇔ [K⊥(
m

x), s⊥1 |= ψ] 6= true ∨ [K , s1 |= ψ] = true

⇔ [K , s1 |= ψ] = true ∨ [K⊥(
m

x), s⊥1 |= ψ] 6= true

⇔ [K , s1 |= ψ] = false ⇒ [K⊥(
m

x), s⊥1 |= ψ] 6= true

⇔ [K , s1 |= ψ] = false ⇒ [K⊥(
m

x), s⊥1 |= ψ] ∈ {false,⊥}

⇔ [K , s1 |= ψ] = false ⇒ ∃(m

a) ∈ {t , f }m ∃π ∈ Π(K⊥(
m

a), s⊥1) : [π |= ψ] ∈ {false,⊥}
(compare Definition 4 and Definition 6 of the submitted paper)

Hence, we have to show that if checking [K , s1 |= ψ] yields false, then there exists an instantiation K⊥(
m

a) of

K⊥(
m

x) such that checking [K⊥(
m

a), s⊥1 |= ψ] yields false or unknown, i.e. for some K⊥(
m

a) there exists a path

π with [π |= ψ] ∈ {false,⊥}.

We know that for K and K⊥ Proposition 1 holds and we have that ψ is of the form

(a) ψ ≡ G¬p (safety)

i.e. a real counterexample for ψ would be of the form π = (π1 . . . πk) with ∀ 1 ≤ i < k : R(πi , πi+1) = true

and L(πk , p) = true (whereas an unconfirmed counterexample would be of a similar form but could also

contain ⊥-transitions and ⊥-labellings)

or

2

(b) ψ ≡ GFp (liveness)

i.e. a real counterexample for ψ would be of the form π = (π1 . . . πl−1) • (πl . . . πk)ω with ∀ 1 ≤ i <

k : R(πi , πi+1) = true, R(πk , πl) = true, and ∀ l ≤ i ≤ k : L(πi , p) = false (whereas an unconfirmed

counterexample would be of a similar form but could also contain ⊥-transitions and ⊥-labellings)

where p ∈ AP⊥.

Thus, Lemma 1 Part (1) immediately follows from Lemma 2 where we distinguish the following cases:

Lemma 2.

Let all definitions as in Theorem 1 and let p ∈ AP⊥. Then the following holds:

(a) If there exists a path π ∈ Π(K , s1) and π is of the form π = (π1 . . . πk) with ∀ 1 ≤ i < k : R(πi , πi+1) =

true and L(πk , p) = true, then there is an instantiation K⊥(
m

a) of K⊥(
m

x) such that there exists a path

π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥k ′(
m

a)) with ∀ 1 ≤ i < k ′ : R⊥(
m

a)(πi(
m

a), πi+1(
m

a)) ∈ {true,⊥} and L⊥(
m

a)(π⊥k ′(
m

a), p) ∈
{true,⊥}.

(b) If there exists a path π ∈ Π(K , s1) and π is of the form π = (π1 . . . πl−1) • (πl . . . πk)ω with ∀ 1 ≤ i <

k : R(πi , πi+1) = true, R(πk , πl) = true and ∀ l ≤ i ≤ k : L(πi , p) = false, then there is an instanti-

ation K⊥(
m

a) of K⊥(
m

x) such that there exists a path π⊥(
m

a) ∈ Π(K⊥(
m

a), s⊥1) and π⊥(
m

a) is of the form

π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥l′−1(
m

a))•(π⊥l′ (
m

a) . . . π⊥k ′(
m

a))ω with ∀ 1 ≤ i < k ′ : R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) ∈ {true,⊥},
R⊥(

m

a)(π⊥k ′(
m

a), π⊥l′ (
m

a)) ∈ {true,⊥} and ∀ l ′ ≤ i ≤ k ′ : L⊥(
m

a)(π⊥i (
m

a), p) ∈ {false,⊥}.

Proof. (Lemma 2)

Case (a): Based on Proposition 1.3 we can conclude that in the pure three-valued Kripke structure K⊥ there

exists a path π⊥ ∈ Π(K⊥, s⊥1) which is of the form π⊥ = (π⊥1 . . . π
⊥
k ′) with ∀ 1 ≤ i < k ′ : R⊥(π⊥i , π

⊥
i+1) ∈

{true,⊥} and L⊥(π⊥k ′ , p) ∈ {true,⊥}.
Without loss of generality we can assume that along π⊥ each transition and state occurs at most once. Oth-

erwise π⊥ must contain cycles (π⊥t . . . π⊥r)n that are left after a finite number of n run-throughs. We can re-

move such cycles by replacing π⊥ = (π⊥1 . . . π
⊥
r)•(π⊥t . . . π⊥r)n •(π⊥r+1 . . . π

⊥
k) by π⊥ = (π⊥1 . . . π

⊥
r π
⊥
r+1 . . . π

⊥
k ′),

which is still a path prefix with ∀ 1 ≤ i < k ′ : R⊥(π⊥i , π
⊥
i+1) ∈ {true,⊥} and L⊥(π⊥k ′ , p) ∈ {true,⊥}.

Since K⊥(
m

x) is a parameterisation of K⊥, there must exist and instantiation K⊥(
m

a) such that there exists

a path π⊥(
m

a) ∈ Π(K⊥(
m

a), s⊥1) with π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥k ′(
m

a)) with ∀ 1 ≤ i < k ′ : R⊥(
m

a)(πi(
m

a), πi+1(
m

a)) ∈
{true,⊥} and L⊥(

m

a)(π⊥k ′(
m

a), p) ∈ {true,⊥}.
The explanation is as follows: According to the definition of our parameterisation rules, the path π⊥ ∈

Π(K⊥, s⊥1) must have a corresponding path π⊥(
m

x) ∈ Π(K⊥(
m

x), s⊥1) where some formerly unknown tran-

sitions and labellings might now be parameterised, and similar to π⊥, each transition and state occurs

at most once along π⊥(
m

x). We now choose (
m

a) ∈ {true, false}m such that each parameterised transition

along π⊥(
m

x) evaluates to true along π⊥(
m

a). This is possible because we have that each state occurs at most

once along π⊥(
m

x). Hence, the starting state of a parameterised complementary branch can occur at most

once, and thus, only one branch of each parameterised complementary branch can occur along π⊥(
m

x) at

all. Moreover, if L⊥(
m

x)(π⊥k ′(
m

x), p) is parameterised, then we instantiate the labelling parameters such that

3

L⊥(
m

a)(π⊥k ′(
m

a), p) = true.

This implies Lemma 2 (a) and thus ends this case of the proof.

Case (b): Based on Proposition 1.3 we can conclude that in the pure three-valued Kripke structure K⊥

there exists a path π⊥ = (π⊥1 . . . π
⊥
l′−1) • (π⊥l′ . . . π

⊥
k ′)ω with ∀ 1 ≤ i < k ′ : R⊥(π⊥i , π

⊥
i+1) ∈ {true,⊥},

R⊥(π⊥k , π
⊥
l′) ∈ {true,⊥} and ∀ l ′ ≤ i ≤ k ′ : L⊥(π⊥i , p) ∈ {false,⊥}.

Without loss of generality we can assume that along π⊥’s finite unfolding π⊥fin = (π⊥1 . . . π
⊥
l′−1) •

(π⊥l′ . . . π
⊥
k ′)•(π⊥l′) each transition and state occurs at most once, except the state π⊥l′ which occurs twice. The

explanation is the same as in Case (a). For π⊥fin we still have that ∀ 1 ≤ i < k ′ : R⊥(π⊥i , π
⊥
i+1) ∈ {true,⊥},

R⊥(π⊥k ′ , π⊥l′) ∈ {true,⊥} and ∀ l ′ ≤ i ≤ k ′ : L⊥(π⊥i , p) ∈ {false,⊥}.
Since K⊥(

m

x) is a parameterisation of K⊥, there must exist and instantiation K⊥(
m

a) such that there

exists a path π⊥(
m

a) ∈ Π(K⊥(
m

a), s⊥1) with π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥l′−1(
m

a)) • (π⊥l′ (
m

a) . . . π⊥k ′(
m

a))ω with ∀ 1 ≤ i <

k ′ : R⊥(
m

a)(πi(
m

a), πi+1(
m

a)) ∈ {true,⊥} and ∀ l ′ ≤ i ≤ k ′ : L⊥(
m

a)(π⊥i (
m

a), p) ∈ {false,⊥}
The explanation is as follows: According to the definition of our parameterisation rules, the path π⊥ ∈

Π(K⊥, s⊥1) must have a corresponding path π⊥(
m

x) ∈ Π(K⊥(
m

x), s⊥1) where some formerly unknown transi-

tions and labellings might now be parameterised, and similar to π⊥, each transition and state occurs at most

once along π⊥(
m

x)’s finite unfolding π⊥fin(
m

x) = (π⊥1 (
m

x) . . . π⊥l′−1(
m

x)) • (π⊥l′ (
m

x) . . . π⊥k ′(
m

x)) • (π⊥l′ (
m

x)), except the

state π⊥l′ (
m

x) which occurs twice. We now choose (
m

a) ∈ {true, false}m such that each parameterised transi-

tion along π⊥fin(
m

x) evaluates to true along π⊥fin(
m

a). This is possible because along π⊥fin(
m

x) each state s

has a unique successor state s ′, and thus, at most one branch transition of each parameterised complemen-

tary branch can occur along π⊥fin(
m

x) at all. π⊥fin(
m

x) can be straightforwardly extended to an infinite path

that repetitively runs through the same transitions. Thus, with our evaluation we also get the infinite path

π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥l′−1(
m

a)) • (π⊥l′ (
m

a) . . . π⊥k ′(
m

a))ω where each formerly parameterised transition is now true.

It remains to show that we can choose (
m

a) ∈ {true, false}m such that additionally ∀ l ′ ≤ i ≤ k ′ :

L⊥(
m

a)(π⊥i (
m

a), p) ∈ {false,⊥} holds for the cycle part (π⊥l′ (
m

a) . . . π⊥k ′(
m

a)) of π⊥(
m

a). According to our rules,

the parameterisation of predicates is always independent from the parameterisation of transitions. Thus, we

can argument independently from our formerly chosen (
m

a) ∈ {true, false}m for transitions here.

It is sufficient to show that along the cycle part (π⊥l′ (
m

x) . . . π⊥k ′(
m

x)) of the parameterised π⊥(
m

x) there

exists no complementary parameterisation with regard to the predicate p, i.e. ¬∃ l ′ ≤ i , j ≤ k ′ with

L⊥(
m

x)(π⊥i (
m

x), p) = b and L⊥(
m

x)(π⊥j (
m

x), p) = ¬b where b is a logical expression over {x1, . . . , xm}.
Remember that K correctly represents the concrete state space of the considered system Sys, in K there

exists the path π = (π1 . . . πl−1) • (πl . . . πk)ω with ∀ l ≤ i ≤ k : L(πi , p) = false, and K⊥ is a corresponding

sound abstract state space model (compare Proposition 1). The parameterisation of predicates in K⊥ is

always done with respect to the systems operations associated with transitions in K⊥ (compare Rule II).

Thus, in any parameterised Kripke structure K⊥(
m

x) constructed by the application of Rule II to K⊥, there

must be a cycle (π⊥l′ (
m

x) . . . π⊥k ′(
m

x)) corresponding to concrete cycle (πl . . . πk) without a complementary pa-

rameterisation with regard to the predicate p.

This implies Lemma 2 (b) and thus ends the proof of Lemma 2.

2

4

The proof of Part (2) of Lemma 1 is analogous to the proof of Part (1) goes as follows. We start with the

following equivalent transformation (note that K is two-valued, whereas K⊥ and K⊥(
m

x) are three-valued):

[K⊥(
m

x), s⊥1 |= ψ] = false ⇒ [K , s1 |= ψ] = false

⇔ ∀(m

a) ∈ {t , f }m ∃π ∈ Π(K⊥(
m

a), s⊥1) : [π |= ψ] = false ⇒ [K , s1 |= ψ] = false

(compare Definition 4 and Definition 6 of the submitted paper)

Hence, we have to show that if checking [K⊥(
m

a), s⊥1 |= ψ] yields false for all instantiations K⊥(
m

a) of K⊥(
m

x),

then checking [K , s1 |= ψ] also yields false. I.e. if for all K⊥(
m

a) there exists a path π⊥ with [π⊥ |= ψ] = false

then there exists a path π in K with [π |= ψ] = false.

We know that for K and K⊥ Proposition 1 holds and we have that ψ is of the form

(a) ψ ≡ G¬p (safety)

i.e. a real counterexample for ψ would be of the form π = (π1 . . . πk) with ∀ 1 ≤ i < k : R(πi , πi+1) = true

and L(πk , p) = true (whereas an unconfirmed counterexample would be of a similar form but could also

contain ⊥-transitions and ⊥-labellings)

or

(b) ψ ≡ GFp (liveness)

i.e. a real counterexample for ψ would be of the form π = (π1 . . . πl−1) • (πl . . . πk)ω with ∀ 1 ≤ i <

k : R(πi , πi+1) = true, R(πk , πl) = true, and ∀ l ≤ i ≤ k : L(πi , p) = false (whereas an unconfirmed

counterexample would be of a similar form but could also contain ⊥-transitions and ⊥-labellings)

where p ∈ AP⊥.

Thus, Lemma 1 Part (2) immediately follows from Lemma 3 where we distinguish the following cases:

Lemma 3.

Let all definitions as in Theorem 1 and let p ∈ AP⊥. Then the following holds:

(a) If for all instantiations K⊥(
m

a) of K⊥(
m

x) there exists a path π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥k ′(
m

a)) with ∀ 1 ≤ i <

k ′ : R⊥(
m

a)(πi(
m

a), πi+1(
m

a)) = true and L⊥(
m

a)(π⊥k ′(
m

a), p) = true, then there exists a path π ∈ Π(K , s1)

and π is of the form π = (π1 . . . πk) with ∀ 1 ≤ i < k : R(πi , πi+1) = true and L(πk , p) = true.

(b) If for all instantiations K⊥(
m

a) of K⊥(
m

x) there exists a path π⊥(
m

a) ∈ Π(K⊥(
m

a), s⊥1) and π⊥(
m

a) is of the

form π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥l′−1(
m

a))•(π⊥l′ (
m

a) . . . π⊥k ′(
m

a))ω with ∀ 1 ≤ i < k ′ : R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) = true,

R⊥(
m

a)(π⊥k ′(
m

a), π⊥l′ (
m

a)) = true and ∀ l ′ ≤ i ≤ k ′ : L⊥(
m

a)(π⊥i (
m

a), p) = false, then there exists a path

π ∈ Π(K , s1) and π is of the form π = (π1 . . . πl−1) • (πl . . . πk)ω with ∀ 1 ≤ i < k : R(πi , πi+1) = true,

R(πk , πl) = true and ∀ l ≤ i ≤ k : L(πi , p) = false.

5

Proof. (Lemma 3)

Case (a): Without loss of generality we can assume that along each π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥k ′(
m

a)) each

transition and state occurs at most once. Otherwise π⊥(
m

a) must contain cycles (π⊥t (
m

a) . . . π⊥r (
m

a))n that are left

after a finite number of n run-throughs. We can remove such cycles by replacing π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥r (
m

a))•
(π⊥t (

m

a) . . . π⊥r (
m

a))n •(π⊥r+1(
m

a) . . . π⊥k (
m

a)) by π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥r (
m

a)π⊥r+1(
m

a) . . . π⊥k ′(
m

a)), which is still a path

prefix with ∀ 1 ≤ i < k ′ : R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) = true and L⊥(
m

a)(π⊥k ′(
m

a), p) = true. We denote such paths

as a single-occurrence prefixes.

Each K⊥(
m

a) is an instantiation of K⊥(
m

x), where K⊥(
m

x) is a parameterisation of K⊥ obtained by the

application of Rule I and Rule II. Moreover, for each single-occurrence prefix π⊥ in K⊥ there exists a

single-occurrence prefix π in K with ∀ i > 0 : R⊥(π⊥i , π
⊥
i+1) = true ⇒ R(πi , πi+1) = true ∧ ∀ p ∈ AP⊥ :

L⊥(π⊥i , p) ≤K3
L(πi , p) (Proposition 1.2). A parameterisation of K⊥ only substitutes certain unknowns with

boolean expressions over the set of parameters {x1, . . . , xm}. Thus, for each parameterised single-occurrence

prefix π⊥(
m

x) in K⊥(
m

x) there exists a single-occurrence prefix π in K with ∀ i > 0 : R⊥(
m

x)(π⊥i (
m

x), π⊥i+1(
m

x)) =

true ⇒ R(πi , πi+1) = true ∧ ∀ p ∈ AP⊥ :
(

L⊥(
m

x)(π⊥i (
m

x), p) ≤K3
L(πi , p) ∨ L⊥(

m

x)(π⊥i (
m

x), p) = b
)

where b s a boolean expression over {x1, . . . , xm}.

We now show that we can instantiate the parameters {x1, . . . , xm} with truth values {a1, . . . , am} such

that for each single-occurrence prefix π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥k (
m

a)) in K⊥(
m

a) there exists a single-occurrence

prefix π = (π1 . . . πk) in K with ∀ 0 < i < k : R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) = R(πi , πi+1) ∧ ∀ p ∈ AP⊥ :

L⊥(
m

a)(π⊥i (
m

a), p) = L(πi , p). The explanation is as follows: If K⊥(
m

x) would be a parameterisation of K⊥

where each parameterised predicate in a state and each parameterised transition is associated with an

individual parameter, then there exists an instantiation K⊥(
m

a) such that for each single-occurrence prefix

π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥k (
m

a)) there exists a single-occurrence prefix π = (π1 . . . πk) in K with ∀ 0 < i < k :

R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) = R(πi , πi+1) ∧ ∀ p ∈ AP⊥ : L⊥(
m

a)(π⊥i (
m

a), p) = L(πi , p). This immediately follows

from Proposition 1 together with the definitions 5 and 6 from the submitted paper and the fact that we are

only considering single-occurrence prefixes.

We still have to show, that this also holds for parameterisations obtained by the application of Rule I

and Rule II, which means each parameterised predicate in state and each parameterised transition is now

not necessarily associated with an individual parameter. The application of Rule I associates complementary

branches with complementary expressions over the set of parameters. The application of Rule II associates

predicates in different states with the same parameter as long as the value of the predicate does not change

between this states. This generally reduces the amount of parameters and thus the amount of possible

instantiations in comparison to an individual parameterisation. However, the application of the rules solely

leads to the exclusion of infeasible behaviour (e.g. that both branches of an if -statement are executable at

the same time) of the original system in the Kripke structure. Feasible behaviour of the original system

will be never excluded by applying the rules, since the application of the rules always takes the systems

original program code into account. Thus, for a parameterisation K⊥(
m

x) of K⊥ obtained by the application

of the rules I and II there must also exist an instantiation K⊥(
m

a) of K⊥(
m

x) such that for each single-

occurrence prefix π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥k (
m

a)) there exists a single-occurrence prefix π = (π1 . . . πk) in K with

∀ 0 < i < k : R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) = R(πi , πi+1) ∧ ∀ p ∈ AP⊥ : L⊥(
m

a)(π⊥i (
m

a), p) = L(πi , p).

Hence, there exists one instantiation K⊥(
m

a) that exactly characterises single-occurrence prefixes of K .

We can conclude that if a single-occurrence prefix of the form π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥k ′(
m

a)) with ∀ 1 ≤ i <

6

k ′ : R⊥(
m

a)(πi(
m

a), πi+1(
m

a)) = true and L⊥(
m

a)(π⊥k ′(
m

a), p) = true exists in all instantiations K⊥(
m

a) of K⊥(
m

x),

then it also exists in the one instantiation that exactly characterises single-occurrence prefixes of K , which

immediately implies that a path of the form π = (π1 . . . πk) with ∀ 1 ≤ i < k : R(πi , πi+1) = true and

L(πk , p) = true exists in K .

This implies Lemma 3 (a) and thus ends this case of the proof.

Case (b): Lemma 3 (a) together with Proposition 1 guarantees us that for K⊥(
m

x) there must be one instanti-

ation K⊥(
m

a) such that each single-occurrence prefix1 π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥k (
m

a)) ∈ Π(K⊥(
m

a), s⊥1) has a cor-

responding single-occurrence prefix π = (π1 . . . πk) ∈ Π(K , s1) with ∀ 0 < i < k : R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) =

R(πi , πi+1) ∧ ∀ p ∈ AP⊥ : L⊥(
m

a)(π⊥i (
m

a), p) = L(πi , p). We say, π⊥(
m

a) can be simulated in K by π. The

reason why we can simulate single-occurrence prefixes but not necessarily infinite paths is that we have

abstract states in K⊥(
m

a) (resp. in K⊥(
m

x) and in K⊥). An abstract state s⊥i (
m

a) of K⊥(
m

a) may charac-

terise two (or more) concrete states si and s ′i in K (i.e. ∀ p ∈ AP⊥ : L⊥(
m

a)(s⊥i (
m

a), p) ≤K3
L(si , p) and

L⊥(
m

a)(s⊥i (
m

a), p) ≤K3
L(s ′i , p)). Thus, for an infinite path π⊥(

m

a) = (π⊥1 (
m

a) . . . π⊥l−1(
m

a)) • (π⊥l (
m

a) . . . π⊥k (
m

a))ω

in K⊥(
m

a) with ∀ 1 ≤ i < k : R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) = true, R⊥(
m

a)(π⊥k (
m

a), π⊥l (
m

a)) = true, and ∀ l ≤ i ≤ k :

L⊥(
m

a)(π⊥i (
m

a), p) = false where abstract states and transitions occur multiple times, we can assume that the

simulation of π⊥(
m

a) in K is only possible for a finite number of runs through the ¬p-cycle (π⊥l (
m

a) . . . π⊥k (
m

a)).

I.e. we will find a prefix πfin = (π1 . . . πl−1) • (πl . . . πi−1πiπi+1 . . . πk)n • (πl . . . πi−1π
′
i) in K with n > 0 and

l ≤ i ≤ k which is equivalent (wrt. transition values and labellings) to the prefix of π⊥(
m

a) of the same length,

but there is no transition R(π′i , πi+1), i.e. no way to continue the simulation of π⊥(
m

a) in K . Evidently, πi and

π′i must be two different concrete states that are characterised by the same abstract state π⊥i (
m

a) in K⊥(
m

a)

(resp. in K⊥(
m

x) and in K⊥). The only reason why the simulation of π⊥(
m

a) cannot be continued in K after

a finite number of runs through the ¬p-cycle, is that R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) corresponds to a parameterised

transition in K⊥(
m

x) and R(πi , πi+1) = true but R(π′i , πi+1) = false in the concrete K . Parameterised tran-

sitions only arise due to the application of Rule I. Hence, we must have that R⊥(
m

x)(π⊥i (
m

x), π⊥i+1(
m

x)) = b

with b ∈ {x1, . . . , xm ,¬x1, . . . ,¬xm} and there must be also a transition R⊥(
m

x)(π⊥i (
m

x), π′⊥i+1(
m

x)) = ¬b.

Thus, the simulation of π⊥(
m

a) by πfin = (π1 . . . πl−1) • (πl . . . πi−1πiπi+1 . . . πk)n • (πl . . . πi−1π
′
i) can-

not be continued by a concrete transition corresponding to R⊥(
m

x)(π⊥i (
m

x), π⊥i+1(
m

x)) but there must be a

some concrete state π′i+1 and a concrete transition R(π′i , π
′
i+1) corresponding to R⊥(

m

x)(π⊥i (
m

x), π′⊥i+1(
m

x))

(i.e. with ∀ p ∈ AP⊥ : L⊥(
m

x)(π′⊥i+1(
m

x), p) ≤K3
L(π′i+1, p)) that we can take next: πfin = (π1 . . . πl−1) •

(πl . . . πi−1πiπi+1 . . . πk)n • (πl . . . πi−1π
′
iπ
′
i+1). From πfin we can derive the loop-free single-occurrence pre-

fix πfin′
= (π1 . . . πl−1) • (πl . . . πi−1π

′
iπ
′
i+1). πfin′

hints at a partial instantiation K⊥(
m1
a ,

m2
x) of the param-

eterised Kripke structure K⊥(
m

x) such that there exists a prefix π′⊥(
m1
a ,

m2
x) = (π⊥1 (

m1
a ,

m2
x) . . . π⊥l−1(

m1
a ,

m2
x)) •

(π⊥l (
m1
a ,

m2
x) . . . π⊥i−1(

m1
a ,

m2
x)π′⊥i (

m1
a ,

m2
x)π′⊥i+1(

m1
a ,

m2
x)) with ∀ 0 < j <|πfin′|: R⊥(

m1
a ,

m2
x)(π⊥j (

m1
a ,

m2
x), π⊥j+1(

m1
a ,

m2
x)) =

R(πj , πj+1) ∧ ∀ p ∈ AP⊥ : L⊥(
m1
a ,

m2
x)(π⊥j (

m1
a ,

m2
x), p) = L(πj , p) in K⊥(

m1
a ,

m2
x). According to the prerequi-

site of this lemma, there must be a complete instantiation K⊥(
m

a) of K⊥(
m1
a ,

m2
x) such that π′⊥(

m1
a ,

m2
x) can

be extended to an infinite path π′⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥l′−1(
m

a)) • (π⊥l′ (
m

a) . . . π⊥k ′(
m

a))ω with ∀ 1 ≤ i < k ′ :

R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) = true, R⊥(
m

a)(π⊥k ′(
m

a), π⊥l′ (
m

a)) = true, and ∀ l ≤ i ≤ k ′ : L⊥(
m

a)(π⊥i (
m

a), p) = false,

1 Along a single-occurrence prefix π = (π1 . . . πk) of a Kripke structure K , each state and each transition of K occurs
at most once.

7

and for the finite unfolding (π⊥1 (
m

a) . . . π⊥l′−1(
m

a)π⊥l (
m

a) . . . π⊥k ′(
m

a)π⊥l′ (
m

a)) of π′⊥(
m

a) there exists an equivalent

single-occurrence prefix (π1 . . . πl′−1πl′ . . . πkπl′) in K . Either this single-occurrence prefix can be extended

to the infinite path π′ = (π1 . . . πl′−1)•(πl′ . . . πk ′)ω in K , which means the lemma is proven. Or the prefix can

only be extended to a prefix π′fin = (π1 . . . πl′−1)•(πl′ . . . πi−1πiπi+1 . . . πk ′)n •(πl′ . . . πi−1π
′
i) with n > 0 and

l ′ ≤ i ≤ k ′, but the simulation of the infinite path π′⊥(
m

a) of K⊥(
m

a) cannot be further continued in K . Then we

can (repetitively) extend π′fin as we have done it before to get π′fin out of πfin . After a finite number of repe-

titions, we will get a prefix that can be actually extended to an infinite path π′ = (π1 . . . πl′−1)• (πl′ . . . πk ′)ω

in K , which means the lemma is proven. Otherwise there would exist a complete instantiation K⊥(
m

a)

where no path π⊥(
m

a) = (π⊥1 (
m

a) . . . π⊥l−1(
m

a)) • (π⊥l (
m

a) . . . π⊥k (
m

a))ω ∈ Π(K⊥(
m

a), s⊥1) with ∀ 1 ≤ i < k :

R⊥(
m

a)(π⊥i (
m

a), π⊥i+1(
m

a)) = true, R⊥(
m

a)(π⊥k (
m

a), π⊥l (
m

a)) = true, and ∀ l ≤ i ≤ k : L⊥(
m

a)(π⊥i (
m

a), p) = false

exists – which however is be a contradiction to the prerequisite of Lemma 3 (b).

This implies Lemma 3 (b) and thus ends the proof of Lemma 3. Lemma 2 together with Lemma 3 es-

tablishes the correctness of Lemma 1 (a) and (b).

2

We now can immediately conclude that Theorem 1 holds.

2

References

1. Timm, N.: Three-Valued Abstraction and Heuristic-Guided Refinement for Verifying Concurrent Systems. Phd

thesis, University of Paderborn (2013)

8

