Parameterisation of Three-Valued Abstractions

Proof of Theorem 1

Nils Timm and Stefan Gruner

Department of Computer Science, University of Pretoria, South Africa

\{ntimm,sgruner\}@cs.up.ac.za

In the following we present the proof of Theorem 1 from the paper "Parameterisation of Three-Valued Abstractions", submitted to the 17th Brazilian Symposium on Formal Methods. For our proof we use the following Proposition 1 from [1] (pp. 64-65) which establishes the relation between the two-valued Kripke structure \(K\) modelling the concrete system and the three-valued Kripke structure \(K^\perp\) modelling the abstract system.

Proposition 1.

Let \(\text{Sys} = \prod_{i=1}^n \text{Proc}_i\) be a concurrent system and \(\text{Spot} = \text{Spot}(\text{Proc}) \cup \text{Spot}(\text{Pred})\) be a given spotlight abstraction for \(\text{Sys}\). Let \(K = (S, R, L, \mathcal{F})\) over a set \(AP\) be a two-valued Kripke structure modelling the concrete state space of \(\text{Sys}\), i.e. every temporal logic property over \(AP\) that holds for \(\text{Sys}\) also holds for \(K\) and \(K^\perp\). Then for any parameterisation \(K^\perp\) of \(K\), the following holds:

1. \([K^\perp, s^1_1] \models \psi \leq_{K_3} [K, s_1] \models \psi\), i.e. every definite verification result obtained for the pure three-valued Kripke structure \(K^\perp\) can be transferred to the two-valued Kripke structure \(K\).
2. for each path \(\pi^\perp \in \Pi(K^\perp, s^1_1)\) there exists a path \(\pi \in \Pi(K, s_1)\) with \(\forall i > 0 : R^\perp(\pi^i_1, \pi^i_{+1}) = \text{true} \Rightarrow R(\pi_i, \pi_{i+1}) = \text{true}\) and \(\forall p \in AP^\perp : L^\perp(\pi^i_1, p) \leq_{K_3} L(\pi_i, p)\),
3. for each path \(\pi \in \Pi(K, s_1)\) there exists a path \(\pi^\perp \in \Pi(K^\perp, s^1_1)\) with \(\forall i > 0 : R(\pi_i, \pi_{i+1}) \neq \text{false} \Rightarrow R^\perp(\pi^i_1, \pi^i_{+1}) \neq \text{false}\) and \(\forall p \in AP^\perp : L^\perp(\pi^i_1, p) \leq_{K_3} L(\pi_i, p)\).

Hence, for each path in \(K^\perp\) there exists a corresponding 'more or equal definite' path in \(K\), and for each path in \(K\) there exists a corresponding 'less or equal definite' path in \(K^\perp\). Based on this proposition we can prove Theorem 1.

Theorem 1.

Let \(\text{Sys} = \prod_{i=1}^n \text{Proc}_i\) be a concurrent system and \(\text{Spot} = \text{Spot}(\text{Proc}) \cup \text{Spot}(\text{Pred})\) be a given spotlight abstraction for \(\text{Sys}\). Let \(K\) over \(AP\) be a two-valued KS modelling the concrete state space of \(\text{Sys}\) and let \(K^\perp\) over \(AP^\perp = \text{Spot}(\text{Pred}) \cup \{\text{pc}_i = j \mid \text{Proc}_i \in \text{Spot}(\text{Proc}) \land j \in \text{Loc}_i\}\) with \(AP^\perp \subseteq AP\) be a pure three-valued KS modelling the abstract state space corresponding to \(\text{Spot}\). Moreover, let \(s_1\) and \(s^1_1\) be states representing the initial configuration of \(\text{Sys}\) in \(K\) resp. \(K^\perp\). Then for any parameterisation \(K^\perp(\bar{x})\) of \(K^\perp\) obtained by applying the rules I and II, and for any safety or liveness LTL formula \(\psi\) over \(AP^\perp\) the following holds:

\([K^\perp(\bar{x}), s^1_1] \models \psi \leq_{K_3} [K, s_1] \models \psi\]
Proof. (Theorem 1)

Theorem 1 immediately follows from Lemma 1 where we split \([K^\perp(\vec{x}), s^1_1 = \psi] \leq_{K_3} [K, s_1 = \psi]\) into two different cases:

Lemma 1.

Let all definitions as in Theorem 1. Then the following holds:

1. \([K^\perp(\vec{x}), s^1_1 = \psi] = \text{true} \Rightarrow [K, s_1 = \psi] = \text{true}\).

and

2. \([K^\perp(\vec{x}), s^1_1 = \psi] = \text{false} \Rightarrow [K, s_1 = \psi] = \text{false}\).

Proof. (Lemma 1)

The proof of Part (1) of Lemma 1 is as follows. We start with the following equivalent transformations (note that \(K^\perp\) is two-valued, whereas \(K^\perp(\vec{x})\) are three-valued):

\([K^\perp(\vec{x}), s^1_1 = \psi] = \text{true} \Rightarrow [K, s_1 = \psi] = \text{true}\)

\(\Leftrightarrow [K^\perp(\vec{x}), s^1_1 = \psi] = \text{false} \lor [K, s_1 = \psi] = \text{false}\)

\(\Leftrightarrow [K, s_1 = \psi] = \text{true} \lor [K^\perp(\vec{x}), s^1_1 = \psi] = \text{false}\)

\(\Leftrightarrow [K, s_1 = \psi] = \text{false} \Rightarrow [K^\perp(\vec{x}), s^1_1 = \psi] = \text{false}\)

\(\Leftrightarrow [K, s_1 = \psi] = \text{false} \Rightarrow [K^\perp(\vec{x}), s^1_1 = \psi] = \text{false} \in \{\text{false}, \bot\}\)

\(\Leftrightarrow [K, s_1 = \psi] = \text{false} \Rightarrow \exists(\vec{a}) \in \{t, f\}^m \exists \pi \in \Pi(K^\perp(\vec{a}), s^1_1) : [\pi = \psi] \in \{\text{false}, \bot\}\)

(compare Definition 4 and Definition 6 of the submitted paper)

Hence, we have to show that if checking \([K, s_1 = \psi]\) yields \text{false}, then there exists an instantiation \(K^\perp(\vec{a})\) of \(K^\perp(\vec{x})\) such that checking \([K^\perp(\vec{a}), s^1_1 = \psi]\) yields \text{false} or \text{unknown}, i.e. for some \(K^\perp(\vec{a})\) there exists a path \(\pi\) with \([\pi = \psi] \in \{\text{false}, \bot\}\).

We know that for \(K\) and \(K^\perp\) Proposition 1 holds and we have that \(\psi\) is of the form

(a) \(\psi \equiv G \rightarrow p\) (safety)

i.e. a real counterexample for \(\psi\) would be of the form \(\pi = (\pi_1 \ldots \pi_k)\) with \(\forall 1 \leq i < k : R(\pi_i, \pi_{i+1}) = \text{true}\) and \(L(\pi_k, p) = \text{true}\) (whereas an unconfirmed counterexample would be of a similar form but could also contain \(\bot\)-transitions and \(\bot\)-labellings)
(b) $\psi \equiv \text{GF} \ p$ (liveness)

i.e. a real counterexample for ψ would be of the form $\pi = (\pi_1 \ldots \pi_{l-1}) \cdot (\pi_l \ldots \pi_k)^{\omega}$ with $\forall 1 \leq i < k : R(\pi_i, \pi_{i+1}) = true$, $R(\pi_k, \pi_l) = true$, and $\forall l \leq i \leq k : L(\pi_i, p) = false$ (whereas an unconfirmed counterexample would be of a similar form but could also contain \bot-transitions and \bot-labellings)

where $p \in AP^{\perp}$.

Thus, Lemma 1 Part (1) immediately follows from Lemma 2 where we distinguish the following cases:

Lemma 2.

Let all definitions as in Theorem 1 and let $p \in AP^{\perp}$. Then the following holds:

(a) If there exists a path $\pi \in \Pi(K, s_l)$ and π is of the form $\pi = (\pi_1 \ldots \pi_k)$ with $\forall 1 \leq i < k : R(\pi_i, \pi_{i+1}) = true$ and $L(\pi_k, p) = true$, then there is an instantiation $\pi^+ = (\overline{\pi})$ of $K^\perp(\overline{\pi})$ such that there exists a path $\pi^+ = (\pi_1^+ \ldots \pi_k^+)$ with $\forall 1 \leq i < k' : R^+(\overline{\pi}, \pi_i, \pi_{i+1}) \in \{true, \bot\}$ and $L^+(\overline{\pi}, \pi^+_k(p)) \in \{true, \bot\}$.

(b) If there exists a path $\pi \in \Pi(K, s_l)$ and π is of the form $\pi = (\pi_1 \ldots \pi_{l-1}) \cdot (\pi_l \ldots \pi_k)^{\omega}$ with $\forall 1 \leq i < k : R(\pi_i, \pi_{i+1}) = true$, $R(\pi_k, \pi_l) = true$ and $\forall l \leq i \leq k : L(\pi_i, p) = false$, then there is an instantiation $\pi^+ = (\overline{\pi})$ of $K^\perp(\overline{\pi})$ such that there exists a path $\pi^+ = (\pi_1^+ \ldots \pi_k^+)$ with $\forall 1 \leq i < k' : R^+(\overline{\pi}, \pi_i, \pi_{i+1}) \in \{true, \bot\}$, $R^+(\overline{\pi}, \pi^+_k(p)) \in \{true, \bot\}$ and $\forall l' \leq i \leq k' : L^+(\overline{\pi}, \pi^+_k(p)) \in \{false, \bot\}$.

Proof. (Lemma 2)

Case (a): Based on Proposition 1.3 we can conclude that in the pure three-valued Kripke structure K^\perp there exists a path $\pi^+ \in \Pi(K^\perp, s_l^\perp)$ which is of the form $\pi^+ = (\pi_1^+ \ldots \pi_k^+)$ with $\forall 1 \leq i < k' : R^+(\pi^+_i, \pi^+_i) \in \{true, \bot\}$ and $L^+(\pi^+_k(p)) \in \{true, \bot\}$.

Without loss of generality we can assume that along π^+ each transition and state occurs at most once. Otherwise π^+ must contain cycles $(\pi_1^+ \ldots \pi_n^+)$ that are left after a finite number of n run-throughs. We can remove such cycles by replacing $\pi^+ = (\pi_1^+ \ldots \pi_n^+) \cdot (\pi_1^+ \ldots \pi_n^+)^n \cdot (\pi_1^+ \ldots \pi_n^+) = \pi^+ = (\pi_1^+ \ldots \pi_n^+ \pi_{n+1}^+ \ldots \pi_k^+)$, which is still a path prefix with $\forall 1 \leq i < k' : R^+(\pi^+_i, \pi^+_{i+1}) \in \{true, \bot\}$ and $L^+(\pi^+_k(p)) \in \{true, \bot\}$.

Since $K^\perp(\overline{\pi})$ is a parameterisation of K^\perp, there must exist and instantiation $\overline{\pi}$ such that there exists a path $\pi^+(\overline{\pi}) \in \Pi(K^\perp(\overline{\pi}), s_l^\perp)$ with $\pi^+(\overline{\pi}) = (\pi_1^+ \ldots \pi_k^+)$ and $\forall 1 \leq i < k' : R^+(\overline{\pi}, \pi_i, \pi_{i+1}) \in \{true, \bot\}$ and $L^+(\pi^+_k(p)) \in \{true, \bot\}$.

The explanation is as follows: According to the definition of our parameterisation rules, the path $\pi^+ \in \Pi(K^\perp, s_l^\perp)$ must have a corresponding path $\pi^+(\overline{\pi}) \in \Pi(K^\perp(\overline{\pi}), s_l^\perp)$ where some formerly unknown transitions and labellings might now be parameterised, and similar to π^+, each transition and state occurs at most once along $\pi^+(\overline{\pi})$. We now choose $\overline{\pi} \in \{true, false\}^m$ such that each parameterised transition along $\pi^+(\overline{\pi})$ evaluates to $true$ along $\pi^+(\overline{\pi})$. This is possible because we have that each state occurs at most once along $\pi^+(\overline{\pi})$. Hence, the starting state of a parameterised complementary branch can occur at most once, and thus, only one branch of each parameterised complementary branch can occur along $\pi^+(\overline{\pi})$ at all. Moreover, if $L^+(\pi^+_k(\overline{\pi}, (\overline{\pi}))$ is parameterised, then we instantiate the labelling parameters such that
This implies Lemma 2 (a) and thus ends this case of the proof.

Case (b): Based on Proposition 1.3 we can conclude that in the pure three-valued Kripke structure K^\perp there exists a path $\pi^\perp = (\pi_1^\perp \ldots \pi_{i-1}^\perp) \bullet (\pi_i^\perp \ldots \pi_{i+1}^\perp)^\omega$ with $\forall 1 \leq i < k ': R^\perp(\pi_i^\perp, \pi_{i+1}^\perp) \in \{true, \bot\}$, $R^\perp(\pi_i^\perp, \pi_{i+1}^\perp) \in \{true, \bot\}$ and $\forall l' \leq i \leq k' : L^\perp(\pi_i^\perp, p) \in \{false, \bot\}$.

Without loss of generality we can assume that along π^\perp’s finite unfolding $\pi^\perp\text{fin} = (\pi_1^\perp \ldots \pi_{i-1}^\perp) \bullet (\pi_i^\perp \ldots \pi_{i+1}^\perp) \bullet (\pi_i^\perp)$ each transition and state occurs at most once, except the state π_i^\perp which occurs twice. The explanation is the same as in Case (a). For $\pi^\perp\text{fin}$ we still have that $\forall 1 \leq i < k' : R^\perp(\pi_i^\perp, \pi_{i+1}^\perp) \in \{true, \bot\}$, $R^\perp(\pi_i^\perp, \pi_{i+1}^\perp) \in \{true, \bot\}$ and $\forall l' \leq i \leq k' : L^\perp(\pi_i^\perp, p) \in \{false, \bot\}$.

Since $K^\perp(\bar{a})$ is a parameterisation of K^\perp, there must exist and instantiation $K^\perp(\bar{a})$ such that there exists a path $\pi^\perp(\bar{a}) \in \Pi(K^\perp(\bar{a}), s^\perp)$ with $\pi^\perp(\bar{a}) = (\pi_1^\perp(\bar{a}) \ldots \pi_{i-1}^\perp(\bar{a})) \bullet (\pi_i^\perp(\bar{a}) \ldots \pi_{i+1}^\perp(\bar{a}))^\omega$ with $\forall 1 \leq i < k' : R^\perp(\pi_i^\perp(\bar{a}), \pi_{i+1}^\perp(\bar{a})) \in \{true, \bot\}$ and $\forall l' \leq i \leq k' : L^\perp(\pi_i^\perp(\bar{a}), p) \in \{false, \bot\}$.

The explanation is as follows: According to the definition of our parameterisation rules, the path $\pi^\perp \in \Pi(K^\perp, s^\perp)$ must have a corresponding path $\pi^\perp(\bar{x}) \in \Pi(K^\perp(\bar{x}), s^\perp)$ where some formerly unknown transitions and labellings might now be parameterised, and similar to π^\perp, each transition and state occurs at most once along $\pi^\perp(\bar{x})$’s finite unfolding $\pi^\perp\text{fin}(\bar{x}) = (\pi_1^\perp(\bar{x}) \ldots \pi_{i-1}^\perp(\bar{x})) \bullet (\pi_i^\perp(\bar{x}) \ldots \pi_{i+1}^\perp(\bar{x})) \bullet (\pi_i^\perp(\bar{x}))$, except the state $\pi_i^\perp(\bar{x})$ which occurs twice. We now choose $(\bar{a}) \in \{true, false\}^m$ such that each parameterised transition along $\pi^\perp\text{fin}(\bar{x})$ evaluates to true along $\pi^\perp\text{fin}(\bar{a})$. This is possible because along $\pi^\perp\text{fin}(\bar{x})$ each state s has a unique successor state s', and thus, at most one branch transition of each parameterised complementary branch can occur along $\pi^\perp\text{fin}(\bar{x})$ at all. $\pi^\perp\text{fin}(\bar{x})$ can be straightforwardly extended to an infinite path that repetitively runs through the same transitions. Thus, with our evaluation we also get the infinite path $\pi^\perp(\bar{a}) = (\pi_1^\perp(\bar{a}) \ldots \pi_{i-1}^\perp(\bar{a})) \bullet (\pi_i^\perp(\bar{a}) \ldots \pi_{i+1}^\perp(\bar{a}))^\omega$ where each formerly parameterised transition is now true.

It remains to show that we can choose $(\bar{a}) \in \{true, false\}^m$ such that additionally $\forall l' \leq i \leq k' : L^\perp(\pi_i^\perp(\bar{a}), p) \in \{false, \bot\}$ holds for the cycle part $(\pi_i^\perp(\bar{a}) \ldots \pi_{i+1}^\perp(\bar{a}))$ of $\pi^\perp(\bar{a})$. According to our rules, the parameterisation of predicates is always independent from the parameterisation of transitions. Thus, we can argue independently from our formerly chosen $\bar{a} \in \{true, false\}^m$ for transitions here.

It is sufficient to show that along the cycle part $(\pi_i^\perp(\bar{x}) \ldots \pi_{i+1}^\perp(\bar{x}))$ of the parameterised $\pi^\perp(\bar{x})$ there exists no complementary parameterisation with regard to the predicate p, i.e. $\neg \exists l' \leq i, j \leq k'$ with $L^\perp(\pi_i^\perp(\bar{x}), p) = b$ and $L^\perp(\pi_j^\perp(\bar{x}), p) = \neg b$ where b is a logical expression over $\{x_1, \ldots, x_n\}$.

Remember that K correctly represents the concrete state space of the considered system Sys, in K there exists the path $\pi = (\pi_1 \ldots \pi_{i-1}) \bullet (\pi_i \ldots \pi_k)^\omega$ with $\forall l \leq i \leq k : L(\pi_i, p) = false$, and K^\perp is a corresponding sound abstract state space model (compare Proposition 1). The parameterisation of predicates in K^\perp is always done with respect to the systems operations associated with transitions in K^\perp (compare Rule II). Thus, in any parameterised Kripke structure $K^\perp(\bar{x})$ constructed by the application of Rule II to K^\perp, there must be a cycle $(\pi_i^\perp(\bar{x}) \ldots \pi_{i+1}^\perp(\bar{x}))$ corresponding to concrete cycle $(\pi_i \ldots \pi_k)$ without a complementary parameterisation with regard to the predicate p.

This implies Lemma 2 (b) and thus ends the proof of Lemma 2.

\[\square \]
The proof of Part (2) of Lemma 1 is analogous to the proof of Part (1) goes as follows. We start with the following equivalent transformation (note that K is two-valued, whereas K^\perp and $K^\perp(x)$ are three-valued):

$$[K^\perp(x), s^\perp_1 \models \psi] = false \Rightarrow [K, s_1 \models \psi] = false$$

$$\equiv \forall(a) \in \{t, f\}^n \exists \pi \in P(K^\perp(a), s^\perp_1) : [\pi \models \psi] = false \Rightarrow [K, s_1 \models \psi] = false$$

(compare Definition 4 and Definition 6 of the submitted paper)

Hence, we have to show that if checking $[K^\perp(a), s^\perp_1 \models \psi]$ yields false for all instantiations $K^\perp(a)$ of $K^\perp(x)$, then checking $[K, s_1 \models \psi]$ also yields false. I.e. if for all $K^\perp(a)$ there exists a path π^\perp with $[\pi^\perp \models \psi] = false$ then there exists a path π in K with $[\pi \models \psi] = false$.

We know that for K and K^\perp Proposition 1 holds and we have that ψ is of the form

(a) $\psi \equiv G\neg p$ (safety)

i.e. a real counterexample for ψ would be of the form $\pi = (\pi_1 \ldots \pi_k)$ with $\forall 1 \leq i < k : R(\pi_i, \pi_{i+1}) = true$ and $L(\pi_k, p) = true$ (whereas an unconfirmed counterexample would be of a similar form but could also contain \perp-transitions and \perp-labellings)

or

(b) $\psi \equiv GFp$ (liveness)

i.e. a real counterexample for ψ would be of the form $\pi = (\pi_1 \ldots \pi_{i-1}) \bullet (\pi_i \ldots \pi_k)\omega$ with $\forall 1 \leq i < k : R(\pi_i, \pi_{i+1}) = true$, $R(\pi_k, \pi_i) = true$, and $\forall 1 \leq i \leq k : L(\pi_i, p) = false$ (whereas an unconfirmed counterexample would be of a similar form but could also contain \perp-transitions and \perp-labellings)

where $p \in AP^\perp$.

Thus, Lemma 1 Part (2) immediately follows from Lemma 3 where we distinguish the following cases:

Lemma 3.

Let all definitions as in Theorem 1 and let $p \in AP^\perp$. Then the following holds:

(a) If for all instantiations $K^\perp(a)$ of $K^\perp(x)$ there exists a path $\pi^\perp(a) = (\pi^\perp_1(a) \ldots \pi^\perp_{k'}(a))$ with $\forall 1 \leq i < k' : R^\perp(a)(\pi_i(a), \pi_{i+1}(a)) = true$ and $L^\perp(a)(\pi^\perp_{k'}(a), p) = true$, then there exists a path $\pi \in P(K, s_1)$ and π is of the form $\pi = (\pi_1 \ldots \pi_k)$ with $\forall 1 \leq i < k : R(\pi_i, \pi_{i+1}) = true$ and $L(\pi_k, p) = true$.

(b) If for all instantiations $K^\perp(a)$ of $K^\perp(x)$ there exists a path $\pi^\perp(a) \in P(K^\perp(a), s^\perp_1)$ and $\pi^\perp(a)$ is of the form $\pi^\perp(a) = (\pi^\perp_1(a) \ldots \pi^\perp_{l'}(a))\bullet (\pi^\perp_{l'+1}(a) \ldots \pi^\perp_{k'}(a))\omega$ with $\forall 1 \leq i < k' : R^\perp(a)(\pi^\perp_i(a), \pi^\perp_{i+1}(a)) = true$, $R^\perp(a)(\pi^\perp_{k'}(a), \pi^\perp_{k'+1}(a)) = true$, and $\forall 1 \leq i < k' : L^\perp(a)(\pi^\perp_{k'}(a), p) = false$, then there exists a path $\pi \in P(K, s_1)$ and π is of the form $\pi = (\pi_1 \ldots \pi_{i-1}) \bullet (\pi_i \ldots \pi_k)\omega$ with $\forall 1 \leq i < k : R(\pi_i, \pi_{i+1}) = true$, $R(\pi_k, \pi_i) = true$ and $\forall 1 \leq i \leq k : L(\pi_i, p) = false$.

5
Proof (Lemma 3)

Case (a): Without loss of generality we can assume that along each \(\pi^+(\vec{a}) = (\pi_1^+(\vec{a}), \ldots, \pi_k^+(\vec{a})) \) each transition and state occurs at most once. Otherwise \(\pi^+(\vec{a}) \) must contain cycles \((\pi_1^+(\vec{a}), \ldots, \pi_i^+(\vec{a}))^n \) that are left after a finite number of \(n \) run-throughs. We can remove such cycles by replacing \(\pi^+(\vec{a}) = (\pi_1^+(\vec{a}), \ldots, \pi_k^+(\vec{a})) \) with \((\pi_1^+(\vec{a}), \ldots, \pi_i^+(\vec{a}))^n \). This is still a path prefix with \(\forall 1 \leq i < k' : R^+(\vec{a})(\pi_i^+(\vec{a}), \pi_{i+1}^+(\vec{a})) = true \) and \(L^+(\vec{a})(\pi_i^+(\vec{a}), p) = true \). We denote such paths as a single-occurrence prefixes.

Each \(K^+(\vec{a}) \) is an instantiation of \(K^+(\vec{x}) \), where \(K^+(\vec{x}) \) is a parameterisation of \(K^+ \) obtained by the application of Rule I and Rule II. Moreover, for each single-occurrence prefix \(\pi^+ \) in \(K^+ \) there exists a single-occurrence prefix \(\pi \) in \(K \) with \(\forall i > 0 : R^+(\pi_i^+, \pi_{i+1}^+) = true \Rightarrow R(\pi_i, \pi_{i+1}) = true \land \forall p \in AP^+: L^+(\pi_i^+, p) \leq_{K^+} L(\pi_i, p) \) (Proposition 1.2). A parameterisation of \(K^+ \) only substitutes certain unknowns with boolean expressions over the set of parameters \(\{x_1, \ldots, x_m\} \). Thus, for each parameterised single-occurrence prefix \(\pi^+(\vec{x}) \) in \(K^+(\vec{x}) \) there exists a single-occurrence prefix \(\pi^+ \) in \(K \) with \(\forall i > 0 : R^+(\pi_i^+, \pi_{i+1}^+) = true \Rightarrow R(\pi_i, \pi_{i+1}) = true \land \forall p \in AP^+: L^+(\pi_i^+, \pi_i^+, p) \leq_{K^+} L(\pi_i, p) \lor L^+(\pi_i^+, \pi_i^+, p) = b \) where \(b \) is a boolean expression over \(\{x_1, \ldots, x_m\} \).

We now show that we can instantiate the parameters \(\{x_1, \ldots, x_m\} \) with truth values \(\{a_1, \ldots, a_m\} \) such that for each single-occurrence prefix \(\pi^+(\vec{a}) = (\pi_1^+(\vec{a}), \ldots, \pi_k^+(\vec{a})) \) in \(K^+(\vec{a}) \) there exists a single-occurrence prefix \(\pi = (\pi_1, \ldots, \pi_k) \) in \(K \) with \(\forall 0 < i < k : R^+(\vec{a})(\pi_i^+(\vec{a}), \pi_{i+1}^+(\vec{a})) = R(\pi_i, \pi_{i+1}) \land \forall p \in AP^+: L^+(\vec{a})(\pi_i^+(\vec{a}), p) = L(\pi_i, p) \). The explanation is as follows: If \(K^+(\vec{x}) \) is a parameterisation of \(K^+ \) where each parameterised predicate in a state and each parameterised transition is associated with an individual parameter, then there exists an instantiation \(K^+(\vec{a}) \) such that for each single-occurrence prefix \(\pi^+(\vec{a}) = (\pi_1^+(\vec{a}), \ldots, \pi_k^+(\vec{a})) \) there exists a single-occurrence prefix \(\pi = (\pi_1, \ldots, \pi_k) \) in \(K \) with \(\forall 0 < i < k : R^+(\vec{a})(\pi_i^+(\vec{a}), \pi_{i+1}^+(\vec{a})) = R(\pi_i, \pi_{i+1}) \land \forall p \in AP^+: L^+(\vec{a})(\pi_i^+(\vec{a}), p) = L(\pi_i, p) \). This immediately follows from Proposition 1 together with the definitions 5 and 6 from the submitted paper and the fact that we are only considering single-occurrence prefixes.

We still have to show, that this also holds for parameterisations obtained by the application of Rule I and Rule II, which means each parameterised predicate in state and each parameterised transition is now not necessarily associated with an individual parameter. The application of Rule I associates complementary branches with complementary expressions over the set of parameters. The application of Rule II associates predicates in different states with the same parameter as long as the value of the predicate does not change between these states. This generally reduces the amount of parameters and thus the amount of possible instantiations in comparison to an individual parameterisation. However, the application of the rules solely leads to the exclusion of infeasible behaviour (e.g. that both branches of an if-statement are executable at the same time) of the original system in the Kripke structure. Feasible behaviour of the original system will be never excluded by applying the rules, since the application of the rules always takes the systems original program code into account. Thus, for a parameterisation \(K^+(\vec{x}) \) of \(K^+ \) obtained by the application of the rules I and II there must also exist an instantiation \(K^+(\vec{a}) \) of \(K^+(\vec{x}) \) such that for each single-occurrence prefix \(\pi^+(\vec{a}) = (\pi_1^+(\vec{a}), \ldots, \pi_k^+(\vec{a})) \) there exists a single-occurrence prefix \(\pi = (\pi_1, \ldots, \pi_k) \) in \(K \) with \(\forall 0 < i < k : R^+(\vec{a})(\pi_i^+(\vec{a}), \pi_{i+1}^+(\vec{a})) = R(\pi_i, \pi_{i+1}) \land \forall p \in AP^+: L^+(\vec{a})(\pi_i^+(\vec{a}), p) = L(\pi_i, p) \).

Hence, there exists one instantiation \(K^+(\vec{a}) \) that exactly characterises single-occurrence prefixes of \(K \). We can conclude that if a single-occurrence prefix of the form \(\pi^+(\vec{a}) = (\pi_1^+(\vec{a}), \ldots, \pi_k^+(\vec{a})) \) with \(1 \leq i <
This implies Lemma 3 (a) and thus ends this case of the proof.

Case (b): Lemma 3 (a) together with Proposition 1 guarantees us that for $K^\perp(x)$ there must be one instantiation $K^\perp(\tilde{a})$ such that each single-occurrence prefix\(^1\) $\pi^\perp(\tilde{a}) = (\pi^\perp_1(\tilde{a}) \ldots \pi^\perp_k(\tilde{a}))$ in $\Pi(K,s_1)$ has a corresponding single-occurrence prefix $\pi = (\pi_1 \ldots \pi_k) \in \Pi(K,s_1)$ with $\forall 0 < i < k : R(\pi_i, \pi_{i+1}) = true$ and $L(\pi_k, p) = true$ exists in K.

\[^1\] Along a single-occurrence prefix $\pi = (\pi_1 \ldots \pi_k)$ of a Kripke structure K, each state and each transition of K occurs at most once.
and for the finite unfolding \((\pi_1^{+}(\overline{a}) \ldots \pi_{l-1}^{+}(\overline{a}) \pi_l^{+}(\overline{a}) \pi_{l+1}^{+}(\overline{a}) \ldots \pi_{l+1}^{+}(\overline{a}))\) there exists an equivalent single-occurrence prefix \((\pi_1 \ldots \pi_{l-1} \pi_l \ldots \pi_{l+1})\) in \(K\). Either this single-occurrence prefix can be extended to the infinite path \(\pi' = (\pi_1 \ldots \pi_{l'} \pi_{l'} \ldots \pi_l)\) in \(K\), which means the lemma is proven. Or the prefix can only be extended to a prefix \(\pi^{\text{fin}} = (\pi_1 \ldots \pi_{l'-1} \pi_{l'} \ldots \pi_{l+1} \pi_{l+1} \ldots \pi_k)\) with \(n > 0\) and \(l' \leq i \leq k'\), but the simulation of the infinite path \(\pi^{\text{fin}}(\overline{a})\) of \(K^{\perp}(\overline{a})\) cannot be further continued in \(K\). Then we can (repetitively) extend \(\pi^{\text{fin}}\) as we have done it before to get \(\pi^{\text{fin}}\) out of \(\pi^{\text{fin}}\). After a finite number of repetitions, we will get a prefix that can be actually extended to an infinite path \(\pi' = (\pi_1 \ldots \pi_{l'} \pi_{l'} \ldots \pi_l)\) in \(K\), which means the lemma is proven. Otherwise there would exist a complete instantiation \(K^{\perp}(\overline{a})\) where no path \(\pi^{\perp}(\overline{a}) = (\pi_1^{\perp}(\overline{a}) \ldots \pi_{l-1}^{\perp}(\overline{a})) \cdot (\pi_l^{\perp}(\overline{a}) \ldots \pi_{l+1}^{\perp}(\overline{a}))^\omega \in I(K^{\perp}(\overline{a}), s^{\perp})\) with \(\forall 1 \leq i < k : R^{\perp}(\overline{a})(\pi_i^{\perp}(\overline{a}), \pi_i^{\perp}(\overline{a})) = \text{true}, R^{\perp}(\overline{a})(\pi_{l'}^{\perp}(\overline{a}), \pi_{l'}^{\perp}(\overline{a})) = \text{true}\), and \(\forall l \leq i \leq k : L^{\perp}(\overline{a})(\pi_l^{\perp}(\overline{a}), p) = \text{false}\) exists - which however is be a contradiction to the prerequisite of Lemma 3 (b).

This implies Lemma 3 (b) and thus ends the proof of Lemma 3. Lemma 2 together with Lemma 3 establishes the correctness of Lemma 1 (a) and (b).

\(\square\)

We now can immediately conclude that Theorem 1 holds.

\(\square\)

References