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Abstract

The particle swarm optimization (PSO) algorithm is a stochastic, population-based op-

timization technique influenced by social dynamics. It has been shown that the per-

formance of the PSO algorithm can be greatly improved if the control parameters are

appropriately tuned. However, the tuning of control parameter values has traditionally

been a time-consuming, empirical process followed by statistical analysis. Furthermore,

ideal values for the control parameters may be time-dependent; parameter values that

lead to good performance in an exploratory phase may not be ideal for an exploitative

phase. Self-adaptive algorithms eliminate the need to tune parameters in advance, while

also providing real-time behaviour adaptation based on the current problem.

This thesis first provides an in-depth review of existing self-adaptive particle swarm

optimization (SAPSO) techniques. Their ability to attain order-2 stability is examined

and it is shown that a majority of the existing SAPSO algorithms are guaranteed to ex-

hibit either premature convergence or rapid divergence. A further investigation focusing

on inertia weight control strategies demonstrates that none of the examined techniques

outperform a static value. This thesis then investigates the performance of a wide variety

of PSO parameter configurations, thereby discovering regions in parameter space that

lead to good performance. This investigation provides strong empirical evidence that

the best values to employ for the PSO control parameters change over time. Finally, this

thesis proposes novel PSO variants inspired by results of the aforementioned studies.
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“The measure of intelligence is the ability to change.”

Albert Einstein

“Life is neither static nor unchanging. With no individuality, there can be

no change, no adaptation and, in an inherently changing world, any species

unable to adapt is also doomed.”

Jean M. Auel
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Chapter 1

Introduction

The field of computational intelligence (CI) is premised on the study of techniques to

facilitate intelligent behaviour in complex environments. Within the field of CI, a large

body of research examines the study of social organisms, whereby the collective in-

telligence is leveraged in some capacity. This sub-field of CI is referred to as swarm

intelligence (SI). As a prominent example of SI, the particle swarm optimization (PSO)

algorithm [59] is a population-based, stochastic search technique inspired by the flocking

behaviour of birds.

It is well known that an effective search technique must strike a balance between

exploring new regions in the search space and exploiting known, promising regions. In

the context of CI algorithms, exploration refers to the identification of new, previously

undiscovered areas in the search space while exploitation refers to refinement of previ-

ously found, promising solutions. In the PSO algorithm, exploration and exploitation

can be controlled by the values of the control parameters [4, 9, 10, 63, 105, 107]. More-

over, the performance of the PSO algorithm can be improved by appropriately tuning the

values of the control parameters to the current problem [12, 52, 71, 106], given that the

particle movement patterns are heavily influenced by these control parameters [9, 106].

The searching capability of the algorithm, and by extension the exploration/exploitation

balance, is thus directly influenced by the values of the three main control parameters,

namely the inertia weight (ω), the cognitive acceleration coefficient (c1), and the so-

cial acceleration coefficient (c2). Additionally, the PSO algorithm has been shown to

1
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be rather sensitive to the values of these control parameters [12, 105, 107] and thus a

priori tuning of the control parameter values may lead to improved performance. How-

ever, the tuning of control parameter values has traditionally been a time-consuming,

empirical process followed by an arduous statistical analysis. To alleviate the issue of a

priori parameter tuning, this thesis investigates self-adaptive particle swarm optimiza-

tion (SAPSO) techniques that do not rely on a priori specification of values for the

conventional PSO control parameters.

The remainder of this chapter is organized as follows. Section 1.1 provides further

motivation for the investigation of SAPSO strategies. The primary objectives of this

thesis are then provided in Section 1.2. Finally, Section 1.3 provides a detailed outline

of the remainder of this thesis.

1.1 Motivation

There has been a number of studies that have empirically examined the performance of

various PSO parameter configurations [9, 17, 43, 52, 71, 106]. However, there is no general

consensus as to which parameter configurations lead to the best performance. Most of the

previous empirical studies examined only a limited set of parameter configurations over

a small number of benchmark problems, and for only specific problem dimensionalities.

The result of these studies was a set of recommended parametrizations for the PSO

algorithm. In a more comprehensive study, Cleghorn and Engelbrecht [17] examined

1264 parameter configurations over 28 benchmark problems, and clearly identified regions

of the parameter space that lead the PSO algorithm to perform worse than a random

search. Each of these studies have led to an enhanced understanding of the general

region in parameter space where good parameter configurations lie. However, none have

answered an important question, namely whether the best parameters to employ are

in fact time-dependent. Similarly, many studies implicitly assumed that the cognitive

and social control parameters should have equal values. Thus, an additional equally

important question remains unanswered: in what regions of parameter space do the best

parameters reside when the values of these two parameters are not equal? This thesis

investigates both these questions.
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While there is no doubt that parameter tuning in the PSO algorithm is important,

especially when more complex optimization problems are considered, the task of effec-

tively tuning the parameters is computationally expensive. Parameter tuning is often an

arduous manual process, whereby a large number of candidate parametrizations must be

examined and analysed. While there have been various automated parameter configu-

ration tools proposed [5, 49, 50, 87], such tools have two clear drawbacks. Firstly, auto-

mated methods simply automate the process of parameter tuning and do not necessarily

reduce the time complexity of the parameter search. Although various optimizations

can be made, such as removing a particular parameter configuration from consideration

if enough evidence is gathered to deduce that the configuration is poorly performing,

the original argument still stands in that this does not necessarily reduce the overall

complexity of the control parameter tuning problem. Rather, it simply translates a

manual process into an automated process. However, it is worth mentioning that the a

priori parameter tuning mechanisms can, in some instances, produce well-performing,

robust parameter configurations that are reusable across a set of similar problems. This

is especially true if the parameter configurations are tuned using a large set of problems.

Secondly, there is an implicit, often-overlooked assumption in a priori parameter

tuning that the optimal parameter configuration does not change over time. With an

automated parameter tuning strategy (and, for that matter, manual tuning techniques),

the tuned parameters will be statically used throughout the course of the search. This

is likely not an optimal scenario given that there exists a well-established ideology that

the best parameter values change over time. For instance, the linearly-decreasing inertia

weight PSO by Shi and Eberhart [98, 99] was premised on the idea of reducing the

value of the inertia weight over time. Leonard and Engelbrecht [63] empirically found

that parameters well-suited for exploration were not well-suited for exploitation, and

vice versa. Moreover, heterogeneous PSO algorithms have evidenced that the most

suitable velocity update scheme to employ varies during the search [65, 79, 81, 110].

To address the time sensitivity of control parameter values, this thesis investigates the

performance of various PSO parameters at different points throughout the search process.

Furthermore, this thesis examines whether the short-term performance of PSO parameter

configurations is indicative of their long-term performance.
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To alleviate the issues associated with a priori parameter tuning, various SAPSO al-

gorithms that adapt their control parameters throughout execution have been proposed.

SAPSO algorithms typically make use of introspective observation to refine the values

of the control parameters based on their current and/or past performance. Despite the

well-known result of the No Free Lunch theorem stating that no optimization algorithm

will outperform any other optimization algorithm, including random search, across all

optimization problems [111], SAPSO algorithms are nonetheless an attempt at providing

superior performance on limited subsets of such problems.

While there are a large number of SAPSO algorithms that have been proposed in

the literature, their behaviour is still not well understood. Specifically, it is unknown

whether these algorithms will even exhibit stable behaviour. Stability, in this context,

refers to the attainment of order-1 and order-2 stability, i.e., an equilibrium state such

that the mean and variance of the particle step sizes tends to a constant value (see

Section 2.3). An algorithm designed to adapt its control parameters can be reasonably

expected to prevent unstable behaviour given that parameters leading to instability

should be avoided by the adaptation mechanism. However, as previous works have

identified [41, 42, 109], this is not always the case. Recently, evidence has been provided

to suggest that parameter configurations that adhere to a well-known stability criterion

will generally lead to better performance than parameter configurations that violate

the criterion [17, 43]. Furthermore, it has been shown that many of the parameter

configurations that violate the stability criterion lead to worse performance than random

search [17]. To this end, this thesis investigates the stability behaviour of a wide variety

of SAPSO strategies. Finally, this thesis proposes three novel PSO techniques that do

not rely on the conventional PSO control parameters.

1.2 Objectives

The primary objectives of this thesis are summarized as follows:

• provide a thorough review of existing SAPSO techniques.

• investigate the behaviour of existing SAPSO techniques, specifically with regards

to theoretical stability criteria.
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• investigate the parametrization of PSO to identify regions of parameter space that

lead to good performance.

• provide further evidence in support of SAPSO strategies.

• propose novel PSO techniques that do not rely on a priori values for the conven-

tional PSO parameters.

1.3 Thesis Outline

The section provides a brief outline of the remainder of this thesis.

• Chapter 2 provides background information on the PSO algorithm that is neces-

sary for the remainder of this thesis.

• Chapter 3 provides an extensive review of existing SAPSO techniques.

• Chapter 4 examines the ability of existing SAPSO techniques to attain order-2

stability. Conditions for stability to be exhibited are derived analytically. Empiri-

cal behaviour is also examined in support of the analytical findings.

• Chapter 5 provides an extensive analysis of inertia weight control strategies. A

detailed empirical investigation is carried out, ultimately concluding that none of

the examined strategies outperform a constant inertia weight.

• Chapter 6 presents an empirical investigation of 1012 PSO parameter configu-

rations. The focus of this chapter is on the identification of regions in parameter

space that lead to good performance.

• Chapter 7 extends the study of Chapter 6 to include imbalanced configurations

and, furthermore, addresses the question of whether the best values for PSO pa-

rameters are time-dependent.

• Chapter 8 proposes a novel SAPSO technique built upon the results from Chap-

ters 6 and 7.
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• Chapter 9 proposes a novel PSO variant that employs machine learning models,

which are trained using the data from Chapter 7, to predict the success of parameter

configurations for PSO.

• Chapter 10 proposes a probabilistic PSO technique that has no dependency on

the conventional PSO control parameters.

• Chapter 11 provides concluding remarks and presents avenues of future work.

In addition, the following appendices are provided.

• Appendix A describes the suite of benchmark problems.

• Appendix B provides a listing of the acronyms defined in this thesis.

• Appendix C provides a listing of symbols used throughout this thesis.

• Appendix D lists the publications that were derived from this thesis.



Chapter 2

Particle Swarm Optimization

This chapter discusses the standard PSO algorithm. Section 2.1 provides a detailed de-

scription of the PSO algorithm. Section 2.2 discusses the PSO neighbourhood topology.

Section 2.3 presents a brief overview of theoretical stability results for the PSO algo-

rithm, while Section 2.4 discusses velocity clamping. Finally, a summary of this chapter

is given in Section 2.5.

2.1 The Particle Swarm Optimization Algorithm

The PSO algorithm, developed by Kennedy and Eberhart [59], was inspired by a simu-

lation of the complex flight patterns of a flock of birds. Their initial simulations evolved

into a simple optimization algorithm that exhibits complex behaviour. The PSO al-

gorithm consists of a collection of agents, referred to as particles, where each particle

represents a candidate solution to the current optimization problem. Each particle re-

tains three pieces of information, namely its current position, current velocity, and the

best position it has found within the search space. Movement of particles is then gov-

erned by the iterative calculation of a velocity vector. The calculation of each particle’s

velocity is based on its attraction towards two promising locations in the search space,

namely the best position found by the particle and the best position found by any par-

ticle within the particle’s neighbourhood. A particle also has a tendency to retain on

its current trajectory via an inertia component. The neighbourhood of a particle refers

7
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to the other particles within the swarm from which it may take influence. For example,

the original PSO algorithm employed one of two neighbourhood strategies, either a star

topology where the neighbourhood was the entire swarm, or a ring topology where the

neighbourhood consisted of the immediate neighbours, determined by particle index,

when the particles were arranged in a ring [60].

The velocity is then calculated for dimension j of particle i at time t as

vij(t+ 1) = ωvij(t) + c1r1ij(t)(yij(t)− xij(t)) + c2r2ij(t)(ŷij(t)− xij(t)) (2.1)

and particle positions are updated according to

xij(t+ 1) = xij(t) + vij(t+ 1). (2.2)

The calculation of the velocity vector can be dissected into three distinct components as

follows:

• The inertia component, ωvi(t), which constitutes a particle’s tendency to re-

main on its current trajectory by applying a portion of the previous velocity to

the current velocity. The portion of the previous velocity applied is known as the

inertia weight, ω, and is typically a positive value within the range of [0, 1].

• The cognitive component, c1r1i(t)⊗ (yi(t)−xi(t)), which governs the particle’s

self-influence. The ⊗ operator is used to indicate component-wise multiplication

of two vectors. In the cognitive component, the difference vector between the

particle’s best found position, yi(t), and its current position is first calculated.

This difference vector is then component-wise multiplied with a vector of uniform

random components, where each r1ij(t) ∼ U(0, 1), and the cognitive acceleration

coefficient c1. Typically, the cognitive acceleration coefficient is within the range

[0, 2].

• The social component, c2r2ij(t) ⊗ (ŷi(t) − xi(t)), which dictates the degree

to which the neighbourhood best influences a particle’s movement direction. As

with the cognitive component, the operator ⊗ is used to indicate component-

wise multiplication of two vectors. The social component is calculated as the

difference between a particle’s position and its neighbourhood best position, ŷi(t),
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component-wise multiplied by a vector with uniform random components, where

each r2ij(t) ∼ U(0, 1), and the social acceleration coefficient c2. Typically, the

social acceleration coefficient is within the range [0, 2].

The formulation of PSO using the velocity calculation given in Equation (2.1) is

known as the inertia weight model of Shi and Eberhart [98], and is hereafter referred

to as the standard PSO. Alternative formulations, which use different velocity update

equations, have also been proposed. The most notable alternative formulation is the

constriction factor PSO proposed by Clerc [22]. However, it can easily be shown that

the velocity update mechanism of the inertia weight and constriction factor variants

are equivalent [2]. Another noteworthy alternative is known as Standard PSO 2011,

commonly referred to as SPSO-2011, which is promoted as a standardized variant of

PSO that includes rotational invariance and an adaptive random neighbourhood topology

[118].

2.2 Neighbourhood Topologies

The strength of the PSO algorithm lies in the social communication, which is realized via

the neighbourhood topology. The neighbourhood of a particle refers to the other particles

within the swarm where a direct avenue of communication exists. It is well known that

the best topology to employ is dependent upon both the optimization problem and

computational budget [31, 60, 72].

A common technique for visualizing neighbourhood topologies is through the use of

graphs, whereby nodes represent particles and edges depict the avenues of communi-

cation. Thus, the neighbourhood of a particle i can be more formally defined as the

sub-graph induced by all particles adjacent to i within the social graph. While there are

many potential neighbourhood topologies [60, 72, 74], each with their own advantages

and disadvantages, most PSO literature employs one of three common topologies:

• Star: each particle is connected to every other particle via a fully-connected net-

work. The star topology is visualized in Figure 2.1a. A PSO algorithm employing

the star topology is commonly referred to as a global-best (gbest) PSO.
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(a) Star topology (b) Ring topology

(c) 2D von Neumann topology

Figure 2.1: Common PSO neighbourhood topologies.

• Ring: each particle is connected to its immediate neighbours when arranged in a

ring, as determined by particle index. The ring topology is visualized in Figure

2.1b. A PSO algorithm employing the ring topology is commonly referred to

as a local-best (lbest) PSO. Note that the ring topology can be generalized to

incorporate more than just the immediate neighbour on either side.

• von Neumann: each particle is connected to its neighbours when arranged in a

grid-like lattice. The 2D von Neumann topology is visualized in Figure 2.1c.
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2.3 Theoretical Particle Stability

There has been a significant amount of research effort devoted to the theoretical study

of PSO stability [7, 18, 39, 56, 89, 90, 105, 107]. Specifically, many researchers have

investigated the relationship between control parameter values and particle stability in

the PSO algorithm. Note that stability does not necessary imply that the swarm has

converged to a single point. Rather, stability is defined to be order-1 and order-2 stability

of particle positions, as given in Definitions 2.3.1 and 2.3.2, respectively [89]. In simpler

terms, order-1 and order-2 stability, when considered together, indicate that the sequence

of particle positions has a fixed expected value and variance. Thus, a particle that is

exhibiting both order-1 and order-2 stability is often referred to as convergent. However,

it should be explicitly noted that there is no guarantee of deterministic convergence, such

that the particle positions cease to move, unless order-2 stability occurs along with the

personal and neighbourhood best positions being equal for all particles. This behaviour is

infrequently observed in a stochastic context and there is no guarantee this condition will

even occur in practice [21]. Furthermore, even if deterministic convergence does occur,

there is no guarantee the particles will convergence toward an optimum. Therefore, the

theoretical work on PSO focuses on providing conditions for order-1 and order-2 stability

rather than on guaranteeing the deterministic convergence of particle positions.

Definition 2.3.1 (Order-1 stability) A sequence st over Rn is order-1 stable if there

exists an se ∈ Rn such that

lim
t→∞

E[st] = se (2.3)

where E[st] is the expected value of st.

Definition 2.3.2 (Order-2 stability) A sequence st over Rn is order-2 stable if there

exists an sv ∈ Rn such that

lim
t→∞

V [st] = sv (2.4)

where V [st] is the variance of st.

Given the stochastic nature of the PSO algorithm, various assumptions have been

made to assist in deriving the region that leads to stable behaviour. One such as-

sumption is known as the stagnation assumption, which assumes that the personal and
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neighbourhood best positions will eventually stagnate. However, the various assump-

tions employed by these theoretical studies have proven to be limiting, and therefore

many of these purely theoretical studies do not capture the true region [19].

Empirical simulations (without any simplifying assumptions) by Cleghorn and En-

gelbrecht [19] have shown that, of the various stability criteria, the criterion given by

Poli and Broomhead [90] and Poli [89] for order-2 stability,

c1 + c2 <
24(1− ω2)

7− 5ω
, (2.5)

is the most accurate in practice. The criteria for order-1 stability, originally derived by

Trelea [105] and later derived by Poli and Broomhead [90] and Poli [89], are given by

0 < c1 + c2 < 4(1 + ω), |ω| < 1, (2.6)

thereby limiting consideration to only positive values for c1 + c2. While Equation (2.5)

was derived using the stagnation assumption, later studies by Bonyadi and Michalewicz

[6] and Cleghorn and Engelbrecht [21] have shown that equivalent, more generalized,

criteria for order-1 and order-2 stability can be derived using less restrictive assumptions.

The region defined by Equation (2.5) is illustrated in Figure 2.2, where parameter values

that lie within the parabolic region will lead to stable behaviour.

Further studies by Liu [71] and Cleghorn and Engelbrecht [20] have found that the

region defined by Equation (2.5) is not dependent upon the neighbourhood topology.

Moreover, recent studies have provided evidence that parameter configurations that ad-

here to the criterion of Equation (2.5) will generally lead to better performance than

parameter configurations that violate the criterion [17, 43]. Specifically, it was shown

that a majority of theoretically unstable parameter configurations caused the PSO al-

gorithm to perform worse than random search, and that selecting theoretically stable

parameters drastically increased the likelihood of PSO outperforming random search

[17].

2.4 Velocity Clamping

It is well known that haphazard selection of parameter values may lead to divergent

behaviour in the PSO algorithm due to excessively large particle movements. To address
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Figure 2.2: Visualization of Poli’s theoretically defined region for stable PSO parameters.

this issue, velocity clamping limits the step sizes of particles by providing a limit on the

component sizes of the velocity vector. Particles are thus provided with an upper limit

on the movement along each dimension, thereby preventing overly large step sizes. To

implement velocity clamping, Equation (2.1) is amended to include

vij(t+ 1) =


−vmax,j if vij(t+ 1) < −vmax,j

vmax,j if vij(t+ 1) > vmax,j

vij(t+ 1) otherwise

(2.7)

where vmax,j is the largest allowable step size in dimension j. Commonly, vmax,j is set

based on the size of the search space,

vmax,j =
xmax,j − xmin,j

p
,

where xmin,j and xmax,j are the bounds of the search space in dimension j, and p is an

integer controlling the proportion of the search space used to bound the velocity.
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While velocity clamping does not necessarily prevent divergent trajectories from oc-

curring, it does prevent particles from having overly large step sizes, thereby delaying

divergence. Additionally, velocity clamping may hinder the roaming behaviour of parti-

cles, a phenomena known to be beneficial to the overall search capabilities of a particle

swarm optimizer [32]. Most importantly, the need for velocity clamping provides a clear

indication that the control parameter values were poorly chosen. Therefore, if a PSO

algorithm with an adaptive parameter strategy requires the use of velocity clamping to

prevent divergent behaviour, the control strategy is clearly ineffective at controlling the

search.

2.5 Summary

This chapter presented the standard PSO algorithm. Additionally, a discussion of neigh-

bourhood topologies, theoretical stability analysis, and velocity clamping were also pro-

vided. The next chapter provides an extensive review of SAPSO variants that adapt the

values of their control parameters over time.



Chapter 3

Self-Adaptive Particle Swarm

Optimizers

SAPSO algorithms directly address the static control parameter problem by providing

mechanisms whereby the values of the control parameters are refined throughout the

search process. Note that the focus of this thesis is on self-adaptive mechanisms that tune

the three primary control parameters of the PSO algorithm, namely the inertia weight,

cognitive acceleration coefficient, and social acceleration coefficient. Thus, techniques

that, for example, adapt the neighbourhood topology [68, 69, 95, 118] or swarm size

[24, 68, 84], are outside the scope of this thesis. Similarly, it should be explicitly noted

that this study focuses solely on the adaptation of control parameter values and doesn’t

examine other possible adaptations, such as mutations on particle positions or direct

altering of velocity components. Finally, it is recognized that a large body of research

exists for parameter control in other computational intelligence algorithms [3, 57, 78,

102], but that such approaches are also outside the scope of this thesis.

Self-adaptive parameter control mechanisms can be classified into two main cate-

gories, namely those that make use of introspective observation about the search be-

haviour to refine the values of the parameters over time, and those that do not make

use of any information about the search process. For the latter category, the parameter

control mechanisms generally adapt the control parameter values based solely on the

number of iterations that have passed. This chapter reviews a number of SAPSO algo-

15
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rithms from both categories. Section 3.1 presents the time-dependent approaches, while

Section 3.2 presents the adaptive variants. Finally, Section 3.3 provides a summary of

the discussed SAPSO algorithms.

3.1 Non-Adaptive and Time-Varying Parameter Con-

trol Strategies

The first category of parameter control strategies are those that make no attempt to

intelligently select control parameter values based on the characteristics of the current

search. Thus, these strategies can not be considered self-adaptive in the proper sense.

Nonetheless, such parameter control strategies can encourage varied exploration and

exploitation during the search, which can potentially lead to enhanced search behaviour.

Sections 3.1.1 to 3.1.12 discuss a number of non-adaptive parameter control strategies.

3.1.1 Particle Swarm Optimization with Linearly-Decreasing

Inertia Weight

The particle swarm optimization with linearly-decreasing inertia weight (PSO-LDIW)

algorithm [98, 99] was proposed as a method to linearly decrease the inertia weight

over time. This inertia weight control strategy is based on the general consensus that

exploration is favoured early in the search process, while exploitation is favoured later.

However, it should be noted that recent evidence suggests the opposite is true for high-

dimensional search spaces, which should rather focus solely on exploitation [108]. The

inertia weight is calculated at each iteration according to

ω(t) = ωs + (ωf − ωs)
t

T
, (3.1)

where ωs and ωf are the initial and final inertia weight values, respectively, and T is the

maximum number of iterations. The social and cognitive acceleration coefficients remain

static throughout the search process. Thus, the PSO-LDIW algorithm tunes the value

of the ω parameter at the expense of adding two new control parameters, namely ωs and

ωf .
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A noteworthy observation regarding PSO-LDIW is that convergence toward a global

optimum is slowed later in the search as the algorithm lacks global search ability due to

the reduction in inertia weight, which causes difficulty escaping local optima [99].

3.1.2 Particle Swarm Optimization with Random Inertia Wei-

ght

The particle swarm optimization with random inertia weight (PSO-RIW) algorithm [29]

randomly selects the inertia weight at each iteration according to

ω(t) = 0.5 +
r(t)

2
, (3.2)

where r(t) ∼ U(0, 1). Effectively, this strategy samples the inertia weight, at each

iteration, according to ω(t) ∼ U(0.5, 1). Thus, the PSO-RIW algorithm tunes the ω

parameter and does not introduce any new parameters. However, the values of 0.5 and 2

used in Equation (3.2), effectively the range in which to sample the inertia weight values,

could be considered two additional parameters.

3.1.3 Particle Swarm Optimization with Time-Varying Accel-

eration Coefficients

The particle swarm optimization with time-varying acceleration coefficients (PSO-TVAC)

algorithm [94] linearly varies the cognitive and social acceleration coefficients over time.

The cognitive coefficient is decreased over time, while the social coefficient is increased

over time as a means to, in theory, provide a smooth transition from exploration to

exploitation as the search progresses. The cognitive and social acceleration coefficients

are linearly scaled each iteration according to

c1(t) = c1s + (c1f − c1s)
t

T
(3.3a)

and

c2(t) = c2s + (c2f − c2s)
t

T
, (3.3b)
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where the subscripts s and f represent the initial and final values, respectively. PSO-

TVAC also employs the linearly decreasing inertia weight of PSO-LDIW given by Equa-

tion (3.1). The PSO-TVAC algorithm thus tunes the values for each of the ω, c1, and

c2 parameters, but introduces six additional control parameters, namely ωs, ωf , c1s, c1f ,

c2s, and c2f .

3.1.4 Particle Swarm Optimization with Natural Exponent In-

ertia Weight

The particle swarm optimization with natural exponent inertia weight (PSO-NEIW) al-

gorithm [15] uses a decreasing inertia weight based on the exponential function according

to

ω(t) = ωmin + (ωmax − ωmin)e−
10t
T . (3.4)

The PSO-NEIW algorithm thus tunes the ω parameter, but introduces two new param-

eters, namely ωmin and ωmax. Additionally, the value 10 used in Equation (3.4) may

require additional tuning.

3.1.5 Particle Swarm Optimization with Sugeno Inertia Weight

The particle swarm optimization with Sugeno inertia weight (PSO-SIW) algorithm [62]

makes use of a Sugeno function [101], which is method of fuzzy inference, to control

the inertia weight over time. This strategy provides a monotonically decreasing inertia

weight according to

ω(t) =
1− β(t)

1 + sβ(t)
, (3.5)

where β(t) = t
T

and s > −1 is a constant controlling the shape of a function that

governs the value of the inertia weight over time. When s < 0, the inertia weight follows

a convex curve, while s > 0 leads to a concave curve. When s = 0, the inertia weight

linearly decreases. Note that the inertia weight value in the PSO-SIW algorithm always

decreases from an initial value of 1 to a final value of 0. The PSO-SIW algorithm thus

tunes the ω parameter, but also introduces a new parameter s.
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3.1.6 Decreasing Inertia Weight Particle Swarm Optimization

The decreasing inertia weight particle swarm optimization (DW-PSO) algorithm [33]

employs a time-dependent inertia weight strategy according to

ω(t) =

(
2

t

)0.3

, (3.6)

such that the inertia weight decreases over time in a non-linear fashion. While the DW-

PSO algorithm tunes the value of the ω control parameter without introducing any new

parameters, the values 2 and 0.3 from Equation (3.6) may require tuning, and thus could

be considered additional control parameters.

3.1.7 Chaotic Descending Inertia Weight Particle Swarm Op-

timization

The chaotic descending inertia weight particle swarm optimization (CDIW-PSO) algo-

rithm [34] adopts the use of chaotic dynamics to adapt the inertia weight over time

according to

ω(t) = z(t)ωmin + (ωmax − ωmin)
T − t
T

, (3.7)

where z(t) is the value of the logistic map

z(t+ 1) = 4z(t)(1− z(t)) (3.8)

with z(0) ∼ U(0, 1). The CDIW-PSO algorithm thus tunes the ω parameter at the

expense of introducing two new parameters, namely ωmin and ωmax.

3.1.8 Non-Linear Improved Particle Swarm Optimization

The particle swarm optimization with non-linear improved inertia weight (PSO-NLI)

algorithm [53] uses a non-linear decreasing inertia weight defined by

ω(t) = ωcu
−t, (3.9)
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where ωc ∈ [0, 1] and u ∈ [1.0001, 1.005]. Note that the PSO-NLI algorithm tunes the

value of ω over time, but that an initial value, ωc, must still be supplied along with a

value for the parameter u.

3.1.9 Logarithm Decreasing Inertia Weight Particle Swarm Op-

timization

The logarithm decreasing particle swarm optimization (LD-PSO) algorithm [37] employs

a logarithmically decreasing inertia weight according to

ω(t) = ωmax + (ωmin − ωmax) log10

(
a+

10t

T

)
, (3.10)

where a is a user-supplied constant that controls the speed of convergence toward an

optimum. The LD-PSO algorithm thus tunes the ω parameter, but introduces three

additional parameters, ωmin, ωmax, and a. Additionally, the value 10 used in Equation

(3.10) may require further tuning.

3.1.10 Particle Swarm Optimization with Oscillating Inertia

Weight

The particle swarm optimization with oscillating inertia weight (PSO-OIW) algorithm

[61] was proposed as an inertia weight control strategy that did not monotonically de-

crease the inertia weight, but rather provided an oscillating inertia weight during the

search process. The PSO-OIW algorithm employs a sinusoidal inertia weight strategy

controlled by

ω(t) =


ωmin+ωmax

2
+ ωmax−ωmin

2
cos
(

2πt(4k+6)
3T

)
if t < 3T

4

ωmin otherwise.
(3.11)

The PSO-OIW algorithm tunes the ω parameter, but introduces three additional param-

eters, namely ωmin, ωmax, and k. Additionally, the constants 2, 4, 6, and 3 used in the

cosine expression in Equation (3.11) may require additional tuning. Kentzoglanakis and

Poole [61] suggested values of k = 7, ωmin = 0.3, and ωmax = 0.9, which allows Equation
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(3.11) to be simplified to

ω(t) =

0.6 + 0.3 cos
(

17πt
3750

)
if t < 3750

0.3 otherwise.
(3.12)

Kentzoglanakis and Poole [61] claimed that the sinusoidal wave specified by Equation

(3.11), and consequently Equation (3.12), should complete k + 3
2

cycles within a single

PSO execution. The oscillating inertia weight of PSO-OIW, given the aforementioned

control parameter values, is visualized in Figure 3.1.
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Figure 3.1: The oscillating inertia weight of Kentzoglanakis and Poole [61].

3.1.11 Particle Swarm Optimization with Non-Linear Inertia

Coefficient

Yang et al. [115] posited that a non-linear, time-varying inertia weight would demonstrate

superior performance over the linearly decreasing PSO-LDIW variant, and thus proposed

the particle swarm optimization with non-linear inertia weight (PSO-NL) algorithm. To

this end, the non-linear inertia weight at time t is given by
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ω(t) = ωmax − (ωmax − ωmin)

(
t

T

)α
, (3.13)

where α is a user supplied constant. The PSO-NL algorithm thus tunes the ω parameter,

but introduces three new parameters, namely ωmin, ωmax, and α. The authors empirically

suggested the use of α = 1/π2, ωmin = 0.4, and ωmax = 0.9. The resulting inertia weight

over time is visualized in Figure 3.2.
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Figure 3.2: Visualization of the non-linear inertia weight strategy of PSO-NL.

3.1.12 Particle Swarm Optimization with Random Accelera-

tion Coefficients

As a baseline used to compare against other SAPSO algorithms, the particle swarm

optimization with random acceleration coefficients (PSO-RAC) algorithm is introduced

as a technique that employs randomly-generated values for each of the control parame-

ters. Specifically, a new set of values for each of the control parameters, which explicitly

adhere to the stability criterion outlined in Equation (2.5), is (randomly) generated for

each particle at every iteration. Thus, the PSO-RAC algorithm tunes each of the ω, c1,

and c2 parameters, but requires no additional control parameters.
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3.2 True Self-Adaptive Particle Swarm Optimizers

In contrast to the time-variant approaches, truly self-adaptive PSO variants use intro-

spective observation to adapt the values of their control parameters. Refinement of

control parameters is done at either the global (swarm) level or the local (particle) level

based on the current state of the algorithm. Sections 3.2.1 to 3.2.17 discuss a number of

such self-adaptive PSO algorithms.

3.2.1 Particle Swarm Optimization with Adaptive Inertia Wei-

ght Factor

The particle swarm optimization with adaptive inertia weight factor (PSO-AIWF) algo-

rithm [70] adapts the inertia weight based on a particle’s fitness relative to the average

fitness of the swarm. Liu et al. [70] posited that particles with good fitness values should

be ‘protected’ through the use of small inertia weight values, while particles with inferior

fitnesses should be ‘disrupted’ via larger inertia weights. Using this premise, the inertia

weight of each particle is given by

ωi(t) =

ωmin + (ωmax−ωmin)(fi(t)−fmin(t))

f(t)−fmin(t)
if fi(t) ≤ f(t)

ωmax if fi(t) > f(t),
(3.14)

where f(t) and fmin(t) are the average and minimum fitness values, determined using the

current particle positions, at time t, and ωmin and ωmax are the user-supplied minimum

and maximum inertia weights. The PSO-AIWF algorithm thus tunes the value of the ω

parameter, but introduces two additional parameters, namely ωmin and ωmax.

3.2.2 Dynamic Adaptation Particle Swarm Optimization

The dynamic adaptation particle swarm optimization (DAPSO) algorithm [116] is a PSO

variant whereby two calculated values are used to describe the state of the algorithm.

Adapted from those originally introduced by Xuanping et al. [114], the evolutionary1

1PSO does not actually exhibit evolution. Nonetheless, the original terminology is used.
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speed factor and aggregation degree are used by the DAPSO algorithm to dynamically

adapt the individualized inertia weights.

The evolutionary speed factor of particle i at time t considers the history of the

particle according to

hi(t) =

∣∣∣∣min{f(yi(t− 1)), f(yi(t))}
max{f(yi(t− 1)), f(yi(t))}

∣∣∣∣ . (3.15)

Note that 0 ≤ h ≤ 1, and smaller values for h correspond to faster ‘evolution’ as they

imply that a major improvement to the personal best position has been achieved.

The aggregation degree measures the similarity between the average fitness and the

best fitness from iteration t according to

s(t) =

∣∣∣∣min{f(y∗(t)), favg(t)}
max{f(y∗(t)), favg(t)}

∣∣∣∣ , (3.16)

where y∗i (t)
2 denotes the best solution found during iteration t and favg(t) is the average

fitness of the entire swarm.

The inertia weight of particle i at time t is then calculated as

ωi(t) = ωs − α(1− hi(t)) + βs(t) (3.17)

where α and β are user-supplied values in the range [0, 1]. Given that both hi(t) and

s(t) are within the range [0, 1], it can be shown that

∀t, 1− α ≤ ωi(t) ≤ 1 + β. (3.18)

The DAPSO algorithm thus tunes the value of the ω parameter at the expense of intro-

ducing three additional parameters, namely ωs, α, and β. Yang et al. [116] concluded

that the parametrization of DAPSO, specifically the α and β parameters, did not have a

significant impact on performance. Specifically, using a suite of benchmark problems, the

authors provided empirical evidence that selecting α and β anywhere within [0, 1] lead

to good performance and that the performance of DAPSO did not strongly depend on

these values [116]. Furthermore, it was observed that, on all six benchmark functions,

2Note that y∗(t) differs from yi(t) in that y∗(t) is the best solution found during iteration t while

yi(t) is the best solution found during any iteration up to, and including, t.
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the optimal solution was found 100% of the time, over 50 runs, using any of the 100

combinations of α and β examined [116]. Another noteworthy observation made by the

authors was that the velocity of particles within the DAPSO algorithm did not approach

zero as in a standard PSO, but rather the velocities tended towards the maximum allow-

able velocity (i.e., the velocity clamp) [116]. This observation suggests that the DAPSO

algorithm does not exhibit order-2 stability.

3.2.3 Particle Swarm Optimization with Individual Coefficient

Adjustment

The self-adaptive particle swarm optimization with individual coefficient adjustment

(PSO-SAIC) algorithm [112] adapts the inertia and social acceleration coefficients of

each particle based on its fitness in relation to the global best fitness. This technique

facilitates diversity injection when particles are near the global best position.

The related distance for particle i is first defined as

ξi(t) =

0 if f(xi(t− 1)) = 0

f(xi(t−1))−f(ŷ(t−1))
f(xi(t−1))

otherwise,
(3.19)

which quantifies the efficacy of particle i at time t. Clearly, ξi(t) ≈ 1 when particle i is

far from the global best position and, conversely, ξi(t) ≈ 0 when particle i is near the

global best. Note that the definition of related distance, as defined in Equation (3.19),

presupposes a minimization problem with a positive global minimum.

The inertia weight is then adapted according to

ωi(t) = ωaF (ξi(t)) + ωb, (3.20a)

where

F (ξi(t)) = 2

(
1− cos

(
πξi(t)

2

))
, (3.20b)

while the social acceleration coefficient is calculated as

c2i(t) = c2aG(ξi(t)) + c2b, (3.21a)

where

G(ξi(t)) = 2.5

(
1− cos

(
πξi(t)

2

))
. (3.21b)
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The PSO-SAIC algorithm thus tunes the value of the ω and c2 parameters, but introduces

four additional parameters, namely ωa, ωb, c2a, and c2b. Note that the constants 2 and

2.5 in Equations (3.20b) and (3.21b) may also be treated as control parameters. Figure

3.3 presents the adjustment values as calculated by Equations (3.20b) and (3.21b).
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Figure 3.3: The adjustment values described by Equations (3.20b) and (3.21b) for the PSO-

SAIC algorithm.

3.2.4 Particle Swarm Optimization with Rank-Based Inertia

Weight

Panigrahi et al. [86] claimed that the PSO algorithm should be redefined such that the

movement of the swarm is controlled by the objective function. To this end, the particle

swarm optimization with rank-based inertia weight (PSO-RBI) algorithm [86] calculates

the inertia weight of each particle based on the rank of its fitness relative to the remainder
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of the swarm. The inertia weight of each particle is given by

ωi(t) = ωmin + (ωmax − ωmin)
Ri(t)

ns
, (3.22)

where Ri(t) is the fitness rank of particle i. The PSO-RBI algorithm tunes the ω param-

eter at the expense of introducing two new parameters, namely ωmin and ωmax. From

Equation (3.22), it can be seen that the best-fit particle (i.e., rank 1), will be assigned

the lowest inertia weight, while the worst fit particle will be assigned the maximal inertia

weight.

3.2.5 Improved Particle Swarm Optimization by Li and Tan

The improved particle swarm optimization by Li and Tan (IPSO-LT) [67] is premised on

the assumption that the inertia weight should be in direct relation to the convergence

factor,

ci(t) =
|f(yi(t− 1))− f(yi(t))|
f(yi(t− 1)) + f(yi(t))

, (3.23)

as well as the diffusion factor,

di(t) =
|f(yi(t))− f(ŷi(t))|
f(yi(t)) + f(ŷi(t))

, (3.24)

which characterize the state of the algorithm. The inertia weight of each particle is then

controlled by

ωi(t) = 1−
∣∣∣∣ α(1− ci(t))
(1 + di(t))(1 + β)

∣∣∣∣ , (3.25)

where α, β ∈ [0, 1] are user-supplied constants. The IPSO-LT algorithm thus tunes the

value of the ω parameter, but introduces two additional parameters, namely α and β.

3.2.6 Self-Adaptive Particle Swarm Optimization by Li et al.

The self-adaptive particle swarm optimization by Li, Fu, and Zhang (SAPSO-LFZ) [66]

adapts the inertia weight of each particle based on its personal best fitness in relation to

the average personal best fitness. At each iteration, the inertia weight is calculated as
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ωi(t) = 0.15 +
1

1 + eFi(t)
, (3.26a)

with

Fi(t) = f(y(t))− f(yi(t)), (3.26b)

where f(y(t)) is the average personal best fitness. Figure 3.4 visualizes the result of

Equation (3.26a) based on the value of Fi(t). The SAPSO-LFZ algorithm thus tunes the

value of the ω parameter and does not introduce any additional parameters. However,

the value of 0.15 in Equation (3.26a) may require tuning and could be considered a

control parameter.
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Figure 3.4: The inertia value of the SAPSO-LFZ algorithm based on the value of Fi(t).
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3.2.7 Self-Adaptive Particle Swarm Optimization by Dong et

al.

The self-adaptive particle swarm optimization by Dong, Wang, Chen, and Yu (SAPSO-

DWCY) [27] is based on an assumed relationship among various characteristics of the

search. The authors proposed that there exists a relationship between the inertia weight,

fitness, swarm size, and problem dimension. Dong et al. [27] also posited that problems

in higher dimensions can benefit from an increased inertia weight, as this would help

to escape local optima. Similarly, they claimed that higher inertia weight values, and

thereby enhanced exploration, could be used to compensate for smaller swarm sizes. To

this end, the inertia weight for a particle i at time t is calculated as

ωi(t) =
1

α− e−ns/β +
(
Ri(t)
γnd

)2 , (3.27)

where Ri(t) denotes the fitness rank of the particle, and α, β, and γ are empirically

determined constants with values 3, 200, and 8, respectively. The SAPSO-DWCY al-

gorithm thus tunes the value of the ω parameter without introducing any additional

parameters. However, the values of α, β, and γ in Equation (3.27) may require tuning

and could be considered as additional control parameters. It should be noted that par-

ticles with better fitnesses are assigned higher ranks – the best-fit particle is assigned

a rank of ns while the worst-fit particle is assigned a rank of 1. This update strategy

increases the inertia weight for low ranking particles (i.e., particles with relatively bad

fitnesses) to enhance their exploration, while high ranked particles (i.e., particles with

relatively good fitnesses) have their inertia weight decreased to encourage exploitation.

Figure 3.5 demonstrates the inertia weight values assuming a swarm size of 30 particles

and a 50-dimensional problem.

3.2.8 Improved Particle Swarm Optimization by Chen et al.

The improved particle swarm optimization by Chen, Li, and Liao (IPSO-CLL) [16] uses

an adaptive inertia weight aimed at accelerating the speed of convergence toward an

optimum in the PSO algorithm. To this end, the inertia weight at time t is given by

ω(t) = e−λ(t), (3.28a)
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Figure 3.5: The inertia value of the SAPSO-DWCY algorithm based on the fitness rank of

the particle, assuming 30 particles in 50 dimensions.

with

λ(t) =
α(t)

α(t− 1)
(3.28b)

and

α(t) =
1

ns

ns∑
i=1

|f(xi(t))− f(y∗(t))| , (3.28c)

where y∗(t) is the best position found during iteration t. Note that, in Equation (3.28a),

the use of the exponential function was not empirically determined, but rather was

introduced based on its presence in engineering calculations [16]. In this approach, α(t)

is used to identify the smoothness of the fitness values and allows the inertia weight

to vary according to the state of convergence toward a fixed location among particles.

Chen et al. [16] claimed that the convergence state of the algorithm was dependent upon



Chapter 3. Self-Adaptive Particle Swarm Optimizers 31

the value of λ(t)3; when λ(t) < 1, the algorithm demonstrated convergent behaviours,

while λ(t) > 1 lead to globally divergent behaviour. Similarly, the value of λ(t) will

also directly affect the exploration of particles, because a smaller value for λ(t) implies

a larger ω(t), as seen in Figure 3.6, and thus increases exploration. The IPSO-CLL

algorithm tunes the ω control parameter and introduces no additional parameters.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5

ω
(t

)

λ(t)

Figure 3.6: The inertia value of the IPSO-CLL algorithm relative to the smoothness function

λ(t).

3.2.9 Particle Swarm Optimization with Simulated Annealing

The particle swarm optimization with simulated annealing (PSO-ICSA) algorithm [55]

adapts both the inertia weight and social acceleration coefficients. Firstly, the “adaptive

3No indication of the behaviour when λ(t) = 1 was provided by Chen et al. [16].
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coefficient” of particle i at time t, given by

ηi(t) =
f(ŷ(t− 1))

f(xi(t− 1))
, (3.29)

quantifies the performance of the particle. The adaptive coefficient measures the simi-

larity of a particle’s fitness relative to the global best fitness; ηi(t) ≈ 0 denotes that a

particle’s fitness is far from the global best, while ηi(t) = 1 denotes that the particle’s

fitness is equal to the global best fitness.

The inertia weight of a particle is then given by

ωi(t) = ωaF (ηi(t)) + ωb, (3.30a)

with

F (ηi(t)) =



2 if ηi(t) < 0.0001

1 if 0.0001 ≤ ηi(t) < 0.01

0.3 if 0.01 ≤ ηi(t) < 0.1

−0.8 if 0.1 ≤ ηi(t) < 0.9

−5.5 if 0.9 ≤ ηi(t) ≤ 1

(3.30b)

where ωa and ωb are user-supplied, positive constants. Note that, when ηi(t) is small,

the inertia weight is increased to enhance exploration, while large values of ηi(t) lead to

decreased inertia, thereby enhancing exploitation.

The social acceleration coefficient of a particle is given by

c2i(t) = c2aG(ηi(t)) + c2b, (3.31a)

with

G(ηi(t)) =



2.5 if ηi(t) < 0.0001

1.2 if 0.0001 ≤ ηi(t) < 0.01

0.5 if 0.01 ≤ ηi(t) < 0.1

0.2 if 0.1 ≤ ηi(t) < 0.9

0.1 if 0.9 ≤ ηi(t) ≤ 1

(3.31b)

where c2a and c2b are user-supplied, positive constants. When ηi(t) is small, the social ac-

celeration coefficient is increased as an attempt to attract the particle towards the global



Chapter 3. Self-Adaptive Particle Swarm Optimizers 33

best position. This is an explicit attempt to increase the speed of convergence toward

a promising position. When ηi(t) is large, the social acceleration coefficient is decreased

to discourage crowding around the global best position. Additionally, the cognitive ac-

celeration coefficient is decreased linearly according to Equation (3.3a). The PSO-ICSA

algorithm thus tunes the values for each of the ω, c1, and c2 parameters, but introduces

six additional control parameters, namely ωa, ωb, c1s, c1f , c2a, and c2b. Furthermore, the

function values, and the corresponding piece-wise boundaries in Equations (3.30b) and

(3.31b), may also require tuning, in which case the PSO-ICSA algorithm introduces a

further 18 control parameters.

3.2.10 Adaptive Particle Swarm Optimization by Zhan et al.

The adaptive particle swarm optimization by Zhan, Zhang, Li, and Chung (APSO-ZZLC)

[120] adapts the value for each of the three PSO control parameters through the use of

a fuzzy classification system. The classification system classifies the current behaviour

of the algorithm into one of four states: exploration (S1), exploitation (S2), convergence

(S3), or jumping out (S4). To perform the classification, an evolutionary factor4 is first

calculated based on the spread of particles in the search space, given by

fe(t) =
dg(t)− dmin(t)

dmax(t)− dmin(t)
, (3.32a)

with

di(t) =
1

ns − 1

ns∑
j=1,j 6=i

√√√√ nd∑
k=1

(xik(t)− xjk(t))2, (3.32b)

where dg(t) is the value of Equation (3.32b) for the global best position, and dmin(t)

and dmax(t) are the minimum and maximum observed values of di(t). Note that di(t)

is the average Euclidean distance of particle i to all other particles in the swarm. The

fuzzy membership value for each of the four algorithmic states, depicted in Figure 3.7,

are dependent upon the value of fe given by the following piece-wise functions:

4Again, the original terminology is retained despite the PSO algorithm not exhibiting evolution.
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Exploration

µS1(fe(t)) =



0 if 0.0 ≤ fe(t) ≤ 0.4

5fe(t)− 2 if 0.4 < fe(t) ≤ 0.6

1 if 0.6 < fe(t) ≤ 0.7

−10fe(t) + 8 if 0.7 < fe(t) ≤ 0.8

0 if 0.8 < fe(t) ≤ 1.0

(3.33a)

Exploitation

µS2(fe(t)) =



0 if 0.0 ≤ fe(t) ≤ 0.2

10fe(t)− 2 if 0.2 < fe(t) ≤ 0.3

1 if 0.3 < fe(t) ≤ 0.4

−5fe(t) + 3 if 0.4 < fe(t) ≤ 0.6

0 if 0.6 < fe(t) ≤ 1.0

(3.33b)

Convergence

µS3(fe(t)) =


1 if 0.0 ≤ fe(t) ≤ 0.1

−5fe(t) + 1.5 if 0.1 < fe(t) ≤ 0.3

0 if 0.3 < fe(t) ≤ 1.0

(3.33c)

Jumping-out

µS4(fe(t)) =


0 if 0.0 ≤ fe(t) ≤ 0.7

5fe(t)− 3.5 if 0.7 < fe(t) ≤ 0.9

1 if 0.9 < fe(t) ≤ 1.0

(3.33d)

Due to the possibility of having a degree of membership to multiple states simulta-

neously, a defuzzification process must be employed to provide a singular classification.

Zhan et al. [120] posited that the PSO algorithm should transition according to the

following sequence S1 → S2 → S3 → S4 → S1..., and therefore the defuzzification pro-

cedure must account for this (see rule 2 below). The defuzzification process consists of

three rules, in decreasing order of priority, as follows:
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Figure 3.7: The fuzzy membership functions of the APSO-ZZLC algorithm for the four

evolutionary states.

1. If the degree of membership to the current state is non-zero, there is no change in

state. This provides classification stability by preventing excessive changes.

2. If the degree of membership to the next state in the sequence is non-zero, the state

transitions to the next state in the sequence (e.g., S1 → S2 or S3 → S4).

3. The current state is selected as the state with the highest degree of membership.

Once the defuzzification process has determined a singular classification, the values

of the control parameters can be calculated. The inertia weight is provided by

ω(fe) =
1

1 + 1.5e−2.6fe
∈ [0.4, 0.9], (3.34)

while the cognitive and social acceleration coefficients are either increased or decreased

based on the algorithmic state, as described in Table 3.1. An entry which indicates an
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Table 3.1: Parameter control strategies for the cognitive and social coefficients in the APSO-

ZZLC algorithm.

Algorithmic State Cognitive Coefficient Social Coefficient

S1 – Exploration Increase Decrease

S2 – Exploitation Increase slightly Decrease slightly

S3 – Convergence Increase slightly Increase slightly

S4 – Jumping-out Decrease Increase

“Increase” denotes that the value of the corresponding control parameter is increased by

δ(t) and an entry marked “Decrease” denotes that the value of the corresponding param-

eter is reduced by δ(t), where δ(t) ∼ U(0.05, 0.1). Entries marked as “Increase slightly”

or “Decrease slightly” are incremented or decremented by 0.5δ(t), respectively. Both the

social and cognitive coefficients are clamped to the range [1.5, 2.5]. Furthermore, if the

sum of the cognitive and social coefficients is greater than 4.0, the coefficients are each

normalized to

ci(t) = 4.0
ci(t)

c1(t) + c2(t)
, i = 1, 2

to effectively bound the range of c1(t) + c2(t) to [3.0, 4.0], as suggested by their earlier

work [119].

Note that, while the APSO-ZZLC algorithm can be employed without any additional

parameters, there are numerous constants that may be treated as control parameters.

Specifically, for each of the membership functions in Equation (3.33), there are a total of

nine constant values (five for the function values and four for the piece-wise boundaries),

which leads to an additional 36 possible parameters. Furthermore, Equation (3.34)

defines two constant values, namely 1.5 and -2.6, which can be seen as additional control

parameters. Thus, the APSO-ZZLC can be considered to have 38 additional parameters,

if these constants are assumed to require tuning.

3.2.11 Adaptive Inertia Weight Particle Swarm Optimization

The adaptive inertia weight particle swarm optimization (AIWPSO) algorithm [82] uses

the success rate of the swarm as feedback to adapt the inertia weight. The success rate of
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the swarm at time t is defined as the proportion of particles that improved their personal

best position during iteration t. The inertia weight is then adapted according to

ω(t) = (ωmax − ωmin)Ps(t) + ωmin, (3.35a)

with

Ps(t) =

ns∑
i=1

Si(t)

ns
(3.35b)

and

Si(t) =

1 if f(yi(t)) < f(yi(t− 1))

0 otherwise.
(3.35c)

The justification for this behaviour was that the algorithm increases the inertia weight

when particle successes are high to heighten exploration, and decreases the inertia weight

when particle successes are low to enhance exploitation [82]. Typically, higher success

rates are attained early in a search, when the fitness values of particles are rapidly

improving. Therefore, the inertia weight of the AIWPSO algorithm is expected to be

relatively large initially. However, the inertia weight is also expected to decrease over

time, as fitness improvements become more difficult to attain. The AIWPSO algorithm

thus tunes the value of the ω parameter, but introduces two additional parameters,

namely ωmin and ωmax.

3.2.12 Fine Grained Inertia Weight Particle Swarm Optimiza-

tion

The fine-grained inertia weight particle swarm optimization (FG-PSO) algorithm [14, 25]

provides individualized inertia weights for each particle given by

ωi(t+ 1) = ωi(t)−
(

(ωi(t)− 0.4)e−||ŷ(t),yi(t)||2 t
T

)
)
. (3.36)

Additionally, the inertia weight of each particle is initialized to 0.9. The FG-PSO algo-

rithm thus tunes the value of the ω parameter without introducing any new parameters.

However, the value of 0.4 in Equation (3.36) may require tuning.



Chapter 3. Self-Adaptive Particle Swarm Optimizers 38

3.2.13 Adventurous Unified Particle Swarm Optimization

The adventurous unified adaptive particle swarm optimization (UAPSO-A) algorithm

[46, 47] adapts the value of each control parameter using an independent learning au-

tomaton [80]. Using a set of learning automata, the UAPSO-A algorithm takes the

performance of the current parameters as feedback to control their probability of selec-

tion in the future.

Learning automata are a type of machine learning algorithm used to probabilistically

select an action from a set [80]. At each step, an action is selected and applied to the

given environment. Immediately after the application of the action, the environment

evaluates the action and returns a reinforcement signal back to the automaton, which

then interprets this signal to improve the selection probabilities. When an action was

successful, the learning automaton will increase the probability of selecting this action

again, while an unsuccessful action will have the selection probability decreased.

In the context of parameter selection, the UAPSO-A algorithm employs three learn-

ing automata – one for each of the PSO control parameters. The set of actions (i.e.,

parameter values) in each automaton are given by a user-supplied number of discrete

values from the allowable range, namely nω equidistant values from [ωmin, ωmax] are used

for the inertia automaton, while the cognitive and social automata are both provided

nc independent, equidistant values from the range [cmin, cmax]. At each iteration, one

control parameter value is selected from each automaton, thereby providing values for

ω, c1, and c2. Use of the selected parameters constitutes applying the action to the envi-

ronment, and their performance is then used as the reinforcement signal. Initially, the

probability of selection is equal for all parameter values. The success of the selected

parameters is then determined based on the proportion of particles that have improved

their fitness during the current iteration. If the proportion of particles that improved

their fitness is greater than τ , the parameters are considered to be successful and each

of the automata must be updated accordingly.

If a successful iteration was observed when employing the parameter at index i, the
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probabilities are updated according to

pj(t+ 1) =

pj(t) + a(1− pj(t)) if i = j

pj(t)(1− a) otherwise,
(3.37)

where a is the reward step size. Note that, the probability of selection is increased for

the parameter value that was used during the successful iteration, while the remainder

of the parameter values have their probabilities decreased slightly. Conversely, for an

unsuccessful iteration employing parameter i, the probabilities are updated according to

pj(t+ 1) =

pj(t)(1− b) if i = j

b
|A|−1

+ pj(t)(1− b) otherwise,
(3.38)

where b is the penalty step size, and |A| is the number of actions in the automaton.

Thus, the probability of selecting the unsuccessful parameter value is decreased after an

unsuccessful iteration is observed. The UAPSO-A algorithm thus tunes the values for

each of the ω, c1, and c2 parameters, but introduces nine additional control parameters,

namely nω, ωmin, ωmax, nc, cmin, cmax, a, b, and τ .

3.2.14 Grey Particle Swarm Optimization

The grey particle swarm optimization (GPSO) algorithm [64] uses a measure of similarity

for finite sequences under incomplete information, namely grey relational analysis [54],

to aid with control parameter adaptation. Grey relational analysis is used to modify the

inertia weight and social acceleration coefficient based on the grey relational grade. To

calculate the grey relational grade, the relational coefficient of particle i is first calculated

according to

rij(t) =
∆min(t) + ξ∆max(t)

∆ij(t) + ξ∆max(t)
, (3.39a)

with

∆ij(t) = |ŷij(t)− xij(t)|, (3.39b)

where j is the current dimension, ∆min(t) and ∆max(t) are the minimum and maximum

values of ∆ij(t), respectively, and ξ ∈ (0, 1] controls the resolution between ∆max and
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∆min. The grey relational coefficient of particle i is then given by

gi(t) =

nd∑
j=1

(αjrij(t)), (3.40a)

such that
nd∑
j=1

αj = 1, (3.40b)

where αj is the weighting factor of the relational coefficient for dimension j, and nd is the

number of dimensions in the current problem. In general, it is acceptable to set αj = 1
nd

for all dimensions j [64]. However, the values of αj can be taken as an additional nd

control parameters.

The relational grade is then used to adapt the inertia weight of each particle according

to

ωi(t) =
ωmin − ωmax

gmax(t)− gmin(t)
gi(t) +

ωmaxgmax(t)− ωmingmin(t)

gmax(t),−gmin(t)
(3.41)

where gmin(t) and gmax(t) are the minimum and maximum relational grades at time

t, and ωmin and ωmax are the minimum and maximum inertia weights, respectively.

Furthermore, the relational grade controls the value of the social acceleration coefficient

according to

c2i(t) =
cmax(t)− cmin(t)

gmax(t)− gmin(t)
gi(t) +

cmin(t)gmax(t)− cmax(t)gmin(t)

gmax(t)− gmin(t)
, (3.42)

where cmin(t) and cmax(t) are the linearly-varying minimum and maximum values for the

social coefficient at time t governed by

cmin(t) = (Cfinal − Cmin)
t

T
+ Cmin (3.43a)

and

cmax(t) = (Cfinal − Cmax)
t

T
+ Cmax, (3.43b)

where Cmin, Cmax, and Cfinal are user-supplied parameters such that

Cmin ≤ Cfinal ≤ Cmax.

Finally, the cognitive acceleration coefficient is given by

c1i(t) = 4.0− c2i(t), (3.44)
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such that ∀i, c1i(t) + c2i(t) = 4.0. Note that, while the GPSO algorithm adapts all three

control parameters, the cognitive coefficient is based solely on the social coefficient and

therefore is not truly an adaptive parameter in itself. The GPSO algorithm thus tunes

the values for each of the ω, c1, and c2 parameters, but introduces six additional control

parameters, namely ωmin, ωmax, Cmin, Cmax, Cfinal, and ξ. Additionally, the values for

αj can be interpreted as control parameters, leading to an additional nd parameters.

3.2.15 Double Exponential Self-Adaptive Inertia Weight Par-

ticle Swarm Optimization

The double exponential self-adaptive inertia weight particle swarm optimization (DE-

PSO) algorithm [14] incorporates a double exponential function, referred to as a Gom-

pertz function, to select the inertia weight according to

ωi(t) = e−e
−Ri(t) , (3.45a)

with

Ri(t) = ||ŷ(t),yi(t)||2
(
T − t
T

)
. (3.45b)

The inertia weight of each particle is initialized to 0.9. The DE-PSO algorithm thus

tunes the value of the ω parameter without introducing any new parameters.

3.2.16 Adaptive Parameter Tuning Based on Velocity Informa-

tion

The adaptive parameter tuning of particle swarm optimization based on velocity in-

formation (APSO-VI) algorithm [113] adapts the inertia weight based on the current

velocities of the particles, with the intent to push the velocity closer to their definition

of an “ideal” velocity. The concept of a decreasing target velocity in the APSO-VI algo-

rithm is borrowed from earlier work by Yasuda et al. [117], which proposed adapting the

inertia weight in a fully-informed particle swarm to control exploration and exploitation.
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In the APSO-VI algorithm, the average velocity of the swarm is calculated as

v(t) =
1

ndns

ns∑
i=1

nd∑
j=1

|vij(t)|, (3.46)

where nd and ns represent the number of problem dimensions and the size of the swarm,

respectively. Xu [113] proposed an equation defining the ideal (average) velocity such

that the ideal velocity decreases over time, leading to heightened exploitation near the

end of the search. Furthermore, Xu [113] claimed that the ideal velocity must be non-

linear and should have long exploratory and exploitative phases with a minimal transition

period. The ideal velocity at time t for the APSO-VI algorithm is given by

videal(t) = vs

1 + cos
(
π t
T0.95

)
2

 , (3.47)

where vs is the initial velocity, given by xmax−xmin

2
, and T0.95 is the point in which 95%

of the search is complete. This ideal velocity function is visualized in Figure 3.8.

The APSO-VI algorithm then dynamically adapts the inertia weight each iteration

based on the average velocity in relation to the ideal velocity as

ω(t+ 1) =

max{ω(t)−∆ω, ωmin} if v(t) ≥ videal(t+ 1)

min{ω(t) + ∆ω, ωmax} if v(t) < videal(t+ 1),
(3.48)

where ωmin and ωmax are the minimum and maximum inertia weights, respectively, and

∆ω is the step size of the inertia weight. The APSO-VI algorithm thus tunes the value

of the ω parameter, but introduces three additional parameters, namely ωmin, ωmax, and

∆ω.

3.2.17 Self-Regulating Particle Swarm Optimization

The self-regulating particle swarm optimization (SRPSO) algorithm [104] controls the

inertia weight of each particle such that the value is increased for the best particle, and

decreased for all other particles. This adaptation scheme was premised on the idea that

the best particle of the swarm should have a high level of confidence in its direction

and thus accelerate more rapidly [104]. The remainder of particles then follow a linearly
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Figure 3.8: The ideal velocity of APSO-VI as a function of time.

decreasing inertia weight strategy, similar to the PSO-LDIW algorithm. The inertia

weight in the SRPSO algorithm is given by

ωi(t) =

ωi(t− 1) + η∆ω for the best particle

ωi(t− 1)−∆ω for all other particles,
(3.49a)

with

∆ω =
ωs − ωf

T
, (3.49b)

where η is a constant to control the rate of acceleration, ωs and ωf are the initial and final

values of the inertia weight, and T is the maximum number of iterations. The SRPSO

algorithm thus tunes the value of the ω parameter, but introduces three additional

parameters, namely ωs, ωf , and η.
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3.3 Summary

This chapter provided a review of self-adaptive particle swarm optimizers. Section 3.1

presented time-variant approaches, which vary control parameters based on the iteration.

In Section 3.2, a number of true self-adaptive algorithms, i.e., those which adapt their

control parameters based on the algorithmic state, were presented.

Table 3.2 summarizes the SAPSO algorithms discussed by outlining the control pa-

rameters they tune and the net change in the total number of control parameters relative

to the standard PSO. Values in the ‘Net Change’ column of Table 3.2 should be inter-

preted as the overall change in the number of control parameters, relative to the standard

PSO algorithm, while entries in the ‘Net Change with Constants’ column indicate the

net change if the constants defined by that algorithm are treated as control parame-

ters. Thus, positive values denote situations where an algorithm introduces more control

parameters than it tunes, while negative values denote situations where an algorithm

tunes one or more control parameters without the introduction of further control param-

eters, leading to an overall reduction in the number of control parameters relative to the

standard PSO. For the case of GPSO, nd is the number of problem dimensions.

Table 3.2 shows that a significant amount of effort has been devoted to solely adapt-

ing the value of the inertia weight parameter. A further key observation is regarding the

net change in the number of parameters: of the 29 examined SAPSO algorithms, only

nine depict a net reduction in the number of parameters. Removal of the algorithm that

simply generates random parameters adhering to the stability criterion each iteration

(i.e., PSO-RAC) leaves eight out of 28 algorithms that actually reduce the number of

parameters relative to the standard PSO. If the constants defined by the various algo-

rithms are treated as control parameters, then only three of the algorithms lead to a

reduction of parameters, while two algorithms lead to no change in the number of pa-

rameters. Given that one of the primary objectives of an adaptive variant is to eliminate

the need to specify values for the control parameters, proposing a variant that increases

the number of parameters is likely counter-productive, unless insensitivity to the new pa-

rameters has been illustrated. Furthermore, newly introduced parameters do not benefit

from the plethora of theoretical and empirical results readily available for the traditional

PSO control parameters. Therefore, it may be more difficult to adequately tune the
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parameters of a SAPSO relative to tuning the control parameters of a traditional PSO.

Nonetheless, it is entirely possible that an algorithm with a greater number of control

parameters is more robust and easier to adequately tune. Newly introduced parameters

should thus be accompanied by an appropriate sensitivity analysis to ascertain their

robustness.

Clearly, many of the examined algorithms only adapt the inertia coefficient. The

exploration/exploitation trade-off is arguably most easily controlled using the inertia

coefficient, as evidenced by its leading presence in self-adaptive strategies. However, the

performance of PSO is also heavily dependent upon the social and cognitive acceleration

coefficients. While some of the examined algorithms do vary the cognitive and social

acceleration coefficients, their adaptation is typically secondary to the adaptation of the

inertia coefficient. Furthermore, it is more common that the social acceleration coeffi-

cient is tuned, while the cognitive coefficient remains either static or time-dependent.

Evidently, there is a need for self-adaptive PSO variants that introduce minimal control

parameters and, when necessary, provide guidelines for selecting their values.

Given that many of the SAPSO techniques introduced in this chapter take no regard

for the theoretical criterion needed for particle stability to be exhibited, an investigation

of whether the algorithms will lead to stability is warranted. In the following chapter, an

analysis of stability is provided for various SAPSO algorithms discussed in this chapter.
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Table 3.2: Net change in the number of control parameters of various SAPSO algorithms

relative to the standard PSO. Entries in the ‘Net Change with Constants’ column indicate the

net change if the constants defined by the algorithm are treated as control parameters. Note

that nd is the number of problem dimensions.

Optimizer Parameters Tuned Net Change Net Change with Constants

PSO-LDIW [98, 99] ω +1 –

PSO-RIW [29] ω -1 +1

PSO-AIWF [70] ω +1 –

PSO-NEIW [15] ω +1 +2

PSO-SIW [62] ω 0 –

CDIW-PSO [34] ω +1 –

DW-PSO [33] ω -1 +1

DAPSO [116] ω +2 –

LD-PSO [37] ω +2 +3

PSO-NLI [53] ω +1 –

IPSO-LT [67] ω +1 –

SAPSO-LFZ [66] ω -1 0

SAPSO-DWCY [27] ω -1 +2

PSO-RBI [86] ω +1 –

PSO-OIW [61] ω +2 +6

IPSO-CLL [16] ω -1 –

FG-PSO [14, 25] ω -1 0

AIWPSO [82] ω +1 –

DE-PSO [14] ω -1 –

APSO-VI [113] ω +2 –

PSO-NL [115] ω +2 –

SRPSO [104] ω +2 –

PSO-SAIC [112] ω, c2 +2 +4

PSO-RAC ω, c1, c2 -3 –

PSO-TVAC [94] ω, c1, c2 +3 –

PSO-ICSA [55] ω, c1, c2 +3 +31

APSO-ZZLC [120] ω, c1, c2 -3 +35

UAPSO-A [46] ω, c1, c2 +6 –

GPSO [64] ω, c1, c2 +3 +(nd + 3)



Chapter 4

Stability Analysis of Self-Adaptive

Particle Swarm Optimizers

The focus of this chapter is to analyse the order-2 stability of various SAPSO techniques

discussed in Chapter 3. Their respective parameter adaptation mechanisms are analyt-

ically dissected to determine if and when they will lead to stable behaviour. Moreover,

to support and complement the analytical findings, their search behaviour is empirically

examined on a specially-formulated benchmark problem that isolates the stagnation be-

haviour. Algorithms are presented in order of the parameters they adapt.

The remainder of this chapter is structured as follows. The experimental design is

provided in Section 4.1. The results of both the theoretical and empirical analysis are

provided in Section 4.2. Finally, a summary of the findings in this chapter are presented

in Section 4.3.

4.1 Empirical Analysis of Self-Adaptive Particle Swarm

Optimizers

The empirical results in this chapter were obtained via a specially-formulated benchmark

function, which is a vertically-shifted version of the function proposed by Cleghorn and

Engelbrecht [19, 20]. This function provided the algorithms with an environment in which

complete stagnation was highly unlikely, and thereby isolated the ability for particles to

47
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attain stability. The function is given by

F (x) ∼ U(0, 2000), (4.1a)

such that

F (x1) = F (x2) if x1 = x2. (4.1b)

Equation (4.1a) thus defines the fitness value of each position in the search space as

a randomly-sampled real value within the range [0, 2000]. Equation (4.1b) stipulates

that subsequent evaluations of the same position during a simulation will always result

in the same fitness. Therefore, the fitness value of each unique position was randomly

determined, but remained fixed throughout each independent simulation. Given the

function has many discontinuities and is completely unstructured, an optimizer is unlikely

to enter complete stagnation [20]. Therefore, the function is a reasonable synthetic

environment for examining the ability of the PSO algorithm to exhibit order-2 stability

without the stability being a direct result of particle stagnation. Note that the function

was shifted to produce strictly non-negative fitness values, because some of the examined

algorithms require such a condition. Also note that it is not strictly necessary for all

particles to converge toward the same point in the search space for Equation (4.1) to

correctly identify scenarios in which the particles’ behaviour is stable [19].

To empirically measure stability, the average Euclidean distance of the particles’

movement according to

∆(t+ 1) =
1

ns

ns∑
i=1

||xi(t+ 1)− xi(t)||, (4.2)

where ns is the number of particles, was also measured. A sensible upper threshold,

∆max, was defined as the maximum distance between any two points in the feasible

search space [20], according to

∆max =
√
nd(l − u)2, (4.3)

where [l, u] is the (feasible) domain of the objective function, and nd is the dimensionality

of the problem. Given that Equation (4.3) refers to the maximal distance between

two points in the search space, particles that exhibited movement values above this
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value were considered to be demonstrating divergent behaviour. Note that, while this

is a practical definition of divergent behaviour, not a theoretical definition, the use of

∆max as the criterion to empirically determine particle divergence has been demonstrated

to be 98.79% accurate when correlated with the criterion in Equation (2.5) [20]. In

this investigation, the domain of the problem was fixed at [−100, 100]50, and therefore,

∆max = 1414.214. Additionally, the movement values were capped at 2000 to prevent

excessively divergent behaviour from muddling the results.

An analogous version of Equation (4.2) was used to measure the average Euclidean

distance of the parameter configurations between successive iterations. This measure

indicates the stability of control parameter values over time. Furthermore, the percentage

of particles with control parameter values leading to theoretical stability (i.e., values that

adhere to Equation (2.5)) and the percentage of particles that were outside the feasible

region (i.e., have a bound violation in at least one dimension) were measured at each

iteration.

Note that the purpose of this chapter is not to empirically analyse and compare al-

gorithms to determine which performs best, but only to analyse their search behaviour.

Furthermore, this chapter does not attempt to prove or disprove the optimality of the

control parameter values that are produced by the algorithms at any given time through-

out the search. In fact, the question of whether the control parameter values adopted

by SAPSO algorithms at any particular time are well-suited for the current environment

is, to the best of the author’s knowledge, still unanswered. Finally, the purpose of this

chapter is not to conduct a sensitivity analysis of the parameters introduced by each

algorithm.

4.2 Critical Analysis of Self-Adaptive Particle Swarm

Optimizers

Chapter 3 indicated that SAPSO algorithms fall broadly into two categories, namely

time-variant approaches and (true) self-adaptive approaches. This section presents a

critical analysis of a number of algorithms from both categories. A theoretical analysis

of the order-2 stability was performed, ultimately describing the algorithmic conditions
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necessary for the respective algorithm to exhibit stability. Furthermore, Equation (4.1)

was employed to empirically investigate the convergence of both the particles and the

control parameter values to fixed values. This empirical investigation provides an in-

dividualized profile of the search behaviour of each algorithm and primarily serves to

support and complement the analytical results, rather than to provide a direct compar-

ison between algorithms.

The four performance measures employed to evaluate the behaviour of each algorithm

are summarized as follows:

1. The average particle movement was calculated using Equation (4.2) and quan-

tifies the average particle step size. If particle steps sizes do not decrease, particles

will not converge towards a fixed point. Furthermore, large step sizes may prevent

particles from exploiting promising locations in the search space.

2. The percentage of particles with theoretically stable control parameters

measures the proportion of particles that employ parameter settings that adhere

to Poli’s criterion in Equation (2.5). This measure provides an indication of an

algorithm’s ability to generate parameters adhering to order-2 stability criterion.

3. The average parameter movement measures the average step size in parameter

space. This measure provides an indication of the stability of the employed control

parameter values. The average parameter movement was calculated according to

Equation (4.2), using the control parameter values rather than the particle position.

4. The percentage of particles with a bound violation measures the proportion

of particles that violated the boundary constraints in at least one dimension. This

measure provides an indication of the search effort that is wasted on infeasible

solutions.

Empirical results depict the measured values of each of the four performance measures

averaged over 50 independent runs, each consisting of 5000 iterations. Each algorithm

made use of a star topology and a synchronous iteration strategy [12]. Particle positions

were randomly initialized within the search space, and their initial velocity was set to the

zero vector [30]. To prevent infeasible attractors, a particle’s personal best position was
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only updated if the new position had a better objective function value and was within

the (feasible) search space. No boundary constraints were enforced, except the restric-

tion of personal best positions to the feasible search space. Algorithmic parameters, as

described below and summarized in Table 4.1, were employed based on the guidelines of

the respective authors.

It should be explicitly stated that there was no attempt to tune any of the respective

control parameter values, and that the observations made herein may change if the values

of the control parameters are altered. While it can be argued that different values for the

various control parameters may lead to an unfair comparison, the parameters employed

in this study are those suggested by the respective authors and, therefore, this study

examines the behaviour of the algorithms as they were published. Furthermore, given

that a self-adaptive algorithm is explicitly designed to remove the need for parameter

tuning, it is reasonable to assume that the parameters of such algorithms should not

require tuning.

4.2.1 Particle Swarm Optimization with Linearly-Decreasing

Inertia Weight

As employed by Shi and Eberhart [99], the parameters for the PSO-LDIW algorithm

were set as ωs = 0.9 and ωf = 0.4, with c1 = c2 = 1.49618. Given that ∀t, ω(t) ≥ 0.4,

Equation (2.5) can be simplified to ω(t) < 0.78540. From Equation (3.1), it follows

that ω(t) = 0.78540 occurs when t
T

= 0.22920, i.e., when approximately 22.9% of the

search process has completed. Thus, the PSO-LDIW algorithm is not expected to exhibit

stability until nearly a quarter of the search process has completed, but will exhibit stable

behaviour overall.

As Figure 4.1a depicts, the average particle movement for PSO-LDIW dropped below

∆max after roughly 1000 iterations. However, as Figure 4.2a shows, the resulting control

parameter values were not below the threshold before the expected 22.9% of the search

was completed, indicating that the particle step sizes dropped below ∆max slightly before

the parameters adhered to the stability criterion. Given the aforementioned parametriza-

tion, the inertia weight value changed by 0.0001 each iteration leading to the constant,

near-zero parameter movement values shown in Figure 4.3a. The PSO-LDIW algorithm
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depicted a gradual decrease in particle bound violations over time, as shown in Figure

4.4a. This was likely a result of the decreasing inertia weight gradually altering the

behaviour of the algorithm from exploration to exploitation as the search progressed.

4.2.2 Particle Swarm Optimization with Adaptive Inertia Wei-

ght Factor

Liu et al. [70] employed parameters ωmin = 0.2, ωmax = 1.2, and c1 = c2 = 2 for the

PSO-AIWF algorithm, which leads to a range of 1
3
< ωi(t) <

1
2

for stable behaviour to

be exhibited. Equation (3.14) suggests that any particle with a fitness value worse than

the average will have an inertia value of 1.2, and therefore will not demonstrate stable

behaviour. Furthermore, the only scenario in which stable behaviour can occur is if

fi(t) ≤ f(t)

and
2

15
<
fi(t)− fmin(t)

f(t)− fmin(t)
< 0.3.

Given that roughly half of the particles will exhibit unstable behaviour on any given iter-

ation, the PSO-AIWF algorithm is expected to demonstrate rapid divergence of particle

positions.

The rapid divergence of the PSO-AIWF algorithm is exemplified by the average

particle movement, which immediately reached the maximal value of 2000 and never

decreased, as shown in Figure 4.1b. Moreover, Figure 4.2b depicts that no particles

employed theoretically stable parameter configurations, thus indicating that Equation

(3.14) was unsuccessful at generating inertia values within the necessary range. In fact,

Figure 4.3b depicts that the average change in parameter space was immediately near

zero, suggesting that the adaptation mechanism was failing to adapt the inertia weight

altogether. As a result, particles immediately exited the feasible region and never re-

turned; Figure 4.4b indicates that 100% of the particles were outside the bounds of the

search space throughout the entirety of the search.
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4.2.3 Dynamic Adaptation Particle Swarm Optimization

Yang et al. [116] concluded that the parametrization of DAPSO, specifically the α and β

parameters, does not have a significant impact on performance. Therefore, the parameter

values used in this work, namely α = 1.0, β = 0.1, ωs = 1.0, and c1 = c2 = 1.496180,

were taken from previous studies [109, 116].

From Equation (3.18), it follows that ∀t, 0.0 ≤ ωi(t) ≤ 1.1, and, given the aforemen-

tioned values for the social and cognitive control parameters, the DAPSO algorithm thus

requires ωi(t) < 0.78540 to exhibit stability. Equation (3.17) can then be simplified to

ωi(t) = hi(t) + 0.1s(t), (4.4)

demonstrating that the inertia, and thereby the particle stability, is predominantly in-

fluenced by hi(t). Furthermore, this indicates that

hi(t) + 0.1s(t) < 0.78450

is necessary for stable behaviour to occur. Given that the maximum value for si(t) is

1.0, then

hi(t) < 0.68450

becomes the predominant requirement for particle stability. Therefore, only when the

ratio of a particle’s personal best fitness to its previous personal best fitness is below

0.68450 (i.e., improves by more than 31.6%) will the DAPSO algorithm exhibit stable

behaviour. However, sustaining such a high degree of fitness improvement is infeasible,

thus the DAPSO algorithm is expected to exhibit divergent behaviour.

Given the infeasibility of continual fitness improvements, the DAPSO algorithm de-

picted immediately divergent behaviour, as shown in Figure 4.1c. Furthermore, as Fig-

ures 4.2c and 4.3c demonstrate, the parameters generated via the adaptation mechanism

were never within the stable region and were thus wildly unstable. In fact, the adap-

tation mechanism failed to generate reasonable parameters as a result of the explosive

divergence, which caused fitness values to deteriorate such that they became too large

to represent as an IEEE-754 64-bit floating point value. As a result, Figure 4.4c shows

that particles immediately exited the feasible region and never returned. Thus, the

adaptation mechanism of the DAPSO algorithm is wildly deficient.
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4.2.4 Improved Particle Swarm Optimization by Li and Tan

For the IPSO-LT algorithm, Li and Tan [67] employed parameter values of c1 = c2 = 2.0,

but did not specify the values used for α and β. Therefore, the mid-point of the allowable

range was used for both these parameters, namely α = β = 0.5. Substituting α = β = 0.5

into Equation (3.25) provides a simpler equation for the inertia weight, given by

ωi(t) = 1−
∣∣∣∣ 1− ci(t)
3(di(t) + 1)

∣∣∣∣ , (4.5)

which further simplifies the stability criterion such that

2

3
<

∣∣∣∣1− ci(t)di(t) + 1

∣∣∣∣ < 2 (4.6)

is required for stable behaviour to be exhibited.

As evidenced by the average particle movement in Figure 4.1d, the IPSO-LT algo-

rithm demonstrated immediate divergent behaviour. Thus, it can be concluded that the

condition in Equation (4.6) was never satisfied, thereby causing all particles to have di-

vergent behaviours. This is further evidenced by Figure 4.2d depicting that no particles

employed parameter configurations that are theoretically stable. Moreover, Figure 4.3d

shows that the values of the parameters were not changing over time, indicating that the

adaptation mechanism is inherently flawed and is incapable of tuning the inertia weight

control parameter. However, Figure 4.4d shows that not all particles were outside of

the search space. Specifically, the particle corresponding to the best position remained

within the feasible region, given that it would have zero velocity as a result.

4.2.5 Self-Adaptive Particle Swarm Optimization by Li et al.

Li et al. [66] employed parameter values of c1 = c2 = 1.496180 for the SAPSO-LFZ

algorithm, which simplifies the stability criterion to

ωi(t) < 0.78540.

From Equation (3.26a), it follows that ∀t, 0.15 < ωi(t) < 1.15, and furthermore, ωi(t) <

0.78540 occurs when

f(yi(t)) < f(yi(t)) + 0.55545. (4.7)
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Thus, only particles that have a personal best fitness that is no greater than 0.55545 above

the average will exhibit stable behaviour. Given that particles tend to roam and exit

the feasible search space early in the search [30, 32], it is expected that not all particles

will improve their personal best positions initially. When a particle does not improve

its personal best position, the corresponding fitness does not improve and the particle is

assigned a divergent trajectory. This effectively prevents the particle from improving its

personal best fitness in subsequent iterations. Therefore, divergent behaviour is expected

for the SAPSO-LFZ algorithm.

Figure 4.1e depicts that the particle movement values immediately hit the maximum

value of 2000 and never decreased, thereby validating the theoretical expectations. Given

that particles which attain a fitness value no greater than the average swarm fitness

plus 0.55545 will lead to stable behaviour, it was expected that roughly 50% of the

particles will exhibit stable behaviour. As evidenced by Figure 4.2e, just under 50%

of the particles showed stable behaviour at any given iteration. To further support

this observation, Figure 4.4e shows that just over 50% of particles (i.e., those without

theoretically stable parameter configurations) were outside the search space after only

a few iterations. However, as Figure 4.3e shows, there was very little adaptation of

parameters occurring, which is indicative of stagnating personal best fitness values in

the SAPSO-LFZ algorithm. Thus, as expected, initially divergent behaviours caused no

improvements in fitness, thereby causing the adaptation mechanism to have virtually no

effect.

4.2.6 Self-Adaptive Particle Swarm Optimization by Dong et

al.

Dong et al. [27] employed control parameter values of c1 = c2 = 2.0 for the SAPSO-

DWCY algorithm, leading to the necessary condition of

1

3
< ωi(t) <

1

2

for stable behaviour to be depicted. By substituting minimum and maximum ranks of

1 and 30 into Equation (3.27), the range of possible inertia values exemplified by the
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SAPSO-DWCY algorithm is then given by

0.46622 < ωi(t) < 0.46744.

Thus, all possible values for the inertia weight fall within the stable range, and therefore

the SAPSO-DWCY algorithm will exhibit stable behaviour. However, the strikingly

small range for the inertia weight values (i.e., 0.00122) will cause all configurations of

the control parameters to lie relatively close to the boundaries of the stable region. As a

result, the SAPSO-DWCY algorithm is expected to exhibit an unreasonably slow decline

in particle movement [19].

While Figure 4.1f does depict the average particle movement value was below the

threshold for most iterations, there was no decline in particle movement over time; the

average particle movement value hovered around 1400. Moreover, as Figures 4.2f and 4.3f

depict, the parameters were always within the stable region and were undergoing virtually

no change over time. While the SAPSO-DWCY algorithm could thus be considered as

stable in a sense, it cannot be said that the particles were stagnating nor that the swarm

was converging to a stable point. Finally, despite the categorically stable behaviour,

Figure 4.4f demonstrates that no solutions were retained within the feasible region; the

particles immediately exited the feasible region and never returned.

4.2.7 Particle Swarm Optimization with Rank-Based Inertia

Parameter values of ωmin = 0.4 and ωmax = 0.9 were employed by Panigrahi et al. [86]

for the PSO-RBI algorithm. However, there was no mention of the social and cognitive

acceleration coefficients employed, and thus sensible defaults of c1 = c2 = 1.496180

[107] are used for the purposes of this study. Assuming a swarm size of 30 particles,

it follows from Equation (3.22) that the PSO-RBI algorithm will exhibit stability when
Ri(t)
ns
≥ 0.22920. That is, when a particle is ranked within the worst 22.9% of the

swarm, the particle will exhibit divergent behaviour. Therefore, more than one fifth of

the swarm will exhibit divergent behaviour at any given time, causing the PSO-RBI to

exhibit overall divergent behaviour.

The divergent behaviour of the PSO-RBI algorithm is evidenced by the particle

movement over time in Figure 4.1g, which depicts a rapid increase in particle movement
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until the value reached 2000, from which it never decreased. The empirical results

in Figure 4.2g suggest that 20% of the particles employed unstable parameter values,

which is directly in line with the theoretical prediction. Figure 4.3g demonstrates that

a non-zero particle movement was maintained throughout the search, indicating the

adaptive mechanism did not stagnate, and thereby suggesting that the rank of particles

was constantly changing. Despite the overall divergent behaviour depicted by the PSO-

RBI algorithm, Figure 4.4g demonstrates that the number of infeasible particles was

constantly decreasing, finalizing at roughly 40% infeasible solutions after 5000 iterations.

Thus, despite overall divergent behaviour, a majority of the particles in the PSO-RBI

algorithm remained within the bounds of the feasible region.

4.2.8 Improved Particle Swarm Optimization by Chen et al.

Chen et al. [16] employed control parameter values of c1 = c2 = 2.0 in their initial

proposal of the IPSO-CLL algorithm. Substitution of these values into Equation (2.5)

reduces the stability criterion to
1

3
< ω(t) <

1

2

for the IPSO-CLL algorithm. It then follows from Equation (3.28a) that

log(2) < λ(t) < log(3)

is necessary for stability to occur. Moreover, order-2 stability at time t will only be

exhibited when

log(2) <

ns∑
i=1

|f(xi(t))− f(y∗(t))|
ns∑
i=1

|f(xi(t− 1))− f(y∗(t− 1))|
< log(3).

In other words, stability will only be exhibited when the average difference in fitness

between all particles and the iteration best deviates between 30.1% and 47.8%. Given

that it would be unreasonable to attain a high level of deviation between fitnesses during

successive iterations, it is therefore expected that the IPSO-CLL algorithm will lead to

divergent behaviour. Moreover, given the large values for the cognitive and social control

parameters, the divergence of the IPSO-CLL algorithm is expected to be rapid.
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Figure 4.1h depicts that the average particle movement exhibited by the IPSO-CLL

algorithm was immediately above the maximal value of 2000. Despite the divergent

behaviour, the IPSO-CLL algorithm always employed theoretically stable parameters, as

evidenced by Figure 4.2h. The only reasonable explanation for this anomalous event was

that the parameter values were generated sufficiently close to the boundaries of the stable

region, such that the movement values were divergent; this is likely an example of the

slight inaccuracy associated with using ∆ to classify empirical stability [19]. As Figure

4.3h indicates, the adaptation mechanism completely failed to adapt the parameters and

lead to no change in the parameter values over time. Finally, as indicated in Figure

4.4h, particles immediately exited feasible space and never returned. Therefore, the

adaptation mechanism of the IPSO-CLL algorithm was ineffective at adapting the values

of the control parameters.

4.2.9 Adaptive Inertia Weight Particle Swarm Optimization

For the AIWPSO algorithm, Nickabadi et al. [82] employed parameter values of ωmin =

0.0 and ωmax = 1.0, while no indication of the values for the social and cognitive control

parameters was given. Therefore, the commonly employed parameters of c1 = c2 =

1.496180 [107], which are theoretically stable when ω(t) < 0.78540, are assumed. Given

the parameter values of ωmin = 0.0 and ωmax = 1.0, Equation (3.35a) simplifies to

ω(t) = Ps(t), (4.8)

and therefore, ω(t) < 0.78540 occurs when Ps(t) < 0.78540. This behaviour indicates

that the swarm may not exhibit stability when more than 78.54% of the particles improve

their personal best fitness in any given iteration. However, it is unrealistic to sustain such

a high success rate for any extended period of time due to the stochastic, exploratory

nature of particle movement, which effectively prevents particles from always moving in

the optimal direction. Thus, the AIWPSO algorithm is expected to exhibit stability.

As expected, Figure 4.1i demonstrates the average particle movement was well below

∆max, while Figure 4.2i depicts that the generated parameter configurations were always

within the stable region. These two observations provide conclusive evidence that the

high rate of improvement necessary to not satisfy the theoretical stability criterion was
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unreasonable and will likely not be achieved in practice. However, despite stability

being exhibited, particle movement in the AIWPSO was strikingly low, which suggests

that the algorithm suffers from premature convergence. This is further supported by the

stagnant parameter movement, as shown in Figure 4.3i. Thus, the adaptation mechanism

of AIWPSO struggled to effectively adapt the parameters during the search. The average

percentage of particle bound violations, shown in Figure 4.4i, was by far the lowest among

all the examined algorithms. Over 80% of the particles were within the search space

after only a few iterations, while only four of the remaining algorithms even attained

80% feasible solutions within 5000 iterations.

4.2.10 Adaptive Particle Swarm Optimization Based on Veloc-

ity Information

Xu [113] used parameters ωmin = 0.3, ωmax = 0.9, and ∆ω = 0.1 with c1 = c2 = 1.496180

for the APSO-VI algorithm. As the ideal velocity of Xu [113] decreases over time, the

employed value of ω(t) will also decrease over time and thus will eventually stabilize

within the theoretical range for stability. Furthermore, given that the ideal velocity tends

toward zero, by definition the average velocity will also tend toward zero regardless of

the inertia weight. Therefore, the APSO-VI algorithm is expected to exhibit stability.

Figure 4.1j depicts a gradual, smooth decline in particle movement over time. This is

to be expected given that the APSO-VI algorithm is premised on explicitly controlling the

average velocity and, by extension, the magnitude of particle movement. The percentage

of stable particles over time, shown in Figure 4.2j, depicted an inverse relationship with

the particle movement. That is, the number of particles with stable parameters showed

a gradual increasing trend over time, such that after approximately 4000 iterations,

the entire swarm had stable parameters. It is noted that around the same time that

all particles employed stable parameter configurations, i.e., around 4000 iterations, the

parameter movement also stabilized. This is evidenced by Figure 4.3j, which shows

that the parameter adaptation abruptly ceased just after 4000 iterations. Finally, the

percentage of particles outside the feasible region over time is shown in Figure 4.4j and

indicated that almost all particles immediately exited the feasible region and did not

return until nearly half of the search had completed. However, during the second half
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of the search, particle bound violations steadily decreased, eventually stabilizing around

6%. Thus, the adaptation mechanism of APSO-VI was successfully controlling the inertia

weight.

4.2.11 Self-Regulating Particle Swarm Optimization

Tanweer et al. [104] employed parameters of ωs = 1.05, ωf = 0.5, η = 1, and c1 = c2 =

1.49445 in their study of the SRPSO algorithm. Furthermore, the following assumptions

were made to continue with the analysis: a swarm size of 30, 5000 iterations were to be

executed, and each particle was equally likely to have the best fitness at any iteration.

It follows that this parametrization can only lead to stability when

2572.69 < t < 11816.70.

Therefore, the SRPSO algorithm will only exhibit stability after 2573 iterations under

ideal conditions, which are likely problem-dependent due to the assumption that all

particles are equally likely to be the global best.

Figure 4.1k depicts the particle movement over time for the SRPSO algorithm. As

expected, the algorithm was divergent for the first half of the search. However, it took

slightly longer than the theoretically-predicted 2573 iterations to begin exhibiting sta-

ble behaviour, suggesting that the observed probability of particles attaining the best

position was not uniform. Furthermore, the movement values only briefly fell below the

threshold before gradually increasing back to the maximum value of 2000. Figure 4.2k

shows that after roughly half of the search had completed, only 3.3% of the particles

(i.e., a single particle) employed control parameters that did not adhere to the stability

criterion. This further evidences that the best position was predominantly obtained by

a single particle, and thereby caused this particle to exhibit divergent behaviour. As

shown in Figure 4.3k, no parameter changes occurred after 5000 iterations. However, as

shown in Figure 4.4k, the percentage of particles with a bound violation decreased near

the end of the search. Despite nearly all of the particles initially exiting the search space,

particles began re-entering the feasible region after approximately 3000 iterations.
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4.2.12 Particle Swarm Optimization with Individual Coefficient

Adjustment

Wu and Zhou [112] employed parameters of ωa = 0.9, ωb = 0.45, c2a = 0.5, c2b = 2.5,

and c1 = 2.05 in the PSO-SAIC algorithm. It follows from Equation (3.20) that

∀i, t, 0.45 ≤ ωi(t) ≤ 2.25,

and from Equation (3.21) that

∀i, t, 2.5 ≤ c2i(t) ≤ 3.75.

Therefore,

∀i, t, c1 + c2i(t) ≥ 4.55,

which indicates that the PSO-SAIC can never lead to theoretical stability.

In line with the theoretical expectations, the average particle movement over time,

presented in Figure 4.1l, immediately reached the maximum value and never decreased.

This was a result of the inability to generate parameter configurations adhering to the

stability criterion, which was empirically evidenced in Figure 4.2l. Due to the rapid

divergence, invalid fitness values (which exceeded the limitation of an IEEE-754 64-bit

floating point value) were obtained, thereby causing Equation (3.19) to fail at producing

feasible values for the related distance. Moreover, this resulted in invalid values calcu-

lated for the average change in parameter values, causing Figure 4.3l to appear empty.

As should be expected, all particles immediately exited the feasible region and never

returned, as shown in Figure 4.4l. Thus, the adaptation mechanism of the PSO-SAIC

algorithm is flawed in such an extreme manner that the entire algorithm failed to even

complete the search.

4.2.13 Particle swarm Optimization with Random Acceleration

Coefficients

As a baseline, the PSO-RAC algorithm, which employs random, theoretically stable

values for the control parameters, was used as a control to ascertain how the various
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SAPSO algorithms compared to a solely random parameter maintenance strategy. Note

that by definition, the PSO-RAC algorithm will always exhibit stable behaviour but

should, in theory, demonstrate relatively large parameter changes.

Figures 4.1m and 4.2m, which plot the average particle movement and percentage of

particles with theoretically stable parameters over time, depict that the PSO-RAC algo-

rithm exhibited non-divergent behaviour. Figure 4.3m shows that the average parameter

movement was approximately 1.6 at each iteration. Given that this strategy randomly

selected the parameters each iteration, a reasonable SAPSO strategy should (ideally)

exhibit average parameter movement values below 1.6. Finally, Figure 4.4m plots the

number of particles with a bound violation over time, which demonstrates that after 5000

iterations, more than 40% of the particles were infeasible. However, it can be argued

that the high proportion of particles outside the search space is a result of the PSO-RAC

algorithm making no explicit attempt at exploitation near the end of the search. Rather,

the algorithm attempts to maintain an equal balance between exploration and exploita-

tion throughout the entire search. While the relatively large number of particles outside

the search space seems problematic, it should be noted that the search space defined by

Equation (4.1) is highly irregular and was largely meant to examine particle stability by

preventing complete stagnation. Therefore, it is not unreasonable to assume particles

will exit and remain outside the feasible region to a larger extent than situations when

a more regular search space is employed.

4.2.14 Particle Swarm Optimization with Time-Varying Accel-

eration Coefficients

Parameters for the PSO-TVAC algorithm were set to the commonly employed values of

ωi = 0.9, ωf = 0.4, c1s = 2.5, c1f = 0.5, and c2s = 0.5, c2f = 2.5. Given that c1(t) and

c2(t) have an inverse relationship, it is trivial to see that

∀t, c1(t) + c2(t) = 3.

It follows from Equation (2.5) that

−0.15934 < ω(t) < 0.78436
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is then the necessary condition for stability, which is satisfied when t
T

= 0.23128. Thus,

the PSO-TVAC algorithm will only demonstrate stability after approximately 23% of

the search has completed.

As Figure 4.1n depicts, the PSO-TVAC algorithm exhibited initial divergent be-

haviour, but demonstrated a rapid decrease in particle movement slightly after 1000

iterations had passed. The rapid decrease was caused by the immediate switch from pa-

rameters not adhering to the stability criterion to configurations that did adhere to the

criterion, as evidenced in Figure 4.2n. Given the linear nature of the parameter adapta-

tion mechanism, the average change in parameters, shown in Figure 4.3n, was constant at

5.74E-4. Finally, the percentage of particles with bound violations, presented in Figure

4.4n, demonstrates that the initial explosive movements caused particles to initially exit

the feasible search space. However, after roughly 1000 iterations (and coinciding with the

switch to theoretically stable parameter configurations), the PSO-TVAC algorithm de-

picted a smooth decline in bound violations over the remainder of the search. After 5000

iterations, only 6.5% of the particles (i.e., 2 particles) were outside the feasible region,

on average. Thus, despite not being a truly self-adaptive algorithm, the PSO-TVAC

algorithm demonstrated good search behaviours relative to the other algorithms.

4.2.15 Particle Swarm Optimization with Simulated Annealing

Jun and Jian [55] used parameter values of ωa = 0.9, ωb = 0.45, c2a = 0.5, c2b = 2.5, and

c1s = 2.5, c1f = 0.5. From Eqs. (3.30b) and (3.31b), it is clear that there are five distinct

scenarios which can occur:

1. ηi(t) < 0.0001 =⇒ ω = 2.25, c2 = 6.75

2. 0.0001 ≤ ηi(t) < 0.0100 =⇒ ω = 1.35, c2 = 3.50

3. 0.0100 ≤ ηi(t) < 0.1000 =⇒ ω = 0.72, c2 = 1.75

4. 0.1000 ≤ ηi(t) < 0.9000 =⇒ ω = −0.27, c2 = 1.00

5. 0.9000 ≤ ηi(t) ≤ 1.0000 =⇒ ω = −4.50, c2 = 0.75
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Cases (1), (2), and (5) – ηi(t) < 0.01 or ηi(t) ≥ 0.9: None of the respective iner-

tia weight values of 2.25, 1.35, and -4.5 resulting from these cases satisfy the stability

criterion outlined in Equation (2.5). Therefore, particle stability will never be exhibited.

Case (3) – 0.01 ≤ ηi(t) < 0.1: With an inertia weight value of 0.72 and a social

coefficient of 1.75, it follows from Equation (2.5) that c1(t) < 1.64853 is necessary for

particle stability. This can only occur when t
T

= 0.42574, i.e., after roughly 42.6% of

the search is completed. Therefore, case (3) can only lead to stability after 42.6% of the

search is completed.

Case (4) – 0.1 ≤ ηi(t) < 0.9: With an inertia weight value of -0.27 and a social

coefficient of 1, it follows from Equation (2.5) that c1(t) < 2.08378 is necessary for

stability to be attained. This can only occur when t
T

= 0.20811, or after roughly 20.8%

of the search has completed. Therefore, case (4) can only lead to stability after 20.8%

of the search is completed.

Summary : During the first 20.8% of the search process, the PSO-ICSA strictly can

not satisfy the stability criterion. Moreover, there are only two (unlikely) scenarios that

can lead to the stability criterion being satisfied. The first scenario requires roughly

20.8% of the search process to be completed, while the second scenario requires roughly

42.6% of the search to be completed. In either scenario, all particles must have a fitness

value that is neither too close nor too far from the fitness of the global best position.

Given the extremely strict requirements for stability, the PSO-ICSA algorithm is ex-

pected to exhibit overall divergent behaviour.

Figure 4.1o presents the average particle movement over time for the PSO-ICSA

algorithm and clearly demonstrates that stable behaviour was never exhibited. Further-

more, the percentage of particles with theoretically stable parameters shown in Figure

4.2o was never above 0%, indicating that the adaptation mechanism completely failed

to produce parameters adhering to the stability criterion. Moreover, the average change

in parameter values over time, shown in Figure 4.3o, was constant and had a value of

4.00E-4, indicating that the only change in parameters was due to the linearly decreas-

ing cognitive coefficient. Given the observed divergent behaviour, it was not unexpected

that the bound violation percentage, shown in Figure 4.4o, immediately reached 100%

and never decreased. Thus, the adaptation mechanism of the PSO-ICSA is extremely
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flawed and caused immediate divergence.

4.2.16 Adaptive Particle Swarm Optimization

Zhan et al. [120] used ω = 0.9 and c1 = c2 = 2 as initial values for the control pa-

rameters, leading to initially divergent behaviour. Based on their respective adaptation

mechanisms, both the cognitive and social coefficients are expected to tend towards 2.0

[120], which leads to the condition of

1

3
< ω(t) <

1

2

for stability to be exhibited. Assuming that c1+c2 = 4.0 (note the conditions for stability

become easier to satisfy if c1 + c2 < 4.0), then ω(t) will be within the theoretical stable

range when −0.11065 < fe(t) < 0.15595. Revisiting Equation (3.32), it is expected that

the global best should, in general, be near the centre of the swarm, thereby causing

dg(t) ≈ dmin(t). When dg(t) ≈ dmin(t), the value of fe(t) should tend towards 0. Given

that, in the strictest case, fe(t) < 0.15595 is necessary for stability, the APSO-ZZLC

algorithm should exhibit overall stable behaviour. However, given that c1 + c2 will tend

towards 4.0, the particle movement sizes are expected to be rather large [19].

Directly in line with the theoretical expectations, Figure 4.1p depicts an average

particle movement that was just slightly below ∆max over the entirety of the search.

Furthermore, Figure 4.2p depicts that the generated parameter configurations always

adhered to the stability criterion given by Equation (2.5). As Figure 4.3p depicts, the

parameter configurations depicted only slight adaptations, and were only changing by an

average of 4.51E-5 after 5000 iterations. As such, the APSO-ZZLC algorithm could be

naively classified as stable. However, as Figure 4.4p depicts, nearly all particles exited

the feasible region and never returned. Thus, despite having parameters adhering to the

stability criterion at all times, the APSO-ZZLC algorithm exhibited such large particle

movement values that it was incapable of retaining particles within the feasible search

space.

4.2.17 Adventurous Unified Particle Swarm Optimization

Hashemi and Meybodi [46, 47] used ωmin = 0, ωmax = 1, nω = 20, cmin = 0, cmax =



Chapter 4. Stability Analysis of Self-Adaptive Particle Swarm Optimizers 66

2, nc = 10, a = b = 0.01, and τ = 0.5. Through the use of Equations (3.37) and

(3.38), the respective automata will learn the values of each parameter that lead to

successful behaviours, thereby improving the selection of parameters over time. Note

that, while the UAPSO-A algorithm will guide the swarm towards successful parameters,

there is no guarantee of stability given that each of the parameter values is selected

independently. However, parameters that exhibit divergence will likely not demonstrate

successful behaviour and thus will eventually be given smaller probabilities of selection,

thereby promoting stable behaviours. Thus, the UAPSO-A is expected to exhibit overall

stability.

Figure 4.1q shows the average particle movement over time for the UAPSO-A al-

gorithm. This figure depicts relatively small initial movement values of approximately

500, which then gradually decreased over time. The average percentage of particles

with parameter configurations adhering to the stability criterion, as shown in Figure

4.2q, fluctuated wildly between 60% and 80%. These results indicate that the UAPSO-

A algorithm was able to retain overall stable behaviour, despite having between 20%

and 40% of the particles exhibiting divergent tendencies at any given iteration. This

suggests that, even when particles did exhibit divergent behaviour, parameter configu-

rations were subsequently adapted such that the divergent behaviour did not persist for

an extended period of time. However, the significant portion of particles with unsta-

ble behaviours at any given time suggests that the divergent parameter configurations

were never completely eliminated from consideration. Given the probabilistic nature of

parameter selection, the relatively high average change in parameters, shown in Fig-

ure 4.3q, was to be expected. Finally, the average percentage of bound violations is

presented in Figure 4.4q, where the UAPSO-A demonstrated a smooth decrease in vio-

lations over time. After 5000 iterations, the UAPSO-A algorithm had only 38.1% of the

particles outside the search space, on average, which is relatively low compared to the

other examined algorithms.

4.2.18 Grey Particle Swarm Optimization

Leu and Yeh [64] employed parameters of ωmin = 0.4, ωmax = 0.9, Cmin = 1.5, Cmax =

Cfinal = 2.5, and ξ = 1.0. Note that the sum of the cognitive and social coefficients
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will always be 4.0, which leaves a very slim window for the inertia weight, specifically
1
3
≤ ωi(t) ≤ 1

2
, to lead to stability. By substituting the aforementioned parameters into

Equation (3.41), the condition for stable behaviour simplifies to

1

3
≤ 0.9gmax(t)− 0.4gmin(t)− 0.5gi(t)

gmax(t)− gmin(t)
≤ 1

2
,

which will always lead to ωi(t) = 0.9, and thereby divergent behaviour, in at least one

particle, namely the particle i where gi(t) = gmin(t). Moreover, note that the only

inertia weight values leading to stability that can be produced by Equation (3.41) are

those within the range [0.4, 0.5], and that this range accounts for only 20% of the possible

inertia values that Equation (3.41) can produce. Thus, if the inertia weights calculated

by Equation (3.41) follow a uniform distribution over the range of [0.4, 0.9], it is expected

that only approximately 20% of the particles will exhibit stability during each iteration.

Therefore, the GPSO algorithm is expected to exhibit purely divergent behaviour.

Figure 4.1r presents the average particle movement over time for the GPSO algorithm

and empirically confirms that the algorithm demonstrated purely divergent behaviour.

Considering Figure 4.2r, it was observed that slightly fewer than 20% of the particles

exhibited stability during each iteration, which is directly in line with the theoretical

expectation under the assumption that Equation (3.41) uniformly distributes the inertia

value. As Figure 4.3r depicts, the average change in parameters was approximately 0.25

initially, but gradually decreased over time to a value of 0.835E-2, which is still rela-

tively large in comparison to the other algorithms. Nonetheless, the parameter changes

demonstrated by the GPSO were continually decreasing, and therefore may have lead

to a stable set of parameters the number of iterations was larger. However, a stable set

of parameters will likely not be of benefit to the algorithm given that the entire swarm

exited the feasible region and never returned, as evidenced by Figure 4.4r.

4.3 Summary

This section provides a summary of the empirical results presented in this chapter.

Table 4.1 summarizes the algorithmic parameters employed, while Table 4.2 provides an

overview of the final measure values obtained by the examined algorithms, in contrast
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Figure 4.1: Average particle movement over time (part I: a–i).

to the standard PSO. Examining Table 4.2, 10 of the 18 examined algorithms (not

accounting for the standard PSO) attained average particle movement magnitudes that

hit the maximum (capped) value of 2000. A further two algorithms, namely SAPSO-

DWCY and APSO-ZZLC, had average movement values within 10% of ∆max, suggesting

that these two algorithms are unlikely to result in a stabilizing swarm within a reasonable

amount of time.

Of the 18 examined algorithms, five contained no particles with parameters adhering

to the stability criterion, indicating a complete failure of their respective adaptation

mechanisms. Furthermore, only an additional two algorithms had fewer than 50% of the
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Figure 4.1: Average particle movement over time (part II: j–r).

particles with theoretically stable parameters. Of the 18 algorithms, only eight managed

to result in stable parameters being employed by all particles. Regarding the average

parameter movement, eight of the algorithms depicted no change in parameters during

the final iteration, while a majority depicted relatively small changes. With the exception

of two algorithms, namely DAPSO and PSO-SAIC, which resulted in invalid parameter

movement sizes, all algorithms exhibited parameter movement sizes below that of the

baseline PSO-RAC. This suggests that, despite their respective failures, the adaptation

mechanisms did achieve overall stability with respect to the resulting parameters. Finally,

when considering the average percentage of particles that are outside the feasible search



Chapter 4. Stability Analysis of Self-Adaptive Particle Swarm Optimizers 70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(a) PSO-LDIW

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(b) PSO-AIWF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(c) DAPSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(d) IPSO-LT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(e) SAPSO-LFZ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(f) SAPSO-DWCY

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(g) PSO-RBI

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(h) IPSO-CLL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(i) AIWPSO

Figure 4.2: Percentage of particles with theoretically stable control parameters (part I: a–i).

space, nine of the algorithms had greater than 95% of the particles outside the feasible

region. However, due to the chaotic nature of the search space, it is not unreasonable for

the algorithms to struggle with retaining particles within the search space, as evidenced

by the standard PSO having approximately 70% of the particles outside the feasible

region after 5000 iterations. Nonetheless, five of the algorithms were able to retain greater

than 90% of the particles within the search space, although none of which attained 100%

feasibility.

A further noteworthy observation was that care must be taken with regards to the

classification of algorithms as exhibiting stability based solely upon the particle move-
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Figure 4.2: Percentage of particles with theoretically stable control parameters (part II: j–r).

ment sizes. As evidenced by the SAPSO-DWCY algorithm in Section 4.2.6, simply

maintaining particle movement sizes below ∆max does not guarantee that good search

behaviour will be exhibited. This is further supported by the findings of Cleghorn and

Engelbrecht [19], which indicated that parameters near the boundaries of the region

defined by Equation (2.5) may exhibit large particle movement values coupled with un-

reasonably slow convergence, despite being classified as stable.

Given that many of the SAPSO techniques focus solely on adapting the inertia weight,

the next chapter provides an extensive analysis of both stability and performance for

inertia weight control strategies.
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Figure 4.3: Average parameter movement over time (part I: a–i).
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Figure 4.3: Average parameter movement over time (part II: j–r).
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Figure 4.4: Percentage of particles with a bound violation in at least one dimension (part I:

a–i).
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Figure 4.4: Percentage of particles with a bound violation in at least one dimension (part II:

j–r).
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Table 4.1: Control parameter values employed by the SAPSO algorithms.

Algorithm Parameters

PSO ω = 0.729844, c1 = c2 = 1.496180

PSO-LDIW ωs = 0.9, ωf = 0.4, c1 = c2 = 1.496180

PSO-AIWF ωmin = 0.2, ωmax = 1.2, c1 = c2 = 2.0

DAPSO α = 1.0, β = 0.1, ωs = 1.0, c1 = c2 = 1.496180

IPSO-LT α = 0.5, β = 0.5, c1 = c2 = 2.0

SAPSO-LFZ c1 = c2 = 1.496180

SAPSO-DWCY α = 3, β = 200, γ = 8, c1 = c2 = 2.0

PSO-RBI ωmin = 0.4, ωmax = 0.9, c1 = c2 = 1.496180

IPSO-CLL c1 = c2 = 2.0

AIWPSO ωmin = 0.0, ωmax = 1.0, c1 = c2 = 1.496180

APSO-VI ωmin = 0.3, ωmax = 0.9,∆ω = 0.1, c1 = c2 =

1.496180

SRPSO ∆ω = 0.00011, η = 1, λ = 0.5, ωs = 1.05, ωf =

0.5, c1 = c2 = 1.49445

PSO-SAIC ωa = 0.9, ωb = 0.45, c2a = 0.5, c2b = 2.5, c1 = 2.05

PSO-RAC –

PSO-TVAC ωs = 0.9, ωf = 0.4, c1s = 2.5, c1f = 0.5, c2s =

0.5, c2f = 2.5

PSO-ICSA ωa = 0.9, ωb = 0.45, c1s = 2.5, c1f = 0.5, c2a =

0.5, c2b = 2.5

APSO-ZZLC –

UAPSO-A nω = 20, nc = 10, ωmin = 0, ωmax = 1, Cmin =

0, Cmax = 2, τ = 0.5, a = b = 0.01

GPSO ωmin = 0.4, ωmax = 0.9, Cmin = 1.5, Cmax =

Cfinal = 2.5, ξ = 1.0



Chapter 4. Stability Analysis of Self-Adaptive Particle Swarm Optimizers 77

Table 4.2: Average measure values after 5000 iterations. ∆ = average particle movement,

SP = stable parameters, ∆p = average parameter movement, IP = invalid particles. Missing

values were too large to compute.

Algorithm ∆ SP ∆p IP

PSO 415.125 100% 0.0 70.7%

PSO-LDIW 56.489 100% 1.00e-4 9.6%

PSO-AIWF 2000.000 0% 0.0 96.7%

DAPSO 2000.000 0% – 96.9%

IPSO-LT 2000.000 0% 0.0 96.7%

SAPSO-LFZ 2000.000 47.2% 0.0 53.5%

SAPSO-DWCY 1324.322 100% 0.0 96.2%

PSO-RBI 2000.000 76.7% 6.01e-2 41.5%

IPSO-CLL 2000.000 100% 0.0 100%

AIWPSO 45.521 100% 0.0 3.3%

APSO-VI 55.940 100% 0.0 6.1%

SRPSO 2000.000 96.7% 0.0 3.3%

PSO-SAIC 2000.000 0% – 96.7%

PSO-RAC 165.544 100% 1.60e+0 44.2%

PSO-TVAC 32.354 100% 5.74e-4 6.5%

PSO-ICSA 2000.000 0% 4.00e-4 96.7%

APSO-ZZLC 1318.307 100% 4.51e-5 96.1%

UAPSO-A 124.467 70% 8.47e-1 38.1%

GPSO 2000.000 16.7% 8.35e-2 96.7%



Chapter 5

Analysis of Inertia Weight Control

Strategies

As discovered in Chapter 3, a majority of the research on adapting the values of PSO

control parameters has focused on adapting the inertia weight. While a number of recent

studies have provided reviews of existing inertia weight control strategies [1, 8, 14, 48,

82, 85, 103, 109], such studies typically lack in empirical investigation. The field of

inertia weight control strategies is thus left with a plethora of strategies to chose from,

with no clear guidance on which strategies perform best. There are also no studies

that indicate if or when the various control strategies adhere to the theoretical stability

criterion. Furthermore, none of the previous studies have examined the performance

relative to fitness landscape features such as modality and separability. To address these

shortcomings, this chapter examines 18 inertia weight control strategies, discussed in

Chapter 3, and dissects them analytically to determine if and when they will lead to

order-2 stability. Moreover, the performance of the strategies is empirically investigated.

The remainder of this chapter is structured as follows. Further motivation for this

chapter is provided in Section 5.1. Section 5.2 provides a theoretical analysis of stability

for the examined strategies. The experimental procedure is described in Section 5.3,

while the results are provided in Section 5.4. Finally, Section 5.5 provides a summary of

the findings in this chapter.

78
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5.1 Motivation

Given the variety of inertia weight control strategies in the literature, a comprehensive

performance analysis is warranted. However, previous studies that empirically compared

multiple inertia weight strategies often only examined a limited set of strategies; Nick-

abadi et al. [82] examined five, Chauhan et al. [14] examined only two, Pandey et al. [85]

examined six, van Zyl and Engelbrecht [109] examined six, Taherkhani and Safabakhsh

[103] examined seven, Hu et al. [48] did not empirically examine any strategies apart from

their proposed strategy, Bonyadi and Michalewicz [8] did not empirically examine any

strategies, and Bansal et al. [1] examined 15 strategies. Note that, the study of Bansal

et al. [1] was relatively comprehensive with regards to the inertia weight strategies they

examined, but was severely limited by the use of only five benchmark problems.

As Taherkhani and Safabakhsh [103] pointed out, none of the previous works on

inertia weight control strategies focused on ensuring that the PSO algorithm retained

theoretical stability. Thus, there is a general tendency for adaptive PSO variants to

exhibit divergent behaviour [42, 44, 103, 109]. To circumvent divergent behaviour, many

authors have employed velocity clamping as a means to limit particle step sizes [13, 14,

16, 33, 37, 70, 86, 104, 109]. As discussed in Section 2.4, velocity clamping does not

necessarily prevent divergence, but rather delays it.

The field of inertia weight control strategies is thus left with a plethora of strategies

to chose from, with no clear guidance on which strategies perform best. Furthermore,

none of the previous studies have examined the performance relative to fitness landscape

features such as modality and separability. With the exception of the results shown in

Chapter 4, there are no studies that indicate if or when the various control strategies

adhere to the theoretical stability criterion. While Chapter 4 provided a theoretical

analysis of a number of the algorithms examined in this chapter, the values for the control

parameters were taken as those suggested by their respective authors. In contrast, this

chapter fixes the values of c1 and c2 for all examined algorithms, thereby leading to

(slightly) different stability criterion being derived for the algorithms common to both

studies.
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5.2 Theoretical Stability Analysis

To facilitate a more straightforward derivation of the theoretical stability criterion for

the inertia weight strategies, the condition for order-2 stability provided in Equation

(2.5) was reformulated as a condition on ω, given by

5C − g(C)

48
< ω <

5C + g(C)

48
, (5.1a)

with

C = c1 + c2 and g(C) =
√

25C2 − 672C + 2304. (5.1b)

In the interest of fairness for the empirical comparison, values for the social and cognitive

control parameters have been set to c1 = c2 = 1.496180 [107] for all examined strategies.

It then follows from Equation (5.1) that

− 0.16199 < ω(t) < 0.78540 (5.2)

is necessary for the algorithms to exhibit order-2 stability. The criteria given by Equation

(5.2) was used as the basis for the following stability analyses. Additional parameters

for each of the algorithms are given in Table 5.1. Finally, where necessary to complete

the analysis, the maximum number of iterations was set as T = 5000.

5.2.1 Particle Swarm Optimization with Constant Inertia Wei-

ght

For the purposes of this study, a constant inertia weight of ω = 0.729844 was used based

on the demonstrated ability to lead to stable trajectories, given the aforementioned values

of c1 and c2 [19, 28, 107]. Note that the employed value of ω trivially satisfies Equation

(5.2) and will thus lead to particle stability.

5.2.2 Particle Swarm Optimization with Random Inertia Wei-

ght

Following from Equation (5.2), the PSO-RIW algorithm will exhibit stability when

U(0.5, 1.0) < 0.78540, which will, in theory, occur 57.08% of the time. Given that
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Table 5.1: Parameters employed by the inertia weight control strategies.

Strategy Equation Parameters

AIWPSO (3.35) ωmin = 0.0, ωmax = 1.0

APSO-VI (3.48) ωmin = 0.3, ωmax = 0.9

CDIW-PSO (3.7) ωmin = 0.4, ωmax = 0.9

Constant (2.1) ω = 0.729844

DE-PSO (3.45) ω(0) = 0.9

DW-PSO (3.6) –

FG-PSO (3.36) ω(0) = 0.9

IPSO-LT (3.25) α = 0.5, β = 0.5

LD-PSO (3.10) ωmin = 0.4, ωmax = 0.9

PSO-NL (3.13) ωmin = 0.4, ωmax = 0.9, α = 1/π2

PSO-NLI (3.9) ω = 0.3, u = 1.0002

PSO-NEIW (3.4) ωmin = 0.4, ωmax = 0.9

PSO-OIW (3.11) ωmin = 0.3, ωmax = 0.9, k = 7

PSO-RIW (3.2) –

PSO-RBI (3.22) ωmin = 0.4, ωmax = 0.9

SRPSO (3.49) ωs = 0.9, ωf = 0.4, η = 1

PSO-SIW (3.5) s = 2

PSO-LDIW (3.1) ωmin = 0.4, ωmax = 0.9

the PSO-RIW algorithm will employ theoretically stable parameters more often than

not, it is expected to exhibit stability.

5.2.3 Particle Swarm Optimization with Linearly-Decreasing

Inertia Weight

Given that ∀t, ω(t) ≥ 0.4, Equation (5.2) simplifies to ω(t) < 0.78540. From Equation

(3.1), it follows that ω(t) = 0.78540 occurs when t
T

= 0.22920, i.e., when 22.9% of

the search process has completed. Thus, the PSO-LDIW algorithm is not expected to

exhibit stability until nearly a quarter of the search process has completed, but will
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exhibit stable behaviour overall.

5.2.4 Particle Swarm Optimization with Non-Linear Inertia Co-

efficient

Despite the initial value of 0.9, the inertia weight rapidly decreases during the beginning

of the search and thus ω(t) < 0.78540 occurs after the point where t
T

= 4.8481 × 10−7.

Therefore, the PSO-NL algorithm will exhibit stability.

5.2.5 Particle Swarm Optimization with Non-Linear Improved

Inertia Weight

Jiao et al. [53] employed parameters of u = 1.0002 and ω = 0.3. Given that ∀t, 0 <

ω(t) ≤ 0.3, the algorithm will always exhibit stability. However, because of the very low

inertia weight, the PSO-NLI algorithm is expected to exhibit premature convergence.

5.2.6 Decreasing Inertia Weight Particle Swarm Optimization

The range of the inertia weight for the DW-PSO algorithm is given by 0 < ω(t) <

1.23114. Furthermore, ω(t) < 0.78540 occurs when t = 4.47432, due to the rapidly

decreasing inertia weight. Therefore, the DW-PSO will exhibit stability after only five

iterations have passed.

5.2.7 Chaotic Descending Inertia Weight Particle Swarm Op-

timization

The CDIW-PSO algorithm will exhibit stability when

z(t) <
t+ 2854

4000
,

assuming that T = 5000. Note that the maximum value of z(t) is 1.0, and that

t+ 2854

4000
= 1.0
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when t = 1146, i.e., when t
T

= 0.22920. Thus, if z(t) is removed from consideration, the

stability analysis of the CDIW-PSO algorithm is the same as that of the PSO-LDIW

algorithm. However, the stability of the CDIW-PSO algorithm during the initial 22.9%

of the search is dependent upon on the value of z(t), whereas PSO-LDIW will never

adhere to the stability criterion during this initial phase. Based on the above analysis,

the CDIW-PSO algorithm will exhibit overall stable behaviour.

5.2.8 Particle Swarm Optimization with Natural Exponent In-

ertia Weight

The PSO-NEIW algorithm will exhibit stability when t
T
> 0.02603, i.e., after approxi-

mately 2.6% of the search has completed. Thus, the PSO-NEIW algorithm will exhibit

overall stability.

5.2.9 Particle Swarm Optimization with Oscillating Inertia Wei-

ght

By rearranging Equation (3.12), it can be shown that the PSO-OIW algorithm will

exhibit stable behaviour when

cos

(
17πt

3750

)
< 0.61800,

which, assuming T = 5000, accounts for 2670 of the 3750 iterations during the oscillation

phase. Additionally, the final quarter of the search process employs an inertia weight of

0.3, which leads to trivially stable behaviour. Thus, the algorithm is expected to exhibit

stability.

5.2.10 Particle Swarm Optimization with Sugeno Inertia Wei-

ght

The PSO-SIW algorithm will exhibit stability when

t

T
>

1073

2927s+ 5000
,
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and thus the stability depends largely on the employed value of s. For the purposes of

this study, a value of s = 2 was used, indicating the algorithm will exhibit stability when

t

T
>

1073

10854
= 0.09886,

i.e., after approximately 10% of the search has completed. Despite the initially unstable

behaviour due to the initial inertia weight value of 1, the PSO-SIW algorithm is expected

to exhibit stable behaviour.

5.2.11 Logarithm Decreasing Inertia Weight Particle Swarm

Optimization

Given the parameters in Table 5.1, the LD-PSO algorithm will exhibit stable behaviour

when t
T
> 0.02576, i.e., after only approximately 2.6% of the search has completed.

Therefore, the LD-PSO algorithm will exhibit stability.

5.2.12 Self-Regulating Particle Swarm Optimization

Given the parameters in Table 5.1, Equation (3.49b) simplifies to ∆ω = 0.0001. Note

that in Equation (3.49a), the inertia weight increases for the best particle but decreases

for all other particles. To continue with the analysis, the assumption that each particle is

equally likely to be the best particle, and thereby increases its inertia weight accordingly,

is made. Thus, given a swarm size of ns particles, the inertia weight of each particle will

exhibit an inertia weight decrease of 0.0001(ns − 2) every ns iterations or 0.0001∗(ns−2)
ns

each iteration, on average. Substitution of the resulting inertia weights into Equation

(5.2), along with an assumed swarm size of 30 particles, leads to the necessary condition

of

1227.86 < t < 11378.50

for stability. This indicates that the SRPSO algorithm should exhibit stability starting

at iteration 1228, i.e., after approximately 24.6% of the search. Note that, if the SRPSO

algorithm is employed for longer than 11378 iterations without leading to complete stag-

nation, it will once again exhibit divergent behaviour because the inertia weight will

decrease below -0.16199.
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5.2.13 Adaptive Particle Swarm Optimization Based on Veloc-

ity Information

As the ideal velocity of Xu [113] decreases over time, the employed value of ω(t) will also

decrease over time, and thus will eventually settle within the stable range. Furthermore,

given that the ideal velocity tends toward 0, by definition the average velocity will also

tend toward 0, regardless of the inertia weight. Therefore, the APSO-VI algorithm is

expected to exhibit stable behaviour.

5.2.14 Fine-Grained Inertia Weight Particle Swarm Optimiza-

tion

Firstly, it is recognized that the distance term will always be positive in the FG-PSO

algorithm. As a result,

0 < e−(d(ŷ(t),yi(t))∗ t
T

) ≤ 1,

and using the substitution

c = e−(d(ŷ(t),yi(t))∗ t
T

),

Equation (3.36) can be expressed as

ωi(t+ 1) = ωi(t)− c(ωi(t)− 0.4),

where c ∈ (0, 1]. Therefore, as the distance between a particle and the global best

decreases, the inertia weight will also decrease to a minimum of 0.4. An important

note about the FG-PSO strategy is that the inertia weight never increases, and thus the

inertia weight will always tend toward 0.4. This behaviour will likely cause the FG-PSO

strategy to exhibit stable behaviour in the long run, as even large distances from the

global best will cause a non-zero decrease in the inertia weight, given the asymptotic

nature of the exponential term. However, the inertia weight is expected to decrease

rather quickly, especially for the global best particle, which will have a distance of 0, and

therefore the FG-PSO strategy is expected to suffer from premature convergence.



Chapter 5. Analysis of Inertia Weight Control Strategies 86

5.2.15 Double Exponential Self-Adaptive Inertia Weight Par-

ticle Swarm Optimization

The first observation about the DE-PSO algorithm is that Ri(t) must be positive. Given

that Ri(t) > 0, it follows that 0 < e−Ri(t) ≤ 1 and, by using the substitution c = e−Ri(t),

Equation (3.45a) can be expressed as

ωi(t) = e−c,

with c ∈ (0, 1]. This now provides a definite range for the inertia weight given by

0.36788 < ωi(t) < 1,

where ωi(t) is minimized when Ri(t) is 0. Conversely, the DE-PSO algorithm provides

larger inertia weights when the distance from the global best is increased. The inertia

weight provided by the DE-PSO algorithm is thus expected to be large initially due to

the roaming behaviour of unconstrained particles [32], but is expected to decrease over

time as particles tend toward the global best. Therefore, the DE-PSO algorithm will

exhibit stable behaviour.

5.2.16 Particle Swarm Optimization with Rank-Based Inertia

Weight

Assuming a swarm size of 30 particles, it follows from Equation (3.22) that the PSO-RBI

algorithm will exhibit stable behaviour when Ri(t)
ns
≥ 0.22920. That is, when a particle is

ranked within the worst 22.9% of the swarm, the particle will exhibit divergent behaviour.

Therefore, more than one-fifth of the swarm will exhibit divergent behaviour at any given

time, causing the PSO-RBI algorithm to exhibit overall divergent behaviour.

5.2.17 Adaptive Inertia Weight Particle Swarm Optimization

Given that the parametrization of AIWPSO is the same as seen in Chapter 4, the stability

analysis is the same. To summarize the previous findings, the swarm may not be stable

when more than 78.54% of the particles improve their personal best fitness in any given
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iteration. However, it is unreasonable to assume such a high rate of success will be

maintained, thus stable behaviour is expected.

5.2.18 Improved Particle Swarm Optimization by Li and Tan

Li and Tan [67] provided no guidance for the selection of the α and β parameter values,

thus the mid-point of the allowable range was used, namely α = β = 0.5.

It then follows that

ωi(t) = 1−
∣∣∣∣ 1− ci(t)
3(di(t) + 1)

∣∣∣∣ ,
which further simplifies the stability criterion such that∣∣∣∣1− ci(t)di(t) + 1

∣∣∣∣ > 0.64380

is required for stable behaviour to be exhibited. Alternatively, the stability criterion can

be reformulated as1.55328c− 2.55328 < d < −1.55328c+ 0.55328, if c < 1

−1.55328c+ 0.55328 < d < 1.55328c− 2.55328, if c > 1

to provide a more direct view of the relationship between c and d. As the search pro-

gresses, it is expected that both ci(t) and di(t) will tend towards 0, and thus the IPSO-LT

algorithm should exhibit overall stability.

5.3 Experimental Procedure

To examine the performance of the considered inertia weight control strategies, 50 in-

dependent runs were executed for each strategy on each of the 60 benchmark problems,

described in Appendix A, using the parameters listed in Table 5.1. Note that the param-

eters employed in this section were identical to those used for the derivation of stability

conditions. Each execution consisted of 5000 iterations and all strategies used an iden-

tical base PSO configuration, with the obvious exception of the inertia weight control

strategy. The base configuration consisted of 30 particles arranged in a star topology and

a synchronous update strategy was used. Particle positions were randomly initialized
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within the feasible range and velocities were initialized to the zero vector [30]. To ensure

that the particle attractors remained inside the feasible region, personal best positions

were only updated if a new position of superior fitness was found that was within the

feasible search space. No boundary constraints were enforced, except the restriction of

personal best positions to the feasible search space. As with the stability analysis, all

algorithms employed acceleration coefficients of c1 = c2 = 1.496180.

5.3.1 Performance Measures

The inertia weight control strategies were compared with respect to the following per-

formance measures:

• Accuracy – the fitness of the global best particle after 5000 iterations.

• Consistency – the squared difference between the accuracy of each independent

run and the average accuracy obtained across all runs.

• Success Rate – the percentage of the 50 independent runs that reached specified

accuracy levels. A total of 1000 accuracy levels were considered, with the accuracy

levels starting at the best accuracy obtained by all algorithms and logarithmically

increasing towards the worst accuracy.

In addition to the aforementioned performance measures, the average particle move-

ment [19, 20] given by Equation (4.2) was also employed. In contrast to the measures

employed in Chapter 4, these measures were selected to provide a better focus on per-

formance, rather than overall search behaviour.

5.3.2 Statistical Analysis

For each benchmark problem and performance measure, pairwise two-tailed Mann-

Whitney U tests were performed at a significance level of 0.05 to identify performance

differences. When the Mann-Whitney U test indicated that a difference existed among

two strategies, the median performance measure values were used to assign wins and

losses; the better performing strategy was awarded a win, while the inferior strategy was
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awarded a loss. The strategies were then assigned an overall rank based on the difference

between the number of wins and losses, i.e., difference = wins - losses. Additionally, the

best rank frequency (BRF), defined as the number of benchmark problems for which the

strategy attained the highest rank, was recorded. Finally, the Bonferroni-Dunn post-hoc

test was employed to generate critical difference plots that visually depict the average

ranks with respect to the solution accuracy. Note that the Mann-Whitney U tests as-

sessed the fine-grained, per-function performance differences while the Bonferroni-Dunn

test was used to indicate differences in average rank across an entire set of problems.

5.4 Empirical Results and Discussion

This section presents the results of the experiments described in Section 5.3. Table 5.2

summarizes the results obtained across all benchmark problems using the aforementioned

Mann-Whitney U statistical analysis procedure, while Table 5.3 presents the average and

standard deviation of the ranks across all benchmark problems. Figure 5.1 presents the

critical difference plot, graphically indicating the average rank of each algorithm with

respect to the accuracy measure. Algorithms grouped with a line had no significant

difference in average rank.

Figure 5.1: Critical difference plot using the Bonferroni-Dunn test on all benchmark problems.
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Table 5.2: Summary of performance across all 60 benchmark problems. Bold entries indi-

cate the strategies with the highest rank based on the difference of wins and losses across all

benchmark problems. The maximum possible value for the Diff column is 1020.

Accuracy Success Rate Consistency

Strategy Diff Rank BRF Diff Rank BRF Diff Rank BRF

AIWPSO 143 8 7 96 7 16 129 7 10

APSO-VI 471 4 15 174 3 17 276 4 17

CDIW-PSO 313 6 5 134 5 14 98 8 8

Constant 630 2 23 387 1 27 364 1 22

DE-PSO -874 18 1 -362 18 14 -322 18 11

DW-PSO -565 16 1 -247 16 14 -275 15 9

FG-PSO -534 15 2 -226 15 14 -279 16 9

IPSO-LT -28 10 1 56 8 14 -160 12 9

LD-PSO 303 7 1 48 9 14 146 6 9

PSO-NL -221 13 1 -66 12 15 -184 13 7

PSO-NLI -697 17 1 -292 17 14 -304 17 7

PSO-NEIW -87 11 1 -51 11 14 -92 11 8

PSO-OIW -327 14 1 -157 14 14 -245 14 7

PSO-RIW 637 1 11 349 2 19 352 2 18

PSO-RBI -97 12 1 -71 13 14 -81 10 7

SRPSO 494 3 3 155 4 14 288 3 10

PSO-SIW 2 9 2 -50 10 15 20 9 10

PSO-LDIW 439 5 3 117 6 14 276 4 9

The first observation from Table 5.2 is that the random inertia weight strategy (i.e.,

PSO-RIW) attained the best rank for the solution accuracy with a difference score of

637. However, on only 11 (18.3%) of the 60 problems did the random strategy attain

the best fitness, while a constant inertia weight strategy attained the best accuracy on

23 (36.7%) problems, and attained a difference score of 630. Furthermore, the APSO-VI

strategy demonstrated the best performance on 15 (25.0%) problems, i.e., four more than

the random strategy, but ranked fourth overall with a difference score of 471. Of the
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examined strategies, the DE-PSO algorithm depicted the worst overall accuracy with a

difference score of -874. Considering the average ranks over all benchmark functions pre-

sented in Table 5.3, the constant and random strategies attained average ranks of 3.000

and 3.033 with standard deviations (SDs) of 2.456 and 2.484, respectively, and therefore

demonstrated nearly indistinguishable accuracy overall. This is further evidenced by

the critical difference plot in Figure 5.1, which indicated that the average rank was not

significantly different among the top six algorithms.

Table 5.3: Average rank and standard deviation (SD) across all benchmark problems.

Accuracy Success Rate Consistency

Strategy Average SD Average SD Average SD

AIWPSO 7.700 4.806 5.667 5.059 7.000 5.042

APSO-VI 5.183 4.094 3.923 3.542 5.183 4.678

CDIW-PSO 5.767 2.375 4.256 3.126 7.050 4.272

Constant 3.000 2.456 2.103 2.245 4.900 5.184

DE-PSO 17.200 2.910 11.795 8.192 11.267 6.996

DW-PSO 14.467 2.807 10.154 7.066 10.700 6.091

FG-PSO 13.783 3.683 9.795 6.921 10.683 5.685

IPSO-LT 9.317 4.710 5.179 3.684 10.133 6.074

LD-PSO 6.950 2.896 4.949 3.783 6.317 4.164

PSO-NL 11.183 2.920 7.436 5.510 10.133 4.918

PSO-NLI 15.733 3.399 10.846 7.524 11.333 6.337

PSO-NEIW 10.350 2.193 7.205 4.964 9.600 4.439

PSO-OIW 12.083 3.614 8.282 6.017 10.750 5.389

PSO-RIW 3.033 2.484 2.154 1.565 3.850 4.149

PSO-RBI 10.833 2.631 7.282 5.477 9.317 4.579

SRPSO 4.917 3.055 3.923 3.467 4.817 3.864

PSO-SIW 9.483 2.534 6.615 4.881 7.600 4.203

PSO-LDIW 6.117 3.669 4.513 4.322 4.900 3.516

These results clearly indicate that when considering solution accuracy for an arbitrary

problem, a constant or random inertia weight is preferable. Furthermore, the results
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show that none of the adaptive inertia weight strategies performed as well as the simpler

constant and random strategies when considering the fine-grained, per-function analysis

of the Mann-Whitney U tests. However, when the overall average rank was considered

via the Bonferroni-Dunn test, far less discrepancies in accuracy were noted.

When considering the success rate, the constant inertia weight strategy attained

both the best overall rank, with a difference score of 387, and the largest number of

problems for which it obtained the best performance, with 27 (45.0%) of such problems.

As with the accuracy measure, the random strategy was very close in performance to

the constant strategy, obtaining the second highest rank, with a difference score of 349,

and the best performance on 19 (31.7%) of the problems. A noteworthy observation

is that the difference scores, relative to the success rate, were significantly lower than

with the accuracy measure, indicating that there were less discrepancies in performance,

i.e., the various strategies had a more similar level of performance. When considering

the average ranks, the constant strategy attained the best average rank of 2.103 with

a standard deviation of 2.245, while the random strategy had a slightly higher average

rank of 2.154 coupled with a lower standard deviation of 1.565. This indicates that

the random strategy was much more consistent in terms of the success rate. The worst

overall success rate was observed when using the DE-PSO strategy, with a difference

score of -382.

In terms of consistency, the constant inertia weight strategy had the lowest overall

deviations from the average accuracy, with a difference score of 364, while the second

best strategy, the random strategy, attained a difference score of 352. Furthermore,

the constant strategy had the best consistency on 22 (36.7%) of the problems, while

the random strategy was most consistent on 18 (30.0%). Despite having better perfor-

mance overall, the average rank of the constant strategy, 4.900 with a SD of 5.184, was

significantly higher than the average rank of the random strategy, at 3.850 with a SD

of 4.149. As with the previous two measures, the DE-PSO strategy showed the worst

overall performance with a difference score of -322.

To provide empirical evidence in support of the stability analyses, Figures 5.2 and

5.3 depict the average particle movement values over time on two problem instances,

namely f1 and f17, which are representative of the overall behaviour of each algorithm.
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An immediate observation was that the only algorithm to exhibit an average particle

movement above ∆max after 5000 iterations was the PSO-RBI algorithm. Recall that,

of all the examined strategies, PSO-RBI was the only strategy that was not expected to

exhibit stable behaviour. Furthermore, recall that there were three algorithms expected

to demonstrate immediate convergence of particle positions, namely the PSO-NLI, DW-

PSO, and FG-PSO algorithms. The average particle step sizes for these algorithms are

shown in Figures 5.2j and 5.3j for PSO-NLI, Figures 5.2f and 5.3f for DW-PSO, and

Figures 5.2g and 5.3g for FG-PSO – each of which indicates nearly stagnant particles

after only a few iterations. Additionally, recall that both PSO-NEIW and LD-PSO

were expected to exhibit stable behaviour after approximately 2.6% of the search had

completed. Considering Figures 5.2l, 5.2i, 5.3l, and 5.3i, which visualize the particle step

sizes for the PSO-NEIW and LD-PSO algorithms, it is evidenced that both algorithms

exhibited divergent behaviour initially, but depicted rapid decreases in particle movement

very early in the search.

Further examination of the particle movement plots in Figures 5.2 and 5.3 high-

lighted a correlation between particle movement and performance. Specifically, the six

worst performing algorithms, namely DE-PSO, PSO-NLI, DW-PSO, FG-PSO, PSO-

OIW, and PSO-NL, each demonstrated prohibitively low particle movement values after

only a few iterations. Thus, the worst performing strategies exhibited extremely prema-

ture convergence, and thereby had insufficient particle movement to perform an effective

search. Conversely, the two best performing strategies, namely the PSO-RIW and con-

stant strategies, maintained a slightly higher level of particle activity than the worst

performing strategies. However, both the PSO-RIW and constant strategies depicted

higher initial levels of movement followed by a noticeably more gradual decline. Finally,

the mid-performing algorithms, e.g., LD-PSO, typically depicted large initial movements,

suggesting initially divergent behaviour, followed by a rapid decline in movement levels,

suggesting stagnation. It is thus concluded that, for the mid-performing strategies, the

particles rapidly move outwards from their starting locations, finding moderately good

solutions along the way, but eventually stagnate without locating any further promising

areas.

In summary, the constant and random (PSO-RIW) strategies attained the best ranks
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Figure 5.2: Average particle movement on function f1 with ∆max = 1414.214 (part I: a–i).

for all performance measures when aggregated across all 60 benchmark problems. More-

over, the constant and random control strategies performed relatively similar for all

performance measures, and both showed a significant improvement over the next (third)

best strategy. Therefore, it can be concluded that, when faced with the optimization of

an arbitrary function, the use of an inertia weight control strategy is not recommended

because the constant and random strategies both lead to consistently better results.

Furthermore, the results presented here highlight the drastic misrepresentations of the

various algorithms’ performance in the literature, which stems from the limited analyses

when they were proposed. Finally, an examination of the average particle movement over
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Figure 5.2: Average particle movement on function f1 with ∆max = 1414.214 (part II: j–r).

time highlighted a correlation between the level of particle movement and performance.

In the following sections, the performance of the inertia weight control strategies is

analysed with respect to various characteristics of the benchmark problems. The perfor-

mance is examined with respect to unimodal, multimodal, separable, non-separable, and

composition problems to ascertain whether such characteristics of the problem affect the

performance.
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Figure 5.3: Average particle movement on function f17 with ∆max = 1414.214 (part I: a–i).

5.4.1 Unimodal Problems

Table 5.4 depicts the overall rank and best rank frequency of the examined strategies

across the 19 unimodal problems, while Figure 5.4 shows the critical difference plot for the

accuracy measure. For all three performance measures, the constant strategy attained

the best rank using the Mann-Whitney U tests, followed by the random strategy. The

constant strategy had difference scores of 291, 180, and 255 for the accuracy, success rate,

and consistency measures, respectively. However, the critical difference plot in Figure

5.4 depicts insignificant differences in average rank for the accuracy measure across the
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Figure 5.3: Average particle movement on function f17 with ∆max = 1414.214 (part II: j–r).

top six performing algorithms, despite the finer-grained differences noted by the Mann-

Whitney U tests. Additionally, the constant strategy had the largest number of problems

for which it attained the best rank with respect to each performance measure, with 12

(63.2%), 14 (73.7%), and 13 (68.4%) problems, respectively. The worst overall strategy

for all performance measures was DE-PSO, indicating that it not only showed the worst

accuracy, but also the lowest consistency.
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Table 5.4: Summary of performance on the 19 unimodal problems. Bold entries indicate the

strategies with the highest rank based on the difference of wins and losses. The maximum

possible value for the Diff column is 323.

Accuracy Success Rate Consistency

Strategy Diff Rank BRF Diff Rank BRF Diff Rank BRF

AIWPSO 89 8 2 73 3 6 93 5 3

APSO-VI 113 6 1 21 6 4 92 6 1

CDIW-PSO 116 5 1 19 8 4 60 8 1

Constant 291 1 12 180 1 14 255 1 13

DE-PSO -302 18 0 -96 18 4 -203 18 1

DW-PSO -212 16 0 -82 16 4 -149 15 1

FG-PSO -202 15 0 -76 15 4 -154 16 1

IPSO-LT -42 11 0 -12 9 4 -96 13 2

LD-PSO 112 7 0 21 6 4 74 7 1

PSO-NL -101 13 0 -50 13 4 -82 12 1

PSO-NLI -256 17 0 -91 17 4 -174 17 1

PSO-NEIW -58 12 0 -28 10 4 -50 11 1

PSO-OIW -121 14 0 -68 14 4 -124 14 1

PSO-RIW 262 2 5 152 2 7 227 2 5

PSO-RBI -17 9 0 -28 10 4 -30 10 1

SRPSO 187 3 0 57 4 4 147 3 1

PSO-SIW -32 10 0 -30 12 4 -18 9 1

PSO-LDIW 163 4 0 50 5 4 134 4 1

5.4.2 Multimodal Problems

A summary of the results for the 41 multimodal problems are presented in Table 5.5,

while Figure 5.5 presents the critical difference plot for the accuracy measure. With re-

spect to accuracy, the random strategy had the best overall performance with a difference

score of 375. However, the random strategy had the best accuracy on only six (14.6%)

problems, outnumbered by both APSO-VI, with 14 (34.1%) problems, and the constant

strategy, with 11 (26.8%) problems. A noteworthy observation was that the constant
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Figure 5.4: Critical difference plot using the Bonferroni-Dunn test on the 19 unimodal bench-

mark problems.

inertia weight ranked third best on multimodal problems, with a difference score of 339,

while the second best accuracy was attained by the APSO-VI strategy, with a difference

score of 358. Thus, the constant inertia weight had degraded accuracy when faced with

multimodal problems. The DE-PSO algorithm again had the worst performance, with a

difference score of -572.

Despite the degraded performance relative to the accuracy measure, the constant

inertia weight strategy attained the highest rank for the success rate measure, with a

difference score of 207. This indicates that, while the constant strategy did not attain

the best accuracy, it did provide convergence to more accurate solutions, in general.

Furthermore, the constant strategy depicted the best success rate on 25 (61.0%) of the

multimodal problems. However, it should be noted that the success rate was insignifi-

cantly different among the strategies on many problems, as even the worst performing

strategy, namely DE-PSO, displayed the highest rank on 17 (41.5%) of problems.

The APSO-VI strategy had the most consistent results on multimodal problems, with

a difference score of 184, followed by the PSO-LDIW strategy with a score of 142. The

APSO-VI algorithm also had the largest number of problems, 16 (39.0%), for which

it attained the highest rank. Note that the random and constant strategies attained
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ranks of fourth and fifth respectively, and that the consistency measure on multimodal

problems was one of only two scenarios in which the constant or random strategy did

not attain the highest rank. The least consistent results were attained by the PSO-NLI

strategy, which attained a difference score of -130.

Table 5.5: Summary of performance on the 41 multimodal problems. Bold entries indicate

the strategies with the highest rank based on the difference of wins and losses. The maximum

possible value for the Diff column is 697.

Accuracy Success Rate Consistency

Strategy Diff Rank BRF Diff Rank BRF Diff Rank BRF

AIWPSO 54 8 5 23 9 20 36 9 7

APSO-VI 358 2 14 153 3 23 184 1 16

CDIW-PSO 197 6 4 115 4 17 38 7 7

Constant 339 3 11 207 1 25 109 5 9

DE-PSO -572 18 1 -266 18 17 -119 14 10

DW-PSO -353 16 1 -165 16 17 -126 17 8

FG-PSO -332 15 2 -150 15 17 -125 16 8

IPSO-LT 14 10 1 68 6 17 -64 12 7

LD-PSO 191 7 1 27 8 17 72 6 8

PSO-NL -120 13 1 -16 10 18 -102 13 6

PSO-NLI -441 17 1 -201 17 17 -130 18 6

PSO-NEIW -29 11 1 -23 12 17 -42 10 6

PSO-OIW -206 14 1 -89 14 17 -121 15 6

PSO-RIW 375 1 6 197 2 22 125 4 13

PSO-RBI -80 12 1 -43 13 17 -51 11 6

SRPSO 307 4 3 98 5 17 141 3 9

PSO-SIW 34 9 2 -20 11 18 38 7 9

PSO-LDIW 276 5 3 67 7 17 142 2 8
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Figure 5.5: Critical difference plot using the Bonferroni-Dunn test on the 41 multimodal

benchmark problems.

5.4.3 Separable Problems

The performance on the 21 separable problems is summarized in Table 5.6. Figure 5.6

depicts the critical differences with respect to the accuracy measure. For all three per-

formance measures, the constant strategy showed the best performance with difference

scores of 244, 134, and 185 for the accuracy, success rate, and consistency measures,

respectively. Furthermore, the constant strategy also had the largest number of func-

tions for which it attained the highest rank with nine (24.9%), 12 (57.1%), and nine

(24.9%), respectively. The worst performance on separable problems was depicted by

the DE-PSO strategy, with difference scores of -320, -94, and -162, respectively.

5.4.4 Non-Separable Problems

Table 5.7 depicts the performance of the various strategies on the 39 non-separable prob-

lems, while Figure 5.7 presents the critical differences for the accuracy measure. Consid-

ering the accuracy measure, the random strategy attained the most accurate solutions,

with a difference score of 394. Despite having the highest rank overall, the random

strategy attained the best performance on only six (15.4%) of the problems, while the

constant strategy had the highest rank on 14 (35.9%) problems, and APSO-VI performed
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Table 5.6: Summary of performance on 21 separable problems. Bold entries indicate the

strategies with the highest rank based on the difference of wins and losses. The maximum

possible value for the Diff column is 357.

Accuracy Success Rate Consistency

Strategy Diff Rank BRF Diff Rank BRF Diff Rank BRF

AIWPSO 94 6 3 70 3 10 87 6 5

APSO-VI 158 4 5 46 4 10 122 3 7

CDIW-PSO 90 7 1 20 7 7 38 8 2

Constant 244 1 9 134 1 12 185 1 9

DE-PSO -320 18 0 -94 18 7 -162 18 2

DW-PSO -195 16 0 -66 16 7 -125 15 3

FG-PSO -184 15 0 -56 15 7 -135 16 2

IPSO-LT -18 9 0 -3 8 7 -36 10 2

LD-PSO 82 8 0 -5 9 7 49 7 2

PSO-NL -78 13 0 -29 11 7 -81 13 2

PSO-NLI -242 17 0 -72 17 7 -146 17 2

PSO-NEIW -52 12 0 -30 12 7 -51 12 2

PSO-OIW -105 14 0 -44 14 7 -108 14 2

PSO-RIW 243 2 5 123 2 10 179 2 7

PSO-RBI -21 10 0 -23 10 7 -48 11 2

SRPSO 179 3 0 39 5 7 116 5 2

PSO-SIW -29 11 0 -30 12 7 -14 9 2

PSO-LDIW 153 5 0 28 6 7 117 4 2

best on 10 (25.6%) problems. Thus, despite attaining the highest accuracy on more than

double the number of problems, the constant strategy performed slightly worse, with a

difference score of 386, than the random strategy on non-separable problems. The worst

accuracy was attained by the DE-PSO with a difference score of -554.

The observations for the success rate and consistency measures were the same: the

best performance was noted for the constant strategy, with difference scores of 253 and

179, respectively, while the worst performance was attained by the DE-PSO strategy,
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Figure 5.6: Critical difference plot using the Bonferroni-Dunn test on the 21 separable bench-

mark problems.

with difference scores of -268 and -160, respectively. Additionally, the constant strategy

had the largest number of functions for which it attained the highest rank relative to

both measures, with 27 (69.2%) and 13 (33.3%) problems, respectively.

5.4.5 Composition Problems

The final type of problem that was considered in this study were composition problems.

The results for the 11 composition problems are presented in Table 5.8. For both the

accuracy and success rate measures, the constant strategy attained the highest rank

overall, with difference scores of 73 and 118, respectively. For both measures, the con-

stant inertia weight also attained the best performance on four (36.4%) and six (54.5%)

problems, respectively. An additional observation was that the difference scores for the

accuracy measure were lower than those of the success rate, which indicates that there

was significantly less deviation among the accuracy levels of the various strategies relative

to the other problem classes. To further support this observation, Figure 5.8 presents the

critical difference plot on the composition problems. This plot indicates that very minute

differences in average rank were observed among the various strategies when considering

the accuracy measure. For both measures, the DE-PSO algorithm depicted the worst

overall performance.
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Table 5.7: Summary of performance on the 39 non-separable problems. Bold entries indicate

the strategies with the highest rank based on the difference of wins and losses. The maximum

possible value for the Diff column is 663.

Accuracy Success Rate Consistency

Strategy Diff Rank BRF Diff Rank BRF Diff Rank BRF

AIWPSO 49 8 4 26 9 16 42 8 5

APSO-VI 313 4 10 128 3 17 154 5 10

CDIW-PSO 223 6 4 114 5 14 60 7 6

Constant 386 2 14 253 1 27 179 1 13

DE-PSO -554 18 1 -268 18 14 -160 18 9

DW-PSO -370 16 1 -181 16 14 -150 16 6

FG-PSO -350 15 2 -170 15 14 -144 15 7

IPSO-LT -10 10 1 59 7 14 -124 13 7

LD-PSO 221 7 1 53 8 14 97 6 7

PSO-NL -143 13 1 -37 12 15 -103 12 5

PSO-NLI -455 17 1 -220 17 14 -158 17 5

PSO-NEIW -35 11 1 -21 11 14 -41 11 5

PSO-OIW -222 14 1 -113 14 14 -137 14 5

PSO-RIW 394 1 6 226 2 19 173 2 11

PSO-RBI -76 12 1 -48 13 14 -33 10 5

SRPSO 315 3 3 116 4 14 172 3 8

PSO-SIW 31 9 2 -20 10 15 34 9 8

PSO-LDIW 286 5 3 89 6 14 159 4 7

When considering the consistency measure for composition problems, a few unex-

pected results arose. Firstly, the most consistent strategy was DE-PSO, with a difference

score of 74 and the highest rank on six (54.5%) problems. This is one of only two scenar-

ios in which the DE-PSO did not exhibit the worst performance. The second unexpected

result was the rank of the constant and random strategies at 15 and 17, respectively.

Note that the rank of 17 for the random strategy was a tie with IPSO-LT, and thus con-

stituted the worst overall consistency, and that the rank of 15 for the constant strategy
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Figure 5.7: Critical difference plot using the Bonferroni-Dunn test on the 39 non-separable

benchmark problems.

was a tie with PSO-NEIW, and thus constituted the penultimate consistency. The low

rank attained by the random and constant strategies was quite unexpected given their

performance on all other problem classes. This shows that despite their top performance,

the random and constant strategies are extremely unstable on composition problems.

5.4.6 Summary of Results

In summary, the previous sections provided an empirical investigation into 18 inertia

weight control strategies and further drilled down into the results by looking at five

prominent characteristics of the benchmark problems, namely unimodal, multimodal,

separable, non-separable, and composition to ascertain whether such characteristics have

an impact on performance. A further examination of particle movement levels high-

lighted a correlation between particle movement and performance. Specifically, the best

performing strategies depicted moderate initial movement levels, followed by a gradual

decrease in movement. Conversely, the remaining strategies depicted either prohibitively

low particle movements or rapid divergence, followed by rapid stagnation. A summary

of the best and worst performing strategies for each problem type is given in Table

5.9. Thus, Table 5.9 can be taken as a recommendation of which strategy to employ

based on the type of function and performance measure being examined. Note that,
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Table 5.8: Summary of performance on the 11 composition problems. Bold entries indicate

the strategies with the highest rank based on the difference of wins and losses. The maximum

possible value for the Diff column is 187.

Accuracy Success Rate Consistency

Strategy Diff Rank BRF Diff Rank BRF Diff Rank BRF

AIWPSO -2 10 1 -3 11 1 0 7 2

APSO-VI 67 2 2 69 4 2 -6 10 3

CDIW-PSO 63 4 2 84 2 0 -21 13 3

Constant 73 1 4 118 1 6 -30 15 3

DE-PSO -134 18 0 -143 18 0 74 1 6

DW-PSO -65 16 0 -80 16 0 34 4 3

FG-PSO -64 15 0 -69 15 0 42 3 3

IPSO-LT 42 6 0 47 5 0 -35 17 2

LD-PSO 31 8 0 10 8 0 -25 14 2

PSO-NL -6 12 0 11 7 1 -17 12 2

PSO-NLI -89 17 0 -106 17 0 56 2 2

PSO-NEIW -4 11 0 0 10 0 -30 15 2

PSO-OIW -37 14 0 -42 14 0 14 5 2

PSO-RIW 65 3 1 76 3 0 -35 17 2

PSO-RBI -22 13 0 -20 13 0 7 6 2

SRPSO 47 5 0 41 6 0 -5 9 2

PSO-SIW 9 9 1 -7 12 1 -12 11 3

PSO-LDIW 33 7 0 6 9 0 -4 8 2

the worst performance for the consistency measure on the composition problems was a

tie between IPSO-LT and the random strategy. In general, the problem type had only

minimal effects on the overall results, as the same general trend was observed, with only

a few exceptions, regardless of the problem type. Specifically, the solutions were most

accurate when using a constant or random inertia weight strategy, the constant weight

strategy always had the most solutions converging to the specified accuracy levels and

was the most consistent with respect to accuracy for three of the five problem classes.
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Figure 5.8: Critical difference plot using the Bonferroni-Dunn test on the 11 composition

benchmark problems.

The remaining two problem types, namely multimodal and composition, had the most

consistent results from the APSO-VI and DE-PSO strategies, respectively. In fact, it

was only when considering the consistency on the multimodal and composition problem

types that the DE-PSO strategy attained anything but the worst overall performance.

Apart from the two aforementioned scenarios, the DE-PSO algorithm performed the

worst with regards to all performance measures on all problem types.

Table 5.9: The best and worst performing strategy by function type.

Accuracy Success Rate Consistency

Problem Best Worst Best Worst Best Worst

All PSO-RIW DE-PSO Constant DE-PSO Constant DE-PSO

U Constant DE-PSO Constant DE-PSO Constant DE-PSO

M PSO-RIW DE-PSO Constant DE-PSO APSO-VI PSO-NLI

S Constant DE-PSO Constant DE-PSO Constant DE-PSO

NS PSO-RIW DE-PSO Constant DE-PSO Constant DE-PSO

C Constant DE-PSO Constant DE-PSO DE-PSO PSO-RIW
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5.5 Summary

The primary purpose of this chapter was to analyse the performance of a number of

inertia weight control strategies for the PSO algorithm on a comprehensive set of bench-

mark problems. This chapter analysed the stability implications of various inertia weight

control strategies, deriving exact conditions for order-2 stability to be exhibited, where

possible. Finally, a suite of 60 benchmark functions was employed to empirically ex-

amine the performance of the strategies relative to three performance measures. The

benchmark problems encompassed a plethora of different characteristics, allowing the

performance to be correlated with problem type.

All examined strategies were given equivalent PSO configurations, with the obvious

exception of the way in which the inertia weight was controlled. Results of the empirical

analysis indicated that despite their respective reported successes in the literature, the

only inertia weight control strategy that performed on par with a constant inertia weight

was the random weight strategy. Therefore, given an arbitrary optimization problem,

it is preferable to have a constant inertia weight. If a non-static inertia is desired, then

randomly selecting the inertia weight each iteration is the only worthwhile strategy of

those examined. Furthermore, an examination of the average particle movement over

time highlighted a correlation between the level of particle movement and performance.

These results depict a grim state for the field of adaptive inertia weight strategies. The

results clearly show a problem with the way in which authors examine their proposed

strategies, as there is a tendency for newly proposed strategies to be compared with a

small, seemingly arbitrarily chosen set of existing strategies and benchmark problems.

However, it should be explicitly stated that the findings presented in this chapter are

likely to change if the algorithmic configuration, such as the values of the acceleration

coefficients or neighbourhood topology, are changed.

It is also noteworthy that similar studies have found that adaptive parameter strate-

gies perform worse than constant or random control parameter values for both ant colony

optimization [88] and tabu search [78]. Specifically, it was reported that the failure of

the adaptive tabu search could be explained by the lack of adaptation to the local char-

acteristics of the search space [78]. Given that many of the examined inertia weight

control strategies base their adaptation mechanisms on a characterization of the search
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behaviour, rather than properties of the search space itself, it is likely their respective

failures can be explained in the same manner as the previous findings for tabu search.

Thus, proposing new inertia weight control strategies that adapt based on the charac-

teristics of the local search space may lead to an improvement in performance.

This chapter further demonstrated that the PSO algorithm is sensitive to the values

of the control parameters. In the following chapter, the regions in parameter space that

lead to good performance are investigated.



Chapter 6

Investigating Optimal Parameter

Regions

The analysis of inertia weight control studies in Chapter 5 clearly reinforced that the PSO

algorithm is sensitive to the values of its control parameters. However, there is limited

information about the correlation between the values of the control parameters and the

performance of PSO. Therefore, to identify the regions of parameter space that lead to

good performance, this chapter investigates the performance of PSO using 1012 distinct

parameter configurations over a set of 22 benchmark problems. These 22 problems

represent the base functions (i.e., the non-shifted, non-rotated, and non-composition

problems) found in Appendix A, with the exception of f17 and f18, which were omitted

due to their dependencies on matrix operations. Further details about the experimental

design are provided in Section 6.2. The overall experimental results are presented and

discussed in Section 6.3, while Section 6.4 discusses the experimental results with regards

to modality and separability. Finally, a summary of findings are presented in Section

6.5.

6.1 Motivation

Despite the reported successes of many SAPSO algorithms, a large majority of these

algorithms have recently been shown to exhibit lacklustre performance [41, 42, 44, 109].

110
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One plausible explanation for the poor performance of SAPSO algorithms is that the

primary search performance (i.e., finding a solution to a continuous optimization prob-

lem) is almost entirely dependent upon the identification of well-performing parameters,

which is itself a continuous optimization problem. Thus, a SAPSO algorithm employed

to solve a continuous optimization problem must solve two such problems concurrently.

To further complicate matters, failure to identify a reasonable parameter configuration

will almost certainly lead to poor solutions for the primary search problem. Given that

it is of utmost importance for a SAPSO algorithm to have an effective parameter search,

any reduction in the complexity of finding appropriate parameter configurations would

likely result in much better performance for SAPSO algorithms.

While many studies have examined the performance of PSO parameters from an

empirical standpoint [9, 52, 71, 106], there is no general consensus on which parameter

configurations lead to the best performance. Most of the empirical studies examined a

fixed set of parameter configurations and determined those that performed best over a

set of benchmark problems, thereby providing a recommended parametrization. More-

over, previous studies commonly used only a single neighbourhood topology (the orig-

inal global-best topology) and, therefore, it is unknown whether the results hold when

a different topology is employed. In contrast, this study does not focus primarily on

the identification of the best-performing parameter configurations. Rather, this study

aims to identify the regions of parameter space, for both the global-best and local-best

topologies, that lead to superior performance over a variety of benchmark problems. This

information, while also useful for general purpose parameter selection, can be used to

bias the (parameter) search mechanisms of SAPSO algorithms, thereby improving their

overall searching capabilities.

6.2 Experimental setup

To identify the regions of parameter space that lead to good performance, a total of 1012

parameter configurations were examined on a set of 22 benchmark functions, as summa-

rized in Table 6.1. All of the benchmark functions were evaluated in 30 dimensions. The

parameter configurations were constructed as sampled points, (c1 + c2, ω) where c1 = c2,
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taken every 0.1 units within the ranges

ω ∈ [−1.1, 1.1] and c1 + c2 ∈ [0.1, 4.4].

Each experiment made use of synchronous updates and ran for 5000 iterations with

a swarm size of 30. Experiments were repeated 30 times using both the global best

(gbest) and local-best (lbest) topologies. For the lbest topology, a neighbourhood size

of three was used, as depicted in Figure 2.1b. To prevent infeasible attractors, personal

best positions were only updated if the new position was feasible and had a better

fitness than the previous personal best position. No boundary constraints were enforced,

except the restriction of personal best positions to the feasible search space. Particles

were initialized uniformly within the feasible region and velocities were initialized to the

zero vector [30].

Results were analysed using the following statistical analysis procedure. For each

benchmark problem and topology, a Kruskal-Wallis test was performed to first determine

if any significant differences existed among the fitness values obtained by using each of

the parameter configurations. If the Kruskal-Wallis test indicated that a significant

difference existed, pairwise Mann-Whitney U tests were then performed to identify the

individual differences. When the Mann-Whitney U test indicated that a difference in

performance existed, the average fitness values were used to assign wins and losses;

the parameter configuration that lead to better performance was awarded a win, while

the inferior configuration was awarded a loss. Finally, the parameter configurations

were ranked based on the difference between the number of wins and losses. Both the

Kruskal-Wallis and Mann-Whitney U tests were performed at a significance level of 0.05.

6.3 Overall Results

Table 6.2 presents the 10 best parameter configurations, as determined by the difference

score aggregated across all 22 benchmark problems. The first key observation was that

the gbest topology performed best with larger acceleration coefficients (i.e., values of

c1 and c2), while the lbest topology performed best with slightly smaller values for

these coefficients. This is further evidenced by Figure 6.1, which plots the overall rank
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Table 6.1: Characteristics of the benchmark functions. ‘Equation’ specifies the equation

number of the function (see Appendix A). ‘Modality’ specifies the modality (‘U’ for unimodal,

‘M’ for multimodal). ‘Separability’ denotes the separability (‘S’ for separable, ‘NS’ for non-

separable).

Function Name Equation Modality Separability

f1 Absolute Value (A.1) U S

f2 Ackley (A.2) M NS

f3 Alpine (A.3) M S

f4 Egg Holder (A.4) M NS

f5 Elliptic (A.5) U S

f6 Griewank (A.6) M NS

f7 HyperEllipsoid (A.7) U S

f8 Michalewicz (A.8) M S

f9 Norwegian (A.9) M NS

f10 Quadric (A.10) U NS

f11 Quartic (A.11) U S

f12 Rastrigin (A.12) M S

f13 Rosenbrock (A.13) M NS

f14 Salomon (A.14) M NS

f15 Schaffer 6 (A.15) M NS

f16 Schwefel 1.2 (A.16) U NS

f19 Schwefel 2.21 (A.19) U S

f20 Schwefel 2.22 (A.20) U S

f21 Shubert (A.21) M NS

f22 Spherical (A.22) U S

f23 Step (A.23) M S

f24 Vincent (A.24) M S

attained by each parameter configuration for both topologies. As seen in Figure 6.1,

the best performing parameter configurations (indicated by light-coloured points) for

the gbest topology, shown in Figure 6.1a, tended to be clustered closer to the top right
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Table 6.2: The ten best parameter configurations by overall rank across all benchmark func-

tions.

Global Best Topology Local Best Topology

ω c1 = c2 Average Rank (SD) Overall Rank ω c1 = c2 Average Rank (SD)

0.5 1.90 18.727 (14.149) 1 0.5 1.60 44.227 (25.064)

0.6 1.80 20.091 (14.068) 2 0.6 1.35 43.273 (35.158)

0.4 2.00 20.682 (15.683) 3 0.6 1.50 45.000 (29.552)

0.5 1.95 18.955 (14.113) 4 0.5 1.65 44.955 (26.561)

0.7 1.65 19.909 (12.577) 5 0.6 1.55 39.818 (26.388)

0.6 1.85 19.909 (14.491) 6 0.6 1.40 46.727 (32.445)

0.6 1.75 21.227 (18.452) 7 0.7 1.30 44.091 (19.914)

0.7 1.60 21.455 (14.222) 8 0.5 1.70 43.773 (32.433)

0.5 1.85 23.182 (21.830) 9 0.5 1.55 51.000 (34.630)

0.7 1.70 21.273 (14.945) 10 0.6 1.45 47.364 (28.065)

section of the stable region than their lbest counterparts, shown in Figure 6.1b.

Figure 6.2 visualizes the 100 best parameter configurations (determined by aggregate

rank), and further demonstrates that many of the best parameter configurations in the

gbest topology had larger acceleration coefficients. However, it is also noted that the

best parameters for the gbest topology had a much stronger tendency to be near the

boundary of the stable region. Specifically, Figure 6.2a shows a number of the best

parameter configurations were situated near the lower boundary of the stable region

for the gbest topology, while no such configurations were present in Figure 6.2b for the

lbest topology. Additionally, 30 of the top 100 parameter configurations for the gbest

topology violated Poli’s stability criterion, while none of the best configurations for the

lbest violated the criterion. This result is not completely unexpected given that there

is an observable discrepancy between the theoretical and empirical stable regions for

traditional benchmark problems [20]. Nonetheless, it is noteworthy that when using the

gbest topology, strict adherence to the stability criteria does not necessarily translate into

superior performance. Rather, selecting parameter configurations that are outside the

theoretically stable region, but are within reasonably close proximity to the apex, may

still lead to relatively good performance. However, when employing the lbest topology,
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(a) Global best topology.
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(b) Local best topology.

Figure 6.1: Plot of the overall rank across all 22 benchmark problems.

adherence to the stability criterion is of greater benefit as none of the 100 best parameter

configurations reside outside of the theoretical stable region.

To quantify the observed differences in rank between the two topologies, the average

absolute difference in rank between corresponding parameter configurations in the gbest

and lbest topologies was computed. More formally, the average difference was calculated

as
1

|P|
∑
p∈P

|Rg(p)−Rl(p)|, (6.1)

where p is a specific parameter configuration from the set of examined configurations P ,

|P| is the cardinality of P , and the overall ranks for the PSO algorithms using param-

eter configuration p are denoted by Rg(p) and Rl(p) for the gbest and lbest topologies,

respectively. Using Equation (6.1), the average difference in rank between the two topolo-

gies was 75.733 with a standard deviation of 77.558. The distribution of the difference

values is shown in Figure 6.3. The average difference in rank indicates that the ranks

were notably different between corresponding parameter configurations among the two

topologies. The difference in rank provides a quantification of the effect that the topol-

ogy had on the relative performance of parameter configurations. A small difference in

rank indicates that topology had minimal effects on the overall performance when using

the same parameter configuration. Conversely, a large difference in rank indicates that

the change in topology caused a more noticeable effect on the relative performance when
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Figure 6.2: Plot of the best 100 parameter configurations by overall rank.

the parameter configurations were employed by PSO. Therefore, a large difference in

rank suggests that the areas of the parameter space that lead to good performance were

different among the two topologies.

An average difference of 75.733 provides strong evidence to support that the topol-

ogy employed is an important factor when selecting control parameter values for the

PSO algorithm. Similarly, if the PSO control parameters are not being tuned for a

specific problem, then examining both the gbest and lbest topologies for the selected

parametrization can be an effective way of improving performance. This result also

suggests that comparing gbest and lbest PSO results using the same parameter config-

uration may be unfair, in general, given that the relative ranks are drastically different

among corresponding parameter configurations. Specifically, a naive comparison using

the same parameter configuration for both topologies will inherently create a bias to-

wards the topology that leads to better performance using that parameter configuration.

Thus, a more fair comparison would be to examine the performance of PSO with each

topology over a set of parameters, then perform the comparison using the best respective

parameter configuration(s). In this scenario, the relative rankings are preserved, thereby

mitigating the bias to some degree and leading to a more fair comparison of performance.

A further observation from Figure 6.1 was made regarding the worst performing

parameter configurations within the stable region. When using the gbest topology, the

worst performance, indicated by darker-coloured points, was observed for parameters



Chapter 6. Investigating Optimal Parameter Regions 117

Difference

F
re

q
u

e
n

c
y

0 100 200 300 400

0
5

0
1

0
0

1
5

0

Figure 6.3: Distribution of the absolute difference in rank between corresponding parameter

configurations using the gbest and lbest topologies.

near the centre of the region (i.e., c1 + c2 ∈ [1, 3] and ω ∈ [−0.5, 0.5]). However, for the

lbest topology, the worst performance was observed when small values for the acceleration

coefficients (i.e., c1 + c2 ∈ [0, 1]) were used, largely irrespective of the inertia weight.

Another observation, from Table 6.2, was that both the average and standard devia-

tion of per-function ranks were significantly lower for the gbest topology. This indicates

that the performance of the best parameter configurations was more stable under the

gbest topology. More concretely, this indicates that the gbest topology has a less pro-

found dependence on parametrization in the sense that well-performing parameters are

more likely to perform better across a variety of problems than when using the lbest

topology.

The following section examines whether the modality and separability of the problems

have an effect on which areas of the parameter space lead to the best performance.
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6.4 Results by Environment Type

Figure 6.4 shows the rank for each parameter configuration across the 9 unimodal and

13 multimodal problems, respectively, for both topologies. Additionally, Figure 6.5 vi-

sualizes the rank for each parameter configuration across the 12 separable and 10 non-

separable problems, respectively. In each of the plots, the striking similarities to the

respective overall ranks in Figure 6.1 were noted. That is, the regions where the best

and worst performance are observed remained largely unchanged for both topologies,

irrespective of the modality and separability of the problem.
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(a) Unimodal benchmark problems, global

best topology.
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(b) Multimodal benchmark problems, global

best topology.
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(c) Unimodal benchmark problems, local best

topology.

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

ω

c
1
 + c

2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Rank

(d) Multimodal benchmark problems, local

best topology.

Figure 6.4: Plot of the aggregate rank based on modality.
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For each problem type and parameter configuration, the average difference between

the overall rank and the rank on the specified problem type was computed in an analogous

fashion to the comparison between topologies provided by Equation (6.1). Table 6.3

presents the average difference in rank and corresponding standard deviation based on

problem type for each of the topologies. It is noteworthy that, in all cases, the average

difference between overall rank and each problem type was less than one-third of the

difference in rank between the two topologies. In other words, the topology had a much

greater influence on the relative performance of an arbitrary parameter configuration

than the modality and separability of the problem.

As further analysis, a Mann-Whitney U test was executed, at a significance level

of 0.05, using a vector of the pairwise difference values (referred to as the ‘difference

vector’) for the gbest and lbest topologies on each problem type to ascertain whether

the effect of the problem type was consistent between the two topologies. In all cases, the

Mann-Whitney U tests indicated that the difference vectors were insignificantly different,

suggesting that the modality and separability of a problem has the same relative influence

on the performance attained using various PSO parameter configurations, irrespective

of whether the gbest or lbest topology is employed.

Table 6.3: Average difference in rank, relative to the overall rank, by problem type.

Global Best Topology Local Best Topology

Problem Type Mean SD Mean SD

Unimodal 24.790 30.317 24.052 25.413

Multimodal 22.271 30.275 15.116 15.821

Separable 9.349 13.638 8.958 10.579

Non-separable 11.689 19.310 11.298 13.390

6.5 Summary

In summary, topology does play a significant role in determining the regions of parameter

space that perform well. This is evidenced by Figure 6.1, which clearly depicted that the

regions leading to the best and worst performance were noticeably different among the
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(a) Separable benchmark problems, global best

topology.
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(b) Non-separable benchmark problems, global

best topology.
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(c) Separable benchmark problems, local best

topology.
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(d) Non-separable benchmark problems, local

best topology.

Figure 6.5: Plot of the aggregate rank based on separability.

gbest and lbest topologies. Figure 6.2 provided additional evidence to support that the

regions of parameter space that lead to the best performance were different among the

two topologies. Moreover, the rank of corresponding parameter configurations differed

by nearly 76 between the two topologies. These results suggest that comparing the

performance of a gbest and lbest PSO using the same parameter configuration may be

unfair.

When the modality and separability were examined, it was shown that neither of

these problem characteristics had a significant influence on the regions of parameter
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space where good performance is attained. Figures 6.4 and 6.5, which show the ranks

based on the modality and separability of problems, depicted striking similarities to

the respective plots of the overall rank shown in Figure 6.1. The results also showed

that the performance differences among the various problem types was consistent across

both topologies. That is, the difference in rank among corresponding points in the

gbest and lbest topologies was insignificantly different for all problem types, suggesting

that the performance implications of the modality and separability of the problem were

independent of the topology employed.

The following chapter expands on this investigation to examine scenarios where the

cognitive and social acceleration coefficients are not equal using the global best topology.

Further, the next chapter investigates whether the optimal region for PSO parameters

remains fixed over time.



Chapter 7

Optimal Parameter Regions and the

Time-Dependence of Control

Parameter Values

As discussed in Chapter 6, there have been a number of studies that examined the perfor-

mance of various PSO parameter configurations. Despite these studies, there is no general

consensus as to which parameter configurations lead to the best performance. Moreover,

two important questions remain unanswered. Specifically, it is unknown whether the

optimal parameter regions depend on time. Additionally, the previous chapter did not

address whether the results were also applicable if the values of the cognitive and social

acceleration coefficients were not equal.

This chapter provides answers to both questions presented above, namely how the

best parameter values change over time, and what regions of parameter space lead to

the best performance when the values of the cognitive and social control parameters are

not equal. This chapter contributes to the understanding of PSO by concluding that the

balance between the social and cognitive acceleration coefficients has a significant impact

on the areas in parameter space that lead to good performance. Moreover, this chapter

shows that the optimal regions in parameter space shift over time, thus providing direct

evidence in support of SAPSO algorithms.

The remainder of this chapter is structured as follows. Section 7.1 describes the

122
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experimental procedures, the results of which are presented in Section 7.2. Finally,

Section 7.3 provides a summary of the findings.

7.1 Experimental Setup and Statistical Analysis

To identify the regions of parameter space that lead to good performance, a total of 3036

parameter configurations were examined on a set of 22 benchmark problems, as sum-

marized in Table 6.1. All of the benchmark functions were evaluated in 30 dimensions.

Further descriptions of the benchmark functions can be found in Appendix A. Each ex-

periment made use of synchronous updates [93] and ran for 5000 iterations with a swarm

size of 30. Experiments were repeated 30 times using the global best (star) topology.

To prevent infeasible attractors, personal best positions were only updated if the new

position was both feasible and had a better objective function value than the previous

personal best position. No boundary constraints were enforced, except the restriction of

personal best positions to the feasible search space. Particles were initialized uniformly

within the feasible region and velocities were initialized to the zero vector [30].

Experiments were grouped into three categories based on the ratio between the cog-

nitive and social control parameter values to ascertain the effects of imbalanced accel-

eration coefficients. The experiments were labelled ‘equal’, where c1 = c2, ‘cognitive’,

where c1 = 3c2, and ‘social’, where c2 = 3c1. For each experiment type, the parameter

configurations were constructed as sampled points, (C, ω), taken every 0.1 units within

the ranges

C ∈ [0.1, 4.4] and ω ∈ [−1.1, 1.1].

Note that, while negative inertia weights are not traditionally employed in the PSO

algorithm, recent results have shown that negative inertia weights can lead to stable

behaviour, and thus are not necessarily unreasonable [6, 21]. The values assigned to the

control parameters c1 and c2 were then calculated based on the type of experiment. The

control parameter values were taken as c1 = c2 = C
2

for experiments labelled ‘equal’,

c1 = 3C
4

and c2 = C
4

for experiments labelled ‘cognitive’, and c1 = C
4

and c2 = 3C
4

for experiments labelled ‘social’. For the cognitive and social experiments, a multiplier

value of three was chosen to provide an environment where either the cognitive or social
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acceleration coefficient would dominate the other, without resorting to a cognitive-only

or social-only model. Each experiment group thus consisted of 1012 parameter configu-

rations, leading to a combined total of 3036 parameter configurations examined in this

study.

Results were analysed using the following statistical analysis procedure. For each

benchmark problem, a Kruskal-Wallis test was performed to first determine if any sig-

nificant differences existed among the fitness values obtained by using each of the pa-

rameter configurations. If the Kruskal-Wallis test indicated that a significant difference

existed, pairwise Mann-Whitney U tests were then performed to identify the individual

differences. When the Mann-Whitney U test indicated that a difference in performance

existed, the median fitness values were used to assign wins and losses; the parameter

configuration that lead to better performance was awarded a win, while the inferior con-

figuration was awarded a loss. Finally, the parameter configurations were ranked based

on the difference between the number of wins and losses. In this context, a lower rank

corresponds to superior performance. Both the Kruskal-Wallis and Mann-Whitney U

tests were performed at a significance level of 0.05.

7.2 Identifying Optimal Parameter Regions

This section presents the results of the experiments described in Section 7.1. First,

the overall performance of the parameter configurations is examined in Section 7.2.1,

followed by an examination of the time-dependence in Section 7.2.2.

7.2.1 Overall Performance

Figure 7.1 depicts the overall rank of each parameter configuration for each experiment

after 5000 iterations. While each of the experiments depicted a tendency for parameters

near the boundary of the theoretically stable region to perform best, there are observable

differences regarding where the best parameters lie. Such observations are reinforced by

Figure 7.2, which visualizes the 100 best parameter configurations by overall rank after

5000 iterations for each experiment type. For the cognitive experiments, a majority of

the best parameter configurations were clustered along the upper boundary. However,
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there was also a notable cluster of points along the lower boundary. For the social

experiments, the best parameters were clustered very strongly around the apex, with a

slight preference for positive values of ω. For the equal experiments, the best parameters

were mostly clustered around the apex, with a slightly more pronounced preference for

positive values of ω than the social configurations.

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

ω

c
1
 + c

2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Rank
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(b) Social configurations.
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(c) Equal configurations.

Figure 7.1: Overall rank after 5000 iterations based on experiment type.

Figure 7.1 shows that the regions leading to the worst performance were significantly

different among the various configurations. For each of the experiment types, it is clear

that there was a tendency for parameters that lie outside the theoretically stable region

to perform worse than those within the region. However, the exact areas that lead to the

absolute worst performance were notably different. For the cognitive experiments, the
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(c) Equal configurations.

Figure 7.2: 100 best parameter configurations after 5000 iterations by overall rank.

worst parameters were mostly dependent upon the value of ω. That is, configurations

where |ω| ≈ 1 (albeit more prominently with ω ≈ −1) tended to perform the worst,

largely irrespective of the values of c1 and c2. For the social configurations, the worst

performance was scattered throughout the extreme ends of the examined parameter

space. Examining the equal configurations, the worst performance was again clustered

around the extreme ends of the examined parameter space. However, it was noted

that, for parameter configurations that lie outside the stable region, there was a definite

correlation between distance to the stable region and performance. Specifically, it is clear

that performance degradation was proportional to the distance from the stable region.

It was also noted that, for each experiment type, there was a cluster within the stable
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region that lead to relatively poor performance.

Table 7.1 provides a summary of the fitness attained by the best performing param-

eter configuration for each benchmark problem. In the event of a tie, the parameter

configuration that lead to the lowest median fitness was selected. In the cases of f23

and f24, no definitive best configuration could be chosen given that there were multiple

parameter configurations that always lead to the optimal fitness being attained. For f23,

there were 69 configurations that always lead to the optimal fitness, while there were

three such parameter configurations for f24. From Table 7.1, it is clear that the best

parameter values to employ are problem specific. Furthermore, there is no clear config-

uration type that outperformed the others. However, when the best configurations are

correlated with modality, a few observations can be made. For seven of the functions,

six of which were unimodal, an equal configuration lead to the best performance. For

five of the functions, all of which were multimodal, a cognitive configuration lead to the

best performance. For eight of the functions, five of which were multimodal, a social

configuration lead to the best performance. In other words, the best performance was

attained for six out of nine unimodal problems when c1 = c2, and in no instance did a

cognitive configuration lead to the best performance on a unimodal problem. In contrast,

parameter configurations that had c1 = c2 attained the best performance on only one

multimodal problem, whereas the cognitive and social configurations each lead to the

best performance on five multimodal problems. A further observation regarding Table

7.1 was made when the best parameters were correlated with the stability criterion given

in Equation (2.5). For five of the benchmark problems, all of which were multimodal,

the best parameter configuration violated the stability criterion. However, it should be

noted that violating the stability criterion does not necessarily imply divergence, but

rather that stability can not be guaranteed.

Table 7.2 presents the 10 best parameter configurations determined by aggregate

rank across all benchmark problems. Of the best 10 parameter configurations, four had

c1 = c2, while six were categorized as social configurations; none of the best 10 parameter

configurations were categorized as cognitive configurations. In fact, the best cognitive

configuration had a rank of 19. Moreover, of the best 100 parameter configurations, 54

were categorized as social, 36 were categorized as equal, while only nine were cognitive
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Table 7.1: Summary of the fitness attained by the best parameter configuration for each

benchmark function. A * indicates that multiple parameter configurations were found that

always lead to the optimal fitness.

Function ω c1 c2 Median Average Standard Deviation

f1 0.4 2.000 2.000 3.17E-048 2.94E-042 1.24E-0.041

f2 0.7 2.550 0.850 6.66E-015 5.01E-002 2.74E-001

f3 0.7 2.625 0.875 1.07E-014 1.69E-014 3.15E-014

f4 -0.1 0.875 2.625 -1.57E+004 -1.59E+004 1.25E+003

f5 0.4 1.950 1.950 2.76E-100 9.64E-094 3.81E-093

f6 0.5 0.975 2.925 3.70E-003 1.01E-002 1.81E-002

f7 0.4 1.950 1.950 9.96E-105 1.13E-099 5.99E-099

f8 -0.5 1.500 0.500 -2.70E+001 -2.69E+001 8.34E-001

f9 0.6 1.850 1.850 -7.85E-001 -7.88E-001 6.88E-003

f10 0.5 1.750 1.750 6.69E-014 2.12E-013 5.46E-013

f11 0.5 1.750 1.750 1.11E-179 7.52E-170 0.00E+000

f12 -0.1 0.900 2.700 1.39E+001 1.51E+001 7.93E+000

f13 0.8 0.500 1.500 2.47E+000 3.47E+000 3.55E+000

f14 0.8 2.025 0.675 3.00E-001 3.20E-001 5.51E-002

f15 0.1 0.950 2.850 4.51E+000 4.56E+000 6.36E-001

f16 0.2 0.900 2.700 2.60E-014 3.10E-013 8.45E-013

f19 0.0 0.850 2.550 1.02E-007 1.41E-007 1.57E-007

f20 0.4 2.000 2.000 8.21E-048 9.40E-036 5.15E-035

f21 0.8 2.025 0.675 -1.89E+034 -2.02E+034 9.27E+033

f22 0.4 1.950 1.950 1.31E-106 1.08E-100 5.82E-100

f23 * * * 0.00E+000 0.00E+000 0.00E+000

f24 * * * -3.00E+001 -3.00E+001 0.00E+000

configurations. This result is not surprising given that the strength of the PSO algo-

rithm lies in its social aspect. Three of the best 10 configurations employed a negative

inertia weight, indicating a preference to switch directions rather than resist directional

changes. Despite the stable region defined by Equation (2.5) containing negative inertia
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weight values, they are rarely, if ever, used in practice. However, these results suggest

that negative inertia weights may not necessarily be detrimental to the search process.

A further two of the best 10 configurations employed no inertia at all (i.e., ω = 0). Given

that half of the best 10 parameter configurations employed non-positive inertia weight

values, it can be concluded that it is not always beneficial for particles to remain on their

current trajectory. However, it should be noted that all five of the parameter configura-

tions that had non-positive inertia weights were also categorized as social configurations,

while four of the five configurations with positive inertia weight values had equal values

for the social and cognitive coefficients. This suggests that having a high social influence

may, in part, make having a positive inertia weight value unnecessary. Nonetheless, it is

generally not recommended to employ a negative inertia weight, especially for cognitive

parameter configurations.

Table 7.2: The 10 best parameter configurations by overall rank across all benchmark prob-

lems.

Overall Rank ω c1 c2 Average Rank Rank SD

1 0.1 0.950 2.850 67.955 43.951

2 -0.1 0.875 2.625 64.864 54.961

3 0.0 0.900 2.700 66.727 49.891

4 0.0 0.925 2.775 67.364 45.390

5 0.6 1.800 1.800 68.591 58.467

6 0.5 1.900 1.900 67.773 58.557

7 0.7 1.650 1.650 67.500 47.914

8 -0.2 0.800 2.400 76.227 61.082

9 -0.3 0.700 2.100 75.227 50.191

10 0.6 1.850 1.850 67.864 55.555

Figure 7.3 shows the distribution of the values for each control parameter over the 100

best-performing parameter configurations. From Figure 7.3a, it is evident that the most

frequent well-performing inertia weight was 0.7. There was a very skewed distribution,

showing a steady increase in frequency for inertia weight values between -0.5 and 0.7,

after which the frequency declined. For the distribution of the cognitive acceleration
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coefficient, depicted in Figure 7.3b, a value of approximately 0.9 frequently lead to good

performance. Furthermore, there was a noticeable preference for cognitive acceleration

coefficients between 0.7 and 1.0. Regarding the distribution of the social acceleration

coefficient, larger values were preferred, in general. The highest frequency was observed

with social coefficients of approximately 2.75. There is also a notable cluster of good

performance when the value of the social acceleration coefficient was between 1.6 and

2.0. These results further demonstrate that, in general, it is preferable to have a larger

value for the social coefficient than the cognitive coefficient, despite these two parameter

values being traditionally taken as equal in the literature.
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(c) Social acceleration coefficient.

Figure 7.3: Distribution of the values of the best 100 parameter configurations after 5000

iterations.

Figure 7.4 presents the overall rank of each parameter configuration based on modal-
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ity. It is evident from Figures 7.4a, 7.4b, 7.4e, and 7.4f that the effects of modality

were minimal when equal and social parameter configurations were employed. However,

it is notable that for both social and equal parameter configurations, the region that

lead to the best performance shifted toward the boundaries of the stable region when

faced with multimodal problems. That is, larger acceleration coefficients in the best

parameter configurations tended to lead to better performance on multimodal problems.

Figures 7.4c and 7.4d indicate that modality had a noticeable effect on the relative per-

formance of cognitive parameter coefficients, specifically the regions that lead to poor

performance. While the region leading to the best performance, namely the top bound-

ary of the stable region, did not change significantly, the central region where poor

performance was observed (i.e., the darker region) was much larger when faced with uni-

modal problems. When faced with multimodal problems, the performance of cognitive

configurations within the stable region tended to improve as the values of the accelera-

tion coefficients increased. However, when faced with unimodal problems, the cognitive

coefficients had two notable regions that lead to good performance, namely the bottom

left and top right regions of the stable region, indicating that either a negative inertia

weight and small acceleration coefficients, or a large inertia weight and large acceleration

coefficients, lead to the best performance.

Figure 7.5 shows the distribution of the values for each control parameter over the

100 best-performing parameter configurations based on modality. When considering the

inertia weight, shown in Figures 7.5a and 7.5b, it is evident that unimodal problems

had a much smaller range in which the inertia weight can lie while leading to good

performance. Notably, multimodal problems had a greater tolerance for negative inertia

weights, as evidenced by the longer left tail. Furthermore, Figure 7.5a depicts a higher

peak with a larger density surrounding it, suggesting that the deviation of the best

inertia weight was much smaller for unimodal problems. When considering the cognitive

acceleration coefficient in Figures 7.5c and 7.5d, there is a notable tendency for values

between 0.5 and 1 to perform well. When faced with multimodal problems, larger values

of the cognitive coefficient were acceptable than when faced with unimodal problems,

as evidenced by the longer right tail in Figure 7.5d. Examining the distribution of the

social acceleration coefficient, shown in Figures 7.5e and 7.5f, it is evident that larger



Chapter 7. Optimal Parameter Regions and the Time-Dependence of Control Parameter
Values 132

values (i.e., between 2.5 and 3) had a greater tendency to perform better on unimodal

problems, while multimodal problems had a weaker dependence on the value of the social

coefficient. However, the best performance on multimodal problems was still obtained

within the same region of [2.5, 3]. These results suggest that it is preferable to have larger

values for the social acceleration coefficient than the cognitive acceleration coefficient,

regardless of the modality of the problem.

Table 7.3 presents the best parameter configurations for each environment type, as

determined by aggregate rank. For unimodal problems, the best parameter configu-

rations were within the stable region, while the overall best parameter configuration

for multimodal problems violated the criterion provided in Equation (2.5). However,

it is noteworthy that the average rank was lower for the best parameter configurations

in unimodal environments, i.e., where the best parameter configurations were theoreti-

cally stable. Specifically, the average rank and standard deviation were much lower for

unimodal environments, indicating that the observed best parameter configuration per-

formed well consistently across the unimodal problems. Reinforcing what was observed

in Table 7.1, the best configuration for unimodal environments had c1 = c2, while the

best configuration for multimodal environments had a social configuration.

Table 7.3: Best parameter configuration by environment type.

Environment ω c1 c2 Average Rank Rank SD

Overall 0.1 0.950 2.850 67.955 43.951

Unimodal 0.5 1.850 1.850 20.333 18.635

Multimodal -0.1 0.875 2.625 43.846 39.497

7.2.2 The Time-Dependence of Control Parameter Values

To assess the dependence of the optimal parameter region on time, Figures 7.6 to 7.8

present the overall rank of each parameter configuration at various iterations. A key

observation is that the region containing the best performing parameter configurations

shifted over time. Specifically, as time passed, there was a noticeable preference for

larger values of c1 + c2. Similarly, there was an improvement in the relative performance
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of parameter sets that lie just outside the stable region, but near the apex. This is

evidenced by the emergence of a greater number of light-coloured points outside the

stable region, but still near the apex, as the number of iterations increased. This clearly

indicates that larger social and cognitive acceleration coefficients were preferred later

in the search process. However, this also suggests that the dependence on the stability

criterion was weaker as the search progressed.

To further assess the relative performance of parameters over time, Figure 7.9 depicts

the best 100 parameter configurations (based on aggregate rank) at various iterations

for each of the configuration types. The most important observation is that the best

parameter configurations were noticeably different at each of the examined time intervals.

Specifically, there was a tendency for parameters to shift towards the right over time,

implying that larger values of the social and cognitive parameters were preferred later in

the search process. In contrast, the results suggest that the inertia weight value was less

dependent on time than the acceleration coefficients, as the optimal parameter region

shifted much more horizontally than vertically. This result provides direct evidence

against dynamically reducing the inertia weight over time, and provides further evidence

in support of the findings in Chapter 5, where it was found that linearly decreasing

inertia weight strategies performed worse than a constant inertia weight. An additional,

noteworthy observation is that there was an inherent relationship between performance,

time, and adherence to the stability criterion. Adherence to the stability criterion was less

important as time passed; parameter configurations that violated the stability criterion,

but still performed relatively well, were more frequent as the search progressed. This

is likely a result of the larger variances in particle positions resulting from parameter

configurations that are near, or even outside, the stable region [9]. A large variance

corresponds to larger particle step sizes, which means that complete stagnation is less

likely. Therefore, parameter configurations with larger variances may be preferred later

in the search due to their prevention (or delaying) of stagnation. The observed time-

dependence of control parameter values further emphasizes the importance of developing

efficient SAPSO algorithms.

Another observation from Figure 7.9 reinforces that the region containing the best

parameters was noticeably different based on the balance between the social and cog-
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nitive parameters. For parameter configurations that are considered social, the optimal

region formed a cluster that closely resembles the apex of the stable region. However,

when cognitive parameter configurations were employed, the best parameter configura-

tions formed two distinct clusters. Regarding the balanced parameter sets, the region

containing the best configuration was somewhat a mix of the two regions described

above. For all three parameter schemes, there was a visible preference for positive values

of the inertia weight. This observation was least prominent for the social configuration,

likely as a result of the increased influence of the global best position. To illustrate this

point, consider a cognitive parameter configuration, where the movement direction of a

particle is most prominently influenced by its own personal best position. Thus, it is

reasonable to assume a high degree of correlation between the direction of subsequent

particle movements. That is, if a particle is moving in one direction and finds a new

personal best solution, it is likely to continue in the same direction. Therefore, a nega-

tive inertia weight would be rather detrimental to a cognitive parameter configuration.

Conversely, a social solution takes a high degree of influence from the remainder of the

swarm, and thus is subject to have less correlation between the direction of subsequent

movements.

Figures 7.10 to 7.12 show the distribution of the 100 control parameter values that

lead to the best performance at various time intervals. Considering the distribution of

the inertia weight values, shown in Figure 7.10, there was little change in the distri-

bution after 1000 iterations, suggesting that the best inertia weight values to employ

were within the range [0.4, 0.8] but did not, in general, change as the search progresses.

This provides further evidence to suggest that decreasing inertia weight strategies are

suboptimal. For each of the iterations examined, the most frequent well-performing cog-

nitive control parameter values, shown in Figure 7.11, were within the range of [0.5, 1.0].

However, the value of the cognitive control parameter that most frequently lead to the

best performance showed a slight increase as the search progresses. After 500 itera-

tions, cognitive acceleration values near 0.8 occurred most frequently in the 100 best

parameter configurations, while the most frequent well-performing cognitive accelera-

tion coefficient increased to approximately 0.9 after 5000 iterations. The distribution

of the best-performing social acceleration coefficients, shown in Figure 7.12, depicts a
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similar trend to the cognitive acceleration coefficient. After 500 iterations, values of

the social acceleration coefficient that were approximately 2.6 lead to good performance

most frequently, while a social acceleration value of approximately 2.8 tended to most

frequently lead to good performance after 5000 iterations. In general, the best perfor-

mance was observed when a social acceleration coefficient, within the range of [2.5, 3.0],

was employed, further suggesting that parameter configurations favouring the social in-

fluence tended to perform better than those that favour a cognitive influence. Based

on these results, a general guideline for selecting PSO control parameter values, which

should lead to reasonable performance regardless of the number of iterations, is to set

ω ∈ [0.4, 0.8], c1 ∈ [0.5, 1.0], and c2 ∈ [2.5, 3.0].

7.3 Summary

This chapter provided an empirical investigation into the relative performance of PSO

parameter configurations. The overall objective was to identify the regions of parameter

space that lead to the best performance for the global best topology. Specifically, two

important questions regarding the parametrization of a global-best PSO were addressed.

Firstly, the question of where the optimal parameter configurations reside when the re-

spective values of the acceleration coefficients were different was examined. Secondly, this

study examined the question of whether the optimal parameters to employ are dependent

on time. To investigate these questions, a total of 3036 parameter configurations were

examined on a set of 22 benchmark functions. The modality of the benchmark problems

was examined to ascertain whether the optimal regions of parameter space were depen-

dent on the modality of the problem. Furthermore, the results were correlated with the

best-known stability criterion to determine whether particle stability had any effect on

the performance of the PSO algorithm.

To address the first question, the experiments were divided into three categories

based on the ratio between the social and cognitive acceleration coefficients (i.e., equal,

larger social, and larger cognitive). The results indicated that the regions leading to the

best performance were notably different among each of the different types of parameter

configurations. That is, the balance between social and cognitive coefficients does have
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a significant effect on the regions of parameter space that lead to optimal performance.

To address the second question, the performance of the parameter configurations was

captured at various points throughout the search. Results indicated that the optimal

values for the acceleration coefficients increase as the search progresses, irrespective of the

balance between the social and cognitive coefficients. Specifically, this indicates that the

optimal parameters are, in fact, time-dependent, thereby providing further justification

for SAPSO algorithms that can alter the values of their control parameters over time.

Despite the observed dependence on time, a general recommendation for selecting values

for the PSO control parameters is to set ω ∈ [0.4, 0.8], c1 ∈ [0.5, 1.0], and c2 ∈ [2.5, 3.0].

It is noted that the findings in Chapter 6 suggest the results may be different if these

experiments were repeated using the local best topology.

Examining Figure 7.9, it is evident that certain regions of parameter space lead to

better performance. In the next chapter, a new region for sampling PSO parameter values

is proposed based on the findings in this chapter. Moreover, a new PSO algorithm, which

adapts its control parameters over time using the proposed region, is also designed.
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(a) Social configurations, unimodal problems.
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(b) Social configurations, multimodal prob-

lems.
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(c) Cognitive configurations, unimodal prob-

lems.
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(d) Cognitive configurations, multimodal

problems.
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(e) Equal configurations, unimodal problems.
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(f) Equal configurations, multimodal prob-

lems.

Figure 7.4: Overall rank after 5000 iterations based on modality.
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(a) Inertia weight, unimodal problems.
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(b) Inertia weight, multimodal problems.
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(c) Cognitive acceleration coefficient, uni-

modal problems.
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(d) Cognitive acceleration coefficient, multi-

modal problems.
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(e) Social acceleration coefficient, unimodal

problems.
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(f) Social acceleration coefficient, multimodal

problems.

Figure 7.5: Distribution of the values of the best 100 parameter configurations after 5000

iterations based on modality.
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(a) 500 Iterations.
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(b) 1000 Iterations.
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(c) 2500 Iterations.
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(d) 5000 Iterations.

Figure 7.6: Overall rank at various iterations with c1 = c2.
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Figure 7.7: Overall rank at various iterations with a social configuration.
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Figure 7.8: Overall rank at various iterations with cognitive configurations.
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Figure 7.9: 100 best parameter configurations at various iterations.
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Figure 7.10: Distribution of the inertia weight values of the best 100 parameter configurations

at various iterations.
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Figure 7.11: Distribution of the cognitive acceleration values of the best 100 parameter

configurations at various iterations.
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Figure 7.12: Distribution of the social acceleration values of the best 100 parameter configu-

rations at various iterations.



Chapter 8

An Adaptive Particle Swarm

Optimization Algorithm Based on

Optimal Parameter Regions

This chapter proposes a new region for the selection of PSO parameters based on the

results in Chapters 6 and 7. Furthermore, a PSO variant that randomly samples control

parameter values from the proposed region is also introduced. Two different strategies

dictating when the control parameter values are updated are also examined. The pro-

posed PSO variant is then compared to the standard PSO employing 14 different param-

eter configurations suggested in the literature across a suite of 60 benchmark problems.

Furthermore, various landscape characteristics are examined to ascertain the effects of

the environment type on the results.

The remainder of this chapter is structured as follows. Section 8.1 provides an

overview of studies that provide recommendations on the setting of PSO parameter

configurations. In Section 8.2, a new region for parameter selection is constructed and

an algorithm exploiting this region is proposed. Section 8.3 describes the experimental

design used to compare the performance of the proposed algorithm, the results of which

are presented in 8.4. Finally, Section 8.5 provides a summary of this chapter’s findings.
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8.1 Parameter Recommendations

This section reviews a number of studies that have examined and suggested new PSO

parameter configurations. Each of these studies were selected based on either the preva-

lence of their suggested parameters in the literature, or for their wide variety of parameter

settings examined. Therefore, the studies and parameter settings described below rep-

resent what a practitioner would find when searching for suggested parametrizations of

the PSO algorithm.

One of the most popular parametrizations for PSO, where ω = 0.7298 and c1 = c2 =

1.49618, is attributed to the early work of Eberhart and Shi [28], where the constriction

factor PSO [22] and inertia weight PSO [98] were compared. Though it was concluded

that the constriction factor PSO was superior, the two variations are functionally equiv-

alent. This conclusion was likely due to the inertia model employing a decreasing inertia

weight strategy, which was shown in Chapter 5 to be detrimental to PSO performance.

Carlisle and Dozier [12] examined various parameter configurations of the constriction

factor PSO, with the goal of creating a general purpose, “off-the-shelf” PSO variant.

Carlisle and Dozier [12] discovered the best performing parameters of those examined

were φ1 = 2.8, φ2 = 1.3, and φ = 4.1, which translates to ω = 0.729, c1 = 2.0412, and

c2 = 0.9477 in the inertia weight model.

Trelea [105] used dynamic system theory to analyse the theoretical behaviours of

various PSO control parameter values. The authors empirically examined a number of

parameter sets1, where ω = 0.6 and c1 = c2 = 1.7 were selected as the best performing

parameter values. The aforementioned parameter set was reported to outperform the

best known parameters at that time.

Clerc [23] examined the stagnation behaviour of PSO and found the most promising

parameters, with regards to stagnation behaviour, to be ω = 0.721, and c1 + c2 = 2.386.

For the purposes of this study, it is assumed that c1 = c2 = 1.193.

Jiang et al. [51] examined the relationship between the speed of convergence toward a

fixed location and particle trajectories, which lead to the derivation of a new theoretical

model of particle stability. Based on their derived model and selection guidelines, a set

1The exact number of parameter sets examined was not explicitly given.
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of parameters, ω = 0.715 and c1 = c2 = 1.7, was suggested.

Zhang et al. [121] empirically examined the dynamic characteristics of PSO, ulti-

mately leading to a new parameter selection technique. Using their proposed technique,

Zhang et al. [121] proposed three sets of parameters, each of which performed similarly.

The three suggested parameter settings were as follows:

• ω = 0.724 and c1 = c2 = 1.468

• ω = 0.785 and c1 = c2 = 1.331

• ω = 0.837 and c1 = c2 = 1.255

Liu [71] derived an order-2 stable region for PSO using a weak stagnation assumption.

This region was subsequently used as the basis for parameter selection. Liu [71] then

empirically examined 14 parameter configurations, of which ω = 0.42 and c1 = c2 = 1.55

lead to the best performance.

Bonyadi and Michalewicz [9] examined the impact of PSO parameters on the move-

ment pattern of particles. Bonyadi and Michalewicz [9] then empirically examined 11

parameter sets (six of which they proposed) and found that setting ω = 0.711897 and

c1 = c2 = 1.711897 lead to the overall best performance.

The two best performing parameter configurations found in Chapter 6 were ω =

0.5, c1 = c2 = 1.90 and ω = 0.6, c1 = c2 = 1.80. However, this study was limited to

parameter configurations in which c1 = c2. In the expanded study of Chapter 7, the

best two parameter configurations were found to be ω = 0.1, c1 = 0.95, c2 = 2.85 and

ω = −0.1, c1 = 0.875, c2 = 2.625.

8.2 Proposed Adaptive Particle Swarm Optimiza-

tion Algorithm

Chapter 7 found that the best performing values for the control parameters, with respect

to solution accuracy, tended to be clustered near the boundaries of the stable region,

as visualized in Figure 8.1 alongside Poli’s stability criterion. Figure 8.1 shows the best



Chapter 8. An Adaptive Particle Swarm Optimization Algorithm Based on Optimal
Parameter Regions 149

100 parameter configurations for each experiment type, namely ‘Equal’ where c1 = c2,

‘Cognitive’ where c1 = 3c2, and ‘Social’ where 3c1 = c2.
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Figure 8.1: Visualization of the best performing parameter values from Chapter 7. ‘Equal’,

‘Cognitive’, and ‘Social’ represent the experiments with differing ratios between the cognitive

and social acceleration coefficients.

It is evident from Figure 8.1 that there is a relatively small region where the perfor-

mance is superior in terms of accuracy (assuming a fixed computational budget). By

manipulating the coefficients from Equation (2.5) and reversing the inequality such that

c1 + c2 >
22− 30ω2

7− 5ω
, (8.1)

a reasonable lower bound for parameter selection can be attained. The proposed region,

from which to select PSO control parameter values, is then constructed by taking Equa-

tion (2.5) as an upper bound and Equation (8.1) as a lower bound. The proposed region,
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constrained by
22− 30ω2

7− 5ω
< c1 + c2 <

24− 24ω2

7− 5ω
, (8.2)

is visualized in Figure 8.2 along with the best found parameters from Chapter 7. Note

that the right side of Equation (8.2) is simply Equation (2.5) with the numerator ex-

panded.
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Figure 8.2: Proposed lower bound containing the best performing parameter values.

The proposed algorithm, namely particle swarm optimization with improved random

constants (PSO-iRC), initializes each particle with a unique set of control parameter

values by uniformly sampling the region constrained by Equation (8.2). The control

parameter values are then re-sampled uniformly from this region throughout the search

process according to one of two strategies:

• PSO-iRC-pk, where new control parameter values are selected for each particle
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after every k iterations.

• PSO-iRC-sk, where new control parameter values are selected for a particle if its

personal best position has stagnated (i.e., no better personal best position has been

found) for k iterations.

Note that, for both of the proposed variants, there is no need to specify values for the

traditional PSO control parameters, namely ω, c1, and c2. Rather, only the frequency of

parameter value updates (i.e., the value of k) must be specified. Therefore, the proposed

algorithm leads to an overall reduction in the number of parameters required for the

PSO algorithm.

8.3 Experimental Setup

This section describes the experiments that examine the performance of PSO-iRC rel-

ative to the standard PSO. The various PSO parameter configurations introduced in

Section 8.1, which are used for comparison, are summarized in Table 8.1. For both PSO-

iRC-pk and PSO-iRC-sk, the examined values of k were {1, 5, 10, 25}. All examined

PSO variants consisted of 30 particles arranged in a global-best topology and used a

synchronous update strategy. Initial particle positions were randomly sampled within

the feasible bounds of the search space, while particle velocities were initially set to the

zero vector [30]. To prevent infeasible attractors, a particle’s personal best position was

only updated if a new position had a better objective function value and was within the

feasible bounds of the search space. No boundary constraints were enforced, except the

restriction of personal best positions to the feasible search space. The objective fitness

value averaged over 50 independent runs, each consisting of 5000 iterations, was taken

as the measure of performance for each algorithm. As described in Appendix A, a suite

of 60 minimization problems were used in this study. All functions were optimized in 30

dimensions.

Statistical analysis of results was done by way of Friedman’s test for multiple compar-

isons among all methods [35, 36], as recommended by Derrac et al. [26]. Furthermore,

Shaffer’s post-hoc procedure [97] was performed as a means to identify the pairwise
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Table 8.1: Control parameter values

ID ω c1 c2 Reference

PSO-1 0.7298 1.49618 1.49618 [28]

PSO-2 0.729 2.0412 0.9477 [12]

PSO-3 0.6 1.7 1.7 [105]

PSO-4 0.721 1.193 1.193 [23]

PSO-5 0.715 1.7 1.7 [51]

PSO-6 0.724 1.468 1.468 [121]

PSO-7 0.785 1.331 1.331 [121]

PSO-8 0.837 1.255 1.255 [121]

PSO-9 0.42 1.55 1.55 [71]

PSO-10 0.711897 1.711897 1.711897 [9]

PSO-11 0.5 1.90 1.90 [43] (Ch. 6)

PSO-12 0.6 1.80 1.80 [43] (Ch. 6)

PSO-13 0.1 0.950 2.850 [45] (Ch. 7)

PSO-14 -0.1 0.875 2.625 [45] (Ch. 7)

comparisons that produced significant differences. Finally, critical difference plots were

generated, whereby algorithms that are to the left of the plot demonstrated superior per-

formance, and algorithms that are grouped by a line were found to have insignificantly

different performance.

8.4 Results and Discussion

Figure 8.3 presents the critical difference plot when considering performance across all

60 benchmark problems. The first important observation is that the best overall perfor-

mance was insignificantly different among 15 of the 22 configurations when considering

all benchmark problems. Notably, five of the eight variants of PSO-iRC were among

the top-performing group, suggesting that PSO-iRC is an effective solution for setting

PSO control parameter values. Furthermore, the relative positioning of the PSO-iRC-pk

variants (i.e., the PSO-iRC-pk variants were all further left than the PSO-iRC-sk vari-
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ants) suggests that periodic parameter updates lead to better performance than updating

parameter values only when the personal best position stagnates.

From the large group sizes shown in Figure 8.3 (i.e., the large number of algorithms

that are grouped with a line), it can be concluded that the performance of various PSO

control parameter values was problem-dependent, thus causing no particular configu-

ration to outperform all others. In general, the best performing parameters, despite

the insignificant differences noted for the top 15 configurations, were those employed by

PSO-2 and PSO-7, while the worst performing parameters were those employed by PSO-

9 and PSO-4. Considering the PSO-iRC variants, the best parameter update strategy

was to generate new parameters every five iterations. To ascertain the effects of vari-

ous landscape characteristics on the performance of PSO-iRC, the following subsections

present the results for various environment types.
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Figure 8.3: Critical difference plot, all functions.

8.4.1 Modality

The critical difference plot with regards to the 19 unimodal problems is shown in Figure

8.4. Three of the variants of PSO-iRC were among the top performing group, all of

which were PSO-iRC-pk. For unimodal functions, the best performance was attained

by PSO-3 and PSO-1 while the worst performance was again demonstrated by PSO-9,
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followed by PSO-4.
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Figure 8.4: Critical difference plot, unimodal functions.

Considering the critical difference plot for the 41 multimodal problems, as shown in

Figure 8.5, five of the eight PSO-iRC variants shared the best performance. In contrast to

the unimodal problems, where only PSO-iRC-pk variants showed the best performance,

PSO-iRC-s1 was also among the top performing configurations. For multimodal prob-

lems, the best performance was demonstrated by PSO-2, while the worst performance

was shown by PSO-9.
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Figure 8.5: Critical difference plot, multimodal functions.
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8.4.2 Separability

Considering the critical differences across the 21 separable problems, as shown in Figure

8.6, it is noted that there was an insignificant difference in performance across 20 of

the 22 examined configurations. The best performance was attained by PSO-2 and

PSO-iRC-p5, while the worst performance was noted for PSO-9 and PSO-4.
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Figure 8.6: Critical difference plot, separable functions.

Figure 8.7 shows the critical difference plot when considering the 39 non-separable

problems. Of the 15 best performing algorithms, four were variants of PSO-iRC. When

considering non-separable environments, PSO-2 lead to the best performance, while

PSO-9 lead to the worst performance.

8.4.3 Composition Functions

Figure 8.8 presents the critical difference plot when considering the 11 composition prob-

lems. Figure 8.8 shows that the best performance was shared among 14 of the 22 con-

figurations, eight of which were the PSO-iRC configurations. Thus, all of the PSO-iRC

variants, independent of the parameter switching mechanism, were highly effective on the

composition problems, which can be considered the most challenging type of problem

examined. An additional noteworthy observation was that the best performing PSO-

iRC variant was PSO-iRC-s1. This is in contrast to every other type of environment,
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Figure 8.7: Critical difference plot, non-separable functions.

where PSO-iRC-pk had shown better performance. For composition problems, PSO-2

was again the best performing parameter configuration, while PSO-13 lead to the worst

performance.
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Figure 8.8: Critical difference plot, composition functions.
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8.5 Summary

This chapter presented a novel PSO variant, namely PSO-iRC, based on random sam-

pling of control parameter values from a region in parameter space known to contain

promising configurations. Two variants of PSO-iRC, which differed in when the values

of the control parameters were updated, were proposed. The two variants of PSO-iRC

were compared to 14 different parametrizations of PSO, as suggested by the literature,

across a suite of 60 benchmark problems. The results were also examined based on

various landscape characteristics to ascertain the effects of different environment types.

Firstly, it is evident that PSO-iRC-pk is an effective solution for setting PSO parame-

ters throughout the search. For nearly all environment types, PSO-iRC-p1, PSO-iRC-p5,

and PSO-iRC-p10 were among the best performing configurations. However, it is noted

that the best performance was shared among a fair number of configurations, irrespective

of the environment type considered. This result reinforces that parametrization of the

PSO algorithm is highly problem dependent, and therefore the performance differences

of the well-performing parameter settings were not very drastic when considered across

a number of problems. Nonetheless, PSO-iRC-pk demonstrated consistently good per-

formance, irrespective of the environment type, and further benefits from the reduction

in the number of control parameters.

Another notable observation was that the performance of PSO-2, despite being in-

significantly different from a number of other configurations, was generally superior.

Therefore, if a static set of parameters are desired, then it is recommended to employ

the parameters suggested by Carlisle and Dozier [12]. Conversely, the worst performance

was consistently demonstrated by PSO-9 and PSO-4, thus it is recommended to avoid

these two parameter configurations when employing PSO.

The next chapter examines the short-term vs. long-term performance of PSO param-

eter configurations. Predictive models are then trained to predict the (relative) long-term

performance of parameter configurations. Additionally, a parameter-free PSO algorithm

is proposed based on these predictive models.



Chapter 9

A Parameter-Free Particle Swarm

Optimization Algorithm using

Performance Classifiers

This chapter presents an investigation into the short-term versus long-term performance

of various PSO parameter configurations. While Chapter 7 provided evidence that the

best PSO parameters to employ are time-dependent, this investigation provides a more

in-depth examination of a small set of parameters, thereby providing a more concrete

quantification of the performance degradation observed with specific parameter config-

urations over time. Given that the short-term performance is not necessarily indicative

of long-term performance, this poses a problem for adaptive algorithms, which rely on

real-time information to decide upon parameter configurations. To predict long-term per-

formance of PSO parameter configurations, this chapter proposes using machine learning

techniques to build predictive models based upon two easily-observable landscape char-

acteristics. Finally, using the predictive models as a basis, this chapter also proposes a

parameter-free PSO algorithm.

The remainder of this chapter is structured as follows. Section 9.1 investigates short-

term and long-term performance of PSO parameter configurations. Section 9.2 builds

classification models for predicting the long-term performance of PSO parameter configu-

rations, while Section 9.3 proposes a parameter-free algorithm based upon these models.

158
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Finally, Section 9.4 provides a summary of this chapter.

9.1 Investigating Short-Term Versus Long-Term Per-

formance

This section presents an investigation of whether short-term PSO performance is indica-

tive of long-term performance. Section 9.1.1 describes the investigation procedure, while

Section 9.1.2 presents a discussion of the results.

9.1.1 Experimental Setup

To investigate the short-term versus long-term performance of various PSO configu-

rations, this section uses the experimental data from the 14 parameter configurations

identified in Chapter 8 (see Table 8.1). The objective fitness value was taken at itera-

tions 10, 50, 100, 250, 1000, 2500, and 5000. For each benchmark problem and iteration,

pairwise two-tailed Mann-Whitney U tests were performed at a significance level of 0.05

to identify performance differences. When the Mann-Whitney U test indicated that a

difference existed among two strategies, the median performance measure values were

used to assign wins and losses; the better performing strategy was awarded a win, while

the inferior strategy was awarded a loss. The strategies were then assigned a rank based

on the difference between the number of wins and losses. Additionally, the best rank

frequency, defined as the number of benchmark problems for which the strategy attained

the highest rank, was recorded.

9.1.2 Results

Table 9.1 presents the average rank across all 60 benchmark problems at various iter-

ations. A few noteworthy observations can be made from this data. Firstly, PSO-4

depicted the best average rank at iterations 10 and 100, but the second worst rank after

5000 iterations. Similarly, PSO-9 demonstrated the best average rank at 50 iterations,

but the worst average rank after 5000 iterations. Clearly, short-term performance was

not indicative of long-term performance for these parameter configurations. While less
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pronounced, there are also examples where the long-term performance was better than

the short-term performance. As an example, consider PSO-13, which demonstrated an

average rank between 11 and 13 for the first 100 iterations, but improved to an average

rank of 7.233 after 5000 iterations. Similarly, PSO-12 attained an average rank between

8 and 10 for the first 100 iterations, but attained an average rank of 5.100 after 5000

iterations. Notably, PSO-2 demonstrated consistent good performance throughout the

search, and attained the best average rank for all iterations after 250.

Table 9.1: Average rank at various iterations across all problems

Iteration

Configuration 10 50 100 250 500 1000 2500 5000

PSO-1 6.183 5.683 5.583 4.850 4.017 4.433 4.633 4.883

PSO-2 1.450 2.817 2.117 1.833 2.050 2.850 3.683 4.400

PSO-3 7.883 4.783 3.817 2.700 3.083 4.050 5.083 5.700

PSO-4 1.083 1.283 1.133 2.683 5.800 8.217 9.700 10.217

PSO-5 9.183 10.667 11.083 11.583 11.083 9.233 7.283 6.583

PSO-6 5.233 4.117 3.883 3.233 3.483 4.333 5.617 5.617

PSO-7 4.333 4.817 5.300 5.050 4.350 4.350 4.617 4.767

PSO-8 4.317 7.833 8.617 9.200 9.100 7.250 6.100 5.433

PSO-9 1.700 1.217 2.417 6.533 9.783 11.500 12.467 12.733

PSO-10 9.317 11.017 11.350 11.900 11.333 9.383 7.750 6.867

PSO-11 10.783 9.533 8.733 7.367 6.133 5.900 5.383 5.667

PSO-12 9.567 8.800 8.467 7.567 5.833 5.150 4.700 5.100

PSO-13 12.450 12.717 11.467 10.283 8.833 7.683 7.183 7.233

PSO-14 12.683 13.750 13.917 13.883 12.933 10.583 8.783 8.050

As an alternative to the average rank, Table 9.2 presents the best rank frequency

across all problems at various iterations. This table more clearly shows the striking

difference in short-term and long-term performance. In fact, this table shows that short-

term performance was dominated by only three configurations, namely PSO-2, PSO-4,

and PSO-9, which were the only configurations to attain the best rank on any benchmark

problem at iterations 10, 50, and 100. An example of misleading performance can be
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found by examining the results for PSO-4, which demonstrated the best rank on 55,

43, and 52 problems at iterations 10, 50, and 100, respectively. However, after 5000

iterations, PSO-4 only attained the best rank on one problem. A similar observation

can be made when examining the results for PSO-9. Conversely, there are numerous

examples where short-term performance (i.e., less than 1000 iterations) was relatively

poor, but long-term performance was relatively good (e.g., PSO-3, PSO-7, and PSO-8).

Table 9.2: Best rank frequency at various iterations across all problems

Iteration

PSO 10 50 100 250 500 1000 2500 5000

PSO-1 0 0 0 0 5 7 7 9

PSO-2 41 4 22 41 32 32 23 23

PSO-3 0 0 0 4 13 16 15 16

PSO-4 55 43 52 26 12 4 2 1

PSO-5 0 0 0 0 0 3 6 7

PSO-6 0 0 0 1 9 10 6 9

PSO-7 0 0 0 0 4 9 8 11

PSO-8 0 0 0 0 0 4 6 12

PSO-9 35 47 22 6 3 1 1 1

PSO-10 0 0 0 0 0 3 6 8

PSO-11 0 0 0 0 7 8 9 8

PSO-12 0 0 0 0 7 7 8 5

PSO-13 0 0 0 0 1 7 6 4

PSO-14 0 0 0 0 0 5 9 10

Figure 9.1 presents the average fitness over the first 1000 iterations on selected bench-

mark problems for PSO-2, PSO-4, PSO-9, PSO-11, and PSO-14. Note that f1 and f22

are unimodal problems, f4, f6, and f13 are multimodal problems, and f37 is a compo-

sition problem. Note that PSO-9, which had the best average rank after 50 iterations,

but the worst average rank after 5000 iterations, depicted very rapid fitness stagnation

and generally did not improve after 200 iterations. Conversely, PSO-14, which attained

the third from worst rank after 5000 iterations, depicted the slowest fitness stagnation of
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the five examined configurations. This indicates that both premature convergence and

delayed convergence can pose issues for performance.

In conjunction with the results from Chapter 7, this section provided strong evi-

dence against the real-time adaptation of control parameter values based solely upon

their short-term performance. Specifically, the results clearly indicated that the best pa-

rameter configurations identified early in the optimization process can lead to the worst

long-term performance. Therefore, an adaptive algorithm that naively selects parameter

configurations based on their early performance is likely to lead to both sub-optimal

performance and early convergence. To mitigate this issue, the next section builds pre-

dictive models that can accurately predict the long-term performance of PSO parameter

configurations based upon two easily-observable landscape characteristics.

9.2 Predicting the Long-Term Performance of Par-

ticle Swarm Optimization Parameter Configura-

tions

This section describes the training process used to build predictive models for classifying

the long-term performance of PSO parameter configurations. Section 9.2.1 describes

the training data and methodology, while Section 9.2.2 describes the algorithms used to

build the predictive models. Finally, Section 9.2.3 discusses the accuracy of the trained

classifiers.

9.2.1 Training Data

To account for various landscape types, two simple fitness landscape metrics were used to

discriminate the environment type. The fitness-distance correlation (FDC) [77] measures

the correlation between the fitness of a solution and its distance to the nearest optimum1

1If the optimum is not known, the solution with the best empirical fitness is used.
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and is given by

FDC =

n∑
i=1

(f(xi)− f(xi))(d
∗
i − d∗)√

n∑
i=1

(f(xi)− f(xi))2

√
n∑
i=1

(d∗i − d∗)2

, (9.1)

where d∗i is the distance between the position of sample i and the nearest optimum. The

dispersion metric (DM) [76] quantifies the dispersion (i.e., spread) of a subset of the

best-fit solutions against the dispersion of the remainder of solutions in the sample and

is given by

DM = disp(X∗)− disp(X), (9.2)

where X is the set of samples, X∗ ⊂ X is a subset of the best fit samples from X, and

disp(X) is a measure of dispersion, which is taken as the average pairwise Euclidean

distance between all solutions in the sample. Together, these measures give a quantifica-

tion of the modality (via the DM) and deceptiveness (via the FDC) of the search space.

While there are certainly more landscape measurements that could be used to quantify

the search space [75], these two measures were selected as they require only a uniform

random sample, and therefore can be calculated easily in real-time.

Each training instance was formulated as a six-tuple of the form

(FDC,DM,ω, c1, c2, class),

where class was one of the following labels based on the rank, R, of a particular parameter

configuration on a specific benchmark problem using the empirical data from Chapter 7:

class =



Excellent (E) R < 31

Very Good (VG) 31 ≤ R < 152

Good (G) 152 ≤ R < 304

Average (A) 304 ≤ R < 759

Poor (P) 759 ≤ R < 1518

Very Poor (VP) 1518 ≤ R < 2277

Terrible (T) 2277 ≤ R

(9.3)
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Note that these classifications correspond to the 1st, 5th, 10th, 25th, 50th, 75th, and

100th percentiles. Both the FDC and DM values were computed using the average of 100

trials, each consisting of 1000 uniformly selected points. The training data thus consists

of 66792 instances, encompassing 3036 parameter configurations across 22 benchmark

problems, based upon the results from Chapter 7. Each classifier was trained by way of

stratified 10-fold cross validation using Weka 3.8.2 [40].

9.2.2 Classifiers

This section describes the five classifiers that were constructed using the training data

described in Section 9.2.1.

C4.5 (J48) Decision Tree

A decision tree is a machine learning tool for predictive modelling, most commonly

employed for classification tasks. The C4.5 algorithm [92], also known as J48, is a

decision tree algorithm built upon the earlier iterative dichotomiser 3 (ID3) algorithm

[91]. To build a classifier from a collection of training instances, each consisting of a

set of attributes and a (known) classification, the C4.5 algorithm recursively selects an

attribute ai that most effectively splits the set of training examples into subsets by

maximizing the information gain. Information gain, denoted IG(ai, S), is a measure of

the difference in entropy between a set S before and after it is split on attribute ai, given

by

IG(ai, S) = H(S)−
∑
t∈T

p(t)H(t) (9.4a)

and

H(S) =
∑
c∈C

−p(c) log2 p(c), (9.4b)

where T is the set of subsets created by splitting S on ai, t ∈ T is a subset of S such that

S =
⋃
t∈T

t, p(t) is the proportion of elements in class t, and C is the set of classifications

present in S. Equation (9.4b) is referred as the entropy of the set S. The attribute ai

that maximizes Equation (9.4a) is then used to make a decision node, which splits the
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instances into subsets. The algorithm then recursively builds subtrees from each of the

subsets.

Random Forest

Random forests are an ensemble technique that combines a collection of tree predictors,

such that each tree is built using an independent random sample from the training set

[11]. Furthermore, the individual trees are built using random subsets of the training

attributes, thereby increasing the diversity in the resulting trees. The justification for

the random attribute selection is that it reduces the generalization error without the

risk of over-fitting [11]. To form the random sample of instances, instances are uniformly

randomly selected, with replacement, from the training set S. To output a final clas-

sification, each classifier casts a unit vote, with the most popular class being the final

classification.

Class Balancing

Given that the number of examples for the classes identified in Section 9.2.1 were unequal,

a second model was built using a class balancing technique for both the J48 and random

forest classifiers. Class balancing is an instance weighting scheme that reconfigures the

weight associated with each training instance such that the sum of weights assigned to

each classification label is equalized while maintaining the same total weight.

Meta-model

In a similar fashion to the random forest algorithm, the meta model is an ensemble

technique that uses multiple underlying classifiers. The final classification is taken as

the most popular class, as voted by the underlying classifiers. For the purposes of this

study, the meta-model is constructed using each of the following four classifiers:

• J48

• J48 (balanced)

• Random forest
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• Random forest (balanced)

9.2.3 Classifier Accuracy

This section discusses the predictive accuracy of each classifier. Table 9.3 provides the

overall accuracy, defined as the percentage of correctly classified instances, while the

confusion matrices for each classifier are provided in Tables 9.4 to 9.8. Bold entries along

the diagonal indicate correct predictions while non-diagonal entries indicate incorrect

predictions. Additionally, the precision, defined as the ratio of true positives to correctly

classified instances, and recall, defined as the ratio of true positives to the sum of true

positives and false negatives, are provided for each of the classifications.

It is clear from Table 9.3 that the random forest models lead to better accuracy than

the corresponding J48 models. Examination of the confusion matrices provided in Tables

9.4 to 9.7 shows that the random forest models provided better accuracy than the J48

models for all classes. An additional noteworthy observation was that class balancing

lead to decreased overall accuracy. However, from the confusion matrices, it is evident

that the accuracy for the ‘Excellent’ class, which has the lowest number of instances, was

increased at the expense of decreased accuracy on other instances. Therefore, it can be

concluded that the class balancing was working as intended; class balancing increased the

accuracy of the under-represented ‘Excellent’ class at the expense of decreased accuracy

on the other, over-represented classes. The meta model provided a significantly higher

accuracy than each of the constituent models, and the precision and recall measures

for the meta-model was above 0.95 for all but the ‘Very Poor’ class. This result is

unsurprising as it can leverage the relative strengths of each of the underlying models.

Notably, the meta-model can make use of the bias towards the ‘Excellent’ category from

the balanced models, while maintaining the overall accuracy from the non-balanced

models.
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Table 9.3: Overall accuracy by classifier

Model Accuracy

J48 84.36%

J48 (balanced) 73.64%

Random Forest 86.64%

Random Forest (balanced) 77.03%

Meta 95.97%

9.3 A Parameter-Free Particle Swarm Optimization

using Performance Classifiers

This section proposes a parameter-free PSO algorithm, entitled classifier model particle

swarm optimization (CMPSO), using the classifiers built in Section 9.2. As a first con-

sideration, the classifiers were built using two measures of the fitness landscape that need

to be supplied. Note that, though the FDC and DM values could be easily computed

and supplied to the CMPSO algorithm, it would be preferable to avoid such a scenario

as this would constitute additional function evaluations. To address this issue, the pro-

posed algorithm first foregoes a number of PSO iterations to perform a uniform random

sampling that is used to compute the FDC and DM values. This ensures that the total

number of function evaluations remained unaltered. After the initial sampling period,

the trained classifier was used to generate, independently for each particle, random val-

ues for the ω, c1, and c2 control parameters until one such configuration was classified

as ‘Excellent’ by the employed classifier. Furthermore, the generated parameter config-

urations were guaranteed to satisfy the convergence criterion given by Equation (2.5).

After the parameter selection process, the CMPSO algorithm continued execution in the

same fashion as the standard PSO algorithm described in Chapter 2.

9.3.1 Experimental Setup

All examined PSO variants consisted of 30 particles arranged in a star neighbourhood

and used a synchronous update strategy. The uniform sampling procedure for the FDC
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Table 9.4: Confusion matrix, J48

Predicted\Actual E VG G A P VP T Recall

E 219 386 88 11 1 2 0 0.310

VG 186 1780 555 79 24 1 0 0.678

G 35 678 1920 643 51 14 0 0.575

A 6 73 555 8057 1279 47 0 0.804

P 5 19 51 1338 14245 1031 1 0.854

VP 3 1 7 57 1160 14353 1130 0.859

T 0 0 0 0 0 932 15769 0.944

Precision 0.482 0.606 0.605 0.791 0.850 0.876 0.933

and DM values consisted of 33 iterations, leading to a total of 990 (i.e., ≈ 1000) samples

being used to compute the values for the landscape metrics. Particle velocities were

initially set to the zero vector [30]. To prevent infeasible attractors, a particle’s personal

best position was only updated if a new position had a better objective function value

and was within the feasible bounds of the search space. No boundary constraints were

enforced, except the restriction of personal best positions to the feasible search space.

The objective fitness value averaged over 50 independent runs, each consisting of 5000

iterations, was taken as the measure of performance for each algorithm.

Statistical analysis of results was done by way of Friedman’s test for multiple com-

parisons among all methods. Furthermore, Shaffer’s post-hoc procedure was performed

as a means to identify the pairwise comparisons which produced significant differences.

Finally, critical difference plots were generated, whereby algorithms which are to the left

of the plot demonstrated superior performance, and algorithms that are grouped by a

line were found to have insignificantly different performance.

9.3.2 Results

First, a comparison of the various CMPSO variants is discussed. Figure 9.2 depicts

the critical difference plot across all 60 benchmark problems, while Figures 9.3 and 9.4

present the critical difference plots on the unimodal and multimodal problems, respec-

tively. Figure 9.2 shows that the best overall rank was attained by CMPSO employing
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Table 9.5: Confusion matrix, J48 (balanced)

Predicted\Actual E VG G A P VP T Recall

E 4764.11 3859.87 823.26 40.49 13.5 26.99 13.5 0.499

VG 1290.4 5906.78 2231.85 87.24 18.17 3.63 3.63 0.619

G 317.01 1864.93 6285.94 965.31 68.54 39.98 0.00 0.659

A 28.58 138.12 935.41 7454.67 939.22 45.72 0.00 0.781

P 13.15 28.01 102.33 1131.4 7675.68 589.43 1.72 0.804

VP 10.28 10.85 33.69 67.38 693.17 8059.44 666.91 0.845

T 0.57 1.14 0.57 1.71 0.00 497.05 9040.66 0.929

Precision 0.742 0.500 0.604 0.765 0.816 0.870 0.929

the classifier built using J48. However, it is noted that the only strategy that performed

significantly worse than the rest, was CMPSO-rf-balanced. It is interesting to note that

despite the higher accuracy of the random forest and meta models, the J48 classifier

lead to the best performance in the CMPSO algorithm. Therefore, it can be concluded

that there is little correlation between the accuracy of the underlying model and the

performance of the CMPSO algorithm employing the model.

Comparison with Other PSO Variants

This section compares the performance of CMPSO-j48 against five other PSO variants,

namely PSO-1, PSO-2, PSO-7, PSO-TVAC, and PSO-iRC-p5, which represent the three

best performing static parameter configurations, a SAPSO algorithm adapting all three

control parameters, and the best parametrization of PSO-iRC from Chapter 8, respec-

tively. Figure 9.5 depicts the critical difference plot comparing the performance across

all 60 benchmark problems, while Figures 9.6 and 9.7 present the critical difference plots

on the unimodal and multimodal problems, respectively.

From Figure 9.5, it can be seen that, while CMPSO-j48 attained the lowest average

rank across all problems, there was an insignificant difference in performance among

all strategies. Furthermore, the difference in average rank was less than one among all

examined strategies. Considering performance on unimodal problems, as shown in Figure

9.6, the CMPSO-j48 algorithm, along with PSO-TVAC, demonstrated the worst overall

rank. However, when considering that the training data consisted of 41 multimodal
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Table 9.6: Confusion matrix, Random Forest

Predicted\Actual E VG G A P VP T Recall

E 287 362 51 6 1 0 0 0.406

VG 190 1860 523 36 16 0 0 0.709

G 36 520 2205 525 48 7 0 0.660

A 3 44 450 8459 1034 27 0 0.844

P 3 13 58 1017 14711 888 0 0.881

VP 1 1 11 36 975 14645 1042 0.876

T 0 0 0 0 2 996 15703 0.940

Precision 0.552 0.664 0.669 0.839 0.876 0.884 0.938

problems and only 19 unimodal problems, it is hypothesized that the classifier developed

a bias towards parameter configurations that performed well on multimodal problems.

This hypothesis is then reinforced by Figure 9.7, which shows that the CMPSO-j48

fared better on multimodal problems than unimodal problems. In fact, the performance

of CMPSO-j48 was insignificantly different than that of PSO-2, PSO-TVAC, and PSO-7,

which all attained the best performance on the multimodal problems.

9.4 Summary

This chapter investigated the short-term and long-term performance of various PSO

parameter configurations. In support of the findings in Chapter 7, this investigation

provided further evidence to support that the best parameter configurations are, in fact,

time-dependent. It was found that both premature and delayed convergence lead to

relatively poor performance. Furthermore, it was concluded that an adaptive algorithm

that naively selects parameter configurations based upon their short-term performance

may lead to sub-optimal performance. To mitigate this issue, this chapter developed pre-

dictive models, using machine learning techniques, to predict the long-term performance

of various PSO parameter configurations. The classification accuracy of the models was

between 73.64% and 95.97%. Using these models, a parameter-free PSO algorithm was

proposed. The results indicated that the proposed CMPSO algorithm attained perfor-
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Table 9.7: Confusion matrix, Random Forest (balanced)

Predicted\Actual E VG G A P VP T Recall

E 4602.16 4251.26 634.31 40.49 0.00 13.50 0.00 0.482

VG 861.48 6648.30 1926.52 90.87 10.90 3.63 0.00 0.697

G 125.66 1650.74 6571.53 1133.81 42.84 17.14 0.00 0.689

A 11.43 76.20 652.50 8079.55 704.89 17.15 0.00 0.847

P 8.00 21.72 69.75 772.94 8205.65 463.08 0.57 0.860

VP 6.85 11.42 23.98 26.27 540.15 8348.93 584.12 0.875

T 0.00 0.00 0.00 0.00 0.00 547.33 8994.38 0.943

Precision 0.820 0.525 0.665 0.796 0.863 0.887 0.939

mance that was insignificantly different from other top-performing PSO variants, but

eliminated the need to specify values for ω, c1, and c2. However, poor performance on

unimodal problems was noted.

In the next chapter, a PSO algorithm that forgoes the conventional control parame-

ters in favour of a probabilistic position update procedure is proposed.
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Table 9.8: Confusion matrix, meta-model

Predicted\Actual E VG G A P VP T Recall

E 707 0 0 0 0 0 0 1.000

VG 8 2610 7 0 0 0 0 0.994

G 1 26 3298 16 0 0 0 0.987

A 2 13 144 9655 199 4 0 0.964

P 0 5 19 449 15893 324 0 0.952

VP 0 0 1 9 417 15706 578 0.940

T 0 0 0 0 0 471 16230 0.972

Precision 0.985 0.983 0.951 0.953 0.963 0.952 0.966
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(f) Average fitness over 1000 iterations on f37

Figure 9.1: Average fitness of selected PSO configurations for the first 1000 iterations on

various benchmark problems.
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Figure 9.2: Comparison of CMPSO variants across all 60 problems.
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Figure 9.3: Comparison of CMPSO variants on the 19 unimodal problems.
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Figure 9.4: Comparison of CMPSO variants on the 41 multimodal problems.
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Figure 9.5: Comparison of CMPSO-j48 with other PSO variants across all 60 problems.
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Figure 9.6: Comparison of CMPSO-j48 with other PSO variants on the 19 unimodal problems.
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Chapter 10

Gaussian-Valued Particle Swarm

Optimization

An alternative approach to self-adaptation of control parameter values is to use PSO

variants that do not rely on such control parameter values. An example of a PSO tech-

nique that does not rely on the conventional control parameters is the bare bones particle

swarm optimization (BBPSO) [58], which updates particle positions probabilistically us-

ing a Gaussian distribution. However, the manner in which particle positions are created

via BBPSO is strikingly dissimilar to how the standard PSO determines updated particle

positions.

In this chapter, a new PSO variant is proposed by formulating a new probabilistic

approach to generating particle positions. The new approach is inspired by the BBPSO

algorithm, but differs significantly in the manner by which particle positions are gener-

ated. Notably, the proposed algorithm generates particle positions using a model that

more closely resembles the standard PSO, which as this chapter will demonstrate, pro-

vides a clear performance advantage over BBPSO and other PSO configurations.

The remainder of this chapter is structured as follows. Section 10.1 provides back-

ground information about the BBPSO algorithm. The proposed algorithm is then de-

scribed in Section 10.2, while Section 10.3 details the empirical analysis and results.

Finally, a summary of the findings in this chapter are provided in Section 10.4.

176
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10.1 Barebones Particle Swarm Optimization

When examining the extent to which particles examine their surroundings, Kennedy [58]

noted that particle positions formed a bell curve centred around the midpoint between

the global and personal best positions. Based on this result, the BBPSO algorithm

[58] eliminates the velocity component of PSO and rather updates particle positions

probabilistically according to

xij(t+ 1) = N
(
c1yij(t) + c2ŷij(t)

c1 + c2

, |yij(t)− ŷij(t)|
)
, (10.1)

where N (µ, σ) denotes a normal distribution with mean µ and standard deviation σ.

In the original formulation, the control parameters were set as c1 = c2 = 1 [58]. Later

theoretical results supported the observation of Kennedy by showing that, using the stag-

nation and deterministic assumptions, each particle will converge toward the weighted

average of the personal and neighbourhood bests [105, 107], as given by

c1yi + c2ŷi
c1 + c2

.

To further improve the exploration capabilities, the BBPSO update equation was

amended to include a per-dimension chance of selecting the personal best position, as

given by

xij(t+ 1) =

yij(t) if U(0, 1) < e

N
(
c1yij(t)+c2ŷij(t)

c1+c2
, |yij(t)− ŷij(t)|

)
otherwise,

(10.2)

where e is a user-supplied parameter controlling the degree to which the personal best

location is exploited.

10.2 Gaussian Valued Particle Swarm Optimization

To provide the motivation for the proposed algorithm, consider the PSO velocity equation

given in Equation (2.1) when ω = 0. With no inertia, the velocity calculation simplifies

to

vij(t+ 1) = c1r1ij(t)(yij(t)− xij(t)) + c2r2ij(t)(ŷij(t)− xij(t)). (10.3)
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Note that, because r1ij(t), r2ij(t) ∼ U(0, 1), Equation (10.3) can be stated alternatively

as

vij(t+ 1) = v1ij(t) + v2ij(t), (10.4)

where v1ij(t) ∼ U(0, c1(yij(t)− xij(t))) and v2ij(t) ∼ U(0, c2(ŷij(t)− xij(t)))1. It can be

easily observed that the position update becomes a sum of two uniform distributions,

thereby leading to a trapezoidal distribution [73]. The shape of the resulting trapezoidal

distribution is then governed by the distance between the current particle’s position and

the personal and neighbourhood best positions, respectively. Even with the reintroduc-

tion of the inertia component, the same general observation can be made: the particle

position update depends heavily upon not only the personal and neighbourhood best

positions, but also the distance between the current particle and these two attractors.

The Gaussian-valued particle swarm optimization (GVPSO) algorithm is proposed

by employing the observations noted above to probabilistically determine particle posi-

tions. The position update mechanism for GVPSO is formulated by employing a Gaus-

sian distribution centred at a random point taken from the aforementioned trapezoidal

distribution. The Gaussian distribution is used to modulate the particle step sizes based

upon the distance between the current position and the personal and neighbourhood

best positions. Specifically, an ancillary position, ∆ij(t), is calculated for each particle

in every dimension using Equations (2.1) and (2.2) with ω = 0 and c1 = c2 = 1. This

effectively retains the core movement pattern of PSO, without the reliance on control

parameter values. The particle’s new position is then determined using a Gaussian distri-

bution centred between the current position and ∆ij(t) with a standard deviation based

on the magnitude of the distance between the current position and ∆ij(t) according to

xij(t+ 1) =

yij(t) if U(0, 1) < e

N
(
xij(t)+∆ij(t)

2
, |∆ij(t)− xij(t)|

)
otherwise,

(10.5a)

where

∆ij(t) = xij(t) + r1ij(t)(yij(t)− xij(t)) + r2ij(t)(ŷij(t)− xij(t)), (10.5b)

1Without loss of generality, this assumes that c1(yij(t) − xij(t)) > 0 and c2(ŷij(t) − xij(t)) > 0,

otherwise the bounds must be flipped, i.e., 0 becomes the upper bound.
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and e is an exploitation parameter, as seen in Equation (10.2). Note that GVPSO, in

the same manner as BBPSO, eliminates the need for the conventional PSO parameters

ω, c1, and c2, but that there remains one control parameter, e. However, the GVPSO

algorithm differs from BBPSO by creating particle positions that more closely mimic

the position update of the standard PSO through the use of distance information, and

thus the two attractors remain to have a strong influence. Furthermore, the step sizes

in the GVPSO algorithm are implicitly controlled by the distances between the current

particle and the two attractors, thereby leading to diminishing step sizes as the positions

and attractors inevitably converge. Thus, the GVPSO is expected to exhibit both initial

exploration and exploitation in the later phase of the search process.

10.3 Experimental Results and Discussion

This section presents the experimental design regarding the empirical examination of

GVPSO. Section 10.3.1 describes the parametrization and statistical analysis. Section

10.3.2 performs a sensitivity analysis on the value of the exploitation parameter, while

Section 10.3.3 presents a comparison of GVPSO to other PSO variants.

10.3.1 Experimental Setup

To first examine the effect of the exploitation probability parameter e, 10 values of e were

examined for GVPSO and BBPSO, namely values between 0.0 and 0.9 in increments of

0.1. Linearly decreasing variants (GVPSO-LD and BBPSO-LD), whereby the value of

e was linearly decreased from 0.9 to 0.0 to provide a waning focus on the personal best

positions, were also examined. The performance of GVPSO was then compared against

the following PSO strategies:

• BBPSO

• PSO-1, PSO-2, and PSO-7, which represent the three best static parameter con-

figurations found in Chapter 8

• PSO-TVAC, which represents a SAPSO algorithm that adapts the value of all three

conventional PSO control parameters
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• PSO-iRC-p5, which is the best performing variant of PSO-iRC from Chapter 8

All examined variants consisted of 30 particles arranged in a star neighbourhood

and used a synchronous update strategy. To prevent infeasible attractors, a particle’s

personal best position was only updated if a new position had a better objective function

value and was within the feasible bounds of the search space. No boundary constraints

were enforced, except the restriction of personal best positions to the feasible search

space. For the BBPSO algorithm, the original parametrization of c1 = c2 = 1 was used.

Where applicable, particle velocities were initialized to the zero vector [30]. For PSO-

TVAC, the social acceleration coefficient was linearly increased from 0.5 to 2.5, while the

values of the cognitive and inertia control parameters were linearly decreased from 2.5 to

0.5 and 0.9 to 0.4, respectively. For PSO-iRC, parameter configurations were re-sampled

every 5 iterations (i.e., according to PSO-iRC-p5). The value of the objective function

(i.e., the fitness), averaged over 50 independent runs each consisting of 5000 iterations,

was taken as the measure of performance for each algorithm. Additionally, the diversity,

taken as the average distance from the swarm centre [83], and the average particle step

size, given by Equation (4.2), were also measured.

Statistical analysis of results was done by way of Friedman’s test for multiple com-

parisons among all methods. Furthermore, Shaffer’s post-hoc procedure was performed

as a means to identify the pairwise comparisons that produced significant differences.

Finally, critical difference plots were generated, whereby algorithms which are to the left

of the plot (i.e., those with lower average ranks) demonstrated superior performance,

and algorithms which are grouped by a line were found to have insignificantly different

performance.

10.3.2 Analysis of the Exploitation Probability

Figures 10.1 to 10.3 show the critical difference plots for the GVPSO algorithm over the

entire set of problems, the unimodal problems, and the multimodal problems, respec-

tively. Figures 10.4 to 10.6 show the same results for the BBPSO algorithm. Despite

the exact values that lead to the best performance being different among the two algo-

rithms, the general observations were the same. When considering unimodal problems,
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Figure 10.1: Comparison of GVPSO exploit probabilities over all 60 benchmark problems.

smaller values of e (i.e., 0.2–0.5) tended to perform better, while larger values (i.e., 0.6–

0.8) tended to perform better for multimodal problems. While intuition may lead to

the expectation that enhanced exploitation, i.e., a larger value of e, may be preferred

for unimodal problems, this observation can be explained by considering the position

update given by Equation (10.2). When both attractors are giving consistent direction

information (e.g., in a unimodal landscape), the step size should, in theory, be larger

via the probabilistic update as opposed to the exploitative update mechanism. Thus,

larger step sizes will lead to more rapid movement toward the attractors, resulting in

overall better performance for low values of e. When considering overall performance,

mid-range values of e (i.e., 0.4–0.7) tended to perform the best, showing that both ex-

ploration and exploitation were beneficial to the GVPSO algorithm. Based upon these

results, GVPSO and BBPSO with values of e set to 0.5, 0.6, and 0.7 were subsequently

compared against the other PSO techniques.

Figures 10.7 to 10.10 present the average diversity and movement values for select

configurations of GVPSO and BBPSO on four benchmark problems, namely f1, f4, f13,

and f27. Note that f1 is a unimodal problem, f4 and f13 are multi-modal problems, and

f27 is a composition problem. Configurations without the exploitation parameter, i.e.,

GVPSO-0.0 and BBPSO-0.0, and configurations with the best overall performing values

of e, namely GVPSO-0.5 and BBPSO-0.6, are presented. First, it is noteworthy that both

the diversity and step sizes of the GVPSO algorithm were decreasing over time on all the

problems shown in Figures 10.7 to 10.10, indicating stability was exhibited. However,

it is noted that the diversity and step sizes were more erratic in the GVPSO algorithm

than in the BBPSO algorithm. This is likely a result of the rapidly changing attractors,

thereby causing the step sizes to be somewhat erratic in the GVPSO algorithm.
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Figure 10.2: Comparison of GVPSO exploit probabilities over the 19 unimodal benchmark

problems.
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Figure 10.3: Comparison of GVPSO exploit probabilities over the 41 multimodal benchmark

problems.
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Figure 10.4: Comparison of BBPSO exploit probabilities over all 60 benchmark problems.
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Figure 10.5: Comparison of BBPSO exploit probabilities over the 19 unimodal benchmark

problems.



Chapter 10. Gaussian-Valued Particle Swarm Optimization 183

4 5 6 7 8 9 10

CD

bbpso.0.6
bbpso.0.7
bbpso.0.8
bbpso.0.9

bbpso.ld
bbpso.0.5

bbpso.0.4
bbpso.0.3
bbpso.0.2
bbpso.0.1
bbpso.0.0

Figure 10.6: Comparison of BBPSO exploit probabilities over the 41 multimodal benchmark

problems.

1e-50

1e-40

1e-30

1e-20

1e-10

1e+00

 500  1000 1500 2000 2500 3000 3500 4000 4500 5000

D
iv

er
si

ty
 (

lo
g

 s
ca

le
d

)

Iteration
gvpso-0.0 bbpso-0.0 gvpso-0.5 bbpso-0.6

(a) Diversity, f1

1e-50

1e-40

1e-30

1e-20

1e-10

1e+00

 500  1000 1500 2000 2500 3000 3500 4000 4500 5000

M
o

v
em

en
t 

(l
o

g
 s

ca
le

d
)

Iteration
gvpso-0.0 bbpso-0.0 gvpso-0.5 bbpso-0.6

(b) Movement, f1

Figure 10.7: Diversity and movement profiles for f1.

1e+03

1e+04

 500  1000 1500 2000 2500 3000 3500 4000 4500 5000

D
iv

er
si

ty
 (

lo
g

 s
ca

le
d

)

Iteration
gvpso-0.0 bbpso-0.0 gvpso-0.5 bbpso-0.6

(a) Diversity, f4

1e+02

1e+03

 500  1000 1500 2000 2500 3000 3500 4000 4500 5000

M
o

v
em

en
t 

(l
o

g
 s

ca
le

d
)

Iteration
gvpso-0.0 bbpso-0.0 gvpso-0.5 bbpso-0.6

(b) Movement, f4

Figure 10.8: Diversity and movement profiles for f4.
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Figure 10.9: Diversity and movement profiles for f13.

10.3.3 Comparison with Other Particle Swarm Optimization

Techniques

This section presents the results from comparing GVPSO (with e = {0.5, 0.6, 0.7})
against the other PSO variants. Figure 10.11 shows the results across all benchmark

problems. It is first observed that the best average ranks across all benchmark problems

were attained by the three configurations of GVPSO, clearly indicating the merit of this

approach. Despite the better average rank attained by GVPSO, the critical difference

plot indicates that there was no significant difference in performance between GVPSO,

BBPSO, and PSO-2. However, it is also observed from Figure 10.11 that PSO-2 attained

a notably worse average rank than each of the GVPSO and BBPSO configurations. The

remaining PSO variants, namely PSO-1, PSO-7, PSO-TVAC, and PSO-iRC-p5 all per-

formed significantly worse than GVPSO.

When examining the critical difference plot for the unimodal problems, as shown

in Figure 10.12, PSO-1 demonstrated the lowest average rank, despite there being no

significant difference noted among all examined PSO variants. A further noteworthy

observation is that the average ranks for the GVPSO configurations were all better

than those of the BBPSO configurations, further demonstrating the superiority of the

proposed movement mechanism of GVPSO over that of the BBPSO algorithm.
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Figure 10.10: Diversity and movement profiles for f27.

Finally, Figure 10.13 presents the critical difference plot depicting the results over

the multimodal problem instances. It is again noted that the best performance was

attained by one of the configurations of GVPSO. Note, however, that no significant

difference in performance was observed between any of the configurations of GVPSO

and BBPSO. Figure 10.13 shows there was a striking difference in average rank between

the probabilistic PSO variants (i.e., GVPSO and BBPSO) and the conventional PSO

variants, thus providing a clear indication that the probabilistic approaches were superior

when faced with multimodal environments.

10.4 Summary

This chapter proposed a new PSO variant, entitled GVPSO, which generates particle po-

sitions probabilistically according to a Gaussian distribution. The GVPSO algorithm is

loosely inspired by the BBPSO algorithm, but differs significantly from BBPSO by gen-

erating particles according to a distribution that more closely resembles the conventional

PSO position update. An analysis of the single parameter of GVPSO was first performed,

followed by a comparison of GVPSO to BBPSO and five additional PSO configurations.

Results indicate that GVPSO generally outperforms the other strategies, with a slight

degradation of performance noted in unimodal environments.
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Figure 10.11: Comparison of GVPSO with other PSO variants over all 60 benchmark prob-

lems.
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Figure 10.12: Comparison of GVPSO with other PSO variants over the 19 unimodal bench-

mark problems.
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Figure 10.13: Comparison of GVPSO with other PSO variants over the 41 multimodal bench-

mark problems.

The following chapter provides a summary of the findings in this thesis. Additionally,

avenues for future work are presented.



Chapter 11

Conclusions

This chapter provides a summary of the contributions and findings of thesis in Section

11.1, while potential avenues for future work are provided in Section 11.2.

11.1 Summary of Conclusions

The primary objectives of this thesis were to analyse existing parameter control mech-

anisms for the PSO algorithm, and to propose improved variants of PSO that do not

rely on a priori values for the control parameters. This section summarizes the findings

made while achieving the corresponding sub-objectives.

The first objective of this thesis was to provide a thorough review of existing SAPSO

techniques. Chapter 3 provided an extensive review of 29 SAPSO algorithms. The

examined algorithms were broadly classified into two categories, namely those that made

use of introspective observation to refine the values of the control parameters, and those

that did not. From this review, it was found that a majority of the past efforts have

focused on adapting only the inertia weight parameter, while neglecting the cognitive

and social acceleration coefficients. Furthermore, it was found that only nine of the 29

examined algorithms actually reduced the number of control parameters compared to

the standard PSO. Thus, there is a clear need for new PSO variants that control the

values for each of the three parameters, while introducing minimal new parameters.

The second objective of this thesis was to provide an analysis of the search behaviour

187
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for existing SAPSO techniques. Chapters 4 and 5 achieved this goal by deriving exact

conditions for order-2 stability to be observed for various SAPSO strategies. In addition,

empirical evidence was provided in support of the theoretical findings. Chapter 4 found

that the majority of the examined algorithms exhibited either premature convergence or

rapid divergence. Chapter 5 provided a more in-depth empirical investigation of inertia

weight control strategies, ultimately concluding that none of the examined strategies,

with the exception of a random inertia weight, outperformed a static inertia weight.

These results clearly indicate the sad state of SAPSO research.

The third objective of this thesis was to investigate the parametrization of PSO to

identify areas within the parameter space that lead to good performance. Chapter 6

provided a preliminary study of 1012 parameter configurations, leading to the discovery

of a region in parameter space where the parameters tended to perform well. This region

was notably correlated with proximity to the boundaries of the stable region given by

Equation (2.5). It was also found, by examining the star and ring topologies, that

topology does play a role in determining the regions in parameter space that lead to good

performance, and therefore, naively comparing results using the same parametrizations

with both the star and ring topologies may be misleading. Furthermore, it was found

that neither modality nor separability had a significant impact on the optimal region for

parameters. Chapter 7 expanded this study for the star topology by also investigating

cognitively- and socially-biased parameter configurations. A total of 3036 parameter

configurations were examined and it was found that the balance between the social and

cognitive acceleration coefficients does impact the optimal parameter region. Finally,

this chapter proposed a new recommendation for the selection of PSO parameters.

The fourth objective of this thesis was to provide evidence in support of the real-time

adaptation of PSO control parameters. Chapter 7, in addition to the contributions listed

above, also investigated the time-dependence of PSO control parameter values. It was

found that the ideal parameter values to employ shift over time, thereby indicating that

the optimal parameter values to employ change as the search progressed. Specifically,

larger values for the cognitive and social acceleration coefficients were preferred as the

search progressed. This topic was revisited in Chapter 9, where it was found that short-

term performance in the PSO algorithm was not necessarily indicative of long-term
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performance. More specifically, parameter configurations that performed well initially

tended to perform worse long-term. These results indicate that, not only are adaptive

control strategies warranted, but that adaptive mechanisms that naively rely on early

performance indicators may lead to sub-optimal performance.

The fifth and final objective of this thesis was to propose novel PSO variants that

do not rely on a priori specification of values for the conventional control parameters.

Based on the optimal parameter regions found in Chapters 6 and 7, Chapter 8 proposed

a restricted region from which to select control parameter values. An adaptive PSO

algorithm, entitled PSO-iRC, was proposed by sampling parameter configurations from

the discovered region according to two different update schedules. It was found that re-

sampling the values for the control parameters at fixed intervals performed best. Note

that the PSO-iRC algorithm eliminates the need to specify values for ω, c1, and c2, but

introduces one new parameter. When compared to 14 PSO parameter configurations

recommended by the literature, the PSO-iRC algorithm was found to be among the top

performing strategies for nearly all examined environment types.

A second PSO variant was proposed in Chapter 9 based on novel performance pre-

dictors built using the data from Chapter 7. These models were built to predict the

long-term performance of PSO parameter configurations based on two simple land-

scape characteristics. The accuracy for these models ranged from 73.64% to 95.97%.

A parameter-free algorithm, namely CMPSO, was then proposed by using the trained

models to select a parameter configuration that was predicted to perform well on the

current problem. The results indicated that the CMPSO algorithm attained perfor-

mance that was insignificantly different from other top-performing PSO variants, while

eliminating the need to specify values for ω, c1, and c2.

Chapter 10 proposed a probabilistic PSO variant that did not rely on the conventional

PSO control parameters. Inspired by the BBPSO algorithm, the proposed GVPSO algo-

rithm generated particle positions probabilistically according to a Gaussian distribution.

However, the distribution used to generate particle positions in the GVPSO algorithm

more closely resembled the position update mechanism found in the standard PSO. Note

that the GVPSO algorithm eliminates the need to specify values for ω, c1, and c2, at the

expense of introducing one new parameter. Results indicated that the GVPSO algorithm
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generally outperformed the other examined PSO variants.

11.2 Future Work

There are a number of avenues of future work that have emerged as a result of this thesis.

These avenues of future work are briefly discussed in this section.

A first avenue of future work lies in the analysis of the search behaviour under different

algorithmic configurations. Notably, previous studies have provided evidence suggesting

that the dimensionality of the problem has an effect on the performance of various

parameter configurations. Therefore, analysing the optimal parameter regions, and other

results from this thesis, with respect to other algorithmic and benchmark configurations,

is an important avenue of future work.

Another possible extension of this work lies in further empirical examination of the

proposed algorithms. It was discovered that both the CMPSO and GVPSO algorithms

suffered from degraded performance on unimodal environments. Therefore, further in-

vestigation to determine both the cause, and remedies, for this behaviour are needed.

Additionally, the scalability of the proposed algorithms should be investigated.

An important extension of this work is to discover a mechanism for the real-time

prediction of performance for a given set of PSO parameter values. Such a mechanism

would have tremendous implications for SAPSO algorithms as it would allow for real-

time prediction of long-term success. As found in Chapter 9, naively relying on only

the objective fitness can be extremely misleading. It is hypothesized that, at minimum,

information regarding the fitness, particle movement, and diversity will be required for

such a real-time prediction to be made. An effective parameter search is, therefore,

very likely to be multi-objective in nature. It should thus be investigated whether a

multi-objective formulation of the parameter tuning problem will lead to new insights.

An additional extension of this research is to further investigate the effects of fitness

landscape characteristics on the performance of the PSO algorithm. Previous research

has found that a priori fitness landscape characteristics can be used to predict the perfor-

mance of the PSO with reasonable accuracy [77]. Future work should investigate whether

such techniques can be applied in real-time to prevent the need for a priori characteri-
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zation. Furthermore, it is reasonable to assume that not only the characteristics of the

global landscape are of importance, but also the visible landscape induced by the cur-

rent state of the swarm. Additionally, a more thorough investigation of the performance

implications of various neighbourhood topologies, with respect to the parametrization of

PSO, is needed given that this may also be correlated with the landscape characteristics

of the current problem.
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ter adaptation in reactive tabu search,” International Transactions in Operational

Research, vol. 21, no. 1, pp. 127–152, 2014.
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Appendix A

Benchmark Problems

This appendix provides both the equation and feasible domain for the set of benchmark

problems used in this thesis. A summary of the benchmark problems is given in Table

A.1, where the column ‘F’ specifies the unique identifier associated with each function.

The column ‘M’ specifies the modality, where the values ‘U’ and ‘M’ denote unimodal

and multimodal landscapes respectively, and the column ‘S’ denotes the separability,

where ‘S’ and ‘NS’ denote separable and non-separable functions respectively. Note that

for some functions, shifted, rotated, shifted and rotated, and noisy variants were also

used, resulting in a total of 60 functions. The configuration of the modified versions are

indicated in the columns ‘Sh’, ‘R’, ‘ShR’, and ‘N’ respectively. Finally, a X in column

‘C’ denotes a composition function. This suite of functions has been demonstrated to

include a range of different landscape characteristics, including both smooth and rugged

fitness landscapes along with a variety of gradients [38].

A function, f , was shifted using

fSh(x) = f(x− γ) + β,

where β and γ are constants. Rotation was implemented using either a randomly gen-

erated orthonormal rotation matrix, denoted by “ortho”, or a linear transformation

matrix, denoted by “linear”. In either scenario, the rotation was performed using Sa-

lomon’s method [96], with a new rotation matrix computed for each of the independent

runs using the condition number provided. The rotated functions, denoted by fR, were

then computed by multiplying the decision vector x by the transpose of the rotation
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matrix. Noisy functions, denoted by fN , were generated by multiplying each decision

variable by a noise value sampled from a Gaussian distribution with the specified mean

and deviation. Table A.1 provides the configuration parameters for the shifted, rotated,

rotated and shifted, and noisy versions of the functions in the columns ‘Sh’, ‘R’, ‘ShR’,

and ‘N’, respectively.

It should be noted that the composition functions f27 − f37 are equal to functions

f15 − f25 from the CEC 2005 benchmark set [100]. For each of these problems, the

composed functions are each rotated using linear transformation matrices with indepen-

dent condition numbers. The reader is directed to [100] for specific details regarding the

configurations of these functions.

The equations for each benchmark problem are as follows.

f1, the absolute value function, defined as

f1(x) =
nx∑
j=1

|xj| (A.1)

with each xj ∈ [−100, 100].

f2, the ackley function, defined as

f2(x) = −20e
−0.2

√
1
nx

∑nx
j=1 x

2
j − e

1
nx

∑nx
j=1 cos(2πxj) + 20 + e (A.2)

with each xj ∈ [−32.768, 32.768].

f3, the alpine function, defined as

f3(x) =
nx∑
j=1

|xj sin(xj) + 0.1xj| (A.3)

with each xj ∈ [−10, 10].

f4, the egg holder function, defined as

f4(x) =
nx−1∑
j=1

(
− (xj+1 + 47) sin

(√
|xj+1 + xj/2 + 47|

)

+ sin

(√
|xj − (xj+1 + 47)|

)
(−xj)

) (A.4)

with each xj ∈ [−512, 512].
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f5, the elliptic function, defined as

f5(x) =
nx∑
j=1

(106)
j−1
nx−1x2

j (A.5)

with each xj ∈ [−100, 100].

f6, the griewank function, defined as

f6(x) = 1 +
1

4000

nx∑
j=1

x2
j −

nx∏
j=1

cos

(
xj√
j

)
(A.6)

with each xj ∈ [−600, 600].

f7, the hyperellipsoid function, defined as

f7(x) =
nx∑
j=1

jx2
j (A.7)

with each xj ∈ [−5.12, 5.12].

f8, the michalewicz function, defined as

f8(x) = −
nx∑
j=1

sin(xj)

(
sin

(
jx2

j

π

))2m

(A.8)

with each xj ∈ [0, π] and m = 10.

f9, the norwegian function, defined as

f9(x) =
nx∏
j=1

(
cos(πx3

j)

(
99 + xj

100

))
(A.9)

with each xj ∈ [−1.1, 1.1].

f10, the quadric function, defined as

f10(x) =
nx∑
i=1

(
i∑

j=1

xj

)2

(A.10)

with each xj ∈ [−100, 100].
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f11, the quartic function, defined as

f11(x) =
nx∑
j=1

jx4
j (A.11)

with each xj ∈ [−1.28, 1.28].

f12, the rastrigin function, defined as

f12(x) = 10nx +
nx∑
j=1

(x2
j − 10 cos(2πxj)) (A.12)

with each xj ∈ [−5.12, 5.12].

f13, the rosenbrock function, defined as

f13(x) =
nx−1∑
j=1

(
100(xj+1 − x2

j)
2 + (xj − 1)2

)
(A.13)

with each xj ∈ [−30, 30].

f14, the saloman function, defined as

f14(x) = − cos

(
2π

nx∑
j=1

x2
j

)
+ 0.1

√√√√ nx∑
j=1

x2
j + 1 (A.14)

with each xj ∈ [−100, 100].

f15, the generalized schaffer 6 function, also known as the pathological function, defined

as

f15(x) =
nx−1∑
j=1

(
0.5 +

sin2(100x2
j + x2

j+1)− 0.5

1 + 0.001(x2
j − 2xjxj+1 + x2

j+1)2

)
(A.15)

with each xj ∈ [−100, 100].

f16, the schwefel 1.2 function, defined as

f16(x) =
nx∑
i=1

(
i∑

j=1

xj

)2

(A.16)

with each xj ∈ [−100, 100].
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f17, the schwefel 2.6 function, defined as

f17(x) = max
j
{|Ajx−Bj|} (A.17)

with each xj ∈ [−100, 100], each aij ∈ A is uniformly sampled from U(−500, 500)

such that det(A) 6= 0, and each Bj = Ajr where each ri ∈ r is uniformly sampled

from U(−100, 100). A shifted version of f17 was also used.

f18, the schwefel 2.13 function, defined as

f18(x) =
nx∑
j=1

(Aj −Bj(x))2 (A.18)

with each xj ∈ [−π, π], and

Aj =
nx∑
i=1

(aij sin(αi) + bij cos(αi))

and

Bj(x) =
nx∑
i=1

(aij sin(xi) + bij cos(xi))

where aij ∈ A, bij ∈ B, aij, bij ∼ U(−100, 100), and αi ∼ U(−π, π). A shifted

version of f18 was also used.

f19, the schwefel 2.21 function, defined as

f17(x) = max
j
{|xj|, 1 ≤ j ≤ nx} (A.19)

with each xj ∈ [−100, 100].

f20, the schwefel 2.22 function, defined as

f18(x) =
nx∑
j=1

|xj|+
nx∏
j=1

|xj| (A.20)

with each xj ∈ [−10, 10].

f21, the shubert function, defined as

f19(x) =
nx∏
j=1

(
5∑
i=1

(i cos((i+ 1)xj + i))

)
(A.21)

with each xj ∈ [−10, 10].
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f22, the spherical function, defined as

f20(x) =
nx∑
j=1

x2
j (A.22)

with each xj ∈ [−5.12, 5.12].

f23, the step function, defined as

f21(x) =
nx∑
j=1

(bxj + 0.5c)2 (A.23)

with each xj ∈ [−100, 100].

f24, the vincent function, defined as

f22(x) = −

(
1 +

nx∑
j=1

sin(10
√
xj)

)
(A.24)

with each xj ∈ [0.25, 10].

f25, the weierstrass function, defined as

f25(x) =
nx∑
j=1

(
20∑
i=1

(ai cos(2πbi(xj + 0.5)))

)

− nx
20∑
i=1

(ai cos(πbi))

(A.25)

with each xj ∈ [−0.5, 0.5], a = 0.5, and b = 3. A rotated and shifted version of f25

was also used.

f26, a shifted expansion of the griewank and rosenbrock functions (Equations (A.6) and

(A.13) respectively) with each xj ∈ [−3, 1]. Note that f26 is equivalent to f13 from

the 2005 CEC benchmark suite.

f27 − f37, composition functions equivalent to f15 − f25 from the 2005 CEC benchmark

suite. All functions have each xj ∈ [−5, 5], with the exception of f37 which has

each xj ∈ [2, 5].
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Table A.1: Characteristics of the benchmark functions.

F M S Sh R ShR N C

f1 U S

f2 M NS β = −140

γ = 10

ortho (1) β = −140

γ = −32

linear (100)

f3 M S

f4 M NS

f5 U S β = −450

γ = 10

ortho (1) β = −450

γ = 10

ortho (1)

f6 M NS β = −180

γ = 10

othro (1) β = −180

γ = −60

linear (3)

f7 U S

f8 M S

f9 M NS

f10 U NS

f11 U S N(0, 1)

f12 M S β = −330

γ = 2

ortho (1) β = −330

γ = 1

linear (2)

f13 M NS β = 390

γ = 10

ortho (1)

f14 M NS

f15 M NS β = −300

γ = 20

linear (3)

Continued on next page
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Table A.1 – continued from previous page

F M S Sh R ShR N C

f16 U NS β = −450

γ = 10

ortho (1) N(0, 0.4)

β = −450

γ = 10

f17 U NS β = −310

f18 M NS β = −460

f19 U S

f20 U S

f21 M NS

f22 U S β = −450

γ = 10

f23 M S

f24 M S

f25 M S β = 90

γ = 0.1

linear (5)

f26 M NS β = −130

γ = 1

f27 M NS X

f28 M NS Yes X

f29 M NS Yes X

f30 M NS Yes X

f31 M NS Yes X

f32 M NS Yes X

f33 M NS Yes X

f34 M NS Yes X

f35 M NS Yes X

f36 M NS Yes X

f37 M NS Yes X



Appendix B

Acronyms

This appendix provides a list of acronyms used in this thesis. Acronyms are listed

alphabetically and typeset in bold, with the meaning of the acronym alongside.

AIWPSO Adaptive Inertia Weight Particle Swarm Optimization

APSO-VI Adaptive Parameter Tuning of Particle Swarm Optimization Based on

Velocity Information

APSO-ZZLC Adaptive Particle Swarm Optimization by Zhan, Zhang, Li, and Chung

BBPSO Bare Bones Particle Swarm Optimization

CDIW-PSO Chaotic Descending Inertia Weight Particle Swarm Optimization

CI Computational Intelligence

CMPSO Classifier Model Particle Swarm Optimization

DAPSO Dynamic Adaptation Particle Swarm Optimization

DE-PSO Double Exponential Self-Adaptive Inertia Weight Particle Swarm Opti-

mization

DW-PSO Decreasing Inertia Weight Particle Swarm Optimization

FG-PSO Fine Grained Inertia Weight Particle Swarm Optimization

214
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GPSO Grey Particle Swarm Optimization

GVPSO Gaussian-Valued Particle Swarm Optimization

IPSO-CLL Improved Particle Swarm Optimization by Chen, Li, and Liao

IPSO-LT Improved Particle Swarm Optimization

LD-PSO Logarithm Decreasing Particle Swarm Optimization

PSO Particle Swarm Optimization

PSO-AIWF Particle Swarm Optimization with Adaptive Inertia Weight Factor

PSO-ICSA Particle Swarm Optimization with Simulated Annealing

PSO-iRC Particle Swarm Optimization with Improved Random Constants

PSO-LDIW Particle Swarm Optimization with Linearly-Decreasing Inertia Weight

PSO-NEIW Particle Swarm Optimization with Natural Exponent Inertia Weight

PSO-NL Particle Swarm Optimization with Nonlinear Inertia Weight

PSO-NLI Particle Swarm Optimization with Nonlinear Improved Inertia Weight

PSO-OIW Particle Swarm Optimization with Oscillating Inertia Weight

PSO-RAC Particle Swarm Optimization with Random Acceleration Coefficients

PSO-RBI Particle Swarm Optimization with Rank-Based Inertia Weight

PSO-RIW Particle Swarm Optimization with Random Inertia Weight

PSO-SAIC Self-Adaptive Particle Swarm Optimization with Individual Coefficient

Adjustment

PSO-SIW Particle Swarm Optimization with Sugeno Inertia Weight

PSO-TVAC Particle Swarm Optimization with Time-Varying Acceleration Coeffi-

cients
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SAPSO Self-Adaptive Particle Swarm Optimization

SAPSO-

DWCY
Self-Adaptive Particle Swarm Optimization by Dong, Wang, Chen, and

Yu

SAPSO-LFZ Self-Adaptive Particle Swarm Optimization by Li, Fu, and Zhang

SI Swarm Intelligence

SRPSO Self-Regulating Particle Swarm Optimization

UAPSO-A Adventurous Unified Adaptive Particle Swarm Optimization



Appendix C

Symbols

This appendix lists the symbols used throughout this thesis, along with their corre-

sponding definitions. For symbols defined in Chapter 3, the corresponding algorithms

are provided in parenthesis.

C.1 Chapter 1

ω Inertia weight

c1 Cognitive acceleration coefficient

c2 Social acceleration coefficient

C.2 Chapter 2

t Time/iteration

i Particle index

j Problem dimension index

vij(t) Particle velocity

xij(t) Particle position

r1ij(t), r2ij(t) Random values sampled from a uniform distribution ∼ U(0, 1)

yij(t) Personal best position

217
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ŷij(t) Neighbourhood best position

⊗ Component-wise multiplication of two vectors

vmax,j Maximum permitted velocity

xmin,j, xmax,j Feasible bounds of the search space

C.3 Chapter 3

f(x)(t) The objective fitness of solution x

T Maximum number of iterations

ns Swarm size

nd Number of problem dimensions

α, β, γ Arbitrary control parameter values

ωs, ωf Initial and final values for the inertia weight

r(t) A random value sampled from a uniform distribution ∼ U(0, 1)

||x,y||2 Euclidean distance between x and y

c1s, c1f Initial and final values for the cognitive acceleration coefficient

c2s, c2f Initial and final values for the social acceleration coefficient

ωmin, ωmax Minimum and maximum values for the inertia weight

s Shape parameter for the inertia weight control function (PSO-SIW)

z(t) The logistic map (CDIW-PSO)

ωc Base value for the inertia weight (PSO-NLI)

u A control parameter value ∈ [1.0001, 1.005] (PSO-NLI)

a Constant controlling the convergence speed (LD-PSO)

k Value controlling the period of a sinusoidal curve (PSO-OIW)

α An exponent controlling the linearity of the inertia weight (PSO-NL)

hi(t) Evolutionary speed factor of a particle (DAPSO)

s(t) Aggregation degree (DAPSO)

ξi(t) Related distance (PSO-SAIC)

ωa, ωb Arbitrary values for ω (PSO-SAIC)
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c1a, c1b Arbitrary values for c1 (PSO-SAIC, PSO-ICSA)

c2a, c2b Arbitrary values for c2 (PSO-SAIC, PSO-ICSA)

Ri(t) Fitness rank of a particle (PSO-RBI, SAPSO-DWCY)

ci(t) Convergence factor of a particle (IPSO-LT)

di(t) Diffusion factor of a particle (IPSO-LT)

ηi(t) Adaptive coefficient of a particle (PSO-ICSA)

S1, S2, S3, S4 Algorithmic state classifications (APSO-ZZLC)

δ(t) Control parameter step size (APSO-ZZLC)

nω Number of inertia weight values (UAPSO-A)

nc Number of acceleration coefficient values (UAPSO-A)

τ Threshold denoting a successful iteration (UAPSO-A)

pj(t) Selection probability for a parameter configuration (UAPSO-A)

|A| Number of actions in the learning automaton (UAPSO-A)

a Reward step size (UAPSO-A)

b Penalty step size (UAPSO-A)

rij(t) Relational coefficient of a particle (GPSO)

∆ij(t) Absolute distance between ŷij(t) and xij(t) (GPSO)

∆min(t) Minimum value of ∆ij (GPSO)

∆max(t) Maximum value of ∆ij (GPSO)

ξ Resolution control between ∆min(t) and ∆max(t) (GPSO)

gi(t) Grey relational coefficient of a particle (GPSO)

videal(t) Ideal velocity (APSO-VI)

vs Initial ideal velocity (APSO-VI)

T0.95 Point at which 95% of the search is complete (APSO-VI)

∆s Step size for the inertia weight value (APSO-VI, SRPSO)

η Constant controlling the rate of acceleration (SRPSO)
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C.4 Chapter 4

∆(t) Average particle step size

∆max(t) Threshold for convergent behaviour classification

l, u Lower and upper bounds for the feasible domain

∆p Average parameter step size

CP Proportion of parameters adhering to the convergence criterion

IP Proportion of particles with a bound violation

C.5 Chapter 5

C Shorthand for c1 + c2

g(C) Expression used to reformulate the convergence criterion on ω

BRF Best rank frequency

IP Proportion of particles with a bound violation

C.6 Chapter 6

p An arbitrary parameter configuration

P A set of parameter configurations

Rg(p) Rank using the global best (star) topology

Rl(p) Rank using the local best (ring) topology

C.7 Chapter 8

k Arbitrary number of iterations

C.8 Chapter 9

di∗ Distance between a sample i and the nearest optimum
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X A set of samples for calculating the dispersion metric

X∗ A subset of the samples from X with the best fitness values

E ‘Excellent’ classification

VG ‘Very good’ classification

G ‘Good’ classification

A ‘Average’ classification

P ‘Poor’ classification

VP ‘Very poor’ classification

T ‘Terrible’ classification

S Training set

ai Arbitrary attribute of a training instance

IG(ai, S) Information gain from splitting S on attribute ai

C Set of classifications in S

C.9 Chapter 10

N (µ, σ) Normal distribution with mean µ and standard deviation σ

e Exploitation ratio

∆ij(t) Ancillary particle position
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