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Abstract
Numerous practical applications of the Discrete Element Method (DEM) require a flexible description of particles
that can account for irregular and non-convex particle shape features. The importance of capturing particle non-
convexity is that it allows for physical interlocking to be modeled when particles are in contact. To that end the
most flexible approach to capture particle shape is by using a polyhedron which allows for a faceted representation
of any shape albeit at significant computational cost. In this study we present a decomposition approach to model
non-convex polyhedral particles as an extension to an existing open source convex polyhedral discrete element code,
namely, BlazeDEM-GPU that computes using general purpose graphical processing units (GPGPUs). Although,
the principle of convex decomposition of non-convex particles into convex particles is not new, it has received limited
attention in the discrete element modeling community. This non-convex extension to BlazeDEM-GPU is validated
against a hopper flow experiment designed using identical convex and identical non-convex 3D printed particles.
In particular the experiment was designed around two sensitive flow points, such that the convex particles exhibit
intermittent flow whereas the non-convex particles exhibit stable arches. The ability of the DEM simulations to
reproduce both the convex and non-convex flow behavior using the same parameter set is demonstrated. This study
is a significant step closer to general computing of non-convex particles for industrial scale applications using the
GPGPUs.
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1 Introduction
In nature and industrial processes, particles come as various shapes as depicted Figures 1(a) - (d). A key ingredient
in a DEM simulation is the abstraction of complex particles into shapes suitable for computation. Abstractions
include simple spheres, convex polyhedra, non-convex polyhedra and even non-convex large aspect ratio shapes
often resulting in entangled media. Some two-dimensional abstractions are depicted in Figures 2 (a)-(d). Spherical
particles can be representative of silica gel and ceramic granules in chemical processing to peas in the food industry,
while salt and sugar crystals can be sufficiently approximated by convex polyhedral shaped particles. In turn,
crystalline powders, crushed gravel and cement particles can be abstracted as non-convex polyhedra, while entangled
media includes rigid staples and flexible woven fabrics as well as particles formed during granulation process.

(a) (b) (c) (d)

Figure 1: Four examples of typical particles shapes for powders created by (a) spray-drying, (b, c) crystallization
and (d) dry granulation that could be approximated by spherical, convex polyhedral, non-convex polyhedral and
entangled non-convex polyhedral representations.

(a) (b) (c) (d)

Figure 2: Actual particle shapes abstracted as (a) spheroidal, (b) convex polyhedra, (c) non-convex polyhedra and
(d) entangled non-convex polyhedra.

However, the geometrical abstraction of an actual particle is not the only consideration when DEM simulations
are to be performed. Due to the computational demand to solve DEM, the computational cost of one abstraction
over another plays a significant role in selecting a shape abstraction. In addition, simulation software may only offer
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limited shape abstractions. In the DEM these have mainly been limited to spherical shaped particles or smoothed
polyhedral shaped particles using spheres or cylinders to model geometric features. A prominent technique to
model non-convex particles is the multi-sphere approach, which has the well known shortcoming that particle
shapes lack angularity, an often critical particle property in many applications [1, 2, 3]. In addition, flat surfaces
are approximated by spherical packing’s resulting in artificial surface roughness effects.

Triangulation of particle surfaces aims to address some of the clumped-sphere shortcomings [4, 5]. However, both
approaches place a significant computational burden on the computing resources, which in turn limits the number
of particles that can be realistically computed. Consequently the number of large scale non-convex particle shaped
simulations are limited. In fact, particle shape studies in general for large scale discrete element simulations have
received little attention although the industrial importance thereof is well known [1, 2, 3]. Large scale industrial
discrete element simulations can often only afford to abstract particle shapes as spheres or multi-spheres with few
particles [2, 6, 7, 8].

An alternative is available to speedup computational times that may allow for more complex particle shape
abstractions in large scale industrial simulations, which is to utilize graphical processing units (GPUs) to simulate
the DEM. Recently, it has been demonstrated that convex polyhedral shape abstractions can be computed efficiently
and for large scale industrial simulations on GPUs [9, 10, 11], a shape abstraction which used to be limited to CPU
computing architectures [2, 12, 13, 14, 15, 16].

This study extends the shape abstraction for the GPU architecture to include non-convex particle shapes.
This study builds on the limited non-convex or concave particle shape discrete element simulations that have been
conducted on CPU architectures [5, 16, 17, 18, 19, 20, 21, 22]. Initial non-convex/concave particle shapes were limited
to two dimensional abstractions that includes the work by Lim et al. Yang et al. and Alonso [18, 21, 23]. This was
extended to three-dimensional smooth abstractions as demonstrated by Lim et al. [18], which requires non-uniform
rational b-splines (NURBS) surfaces to represent the particles and a contact grid to resolve contact. Fleissner et
al. [4] extended non-convex abstractions to include faceted bodies that can be in contact with spherical particles by
conducting a surface triangulation of the faceted bodies. Smeets et al. [5] generalized this by considering non-convex
abstractions of particles by applying a surface triangulation to non-convex particles which allowed them to simulate
up to 3000 non-convex particles. Recently, Rakotonirina et al. [16] rekindled the well-known convex decomposition
proposed by Chazelle [20, 24, 25], as a strategy to extend standard convex polyhedral contact resolution to resolve
non-convex polyhedral contact using CPU architectures with MPI for 250 non-convex particles.

Following a convex decomposition approach, this study extends the convex polyhedral DEM code, BlazeDEM-
GPU, to be able to handle non-convex polyhedral shaped particles on the GPU architecture. Our extension
of BlazeDEM-GPU towards non-convex polyhedral shaped particles is validated against a carefully constructed
experimental hopper discharge setup using monodispersed 3D printed particles. In addition, we demonstrate that
we can compute with a million non-convex polyhedral shaped particles robustly and accurately within a realistic
time frame due to the efficiency of our convex contact and decomposition implementation on the GPU.

1.1 Contact overview
In general, contact between convex polyhedra is first detected during a broad phase and resolved during a narrow
phase. The broad phase estimates which particles are likely to be in contact by conducting a crude but compu-
tationally fast estimate. The contact pairs identified during the broad phase are then resolved during the narrow
phase to compute the actual contact forces between particles. These forces are estimated in various ways, that
include estimating the penetration distance [5, 26, 27], in vertex-face and edge-edge contact. Alternatively, contact
can be resolved by computing the overlapping volume [5, 13, 28] from which the reaction forces are estimated.
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1.2 Premise of this study
This study extends contact between convex polyhedra to contact between non-convex polyhedra following a decom-
position approach. We construct a non-convex polyhedral particle from a number of convex polyhedral particles,
which allows us to later decompose the non-convex particle into a number of convex particles. This multi-convex
polyhedral approach is somewhat reminiscent of the multi-sphere approach that decomposes complex shapes into
spherical particles. Following this choice, the broad phase contact detection and narrow phase detailed contact
resolution is outlined in Figure 3. During the broad phase the non-convex particles that are likely to be in contact
are identified as depicted in Figure 3(a). Contact between every identified non-convex particle contact pair is then
refined using a secondary broad phase as outlined in Figure 3(b). In the secondary broad phase, the non-convex
particles of an identified contact pair are decomposed into their respective convex constituents. This allows for
contact detection between the convex constituents of particle 1 and particle 2 following a secondary broad phase
in which the convex constituents that are potentially in contact are established. Contact is then resolved for the
identified contact pairs between the convex constituents of particle 1 and particle 2 following a usual narrow phase
contact resolution. In this study we note two decomposition strategies for the convex constituents that make-up a
non-convex particle. A decomposition that has a zero or non-zero overlap amongst the convex constituents. This
distinction has not been made before but is important to note as it affects the details of computing the inertia
tensor, resolving the contact volume as well as potential implications towards particle breakage when considering
breakage models that breaks a non-convex particle into its convex constituents. First, we outline the state of the art
of our current convex polyhedra implementation in BlazeDEM-GPU by focusing our attention towards the narrow
phase for convex polyhedral contact detection that accurately resolves the contact volume on the GPU.

4



Figure 3: Non-convex polyhedral contact detection follows a (a) broad phase contact detection between two non-
convex particles, followed by a (b) secondary broad phase contact detection between the individual convex con-
stituents of particle 1 and particle 2. This is then followed by the (c) narrow phase in which the contact is resolved
between all convex constituents of particle 1 and particle 2 that have been identified to be in potential contact.
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2 Convex Polyhedra Representation

(a) (b) (c) (d)

Figure 4: Typical polyhedral shaped particles include (a) tetrahedron (b) octahedron and (c) dodecahedron and
(d) pentagonal pyramid (Johnson solid J2 [29]). The centroids are indicated by red dots.

Recently, [30] demonstrated the possibility of employing a single level data structure by only storing the faces (or
half spaces), i.e. for each face a point on the face and the face normal are stored, to define a convex domain that
defines a convex particle as a set of linear inequalities. The overlap volume when two polyhedra are in contact is
then defined by the combined set of linear inequalities between the two particles. Following linear programming
terminology, the basic feasible solutions define the vertices of the overlap polyhedron. The convex hull of the vertices
allows for the faces to be defined to ultimately resolve the reaction force magnitude and direction per particle. An
alternative single level data structure could be achieved by storing only the vertices that define a convex hull, it
would require the convex hull to be constructed on the fly every-time a particle is evaluated to allow for a surface
integral to be performed to compute the reaction force magtinude and direction per particle. We circumvent the
need for highly efficient particle representations by making use of a particle library to only store each particle type
or template particle once in memory [9], each template particle is then orientated by a rotation and translation
to an actual particle in the simulation. This minimalistic representation allows us to place data structures in the
faster limited constant memory (48 KB) of the GPU [10].

Four typical polyhedral shaped particles are outlined in Figures 4(a) - 4(d). The rigid body mass parameters
that include the mass m and inertia tensor I around the center of mass (COM) of the particles are required to
compute the linear momentum

L = mv, (1)

for a particle translating at velocity v, and angular momentum

H = I!, (2)

for a particle rotating with angular velocity !. For a particle with volume V, the particle mass m given spatial
mass density distribution ⇢(x, y, z) is obtained by integrating over the particle volume

m =

˚
V
⇢(x, y, z)dxdydz, (3)

while the inertia tensor Iij calculated at the COM is

Iij =

˚
V
⇢(x, y, z)(r2�ij � rirj)dxdydz, (4)
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with ri = (r1, r2, r3) = (x, y, z), r2 = x

2 + y

2 + z

2, �ij the Kronecker delta symbol with three indices i = 1, 2, 3
and j = 1, 2, 3 following the usual index notation convention. The inertia tensor Iij calculated at the COM can be
calculated relative to point R = R1x+R2y +R3z, by the parallel axis theorem

Jij = Iij +m

�
|R|2�ij �RiRj

�
. (5)

All these properties can be computed off-line for the various particle types employed in a simulation by following
exact analytical integration or stochastic Monte Carlo integration. The approach we follow to compute these
parameters for a convex polyhedral particle is as follows:

1. decompose a convex polyhedral particle into tetrahedra with zero overlap between them,

2. compute the volume, center of mass (COM) and inertia tensor of each tetrahedra using analytically derived
expressions,

3. assemble the volume, center of mass and inertia tensor of the polyhedral particle from the tetrahedral contri-
butions.

After the dynamic mass properties have been calculated we can conduct a dynamic simulation by explicitly inte-
grating the change in linear and angular momentum to obtain the velocities and positions of each particle. Particles
can interact between each other as well as the “world” geometry that confines them to a spatial domain. Two
proportionality scaling for the contact force in three dimensions are typically used namely proportionality to

1. penetration distance [5, 31, 32, 33, 34, 20],

2. overlap volume [5, 13, 28].

The penetration distance (relative overlap) is by far the most popular contact modeling approach due to the
computational efficiency thereof, in particular when polyhedral shaped particles are considered. However, when
considering Figure 5(a) and (b) the same force is resolved when considering the penetration depth although in
Figure 5(a) the entire side of the polygon has penetrated the other polygon as opposed to merely the corner as
depicted in Figure 5(b). In addition, the reaction force directions are crudely approximated using the penetration
depth as opposed to when computing the overlap volume as will become clear in the next section. The overlap volume
that we implement results in an energy-conserving contact interaction scheme [35]. To the best of our knowledge
the only two codes that resolve the overlap volume for convex polyhedra is the academic code BlazeDEM-GPU [10].

7



(a) (b)

Figure 5: Polyhedral contact with distinctly (a) larger and (b) smaller overlap volumes although the penetration
depths are the same in both cases.

3 Non-convex Polyhedra Representation
In this study to model non-convex polyhedra we aim to reuse the algorithms developed to handle convex polyhedra
as much as possible. This is made possible by following the convex decomposition of non-convex particles. The
downside of this approach is that additional memory is required to store the information regarding each convex
particle, while the benefits of a convex decomposition approach include:

1. basic modifications to the existing algorithms to include non-convex capability,

2. improvements made for convex polyhedral particle contact that will also benefit non-convex particle contact,

3. supporting functions to compute particle properties for convex particles can be reused for non-convex particles,

4. incorporation of simplified particle breakage model that breaks a non-convex particle into its convex con-
stituents.

The broad phase can be resolved using two potential approaches, namely by

1. encapsulating the non-convex polyhedra into a bounding primitive object e.g. sphere or cylinder, or alterna-
tively

2. identifying the separating planes for the convex hull representation of the non-convex particle.

In this study we consider the former approach of bounding primitives by applying the broad phase twice. First, the
broad phase is applied for the entire non-convex particle. Should the possibility of contact between two particles
have been established, we refine the broad phase by establishing which convex parts in each of the two particles are
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potentially in contact by identifying the bounding primitives of the convex parts that are potentially in contact.
Once, all potential convex-convex contact pairs in two contacting non-convex particles have been established we
merely apply the narrow phase contact resolution between the convex-convex contact pairs to resolve in each case
the overlap volume that ultimately defines the elastic force contribution for each convex-convex contact pair.

To enhance the flexibility of the convex decompositions of a non-convex particle we consider decompositions
that have both non-zero and zero overlap (or intersection) between the convex particles that make-up a non-convex
particle. The importance of this distinction is that following the decomposition approach with some overlap between
the convex constituents, both the computation of particle properties such as the inertia tensor and the contact force
of the overlap volume needs to account for the material that is accounted for multiple times between multiple convex
particles. The contact force computation may circumvent this complexity should the contact of multiple overlap
volumes be statistically unlikely, while particle properties can be computed for the non-convex particle as opposed
to from the convex constituents. When there is no overlap between the convex particles it is evident that each
convex decomposition uniquely represents material of the non-convex particle.

The percentage computational time spend in the detailed contact phase for hopper problems computed using
convex polyhedra is typically around 80%. Evidently computing non-convex particles implies an additional burden
on both the computer memory and computing resources. The need for additional memory resources is mitigated
by the usage of a particle library. The worst case in terms of computational cost for non-convex to non-convex
particle contact consists of n times m checks for a convex to convex contact, where n and m are the number of
convex particles making up the two respective non-convex particles. Hence, given total computational cost $C_C$
for a convex polyhedral hopper simulation, the worst case total non-convex compuational cost is estimated by
CNC = 0.2CC + 0.8CC ⇥m⇥ n.

3.1 Decomposition without any intersection between convex particles
Consider Figure 6(a) - (c) that depicts the tetrahedral decomposition of a non-convex polyhedron into three tetrahe-
dra, with zero intersection between the polyhedra when assembled to form the non-convex polyhedron. In addition
to simplifying the computation of the particle properties and resolution of the contact this approach may also
benefit simplistic particle breakage models in which a particle breaks into its convex polyhedral constituents. The
computation of the inertia tensor of the non-convex particle is merely the inertia tensors of the individual convex
particles combined using the parallel axis theorem.

(a) (b) (c)

Figure 6: (a) Tetrahedron with one surface dented that is (b) decomposed into three tetrahedra and (c) assembled
such that the intersection between the tetrahedra is zero.
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3.2 Decomposition with significant intersection between convex particles
Consider Figure 7(a) - (c) that depicts the tetrahedral decomposition of a non-convex polyhedron into two tetrahe-
dra, with non-zero intersection between the convex polyhedra when assembled to form the non-convex polyhedron.
Here, the material associated with the overlapping volume between the two tetrahedra is duplicated. The compu-
tation of the inertia tensor of the non-convex particle is merely the inertia tensors of the individual convex particles
combined using the parallel axis theorem with the inertia tensor of the overlap volume subtracted following the
parallel axis theorem. Following this strategy of computing the overlap volumes between convex polyhedra we
simplify the computation of particle properties such as the inertia tensor.

In addition, should the overlap volume between two contacting particles be duplicated between the non-zero
intersect convex constituents we can compute the convex overlap domain and subtract it from the overlap volume,
which can be computationally costly. For some non-convex particle compositions these contributions are negligible
and can be ignored to speed-up the contact computation.

(a) (b) (c)

Figure 7: (a) Schönhardt polyhedron that is (b) decomposed into two tetrahedra and (c) assembled such that there
is significant intersection between the tetrahedra.

4 Contact between Polyhedra
As stated contact between convex polyhedral particles is resolved by finding the overlap volume of two intersecting
polyhedra. Although this is significantly harder than finding the overlap distance it does allow for both the direction
and magnitude to be resolved following an energy-conserving contact interaction scheme [35]. We outline the steps
involved in computing the overlap volume by considering the intersection of two polyhedral cubes as depicted in
Figure 8(a).

Before we continue our discussion we note that the intersection volume between two intersecting polyhedra is
convex and given by the convex hull formed using the vertices at the intersections between the polyhedral edges
and surfaces [36]. The first step is to find the intersecting vertices as depicted in Figure 8(b), where after we define
the surfaces that form the convex hull of the overlap volume as depicted in Figure 9(a). The surface normal nAj

i for
each surface Aj of the convex hull is defined as depicted in Figure 9(b). Consider the contact volume in isolation as
shown in Figure 10(a), it is clear that the surfaces of this volume is formed by the external surface of one polyhedra
that is internal in the other polyhedra. We therefore need to identify which surfaces are internal to which body to
ensure that we can compute the associated direction of the reaction force nf

i on particle i. Once the surfaces have
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been associated with a respective particle as shown in Figure 10(b), where each colour (red and green) is associated
with a polyhedral particle, the resultant force can be computed by integrating over the surface normals over the
contact area as shown by the black lines. The resultant force and surface normals associated with each particle is
depicted in Figures 11(a) and (b) respectively.

Before we proceed two additional properties of the contact volume needs to be computed that will be required
to resolve the elastic contact force namely, the contact Volume V and the center of mass (COM) of the contact
volume. As both V and COM will change between contacts it is required to compute them efficiently on the GPU.
The divergence theorem ˚

V

(r · F )V =

‹
S(V )

‹
F · S, (6)

allows us to transform the volume integral of the object volume V into a surface integral with boundary surface
S(V ). This can be done by appropriately choosing any vector field F(x1, x2, x3) that has a divergence of 1 i.e.
r · F = 1. This then gives the volume

‹
S(V )

‹
F · S =

˚

V

V = V, (7)

as a surface integral. Alternatively, the contact volume can be computed by breaking it into tetrahedra for which
efficient closed form expressions exist in computing volumetric and inertial properties [37]. However, efficient inertial
properties is not required as it can be computed off-line. In this study we compute the exact contact volume as
opposed to approximating it [38]. Once, these quantities have been computed we can proceed to compute the
direction of the reaction force

nf
i =

´
A nA

i ds

|
´
A n

A
i ds|

=
1P
j A

j

X

j

A

jn
Aj

i , (8)

acting on particle i as shown respectively in Figures 11(a) and (b) for the two particles. Here, the direction of the
reaction forces are respectively indicated by the dashed and solid black lines. In addition, the computed reaction
force acts through the COM of the overlap volume, while the magnitude of the reaction force in turn is proportional
to the volume V of the contact volume. The elastic force associated with contact volume, with volume V , for
particle i follows the following constitutive relationship:

Fi = kV nf
i , (9)

where k is the volumetric stiffness with units Newton per meter cubed. In addition, the viscous damping force
that depends on the relative velocity and rotation between the particles as well as the friction forces completes the
contact forces on the particle [10, 9].
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(a) (b)

Figure 8: (a) Two polyhedral cubes overlapping (b) intersection vertices are given as dots.

(a) (b)

Figure 9: Resulting (a) contact volume and (b) contact surfaces defined by the surface normals for two contacting
polyhedral particles.
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(a) (b)

Figure 10: (a) Isolated contact volume with (b) resulting force resultant (black lines) and surface normals associated
with each particle given by the red and green lines.

(a) (b)

Figure 11: The decomposed the surfaces (defined by the surface normals) of the contact volume into surfaces internal
to the (a) cube on bottom left and the (b) cube on the top right.

5 Validation
The convex triangular prism and non-convex Schönhardt polyhedral hopper discharge simulations are validated
against an experimental hopper discharge using 3D printed monodispersed particles made from polylactic acid
(PLA).
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5.1 Experimental Setup
For this study we have selected the convex triangular prism and the non-convex Schönhardt polyhedron with great
care as depicted in Figures 12(a) and (b). The convex triangular prism consists of two triangular faces and three
rectangular faces. The Schönhardt polyhedron can be obtained from the triangular prism by rotating the two
triangular faces of the prism by 45� relative to each other, after triangulating the three rectangular faces of the
triangular prism. In particular, the rectangular faces are triangulated by a triangulation across the diagonal of the
rectangle from bottom left to top right.

(a) (b)

Figure 12: Visual illustration of one triangular face of (a) a triangular prism and (b) a non-convex Schönhardt
polyhedron obtained by rotating the two triangular faces of the triangular prism by 45� relative to each other. In
addition, the three rectangular faces of the triangular prism are triangulated across the diagonal before rotation.

The two particles types were batch printed on a 9⇥ 17 grid of particles using four MBot Cube Duo 3D printers
(Company: MBot, China) in the FabLab at IMT Lille Mines Douai. The overall geometric tolerance for the printed
particles was within ±0.1mm, effectively rendering a monodispersed particle setup [39]. Representative individual
particles are depicted in Figure 13(a) and (b). The dimensions, print volume fraction (PVF) and average particle
mass (APM) of the triangular prisms and Schönhardt polyhedra are given in Table 1. The particles were weighed
and their densities adjusted to ensure all particles had the same weight to eliminate one of the controllable variances
between the two particle types. This is done by adjusting the “Print Volume Fraction” (PVF) of each particle i.e.
the percentage volume of material present when a unit volume is printed. This is achieved by printing the interior
of a particle that is porous as opposed to solid, as shown in Table 1. One thousand black and one thousand white
particles were printed of each particle type.

Table 1: Properties for the 3D printed particles.
Particle Height (mm) Side Length (mm) PVF (%) APM (g)
Triangular Prism 8.8±0.1 11.3±0.1 20 0.3469
Schönhardt Polyhedron 8.8±0.1 11.3±0.1 100 0.3470
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(a) (b)

Figure 13: Actual 3D printed (a) triangular prism and (b) Schönhardt polyhedron particle.

In this study the hopper discharge of both the convex triangular prism and non-convex Schönhardt polyhedron is
investigated using a specifically designed hopper [11] as depicted in Figure 14 (b) with the dimensions as indicated
in Figure 14 (a). The 4cm discharge opening was carefully selected after extensive experimental investigation
to determine an appropriate discharge dimension that ensures the formation of stable arches for the Schönhardt
polyhedron, while quasi-stable arches for particle systems of triangular prisms are observed to collapse. Quasi-stable
here implies a temporary arch that is present for less than 2 seconds before is collapses, which implies 67% of the
total discharge time of the experiment. For the triangular prism quasi-stable arches was observed from the start
right towards the end of discharge. Although this was resolved with great care and effort, the advantage of carefully
selecting this intermittent flow domain for the triangular prism and Schönhardt polyhedra is that it is sensitive i.e.
slight changes result in either the absence of stable or quasi-stable arches. More importantly it also serves as an
additional robustness check for the contact algorithm, as minor instabilities in the contact algorithm or integration
scheme would result in the collapse of stable or quasi-stable arches.

The experimental hopper discharge of both convex triangular prism and non-convex Schönhardt polyhedral
particles were conducted and representative discharges chosen to compare our numerical simulations against. Per
simulation around 600 white particles and 400 black particles were used per discharge and packed in a layered fashion
to allow us to better visualize the discharge. Due care was taken to isolate the setup from environmental vibrations,
which is essential to capture stable arches and allow for higher repeatability in the experimental observations.
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(a) (b)

Figure 14: Experimental hopper (a) dimensions and (b) constructed hopper made from plexiglass.

5.2 Simulation Setup
The geometry of the hopper is modeled as planes with dimensions as given in Figure 14(a) and stiffness listed in Table
2. During filling an additional plane is modeled over the opening, which is removed to model the discharge. The
simulated triangular prism and Schönhardt polyhedra are depicted in Figures 15(a)-(b), with the (c) superimposed
projects of the triangular prism (green vertices) and Schönhardt polyhedron (red vertices). In addition the vertices
for each particle are listed in Table 2.

Figure 15: Simulated (a) triangular prism and (b) Schönhardt polyhedron, with the (c) superimposed projects of
the triangular prism (green vertices) and Schönhardt polyhedron (red vertices). The particle vertices are listed in
Table 2.

The DEM simulation parameters for the validation simulations are given in Table 3, which includes all particle
specific parameters and general simulation parameters. A coefficient of restitution (COR) of 0.3 was used for the
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Table 2: Vertices for the triangular prism and Schönhardt Polyhedron.
Vertex Triangular Prism Schönhardt Polyhedron
Number x (mm) y (mm) z (mm) x (mm) y (mm) z(mm)
1 -3.67 -5.5 -4.40 -6.2 1.3 5.2
2 -3.67 -5.5 4.40 1.6 -6.5 5.2
3 -3.67 5.5 -4.40 4.4 4.1 5.2
4 -3.67 5.5 4.40 0.2 1.1 -3.6
5 7.33 0.0 -4.40 -5.5 -3.6 -3.6
6 7.33 0.0 4.40 5.5 -3.6 -3.6
7 0.0 6.0 -3.6
8 0.0 1.2 5.2

PLA printed particles which is within the 0.3 and 0.7 range for experimentally estimated COR [40]. The simulations
were conducted on a single NVIDIA Titan X GPU.

Parameter Symbol Value Unit
Triangular Prism Volume VTP 5.3240⇥ 10�7 m3

Schönhardt Polyhedron Volume VS 2.7044⇥ 10�7 m3

Triangular Prism Mass mTP 0.3469 g
Schönhardt Polyhedron Mass mS 0.3470 g
Triangular Prism Density ⇢TP 652 kg/m3

Schönhardt Polyhedron Density ⇢S 1283 kg/m3

Volumetric stiffness (PP) k 98⇥ 109 N/cm3

Volumetric stiffness (PW) k 98⇥ 109 N/cm3

Restitution coefficient (PP) 0.3
Restitution coefficient (PW) 0.3
Static friction (PP) 0.5
Kinetic friction (PP) 0.4
Static friction (PW) 0.7
Kinetic friction (PW) 0.7
Explicit integration time step �t 1⇥ 10�5

s

Table 3: Simulation parameters for the triangular prism and Schönhardt polyhedron particle systems. (PP) indicates
particle-particle and (PW) indicates particle-wall settings.

5.3 Hopper Discharge Results
The particles spaced on a regular grid of seven by two particles that then fell from a height of 20cm under gravity.
The particles were iniitally placed with random orientation in the grid. In addition, the particles had random
uniform initial horizontal velocities that ranged from 0 cm/s to 5 cm/s to simulate some of the variations of the
experimental loading. The particle layers were colored post filling. The slight heaping to the right in the simulation
is due to the stochastic nature of packing, each time obtaining a slightly different packing due to the random
orientations. This results in a flow pattern and arch that is slightly skewed to the left. Averaged over 5 samples
the pack height for the triangular prism was 124 (+/- 1) mm and 129 (+/- 1) mm for the Schönhardt polyhedra.
Figure 16(a) and (d) depicts the hopper discharge of triangular prism and Schönhardt polyhedra at 0s, 0.8s, 1.6s and
2.4s respectively. Twenty experimental discharges were performed, with the depicted chosen as being representative
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experimental discharges. It is evident that for the triangular prism quasi-stable arches form and are captured by
Figure 16(a) 1.6s and and 2.4s. However, in most cases these arches eventually collapsed towards a discharged state
of the hopper. In turn, stable arches formed almost in every case of the Schönhardt polyhedra, in particular after
due care was taken to isolate the experimental setup from any environmental vibrations, as slight disturbances to
the hopper resulted in additional discharge until the formation of the next stable arch. Figure 16(b) and (d) depict
the simulated hopper discharges for the triangular prisms and Schönhardt polyhedra respectively. As can be seen
qualitatively good agreement is achieved between the experiment and simulated discharges.

(a) (b) (c) (d)

Figure 16: Validation for the (b),(d) simulated hopper discharge against the (a),(c) experimentally observed hopper
discharge for the (a),(b) triangular prism) and (c), (d) Schönhardt polyhedra.
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In addition, a quantitative comparison between the mass discharge for the convex triangular prism and non-
convex Schönhardt polyhedron particle systems is depicted in Figure 17. Twenty experimental discharges were
performed (indicated black dash lines) for each particle system with the simulated particle system indicated as
a red solid line. It is evident that the experimental discharge is sensitive to the initial random packing of the
particles, which is the only difference between the experimental runs. Random uniform initial horizontal velocities
that ranged from 0 cm/s to 5 cm/s initial were introduced to simulate changes in the initial simulated packings that
were deemed representative of the initial experimental packings. It is evident that the simulated discharge rates
reflect the experimental discharge rates.

For the triangular prisms we observe a quasi-stable arch forming between 1.6s and 2.4s. Experimentally the quasi-
stable arch formed between 1.6s and 2.4s, however experimentally quasi-stable arches were observed at numerous
times as the flow for the triangular prisms is characterized by intermittent flow due to the formation of quasi-
stable arches. For the Schönhardt polyhedra we observe a stable arch forming after 0.8s which coincided with our
experimental observation. The initial shape of the arch coincides well with experimental observation. The arch
remained stable over the duration of the simulation with the exception of deforming slightly over time, this is evident
when looking at the shape of the arch at 0.8s, 1.6s and 2.4s. As the arch deformed over the 2.4 second simulation
a total of ten particles discharged intermittently during the simulation without compromising the stability of the
arch, whereas experimentally no additional particles were discharged and the arch not deforming over time as is
evident from Figure 16(c). This is an important milestone in the simulation and prediction of stable arches in
hopper discharge.

(a) (b)

Figure 17: Twenty independent experimental discharge observations (dash black lines) and five simulated (solid red
line) discharge for the (a) convex triangular prism and (b) non-convex Schönhardt polyhedron particle systems.
Note that the range of the percentage mass fraction for figures (a) and (b) are different.

5.3.1 Velocity Field Comparison Between Convex and Non-convex (Non-Zero Intersection) Shaped

Particles

In addition, to comparing the discharges we highlight the differences in the velocity field between the convex
triangular prisms and non-convex Schönhardt polyhedra discharges when quasi-stable and stable arches form as
depicted in Figures 18(a) and (b) respectively. The initial velocity field for the triangular prisms is developed over a
larger domain than the highly localized velocity field for the Schönhardt polyhedra after 0.001s. After 0.8s a stable
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arch has formed for the Schönhardt polyhedra that remains stable over the duration of the 2.4s simulation. In turn,
a quasi-stable arch formed just after 0.8s for the triangular prism that destabilized around 1.3s.
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Figure 18: Comparison of the translational velocity magnitude between the (a) triangular prism and (b) Schönhardt
particle systems at 0.001s, 0.8s, 1.6s and 2.4s. 21



Figure 19: Comparison of the detailed translational velocity magnitude between the (a) triangular prism and (b)
Schönhardt particle systems at 1.6s, 1.8s, 2.0s and 2.2s. 22



The development of the spatial flow field after 1.6s is well illustrated in Figures 19(a) and (b), in which we
depict the velocity field after every 0.2s. The destabilization of the quasi-stable arch propagates towards the top
right allowing for intermittent funnel flow to develop.

5.3.2 Force chains

Part of the complexity of granular media is the heterogeneous spatial distribution of inter-particle forces. The COM
of two particles are linked by an edge or force chain when they are in physical contact with each other, while thickness
of the force chain is determined by the force magnitude using a linear scale. A quantitative force comparison between
the triangular prism and Schönhardt polyhedra, depicted in Figures 20(a)-(b) and Figures 20(c)-(d) respectively,
reveals that the developed normal forces between the triangular prisms is up to three times higher and much more
localized than the normal forces between the Schönhardt polyhedra. In addition, for the Schönhardt polyhedra
the developed force chain network gradually increases with height with a well interlocked network of forces, while
for the triangular prism the larger forces are not isolated to the bottom of the hopper. Consequently, the force
chain network is more localized for the triangular prism network allowing for easier destabilization of the packing
that ultimately results in a higher probability of flow of the particles. In turn the dense force chain network for
the Schönhardt polyhedra with a lower spatial force chain magnitude variation allows for a more stable packing
and a lower probability of flow of the particles. It is also evident for the stable arch that has formed at 2.0s for
the Schönhardt polyhedra as compared to significant flow occurring at 2.0s for the triangular prism resulting in a
disintegration of the lower force chain network.
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Figure 20: Developed force chains for the triangular prism at (a) 0.0s and (b) 2.0s, and for the Schönhardt polyhedra
at (c) 0.0s and (d) 2.0s. The line thickness is proportional to the magnitude of the normal force.

5.4 Entangled Non-Convex Polyhedra
To further demonstrate the possibilites of the proposed contact method for non-convex particles and the numer-
ical stability of our implementation we simulate entangled non-convex polyhedral particle systems by having two
hollowed triangular prism (HTP) particles, as depicted in Figure 21(a), linked together. Each HTP is decomposed
into nine convex particles. This is representative of entangled particle systems, where each particle is linked to
another particle and free to translate and rotate relative to its linked particle within the constraints imposed by
direct contact.

Although entangled media is prevalent in nature, from the meso [41, 42, 43, 44] to macro [45, 22, 46]length
scales, limited studies have considered entangled non-convex polyhedra, Gravish et al. [22], due to the computational
complexity and need for efficient robust contact detction algorithms to resolve the contact. Although, these particles
are idealized and far from an industrially relevant shape they are easy to reproduce, adding to the scientific value
as test problems, as well as playing an important role towards verifying the numerical robustness of the BlazeDEM-
GPU framework.
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For the simulations that follow 1024 hollow triangular prisms (HTP) and 1024 simplified dolos particles are
respectively considered as depicted in Figure 21(a) and (e). Of the 1024 HTP particles, 64 are linked to form 32
linked hollow triangular prisms (majority of the particles are single particles). The solid volume and bounding
radius for the HTP and simplified dolos particles are tabulated in Table 4, with the geometrical details of each
particle depicted in Figures 21(a) and (e) respectively.

Shape Solid Volume (m^{3}) Bound Radius (m)

Hollow Triangular Prism (HTP) 0.25⇥ 10�7 0.98⇥ 10�3

Simplified Dolos 0.27⇥ 10�7 1.02⇥ 10�3

Table 4: Details of the hollow triangular prisms (HTP) and simplified dolos particles.

The flow pattern states after 0s, 2.0s and 4.0s are depicted for the HTP particle system, while the simplified
dolos particles that displayed significant locking are depicted for 0s, 2.0s and 8.0s. The respective mass fractions as
a function of time are depicted in Figure 22 for the first three seconds of discharge. The simplified dolos particle
system exhibit significant entangled locking, while the linked HTP particle system show intermittent interlocking.

Figure 21: (a) Hollow triangular prism particles and flow patterns for (b)-(d) and (e) simplified dolos particle and
flow patterns for (f)-(h).
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Figure 22: Mass fraction over time for the hollow triangular prism, simplified dolos and mixed particle systems.

Finally, we include a simulation with the mixture of the HTP and simplified dolos particle systems, scaled down
to 25% of the sizes depicted in Figures 21(a) and (e), to illustrate the ability to handle non-uniform particle shape
and particle size. A total of 2048 particles are considered consisting of 1024 hollow triangular prisms and 1024
simplified dolos particles. The initial particle distributions are uniformly mixed. The flow pattern states after 0s,
0.5s, 2.0s and 3.5s are depicted for the mixed particle system in Figure 23(a)-(e), respectively. The mass fraction
for the mixed particle system is depicted in Figure 22, clearly indicating a much faster discharge towards the end
than in the beginning. This highlights some of the more complex discharge behaviors of complex particle systems
that exemplifies the need to accurately model particle shapes in particular when they introduce new interaction
mechanisms such as physical interlocking and entanglement.

Figure 23: Flow pattern of the mixed particle system, existing of 1024 hollow triangular prisms and 1024 simplified
dolos particles after (a) 0s, (b) 0.5s, (c) 2.0s and (d) 3.5s respectively.
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Although these entangled particle illustrations are removed from industrially relevant particle shapes they do
offer a valuable contribution towards investigating entangled particle systems as highlighted by the developed force
chains depicted in Figures 24(a)-(c) for the linked HTP, dolos and mixed particle systems after 2.0s of discharge.
It is evident that the developed force chain network for the dolos particle system is significantly more developed
and balanced over the spatial domain than the linked HTP and mixed particle systems. The implication being that
the force chain network is not so easily destabilized by small changes in a well developed force chain network as
the force network offers multiple paths of support to particles over the hopper opening. In contrast the smaller
particles of the mixed particle system after 2.0s is discharging freely as depicted in 23(c). The force chains link over
smaller spatial distances as a result of particle size resulting finer detail in the force chain network. In addition, it
is evident in 24(c) that the force chain network is the most developed around the edges of the hopper opening but
offers limited support to the particles over the hopper opening resulting in discharge of particles. The force network
of the linked TP, depicted in 24(a), offers partial support for particles over the hopper opening from the left edge,
while the force network support for particles from the right edge is partially degraded.

(a) (b) (c)

Figure 24: Developed force chains for the (a) linked hollow triangular prisms (b) dolos and (c) mixed particle
systems after 2.0s of discharge.

6 Large scale simulation of Convex and Non-convex (Zero Intersection)
Shaped Particles

We now consider the discharge of a convex tetrahedral particle system and non-convex dented tetrahedral particle
system constructed from three tetrahedra without overlap as depicted in Figure 6. The dimensions of the convex
tetrahedron and non-convex dented tetrahedron are identical except that one face of the dented tetrahedron is
indented by one third of the height from the base to the apex. Each edge of the outer dimensions of the tetrahedron
is 11.3 mm. In both simulations 262144 particles were used.
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(a) (b)

Figure 25: (a) Tetrahedron and (b) disassembled dented tetrahedron, with edge lengths of 11.3mm, used in the
large scale simulation.

The flow rates for the convex tetrahedral particle system and non-convex dented tetrahedral particle system are
depicted in Figures 26 with the corresponding flow velocity fields and patterns in Figure 27. The mass fraction
saturates at around 10%, as particles settle to the left and the right of the hopper basin. The two tetrahedra are
identical with the only difference being that the dented tetrahedron has one surface dented inwards making it non-
convex. The slower flow rate of the dented tetrahedron is evident in addition to a change in discharge slope around
300 ms. The importance of ,modeling non-convexity is again highlighted as it introduces a significantly different
mechanism, namely physical interlocking, that may even be the dominating factor to model. This again highlights
the importance of physical interlocking as a mechanism present in particle flow in addition to demonstrating that
constructing non-convex particles from convex components with zero or non-zero intersection between the convex
components is a viable and effective means to extend a convex polyhedral simulation platform.

28



Figure 26: Mass fraction over time for the tetrahedron and dented tetrahedron particle systems.
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Figure 27: Flow velocity and pattern for the tetrahedron and dented tetrahedron particles after 20% and 60% of
mass has discharged.

7 One Million Particle Drop Test
To conclude this study we consider a large scale packing to demonstrate the robustness of the convex and non-
convex particle-particle and particle-wall contacts. The aim of the investigation is to ensure that the final number
of particles after each simulation is indeed 1 million particles, in particular when subjected to this drop test where
multiple impulse loads at various angles are imposed onto the particles. In addition, the drop test is conducted over
a large surface area to allow for unstable particles to escape the packing should they go unstable. Although this
mass balance test is rudimentary it remains an important test when polyhedral particles are considered to ensure
robust and well resolved particle-particle contact, as stability can be challenging [47].

For this study in two separate simulations we packed 1 million convex triangular prisms and 1 million non-convex
Schönhardt polyhedra in a 5m by 5m by 2m container. The initial particle velocities are 2 m/s and falling from a
height of 1.75m. Each layer of particles consists of a regular grid of particles that is 4m by 4m and contains 26569
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triangular prisms or 28561 Schönhardt polyhedra per layer.

The large scale packing depicted in Figures 28(a), (c) and (e) demonstrates robustness of the convex triangular
prism particle-particle and particle-wall interactions, while the Figures 28(b), (d) and (f) demonstrate the non-
convex Schönhardt polyhedra particle packing. The final number of particles in both simulations were 1 million
particles i.e. no particles were lost over the course of the packing due to instabilities.

Figure 28: Packing of 106 convex triangular prism particles after (a) 0.1s, (c) first impact with floor (0.385s) and
(e) impact of last layer (1.165s) and 106 non-convex Schönhardt polyhedral particles after (b) 0.1, (d) first impact
with floor (0.385s) and (f) impact of last layer (1.100s).

8 Conclusions
This study demonstrated that non-convex particles can be efficiently modeled on a GPU computing architecture
following a convex decomposition approach to model contact between non-convex particles. The benefit of this
approach is that a significant portion of already developed convex contact machinery between polyhedral particles
can be reused when available. The results were validated against a carefully constructed experimental study. In
particular, the experiment was designed such that the convex particles exhibit quasi-stable arches, while the non-
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convex particles exhibit stable arches. The ability of a discrete element simulation to capture fully stable arches is a
significant validation test. The reason being that the explicit time integration inherently results in slight vibrations
amongst the particles that may destabilize stable arches to exhibit quasi-stable arches or fully developed flow even
when stable arch formation is expected. In addition, simulating stable arches serves as a significant test of the
quality of the contact algorithms employed i.e. to be able to simulate stable arches the discrete element simulation
needs to be devoid of any contact instabilities that would otherwise destabilize any arch formation. The stability of
our contact algorithm was further stress tested by considering a 1 million particle drop test for both the convex and
non-convex particle systems. The presented results that demonstrate that quasi-stable and stable arches can be
simulated is a significant result and observation of this study. The difference in force chain networks between quasi-
stable and stable arches were investigated, which clearly pointed to a dense network for the non-convex particle
system in comparison to the convex particle system. This investigation pointed towards the benefit of simulation,
allowing to visualize quantities not readily measurable experimentally. In addition, entangled non-convex particle
systems are considered that demonstrates the potential for highly complex particle systems that exhibit significantly
different hopper discharge behaviour. Lastly, as non-convex particles can become quite complex and difficult to
reproduce by other researchers, we stress the importance of using reproducible particles by other researchers. In
this study we utilized 3D printed particles to allow for a rigorous validation that allows for other researchers to
reproduce the experimental findings. This is critical in moving DEM research forward [48], especially as the particle
systems under investigation become more complex.
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