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The suitability of local piston theory (LPT) for modelling static loads on a deform-

ing, low aspect-ratio wing in the presence of aerodynamic interference is investigated.

Predictions using Euler-based LPT are compared to Euler solutions for the deformed

geometry. Moderate to large deformations are investigated for the leeside wing on a

cruciform wing-body configuration. It is shown that LPT is suitable even for large de-

formations, with the perturbation downwash-Mach number supersonic, provided that

the loading induced by deformation is not dominated by interaction with body-vortices

or other sources of aerodynamic interference. Second-order LPT is recommended for

deformations producing downwash-Mach numbers approaching sonic. The influence of

the choice of piston-theory coefficients is in producing an estimation band for the LPT

load prediction, with insignificant influence on the load-slope in the present investiga-

tion. In conclusion, LPT is put forward as a viable alternative to mesh deformation

towards reduction of the computational cost of aerodynamic load prediction for static

aeroelasticity, provided that perturbation loads are dominated by local twist and not

by vortex interaction.
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I. Introduction

Aeroelastic analysis, though typically conducted to verify the structural integrity of the flight

vehicle, may be viewed with a focus on the aerodynamic input to the multidisciplinary system.

Studies of aerodynamic parameter variation for a given structure are an inherent part of aeroelastic

studies, which typically results in aerodynamic modelling being the computationally most expensive

component of the analysis. Computational cost is managed through the use of lower-order aerody-

namic models with simplified physics. An illustration of the range of methods available is given in

Table 1. High-fidelity analysis using computational fluid dynamics (CFD) is typically not suitable

for design studies due to the high computational cost. However, the aerodynamic complexity of cer-

tain geometries and flight conditions may make the use of CFD unavoidable – particular examples

include hypersonic vehicles and reusable booster systems.

Table 1: Example of spectrum of aerodynamic models used in aeroelastic analysis.

Method Computational Cost Discretization Required Physics

Modified Strip Theory [1] Low N/A: Analytical method Linear potential

Vortex-Lattice Method [2] Medium Surface: steady panel method Linear potential

Doublet-Lattice Method [3, 4] Medium Surface: unsteady panel method Linear potential

Euler (steady) + LPT [5] Medium-High Volume: computational / analytical Nonlinear inviscid

Euler (unsteady) High Volume: finite volume method Nonlinear inviscid

A number of cost-reduction strategies are available when the use of CFD is required. These

may be loosely grouped into two categories. The first consists of approaches which aim to create a

reduced-order model (ROM) of the aerodynamic system without modifying the underlying equations

or physics. The development of methods in this category is an active field of research [6] with diverse

methods available, such as proper orthogonal decomposition [7], Kriging surrogates [8], and dynamic

mode decomposition [9]. These methods typically require a reference set of computational results

(“snapshots”) from which to construct the model, and are referred to as a-posteriori model order

reduction methods. Methods which do not require a reference set of solutions are also available,

such as such as proper generalized decomposition [10, 11], and are referred to as a-priori ROMs.
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The generation of the reference set is computationally expensive, while the construction of the ROM

itself is significantly cheaper. This category is therefore suitable when a large number of parameter

variations within a bounded parameter space is required.

The second category encompasses methods which aim to reduce the computational cost of

each simulation individually. This is achieved either through numerical techniques to accelerate

convergence of the solution of the equations, or through simplification of the underlying physics

and its mathematical representation. Examples of simplified models include the transonic small-

disturbance equations [12], hypersonic small-disturbance equations [13], various approximations to

the Navier-Stokes (N-S) equations [14], and local piston theory [5].

An important facet of CFD for aeroelastic analysis is the treatment of the displacement of the

fluid boundary due to structural deformation. The structural deformation may either be treated

as a physical displacement, leading to mesh deformation, or as prescribing an additional downwash

distribution at the boundary of a static mesh – this is known as a transpiration boundary con-

dition [15]. The disadvantage of allowing mesh deformation is the additional computational cost

incurred in solving for the mesh displacement; this is particularly significant in problems of dynamic

aeroelasticity. While the use of a transpiration boundary condition foregoes the computational ex-

pense of mesh deformation, it is prone to degradation in accuracy for moderate to large structural

deformations of geometries with aerodynamic interference [16].

Local piston theory (LPT) has seen increasingly wide application with CFD towards providing

accurate aerodynamic modelling in problems of dynamic aeroelasticity, with computational cost

reduced by an order of magnitude [5, 17] relative to unsteady CFD. The method achieves this cost

reduction through simplification of the underlying physics; the 3D partial differential equations for

a field are replaced by point-wise algebraic equations at the boundary. Applications of LPT in

literature have typically been restricted to simple geometries such as airfoils [5, 18, 19], panels,

low aspect-ratio wings [5], or wave-riders [19], and have primarily been concerned with dynamic

aeroelasticity. Research into the application of LPT in interfering flows has been sparse, focusing on

shock impingement on deforming plates [20, 21]. The application to wing-body configurations [20, 22]

has similarly been sparse, with no attention given to the effect of interference on the accuracy of

3



LPT. A recent application [23] has seen LPT being used in a design optimization study of a wing,

with aerodynamic variations due to geometric changes to the baseline configuration being modelled

using LPT.

The objective of the work is to investigate the suitability of Euler-based local piston theory in

modelling static aerodynamic loads on a wing-like structure subject to aerodynamic interference.

The roles of perturbation magnitude and the order of piston-theory applied are also considered.

II. Methodology

A. Geometry and Structure

A cruciform wing-body geometry in the “+" configuration is considered, with the body geometry

described in Fig. 1. The body has a total length of 19 calibers, with a 3-caliber tangent-ogive nose.

The body geometry was chosen for the experimental and numerical data available [24] on it. The

wing geometry is detailed in Fig. 2(a). Each wing has a panel aspect ratio of 1.5; the diameter-

to-span ratio for the wing-body combination is 0.33. A wing thickness of 0.5mm was used to

isolate thickness effects in the aerodynamic loading. A Young’s modulus of 73.1× 109 Pa, density

of 2780 kgm−3, and Poisson’s ratio of 0.33 were used. The first three natural frequencies of the

wing with a description of the modes and their deflections are given in Table 2; the mode-shapes

are shown in Fig. 2(b) and Fig. 3 with the maximum displacement amplitude normalized to 10mm

for each mode. Nominal modal deformations of δ = 5mm and δ = 10mm are considered, where δ

is the magnitude of the maximum displacement on the wing for the given mode shape. These are

moderate to large displacements, and were chosen in order to investigate the interaction with the

body-shed vortex, which is located approximately 25mm from the undeformed plane of the wing.
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Table 2: Natural modes.

% Tip deflection Tip twist [◦]

Mode Frequency [Hz] Description δ = 5mm δ = 10mm δ = 5mm δ = 10mm

1 72.43 First bending 6.0 12 -0.5 -1.0

2 298.4 First torsion 0.45 0.91 -12.3 -23.5

3 403.8 Second bending -5.6 -11 -1.4 -2.7

240mm

1520mm

φ80mm

Fig. 1: Body geometry definition.
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Fig. 2: Displacement [mm]: (a) Wing geometry definition; (b) mode 1 (first bending) displacement

[mm]. Deflection into the page is defined as positive and is denoted by solid contours.
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Fig. 3: Displacement [mm]: (a) mode 2 (first torsion), (b) mode 3 (second bending). Deflection

into the page is defined as positive and is denoted by solid contours.

B. Aerodynamic Modelling

The aerodynamic loading on the leeside wing under a range of flow conditions and deformations

is the chief quantity of interest in the present investigation. The parameter space is defined by

2 ≤ M∞ ≤ 3 and 0◦ ≤ α ≤ 10◦, where M∞ is the freestream Mach number and α is the angle-

of-attack. The freestream conditions of [24] are used and are kept constant over the parameter

space, with P0∞ = 129,000Pa, T0∞ = 288K, and γ = 1.4, where P0∞ is the freestream stagnation

pressure, T0∞ is the freestream stagnation temperature, and γ is the ratio of specific heats. The

same reference lengths have been used for the loading coefficients as by [24], with Lref = d = 80mm,

Sref = πd2/4, and with the moment reference centre being located at the mid-length of the body

(xref = 9.5d). The nomenclature for the loading coefficients is defined in Fig. 4.

The steady flowfield for both undeformed and deformed geometries is modelled with the Euler

equations. The steady Euler solution of the undeformed geometry is then used as the reference
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Fig. 4: Nomenclature definition for force coefficients, with the moment reference centre, a wing

surface integration element, and mode 3 of the leeside wing shown.

conditions for LPT, with LPT being used to predict the perturbation pressure distribution due to

structural deformations. The differences in the integrated force and moment coefficients between

the Euler solution and the LPT prediction are then investigated.

1. Euler Solutions

The steady-state Euler equations were solved in OpenFOAM using a solver developed by J.

Heyns and O. Oxtoby of the CSIR, South Africa [25]. Solutions using the solver are compared

with those obtained in Fluent for the body-alone case in Fig. 5. The solutions of both solvers

were determined to be grid-independent through verifying convergence of the integrated loads on

three successively refined meshes. Subsequent discussion of Euler solutions in this paper refers to

those obtained using OpenFOAM. The sharp change in load-slope in Fig. 5 around α ≈ 8◦ for

Mach numbers of M∞ = 2.5 and M∞ = 3.0 is associated with the onset of a crossflow shock on

the cylinder. This leads to the development of leeside vortices which provide additional normal

force. The shortcomings of using the Euler equations for the physics modelling are shown through

comparison to N-S solutions [24] and experimental data [24] for the same geometry, shown in Fig. 6
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and Fig. 7. The influence of viscous crossflow drag (largely due to boundary-layer separation and

the associated leeside vortex development) on the normal force is seen to be particularly important,

with significant differences in the loading and flowfield developing as the angle-of-attack increases.

The difference between the Euler and N-S solutions diminishes with the onset of the crossflow shock

on the cylinder, as seen for α ≥ 8◦ in Fig. 7.
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Fig. 5: Comparison of Euler-solution body-alone loads by OpenFOAM and Fluent: (a) normal

force coefficient, (b) pitching moment coefficient.

2. Local Piston Theory Perturbations

In modelling pressure perturbations using piston theory, a variety [26] of pressure equations may

be used. Regardless of the order of the pressure equation or the coefficients used, the downwash in

LPT is given by

w = Vu · (n̂u − n̂d) , (1)

where w is the downwash, Vu is the local slip velocity on the wing surface, n̂u is the unit vector

normal to the undeformed wing surface, and n̂d is the unit vector normal to the deformed wing

surface. (All subsequent terms associated with LPT are evaluated locally at the surface of the wing,
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Fig. 6: Comparison of body-alone loads by Euler, Navier-Stokes (NS) and experiment (Exp.) at

M∞ = 2.0: (a) normal force coefficient, (b) pitching moment coefficient.

with subscript “u" denoting the undeformed wing and subscript “d" denoting the deformed wing.

Freestream quantities will be explicitly denoted with the subscript “∞".) The equation for the

perturbation pressure is then given [17] by

pd
pu

= 1 + γ

[
c1

(
w

au

)
+ c2

(
w

au

)2

+ c3

(
w

au

)3
]
, (2)

where p is the fluid pressure, a is the local speed of sound, γ is the ratio of specific heats, and ci are

coefficients from the various pressure equations available [26]. The order of the pressure equation

may be truncated to n-th order through setting the coefficients ci ≡ 0 for i > n. The coefficients are

listed in Table 3 for reference, with M denoting the local Mach number and m ≡
√
M2 − 1. Terms

associated with the undeformed wing, pu and au, are substituted from a mean-steady solution of

the Euler equations.

The variety of coefficients presented in Table 3 reflects the different formulations of piston theory

which may be used. The coefficients due to Lighthill’s [27], Van Dyke’s [28], and Donov [29] have

been listed. A thorough treatment of the background of these formulations is outside the scope

of the present work, and may be found in [30, 31]. Lighthill’s original formulation was based in
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Fig. 7: Comparison of body-alone loads by Euler, Navier-Stokes (NS) and experiment (Exp.) at

M∞ = 3.0: (a) normal force coefficient, (b) pitching moment coefficient.

Table 3: Piston theory coefficients.

Term Lighthill [27] Van Dyke [28] Donov [29]

c1 1 M/m M/m

c2 (γ + 1)/4 [M4(γ + 1)− 4m2]/4m4 [M4(γ + 1)− 4m2]/4m4

c3 (γ + 1)/12 0 [8− 12M2 + 10(γ + 1)M4 + (2γ2 − 7γ − 5) + (γ + 1)M8]/12Mm7

Hayes’ [32] hypersonic equivalence principle. It states that hypersonic flow around slender bodies

may be considered to occur in independent crossflow planes convected down the body at constant

speed. Using this as a conceptual basis, Lighthill [27] postulated that if the resulting downwash

Mach number, w/au, was subsonic, then the pressure at the surface of the body could be modelled

using the equation for a piston producing isentropic waves. A series expansion of the pressure

equation led to an expression with the form of Eq. 2 with the coefficients listed in Table 3. Liu et

al [26] summarized subsequent developments of piston theory and noted the following assumptions
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inherent in the works of Lighthill:

M2
∞ � 1, kM2

∞ � 1, k2M2
∞ � 1 , (3)

where k is the reduced frequency of unsteady motion of the body. Other aerodynamic methods

were found to yield pressure equations with a form similar to Eq. 2. These include the works of Van

Dyke [28] and Landahl [33], which are based in a second-order potential flow theory. Also included

is the surface-pressure relation for sharp airfoils developed by Donov [29] which was based in the

method of characteristics. Liu et al [26] note that the theories of Lighthill, Landahl, and Van Dyke

assume that

M∞τ ≤ 1, kM∞τ ≤ 1 , (4)

where τ is the greater of either the local flow inclination or the airfoil thickness ratio. Donov’s

method, on the other hand, assumes only that the Mach number is “sufficiently large” and the flow

deflection is “sufficiently small” – no rigorous restriction on M∞τ , or equivalently w/au is made.

Finally, the application of piston theory to practical problems in hypersonic flows typically led to

its application in flows where the downwash Mach number w/au is no longer subsonic. In such

flows, it was found that the equation for the pressure behind an oblique shock had a form similar

to Eq. 2 in the hypersonic limit. This led to the term “strong-shock piston theory” being applied to

this equation. The successful application of piston theory at w/au > 1 is detailed in [34].

The role of the order of the piston-theory pressure equation and of its coefficients may be

illustrated by considering a planar wedge flow, as done in [26, 30]. Differences in the net static

force on a wedge are typically only observed between 1st-order and 3rd-order piston theory, as the

contribution from 2nd-order terms is symmetrical for the upper and lower surfaces of the airfoil.

Nonlinear thickness effects only enter from 3rd-order. Finally, in considering the pressure coefficient

on the compression surface, it was noted by [26, 30] that at low downwash-Mach numbers, improved

prediction is obtained by using coefficients from Van Dyke [28] or Donov [29] rather than the

classical coefficients of Lighthill [27]. At supersonic downwash-Mach numbers, differences between

third-order predictions become diminished. However, the predicted pressure becomes unbounded

and increased error relative to the exact shock equations is observed. Second-order equations were
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noted in [26, 30] to have the correct Mach independence as the downwash-Mach number becomes

hypersonic.

Euler-based LPT is used in the present work despite the improved fidelity in the mean-steady

solution offered by the N-S equations. This is because the theoretical basis of LPT has been

established [35] as a special case of the perturbed Euler equations for slender bodies; Euler-based

LPT is mathematically consistent. The application of LPT to a mean-steady solution of the N-S

equations has not been shown to be mathematically consistent, and has seen varying [18, 19, 36]

degrees of success. The change in the aerodynamic loading following structural deformation as

obtained from the N-S equations would include not only the influence of the interference flowfield

and the local surface inclination, but also the interactions of the viscous boundary-layer. Thus,

assessing LPT against the Euler solution offers clearer insight into the role played by the interference

flowfield, and establishes a basis for extension of the analysis to viscous solutions.

III. Results and Discussion

The flowfield of the steady Euler solution for the wing-body combination is showed in Fig. 8 and

Fig. 9 for M∞ = 3.0, α = 10◦. From Fig. 8 it is evident that the crossflow shock on the body has

developed down the length of the cylindrical portion of the body. This results in the aforementioned

symmetrical vortex shedding, which is visualized in Fig. 9. The vertical position of the vortex core

is seen to approximately coincide with the semi-span at which maximum displacement occurs for

mode 3, as per Fig. 3(b). The integrated loads acting on the leeside wing are shown for a variety

of flow conditions and modal displacements in Fig. 10 though Fig. 18. The discussion surrounding

these figures will centre on overall load-slope trends for the Euler solutions, the ability of LPT

to capture model these trends, the role of the order and coefficients of the pressure equation for

LPT, and practical implications relating to cost-reduction for static aeroelasticity. In the course

of the discussion, the onset of the crossflow shock and associated body-shed vortices (occurring at

approximately α ≥ 10◦ at M∞ = 2.5 and α ≥ 8◦ for M∞ = 3.0) will be referred to regularly, and

for brevity will be referred to as “shock onset".
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A. Euler Solution of Deformed Geometry

The discussion begins with the load-slope trends of the Euler solution for the deformed ge-

ometries. Referring to Fig. 10 through Fig. 15, it is seen that an abrupt change in the load-slopes

dcY /dα and dcm/dα occurs at shock onset. For mode 2, the nature of the change is to increase

the magnitude of the slope. Mode 1 exhibits an abrupt change in sign of the load-slopes both for

side-force and rolling moment. For mode 3, however, as shown in Fig. 16 through Fig. 18, the

slope dcY /dα is essentially unchanged by the onset of the crossflow shock, while the change in the

slope dcm/dα for mode 3 is one of gradual sign reversal. These trends are observed for both mode

deflection magnitudes.

The gradual dcm/dα slope reversal observed for mode 3 is related to an interaction between

the progression of the vortex-core position down the wing span with increasing angle-of-attack and

the normal-vector distribution of the mode-shape (which is the main mechanism of side-force, and

by extension, rolling-moment production). This is evident from the difference in the slope trend of

dcY /dα and dcm/dα following shock onset, which highlights the movement of the spanwise position

of the wing centre-of-pressure. In contrast, the similarity between the force and moment slopes

observed for modes 1 and 2, as per Fig. 10 through Fig. 15, suggests the centre-of-pressure is

not significantly influenced by shock onset for these modes. Regarding the role of displacement

magnitude, it is noted that for all the cases considered, a linear scaling of the loads is observed with

displacement.

B. Load-Slope Prediction Accuracy of Local Piston Theory

The ability of LPT to replicate the load-slope trends obtained by the Euler solution of the

deformed geometry is now considered. It is found that notable differences between the load magni-

tudes predicted by the various pressure-equation orders and pressure-equation coefficients may be

observed, while the variation in load-slope between models is insignificant. This results in effective

prediction “bands" for the loads. In this subsection, the slope trends of LPT prediction bands are

discussed as a group; a discussion of the individual curves is reserved for the following subsection.

In discussing the differences in trends between modes, it is of importance to note the difference
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in the magnitude of the loads. The loads of mode 2, as per Fig. 13 through Fig. 15, are seen to be an

order of magnitude larger than those of mode 1, in Fig. 10 through Fig. 12, and mode 3, per Fig. 16

through Fig. 18. This is related to the difference in side-force production mechanism between the

modes. Mode 2 is the first torsion mode and, as seen from Fig. 3(a), exhibits almost no bending

down the mid-chord. Modal displacement translates directly to a change in inclination of the local

chord to the oncoming flow, and so, for the large displacements considered, the loading is dominated

by the surface displacement while the influence of the leeside vortices is of secondary importance.

This may be seen in Fig. 13 through Fig. 15 by considering the ratio of load magnitude before to

after shock onset – the relative sensitivity of the loading to shock onset is seen to be much smaller

in the case of mode 2 compared to modes 1 and 3. Conversely, it is seen that the loading in the

case of mode 1 (which per Fig. 2(b) is the first-bending mode with little torsion) and of mode 3 (as

per Fig. 3(b), the second bending mode, with chordwise deformation along the mid-span) is much

more strongly influenced by the leeside vortices. This is because the mode-shapes do not exhibit

significant torsion (and the associated inclination of the local chord to the flow).

It is therefore not surprising that LPT is seen to capture the load-slopes of mode 2 significantly

better than it does for modes 1 and 3. LPT is inherently a surface-local, inclination-based method,

and does not model interactions with the surrounding flowfield as the surface displaces. The increase

in differences between the LPT load-slopes and Euler load-slopes that is noted with increasing M∞

(and by extension, increasing vortex strength) and δ (resulting in the surface being displaced closer

to the vortex core), are thus to be expected.

A further point of interest is the difference in low-α slope prediction accuracy for modes 1 and

3. In particular, we consider the case of M∞ = 2.0, with no shock onset and vortex development.

We note in Fig. 10 that for mode 1, good prediction in the load slope is achieved for low angles-

of-attack, for α ≤ 6◦, for both displacement magnitudes. For mode 3, however, Fig. 16 shows a

near-constant (with α) offset in the load slope, which scales linearly with displacement magnitude.

Differences between the LPT slopes and the Euler load-slopes are due to interaction with the entropy

wake from the nose-shock in the flowfield near the wings. The differences noted in the load-slopes

between mode 1 and mode 3 are related to the geometric differences of the mode-shapes.
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Finally, the failure of LPT to capture the dcY /dα slope for mode 3 at M∞ = 3.0 following

shock onset, depicted in Fig. 18, suggests a more prominent interaction with the vortex than in the

case of the other modes considered. This is likely due to the coincidence of the vortex core position

with the position of maximum modal displacement.

C. Influence of Local Piston Theory Order and Coefficients

As a foreword to the discussion on the role of the order of pressure equation and its coefficients,

the geometric differences between the mode-shapes and the difference in load magnitudes are con-

sidered. Referring to the downwash equation, Eq. 1, it is noted that the downwash magnitude is

directly related to the turning of the local velocity vector as enforced by modal displacement. This

in turn enters the pressure equation, Eq. 2, as a downwash Mach number, w/au. It has previously

been remarked that modes 1 and 3 are predominantly pure-bending modes, with mode 3 exhibiting

a degree of chordwise deformation at the maximum-displacement span station. Bending – which

is essentially translation of the chord normal to the thickness plane – does not induce significant

rotation of the surface normal-vector into the mean steady flow velocity. This results in a small

downwash-Mach for mode 1. The chordwise deformation of mode 3 results in somewhat higher

downwash-Mach numbers locally, as the normal vectors are inclined into the mean flow vector, but

the overall effect is marginal. The torsion of mode 2, on the other hand, results in significantly

larger inclination of the surface normal-vector into the mean flow, and in the case of δ = 10mm,

the downwash-Mach numbers on the wing surface are w/au ≈ 1. In this sense, mode 2 produces

large perturbations, while modes 1 and 3 produce small perturbations even for large displacements.

Turning to the results in Fig. 10 through Fig. 18, it is noted that the loads predicted using

Lighthill’s coefficients are consistently smaller than those obtained using Van Dyke’s or Donov’s

coefficients. Two further trends are noted from the data for modes 1 and 3, which are supported

by the observations in [26, 30]: (1) the difference between the 3rd-order predictions of Van Dyke

and Donov are indistinguishable; (2) the loads from 1st-order and 2nd-order equations of the same

source are identical. In the case of particularly low downwash-Mach numbers, as associated with

mode 1 and δ = 5mm for mode 3, it is noted that the contribution from the 3rd-order terms is
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negligible, and the curves for all three orders collapse to a single curve described by the 1st-order

equation.

In the case of mode 1, better load prediction at low angle-of-attack is obtained by using Van

Dyke’s coefficients than by Lighthill’s coefficients. However, the difference is marginal and significant

deviation from the Euler solution occurs as interaction with the flowfield increases. As previously

noted, flowfield interaction is particularly prominent for mode 3, and poor prediction is obtained

regardless of the coefficients chosen. For the larger displacement of δ = 10mm for mode 3, a

slight difference between the 2nd-order and the 3rd-order contributions is noted, with the difference

increasing with the freestream Mach number.

Considering the case of large downwash-Mach numbers associated with mode 2, shown in Fig. 13

through Fig. 15, it is noted that the choice of coefficients and equation order becomes significant.

Here, a difference between the 1st-order and the 2nd-order loads is observed. This is due to the 2nd-

order contribution no longer being symmetrical with respect to thickness, as expansion to vacuum

pressure occurs on the suction surface. This is observed to occur only for the larger displacement

of δ = 10mm. It is noted that for the large downwash-Mach number, the best correlation with the

Euler-solution loads is obtained using a 2nd-order pressure equation. The 1st-order equation under-

predicts the loads, while the 3rd-order equation progressively over-predicts loads as M∞ increases.

This is in agreement with the 2nd-order equation being the only formulation to adhere to the Mach-

independence principle, as noted in [26, 30]. Finally, it is noted that for mode 2, better prediction

is obtained by using Lighthill’s coefficients than by Van Dyke’s coefficients.

D. Implications for Local Piston Theory Application

The discussion closes by noting that the accuracy of LPT load-slope prediction deteriorated for

mode-shapes which did not induce significant static loads, such as bending modes. In these cases,

the interaction of the structural displacement with the surrounding flowfield could not be neglected,

as is done with LPT. However, accurate predictions were obtained by LPT for cases for which the

displacement field has a high aerodynamic stiffness. This was noted even under large deformations.

The results of the present investigation highlight both the successes and limitations of LPT in
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aerodynamically-interfering flows. LPT gives useful prediction of load-slopes when the perturbation

loading is dominated by changes in the local inclination of the surface. This was demonstrated by

the good correlation with full Euler solutions obtained for the first torsion mode (Mode 2).

In contrast, the bending modes (Modes 1 and 3) gave notably poorer correlation of load-slopes

with the Euler solutions. This is an indication that the aerodynamic stiffness for these cases is dom-

inated by interaction between the structural displacement and the body-shed vortices. This demon-

strates the shortcomings of LPT in modelling perturbations which are dominated by interaction

with surrounding flow features. Examples of such flows include the moderate- and strong-interaction

regime for boundary layers, corner-flows, or strong interaction of control surfaces with impinging

vortices. With the LPT shortcomings already present within the mathematically-consistent frame-

work of inviscid flow, it cannot be expected that a Navier-Stokes-based LPT will offer significant

improvement in prediction. The extension of LPT to account for flowfield interaction remains an

area for future work.

Fig. 8: Flowfield and crossflow Mach number (Mc) distribution at M∞ = 3, α = 10◦; contour of

Mc = 1.
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(a) (b)

Fig. 9: Body-vortex structure at M∞ = 3, α = 10◦ viewed: (a) from the nose, (b) with crossflow

Mach number (Mc) distribution; contour of Mc = 1.
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Fig. 10: Side-force coefficient and rolling-moment coefficient contribution from the leeside wing:

comparison of Euler and LPT, mode 1 (first bending), M∞ = 2.0.
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M∞ = 2.5
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Fig. 11: Side-force coefficient and rolling-moment coefficient contribution from the leeside wing:

comparison of Euler and LPT, mode 1, M∞ = 2.5.
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Fig. 12: Side-force coefficient and rolling-moment coefficient contribution from the leeside wing:

comparison of Euler and LPT, mode 1 (first bending), M∞ = 3.0.
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M∞ = 2.0
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Fig. 13: Side-force coefficient and rolling-moment coefficient contribution from the leeside wing:

comparison of Euler and LPT, mode 2 (first torsion), M∞ = 2.0.
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Fig. 14: Side-force coefficient and rolling-moment coefficient contribution from the leeside wing:

comparison of Euler and LPT, mode 2 (first torsion), M∞ = 2.5.
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M∞ = 3.0
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Fig. 15: Side-force coefficient and rolling-moment coefficient contribution from the leeside wing:

comparison of Euler and LPT, mode 2 (first torsion), M∞ = 3.0.
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Fig. 16: Side-force coefficient and rolling-moment coefficient contribution from the leeside wing:

comparison of Euler and LPT, mode 3 (second bending), M∞ = 2.0.
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M∞ = 2.5
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Fig. 17: Side-force coefficient and rolling-moment coefficient contribution from the leeside wing:

comparison of Euler and LPT, mode 3 (second bending), M∞ = 2.5.
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Fig. 18: Side-force coefficient and rolling-moment coefficient contribution from the leeside wing:

comparison of Euler and LPT, mode 3 (second bending), M∞ = 3.0.
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IV. Conclusions

In the present work, LPT has been applied to a wing-like structure subject to aerodynamic

interference to determine the suitability of LPT in modelling static loads in an interfering flowfield.

It has been shown that good correspondence with Euler solutions in the load-slope may be attained

in the parameter space investigated, provided that the loads on the surface are dominated by

non-interference effects such as local twisting of the wing. This has been found even for large

deformations in which the perturbation downwash-Mach number is of the order of 1. However,

when in applications where the loading is dominated by interference with the surrounding flowfield,

such as interaction with vortices shed from upstream of the wing, the load-slope prediction accuracy

of LPT was seen to deteriorate as expected, while still providing useful prediction.

The influence of the pressure equation order and the coefficients used was also investigated. It

was found that 1st-order LPT is sufficient in cases where surface deflection produce small perturba-

tions, as quantified by the downwash-Mach number. In the case of large downwash-Mach numbers,

the use of 2nd-order LPT is recommended. The choice between classical piston theory coefficients

from [27] or those from the second-order theory of [28] has not been shown to have a significant

influence on the load prediction accuracy.

The cost reduction relative to mesh deformation offered by LPT suggests that it is a useful alter-

native in predicted perturbation loads and determining aerodynamic stiffness of torsion-dominant

modes.
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