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I. Introduction

The use of second- and third-order classical piston theory [1] (CPT) is commonplace, with the

role of the higher-order terms being well understood [2]. The advantages of local piston theory

(LPT) relative to CPT have been demonstrated previously [3]. Typically, LPT has been used to

perturb a mean-steady solution obtained from the Euler equations, and recently, from the Navier-

Stokes equations [4]. The applications of LPT in the literature have been limited to first-order

LPT [5–7]. The reasoning behind this has been that the dynamic linearization used assumes small

perturbations. The present note clarifies the role of higher-order terms in LPT. It is shown that

second-order LPT makes a non-zero contribution to the normal-force prediction, in contrast to

second-order CPT.

II. Methodology

The simplest case of an inclined flat-plate in supersonic flow is considered in order to eliminate

thickness effects. Furthermore, only steady perturbations are considered to eliminate dependencies

on reduced frequency. This has been illustrated in Fig. 1. In the computations performed, a nominal

Mach number of M∞ = 3 is used. To facilitate comparison between CPT and LPT, the generalized

formulation for piston theory of [8] is used. The pressure coefficient due to piston theory is given
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up to third-order by

Cp = Cp(cyl) +
pcyl
p∞

2

M2
∞

[
c1ε+ c2ε

2 + c3ε
3
]
, (1)

where subscript “cyl” denotes cylinder conditions, subscript “∞” denotes freestream conditions, Cp

is the pressure coefficient, p is pressure, M is Mach number, ci are the coefficients due to various

piston theory formulations [9], and ε is the piston downwash-Mach number, given by

ε =Mcyl tan θ , (2)

where θ is the inclination of plate surface to the cylinder orientation. In CPT, the cylinder is

oriented normal to the freestream velocity. In LPT, the cylinder is oriented normal to the mean-

steady surface. Suppose that LPT is applied about a mean-steady solution obtained at an angle-

of-attack α0. Consider a perturbation δ to the angle-of-attack, such that the incidence following a

perturbation is given by

α = α0 + δ . (3)

This relationship may be used to define the perturbation δ for a given incidence α in both CPT and

LPT. The following relationship is then obtained for θ:

θ = ∓δ , (4)

where the upper symbol is for the upper surface. The angles have been depicted in Fig. 1, in which

the cylinder orientation has been defined as in LPT.

Returning to Eqs. (1–2), the cylinder conditions remain to be defined. In LPT, these are

typically different between the lower surface (subscript “Lc”) and the upper surface (subscript “Uc”).

The definition of terms in the equations in this note for CPT and LPT is given in Table 1. The

cylinder conditions in LPT are defined by the exact solution at the mean-steady incidence (α0).

For the upper surface (expansion), the exact solution is obtained using the Prandl-Meyer relations

(subscript “PM”). For the lower surface (compression), the exact solution is obtained using the

oblique shock relations (also known as the Rankine-Hugoniot equations, subscript “RH”). These

familiar relations are not repeated here for brevity’s sake.
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Table 1: Definition of terms.

Term CPT LPT

α0 0◦ α0 ( 6= 0◦)

δ α α− α0

θ ∓α ∓(α− α0)

MLc M∞ MRH(α0)

MUc M∞ MPM (α0)

pLc p∞ pRH(α0)

pUc p∞ pPM (α0)

The prediction quantities of interest will then be taken as the normal-force coefficient CN and

its aerodynamic stiffness, given by ∂CN/∂δ. The prediction of CN by CPT is shown in Fig. 2. The

force prediction due to LPT is shown in Fig. 3. Also of interest are CP and its derivatives. All

these quantities are obtained through manipulation of Eq. (1). In taking derivatives with respect

to δ, the cylinder conditions are assumed to remain constant. The following results for the pressure

coefficient are obtained:

Cp = Cp(cyl) +
∂Cp
∂δ

∣∣∣∣
δ=0

δ +
∂2Cp
∂δ2

∣∣∣∣
δ=0

δ2 + . . . , (5)

∂Cp
∂δ

∣∣∣∣
δ=0

= ∓pcyl
p∞

2

M2
∞
c1Mcyl , (6)

∂2Cp
∂δ2

∣∣∣∣
δ=0

=
pcyl
p∞

4

M2
∞
c2M

2
cyl . (7)

The derivatives of Cp are shown in Figs. 4–7 for the upper and lower surfaces. The values have been

computed with α0 = α (i.e., δ = 0◦) to depict the accuracy of LPT in the immediate vicinity of the

mean-steady solution. The corresponding results for the normal-force coefficient may be written as

CN = Cp(L) − Cp(U) (8)

CN = CN(cyl) +
∂CN
∂δ

∣∣∣∣
δ=0

δ +
∂2CN
∂δ2

∣∣∣∣
δ=0

δ2 + . . . , (9)

∂CN
∂δ

∣∣∣∣
δ=0

=
2c1

p∞M2
∞

(pLcMLc + pUcMUc) , (10)
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∂2CN
∂δ2

∣∣∣∣
δ=0

=
4c2

p∞M2
∞

(
pLcM

2
Lc − pUc

M2
Uc

)
, (11)

where for simplicity’s sake, it has been assumed that the coefficients ci are constant and equal

on both surfaces. This is the case for Lighthill’s [10] coefficients c1 = 1, c2 = (γ + 1)/4, and

c3 = (γ + 1)/12, which have been used in the computations in this note. The derivatives of CN are

shown in Figs. 8 and 9.

III. Results and Discussion

A number of insightful conclusions may be drawn from inspection of Eqs. (9–11), which have

been plotted in Figs. 3, 8 and 9, respectively. The linear aerodynamic stiffness is given by the

Eq. (10), which receives modeling contributions from only the first-order piston theory term. Equa-

tion (11) gives the quadratic aerodynamic stiffness, and receives modeling contributions from only

the second-order piston theory term. This highlights the role of the second-order piston theory term

as introducing nonlinearity to the aerodynamic stiffness. At this point, the distinction between CPT

and LPT yields further differences. In CPT, the cylinder conditions are equal on the upper and

lower surfaces (being equal to freestream conditions). This yields the following results for CPT:

∂CN
∂δ

∣∣∣∣
δ=0

=
4c1
M∞

,
∂2CN
∂δ2

∣∣∣∣
δ=0

= 0 , (12)

with the well-known result recovered that second-order CPT makes no contribution to the normal

force. The difference between first-order and second-order CPT noted in Fig. 2 only arises due to

vacuum pressure being reached on the upper surface. This is in contrast to the LPT result, which

is given by Eq. (11) and is non-zero for α0 6= 0. That is to say, the second-order term in LPT

introduces a quadratic aerodynamic stiffness term which is absent in CPT. Both this term and the

linear stiffness term due to LPT are functions of the mean-steady solution, and therefore vary with

α0. This shown in Figs. 8 and 9.

The accuracy of LPT in modeling the linear component of aerodynamic stiffness in the imme-

diate vicinity of the mean-steady solution (at α0) is effectively determined by the first-order term.

This accuracy may be assessed by comparing the LPT result with the exact result at any given α

in Figs. 4, 6 and 8. From Eq. [10] it is seen that the second-order LPT term plays no role in the
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accuracy of the linear stiffness prediction.

The utility of the second-order LPT term may be illustrated by considering Eqs. [9] and [11]

along with Figs. 3, 8 and 9. For a given mean-steady solution (depicted by the dot in Fig. 3), a

constant linear aerodynamic stiffness is predicted by LPT. Referring to Eq. [9] and Fig. 3 it is seen

that if the aerodynamic stiffness is nonlinear, the accuracy of LPT will progressively degrade with

increasing perturbation size. However, if the second-order LPT term is included, then LPT may be

applied further away from the mean-steady solution. The accuracy of LPT away from the mean-

steady solution is then determined by how well the LPT prediction at α0 for the second-derivative

of normal force corresponds to the exact solution. The third-order term serves a similar role in

extending the range in which LPT may be applied around the mean-steady solution.

From Fig. 4, it is seen that LPT gives poor prediction of even the linear stiffness component as

shock detachment is approached. This is also reflected in the nonlinear stiffness prediction shown

in Fig. 5 This error in prediction may be attributed to two main sources. The first source is the

effect of entropy behind the oblique shock. The contribution of entropy is increases with the shock

angle. It may thus be expected to influence the accuracy of LPT in the limit of shock-detachment

at high Mach numbers and in general in the limit of lower supersonic Mach numbers.

The second source of error in LPT relates to the approximation of the fluid as plane slabs

which are independent of one another. As noted in [11], the exact relations for oblique shocks

and Prandtl-Meyer expansion may accurately be reduced to piston-like formulation provided the

cylinder orientation is specified correctly. In the case of oblique-shock flows, the cylinder should be

oriented perpendicular to the shock. In the limit of low Mach numbers or of shock-detachment, the

angle subtended between the surface and the shock increases. This subsequently increases the error

in the LPT assumption of the cylinder oriented normal to the surface. A similar error arises in the

limit of low Mach numbers for expansion flows.

These remarks on the accuracy of LPT are intended to inform the discussion of the present

consideration of its higher-order terms. A fuller treatment of the Mach and α0 dependence of LPT’s

accuracy is outside the scope of the present note, and is reserved for further work.
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Fig. 1: Flat plate configuration.
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Fig. 2: Normal-force coefficient prediction by CPT.
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Fig. 3: Normal-force coefficient prediction by LPT with mean-steady solution indicated by dot.
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Fig. 4: First-derivative of pressure-coefficient on the lower (compression) surface.
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Fig. 5: Second-derivative of pressure-coefficient on the lower (compression) surface.
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Fig. 6: First-derivative of pressure-coefficient on the upper (expansion) surface.
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Fig. 7: Second-derivative of pressure-coefficient on the upper (expansion) surface.
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Fig. 8: First-derivative of normal-force coefficient.
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Fig. 9: Second-derivative of normal-force coefficient.
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IV. Conclusions

An analysis of the role of higher-order terms in piston theory in predicting aerodynamic stiffness

has been conducted. The familiar result of zero-contribution from second-order classical piston

theory (CPT) has been recovered. It has been shown that second-order local piston theory (LPT)

makes a non-zero contribution to the normal-force coefficient and the aerodynamic stiffness. In

particular, it contributes a quadratic aerodynamic stiffness term. The utility of higher-order terms

in allowing for LPT to be applied to larger perturbations about the mean-steady solution has been

demonstrated for a simple test case. It is expected that this utility should hold in flows which do

not exhibit strong aerodynamic non-linearities. A brief discussion on the sources of error in LPT

has also been given.
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