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Abstract

Performing condition monitoring on critical machines such as gearboxes is essential

to ensure that the machines operate reliably. However, many gearboxes are exposed to

variable operating conditions which impede the condition inference task. Rolling element

bearing component failures are important causes of gearbox failures and therefore robust

bearing diagnostic techniques are required. In this paper, a rolling element bearing diag-

nostic methodology based on novelty detection is proposed for machines operating under

variable speed conditions. The methodology uses the wavelet packet transform, order

tracking and a feature modelling approach to generate a diagnostic metric in the form

of a discrepancy measure. The probability distribution of the diagnostic metric, statisti-

cally conditioned on the corresponding operating conditions is estimated, whereafter the

condition of the rolling bearing element is inferred. The rolling element bearing diagnos-

tic methodology is validated on data from a phenomenological gearbox model and two

experimental datasets.
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1. Introduction

Gearboxes found in air-cooled condenser fans, wind turbines and draglines operate un-

der variable operating conditions, which impede the vibration-based condition monitoring

task [1–3]. Lin et al. [4] found that gearbox failures are one of the main causes of wind

turbine failures, with rolling element bearing failures being one of the main reasons behind

gearbox failures. This emphasises the need for reliable diagnostic techniques that allow

incipient rolling element bearing damage to be detected, located (i.e. determine which

component is damaged and which damage mode is present) and trended as the bearing

deteriorates under varying operating conditions.

A wide variety of techniques have been developed and used for rolling element bearing

diagnostics [5], such as envelope analysis which has been extended by [6, 7] for variable

speed applications, cyclostationary analysis [8, 9] which can be seen as a generalisation of

envelope analysis [8], regression analysis for variable loads [10], empirical mode decompo-

sition and its extensions [11, 12], wavelet analysis [13–16], the spectral kurtosis [17], the

kurtogram and its variants [18, 19], the sparsogram [20] and the infogram [21]. Varying

rotational speeds complicate the condition monitoring process due to its influence on the

properties of the vibration signal [7, 22, 23] and the rotational speed information of the

shaft is also required. The rotational speed information can be difficult and impractical to

measure for some machines; this makes tacholess order tracking methods very important

for condition monitoring under varying speed conditions [24–27]. It can also be quite chal-

lenging to infer the condition of the bearing by using wavelet analysis for example. This

is because small changes occur in the time-scale distribution of the vibration signal as the

bearing deteriorates, which can be difficult to detect. This motivates many researchers to

use machine learning techniques to aid with the condition inference task.

Machine learning techniques are extensively used in the condition monitoring field as

a data-handling tool which allow inferences to be made from complicated data distribu-

tions in multi-dimensional spaces. Artificial neural networks [28], support vector machines

[28–30], k-means clustering [31], Gaussian mixture models [32] and hidden Markov models
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[14, 32–34] are some examples of the approaches which have been used for bearing diagnos-

tics. However, many of the approaches are based on the assumption that much historical

fault data are available for model optimisation, which is rarely achieved in practice. Hence,

physics-based models [29] and novelty detection approaches [30, 35–42] have been inves-

tigated for the condition inference task when only a physical model of the relationship

between the damage modes and the vibration signal or only healthy data are available for

feature model optimisation. A few different novelty detection categories can be used as

summarised in Ref. [38]. The basic principle of novelty detection is to assign a novelty

score to the data with a model only optimised on a healthy dataset. Depending on the

novelty score, the label of the data is either normal or a novelty. Support vector machines

and related techniques [30, 41, 43], self-organising maps [40], hidden Markov models [34]

and Gaussian models [42] are some examples of models used for bearing novelty detection.

In the paper by Timusk et al. [39], many novelty detection techniques are compared for

gearbox and motor novelty detection and it was found that a combination classifier algo-

rithm performs the best for novelty detection of transient signals. Georgoulas et al. [44]

found that a majority voting anomaly detection scheme improves the novelty detection

capabilities of individual models for bearing fault detection.

Discrepancy analysis is a novelty detection approach which has been successfully used

for gear diagnostics under varying operating conditions [36, 37, 45, 46] and is investigated

for rolling element bearing diagnostics under variable speed conditions in this paper. In

discrepancy analysis, localised discrepancy measures are obtained for the dataset under

consideration using a model of the healthy data. The localised discrepancy measure is a

novelty detection score that quantifies the deviation of the segment under consideration

from the feature model of the healthy data and can be obtained from Gaussian models,

Gaussian mixture models [37], neural networks [36] and hidden Markov models [46]. The

discrepancy measure is used to form a discrepancy signal which is processed so that the

condition of the component can be inferred. The difference between discrepancy analysis

and other novelty detection techniques is that a localised novelty score is given as opposed
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to a novelty score for the whole measurement. The generated discrepancy signal can be

processed into more useful information which allows not only a novelty to be detected,

but the characteristics of the novelty i.e. the damaged component can be inferred as well

[46].

The new contributions of the current work can be summarised as:

• A framework for rolling element bearing diagnostics is developed using discrepancy

analysis for machines operating under varying speed conditions. This methodology

allows for the detection, the localisation and trending of bearing faults.

• Discrepancy signal processing tools are investigated and proposed to assist with the

condition inference task. An estimate of the conditional model of the discrepancy

measure given the rotational speed is used to mitigate the adverse influences of the

varying speed conditions.

The objective of the proposed methodology is not to replace classical bearing diagnostic

techniques such as wavelet analysis or envelope analysis, but rather to develop a novelty

detection framework into which the aforementioned techniques can be naturally incorpo-

rated.

The layout of the paper is as follows: The methodology is firstly presented in Section

2. Moreover it is validated on phenomenological gearbox model data in Section 3 and

on experimental data in Section 4, respectively. Furthermore, conclusions and recom-

mendations are made in Section 5. For the sake of completeness, additional information

concerning the discrepancy processing technique, presented in Section 2.5, has been added

in Appendix A. Finally in Appendix B the parameters of the phenomenological gearbox

model, presented in Section 3, can be found.

2. Diagnostic methodology

2.1. Overview

The general process diagram for discrepancy analysis is presented in Figure 1. The ex-
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Figure 1: The key steps in the rolling element bearing diagnostic methodology.

act discrepancy analysis procedure implemented in this paper is presented in Figure 2 and

is used throughout this work. However, one of the benefits of the proposed methodology

is that sub-processes such as the feature extraction procedure can be replaced with a more

appropriate procedure if desired. Vibration measurements are used as source of condition

Vibration
measurements

Rotational speed or 
phase infomation

of shaft

Calculate the WPT
of the data

Order track the Wavelet
Coefficients (WC)

Window each WC signal and
extract features from the 

windowed data

Assign a discrepancy 
measure to the features

to calculate the discrepancy
signal

Process discrepancy signal
to compensate for varying 

speed conditions

Section 2.2

Section 2.2

Section 2.2
Section 2.4

Section 2.5
Section 3 and 4

Investigate the characteristics 
of the discrepancy signal

Feature extraction procedure

Figure 2: The steps in the methodology used in subsequent investigations are presented. It is assumed
that the model parameters used to generate the discrepancy signal are already estimated with the method
in Section 2.3 and therefore this step is excluded from the process diagram. Different characteristics of the
discrepancy signal are investigated for the different datasets and therefore only Section 3 and Section 4 are
referenced in this figure, with the relevant information included in those sections as well. Abbreviations:
Wavelet Packet Transform (WPT), Wavelet Coefficients (WC).

monitoring data, because the measurements are easy to obtain, non-intrusive in nature

and rich with diagnostic information pertaining to the machine to which the transducers

are connected. In the training phase, the features are extracted from the healthy vibration

data, whereafter the features are modelled with a statistical model. In the testing phase,

the features are extracted with the same approach as in the training phase, but the model

of the healthy features are used to generate a discrepancy measure. The sequence of con-

secutive discrepancy measures is used to form a discrepancy signal which is processed to

infer the presence of bearing damage.
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2.2. Feature extraction

The feature extraction process that is used in this paper, is presented in Figure 3.

Wavelet analysis is used in the feature extraction process, because it proved successful

Vibration signal

Rotational speed 
information

Perform the WPT 
on vibration signal

Wavelet coefficient 
signal 1

Wavelet coefficient 
signal 2

Wavelet coefficient 
signal N

Order track 
the signal

Order track 
the signal

Order track 
the signal

Window the order 
tracked signal

Window the order 
tracked signal

Window the order 
tracked signal

Extract features 
from windows

Extract features 
from windows

Extract features 
from windows

Features

Figure 3: The feature generation process used in the proposed methodology. The features are in the
angular domain due to the order tracking that is performed in the process. The abbreviations are, WPT:
Wavelet Packet Transform; N: Total number of wavelet coefficient signals.

in detecting singularities and it is sensitive to impulses induced by bearing damage [47].

The Wavelet Packet Transform (WPT) is used in this paper because it has the benefit

that the exact characteristic frequencies do not have to be known a priori (as opposed

to the continuous wavelet transform where the exact frequencies such as the resonance

frequencies have to be specified) and the high frequency bands have a high resolution as

well (as opposed to the discrete wavelet transform). The WPT decomposes the signal into

a set of wavelet coefficients with a filter bank of scaling and wavelet basis functions, where

the wavelet coefficients are associated with specific sub-bands. The wavelet coefficients

are dependent on the wavelet basis function, the appropriate choice depending on the

characteristic that needs to be detected, and the level of decomposition, which depends on

the frequency resolution that is required for the wavelet coefficients. The WPT is applied

to the time domain signal, because the resonances which are excited by the bearing damage

are independent of the rotational speed.

The features need to be sensitive to the presence of impulses, which manifest as time-

localised bursts of energy and are quasi-periodic with respect to shaft angle due to rolling
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element slip. Hence, the extracted wavelet packet coefficients are subsequently order

tracked with rotational speed information to transform it from the time to the angle do-

main. Hence, the order tracked wavelet coefficients preserve the angle-time cyclostationary

properties of the bearing damage [22, 23]. Rotational speed or phase information can be

obtained from optical probes and shaft encoders [48] or in the absence of the rotational

speed measurement equipment, tacholess order tracking approaches can be used [24–27].

Only computed order tracking methods are used in this paper, due to the availability

of the rotational speed information. In the feature extraction procedure of discrepancy

analysis, the angular information of the original vibration signal needs to be retained and

therefore localised features are extracted from the order tracked wavelet coefficients. This

is performed by windowing the wavelet coefficients with rectangular windows whereafter

the Root-Mean-Square (RMS) is extracted from the windows as features. The RMS of

the windowed wavelet coefficient is appropriate as a feature, because the localised energy

and not the frequency characteristics of the windowed data are important. The window-

ing procedure is illustrated in Figure 4 for a single wavelet coefficient signal extracted by

applying the WPT on a synthetic bearing signal immersed in noise. The RMS of the win-

dowed wavelet coefficients improves the sensitivity of the wavelet coefficients to damage

and is therefore ideal for discrepancy analysis. The windows do not overlap in Figure 4

to make the illustration easier to understand. In the methodology, rectangular windows

as opposed to Hamming windows for example are used to ensure that no information is

lost and overlapping windows are used to ensure that no information on the edges of the

non-overlapping windows is lost. The number of windows per shaft revolution should be

more than twice the fault order that needs to be detected, but the window length should

be sufficiently long to ensure that the statistics are properly estimated. It is suggested

that the overlap should at least be 50% between coinciding windows to ensure that no

information on the edges are lost.

Using additional statistics such as the kurtosis can potentially improve the diagnostic

capabilities of discrepancy analysis, especially for incipient damage detection. However,
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(a) (b)

(c) (d)

(e)

Time Time 

Time Angle

Angle

Figure 4: The windowing procedure is illustrated for a synthetic signal under constant operating condi-
tions. In (a), a train of bearing impulses is shown. In (b), broadband Gaussian noise is added to the signal
in (a) and is used for subsequent analyses. The WPT with a decomposition level of Ndec is performed
on the signal in (b) which resulted in 2Ndec wavelet coefficient signals. In (c), a single wavelet coefficient
signal is shown and windowed with 20 non-overlapping windows in (d). The signal in (c) is order tracked
to obtain the signal in (d). Finally, the RMS is extracted from the windows in (d) and a signal with
20 samples is shown in (e). The procedure in (d) and (e) is repeated for all 2Ndec wavelet coefficients to
obtain 2Ndec signals similar to (e) which constitute the 2dec-dimensional feature set which consist of 20
observations.

optimising the discrepancy analysis procedure is beyond the scope of this work. The mag-

nitude of the bearing impulses and of the vibration signal are dependent on the operating

conditions, which can cause problems when performing condition inference. This aspect

is addressed in Section 2.5.

The window length is selected as 2π/20 rad with a 50% overlap, to allow localised

impulses to be detected. Wu and Liu [49] found that the Daubechies db20 wavelet basis

function outperformed the Daubechies db4 and db10 wavelet basis functions for engine

diagnostics and the Daubechies db20 has the shape of an impulse, which is why it is

used in this paper. The level of the decomposition, denoted by Ndec, is related to the

number of wavelet coefficients by 2Ndec , with only the wavelet coefficients of the final

decomposition level used for feature extraction. Hence, as only the RMS of the windowed

wavelet coefficients is calculated and there are 2Ndec wavelet coefficients, the dimensionality

of the feature space (i.e. the number of features) is equal to D = 2Ndec . The level of the

8



decomposition is Ndec = 4 for all datasets investigated in this paper which result in 16

wavelet coefficients. This means that the dimensionality of the feature space is 16, which

provides an ideal compromise between having sufficient resolution to detect changes in

localised spectral frequency bands but also to have a sufficiently low dimensionality to

avoid the curse of dimensionality.

It should be noted that an optimisation process cannot be performed in order to select

the most appropriate wavelet basis function and the best decomposition level for bearing

diagnostics, as only healthy data are available. Dimensionality reduction techniques, such

as principal component analysis [50], can also be performed to alleviate the problems

associated with the curse of dimensionality, but is not performed in this investigation due

to the relatively low dimensionality of the feature space and the models that are used. The

features used in this paper are not necessarily optimal for bearing diagnostics and features

from cyclostationary analysis techniques such as the instantaneous power spectrum and

from the empirical mode decomposition can also be investigated in future analyses.

2.3. Feature modelling

The features, extracted in Section 2.2 from the healthy data, can be modelled with

a Gaussian model, a Gaussian mixture model or a hidden Markov model to list a few

examples. In this paper, a Gaussian model is used to model the features extracted from

the healthy data. The motivation for using a Gaussian model as opposed to other models

is that it is very simple to implement and with the post-processing, which will be presented

in Section 2.5, it is robust to varying speed conditions.

The D-dimensional features extracted from window i are denoted by bi ∈ RD×1, with

the features of the healthy machine denoted by btraini ∈ RD×1. The training feature set

{btraini } comprises of Nobs observations of the D-dimensional features and is used to obtain

the parameters of the model. The maximum likelihood estimates of the mean µb ∈ RD×1
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and the covariance Σb ∈ RD×D of the healthy feature set {btraini } are given by [50]

µb =
1

Nobs

Nobs∑
i=1

btraini , (1)

Σb =
1

Nobs

Nobs∑
i=1

(btraini − µb)(b
train
i − µb)

T , (2)

where the transpose is denoted by superscript T . If a single measurement is used to

obtain the model parameters, Nobs is equal to the number of windows used for extracting

features from the measurement. If multiple measurements are used to obtain the model

parameters, then the extracted features of the respective measurements are concatenated

together to form a single D-dimensional training set with a total of Nobs samples.

2.4. Discrepancy signal generation

The Mahalanobis distance is used as the discrepancy measure, which quantifies the

deviation of the new data point from the model of the healthy data. The discrepancy

measure is denoted by ηj for the features associated with the window j [50]

ηj =
√

(bj − µb)
TΣ−1

b (bj − µb), (3)

where the model parameters are obtained using Equations (1) and (2) from the healthy

data, and bj denotes the features, extracted from the wavelet coefficients in the jth win-

dow, of the testing feature set. The Mahalanobis distance is proportional to the negative

logarithm of the probability density function of a Gaussian model, where the latter is in

general available for all probabilistic models. The discrepancy measure, obtained from

each time step, is used to form a discrepancy signal which can be processed to develop a

diagnostic metric so that the condition of the bearing can be inferred. Therefore, the dis-

crepancy signal η ∈ RNobs×1 corresponds to the features extracted from the Nobs windows

applied to the vibration measurement under consideration.
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2.5. Processing the diagnostic metric

The discrepancy signal is obtained in terms of shaft angle or shaft revolutions and need

to be processed and analysed so that the condition of the bearing can be inferred. The

simplest processing technique is to calculate the RMS of the discrepancy signal, but it will

only be possible to detect and trend damage and it will not be possible to perform fault

localisation. Even though the discrepancy signal is relatively robust to varying operating

conditions, it is not immune to it. Due to the sensitivity of the transmission path, between

the excitation source and the measurement point, to the rotational speed and the presence

of resonances, it is expected that the discrepancy measure η will be dependent on the

rotational speed ω.

Bartelmus and Zimroz [2] and Zimroz et al. [10] showed that the parameters of a linear

regression model, aiming to capture the relationship between the diagnostic metric and

the operating conditions, are very good condition monitoring metrics. In this paper, the

conditional distribution p(η|ω) is modelled and used to mitigate the adverse influences

of the varying speed conditions on the diagnostic metric. It is possible to model p(η|ω)

by using Bayesian linear regression for example, however standard regression approaches

assume that the noise has constant statistical properties [50], which is not always true for

the data considered. In Figure 5, the sensitivity of the discrepancy measure with respect to

rotational speed is presented for a phenomenological gearbox model, discussed in Section

3, that contains no bearing damage. The mean as well as the variance of the discrepancy

measure conditioned on the rotational speed are dependent on the rotational speed, with a

resonance band being excited approximately at 105 rad/s. The data, presented in Figure

5, are introduced in this section to motivate and illustrate the processing method that is

used in this paper.

Heteroscedastic models are a class of models where the noise in the data is assumed

to be a function of the inputs [50–52]. Mixture density networks [50], Gaussian processes

[51] and Bayesian neural networks [52] have been used and extended for heteroscedastic

models. The computational complexity of the aforementioned regression models increase
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Figure 5: The discrepancy measure η vs. the rotational speed ω from the phenomenological gearbox
model, considered in Section 3.

because Monte Carlo Markov Chain (MCMC) [51] or gradient-based optimisation methods

are required [52] to estimate the noise parameters.

In this paper, a very simplified non-parametric model is used to estimate the conditional

distribution p(η|ω). If the assumption is made that the statistics of the discrepancy

measure are independent of the input for small changes in the rotational speed, and that

a sufficient amount of training data is available, then the conditional mean

µη|ω(ω) = LI ({Ωi}, {µΩi,∆Ω}, ω) , (4)

and variance

σ2
η|ω(ω) = LI

(
{Ωi}, {σ2

Ωi,∆Ω}, ω
)
, (5)

can be good approximations for the actual conditional mean and variance for a specific

rotational speed ω. The approach uses the discrepancy measures of the training dataset

which correspond to a specific operating condition range ω ∈
[
Ωi − 1

2
∆Ω, Ωi + 1

2
∆Ω
]

to calculate the mean µΩi,∆Ω and the variance σ2
Ωi,∆Ω. A set of window centres {Ωi}

are generated with a preselected window length ∆Ω to generate a corresponding set of

localised means {µΩi,∆Ω} and variances {σ2
Ωi,∆Ω} of the discrepancy measure η; whereafter

the linear interpolation function, denoted by LI, is used to predict the conditional mean
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µη|ω given the rotational speed ω with Equation (4). An overview of the procedure that

was used to arrive at Equation (4) and Equation (5) is given in Appendix A.

The benefits of this conditional modelling approach, as opposed to Bayesian regression

for example, is that

• no a priori assumptions are made about the form of µη|ω(ω) nor σ2
η|ω(ω),

• it can be extended to other noise distributions,

• it is very computationally efficient as opposed to models requiring MCMC simula-

tions, which is an advantage when performing condition monitoring.

The quality of the fit, using Equation (4) and Equation (5), depends on the distance

between the window centres {Ωi} and the window length ∆Ω. The unknown window

length ∆Ω is selected with a grid search optimisation process in this paper. A grid of

candidate window lengths is generated and then the following process is followed for each

candidate window length on the grid and a preselected window overlap:

1. Calculate the set of window centres {Ωi}, the conditional mean {µΩi,∆Ω} and the

variance {σ2
Ωi,∆Ω} based on the current window length and the window overlap. The

position of the window centre k is determined from

Ωk =
1

2
∆Ω + k (∆Ω− Ωoverlap) , (6)

for k = 0, 1, . . ., where the window overlap is denoted by Ωoverlap and the window

overlap fraction is given by Ωoverlap/∆Ω.

2. Discretize the rotational speed axis with a fixed resolution ∆ω, by starting at the

minimum rotational speed ωmin. This discretization process is used in the next step

to evaluate the suitability of the current window length. A relatively fine resolution

of ∆ω = 0.1 rad/s is used for all future investigations in this paper.
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3. Evaluate the following cost function

C =
N−1∑
k=1

(
µη|ω(ωmin + k∆ω)− µη|ω(ωmin + (k − 1)∆ω)

)2
, (7)

where N is the number of grid-points that were generated in the previous step. The

function in Equation (7) gives an indication on how smooth µη|ω(ω) is.

4. Change the window length ∆Ω and then repeat the process until all grid points are

evaluated.

The cost function in Equation (7) was evaluated for the data presented in Figure 5

for a grid of window lengths and three window overlap fractions i.e. Ωoverlap/∆Ω. The

window length which is selected from the process, is indicated by the ideal label in Figure

6 and is not the window length that corresponds to the smallest value of the cost function.

If the window length is too long, µη|ω(ω) will be too smooth to capture the localised trend

within the data. This is presented in Figure 7, where the results of different window

0 2 4 6 8 10 12 14
Window length [rad/s]

10−4

10−3

10−2

10−1

100

C
os

t
fu

n
ct

io
n

Overlap fraction: 0

Overlap fraction: 0.5

Overlap fraction: 0.8

Candidates

Ideal

Figure 6: The cost function in Equation (7) is evaluated for several window lengths, with the vertical
candidate lines indicating the window lengths which are investigated in subsequent figures. The overlap
fraction is obtained by Ωoverlap/∆Ω.

lengths (indicated by the candidate lines in Figure 6) are presented for the data shown in

Figure 5. All of the curves µη|ω(ω) for the different window lengths ∆Ω are shown over one

another in Figure 7(i). In Figure 7(ii), each curve is given a different offset which helps to

compare the different results that are obtained. It is concluded from the results that all
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(i)

40 50 60 70 80 90 100 110 120 130
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η
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(ii)

Figure 7: Two plots of the function µη|ω are shown for the candidate lines and the ideal line in Figure 6.
In Figure 7(i) the fitted function is shown on the actual ordinate, and in Figure 7(ii) a unique value is
added to η for each dataset to separate the fitted functions for a simpler visual interpretation. An overlap
fraction of 0.8 is used.

curves have the same trend, however if the window length is too small a very noisy function

is obtained while a too large window length results in an overly smooth curve which does

not fully capture the local characteristics of the data. A window length between 1.5 rad/s

and 5.5 rad/s gives sufficiently good results for the data under consideration. The window

fraction overlap of 0.8 was used for all investigations, because it provides smoother results

without losing local information.

Equation (4) and Equation (5) are ultimately used to scale the discrepancy measure

for the features associated with window j of the testing set, denoted by ηj, with

ξj =
ηj − µη|ω(ωj)

ση|ω(ωj)
(8)

where ξj denotes the new, scaled discrepancy measure and ωj denotes the average ro-

tational speed for the features associated with window j. The above procedure can be

extended to other distributions, for example if the actual distribution p(η|ω) is skew in

the direction where the discrepancy measure increases, the logarithm of the discrepancy

measure log η can be used instead of η to make the distribution more symmetric. The

benefits of the proposed discrepancy processing procedure, proposed in this section, are

only seen when applied under time varying speed conditions and will not be seen under
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constant operating conditions.

The proposed methodology as presented in Figure 2 is investigated on phenomenolog-

ical gearbox model data in the next section, whereafter it is investigated on experimental

data in Section 4.

3. Numerical validation

3.1. Phenomenological model

The phenomenological gearbox model that is used in this paper, is from the paper by

Abboud et al. [7]. The model developed by Abboud et al. [7] approximates complicated

physical phenomena such as other damaged machine components and the sensitivity of

the signal’s amplitude to varying rotational speeds, while it is simple to implement and

computationally efficient to calculate, as opposed to lumped-mass and finite element gear-

box models aiming to replicate the same phenomena. The casing or measured vibration

signal for the gearbox is decomposed into four distinct parts [7]

xc(t) = xdg(t) + xrg(t) + xb(t) + xn(t), (9)

where the deterministic gear component xdg, the random gear component xrg, the bearing

component from a defective bearing xb and the noise xn components can be decomposed

into the signal at the source, convoluted with the associated impulse response function to

the point of measurement [7]. The decomposition of the signals

xdg(t) = hdg ⊗ qdg(t), (10)

xrg(t) = hrg ⊗ qdg(t), (11)

xb(t) = hb ⊗ qb(t), (12)

is written in terms of the impulse response function hi, the signal at the source qi and

the convolution operator is denoted by ⊗. The impulse response function is written as a
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single degree of freedom system with viscous damping

hi(t) = e−ζi2πfn,it sin

(
2π
√

1− ζ2
i fn,it

)
, (13)

where the damping ratio of component i is denoted by ζi and the natural frequency of

component i is denoted by fn,i. The deterministic gear component at the source, simulates

the excitation due to the gear mesh excitation

qdg(t) = Mdg(ωr(t))

Ndg∑
k=1

A
(k)
dg cos

(
kNt,g

∫ t

0

ωr(τ)dτ + ϕ
(k)
dg

)
, (14)

where Ndg is the number of gear mesh components which are considered, A
(k)
dg is the

amplitude of the kth component, ϕ
(k)
dg is the phase of the kth component, ωr(t) is the

rotational speed of the shaft in radians per second and Nt,g is the number of teeth on the

gear that is connected to the shaft under consideration. The monotonic function Mdg(ωr),

simulates the dependence of the amplitude of the signal component on the rotational speed.

The random gear component, simulates distributed gear damage, and is incorporated to

complicate the bearing condition inference task

qrg(t) = Mrg(ωr(t))εrg(t)

Nrg∑
k=1

A(k)
rg cos

(
k

∫ t

0

ωr(τ)dτ + ϕ(k)
rg

)
, (15)

and it incorporates similar components as Equation (14), except for a random component

εrg, obtained from

εrg(t) ∼ N (0, σ2
rg), (16)

where N (0, σ2
rg) is a zero-mean Gaussian distribution with variance σ2

rg and ∼ denotes

that a random sample is taken from the distribution. The noise from other components

such as ambient effects is written as

xn(t) = εn(t)Mn(ωr(t)), (17)
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where the monotonic function of ωr is denoted by Mn and the random component

εn(t) ∼ N (0, σ2
n), (18)

is a sample from a zero-mean Gaussian function with constant variance σ2
n.

Lastly, the damaged bearing signal is addressed. The outer race damage is simulated

as a train of Dirac functions

qb(t) = Fdam · Fconst ·Mb(t)

NT∑
i=1

δ(t− Ti), (19)

centred at Ti, where Ti depends on the characteristics of the bearing, slip in the bearing

as well as the shaft speed. Hence, the angle of the impacts with respect to shaft orders,

is calculated in the angle domain and transformed back to the time domain using the

relationship between shaft angle and time. The bearing slip is introduced by adding zero

mean Gaussian noise with a standard deviation of 0.1 to the expected impact angles. The

constant Fconst is independent of the fault severity and Fdam is proportional to the bearing

impulse magnitude. The bearing component Fdam is in the form of Fdam ∼ N (F̄dam, σ
2
Fdam

),

which simulates the fact that the magnitudes of the bearing impulses are not constant. By

changing F̄dam, the magnitude of the impulse increases but it does not necessarily mean

that the crack size or damage size increases with the same proportion. El-Thalji and

Jantunen [53] gave a very good pictorial overview of the evolution of a damaged bearing

response. Only changes in F̄dam is investigated in this paper, with qb(t) = 0 being used to

simulate a healthy bearing.

3.2. Characteristics of the model

The model characteristics which are used in the equations of the model, are provided

in Appendix B. The Ballpass Frequency for the Outer race (BPFO) damage or the char-

acteristic frequency of 2.57 shaft orders is used in this section.
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3.3. Vibration data

The proposed methodology is investigated on the phenomenological gearbox model pre-

sented in Section 3.1 with the characteristics discussed in Section 3.2. The four rotational

speed profiles, investigated for this model

ωr,1(t) =2π(1.3t+ 7), (20)

ωr,2(t) =2π(5 sin(0.4πt)− 20 (0.1t− 0.5)2 + 15), (21)

ωr,3(t) =2π(6.5 cos (0.2πt) + 13.5), (22)

ωr,4(t) =2π(6.5 sin (0.2πt) + 13.5), (23)

and given in rad/s, are shown in Figure 8. The four operating conditions were selected

to have the same maximum and minimum values and the same mean. Only the healthy
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Figure 8: The four rotational speed profiles ωr,i for the phenomenological model are presented, where
the i in ωr,i denotes the operating condition profile number indicated in the Figure. The corresponding
equations of rotational speed profiles are given in Equation (20) to Equation (23).

data for the first three operating conditions are used for the model optimisation process.

The casing vibration signal and the corresponding spectrogram for the second operating

condition profile are presented in Figure 9 for a fault severity F̄dam = 1. The meshing

components, the resonance band excited by the gear meshing components at 2.0 kHz as

well as the resonance band excited by the random gear component at 3.5 kHz are clearly

seen in the spectrogram presented in Figure 9(ii). However, the resonance band that is

excited by the bearing impulses at 5.0 kHz is not seen in the spectrogram. The ability of
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(i) (ii)

Figure 9: The casing vibration signal is shown in its time and the time-frequency domain representations
for the second operating condition profile in Figure 9(i) and Figure 9(ii), respectively.

the methodology to detect the presence of damage in the signal model is investigated in

the next section.

3.4. Results

The feature extraction procedure in Section 2.2 and the feature modelling procedure in

Section 2.3 were applied to the healthy vibration data of the first three operating condition

profiles. The discrepancy measure, generated using Equation (3), is firstly obtained for

the healthy data and is presented with the corresponding rotational speed in Figure 5.

Features are extracted from the order tracked and windowed wavelet coefficients after

which a discrepancy measure is obtained for the 16 features extracted from each window.

The discrepancy measure, denoted by η, is processed with Welch’s power spectral density

to calculate how its energy is distributed in the frequency domain with unit orders instead

of Hertz. The spectrum in Figure 10 is presented for the four operating conditions that are

under consideration as well as for three fault severities (FS) where F̄dam, used in Equation

(19), is equal to 1, 2 and 4, respectively.

The BPFO frequency components in shaft orders are detected in all three cases, and

as the damage increases the amplitude of the BPFO and its harmonics increase as well.

However, the amplitude of the BPFO is different for the various operating conditions

given the same fault severity. As a result, it is difficult to distinguish between changes in
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Figure 10: Comparing the spectrum of the discrepancy signals for the four operating conditions and the
three fault severities (FS) which are investigated. The fault severity value indicates the value of F̄dam
that is used. Note that different scales are used for the three cases.

operating condition and changes in machine condition.

However, to make the results more robust, it is necessary to take into account the fact

that the vibration signal and its components are dependent on the operating conditions.

The conditional modelling procedure in Section 2.5 is used to obtain the conditional statis-

tics. Equation (4) is used to obtain µη|ω and Equation (5) is used to obtain σ2
η|ω, which

are presented in Figure 11(i) as µη|ω ± 3 · ση|ω and superimposed on the healthy data. A

satisfactory fit is obtained with η in Figure 11(i) and therefore it is used further in this

section. In Figure 11(ii), the scaled discrepancy measure that is obtained using Equation

(8) is presented over the rotational speed. The scaled discrepancy signal, ξi, presents the

desired property as its magnitude is relatively speed independent.
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(i) (ii)

Figure 11: The discrepancy data over the rotational speed, originally presented in Figure 5, is presented
with the fit µη|ω(ω) and ση|ω(ω) in Figure 11(i). The processed discrepancy signal is presented in Figure
11(ii) for the healthy data.

The spectrum of the processed discrepancy signal is presented in Figure 12 and it should

be highlighted that the amplitude of the BPFO is independent of the rotational speed

profile. The slight amplitude differences between the BPFO, estimated under the same

operating condition, are attributed to a variation in noise, the random gear component and

the model fit which is not perfect as seen in Figure 11. However, a significant improvement

has been achieved by processing the discrepancy measure. This makes detecting, localising

and trending the bearing damage easier under varying speed conditions.

4. Experimental validation

Two experimental investigations are performed in this section. In the first investiga-

tion, the ability of the methodology to detect damage, localise damage and to trend the

diagnostic metric over measurement time is investigated. The dataset was acquired under

constant operating conditions and therefore the results do not reflect the ability of the

methodology to be used under varying speed conditions. Hence, in the second investi-

gation, the ability of the methodology to detect and localise damage is investigated on

experimental data that were acquired under varying speed conditions.
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Figure 12: Comparing the spectrum of the processed discrepancy signals for the four operating conditions
and the three fault severities that are investigated for the phenomenological gearbox model.

4.1. Investigation 1

The IMS bearing dataset [54, 55] for the case where outer race damage occurred on a

bearing, which ultimately resulted in the complete failure of the bearing, is investigated

in this section. A schematic of the setup is presented in figure 13. The run-to-failure

test-rig contains four bearings supporting the same shaft, where the shaft is connected

with a belt to an electric motor. A constant load of 6000 lbs and a constant shaft speed

of 2000 rpm were applied during the experiments. Vibration measurements of 1 second

long were sampled at 20 kHz, and ultimately 984 measurements were obtained during the

experiment until the amount of debris in the oil, that were attached to a magnetic plug,

exceeded a predefined level [55].

The proposed methodology was applied to the dataset, where the first ten measure-
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Figure 13: The IMS experimental setup [55]. The different bearings are indicated by B1, B2, B3 and B4.
Bearing B1 is the bearing that failed.

ments of bearing B1 that ultimately failed, were used to optimise the Gaussian model. The

processed discrepancy signal in the angle domain is used in this section, even though the

data were acquired under constant operating conditions. There will not be any benefits

from using the proposed discrepancy processing technique in Section 2.5 when the shaft

speed is constant, however it is used for consistency. The power spectral density for each

measurement was calculated and presented over the measurement number in Figure 14(i),

while the spectrum for a single measurement is shown in Figure 14(ii). The theoretical

(i)
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Figure 14: The discrepancy over measurement number and frequency (in shaft orders) is presented for all
the measurement files in Figure 14(i), while the spectrum of a single measurement is presented in Figure
14(ii) for the IMS bearing dataset. The theoretical BPFO and its harmonics are presented as vertical,
dashed lines in Figure 14(i) and Figure 14(ii).
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BPFO component of 7.059 shaft orders and its harmonics are presented in Figure 14 as

well. The damage components became visible at the 535th measurement in Figure 14(i).

Lastly, developing and trending a diagnostic metric over the measurement number are

investigated. The first proposed metric, is to calculate the Root-Mean-Square (RMS) of

the discrepancy signal for each measurement, which is presented over the measurement

number in Figure 15. An alarm threshold is considered by calculating the mean µ and
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Figure 15: Two diagnostic metrics are shown on a logarithmic scale as function of the measurement
number for the IMS dataset. For the first diagnostic metric, the RMS of the entire discrepancy signal is
calculated and for the second diagnostic metric the fundamental outer race component in the spectrum
for each measurement is calculated.

the standard deviation σ of the diagnostic metric for the first ten measurements, and then

calculating µ + kσ, where k = 3. If the number of measurements used to calculate the

alarm threshold is too little, poor estimates of the mean and the standard deviation will

be obtained. The second metric that is proposed is the amplitude of the fundamental

component of the BPFO. An alarm threshold is calculated with the same method as the

RMS metric. The change in condition, estimated at the time instant or measurement

number where the mean of three consecutive diagnostic metrics exceed the threshold, is

presented in Figure 15. The trending procedure is more robust to false alarms when using

three consecutive measurements as opposed to a single measurement.

The diagnostic metrics presented in Figure 15 do not increase monotonically, which

25



emphasises that the methodology’s aim is to infer the presence of damage by detecting the

presence of impulses in the signal. The progression of bearing damage, as indicated and

discussed by El-Thalji and Jantunen [53], does not result in the magnitude of impulses

to increase monotonically, but it can go through increasing and decreasing phases. This

possibly reflects the characteristics that are observed in Figure 15.

Hence, from the results in Figure 14 and Figure 15 it is concluded that the developed

methodology allows damage to be detected, located and trended prior to the failure of

the bearing. The discrepancy signal is sensitive to changes in machine condition and the

RMS of the discrepancy signal is a very good metric to be used for fault detection and

trending. By using the amplitude of the BPFO component as a metric, the development

of localised damage can be detected as well.

4.2. Investigation 2

In this section, four run-up datasets that correspond to four bearing conditions are

analysed using the proposed diagnostic methodology. An overview of the setup as well as

the data are presented in the next section, whereafter the methodology is applied on the

data.

4.2.1. Overview of setup

Experimental data, acquired from a SpectraQuest, Inc. Machinery Fault Simulator,

are processed in this section. The experimental setup, presented in Figure 16, consists

of a 0.5 HP three-phase electrical motor that has a nominal speed of 3450 rpm and a

shaft loader which applies a static load of 49.05 N to the system. The left bearing was

in a healthy condition, while the condition of the right bearing, i.e. the testing bearing,

was changed between the different experiments. The four bearing conditions that were

investigated for the right bearing are presented in Table 1, with the short name that is

used in the figures and the analytical defect frequency, calculated from the properties of

the bearing, included as well.

For each of the bearing conditions presented in Table 1, a speed run-up was performed
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Figure 16: A schematic of the test bench that is investigated for the SpectraQuest, Inc. dataset.

Table 1: Characteristics of the right bearing of the experimental setup in Figure 16.

Testing bearing condition Short name for measurement Defect frequency
(shaft orders)

Healthy HH -
Outer race damage HO 3.5913
Rolling element damage HB 2.3751
Inner race damage HI 5.4087

while various signals such as acceleration measurements and a one-pulse per revolution

tachometer signal were acquired. The rotational speed profiles for the four cases, using the

tachometer signal information, are presented in Figure 17. The angular acceleration of the
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Figure 17: Rotational speeds over measurement time of the four datasets from the SpectraQuest, Inc.
setup. The data are labelled as follows: HH: Healthy bearing; HB: Rolling element damage; HI: Inner
race damage; HO: Outer race damage.

shaft was different for all four cases, with approximately the same maximum rotational

speed obtained in each case. The vibration signals in the y-direction for the four cases

listed in Table 1, sampled at 25.6 kHz, are presented in Figure 18. The sensitivity of the
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(i) (ii)

(iii) (iv)

Figure 18: The vibration signals for the healthy testing bearing 18(i) and the testing bearing that has
outer race damage 18(ii), rolling element damage 18(iii) and inner race damage 18(iv) are presented.

acceleration signal’s amplitude to rotational speed is clearly observed for all four cases in

Figure 18.

4.2.2. Results

The proposed feature extraction approach in Section 2.2 was applied to the healthy

vibration data, whereafter a model of the features was created following the procedure

described in Section 2.3. The discrepancy metric was generated using Equation (3), with

the parameters of the aforementioned model, and used with the rotational speed in Figure

17 to estimate µη|ω(ω) and ση|ω(ω)2 with Equation (4) and (5), respectively. The same

feature extraction procedure was applied for the damaged cases, whereafter the discrep-

ancy metric was generated with Equation (3) and processed using Equation (8). The

processed discrepancy metric is analysed using Welch’s power spectral density estimate
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and the results are separately presented for the four bearing conditions in Figure 19. More

information on the bearings is given in Table 1.
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Figure 19: The spectrum of the processed discrepancy signals for the case where the testing bearing was
healthy is presented in Figure 19(i) and where it had outer race damage is presented in Figure 19(ii),
rolling element damage is presented in Figure 19(iii) and inner race damage is presented in Figure 19(iv).

The spectrum of the healthy bearing in Figure 19(i) contains the expected frequency

components such as the shaft orders and its harmonics, but the magnitude of the ampli-

tudes is very small. In the spectrum for the bearing with outer race damage in Figure

19(ii), the fundamental outer race component and its harmonics are seen within the spec-

trum with other frequency components such as the shaft order and its harmonics. The

rolling element damage components dominates the spectrum in Figure 19(iii), with a slight

difference between the theoretical defect frequency and the actual defect frequency pre-

sented. The inner race component and its harmonics are not clearly seen in the spectrum in

Figure 19(iv), because the spectrum is contaminated by other components. The spectrum
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of all cases presented in Figure 19 is contaminated by harmonics of the Fundamental Train

Frequency (FTF) which is equal to 0.4 shaft orders. The presence of these components

can be attributed to an improper installation of the bearing.

The discrepancy data versus the rotational speed data are presented in Figure 20(i)

with the fit µη|ω(ω) and ση|ω(ω) presented as well. The fit in Figure 20(i) does not capture

the characteristics of the data properly and this practically indicates that Equation (8)

does not scale the data appropriately using the current fit. The discrepancy measure,

(i) (ii)

Figure 20: The fit of µη|ω(ω) and ση|ω(ω) is compared in Figure 20(i) for the original discrepancy data η
and for log η in Figure 20(ii).

for a fixed rotational speed, is skewed in the direction of increasing discrepancy which

means that a Gaussian fit is not appropriate. It is possible to make the distribution more

symmetric, by calculating the logarithm of the discrepancy measure i.e. log η instead.

Hence, in Equation (4), Equation (5) and Equation (8) the discrepancy measure η is

replaced by log η to obtain the result presented in Figure 20(ii). The fit is significantly

better when using the logarithm of the data and it can be seen that only the lower bound

of the fit (i.e. µ − 3σ) deviates from the actual lower bound. The spectrum of the new

processed logarithm of the discrepancy signal is presented in Figure 21.

If the spectrum of the healthy bearing in Figure 21(i) is compared to the spectrum of

Figure 19(i), it can be observed that the shaft order components are seen more clearly. In

Figure 21(ii), the outer race damage components are very prominent in the spectrum. The
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Figure 21: The spectrum of the processed discrepancy signals for the case where the testing bearing was
healthy is presented in Figure 21(i) and where it had outer race damage is presented in Figure 21(ii),
rolling element damage is presented in Figure 21(iii) and inner race damage is presented in Figure 21(iv).

contaminating frequency components, surrounding the outer race damage components, are

smaller with respect to the amplitude of the outer race damage components when compared

to the result in Figure 19(ii). The spectrum in Figure 21(iii), contains the rolling element

damage component and its harmonics. The rolling element bearing damage components

seem slightly smaller with respect to the shaft order components when compared to the

spectrum in Figure 19(iii). The improper scaling used in Figure 19(iii) amplified the

defect frequencies of the rolling element damage. In the spectrum in Figure 21(iii), it is

possible to detect the presence of rolling element damage and the scaling with log η can

be consistently used to draw conclusions from future datasets.

The inner race damage components are slightly more prominent in the spectrum in

Figure 21(iv) as compared to the spectrum in Figure 19(iv). A zoomed view of the
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inner race damage spectrum, presented in Figure 22, indicates that there is an inner race

component present and it is surrounded by the shaft order and the other contaminating

components.

4.0 4.5 5.0 5.5 6.0 6.5 7.0
Frequency [Order]

0.00

0.05

0.10

0.15

P
S

D

Data

Char. freq. HI

Figure 22: Zoomed view of the spectrum of the inner race damage bearing case (HI) originally presented
in Figure 21(iv).

Hence, from the results it is possible to detect the presence of outer race, rolling

element and inner race damage components in varying speed conditions using the proposed

methodology. Even though the initial results that were obtained by modelling η made it

possible to detect the damage components, the results were more robust by using a more

appropriate density i.e. when log η was modelled instead. The large speed changes in

this dataset complicated the noise distribution of the discrepancy signal due to possible

non-linear effects seen in Figure 20. It is therefore suggested that more elaborate noise

models need to be investigated for equipment with significant speed changes throughout its

operation to ensure that the processed discrepancy signal is speed independent. It is also

prevalent from the results that are presented in Figure 21 and Figure 22 that the proposed

procedure is not capable of removing the contaminating noise components generated by

the 0.4 shaft order components nor the shaft order harmonics. The proposed method is

designed to detect the presence of singularities and impulses and therefore the presence

of impulses and singularities in the signal will be reflected in the discrepancy signal as

well. The contaminating spectral components can be attenuated by methods proposed in

literature for example see Refs. [6, 7].
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5. Conclusion and recommendations

A bearing diagnostic methodology based on discrepancy analysis is proposed in this

paper for variable speed conditions. The bearing diagnostic methodology is combined with

a discrepancy post-processing technique which can be utilised for other diagnostic metrics

that exhibit speed dependent behaviour. The effectiveness of the methodology has been

successfully evaluated using data from a phenomenological gearbox model as well as from

two experimental test rigs and it has been demonstrated that the proposed methodology

can effectively detect, localise and trend damage in rolling element bearings.

The benefit of the proposed methodology is that the characteristics of the healthy bear-

ing signal are learned, used to generate a discrepancy signal and subsequently the condition

of the bearing is inferred under varying speed conditions. This is performed without hav-

ing historical fault data available and without selecting specific sub-bands in the wavelet

packet transform for example, however selecting the most appropriate sub-bands could po-

tentially improve the results. Therefore, the methodology provides a framework which can

be used to incorporate existing techniques and new developments in the machine condition

monitoring field into the diagnostic process. The discrepancy signal processing technique

used in this paper can also be used to make diagnostic metrics more robust.

Future investigations can focus on improving the results with the methodology, by

for example incorporating signal processing techniques such as pre-whitening techniques

and improving the features that are used. It is also necessary to investigate and compare

other feature extraction techniques based on cyclostationary analysis for example. Even

though the RMS features of the windowed segments are well motivated and performed

well in the investigations, it is necessary to investigate and compare additional features

such as the kurtosis to improve the diagnostic capabilities of discrepancy analysis. It is

also suggested that different feature models, considered in past gear diagnostics work,

need to be compared for bearing diagnostics as well. The diagnostic metrics developed

in Section 4.1 are sensitive to changes in machine condition and can therefore potentially

serve as an input for a prognostic model as well. It is therefore sensible to investigate
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this further in future investigations. Two investigations were performed under variable

speed conditions and future investigations can focus on load varying and load and speed

varying conditions. Lastly, it is also recommended to critically investigate and validate

the methodology on real data acquired from industrial gearboxes found in wind turbines,

draglines and air-cooled condenser fans to list a few.
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Appendix A. Diagnostic processing

In this section, the procedure which is used to estimate the mean and the variance of

the conditional distribution p(η|ω) is presented. It is assumed that the actual conditional

density of the discrepancy measure η given the rotational speed ω, p(η|ω), is unknown

and samples cannot be easily obtained from it. The process is started by considering the

analytical form of the expected value E[η|ω]

E[η|ω] =

∫
ηp(η|ω)dη. (A.1)

If an infinite number of samples is taken from the conditional distribution p(η|ω), then it

can be used to calculate the expected value of η given ω

E[η|ω] = lim
N→∞

1

N

N∑
i=1

ηi|ω, (A.2)
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where ηi|ω is a sample from p(η|ω). A different form of Equation (A.2) is analysed because

it is assumed that it is not possible to sample from p(η|ω) directly

E [η|ω] = lim
dΩ→0

lim
N→∞

1

N

N∑
i=1

ηi|ω ∈ [Ω− dΩ/2,Ω + dΩ/2] , (A.3)

where ηi|ω is a sample from the conditional distribution p(ηi|ω), where the rotational

speed ω ∈ [Ω− dΩ/2,Ω + dΩ/2] and defining the variable Ω in the equation is useful

for later. If it is assumed that the actual set of discrepancy measures for a healthy

dataset {ηi} and the corresponding set of rotational speeds {ωi} are samples from the

actual distribution p(η, ω), then it can be used to approximate E[η|ω]. Equation (A.3) is

extended to accommodate the experimental data

E [η|ωj] ≈
1

Nη|ω

Nη|ω∑
i=1

ηi|ωi ∈ [Ω−∆Ω/2,Ω + ∆Ω/2] , (A.4)

with ωj ∈ [Ω−∆Ω/2,Ω + ∆Ω/2] and ηi|ωi denoting the sample ηi for which the corre-

sponding rotational speed ωi falls within the range ωi ∈ [Ω−∆Ω/2,Ω + ∆Ω/2]. There

are Nη|ω samples in the set {ωi} for which ωi ∈ [Ω−∆Ω/2,Ω + ∆Ω/2]. Hence, it can be

seen from Equation (A.3) that the smaller the window length ∆Ω is and the more samples

Nη|ω are used, the better the approximation in Equation (A.4) becomes. However, because

the actual data are considered, there is a compromise between the selected window length

and the number of samples that can possibly be used.

Ultimately, this procedure is implemented by generating a grid {Ωi} of window centres

and preselecting the window width ∆Ω. For each window centre j a single value of E[η|Ωj]

is obtained. Instead of assuming that E[η|ω] is constant for a given window centre and

within the bounds, it is assumed that E[η|ω] varies linearly between window centres.

Hence, the value of E[η|ω] for a specific ω is obtained by linear interpolation by using the

window centres {Ωi} and the corresponding set {E[η|Ωi]}. The notation µη|ω(ω) = E[η|ω]

is used in this paper. The approach is easily extended to calculate the variance of the
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discrepancy measure given the operating conditions.

Appendix B. Phenomenological gearbox model parameters

The parameters and characteristics of the phenomenological model are presented in

this section and are neither based on a specific experimental setup nor a specific gearbox.

The natural frequencies of the different components, presented in Table B.2, are unique

and in a similar range to Ref. [7].

Table B.2: The parameters in Equation (13) for the various transmission paths.

fn,i Hz ζi
hrg 3500 0.05
hdg 2000 0.05
hb 5000 0.05

The fundamental gear mesh component and its nine harmonics’ characteristics are

presented in Table B.3. Ten components were selected to ensure that the resonance band

is properly excited and to ensure that there are many contaminating components. The

magnitude of the second and third components are chosen to be the most dominant to

replicate phenomena seen in the spectra in Refs. [56, 57].

Table B.3: Values of the parameters used in Equation (14).

i 1 2 3 4 5 6 7 8 9 10

A
(i)
dg 1 1.5 2 1 0.5 0.3 0.2 0.1 0.1 0.05

ϕ
(i)
dg 0 0 0 0 0 0 0 0 0 0

The magnitude of the random gear components in Table B.4 is assumed to have similar

characteristics as the spectra in Refs. [56, 57], where the second and third harmonic of

the gear mesh frequency are the most dominant in the spectrum.

Table B.4: Values of the parameters used in Equation (15).

i 1 2 3

A
(i)
rg 1 2 3

ϕ
(i)
dg 0 0 0
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The coefficients of the linear monotonic functions Mi, used in Equation (14), (15), (17)

and (19), are presented in Table B.5.

Table B.5: The parameters that the monotonic function used in Equation (14), (15), (17), and (19). The
form of the function is: Mi(ω) = aω + b.

a b
Mdg(ω) 1 0
Mrg(ω) 1 0
Mb(ω) 1 0
Mn(ω) 1 0

The standard deviation of the noise σn and the random gear component σrg are pre-

sented in Table B.6.

Table B.6: The standard deviation used in Equation (15) and Equation (17).

σn 0.1
σrg 1.0

The Fconst component used in Equation (19) for the bearing signal is presented in

Table B.7. The RMS and the maximum values of the casing signal for a healthy bearing

xc(t)− xb(t) and for a damaged bearing with different fault severities xb(t) are compared

in Table B.7 as well. The third operating condition profile, presented in Figure 8, is used

to obtain the statistics in Table B.7.

Table B.7: The bearing damage characteristics used in Equation (19). The RMS and the maximum are
calculated for the third operating condition profile presented in Figure 8.

FS Fconst RMS Maximum
xc(t)− xb(t) - - 27.5870200129 159.891754808

xb(t) 1 0.00795774 1.50148614673 31.8616084331
xb(t) 2 0.00795774 2.97797593598 68.710354709
xb(t) 3 0.00795774 6.02045967978 137.575713634
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