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Abstract 

This paper contributes to the embryonic literature on the relations between Bitcoin and 

conventional investments by studying return and volatility spillovers between this largest 

cryptocurrency and four asset classes (equities, stocks, commodities, currencies, and bonds) in 

bear and bull market conditions. We conducted empirical analyses based on a smooth transition 

VAR GARCH-in-mean model covering daily data from July 19, 2010 to October 31, 2017. We 

found significant evidence that Bitcoin returns are related quite closely to those of most of the 

other assets studies, particularly commodities, and therefore, the Bitcoin market is not isolated 

completely. The significance and sign of the spillovers exhibited some differences in the two 

market conditions and in the direction of the spillovers, with greater evidence that Bitcoin 

receives more volatility than it transmits. Our findings have implications for investors and fund 

managers who are considering Bitcoin as part of their investment strategies and for policymakers 

concerned about the vulnerability that Bitcoin represents to the stability of the global financial 

system.  
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1. Introduction  

Intermarket links, as measured by return and volatility spillovers, represent an important aspect 

of international finance and have crucial implications for portfolio and hedging decisions. This 

topic has received considerable attention in the empirical literature, with evidence of increased 

market integration driven by openness of markets, globalization, financialization, and 

technological developments.  

With the emergence of Bitcoin as the first and most popular cryptocurrency, attention shifted in 

part to this new asset, especially in 2016 and 2017, during which it became highly prominent in 

the investment scene and financial press. Bitcoin prices increased by more than 1358% in 2017 

alone, giving it a total market value in excess of 215 billion USD. Importantly, Bitcoin joined the 

club of legitimate assets when the Chicago Mercantile Exchange (CME) Group and the Chicago 

Board Options Exchange’s (CBOE) launched future contracts based on the price of Bitcoin in 

December 2017. Many market participants perceive this move as the legitimatization of Bitcoin 

as an investment asset. It follows that there is a need to investigate and determine the return and 

volatility associations between Bitcoin and other asset classes for the sake of investors and 

policymakers. This is important to our case, given that Bitcoin is characterized by extremely high 

levels of return and volatility (Baek and Elbeck, 2015) that could affect other asset classes and 

thereby the stability of the financial system (European Central Bank, 2012). Any evidence of 

significant return and volatility spillovers between Bitcoin and other asset classes potentially 

affects not only asset selection and allocation, and risk management decisions, but also 

regulators’ policies designed to maintain the stability of the global financial system. It also is 

important to policymakers who are considering Bitcoin as part of their foreign reserves or 

experimenting with the own versions of cryptocurrency. 

Thus far, the few studies that have explored the relation between Bitcoin and financial variables 

have addressed only a few assets at a time, such as UK equities, EUR/USD, GBP/USD 

(Dyhrberg, 2016), alternative monetary systems (Rogojanu and Badea, 2014), metals and 



 

3 
 

currencies (Baur et al., 2015), global macro-financial development (Ciaian et al., 2016), energy 

and non-energy commodities (Bouri et al., 2017b), and global uncertainty (Bouri et al., 2017a). 

Importantly, the existing literature lacks empirical studies on the return and volatility spillovers 

between Bitcoin and other asset classes and the potential difference in the spillovers between bull 

and bear market conditions. This study attempted to address these gaps. Specifically, the main 

contributions of this study highlighted several aspects. First, we considered a rich set of four 

asset classes (equities, bonds, currencies, and commodities), in which we employed three proxies 

of equity markets: world, emerging markets, and Chinese equity indices. We opted for emerging 

markets because of Bitcoin’s rising popularity in these countries. We also focused particularly on 

China, as Bitcoin is used there to overcome capital control. We considered bonds, US dollars, 

gold, and the general commodity index because of scholars lack of consensus whether Bitcoin, 

which is independent of central authorities, is a currency, digital gold, commodity, or synthetic 

commodity (Selgin, 2015). We also included crude oil and energy prices in the analysis, given 

empirical evidence that Bitcoin mining consumes considerable oil and energy1 (Hayes, 2016). 

Second, we used a bivariate model that has the advantages of incorporating several important 

specifications, such as smooth transition, asymmetry, and dynamic conditional correlations (e.g., 

see Kundu and Sarkar, 2016; Chowdhury et al., 2018). Accounting for asymmetry and smooth 

transition behavior to switch between bull and bear markets was expected to add value to the 

existing literature on intermarket associations between Bitcoin and other asset classes, which has 

been dominated to date by the use of conventional and univariate models. These techniques do 

not account for nonlinearity and asymmetry and fail to differentiate between bull and bear 

markets. Third, we accounted for the presence of structural breaks that most often alter the 

reliability of the spillover effects. 

The remainder of the paper is structured as follows: Section 2 reviews the literature on Bitcoin 

and its relation with certain other conventional assets. Section 3 describes the methods. Section 4 

presents the data and discusses the empirical results, and Section 5 provides conclusions.   

 

 

                                                           
1  In a recent press release, Morgan Stanley indicated that the mining of Bitcoin and other cryptocurrencies could 

require approximately 140 terra watt-hours of electricity in 2018. 
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2. Literature review  

Bitcoin was launched as a global solution to the distrust and uncertainty in the financial 

landscape. Accordingly, it often is considered an aspect of an alternative ‘peer-to-peer’ economy 

(Bouri et al., 2017b), which makes it useful as an alternative investment during economic and 

financial crises2. However, the literature disagrees on whether Bitcoin fulfils the criteria of a 

currency or commodity. Yermack (2013) rejected the claim that Bitcoin is money, Polasik et al. 

(2015) view it as a medium of exchange, and Selgin (2015) considers it a synthetic commodity 

money.  

Many studies have addressed the legal, ethical, and technological aspects of Bitcoin and some 

recent studies have considered its economic and financial aspects. Kriftousek (2015) used a 

wavelet method and found that the Chinese market index seems to be a main determinant of 

Bitcoin prices, while the price of gold plays a marginal role. Bouoiyour and Selmi (2015), who 

used a cointegration approach, reported quite similar results. Bauret et al. (2015) showed that 

Bitcoin is useful as a diversifier because of its very weak correlation with bonds and equities. 

Brière et al. (2015) studied the correlation between Bitcoin and several conventional assets 

(worldwide equity indices, bonds, fiat currencies) and unconventional assets (commodities, 

hedge funds, real estate), and demonstrated that, although Bitcoin exhibits high levels of 

volatility, the risk-return trade-off of well-diversified portfolios can be enhanced by allocating 

3% to Bitcoin investment. Ji et al. (2017) used a directed acyclic graph approach and revealed 

that Bitcoin is useful in diversification because of its isolation from conventional assets. 

However, these foregoing studies relied on unconditional correlation analysis and did not 

account for return and volatility spillovers, particularly under different market conditions. 

Dyhrberg (2016) relied on univariate GARCH models and indicated Bitcoin’s ability to hedge 

against movements in UK currency and equities. However, multivariate GARCH models often 

have been found to reveal more about links across markets. Using regression models augmented 

with dummy variables, Bouri et al. (2017b) confirmed some of Baur et al. (2015) and Brière et 

al.’s (2015) findings. Specifically, they revealed that Bitcoin is indeed an effective diversifier 

against movements in energy commodities. However, the authors did not consider return and 

volatility associations under different market conditions and overlooked nonlinearity and 

                                                           
2  For example, Luther and Salter (2017) indicated that the interest in Bitcoin increased considerably following the 

bailout deal between Cyprus and international lenders. 
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asymmetric aspects. Bouri et al. (2017a) applied a wavelet-based approach, and indicated that 

bitcoin is a hedge against global uncertainty, as measured by the implied volatility indices of 

developed and emerging markets. Balcilar et al. (2017) provided evidence of the nonlinear effect 

of trading volume on Bitcoin’s returns and volatility while differentiating between bull and bear 

market conditions. However, there is little empirical evidence of the return and volatility 

spillovers between Bitcoin and other asset classes and the potential differences in the spillovers 

between bear and bull markets. Thus, this is where we seek to contribute. Given the unique 

factors that affect Bitcoin returns, such as their attractiveness (Ciaian et al., 2016; Kristoufek, 

2013), anonymity of payment transactions (EBA, 2014; Yermack, 2013), used in illegal activities 

and on the part of computer programming enthusiasts (Yelowitz and Wilson, 2015), cyber-

attacks (Moore and Christin 2013), and cost of mining (Hayes, 2016; Li and Wang, 2016), it 

often is argued that the Bitcoin market is related very weakly to other global macroeconomic 

aggregates (Brière et al., 2015; Polasik et al., 2015) and to most conventional asset classes (Baur 

et al., 2015;  Brière et al., 2015; Dyhrberg, 2016; Bouri et al., 2017b). 

3. Methodology 

In this section, we present the methodological framework that we used to examine return and 

volatility spillovers between Bitcoin and several asset classes in bull and bear markets. We 

applied a bivariate GARCH-in-mean (BTGARCH-M) model with a Dynamic Conditional 

Correlation (DCC) approach to model volatility, and the smooth transition vector autoregressive 

(STVAR) specification. Specifically, this STVAR-BTGARCH-M model switches from one 

market condition to another and permits an asymmetry in conditional variance according to 

market situations. The ‘in-mean’ component in the model captures explicitly the effects of 

different volatility spillovers on returns. Different hypotheses of asymmetric spillovers of returns 

and volatility were formulated and then tested using the Wald test. 

We present the basic framework of the model below, and then describe the standard multivariate 

GARCH model with constant and DCC representation. Thereafter, we describe the specification 

of our model and the subsequent formulation of asymmetric spillovers hypotheses.  
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3.1 Basic framework of the model 

The basic framework of the model applied in this paper is: 

𝑟𝑡 = 𝜇𝑡(𝜃) + 𝜀𝑡                             (1) 

where 𝑟𝑡 is an 𝑁 × 1 vector of returns at time 𝑡 on 𝑁 equity indices within a country, 𝜇𝑡(𝜃) is the 

𝑁 × 1 conditional mean vector that also includes the ‘in-mean’ component,  𝜀𝑡 = 𝐻𝑡
1 2⁄

(𝜃)𝜂𝑡 , 

with 𝐸(𝜂𝑡) = 0 and 𝑉(𝜂𝑡) = 𝐼𝑁,  𝐼𝑁 is the identity matrix of order 𝑁, and 𝜃 is a finite vector of 

parameters. Further, 𝐻𝑡
1 2⁄

(𝜃) is assumed to be a (𝑁 × 𝑁) positive definite matrix, such that 

𝐻𝑡(𝜃) is the conditional variance-covariance matrix of  𝑟𝑡 . Both 𝐻𝑡(𝜃) and 𝑟𝑡  depend on the 

unknown vector 𝜃. Under this assumption of 𝐻𝑡
1 2⁄

(𝜃),  𝐻𝑡(𝜃) also is a positive definite matrix 

that is given by the DCC matrix. As discussed in the introduction, following Kundu and Sarkar 

(2016), the conditional mean model was taken to have the STVAR representation together with a 

vector representing the in-mean component in two market conditions—bull and bear.  

3.2 Constant conditional correlation (CCC) and DCC representations 

Bollerslev (1990) proposed a class of MGARCH models in which the conditional correlations 

are assumed to be constant and hence, the conditional covariances are proportional to the product 

of the corresponding conditional standard deviations. These restrictions reduce the number of 

unknown parameters greatly, and thus simplify the estimation of the model. Such a model, 

referred to as the constant conditional correlation (CCC) model of 𝐻𝑡, based on 𝑁 equity returns, 

is defined as:                                               𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡 = (𝜌𝑖𝑗√ℎ𝑖𝑖,𝑡 ℎ𝑗𝑗,𝑡)                             (2) 

where 𝐷𝑡 = 𝑑𝑖𝑎𝑔(ℎ11,𝑡
1 2⁄

, … . , ℎ𝑁𝑁,𝑡
1 2⁄

) when ℎ𝑖𝑖,𝑡 is the univariate conditional variance model for the 

𝑖𝑡ℎ equity returns. The usual symmetric GARCH model is used most often. However, an 

asymmetric GARCH specification, such as Nelson’s (1991) Exponential-GARCH (EGARCH) 

model or Glosten et al.’s (1993) Glosten Jagannathan Runkle (GJR)-GARCH model can be used 

as well, especially in the case of stock returns, where asymmetry in volatility has been found to 

be more appropriate. Finally, 𝑅 = (𝜌𝑖𝑗) is a symmetric positive definite matrix the elements of 

which are the constant conditional correlation, 𝜌𝑖𝑗. The original CCC model has the GARCH 

(1,1) specification for each conditional variance in 𝐷𝑡, i.e.: 

ℎ𝑖𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖,𝑡−1
2 + 𝛽𝑖ℎ𝑖𝑖,𝑡−1,              𝑖 = 1, … … . , 𝑁.                            (3) 
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The 𝐻𝑡 matrix defined in equation (2) is positive and definite if, and only if, all the 𝑁 conditional 

variances are positive and 𝑅 is a positive definite matrix. The unconditional variances are 

obtained easily, as in the univariate case, but the unconditional covariances are difficult to 

compute because of the nonlinearity involved in the elements of 𝐻𝑡. He and Terasvirta (2002) 

used a VEC-type formulation for(ℎ11𝑡, ℎ22𝑡 , … . . , ℎ𝑁𝑁𝑡)/, to allow for interactions between the 

conditional variances, and referred to the resultant model as the extended CCC model. 

It is quite obvious that the assumption that conditional correlations are constant is unrealistic in 

many empirical applications. Christodoulakis and Satchell (2002), Engle (2002), and Tse and 

Tsui (2002) proposed generalizations of the CCC model by making the conditional correlation 

matrix time-dependent in different ways. Accordingly, the DCC model is defined as: 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 = (𝜌𝑖𝑗,𝑡 √ℎ𝑖𝑖,𝑡 ℎ𝑗𝑗,𝑡)                              (4) 

where 𝑅𝑡 = (𝜌𝑖𝑗,𝑡, 𝜌𝑖𝑗,𝑡) is the time-dependent conditional correlation. The requirement that this 

𝐻𝑡 is positive definite is guaranteed under simple parameters conditions, as stated in Bauwens et 

al. (2006). 

Christodoulakis and Satchell’s (2002) DCC model uses the Fisher transformation of the 

correlation coefficient. This model, which is only applicable to a bivariate set-up, is simple to 

implement because the Fisher transformation guarantees the property of positive definiteness of 

the conditional correlation matrix. Tse and Tsui (2002) and Engle’s (2002) DCC models, on the 

other hand, generally are multivariate in nature and are useful when modeling high-dimensional 

datasets. Although we considered returns on two equity markets together in this study, we used 

Engle’s (2002) DCC model simply because it has several advantages compared to other such 

models. First, it is less restrictive with respect to the number of variables included in the model. 

Second, it accounts for heteroscedasticity by estimating the dynamic correlation coefficients of 

the standardized residuals. This DCC model, denoted by 𝐷𝐶𝐶𝐸(1,1), is given as: 

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑞11,𝑡
−1 2⁄

, … . , 𝑞𝑁𝑁,𝑡
−1 2⁄

)𝑄𝑡𝑑𝑖𝑎𝑔(𝑞11,𝑡
−1 2⁄

, … . , 𝑞𝑁𝑁,𝑡
−1 2⁄

)                            (5) 

where the 𝑁 × 𝑁 symmetric positive definite matrix 𝑄𝑡 = (𝑞𝑖𝑗,𝑡) is given by: 

𝑄𝑡 = (1 − 𝜑1 − 𝜑2)𝑄̅ + 𝜑1𝜀𝑡−1
∗ 𝜑1𝜀𝑡−1

∗/
+ 𝜑2𝑄𝑡−1                              (6) 
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where 𝜀𝑡
∗ = (𝜀1𝑡

∗ , … . , 𝜀𝑁𝑡
∗ )/, 𝜀𝑖𝑡

∗ = 𝜀𝑖𝑡 √ℎ𝑖𝑖,𝑡, 𝑖 = 1, … , 𝑁⁄ , and 𝜀𝑖𝑡  is the random term associated 

with the given model for 𝑟𝑡  shown in equation (7), 𝑄̅  is the 𝑁 × 𝑁  unconditional variance-

covariance matrix of 𝜀𝑡
∗, and 𝜑1 and 𝜑2  are non-negative scalar parameters that satisfy (𝜑1 +

𝜑2) < 1. It should be noted that, unlike Tse and Tsui’s (2002) DCC model, this model has the 

advantage that it does not formulate the conditional correlation as a weighted sum of past 

correlations. Note that when  𝜑1 = 𝜑2 = 0 , the 𝐷𝐶𝐶𝐸  model reduces to the CCC model. 

Therefore, this condition can be tested to determine whether setting conditional correlations as 

constant is empirically relevant for a given series. 

Engle (2002) considered ℎ𝑖𝑖,𝑡  a univariate GARCH model and then stated the following 

conditions of the parameters for 𝐻𝑡  to be positive definite for all 𝑡: (𝑖)𝜔𝑖 > 0, (𝑖𝑖)ℎ𝑖𝑖,0 >

0, (𝑖𝑖𝑖)𝛼𝑖  and 𝛽𝑖  are such that ℎ𝑖𝑖,𝑡  will be positive with probability one. (𝑖𝑣), the roots of the 

polynomial of the GARCH equation lie outside the unit circle, (𝑣)𝜑1 > 0, (𝑣𝑖)𝜑2 > 0,  and 

(𝑣𝑖𝑖)(𝜑1 + 𝜑2) < 1. 

3.3 The STVAR-BTGARCH-M model 

Consistent with Kundu and Sarkar (2016), we used the STVAR-BTGARCH-M model based on 

considerations mentioned in the previous sub-section. Thus, this model, which considers two 

market situations, bull and bear, has the conditional mean equation specified in equation (7) that 

is given by STVAR, as well as an ‘in-mean’ volatility component, with 𝐻𝑡 as given in equation 

(4). The underlying transition function is a continuous function 𝑮[𝑟̅𝑖𝑡
𝑘, 𝛾], most often the logistic 

function, which changes smoothly from 0 to 1 as 𝑟̅𝒊𝒕
𝒌increases (for details, see Terasvirta, 1994), 

where 𝑟̅𝒊𝒕
𝒌 =

∑ 𝑟𝑖,𝑡−𝑗
𝑘
𝑗=1

𝑘
, is the average of the past 𝑘 returns on the 𝑖𝑡ℎ equity market (𝑖 = 1, 2) in 

our case. Hence, the logistic transition function incorporates the monotonically changing market 

conditions from bear to bull. Note that the bull market is characterized by 𝑟̅𝒊𝒕
𝒌 > 0 and the bear 

market by 𝑟̅𝒊𝒕
𝒌 ≤ 0. Thus, the two regimes are associated with very small and large values of the 

transition variable, 𝑟̅𝒊𝒕
𝒌, respectively. As Chen (2009) suggested, the threshold value was set to 

zero for both returns to define the bull and bear market conditions. Accordingly, the STVAR-

BTGRACH-M model for this study where 𝑁 = 2, is given by: 

𝑟𝑡 = (𝑎1 + 𝐵1𝑟𝑡−1 +  Λ1𝑣𝑒𝑐ℎ (𝐻𝑡(𝜃)))  ⊙ (𝟏 − 𝑮[∙]) 
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                                                + (𝑎2 + 𝐵2𝑟𝑡−1 +  Λ2𝑣𝑒𝑐ℎ (𝐻𝑡(𝜃)))  ⊙ 𝑮[∙] + 𝜀𝑡                         (7) 

where 𝑟𝑡 = (𝑟1𝑡
𝑟2𝑡

) ,  𝑎1 = (
𝑎1

1

𝑎2
1) ,  𝑎2 = (

𝑎1
2

𝑎2
2) ,  𝐵1 = (

𝑏11
1 𝑏12

1

𝑏21
1 𝑏22

1 ) ,  𝐵2 = (
𝑏11

2 𝑏12
2

𝑏21
2 𝑏22

2 ) , Λ1 =

(
𝜆11

1 𝜆12
1 𝜆13

1

𝜆21
1 𝜆22

1 𝜆23
1 ) , Λ2 = (

𝜆11
2 𝜆12

2 𝜆13
2

𝜆21
2 𝜆22

2 𝜆23
2 ) , 𝐻𝑡 = (

ℎ11𝑡 ℎ12𝑡

ℎ12𝑡 ℎ22𝑡
) , 𝑣𝑒𝑐ℎ(𝐻𝑡) =  (

ℎ11𝑡

ℎ12𝑡

ℎ22𝑡

) , 𝜀𝑡 =

(𝜀1𝑡
𝜀2𝑡

) , 𝑮[∙] = (
𝑔(𝑟̅1𝑡

𝑘 , 𝛾1)

𝑔(𝑟̅2𝑡
𝑘 , 𝛾2)

),  and 𝑔(𝑟̅𝑖𝑡
𝑘, 𝛾𝑖), 𝑖 = 1,2,  are the usual logistic functions with 

parameters 𝛾1 and 𝛾2 corresponding to the two different market conditions. 𝐻𝑡 is the conditional 

variance-covariance matrix of the DCC model as given in equation (4). All other notations have 

the meanings described already. Superscripts 1  and 2  refer to ‘bear’ and ‘bull’ markets, 

respectively. Note that in our study, we accounted for the potentially asymmetric response of 

volatility to positive and negative shocks on returns by assuming that the conditional variance 

components follow a GJR-GARCH (p, q) process. In its simple form and in our context, this 

process is defined as: 

ℎ𝑖𝑖,𝑡 = 𝜔𝑖 + ∑ 𝛼𝑖𝑗𝜀𝑖,𝑡−𝑗
∗2𝑞

𝑗=1 + ∑ 𝑑𝑖𝑗𝐼(𝜀𝑖,𝑡−𝑗
∗ < 0)𝜀𝑖,𝑡−𝑗

∗2𝑞
𝑗=1 + ∑ 𝛽𝑖𝑗ℎ𝑖,𝑡−𝑗

𝑝
𝑗=1             (8) 

where the indicator function, 𝐼(∙) = 1 when the condition 𝜀𝑖,𝑡−𝑗
∗ < 0 holds; otherwise 𝐼(∙) = 0. 

The parameter 𝑑𝑖𝑗  measures the leverage effect. The reason for assuming this form for 

asymmetric volatility is that volatility of returns often has been found to be asymmetric in 

financial markets (Kundu and Sarkar, 2016). 

The estimation of the STVAR-BTGARCH-M model is conducted via the maximum likelihood 

(ML) method. A useful feature of the DCC model is that this can be estimated consistently using 

a two-step procedure (e.g., see Engle and Sheppard, 2001; Bauwens et al., 2006). Assuming 

bivariate normality for the conditional distribution of 𝜀𝑡|𝜓𝑡−1 , where 𝜓𝑡−1  is the set of past 

information on all variables up to time 𝑡 − 1, 𝜀𝑡|𝜓𝑡−1 ∼ 𝑁 (0, 𝐻𝑡), the log-likelihood function 

(up to a constant) based on 𝑇 observations, is given as: 

𝐿(𝜃) =  −
1

2
∑ (ln|𝐻𝑡| + 𝜀𝑡

/
𝐻𝑡

−1𝜀𝑡)𝑇
𝑡=1 .                                                       (9) 
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Obtaining the ML estimate of the parameter vector 𝜃 requires maximizing this log-likelihood 

function. The objective function involved is evidently highly nonlinear, and the codes required 

were obtained from Kundu and Sarkar (2016). 

Several levels of 𝑘 were considered when we chose the one appropriate for the threshold variable 

𝑟̅𝑖𝑡
𝑘, and for each of those values, the maximized log-likelihood value was obtained based on a 

similar model at the univariate level. The value of 𝑘 for which the value of the maximized log-

likelihood for the univariate model was found to be the highest was taken as the value of 𝑘.  

3.4 Hypotheses and the Wald test3 

We performed the Wald test to assess the significance of the own and cross spillover effects of 

returns, volatility and the ‘in-mean’ component involving Bitcoin and each of the eight markets 

studied (MSCI World, MSCI Emerging markets, MSCI China, Commodity, energy, gold, US 

dollar, and US treasury). In doing so, we accounted for the bull and bear market conditions by 

placing appropriate restrictions on the relevant parameters in equation (7). We formulate below 

the different null hypotheses that specify the absence of each of three different kinds of 

spillovers or transmissions for Bitcoin and other markets, as well as the equality of spillovers in 

bull and bear market conditions. 

1. Tests of spillovers in conditional mean 

(a) 𝐻01
𝑎 : No spillovers in means from other markets to Bitcoin market in both bull and 

bear market movements, i.e., 𝑏12
1 = 𝑏12

2 = 0. 

(b) 𝐻01
𝑏 : No spillovers in mean from Bitcoin market to other markets in both bull and 

bear market movements, i.e., 𝑏21
1 = 𝑏21

2 = 0. 

2. Tests of equality of spillovers in bull and bear market movements for Bitcoin and other 

markets 

(a) 𝐻02
𝑎 : Equality of spillovers in mean in bull and bear market conditions from other 

markets to Bitcoin market, i.e., 𝑏12
1 = 𝑏12

2 . 

                                                           
3  Before discussing the different hypotheses of interest pertaining to the STVAR-BTGARCH-M model, we tested 

for linearity vs. non-linearity in the data generating process using a bivariate framework consistent with Camacho 

(2004) ; see Tables A.3 and A.4 in the Appendix. The test enabled us to determine which of the two standard 

transition functions—logistic and exponential—was appropriate for the underlying model. 
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(b) 𝐻02
𝑏 : Equality of spillovers in means in bull and bear market conditions from Bitcoin 

market to other markets, i.e., 𝑏21
1 = 𝑏21

2 . 

3. Tests of no BTGARCH-M effect from one market to another 

(a) Equality of the own volatility spillover on Bitcoin returns in bull and bear markets, 

 i.e., 𝐻03
𝑎 : 𝜆11

1 = 𝜆11
2 . 

(b) Equality of volatility spillover of other markets on Bitcoin returns in bull and bear 

markets, i.e., 𝐻03
𝑏 : 𝜆13

1 = 𝜆13
2 . 

(c) Equality of the own volatility spillover on other market returns in bull and bear 

markets, i.e., 𝐻03
𝑐 : 𝜆23

1 = 𝜆23
2 . 

(d) Equality of volatility spillover of Bitcoin market on other returns in bull and bear 

markets, i.e., 𝐻03
𝑑 : 𝜆21

1 = 𝜆21
2 . 

4. Test of equality of each of the parameters of BTGARCH-M in bull and bear market 

movements 

𝐻04: 𝜆11
1 = 𝜆11

2 ;  𝜆12
1 = 𝜆12

2 ; 𝜆13
1 = 𝜆13

2 ; 𝜆21
1 = 𝜆21

2 ; 𝜆22
1 = 𝜆22

2 ; 𝜆23
1 = 𝜆23

2 . 

5. Test of asymmetric volatility (because of leverage effect) of Bitcoin and other markets 

No asymmetric volatility, i.e., 𝐻05: 𝑑1𝑗 = 𝑑2𝑗 = 0 for all 𝑗. 

6. Test of equality of dynamic conditional correlation 

No dynamic conditional correlation, i.e., 𝐻06: 𝜑1 = 𝜑2 = 0. 

4. Data and Empirical results 

4.1 Data  

Our dataset covered data prices of Bitcoin and proxies of four asset classes (stocks, commodities, 

currencies, and bonds): MSCI World, MSCI Emerging markets, MSCI China, S&P GSCI 

Commodity, S&P GSCI energy, one ounce of gold, US dollar index, and US 10-year treasury 

yields. Bitcoin prices were obtained from CoinDesk, which calculates and publishes the average 

price of Bitcoin in leading Bitcoin exchanges (Bouri et al., 2017b). Data on the four asset classes 

were extracted from DataStream. The sample period was July 19, 2010 to October 31, 2017, 
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where the starting date depicts the availability of Bitcoin prices. The statistics of the daily 

logarithmic returns (Table 1) revealed that Bitcoin has both the highest average return and 

standard deviation. All return series are skewed negatively, except for the US treasury and US 

Dollar. All series have a kurtosis value in excess of that in a normal distribution. The Jarque-

Bera test showed that all return series depart from the normal distribution. There is evidence of 

significant conditional heteroscedasticity, as suggested by the ARCH test. Results from two-unit 

root tests (Augmented Dickey fuller (ADF) and Phillips Perron (PP)) indicated that all return 

series are stationary. We considered the presence of multiple structural breaks via Bai and 

Perron’s (2003) test, the results of which are reported in Table 2A in the Appendix. The results 

provided evidence of structural breaks, particularly when the pair of variables was considered. 

We also found evidence of nonlinearity, especially in the relation between Bitcoin and each of 

the eight markets studied. The results of Brock et al.’s (1996) BDS tests are reported in Table 1A 

in the Appendix.  

Table 1. Summary statistics of daily returns 

 

Mean SD Skewness Kurtosis Jarque-Bera ADF PP LM-ARCH 

Bitcoin 0.594 6.508 -0.001 12.576 7263.237* -41.956* -42.801* 23.590* 

MSCI World 0.033 0.818 -0.564 7.997 2079.205* -38.546* -38.368* 34.775* 

MSC Emerging Markets 0.009 0.956 -0.403 6.152 838.506* -34.458* -34.075* 29.649* 

MSCI China 0.019 1.262 -0.175 6.268 855.918* -41.316* -41.290* 28.317* 

Commodity -0.010 1.184 -0.169 5.615 550.731* -45.339* -45.306* 11.757* 

Energy -0.040 1.703 -0.046 6.198 810.607* -45.825* -45.768* 20.449* 

Gold 0.003 1.027 -0.811 10.933 5194.346* -44.240* -44.341* 4.068* 

US Dollar Index 0.007 0.463 0.062 4.590 201.487* -44.008* -44.010* 4.750* 

US Treasury -0.011 2.309 0.122 4.646 219.521* -46.189* -46.359* 15.572* 

Note: This table presents the summary statistics of daily returns and unit root tests. The data span from July 19, 2010 

to October 31, 2017. The Jarque-Bera test assesses the normality of the return distribution; LM-ARCH statistics are 

for Engle’s Lagrange Multiplier heteroscedasticity test under the null hypothesis of no ARCH effects; Augmented 

Dickey fuller (ADF) and Phillips Perron (PP) tests were used to test the null hypothesis that the series is integrated 

on the order of one; * denotes statistical significance at 1%. 

 

4.2 Empirical results 

4.2.1 Return spillovers in bull and bear markets 

Table 2 presents the results of the return spillover effects between the Bitcoin market and each of 

the eight markets studied. The return spillover effects from each of the eight markets to Bitcoin 

and Bitcoin to each of the eight markets are captured by the parameter 𝑏12
𝑖 (𝑏21

𝑖 ); where i =1, 2 

represents bear and bull markets, respectively.  
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Return spillovers from world and emerging markets to Bitcoin are positive in bull markets, but 

negative in bear markets. In contrast, the spillover from China to Bitcoin is positive regardless of 

market conditions. In the opposite relation, there is a positive return spillover from Bitcoin to 

world, emerging, and Chinese stock markets in bear markets only, while negative return 

spillovers from Bitcoin to world equities exist in bull markets. 

The results also indicated that commodity, energy, and bonds have positive return spillovers to 

the Bitcoin market in both market conditions. Conversely, return spillovers from Bitcoin to 

commodity, energy, gold, and bonds are positive in bear markets, while they are negative in bull 

markets in the cases of energy, gold, and bonds only. Return spillovers from the US dollar to 

Bitcoin are positive in bear markets, but negative in bull markets. Conversely, Bitcoin has no 

significant return spillover effect on the US dollar in both bull and bear market conditions.  

Taken together, our findings suggested that there are asymmetric return spillovers in bull and 

bear market conditions between Bitcoin and most of the assets studied, particularly from that of 

Bitcoin to the other markets. However, it appears that Bitcoin returns receive more than they 

transmit, suggesting that investors and policymakers interested in the Bitcoin market should 

consider the returns and state of other markets carefully to predict Bitcoin returns, particularly 

during bear market conditions.   

Table 2. Estimation of the mean parameters 

 Bear market Bull market 

 𝑎1
1 𝑏11

1  𝑏12
1  𝑎2

1 𝑏21
1  𝑏22

1  𝑎1
2 𝑏11

2  𝑏12
2  𝑎2

2 𝑏21
2  𝑏22

2  

[Bitcoin, MSCI 

world] 

-0.15* 

(0.00) 

-0.06* 

(0.00) 

-0.03*** 

(0.08) 

0.15* 

(0.00) 

0.06* 

(0.00) 

0.28* 

(0.00) 

0.45* 

(0.00)            

0.07* 

(0.00) 

0.24* 

(0.00) 

-0.15* 

(0.00) 

-0.04* 

(0.00) 

-0.04** 

(0.03) 

[Bitcoin, MSCI 

emerging markets] 

-0.98* 

(0.00) 

-0.02* 

(0.01) 

0.01 

(0.44) 

-0.00 

(0.89) 

0.01** 

(0.04) 

0.26* 

(0.00) 

0.24* 

(0.00) 

0.08* 

(0.00) 

0.12* 

(0.00) 

-0.00 

(0.85) 

-0.00 

(0.34) 

0.16* 

(0.00) 

[Bitcoin, MSCI 

China] 

-0.07* 

(0.00) 

-0.03* 

(0.00) 

0.06* 

(0.00) 

0.07* 

(0.00) 

0.02* 

(0.00) 

0.06* 

(0.00) 

0.17* 

(0.00) 

0.10* 

(0.00) 

0.11* 

(0.00) 

0.01* 

(0.09) 

-0.01 

(0.19) 

0.01*** 

(0.07) 

[Bitcoin, 

commodity] 

-0.06* 

(0.00) 

-0.03* 

(0.00) 

0.08* 

(0.00) 

0.01 

(0.23) 

0.02* 

(0.00) 

-0.04* 

(0.00) 

0.18* 

(0.00) 

0.12* 

(0.00) 

0.15* 

(0.00) 

-0.00 

(0.92) 

-0.01 

(0.10) 

-0.03* 

(0.00) 

[Bitcoin, energy] 

 

-0.08* 

(0.00) 

-0.05* 

(0.00) 

0.05* 

(0.00) 

0.02 

(0.22) 

0.03* 

(0.00) 

-0.03* 

(0.00) 

0.18* 

(0.00) 

0.11* 

(0.00) 

0.10* 

(0.00) 

-0.00 

(0.62) 

-0.02* 

(0.00) 

-0.02 

(0.17) 

[Bitcoin, Gold] -0.18* 

(0.00) 

-0.03* 

(0.00) 

0.24* 

(0.00) 

0.02 

(0.16) 

0.02*** 

(0.06) 

0.01 

(0.36) 

0.47* 

(0.00) 

0.08* 

(0.01) 

0.33* 

(0.00) 

-0.03* 

(0.00) 

-0.02*** 

(0.08) 

-0.00 

(0.86) 

[Bitcoin, US dollar] -0.58* 

(0.00) 

0.01 

(0.62) 

0.08* 

(0.00) 

-0.05 

(0.38) 

0.01 

(0.29) 

0.15* 

(0.00) 

0.74* 

(0.00) 

0.10** 

(0.02) 

-0.19* 

(0.00) 

-0.00 

(0.93) 

-0.02 

(0.18) 

-0.16* 

(0.00) 

[Bitcoin, US 

Treasury] 

0.03* 

(0.00) 

-0.04* 

(0.00) 

0.04* 

(0.00) 

0.09* 

(0.00) 

0.03* 

(0.00) 

-0.06* 

(0.00) 

0.13* 

(0.00) 

0.08* 

(0.00) 

0.10* 

(0.00) 

0.04* 

(0.00) 

-0.02* 

(0.01) 

-0.03* 

(0.00) 

Note:  p-values are in parentheses : *, **, and *** denote statistical significance at the 1%, 5%, and 10% levels, 

respectively. 
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4.2.2 Volatility-return relation in bull and bear markets (volatility-in-mean parameters) 

In this section, we present the results of the own and cross market volatility-returns relations in 

bull and bear markets (Table 3). 

The own market risk-returns relation 

The own risk-returns relation for the Bitcoin market (each of the eight markets) is captured 

by  𝜆11
𝑖 (𝜆23

𝑖 ). In the case of Bitcoin, the own volatility-return relation in all pairs involving 

Bitcoin returns is positive regardless of market conditions. For each of the other eight markets, 

the own risk-return relation in world, emerging, and Chinese markets also is positive in both 

market conditions. However, in the case of commodities, the relation is negative in bear markets, 

but positive in bear markets. For both gold and the US dollar, the own volatility-return relation is 

positive in bear markets and negative in bull markets. In the cases of energy and bonds, the 

relation is insignificant in both market conditions.  

Cross market risk-returns relation 

We now consider the way in which the volatility of one Bitcoin affects the returns of another 

market and the converse in both market conditions. The cross risk-returns relation is identified 

by the two parameters 𝜆13
𝑖  and 𝜆21

𝑖 . The former parameter captures the risk effect of each of the 

eight markets on Bitcoin returns, while the latter captures the effect of Bitcoin risk on the returns 

of each of the eight markets. We found that Bitcoin returns are affected positively by the 

volatility of all markets studied during bull markets. In contrast, during bear markets, Bitcoin 

returns are affected positively by the volatility of Chinese equities, commodity, and the US 

dollar, but negatively by the volatility of world and emerging markets and that of gold and bond 

markets.  
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Table 3. Estimation of the volatility-in-mean parameters 

 Bear market Bull market 

 𝜆11
1  𝜆12

1  𝜆13
1  𝜆21

1  𝜆22
1  𝜆23

1  𝜆11
2  𝜆12

2  𝜆13
2  𝜆21

2  𝜆22
2  𝜆23

2  

[Bitcoin, MSCI 

world] 
0.01* 

(0.00) 

-0.01* 

(0.00) 

-0.07* 

(0.00) 

-0.00 

(0.35) 

0.10* 

(0.00) 

0.11* 

(0.00) 

0.00 

(0.43) 

0.09* 

(0.00) 

0.05* 

(0.00) 

0.00 

(0.41) 

-0.09* 

(0.00) 

0.10* 

(0.00) 

[Bitcoin, MSCI 

emerging markets] 

0.01* 

(0.00) 

-0.07* 

(0.00) 

-0.06* 

(0.00) 

0.00 

(0.68) 

0.01 

(0.14) 

0.06* 

(0.00) 

0.00* 

(0.01) 

-0.01 

(0.17) 

0.05*** 

(0.08) 

-0.00 

(0.16) 

-0.13* 

(0.00) 

0.05* 

(0.00) 

[Bitcoin, MSCI 

China] 

0.01* 

(0.00) 

-0.00 

(0.48) 

0.02** 

(0.02) 

0.00 

(0.82) 

0.03* 

(0.00) 

-0.01 

(0.31) 

0.00* 

(0.00) 

0.07* 

(0.00) 

0.08* 

(0.00) 

-0.00 

(0.12) 

-0.11* 

(0.00) 

0.03* 

(0.00) 

[Bitcoin, 

commodity] 

0.01* 

(0.00) 

-0.01 

(0.25) 

0.03* 

(0.00) 

0.00 

(0.40) 

0.02** 

(0.02) 

-0.07* 

(0.00) 

0.00*** 

(0.07) 

0.08* 

(0.00) 

0.07* 

(0.00) 

-0.00 

(0.60) 

-0.13* 

(0.00) 

0.05* 

(0.00) 

[Bitcoin, energy] 

 

0.01* 

(0.00) 

-0.01 

(0.14) 

-0.05* 

(0.00) 

0.00 

(0.82) 

0.02* 

(0.00) 

0.00 

(0.92) 

0.00*** 

(0.07) 

0.08* 

(0.00) 

0.07* 

(0.00) 

-0.00 

(0.55) 

-0.13* 

(0.00) 

-0.00 

(0.95) 

[Bitcoin, Gold] 0.02* 

(0.00) 

-0.03* 

(0.00) 

-0.25* 

(0.00) 

-0.00* 

(0.00) 

0.11* 

(0.00) 

0.16* 

(0.00) 

-0.00* 

(0.00) 

0.09* 

(0.00) 

0.29* 

(0.00) 

0.00* 

(0.00) 

-0.12* 

(0.00) 

  -0.14* 

(0.00) 

[Bitcoin, US dollar] 0.02* 

(0.00) 

0.05* 

(0.00) 

0.00 

(0.15) 

0.07* 

(0.00) 

0.15* 

(0.00) 

0.15* 

(0.00) 

-0.00 

(0.19) 

0.00 

(0.45) 

0.09* 

(0.00) 

-0.00 

(0.21) 

0.16* 

(0.00) 

0.20* 

(0.00) 

[Bitcoin, US 

Treasury] 

0.01* 

(0.00) 

-0.08* 

(0.00) 

-0.05* 

(0.00) 

-0.00* 

(0.00) 

0.02* 

(0.00) 

0.00 

(0.58) 

0.00* 

(0.00) 

0.00 

(0.97) 

0.08* 

(0.00) 

0.00* 

(0.00) 

-0.12* 

(0.00) 

-0.01 

(0.26) 

Note:  p-values indicated as above. 

 

With respect to the effect of Bitcoin volatility on the returns of the eight markets studied, the 

results indicated significant effects in three of eight cases. Specifically, the returns of gold and 

bonds are affected negatively (positively) by the volatility of the Bitcoin market in bear (bull) 

markets, while US dollar returns are affected positively in bear markets. Thus, the volatility 

effect of other markets on Bitcoin returns is more important than is Bitcoin’s volatility effect on 

the other markets, regardless of market conditions. Specifically, the effect on Bitcoin is positive 

during bull markets, while it is mixed during the down market. Largely, it is negative, except for 

the cases of Chinese equities, commodities, and the US dollar. With respect to magnitude, the 

negative effect of the gold market on that of Bitcoin is the strongest. 

4.2.3 Parameters of smoothness, GJR-GARCH, and DCC models 

To justify the appropriateness of our reliance on the smooth transition, asymmetric GARCH 

model, and DCC specification further, we report in Table 4 the results of several parameter 

estimates. Regarding the parameters of smoothness (𝛾1  and𝛾2), the results were positive for 

every dataset. The values of these two parameters were neither close to zero nor very high, which 

implies that the transition from a bear to a bull market situation is smooth. Hence, the validity of 

the smooth transition in the conditional mean model was justified empirically for all cases. 



 

16 
 

Table 4. Estimation of the parameters of smoothness, GJR-GARCH and DCC models 

   

 𝛾1 𝛾2 𝑐1 𝑐2 𝛼1 𝛼2 𝑑1 𝑑2 𝛽1 𝛽2 𝜑1 𝜑2 

[Bitcoin, MSCI 

world] 

2.58** 

(0.00) 

2.01* 

(0.00) 

0.70* 

(0.00) 

0.04* 

(0.00) 

0.15* 

(0.00) 

0.04* 

(0.00) 

-0.05* 

(0.00) 

0.23* 

(0.00) 

0.87* 

(0.00) 

0.74* 

(0.00) 

0.16* 

(0.00) 

0.29* 

(0.00) 

[Bitcoin, MSCI 

emerging markets] 

3.59* 

(0.00) 

2.11* 

(0.00) 

0.78* 

(0.00) 

0.03* 

(0.00) 

0.16* 

(0.00) 

0.00 

(0.56) 

-0.06* 

(0.00) 

0.12* 

(0.00) 

0.86* 

(0.00) 

0.88* 

(0.00) 

0.14* 

(0.00) 

0.31* 

(0.00) 

[Bitcoin, MSCI 

China] 

2.48* 

(0.00) 

2.12* 

(0.00) 

0.67* 

(0.00) 

0.06* 

(0.00) 

0.16* 

(0.00) 

0.02* 

(0.01) 

-0.06* 

(0.00) 

0.08* 

(0.00) 

0.86* 

(0.00) 

0.89* 

(0.00) 

0.14* 

(0.00) 

0.29* 

(0.00) 

[Bitcoin, 

commodity] 

2.51* 

(0.00) 

2.14* 

(0.00) 

0.70* 

(0.00) 

0.06* 

(0.00) 

0.16* 

(0.00) 

0.05* 

(0.00) 

-0.06* 

(0.00) 

0.10* 

(0.00) 

0.86* 

(0.00) 

0.85* 

(0.00) 

0.10* 

(0.00) 

0.29* 

(0.00) 

[Bitcoin, energy] 

 

2.47* 

(0.00) 

2.10* 

(0.00) 

0.70* 

(0.00) 

0.06* 

(0.00) 

0.16* 

(0.00) 

0.04* 

(0.00) 

-0.06* 

(0.00) 

0.09* 

(0.00) 

0.86* 

(0.00) 

0.88* 

(0.00) 

0.12* 

(0.00) 

0.30* 

(0.00) 

[Bitcoin, Gold] 2.54* 

(0.00) 

2.08* 

(0.00) 

1.03* 

(0.00) 

0.04* 

(0.00) 

0.22* 

(0.00) 

0.06* 

(0.00) 

-0.08* 

(0.00) 

0.00 

(0.41) 

0.82* 

(0.00) 

0.88* 

(0.00) 

0.05* 

(0.01) 

0.32* 

(0.00) 

[Bitcoin, US 

dollar] 

2.71* 

(0.00) 

2.03* 

(0.00) 

2.72* 

(0.00) 

0.03* 

(0.00) 

0.30* 

(0.00) 

0.06* 

(0.00) 

-0.08* 

(0.01) 

0.02 

(0.35) 

0.70* 

(0.00) 

0.77* 

(0.00) 

0.01* 

(0.00) 

0.29* 

(0.00) 

[Bitcoin, US 

Treasury] 

2.61* 

(0.00) 

2.10* 

(0.00) 

0.79* 

(0.00) 

0.28* 

(0.00) 

0.19* 

(0.00) 

0.06* 

(0.00) 

-0.08* 

(0.00) 

0.04* 

(0.00) 

0.85* 

(0.00) 

0.86* 

(0.00) 

0.14* 

(0.00) 

0.31* 

(0.00) 

Note:  p-values as above. 

 

With respect to the behavior of the conditional variance model, BTGARCH, we found that all 

parameters in the GARCH component of the model (𝛼1, 𝛼2, 𝛽1, and 𝛽2) were significant, except 

for 𝛼2 in one dataset (Bitcoin and MSCI emerging markets). The two coefficients that capture 

asymmetry in the conditional variance (𝑑1𝑗 and𝑑2𝑗) were highly significant in all cases, except 

for Bitcoin-Gold and Bitcoin-US dollar, where 𝑑2𝑗  was insignificant. Thus, consideration of 

asymmetry in the volatility-return relation between the Bitcoin market and other markets was 

established empirically. Further, we found that the coefficients involved in the dynamic 

conditional correlation (𝜑1 and𝜑2) were significant in all cases, which confirms that the DCC 

modeling approach is useful in explaining the volatility dynamics between Bitcoin and the other 

markets. 

4.2.4 Results of the main hypotheses tests 

We now turn our attention to Table 5, which provides the results of the tests of the hypotheses 

formulated in section 3.4. The entries in columns 1 and 2 show that the null hypothesis of ‘no 

spillover in mean’ could be rejected in all but two cases, the mean spillover effect from Bitcoin 

returns to MSCI emerging markets returns and Gold returns. 

The null hypotheses of equality in the mean spillover effects from the other asset returns to 

Bitcoin returns in the bull and bear regimes (i.e., column 3) were rejected for all cases, while the 
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null hypotheses of equality in the mean spillover effect from Bitcoin to other market returns (i.e., 

column 4) were rejected for 7 cases, with the exception of Bitcoin-MSCI emerging markets and 

Bitcoin-US dollar. 

With respect to the null hypothesis of equality in volatility-in-mean components in the bull and 

bear market conditions, the results in column 5 show that the null hypothesis was rejected at the 

5% level in most cases and at the 10% level for Bitcoin-MSCI China in the case of the own risk-

return relation in Bitcoin markets, and for the Bitcoin-MSCI world dataset, the null hypothesis 

was rejected. Column 8 suggests that the null of equality in volatility-in-mean components in the 

bull and bear market conditions in the case of the own risk-returns relation for the other asset 

markets was rejected for the cases of Bitcoin-MSCI world, Bitcoin-MSCI emerging markets, 

Bitcoin-energy, and Bitcoin-US Treasury. In the other cases, the null hypothesis was rejected at a 

very high level of significance. Columns 6 and 7 report the results of the Wald tests of the null 

hypotheses of equality of the cross risk-return relation involving Bitcoin returns and other market 

returns across bull and bear regimes. The results suggested that the null hypothesis of equality of 

the effect of the risk from the Bitcoin market to other market returns in both bull and bear 

regimes could not be rejected in all cases, except for those of Bitcoin-Gold and Bitcoin-US 

Treasury. The similar null hypothesis in the case of the effect of risk from other market returns 

on Bitcoin market returns was rejected in all cases. Finally, Columns 10 and 11 show that the 

results of the tests of the two null hypotheses, ‘no leverage effect’ and ‘no dynamic behavior’ in 

the conditional correlation, respectively, suggest the rejection of both of these null hypotheses in 

all cases. 
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Table 5. Results of the Wald test of equality of coefficients for bull and bear markets 

Column No. 1 2 3 4 5 6 7 8 9 10 11 

Null  

Hypothesis 
𝑏12

1 = 𝑏12
2

= 0 

𝑏21
1 = 𝑏21

2

= 0 

𝑏12
1 = 𝑏12

2  𝑏21
1 = 𝑏21

2  𝜆11
1 = 𝜆11

2  𝜆13
1 = 𝜆13

2  𝜆21
1 = 𝜆21

2  𝜆23
1 = 𝜆23

2  𝜆𝑖𝑗
1 = 𝜆𝑖𝑗

2  𝑑1 = 𝑑2

= 0 

𝜑1 = 𝜑2

= 0 

[Bitcoin, MSCI 

world] 

535.35* 

(0.00) 

25.76* 

(0.00) 

48.43* 

(0.00) 

19.23* 

(0.00) 

2.61 

(0.10) 

12.21* 

(0.00) 

0.75 

(0.38) 

0.57 

(0.44) 

543.44* 

(0.00) 

145.68* 

(0.00) 

2684.17* 

(0.00) 

[Bitcoin, MSCI 

emerging markets] 

127.62* 

(0.00) 

4.41 

(0.10) 

15.89* 

(0.00) 

2.50 

(0.11) 

4.31** 

(0.03) 
6.27* 

(0.01) 

0.80 

(0.37) 

0.99 

(0.31) 

127.61* 

(0.00) 

97.51* 

(0.00) 

951.08* 

(0.00) 

[Bitcoin, MSCI 

China] 

107.70* 
(0.00) 

7.37** 
(0.02) 

10.43* 
(0.00) 

5.33** 
(0.02) 

3.38*** 
(0.06) 

7.03* 
(0.00) 

0.90 
(0.34) 

6.67* 
(0.00) 

158.99* 
(0.00) 

68.20* 
(0.00) 

991.59* 
    (0.00) 

[Bitcoin, 

commodity] 

266.26* 

(0.00) 

7.69** 

(0.02) 

17.88* 

(0.00) 

6.20* 

(0.01) 

3.86** 

(0.04) 
5.89* 

(0.01) 

0.46 

(0.49) 

65.99* 

(0.00) 

224.15* 

(0.00) 

116.36* 

(0.00) 

862.20* 

    (0.00) 

[Bitcoin, energy] 

 

52.65* 

(0.00) 

16.70* 

(0.00) 

12.40* 

(0.00) 

15.36* 

(0.00) 

6.40* 

(0.01) 
26.33* 

(0.00) 

0.14 

(0.70) 

0.01 

(0.90) 

199.07* 

(0.00) 

52.99* 

(0.00) 

996.46* 

(0.00) 

[Bitcoin, Gold] 108.18* 
(0.00) 

3.61 
(0.16) 

34.75* 
(0.00) 

3.55** 
(0.05) 

6.86* 
(0.00) 

22.59* 
(0.00) 

7.95* 
(0.00) 

14.34* 
(0.00) 

198.54* 
(0.00) 

35.71* 
(0.00) 

911.56* 
    (0.00) 

[Bitcoin, US 

dollar] 

43.89* 
(0.00) 

3.43* 
(0.00) 

41.53* 
(0.00) 

1.40 
(0.23) 

13.76* 
(0.00) 

150.39* 
(0.00) 

1.72 
(0.18) 

6.83* 
(0.00) 

235.19* 
(0.00) 

6.29** 
(0.04) 

599.43* 
    (0.00) 

[Bitcoin, US 

Treasury] 

98.40* 

(0.00) 

12.27* 

(0.00) 

20.32* 

(0.00) 

12.05* 

(0.00) 

8.04* 

(0.00) 
62.69* 

(0.00) 

11.10* 

(0.00) 

2.06 

(0.15) 

247.09* 

(0.00) 

57.24* 

(0.00) 

1378.05* 

    (0.00) 

Note:  p-values as above. 

Our analyses above revealed evidence of significant return spillovers between Bitcoin and the 

four asset classes that often were asymmetric and differed depending on market conditions. 

These empirical findings contrast with those that claim that the Bitcoin market is isolated 

completely from the rest of the financial system (Ji et al., 2017) or is unaffected by economic and 

financial factors (Baek and Elbeck, 2015; Kristoufek, 2013; Ciaian et al., 2016). Our findings 

also were not consistent fully with prior observations that Bitcoin is not linked with UK equities 

and the US dollar (Dyhrberg, 2016) and thus has safe-haven properties. In fact, our results were 

consistent in part with those of Li and Wang (2017) who showed that Bitcoin’s price is more 

sensitive to economic fundamentals than to technological factors. Our results also were 

somewhat consistent with those of Bouoiyour and Selmi (2015) and Kristoufek (2015), who 

stressed the close association between Bitcoin and the Chinese stock market. However, they 

differed with respect to the results involving gold. Unlike Bouoiyour and Selmi (2015) and 

Kristoufek (2015), we demonstrated a strong effect of gold on the Bitcoin market, probably 

attributable to the application of a different method and a longer sample period. With respect to 

the primary results of volatility spillovers, they revealed significant volatility spillovers to the 

Bitcoin market and almost no feedback effect.  
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5. Concluding remarks 

This study was motivated by the scarce evidence in the empirical literature on return and 

volatility spillovers between Bitcoin and several asset classes, and whether these spillovers 

exhibit nonlinearity and asymmetric effects that differ between bull and bear market conditions. 

Using a VAR-asymmetric GARCH model that captures the asymmetric nature of mean and 

volatility spillovers in two market conditions, and allowing a dynamic conditional correlation 

between pairs of assets, our analyses contribute to the related literature because of our 

application of a rich methodology, Bitcoin data, and extensive datasets of different asset classes. 

Our principal findings indicate that spillovers between Bitcoin and the assets classes studied are 

subject to time and market conditions, as seen previously for equity markets (Kundu and Sarkar, 

2016). Bitcoin is connected with the other assets to a greater extent via return than volatility. 

There is an asymmetry in spillovers for Bitcoin and asset pairs where the recipient usually is 

Bitcoin. Specifically, the volatility in Bitcoin can be predicted based on that of the other assets, 

which is not the case in the converse situation. 

As Bitcoin has shown signs of moderate integration with most of the asset classes studied, 

investors and fund managers must be cautious when combining Bitcoin with most of the asset 

classes, as several previous studies have shown (Baek and Elbeck, 2015; Baur et al., 2015; Brière 

et al., 2015; Bouri et al., 2017b; Ji et al., 2017). In doing so, market participants should account 

carefully for market conditions. Furthermore, they should not consider equities a homogenous 

asset class, but differentiate between world, emerging, and Chinese markets when making 

investment decisions involving Bitcoin. The same is true for commodities, energy, and gold. 

Furthermore, policymakers and regulators should be concerned about the return spillover effects 

from the Bitcoin market to that of equities. The fact that Bitcoin appears to receive from the 

different asset classes more than it takes suggests that Bitcoin does not present an imminent risk 

to the global financial system. However, it would be wise to continue to monitor the Bitcoin 

market (European Central Bank, 2012). This is very important if the exponential value 

appreciation in the Bitcoin market continues, which will make Bitcoin a larger player and 

potentially a source of instability for the global financial system.  

Future research should consider the determinants of significant return and volatility spillovers 

between Bitcoin and these other assets.  
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Appendix 

A.1 Preliminary analysis 

In this preliminary analysis, we focused on nonlinearity, multiple structural breaks, and model 

specification.  

To assess the existence of nonlinearity, we applied Brock et al.’s (1996) BDS tests to the 

residuals of AR(1) models for the nine variables and the residuals from the Bitcoin equations of 

the VAR(1) model comprising the other variable one at a time. The p-values of the BDS test are 

reported in Table 1A. The results showed that, except for gold returns, the null hypothesis of no 

serial dependence was rejected at very high levels of significance. These results provide strong 

evidence of nonlinearity in not only the variables themselves, but also in their relation to 

Bitcoins. 

 

Table 1A. BDS independence test 

 Dimensions 

AR(1): Bitcoin 2 3 4 5 6 

AR(1): MSCI world  0.00 0.00 0.00 0.00 0.00 

AR(1): MSCI emerging markets  0.00 0.00 0.00 0.00 0.00 

AR(1): MSCI China  0.00 0.00 0.00 0.00 0.00 

AR(1): Commodity 0.00 0.00 0.00 0.00 0.00 

AR(1): Energy 0.00 0.00 0.00 0.00 0.00 

AR(1): Gold  0.78 0.48 0.12 0.02 0.00 

AR(1): US dollar  0.02 0.00 0.00 0.00 0.00 

AR(1): US Treasury Yield  0.00 0.00 0.00 0.00 0.00 

VAR(1): [Bitcoin, MSCI world] 0.00 0.00 0.00 0.00 0.00 

VAR(1): [Bitcoin, MSCI emerging markets] 0.00 0.00 0.00 0.00 0.00 

VAR(1): [Bitcoin, MSCI China] 0.00 0.00 0.00 0.00 0.00 

VAR(1): [Bitcoin, commodity] 0.00 0.00 0.00 0.00 0.00 

VAR(1): [Bitcoin, energy] 0.00 0.00 0.00 0.00 0.00 

VAR(1): [Bitcoin, Gold] 0.00 0.00 0.00 0.00 0.00 

VAR(1): [Bitcoin, US dollar] 0.00 0.00 0.00 0.00 0.00 

VAR(1): [Bitcoin, US Treasury] 0.00 0.00 0.00 0.00 0.00 

Note: These are the p-values of the BDS test statistic, with the test applied to the residuals recovered from the AR(1) 

models of the nine variables and the residuals from the Bitcoin equations of the VAR(1) model comprising the other 

variables one at a time. 
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We also carried out the Bai and Perron (2003) test of multiple structural breaks. As shown in 

Table 2A, there is evidence of structural breaks not only in the Bitcoin returns series, but also in 

their relations with other variables. 

Table 2A. Bai-Perron (2003) tests for multiple breaks 

(Method: Global L breaks vs. none and Sequential L+1 breaks vs. L) 

 Break Dates 

AR(1): Bitcoin 11/19/2013 

AR(1): MSCI world  No break 

AR(1): MSCI emerging markets  No break 

AR(1): MSCI China  No break 

AR(1): Commodity 6/23/2014 and 1/21/2016 (WD max test) 

AR(1): Energy 6/23/2014 and 1/21/2016 (WD max test) 

AR(1): Gold  No break 

AR(1): US dollar  No break 

AR(1): US Treasury Yield  No break 

VAR(1): [Bitcoin, MSCI world] 11/19/2013 

VAR(1): [Bitcoin, MSCI emerging markets] 11/19/2013 

VAR(1): [Bitcoin, MSCI China] 11/19/2013 

VAR(1): [Bitcoin, commodity] 11/19/2013 

VAR(1): [Bitcoin, energy] 11/19/2013 

VAR(1): [Bitcoin, Gold] 11/19/2013 

VAR(1): [Bitcoin, US dollar] 11/19/2013 

VAR(1): [Bitcoin, US Treasury] 11/19/2013 

Note: Break dates are based on the Bai and Perron (2003) test of multiple structural breaks applied to the AR(1) 

models of the nine variables and the Bitcoin equations of the VAR(1) model comprising the other variable one at a 

time. 

We also conducted tests of linearity and model selection.  

In the spirit of Tsay’s (1989) seminal methodology, Camacho (2004) proposed a step-wise 

procedure to model the nonlinear VAR model with a smooth transition specification. In this 

context, one single-regime linear VAR model that is the case under the null is specified, and then 

the hypothesis of smoothness in the transition between regimes is tested. The null hypothesis of 

linearity is that the smooth transition parameter 𝛾  is equal to zero, i.e., 𝐻0 ∶  𝛾 = 0, and the 

alternative hypothesis is 𝐻1 ∶  𝛾 > 0 . Because the model is not identified under the null 

hypothesis, any statistical test that uses a regime switching model as the alternative suffers from 

a serious problem, the nuisance parameter problem. To avoid this issue, a standard Lagrange 

Multiplier (LM)-type test based on an auxiliary regression that is obtained from a suitable Taylor 

series expansion of the transition function around the point 𝛾 = 0, was used (see Granger and 
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Terasvirta, 1993 for details). Consistent with this proposal for the univariate case, Camacho 

(2004) proposed the following two auxiliary regressions for the bivariate case: 

𝑟1𝑡 =  𝜏1 + ∑ 𝜉1ℎ
∕

𝑋𝑡𝑤ℎ + 𝑢1𝑡
3
ℎ=0                                          (1A) 

and𝑟2𝑡 =  𝜏2 + ∑ 𝜉2ℎ
∕

𝑋𝑡𝑤ℎ + 𝑢2𝑡
3
ℎ=0                                    (2A) 

where 𝑋𝑡
/

= (𝑟1 𝑡−1̅̅ ̅̅ ̅̅ , 𝑟2 𝑡−1̅̅ ̅̅ ̅̅ ), 𝜉1ℎ and 𝜉2ℎ are (1 × 2) coefficient vectors, and the variable 𝑤 is the 

transition variable, which is the lag value of returns. The null hypothesis of linearity thus 

corresponds to 𝜉11 = 𝜉12 = 𝜉13 = 𝜉21 = 𝜉22 = 𝜉23 = 0. 

If linearity, i.e., one single regime, is rejected in favor of additional regimes, the model selection 

test is then required to choose between logistic and exponential transition functions. To that end, 

a sequence of nested hypotheses was formulated for the two auxiliary regressions. Following 

Camacho (2004), the null and alternative hypotheses for the nested tests, together with the choice 

of an appropriate transition function, are presented in the following table. Three test statistics are 

involved in this exercise, and are denoted as Test 1, Test 2, and Test 3. Under the respective null 

hypothesis, these test statistics follow non-standard distributions, and their critical values are 

available in Camacho (2004). 

Table 3A.  Model selection tests 

Hypothesis Test 1 Test 2 Test 3 Choice 

Null 𝜉𝑖3 = 0 𝜉𝑖𝑗 = 0, 

𝑗 = 2,3 

𝜉𝑖𝑗 = 0, 

𝑗 = 1,2,3 

……. 

Alternative 𝜉𝑖3 ≠ 0 𝜉𝑖2 ≠ 0 

𝜉𝑖3 = 0 

𝜉𝑖1 ≠ 0 

𝜉𝑖𝑗 = 0 

𝑗 = 2,3 

……. 

Test conclusion Reject null 

Do not reject null 

Do not reject null 

Do not reject null 

…… 

Reject null 

Do not reject null 

Reject null 

………. 

Do not reject null 

Reject null 

Reject null 

Logistic 

Exponential 

Logistic 

No conclusion 
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As Table 4A shows, in all cases, the null hypothesis of linearity was rejected at very high levels 

of significance. Further, in most cases, the underlying nature of the smooth transition function is 

logistic. 

 

  Table 4A. Test of linearity and model selection  

 Transition variable 

 𝑟1,𝑡−1 𝑟2,𝑡−1 

 Linearity test Model selection Linearity test Model selection 

[Bitcoin, MSCI 

world] 

68.86* 

(0.00) 

LSTVAR 67.79* 

(0.00) 

LSTVAR 

[Bitcoin, MSCI 

emerging markets] 

38.72* 

(0.00) 

No Conclusion 56.72* 

(0.00) 

LSTVAR 

[Bitcoin, MSCI 

China] 

33.69* 

(0.00) 

LSTVAR 63.63* 

(0.00) 

LSTVAR 

[Bitcoin, 

commodity] 

46.86* 

(0.00) 

LSTVAR 66.18* 

(0.00) 

LSTVAR 

[Bitcoin, energy] 33.67* 

(0.00) 

LSTVAR 63.87* 

(0.00) 

LSTVAR 

[Bitcoin, Gold] 36.47* 

(0.00) 

No Conclusion 96.23* 

(0.00) 

LSTVAR 

[Bitcoin, US dollar] 17.88* 

(0.00) 

No Conclusion 66.24* 

(0.00) 

LSTVAR 

[Bitcoin, US 

Treasury] 

34.60* 

(0.00) 

LSTVAR 58.32* 

(0.00) 

LSTVAR 

Note:  p-values as in text. 
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