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Abstract 
With the association of software security assurance in the development of code based systems; software developers are 
relying on the Vulnerability discovery models to mitigate the breaches by estimating the total number of vulnerabilities, 
before they’re exploited by the intruders. Vulnerability Discovery Models (VDMs) provide the quantitative 
classification of the flaws that exists in a software that will be discovered after a software is released. In this paper, we 
develop a vulnerability discovery model that accumulate the vulnerabilities due to the influence of previously 
discovered vulnerabilities. We further evaluate the proportion of previously discovered vulnerabilities along with the 
fraction additional vulnerabilities detected. The quantification methodology presented in this article has been 
accompanied with an empirical illustration on popular operating systems’ vulnerability data.  
 
Keywords: Vulnerability discovery modeling, Software security, Vulnerability categorization. 
 
 

1. Introduction 
Despite the progress made in computer programming and the respective software engineering 
practices, almost all the software program we often use in our day to day life still contain 
numerous bugs. However, post release of a software, some of the defects encountered are clearly 
more hazardous than the others. These flaws may affect the safety of the software system, 
henceforth termed as software vulnerabilities. A software vulnerability can be defined as “an 
instance of a mistake in the requirement, development, or implementation of a software such that 
its execution may violate the security policy” (Krsul, 1998). It has always been top most priority 
for a software engineer to discover the flaws, and also mitigate the risk by quickly distributing the 
patches. During the development of a software system, developer unintentionally inject some 
vulnerabilities in the source code repository, which are later noticed and resolved. All the 
potential vulnerabilities in a software are not discovered at the same time. Consequently, on the 
basis of the degree to which an individual vulnerability is discovered in the software, the 
developer can categorize the individual vulnerability based on a Common Vulnerability Scoring 
System (CVSS). The categorization procedure is suggested by the FIRST (www.first.org) as an 
effort to offer a vendor independent score system and reports a CVSS based vulnerability 
distribution to catalog various vulnerabilities based on their types. The National Vulnerability 
Database (NVD) maintained by National Institute of Standard Technology (NIST) provides the 
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score report and distribution of each vulnerability. A common vulnerability scoring system is an 
open framework for assessing the characteristics and severity of software vulnerabilities. 
Development of scoring system is important because they can assist in, investigating the intrinsic 
qualities of a vulnerability, and the penetration capabilities for breaching a soft spot. A CVSS 
suggests an approach to capture both quantitative and qualitative characteristic of a vulnerability 
to the software developer. The numeral score allows a developer to rank a vulnerability based on 
its severity and further helps the organization to assess the risk and prioritize the patching 
process. 
 
The extent of an impact to the confidentiality, integrity and availability due to the exploitation of 
a vulnerability affects the security of the whole system. When a vulnerability is discovered, 
various metrics such as: base, temporal and environmental are calculated that captures several 
properties based on the intrinsic characteristic, change in time and process environment of a 
vulnerability. The vulnerability discovery refers to examine and locating the possible bug, flaw or 
weakness of the software system using various statistical tools and techniques. Post-release, both 
testers and users attempt to discover the vulnerable points in the software, and a certain 
proportion of users are attackers trying to breach the software. In this regard, software testers 
have to effectively monitor the vulnerability discovery process and evaluate the threat level 
corresponding to each vulnerability. Further, quantifying the vulnerabilities in a software system 
is similar to the detection of underlying faults in a software. Like the categorization of software 
faults help software engineers to check for reliability; in a similar fashion categorization of 
vulnerabilities helps the developer to counter-measure the threat due to any potential breach. 
These adequate measures are like, assigning resources for security testing, development and 
scheduling the safety patches. 
 
In the context of vulnerability discovery, a flaw present in the software is a type of defect that can 
imply a high degree of risk to a software system. Due to its analogous behavior, various 
researchers have incorporated the concept of software reliability growth modeling in order to 
quantify the trends in the vulnerability discovery process. With proper modeling of software 
vulnerability process, the developer might be aware of the dormant flaws present in the software 
and can apply the adequate resources to inhibit the threats. As a brief review of related research, a 
substantial number of Vulnerability Discovery Models (VDMs) have been developed recently. 
These vulnerability models consider various aspects of vulnerability scenario ranging from 
exponential to s-shaped vulnerability discovery curves. The taxonomy of major VDMs, can be 
divided into two groups: time-based and effort based models. The time-based VDMs are 
parametric functions that can predict the total number of vulnerabilities discovered at a given time 
point. Most of the VDMs developed in the literature considers time as the governing factor. 
Since, the vulnerability repository uses calendar time intervals for the vulnerability disclosure. It 
was Anderson (2002) who first introduced the VDM, and the model developed was explicitly 
based on the SRGM outline. Anderson (2002) applied the Brady et al. (1999) model to capture 
the trend of vulnerability discovery. Yet, the empirical results suggest worst fitting of data. 
Needham (2002), Alhazmi and Malaiya (2005) argued that the difference in fitting the data for 
the Anderson Thermodynamic (AT) model is due to sociological factors like: decrease in 
vulnerability discovery rate can be described due to the losing attractiveness of software version 
over time rather than the difficulty in discovering vulnerabilities (Massacci and Nguyen, 2014). 
Later, in 2005, Rescorla (2005) attempted to classify the trends in the vulnerability discovery data 
by considering the linear and exponential model to predict the number of vulnerabilities. Alhazmi 
and Malaiya (2005) proposed a logistic, s-shaped model to capture the phenomenon considering 
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the impact of vulnerability detection rate during the three phases. The model also advocated that 
the security defect discovery differs distinctly from the normal software bugs. At first, users need 
to understand the target system in order to infiltrate, so they discover few vulnerabilities. With the 
increased attractiveness over the time, a significant number of users begin targeting the system 
resulting an amplified growth. Finally, the discovery process gets saturated due to a substantial 
switching of user to a newer technology. Furthermore, Alhazmi and Malaiya (2005) also focused 
on effort based modeling, where the discovery of vulnerabilities is based on efforts applied rather 
than time alone. In other work, Joh et al. (2008) considered that, in some situations the discovery 
growth curve could be asymmetric in nature and suggested to use Weibull distribution for 
vulnerability discovery due to the skewness present in its pdf. On the similar lines, Younis et al. 
(2011) inspected the applicability of Folded VDM. Moreover, Kapur et al. (2015) examined the 
logistic detection rate while discovering vulnerabilities. Recently, Anand and Bhatt (2016) 
proposed a hump-shaped model to capture the vulnerability exposure pattern due to the 
attractiveness of a software product in the market. They used a weighted criteria based ranking 
approach to judge the performance of proposed model with the existing VDMs. Besides the 
single version VDMs, multi-version VDMs have received less attention. A few authors have 
considered the discovery pattern in a multi-version software. Kim et al. (2007) examined the 
influence of shared source code in multi-versions vulnerability discovery process of a software. 
Lately, Anand et al. (2017) have formulated a multi-version VDM to quantify the number of 
vulnerabilities discovered. The model was based on the feature enhancement and shared code 
phenomenon that considered the vulnerability discovery rate attributed for the latest offering that 
is also accountable in previous version of the software due to code sharing. 
 
The purpose of our article is that most of the past studies considered the discovery of a loop holes 
as a single vulnerability, while estimating the potential security defects. They did not elucidate 
exactly what number of additional flaws are being discovered, when a conceptual flaw is 
discovered as one vulnerability. Several researchers showed the existence of many vulnerabilities 
reported for the latest offering were also present in its preceding releases due to the existence of 
shared code. Moreover, a software can be a part of software product family and the vulnerabilities 
discovered in any version may indeed present in the other versions of the same product family. 
For example, a CVE entry, CVE-2011-5046, discovered in the Microsoft Windows family had 
affected different products namely Microsoft Windows XP, Windows Server 2003, Windows 
Vista, Windows Server 2008, and Windows 7. Hence, a single vulnerability discovered in any 
version may affect the discovery process of other versions and consequently might escalate the 
flaw count. Additionally, it has been observed that, one vulnerability count could exploit different 
types of vulnerabilities that exists in a software due to one conceptual flaw. As in the case of a 
CVE entry, CVE-2016-3375, a single flaw in the OLE Automation mechanism and VBScript 
scripting engine causes four different vulnerabilities, viz. Denial of Service, Execute Code, 
Overflow, and Memory corruption. Therefore, a single vulnerability can also be attributed for the 
discovery of additional vulnerabilities during the vulnerability discovery process (Windows 7, 
2016). 
 
In this paper, we first describe how vulnerability discovery model can be used to capture the 
above-mentioned phenomenon to model the vulnerability discovery process, then present an 
analytical derivations needed to compute the fraction of additional vulnerabilities discovered 
during the vulnerability discovery process. Next, in section 3, the predictability of the proposed 
model is illustrated and the segregation of the vulnerabilities lying dormant in the software is 
made into two classes. In section 4, the conclusion is given followed by the references. 
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2. Model Development 
The vulnerability discovery model, suggested by the Alhazmi and Malaiya (2005) considered the 
impact of two factors that governed the rate of change of vulnerability discovered. The first factor 
deals with the number of installed base due to the rising popularity of a software and the second 
factor capture the decreasing phenomenon of the number of undetected vulnerabilities with time. 
The model advocated an s-shaped discovery curve due to its logistic behavior. The vulnerability 
discovery process modeled here considers the association of conceptual flaws being discovered 
with the flaws that triggers the detection of some supplementary flaws during the discovery 
process. In the model we assume that the discovery process is initiated by a certain number of 
vulnerabilities discovered during the testing process and the rate of change of vulnerability 
discovered at a given time comprises of two components that administrate the vulnerability 
discovery process; the first factor constitute the vulnerabilities discovered with a detection rate r
and the second factor represents additional vulnerabilities which are detected due to the influence 
of the vulnerabilities discovered by time t . The differential equation describing the discovery 
process can be modeled as: 
 

   
( ) ( )

( ) ( )
d t t

r N t s N t
dt N

 
                                                                                            (1) 

 
where r  represent the vulnerability detection rate and s resemble the rate that constitute the 

discovery of additional vulnerabilities influenced by the discovered vulnerabilities.  ( )N t  

denotes the untapped vulnerabilities remaining in the software and 
( )t

N


 is the fraction of 

vulnerabilities discovered by the time t . We get a closed form solution after solving the equation 
(1) as:  
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It is interesting to note that, the behavior of our proposed model can be comparable to the model 
proposed by Kapur and Garg (1992) in the software reliability studies. Moreover, if we take 

b r s   and 
s

r
   , then, the proposed model reduces to the model given by Kapur et al. 

(2015). If we define, ( )f t  as the probability of vulnerability discovered at time t  and ( )F t  as the 

fraction of vulnerabilities being discovered by time t , then the likelihood of vulnerability at a 
given time t or the equation (1) can be expressed as: 
 

  
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                                                                                                  (3) 
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The solution to the equation (4) yield the s-shaped cumulative vulnerability distribution and is 
given as: 
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                                                                                                                     (5) 

 
Further, the differentiation of ( )F t  gives the non-cumulative vulnerabilities distribution 

representing the stated discovery process as: 
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Hence, if N  is the total number of vulnerabilities in the software, then the cumulative number of 
vulnerabilities discovered by time t , ( )t  given in equation (2) can be rewritten as: 

 
( ) ( )t N F t                                                                                                                                  (7) 

 
The noncumulative vulnerability distribution given in equation (6) can be illustrated in the Fig. 1. 

The curve achieve its peak, ( )f T   or ( )F T   , at time T  when 
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Fig. 1. Noncumulative vulnerabilities distribution 



International Journal of Mathematical, Engineering and Management Sciences                                 
Vol. 2, No. 4, 288–299, 2017 
ISSN: 2455-7749 

293 

We can validate that the curve, as shown in the above Fig. 1, for the noncumulative vulnerability 

distribution is symmetric with respect to time. It can be shown that ( 0) ( 2 )f t f t T r    , that 

is, the proportion of noncumulative vulnerability discovered around the peak time T   up to 2T 

confirming the symmetric behavior of the vulnerability discovery rate for the proposed s-shaped 
vulnerability discovery model. In fact, Younis et al. (2011) mentioned that, there is no assertive 
reasons advocating the rise and fall should be symmetric in the case of Alhazmi and Malayia 
Logistic model. However, Anand and Bhatt (2016) claimed that vulnerability discovery rate 
follows a hump-shaped curve showing the symmetric behavior of the discovery rate and hence 
can be backed using the equation (6). 
 

It can be noted that, the term  1 ( )r F t  in equation (4) represents the proportion of 

vulnerabilities discovered by developer with a vulnerability discovery rate, r . Here, the 
vulnerability count resembled by this proportional are influenced by the advisory reports by 

software vendor. In contract, the second term  ( ) 1 ( )sF t F t  represents the fraction of additional 

vulnerabilities discovered due to the influence of the previously disclosed vulnerabilities. The 
proportion of vulnerability discovery is depicted in Fig. 2, representing the vulnerabilities 
discovered due to the security bulletin by the software vendor and the additional vulnerabilities 
attributed because of the previously disclosed vulnerabilities. 
 
 

 
Fig. 2. Categorization of noncumulative vulnerabilities discovered 

 
 

Moreover, in this work we try to capture the proportion of discovered vulnerabilities due to the 
influence of above stated two factors. As assumed, ( )F t  is cumulative fraction of vulnerabilities 

discovered by time t . Therefore, as per the proposed model, we can anticipate that ( )F t  inhibit 

two components. Viz., 1( )F t  the proportion of vulnerability discovered mentioned in the advisory 

reports by software vendor (leading vulnerability) and 2 ( )F t  corresponding to the additional 

vulnerabilities discovered. Because,  1 ( )r F t  gives the fraction of vulnerabilities discovered by 

developer at time t , then the total fraction of discovery, 1( )F t  , between any two time periods, 

say 0t  and Ft  , is given by: 
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 
0
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Because ( )F t  is given by equation (5), Hence 1( )F t  can be inferred as  
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This gives after integrating, 
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Substitution of 0 0, Ft t t   in the above equation yields: 
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Therefore, the proportion of additional vulnerabilities discovered is given by 2 1( ) 1 ( )F t F t  , that 

is 
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3. Data Analysis 
This section addresses the practical relevance of the proposed VDM by predicting the future 
trends of the vulnerabilities. We assess the predictability of the proposed model by fitting the 
VDM to an observed sample and evaluate the goodness-of-fit criterion of the fitted model on the 
observed samples to predict the future behavior of the vulnerabilities. We apply the non-linear 
least square methodology to evaluate the estimation procedure on the security vulnerability data 
set of four different Operating Systems of two product family namely Microsoft Windows and 
Apple Macintosh (Mac Os X Server, 2016; Windows Xp, 2016; Windows Server, 2016; Mac Os 
X, 2016). The proposed VDM can only make sense if it closely fits the historical data and 
perfectly forecasts the future. Here, we compare the proposed model with the Alhazmi and 
Malaiya Logistic model. The parameter estimation, and comparison criteria of the two models are 
given in Table 1 and 2 respectively. 
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Parameter 
Estimates 

Data Set 
Windows XP Windows Server 2008 Apple Mac OS Apple Mac Server 

Proposed 
VDM 

AML 
Proposed 

VDM 
AML 

Proposed 
VDM 

AML 
Proposed 

VDM 
AML 

N  942.15 876.51 566.13 550.26 1599.72 1293.52 654.85 649.36 

r  0.0107 0.0004 0.0217 0.00139 0.0118 0.0002 0.0134 0.0008 
s  0.3059 - 0.6612 - 0.2338 - 0.5254 - 
c  - 0.0521 - 0.08554 - 0.03082 - 0.0806 

 

Table 1. Model parameter estimation results 
 
 

Goodness-of-fit 
Criterion 

Data Set 
Windows XP Windows Server 2008 Apple Mac OS Apple Mac Server 

Proposed 
VDM 

AML 
Proposed 

VDM 
AML 

Proposed 
VDM 

AML 
Proposed 

VDM 
AML 

MSE 436.33 544.95 411.49 558.56 4247.90 5324.42 273.2647 304.82 
Bias -1.1448 -2.2445 -2.2445 -3.5331 -9.3646 -9.4827 -0.4087 -1.2427 

Variation 19.3027 21.4873 21.4873 20.1217 59.8997 67.2204 15.2001 16.0082 
RMSPE 19.3366 21.6042 21.6042 20.4295 60.6273 67.8860 15.2056 16.0564 

R-Square 0.994 0.993 0.993 0.990 0.976 0.970 0.996 0.996 
 

Table 2. Model comparison results 
 

Table 2 reports the comparison criterions for the proposed VDM in each data set. Here, we 
observe that the proposed VDM fits the observed sample perfectly. All the comparison criterions 
are comparatively lesser than the AML model. Further, R-square shows a close fit which can be 
exhibited by the Fig. 3 to 6. 
 

 
 

Fig. 3. Goodness of fit curve (Windows XP) 
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Fig. 4. Goodness of fit curve (Windows Server 2008) 
 
 
 
 
 
 

 
 

Fig. 5. Goodness of fit curve (Mac OS X) 
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Fig. 6. Goodness of fit curve (Mac OS X Server) 
 

Table 3 and 4 shows the observed and predicted values of vulnerabilities along with the 
proportion of vulnerabilities discovered due to the software vendor and additional vulnerabilities 
detected due to the previously discovered vulnerabilities. 
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1 1 11.78544099 10.08419514 1.701245849 1 1 17.09748 12.12293163 4.974552103 
2 11 27.48970665 20.0212921 7.468414558 2 21 48.07273 23.73655335 24.33617752 
3 45 48.20109453 29.76338719 18.43770734 3 99 100.1238 34.46158183 65.66220353 
4 67 75.14755573 39.25004731 35.89750841 4 190 177.4409 43.78291931 133.6579589 
5 111 109.5932501 48.40729309 61.18595699 5 295 273.5476 51.1972757 222.3503454 
6 177 152.6460128 57.14815769 95.49785515 6 346 369.7033 56.48520881 313.218085 
7 233 204.9690998 65.37584336 139.5932565 7 450 447.1308 59.86431499 387.2665319 
8 267 266.4350634 72.99035493 193.4447085 8 488 499.292 61.83724404 437.454768 
9 301 335.8252583 79.89873734 255.926521 9 543 530.3464 62.9195045 467.4269449 

10 389 410.7293112 86.02761696 324.7016943 - - - - - 
11 487 487.77477 91.33512242 396.4396476 - - - - - 
12 588 563.1864386 95.81847538 467.3679632 - - - - - 
13 632 633.4978621 99.51451434 533.9833477 - - - - - 
14 720 696.1454709 102.4929529 593.652518 - - - - - 
15 727 749.7473076 104.844833 644.9024746 - - - - - 

 

Table 3. Predicted and vulnerability proportions for Windows family 
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1 1 21.15213296 18.78959 2.362539 1 2 11.48807261 8.753016688 2.735055921 
2 6 47.39395772 37.29999 10.09397 2 16 30.27034514 17.30569785 12.96464729 
3 26 79.69979821 55.46534 24.23446 3 58 60.03688353 25.5359052 34.50097833 
4 51 119.0950692 73.20792 45.88715 4 130 104.9601477 33.26740407 71.69274365 
5 105 166.5830164 90.43794 76.14508 5 185 167.9904911 40.27323223 127.7172589 
6 201 223.0343393 107.0544 115.98 6 238 247.9418513 46.31102659 201.6308247 
7 307 289.0404272 122.9474 166.093 7 321 337.3250658 51.19611496 286.1289508 
8 413 364.7427593 138.0028 226.7399 8 404 424.1818712 54.87976861 369.3021026 
9 506 449.6670153 152.108 297.559 9 508 497.8158279 57.47291745 440.3429105 

10 587 542.6055999 165.1604 377.4452 10 575 553.3546633 59.1939959 494.1606674 
11 684 641.5977012 177.0761 464.5216 11 606 591.6630503 60.28602775 531.3770226 
12 756 744.0425627 187.7985 556.2441 12 615 616.4856032 60.95750567 555.5280975 
13 791 846.947189 197.304 649.6431 13 626 631.9245615 61.36199633 570.5625652 
14 854 947.2648663 205.6056 741.6593 14 627 641.2838952 61.60254408 579.6813511 
15 968 1042.246585 212.7504 829.4962 - - - - - 
16 1249 1129.722358 218.815 910.9073 - - - - - 

 

Table 4. Predicted and vulnerability proportions for Apple Macintosh family 
 

4. Conclusion 
VDMs have the potential to help the developer in allocating resources to predict the future trends 
of vulnerabilities, optimize the test effectiveness and scheduling the updates and patches for an 
exploitation free working of a software. The work presented here involved the empirical 
methodology to capture the involvement of additional vulnerabilities discovered during the 
discovery process. The quality and predictability of the proposed VDM are evaluated by the 
parametric function that evaluate the ability to forecast the future vulnerability as function of 
time. To validate the methodology, we assessed the proposed VDM on four major operating 
system of two distinguished product family. The results show a better insight about the 
vulnerability discovery process and revealed that it is better to use the proposed s-shaped model 
to estimate the vulnerabilities. 
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