
International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

288

Modeling and Characterizing Software Vulnerabilities

Navneet Bhatt#, Adarsh Anand*
Department of Operational Research,

 University of Delhi, Delhi-110007 India
 #navneetbhatt@live.com, *adarsh.anand86@gmail.com

*Corresponding author

V. S. S. Yadavalli
Department of Industrial and Systems Engineering,

University of Pretoria, Republic of South Africa
sarma.yadavalli@up.ac.za

Vijay Kumar
Amity University, Noida, Uttar Pradesh

vijay_parashar@yahoo.com

(Received December 13, 2016; Accepted March 24, 2017)

Abstract
With the association of software security assurance in the development of code based systems; software developers are
relying on the Vulnerability discovery models to mitigate the breaches by estimating the total number of vulnerabilities,
before they’re exploited by the intruders. Vulnerability Discovery Models (VDMs) provide the quantitative
classification of the flaws that exists in a software that will be discovered after a software is released. In this paper, we
develop a vulnerability discovery model that accumulate the vulnerabilities due to the influence of previously
discovered vulnerabilities. We further evaluate the proportion of previously discovered vulnerabilities along with the
fraction additional vulnerabilities detected. The quantification methodology presented in this article has been
accompanied with an empirical illustration on popular operating systems’ vulnerability data.

Keywords: Vulnerability discovery modeling, Software security, Vulnerability categorization.

1. Introduction
Despite the progress made in computer programming and the respective software engineering
practices, almost all the software program we often use in our day to day life still contain
numerous bugs. However, post release of a software, some of the defects encountered are clearly
more hazardous than the others. These flaws may affect the safety of the software system,
henceforth termed as software vulnerabilities. A software vulnerability can be defined as “an
instance of a mistake in the requirement, development, or implementation of a software such that
its execution may violate the security policy” (Krsul, 1998). It has always been top most priority
for a software engineer to discover the flaws, and also mitigate the risk by quickly distributing the
patches. During the development of a software system, developer unintentionally inject some
vulnerabilities in the source code repository, which are later noticed and resolved. All the
potential vulnerabilities in a software are not discovered at the same time. Consequently, on the
basis of the degree to which an individual vulnerability is discovered in the software, the
developer can categorize the individual vulnerability based on a Common Vulnerability Scoring
System (CVSS). The categorization procedure is suggested by the FIRST (www.first.org) as an
effort to offer a vendor independent score system and reports a CVSS based vulnerability
distribution to catalog various vulnerabilities based on their types. The National Vulnerability
Database (NVD) maintained by National Institute of Standard Technology (NIST) provides the

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

289

score report and distribution of each vulnerability. A common vulnerability scoring system is an
open framework for assessing the characteristics and severity of software vulnerabilities.
Development of scoring system is important because they can assist in, investigating the intrinsic
qualities of a vulnerability, and the penetration capabilities for breaching a soft spot. A CVSS
suggests an approach to capture both quantitative and qualitative characteristic of a vulnerability
to the software developer. The numeral score allows a developer to rank a vulnerability based on
its severity and further helps the organization to assess the risk and prioritize the patching
process.

The extent of an impact to the confidentiality, integrity and availability due to the exploitation of
a vulnerability affects the security of the whole system. When a vulnerability is discovered,
various metrics such as: base, temporal and environmental are calculated that captures several
properties based on the intrinsic characteristic, change in time and process environment of a
vulnerability. The vulnerability discovery refers to examine and locating the possible bug, flaw or
weakness of the software system using various statistical tools and techniques. Post-release, both
testers and users attempt to discover the vulnerable points in the software, and a certain
proportion of users are attackers trying to breach the software. In this regard, software testers
have to effectively monitor the vulnerability discovery process and evaluate the threat level
corresponding to each vulnerability. Further, quantifying the vulnerabilities in a software system
is similar to the detection of underlying faults in a software. Like the categorization of software
faults help software engineers to check for reliability; in a similar fashion categorization of
vulnerabilities helps the developer to counter-measure the threat due to any potential breach.
These adequate measures are like, assigning resources for security testing, development and
scheduling the safety patches.

In the context of vulnerability discovery, a flaw present in the software is a type of defect that can
imply a high degree of risk to a software system. Due to its analogous behavior, various
researchers have incorporated the concept of software reliability growth modeling in order to
quantify the trends in the vulnerability discovery process. With proper modeling of software
vulnerability process, the developer might be aware of the dormant flaws present in the software
and can apply the adequate resources to inhibit the threats. As a brief review of related research, a
substantial number of Vulnerability Discovery Models (VDMs) have been developed recently.
These vulnerability models consider various aspects of vulnerability scenario ranging from
exponential to s-shaped vulnerability discovery curves. The taxonomy of major VDMs, can be
divided into two groups: time-based and effort based models. The time-based VDMs are
parametric functions that can predict the total number of vulnerabilities discovered at a given time
point. Most of the VDMs developed in the literature considers time as the governing factor.
Since, the vulnerability repository uses calendar time intervals for the vulnerability disclosure. It
was Anderson (2002) who first introduced the VDM, and the model developed was explicitly
based on the SRGM outline. Anderson (2002) applied the Brady et al. (1999) model to capture
the trend of vulnerability discovery. Yet, the empirical results suggest worst fitting of data.
Needham (2002), Alhazmi and Malaiya (2005) argued that the difference in fitting the data for
the Anderson Thermodynamic (AT) model is due to sociological factors like: decrease in
vulnerability discovery rate can be described due to the losing attractiveness of software version
over time rather than the difficulty in discovering vulnerabilities (Massacci and Nguyen, 2014).
Later, in 2005, Rescorla (2005) attempted to classify the trends in the vulnerability discovery data
by considering the linear and exponential model to predict the number of vulnerabilities. Alhazmi
and Malaiya (2005) proposed a logistic, s-shaped model to capture the phenomenon considering

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

290

the impact of vulnerability detection rate during the three phases. The model also advocated that
the security defect discovery differs distinctly from the normal software bugs. At first, users need
to understand the target system in order to infiltrate, so they discover few vulnerabilities. With the
increased attractiveness over the time, a significant number of users begin targeting the system
resulting an amplified growth. Finally, the discovery process gets saturated due to a substantial
switching of user to a newer technology. Furthermore, Alhazmi and Malaiya (2005) also focused
on effort based modeling, where the discovery of vulnerabilities is based on efforts applied rather
than time alone. In other work, Joh et al. (2008) considered that, in some situations the discovery
growth curve could be asymmetric in nature and suggested to use Weibull distribution for
vulnerability discovery due to the skewness present in its pdf. On the similar lines, Younis et al.
(2011) inspected the applicability of Folded VDM. Moreover, Kapur et al. (2015) examined the
logistic detection rate while discovering vulnerabilities. Recently, Anand and Bhatt (2016)
proposed a hump-shaped model to capture the vulnerability exposure pattern due to the
attractiveness of a software product in the market. They used a weighted criteria based ranking
approach to judge the performance of proposed model with the existing VDMs. Besides the
single version VDMs, multi-version VDMs have received less attention. A few authors have
considered the discovery pattern in a multi-version software. Kim et al. (2007) examined the
influence of shared source code in multi-versions vulnerability discovery process of a software.
Lately, Anand et al. (2017) have formulated a multi-version VDM to quantify the number of
vulnerabilities discovered. The model was based on the feature enhancement and shared code
phenomenon that considered the vulnerability discovery rate attributed for the latest offering that
is also accountable in previous version of the software due to code sharing.

The purpose of our article is that most of the past studies considered the discovery of a loop holes
as a single vulnerability, while estimating the potential security defects. They did not elucidate
exactly what number of additional flaws are being discovered, when a conceptual flaw is
discovered as one vulnerability. Several researchers showed the existence of many vulnerabilities
reported for the latest offering were also present in its preceding releases due to the existence of
shared code. Moreover, a software can be a part of software product family and the vulnerabilities
discovered in any version may indeed present in the other versions of the same product family.
For example, a CVE entry, CVE-2011-5046, discovered in the Microsoft Windows family had
affected different products namely Microsoft Windows XP, Windows Server 2003, Windows
Vista, Windows Server 2008, and Windows 7. Hence, a single vulnerability discovered in any
version may affect the discovery process of other versions and consequently might escalate the
flaw count. Additionally, it has been observed that, one vulnerability count could exploit different
types of vulnerabilities that exists in a software due to one conceptual flaw. As in the case of a
CVE entry, CVE-2016-3375, a single flaw in the OLE Automation mechanism and VBScript
scripting engine causes four different vulnerabilities, viz. Denial of Service, Execute Code,
Overflow, and Memory corruption. Therefore, a single vulnerability can also be attributed for the
discovery of additional vulnerabilities during the vulnerability discovery process (Windows 7,
2016).

In this paper, we first describe how vulnerability discovery model can be used to capture the
above-mentioned phenomenon to model the vulnerability discovery process, then present an
analytical derivations needed to compute the fraction of additional vulnerabilities discovered
during the vulnerability discovery process. Next, in section 3, the predictability of the proposed
model is illustrated and the segregation of the vulnerabilities lying dormant in the software is
made into two classes. In section 4, the conclusion is given followed by the references.

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

291

2. Model Development
The vulnerability discovery model, suggested by the Alhazmi and Malaiya (2005) considered the
impact of two factors that governed the rate of change of vulnerability discovered. The first factor
deals with the number of installed base due to the rising popularity of a software and the second
factor capture the decreasing phenomenon of the number of undetected vulnerabilities with time.
The model advocated an s-shaped discovery curve due to its logistic behavior. The vulnerability
discovery process modeled here considers the association of conceptual flaws being discovered
with the flaws that triggers the detection of some supplementary flaws during the discovery
process. In the model we assume that the discovery process is initiated by a certain number of
vulnerabilities discovered during the testing process and the rate of change of vulnerability
discovered at a given time comprises of two components that administrate the vulnerability
discovery process; the first factor constitute the vulnerabilities discovered with a detection rate r
and the second factor represents additional vulnerabilities which are detected due to the influence
of the vulnerabilities discovered by time t . The differential equation describing the discovery
process can be modeled as:

   
() ()

() ()
d t t

r N t s N t
dt N

 
      (1)

where r represent the vulnerability detection rate and s resemble the rate that constitute the

discovery of additional vulnerabilities influenced by the discovered vulnerabilities.  ()N t

denotes the untapped vulnerabilities remaining in the software and
()t

N


 is the fraction of

vulnerabilities discovered by the time t . We get a closed form solution after solving the equation
(1) as:

()

()

1
()

1

r s t

r s t

e
t N

s
e

r

 

 

 
 

   
 
 

 (2)

It is interesting to note that, the behavior of our proposed model can be comparable to the model
proposed by Kapur and Garg (1992) in the software reliability studies. Moreover, if we take

b r s  and
s

r
  , then, the proposed model reduces to the model given by Kapur et al.

(2015). If we define, ()f t as the probability of vulnerability discovered at time t and ()F t as the

fraction of vulnerabilities being discovered by time t , then the likelihood of vulnerability at a
given time t or the equation (1) can be expressed as:

  
()

() () 1 ()
dF t

f t r sF t F t
dt

    (3)

   
()

() 1 () () 1 ()
dF t

f t r F t sF t F t
dt

     (4)

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

292

The solution to the equation (4) yield the s-shaped cumulative vulnerability distribution and is
given as:

()

()

1
()

1

r s t

r s t

e
F t

s
e

r

 

 

 
 

  
 
 

 (5)

Further, the differentiation of ()F t gives the non-cumulative vulnerabilities distribution

representing the stated discovery process as:

2 ()

() 2

()
()

()

r s t

r s t

r r s e
f t

r se

 

 





 (6)

Hence, if N is the total number of vulnerabilities in the software, then the cumulative number of
vulnerabilities discovered by time t , ()t given in equation (2) can be rewritten as:

() ()t N F t   (7)

The noncumulative vulnerability distribution given in equation (6) can be illustrated in the Fig. 1.

The curve achieve its peak, ()f T  or ()F T  , at time T  when

1
ln

()

r
T

r s s
  
   

  
 (8)

1
()

2 2

r
F T

s
   (9)

and

21
() ()

4
f T r s

s
   (10)

Fig. 1. Noncumulative vulnerabilities distribution

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

293

We can validate that the curve, as shown in the above Fig. 1, for the noncumulative vulnerability

distribution is symmetric with respect to time. It can be shown that (0) (2)f t f t T r    , that

is, the proportion of noncumulative vulnerability discovered around the peak time T  up to 2T 

confirming the symmetric behavior of the vulnerability discovery rate for the proposed s-shaped
vulnerability discovery model. In fact, Younis et al. (2011) mentioned that, there is no assertive
reasons advocating the rise and fall should be symmetric in the case of Alhazmi and Malayia
Logistic model. However, Anand and Bhatt (2016) claimed that vulnerability discovery rate
follows a hump-shaped curve showing the symmetric behavior of the discovery rate and hence
can be backed using the equation (6).

It can be noted that, the term  1 ()r F t in equation (4) represents the proportion of

vulnerabilities discovered by developer with a vulnerability discovery rate, r . Here, the
vulnerability count resembled by this proportional are influenced by the advisory reports by

software vendor. In contract, the second term  () 1 ()sF t F t represents the fraction of additional

vulnerabilities discovered due to the influence of the previously disclosed vulnerabilities. The
proportion of vulnerability discovery is depicted in Fig. 2, representing the vulnerabilities
discovered due to the security bulletin by the software vendor and the additional vulnerabilities
attributed because of the previously disclosed vulnerabilities.

Fig. 2. Categorization of noncumulative vulnerabilities discovered

Moreover, in this work we try to capture the proportion of discovered vulnerabilities due to the
influence of above stated two factors. As assumed, ()F t is cumulative fraction of vulnerabilities

discovered by time t . Therefore, as per the proposed model, we can anticipate that ()F t inhibit

two components. Viz., 1()F t the proportion of vulnerability discovered mentioned in the advisory

reports by software vendor (leading vulnerability) and 2 ()F t corresponding to the additional

vulnerabilities discovered. Because,  1 ()r F t gives the fraction of vulnerabilities discovered by

developer at time t , then the total fraction of discovery, 1()F t , between any two time periods,

say 0t and Ft , is given by:

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

294

 
0

1 () 1 ()
Ft

t
F t r F t dt  .

Because ()F t is given by equation (5), Hence 1()F t can be inferred as

0

()

1
()

1
() 1

1

F
r s t

t

t r s t

e
F t r dt

s
e

r

 

 

 
 

  
 
 

 .

This gives after integrating,

0()

1 ()
() ln

F

r s t

r s t

r r se
F t

s r se

 

 

 
  

 
.

Substitution of 0 0, Ft t t  in the above equation yields:

1
()

1
()

1 r s t

r
r sF t

rs e
s

 

 
 

  
 
 

 (11)

Therefore, the proportion of additional vulnerabilities discovered is given by 2 1() 1 ()F t F t  , that

is

2
()

1
() 1

1 r s t

r
r sF t

rs e
s

 

  
  

   
  
   

 (12)

3. Data Analysis
This section addresses the practical relevance of the proposed VDM by predicting the future
trends of the vulnerabilities. We assess the predictability of the proposed model by fitting the
VDM to an observed sample and evaluate the goodness-of-fit criterion of the fitted model on the
observed samples to predict the future behavior of the vulnerabilities. We apply the non-linear
least square methodology to evaluate the estimation procedure on the security vulnerability data
set of four different Operating Systems of two product family namely Microsoft Windows and
Apple Macintosh (Mac Os X Server, 2016; Windows Xp, 2016; Windows Server, 2016; Mac Os
X, 2016). The proposed VDM can only make sense if it closely fits the historical data and
perfectly forecasts the future. Here, we compare the proposed model with the Alhazmi and
Malaiya Logistic model. The parameter estimation, and comparison criteria of the two models are
given in Table 1 and 2 respectively.

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

295

Parameter
Estimates

Data Set
Windows XP Windows Server 2008 Apple Mac OS Apple Mac Server

Proposed
VDM

AML
Proposed

VDM
AML

Proposed
VDM

AML
Proposed

VDM
AML

N 942.15 876.51 566.13 550.26 1599.72 1293.52 654.85 649.36

r 0.0107 0.0004 0.0217 0.00139 0.0118 0.0002 0.0134 0.0008
s 0.3059 - 0.6612 - 0.2338 - 0.5254 -
c - 0.0521 - 0.08554 - 0.03082 - 0.0806

Table 1. Model parameter estimation results

Goodness-of-fit
Criterion

Data Set
Windows XP Windows Server 2008 Apple Mac OS Apple Mac Server

Proposed
VDM

AML
Proposed

VDM
AML

Proposed
VDM

AML
Proposed

VDM
AML

MSE 436.33 544.95 411.49 558.56 4247.90 5324.42 273.2647 304.82
Bias -1.1448 -2.2445 -2.2445 -3.5331 -9.3646 -9.4827 -0.4087 -1.2427

Variation 19.3027 21.4873 21.4873 20.1217 59.8997 67.2204 15.2001 16.0082
RMSPE 19.3366 21.6042 21.6042 20.4295 60.6273 67.8860 15.2056 16.0564

R-Square 0.994 0.993 0.993 0.990 0.976 0.970 0.996 0.996

Table 2. Model comparison results

Table 2 reports the comparison criterions for the proposed VDM in each data set. Here, we
observe that the proposed VDM fits the observed sample perfectly. All the comparison criterions
are comparatively lesser than the AML model. Further, R-square shows a close fit which can be
exhibited by the Fig. 3 to 6.

Fig. 3. Goodness of fit curve (Windows XP)

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

V
u

ln
er

a
b

il
it

ie
s

Time

Observed AML Proposed

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

296

Fig. 4. Goodness of fit curve (Windows Server 2008)

Fig. 5. Goodness of fit curve (Mac OS X)

0

100

200

300

400

500

600

0 2 4 6 8 10

V
u

ln
er

a
b

il
it

ie
s

Time

Observed AML Proposed

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12 14 16 18

V
u
ln
er
ab
ili
es

Time

Observed AML Proposed

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

297

Fig. 6. Goodness of fit curve (Mac OS X Server)

Table 3 and 4 shows the observed and predicted values of vulnerabilities along with the
proportion of vulnerabilities discovered due to the software vendor and additional vulnerabilities
detected due to the previously discovered vulnerabilities.

 Windows XP Windows Server 2008

T
im

e

O
b
se

rv
ed

P
re

d
ic

te
d

P
ro

p
o
rt

io
n

 o
f

V
u
ln

er
ab

il
it

y

D
is

co
v
er

ed

A
d
d

it
io

n
al

V

u
ln

er
ab

il
it

y

D
is

co
v
er

ed

T
im

e

O
b
se

rv
ed

P
re

d
ic

te
d

P
ro

p
o
rt

io
n

 o
f

V
u
ln

er
ab

il
it

y

D
is

co
v
er

ed

A
d
d

it
io

n
al

V

u
ln

er
ab

il
it

y

D
is

co
v
er

ed

1 1 11.78544099 10.08419514 1.701245849 1 1 17.09748 12.12293163 4.974552103
2 11 27.48970665 20.0212921 7.468414558 2 21 48.07273 23.73655335 24.33617752
3 45 48.20109453 29.76338719 18.43770734 3 99 100.1238 34.46158183 65.66220353
4 67 75.14755573 39.25004731 35.89750841 4 190 177.4409 43.78291931 133.6579589
5 111 109.5932501 48.40729309 61.18595699 5 295 273.5476 51.1972757 222.3503454
6 177 152.6460128 57.14815769 95.49785515 6 346 369.7033 56.48520881 313.218085
7 233 204.9690998 65.37584336 139.5932565 7 450 447.1308 59.86431499 387.2665319
8 267 266.4350634 72.99035493 193.4447085 8 488 499.292 61.83724404 437.454768
9 301 335.8252583 79.89873734 255.926521 9 543 530.3464 62.9195045 467.4269449

10 389 410.7293112 86.02761696 324.7016943 - - - - -
11 487 487.77477 91.33512242 396.4396476 - - - - -
12 588 563.1864386 95.81847538 467.3679632 - - - - -
13 632 633.4978621 99.51451434 533.9833477 - - - - -
14 720 696.1454709 102.4929529 593.652518 - - - - -
15 727 749.7473076 104.844833 644.9024746 - - - - -

Table 3. Predicted and vulnerability proportions for Windows family

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

V
u
ln
er
ab

ili
ti
es

Time

Observed AML Proposed

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

298

 Apple Mac OS Apple Mac Server

T
im

e

O
b

se
rv

ed

P
re

d
ic

te
d

P
ro

po
rt

io
n

 o
f

V
u

ln
er

ab
il

it
y

D

is
co

v
er

ed

A
d

d
it

io
n

al

V
u

ln
er

ab
il

it
y

D

is
co

v
er

ed

T
im

e

O
b

se
rv

ed

P
re

d
ic

te
d

P
ro

po
rt

io
n

 o
f

V
u

ln
er

ab
il

it
y

D

is
co

v
er

ed

A
d

d
it

io
n

al

V
u

ln
er

ab
il

it
y

D

is
co

v
er

ed

1 1 21.15213296 18.78959 2.362539 1 2 11.48807261 8.753016688 2.735055921
2 6 47.39395772 37.29999 10.09397 2 16 30.27034514 17.30569785 12.96464729
3 26 79.69979821 55.46534 24.23446 3 58 60.03688353 25.5359052 34.50097833
4 51 119.0950692 73.20792 45.88715 4 130 104.9601477 33.26740407 71.69274365
5 105 166.5830164 90.43794 76.14508 5 185 167.9904911 40.27323223 127.7172589
6 201 223.0343393 107.0544 115.98 6 238 247.9418513 46.31102659 201.6308247
7 307 289.0404272 122.9474 166.093 7 321 337.3250658 51.19611496 286.1289508
8 413 364.7427593 138.0028 226.7399 8 404 424.1818712 54.87976861 369.3021026
9 506 449.6670153 152.108 297.559 9 508 497.8158279 57.47291745 440.3429105

10 587 542.6055999 165.1604 377.4452 10 575 553.3546633 59.1939959 494.1606674
11 684 641.5977012 177.0761 464.5216 11 606 591.6630503 60.28602775 531.3770226
12 756 744.0425627 187.7985 556.2441 12 615 616.4856032 60.95750567 555.5280975
13 791 846.947189 197.304 649.6431 13 626 631.9245615 61.36199633 570.5625652
14 854 947.2648663 205.6056 741.6593 14 627 641.2838952 61.60254408 579.6813511
15 968 1042.246585 212.7504 829.4962 - - - - -
16 1249 1129.722358 218.815 910.9073 - - - - -

Table 4. Predicted and vulnerability proportions for Apple Macintosh family

4. Conclusion
VDMs have the potential to help the developer in allocating resources to predict the future trends
of vulnerabilities, optimize the test effectiveness and scheduling the updates and patches for an
exploitation free working of a software. The work presented here involved the empirical
methodology to capture the involvement of additional vulnerabilities discovered during the
discovery process. The quality and predictability of the proposed VDM are evaluated by the
parametric function that evaluate the ability to forecast the future vulnerability as function of
time. To validate the methodology, we assessed the proposed VDM on four major operating
system of two distinguished product family. The results show a better insight about the
vulnerability discovery process and revealed that it is better to use the proposed s-shaped model
to estimate the vulnerabilities.

References

Alhazmi, O. H., & Malaiya, Y. K. (2005, November). Modeling the vulnerability discovery process. In
16th IEEE International Symposium on Software Reliability Engineering (ISSRE'05) (pp. 1-10). IEEE.

Anand, A., & Bhatt, N. (2016). Vulnerability discovery modeling and weighted criteria based ranking.
Journal of the Indian Society for Probability and Statistics, 17(1), 1-10.

Anand, A., Das, S., Aggrawal, D., & Klochkov, Y. (2017). Vulnerability discovery modelling for software
with multi-versions. In Advances in Reliability and System Engineering (pp. 255-265). Springer
International Publishing.

Anderson, R. (2002). Security in open versus closed systems—the dance of Boltzmann, Coase and Moore.
Technical report, Cambridge University, England.

Brady, R. M., Anderson, R., & Ball, R. C. (1999). Murphy's law, the fitness of evolving species, and the
limits of software reliability (No. 471). University of Cambridge, Computer Laboratory.

International Journal of Mathematical, Engineering and Management Sciences
Vol. 2, No. 4, 288–299, 2017
ISSN: 2455-7749

299

Joh, H., Kim, J., & Malaiya, Y. K. (2008, November). Vulnerability discovery modeling using Weibull
distribution. In 2008 19th International Symposium on Software Reliability Engineering (ISSRE) (pp.
299-300). IEEE.

Kapur, P. K., & Garg, R. B. (1992). A software reliability growth model for an error-removal phenomenon.
Software Engineering Journal, 7(4), 291-294.

Kapur, P. K, Sachdeva, N, Khatri, S. K. (2015). Vulnerability discovery modeling. International
Conference on Quality, Reliability, Infocom Technology and Industrial Technology Management, 34-
54.

Kim, J., Malaiya, Y. K., & Ray, I. (2007, November). Vulnerability discovery in multi-version software
systems. In High Assurance Systems Engineering Symposium, 2007. HASE'07. 10th IEEE (pp. 141-
148). IEEE.

Krsul, I. V. (1998). Software vulnerability analysis (Doctoral dissertation, Purdue University).

Mac Os X Server. (2016). Vulnerability Statistics. http://www.cvedetails.com/product/2274/Apple-Mac-
Os-X-Server.html?vendor_id=49. Accessed 6 February, 2016.

Mac Os X. (2016). Vulnerability statistics. http://www.cvedetails.com/product/156/Apple-Mac-Os-
X.html?vendor_id=49. Accessed 6 February, 2016.

Massacci, F., & Nguyen, V. H. (2014). An empirical methodology to evaluate vulnerability discovery
models. IEEE Transactions on Software Engineering, 40(12), 1147-1162.

Needham, R. (2002). Security and open source. In open source software economics. Available at
http://idei.fr/doc/conf/sic/papers 2002/needham.pdf.

Rescorla, E. (2005). Is finding security holes a good idea?. IEEE Security & Privacy, 3(1), 14-19.

Windows Xp. (2016). Vulnerability statistics. http://www.cvedetails.com/product/739/Microsoft-Windows-
Xp.html?vendor_id=26. Accessed 6 February, 2016.

Windows 7 (2016). Vulnerability statistics. https://www.cvedetails.com/product/17153/Microsoft-
Windows-7.html?vendor_id=26. Accessed 28 December, 2016.

Windows Server 2008. (2016). Vulnerability statistics.
https://www.cvedetails.com/product/11366/Microsoft-Windows-Server-2008.html?vendor_id=26.
Accessed 20 February, 2016.

Younis, A., Joh, H., & Malaiya, Y. (2011). Modeling learningless vulnerability discovery using a folded
distribution. In Proc. of SAM (Vol. 11, pp. 617-623).

