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Abstract 
The use of risk measures and its applications in portfolio optimisation 

Resham Sivnarain 

Magister Scientiae 

In the Department of Mathematics and Applied Mathematics 
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2017 
 

Supervisor: Prof. E. Maré  

 

In this dissertation, we study the application of risk measures to portfolio 

optimisation.  A risk measure is a functional over the set of random portfolio 

returns mappings . We present the various risk measures in this 

dissertation within an axiomatic framework. Although Value-at-Risk (VaR) has been 

widely used, the Conditional-Value-at-Risk (CVaR) has become the more popular 

risk measure since it is a coherent and convex risk measure. We solve a CVaR based 

optimisation model that is used for portfolio optimisation and hedging a target 

portfolio. Additionally, we solve a CVaR based optimisation model with cost 

considerations included in the objective function. Further, we include alternative 

risk measures such as distortion, spectral, drawdown and coherent-distortion risk 

measures (CDRM) and develop optimisation problems for each risk measure as 

either the objective function or as a constraint in a linear programming problem. 

Since the 2008 crisis era, it has become important to note the universal agreement 

that financial assets have fat tails and that financial and investment managers must 

be able to account for it in their risk management strategies. We present fat-tail 

analysis for CVaR optimisation problems and perfom emperical risk analysis on the 

FTSE/JSE ALSI index. 
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Nomenclature 
Value-at-Risk 

Is a statistical technique used to measure and quantify the level of financial risk for an 

investment portfolio over a specific time frame. 

 

Spectral risk measure 

A Spectral risk measure is a risk measure given as a weighted average of outcomes where bad 

outcomes are, typically, included with larger weights. Aspectral risk measure is a function of 

portfolio returns and outputs the amount of the numeraire (typically a currency) to be kept in 

reserve. 

 

Ill-posedness 

A well-posed mathematical problem should have the properties that: 

i. A solution exists 

ii. The solution is unique 

iii. The solution's behavior changes continuously with the initial conditions. 

Problems that are not well-posed are termed ill-posed. 

 

Efficient frontier 

The efficient frontier is the set of optimal portfolios that offers the highest expected return for 

a defined level of risk or the lowest risk for a given level of expected return.  
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Chapter 1. Introduction 
This chapter serves as an introduction to risk measures and its applications to portfolio 

optimisation. The need for portfolio optimisation with various risk measures is introduced on a 

conceptual level with a detailed literature review also presented in this section.  

1.1. 	Background	and	introduction	

Optimal portfolio allocation is a longstanding problem in both practical portfolio management 

and academic research. Whether you are an investor, hedger, or fund manager among others 

striving to achieve an optimal portfolio is of paramount importance. The main objective in 

portfolio management is the trade-off between risk and return. Markowitz [24] was the first to 

study in-depth the problem of portfolio optimisation in the 1950’s. He looked at maximizing 

portfolio expected return for a given level of risk or equivalently minimizing risk for given 

expected return. The classical work of Markowitz used variance as the benchmark for risk 

measurement. This method had a major shortfall since it penalized equally, regardless of the 

downside risk or upside potential. Over the decades, an evolution of risk measurement took 

place that has been proposed to be used in portfolio optimisation. Some of these risk measures 

include Value-at-Risk (VaR), partial moments, safety first principle, skewness and kurtosis, and 

Conditional Value-at-Risk (CVaR). Many others have also been developed and shall also be 

considered in this thesis.  

Another shortfall of the Markowitz theory was that it applied well to linear financial instruments. 

In modern’ time, mixed portfolios that comprise both linear financial instruments (Stocks, etc.) 

and nonlinear financial instruments (derivatives, etc.) have become the norm within portfolio 

management. This is due to the fact that derivative instruments are no longer considered as 

hedging instruments but now are considered as investment instruments. For example, options 

are the derivative instruments which can increase the liquidity and flexibility of return from the 

investment and at the same time it can be considered as assets to be invested. 

In this research, we shall look at risk measures and how they influence the characteristics of an 

optimal portfolio that consists of linear and nonlinear financial instruments. In the next 

subsection, we shall give a very distinct view from the financial engineer’s perspective on risk 

measures and portfolio optimisation.  
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1.1.1. A	financial	engineer’s	perspective	
Before one can perform anything with an optimal portfolio, we need to understand or try to 

apply a framework for optimal portfolios. From a theoretical perspective, there are two well-

known approaches to manage portfolio performance namely the Expected Utility Theory and 

Risk Management [11].  The financial engineer is very much interested in building a model to 

best address optimal portfolios. Let’s suppose a given time interval  is partitioned into N 

subintervals ,  by the set of points . Let’s also suppose 

there are  risky assets with rates of returns determined by a random vector 

 for times . We introduce a risk-free asset with constant rate of return 

.  

Consequently, a portfolio formed of the  risky assets and the risk-free instrument is 

determined by the vector of weights . The components of  

satisfy the budget constraint, 

. 
 

1.1 

By definition, the rate of return of the portfolio at time moment  is 

. 
 

1.2 

 

1.1.2 A	framework	for	portfolio	optimisation	
		
In this subsection, we shall take a high level perspective of a framework for portfolio 

optimisation. Figure 1-1 below shows two very distinct but separate ways a portfolio manager can 

use optimisation for portfolio management. We shall consider two segments namely the, 

Expected Utility Theory aspect and General Risk Management framework. Each segment 

considers some optimisation problem, key characteristics and different risk measures that may be 

applied. This is a suggestion based on the work of Chekhlov et al. [11].  
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Figure 1-1: Portfolio optimisation framework	

In this thesis, we shall primarily focus on the risk management segment where we use various 

different risk measures and apply it to the optimisation problem on the right of Figure 1-1. This 

means that constant rebalancing of portfolio weights will be more instantaneous (shorter time 

intervals) than longer time spans. Although drawdown measures are particularly applied in 

Expected Utility Theory, we shall apply drawdown measures in General Risk Management 

segment. This is to test the applicability of drawdown in a wider portfolio optimisation problem 

setting.  The literature review is shown in the succeeding subsection. 
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1.2. 	Literature	review	

Derivative contracts are widely used by financial institutes and investors to achieve higher 

returns and to decrease a portfolio’s funding costs. In addition, derivatives use has fundamentally 

changed the landscape for financial risk management. Derivatives that are used for either 

investment or risk management need a risk measure to be chosen to evaluate the performance of 

a portfolio. Over the past decades, various risk measures have been developed each providing its 

own benefits for portfolio performance measurement. Value-at-Risk (VaR)  has grown to be the 

most popular standard benchmark [6] for firm wide measures of risk.  For a given time horizon t 

and confidence level β , the Value-at-Risk of a given portfolio is the loss in the portfolios market 

value over the time horizon t that is exceeded with probability 1−α . However, as a risk 

measure, VaR has proven limitations. According to Artzner et al. [8], VaR lacks sub-additively 

and convexity.  

 

Artzner et al. [8, 9] have defined the measures of risk and presented a unified framework for 

analysis, construction and implementation of risk measures. Artzner et al. [8] define concisely a 

coherent risk measure as one that satisfies the axioms of translation invariance, sub-additively, 

positive homogeneity, and monotonicity. Follmer et al. [16, 17, 18] extended the notion of 

coherent risk measures to convex risk measures. Follmer et al. [17] prove the corresponding 

extension of the representation theorem in terms of probability measures on the underlying 

space of scenarios and the representation theorem is closely related to the super-hedging duality 

under convex constraints [18, 20].  Wang et al. wanted to extend the notion of coherent risk 

measures and thus added two more axioms, which include law-invariance and comonotonic 

additivity, but lacked sub-addivity. Acerbi [1] studied the space of coherent risk measures 

obtained as certain expansions of coherent elementary basis measures. This new class of risk 

measures that relied on a spectrum was aptly called spectral risk measures. These spectral risk 

measures in addition to the axoims of  Artzner et al. [8] include law-invariance and comonotonic 

additivity. 

1.1.1. Conditional	Value-at-Risk	
An alternative measure of risk to the VaR is conditional Value-at-Risk (CVaR), which is also 

known as mean shortfall, expected shortfall and tail VaR [5, 6]. With a continuous distribution, 

for given time horizon t and confidence level β , CVaR is the conditional expectation of the loss 

above VaR for the time horizon t and the confidence level  . Based on this CVaR gives further 

information on the magnitude of the excess loss. CVaR has proven to have better properties 

α
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than VaR [5, 6, 35, 36]. Pflug [29] has shown that CVaR is a coherent risk measure due to the 

properties mentioned above.  

 

Rockafellar and Uryasev [35, 36] proposed a convex optimisation problem, which aims to 

compute an optimal minimum CVaR for a portfolio of derivative. Rockafella and Uryasev [35, 

36]  show that VaR is difficult to optimise when it is calculated from scenarios. Mauser and 

Rosen [26] and Mckay and Keefer [27] showed that VaR can be ill-behaved as a function of 

portfolio positions and can exhibit multiple local extrema to determine an optimal mix of 

positions. Uryasev [39] shows a simple description approach to minimizing the CVaR and 

optimisation problems with CVaR constraints. Outside the realm of finance, CVaR or similar 

measure, such as conditional expectation constraints and integrated chance constraints have been 

used before in stochastic programming literature [31].  Many numerical algorithms have been 

developed for solving stochastic optimisation problems [10, 14, 21, 22, 30, 31]. The main 

advantage of these algorithms is that they are able to make use of special mathematical features 

in the portfolio and can be readily combined with analytic and simulation based methods.  

 

The most recent literature that captures further important work on derivative portfolio 

optimisation is Alexander et al. [5, 6]. Alexander et al. [6] look at the well-posedness of the CVaR 

and VaR optimisation selection problem where the investment universe includes derivatives. 

They illustrate that the CVaR/VaR optimisation problem for derivative portfolios typically has 

an infinite number of solutions if the derivative values are computed using delta-gamma 

approximations. They further investigate and illustrate that when derivative values are computed 

using more accurate methods such as analytic formulae, numerical partial differential equations, 

or Monte Carlo methods the CVaR/VaR optimisation problem for derivative portfolios remains 

ill-posed. The ill-posedness of the optimisation problem is the sense that there are many 

portfolios that have similar CVaR/VaR values to that of the optimal portfolio and any slight 

perturbations of the data can lead to significantly different optimal portfolios.   

 

Alexander et al. [6] propose a CVaR optimisation problem with a convex programming problem 

that deals with modelling portfolio costs. The proportional cost model demonstrates that CVaR 

optimisation formulation with cost is limited to both transactional and management costs. They 

also demonstrate that CVaR investment portfolios using a suitably weighted cost parameter has 

smaller total trading positions, fewer instruments and comparable CVaR.   
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The typical method for solving CVaR optimisation problems make use of linear programming 

(LP) and most often a stochastic linear programming approach [6]. The linear programming 

problem is formed using Monte Carlo simulations and piecewise linear functions to approximate 

the continuous differentiable CVaR function.  Alexander et al. [6] introduced a computation 

method based on a smoothing technique to efficiently solve the simulation based CVaR 

optimisation problem.  

1.1.1. Tail	risk	and	portfolio	optimisation	
Since the 2008 crisis era, it was important to note the universal agreement that financial assets 

have fat tails and that financial and investment managers must be able to account for it in their 

risk management strategies. In today’s real world examples, it is necessary to assume a 

distributional hypothesis capable of describing both fat tails and asymmetry. From a practical 

and theoretical perspective, there have been several classes of distributions that have been used 

to capture fat tails in modelling. Rachev et al. [33, 34, 37, 38] conclude that the most popular is 

the Student’s t distribution. Rachev et al. [33] also mention others that also form particular 

importance, namely extreme value distributions, stable distributions, operator stable distortions, 

the class of tempered stable distributions, and the class of infinitely divisible distributions. All 

these classes of models share one feature; that is they include normal distributions as a special or 

limiting case. The exception to this is the extreme value theory.  

 

Stoyanov et al. [37, 38] considered the sensitivity of CVaR with respect to tail indexes such as 

Student t distribution’s, degrees of freedom parameter. The sensitivity of CVaR findings from 

Stoyanov et al. [37, 38] are presented in this thesis without analytic proof. However, we do test 

the applicability of the findings to JSE data in Case Study 4 using simulation based methods and 

the draw the conclusion that the findings are indeed correct.   

1.1.1. Alternative	risk	measures	
Acerbi and Simonetti [2] studied spectral measures of risk in portfolio optimisation. They show 

that the minimization problem of a spectral measure is shown to be equivalent to the 

minimization of a suitable function that contains some additional analytic properties. Their study 

revealed that results of the classical risk-reward problem coincided with results of the 

unconstraint optimisation problem where a single suitable spectrum function was used. Adam et 

al. [3] study the use of spectral risk measures in portfolio optimisation under risk constraints and 

develop a comparative analysis of efficient portfolios. 
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Distortion risk measure [32] finds its origins in Yaari’s 1987 paper on Dual theory of choice risk. 

Yaari’s idea was to apply a distortion function on a distribution function. The definition of 

distortion risk measures makes reference on the theory to the Choquet integral. In 2000, the 

distortion risk measure [32] was applied to the insurance industry to solve a wide range of 

problems such as insurance premiums, capital requirements and capital allocation. Wang (see 

[32] for further details) has applied the distortion risk measure to price catastrophe bonds and 

Fabozzi and Tunaru (see [32] for further details) to price real estate derivatives. Rachev et al. [32] 

propose a new distortion risk measure, adding the asymmetric property to the existing 

properties. Rachev et al. further [32] extend the theory of the Choquet integral construction by 

using quadratic and power functions. Feng and Tan [15] introduce the theme of Coherent 

Distortion risk measures (CDRM) that are used in portfolio selection. CDRM comprise many 

risk measures such as CVaR, the Wang Transform measure and the proportional hazard measure 

[15].    

 

A typical scenario where an investor is caught in a liquidity trap, such that he/she is unable to 

secure funding after an abrupt market decline (such as the 2008 financial crisis) is where 

maximum drawdown risk measure can be very useful. The analytic study of drawdown risk 

measure magnitudes has been studied in the applied probability theory. Taylor [19] showed the 

mathematical analysis of the maximum drawdown of the Brownian motion and was generalized 

by Lehoczky [19].  In 2012, Mijatovic and Pistorius analysed the drawdowns of spectrally 

negative Levy processes. In 2015, Landriault et al. [19] extended drawdown magnitude by 

studying the frequency rate of drawdown for the Brownian motion.  Over a period of time, 

concepts such as “drawup” and reduction of drawdown in active portfolio management received 

much attention in mathematical finance research [19].   Chekhlov et al. [11] introduced a new 

one-parameter family of risk measures called Conditional Drawdown (CDD) or Conditional 

Drawdown at Risk (CDaR). In 2015, Goldberg and Mahmoud [19] formalized Conditional 

Expected Drawdown (CED), which can be understood as a tail mean of maximum drawdown 

distributions. Like CED, CDaR is a deviation measure however, unlike CED, CDaR focuses on 

all drawdowns rather than maximum drawdowns [11, 19]. 
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1.3. 	Research	objectives	

Over the many decades of risk management, various risk measures have been developed. In 

1952, Markowitz [24] introduced variance as a measure of risk. Since then many other risk 

measures have been developed that seemed to be mathematically superior to the simple variance 

risk measure. In this thesis, we shall consider the following as objectives for risk measures and its 

applications in portfolio optimisation: 

 

(Obj. I). We shall present the theorems, properties and other propositions for theValue-

at-Risk (VaR), Conditional Value-at-Risk (CVaR), spectral risk measures, distortion risk measures 

and Coherent Distortion risk measures from various literature resources. We shall use the 

Artzner et al. [8] axiomatic framework to form the basis of each risk measure’s definition.  

 

(Obj. II). We shall present for each of the risk measures above, an optimisation model(s) 

that can be solved to give the risk manager an optimal portfolio. The model solution will be 

based on risk or return or both as an objective function and constraint. These optimal problems 

shall be formulated for derivative based assets. 

a. We wish to investigate the effects of solving a portfolio optimisation problem 

with each of the three risk measures, namely, CVaR, spectral risk measures 

and Coherent Distortion risk measures (CDRM) risk measure. These three 

risk measure have shown to have some popularity in both literature and in 

practice thus doing a comparative analysis among them may prove insightful.  

 

(Obj. III). We shall also present the use of the CVaR risk measure to formulate an optimal 

hedging problem with derivative based contracts. This problem is typically constructed with a 

given target portfolio and a given hedging portfolio. The aim is to hedge the target portfolio with 

the given hedging portfolio.  This problem also lends itself well to the practical setting of a risk 

manager who wishes to hedge risk of his current portfolio(s).  

 

(Obj. IV). We shall present a CVaR risk measure optimisation model thatconsiders 

transactional or managerial costs in the objective function. This problem is essentially covered by 

Alexander et al. [6], where they formulate the CVaR optimal portfolio model. We shall use their 

work to form the optimal problem and solve it for our given portfolio(s). 
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(Obj. V). Chekhlov et al. [11] introduced a new one-parameter family of risk measures 

called Conditional Drawdown (CDD). We shall present the theorems and properties of this risk 

measure. We then formulate an optimal portfolio problem that shall be solved using the 

Conditional Drawdown (CDD) as either objective function or constraint. These problems 

generally lead to knapsack type optimisation problems and we shall use genetic algorithms to 

solve the problems.  

 

The objectives highlighted above form the main research outcomes that we wish to achieve in 

this thesis. We shall present our investigations of each of the objectives above in a case study 

format where we present different scenarios which we aim to solve.  

1.4. 	Remaining	chapters	

In Chapter 2, we give a general introduction to the different risk measures that have been 

developed and formed over the last 50 years. We also introduce some basic properties that make 

up the axiomatic framework for modern accepted risk measures and the fundamental theorems 

of the convexity which is needed in the optimisation framework for minimizing or maximizing 

risk measures. Some theoretical aspects of risk measure are presented for completeness as it is up 

to the reader to skip to the sub-section on summary of risk measures. 

In Chapter 3, we focus on a select few risk measures such as distortion, spectral, coherent-

distortion risk measures(CDRM) and drawdown risk measures. We explore the properties of 

each risk measure and how we can use these properties to form optimisation problems. 

 In Chapter 4, we introduce the fundamental concepts for general loss distributions and how 

these concepts are extended to form the optimisation problems for the CVaR risk measure. We 

formulate the CVaR optimisation problem and give methods for solving the CVaR optimisation 

problem efficiently.  

In Chapter 5, we extend the theoretical work done in Section 3 and formulate the optimisation 

problems for the spectral, CDRM, and drawdown risk measures. We also introduce some 

computational methods for efficiently solving the alternative risk measure portfolio optimisation 

problems. 

In Chapter 6, we take an interesting look at fat-tails and their effects on risk measures. We pay 

particular attention to how fat-tails affect CVaR as a risk measure.  

In Chapter 7, we propose to solve various optimisation problems that either use risk measures as 

an objective function or a constraint. We present the optimisation problems as case studies. 

Further empirical analysis, results and discussions take place in this section.  
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Finally, in Chapter 8 we conclude the document by discussing major findings and a way to take 

the research further.  

 

Figure 1-2 shows the section flow of how one may approach the reading of this document 

   

 
Figure 1-2: Section flow diagram 

Based on the above flow diagram, the reader may move from Chapter 2 to either Chapter 3 or 

Chapter 4. If the reader so wishes to read CVaR based optimisation, then reading Chapter 2, 4 

and 6 will be best suited. Case Studies that present work on CVaR optimisation is Case Study 1, 

2 and 3. 

If the reader wishes to read alternative risk measures, then Chapter 3 and 5 will be best suited. 

Case Studies 1, 4, and 5 cover alternative risk measure based optimisation.  

  

1. Introduction

2. Risk Measures

4. Cvar Based Portfolio 
Optimisation Models

3. Alternative Measures of 
Risk for Asset 
Management

6. CVaR and Fat 
Tails

5. Alternative Risk 
Measures Based Portfolio 

Optimization Models

Case Study 1 Case Study 2 Case Study 3 Case Study 4 Case Study 5
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Chapter 2. Risk measures 
The purpose of this chapter is to present the various risk measures from a theoretical viewpoint. 

For applicability and practicality purposes portfolio returns over a given time horizon shall be 

considered. We shall present an axiomatic approach to risk management and develop an 

overview of risk measures. Much of the definitions and supporting theorems for risk measures 

shall be adopted from Artzner et al. [8]. 

2.1 Axiomatic	approach	to	risk	management	

From a mathematical view, we shall consider a finite probability space Ω,F,P( )  where Ω  is the 

sample space of possible outcomes, F  is the set of events and P  assignment of probabilities to 

the events. Given a portfolio return , we denote by , the corresponding distribution 

function: . A risk measure is a functional over the set of random 

portfolio returns mappings . We can summarize the main axioms that may be 

fulfilled are, as applied in both theoretical and practical setting [8]: 

 

(AX1.) Positive Homogeneity: for every random portfolio return  and real    

          Value . 

(AX2.) Translation-invariance: for every random portfolio return  and real  

value . 

(AX3.) Monotonicity: for every random portfolio return  and  such that    

           ,  . 

(AX4.) Sub-additivity: for every random portfolio return  and ,  

   . 

(AX5.) Law-invariance: for every random portfolio return  and  with  

          distribution functions  and , . 

(AX6.) Comonotonic: for every comonotonic random variable  and ,  

. 

 

Positive homogeneity (AX1.) also known as positive scalability signifies that a measure has the 

same dimension as a variable X. From a financial point of view positive homogeneity implies 

that a linear increase of the return leads to a linear increase of risk by the same positive factor.  

X FX

 x ∈!→ FX = P X ≤ x( )

 X→ ρ X( )∈!

X

λ > 0,ρ λX( ) = λρ X( )
X

α ,ρ X +α( ) = ρ X( )−α

X Y

X ≥Y ρ X( ) ≤ ρ Y( )
X Y

ρ X +Y( ) ≤ ρ X( ) + ρ Y( )
X Y

FX FY FX = FY ⇒ ρ X( ) = ρ Y( )
X Y

ρ X +Y( ) = ρ X( ) + ρ Y( )
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Translational invariance (AX2.) implies that if the payoff increases by a known constant, the risk 

decreases with correspondence.  

Monotonicity (AX3.) from a financial perspective implies that if one financial instrument payoff 

X is not less than another financial instrument payoff Y, then the risk of the X is not greater 

than the risk of the Y.  

Sub-additivity (AX4.) forms the part of class of sums of risk and it states that the risk of a 

portfolio is not greater than the sum of the risks of the portfolio elements of components. In 

simpler terms, “a merger does not create extra risk” as quoted by Artzner et al. [8]. Law-

invariance (AX5.) states that a risk measure does not depend on a risk itself but only on its 

underlying distribution. 

2.2 Coherent	measures	of	risk	

In this subsection, the definition of risk measures shall be presented with some detail. This 

subsection and the next on convex risk measures are intended for completeness of the 

theoretical aspects and it is up to the reader to skip this subsection and proceed to the summary 

of risk measures subsection.  

2.2.1 Definition	of	risk	and	coherence	
Many initial papers defined and viewed risk in terms changes in values between two time 

instances. However, Artzner et al. [8] argues that risk is related to the variability of the future 

value of a position. Simply put, the future values of the position are more important and 

therefore should only be considered. Arztner et al. [8] put emphasis on understanding the nature 

of the future date and more importantly the measurement of risk of a position will be whether its 

future values belong to a subset of acceptable risks.  Artzner et al. [8] considers three supervisors 

namely; a regulator, exchange clearing firm, and investment manager, each required weigh the 

trade-off between the severity of the risk measurement and the level of activities in the 

supervised domain.  

Axioms on Acceptance Sets 
The assumption is that the sets of all possible states of the world at the end of the period is 

known, but the probabilities of the different states may be unknown or not subjected to 

common agreement. In order to set the underlying axioms, the following notation shall be 

borrowed from Artzner et al. [8].  

The notation that is adopted from Artzner et. al [8] and shall also be used in this section is: 

i. Let Ω  the set of states of nature, and assume it is finite. Considering Ω  as the set of 

outcomes of an experiment, we compute the final net worth of a position for each 
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element of Ω . It is a random variable denoted by X . Its negative part,  is 

denoted by  and the supremum of  is denoted by . The random variable 

identically equal to 1 is denoted by 1 . The indicator function of state ω is denoted by 

 
ii. Let G  be the set of all risks, that is the set of all real valued functions on . Since  is 

assumed to be finite,  can be identified with , where . The cone of 

non-negative elements in  shall be denoted by , its negative by . 

iii. Artzner et al. [8] call a set of final net worths, expressed in currency i, which, 

in country i; are accepted by regulator/supervisor j: 

iv. Artzner et al. [8] denote  the intersection and use the generic notation  in 

the listing of axioms below. 

 

The following axioms shall now be presented from Artzner et al. [8]. 

 

Axiom 2.1 

The acceptance set  contains .  

 

Axiom 2.2 

The Acceptance set  does not intersect the set  where, 

L−− = X for each ω ∈Ω,X ω( ) < 0{ }.  2.1 

 

Axiom 2.3 

The acceptance set  satisfies . 

 

Axiom 2.4  

The acceptance set is  convex. 

 

Axiom 2.5 

The acceptance set  is a positively homogeneous cone. 

 

max −X,0( )

X − X − X −

1 ω{ }

Ω Ω

G  !
n n = card Ω( )

G L+ L−

Ai, j ,  j ∈Ji

Ai  ∩ j∈Ji
Ai, j A

A L+

A L−−

A A∩ L− = 0{ }

A

A
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Artzner et al. [8] argue that all reasonable risk measures will have acceptance sets that satisfy 

Axioms 2.1 to 2.5.  

Acceptance sets and measures of risk 
 

Given some reference instrument, there is a natural way to define a measure of risk by defining 

how close or far from acceptance a position is. 

 

Definition 2.1 

A measure of risk is a mapping from  to . 

 

Definition 2.2  

Risk measure associated to an acceptance set. Given the total rate of return r  on a reference 

instrument, the risk measure associated to the acceptance set  is the mapping from  to  

denoted by  and defined by  

ρA,r X( ) = inf m m ⋅r + X ∈A{ }.  2.2 

 

Definition 2.3 

Acceptance set associated to a risk measure: the acceptance set associated to a risk measure ½ is 

the set denoted by  and defined by 

Aρ = X ∈G ρ X( ) ≤ 0{ }.  2.3 

 

Axiom 2.6  

Translation invariance: for all  and all real numbers , we have 

. 2.4 

 

Axiom 2.7  

Subadditivity: for all  and  . 

 

Axiom 2.7 reflects the idea that pooling risks helps to diversify a portfolio and decentralisation 

of a risk management. For example, if a risk manager has a total risk budget of B, he can devide 

B in to B1  and B2  where B1 + B2 = B . He can then allocate risk budget of B1  and B2  to 

G  !

A G  !

ρA,r

Aρ

X ∈G α

ρ X +α ⋅r( ) = ρ X( )−α

X1 X2 ∈G ρ X1 + X2( ) ≤ ρ X1( ) + ρ X2( )
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different trading desks or operating units in the organization, safe in the knowledge that the 

firm-wide risk will not exceed B. 

 

 

Axiom 2.8 

Positive homogeneity: for all and all . 

 

Axiom 2.8 reflects the fact that there are no diversification benefits when we hold multiples of 

the same portfolio.    

 

Axiom 2.9  

Monotonicity: for all  and  with ; we have . 

 

Axiom 2.10  

Relevance: for all X ∈G  with X ≤ 0  and X ≠ 0 ; we have ρ X( ) > 0 . 

 

Axiom 2.10 ensures that the risk measures identifies risky firm net values. 

 

Definition 2.4  

Coherence is a risk measure satisfying the four axioms of translation invariance (AX2.), 

subadditivity (AX4.), positive homogeneity (AX1.), and monotonicity (AX3.). 

Axioms on acceptance sets and the axioms on measures of risks 
It will be noticed that we claimed the acceptance set to be the fundamental object. We further 

discussed the axioms mostly in terms of the associated risk measure. The following propositions 

show that this was reasonable. For the proofs, please refer to Artzner et al. [8]. 

	

Proposition 2.1 [8] 

If the set B satisfies Axioms 2.1, 2.2, 2.3 and 2.4, the risk measure  is coherent. Moreover; 

 
the closure of B. 

 

Proposition 2.2 [8] 

λ ≥ 0 X ∈G,  ρ λX( ) = λρ X( )

X Y ∈G X ≤Y ρ Y( ) ≤ ρ X( )

ρB,r

AρB ,r
= B
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If a risk measure  is coherent, then the acceptance set   is closed and satisfies Axioms 2.1, 

2.2, 2.3 and 2.4. Moreover . 

 

Proposition 2.3 [8] 

If a set B satisfies Axioms 2.1, 2.2, 2.3 and 2.4, then the coherent risk measure  satisfies the 

relevance axiom. If a coherent risk measure  satisfies the relevance axiom, then the acceptance 

set satisfies Axiom 2.2. 

 

Artzner et al. [8] show in Proposition 2.2 that every coherent risk measure’s acceptance set is 

closed and satisfies Axioms 2.1 to 2.5. Eq. (2.2) determines the minimal capital necessary to add 

to the firm to make the resulting firm’s insolvency risk acceptable. Proposition 2.1 shows that if 

a acceptance set satisfies Axioms 2.1 to 2.5, thenthe risk meaure generated by the set is coherent 

and , the closure of B. Additionally, in Propostion 2.2 shows that the risk measure 

generated by a coherent measure’s acceptance set is equal to the coherent measure, that is 

.  

ρ Aρ

ρ = ρAp ,r

ρB,r

ρ

AρB ,r

AρB ,r
= B

ρ = ρAp ,r
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2.3 Convex	measures	of	risk	

In this subsection, we continue to build on the theoretical foundations on the axioms presented 

in the preceding subsection and define and present the fundamental theorem and propositions 

for convex measures of risk as developed by Follmer and Schied [17, 18], and Follmer and 

Penner [16].  

 

For Convexity, we relax the conditions of positive homogeneity and subadditivity we get the 

weaker property, 

Convexity: ρ λX + 1− λ( )Y( ) ≤ λρ X( ) + 1− λ( )ρ Y( )  for any λ ∈ 0,1[ ].  
 

2.5 

 

Definition 2.5  

A map  will be called a convex measure of risk if it satisfies the conditions of 

convexity, monotonicity, and translation invariance.  

 

Continuing on the definition of acceptance set associated to a risk measure we have the 

proposition below according to Foller and Schied [18]. 

 

Proposition 2.4  

Suppose  is a convex measure of risk with associated acceptance set , Then 

ρAρ
= ρ . Moreover,  enjoys the following properties A  is convex and non-empty 

v. if X1 ∈A  and  satisfies Y ≥ X1  then , 

v. if X1 ∈A  and , then λ ∈ 0,1[ ] λX1 + 1− λ( )Y ∈A{ } is closed in [0,1]. 

 

Proof Proposition 2.4 [18] 

To show that  for all , note that the translation invariance of  implies that  

ρA,r X( ) = inf m m ⋅r + X ∈Aρ{ }
= inf m ρ m + X( ) ≤ 0{ }
= inf m ρ X( ) ≤ m{ }
= ρ X( ).

 

 

2.6 

 ρ :X→ !

 ρ :X→ ! Aρ

A := Aρ

Y ∈X Y ∈A

Y ∈X

ρAρ
= ρ X ρ
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The first two properties of  are straightforward. The third one, we note that the function 

 is continuous as it is convex and takes only finite values. Hence, the set 

of  such that  is closed.  

 

Proposition 2.5 [18] 

Assume that  is a convex subset of  which satisfies property 2 of Proposition 2.4, and 

denote by  the functional associated to . If , then  

1.  is a convex measure of risk. 

2.  is a subset of . Moreover, if  satisfies property 3 of Proposition 2, then 

. 

For a detailed proof, see Follmer and Schied [17]. 

2.3.1 The	representation	theorem	for	convex	risk	measures	
In this subsection, we present the proof of the structure theorem for convex measures of risk 

from the work of Follmer and Schied [17]. First, they considered the special case in which  is 

the space of the all real-valued functions on some finite set Ω . The representation theorem for 

convex risk measures forms the basis for the work that shall follow in the fourth coming 

sections. Hence the importance of the representation theorem and its proof is self-explaining. 

For further developments on this theorem and proof see Follmer and Schied [17] and the 

Appendix. 

 

Theorem 2.1 [17] 

Suppose  is the space of the all real-valued functions on a finite set . Then  is 

convex measure of risk if and only if there exists a “penalty function”  such that 

ρ Z( ) = sup
Q∈P

EQ −Z[ ]−α Q( )( ).   

2.7 

 

The function  satisfies for any , and it can be taken to be convex and lower 

semi-continuous on . 

 

Proof of Theorem 2.1  [17] 

The “if” can be shown as follows: For each  the functional,  

A := Aρ

 λ! ρ λX + 1− λ( )Y( )
λ ∈ 0,1[ ] ρ λX + 1− λ( )Y( )  !

A ≠ 0 X

ρA A ρA 0( ) > −∞

ρA

A AρA A

A = AρA

X

X Ω  ρ :X→ !

α :Ρ → −∞,∞( )

α Q( ) ≥ −ρ 0( ) Q∈Ρ

Ρ

Q∈Ρ
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2.8 

is convex, monotone, and translation invariant. These three properties are persevered under 

taking suprema. 

Converse implication proof, we need the following auxiliary observation. For , define  

 by 

α Q( ) = sup
X∈Χ

EQ −X[ ]− ρ X( )( ) . 
 

2.9 

Then we claim that 

 

 

2.10 

for the moment and denote the right hand side by . By definition of  we find 

. To establish the converse inequality, take an arbitrary  and recall that 

. Thus 

α̂ Q( ) = EQ −X[ ]( ) = EQ −X[ ]− ρ X( )( ).   

2.11 

 

This shows . Note that we did not yet use the assumption that  is finite. 

Now fix some  and take  as in Eq. ( 

2.11). Then we clearly have 

ρ Y( ) ≥ sup
Q∈P

EQ −Y[ ]−α Q( )( ).   

2.12 

To establish the reverse inequality, take  such that 

m > sup
Q∈P

EQ −Y[ ]−α Q( )( ).   

2.13 

 

We must show that  or, equivalently, . Suppose on the contrary, 

. Since  is by definition a convex function on the Euclidean space  taking only 

finite values,  is already continuous. Hence  is a closed convex set. Therefore, 

we can find linear functional  ℓ  on  !
Ω  such that  

 
β = sup

X∈Aρ
ℓ X( ) < ℓ m +Y( ) = γ < ∞. 

 

2.14 

 

 X! EQ −Z[ ]−α Q( )

Q∈Ρ

α Q( )

α Q( ) = sup
X∈Aρ

EQ −X[ ]( )

 α
! Q( ) Aρ

 α Q( ) ≥α! Q( ) X ∈Χ

X ' := ρ X( ) + X ∈Aρ

 α Q( ) =α! Q( ) Ω

Y ∈Χ α ⋅( )

 m∈!

m ≥ ρ Y( ) m +Y ∈Aρ

m +Y ∉Aρ ρ  !
Ω

ρ Aρ = ρ ≤ 0{ }
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It follows that  ℓ  is a negative linear functional. Indeed, note first that the axioms of 

normalization and monotonicity imply 

 

ρ X( ) ≤ ρ 0( )  for X ≥ 0. 2.15 

 

Thus, if  satisfies , then  for all , and hence 

 

 γ > ℓ λX + ρ 0( )( ) = λℓ X( ) + ρ 0( ).  
 

2.16 

 

Taking λ ↑ ∞  yields that . If we assume that  applied to the constant function 1 

gives -1, what we can do without loss of generality, then 

 
2.17 

 

defines a probability measure . By Eq. (2.12) and Eq. (2.14) we find 

 

α Q( ) = sup
X∈Aρ

EQ −X[ ]( ) = β. 
 

2.18 

But 

 
2.19 

which is a contradiction to our choice of m . Therefore, we must have  and, thus 

m∈ρ Y( ).   

  

X ∈Χ X ≥ 0 λX + ρ 0( )∈A
ρ

λ ≥1

 ℓ X( ) ≤ 0  ℓ

 Q A[ ] := ℓ −IA( )

Q∈Ρ

 EQ −Y[ ]−m = ℓ m +Y( ) = γ > β =α Q( )
m +Y ∈Aρ

 !
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2.4 Summary	of	risk	measures	

As shown above, a risk measure,  is functional that assigns a numeric value to a 

random variable representing a random return or payoff. Not every functional corresponds to 

the intuitive notion of risk. One of the main characteristics of such a function is that a higher 

uncertain return should conform to a higher functional value. We shall now present some of the 

various risk measures that were theoretically developed over time. 

2.4.1 Pederson	and	Satchell’s	
Pederson and Satchell (see Rachev et al. [32] for details) defined their own class of risks that is 

seen as a deviation from a location measure. Nonnegativity, positive homogeneity, sub-additivity, 

and translation invariance are considered desirable properties of a “good financial risk measure”. 

Pedersen and Satchell presented in their work the full characterization of the appropriate risk 

measures that was based on their system of axioms. 

2.4.2 Coherent	risk	measures	
Coherent risk measures were introduced by Artzner et al. [8]. Coherent risk measures are those 

measures which are translation invariant, monotonous, sub-additive, and positively 

homogeneous as defined above. Coherent measures have the following general form: 

 2.20 

where  is some class of probability measures on  . Four criteria proposed by Artzner et al. 

[8] provide rules for selecting and evaluating risk measures. These axioms have been detailed 

earlier in this chapter. Note that one should be aware that not all risk measures satisfying the 

four proposed axioms are reasonable to use under certain practical situations. Wang et al. [40] 

suggested that “a risk measure should go beyond coherence” in order to utilize useful 

information in a large part of a loss distribution. Dhaene et al. (see Rachev et al. [32] for further 

details), observing “best practice” rules in insurance, concluded that coherent risk measures “lead 

to problems”. 

2.4.3 Convex	risk	measures	
Convex risk measures were studied by Follmer and Schied [16, 17, 18] and Frittelli and Rosazza 

Gianin (see Rachev at al. [32] for further details). The generalization of coherent risk measures 

derived by relaxation of the positive homogeneity assumption, together with the sub-additivity 

condition leads to the basis for convexity. Any convex risk measure takes into account a 

nonlinear increase of the risk with the size of the position and has the following structure [32]: 

 X→ ρ X( )∈!

ρ X( ) = sup
Q∈℘

EQ −X[ ]

℘ Ω
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where  is a penalty function defined on probability measures on . The representation 

theorem and other important features pertaining to convex risk measure have been presented 

earlier in this chapter. Further, the requirements for convex risk measures in the CVaR 

optimisation based model will serve great advantages.  

2.4.4 Law	invariant	coherent	risk	measures	
From the notation of Kusuoka (see Rachev et al. [32] for further details), law invariant coherent 

risk measures have the form: 

, 
 

2.22 

 

where  is non-decreasing and right continuous. This class of risk measures satisfies 

the lower semi-continuity property for all . The class of insurance prices 

characterized by Wang et al. [40] is an example of law invariant coherent risk measures. 

2.4.5 Spectral	risk	measures	
Spectral measures of risk add two axioms to the set of coherency axioms: law invariance (AX5.) 

and comonotonic additivity (AX6.). Spectral risk measures consist of a weighted average of the 

quantiles of the returns distributions. The spectrum denoted by  is a non-increasing weight 

function of these weighted quantiles of a return distribution. Spectral risk measure is defined as 

follows: 

. 
 
 

2.23 

Where  is a non-negative, non-increasing, right-continuous integrable function defined on  

[0, 1] and such that .  

The coherency of the spectral risk measure is dependent on the assumptions made on . 

If any of these assumptions are relaxed, the measure is no longer coherent. Additionally, spectral 

risk measures possess consistency with second order stochastic dominance (SSD), and expected 

utility theory. More of the details around spectral risk measure shall be presented in the next 

chapter. 

 

 

ρ X( ) = sup
Q∈℘

EQ −X[ ]−α Q( )( )
α Ω

ρα X( )=
Δ 1
α

Z−X x( )dx
1−α

1

∫

 Z : 0,1[ )→ !

X ∈L∞ ,0 ≤α ≤1

φ

Mφ X( ) = − φ x( )FX x( )dx
0

1

∫
φ

φ
0

1

∫ x( )dx = 1

φ
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2.4.6 Deviation	measures	and	expectation-bounded	risk	measures	
Rockafeller et al. [35, 36] defined deviation measures as:  

i. positive,  

ii. sub-additive (AX4.),  

iii. positively homogeneous (AX1.),  

iv. Gaivoronsky-Pflug (G-P) translation- To get a detail account on this property refer to  

the appendix in Rockafeller et al. [35]. 

Deviation measures are typically useful to the totally risk-averse investors. Rockafeller et al. [35, 

36] proposed expectation-bounded risk measures, imposing the conditions of: 

i. sub-additivity (AX4.),  

ii. positive homogeneity (AX1.),  

iii. translation invariance (AX2.) and  

iv. additional property of expectation-boundedness.  

There is a correspondence in the one-to-one relationship between deviation measures and 

expectation-bounded risk measures. One can derive expectation-bounded coherent risk 

measures if additionally, monotonicity is satisfied [32]. 

2.4.7 Parametric	classes	of	risk	measures	
Stone (see Rachev et al. [32] for further details) defined a general three-parameter class of risk 

measures, which has the form, 

 
 

2.24 

where , and . Stone’s class of risk measures includes several commonly used 

measures of risk and dispersion. These measures of risk and dispersion that is used are the 

standard deviation, the semi-standard deviation, and the mean absolute deviation. 

Pedersen and Satchell (see Rachev et al. [32] for further details) generalized Stone’s class of risk 

measures. They introduced the five-parameter class of risk measures, defined as, 

, 
 

2.25 

for a considered bounded function , A, , , . 

2.4.8 Quantile-based	risk	measures	
Quantile-based risk measures include Value-at-Risk (VaR), expected shortfall (ES), tail 

conditional expectation (TCE), and worst conditional expectation (WCE). We shall introduce 

each measure below briefly; with further details the reader is referred to Rachev et al. [32], 

R c,k,A[ ] = y − c k f (y)dy
A

−∞

∫( )1/k
A  c∈! k > 0

R A,c,α ,θ ,ω[ ] = y − c α ω F y( )⎡⎣ ⎤⎦ f (y)dyA

−∞

∫( )θ
ω ⋅( )  c∈! α > 0 θ > 0
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Einmal et al. [13], Pflug [29], Mausser and Rosen [26], Mckay and Keefer [27]. Value-at-Risk 

(VaR) specifies how much one can lose with a given probability. It is defined as 

. 
 

2.26 

VaR has the following properties:  

i. Monotonicity (AX3.),  

ii. positive homogeneity (AX1.),  

iii. translation invariance (AX2.),  

iv. law invariance (AX5.),  

v. comonotonic additivity (AX6.).  

 

Expected shortfall (ES), also known as tail (or conditional) VaR, corresponds to the average of 

all ’s above the threshold , 

. 
 

2.27 

ES was proposed in order to overcome some of the theoretical weaknesses of VaR. ES has the 

following properties:  

i. law invariance (AX5.),  

ii. translation invariance (AX2.),  

iii. comonotonic additive (AX6.),  

iv. continuity,  

v. monotonicity (AX3.),  

vi. sub-additivy (AX4.).  

Tail conditional expectation (TCE) was proposed by Artzner et al. [8] in the following form: 

. 2.28 

 does not possess the sub-additivity property for general distributions. It further has 

coherency for continuous distributions only. Worst conditional expectation (WCE) is defined as 

. 2.29 

 is not law-invariant, so it cannot be estimated solely from data. Using such measures 

can lead to different risk values for two portfolios with identical loss distributions. This forms a 

practical weakness and as such is rarely used.  

A comparison of ES, TCE, and WCE, yields the following relationship according to Rachev et 

al. [32]: 

VaRα X( ) = −x α( ) = q1−α −X( )

VaRα α

ESα X( ) = 1
1−α

VaRυ X( )
α

1

∫ dυ

TCEα X( ) = −E X | X ≤ x α( ){ }
TCEα

WCEα X( ) = − inf E X | B[ ] :B∈A,P B( ) >α{ }
WCEα X( )
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. 2.30 

When the underlying probability law varies, ES has the maximum value among TCE and WCE. 

If the distribution of X is continuous, then the following can be realised, 

. 2.31 

 

2.4.9 Drawdown	measures	
Drawdown measures are intuitive risk measures. Drawdowns measure the difference between 

two observable quantities. These observable quantities can be local maximum and local 

minimum of the portfolio wealth. Chekhlov et al. [11] defined the drawdown function as the 

difference between the maximum of the total portfolio return up to a specific time t and the 

portfolio value at t. Drawdown measures can be compared to the notion of deviation measures. 

Examples of drawdown measures constitute, see later Chapter 3 that give detail definitions for 

each:  

i. Absolute drawdown (AD),  

ii. maximum drawdown (MDD),  

iii. Average drawdown (AvDD),  

iv. Drawdown at risk (DaR), and  

v. Conditional drawdown at risk (CDaR).  

Drawdown measures have computational simplicity, and therefore drawdown measures cannot 

describe the real situation on the market, and therefore, should be used in combination with 

other measures. 

2.4.10 Distortion	risk	measures	
A distortion risk measure can be defined as the: “distorted expectation of any non-negative 

loss random variable X” [32]. It is accomplished by using the distortion function  as follows, 

. 
 

2.32 

Where is a continuous increasing function with and ; 

 denotes the cumulative distribution function of X, while is referred to as a 

distorted distribution function. 

 

For the profit and loss distributions, when the loss random variable can take any real number, 

the distortion risk measure is: 

TCEα X( ) ≤WCEα X( ) ≤ ESα X( )

TCEα X( ) =WCEα X( ) = ESα X( )

g

ρg X( ) = g 1− FX x( )( )dx
0

∞

∫ = FX
−1 x( ) 1− q( )dg q( )

0

1

∫
g : 0,1[ ]→ 0,1[ ] g 0( ) = 0 g 1( ) = 1

FX x( ) g FX x( )( )
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2.33 

where . A similar expression holds if we use the survival function 

 instead of the distribution function, 

. 
 

2.34 

Further details of the distortion risk measure shall be presented in the next chapter. 

 

2.5 Remarks	

In Chapter 2, we presented the axiomatic framework that defines the various risk measures that 

have been devloped over the past decades. We have given a detail account of the relevant axioms 

for coherency and have shown the representation theorems for convex risk measures. We have 

also given broad summary of the various risk measures that have been developed. This chapter’s 

aim was to achieve partial objectives of Obj. (I) and Obj. (V).  

ρg X( ) = FX
−1 x( )dH x( ) =

0

1

∫ − H FX x( )( )dx +
−∞

0

∫ 1− H FX x( )( )⎡⎣ ⎤⎦dx0

∞

∫
H u( ) = 1− g 1− u( )

SX x( ) = 1− FX x( ) = P X > x( )

ρg X( ) = − 1− g SX x( )( )⎡⎣ ⎤⎦dx +−∞

0

∫ g SX x( )( )dx
0

∞

∫
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Chapter 3. Alternative measures of risk for asset 
management  
In this chapter, we explore into the analysis of the different risk measures that were introduced 

in the preceding chapter. We shall focus on the alternative risk measures to the VaR and CVaR 

that have been researched in the recent years. The main question for asset manager is the choice 

of an adequate risk measure. The answer is not obvious as it is generally not easy to identity 

which particular risk measure might be best suited. Further difficultly arises as there is no clear 

way of comparing risk measures and there is no guarantee that the risk measure will be “good” 

under all circumstances. 

 

We shall introduce details pertaining to the spectral, coherent-distortion and distortion risk 

measures. Some key theorems shall be presented that serve as building blocks that allow one to 

use these alternative risk measures for portfolio optimisation. 

3.1 Distortion	risk	measures	

A distortion risk measure can be defined as the: “distorted expectation of any non-negative loss 

random variable X” [32]. Rachev et al. [32] show based on using a “dual utility” or the distortion 

function   that 

. 
 

3.1 

Where is a continuous increasing function with and ;  

denotes the cumulative distribution function of X, while is referred to as a distorted 

distribution function. 

 

For the Profit/Loss-distributions, when the loss random variable can take any real number, the 

distortion risk measure is obtained as follows: 

 
 

3.2 

where . We achieve a similar expression if we use the survival function 

 instead of the distribution function, 

. 
 

3.3 

g

ρg X( ) = g 1− FX x( )( )dx
0

∞

∫ = FX
−1 x( ) 1− q( )dg q( )

0

1

∫
g : 0,1[ ]→ 0,1[ ] g 0( ) = 0 g 1( ) = 1 FX x( )

g FX x( )( )

ρg X( ) = FX
−1 x( )dH x( ) =

0

1

∫ − H FX x( )( )dx +
−∞

0

∫ 1− H FX x( )( )⎡⎣ ⎤⎦dx0

∞

∫
H u( ) = 1− g 1− u( )

SX x( ) = 1− FX x( ) = P X > x( )

ρg X( ) = − 1− g SX x( )( )⎡⎣ ⎤⎦dx +−∞

0

∫ g SX x( )( )dx
0

∞

∫
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A more general class of distortion risk measures was developed, depending on the choice of 

parameters , g, and h. It has the following form, 

 
 

3.4 

where . When  and  , then we again obtain the 

Choquet integral representation. 

3.1.1 Distortion	risk	measure	properties	
We shall introduce some properties of distortion risk measures that are derived and correspond 

to the Choquet Integral. The reader is advised to refer to Rachev et al. [32] for details regarding 

these properties. 

i. If , then  monotonicity. 

ii. , for all , positive homogeneity. 

iii. , for all %, translation invariance. 

iv. , where . 

v. If a random variable  has finite number of values and  exists, then 

. 

vi. If  and  are comonotonic risks, taking positive and negative values, then 

, this is called comonotonic addivity. 

vii. In the generalized case, distortion risk measures are not additive

. 

viii. Distortion risk measures are sub-additive if and only if the distortion function  is 

concave. This can be represented as follows . 

ix. For a non-decreasing distortion function , the associated risk measure  is consistent 

with the stochastic dominance of order 1, . 

x. For a non-decreasing concave distortion function , the associated risk measure  is 

consistent with the stochastic dominance of order 2, . 

xi. For a strict concave distortion function , the associated risk measure  is strictly 

consistent with stochastic dominance of order 2, . 

α

Hα ,g,h X( ) =α + Hh X −α( )+( )− Hg α − X( )+( )
α + = max 0,α[ ] α = 0 H x( ) = 1− g 1− x( )

X ≥ 0 ρg X( ) ≥ 0

ρg λX( ) = λρg X( ) λ ≥ 0

ρg X + c( ) = ρg X( ) + c

 
ρg −X( ) = −ρg! X( )  g

! x( ) = 1− g(1− x)

Xn ρg X( )

ρg Xn( )→ ρg X( )
X Y

ρg X +Y( ) = ρg X( ) + ρg Y( )

ρg X +Y( ) ≠ ρg X( ) + ρg Y( )
g

ρg X +Y( ) ≤ ρg X( ) + ρg Y( )
g ρg

X ≤1 Y ⇒ ρg X( ) ≤ ρg Y( )
g g

X ≤2 Y ⇒ ρg X( ) ≤ ρg Y( )
g g

X <2 Y ⇒ ρg X( ) < ρg Y( )
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3.1.2 Examples	of	distortion	risk	measures	
As shown above, the distortion risk measure depends on the distortion risk function. Challenges 

come when the “best” distorted risk measure is needed to find the “best” suited distorted risk 

function. From Rachev et al. [32], we present some well-known distortion risk functions below. 

i. With , we have , assuming the mathematical expectation exists. 

ii. VaR corresponds to the distortion function: 

g x( ) = 0, if x <1− p,
1, if x ≥1− p.

⎧
⎨
⎪

⎩⎪
 

 

3.5 

iii. CVaR can be defined as distortion risk measure based on the distortion function: 

. It is interesting to note the CVaR s not differentiable 

at . Due to this, it discards potentially valuable information since all mapping of 

percentiles below  to a single point “0” is done. This implies it does not take 

into account the severity of extreme values or events. 

iv. In order to overcome this the following distortion functions shall be considered: 

 for , where  is some parameter. The 

distortion function  is non-decreasing, concave, and such that  and . 

This risk measure corresponds to the well-known Wang Transform. 

v. The beta family of distortion risk measures is given as, with incomplete beta function: 

. 
 

3.6 

Where  is the distribution function of the beta distribution, and  is the 

beta function with parameters  and , that is  

. 
 

3.7 

Beta functions are concave if and only if when  and ; and strictly concave if 

 and  are both not equal to 1. 

 

vi. The proportional Hazard (PH) transforms is a special case of the beta-distortion risk 

measure with . The PH-transform risk measure is defined as,  

 
 

3.8 

g(x) = x ρg (X) = E X[ ]

g(x) = min x
1− p

,1⎛
⎝⎜

⎞
⎠⎟

,     x ∈ 0,1[ ]

x = 1− p

x = 1− p

g(x) = Φ Φ−1 x( )−Φ−1 q( )( ) p∈ 0,1[ ] 0 < q ≤ 0.5

g g(0) = 0 g(1) = 1

g FX X( )( ) = β a,b;FX X( )( ) = 1
β a,b( ) t

b−1 dt = Sβ FX x( )( )
0

FX x( )
∫

Sβ x( ) β a,b( )

a > 0 b > 0

β a,b( ) = Γ a( )Γ b( )
Γ a + b( ) = t a−1 1− t( )b−1 dt

0

1

∫

a ≤1 b ≥1

a b

a = 0.1,b = 1

ρPH X( ) = SX x( )
1
λ dx,     λ >1

0

∞

∫
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where . 

3.2 Spectral	risk	measures	

Spectral measures of risk can be defined by adding law invariance and comonotonic additivity 

axioms to the set of coherency axioms. Spectral risk measures consist of a weighted average of 

the quantiles of the returns distribution using a non-increasing weight function. This function 

can be referred to as a spectrum and is denoted by . It is defined as follows: 

. 
 

3.9 

Where  is a non-negative, non-increasing, right-continuous integrable function defined on  

[0, 1] and such that . Coherency of spectral risk measures depends on assumptions 

made on . If any of these assumptions are relaxed, the measure is no longer coherent. Spectral 

risk measures possess:  

i. positive homogeneity,  

ii. translation invariance,  

iii. monotonicity,  

iv. sub-additivity,  

v. law invariance,  

vi. comonotonic additivity,  

vii. consistency with second order stochastic dominance (SSD) and expected utility theory. 

 

The coherence of spectral risk measures comes from the assumption made on the spectrum. 

Thus if the spectrum assumptions change then the measure is no longer the same. From Adam 

et al. [3] we see that spectral risk measure can be expressed as an empirical distribution of 

portfolio returns as: 

, 
 

3.10 

where . The computation of any spectral risk measure involves 

an average value of ranked or sorted portfolio returns. Due to this property, expected shortfall is 

a special spectral risk measure with and it can be shown that any spectral risk 

measure can be expressed as a weighted average of expected shortfalls.  

 

SX x( ) = 1− FX x( )

φ

Mφ X( ) = − φ x( )FX x( )dx
0

1

∫
φ

φ
0

1

∫ x( )dx = 1

φ

( ) ∑
=

−=
n

i
ii xXM

1

λφ

( )
( ) ∑∫

=
−

=≥=
n
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i

ni

nii dpp
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3.2.1 Generation	of	spectral	risk	measures	from	expected	shortfall	[1]	
Acerbi [1] view the expected shortfall as, let be the distribution function of 

the profit–loss X of a given portfolio  and define the usual generalized inverse of  as 

. 3.11 

 

The -expected shortfall defined for  as 

, 
 

3.12 

can be shown by Acerbi et al. [21], to be a risk measure satisfying the axioms of Definition 2.1. 

For  it is natural to extend the definition of  as the very worst case scenario, 

. 3.13 

Recall that the expected shortfall is closely related but not coincident to the notion of conditional 

value at risk  or tail conditional expectation defined as [1] 

. 3.14 

 

In fact, conditional Value-at-Risk is not a coherent measure in general. It coincides with  

(and it is therefore coherent) only under suitable conditions such as the continuity of the 

probability distribution function  [12]. 

Introducing a measure on , and under suitable integrability conditions, we get: 

 
 

3.15 

is a risk measure as long as the normalization condition, 

 
 

3.16 

is satisfied. Based on the Fubini–Tonelli theorem (see Acerbi [1] for details) we can interchange 

the integrals, 

. 
 

3.17 

FX x( ) = P X ≤ x[ ]
Π FX x( )

F←
X p( ) = inf x | FX x( ) ≥ p{ }

α α ∈ 0,1( ]

ES α( ) X( ) = − 1
α 0

α

∫ F←
X p( )dp

α = 0 ES 0( ) X( )

ES 0( ) X( ) = −ess.inf X{ }

CVaRα TCEα

CVaRα X( ) = TCEα X( ) = −E X | X ≤ FX
← α( )⎡⎣ ⎤⎦

ESα

FX x( )
dµ α( ) α ∈ 0,1[ ]

M µ X( ) = dµ α( )
0

1

∫ αESα X( ) = − dµ
0

1

∫ α( ) dpFX
←

0

α

∫ (p)

α dµ α( )
0

1

∫ = 1

( ) ( ) ( ) ( ) ( ) ( )XMppdpFdpdpFXM xpx φµ φαµ ≡−≡−= ∫∫∫ ←← 1

0

11

0
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It is easy to see that the parametrization in terms of any measure can be traded with a 

parametrization in terms of a decreasing positive risk spectrum as .The 

normalization condition Eq. (3.17) translates into the following normalization condition for , 

. 
 

3.18 

 

3.2.2 Estimation	of	spectral	risk	measures	
The risk measure  is a very simple object to be used in practice. The integral of Eq. (3.9) is 

computable only when an explicit analytical expression for the inverse cumulative distribution 

function is available. In a practical risk management system this is typically the case only 

if the approach chosen for the probability distributions is parametric. 

 

Acerbi [1] suggest the best method for evaluating  is not by its integral definition, but rather 

by the estimator on a sample of  i.i.d. realizations of the portfolio profit–loss 

. They define it by introducing the ordered statistics  given by the ordered values of the 

-tuple . In other words:  and . 

Following the work of Acerbi [1], definitions and theorems will be kept in accordance with their 

work. 

 

Definition 3.1 [1] 

Let  be N  realizations of an r.v. . For any given N -tuple of weights  φi=1,...,N ∈!  

we define the statistics  

. 
 

3.19 

Note that the spectral risk measure generated by .  

Definition 3.2 [1] 

An N-tuple  φi=1,...,N ∈! is said to be an ‘‘admissible’’ risk spectrum if [1] 

i. is positive,  , 

ii. is decreasing,  if  , 

iii. . 
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Theorem 3.1 [1] 

The spectral risk measure of Definition 3.1 is a risk measure for any fixed  N ∈!  if and 

only if is an admissible risk spectrum.  

 

Theorem 3.1 has a wide range of applications. It provides a risk measure for a sample of N 

realizations of a random variable X. Since the theorem holds for any finite  N ∈! , the 

coherency of the measure is not related to some law of large numbers. This result is immediately 

applicable in any scenario-based risk management system.  

 

In a practical setup, an investor should choose his/her own risk averse function  to assess her 

risks independently of the number of scenarios available for the estimation of . We can 

consider  as a positive decreasing normalized function rather than an abstract element of 

. Given  and fixed a number N of scenarios, the most natural choice for an 

admissible sequence i is given by 

. 
 

3.20 

The above expression satisfies 
 
for any finite N. The investor can then use the spectral 

risk measure  generated by this sequence as a risk measure based on Theorem 3.1, it 

ensures its coherence for any finite N.  

 

We have then shown that  provides not only a coherent measure for any fixed N, but also 

a consistent way for estimating, for large number of scenarios the risk measure .  

3.3 Coherent-	Distortion	risk	measures	

There are two ways to derive and define coherent distortion risk measure (CDRM) according to 

Feng and Tan [15]. Feng and Tan [15]  define the CDRM as a subclass of distortion risk measure 

(DRM), namely DRM with concave distortion function g; they also defined CDRM as a subclass 

of CRM, namely CRM that is also comonotonic and law invariant. These two definitions are 

indeed equivalence since it is shown in Feng and Tan [15] that the class of coherent distortion 
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risk measures coincides with the class of comonotonic law invariant coherent risk measures. 

Following the work of Feng and Tan [15], definitions and theorems will be kept in accordance 

with their work. 

 

Definition 3.3 [15] 

We say  is a coherent distortion risk measure (CDRM) if, 

i.   is a distortion risk measure (DRM) with a concave distortion function g, or 

equivalently, 

ii.  is a coherent risk measure (CRM) that is also comonotonic and law-invariant. 

 

The following representation theorem for CDRM is the key result that enables us to develop a 

convex optimisation framework for any CDRM portfolio selection problem. 

 

Theorem 3.2 [15]   

For any random variable X and a given concave distortion function g, risk measure  is a 

CDRM if and only if there exists a function (coherent-distortion function) , 

satisfying , such that, 

 
 

3.21 

where  is the -CVaR of X. This representation theorem says that any CDRM can be 

represented as a convex combination of ,  and based in this one can 

construct any CDRM based on a convex combination of . This result was proved by 

Feng and Tan [15] for continuous portfolio loss distributions. Feng and Tan [15] proved and 

strengthened the representation theorem that any CDRM can be represented as a convex 

combination of finite number of  based on the assumption that the portfolio loss 

has discrete uniform distribution.  

 

Definition 3.4 [15]   

For a given loss observation and the corresponding ordered losses . 

Let  be the probability of realizing and let . Define a 

ρ

ρg

ρ

ρg

 w :[0,1]! [0,1]

w α( )
α=0

1

∫ dα = 1

ρg X( ) = w α( )
α=0

1

∫ φαdα

φα X( ) α

CVaRα X( ) α ∈ 0,1[ ]
CVaRα X( )

CVaRα X( )

L = l1,...,lm( ) l1 < l2 < ...< lm

p(i ) li ,   i = 1,...,m Si li( ) = 1− p i( )j=1

i∑
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CVaR-matrix with columns  as 

. 

 

 

 

 

3.22 

 

Since portfolio losses are discretely distributed at m points, there are m jumps in the cumulative 

function of . By defining 

 

 

3.23 

at these m jumps, then the m CVaR’s at these probability levels are then given by 

, 
 

3.24 

for  and is the (i; j)-th entry of Q. Note that column  is essential to the 

calculation of . 

Feng and Tan [15] give a finite generation result for the CDRM which shall be presented in 

Theorem 3.3 below. Theorem 3.3 is generalized form of Theorem 3.2 applied to general discrete 

loss distributions.  

 

Theorem 3.3 [15]   

For a give portfolio loss sample , the corresponding ordered losses and a 

given concave distortion function g, the resulting CDRM  is given by, 

 
 

3.25 

where are defined in Eq. (3.23). Moreover, every such q can be written in the form 

, 3.26 

 Q∈!m ×!m
 Qi ∈!

m ,   i=1,...,m

 

Q = Q1,Q2,...,Qm[ ]

=

p1 0 0 … 0

p2
p2

1− Sl l1( ) 0 … 0

p3
p3

1− Sl l1( )
p3

1− Sl l2( ) … 0

! ! ! " !

pm
pm

1− Sl l1( )
pm

1− Sl l2( ) …
pm

1− Sl lm−1( ) = 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

li ,   i = 1,...,m

α i =
0 for  i = 1

p( j)
j=1

i−1

∑ for  i = 2,...,m

⎧

⎨
⎪

⎩
⎪

ϕα i
l( ) = 1

1−α i

p( j)l j
j=1

m

∑ = p( j)
1− Sl lm−1( )j=1

m

∑ l j = Qijl j
j=1

m

∑

i = 1,..,m Qij Qi

CVaR i−1( )/m l( )

L = l1,...,lm( ) l1,...,lm( )
ρg

ρg l( ) = qili
i=1

m

∑

qi   ,i = 1,...,m

q =Qw
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where denotes the convex weights satisfying and

, and Q is to the CVaR-matrix. The convex weights w are given by 

wi =

q1

p1

, if i = 1,

qi −
pi
pi−1

qi−1
⎛
⎝⎜

⎞
⎠⎟
Sl li−1( )
pi

, if i = 2,..,m.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

 

 

3.27 

 

The following observations can be made. First, it is easy to verify that the convex weights 

defined in Eq. (3.27) satisfy and . Theorem 3.3 implies that every 

CDRM can be defined as a convex combination of the ordered losses l  via Eq. (3.25) 

or equivalently as a convex combination of CVaR’s via Eq. (3.26). The latter formulation is what 

Feng and Tan [15]  adopt in their CDRM portfolio optimisation model. 

3.4 Drawdown	risk	measures	

In this subsection, we present some general properties and theorems regarding the absolute 

drawdown for a single sample path, maximum, average and conditional drawdowns, and multi-

scenario drawdown measure. Following the work of Chekhlov et al. [11], definitions and 

theorems will be kept in accordance with their work. 

3.4.1 Absolute	drawdown	for	a	single	sample	path	
We present the notion of the Absolute Drawdown (AD). The AD is applied to a sample path of 

the uncompounded cumulative portfolio rate of return. Note that the AD is applied not to the 

compounded cumulative portfolio rate of return . If the values of  for 

 determine a sample path of the portfolio’s rate of return, then, the uncompounded 

cumulative portfolio rate of return at time moment  is given by: 

wk x tk( )( ) =
0, if k = 0,

rl
p x tl( )( ),

l=1

k

∑ if k = 1,...,N .

⎧

⎨
⎪

⎩
⎪

  

 

3.28 

We use  instead of , as  is always a function of vector . In this subsection, 

we shall consider only a single sample path of  , , which will be denoted by vector 

. 

wT = w1,,...,wm( ) wi ≥ 0,   i = 1,...,m

wi = 1i=1

m∑

wi ≥ 0,   i = 1,...,m wi = 1i=1

m∑
l1,...,lm( )

( )( )kk txW ( )( )k
p
k txr

Nk ,...,1=

kt

kw ( )( )kk txw kw ( )ktx

kw Nk ,...,1=

w
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Definition 3.5 [11]  

The AD is a vector-variable functional depending on the sample path w  as is given by, 

. 3.29 

Note the components  and  of vectors  and , are, time series   

and  , respectively, where the kth components of   and   correspond to time 

moment . Since  is always zero, we do not include it into drawdown time series . 

According to Chekhlov et al. [11] ,  and  are the same drawdown time series, they refer 

to the notation  to emphasize its dependence on w.  

 

Figure 3-1 illustrates an example of the absolute drawdown  and a corresponding sample path 

. Figure 3-1 was adopted from Chekhlov et al. [11] and has been redrawn by the Author. 

 
Figure 3-1: Time series of uncompounded cumulative rate of return with absolute drawdown 

 

Proposition 3.1 [11] 

Define vectorial operations as such  and 

( ) ( ) { }
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, the  satisfies the following properties: 

i. Nonnegativity: . 

ii. Insensitivity to constant shift: . 

iii. Positive homogeneity: . 

iv. Convexity: if is a linear combination of any two sample paths of 

uncompounded cumulative rates of return,  and , with λ ∈ [0, 1], then 

.  

3.4.2 Maximum,	average	and	conditional	drawdowns	
We consider three functionals based on the notion of drawdown:  

i. Maximum Drawdown (MaxDD),  

ii. Average Drawdown (AvDD), and  

iii. Conditional Drawdown (CDD).  

The last risk functional is actually a family of performance functions depending upon parameter 

α . It is defined similar to CVaR [36]. 

 

Definition 3.6 [11] 

For given time interval [0, T], partitioned into N subintervals , , with  

and  ,  and  functionals are defined, respectively 

, 
 

3.30 

 

. 3.31 

 

Chekhlov et al. [11] define Conditional Value-@-Risk (CV@R) and CDD, by introducing a 

function  such that 

. 
 

3.32 

 

Where   is an indicator equal to 1, if the condition in curly brackets is true, and equal to 

zero, if the condition is false, i.e. with  c∈! , 

( )Nwww λλλ ,...,1= ( )wAD

( ) 0≥wAD

( ) ( )wADconstwAD =+

( ) ( ) 0, ≥∀= λλλ wADwAD

( ) ba www λλλ −+= 1

aw bw

( ) ( ) ( ) ( )ba wADwADwAD λλλ −+= 1

[ ]kk tt ,1− Nk ,...,1= 00 =t

TtN = AvDD MaxDD

( ) ∑
=

=
N
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wAvDD
1

1 ξ

( ) { }kNk
wMaxDD ξ

≤≤
=
1
max

( )sξπ

( ) { }∑
=

≤
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sk

I
N

s
1

1
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{ }skI ≤ξ
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I{c≤s} =
1, c ≤ s,
0, c > s.

⎧
⎨
⎪

⎩⎪
 

 

3.33 

 

Definition 3.7 [11] 

For a given sequence of , , CV@R is formally defined by 

. 

 

3.34 

 

Where . Let’s consider the first term in the RHS of Eq. (3.34), 

it appears because of the inequality . If  of the worst drawdowns 

can be counted precisely, then  and the first term in the right-hand side of Eq. 

(3.34) disappears. Eq. (3.34) follows from the framework of the CVaR methodology [36]. This 

thus reassures the close relations between CVaR and CV@R. , given by Eq. (3.34), and 

functional , are linearly dependent. This means that if X is an arbitrary random 

variable then 

. 
 

3.35 

Chekhlov et al. [11] use of the CV@R or CVaR is only the matter of convenience. 

 

Definition 3.8 [11] 

In a single scenario case, the CDD with tolerance level  is the CV@R applied to the 

drawdown functional, , 

. 3.36 

Equivalently, interpreting ,  , to be observations of a “random variable” ,  α −

CDD is the   of a loss function . 

 

3.4.3 Multi-scenario	drawdown	measure	
In a multi-scenario case, CDD with tolerance level  can be interpreted as [11]: 

i. The average of the worst  drawdowns on the drawdown surface, if the 

worst   drawdowns can be counted precisely. 
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ii. The linear combination of  and the average of the drawdowns strictly exceeding 

threshold plane , based on the fact we can precisely count of  

drawdowns. 

 

Definition 3.9 

In a multi-scenario case, the CDD, with tolerance level , is the multi-scenario  

applied to drawdown surface, , 

 3.37 

and drawdown measure is the mixed CDD with risk profile , 

 
 

3.38 

where is given by Eq. (3.37). 

 

In the case of discrete risk profile, drawdown measure is computed by, 

Δχ
+ w( ) = min

u ,y,z
χ i yi +

1
1−α i( )N pjzijk

j=1

K

∑
k=1

N

∑⎛

⎝⎜
⎞

⎠⎟i=1

L

∑
Subject to:
zijk ≥ ujk − yi ,

ujk ≥ uj k−1( ) − rjk
p ,

ujk ≥ 0,
uj0 = 0,
zijk ≥ 0,
i = 1,...,L,
j = 1,...,K ,
k = 1,...,N . 

 

 

 

 

 

 

3.39 

3.5 Remarks	

This chapter’s aim was to present the theorems, properties and other propositions for the 

alternative risks measures to VaR and CVaR. We have presented the theorems, properties and 

propositions pertaining to spectral, distortion, cohorent-distortion and drawndown risk 

measures. This chapter serves to partially achieve Obj (I).  
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Chapter 4. CVaR-based portfolio optimisation 
models 
In this chapter, we develop the portfolio optimisation model where either the objective or 

constraint is modelled using a CVaR as a risk measure. We shall first consider the theory of 

general loss distributions and its applications of CVaR in portfolio optimisation problems. 

4.1 General	loss	distributions	framework	for	CVaR	

Measures of risk have a crucial role in optimisation under uncertainty, especially in coping with 

the losses that might be incurred in finance or the insurance industry. We shall show how one 

can get a deeper understanding of the role measures of risk play within portfolio optimisation. 

The basis of this subsection lies in the work of Rockafella and Uryasev [35]. Much of the 

concepts, definition and theorems will take its origin from Rockafella and Uryasev [35] and 

Alexander et al. [6]. 

 

Let’s suppose loss can be represented as a multivariable function given as  of a 

decision vector representing  which may generally be a portfolio, with  expressing 

decision constraints, and a vector representing the future values of a number of 

variables. We take to be random with known probability distribution. Thus  comes out as a 

random variable having its distribution dependent on the variable . Any optimisation problem 

involving  in terms of  should then take into account expectations and the ‘‘riskiness’’ of . 

The objective is to understand this “riskiness”.  

 

4.1.1 CVaR	as	a	loss	distribution	
Suppose a random vector  is governed by a probability measure P on Y, that is independent of 

. Rockafella and Uryasev [35] denote  on R, for each , the resulting distribution 

function for the loss , i.e., 

. 4.1 

The following approach and assumption is that  is continuous in  and measurable in 

. We then have  for each . We denote by  the left limit of  at 

; thus this is given by: 

( )yxfz ,=
nRXx ⊂∈ X

mRYy ⊂∈

y z

x
z x x

y

x ( )⋅,xψ x

( )yxfz ,=

( ) ( ){ }ζζψ ≤= yxfyPx ,|,

( )yxf , x

y ( ){ }yxfE , Xx∈ ( )−ζψ ,x ( )⋅,xψ

ζ
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. 
 

4.2 

The difference is given by: 

. 4.3 

Eq. (4.3) is positive, so that  has a jump at . Rockafella and Uryasev [35] called this 

jump, the probability ‘‘atom’’ at . In practical applications, the confidence level  shall 

be . At this confidence level, there is a corresponding VaR, defined in the 

Definition 4.1 below. 

 

Definition	4.1	[35]	

	The	 -VaR	of	the	loss	associated	with	a	decision	 	is	the	value:	

. 
 

4.4 

The minimum in Eq. (4.4) is attained because is non-decreasing and right-continuous in 

. Rockafella and Uryasev [35] consider  as a continuous and strictly increasing,  is 

simply the unique  satisfying . If these conditions are not met, then this equation 

can have either no unique solution or a whole range of solutions. 

Figure 4-1 has been adopted and redrawn from Rockafella and Uryasev [35] to illustrate the 

effects of graph  having no solutions and a range of solutions. As in Figure 4-1 (a), with a 

lying in an interval of confidence levels that all yield the same VaR. The lower and upper 

endpoints of that interval are given respectively, 

, 
 

4.5 

. 
 

4.6 

 

( ) ( ){ }ζζψ <=− yxfyPx ,|,

( ) ( ) ( ){ }ζζψζψ ==− − yxfyPxx ,|,,

( )⋅,xψ ( )yxf ,

ζ α ∈ 0,1( )
α = 0.95 or 0.99

α x

ζα x( ) = min ζ ψ x,ζ( ) ≥α{ }
ψ x,ζ( )

ζ ( )⋅,xψ ζα x( )

ζ ψ x,ζ( ) =α

( )⋅,xψ

α − x( ) =ψ x,ζα x( )−( )
α + x( ) =ψ x,ζα x( )( )
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Figure 4-1: Equation with (a) no solution (b) range of solutions 
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With the case of a whole range of solutions, we get a constant segment of the graph, as shown in 

Figure 4-1(b). The solutions form an interval having  as its lower endpoint. The upper 

endpoint of the interval is the value . 

 

Definition 4.2 [35] 
The α −VaR+  also called ‘upper’’ a-VaR, of the loss associated with a decision x  is the value 

. 
 

4.7 

Note that  always holds. The values are the same except when  is 

constant at level  over a certain -interval. That interval is either ½ or 

, this depends on whether or not  has a jump at . Rockafella and 

Uryasev [35] in Figure 4-1 illustrates the phenomena that raise challenges in the treatment of 

general loss distributions. Discrete distributions associated with finite sampling or scenario 

modelling make for strong cases for exhibiting these types of loss distributions, since then 

  is a step function. 

 

Definition 4.3 [35] 
The -CVaR of the loss associated with a decision  is the value 
  

. 4.8 

 
Where the distribution is given with distribution function defined by, 

ψα x,ζ( ) =
0, for ζ <ζα x( ).

ψ x,ζ( )−α
1−α

, for ζ ≥ζα x( ).

⎧

⎨
⎪

⎩
⎪

 

 

4.9 

 
Rockafella and Uryasev [35] note that  is another distribution function, in comparison 

 it is non-decreasing and right-continuous, with . 
 
Definition 4.4 [35] 
The a-CVaRþ also called ‘‘upper’’ a-CVaR of the loss associated with a decision  is the value, 

. 4.10 

Whereas the a-CVaR   also known as ‘‘lower’’ a-CVaR of the loss is the value, 
. 4.11 

 

ζα x( )

ζ +
α x( )

ζ +
α x( ) = inf ζ ψ x,ζ( ) >α{ }
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α x

φα x( ) = mean of the α -tail distribution of z = f x, y( )
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x
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+ x( ) = E f x, y( ) f x, y( ) >ζα x( ){ }
−

φα
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Rockafella and Uryasev [35] show the following basic CVaR relations. If there is no probability 
atom at , one has 

. 4.12 

If a probability atom does exist at , one has, 

 
 

4.13 

or on the other hand, 

. 
 

4.14 

In all the remaining cases, characterized by 

. 
 

4.15 

There is one strict inequality given by Eq. (4.16) below: 

. 
 

4.16 

 

For details on the proofs see Rockafella and Uryasev [35]. 

 
Rockafella and Uryasev [35] consider CVaR as a weighted average and shall be presented in the 
proposition below.  
 
Proposition 4.1 [35] 
 Let  be the probability assigned to the loss amount by the -tail distribution 
in Definition 4.3, namely 

. 
 

4.17 

If , so there is chance of a loss greater than  then 

. 
 

4.18 

Where , whereas if , so  is the greatest loss that can occur, then 

. 
 
From the definition, -CVaR dominates a-VaR: . Also note 

unless there is no chance of a loss greater than . 
	

By representing CVaR as a certain weighted average of VaR and CVaR , Eq. (4.18) poses 

interesting observations. Neither VaR nor CVaR  behaves well as a measure of risk for general 

loss distributions. The unusual feature in the definition of CVaR that leads to its power is the 

way that probability atoms, can be ‘‘split’’ if present. Such splitting is shown in Proposition 4.1. 

In the notation of  and in Eq. (4.5) and Eq. (4.6) and the circumstances in Eq. 

ζα x( )
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− x( ) = φα x( ) = φα
+ x( )

ζα x( )
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− x( ) = φα x( )  when ψ x,ζα x( )( ) = 1

ψ x,ζα x( )−( ) <α <ψ x,ζα x( )( ) <1
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− x( ) < φα x( ) < φα
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µα x( ) z = ζα x( ) α

µα x( ) = ψ x,ζα x( )( )−α⎡⎣ ⎤⎦ / 1−α[ ]∈ 0,1[ ]

ψ x,ζα x( )( ) <1 ζα x( )
φα x( ) = µα x( )ζα x( ) + 1− µα x( )⎡⎣ ⎤⎦φ

+
α x( )

µα x( ) <1 ψ x,ζα x( )( ) = 1 ζα x( )
φα x( ) = ζα x( )

α φα x( ) ≥ζα x( ) φα x( ) >ζα x( )
ζα x( )

+

+

α + x( ) α − x( )
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(4.15), where . There is an atom at  having total probability 

 is split into two pieces with probabilities and respectively. 

In concept, only the first of these pieces is adjoined to the interval , which itself has 

probability . To have to achieve a probability of  we 

would have to choose between the intervals and , of which neither 

actually has probability . 

 

Rockafella and Uryasev [35] presented CVaR for scenario models and this is shown in 

proposition below. 

 
Proposition 4.2 [35]  

Suppose the probability measure  is concentrated in finitely many points yk  of Y , for each 

 the distribution of the loss  is likewise concentrated in finitely many points, 

and  is a step function with jumps at those points. Fixing , let those corresponding loss 

points be ordered as , with the probability of  being . Let  be the 

unique index such that 

. 

 

4.19 

The -VaR of the loss is given then by . 

  Whereas the -CVaR is given by, 

. 
 

4.20 

 
Additionally, in this situation we have, 

. 
 

4.21 

 
For details of the proof see Rockafella and Uryasev [35]. 

 

With regards to Proposition 4.2, if the highest point  probability , then actually
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4.1.2 Coherence	and	formulation	of	a	minimization	rule	
We now show that the  and of the loss z associated with a choice x  can be 

calculated simultaneously. Additionally, by solving an elementary optimisation problem of 

convex type in one dimension. This subsection will show the developments from Rockafella and 

Uryasev [35, 36]. Rockafella and Uryasev [35] introduce the special function,  

. 
 

4.22 

Theorem 4.1 shows the minimisation formula Rockafellar and Uryasev [35] developed with 

special assumptions on the loss distribution. This assumption is the exclusion of discreteness. In 

contrast, no such formula holds for  or . 

 

Theorem 4.1 [35]  

As a function of is finite and convex, with 

. 
 

4.23 

The following is also given by Rockafella and Uryasev [35], 

, 
 

4.24 

and 

. 
 

4.25 

 

Here argmin refers to the set of  for which the minimum is attained. In this case has to be a 

nonempty, closed, bounded interval. In particular, one always has 

 
 

4.26 

 

For details of the proof see Rockafella and Uryasev [35]. 

 

Rockafella and Uryasev [35] show the following logic for understanding the convexity of CVaR. 

If  is convex with respect to x, then is convex with respect to x as well.  is 

jointly convex in . Likewise,  is sublinear with respect to x, then  is sublinear 

with respect to x. Then too,  is jointly sublinear in . 

 

For details of the proof see Rockafella and Uryasev [35]. 
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4.1.3 CVaR	in	optimisation	
The optimisation of portfolios under uncertainty can either present CVaR as the objective 

function or a constraint and in some cases even both. The main advantage of CVaR over VaR is 

the preservation of convexity. In numerical applications, the joint convexity of  with 

respect to both x and , is even more valuable than the convexity of  in x. Rockafellar 

and Uryasev [35] show that the minimization of  over , which can be adopted as a 

basic prototype in the management of risk when measured by .  They also state that a 

more tractable problem is the minimisation of  in both x and . We shall now present 

some findings noted from Rockafella and Uryasev [35, 36]. 

 

Rockafella and Uryasev [35, 36] have obtained a shortcut for the optimisation problem and the 

optimisation shortcut shall be presented in Theorem 4.2 below. It is important to note that the 

minimization of CVaR does not have to proceed numerically through repeated calculations of 

for various decisions x [36]. This becomes one of the main advantages of working with 

CVaR as opposed to VaR. Additionally, VaR is ill-posed and has no noted shortcut in the 

optimisation problems.  

 

Theorem 4.2 [35, 36] 

Minimizing  with respect to , is equivalent to minimizing over all

 x,ζ( )∈X ×! , in the sense that 

 4.27 

where  

. 4.28 

 

Rockafella and Uryasev [35, 36] show that the logic for the CVaR calculation as a by-product can 

be understood as follows:  

If  minimizes  over  X ×! , then not only does  minimize  over X, but also 

. 
 

4.29 

Where actually  if  reduces to a single point. 
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It is interesting to note that  does not consist of just a single point, is possible 

to have 
 
in Eq. (4.29). Then the joint minimization in Theorem 4.2, in producing 

, although it yields the a-CVaR associated with , does not immediately yield the a-VaR 

associated with . Further,  is the interval between two consecutive points 

 in the discrete distribution of losses. Therefore, can nonetheless easily be obtained 

from the joint minimization: It is simply the highest . 

 

In Theorem 4.3, Rockafella and Uryasev [35] show that the minimization of  with respect 

to  is not the only way that CVaR can be utilized. Rockafella and Uryasev [35] show in 

Theorem 4.3, how to “risk shape” an optimisation model. When X and g are convex and 

is convex in , we know that the optimisation problems in Theorems 4.2 and 4.3 are 

ones of convex programming. Due to this computation becomes very favourable. Of course, a 

combination of the models in Theorems 4.2 and 4.3 could likewise be handled in such a manner, 

by taking for some . 

 

Theorem 4.3 [36] 

For any selection of probability thresholds  and loss tolerances  the problem 

. 4.30 

Where g is any objective function chosen on X, is equivalent to the problem, 

 

ming x( )  over x,ζ1,...,ζ l( )∈X ×! × ...×!,
Subject to:
Fα i

x,ζ i( ) ≤ω ,   for i = 1,...,l.
 

 

4.31 

 

Indeed,  solves the second problem (Eq. (4.31)) if and only if  solves the first 

problem (Eq. (4.30)) and the inequality , holds for . Moreover, one then 

has for every i, and actually for each i such that . 

 

( )ζαζ ,minarg *xF

ζα x*( ) ≤ζ *

( )**,ζx x*

x* ( )ζαζ ,minarg *xF

zk ζα x*( )
zk ≤ζ

*

φα x( )
x ∈X

f x, y( ) x

g x( ) = φα0
x( ) α 0

α i ω i ,i = 1,...,l

minimize g x( )  over x ∈X  satisfying φα i
x( ) ≤ω i  for i = 1,...,l

x*,ζ *
1,....ζ

*
l( ) x*

Fα i
x,ζ i( ) ≤ω i i = 1,...,l

φα i
x*( ) ≤ω i φα i

x*( ) =ω i Fα i
x*,ζ *

i( ) ≤ω i
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Linear programming techniques can be used to compute answers. That is most evident when Y 

is a discrete probability space with elements , having probabilities . 

Then we have 

. 
 

4.32 

 

The constraint in Theorem 4.3 can be handled by introducing additional variables 

subject to the conditions, 

ηik ≥ 0  and f x, yk( )−ζ i −ηik ≤ 0  
 

4.33 

and requiring that, 

. 
 

4.34 

 

The minimization in the expanded problem Eq. (4.31) is converted then into the minimization of 

over , the  and all the new ’s, with the constraints . When  

is linear in , these constraints become linear. 

4.2 Formulating	the	minimization	of	a	CVaR	problem	

In this subsection, we shall formalise the minimization of CVaR problem. A mathematical 

formulation for derivative portfolio will be developed. Alexander et al. [6] assume that the 

available instruments  are derived from the underlying assets  which may 

be correlated. Let there be random vector  S ∈!d  to denote the underlying values.  

Each derivative contract typically depends on a small subset of the underlying assets, e.g., a stock 

option value may depend only on one risky asset price. There are various types of derivative 

contracts on each underlying asset, e.g., vanilla calls and puts, exotic contracts such as binary 

options and barrier options with many new derivative contracts continuously emerging. For each 

type of option, there can be different contract specifications, e.g., strike prices and maturities, 

which give rise to many different possible instruments. In general, for a derivative portfolio 

optimisation problem, the total number of instruments n is far greater than the total number of 

underlying’s d [6]. 

 

yk ,k = 1,...,N pk ,k = 1,...,N

Fα i
x,ζ i( ) = ζ i +

1
1−α i( ) pk f x, yk( )−ζ i⎡⎣ ⎤⎦

+

k=1

N

∑

Fα i
x,ζ i( ) ≤ω i

ηik

ζ i +
1

1−α i( ) pkηk ≤ω i
k=1

N

∑

g(x) x ∈X ζ i 's ηik Fα i
x,ζ i( ) ≤ω i f

x

V1,...,Vn{ } S1,...,Sd{ }



 66 

4.2.1 Formulating	the	convex	programming	problem	
At any time , the value of derivative contract  typically depends nonlinearly on the 

underlying. The exact value depends in the assumed model for the underlying assets and its 

associated parameters. For the given time horizon , let  denote the loss of portfolio 

with decision variable  and random variable  S ∈!n  denote the value of the underlying 

risk factors at . Assume the probability density  is given by the random variable . 

For a given portfolio , the probability of the loss not exceeding a threshold  is given by the 

CDF: 

Ψ x,α( ) =
Def

p S( )dS.
f x,S( )≤α
∫   

 

4.35 

Alexander et al. [6] noted that the probability distribution for the loss has no jumps,  is 

continuous everywhere with respect to α . 

VaR associated with the portfolio x , for specified confidence level β  and time horizon t , is 

given by: 

 αβ = inf α ∈! :Ψ x,α( ) ≥ β{ }.  4.36 

Under the assumption the  is everywhere continuous and there exists  such that 

. We then define  as 

f x,S( )−α⎡⎣ ⎤⎦
+
=

f x,S( ), if f x,S( )−α > 0.
0, Otherwise.

⎧
⎨
⎪

⎩⎪
 

 

4.37 

The risk measure CVaR as shown by Alexander et. al [6], , is, 

φβ x( ) = inf α + 1− β( )−1E f x,S( )−α⎡⎣ ⎤⎦
+( )( ).  4.38 

When the loss distribution has no jumps, CVaR is the conditional expectation of the loss, given 

that the loss is  or greater, and is given by, 

φβ x( ) = 1− β( )−1 f x,S( ) p S( )dS.
f x,S( )≥αβ x( )
∫  4.39 

Alexander et. al [6] define the augmented function, 

 
Fβ x,α( ) =α + 1− β( )−1 f x,S( )−α⎡⎣ ⎤⎦

+
p S( )dS.

S∈!d
∫  4.40 

 

t Vi

t f x,S( )

 x ∈!n

t p S( )  S ∈!n

x α

Ψ x,α( )

Ψ x,α( ) α

Ψ x,α( ) = β f x,S( )−α⎡⎣ ⎤⎦
+

φβ x( )

αβ x( )
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The function  is convex and continuously differentiable with respect to  and  

is convex to x  given the following assumptions are made; the loss function is convex 

and the loss distribution is continuous. Based on Alexander et. al [6], minimizing the CVaR over 

any x ∈X , where  is a subset of , is equivalent to minimizing   over 

, i.e. 

 
min
x∈X

φβ x( ) = min
x,α( )∈X×!

Fβ x,α( ). 4.41 

 

In addition, X is convex, then CVaR minimisation problem as shown by Alexander et al. [6], 

 

 

4.42 

is convex programming problem. 

 

4.2.2 Minimizing	the	portfolio	risk	

We follow the assumptions made by Alexander et al. [6] and assume a given time horizon t ≥ 0 , 

and that the underlying asset prices of the derivative instrument are  the initial asset 

prices are , and the function  is the loss of a portfolio from a universe of n 

instruments. Assume that instrument values at time t  are . For a portfolio 

selection problem and a given investment horizon , the loss associated with the portfolio x   

is 

f x,St( ) = −xT V t −V 0( ).  
 

4.43 

Where for any time t , . Note that  is a linear function of   

and it can be easily shown that, for any , 

αβ ρ ⋅ x( ) = ρ ⋅αβ x( ),
φβ ρ ⋅ x( ) = ρ ⋅φβ x( ).

 

 

4.44 

 

Let   denote the change in the instrument values over the time horizon t , i.e., 

. Then the loss, , of the portfolio over the investment horizon  is 

. Thus further emphasizing the linear relationship shown by Alexander et al. [6]. 

Fβ x,α( ) α φβ x( )

 f i,S( )

X  !
n Fβ x,α( )

 x,α( )∈X ×!

 
min

x,α( )∈X×!
Fβ x,α( )

 St ∈!
d

S0 f x,S( )

V1 St ,t( ),...,Vn St ,t( ){ }
t > 0

V t =
Def

V1 St ,t( ),...,Vn St ,t( ){ } f x,S( ) x

q > 0

 δV ∈!n

δV =V t −V 0 f x,St( ) t

− δV( )T x
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Without loss of generality, let  x ∈!n  denote the ratio of the instrument holdings to the total 

initial investment wealth, i.e.,  is the number of units of the ith instrument. Assume for now 

that the only constraints on the optimal portfolio are the budget constraint 

 
4.45 

and the return constraint for the investment horizon  

 

 

4.46 

where specifies the expected return of the portfolio over the time horizon   and 

is the expected gain for the instruments, i.e., . 

 

Alexander et al. [6] show that  is the set of feasible portfolios. 

Based on this we have, 

 

min
x,α( )

α + 1− β( )−1 − δV( )T x −α⎡⎣ ⎤⎦
+
p S( )dS

S∈!d
∫

⎛

⎝⎜
⎞

⎠⎟

Subject to,

V 0( )T x = 1,

δV( )T x = r.

 

 

 

4.47 

 

Alexander et al. [6]  show that one major assumption is that a stochastic model for changes of 

the underlying asset prices of all the instruments in a portfolio are given. They also assume that 

there exist methods for computing the derivative values, such as Black–Scholes formulae, delta–

gamma approximations, and Monte Carlo simulation. We adopt these assumptions as well. 

Delta-Gamma	approach	
Alexander et al. [6] investigated the delta-gamma approximation of derivative values to best 

understand how well an optimisation problem is posed. They used the following logical 

approach. 

Given a short time horizon , a delta–gamma approximation can be a sufficiently accurate 

approximation to the derivative value. It is often used in risk assessment in many risk 

management practices. The delta–gamma approximation describes the most significant 

component in the change of the derivative values and can thus provide insight into the nature of 

xi

V 0( )T x = 1
t

δV( )T x = r
r ≥ 0 t

 δV ∈!n δV = Ε δV( )⎡⎣ ⎤⎦

X = x : V0( )T x = 1, δV( )T x = r{ }

t > 0
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the solution. Additionally, we assume for now that the change, for a given horizon , in 

instrument values is specified by the delta–gamma approximation for instrument , 

. 

 
 

4.48 

The vector  denotes the change in the underlying values, denotes the initial 

theta sensitivity of the i-th instrument value to time,  

 
 

4.49 

 denotes the initial delta sensitivity of the i-th instrument with respect to the underlying’s, and 

 is the Hessian matrix denoting the initial gamma sensitivity of the i-th instrument with 

respect to the underlying, and   is change in time.  

 

Let  and  denote the initial sensitivities for all instruments in the investment 

universe, 
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Alexander et al. [6]  assume that each instrument depends on a single risky asset. If a derivative 

value depends on more than one risk factor, we get similar results with for the cross-partial 

derivatives. In the case of a single risk factor, the only non-zero entries in the vector  and 

matrix  are entries i and , respectively. Let , where 

  represents the diagonal of the matrix   as a column vector. Let  be the vector 

with each entry of   squared. If we set 
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the loss in portfolio value is given by 
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. 

 

4.52 

 

4.2.3 Derivative	portfolio	optimisation	and	its	ill-posedness		
Alexander et al. [6]  investigate the consequences of the ill-posedness of the derivative portfolio 

optimisation problem. They question if these difficulties be easily overcome by imposing simple 

constraints, e.g., bound constraints?  

We shall now present the logic on how a CVaR optimisation problem Eq. (4.47) can be solved 

based on the work of Alexander et al [6]. Rockafellar and Uryasev [36] introduce the auxiliary 

function: 
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where 

f x,S( )−α⎡⎣ ⎤⎦
+
=

f x,S( ), if f x,S( )−α > 0.
0, Otherwise.

⎧
⎨
⎪

⎩⎪
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It can be shown from Rockafellar and Uryasev [36] that the function  is convex and 

continuously differentiable with respect to   if the cumulative distribution function  is 

continuous. Moreover, minimizing CVaR over any , where X a subset of , is equivalent 

to minimizing  over all  i.e., 

 4.55 

The function  is convex with respect to  and the CVaR function  is convex 

with respect to  if the loss function  is convex with respect to . If, in addition, X is a 

convex set, then the minimization problem  is a convex programming problem. 

The convexity property is appealing since any local minimizer of a convex programming 

problem is a global minimizer. 
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⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
Fβ x,α( ) =α + 1− β( )−1 f x,S( )−α( )+ p(S)dS

S∈!d
∫
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x ∈X  !
n
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min
x∈X

φβ x( ) = min
x,α( )∈X×!

Fβ x,α( )

Fβ x,α( ) x,α( ) φβ x( )

x f x,S( ) x

 
min

x,α( )∈X×!
Fβ x,α( )
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4.2.4 CVaR	optimisation	with	cost	considerations	
To generate a stable solution to the CVaR optimisation problem, Alexander et al. [6] consider 

additional criteria since the CVaR optimisation problem for portfolio of derivatives is ill-posed. 

A natural meaningful consideration in portfolio investment or risk management is transaction 

and management cost. A portfolio that incurs a relatively small management or transactional cost 

is the desired outcome. Alexander et al. [6] regarded the management and transactional cost as a 

function of the number of instruments in a portfolio. They further discovered that it is difficult 

to include this explicitly into an optimisation formulation since it is computationally challenging 

to solve the resulting mixed integer program. Instead, they considered to find a portfolio, which 

consists of a small number of instruments by minimizing a combination of CVaR and a practical 

cost function without the need to solve a mixed integer programming problem. We adopt the 

definitions and logic used by Alexander et al. [6]  to develop an optimisation problem with cost 

considerations. 

We shall use the assumption from Alexander et al. [6]  that the cost of holding an instrument is 

proportional to the magnitude of the instrument holdings. This leads to a portfolio which has a 

minimum weighted combination of CVaR and the proportional cost as given below: 

 
 

4.56 

 

where is as defined in Eq. (4.39). Here is the weighted cost, representing the cost 

as well as the trade-off between minimizing CVaR and cost. 

The weighted cost parameter can be interpreted as a measure of relative desirability to 

exclude the i-th instrument from the optimal portfolio. If  is greater than some finite threshold 

value, and there exists a feasible portfolio with , then the optimal portfolio  for Eq. 

(4.56) is guaranteed to exclude the i-th instrument, i.e., . Alexander et al. [6]  show the 

cost model as a model for management cost. This property of the cost model Eq. (4.56) is due to 

the fact that the objective function  is an exact penalty function of a constrained 

optimisation problem. Alexander et al. [6]  argue that if one models the cost as for 

example, the resulting optimal portfolio typically has few of its instruments with a small holding 

ratio . For the quadratic penalty function, the constraint  is only satisfied as the 

min
x∈X

φβ x( ) + ci xi
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penalty parameter   tends to  . In order to solve Eq. (4.56), Alexander et al. consider the 

augmented function . It is clear that remains convex and 

continuously differentiable with respect to   since is convex and has no dependence 

on . Moreover, minimizing the sum of the weighted cost and CVaR of a portfolio  in any 

subset   of   is equivalent to minimizing  over . This is 

given by: 

. 
 

4.57 

Alexander et al. [6] show that  is convex with respect to and

 is convex with respect to  if the loss function  is convex with respect 

to . Moreover, if  is a convex set, the minimization problem 

 
 

4.58 

 

is a convex programming problem. With Eq. (4.58) approximated through a Monte Carlo 

simulation, and  is specified by the budget and return constraints, the bounds on the holding 

ratios , the CVaR optimisation problem with a proportional cost becomes a constrained 

piecewise linear minimization problem [6], 

. 

 

4.59 

 

To illustrate the effect of the weighted cost parameter c on the optimal portfolio obtained from 

the CVaR cost model Eq. (4.58), Alexander et al. [6] consider the weighted cost parameter 

, where denotes the optimal CVaR from Eq. (4.59)  with no 

cost consideration. We shall also adopt the same weighted cost parameter in our investigations 

and case studies in Chapter 7. 
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4.2.5 Efficiency	for	CVaR	minimization	
The simulation CVaR optimisation problem Eq. (4.59) is a piecewise linear minimization 

problem subject to linear constraints. As discussed earlier based on results from Alexander et al. 

[6], one way of computing a solution to Eq. (4.59)  is to solve an equivalent linear programming 

problem: 

min
x,y,z,α( )

α + 1
m 1− β( ) yi + cjz j

j=1

n

∑
i=1

m

∑⎛

⎝⎜
⎞

⎠⎟

Subject to,

V 0( )T x = 1,

δV( )T x = r,
y ≥ −Bx −αem ,
z − x ≥ 0,
z + x ≥ 0,
l ≤ x ≤ u, y ≥ 0.
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Where the m -by-n scenario loss matrix B is given by 

. 
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And  is the vector of all ones. Alexander et al. [6] conclude that this linear program has 

variables and  constraints, with m as the number of Monte Carlo samples 

and n is the number of instruments. We assume that the loss  is computed using 

computational methods such as analytic formulae and/or Monte Carlo simulation. 

Linear programming is the simplest constrained optimisation problem; there exists, for this class 

of problems, the most thorough theoretic analysis and reliable software(s). Although it is known 

that both CPLEX (a simplex type method) and MOSEK (an interior point method) are capable 

of solving very large linear programming problems in a short amount of time, the efficiency of 

both methods depends heavily on the sparsity structures of the problem. In addition, other 

programs such as MATLAB and R can solve these problems with ease on today’s high end 

computers.  

As an alternative to the linear programming approach for the CVaR optimisation problem, 

Alexander et al. [6] investigated a computationally efficient method which directly exploits the 

property of the CVaR optimisation problem. The main objective is to be able to solve large scale 

CVaR portfolio problems such as: 

B = δV( )1
T ; δV( )2

T ;...; δV( )m
T⎡⎣ ⎤⎦

 em ∈!m

O(n +m) O(n +m)

O(n +m)
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4.62 

 

through Monte Carlo simulation. The assumption that the cumulative loss distribution function 

is continuous, the augmented CVaR function   is continuously differentiable under the 

assumption that the loss distribution has no jumps. The linear programming approach arises 

from approximating the continuously differentiable function by the piecewise linear 

objective function 

. 
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As the number of Monte Carlo simulations increases, the piecewise linear approximation

 approaches the continuously differentiable function . An alternative to the 

piecewise linear approximation , Alexander et al. [6] consider a continuously 

differentiable piecewise quadratic approximation to the continuously differentiable 

function . Let 
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where is a continuously differentiable piecewise quadratic function which approximates the 

piecewise linear function max(z,0), given a resolution parameter , 

ρε z( ) =

z,
z2

4ε
+ 0.5z + 0.25ε ,

0,

if z ≥ ε .
if − ε ≤ z ≤ ε .

otherwise.

⎧

⎨
⎪
⎪

⎩
⎪
⎪
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Alexander et al. [6] illustrate the smoothness of and  , and we shall also 

consider the function assuming that   is a standard normal. We have 
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and 
 
as compared to . Alexander et al. [6] show that as the number of 

independent samples m increases, the difference between 
 
and , 

becomes smaller. In addition, the function 
 
appears smoother. 

Using  as a continuously differentiable approximation to , we solve the 

following continuous piecewise quadratic convex programming problem, 

 

min
x,α( )∈X×!

Fβ" x,α( ) + cj x j
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Subject to,

V 0( )T x = 1,

δV( )T x = r,
l ≤ x ≤ u.
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4.3 Remarks	

In the first half of this chapter, we covered the concept CVaR as a general loss distribution. In 

particular, we represented the central concept of an probability “atom” which was introdued by 

Rockfellar and Uryasev [35]. We introduced the definition fo “upper” and “lower” CVaR and a 

definition of CVaR in the context of loss associated with a decision x . Connected to these 

concepts and definitions a coherence rule for minimization formula was introduced with its 

theorems.  

In the second half of this chapter, we formulate the minimization of CVaR problem. The 

minimisation problem is posed as a linear program which can cater CVaR in the objective 

function or as a constraint. We show breifly the ill-posedness of a derivative portfolio. We then 

extend the CVaR optimisation problem to cater for cost considerations. Although, the first half 

chapter is necessary for the development of the second half of the chapter, the second half of 

the chapter address partially Obj (II), fully Obj (III) and fully Obj (IV). Thus Chapter 4 resulting 

as a key foundational chapter of the thesis.    
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Chapter 5. Alternative risk measures based         
portfolio optimisation models 
In this chapter, we present how the alternative risk measures can be used in constructing a 

portfolio optimisation problem. As in the preceding chapter, we have developed the 

optimisation problem to solve for CVaR based risk measure optimisation problem. In this 

chapter, we develop the optimisation problem for spectral risk measures, conditional drawdown 

risk measures and coherent-distortion risk measures.   

5.1 The	minimization	of	general	spectral	measures	

In this subsection, we derive the general case for minimization of spectral measure . CVaR 

logic and generalisation that we have already established shall form the basis for deriving the 

minimization of general spectral measures problem.  

5.1.1 Minimization	with	finite	number	of	scenarios	

The estimator of a spectral measure  shall be represented by Acerbi [1]: 

. 
 

5.1 

 

Where is  the natural discretization of and is an admissible spectrum in a discrete sense 

where   ≥ 0,  ≥  and  applies. Acerbi [1] concluded that the sorting 

procedure of the outcomes  in the general case cannot be replaced by a splitting into two 

subsets. All the ordered statistics have to be distinguished from one another, this is due to 

the general different weights . We shall not consider the generalization that takes a single 

auxiliary variable  . The general solution will require  auxiliary variables  in order to 

separate all the ordered statistics from one another. 

 

Let us define for  and . Acerbi [1] introduce a function 

depending on a vector  of auxiliary variables. The function is given 

as: 

. 
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The extremal properties as shown by Adam et al. [3]: 

 

0 =
∂Γφ

N( ) X, !ψ( )
∂ψ k

= Δφk k − θ ψ k − Xi( )
i=1

N

∑⎡
⎣⎢

⎤
⎦⎥

⇔
ψ k =ψ k

* ∈ Xk:N ,Xk+1:N[ ], if Δφk ≠ 0,
ψ k = whatever, if Δφk = 0.

⎧
⎨
⎪

⎩⎪

 

 

 

 

5.3 

 

Adam et al. [3] derive the following by inserting the extremal condition above into the 

functional,  

 

min!ψ Γϕ
(N ) X, !ψ( ){ } = Δϕ j jψ j

* − ψ j
* − Xi( )+

i=1

N
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⎤
⎦⎥j=1

N

∑

= Δϕ j jψ j
* − ψ j

* − Xi:N( )+
i=1

N
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⎣⎢

⎤
⎦⎥j=1

N

∑

= Δϕ j jψ j
* − ψ j

* − Xi:N( )
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⎣
⎢

⎤

⎦
⎥

j=1

N

∑

= Δϕ j jψ j
* − jψ j
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i=1
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⎣
⎢

⎤

⎦
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∑ Δϕ j
j=1

N

∑

= Δϕ j
j=1

N

∑ Xi:N

= Mφ
N X( ).

 

 

 

 

 

 

 

5.4 

Where . From Eq. (5.4) we notice that  has no part in the minimization. The 

minimum is always achieved for large enough as far as , so we can always 

take the limit . Redefining  as a function of  only. Adam et 

al. [3] define as follows: 
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The function  is convex in all its parameters , 

. 
 

5.6 

 

For all  provided that  is an admissible risk spectrum. We summarise the following: 

Let Mφ
N X( ) be defined by Eq. (5.1 )and. Then, we have the function 

 
Γφ

N( ) X,ψ
!"( ) = Δφ j jψ j − ψ j − Xi( )

i=1

N

∑⎧
⎨
⎩

⎫
⎬
⎭
−φN Xi

i=1

N

∑ .
j=1

N

∑  
 

5.7 

In N-1 auxiliary parameters  is a convex, piecewise linear function in all its arguments  

. Its minimum value with respect to  equals . 

5.2 Minimization	of	the	conditional	drawdown	(CDD)	risk	measures	

In this subsection, we formulate a portfolio optimisation problem with drawdown risk measure 

and we develop optimisation techniques for CDD efficient computation. The results and 

derivations shall follow the work of Chekhlov et al. [11]. 

5.2.1 Portfolio	optimisation	with	drawdown	measure	
Chekhlov et al. [11] introduced the first requirement to calculate the value of , which 

causes double the computational time. Chekhlov et al. acknowledge that there is an optimisation 

procedure that obtains the values of threshold  and CDD simultaneously. The procedure is 

very important where large scale optimisation with variables and multiple constraints are 

encountered. When a time series of drawdowns is given, computation of the -CDD is reduced 

to computation of . 

Given a time series of instrument’s drawdowns  corresponding to time moments 

, the CDD functional is presented by , which computation is reduced to 

the following linear programming procedure, 

CV@Rα ξ( ) = min
y,z

y + 1
1−α( )N zk

k=1

N

∑
Subject to,
zk ≥ ξk − y,
zk ≥ 0,
k = 1,...,N .

 

 

 

5.8 
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 Γϕ
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ξ = ξ1,...,ξN( )
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This leading to a single optimal value of y equal to  if ,  and to a closed 

interval of optimal y with the left endpoint of  if  . 

For a detailed proof see Chekhlov et al. [11].  

For the given knapsack problem  is an optimal value for the objective function: 

CDDα ξ( ) = min
q

ξkqk
k=1

N

∑
Subject to,

qk = 1,
k=1

N

∑

0 ≤ qk ≤
1

1−α( )N ,

k = 1,...,N .

 

 

 

 

5.9 

 

The value of  can be found in time. Chekhlov et al. [11] observed the 

knapsack problem Eq. (5.9) is dual to linear programming problem Eq. (5.8). Based on 

optimisation duality theory, optimal values of the objective functions in Eq. (5.8) and Eq. (5.9) 

should coincide. Problem Eq. (5.9) can be solved by the standard greedy algorithm in 

time.  

 

Based on the concept of a risk envelope, which is a closed, convex set of probabilities containing 

1, the presentation of CV@R is related to Formulation Eq. (5.9). Suppose, a sample path of 

instrument’s rates of return  corresponding to time moments , is given. For 

this case the uncompounded cumulative instrument’s rate of return at  is , and the 

CDD is presented in the form of . 

 

A sample path of instrument’s rates of return , the CDD functional, , is 

computed by the following optimisation procedure, 

ζ α( ) πξ ζ α( )( ) >α
ζ α( ) πξ ζ α( )( ) =α

CV@Rα ξ( )

CV@Rα ξ( ) O n log2 n( )

O n log2 n( )

r1,...,rN( ) t1,...,tN{ }

tk wk = rl
l=1

k

∑

Δα w( )

r1,...,rN( ) Δα w( )
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Δα w( ) = min
u ,y,z

y + 1
1−α( )N zk

k=1

N

∑
Subject to,
zk ≥ uk − y,
uk ≥ uk−1 − rk ,
u0 = 0,
uk ≥ 0,
zk ≥ 0,
k = 1,...,N .

 

 

 

 

5.10 

Which leads to a single optimal value of y equal to  if , and to a closed 

interval of optimal y with the left endpoint of  if . 

 

Given a sample path of instrument’s rates of return the CDD functional, , is 

computed with optimisation procedure: 

Δα w( ) = max−
q,η

rkηk
k=1

N

∑
Subject to,

qk = 1,
k=1

N

∑

ηk −ηk+1 ≤ qk ≤
1

1−α( )N ,

qk ≥ 0,ηk ≥ 0,ηN+1 = 0,
k = 1,...,N .

 

 

 

 

5.11 

 

Given a sample path of instrument’s rates of returns  and discrete risk profile 

 the mixed CDD,  is computed by 

ζ α( ) πξ ζ α( )( ) >α
ζ α( ) πξ ζ α( )( ) =α

r1,...,rN( ) Δα w( )

rk k = 1,...,N{ }
χ i = dχ α i( ),  i = 1,...,L Δ+

χ w( )
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Δ+
χ w( ) = min

u ,y,z
χ i

i=1

L

∑ y + 1
1−α( )N zik

k=1

N

∑⎛
⎝⎜

⎞
⎠⎟

Subject to,
zik ≥ uk − y,
uk ≥ uk−1 − rk ,
u0 = 0,
uk ≥ 0,
zik ≥ 0,
i = 1,...,L,
k = 1,...,N .

 

 

 

 

 

5.12 

Optimal asset allocation considers the following two: 

i. Generation of sample paths for the assets’ rates of return. 

ii. Uncompounded cumulative portfolio rate of return. 

 

Optimal asset allocation maximizes the expected value of uncompounded cumulative portfolio 

rate of return at the final time moment  subject to a constraint on drawdown measure. 

This optimisation problem is given as, 

 

 

5.13 

where X is the set of linear “technological” constraints and  is a proportion of the 

initial capital allowed to be lost. 

 

Chekhlov et al. [11] considered an alternative approach. They considered a vector of portfolio 

weights to be a function of time within , they assume portfolio weights  to be static 

for all . This strategy can be achieved by portfolio rebalancing at every 

. Based on the assumption made, uncompounded cumulative portfolio rate of 

return w is rewritten as: 

. 
 

5.14 

 

Problem in Eq. (5.8) is reduced to linear programming (LP) problem as shown below, 

tN = T

max
x∈X

Ew w T ,ω , x( )( ) = pjwjN x( )
j=1

K

∑
s.t. Δχ

+ w x( )( ) ≤ γ
γ ∈ 0,1[ ]

0,T[ ] x tk( )
tk ,  k = 0,...,N

tk ,  k = 0,...,N

wjk x( ) = rjl
( p) x( ) = rij tl( )xi

l=1

k

∑
i=1

m

∑
l=1

k

∑
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max
u ,y,z

pjwjN x( )
j=1

K

∑
Subject to,

χ i
i=1

L

∑ y + 1
1−α( )N zik

k=1

N

∑⎛
⎝⎜

⎞
⎠⎟
≤ γ ,

zik ≥ ujk − yi ,
ujk ≥ ujk− j − rjk ,
uj0 = 0,
ujk ≥ 0,
zijk ≥ 0,
i = 1,...,L,
j = 1,...,K ,
k = 1,...,N .

 

 

 

 

 

 

 

5.15 

where ,   and are auxiliary variables. If one considers a piece-wise function , 

. 

 

5.16 

Chekhlov et al. [11] represented the drawdown measure by: 

. 

 

5.17 

Consequently, problem Eq. (5.8) is reduced to 

. 

 

5.18 

Chekhlov et la. [11] noted the most important point in their reasoning is to show that minimum 

in the constraint of Eq. (5.19) may be relaxed, i.e., to show that problem Eq. (5.19) is equivalent 

to: 

. 

 

5.19 

Chekhlov et al. [11] proved this fact by relaxing the constraint   in Eq. (5.19), 

namely, problem Eq. (5.19) is equivalently rewritten as: 

ujk yi zijk H x, y( )

H x, y( ) = χ i yi +
1

1−α( )N k=1

N

∑ pj ξ jk x( )− yi⎡⎣ ⎤⎦
+

j=1

K

∑⎛

⎝⎜
⎞

⎠⎟i=1

L

∑

Δχ
+ w x( )( ) = χ iCV@Rα i

i=1

L

∑ ξ x( )( ) = min
y
H x, y( )

max
x∈X

pjwjN x( )
j=1

K

∑
s.t. min

y
H x, y( ) ≤ γ

     

max
x∈X

pjwjN x( )
j=1

K

∑
s.t. H x, y( ) ≤ γ
     

min
y
H x, y( ) ≤Cγ
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min
λ≥0
max
x∈X

pjwjN x( ) + λ γ −min
y
H x, y( )( )

j=1

K

∑⎛
⎝⎜

⎞

⎠⎟
,

min
λ≥0
max
x∈X ,y

pjwjN x( ) + λ γ − H x, y( )( )
j=1

K

∑⎛
⎝⎜

⎞

⎠⎟
.

 

 

 

5.20 

 

Chekhlov et al. [11] conclude that problem Eq. (5.20) is the Lagrange relaxation of Eq. (5.19). 

Thus, Eq. (5.19) is equivalent to Eq. (5.18).   

 

In the cases of MaxDD(w) and AvDD(w), corresponding to the mixed CDD with risk profiles 

of   and 
 
LP Eq. (5.15)  is simplified. The MaxDD (w) is given by: 

max
u ,y,z

pjwjN x( )
j=1

K

∑
Subject to,
ujk ≥ ujk− j − rjk ,
γ ≥ ujk ≥ 0,
uj0 = 0,
zijk ≥ 0,
j = 1,...,K ,
k = 1,...,N .

 

 

 

 

 

5.21 

The AvDD(w) is given by: 

max
u ,y,z

pjwjN x( )
j=1

K

∑
Subject to,
ujk ≥ ujk− j − rjk ,

1
N

pju jk ≤ γ ,
j=1

K

∑
k=1

N

∑
ujk ≥ 0,
uj0 = 0,
zijk ≥ 0,
j = 1,...,K ,
k = 1,...,N .

 

 

 

 

 

5.22 

 

 

χ α( ) = I α>0{ } χ α( ) = I α≥1{ }
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5.2.2 Efficient	frontier	
	

Efficient frontier is a central concept in risk management methodology. Suppose for every value 

of and risk profile , is an optimal solution to Eq. (5.15). In this case, efficient frontier 

is a curve expressing dependence of optimal portfolio expected reward  on 

portfolio risk . 

Efficient frontier is a concave curve. 

Risk-adjusted return is an important characteristic for choosing an optimal portfolio on an 

efficient frontier that evaluates the ratio of the portfolio reward to the portfolio risk [11]: 

 
 

5.23 

 

A fund manager is interested in such a value of , for which the risk adjusted return

 is maximal. It is interpreted to be the best balance between the risk accepted and the rate 

of return achieved. Remembering that the efficient frontier 
 
is a concave 

curve,  is concave, hence, when this function achieves its maximum, ratio 

 has a finite global maximum. Although  is a nonlinear function with respect to , 

a problem for finding  maximum and corresponding optimal  is reduced to an LP. 

 

The optimisation problem 
 
is reduced to LP, 

γ χ xχ
* γ( )

pjwjN xχ
* γ( )( )

j=1

K

∑

γ

γ , pjwjN xχ
* γ( )( )

j=1

K

∑⎛

⎝⎜
⎞

⎠⎟

ρχ γ( ) = γ −1 pjwjN xχ
* γ( )( )

j=1

K

∑

γ ∈ 0,1[ ]
ρχ γ( )

γ , pjwjN xχ
* γ( )( )

j=1

K

∑⎛

⎝⎜
⎞

⎠⎟

pjwjN xχ
* γ( )( )

j=1

K

∑

ρχ γ( ) ρχ γ( ) γ

ρχ γ( ) γ

max
γ ∈ 0,1[ ]

ρχ γ( )
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max
u ,y,z

pjwjN x!( )
j=1

K

∑
Subject to,

χ i
i=1

L

∑ y! i +
1

1−α( )N pj z! ik
k=1

N

∑⎛
⎝⎜

⎞
⎠⎟
≤1,

z! ijk ≥ u! jk − y! i ,

u! jk ≥ u! jk− j − rjk ,

u! j0 = 0,

u! jk ≥ 0,

z! ijk ≥ 0,
i = 1,...,L,
j = 1,...,K ,
k = 1,...,N .

 

 

 

 

 

 

 

5.24 

 

If  is an optimal solution to Eq. (5.24) then 
 

with 

optimal value and corresponding optimal portfolio . 

 

5.3 Portfolio	optimisation	with	coherent	distortion	risk	measures	

In this subsection, we shall consider the portfolio optimisation problem using the coherent 

distortion risk measure (CDRM). In this subsection, we adopt the definitions and theorems from 

the work Feng and Tan [15]. First, we shall recall the following special function 

. 
 

5.25 

Where and . 

 

Feng and Tan [15] show that the representation of CDRM ensures the existence of 

and defines CDRM for a given set of weights. For each there is a 

corresponding auxiliary variable . Taking partial derivatives with respect to all  for 

 and setting them equal to zeros give the extremal properties of . 

 !x*

 
ρχ γ *( ) = max

γ ∈ 0,1[ ]
ρχ γ( ) = pjwjN !x

*( )
j=1

K

∑

 

γ * = 1

!xl
*

l=0

m

∑
 xl

* = !xl
*γ *,   l = 0,...,m

Mg x,ζ( ) = w α( )Fα x,ζα( )
α=0

1

∫ dα

w α( ) ≥ 0 w α( )
α=0

1

∫ dα = 1

w α( ),   α ∈ 0,1[ ] α

ζα ζα

w α( ),   α ∈ 0,1[ ] Mg x,ζ( )
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This provides more insights about the connection between a particular CDRM, , and its 

convex representation . 

Yet  may have infinite many entries . Taking partial derivative with respect to all for 

can be achieved by using calculus of variations. Feng and Tan [15] alleviate 

such difficulty by applying properties of Choquet integrals because CDRM is a subclass of DRM. 

 

Theorem 5.1 [15] 

Let  be a CDRM with a corresponding distortion function g. Minimizing  with 

respect to  is equivalent to minimizing  over all , in the sense that 

 5.26 

where moreover 

. 
 

5.27 

 

All results of DRM and of Choquet integrals can be applied since the CDRM is a subclass of 

DRM. In particular, one of the properties of Choquet integral states that if a random variable 

 has an infinite number of values and converges to X, i.e., Xn→
W
X , then 

provided that  exists. This property implies that it is sufficient to prove the statement for 

the discrete random variables, and then carry over the result to the general continuous case. 

Consider a discrete portfolio loss random variable  induced by the choice of 

portfolio  and the random vector ; i.e. . We have the following: 

. 
 

5.28 

Now we have the discrete analogue of Eq. (5.25) as: 

. 

 
 

5.29 

Since  are all joint convex functions of  and , is a convex combination 

of , then  is a joint convex function of  and . For a given portfolio , 

we want to find  that minimizes . Since  is a convex function of , one 

ρg x( )

Mg x,ζ( )
ζ ζα ζα

w α( ),   α ∈ 0,1[ ]

ρg x( ) ρg x( )

x ∈S Mg x,ζ( )  x,ζ( )∈S ×!ζ

 
min
x∈S

ρg x( ) = min
x,ζ( )∈S×!ζ

Mg x,ζ( )

x*,ζ *( )∈argminMg x,ζ( )⇔ x* ∈argminρg x( ),ζ * ∈argminMg x*,ζ( )

Xn ρg Xn( )→
W
ρ X( )

ρg X( )

l = l1,...,lm( )

 x ∈!n
 y∈!

m li = l x, yi( )

ρg x( ) = wiφαi x( )
i=1

m

∑

Mg x,( ) = wiFαi x,ζαi( )
i=1

m

∑

Fαi x,ζαi( ) x ζαi Mg x,ζ( )

Fαi x,ζαi( ) Mg x,ζ( ) x ζαi x

ζ * Mg x,ζ( ) Mg x,ζ( ) ζαi
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can simply set the gradient of  with respect to  equal to zero. Applying 

methodology of Feng and Tan [15] leads to: 

0 =
∂Mg x,ζ( )

∂ζ

0 = ∂
∂ζαi

wi ζαi +
1

1−α i

pi li −ζαi( )+
i=1

m

∑⎡

⎣
⎢

⎤

⎦
⎥

0 = wj 1− 1
1−α i

pi1 li−ζαi( )
i=1

m

∑⎡

⎣
⎢

⎤

⎦
⎥

⇔
ζαi

* ∈ li ,li+1[ ), if wi ≠ 0.

ζαi
*  unconstraint, if wi = 0.

⎧
⎨
⎪

⎩⎪

 

 

 

 

5.30 

 

Substituting these extremal conditions into  Feng and Tan [15] can show that: 

. 
 

5.31 

The minimum value of  is precisely  and such result holds for any portfolio x. So 

we can replace  with  in portfolio selection problems. Since  is a joint 

convex function w.r.t therefore a portfolio selection problem induces a convex 

programming problem if the feasible set D is convex. Based on the arguments presented above 

we can conclude the minimization problem for CVaR is similar to the CDRM minimization 

problem. 

	

5.4 Remarks	

In this chapter, we presented the optimal problems for using spectral, CDRM and drawdown 

risk measures. For each of the risk measures, we develop a optimal model that either can be 

solved by linear programming methods or genectic algorithms. This chapter addressed partially 

the Obj (II). Chapter 4 and Chapter 5 address Obj (II) fully. 

 

 

 

  

Mg x,ζ( ) ζαi

Mg x,ζ( )

 
min
ζ∈!m

Mg x,ζ( ) = ρ x( )

Mg x,ζ( ) ρ x( )

ρ x( ) Mg x,ζ( ) Mg x,ζ( )

x,ζ( )
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Chapter 6. CVaR and fat tails 
In this chapter, we introduce some results on CVaR and fat tails. The focus of this chapter is to 

introduce some popular fat tailed methodologies currently being discussed and in some cases 

already incorporated into risk management policies and procedures.  

In the post-crisis era, there was universal agreement that financial assets [33] returns are fat-tailed 

and the risk managers must take extreme events into account in their risk management policies 

and practices. While academic research was quick to offer a vast offering of modern risk 

methods and analytic techniques, bringing these methods and techniques into practices needs 

important focus. By simply acknowledging that asset returns have higher probabilities of extreme 

events, has left VaR virtually useless in accurately estimating levels of risk. Skewness, auto-

regression and volatility clustering must be incorporated into our modern day risk management 

policies and procedures.  

6.1 Overview	of	the	statistics	of	fat	tails	

When portfolio and investment managers construct practical models, they assume distributional 

hypothesis that captures both fat tails and asymmetry. The approach used both in academia and 

by practitioners is to use various different classes of distributions to capture fat tail 

characteristics. The most popular is the classical Student’s t distribution. Some alternative 

examples include based on Stoyanov et al. [37]: 

i. extreme value distributions,  

ii. stable distributions,  

iii. operator stable distributions,  

iv. the class of tempered stable distributions that include stable distributions as a limiting 

case,  

v. and the class of infinitely divisible distributions that include all previous classes except 

extreme value distributions.  

There is no fundamental theory that can suggest a distributional model instead in remains a 

statistical one as noted from Rachev et al. [34]. The following is the different models based on 

Rachev et al. [34]: 

i. Clustering of volatility- this means approximate equal price changes tend to be followed 

by approximate equal prices changes. (i.e. Large price changes tend to be followed by 

large price changes and small price changes tend to be followed by small price changes) 

ii. Autoregressive behaviour-price changes depend on price changes in the past, e.g. 

negative price changes tend to be followed by negative price changes and vice versa. 
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iii. Skewness- there is an asymmetry in the upside and downside potential of price changes. 

iv. Fat tails- the probability of extreme profits or losses is much larger than predicted by the 

normal distribution. Also the tail thickness varies for different assets. The fat tails in 

individual asset become relevant in portfolio return distribution as well. 

v. Temporal behaviour of tail thickness- There is change through time in the probability of 

extreme profits and losses. The change is smaller in stable markets and larger in 

turbulent markets.  

vi. Tail thickness varies across frequencies- high-frequency data tends to be more fat-tailed 

than lower-frequency data. 

 

Except for the extreme value distributions, all these models have one key characteristic feature 

that they include the normal distribution as a special case. So if the data were Gaussian, the fitted 

distribution would be close to, or would coincide with, the normal distribution. We therefore 

consider these families of models to be an extension to the classical Gaussian statistical 

framework. 

 

For modelling asymmetry neither the Gaussian distribution nor the classical Student’s t can 

account for skewness. To model skewness, one can use the stable Paretian distribution, which 

look at the respective left and right tails. One way to capture the difference between the upside 

and the downside potential is by calculating expected tail loss and expected tail return. It is 

important to note that the degree of tail thickness varies across different asset classes. 

 

6.2 	Full	distribution	modelling	and	application	of	fat	tail	models	

Risk management approaches for dealing with fat-tails includes using fat-tailed models such as 

Students’-t distribution, EVT, and stable Paretian distributions.  

6.2.1 The	Student’s-t	distribution		
The Students t distribution is the most commonly used fat-tailed distribution as a model for asset 

returns by practitioners. Similarities between the normal distribution and classical Students t 

densities are the symmetry with a single peak. Students t exhibit densities that are more peaked 

around the centre and have fatter tails as compared to normal distribution. This property is 

illustrated on Figure 6-1. Figure 6-1 has been adopted from the work of Rachev et al. [34]. The 

normal distribution is a special case when the degrees of freedom (DOF) parameter approaches 

infinity. Rachev et al. [34] show for practical purposes, however, the Student t plot indicates a 
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very small difference for a DOF of 30. This property makes the Student t widely accepted for 

various different asset returns modelling. Rachev et al. [34] note that the main advantage for 

using it is due to the ease of practical application with a wide range of numerical methods. 

 

 
Figure 6-1: The density of Student t distribution for different DOF's [34] 

 

It is unreasonable to accept the Gaussian distribution simply on the grounds of parsimony 

without any statistical analysis [37, 38]. Additionally, fixing the tail thickness to a set value for all 

assets makes little sense. For risk estimation simplicity, the Student’s t distribution with DOF set 

to five is the commonly accepted norm used by some practitioners. Some key discerning 

characteristics of the Gaussian model is that it is overly optimistic in times of crashes, causes 

significant overestimate of the risk for assets with returns that are close to being normally 

distributed since it fails to account for tail thickness, which varies between assets and across 

time. 

 

In the Student’s t model, the fix is estimated by applying weights to the observed returns with a 

logarithmic or exponential decay based on a predefined parameter. This forces the relative 

importance of the observations in the past to be similar for all risk drivers and across all time 

periods. There exists an important trade-off between simplicity and precision. These models are 

less accurate and only work “on average" in a universe of risk drivers. Even though the approach 

deviates from the traditional GARCH-type framework, an implementation with the classical 

Student's t distribution for the residual without the deficiency of fixing the DOF parameter is 
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available. Finally, the classical Students t model is symmetric. Rachev et al. [34] suggest there is a 

significant asymmetry in the data, it is advised not to be used. 

 

6.2.2 Stable	Paretian	distributions		
The class of stable distributions can be used as a model for asset returns because it contains the 

normal distribution as a special case. Only this class of distributions can approximately describe 

the behaviour of a stochastic system influenced by many small, regular, and independent random 

factors and has a distinct place among non-Gaussian full distribution models. Since price 

changes are driven by many random factors, it is reasonable to assume that stable distributions 

could represent a model for their approximate behaviour (see Stoyanov et al. [37, 38] for further 

details).  

The tail index or index of stability is the parameter responsible for the tail behaviour in Stable 

Paretian distributions. Compared to DOF parameter, the index of stability is between zero and 

two. The closer it is to two implies the more Gaussian like the distribution is; smaller values of 

the index of stability imply a fatter tail. However, the Students t distribution, stable distributions 

allowed for skewed representatives, see Figure 6-2 below. Figure 6-2 has been adopted from the 

work of Rachev et al. [34]. 

 
Figure 6-2: The density of the stable distribution for different index and fixed skewness [34] 

Rachev et al. [34] suggest two empirical inconsistencies with the stable Paretian hypothesis. The 

first is that it implies infinite variance for asset returns and the second is that tail behaviour 

which does not change with the return frequency. These characteristics lead to very interesting 

developments in statistical theory. Much effort has gone into obtaining classes of distributions 
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which allow for aggregation across frequencies, have a finite volatility and do not deviate much 

from the shape of stable distributions lead to the development of tempered stable distributions. 

Rachev et al. [34] conclude that tempered stable distributions are derived from a special class of 

stable distribution through a process called tail tempering. 

Tail tempering is achieved by modifying only the tails of stable distributions so that they remain 

thicker than the Gaussian tails but do not lead to an infinite volatility. 

 

Rachev et al. [34] and Stoyanov et al. [37]  have reached the general concept and understanding 

that lower frequency logarithmic returns can be represented as sums of relatively more irregular 

higher frequency logarithmic returns. The Gaussian behaviour of the lower frequency return can 

be seen as some sort of a limit behaviour, then an explanation for the change in the tail 

behaviour can be the convergence rate to that limit. For example, monthly returns and weekly 

returns can be represented as sums of daily returns, the only difference is in the number of 

summands. Intuitively, the convergence rate would be faster if there are more summands (higher 

vs lower frequencies) which are also more regular (normal vs extreme market conditions). The 

tail tempering technique arises from results in probability theory dealing with the problem of 

estimating the rates of convergence in limit theorems indicating that the shape of the distribution 

of the sum looks like a stable distribution at the centre but does not have as heavy tails [34, 37, 

38]. 

6.2.3 Extreme	Value	Theory	(EVT)-	generalized	Pareto	distributions	
 

EVT has applications in many other fields of science and engineering for modelling the 

frequency of extreme events [34]. Some extreme events include extreme temperatures, floods, 

winds and other natural phenomena. From a general perspective, extreme value distributions 

represent distributional limits for properly normalized maxima of independent random quantities 

with equal distributions, and therefore can be applied in finance as well [34].  In contrast to the 

other distribution families mentioned in the preceding subsections in this section, EVT 

represents a model for the tail of the distribution only. This means that in practice, one needs to 

combine EVT with a model for the remaining part of the distribution.  

Rachev et al. [34] considered the following example to explain the idea behind EVT.  

Suppose you have a sequence of returns with a given frequency. The maximum loss can be 

approximately defined through a limit distribution known as the generalized extreme value 

distribution (GED)[34, 38]. One simple way to model extreme losses is to consider the 

exceedances over a high threshold. EVT indicates that asymptotically, as the high threshold 
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increases, the exceedances can be described by the generalized Parreto distribution (GPD) [34, 

38]. There are many empirical studies applying EVT directly to the return time series ignoring 

the clustering of volatility effect [34, 37, 38]. Rachev et al. [34] conclude and show that the two 

limit distributions, GEV and GPD, give rise to two approaches of EVT-based modelling, 

namely, the block of maxima method and the peaks-over threshold method.  

 

Block of maxima method [34]: The idea behind the block of maxima method is twofold. The 

first is to take the limit behaviour described by the GEV and then divide the data into 

consecutive blocks of equal size and then focus on the series of maxima of returns for each 

block. For the second part fit the GED to the series of maxima. One method that can be applied 

is the method of maximum likelihood.  

 

Peaks-over Threshold method [34]: The peaks-over-threshold (POT) method comes from the 

limit result leading to GPD. Compared to the block of maxima method, the parameters of GPD 

can be fitted using only information from the respective tail. The process is simple; choosing a 

value for the high threshold and fit GPD to the part of the sample which exceeds the threshold. 

6.3 CVaR	and	fat	tailed	distributions	

In this subsection, we present some derived results for CVaR of fat-tailed distributions from the 

work of Stoyanov et al [37]. CVaR is defined as the average loss provided that the loss is larger 

than a quantile at a given probability level, 

. 
 

6.1 

Where  denotes the inverse distribution function of the 

random variable .  

Working numerically with the definition in Eq. (6.1) is difficult because the quantile function is 

unbounded for probabilities close to zero. Therefore, according to Stoyanov et al. [37] to 

calculate the integral in the definition for every distributional assumption for X.  Stoyanov et al. 

[37] calculates the CVaR for stable distributions. The result for the symmetric case is provided in 

the following theorems as represented by Stoyanov et al. [37]. 

 

Theorem 6.1 [37] 

CVaRα X( ) = − 1
α

F−1
X p( )dp

0

α

∫
F−1

X p( ) = inf x :P X ≤ x( ) ≥ p{ }
rp
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If the stable distribution,  with  and  is the -quantile of 

_, then admits the representation , Where  

. 

 

6.2 

 

Where 

, 
 

6.3 

. 

 

6.4 

 

If  , then . A much simpler and easy to establish expression exists for the 

CVaR of the student's t distribution. The result is provided in the following theorem and a proof 

can be found in Stoyanov et al. [34, 37, 38]. 

 

Theorem 6.2 [37] 

If a Student-t distribution, , with , then admits the representation 

 where, 

. 

 
 

6.5 

In which  is the -quantile of . Finally, we calculate the CVaR for the GND 

which, as far as we know, is not available elsewhere. 

 

Theorem 6.3 [37] 

If a generalised normal distribution, then for any ,  admits 

the representation where, 
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. 

 

6.6 

 

In which  is the -quantile of and is the upper incomplete 

gamma function. 

 

6.4 CVaR	and	tail	thickness	sensitivity	

In this subsection, we present the relative importance of the distribution characteristics for 

CVaR for Student’s t distribution and stable distribution as represented in the work of Stoyanov 

et al. [38]. For both cases, there are expressions for CVaR which are suitable for numerical work, 

which can be easily applied to practical data. We apply the derived results later in Chapter 7, Case 

Study 4 to a set of numerical data. We use the numerical data to confirm the mathematical 

derivations for Student-t distributions.  

6.4.1 Student’s	t	distribution	
The formula for the symmetric Student’s t is [38], 
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6.7 

 

The derivatives of CVaR with respect to the distribution parameters have a structure similar to 

the VaR based derivatives (see Stoyanov et al. [38] for the details). Below are the given 

derivatives to each distribution parameter as per the work of Stoyanov et al. [38]: 
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. 
 

6.10 

 

The derivative in Eq. (6.9) can be easily compared to that in Eq. (6.10). 	 is 

monotonic with respect to and . A numerical calculation shows that . 

Therefore, Stoyanov et al. [38] shows as a consequence, 

 
 

6.11 

for and practically any . This result shows that the scale parameter is more efficient 

in changing portfolio CVaR if the tail probability is below 0.385. In comparing the derivative in 

Eq. (6.8), we adopt the same strategy as in the case of Student’s t VaR. Stoyanov et al. [38] show 

Eq. (6.8) as a function of  for three choices of 	and .  

Derivatives are higher in absolute value than the corresponding derivatives. This is due to CVaR 

by definition averages the quantiles in the tail which implies a higher sensitivity to tail behaviour. 

Even though the derivatives are generally higher, the relative importance of the tail behaviour 

becomes smaller than that of the mean if . Note that  is at least an order of magnitude 

higher, we can conclude that the order of the distribution parameters by importance remains the 

same as in the Student’s t VaR case (see [34, 37] for more details).  

 

6.4.2 Stable	distributions	
The following results have been adopted from the work of Stoyanov et al. [38]. If  and, 

then the CVaR can be represented as  where the term 

 does not depend on the scale and the location parameters. Concerning the term , 
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In which  is the VaR of the stable distribution at 

tail probability .  The derivatives of CVaR with respect to the four distribution parameters are 

provided below without proof from the work of Stoyanov et al. [38] and the reader is advised to 

refer to Stoyanov et al. [38] work for proofs: 
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Computing numerically the CVaR for different choices of , , and , we find out that 

for any . This result implies that the scale parameter is relatively 

more important than the location parameter for all practical purposes. In order to compare the 

other derivatives, we use the information in Table 1 once again. We compute the derivatives in 

Eq. (6.15) and Eq. (6.16) with  and .  
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Chapter 7. Case Studies, simulations and 
results 
In this chapter, we introduce case studies that will look at different problems for solving optimal 

portfolios. We shall consider five case studies and give the details of the problems and present 

our simulations and results.  

 

The problem setting for the case studies is that we shall investigate the use of risk measures in 

portfolio optimisation. In Case Study 1, we shall optimise a portfolio using the CVaR, spectral 

and CDRM risk measures. We shall investigate and compare the solutions derived from each risk 

measure. We shall use the efficient frontier as a comparision mechansim when comparing the 

three risk measures.  

 

In Case Study 2, we shall consider the CVaR headging problem where we hedge a target 

portfolio with a hedging portfolio. We shall consider a simple short call option and a long knock-

out barrier option for target portfolios in two separate problems.  

 

In Case Study 3, we shall solve a CVaR based optimisation problem where we consider cost in 

the objective function. We model the cost as a weighted cost parameter.  

 

In Case Study 4, we consider performing an emperical risk analysis on the FTSE/JSE ALSI. We 

fit statistical distributions to the P&L distributions for various datasets of FTSE/JSE ALSI 

historical data. We also perform a comparative analysis using the drawdwon risk measure and 

CVaR.  

 

Lastly in Case Study 5, we solve a static portfolio optimisation problem using the maximum 

drawdown (MaxDD), the average drawdown (AvDD), and CVaR risk measures. In this case 

study we solve the drawdown based optimisation problems using genetic algorithms. 
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7.1 Case	Study	1:	Comparison	of	risk	measures	in	portfolio	optimisation	

In this case study, we demonstrate a portfolio optimisation problem were the risk measure used 

is CVaR. We then extend this CVaR optimisation problem to cater for the use of a spectral risk 

measure, with three different risk spectrums and coherent distortion risk measures (CDRM). The 

portfolio dataset consists of options with various characteristics such as having different 

volatilities, European and American styles and with various pricing methods for the derivatives. 

Such methods may include analytic pricing, Monte Carlo and Delta-Gamma methods. We shall 

use analytic pricing methods for European options and Monte Carlo methods for American 

options. The assets are modelled using geometric brownian motion (GBM) with no skew 

incorporated in the option pricing.  

 

Dataset 1.1 

Let’s suppose we have a portfolio that comprises the following securities as given in Table 7-1 

below. We wish to optimise this portfolio by minimizing the risk exposure for a given return of 

8%. The return of 8% is an achievable outcome that is neither too aggressive nor too relaxed. It 

also forms a return that is above South Africa’s inflation.  

 

Table 7-1: Table of information for Dataset 1.1 

 
 

Problem 1.1 

Problem 1.1 will use the portfolio given in Dataset 1.1 and solve it using the CVaR as a risk 

measure. The portfolio optimisation problem is given by: 
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min
x,α( )

α +m−1 1− β( )−1 − δV( )i
T x −α⎡⎣ ⎤⎦

i=1

m

∑
+⎛

⎝⎜
⎞

⎠⎟

Subject to,

V 0( )T x = 1,

δV( )T x = r,
l ≤ x ≤ u.

 

 

 

 

7.1 

The upper and lower bounds are given as 100% and -100% respectively, to account for both 

short and long positions.  

 

Problem 1.2 

Problem 1.2 will use the portfolio given in Dataset 1.1 and solve the following discrete case using 

a spectral risk measure, 

min
x,α( )

Mφ
N x( ) = − ϕi xi:N

i=1

N

∑⎛
⎝⎜

⎞
⎠⎟

Subject to,

V 0( )T x = 1,

δV( )T x = r,
l ≤ x ≤ u.

 

 

 

 

7.2 

The upper and lower bounds are given as 100% and -100% respectively, to account for both 

short and long positions. The work of Dowd and Cotter [12] considers different types of utility 

functions and translates them into risk spectrums. Dowd and Cotter [12] consider the following 

risk spectrums, 

, 
7.3 

 

φ1 p( ) = γ 1− p( )γ −1 ,  where γ ∈ 0,1( ),  

7.4 

 

φ2 p( ) = γ pγ −1,  for γ > 0.  

7.5 

 

Where k > 0  and γ  are constants that represent risk preferences. We shall use each of the risk 

spectrums in solving the problem in Eq. (7.2). We wish to understand the effects of using 

different risk spectrums on the portfolio solutions. Based on Theorem 3.2 of Section 3, we use 

the spectrum generator sequence applied to each spectral risk measure in Eq. (7.3), Eq. (7.4) and 

Eq. (7.5), 

φ p( ) = ke
−k 1−p( )

1− e−k
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. 
 

7.6 

This allows us to solve a discrete case for risk minimization of spectral risk measures in this 

problem. Many different spectrums can be used and thus may yield different optimal portfolios.  

In this case study, we shall explore the three risk spectrums given above. 

 

Problem 1.3 

Problem 1.3 will use the portfolio given in Dataset 1.1 and aims to solve the following using the 

CDRM as a risk measure, 

 

min
ζ∈!m

Mg x,ζ( )
Subject to,

V 0( )T x = 1,

δV( )T x = r,
l ≤ x ≤ u.

 

 

 

7.7 

We shall consider the following special function, the coherent-distortion fucntion, considered in 

Theorem 3.2 to be applied as the coherent distortion risk measure, 

. 
 

7.8 

In this case study we consider the dual power function, w(α ) = 1− 1−α( )v ,  where v ≥1.  

Further details are given in Section 5.1. 

 

Results 

Figure 7-1 below illustrates the portfolio weighting for each asset and the position of the asset 

(either short or long) for using the CVaR as the risk measure. Figure 7-1 shows that there is 

higher weight given to short positions than long positions. European options were evaluated 

using the Black-Scholes analytic methods while American options were evaluted using the 

Longstaff-Schartz [23] Monte Carlo pricing methodology. See Appendix for a detailed example 

of the Longstaff-Schartz [23] Monte Carlo pricing methodology. 
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Figure 7-1: CVaR optimal portfolio for Problem 1.1 

Figure 7-4 below illustrates the portfolio weighting for each asset and the position of the asset 

(either short or long) for using the spectral risk measure in Eq. (7.3). Figure 7-4 shows that there 

is higher weight given to short positions than long positions. European options were evaluated 

using the Black-Scholes analytic methods while American options were evaluted using the 

Longstaff-Schartz [23] Monte Carlo pricing methodology. 

 

 
Figure 7-2: Admissible Sequence for N=10 

Figure 7-2 shows the admissible sequence of the spectral measure for Eq. (7.3). Based on 

Theorem 3.2 of Section 3, we used the spectrum generator sequence given below,  

ϕi =
ϕ i

N( )
ϕ k

N( )
k=1

N

∑
, i = 1,...,N .  

 

7.9 
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We see the decreasing values for each progression of the sequence, this in line with the work of 

Acerbi [1].   

 

 
Figure 7-3: Plot for different exponential weighting function 

Figure 7-3 above illustrates the plot for two different exponential weights index k, as applied to 

the exponential weighting function which was used as a spectral risk measure of Eq. (7.3).   

 

 
Figure 7-4: Spectral optimal portfolio for Problem 1.2 for Eq. (7.3) 
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Figure 7-5: CDRM optimal portfolio for Problem 1.3 

Figure 7-5 above illustrates the portfolio weighting for each asset and the position of the asset 

(either short or long) for using the CDRM. Figure 7-5 shows that there is higher weight given to 

short positions than long positions.  We notice that the distribution of weights for each asset for 

the CVaR, Spectral and CDRM have similar patterns.  

 

For each of the above methods we iteratively solve the problems for different return values. 

Based on the optimal portfolio formed we obtained the corresponding risk and thus obtained 

efficient frontier plots. The efficient frontier plots essentially illustrate the risk-return 

characteristics for each risk measure. The results from this exercise shall now be presented and 

discussed. 

 
Figure 7-6: CVaR efficient frontier plot 
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Figure 7-6 shows the efficient frontier plot for CVaR based risk measure. The plot shows a well-

defined efficient frontier. The concave looking plot ensures the commonly understood relation 

between risk and return for a given portfolio is preserved. However, there is slight decrease in 

return for increase in risk. This characteristic slightly deviates from the common characteristic. 

This should be noted from a traders perspective which shall also be discussed later in the case 

studies. 

 

 
Figure 7-7: Spectral risk efficient frontier with Eq. (7.3) Spectrum 

 

Figure 7-7 shows the efficient frontier for a spectral risk measure when using the spectrum in 

Eq. (7.3). The spectral risk measure efficient frontier shown in Figure 7-7, shows some 

characteristics of the well understood relation between risk and return [24] but with some 

differences. The plot shows that for lower levers of risk the concave nature is not prominent as 

compared to the CVaR plot in Figure 7-6. This poses some interesting considerations from a 

trading perspective, if the trader is at the lower end of the efficient frontier and wishes to 

increase his/her risk appetite, the expected return will not increase in the perceived fashion. The 

lower end of the risk plot is rather flat and then increases. This means that the trader will have to 

take on more risk in order to achieve his/her desired return. This issue causes some disadvantage 

when using the spectral risk measure as shown in Figure 7-7. We further investigate if this 

characteristic exists in other spectrums. Figure 7-8 illustrates the efficient frontiers for the three 

spectrums used in Eq. (7.3), Eq. (7.4) and Eq. (7.5). We can see that the “flatness” at lower risk 

levels exist for each risk spectrum investigated. This concludes that we need to perform some 

further investigation(s). 

0	
0,05	
0,1	
0,15	
0,2	
0,25	
0,3	
0,35	
0,4	
0,45	
0,5	

0	 0,05	 0,1	 0,15	 0,2	 0,25	 0,3	 0,35	 0,4	

Re
tu
rn
	

Spectral	Risk	

Spectral	Risk	Measure	of	Eq.	7.3	



 106 

 
Figure 7-8: Comparison of 3 Spectral risk measure efficient frontiers 

 

The above poses a question to understand spectral risk measures in portfolio optimisation better. 

The reader will question if the non-linear characteristics of derivatives or the spectral risk 

measure causes the lower risk to return the characteristics shown in Figure 7-7. This side 

investigation shall be explored and results will be presented below in subsection 7.1.1. 

 
Figure 7-9: CDRM efficient frontier 

 

Figure 7-9 shows the efficient frontier when using the coherent distortion risk measure (CDRM). 
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CDRM shows the relatively good characteristic for lower end risk measures from a trader’s 

perspective. However, we see that at a higher risk measure end, instead of exhibiting a flatter 

concave shape between risk and return, we observe that an increase in risk begins to give 

decrease in return. That means there is an “upper” limit of the risk-return characteristic from a 

trader’s view. This observation means that the trader needs to trade between lower and middle 

ends of the risk values. This does not create that much concern as compared to the spectral risk 

measure unless the traders wants to have a higher risk appetite. From the efficient frontier plot 

in Figure 7-9, we are satisfied with the obtained characteristics for this portfolio. 

 
Figure 7-10: Comparison of 3 risk measures efficient frontiers 

 

Figure 7-10 illustrates the comparison of the three risk measures efficient frontiers with the 

spectrum from Eq. (7.3). From Figure 7-10, we see that for lower risk levels the CVaR and 

CDRM show similarities while at higher risk levels the CVaR and spectral risk measures show 

some similarities. From a practical point of view, both CDRM and spectral risk measures pose 

some difficulties when trading using the risk-return methodology. 

7.1.1	Risk-Reward	investigation:	Comparison	between	spectral	risk	optimal	
portfolio	and	a	classic	Markowitz	optimal	portfolio	
In this sub-section, we set out to understand the relation between the spectral risk optimal 

portfolio efficient frontier and the efficient frontier based on the Markowitz efficient frontier 

[24]. Acerbi and Simonetti [2] investigate a similar issue and we shall base the theoretical aspects 

on their work. We shall solve a linear portfolio problem where linear stocks shall be used as the 

0,00	

0,10	

0,20	

0,30	

0,40	

0,50	

0,60	

0	 0,05	 0,1	 0,15	 0,2	 0,25	 0,3	 0,35	 0,4	

Re
tu
rn
	

Risk	

ComparaDve	Efficient	FronDers	

Return-CVaR	 Return-Spectral	 Return-CDRM	



 108 

underlying instruments, and apply the spectral risk measure method from the work of Acerbi [1]. 

We shall first briefly introduce some theoretical aspects from Acerbi and Simonetti [2].  

 

Assume now that the profit and loss, random variable  X = X !ω( )depends on a set of W 

parameters ω k   and let  Θ⊂ !W be a set of acceptable weights. Based on Acerbi and Simonetti 

[2]  the problem of minimization of a specified spectral measure  Mφ X !ω( )( )with constraints 

 
!ω ∈Θ  can be mapped into the equivalent minimization problem of the functional 

 Γφ X !ω( ),ψ( ) . We wish to obtain the geometrical set of all optimal portfolios. Based on the 

work of Acerbi and Simonetti [2], the following can be setup. The  Mφ X( ),E X[ ]( )optimisation 

problem can be naturally set up as a constrained problem where  Mφ X !ω( )( )   is minimized for a 

specified value of return E X[ ] = µ : 

min
ω
Mφ X( )

Subject to:
E X[ ] = µ,
ω ∈Θ,

 

 

7.10 

 

or alternatively in the specular problem in which the expected return is maximized for a specific 

value Mφ X !ω( )( ) = ρ of risk: 

max
ω

E X[ ]
Subject to:
Mφ X( ) = ρ,
ω ∈Θ.

 

 

7.11 

 

Now we shall consider a five stock portfolio, and solve it using the spectral risk method and 

compare the efficient frontier to Figure 7-7. The Table 7-1 below shows the details of the stock 

considered for the linear portfolio optimisation problem using spectral risk measures.  
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Table 7-2: Stock portfolio details 

Company Name Ticker Time Period Mean Volatility 

Sasol SOL Jan to Dec 2015 0.03 2.5% 

Old Mutual OML Jan to Dec 2015 0.04 2% 

Anglo- American AAL Jan to Dec 2015 0.05 5.6% 

SABMiller SAB Jan to Dec 2015 0.01 1.8% 

FirstRand  FSR Jan to Dec 2015 0.08 3.3% 

 

Based on the portfolio optimisation using spectral risk measures and applying it to the linear 

stock shown in Table 7-2, we obtain the results for percentage allocations. These results are 

illustrated in Figure 7-11 below. We illustrate results for each spectrum from Eq. (7.3), Eq. (7.4) 

and Eq. (7.5). 

 

 
Figure 7-11: Percentage allocation for linear stock portfolio 
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Figure 7-12: Comparison of 3 spectral risk measures for linear portfolio 

 

Figure 7-12 illustrates the efficient frontiers for the linear stock portfolio using spectral risk 

measures. We plot the efficient frontiers for each risk spectrum from Eq. (7.3), Eq. (7.4) and Eq. 

(7.5). We pay particular attention to the lower levels of risk and compare the results from a linear 

portfolio, in Figure 7-12, to that of a derivative portfolio shown in Figure 7-7 and Figure 7-8. We 

can make some preliminary conclusion that the “flatness” that existed for lower levels of risk 

with derivative portfolios are due to the non-linear nature of derivatives.  The next question to 

understand is: why do derivative based portfolio optimisation using spectral risk measures 

exhibit such characteristics on the efficient frontiers for lower level of risk? We leave this 

question for further investigation(s). 

 

Remarks	
In this case study we achieved solving the optimisation models using the CVaR, spectral, and 

CDRM risk measures. We used interior point algorithms for effectively solving the models. We 

presented a comparative illustration of the three risk measures from an efficient frontier 

perspective. We noted the salient characteristics of the concave nature of the efficient frontiers 

for the spectral and CDRM risk measures.  We performed a deeper analysis into the flatness 

observed on the spectral efficient frontiers and this led to the conclusion that the flatness for 

lower risk values is due to the derivative behavioural characteristics and not the spectrum 

choices. This case study achieves the goal of Obj (II).  
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7.2 Case	Study	2:	Derivative	portfolio	hedging	

In this case study, we hedge an option (target portfolio) by a portfolio of options. The hedging 

problem is to hedge a short maturity call option by trading more liquid options that are given in 

the datasets below. We then extend our hedging problem to hedge a long knock-out European 

barrier option. The datasets given below show the details for the short European call option and 

a long knock-out European barrier option. We will assume that there are 252 trading days in a 

year.  

 

Dataset 2.1 

Let’s suppose we have a target portfolio that comprises of a single short call option with the 

following parameters as given in Table 7-3 below. We wish optimise this portfolio my minimizing 

the risk exposure. 

 

Table 7-3: Detail information for target short call option 

Stock	 #1	

Stock	Price	 100	

Strike	 100	

Call/Put	 Call	

Long/Short	 Short	

Volatility	 0.2	

Interest	Rate	 0.04	

Tenor	 10	Days	

Expected	Return	 0.1	

 

Dataset 2.2 

Let’s suppose we have a portfolio that comprises of the following as given in Table 7-4 below for 

the hedging portfolio. We wish to optimise this hedging portfolio by minimising the risk 

exposure. 
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Table 7-4: Table of information for Dataset 2.2 

 
 

Dataset 2.3  

Let’s suppose we have a target portfolio that comprise a single long knock-out European barrier 

call option with the following parameters as given in Table 7-5 below. 

 

Table 7-5: Table of information for barrier option 

Stock	 #2	

Stock	Price	 100	

Strike	 115	

Type	 KO	European	Barrier	

Knock-out	Barrier	70	

Call/Put	 Call	

Long/Short	 Long	

Volatility	 0.2	

Interest	Rate	 0.04	

Tenor	 5	Yr.	(1260	Days)	

Expected	Return	 0.1	
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Dataset 2.4 

Table 7-6 below shows the information for the hedging portfolio. The hedging portfolio consists 

of both European and American style options. The expiry dates consist of 1 month, 2 months, 3 

months, 6 months and 1 year. We wish to minimise risk exposure of the Barrier option for a 

short time period, (upto a year) in Dataset 2.3 with the options presented below. 

 

Table 7-6: Table of information for Dataset 2.4 

 
 

Problem 2.1 

In problem 2.1 we shall hedge the target portfolio given in dataset 2.1 with the portfolio given in 

dataset 2.2. We solve the following problem, 

min
x,α( )

α +m−1 1− β( )−1 Π0( )i − δV( )i
T x −α⎡⎣ ⎤⎦

i=1

m

∑
+⎛

⎝⎜
⎞

⎠⎟

Subject to:

V 0( )T x = 1,

δV( )T x = r,
l ≤ x ≤ u.

 

 

 

 

7.12 

 

The hedging horizon  is the maturity of the call and the loss of the existing portfolio is,  t
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. 7.13 

Problem 2.2 

In Problem 2.2, we shall hedge the target portfolio given in Dataset 2.3 with the portfolio given 

in Dataset 2.4. We solve the following problem: 

min
x,α( )

α +m−1 1− β( )−1 Π0( )i − δV( )i
T x −α⎡⎣ ⎤⎦

i=1

m

∑
+⎛

⎝⎜
⎞

⎠⎟

Subject to:

V 0( )T x = 1,

δV( )T x = r,
l ≤ x ≤ u.

 

 

 

 

7.14 

 

The hedging horizon  is the maturity of the barrier call option and the loss of the existing 

portfolio is,  

. 7.15 

 

The long barrier knock-out European call option shall be priced using a Monte Carlo method.  

 

Results 

We solved Problem 2.1 using an interior point algorithm in MATLAB for two different returns 

(5% and 10%). We notice that the different percentage allocations or the number of contracts 

for each asset, as well as a change from short to long positions for some assets (e.g. see asset 7). 

Solutions were also attempted using the active-set and simplex method. Both additional methods 

either yielded no solution or failed to converge adequately.   

 

Π0 S,t( ) = P0int +max St − K ,0( )

t

Π0 S,t( ) = P0int +max St − K ,0( )
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Figure 7-13: CVaR optimal portfolio for Problem 2.1 with return =5% 

 
Figure 7-14: CVaR optimal portfolio for Problem 2.1 with return=10% 

 

Figure 7-15 illustrates the optimal portfolio positions for the hedging problem involving the 

barrier option in Problem 2.2. We wished to hedge the barrier option in Problme 2.2 for short 

period of time , upto a year, with a portfolio (Dataset 2.4) with weights as given below. We 

notice that for a given different target portfolio, Problem 2.1 and Problem 2.2, and with the 

same hedge portfolio, a different optimal portfolio is obtained as compared to Figure 7-13 and 

Figure 7-14. This confirms that there is some level of consistency with regards to the optimisation 

model setup. 

 

 
Figure 7-15: CVaR optimal hedge portfolio for barrier option 
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7.2.1	An	investigation	into	time	effects	of	hedging	barrier	options	
 

In this investigation, we explore the effects of time on a barrier option to understand the risk 

and reward profile characteristics. We base the problem setup on the Problem 2.2 and Datasets 

2.3. We solve for the optimal portfolio for different days to expiry. Algorithm 1 and 2 show the 

method used to analyse this characteristic.  
 

Algorithm 1  

m=Dataset 2.2 

ZRisk(tdays,mu,m) 

 àBegin 

 àSolve Barrier_Option(Dataset 2.3, tdays, nsim,n) 

àSolve Initial Portfolio  

àDerive f as per Eq. (4.59) 

àSetup Linear Program 

 àAssign Aeq, beq, LB,UB,X0 

 àAssign optim_options 

 àSolve portfolio 

 àGet Risk for given tday and mu 

àend 

 

 

Algorithm 2 

Clear Variables 

Initiate Variables 

 

For return= 5% to 50 % 

 For tday= 5 days to end_days //e.g. end_days =100 

  àSolve Z=ZRisk(Dataset, tday, return, m) 

 end 

end 
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Reshape (Z) 

Plot(Z) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-16: Risk profile plot showing effects of time and returns 

 

Figure 7-16 illustrates the effects in a three-dimensional manner. We notice that as the barrier 

option approaches expiry it exhibits a concave characteristic to the risk profile. This typically 

means the hedging problem becomes less risky in a quadratic manner.   

To understand the plot, in Figure 7-16 above, we need to understand some relationships that we 

have introduced in tandem with some commonly understood relationships. Since time is 

involved, the theta of a barrier option should be explored. Figure 7-17 below shows a plot of the 

option premium to the days to expiry of a barrier option. The figure illustrates the concave 

characteristics of time decay for an option.  
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Figure 7-17: Relationship of option value to days till expiry [28] 

 

In Eq. (7.16), we show the relationship between risk and change in a security value:  

Risk =α + 1
m 1− β( ) − δVi( )T x −α⎡

⎣
⎤
⎦

i=1

m

∑ .  
 

7.16 

 

We see that the relation between risk and change in security price has a directly proportional 

effect. The bigger the change more riskier the position becomes and vice versa. Comparing the 

theta for a barrier option and the risk to δVi( )  relationship can lead to an inverse relationship 

for risk and 
1
δ t

. So as time approaches expiry, this means that t of the option becomes larger 

(t=10, t=20, t=40) and as the time to expiry becomes smaller, your risk should become smaller. 

This reasoning offers an explanation of the concave plot illustrated in Figure 7-16.  

 

Remarks 

This case study is able to formulate and solve optimal hedging problems using the CVaR as a 

risk measure. We solved optimal hedging problems for short call options and long KO barrier 

options are considered as target portfolios. We also investigated the effects of time on a barrier 

option to understand the risk and reward profile characteristics.  This case study achieves the 

goal set in Obj. (III).  
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7.3 Case	Study	3:	Portfolio	optimisation	with	nonlinear	transaction	costs		

This case study demonstrates a setup of a portfolio optimisation problem when risk is measured 

by CVaR with nonlinear costs. The problem dataset comprises of a set of options with various 

characteristics. This incudes the presence of different volatilities, European and American styles, 

and with various methods to solve the derivative pricing. Such methods may include analytic 

pricing, Monte Carlo and Delta-Gamma methods. The cost parameter shall be a weighted cost 

parameter on the optimal portfolio. The following weighted cost parameter shall be considered: 

 

7.17 

where  denotes the optimal CVaR with no cost consideration. See Section 4.2.4 for 

further details. We implicitly assume that the transaction costs of the instruments are the same. 

 

Dataset 3.1 

Let’s suppose we have a portfolio that comprises of the following as given in Table 7-7 below. 

We to wish optimise this portfolio my minimizing the risk exposure. 

 

Table 7-7: Table of information for Dataset 3.1 

 
 

 

 

 

 

ci =ω ⋅ CVaR

CVaR
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Problem 3.1 

Problem 3.1 will use the portfolio given in Dataset 3.1 (which is the same Dataset 1.1) and aims 

to solve the following with cost considerations, 

min
x,α( )

α + 1
m 1− β( ) − δVi( )T x −α⎡

⎣
⎤
⎦

i=1

m

∑ + cj x j
j=1

n

∑⎛

⎝⎜
⎞

⎠⎟

Subject to:

V 0( )T x = 1,

δV( )T x = r,
l ≤ x ≤ u.

 

 

 

 

7.18 

 

Note that if one models the cost as for example, the resulting optimal portfolio 

typically has few, if any, of its instruments with a small holding ratio . For the quadratic 

penalty function, the constraint  is only satisfied as the penalty parameter  tends to 

.  

 

Results 

Figure 7-18 below illustrates the portfolio weighting for each asset and the position of the asset 

(either short or long) for CVaR risk measure with cost considerations. We must compare the 

results in Figure 7-18 with Figure 7-1, to see the effect of cost in the distribution of weights. Figure 

7-18 below; illustrates more long positions as compared to Figure 7-1. Additionally, the two 

soultions seem to solve for different problems and thus enhances the effects that cost have on 

portfolio optimisation. Costs become a very practical tool that the risk manager must consider to 

achieve for realistic portfolios. We must note that the interior point method solved this problem 

while the simplex method failed to converge.  

The key advantage of CVaR over the spectral, distortion, CDRM and even the drawdown risk 

measure is that CVaR caters for cost in its optimisation model with much ease. The literature 

considered in this thesis has not found any cost consideration models for other risk measures 

and thus begs further research.  

 

In order to analyse the impact of the cost consideration on risks, Alexander et al. [6] consider a 

relative difference of CVaR under different weighted cost parameters with repect to that under 

cost consideration. The formula can be represented as such: 

c2i x
2
i

i=1

n

∑

x*i

x*i = 0 ci
+∞
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RelDifCVaR ω( ) =
CVaR ω( )− CVaR

CVaR
.  

 

7.19 

Based on Eq. (7.19), we shall present results for a single simulation problem and do not show 

averages. The results are tabulated in Table 7-8. 

 
Figure 7-18: CVaR optimal Portfolio for 3.1 with cost consideration 

Table 7-8 illustrates that by using CVaR and cost optimisation formulation, it is possible to obtain 

CVaR optimal portfolios with less number of securities with comparable risks. A similar result is 

also obtained in Alexander et al. [6]. We thus confirm the same overall result by using our data.  

 

Table 7-8: Effect of weighted cost parameters on the optimal CVaR portfolio 

β  ω  CVaR RelDifCVaR # Securities 

0.95 0 1.655 0 20 

0.005 1.742 0.0321 15 

0.05 2.251 0.1170 8 

0.99 0 1.699 0 20 

0.005 1.810 0.0331 15 

0.05 2.234 0.1202 8 

 

One must also take into consideration the inevitable existence of model error and computational 

error.  
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Figure 7-19:  A smooth approximation plot 

Figure 7-19 above shows a accurancy and smoothness of the CVaR optimisation problem. It uses 

the piecewise linear minimisation problem subject to linear constraints. We solve Eq. (7.18) by 

considering a continuously differentiable piecewise quadratic approximation given by: 

 

 

7.20 

 

where is a continuously differentiable piecewise quadratic function which approximates the 

piecewise linear function max (z,0) given a resolution parameter , 

 

 

7.21 

 

Table 7-9 below shows a simple test applied to the American style options on a MacBook Air, 

Mid 2012, 1.8 Ghz Core i5, 4Gb 1600Mhz DDR3. We compare the execution time with and 

without applying the smoothing technique.  

 

 

 
F! β x,α( ) = α + 1

m 1− β( ) ρε − δVi( )T x −α⎡
⎣

⎤
⎦

i=1

m

∑⎛
⎝⎜

⎞
⎠⎟

ρε (z)

ε > 0

ρε z( ) =

z,
z2

4ε
+ 0.5z + 0.25ε ,

0,

if z ≥ ε .
if − ε ≤ z ≤ ε .

otherwise.

⎧

⎨
⎪
⎪

⎩
⎪
⎪
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Table 7-9: Matlab simulation times for with and without smoothing 

Number of Monte 

Carlo simulations 

(American) 

Matlab- (CPU sec) 

without smoothing 

Matlab- (CPU 

sec) with 

smoothing 

Increase in 

efficiency (%) 

10000 0.32 0.11 65% 

25000 0.72 0.56 22% 

50000 0.96 0.78 19% 

 

The comparison between the CPU times of the proposed smoothing formulation and the LP 

approach (interior point algorithm) for individual problems is illustrated in Table 7-9. The 

implementation of the smoothing method is based on an interior point method for nonlinear 

minimisation with bound constraints and is implemented in Matlab 13. The results above show 

the improvement in execution time, in seconds to execute with a dereasing efficiency for more 

number of Monte Carlo simulations. This means that the smoothing technique is much more 

efficient than the LP approach and one should explore using different efficiency techniques of 

Monte Carlo simulation in addtion to the smoothing techique.  This thus confirms the work of 

Alexander et al. [6].  

 

Remarks 

In this case study, we effectively solved a CVaR based optimisation problem with cost 

considerations. We conducted a comparative analysis using a relative difference formula that 

compares the models risk with and without cost considerations. We concluded that with 

variations in the weighted cost scalar, ω  we obtain a smaller portfolio number of securities with 

acceptable risk. We also included results where we used a smoothing technique to solve the 

model in a more efficient manner. This case study achieves the goal of objective Obj. (IV).  
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7.4 Case	Study	4:	Empirical	risk	analysis	on	the	FTSE/JSE	All-Share	Index	

(ALSI)	

In this case study, we perform an empirical risk analysis on the FTSE/JSE All-share index using 

the drawdown risk measure.   The FTSE/JSE Index Series is designed to represent the 

performance of South African companies, providing investors with a comprehensive and 

complementary set of indices, which measure the performance of the major capital and industry 

segments of the South African market. The FTSE/JSE All-Share Index represents 99% of the 

full market capital value, i.e. before the application of any investability weightings, of all ordinary 

securities listed on the main board of the JSE, subject to minimum free-float and liquidity 

criteria. The objective of the index is for use in the creation of index tracking funds, derivatives, 

and as a performance benchmark. 

 
Figure 7-20: Performance information for FTSE/JSE ALSI from fact sheet 

 

Figure 7-20 illustrates the data for th FTSE/ JSE ALSI. Figure 7-21 illustrates a ten-year view of 

the FTSE/JSE ALSI closing prices and the absolute drawdown series generated in Eq. (3.31). 

The datain  Figure 7-20 is taken from the FTSE/JSE ALSI datasheet. Figure 7-21 illustrates the 
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dip in prices during the 2008 financial crisis. In this case study, we shall show the following as 

part of the empirical risk analysis of the FTSE/JSE ALSI: 

i. Fit a statistical distribution to the historic P&L distribution of the FTSE/JSE ALSI for 

2015. 

ii. Fit a statistical distribution to the historic P&L distribution of the FTSE/JSE ALSI for 

2010-2016. 

iii. Fit a statistical distribution to the drawdown series P&L distribution of the FTSE/JSE 

ALSI for 2010-2016. 

iv. An investigation into the CVaR statistical analysis of P&L of the FTSE/JSE ALSI. 

 

 

 
Figure 7-21: Plot of FTSE/JSE ALSI closing and the absolute drawdown 

 

Fit a statistical distribution to the historic P&L distribution  of the FTSE/JSE ALSI for 

2015 

We shall fit a statistical distribution to the historic P&L distribution of the FTSE/JSE ALSI for 

the period of 2015. These distributional fits where performed with Matlab’s Statistical Toolbox- 

Distribution Fitting Application. Definitions of the distributions used, the reader is advised to 

refer to Prekopa [31]. 

Table 7-10: Distributional parameters for FTSE/JSE ALSI 2015 data 

Distribution Parameters Values 

Extreme Value Mu 0.00850503    
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Sigma  0.0206723   

Generalized Pareto Mean -0.853297 

Variance 3.04078 

K -1.7526    

Sigma 1.01209    

Theta -0.5              

Normal Mu 0.000233894    

Sigma 0.0171265   

Student-t Mu 8.25331e-07   

Sigma 1.15656e-09    

nu -1.10913e-06    

 

Table 7-10 contains the statistical parameter values for each of the different statistical 

distributions considered. Along with Figure 7-22 and Figure 7-23, illustrates that the distribution 

for historic P&L data of the FTSE/JSE ALSI for 2015 data displays that the distribution can be 

modelled with Student t or Normal distribution. The Student t paramenters are very low and 

should resemble a normal distribution. Matlab’s-Statistical Toolbox- Distribution Fitting 

Application suggests that Student t fits more accurantly. The Generalised Pareto distribution 

does not capture the nature of distribution at all. The Generalize Extereme Values further do not 

catpure the nature as there are iverweighted tails and underweighted centers. Thus these two 

should not be considered in the best-fit modelling. 

 
Figure 7-22: Distribution fitting for FTSE/JSE ALSI 2015 data 
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Figure 7-23: Q-Q plot for FTSE/JSE ALSI 2015 data 

Fit a statistical distribution to the historic P&L distribution for the FTSE/JSE ALSI for 

2010-2016 

We shall fit a statistical distribution to the historic P&L distribution of the FTSE/JSE ALSI for 

the period of 2010 to 2016. These distributional fits where performed with Matlab’s Statistical 

Toolbox- Distribution Fitting Application. 

 

 
Figure 7-24: Distributional fit for FTSE/JSE ALSI 2010-2015 data 

 

Table 7-11 contains the statistical parameter values for each of the different statistical 

distributions considered. Along with Figure 7-24 and Figure 7-25, we notice that the distribution 

for FTSE/JSE ALSI for the 2010 to 2015 data displays that the distribution can be modelled 
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better with the Student t distribution. These distributional fits were performed with Matlab’s 

Statistical Toolbox- Distribution Fitting Application. 

 

 
Figure 7-25: Q-Q plot for FTSE/JSE ALSI 2010-2015 data 

Table 7-11: Distributional parameters for FTSE/JSE ALSI 2010-2015 data 

Distribution Parameters Values 

Extreme Value Mu 0.00828215   

Sigma  0.0226998   

Generalized Extreme 

Value 

Mean 0.000754341 

Variance 0.000506742 

K -0.183423     

Sigma 0.0211458   

mu -0.00815249   

Normal Mu -0.000763004   

Sigma 0.0181756   

Student-t Mu -0.000626607   

Sigma 0.0113254   

nu 2.91806      

 

Table 7-12 contains the statistical parameter values for each of the different statistical 

distributions considered. Along with Figure 7-26, we notice that the distribution for FTSE/JSE 

ALSI for the 2010 to 2015 drawdown data displays that the distribution can be modelled better 
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with the Generalised Pareto distribution. These distributional fits were performed with Matlab’s-

Statistical Toolbox- Distribution Fitting Application. 

 

Fit a statistical distribution to the drawdown series P&L distribution for FTSE/JSE 

ALSI for 2010-2016 

We shall fit a statistical distribution to the drawdown series P&L distribution of the FTSE/JSE 

ALSI for the period of 2010 to 2016. These distributional fits were performed with Matlab’s 

Statistical Toolbox- Distribution Fitting Application. 

 

 
Figure 7-26: Distributional fit for absolute drawdown series of FTSE/JSE ALSI 2010-2015 data 

 

Table 7-12: Distributional parameters for FTSE/JSE ALSI 2010- 2015 absolute drawdown data 

Distribution Parameters Values 

Generalized Pareto Mean 713.962 

Variance 5.34501e+06 

K -0.374463   

Sigma 2414.36     

mu -2 

Generalized Extreme 

Value 

Mean 1736.12 

Variance 2.24668e+06 

K 0.080074   

Sigma 1039.02     
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mu 1047.48     

Normal Mu 1733.99    

Sigma 1383.85    

 

 

Table 7-13: Calculated and data from fact sheet comparison of FTSE/JSE ALSI risk measure data 

 1YR 3YR 5YR 

Data from Fact Sheet, Drawdown Measure -15.0% -15.0% -15.0% 

Calculated Drawdown Measure -13.4% -15.1% -14.3% 

Calculated CVaR -15.5% -15.5% -15.8% 

 

Table 7-13 contains comparative infomation pertaining to the three risk measures based from the 

fact sheet and calculated either with the drawdown measure or CVaR measure. We notice that 

the calculated drawdown measure is aligned with that obtained from the fact sheet while we see 

that the CVaR measure forms higher values of risk as compared to the drawdown measure. This 

confirms the commonly understood notion that CVaR does cater for a larger loss of information 

as compared to VaR and now the drawdown risk measure.   

 

An investigation into the CVaR statistical analysis of FTSE/JSE ALSI 

In Section 6.4.1, we presented a statistical analysis of CVaR. The work comprises of the findings 

from Stoyanov et al. [38]. We presented the CVaR and tail thickness sensitivity formulae from 

[38].  From the findings of Case Study 4, we showed that the Profit/Loss of FTSE/JSE ALSI 

follows a Student t distribution. In this investigation we wish to determine if the findings of [38] 

can be replicated using the FTSE/JSE ALSI statistical data.  

 

Set up of the data used in the investigation: 

i. We have taken the historical data for the FTSE/ JSE ALSI from Jan 2000 to Dec 2015. 

(approx. 2400 data points). 

ii. We then use a 200-day rolling sequence to the data, practically 200 trading days are 

considered. Due to rolling of the existing data set (2400 points), we then develop the 

relevant dataset of 42200 data points. 

iii. We then work out the volatility (σ ), Drift (µ ) and the degrees of freedom (υ ) for each 

of the datasets generated in (ii). 
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iv. Based on the calculation in (iii), we then approximate the fat-tail analysis equations for 

the Student t distribution based on Eq. (6.8), Eq (6.9) and Eq (6.10). The approximate 

equations are as follows: 

∂CVaRε υ,σ ,µ( )
∂υ

≈
ΔCVaRε υ,σ ,µ( )datasets

Δυdatasets

≈ −σ ∂CVaRε υ,1,0( )
∂υ

,  
 

7.22 

∂CVaRε υ,σ ,µ( )
∂σ

≈
ΔCVaRε υ,σ ,µ( )datasets

Δσ datasets

≈CVaRε υ,1,0( ),  
 

7.23 

∂CVaRε υ,σ ,µ( )
∂µ

≈
ΔCVaRε υ,σ ,µ( )datasets

Δµdatasets

≈ −1. 
 

7.24 

v. We then plot the distributions and find how well they approximate the analytic 
calculations obtained in Section 6.4.1 by the work of Stoyanov et al. [38] 

 

In order to achieve the results of Eq. (7.22), we need to normalize CVaRε (υ,σ ,µ)  to 

CVaRε (υ,1,0) . We can achieve this by performing the following: 

CVaRε (υ,σ ,µ) =
CVaRε (υ,σ ,µ)− µ

σ
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We then approximate the following as: 

∂CVaRε υ,σ ,µ( )
∂υ

≈
ΔCVaRε υ,σ ,µ( )datasets

Δυdatasets

,

−σ ∂CVaRε υ,1,0( )
∂υ

≈ −σ
ΔCVaRε υ,1,0( )datasets

Δυdatasets

.
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After performing this data manipulation, we super-impose and compare each result. We see this 

result in Figure 7-27 below. We see that there is close fit of the data and we can safely conclude 

that the data analysis conforms to the analytic derivations of Stoyanov et al. [38] for Eq(7.27).  
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Figure 7-27: Superimposed plot for Eq. (7.27) 

For the second relational equation Eq. (7.28),we need to normalize CVaRε (υ,σ ,µ)  to 

CVaRε (υ,1,0) . This is shown in Eq. (7.25).   Figure 7-28 below shows the plot of CVaRε (υ,1,0)  

and the plot of 
∂CVaRε υ,σ ,µ( )

∂σ
≈
ΔCVaRε υ,σ ,µ( )datasets

Δσ datasets
 superimposed. See that the error is 

of small magnitude with 94% correlation.  
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Figure 7-28: Superimposed plot for Eq. (7.28) 

 

For Eq. (7.29) above, we simply plot the data analysis and observe that the overall trend of the 

result is -1 with some minor deviations, this is illustrated in Figure 7-29 . We can conclude that 

the data analysis confirms the analytic result obtained from Stoyanov et al. [38].  

 

 
Figure 7-29: Plot for Eq. (7.29) 
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This study confirms our investigation into the statistical properties of CVaR. We confirm the 

analytic derived equations and relations derived from Stoyanov et al. [38] with the data analysis. 

Until enough information is provided to make conclusions, however the errors can be attributed 

to the model and statistical variations. 

 

Remarks 

In this case study we did an emperical analysis of the FTSE/JSE ALSI historical data. We also 

did statistical fitting of data for the absolute drawdown series of the FTSE/JSE ALSI P&L data. 

We showed what is already known by so many risk managers, that assuming normal distibrutions 

to data is erroneous and full distributional modelling must be performed to get more accurate 

results. In the analysis of the FTSE/JSE ALSI, we showed Student t distribution is more 

prominent than the normal distribution. We also confirmed the derivatives of CVaR with respect 

to the distributional parameter by using a data analysis to confirm the relation equations of 

Stoyanov et al. [38] in Section 6.4.1. 
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7.5 Case	Study	5:	Portfolio	optimisation	with	drawdown	risk	measure		

This case study demonstrates an optimisation setup for Conditional Drawdown (CDD). We shall 

solve for a portfolio optimisation problem with a static set of weights using the drawdown 

measure. In a hedge fund company, there are multiple traded assets on the futures markets. Such 

hedge funds use complicated mathematical strategies for executing such strategies, which give 

them a certain edge.    

Most of the hedge fund traders trade so-called long-term trend-following systems, but there are 

now multiple examples of short-term mean reverting trading systems as well. These systems may 

be viewed as functions of the individual futures market price realized prior to the present time. 

These strategies normally have a substantial smoothing-out effect on the futures prices and have 

close to stationary properties. Every hedge fund, has to allocate a certain portion of overall risk 

(or overall capital that it manages) to each and every “market”. Due to a substantial level of 

stationarity of the strategies, each hedge fund calculates the weights according to a certain 

internal proprietary weight allocation procedure. Normally, this set remains fixed and does not 

change unless a certain market gets added or removed from the set, which normally happens 

when a new system is introduced, when a certain market disappears or a new market is being 

added. We shall use the historical data for constructing the optimal static portfolio using 

drawdown as the risk measure. Below is the list of markets used in this case study. For more 

informtion regarding typical hedge funds, the reader is advised to read Chekhlov et al. [11]. 

 

Table 7-14: List of markets for Case Study 5 

Asset No. Ticker Asset description 

1 AAO The Australian All Ordinaries Index 

2 AD Australian Dollar Currency Futures 

3 BD U.S. Long (30- Year) Treasury Bond Futures 

4 CD Canadian Dollar Currency Futures 

5 CP Copper Futures 

6 DX U.S. Dollar Index Currency Futures 

7 ED 90-Day Euro Dollar Futures 

8 FV U.S. 5 Year Treasury Note Futures 

9 JY Japanese Yen Currency Futures 

10 LFT FTSE-100 Index Futures 
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The data consists of a time series that covers five years of data ranging from 2010 to 2015. Time 

is measured in trading days only, with a standard of five workdays per week. Problems 5.1 and 

5.2 resemble the static asset allocation problems performed by Chekhlov et al. [11]. We consider 

a smaller set of 10 assets instead of the 32 assets Chekhlov et al. [11] considered. Problem 5.1 

consists of solving a static portfolio using the maximum drawdown risk measure. Problem 5.2 

consists of solving a the same static portfolio of Problem 5.1 but by using the average drawdown 

risk measure instead. We shall compare results from Problem 5.1 and Problem 5.2 by using 

CVaR as risk measure in the static portfolio optimisation problem. 

 

Problem 5.1 

In problem 5.1 we shall construct the static portfolio given in Table 7-14. Based on Section 5.2.1, 

the reduction to linear program given as: 
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Where ,   and are auxiliary variables. We solve the following problem with the 

maximum drawdown risk measure as a constraint with the objective function being the rate of 

return: 

max
u ,y,z

pjwjN x( )
j=1

K

∑
Subject to,

χ i
i=1

L

∑ y + 1
1−α( )N zik

k=1

N

∑⎛
⎝⎜

⎞
⎠⎟
≤ γ ,

zik ≥ ujk − yi ,
ujk ≥ ujk− j − rjk ,
uj0 = 0,
ujk ≥ 0,
zijk ≥ 0,
i = 1,...,L,
j = 1,...,K ,
k = 1,...,N .

ujk yi zijk
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7.28 

 

Problem 5.2 

In problem 5.2 we shall construct a LP model to solve the static portfolio given in Table 7-14. We 

solve the following problem with the average drawdown risk measure as a constraint with the 

objective function being the rate of return: 

 

 

 

 

 

7.29 

 

Results 

We shall now consider the combined results of the Problem 5.1 and Problem 5.2. Figure 7-30 

illustrates the percentage allocation or the number of contracts to be considered for creating an 

optimal portfolio based on using the maximum and average drawdown measures and CVaR. 

Chekhlov et al. [11] do not state the methods they used to solve the knapsack problem in Eq. 

(7.28) and Eq. (7.29), but we considered using a genetic algorithm that solved the optimisation 

problem programmed and solved with Matlab. Other methods that can be used can be found in 

the work of Ermoliev and Wets [14] and Pflug [30]. 

 

max
u ,y,z

pjwjN x( )
j=1

K

∑
Subject to,
ujk ≥ ujk− j − rjk ,
γ ≥ ujk ≥ 0,
uj0 = 0,
zijk ≥ 0,
j = 1,...,K ,
k = 1,...,N .

max
u ,y,z

pjwjN x( )
j=1

K

∑
Subject to,
ujk ≥ ujk− j − rjk ,

1
N

pju jk ≤ γ ,
j=1

K

∑
k=1

N

∑
ujk ≥ 0,
uj0 = 0,
zijk ≥ 0,
j = 1,...,K ,
k = 1,...,N .
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Figure 7-30: Percentage allocation/ No. of contracts for Case Study 5 

Figure 7-31 illustrates the efficient frontier constructed for the three measures. We notice that 

both the maximum and average drawdown measures show the concave nature of the common 

understood relationship of return and risk based on Markowitz [24]. 

 
Figure 7-31: Efficient frontier plot for Case Study 5 

 

Chekhlov et al. [11] consider using “box constraints” on the portfolio weights. We also adopt 

this and include the constraint of 2% ≤ xi ≤ 80% . Based on Chekhlov et al. [11], in a futures 

setup constraint are analogous to the “fully-invested” condition from the original work of 

Markowitz [24], this makes the efficient frontier strictly concave.  Figure 7-31 illustrates this 

characteristic. Without the constraint on the portfolio weights, the efficient frontier would be a 

AAO	 AD	 BD	 CD	 CP	 DX	 ED	 FV	 JY	 LFT	
MaxDD	 12,00%	 -10,00%	 2,00%	 3,90%	 -4,70%	 16,00%	 9,20%	 -26,90%	 7,30%	 8,00%	

AvDD	 8,00%	 -10,00%	 2,00%	 5,90%	 -6,30%	 15,60%	 9,20%	 -22,00%	15,00%	 6,00%	

CVaR	 9,00%	 -10,00%	 2,00%	 6,10%	 -6,30%	 17,20%	 8,70%	 20,00%	 15,00%	 5,70%	
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straight line passing through the origin (0,0). Chekhlov et al. [11] state that is due to the virtually 

infinite leverage of these types of strategies.  

If we consider our case, we see that for a lower bound of 2%, 10x0.02=0.2 as minimal leverage 

while the upper case of 80%, 10x0.8=8 as maximal leverage. The optimal allocation of weights 

chooses both the optimal leverage and allocation proportions between instruments. Chekhlov et 

al. [11] considered another very important issue that has to do with the stability of the optimal 

portfolio. They note that the constraints need to lead to sufficiently stable portfolios by 

providing enough mixing of the individual equity curves [11].   

 

Remarks 

In this case study we solveed a static porfolio using the maximum and average drawdown risk 

measures and compared the results by using the CVaR risk measure. We have used a genetic 

algorithm to solve the knapsack problems presented in Problem 5.1 and Problem 5.2. This case 

study acheives the goal set out in objective Obj (V).  
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Chapter 8. Conclusions 
In this chapter, we present some concluding remarks on this thesis. We present a summary of 

the work and the important findings and results. We shall relate each of the objectives set out in 

Section 1.3 to what we have achieved. In section 1.3, we presented some of the main objectives 

we wish to acheive in this thesis. A summary of the objectives is: 

(Obj. I). We shall present the theorems, properties and other propositions for the Value-

at-Risk (VaR), Conditional Value-at-Risk (CVaR), spectral risk measures, distortion risk measures 

and coherent distortion risk measures from various literature resources. We shall use the Artzner 

et al. [8] axiomatic framework to form the basis of each risk measure’s definition.  

(Obj. II). We shall present for each of the risk measures above, an optimisation model(s) 

that can be solved to give the risk manager an optimal portfolio. The model solution will be 

based on risk or return or both as an objective function and constraint. These optimal problems 

shall be formulated for derivative based assets. 

a. We wish to investigate the effects of solving a portfolio optimisation problem 

with each of the three risk measures, namely, CVaR, spectral risk measures 

and CDRM risk measure. These three risk measure have shown to have some 

popularity in both literature and in practice thus a comparative analysis 

among them may prove insightful.  

(Obj. III). We shall also present the use of the CVaR risk measure to formulate an optimal 

hedging problem with derivative based contracts. This problem is typically constructed with a 

given target portfolio and a given hedging portfolio. The aim is to hedge the target portfolio with 

the given hedging portfolio.  This problem also lends itself well to the practical setting of a risk 

manager who wishes to hedge risk of his current portfolio(s).  

(Obj. IV). We shall present a CVaR risk measure optimisation model that considers 

transactional or managerial costs in the objective function. This problem is essentially covered by 

Alexander et al. [6], where they formulate the CVaR optimal portfolio model. We shall use their 

work to form the optimal problem and solve it for our given portfolio(s). 

(Obj. V). Chekhlov et al. [11] introduced a new one-parameter of family risk measures 

called Conditional Drawdown (CDD). We shall present the theorems and, properties of this risk 

measure. We then formulate an optimal portfolio problem that shall be solved using the 

Conditional Drawdown (CDD) as either objective function or constraint. These problems 

generally lead to knapsack type optimisation problems and we shall use genetic algorithms to 

solve the problems.  
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We shall now present the key findings and outcomes for each of the objectives that was set out 

in Chapter 1 of this document.  

 

In Chapter 2 and 3, we presented a number of risk measures. Some of the key risk measures that 

we used in this thesis are CVaR, spectral risk measures, distortion risk measures, CDRM, and 

conditional drawdown risk measure. An axiomatic approach to formalising each risk measures 

definition and key properties were shown.  

We presented the distortion risk measure. It possessed some key desirable properties for a 

portfolio risk measure, i.e. law-invariance, sub-additivity, and consistency with the second order 

stochastic dominance. In addition, distortion risk measures have their roots in the distortion 

utility theory of choice under uncertainty, meaning that this class of risk measures can better 

reflect the risk preferences of investors. 

Spectral risk measures were also presented with their theoretical and practical properties. We 

showed how to formulate an optimal portfolio model using the spectral sequence and estimator 

of a spectral measure. Various spectrums exist and we considered three variants when solving for 

the spectral risk measure based portfolio optimisation in Case Study 1.  

We presented the CDRM which is an extended version of the well-known linear optimisation 

framework for CVaR to a general class of risk measure. We presented the finite generation 

theorem for CDRM in Bertsimas and Brown [8] and showed that any CDRM can be defined as a 

convex combination of ordered portfolio losses and equivalently a convex combination of 

CVaRs. Based on this we presented a CDRM based portfolio optimisation model. We solved a 

CDRM-based portfolio optimisation via linear programming, which could handle problems with 

a large number of variables and/or constraints.  

We presented the drawdown risk measure, which has proved useful for practical portfolio 

management [11]. This measure similar to CVaR, includes the MaxDD and AvDD measures as 

its limiting cases and possesses all properties of a deviation measure [11]. Moreover, it may be 

considered as a generalization of deviation measure to a dynamic case. We considered 

optimisation models that addressed an asset-allocation problem with CDD, MaxDD and AvDD 

measures. In case study 5, we formulated a real life optimisation problem. We solved the 

knapsack optimisation problem using a genetic algorithm.   

In Chapter 4, we looked at CVaR as a loss distribution and then showed how we can use CVaR 

in portfolio optimisation. We presented the model for using CVaR as an objective function or as 

a constraint. We presented the inclusion of a weighted cost consideration in the CVaR 

optimisation problem. The model represented cost as proportional to the magnitude of 
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instrument holding. This cost model is capable of controlling transaction cost as well as 

management cost. We illustrated that minimizing CVaR together with this cost model leads to 

more desirable portfolios with significantly smaller transaction costs, fewer non-zero instrument 

holdings, and comparable CVaR measures. We presented a computationally efficient method for 

solving a simulation based CVaR optimisation problem by exploiting the fact that the objective 

function in the CVaR optimisation problem approaches a continuously differentiable function as 

the number of Monte Carlo samples increases.  

We presented the investigations and scenarios for creating and solving optimal portfolios in a 

case study format. We presented five case studies each achieving the same global outcome of 

using risk measures in the application of portfolio optimisation. We shall now give an account of 

further learnings from each case study. 

In Case Study 1, we solved the portfolio optimisation problem by finding optimal weights of 

derivative securities using CVaR, spectral and CDRM as risk measures. In section 4, we 

developed a comprehensive model that solves an optimal portfolio using CVaR as a risk 

measure. Similarly, in Section 5 we developed the portfolio optimisation models for spectral, 

CDRM and conditional drawdown (CDD) risk measures. We constructed the efficient frontiers 

for each risk measure model and performed a comparative analysis. We have noted that from a 

trader’s perspective, the CVaR offered the best fit of the traditional risk-reward characteristic 

while some deficiencies where observed for the spectral and CDRM risk measures.   

The spectral risk measure efficient frontier illustrated some “flatness” for lower risk values. This 

led us to do some further investigation. We included two more spectrums and then solved the 

model, and this also yielded the same “flatness” for lower risk values. Based on this, we then 

setup another simple portfolio of stocks only (no derivatives) and optimised it using the spectral 

risk measures. The results of the efficient frontier on the simple stock portfolio yielded a more 

concave plot of risk and reward. This led to the conclusion that the “flatness” is due to some 

characteristics of derivatives that yielded these effects for lower risk values. This poses the 

question: why derivative based portfolio optimisation using spectral risk measures exhibit such 

characteristics on the efficient frontiers for lower risk values? We shall leave this for further 

investigative research. 

From a comparative perspective, we used the efficient frontier as a mechanism for comparing 

CVaR, spectral and CDRM risk measures in portfolio optimisation. Based on the comparative 

efficient frontier plot, Figure 7-10, we see that for lower levels of risk CVaR and CDRM show 

similarities while at higher risk levels CVaR and spectral risk measures show some similarities. 

Based on the risk-return comparative method, spectral and CRDM cause some difficulties 
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specially from a trader’s perspective. As a topic for further research, a quatitative method to rank 

the different risk measures needs  to be developed. 

In Case Study 2 , we were  able to formulate and solve optimal hedging problems using the 

CVaR as a risk measure. We solved optimal hedging problems for short call options and long 

KO barrier options as target portfolios. We also investigated the effects of time on a barrier 

option to understand the risk and reward profile characteristics.  This case study achieves the 

goal set in objective Obj. (III).  

In Case Study 3, we effectively solved a CVaR based optimisation problem with cost 

considerations. We conducted a comparative analysis using a relative difference formula that 

compares the model’s risk with and without cost considerations. We concluded that with 

variations in the weighted cost scalar, ω , we obtain smaller number of securities in the portfolio 

with acceptable risk. We also included results where we used a smoothing technique to solve the 

model in a more efficient manner. This case study achieves the goal set in objective Obj. (IV).  

In Case Study 4, we did an emperical analysis of the FTSE/JSE ALSI historical data. We also 

performed a statistical fitting of data for the absolute drawdown series of the FTSE/JSE ALSI 

P&L data. We showed what is already known to many risk managers, that assuming normal 

distibrutions to data is erroneous and full distributional modelling must be performed to obtain 

more accurate results. In the analysis of the FTSE/JSE ALSI, we have showed that the Student t 

distribution is more prominent than the normal distribution. We also confirmed the derivatives 

of CVaR with respect to the distributional parameter by using data analysis to confirm the 

relation equations of Stoyanov et al. [38] in Section 6.4.1. 

In Case Study 5, we solved a static porfolio using the maximum and average drawdown risk 

measures and compared the results using the CVaR risk measure. We used a genetic algorithm to 

solve the knapsack problems presented in Problem 5.1 and Problem 5.2. This case study 

acheives the goal set out in objective Obj (V).  

The objective of this thesis was to investigate risk measures and the application thereof to 

portfolio optimisation. We have performed an in depth look into the theoretical aspects of the 

risk measures within an axiomatic framework. We developed the portfolio optimisation models 

for the key risk measures and set up case studies that looked at the application details.  
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Appendix 
A1.	Further	theorems	and	proof	for	convex	measures	of	risk	

Theorem A1.1: 

Suppose ,  is a set of probability measures , and  is a 

convex measure of risk. Then the following properties are equivalent.  

There is a “penalty function”  such that 

 
0.1 

 

The acceptance set  associated with  is weak, i.e. -closed  possesses the 

Fatou property: if the sequence  is uniformly bounded and  converges to some 

 in probability, then  

if the sequence  decreases to , then  

 

Proof of Theorem A1.1 

1 implies 2 holds, because  given by (16) is -lower semi-continuous. For the 

converse implication, we can repeat the proof of Theorem 5 and apply the Hahn-Banach 

separation theorem in the locally convex space  in order to get a 

negative continuous linear functional  satisfying (14). By assumption,  can be represented as 

 with some  yielding a probability measure . We 

conclude the proof as in Theorem 5. The remaining implications follow as in [4].  

 

Proposition A1.1: 

Suppose  is convex measure of risk possessing a representation of the form 

(16) and take  as in Theorem 6. Then the representation (16) holds as well in terms of the 

penalty function 

  

 

Χ = L∞ Ω,A,P( ) Ρ  Q≪ P  ρ :X→ !

α :Ρ → −∞,∞( )

 
ρ Y( ) ≥ sup

Q≪Ρ
EQ −X[ ]−α Q( )( )  for all X ∈Χ

Aρ ρ σ L∞ P( ),L1 P( )( ) ρ

 Xn( )n∈! ⊂ Χ Xn

X ∈Χ ρ X( ) ≤ lim infn ρ Xn( )

 Xn( )n∈! ⊂ Χ X ∈Χ ρ Xn( )→ ρ X( )

ρ σ L∞ P( ),L1 P( )( )

L∞ P( ),σ L∞ P( ),L1 P( )( )( )
 ℓ  ℓ

 ℓ Z( ) = E ϕX[ ] ϕ ∈L1 P( ) dQ
dP = ϕ

E ϕ[ ]

 ρ :L
∞ Ω,A,P( )→ !
P

α 0 Q( ) = sup
X∈L∞

EQ −X[ ]− ρ X( )( ) = sup
X∈Aρ

EQ −X[ ]
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Moreover, is minimal in the sense that  for all  if the representation (16) 

holds for . In addition, 

  

 

if  is defined as in (8) via a given acceptance set . 

 

We may have a penalty function  that is not the minimal one and this may occur in the 

following case presented in Proposition A1.2.  

 

Proposition A1.2 

Suppose that for every  in some index set  we are given a convex measure of risk  on 

 with associated penalty function . We assume that 

 0.2 

 

Then 

 0.3 

 

is a convex measure of risk that can be represented as (16) with the penalty function 

 0.4 

 

Proof: 

Clearly: 

 0.5 

 

Hence the assertion follows.  

  

α 0 Q( ) ≤α Q( ) Q∈P

 α i( )

α 0 Q( ) = sup
X∈Aρ

EQ −X[ ] = sup
X∈A

EQ −X[ ]

ρ A

α 0

i I ρi

X =:L∞ Ω,A,P( )  α i i( )
inf
Q∈℘
inf
i∈I

α i Q( ) > −∞

ρ X( ) := sup
i∈I

ρi X( ),        X ∈Χ

 
α Q( ) := inf

i∈I
α i Q( ),      Q≪ P

 
ρ X( ) = sup

i∈I
sup
Q≪P

EQ −X[ ]−α i X( )( ) = sup
Q≪P

EQ −X[ ]− inf
i∈I

α i Q( )( )
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A.2	Convex	efficient	frontier	for	conditional	drawdown	risk	

Now we shall present the logic behind the above statement. Denoting , we 

show that for any  and  

 0.6 

 

According to Eq. (5.15), we have 

 
 

0.7 

 

and using notation , we obtain 

 0.8 

 

Since expression  is linear with respect to , 

is a concave function of . Indeed, 

 

 

0.9 

 

  

g(x) = pjwjN x( )
j=1

K

∑

γ 1,2 ∈ 0,1[ ] τ ∈ 0,1[ ]

g xχ
* τγ 1 + 1−τ( )γ 2( )( ) ≥ τg xχ

* γ 1 + 1−τ( )g xχ
* γ 2( )( )( )( )

g xχ
* γ( )( ) = max

x∈X ,y
g x( )

s.t.  H x, y( ) ≤ γ

Gλ x, y( ) = g x( )− λH x, y( )

g xχ
* γ( )( ) = min

λ≥0
max
x∈X ,y

Gλ x, y( ) + λγ( ) = min
λ≥0

Gλ x λ( ), y λ( )( ) + λγ( )

Gλ x λ( ), y λ( )( ) + λγ γ min
λ≥0

Gλ x λ( ), y λ( )( ) + λγ( )
γ

min
λ≥0

Gλ x λ( ), y λ( )( ) + λ τγ 1 + 1−τ( )γ 2( )( )
= min

λ≥0
τ Gλ x λ( ), y λ( )( ) + λγ 1( ) + 1−τ( ) Gλ x λ( ), y λ( )( ) + λγ 2( )( )

= τ min
λ≥0

Gλ x λ( ), y λ( )( ) + λγ 1( ) + 1−τ( )min
λ≥0

Gλ x λ( ), y λ( )( ) + λγ 2( )
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A3.	Numerical	example	using	Longstaff	and	Schwartz	method	

For this example, we shall use 7 paths and 3 time periods. 

Step 1: The simulated stock prices are shown below. 

0 1 2 3 

100 102.89 114.05 86.04 

100 196.49 181.21 200.98 

100 167.15 156.66 208.60 

100 73.63 94.93 100.58 

100 176.23 224.46 265.28 

100 111.08 141.68 157.44 

100 94.88 104.26 94.26 

 

Step 2: Table below shows the values of the convertible at t 3= . The table shows 5 conversions 

and 2 redemptions at face value. These cash values will now be rolled back to t 2=   

3  

86.04 Redemption 

200.98 Conversion 

208.60 Conversion 

100.58 Conversion 

265.28 Conversion 

157.44 Conversion 

94.26 Redemption 

Step 3: The convertible will not be exercised in path 4 at t 2= . The value is =97.61 which the 

discount value of 94.91. 

Step 4: the remaining time paths will need to continuation value to be calculated. We shall 

discount the cash flows paid out in t 3=  to t 2=  

Step 5: use the present values to regress the continuation values to find the coefficients , ,a b c

from the basis function.  

Path S (2) P* Pc 

1 114.05 114.05 110.66 

2 181.21 181.21 207.08 

3 156.66 156.66 180.31 

4 94.93 94.93 97.61 
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5 224.46 224.46 225.87 

6 141.68 141.68 160.47 

7 104.26 104.26 87.39 

 

Step 6: Then compare exercise and continuation values to generate intermediate cash flows at

t 2= . The following cash flow matrix is obtained. Go to Step 3. And decrease time period to

t 1= . 

Path 1 2 3 

1  114.05  

2   200.98 

3   208.60 

4  97.61  

5   265.28 

6   157.44 

7  104.26  

Step 3: at time, two points are suboptimal path 4 and 7. Calculate the continuation value for 

these path nodes:  

Step 4: Calculate the present value for subsequent nodes 1, 2, 3, 5, 6. The calculation is shown 

Table below. 

Step 5: Use regression and generate continuation values. 

Step 6: Compare P* and Pc and determine the value of the convertible bond producing Table 

below: 

0 S (1) P* Pc P  

100 102.89 102.89 117.71 117.71  

100 196.49 196.49 194.61 194.61 Convert 

100 167.15 167.15 222.78 222.78  

100 73.63 73.63 94.73 94.73  

100 176.23 176.23 221.03 221.03  

100 111.08 111.08 138.33 138.33  

100 94.88 94.88 101.18 101.18  

 

Evaluation of Convertible bond has the final cash flow matrix shown below. 

Path 1 2 3 
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1  114.05  

2 196.49  200.98 

3   208.60 

4 94.73 97.61  

5   265.28 

6   157.44 

7 101.18 104.26  

 

Discounting the cash values to the present time yields a value of =152.16. 
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A3.	FTSE/JSE	ALSI	additional	information	
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A.4	Matlab	programs	

Case Study 1  
 

%This code solves for the simple case where CVAR is minimized with simple 

%constraints. See the paper by Alexendra, Coleman, Li. This code 

%corresponds to the Case Study 1 

%Done By Resham Sivnarain, 11230712 

  

%Matlab function descriptions 

% X = linprog(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper 

%     bounds on the design variables, X, so that the solution is in 

%     the range LB <= X <= UB. Use empty matrices for LB and UB 

%     if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;  

%     set UB(i) = Inf if X(i) is unbounded above. 

  

% X = linprog(f,A,b) attempts to solve the linear programming problem: 

%           

%              min f'*x    subject to:   A*x <= b  

%               x 

%   

%     X = linprog(f,A,b,Aeq,beq) solves the problem above while additionally 

%     satisfying the equality constraints Aeq*x = beq. 

  

  

  

clear ret; 

clear risk; 

for j=1:6 

  

alp=0.05; 

beta=0.95; 

ret(j)=0.01*j; 

  

  

[V0,dV]=analyticBS(m,Type1,Type2); 

  

  

a=size(m); 

f=-dV-alp; 

A=zeros(1,a(1,1)); 

b=0; 

Aeq=[V0;dV] 

beq=[1; ret(j)] 

LB=-0.3*ones(1,a(1,1)); 

UB=0.8*ones(1,a(1,1)); 

X=linprog(f,A,b,Aeq,beq,LB,UB) 

risk(j)=f*X; 

end 

  

plot(risk,ret,'-o') 
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%%  

  

  

%%%%%%%%%%%%%%%% 

%X-CVAR PROBELM 

%Y-SPECTRAL RISK PROBLEM 

%Z-CDRM PORBLEM 

  

  

alp=0.000; 

beta=0.95; 

retx=0.56; 

rety=0.26; 

retz=0.06; 

  

[V0,dV]=analyticBS(m,Type1,Type2); 

  

  

a=size(m); 

f=-dV-alp; 

A=zeros(1,a(1,1)); 

b=0; 

Aeq=[V0;dV] 

beqx=[1; retx] 

beqy=[1; rety] 

beqz=[1; retz] 

LB=-1*ones(1,a(1,1)); 

UB=1*ones(1,a(1,1)); 

% X=linprog(f,A,b,Aeq,beq) 

[X,FVALX, EXITFLAGX, OUTPUTX,LAMDAX]=linprog(f,A,b,Aeq,beqx,LB,UB); 

[X,FVALY, EXITFLAGY, OUTPUTY,LAMDAY]=linprog(f,A,b,Aeq,beqy,LB,UB); 

[X,FVALZ, EXITFLAGZ, OUTPUTZ,LAMDAZ]=linprog(f,A,b,Aeq,beqz,LB,UB); 

x=100*X 

Y=100*Y 

Z=100*Z 

% bar(X,'bl') 

% hold on  

% bar(Y,'r') 

% hold on 

% bar(Z,'c') 

  

  

%% 

  

N=100; 

k=100; 

  

for j=1:10 

    q(j)=genspecseq(N,k,j); 

     

end 

plot(q) 
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%% 

  

k=3; 

  

for j=1:10 

    f(j)=(j-1)/10; 

    q(j)=specexp(k,f(j)); 

    

  

end 

 plot(f,q,'r-o') 

  

    hold on 

k=15; 

  

for j=1:10 

    f(j)=(j-1)/10; 

    q(j)=specexp(k,f(j)); 

     

end 

plot(f,q,'b-x') 

    hold on 

% plot(f,q,'b') 

 

 

 

 

function [Price,optstop,optcash]=American(S0,drift,vol,K,R,T,path,step) 

%This function prices the American Options by using A Simple Least-Squares 

%Approach developed by Longstaff and Schwartz 

%Done by: Resham Sivnarain 

  

% drift=0.0005; 

% vol=0.05; 

  

%Monte Carlo Simulation of the Stock Price 

for j=1:path 

    S(j,1)=S0; 

for i=2:step 

    S(j,i)=S(j,i-1)*exp(drift+randn(1)*vol); 

end 

end 

%plots of the different MC paths 

% for j=1:100 

% plot(S(j,:)); 

% hold on 

% end 

  

% S=[1,1.09,1.08,1.34;... 

%     1,1.16,1.26,1.54;... 

%     1,1.22,1.07,1.03;... 
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%     1,0.93,0.97,0.92;... 

%     1,1.11,1.56,1.52;... 

%     1,.76,.77,0.9;... 

%     1,0.92,0.84,1.01;... 

%     1,0.88,1.22,1.34]; 

  

a=size(S); 

r=a(1,1); 

c=a(1,2); 

% Calculate the discount rate-d 

d=exp(-R*T); 

%Optimal stopping Matrix 

stopM=zeros(a(1:1),a(1,2)); 

%Cash flow Matrix 

cfM=zeros(a(1:1),a(1,2)); 

  

%update the Cash flow Matrix to EU at final time 

for i=1:r 

    cfM(i,end)=max(0,K-S(i,end)); 

    if (cfM(i,end)>0) 

        stopM(i,end)=1; 

    end 

end 

cfM; 

i=c-1; 

for k=1:(c-2) 

    X=S(:,i); 

    Xn=S(:,i+1); 

    t=zeros(r,1); 

    cnt=1; 

    for j=1:r 

        E(j)=max(0,K-S(j,i)); 

         

        if (E(j)~=0) 

            t(j)=1;                 %tracking vector 

            Xreg(cnt)=X(j);         %get Regression X 

            Yreg(cnt)=cfM(j,i+1)*d; %get Regression Y 

            cfM(j,i)=E(j); 

            cnt=cnt+1; 

        elseif (E(j)==0) 

            X(j)=0; 

        end 

    end 

  

  

p=mylsp(Yreg,Xreg);                  %work the regression constants 

  

for j=1:(cnt-1) 

    cont(j)=p(1)+p(2)*Xreg(j)+p(3)*(Xreg(j))^2; %pack the Vector 

end 

cnt=1; 

for j=1:r 
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    if (t(j)==1) 

        temp(j)=cont(cnt); 

        cnt=cnt+1; 

    elseif (t(j)~=1) 

        temp(j)=0; 

    end 

end 

  

cont=temp; 

for j=1:r 

    if (E(j)>cont(j)) 

        stopM(j,i)=1; 

    end 

end 

i=i-1; 

end 

  

stopM; 

cfM; 

optstop=zeros(r,c); 

kp=zeros(r,1); 

for i=2:c 

  for j=1:r 

      if (stopM(j,i)==1) && (kp(j)==0) 

          optstop(j,i)=stopM(j,i); 

            kp(j)=1; 

      end 

  end 

   

optcash=optstop.*cfM; 

sum=0; 

for i=1:r 

    for j=1:c 

        sum=sum+optcash(i,j)*exp(-R*(j-1)); 

    end 

end 

  

Price=sum/r; 

  

end 

 

 

Case Study 2 
 

%This code solves for the hedging problem. 

%constraints. See the paper by Alexendra, Coleman, Li. This code 

%corresponds to the Case Study 2,  

%Done By Resham Sivnarain, 11230712 

  

%% 

%Matlab function descriptions 
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% X = linprog(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper 

%     bounds on the design variables, X, so that the solution is in 

%     the range LB <= X <= UB. Use empty matrices for LB and UB 

%     if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;  

%     set UB(i) = Inf if X(i) is unbounded above. 

  

% X = linprog(f,A,b) attempts to solve the linear programming problem: 

%           

%              min f'*x    subject to:   A*x <= b  

%               x 

%   

%     X = linprog(f,A,b,Aeq,beq) solves the problem above while additionally 

%     satisfying the equality constraints Aeq*x = beq. 

  

  

% [Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield) computes European put 

and call option prices using a Black-Scholes model. 

clear ret; 

clear risk; 

ret=0.25; 

alp=0.0; 

beta=0.99; 

mm=1; 

w=0.005; 

  

Init_port=blsprice(100,100,0.04, 10, 0.2,0.1) 

[V0,dV]=analyticBS(m,Type1,Type2); 

  

a=size(m); 

f=(alp+(mm*(1-beta))^(-1))*(-Init_port-dV-alp); 

% f=-dV-alp; 

A=zeros(1,a(1,1)); 

b=0; 

Aeq=[V0;dV] 

beq=[1; ret] 

LB=-100*ones(1,a(1,1)); 

UB=100*ones(1,a(1,1)); 

X0=zeros(20,1); 

% interior-point, active-set, simplex 

options=optimoptions(@linprog,'Algorithm', 'interior-point','MaxIter',100000) 

[X,FVAL, EXITFLAG, OUTPUT,LAMDA]=linprog(f,A,b,Aeq,beq,LB,UB,X0,options); 

  

  

% [X,FVAL, EXITFLAG, OUTPUT,LAMDA]=linprog(f,A,b,Aeq,beq,LB,UB); 

  

risk=f*X; 

  

%risk is calculated wihtout cost 

%now we factor cost into min Prob 

  

bar(X) 
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function z= zrisk(tdays, mu,m,Type1, Type2) 

%Zrisk is used for the hedging problem of case study 2. 

  

ret=mu; 

alp=0.0; 

beta=0.99; 

mm=1; 

w=0.005; 

  

  

Init_port=Barrier_price(100,115,70,0.01,0.02,0.04,tdays,100,100); 

[V0,dV]=analyticBS(m,Type1,Type2); 

  

a=size(m); 

f=(alp+(mm*(1-beta))^(-1))*(-Init_port-dV-alp); 

% f=-dV-alp; 

A=zeros(1,a(1,1)); 

b=0; 

Aeq=[V0;dV] 

beq=[1; ret] 

LB=-100*ones(1,a(1,1)); 

UB=100*ones(1,a(1,1)); 

X0=zeros(20,1); 

% interior-point, active-set, simplex 

options=optimoptions(@linprog,'Algorithm', 'interior-point','MaxIter',100000); 

[X,FVAL, EXITFLAG, OUTPUT,LAMDA]=linprog(f,A,b,Aeq,beq,LB,UB,X0,options); 

  

EXITFLAG; 

  

z=f*X; 

end 

 

 

%This code solves for the hedging problem. It investigates the time effects 

%of barrier option in the risk and return characteristics. 

%See the paper by Alexendra, Coleman, Li. This code 

%corresponds to the Case Study 2 Part 2,  

%Done By Resham Sivnarain, 11230712 

clear X; 

clear Y; 

clear Z; 

clear Yl; 

clear Xl; 

  

t=100; 

i=1; 

j=1; 

k=0; 

Yl=5:t; 

% Xl=0.05:0.05:0.5; 

Y=[]; 

X=[]; 
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for r =0.05:0.05:0.5 

    Xl=ones(1,t-4)*r; 

    for td=5:t 

       k=k+1; 

       Z(k)=zrisk(td,r,m,Type1,Type2); 

         

    end 

    Y=[Y,Yl]; 

    X=[X,Xl]; 

    i=i+1; 

end 

  

X=reshape(X,t-4,10); 

Y=reshape(Y,t-4,10); 

Z=reshape(Z,t-4,10); 

  

surf(X,Y,Z) 

 

 

Case Study 3 
 

%% 

% this case study solves for Case study 3, CVaR optimisation with cost. 

%Matlab function descriptions 

% X = linprog(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper 

%     bounds on the design variables, X, so that the solution is in 

%     the range LB <= X <= UB. Use empty matrices for LB and UB 

%     if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;  

%     set UB(i) = Inf if X(i) is unbounded above. 

  

% X = linprog(f,A,b) attempts to solve the linear programming problem: 

%           

%              min f'*x    subject to:   A*x <= b  

%               x 

%   

%     X = linprog(f,A,b,Aeq,beq) solves the problem above while additionally 

%     satisfying the equality constraints Aeq*x = beq. 

  

  

%first solve for a risk parameter with cost consideration 

clear ret; 

clear risk; 

ret=0.56; 

alp=0.0; 

beta=0.99; 

mm=20; 

w=0.005; 

  

[V0,dV]=analyticBS(m,Type1,Type2); 

  

a=size(m); 

f=(alp+(mm*(1-beta))^(-1))*(-dV-alp); 
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% f=-dV-alp; 

A=zeros(1,a(1,1)); 

b=0; 

Aeq=[V0;dV] 

beq=[1; ret] 

LB=-0.3*ones(1,a(1,1)); 

UB=0.8*ones(1,a(1,1)); 

X=linprog(f,A,b,Aeq,beq,LB,UB) 

risk=f*X; 

  

%risk is calculated wihtout cost 

%now we factor cost into min Prob 

  

% fcost=-dV-alp+w*abs(risk); 

fcost=f+w*abs(risk); 

A=zeros(1,a(1,1)); 

b=0; 

Aeq=[V0;dV] 

beq=[1; ret] 

LB=-0.3*ones(1,a(1,1)); 

UB=0.8*ones(1,a(1,1)); 

X2=linprog(fcost,A,b,Aeq,beq,LB,UB); 

  

bar(X) 

figure 

bar(X2) 

  

% plot(risk,ret,'-o') 

  

for alp=-10:20 

    a(alp+11)=smoothing(alp,5) 

    b(alp+11)=smoothing(alp,4) 

end 

plot(a) 

hold on 

plot (b,'r') 

%% 

hist(PL,80); 

hold on 

x = -5:0.1:5; 

y = 50*tpdf(x,2); 

z = normpdf(x,0,1); 

  

plot(x,y,'-') 
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Case Study 4 
 

data =FTSEJSEClose1; 

roll=200; 

%this program takes a data set and fits a distribution to the data subset 

%which is rolling of 200 days of FTSE/JSE ALSI data. This code is used for 

%the investigation into the stats effects on FTSE/JSE 

%Done by Resham Sivnarain, 2016 

  

aa=size(data); 

data_end=aa(1,2)-roll-1; 

% create a data series for drift, vol and degree of freedom 

%also work out the CvaR of the data set 

for i= 1: data_end 

    d=data(i:i+roll); 

    pd=fitdist(d,'tLocationScale') 

    drft(i)=pd.mu; 

    sigma(i)=pd.sigma; 

    nu(i)=pd.nu; 

    cvar(i)=my_cvar(d,5) 

    

end 

% a1=size(drft); 

  

for i=1:(data_end-1) 

   delta_drft(i) = (cvar(i+1)-cvar(i))/(drft(i+1)-drft(i)); 

   delta_sigma(i)=(cvar(i+1)-cvar(i))/( sigma(i+1)-sigma(i)); 

   delta_nu(i)=(cvar(i+1)-cvar(i))/(nu(i+1)-nu(i)); 

     

end 

  

plot(delta_drft) 

 

 

Case Study 5 
 

%KNAPSACK Solves the 0-1 knapsack problem for positive integer weights 

% 

%  [BEST AMOUNT] = KNAPSACK(WEIGHTS, VALUES, CONSTRAINT) 

%        

%       WEIGHTS    : The weight of every item (1-by-N) 

%       VALUES     : The value of every item (1-by-N) 

%       CONSTRAINT : The weight constraint of the knapsack (scalar) 

% 

%       BEST       : Value of best possible knapsack (scalar) 

%       AMOUNT     : 1-by-N vector specifying the amount to use of each item (0 or 1) 

% 

% 

%   EXAMPLE : 

% 

%       weights = [1 1 1 1 2 2 3]; 
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%       values  = [1 1 2 3 1 3 5]; 

%       [best amount] = KNAPSACK(weights, values, 7) 

% 

%       best = 

% 

%           13 

% 

% 

%       amount = 

% 

%            0     0     1     1     0     1     1 

% 

  

function [best amount] = knapsack(weights, values, W) 

    if ~all(is_positive_integer(weights)) || ... 

       ~is_positive_integer(W) 

        error('Weights must be positive integers'); 

    end 

    %We work in one dimension 

    [M N] = size(weights); 

    weights = weights(:); 

    values = values(:); 

    if numel(weights) ~= numel(values) 

        error('The size of weights must match the size of values'); 

    end 

    if numel(W) > 1 

        error('Only one constraint allowed'); 

    end   

     

    % Solve the problem 

     

    % Note that A would ideally be indexed from A(0..N,0..W) but MATLAB  

    % does not allow this. 

    A = zeros(length(weights)+1,W+1); 

    % A(j+1,Y+1) means the value of the best knapsack with capacity Y using 

    % the first j items. 

    for j = 1:length(weights) 

        for Y = 1:W 

            if weights(j) > Y 

                A(j+1,Y+1) = A(j,Y+1); 

            else 

                A(j+1,Y+1) = ... 

                    max( A(j,Y+1), values(j) + A(j,Y-weights(j)+1)); 

            end 

        end 

    end 

  

   best = A(end,end); 

    

   %Now backtrack  

   amount = zeros(length(weights),1); 

   a = best; 
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   j = length(weights);  

   Y = W; 

   while a > 0 

       while A(j+1,Y+1) == a 

           j = j - 1; 

       end 

       j = j + 1; %This item has to be in the knapsack 

       amount(j) = 1; 

       Y = Y - weights(j); 

       j = j - 1; 

       a = A(j+1,Y+1); 

   end 

  

     

    amount = reshape(amount,M,N); 

end 

  

function yn = is_positive_integer(X) 

    yn = X>0 & floor(X)==X; 

end 

 

 

 


