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Thesis Abstract 
 

Savannahs, which are defined as a heterogeneous mixture of herbaceous and woody plant 

components, occupy one fifth of the global land surface and is the largest biome in South Africa.  The 

woody vegetation structure of savannahs is particularly important as it influences the fire regime, 

nutrient cycling and the water cycle of these environments and provides fuelwood to sustain the 

local human populace.  Remote Sensing has been proven in numerous studies to be the preferred 

tool for quantifying and mapping this woody vegetation structure (in this study, defined as woody 

biomass, woody canopy volume and woody canopy cover metrics) over large areas, mainly due to its 

superior information gathering capabilities, wide spatial coverage and temporal repeatability.  Active 

remote sensing sensors such as Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar 

(SAR) are particularly useful in studying woody biomass and other canopy structural metrics, 

because of their capacity to image within-canopy properties.  Passive optical imagery acquired over 

multiple seasons can also provide tree phenological information which can be used to ascertain the 

best period for monitoring tree structure, i.e. when tree canopies has sufficient leaves while the 

grasses are dry.  The combined strength of these active (SAR and LiDAR) and passive (optical) sensor 

technologies, are yet to be applied to their full potential in the dynamic and heterogeneous 

savannah environment, with a special relevance in Southern African landscapes.   

 

This PhD study aimed to evaluate various methods for estimating and upscaling woody structural 

metrics of South African savannahs using integrated SAR and optical remote sensing datasets and 

LiDAR datasets as training and validation.  Before this aim could be tackled, two current global-scale 

remote sensing woody structural products (25m JAXA ALOS PALSAR Forest/Non-Forest or FNF and 

30m Landsat-based Vegetation Continuous Field or VCF) were evaluated, within the South African 

context, with the help of high resolution airborne LiDAR datasets.  These datasets were resampled to 

match the products’ criteria and definition used to depict forests.  It was found that the FNF product 

grossly under-represented the distribution of forests in savannah environments (20-80% CC ranges), 

due to the inadequate HV backscatter threshold chosen in its creation.  The FNF product also 

showed a limited ability in detecting closed forest cover class (90-100%) and Natural Forest and 

Scrub Forest tree structural classes.  The Landsat VCF product displayed strong CC underestimation 

with increasing variability and mean error from CC values of greater than 30%.  The moderate 

accuracies at the 10-20% CC range (and in the Open Woodland tree structural class) suggests that 

the VCF product could be potentially applicable in low CC environments such as grasslands and 

sparse savannahs but can also marginally detect closed canopy environments (90-100% CC range).  



18 
 

These results provide the justification for developing new, locally calibrated woody structural 

products for South Africa.  Next, the aim of this study was addressed, firstly, by developing 

methodologies for the estimation of key woody structural metrics (above ground biomass, woody 

canopy cover and woody canopy volume) for the Greater Southern Kruger National Park Region 

using multi-frequency SAR parameters (X-, C- and L-band backscatter and polarisations).  Secondly, 

the most suitable SAR frequency was then tested against and in combination with various Landsat-5 

TM optical features (textures, vegetation indices and multi-seasonal band reflectance) for improved 

regional modelling of woody canopy cover.  In both cases, In-situ field measurements of woody 

vegetation structure were “scaled-up” to landscape and regional scales by using LiDAR, SAR and/or 

optical sensor products to produce reliable maps of woody structural metrics.  A Random Forest 

modelling approach was predominantly used to meet the modelling challenges in this study and the 

LiDAR datasets were used for model calibration and validation.   

 

For the multi-frequency SAR analysis, it was concluded that the L-band SAR frequency was more 

effective in the modelling of the CC (R2 of 0.77), TCV (R2 of 0.79) and AGB (R2 of 0.78) metrics in 

Southern African savannahs than the shorter wavelengths (X- and C-band) both as individual and 

combined (X+C-band) datasets.  The addition of the shortest wavelengths also did not assist in the 

overall reduction of prediction error across sparse and dense vegetation conditions.  Although the 

integration of all three frequencies (X+C+L-band) yielded the best overall results for all three metrics 

(R2=0.83 for CC and AGB and R2=0.85 for TCV), the improvements were noticeable but marginal in 

comparison to the L-band alone.  The results, thus, do not warrant the acquisition of all three SAR 

frequency datasets for tree structure monitoring in this environment.  For the integrated SAR and 

optical dataset analysis, results showed that Landsat-5 imagery acquired in the summer and autumn 

seasons yielded the highest single season modelling accuracies, depending on the year but the 

combination of multi-seasonal images yielded higher accuracies (R2 between ~0.6-0.7).  The 

derivation of spectral vegetation indices and image textures and their combinations with optical 

reflectance bands provided minimal improvement with no optical-only product combination yielding 

accuracies greater than winter SAR L-band backscatter alone (R2 of ~0.8).  However, there was 

significant, yet modest, improvement (R2 of ~0.08, ~1.9% of RMSE and ~7.5% of SEP) in accuracy 

when 2010 multi-seasonal optical reflectance bands were combined with the L-band backscatter 

variables.  These results showed that future monitoring of woody cover, in Southern African 

savannahs, will require priority access to L-band SAR imagery.  Finally, in order to move towards 

upscaling woody canopy cover to the national scale, guidelines on the optimal quantity of field plots 

and LiDAR coverages, required for model training, were proposed for the country of South Africa.  
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The results have shown that the Savannah-only training dataset yielded high accuracies across 

Grasslands, moderate accuracies across Thickets but poorer accuracies in the Indigenous Forests and 

Fynbos biomes.  Sampling the training data across all available biomes yielded higher accuracies.  

From the LiDAR-simulated field plot analysis, it was concluded that a minimum of 500, 1ha field plots 

would be sufficient for effective modelling of CC at the country-wide scale.  Additional field plots, 

beyond this number (500) would improve the overall accuracies only slightly, but incurred significant 

increases in sampling efforts and costs.  The most frugal LiDAR acquisition strategy was found to 

acquire only four separate 5000ha LiDAR acquisitions, distributed across the five vegetated biomes. 

The study found that much less LiDAR data were required to train the models than originally 

expected, provided that the acquisitions were sufficiently diverse in CC and vegetation type and 

could also be cheaper to acquire than collecting 500 1ha field plots.  Following the lessons learnt 

from the various chapter results, a new and more accurate woody canopy cover map of South Africa 

was introduced which served as a first step towards the establishment of an operational monitoring 

system for the woody component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

Chapter 1: Introduction and literature review 
 

This PhD study aims to evaluate various methods for estimating and upscaling vegetation woody 

structural metrics of South African savannahs and forests by using a combination of SAR and optical 

remote sensing.  This study feeds into the long term goal of developing a scientific foundation for 

the national mapping of the woody vegetation structure of South African savannahs and forests as 

only a limited knowledge base exists with no reliable, continuous and up-to-date geospatial data 

products being currently available (DAFF, 2015; Skowno et al., 2016).  With the increase of tree 

cover at a rate of 5-6% per decade and the added threat of bush encroachment encroaching upon 

approximately 10-20 million hectares of land and alien invasive plants spreading at a rate of 

between 5 and 10% per year in South Africa, the creation of such map products is crucial (O’Connor 

et al., 2014; van Wilgen et al., 2012).  In this chapter, Savannahs and the importance of its woody 

component in ecosystem processes and their monitoring will be introduced.  The woody component 

will be broken down into woody structural metrics – woody biomass, woody canopy volume and 

woody canopy cover – for purposes of quantification.  Methods which utilise remote sensing and the 

role of multi-sensor data integration will be reviewed as a primary means of monitoring and 

measuring these various woody structural metrics and compared to traditional field-based 

measurements.  Finally the main research aim, objectives and specific research questions, which will 

be addressed in the subsequent analytical chapters, will be introduced.  In this thesis, in order to 

eliminate any potential confusion between the terms savannahs and forests, these terms will be 

used without separation except when mentioned at the biome level.  The reason for this, according 

to the FAO definition of forests (elaborated in Chapter 2), most savannahs systems can be 

potentially classified as forests but not all forests can be savannahs (e.g. Natural forests). 

 

1.1 Savannahs and the importance of its woody component in ecosystem 

and monitoring processes 
 

Savannah woodlands cover half of the African continent and occupy one fifth of the global land 

surface (Scholes and Walker, 1993).  Within the context of South Africa, the Savannah biome is the 

largest and makes up 35% of the country (Van Wilgen, 2009).  Savannahs are broadly composed of 

herbaceous and woody components which are in a constant state of flux (Meyer et al., 2007).  In this 

biome, total woody canopy cover values can range from dispersed trees in open-grasslands (~5%) to 

near-closed canopy woodlands (~60%) and more than 80% in riparian zones (Venter et al., 2003).  

Vegetation height can range between 1 and 20 metres (Low and Rebelo, 1996) and also possess an 
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above ground biomass range of less than 60 tonnes per hectare (Scholes and Walker, 1993).  The 

Savannah biome contains six bioregions (the Central Bushveld, Mopane, Lowveld, Sub-Escarpment, 

Eastern Kalahari Bushveld and the Kalahari Duneveld bioregions) which vary according to their 

geographical locations, geology and soil types and dominant vegetation species (Rutherford et al., 

2006).  Savannahs, additionally, consist of Clay Thorn Bushveld, Mixed Bushveld, Sweet and Sour 

Lowveld Bushveld vegetation types (Mucina and Rutherford, 2006).  Seasonally, savannahs 

experience phenological fluctuations in both herbaceous and woody components which influence 

their associated distribution in the landscape.  In summer, both tree leaves and grasses are green 

while in autumn, grasses are dry with trees remaining green but beginning to lose leaves.  In winter, 

most trees have lost leaves and grasses are dry while in spring, grasses are fairly dry while the trees 

first undergo a green flush of leaves (Archibald and Scholes, 2007).  Consequently, savannahs are 

seen as highly complex in both vegetation structure and composition and are highly heterogeneous 

ecosystems. 

 

Water availability and disturbance factors, such as fire and herbivory, mainly control the balance 

between the herbaceous and woody components in savannahs (Baudena et al., 2015; Sankaran et 

al., 2008).  The distribution of the woody component, in savannahs, is constrained in areas which 

receive a mean annual precipitation of less than 650mm (Sankaran et al., 2005) and under the driest 

conditions (<200mm), savannahs do not occur as the herbaceous component outcompete the tree 

saplings of the woody component (Baudena et al., 2015; Sankaran et al., 2004).  As precipitation 

increases, however, the woody component can outcompete the grassy component with deeper and 

more established root systems than the herbaceous component (Jose and Montes, 1997).  Above 

650mm of mean annual precipitation the woody canopy has a cover above 80% unless disturbance 

factors are present.  Fire is a driver that regulates the tree-grass balance in savannahs by preventing 

savannahs from becoming forested woodlands (Jose and Montes, 1997).  Fire can promote the 

growth of the herbaceous layer by eliminating the woody component (including tree seedling 

recruitment) and also due to the quicker recovery ability displayed by the herbaceous layer 

(Baudena et al., 2015; Hanan et al., 2008).  On the other hand, excessive herbivory of the 

herbaceous layer can promote increased growth of the woody component via bush encroachment 

(Ward, 2005; Wigley et al., 2009).  This study will solely focus on the woody component which has a 

considerable impact on both natural and anthropogenic processes. 
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The savannah woody component impacts the fire regime, biomass production, nutrient cycling and 

the water cycle of these environments (Sankaran et al., 2008).  From an anthropogenic point of view, 

the woody component provides numerous essential ecosystem services such as fuelwood (mostly 

firewood and self-produced charcoal derivatives), medicinal products, construction timber and 

edible fruits (Shackleton et al., 2007), which sustain the needs of the large rural populace in sub-

Saharan Africa and regions of South Africa (Twine, 2005; Wessels et al., 2013, 2011).  In South Africa, 

approximately 800 000 people of the rural populace heavily rely on this woody component as a 

source of income through the craft industry and as well as through the small scale trading of forest 

products (DAFF, 2015).  Overall, this savannah woody component contributes approximately R17 

billion to South Africa’s annual Gross Domestic Product (GDP) (DAFF, 2015).  Conversely, the 

densification of the savannah woody component, or bush encroachment, can also severely 

compromise the availability of grazing resources, that are essential to livestock populations and 

related human livelihoods (O’Connor et al., 2014; Wigley et al., 2009).  Bush encroachment adversely 

affects agricultural productivity and biodiversity (e.g. loss of palatable grass species (Angassa, 2005)) 

of approximately 10-20 million hectares of South Africa (Ward, 2005).  From an economic 

standpoint, neighbouring countries like Namibia, which rely heavily on livestock farming, have 

registered an annual loss in income of more than N$700 million due to bush encroachment with 

approximately 12 million hectares of land already being severely encroached (De Klerk, 2004).   

Factors such as humans (via wood harvesting activities), African elephants and fire (less so than 

elephants and humans), in communal rangelands and protected areas, have also been found to alter 

the woody component by removing large trees which subsequently promotes an increase in shrub 

cover or encroachment due to reduced tree seedling survival rates caused by these factors (Asner 

and Levick, 2012; Asner et al., 2016; Mograbi et al., 2016).  

 

Within the context of climate change, the sequestration of carbon by growing vegetation is 

understood as a significant mechanism for the removal of CO2 from the atmosphere (Viergever et al., 

2008b).  With a mean net primary productivity of 7.2 tonnes Carbon per hectare per year, savannahs 

account for approximately 40% of the global carbon store (Collins et al., 2009; Grace et al., 2006).  

Understanding how carbon is stored as carbon sinks in vegetative biomass and quantifying this 

standing biomass is of paramount importance to understanding of the global carbon cycle.  

Initiatives such as REDD (Reduced Emissions from Deforestation and Degradation) and the Bonn 

Challenge provide incentives to developing countries by linking forest conservation to market-

related monetary values of carbon stock.  Adverse anthropogenic activities such as deforestation, 

from unsustainable harvesting, and the burning of biomass can turn carbon sinks into carbon 
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emission sources (Viergever et al., 2008b).  These activities are especially prevalent in developing 

regions around the world such as the savannah woodlands of South America and Southern Africa.  

Conversely, with the increase in carbon dioxide (CO2) in the atmosphere over the past decade, 

vegetation growth in grasslands and savannahs has increased which trees are growing at a faster 

rate while utilising less resources to grow (Bond and Midgley, 2012; Stevens et al., 2015).  As a 

result, increases in wooded savannahs, in terms of higher biomass and woody plant species 

presence, are predicted in the future according to the current climate condition trajectory (Higgins 

and Scheiter, 2012; Stevens et al., 2015).  Given the importance of the woody component in global 

savannahs and the significant changes it undergoes on short and long-term time scales, it is essential 

to monitor the woody component effectively through time and space.   

 

1.2 The current status of monitoring the woody component in South Africa 
 

Despite the environmental and anthropogenic importance of woody vegetation, particularly in 

savannahs, there is currently no monitoring programme available at the national level for South 

Africa to produce reliable and up-to-date products of the distribution and amount of the woody 

component (DAFF, 2015).  This current inability to monitor the woody component has important 

legal implications as the South African government has a national requirement to report on the 

status of forests on a three year basis (Willis, 2002).  The government also have additional legal 

obligations as signatories to various international treaties such as the Kyoto Protocol, United Nations 

Convention to Combat Desertification, United Nations Forum on Forests and the Food and 

Agriculture Organisation Forest Resource Assessment to map and monitor national carbon stocks 

(DAFF, 2015; DEA, 2010; Main et al., 2016).  Consequently, insufficient spatial and quantitative 

information on the extent, the amount and possible changes in the South African woody 

component, especially in savannahs, has prevented management from sustainably managing, 

monitoring and utilising this woody resource.  At the regional scale, various governmental initiatives 

such as Working for Water have been introduced in 1995 to monitor this woody component by 

reducing the density of established invasive alien plants (IAPs) via mechanical and chemical control 

especially along vital watershed catchments where IAPs restrict and limit water flow (Buch and 

Dixon, 2009; Richardson and Van Wilgen, 2004).  Even after extensive clearing efforts and financial 

investment (approximately R1.8 billion in 2015), spreading rates are estimated to still be between 5 

and 10% per year (van Wilgen et al., 2012).  Similar challenges are being faced by the Working for 

Land project, established in 1997, to curtail bush encroachment via limited and small scale means 

such invasive shrub removal, use of herbicides and the establishment of fire breaks.  Ad-hoc and 
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sporadic studies, of variable temporal and spatial extents (mostly localised), have shown the rate of 

woody cover change to be between -0.131 and 1.275% per annum in Southern Africa with the 

majority reporting a net increase as a result of bush encroachment (O’Connor et al., 2014; Skowno 

et al., 2016).  Across a variety of land use and management and rainfall gradients, only conservation 

areas with elephants seem not to be subjected to bush thickening.  The exact spatial extent of such 

spread from both IAPs and bush encroachment is also currently unknown.  From the perspective of 

global initiatives such as REDD+ and the Bonn Challenge, the identification of large, contiguous areas 

of degraded and fragment land is crucial before various forest restoration efforts can be made.   

   

In order to take the necessary steps to create a national monitoring programme of the woody 

component, various challenges still currently remain unaddressed in the scientific literature.  These 

challenges include determining which remote sensing datasets are most appropriate for mapping 

the woody component across Southern Africa, testing for the most effective modelling approaches 

to achieve the best possible accuracies and, finally, determining the optimal amount of training and 

validation data required to achieve the development of such a monitoring programme.  In the 

absence of such a monitoring program, global forest products, derived from global modelled 

datasets, have been drawn upon, often erroneously.  These global forest products are elaborated 

upon in section 1.4.3. 

 

1.3 Woody structural metrics 
 

The woody component can be assessed via a variety of variables such as species composition, 

physiology (i.e. stress and productivity), phenology and structure.  The structural variables of the 

woody component will be the focus of this study.  The following main quantifiable variables were 

chosen as representative measurements or metrics which comprise of the savannah woody 

component: biomass, woody canopy volume and cover.  These variables are by no means exhaustive 

but are capable of providing both two dimensional and three dimensional metrics of the woody 

component.  Each of these woody component variables will be separately explained within the 

context of their definition, ecological importance and techniques used for measurement. 

 

1.3.1 Woody biomass 
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Biomass is defined as the mass of live or dead organic matter and is usually expressed in mass per 

unit area (Bombelli et al., 2009; Brown, 1997).  The general term ‘biomass’ is made up of above-

ground biomass (AGB), below-ground biomass (BGB) and dead mass and litter (Ghasemi et al., 2011; 

Lu, 2006).  AGB is generally recognised as the main contributor of the total biomass and will be the 

focus of this study as BGB cannot be studied with any other means beside labour and time intensive 

in-situ sampling.  In heterogeneous environments such as savannahs, AGB estimation is particularly 

challenging because of the complex stand structure as a result of the abundant species diversity of 

the vegetation (Lu, 2006).  There are various methods for estimating AGB which varies depending on 

the spatial scale at which these estimates are predicted.  The first method is an in-situ, destructive 

but direct biomass measurement which involves the manual harvesting of plants, drying them and 

then weighing the biomass.  This is the most accurate and direct method, however it is extremely 

intensive in both labour and time and is usually limited within a small unit area such as at a single 

tree or plot level (Bombelli et al., 2009; Lu, 2006).  The second is an in-situ, non-destructive 

measurement which does not involve the harvesting of plants but requires the collection of plant 

biometric measurements (e.g. height, diameter-at-breast height or DBH etc.) for input into 

allometric equations.  These allometric equations are mathematical functions that relate tree dry 

mass to one or more tree dimensions, such as diameter or height, and can be used to extrapolate 

biomass to the unit ground area (Bombelli et al., 2009; Brown, 1997; Colgan et al., 2013; Nickless et 

al., 2011; Sawadogo et al., 2010).  The final method entails the inference and mapping of regional 

level biomass from remote sensing data and related models.  This particular woody structural 

variable is proven to be vital for governance in light of the REDD+ initiatives as it serves as a direct 

indicator of carbon (Global Forest Observations Initiative, 2016) and is also important for a number 

of applications such the sustainable assessment of fuelwood stocks in communal rangelands 

(Wessels et al., 2013) or the assessment of biomass resources for bioenergy projects (GOFC-GOLD, 

2017). 

 

1.3.2 Woody canopy volume 

 

Woody canopy volume, in its simplest form, can be derived from a simple product of canopy height 

and canopy cover which would indicate the cylindrical volume of vegetation.  Other definitions of 

volume can be linked to various applications such as the forestry industry which relies on estimating 

stem volume or bole volume which represents the volume of the tree stems per unit area, including 

bark but excluding the branches and stump (Santoro et al., 2011).  Woody canopy volume, usually 

derived from volume-based allometric equations using DBH and sometimes height measurements 
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(Abbot et al., 1997) at the in-situ level, can also be measured using remote sensing technologies.  

The one of the methodologies of deriving this woody structural parameter will be covered in greater 

detail in chapter 3.  This variable serves as a valuable proxy of biomass density and distribution 

especially when biomass measurements are not possible due to the lack of available site specific 

allometry, for instance.  It also provides the means of investigating in a synthetic indicator both 

woody cover and height variables which are highly variable across the savannah landscape.  Apart 

from its importance in the forestry industry for wood volume yields and derived woody products 

(Foroughbakhch et al., 2012), higher tree volumes are associated with a wider ecological niche and 

correlates positively with both economic biodiversity value (EBV) and biodiversity indices (Hashemi, 

2011; Merganic et al., 2013). 

 

1.3.3 Woody canopy cover 

 

Woody canopy cover is a simple and widely used structural metric which define the area vertically 

projected on a horizontal plane by woody plant canopies (Jennings et al., 1999).  Canopy cover is 

thus a two dimensional structural metric which indicates the spatial heterogeneity and possible 

fragmentation in the ecological landscape.  When combined with canopy height, it can provide an 

informative indicator of volume and serve as an indirect proxy for biomass (Colgan et al., 2012).  At 

the in-situ level, canopy cover can be measured with the use of various sampling strategies such as 

the vertical densitometer technique (Ko et al., 2009; Stumpf, 1993) which uses a point intercept 

sampling approach.  The point intercept method is a small angle approach but a large angle 

approach called the “morphing” approach (Williams et al., 2003) has also been utilised.  This 

approach morphs data from a circular fixed-area plot to a square one and then uses a torus edge 

correction technique to model the crowns of tree boles which fall outside a fixed plot but have their 

canopies partially covering portions of the plot (Williams et al., 2003).  At the landscape scale, 

however, the canopy cover variable is adequately measured by remote sensing datasets.  Measuring 

canopy cover in both levels will be elaborated upon in greater detail in chapter 3. 

   

1.4 Remote sensing of woody structure 
 

Remote Sensing has been proven in numerous studies to be the preferred tool for the quantification 

and mapping of this woody component mainly due to its superior information gathering capabilities, 

wide spatial coverage and revisit capacity.  In contrast to the limited spatial scope of ground based 
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techniques, remote sensing also has the ability to sense the high spatio-temporal variability of 

woody height, cover and biomass, as well as tree species diversity and plant phenological status – a 

defining but challenging set of characteristics typical of South African savannahs (Archibald and 

Scholes, 2007; Cho et al., 2012b; Mills et al., 2006).  Additionally, remote sensing is more cost-

effective, repeatable and most importantly, capable of effectively predicting environmental variables 

over large geographical areas.  When predicting regional biomass and other woody structural 

parameters using remote sensing data, electromagnetic radiation (e.g. visible, infrared or 

microwave) interact at different spatial scales with the  woody component via direct (e.g. sensed 

responses such as reflectance) or indirect (e.g. remote sensing derived products such as leaf area 

index or LAI) means (Bombelli et al., 2009; Lu, 2006).  This is usually achieved with the use of models 

which can incorporate multi-scale (from in-situ field measurements to regional remote sensing 

derived parameters) and multi-sensor type (passive and active sensor) data in the analysis.  It is 

important to note however, that the more open African savannah environments are relatively 

understudied in the field of remote sensing in comparison to other environment types such as dense 

forested environments (e.g. tropical and temperate forests) and other biomes (Gwenzi and Lefsky, 

2014; Gwenzi, 2017).  Though limited in the number of available studies, a variety of passive and 

active remote sensing sensor technologies have been employed to assess the savannah woody 

component at various spatial scales: Light Detection and Ranging (LiDAR) (Fisher et al., 2014; 

Mograbi et al., 2015), Synthetic Aperture Radar (SAR) (Mathieu et al., 2013; Mitchard et al., 2012; 

Ryan et al., 2012), optical and integrated sensor platforms (e.g. Carnegie Airborne Observatory or 

CAO system which integrates both hyperspectral and LiDAR sensors on the same platform, (Asner et 

al., 2007)). 

 

1.4.1 Passive remote sensing of woody structure 

 

AGB and other woody structural parameters have been successfully mapped using optical data from 

fine to coarse spatial scales (Boggs, 2010; Castillo-Santiago et al., 2010; Nichol and Sarker, 2011).  

This is made possible as forest structural characteristics (such as tree height, crown diameter etc.) 

can be measured from stereoscopic measurements, spectral and texture orientated modelling 

techniques (Lu, 2006).  In terms of the electromagnetic spectrum, the red edge region has been 

proven to be related to woody structure, health, and leaf and canopy biophysical factors (Cho et al., 

2012a, 2008; Delegido et al., 2011) and also played a role in estimating fresh and dry grass biomass 

(Cho et al., 2006).  Image texture is defined as a function of the local variance in an image which is 

related to the spatial resolution and the size of target scene objects (e.g. tree canopies) (Nichol and 
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Sarker, 2011; Wood et al., 2012).  For example, trees occurring over a bare soil background would 

increase the variance through sunlit and shaded pixels thus creating image texture.  The major 

drawback of optical data, however, is the influence of high spectral variation and shadows at fine 

resolutions, resulting from canopy and topographic effects, and the issue of sensor signal saturation 

(e.g. MODIS sensor data) and mixed pixels, at the medium and coarser resolutions, on AGB model 

development and associated accuracies (Lu, 2006).  Clouds and haze also detrimentally obscure 

optical data which, in African savannahs, are prevalent in summer (due to the rainy season) and 

winter (due to dry season veld fires).  Another challenge is the effects of phenology on optical 

imagery in savannah environments which undergo distinct phenological seasonal changes during 

which the green fractional cover of grasses and woody plants varies considerably (Archibald and 

Scholes, 2007).  These phenological seasonal changes could introduce noise especially during the 

wet or growing season when both woody plants and grasses are green.  Thus, identifying the time 

period during the annual vegetation cycle at which a maximum contrast is achieved between green 

tree canopy and dry grass is important (Zeidler et al., 2012).  These phenological changes also, 

however, experience noticeable inter-annual variability especially during years which experience 

periods of severe drought or high rainfall.     

 

1.4.2 Active remote sensing of woody structure 

 

Active remote sensing sensors such as LiDAR and SAR are particularly useful in studying woody 

biomass and other canopy related structural metrics, because of their capacity to image within-

canopy properties.  Airborne LiDAR systems provide high resolution geo-located measurements of 

the tree’s vertical structure (upper and lower storey) and the ground elevations beneath dense 

canopies while SAR systems provide backscatter measurements which are sensitive to forest spatial 

structure and standing woody biomass due to its sensitivity to canopy density and geometry (Hall et 

al., 2011; Mitchard et al., 2011; Sun et al., 2011).  Both sensors have an ability to penetrate 

vegetation canopies with SAR being unrestricted by challenging weather conditions such as dense 

cloud cover which would inhibit LiDAR and optical data acquisitions (Mitchard et al., 2011). SAR 

systems also operate at night, and altogether with all-weather capacity they can provide denser 

systematic “guaranteed” time series. However, unlike LiDAR sensors, the backscatter signal of SAR 

sensors can saturate (i.e. a reduction in the net backscatter due to the extinction of the signal – 

(Collins et al., 2009)) depending on factors mainly related to the frequency and polarisation of the 

sensor being used and density of vegetation structures being sensed.  It was found that under these 

conditions of signal saturation, SAR backscatter correlated negatively with biomass as a result of 
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signal attenuation from denser forest canopies (Mermoz et al., 2014).  This would result in a higher 

than expected under-estimation of biomass past the point of saturation.  Given that South African 

savannahs possess a low to medium above ground biomass range of less than 60 tonnes per hectare 

(Mathieu et al., 2013; Scholes and Walker, 1993), it expected that SAR signal saturation would not be 

an issue in this study.  Another disadvantage of SAR, however, is that due to the side-looking nature 

of these sensors SAR backscatter is adversely affected by steep slope and topography in which the 

creation of artefacts such as foreshortening, shadowing and layover effects and backscatter 

calibration error are possible (Otukei et al., 2015; Van Zyl, 1992; van Zyl et al., 1993).  These artefacts 

and calibration error would complicate the analysis of vegetation structure over such terrain.  

 

Although the LiDAR technology is well established and the most suited remote sensing technology 

for mapping structure with high accuracies, airborne-based LiDAR systems are not well-suited to 

regional scale mapping as data acquisition is constrained by operational restrictions such as 

expensive flight campaigns, and access to sensors and data is dependent on the country.  (Popescu 

et al., 2011) and (Lefsky et al., 1999), however, did successfully make use of canopy height metrics 

derived from satellite and small footprint airborne LiDAR to estimate forest AGB.   Few studies have 

also utilised various LiDAR derived canopy metrics (e.g. plot-level and tree-level height and canopy 

cover metrics) to estimate AGB in the South African savannah environment (Colgan et al., 2013, 

2012).  Additionally, space-borne LiDAR missions (e.g. MOLI – multi-footprint observation LiDAR and 

Imager – to be launched by JAXA in late 2019 and GEDI – Global Ecosystem Dynamics Investigation 

LiDAR – to be installed by NASA on the International Space Station in late 2018) are coarse scale 

sensors with large gaps between samples which are inadequate for producing consistent maps 

across the landscape (the latter is also only a two year mission).  Due to its precision and accuracies 

over a limited coverage, airborne LiDAR data can be extremely useful in creating a large 

representative ground truth dataset, once validated with collected field data, for regional scale 

modelling using coarser datasets (Mathieu et al., 2013; Naidoo et al., 2015).  Compared to other high 

resolution optical imagery, however, airborne LiDAR,  is the most expensive with a cost of 

approximately 1-5 US$ per hectare depending on the total coverage, sensor specifications and 

location of deployment (Hummel et al., 2011; Kelly and Di Tommaso, 2015; Thompson et al., 2013; 

Wulder et al., 2008).  Wall-to-Wall, repeat acquisitions of an entire country, particular as large as 

South Africa (122.1 million ha), is currently not financially feasible, and thus there needs to be a 

trade-off between the area sampled with LiDAR and the total cost incurred (Ene et al., 2016; Wulder 

et al., 2008).  With this in mind, it is thus imperative to establish a much needed guideline for the 



30 
 

quantity and distribution of LiDAR acquisitions required for training and validation of models in a 

national woody component monitoring system.   

 

The concept of polarimetry, i.e. radiowave orientation, in SAR theory has played an important role in 

understanding ecosystem structure (Sagues et al., 2000).  Polarimetric SAR systems emit and receive 

waves potentially in HH, HV, VH and/or VV polarisations with H referring to a horizontal wave 

orientation and V referring to a vertical wave orientation.  This allows for a complete 

characterisation of the scattering properties of various ground targets which in turn, enables the 

extraction of greater structural information.  Some SAR systems offer only single polarimetry – one 

polarization (e.g. ERS-1), dual polarimetry – two polarizations (e.g. Sentinel-1), or full polarimetry 

(e.g. RADARSAT-2) when all four polarizations are available.  Additionally, when a system is fully 

polarimetric decomposition theorems (e.g. Freeman-Durden) can be applied to simulate and 

quantify dominant scattering mechanisms (volume, double bounce and single bounce) and relate 

these mechanisms to specific target properties such as volumetric scattering within tree canopies 

etc. (Touzi et al., 2004).  (Le Toan et al., 2011) mapped biomass at a global scale (from 70°N to 56°S 

at 100-200m spatial resolution) by utilising P-band frequency fully polarimetric (HV) SAR backscatter 

data, modelled against in-situ biomass measurements, and interferometric SAR techniques.  As an 

alternative to the modelling of SAR scattering and polarimetric variables, (Balzter et al., 2007) made 

use of polarimetric interferometric SAR (InSAR) techniques, in deciduous woodland, for the direct 

estimation of forest canopy height which allowed for the indirect prediction of AGB.  Polarimetric 

InSAR principles involve the polarimetric separation of scattering phase centres in order to estimate 

tree canopy height (Balzter et al., 2007).  Similar methods, involving X-band and C-band, have been 

explored in tropical savannah environments (Viergever et al., 2008a) but none have been attempted 

in South African savannahs with any reasonable success.  Finally, (Mathieu et al., 2013) tested fully 

polarimetric RADARSAT-2 (C-band) in a Southern African savannah to assess various woody 

structural metrics.  It was found that the HV band was the best single predictor over the other 

polarizations and that the polarimetric decomposition variables did not perform better than the 

simple intensity bands.  This work also suggested that dual polarimetry SAR sensors may be more 

than suitable for assessing vegetation structure in open savannahs.  Similar work conducted by 

(Urbazaev et al., 2015) with dual and fully polarimetric ALOS PALSAR (L-band) data also suggested 

the importance of co- and cross polarised backscatter channels (HH and HV) for woody cover 

assessment in South African savannahs, and confirmed the limited benefits of polarimetric 

decomposition for quantitative retrievals of forest parameters.  
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1.4.3 Global forest remote sensing products 

 

With the increased availability of systematic and frequent acquisitions of high resolution remote 

sensing datasets and the development of integrated large scale processing platforms, global scale 

forest products were able to emerge to map the woody component.  Well-known products include: 

high resolution (30m) global forest cover maps, derived from Landsat Data (Hansen et al., 2013); a 

30m global continuous fields tree cover product, derived from Landsat-based rescaling of MODIS 

data (Sexton et al., 2013); a 25m global forest/non-forest (FNF) classification product derived from 

ALOS PALSAR L-band SAR backscatter intensity datasets (Shimada et al., 2014).  These products were 

developed primarily as a means to highlight the extents of forest loss and gain at the global and 

possibly regional scales which can serve as a proxy for the impact on various ecosystem services such 

as biodiversity richness, carbon and nutrient storages and fluxes, water supply and exchange and 

also various climate implications (Hansen et al., 2013; Sexton et al., 2013).  These global forest cover 

products (e.g. the (Hansen et al., 2013) product and ALOS PALSAR FNF), however, have mainly been 

validated against reference data collected in dense, homogeneous equatorial forested areas of 

Africa and other countries rather than in heterogeneous savannah and forested types with variable 

canopy cover and height profiles.    As a result, most of these global forest products have yet to be 

accurately validated at the regional scale in South Africa.  Due to the lack of available South African 

forest products, created from local training and validation datasets, these global forest products are 

temporally serving the need to monitor the woody component but with unknown local accuracies.  

Assessing whether these products are suitable for the monitoring of the South African woody 

component is thus of utmost importance.    

 

1.5 Multi-sensor and multi-temporal remote sensing data integration 
 

Remote Sensing techniques and derived models have steadily moved from the reliance on a single 

sensor type (e.g. SAR or LiDAR alone) to multi-sensor integration approaches.  These data integration 

approaches amalgamate various sensors and derived features (e.g. optical-based texture, laser pulse 

return and microwave backscattering data), multi-temporal data (datasets acquired at different 

seasons), multi-frequency data (e.g. L- band and C-band SAR) and multi-polarised SAR data (HH, HV, 

VH and VV) in various modelled approaches.  The frequency or wavelength of the SAR sensor can 

have a major influence on the structural features sensed in the ecosystem.   For example, when 

sensing vegetation, the signal of shorter SAR wavelengths (e.g. X-band and C-band) interact with the 

fine leaf and branch elements of the vegetation resulting in canopy level backscattering with very 



32 
 

little signal penetration.  The signal of longer SAR wavelengths (e.g. P-band and L-band), on the other 

hand, can penetrate deeper into the vegetation with backscatter resulting from signal interactions 

with larger vegetation elements such as major branches and trunks (Mitchard et al., 2009; Vollrath, 

2010).  Combining the properties of these different SAR frequencies in a multi-sensor approach can 

greatly enhance the sensing of the savannah woody component (Schmullius and Evans, 1997) which 

possesses a combination of fine and large woody elements within individual tree canopies and a 

heterogeneous distribution of large trees and smaller shrubs throughout the landscape.   

 

The change in climate (rainy or dry) and vegetation phenology (green or senescent) throughout the 

seasons of a year can also have a dramatic impact on the scattering and reflecting characteristics of 

multi-sensor remote sensing datasets.  Factors such as ground moisture and leaf-on and leaf-off 

vegetation conditions can either enhance or diminish SAR signal penetration and scattering and the 

reflectance of optical spectra (Global Forest Observations Initiative, 2016; Main et al., 2016; Naidoo 

et al., 2016; Urbazaev et al., 2015; Zeidler et al., 2012).  Understanding these seasonal influences on 

these datasets will shed some light on which temporal frame would be best for sensing the savannah 

woody component. 

 

(Sun et al., 2011) made use of LiDAR and SAR synergies for the mapping of forest biomass in which a 

comparable biomass map was generated using limited ground biomass data and SAR polarimetric 

and coherence variables derived from interferometric pairs.  The advantages of the integrated 

approach was best illustrated by (Lucas et al., 2008) which made use of integrated Compact Airborne 

Spectrographic Imager (CASI) hyperspectral and LiDAR data to retrieve and map forest AGB and tree 

component biomass at the individual tree or tree cluster level and then scale-up to plot or stand 

level.  This was made possible by utilising the optical CASI hyperspectral data as a means to 

delineate crowns and for species identification.  The component biomass for the individual 

delineated trees was then estimated using LiDAR derived height and diameter measurements which 

were used as inputs into the species-specific allometric equations (Lucas et al, 2008).  (Tsui et al., 

2012), on the other hand, made use of multi-frequency SAR data (C-band and L-band data) for 

improved biomass estimations in coniferous temperate forests of Canada.  (Collins et al., 2009) also 

made use of multi-frequency (P band, L band and C band data) fully polarimetric (HH, HV, VH, VV 

modes) SAR data to estimate AGB and carbon storage of Eucalypts in the open-forest savannahs of 

North Australia.  Despite the success achieved in these various studies via combining different SAR 

wavelengths (Mougin et al., 1999; Tsui et al., 2012), the combined strength of both shorter (e.g. X- 
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and C-band) and longer SAR frequency (e.g. L-band) sensor technologies, however, have yet to be 

assessed in the heterogeneous and complex Southern African savannah environment.   

 

Given the sensitivity of optical sensors to photosynthetically active vegetation and the sensitivity of 

SAR backscatter to vegetation structure, their possible integration may yield improved woody 

structure estimates due to complementary information which neither sensor type could provide 

alone.  The integration of optical products has also proven useful in assisting the determination of 

shrub-based and coppicing tree cover (and possibly biomass) which is not easily identified in the 

LiDAR and SAR data products (Ghasemi et al., 2011).  For example, the work by (Moghaddam et al., 

2002) illustrated improve estimation of forest variables by the fusion of SAR (AIRSAR and TOPSAR) 

data and optical multispectral Landsat TM data which yielded higher modelled accuracies than the 

use of each dataset type alone.  Other studies in dense forested environments, savannahs and 

plantations also integrated these two sensor technologies and yielded favourable results (Laurin et 

al., 2013; Lucas et al., 2006b; Moghaddam et al., 2002).   None of these studies, however, have 

investigated the effects of vegetation phenology on optical imagery, especially in savannah 

environments with complex tree and grass phenological seasonal changes.  Integrating optical and 

SAR imagery of the most appropriate phenological window (i.e. maximum contrast between green 

tree canopies and dry grass) could improve the modelling of the woody component in South African 

savannahs.   

 

Despite the success achieved in these various studies, the combined strength of these active (SAR 

and LiDAR) and passive (optical) sensor technologies, however, have yet to be applied to a more 

heterogeneous and complex environment such as Southern African savannahs.  This is evident from 

gaps in the literature for savannah environments in South Africa.  The aim, objectives and specific 

research questions of the thesis will be detailed next. 

 

1.6 Study aim 
 

The overall aim of the thesis was to evaluate various methods of estimating and upscaling woody 

structural metrics of South African savannahs using integrated SAR and optical remote sensing 

datasets and LiDAR datasets as training and validation data.  

Study areas ranging from the Greater Kruger National Park region to the eastern half of South Africa 

were chosen as the focus in this thesis. 
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1.7 Study objectives and chapter breakdown 
 

The objectives of the thesis were:  

 

1) To comprehensively validate current global-scale remote sensing woody structural products, 

within South Africa, using high resolution airborne LiDAR datasets.  This task will serve as an 

important, quantitative benchmark for assessing the performance of these global products 

in South African forests and savannahs and thus providing the justification for the 

methodological development of new savannah-specific products in South Africa.  This 

objective will be addressed in Chapter 2.   

  

2) To develop and assess methodologies for the estimation of key woody structural metrics 

(biomass, woody canopy cover and woody canopy volume) for the Kruger National Park 

region using multi-frequency SAR parameters (backscatter and polarisations) and optical 

features derived from multiple remote sensing sensors.  For this objective, In-situ field 

measurements of woody vegetation structure and biomass are “scaled-up” to landscape and 

regional scales by using LiDAR, SAR and optical sensor data to produce maps of woody 

structural metrics.  As a prelude, various parametric and non-parametric modelling 

algorithms were tested in order to ascertain the best approach and these results are 

reported in detail in Appendix 3C.  Two separate analytical chapters addressed this current 

objective. Chapter 3 focused on the woody structure modelling and mapping using multi-

frequency SAR datasets (X-, C- and L-band). Chapter 4 investigated the benefits of combining 

optical data with L-band SAR datasets for estimating woody canopy (fractional) cover.   

 

3) To investigate the scaling up of the woody structural mapping approach (developed in 

objective 2) to national scale while considering the challenges of predicting woody 

vegetation structure across diverse environments (different biomes, vegetation types, 

rainfall gradients and variable topography) and the LiDAR data requirements, (e.g. how 

much? And where?), for successful model training and validation over the entire country.  

This is particularly challenging for a country where the woody component is also dominantly 

present (and biased) across the savannah biome.  The trade-off between the accuracy of 

model training and increasing LiDAR acquisition costs are considered.  Optimal, but 

representative sampling with airborne LIDAR across the diverse vegetation types of South 

Africa is a vital challenge to address when developing a national scale monitoring system.  
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This research objective (to be addressed in Chapter 5), together with the lessons learnt from 

previous chapters, will help shape the requirements and specifications of a national woody 

structure monitoring system.   

 

 

The final chapter, Chapter 6, includes a summary of the study’s conclusions, recommendations and 

the ways forward. 

 

1.8 Primary and secondary research questions  
 

Chapter 2 

 

 Research Question 2.0: How accurate are two global forest products, the 30m Landsat-

derived Vegetation Continuous Field (VCF) and the 25m JAXA ALOS PALSAR Forest/Non-

Forest (FNF) global products, when validated against high resolution airborne LiDAR datasets 

across South African forests and savannahs? 

- Research Question 2.1: Across which canopy cover ranges do the two products yield the 

highest and the lowest accuracies? 

- Research Question 2.2: Across which vegetation structural type (e.g. grassland, woodland 

and natural forest (Willis, 2002)) do the two products yield the highest and lowest 

accuracies? 

 

Chapter 3 

 

 Research Question 3.0: How do various SAR frequencies (X- or C- or L-band) perform in 

predicting woody canopy cover, woody canopy volume and above ground biomass in the 

Southern African savannahs of the Kruger National Park? 

- Research Question 3.1: Does combining SAR backscatter of different frequency (X+C or X+L 

or C+L band or X+C+L-band) improve the predictions of the various woody structural metrics 

over the single SAR frequencies and by how much? 

- Research Question 3.2: What does the examination of the patterns of error, from the 

different SAR frequency models, inform us on how the different SAR frequencies interact 

within South African savannah landscape? 
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Chapter 4 

 

 Research Question 4.0: Does the combination of SAR (ALOS PALSAR L-band) and multi-

seasonal optical (Landsat-5) remote sensing datasets improve woody canopy cover 

estimation in comparison to the individual datasets alone? 

- Research Question 4.1: Which season or seasons of Landsat-5 data is/are best for predicting 

woody canopy cover? 

- Research Question 4.2: How does the accuracy of woody canopy cover predictions compare 

when using single and multi-seasonal Landsat versus L-band dual-polarised SAR datasets? 

- Research Question 4.3: Does the integration of optical predictor parameters (e.g. textures, 

vegetation indices, and/or raw reflectance etc.) with L-band SAR data, improve the overall 

modelling accuracies? If so, how do these accuracies compare with the modelling results 

using only the SAR datasets? 

 

Chapter 5 

 

 Research Question 5.0: What is the optimal representative sampling of airborne LiDAR data 

and LiDAR simulated field plots, across Savannah-only and all main biomes (Savannah, 

Grassland, Fynbos, Thicket and Indigenous Forest) for the training of models predicting 

woody canopy cover at the country level using ALOS PALSAR L-band SAR data?  Secondary 

objectives also include the investigation of the inclusion of regional environmental variables 

(i.e. digital elevation-based and rainfall variables) for potential model improvements. 

- Research Question 5.1: Does the inclusion of regional ancillary variables such as elevation, 

slope, and aspect and rainfall gradient improve the accuracy of modelling woody canopy 

cover when compared to using only the L-band HH and HV backscatter? 

- Research Question 5.2: What is the impact on model accuracy of having LiDAR data that are 

limited to a single biome, i.e. the Savannah? More specifically, is LiDAR data which is limited 

to the Savannah biome (as specified in (Rutherford et al., 2006)) sufficient for training and 

validation for L-band SAR-based modelling and mapping of woody canopy cover for the 

whole country?  Also, how do these results of using LiDAR from the Savannah only compare 

to those where diverse LiDAR datasets from Fynbos, Thicket, Grassland and Indigenous 

Forest biomes are used? 
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- Research Question 5.3: What is the optimal amount of field plots, as simulated from LiDAR 

datasets, required for modelling and mapping of woody canopy cover with L-band SAR 

across the country and in Savannahs only?  The ‘optimal amount’, in this case, refers to the 

most favourable trade-off between modelling accuracies and sampling effort (i.e. number of 

field plots). 

- Research Question 5.4: What is the optimal amount, in terms of area (hectares) and number 

of acquisitions of LiDAR data required for optimal L-band SAR-based modelling and mapping 

of woody canopy cover within (i) the Savannah and (ii) country-wide, in comparison with the 

accuracies achieved using an optimal number of field plots?  The ‘optimal amount’, in this 

case, refers the most favourable trade-off between modelling accuracies and sampling effort 

(i.e. the number, size and total coverage of LiDAR acquisitions while taking into account the 

cost effectiveness of the various LiDAR acquisition specifications). 
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Chapter 2: Assessment of the Performance of Global Forest Cover 

Products in South Africa – Establishing the benchmark 

 

2.1 Abstract 
 

There is a fervent debate on whether global forests are in the state of growth or loss.  Global scale 

forest cover products have provided a means to measure where forest losses and forest gains are 

occurring.  Most of these global forest cover products, however, have yet to be accurately validated 

at the local to regional scale especially within the savannah biome.  This study aimed to assess the 

performance of two 2010 global forest cover products, the 30m Landsat derived Vegetation 

Continuous Field (VCF) and the 25m JAXA ALOS PALSAR Forest/Non-Forest (FNF) global products, 

against an extensive collection of airborne LiDAR data acquired during 2009 and 2013 across South 

Africa (SA), with special focus on detecting forest (as per the products’ forest definition) in 

savannahs.  The overall strategy was to ‘resample’ the LiDAR data to match the criteria used to 

create the VCF and FNF products.  It was found that the FNF product grossly under-represented the 

distribution of forests in savannah environments (20-80% CC ranges), due to the inadequate HV 

backscatter threshold chosen in its creation.  The FNF product also showed a limited ability in 

detecting closed forest cover class (90-100%) and Natural Forest and Scrub Forest tree structural 

classes.  The Landsat VCF product displayed strong CC underestimation with increasing variability 

and mean error from CC values of greater than 30%.  The moderate accuracies at the 10-20% CC 

range (and in the Open Woodland tree structural class) suggest that the VCF product could be 

potentially applicable in low CC environments such as grasslands and sparse savannahs. Limited 

detection accuracies (~30%) by the VCF, however, were also observed in closed canopy 

environments (90-100% CC range).  Despite the lack of a completely balanced LiDAR acquisition 

coverage across the forested biomes of SA (most LiDAR acquisitions were biased to the Savannah 

biome with limited coverage over dense forests); these results give some insight into the inherent 

flaws of the global products especially over the savannah biome. These results provide the 

justification for developing new, locally calibrated woody structural products for South Africa.  

Keywords: Global forest cover, Landsat VCF, ALOS PALSAR FNF, LiDAR, validation   

  

 



39 
 

2.2 Introduction 
 

South African forests and savannahs are crucial ecosystems which provide a plethora of goods and 

services (food and energy) which benefit both natural and anthropogenic forces (Chidumayo and 

Gumbo, 2010; Shackleton and Shackleton, 2004; Twine, 2005; Wessels et al., 2011). There is a strong 

debate on whether these forests and savannahs are in the state of growth or loss.  This state of flux 

is documented particularly in heterogeneous savannah environments, in which the woody resources 

are harvested for food or selectively logged to satisfy energy securities, by the local populaces, thus 

creating a perception of forest decline (Pereira et al., 2011; Ryan et al., 2012; Wessels et al., 2013).  

On the other hand, there is the issue of bush encroachment, which threatens the livestock grazing 

potential of Southern African rangelands (O’Connor et al., 2014; Ward, 2005; Wigley et al., 2009), or 

the occurrence of forest regeneration (Chazdon, 2008), either assisted or unassisted by humans, 

which thus creates a perception of forest growth.  The emergence of global scale forest cover 

products have provided a means to confirm and measure where forest loss and forest gain is 

occurring at a global scale (Hansen et al., 2013) but whether these products are accurate enough to 

monitor forests in the Southern African region is left to be investigated.  

 

The development of global scale forest cover products was made possible with the increasing 

availability of systematic and frequent acquisitions of high resolution remote sensing datasets 

(which are also ideal for regional monitoring efforts), and the development of integrated large scale 

processing platforms.  Well-known products include: high resolution (30m) global forest cover maps, 

derived from Landsat 7 ETM+ data (Hansen et al., 2013); a 30m global continuous fields tree cover 

product, derived from Landsat-based rescaling of MODIS data (Sexton et al., 2013); a 25m global 

forest/non-forest (FNF) classification product derived from ALOS PALSAR L-band Synthetic Aperture 

Radar backscatter intensity datasets (Shimada et al., 2014). These products were developed 

primarily as a means to highlight the extents of forest loss and gain at the global and possibly 

regional scales which can serve as a proxy for the impact on various ecosystem services such as 

biodiversity richness, carbon and nutrient storages and fluxes, water supply and exchange and also 

various climate implications (Hansen et al., 2013; Sexton et al., 2013).  Additionally, these global 

products play a major role in the greater scientific community as they contribute to global initiatives 

such as REDD+ (Reducing Emissions from Deforestation and forest Degradation) and greatly 

influence environmental management at the regional governance scale (Hansen et al., 2013; Sexton 

et al., 2013; Shimada et al., 2014).  It is believed that such satellite-based global forest cover and 
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change products have actually help establish various environmental policy initiatives such as the 

Kyoto Protocol, REDD+ and the Aichi Biodiversity Targets (Sexton et al., 2015).  Most of these global 

forest products, however, have yet to be accurately validated at the regional scale in South Africa, 

especially within the savannah biome.  The global forest cover products mentioned earlier (Hansen 

et al., 2013; Sexton et al., 2013; Shimada et al., 2014) have mainly been validated against reference 

data collected in dense, homogeneous equatorial forested areas of Africa and other countries rather 

than in heterogeneous savannah and forested types with variable canopy cover and height profiles.  

As a result, when generalised at the continental scale, validation accuracies of these products are 

reasonable with validation sites biased to the dense forested areas (e.g. Figure 13a in (Shimada et 

al., 2014); Figure 2 in (Sexton et al., 2013)).  (Kim et al., 2014) also confirmed that Landsat-based VCF 

global products have a relatively low certainty of forest and non-forest classification in semi-arid 

environments in which sparse and short trees persist such as the Miombo woodlands.  Also, 

surprisingly, the Global Forest Watch web portal which is based on the Landsat and MODIS VCF 

products (Hansen et al., 2013; Townshend et al., 2011) (http://www.globalforestwatch.org/) does 

not acknowledge the presence of forest in the South Africa savannah Lowveld and is also limited to 

targeting trees greater than 5m in height.   

 

What also compounds matters further, is that these products are derived according to different 

definitions of what constitutes a forest, with different definitions being introduced from various 

institutes and initiatives (e.g. United Nations Framework Convention on Climate Change, UNFCCC, 

versus Convention on Biological Diversity, CBD, versus Food and Agriculture Organization of the 

United Nations, FAO (Schoene et al., 2007)).  The Forest Resources Assessment (FRA) of the FAO, for 

example, defines forest as land spanning more than 0.5 hectares with trees higher than 5m or trees 

able to reach these thresholds in situ and a canopy cover of more than 10% (FAO, 2015) while the 

UNFCCC defines forests more flexibly as a minimum area of land of 0.05-1 ha with crown tree cover 

(or equivalent stocking level) of more than 10 – 30% (UNFCCC, 2001).  (Sexton et al., 2015) revealed 

that such an ambiguity in the definition of forests can potential result in a discrepancy of 

approximately 19.3X106 km2 in forest coverage (i.e. area of classified forest) at the global scale.  Such 

a discrepancy can adversely affect forest area calculations in regions that have overall less dense 

tree cover such as savannah and shrubland environments (Rocchio, 2015).  Since the savannah 

biome possess total woody fractional cover that can range from dispersed trees in open-grasslands 

(~5%) to near-closed canopy woodlands (~60%) and more than 80% in riparian zones (Venter et al., 

2003), it is expected that forests should be present in such a system regardless of the definition of 

http://www.globalforestwatch.org/
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forests implemented.  Regardless of the definition utilised in these global forest products, a flexible 

and accurate validation data source is needed for such validation efforts.  Light Detection and 

Ranging (LiDAR) is such a data source and is particularly well suited for woody structural 

measurements, because of its capacity to capture canopy geometry and structure (McGlinchy et al., 

2014; Popescu et al., 2011; Sun et al., 2011).  Additionally, in terms of the measurement of fractional 

tree cover, airborne LiDAR derived metrics have proven to be more accurate than field measured 

metrics derived from field laser, manual collection and hemi-spherical photography methods 

(Nickless et al., 2009).  This accuracy together with the large geographical coverage managed by 

airborne LiDAR sensors, thus results in the availability of a large validation source for remote sensing 

product validation studies.  

  

This study aimed to assess the performance of two 2010 global forest products, the 30m Landsat 

Vegetation Continuous Field (VCF) and the 25m JAXA ALOS PALSAR Forest/Non-Forest (FNF) global 

products, against an extensive collection of airborne LiDAR data collected over years 2009 and 2013 

in South Africa, which served as the ground truth.  These high resolution global forest products have 

yet to be assessed in South Africa - a country where no regionally derived forests products, from 

remote sensing data, are currently available despite being a national requirement for reporting on 

the state of the forests (Willis, 2002).  The global 30m tree cover product created by (Sexton et al., 

2013), however, was not assessed as the 2010 version of the product was not available.  The primary 

focus of the study would be the assessment of both products for the accurate detection of forests, 

as per the products’ forest definitions, in South African savannahs which are largely under-

represented or excluded by such global products.  Based on the validation results, and as a 

secondary objective, product error will be assessed over stratified canopy cover ranges and 

vegetation structural classes, (e.g. woodlands, natural forests and grasslands (Willis, 2002)), in order 

to ascertain the performance of these products according to vegetation type.  Suggestions, also, 

were put forward to help improve these global forest products for the structurally variable South 

African environment.  A variety of forest types (i.e. from savannah Lowveld vegetation to closed 

indigenous forests and plantations) were chosen in South Africa to cover the full expected range of 

canopy cover values and structure in the validation efforts.  This study will ascertain whether these 

global forest products are applicable to the South African region or whether new regional forest 

products will needed to be developed. 
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2.3 Study Area 
 

The eastern half of the country of South Africa, between latitudes 22° and 34° south and longitudes 

25° and 33° east, where forests are dominant, is under investigation for the task of global forest 

product validation.  Of approximately 120 million hectares in area, South Africa possesses a variety 

of biomes, topographic landscape features, climate and geological conditions.  South Africa consists 

of nine main biomes (Mucina and Rutherford, 2006), each possessing a characteristic suite of plant 

and animal species which vary in distribution and according to environmental conditions.  Of these 

biomes, forests are largely present in Savannah, Indian Ocean Coastal Belt (IOCB) and Forest biomes 

with the Savannah biome covering 35% of the South African land surface (Van Wilgen, 2009).  

Savannahs are characterised by a mixture of a grassy ground layer and a upper woody layer of plants 

which are in a constant state of flux depending on rainfall, fire and grazing pressures and occur 

mostly over the Lowveld and Kalahari regions of the country (Low and Rebelo, 1996).  As mentioned 

earlier, Savannahs are of great importance as the woody layer is harvested by the local populace for 

energy provision while the grassy ground layer supports cattle ranging and grazing (Low and Rebelo, 

1996; Ryan et al., 2012; Ward, 2005; Wessels et al., 2013).  This could lead to threats of 

overharvesting of trees, overgrazing of the grass and subsequent emergence of bush encroachment.  

Structurally, Savannahs possess total woody fractional cover that can range from dispersed trees in 

open-grasslands (~5%) to near-closed canopy woodlands (~60%) and more than 80% in riparian 

zones, a general height range of 1-20m and a total biomass mostly less than 100 tonnes per hectare 

(t/ha) (Low and Rebelo, 1996; Mathieu et al., 2013; Venter et al., 2003). The Forest biome (including 

indigenous forest and the IOCB) are less prolific (<1% of SA land surface), occurring in patches rarely 

greater than 1km2 in area and commonly occur along the South Coast, the Indian Ocean Coast and 

the Lowveld escarpment (Low and Rebelo, 1996).  Due to high rainfall (>725mm) in such areas, these 

forests are less affected by fire (except under very dry conditions) (Low and Rebelo, 1996) but are 

susceptible to illegal logging activities of valuable timber, ring-barking resulting from the illegal 

extraction of medicinal bark by surrounding communities and the invasion of alien species (e.g. 

Pinus spp.) (Shackleton and Shackleton, 2004).  Structurally, the vegetation are usually evergreen 

and multi-layered with high woody fractional cover (75-100%), high biomass (>100 t/ha) and tall 

heights (6-20m and greater) (Willis, 2002).  Apart from naturally occurring indigenous forests, forests 

are also represented by commercial plantations with distributions most prevalent on South Africa’s 

eastern escarpment and within the savannah, grassland and IOCB biomes (Scholes and Biggs, 2004).  

These commercial plantations support alien species cultivars for pole-wood and mulch production, 

for various commercial goods such as paper and furniture, and also for fruit production.  Structurally, 
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depending on the age and plantation type (orchard versus woodlots), the vegetation is mostly 

continuous cover with high biomass yields and height measurements (similar to the Forest Biome).  

Finally, although not typically known to be containing forests, the Thicket Biome possesses 

evergreen, sclerophyllous vegetation that range from closed shrubland canopies to low forests with 

no discernible grassy ground layer (Low and Rebelo, 1996).  The vegetation supported in this biome 

can possess high woody cover (75-100%), which can be impenetrable, with generally low height (1-

2.5m) and biomass levels (Willis, 2002).  One of the biggest threats to this biome is transformation of 

natural land into agriculture and ranching resulting in land degradation (Hoare et al., 2006).  At the 

South African scale, average temperatures are generally mild but can vary according to location and 

proximity to the oceans.  Annual average precipitation is about 450mm with a high-to-low rainfall 

gradient existing from east to west which mainly limits forest distribution.  The map displayed 

below, in Figure 2.1, illustrates the study area and shows the LiDAR dataset coverages used for the 

validation of the global forest products. 

 



44 
 

 

2.4 Materials and Methodology 
 

Two well-known global forest earth observation products, 2010 30m Landsat VCF and 2010 25m 

ALOS PALSAR FNF (Figure 2.2), were validated at the country level against a geographically extensive 

dataset of airborne LiDAR. The strategy was fairly simple in that the airborne LiDAR derived data 

products, i.e. canopy height model (CHM), were processed and ‘degraded’ to fit the criteria and pixel 

size used to create the Landsat VCF and ALOS PALSAR FNF products.  The LiDAR-based forest 

products were then compared with the global forest products. This takes into account the different 

definitions used to define and map tree cover in the various global forest products. 

 

Figure 2.1: Study area with focus on the LiDAR dataset coverages (see table 2.1 for LiDAR specifications) 
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2.4.1 Global forest products 

 

The 2010 Landsat VCF product was derived from monthly surface reflectance composites, composed 

from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery (particularly Landsat 7 ETM+ bands 

3, 4, 5 and 7) taken throughout the year, derived NDVI, various band-ratios and low- and high-gain 

temperature bands (Hansen et al., 2013, 2011).  The Landsat VCF product was derived from a similar 

methodology used to create the MODIS VCF product (Townshend et al., 2011).  It is composed of 

three main components; percent tree cover, percent non-tree vegetation and percent bare ground; 

modelled with a non-parametric bagged decision tree approach (Hansen et al., 2014, 2011, 2003, 

2002).  The Landsat VCF percent tree cover component defines tree cover as any woody plant with a 

height greater than or equal to 5 metres (Hansen et al., 2011, 2003).  In this study, percent tree 

cover of the Landsat VCF product was considered to be analogous to the woody canopy cover metric 

(CC).  The ALOS PALSAR FNF was derived from dual-polarised (HH and HV) L-band Fine Beam Dual-

polarised (FBD) imagery which were mainly acquired during dry conditions in South Africa (between 

June and September), according to the dual polarised data type Basic Observation Scenario (BOS) 

(Shimada et al., 2014).  Unlike the continuous tree cover product of the Landsat VCF, the ALOS 

PALSAR FNF is purely categorical consisting of three classes: forest, non-forest and water.  The 

product was created from country- and/or continent-specific HV backscatter (dB) thresholding for 

forest separation together with specific HH and HV backscatter (dB) thresholds for non-forested 

surfaces separation and utilised the FAO definition of a forest, which is all contiguous areas where 

the cover of woody vegetation is greater than 10% (in this case, within the 25m pixel resolution of 

the SAR backscatter imagery used for creating the FNF product) (FAO, 2000; Shimada et al., 2014).  

There was no vegetation height threshold used in the creation of the FNF product. 

 

2.4.2 LiDAR validation datasets 

 

The airborne LiDAR validation datasets (totalling 122 052 hectares) were acquired from a variety of 

flight campaigns across the eastern part of South Africa between 2009 and 2013.  These datasets 

were made available through scientific and collaborative agreements by the Carnegie Airborne 

Observatory (CAO), Southern Mapping Company, SANParks Scientific Services, AECOM (UK) and 

ESKOM.  Due to the national scope of the study and the lack of available and extensive airborne 

LiDAR which matched exactly the global forest product acquisition year, a temporal difference 

between the global forest and LiDAR datasets was permitted.  Most forest types do not change 
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extensively (indigenous forests are protected) but only gradually (savannahs through mostly 

selective logging or bush encroachment).  Unfortunately, possible error associated with the 

temporal difference between LiDAR datasets and global forest products, however, could still be 

incurred during the validation process.  The LiDAR datasets used in this study are outlined in Table 

2.1. 

 

2.4.3 Global Forest Product Pre-processing 

 

The Landsat VCF was obtained from the Global Land Cover Facility (http://landcover.usgs.gov/glc/) 

while the ALOS PALSAR FNF was publicly available from the Japan Aerospace and Exploration Agency 

(JAXA) portal (http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm).  Both products were 

obtained with no further post-processing being conducted.  The native projections of the products, 

geographic WGS84 and Sinusoidal projection for ALOS PALSAR FNF and Landsat VCF respectively, 

were re-projected to a common geographic projection with a WGS84 datum.  It is important to note 

that preliminary work with the FNF and the ALOS PALSAR global HV mosaic, from which FNF was 

derived from, indicated that was a pixel misalignment between the ALOS products and the LiDAR 

datasets.  This misalignment was apparent in heterogeneous vegetated areas with varying land 

use/cover types (forest patches distributed sporadically across sections of grassland and also along 

urban settlement outskirts).  To address this discrepancy the FNF product was converted to an 

Albers Equal Area projection and shifted by a constant distance of 75m westwards and 50m 

northwards.  After the shift, the FNF products were converted back to a WGS84 geographic 

projection.  Changing to a common projection at the country scale was needed in order to eliminate 

any errors arising from mismatched projections and potential misalignment between LiDAR-derived 

extraction grids and the global forest products. 

http://landcover.usgs.gov/glc/
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm
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Figure 2.2: 25m ALOS PALSAR Forest/Non-Forest (left) and 30m Landsat Variable Continuous Field cover 
(right) products 

 

2.4.4 Airborne LiDAR Data Pre-processing 

 

Although the LiDAR sensors and settings used varied, such as scan frequency, laser spot spacing and 

point density (outlined in Table 2.1), a common methodology was applied to all datasets to ensure 

consistency in the extraction of the canopy height models and associated woody fractional cover.  

Most of the raw LiDAR point cloud data were processed in TerraSolid LiDAR processing software in 

which a Digital Elevation Model (DEM) and top-of-canopy surface models (CSM) were created.  DEM 

and CSM were generated at a pixel size varying from 1 to 5 m, depending on the dataset point 

densities.  Canopy Height Models (CHMs), which varied in pixel size from 1 to 5m, were then 

computed by subtracting the DEM from the CSM.  The 2012 CAO datasets were provided already 

processed by the CAO research team, see details, such as software, in Asner et al. 2012.  The 

differences in LiDAR specifications would not be expected to be influential at the coarser resolutions 

of the global forest products.  To match the criteria in which the ALOS PALSAR FNF product was 

created, the LiDAR CHM data were processed to generate forest versus non-forest products 
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considering a canopy cover with a threshold of greater than or equal to 10%, after the extraction 

process, which will be elaborated upon in the next section (2.4.5).  To match the conditions in which 

the Landsat VCF product was created, the LiDAR CHM data was subjected to a tree height threshold 

of greater than 5m.  All pixels which did not meet these specified thresholds were masked out and 

excluded from the rest of methodological workflow.  The LiDAR datasets were kept in the pre-

processed spatial resolution (ranging from 1m to 5m) as the datasets were indirectly resampled to 

match the global forest products during the data extraction process with the use of extraction grids 

(to be elaborated upon further in the next section).   
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Table 2.1: Summary of LiDAR datasets used, the year acquired, sensor specifications, coverage, environmental description and provider information 

LiDAR dataset Year 
Scan 

frequency 

Laser spot 
spacing 

(along/across 
track) 

Point density 
Final CHM 
Resolution 

Area 
coverage 

Province Description Provider(s) 

CAO 2012 50 kHz 0.56m 6.4 points per m² 1m 63 000 ha Mpumalanga Majority savannah with communal rangelands 
Carnegie Airborne 

Observatory 

KNP 2012 70 kHz 0.5m 10 points per m² 1m 17 000 ha Mpumalanga Savannah riparian vegetation AECOM (UK) 

EROS 2013 
150 kHz 

(max) 
0.30m 12 points per m² 1m 6 700 ha 

Kwa-Zulu 
Natal 

Mixed consisting of azonal vegetation, forest 
plantations plus savannahs and grassland 

CAD Mapping/ESKOM 

Dukuduku 2013 
300 kHz 

(max) 
0.30m 10 points per m² 1m 2 100 ha 

Kwa-Zulu 
Natal 

Majority indigenous coastal forest PROMAP/ESKOM 

Boulders 2010 100 kHz 0.67m 2.26 points per m² 1m 900 ha Gauteng Highveld bushveld with urban cover AOC/ESKOM 

Gumeni Nkomati 2010 100 kHz 1.10m 0.83 points per m² 2m 742 ha Mpumalanga Mostly savannah with small tree patches AOC/ESKOM 

Nkomazi Figtree 2010 100 kHz 0.81m 1.53 points per m² 1m 659 ha Mpumalanga Lowveld shrubs with majority agriculture AOC/ESKOM 

Majuba AS058 2010 100 kHz 1.19m 0.71 points per m² 5m 7 085 ha 
Kwa-Zulu 

Natal 
Thornveld, shrub and grassland with small 

dense tree patches 
Fugro/ESKOM 

Albany Kowie 2010 100 kHz 1.56m 0.41 points per m² 2m 262 ha Eastern Cape Majority grassland and thicket 
Southern Mapping 
Company/ESKOM 

Applebosh 
Ndwedwe 

2009 70 kHz 0.98m 1.05 points per m² 2m 650 ha 
Kwa-Zulu 

Natal 
Small patches of plantations with dense veld 

and sugar cane cropland 
Southern Mapping 
Company/ESKOM 

Colenso Danskraal 2011 100 kHz 1.27m 0.62 points per m² 5m 1 675 ha 
Kwa-Zulu 

Natal 
Majority thornveld 

Southern Mapping 
Company/ESKOM 

Grahamstown 2011 100 kHz 1.08m 0.86 points per m² 2m 400 ha Eastern Cape Majority grassland and thicket 
Southern Mapping 
Company/ESKOM 

Massa Ngwedi 2010 100 kHz 0.95m 1.11 points per m² 1m 6 981 ha Limpopo 
Combination of shrubby rangeland and 

savannah 
Southern Mapping 
Company/ESKOM 

Mfinizo 2010 100 kHz 1.41m 0.5 points per m² 2m 278 ha Eastern Cape Grassland with dense patches of bushveld 
Southern Mapping 
Company/ESKOM 

Ndumo 
Nondubuya 

2011 70 kHz 0.87m 1.31 points per m² 2m 3 175 ha 
Kwa-Zulu 

Natal 
Bushveld and thicket with evergreen tree patch 

Southern Mapping 
Company/ESKOM 

Prairie Marathon 2009 70 kHz 1.20m 0.69 points per m² 2m 4 573 ha Mpumalanga 
Mixed consisting of dense bushveld, grassland 

and patches of plantations/orchards 
Southern Mapping 
Company/ESKOM 

Taweni 2010 100 kHz 1.34m 0.55 points per m² 2m 282 ha Eastern Cape Grassland with dense patches of bushveld 
Southern Mapping 
Company/ESKOM 

Witkop Tabor 2009 70 kHz 1.53m 0.43 points per m² 2m 5 590 ha Limpopo Mixed with agricultural fields and rangelands 
Southern Mapping 
Company/ESKOM 
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2.4.5 Data extraction process 

 

25 by 25m and 30 by 30m grid cells were aligned to the pixels of the ALOS PALSAR FNF and Landsat 

VCF products respectively. These grids were then clipped to the extent of the available LiDAR CHM 

datasets.  Thus, these grids were used to extract the global forest product and the corresponding 

LiDAR data values for each cell.  Any cells within the grid which felled within or overlapped with the 

LiDAR coverage edges, urban and informal settlements/built-up areas, major water bodies and other 

artefacts present within the LiDAR data (e.g. power lines) were manually identified from a Google 

Earth image backdrop and excluded from the validation process to minimise error caused by ‘mixed’ 

pixels.   LiDAR woody canopy cover (CC), in percentage, was derived per cell, with the use of 

Equation 2.1 below, and considered woody vegetation above a height threshold of 0.5m (mainly for 

the FNF product rather than the VCF product) to avoid the influence of grass in the CC calculations.  

 

𝐿𝑖𝐷𝐴𝑅 𝐶𝐶 (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑜𝑜𝑑𝑦 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑒𝑑 (𝑎𝑏𝑜𝑣𝑒 0.5𝑚 𝑖𝑛 ℎ𝑒𝑖𝑔ℎ𝑡)  𝐿𝑖𝐷𝐴𝑅 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑖𝐷𝐴𝑅 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 
 𝑋 100                  

Equation 2.1 

 

The total number of LiDAR pixels in a grid cell differs depending on the spatial resolution of the 

LiDAR CHM and the 25 by 25m (e.g. 625 1m LiDAR pixels) or 30 by 30m grid sizes (e.g. 900 1m LiDAR 

pixels) used for matching the corresponding LiDAR derived CC to the respective ALOS PALSAR FNF 

and Landsat VCF products.  Finally for the ALOS PALSAR FNF product comparison, the CC forest 

threshold of ≥10% was applied to the LiDAR derived CC values, from the 25m by 25m grids, to create 

the LiDAR derived FNF values, i.e. a Forest (CC≥10%) and Non-Forest (CC<10%) reclassification. 

 

2.4.6 Global Product Accuracy Assessment 

 

The data extracted from the individual LiDAR datasets and corresponding global product coverages 

have been combined for an overall assessment.  Due to the nature of the different global forest 

products different validation techniques have been implemented to best assess these products’ 

accuracy using LiDAR-derived CC.  For the categorical ALOS PALSAR FNF product, summarised 

confusion matrix statistics (particularly producer accuracies) together with overall accuracies, forest 

and non-forest accuracies have been derived.  The continuous Landsat VCF CC product was 

correlated against LiDAR derived CC, from which the coefficient of determination (R2), root mean 
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square error (RMSE), bias and standard error of prediction (SEP) was derived.  For a quantitative 

measure of the extent of overestimation and underestimation in the Landsat VCF product across the 

observed CC range, the LiDAR CC – Landsat VCF CC difference values were arranged into box plots 

over the 10% incremental CC classes ranging from 0-100%.   

 

To evaluate the performance of both products considering vegetation types, the validation dataset 

was classified according to woody cover (CC) and structural classes.  For the FNF product, the LiDAR 

CC data was reclassified or stratified into 10% incremental classes from the 0-100% range (i.e. 10 

classes in total e.g. 0-10%, 10-20%, 20-30% etc.).  The total number of correctly classified data 

records within each CC incremental class was divided against the total number of records in the 

particular classes and multiplied by 100 to ascertain the percentage accuracy of the FNF product 

within the different CC class increments.  For the vegetation structural assessment of the FNF 

product, LiDAR CC and vegetation height record information was categorized according to structural 

classes proposed by (Willis, 2002) for categorizing forest structure in southern Africa, including 

dense tall natural forests, a range of open woodlands, and short thickets.  This classification is 

presented in Figure 2.3.  As with the CC incremental class assessment, the total number of correctly 

classified data records within each structural class (according to the LiDAR CC  and height ranges) 

was divided against the total number of records in the particular classes,  and multiplied by 100 to 

ascertain the percentage accuracy of the FNF product within the different vegetation structural 

classes.  Due to the continuous nature of the Landsat VCF CC and LiDAR CC values, the LiDAR and 

VCF CC range were both reclassified into the 10% CC incremental classes for assessment, which 

followed the same methodology as described with the FNF product above.  Since the VCF measures 

vegetation greater than or equal to 5m in height, for coherence this threshold was also applied to 

the vegetation structure class (Figure 2.3) thus resulting in fewer classes being represented than in 

the FNF product. 
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Figure 2.3: Classification of vegetation types according to structure (canopy cover and height) (Willis, 2002). The LiDAR 
canopy cover and CHM products were used to reproduce this classification scheme for the extracted data. 

 

As additional support to the product assessments via CC and vegetation structural classifications, 

product comparison maps (LiDAR vs FNF and LiDAR vs Landsat VCF) were also created to ascertain 

the visual distributions of error, i.e. extents of underestimation and overestimation, throughout the 

various landscape types.  For a more regional assessment of the products, an ALOS PALSAR L-band 

derived CC map (R2=0.81; RMSE=9.89%) was also utilised for comparison purposes (SAR vs FNF and 

SAR vs Landsat VCF).  This SAR product was derived according to the methodologies carried out in 

Chapters 3 (section 3.4.5) and 4 (section 4.4.6).  The lower Kruger National Park region, in the 

Savannah Lowveld, was chosen as the area of focus.   
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2.5 Results 

 
This section was divided into two sub-sections: the FNF and the VCF product validation results.  In 

order to interpret these results, the LiDAR data is considered as the ground truth. 

 

2.5.1 ALOS PALSAR FNF validation results 

 

Table 2.2: Summarised FNF validation results across stratified LiDAR-derived CC ranges 

CC Class 
Classified from 
LiDAR (ground-

truth) 

Correctly detected by 
FNF as Forest (F) or 

Non-Forest (NF) 

Grand 
Accuracy 
of FNF % 

0-10%  (NF) 738300 732321 99.19 

10-20% (F) 278774 1570 0.56 

20-30% (F) 276011 2398 0.87 

30-40% (F) 231228 3339 1.44 

40-50% (F) 225997 4454 1.97 

50-60% (F) 176511 4594 2.60 

60-70% (F) 153686 5500 3.58 

70-80% (F) 100774 5282 5.24 

80-90% (F) 92683 8354 9.01 

90-100% (F) 164437 48622 29.57 

Total Forest (F) 1700101 84113 4.95 

Total Non-Forest (NF) 738300 732321 99.19 

Grand Total 2438401 816434 33.48 

 

From the summarised confusion matrix results (table 2.2), it was evident that the FNF product 

detected very well Non-Forest areas (99% for CC<10%) but performed poorly by detecting only 5% of 

actual forests (CC>10% according to FAO definition) across the LiDAR datasets.  When analysing the 

results at stratified CC levels (table 2.2) and the detection of forest, it was clear that the FNF 

performed best at the 90-100% CC range, but still only yielded a marginal 30% forest detection 

accuracy.  The product performed especially poorly throughout the 10-90% CC range with a less than 

5% forest detection rate being obtained between the 10-70% CC ranges.  The forest detection rate 

tended to increase with the CC values between the 10-100% CC ranges. In general, the high accuracy 

of the Non-Forest class and the large number of Non-Forest observations in the dataset (738300) 

resulted in pushing up the overall classification accuracy of the FNF product (33.48%).  The results 

from table 2.3 and Figure 2.4, below, indicate the FNF product detection accuracies in various LiDAR-

derived vegetation structural classes. 
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Table 2.3: Summarised FNF validation results across various LiDAR-derived vegetation structural classes 

Structure Class 
Classified from 
LiDAR (ground-

truth) 

Correctly detected 
by FNF as Forest 
(F) or Non-Forest 

(NF) 

Grand Accuracy 
of FNF% 

Bushland (F) 233019 11659 5.00 
Closed Shrubland (F) 10725 486 4.53 
Grassland (NF) 75501 74823 99.10 
Grassland/herbland (NF) 579303 574063 99.10 
High (F) 23 0 0.00 
Natural Forest (F) 41031 11208 27.32 
Open Bushland (F) 306811 2188 0.71 
Open Shrubland (F) 253849 4502 1.77 
Open Woodland (F) 225353 617 0.27 
Scrub Forest (F) 121444 31562 25.99 
Shrubland (F) 90199 1802 2.00 
Thicket (F) 83920 13720 16.35 
Wooded Grassland (NF) 83496 83435 99.93 
Woodland (F) 333727 6369 1.91 

Total Forest (F) 1700101 84113 4.95 

Total Non-Forest (NF) 738300 732321 99.19 

Grand Total 2438401 816434 33.48 

 

 

Figure 2.4: Summarised FNF validation results across various LiDAR-derived vegetation structural classes as outlined by 
(Willis, 2002) (% values refer to the FNF detection accuracy of that vegetation structural class where red cells = 
accuracies >90%, orange cells = accuracies between 15-30%, yellow cells = accuracies ≤5%)  
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According to the vegetation structural class results, table 2.3 and Figure 2.4, the FNF product 

achieved the highest detection accuracies (~99%) for all classes with CC below 10%, grassland, 

grassland/herbland and wooded grassland classes which were the Non-Forested classes according to 

the product’s definition.  Scrub Forest and Natural Forest structural classes, i.e. forested classes with 

medium to high vegetation height and high CC, obtained accuracies of 26% and 27% respectively 

while thickets, i.e. forested classes with low vegetation height and high CC, obtained accuracies of ~ 

16%.  The Closed Shrubland class, which is a forested class with high CC but very low vegetation 

height (<1m), yielded a very low detection accuracy of 4.5%.  Other classes, which were structural 

classes within the 10-80% CC ranges, obtained very low detection accuracies of 5% and less, 

whatever the tree height profile.  The High tree structural class yielded 0% detection accuracy but 

this structural class rarely occurs.  Overall, the structural classification shows that forested class 

detection decreased with CC, and was possibly more affected by cover than height.  

 

The spatial patterns of FNF product, and the corresponding ground truth product (i.e. LiDAR), are 

compared at the local and regional scale in figure 2.5. 
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At a larger scale (Figure 2.5ii), the FNF product showed a sensibly better agreement with actual 

forest class within the main densely forested zones along the South African escarpment (see blue 

encircled areas).  Patches of zonal and intra-zonal indigenous forests and commercial plantations are 

present here (Mucina and Rutherford, 2006) but not to the extent represented by the FNF.  A 

Figure 2.5: i) ALOS PALSAR FNF (left) versus LiDAR derived FNF (right) across the CAO LiDAR dataset; ii) ALOS PALSAR FNF (left) and L-band 
ALOS PALSAR FBD derived FNF (right), using LiDAR training, (R

2
=0.81; RMSE=9.89% - this product will be detailed in chapters 3 and 4) 

across the entire Kruger National Park extent [the red and blue encircled areas indicates areas of interest for discussion] 
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potentially higher backscatter due to the topography of the escarpment may have boosted the 

detection of forests in such features.  Outside the escarpment, however, most veld areas (i.e. areas 

within and along the Kruger National Park boundary) were classified as non-forest by the FNF.  

According to (Mucina and Rutherford, 2006), these veld areas consisted of mopane, sour bushveld, 

granite lowveld and sandy bushveld vegetation types, typical of the savannah biome, which were 

known to possess cover greater than 10%.  These trends corroborate the previous results in which 

the FNF product lack the ability to detect the 10-80% CC range and the vegetation structural classes 

found in this range (e.g. Bushveld and Woodland classes etc.) while showing some detection 

potential in the high CC (80-100%) and dense structural classes (e.g. Scrub Forests and Natural 

Forests).  The FNF product however, did also yield erroneous patches of water within the Kruger 

National Park extents as these areas were confused with areas of basaltic open grasslands.  Locally 

as shown with the LiDAR tracks (Figure 2.5i), the FNF product displayed very little of the forest class 

compared to the amount of forest actually present in the CAO LiDAR maps which falls squarely in 

savannah biome.  The red encircled area in the FNF product, a dense forested ridge, only showed 

limited evidence of forest which coincided, to some degree, with the LiDAR product (between 80-

100% CC range along the ridge, according to the LiDAR).   

 

2.5.2 Landsat VCF validation results 

 

Figure 2.6: (i) Density scatterplot of LiDAR derived CC versus Landsat VCF CC across the complete extracted dataset [the 
dotted red line represents the 1:1 line while the solid black line represents the data trend line]. (ii) Landsat VCF product 

i) 
ii) 

Bias = -6.05 
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error (i.e. LiDAR CC – VCF CC) over a range of CC intervals [negative values indicate CC overestimation while positive 
values indicated CC underestimation by the Landsat VCF product; centre cross = mean value; box = standard error and 
whiskers = standard deviation] 

 

Figure 2.6i) and ii) illustrated the correlation between LiDAR derived CC and VCF CC as well as the 

level of over- and underestimation of the VCF product across the complete CC range.  The density 

scatter plot of figure 2.6i) indicated a generally poor relationship with an R2 of 0.32, an RMSE of ~12 

% and an SEP greater than 100%.  The general trend was also hard to distinguish due to the large 

discrepancies between the corresponding LiDAR and VCF CC values especially at higher CC ranges.  

The CC difference box plot of figure 2.6ii), together with figure 2.6i), illustrated that the VCF product 

overestimated CC values (0-10%) slightly between the 0-20% range with general underestimation 

(10-40%) occurring past this point to higher CC values.  The standard deviation and standard error 

values increased greatly towards higher CC values (30-100%).  R2, RMSE and SEP statistics were 

initially ascertained across the individual stratified CC ranges and vegetation structural classes (see 

Appendix 2A for example) but the results were poor (i.e. low R2 with high RMSE and SEP values) with 

no discernible patterns emerging.  Thus a classification approach appeared to be more useful for 

detailed analyses of the VCF product at various CC and vegetation structural classes.   

 

Table 2.4: Summarised VCF validation results across stratified LiDAR-derived CC ranges 

CC Class 
Classified from LiDAR 

(ground truth) 
Correctly classified by 

VCF 
Grand Accuracy of VCF 

% 

0-10% 541181 188283 34.79 
10-20% 136964 76674 55.98 
20-30% 50130 10098 20.14 
30-40% 22577 1454 6.44 
40-50% 10595 988 9.33 
50-60% 6517 905 13.89 
60-70% 4508 168 3.73 
70-80% 3693 219 5.93 
80-90% 6945 353 5.08 
90-100% 5988 1793 29.94 

Grand Total 789098 280935 35.60 

  

Table 2.5: Complete VCF CC versus LiDAR CC confusion matrix across fixed CC ranges 

  LiDAR CC 

VCF CC 0_10 10_20 20_30 30_40 40_50 50_60 60_70 70_80 80_90 90_100 Grand Total 

0_10 188283 29172 7675 2591 886 415 204 138 275 429 230068 

10_20 288431 76674 25247 9247 3423 1531 648 361 447 486 406495 

20_30 43850 19842 10098 5222 2458 1275 699 406 431 382 84663 

30_40 7112 3777 2260 1454 889 581 385 227 274 198 17157 

40_50 7649 3761 2191 1604 988 695 513 340 545 431 18717 
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50_60 4338 2643 1643 1443 957 905 774 707 1264 1093 15767 

60_70 473 320 271 243 198 174 168 173 342 289 2651 

70_80 368 332 292 289 250 250 220 219 562 439 3221 

80_90 145 109 119 126 117 141 156 178 353 448 1892 

90_100 532 334 334 358 429 550 741 944 2452 1793 8467 

Grand Total 541181 136964 50130 22577 10595 6517 4508 3693 6945 5988 789098 

Producer's Acc. 34.79 55.98 20.14 6.44 9.33 13.89 3.73 5.93 5.08 29.94   

 

 

The stratified CC results of the VCF, table 2.4, showed trends such as low detection accuracy at the 

0-10% LiDAR CC range (~35%).  Between this 0-10% LiDAR CC range, according the confusion matrix 

(table 2.5), the bulk of the error of the VCF (~60% of the error) was evident between the 10-20% and 

20-30% VCF CC classes but classes up to 50-60% class also contributed to this error.  The VCF 

product, also, yielded moderate to low accuracies in the 10-30% CC range (56% and 20.14% for the 

10-20% and 20-30% LiDAR CC classes respectively).  For the VCF product, detection accuracies 

remained fairly low (<10%) across the 30-90% LiDAR CC range.  Across this LiDAR CC range, the bulk 

of the VCF error (according to table 2.5) fell in much lower VCF CC classes (e.g. in the 10-20 and 20-

30% VCF CC classes across 40-60% LiDAR CC range) which confirmed the general underestimation of 

the VCF product between  30-90% LiDAR CC range.  The VCF product obtained an accuracy of 30% in 

the detection of vegetation with a 90-100% LiDAR CC range.  Finally, the overall classification 

accuracy obtained by the VCF product was approximately 36%. 

 

Table 2.6: Summarised VCF validation results across various LiDAR-derived vegetation structural classes 

Structure Class 
Classified from LiDAR 

(ground truth) 
Correctly classified 

by VCF 
Grand Accuracy 

of VCF % 

Grassland/herbland 386280 146189 37.85 

Wooded Grassland 154901 42094 27.17 

Open Woodland 208877 88062 42.16 

High 1180 181 15.34 

Woodland 24927 2263 9.08 

Scrub Forest 72 0 0.00 

Natural Forest 12861 2146 16.69 

Total 789098 280935 35.60 
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Figure 2.7: Summarised VCF validation results across various LiDAR-derived vegetation structural classes as outlined by 
(Willis, 2002) (% values refer to the VCF detection accuracy of that vegetation structural class where red cells = 
accuracies >20%, orange cells = accuracies between 10-20%, yellow cells = accuracies <10%). The red 5m height line 
indicates the limit of VCF product in which all classes coloured grey (below 5m height) was excluded.  

 

Table 2.6 and Figure 2.7 illustrated the detection accuracy results across the various vegetation 

structural classes which were greater than or equal to 5m in vegetation height, as specified by the 

steps used to create the VCF.  As with the stratified CC range results, the VCF yielded 38% and 27% 

accuracies for detecting grassland/herbland and wooded grassland vegetation structural classes 

which possessed low CC (<10%) and medium to high height ranges.  The VCF product also yielded a 

moderate detection accuracy of 42% for the Open Woodland class (CC ranging from 10-40% and 

with a medium to high height range).   On the high CC and height range, the VCF yielded 15% and 

17% detection accuracy for the High and Natural Forests respectively while 0% accuracy was 

observed for the Scrub Forest class which mostly fell below the 5m height mark resulting in very few 

samples. 

 

Local and regional scale Landsat VCF products (Figures 2.8i and 2.8ii) and their assessment against 

more accurate map products (i.e. LiDAR and SAR based CC maps) were introduced to understand the 

geographical distribution of this product error. 
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At the local scale (Figure 2.8i), a trend of VCF CC overestimation is clearly shown when compared to 

the observed LiDAR derived CC.  The observed LiDAR derived CC product was created by 

incorporating the 5m height threshold used to create the Landsat VCF product.  This corroborates 

the trends displayed in figures 2.6i) and ii) at the 0-20% CC range.  The VCF product also lacks the 

Figure 2.8: i) Landsat VCF CC (left) versus LiDAR derived CC (right) across the CAO LiDAR dataset; ii) Landsat VCF CC (left) and L-band ALOS 
PALSAR FBD derived CC (right), using LiDAR training, (R

2
=0.81; RMSE=9.89%) across the entire Kruger National Park extent [the red and blue 

encircled areas indicates areas of interest for discussion] 

ii) 

i) 
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spatial detail of the low CC classes in comparison to the LiDAR CC product which has also been 

degraded to match the VCF conditions (vegetation height threshold of ≥5m, 30m pixel size).  

Although the class difference of approximately 10% is noticeable between VCF CC and LiDAR derived 

CC, the VCF product does illustrate patterns of CC variability, though limited, across the landscape, 

as indicated by the LiDAR.  Regarding Figure 2.8ii, it is important to note the SAR derived CC product 

was created without implementing the 5m height threshold which was used to create the VCF due 

to poor modelling results of the SAR datasets when modelled using LiDAR cal/val datasets with the 

5m height threshold applied.  Despite this discrepancy, the main trends observed between the 

products were fairly comparable.   At the regional scale (Figure 2.8ii), VCF results illustrate some of 

the major patterns of high CC classes (> 70%) being represented along the South African escarpment 

in the modelled SAR CC product (see blue encircled areas).  Additionally, the VCF product represents 

well some patches of low CC classes (< 30%), which correspond with the modelled SAR CC product, 

both along the grasslands of Kruger National Park and within rangeland patches outside the Kruger 

boundary (see red encircled areas).  The southern portion of the regional VCF product resembled 

more of the patterns displayed in the corresponding portion of SAR derived CC map.  This could be 

related to the wetter and greener vegetation conditions which were readily captured by the Landsat 

imagery while the drier conditions in the north led to a poorer representation of the vegetation 

signal.  At the extreme northern tip of the Kruger National Park (both above and to the right of the 

highest positioned blue circle), however, there was a large CC difference between the VCF and the 

SAR product (10% CC in the VCF compared to between 50-70% CC in the SAR).  According to Google 

Earth, the area to the right of the blue circle is a vegetated escarpment feature with a nearby 

riparian zone emerging while the area above the blue circle is dominated by mopane.  A 

combination of topographic effects and the presence of dense vegetation may have led to higher CC 

classes while the phenological differences of the underlining Landsat imagery, used to create the 

VCF product, may have contributed to the low CC values in that area.  

 

2.6 Discussion 
 

This study sought to assess two global forest cover products, the 25m ALOS PALSAR FNF and 30m 

Landsat VCF, using environmentally diverse LiDAR dataset coverages across the forested regions of 

South Africa.  The main focus was to quantify how well these products detect the presence of 

forests, according to the individual products’ forest definitions, mostly within the savannah biome 

and other forest types present in South Africa.  The products were also assessed across stratified CC 
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ranges and across particular vegetation structural classes (Willis, 2002) to ascertain if performance is 

consistent across vegetation types.   

 

The FNF product only detected 5% of actual forests across the LiDAR datasets with majority 

contributions to the accuracy, though low, falling in the 90-100% CC range and Natural Forest and 

Scrub Forest structural class types.  The fact that low lying vegetated areas with 90-100% canopy 

cover values (e.g. the Closed Shrublands class) were not detectable by the FNF product indicated 

that the product was not sensitive enough to classify vegetated or ‘forested’ areas lower than 1m in 

height.  This poor result of the FNF, however, could be compounded by the reduced effectiveness of 

LiDAR sensors to capture vegetation less than 1m (Wessels et al., 2011).  This can also be attributed 

to the large wavelength of the L-band SAR sensor (~23cm) which may have passed through these 

small vegetative elements such as leaves and stems (Naidoo et al., 2015; Vollrath, 2010).  The FNF 

product yielded the poorest detection accuracy of 5% and less for the 10-80% CC range; together 

with the various associated woodland, shrubland and bushland structural classes; which illustrated 

that the forest within the savannah biome is not detected.  This suggested that the FNF product 

largely under-represents the distribution of forests especially in savannah environments, which 

possess an average CC of 35% (Venter et al., 2003).  Since savannahs cover roughly half of the 

African continent and occupy one fifth of the global land surface (Sankaran et al., 2005; Scholes and 

Walker, 1993; Venter et al., 2003), this result is not favourable especially for the applications of 

carbon assessment and change detection studies.  The FNF product obtained 99% accuracy in 

detecting non-forested areas with the highest accuracy being observed in the 0-10% CC range and 

within grassland structural types.  Though it has been considered that the contrasting backscatter 

responses between forested and non-forested surfaces could have contributed to this high detection 

accuracy of non-forest areas, it was the HV threshold used in the FNF product creation (Shimada et 

al., 2014), which was too high, that contributed mostly to this observation.  An in-depth assessment 

of this threshold, involving Figure 2.9, will be conducted in the following paragraph.  The poor ability 

of the FNF product to detect forests in savannahs, and the underperformance of the FNF product in 

the 80-100% CC ranges and in the Natural Forest and Scrub Forest classes, was also the result of the 

selection of the FNF threshold used to define forest versus non-forest in the African continent 

(Figure 2.9).  Figure 2.9 correlated the LiDAR CC with the ALOS PALSAR HV backscatter (i.e. the global 

mosaic data used to create the FNF product), extracted over the complete LiDAR dataset coverage. 
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Figure 2.9: LiDAR derived woody canopy cover versus ALOS PALSAR HV backscatter (dB) extracted over the complete 
LiDAR dataset coverage [the red line indicates the -15.6dB threshold value (Shimada et al., 2014) used to create the FNF 
over the continent of Africa while the orange box indicates the bulk of the LiDAR CC values captured by the FNF 
according to the CC values greater than and equal to the HV dB threshold] 

 

For the continent of Africa, a threshold range of -15.6dB HV backscatter, represented by the red line 

in Figure 2.9, was used for the FNF product creation (Shimada et al., 2014).  This threshold was 

derived by ascertaining the cross-over point between forest and non-forest HV backscatter 

cumulative histograms collected across various regions of interest (Shimada et al., 2014).  

Backscatter values greater than and equal to threshold was classified as forest and the backscatter 

values less than the threshold was considered as non-forest (excluding the HH backscatter 

thresholding for urban class separation and waterbody classification outlined in (Shimada et al., 

2014)).  According to Figure 2.9, a small, limited portion of the upper observed CC values (50-100%) 

was captured by the FNF product which supported the limited representation of the major 

distribution of forested areas (Tables 2.2 and 2.3; Figure 2.5) and almost no representation of the 

20-50% CC range.  Figure 2.9, supported by table 2.2, also showed that the HV threshold of -15.6dB 
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contributed to the very high detection accuracy of the non-forest class (99% accuracy for CC values 

<10%).  Obviously due to the inherent variability of the SAR signal with e.g. moisture, structural type, 

species, etc., and as shown by the point spread, it is clearly challenging to select a single HV dB 

threshold, especially across the continent of Africa, which covers the complete CC range in 

heterogeneous savannah environments.  Hypothetically, and with the retrospective guidance of 

Figure 2.9, a single optimized HV threshold of -19dB can be recommended for improved forest 

detectability in savannah environments limited to the Southern African region.  By adjusting the HV 

threshold to -19dB, and applying it to the 2010 ALOS PALSAR HV global mosaic data, FNF 

classification accuracies improved noticeably with an overall accuracy of 68.05%, a forest detection 

accuracy of 59.26% and a non-forest detection accuracy of 97.40% (see Appendix 2B).   

 

The Landsat VCF product displayed underestimation past the 30% CC mark with increasing error 

margins towards the 90% CC mark.  This increasing error margin was also documented in (Pengra et 

al., 2015).  This trend of CC underestimation by the VCF (>30%) product was well documented in 

forested environments (Gao et al., 2014; Sexton et al., 2013; Song et al., 2013), in the MODIS VCF 

version, but not in great extents in African savannah environments.  (Hansen et al., 2011) suggested 

that the lack of growing season imagery, in the Landsat archive over a particular area, could be one 

of the causes of the VCF’s underestimation of forest cover.  VCF product overestimation at the lower 

CC ranges (<30%), though minimal, was also corroborated by (Pengra et al., 2015).  Within the 

context of South Africa, the signal noise related to grass present in open land types such as open 

woodlands and wooded grasslands etc., and the presence of trees less than 5m in height still 

captured by the Landsat imagery, could also have contributed to increased CC estimates from the 

VCF.  This observation could be supported by the confusion matrix result (table 2.5) where the 

majority of the VCF error within the 0-10% LiDAR CC class fell in the higher neighbouring VCF CC 

classes (i.e. in the 20-30% VCF CC classes).  In general, the Landsat-based VCF product did improve 

CC accuracies across agricultural areas, over the MODIS VCF derivative, but still experienced noted 

inaccuracies over woody cover areas which have a mixed tree-shrub gradient (Sexton et al., 2013).  

The author of this thesis recommends that more extensive ground-truth datasets, i.e. LiDAR-based 

metrics, especially over medium to dense forested areas and/or specific bioregions, would need to 

be incorporated to train the regression tree algorithm used to create the VCF product.  Additionally, 

the characterisation of CC in the VCF product was successfully improved by integrating multi-source 

and multi-resolution map products (Song et al., 2013).  The addition of a water mask, at the product 

development stage, will also help improve the VCF by distinguishing low CC values and water bodies 

(Montesano et al., 2009).  The moderate accuracies at the 10-20% CC range and in the open 
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woodland tree structural class suggests that the VCF product could be potentially applicable in low 

CC environments such as grasslands and sparse savannahs but can also detect, to some extent, 

closed canopy environments (90-100% CC range).       

 

In closing, regardless of the chosen definition of forests and product creation protocols, it is clear 

that forests, especially within the savannah biome, are severely underrepresented in both the VCF 

and FNF global forest cover products.  The outcomes of (Sexton et al., 2015) illustrated the need for 

a standardisation of definition of forests as well as the movement towards quantitative CC products 

like (Hansen et al., 2013).   

 

2.7 Conclusions 
 

This study sought to validate the accuracies of two global forest cover products, the 30m Landsat 

Vegetation Continuous Field (VCF) and the recently introduced 25m JAXA ALOS PALSAR Forest/Non-

Forest (FNF) global products, against an extensive collection of airborne LiDAR data.  The primary 

focus of the study was to assess both products for the accurate detection of forests, as per the 

products’ forest definitions, in Southern African savannahs which are not clearly presented or even 

excluded by such global products.  It was found that the FNF product grossly under-represented the 

distribution of forests in savannah environments (20-80% CC ranges), due to the inadequate HV 

backscatter threshold chosen in its creation for the depiction of FNF across South Africa.  With this 

HV threshold, however, the FNF product most accurately detected the Non-forest class (0-10% CC 

range), but this class also included wide tracks of forested lands.  The FNF product also showed 

limited use in detecting closed forest cover class (90-100%) and Natural Forest and Scrub Forest tree 

structural classes.  The Landsat VCF product displayed strong CC underestimation with increasing 

variability and mean error from CC values greater than 30%.  The moderate accuracies at the 10-20% 

CC range and in the Open Woodland tree structural class suggest that the VCF product could be 

potentially applicable in low CC environments such as grasslands and sparse savannahs.  There was, 

however, limited detection ability by the VCF in closed canopy environments (90-100% CC range).  In 

the light of these results, a fixed definition of forests is necessary and a more accurate forest 

product, which has been specifically calibrated from locally collected datasets, will need to be 

developed to capture the full CC range found in the heterogeneous South African savannahs. 
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Chapter 3: Savannah woody structure modelling and mapping using 

multi-frequency (X-, C- and L-band) Synthetic Aperture Radar (SAR) 

data 

 

3.1 Abstract 
 

Structural parameters of the woody component in African savannahs provide estimates of carbon 

stocks that are vital to the understanding of fuelwood reserves, which is the primary source of 

energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are at risk of over 

utilisation.  The woody component can be characterized by various quantifiable woody structural 

parameters, such as tree cover, tree height, above ground biomass (AGB) or canopy volume, each 

been useful for different purposes.  In contrast to the limited spatial coverage of ground-based 

approaches, remote sensing has the ability to sense the high spatio-temporal variability of e.g. 

woody canopy height, cover and biomass, as well as species diversity and phenological status – a 

defining but challenging set of characteristics typical of African savannahs.  Active remote sensing 

systems (e.g. Light Detection and Ranging – LiDAR; Synthetic Aperture Radar - SAR), on the other 

hand, may be more effective in quantifying the savannah woody component because of their ability 

to sense within-canopy properties of the vegetation and its insensitivity to atmosphere and clouds 

and shadows.  Additionally, the various components of a particular target’s structure can be sensed 

differently with SAR depending on the frequency or wavelength of the sensor being utilised.  This 

study sought to test and compare the accuracy of modelling, in a Random Forest machine learning 

environment, woody above ground biomass (AGB), canopy cover (CC) and total canopy volume (TCV) 

in South African savannahs using a combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and 

L-band (ALOS PALSAR) radar datasets.  Training and validation data were derived from airborne 

LiDAR data to evaluate the SAR modelling accuracies.  It was concluded that the L-band SAR 

frequency was more effective in the modelling of the CC (coefficient of determination or R2 of 0.77), 

TCV (R2 of 0.79) and AGB (R2 of 0.78) metrics in Southern African savannahs than the shorter 

wavelengths (X- and C-band) both as individual and combined (X+C-band) datasets.  The addition of 

the shortest wavelengths also did not assist in the overall reduction of prediction error across 

different vegetation conditions (e.g. dense forested conditions, the dense shrubby layer and sparsely 

vegetated conditions).  Although the integration of all three frequencies (X+C+L-band) yielded the 

best overall results for all three metrics (R2=0.83 for CC and AGB and R2=0.85 for TCV), the 

improvements were noticeable but marginal in comparison to the L-band alone.  The results, thus, 
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do not warrant the acquisition of all three SAR frequency datasets for tree structure monitoring in 

this environment. 

Keywords: Woody structure, Savannahs, SAR, Multi-frequency, LiDAR, Random Forest   

 

3.2 Introduction - Background, Aims and Objectives 
 

Structural parameters of the woody component in African savannahs provide estimates of carbon 

stocks that are vital to the understanding of fuelwood reserves, which is the primary source of 

energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are at risk of over 

utilisation (Wessels et al., 2013, 2011).  The woody component in African savannahs is an important 

physical attribute for many ecological processes and impacts the fire regime, vegetation production, 

nutrient and water cycles (Silva et al., 2001).  The density of woody plants can also severely 

compromise the availability of grazing resources, valuable for livestock populations and related 

livelihoods, through bush encroachment (Wigley et al., 2009).  Within the context of climate change, 

the sequestration of carbon by growing vegetation is a significant mechanism for the removal of CO2 

from the atmosphere (Falkowski et al., 2000; Viergever et al., 2008).  Understanding how carbon is 

stored as carbon sinks in vegetative biomass and thus quantifying this standing biomass is central to 

the understanding of the global carbon cycle.  Vegetation clearing (e.g. for cultivation) and 

degradation (e.g. for timber or fuelwood) and the burning of biomass, which are prevalent in 

developing regions and savannah woodlands of Southern Africa, can alter carbon stocks and 

emissions (Falkowski, 2000; Viergever et al., 2008b).  Based on the important environmental 

implications revolving around woody vegetation, there are growing initiatives aiming at forest and 

woodland conservation that require its active inventorying, mapping and subsequent monitoring 

such as the Reducing Emissions from Deforestation and Forest Degradation programme (REDD+) 

(Asner et al., 2013; Corbera and Schroeder, 2011; Kanowski et al., 2011).  

 

The woody component can be characterized by various quantifiable woody structural parameters, 

such as woody canopy cover (CC), tree height, above ground biomass (AGB) or total woody canopy 

volume (TCV), each been useful for different purposes.  AGB is defined as the mass of live or dead 

organic matter above the ground surface (excluding roots etc.) and is usually expressed in tonnes 

per hectare or t/ha (Bombelli et al., 2009).  Woody canopy cover (i.e. the percentage area occupied 

by woody canopy) is a key parameter used in monitoring vegetation change and can be combined 

with tree height to estimate approximate AGB (Colgan et al., 2012).  Lastly, total woody canopy 
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volume indicates the volume of vegetation present within the vertical profile and serves as an 

alternative proxy for biomass density and distribution.  Further, these metrics, both 2D (CC) or 3D 

(TCV and AGB) in nature can provide useful information regarding the prediction of density, habitat 

requirements and biodiversity assessments for conservation (Bradbury et al., 2005; Jung et al., 2012; 

Mueller et al., 2010).   

 

Remote Sensing has been used in numerous studies as the preferred tool for quantifying and 

mapping woody structural features due mainly to its superior information gathering capabilities, 

wide spatial coverage, cost effectiveness and revisit capacity (Lu, 2006).  In contrast to the limited 

spatial coverage of ground-based approaches, remote sensing also has the ability to sense the high 

spatio-temporal variability of e.g. woody canopy height, cover and biomass, as well as species 

diversity and phenological status – a defining but challenging set of characteristics typical of African 

savannahs (Archibald and Scholes, 2007; Cho et al., 2012b; Mills et al., 2006).  Woody structural 

parameters have been successfully mapped using passive optical data at fine and coarse spatial 

scales (Boggs, 2010; Castillo-Santiago et al., 2010) by making use of textural (the local variance of an 

image related to its spatial resolution – (Nichol and Sarker, 2011)) and/or spectral (e.g. spectral 

vegetation indices related to vegetation structure – (Johansen and Phinn, 2006)) approaches.  

Passive optical data are, however, adversely affected by high spectral variation, which refers to the 

change in spectral properties or character of a target, due to seasonal dynamics, clouds and haze. 

These spectral variations are prevalent in the rainy season of African summers with veld fires in the 

dry winter, and in shadowed areas, which results from terrain topography and tree canopies, at fine 

resolutions and in mixed wood-grass pixels at the medium and coarser resolutions.  Active remote 

sensing systems such as Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR), on 

the other hand, may be more effective in quantifying the savannah woody component because of 

their ability to sense within-canopy properties of the vegetation and its insensitivity to atmosphere 

and clouds and shadows. 

 

Airborne LiDAR systems provide high-resolution geo-located measurements of a tree’s vertical 

structure (upper and lower storey) and the ground elevations beneath dense canopies. Although 

airborne LiDAR provides detailed tree structural products it relies on the availability of aircraft 

infrastructure, which is not always available in Africa.  Satellite LiDAR is also currently not available. 

On the other hand, SAR systems provide backscatter measurements that are sensitive to forest 

spatial structure and standing woody biomass due to its sensitivity to canopy density and geometry 
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(Mitchard et al., 2011; Sun et al., 2011).  A SAR-based approach offers an all-weather capacity, when 

using SAR intensity, to map relatively large extents of the woody component, which cannot be easily 

achieved with airborne LiDAR (Mitchard et al., 2011).      

 

Polarization, which refers to the orientation of the emitted and received signal, and frequency of 

SAR data play important roles in sensing vegetation structure.  Multi-polarized SAR systems emit and 

receive in HH, HV, VH and/or VV with H referring to a horizontal wave orientation and V referring to 

a vertical wave orientation.  This allows the more complete characterisation of the scattering 

properties of ground targets which in turn, enables the extraction of greater structural information.  

For instance, HV or VH are better linked to canopy structure because of the volumetric water 

content in the canopies architecture (Schmullius and Evans, 1997) which brings about volumetric 

scattering within the canopy and its “random” scatterers, which tends to change the polarization of 

the emitted wave (e.g. H to V or V to H).  The various components of a particular target’s structure 

can be sensed differently with SAR depending on the frequency or wavelength of the sensor being 

utilized.  For example when sensing vegetation, the signal of shorter SAR wavelengths, such as X-

band and C-band, interact with the fine leaf and branch elements of the vegetation resulting in 

canopy level backscattering with limited signal penetration.  The signal of longer SAR wavelengths, 

such as P-band and L-band, on the other hand, can penetrate deeper into the vegetation with 

backscatter resulting from signal interactions with larger vegetation elements such as major 

branches and trunks (Mitchard et al., 2009; Vollrath, 2010).  Consequently, the L-band frequency has 

been proven in numerous studies to be the most preferred (Carreiras et al., 2013; Mitchard et al., 

2012; Ryan et al., 2012; Santos et al., 2002) and the most effective (Lucas et al., 2006a) in estimating 

woody structure, particularly AGB with a higher saturation level at 80-85 tonnes per hectare 

compared to the shorter wavelengths, in forested and savannah woodland environments. However, 

since woodlands and savannahs possess a sporadic combination of fine and large woody elements 

within individual tree canopies, and a heterogeneous distribution of large trees and smaller shrubs 

throughout the landscape, we hypothesized that combining the capabilities of these different SAR 

frequencies under a multi-sensor approach may enhance the sensing of the savannah woody 

element (Schmullius and Evans, 1997).  Various studies have ‘fused’ or integrated multiple SAR 

frequency and polarimetric datasets for modelling and mapping of tree structural attributes across 

various environments from the coniferous temperate forests of North America to mangrove forests 

and to the open-forest woodlands of Australia (Collins et al., 2009; Mougin et al., 1999; Tsui et al., 

2012).  Despite the success achieved in these various studies via combining different SAR 

wavelengths (Mougin et al., 1999; Tsui et al., 2012), the combined strength of both shorter and 
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longer SAR frequency sensor technologies, however, have yet to be assessed in the heterogeneous 

and complex Southern African savannah environment.       

 

This study sought to test and compare the accuracy of modelling woody above ground biomass 

(AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs using a 

combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) radar 

datasets.  Training and validation data were derived from airborne LiDAR data to evaluate the SAR 

modelling accuracies.  The research questions were: 

1) How do various SAR frequencies (X- or C- or L-band) perform in predicting woody structural 

parameters (CC, TCV and AGB) in southern African savannahs? 

2) Does combining SAR backscatter through different frequency combinations or scenarios 

(X+C or X+L or C+L band or X+C+L-band) improve the predictions of the various woody 

structural parameters and by how much? 

We hypothesized that the combination of shorter wavelength, ~3cm X-band and 

~5cm C-band, with longer wavelength, ~23cm L-band, SAR datasets, in a modelling 

approach, will yield an improved assessment of woody structure. This idea is based on the 

assumption that X- and C-band SAR signals interact with the finer woody structural 

constituents such as leaves and finer branchlets, typical of the shrubby/thicket layer, while 

the L-band SAR signal interact with the major tree structural components such as trunk and 

main branches which are typical of forested areas.   

3) Finally, through the examination of the patterns of the prediction error, within the 

landscape for the different SAR frequency models, can the hypothesis, proposed above, be 

confirmed?  

More specifically, the investigation of the interactions of the different SAR 

frequencies, and their possible combinations, across the different vegetation patterning and 

structural classes, such as grasslands, thickets and forests, will pin-point the effective 

application of the different SAR frequencies and their possible combinations in Southern 

African savannah landscapes. 

The study is broken down into various sections.  Section 3.3 describes the study area under 

investigation.  Section 3.4 and subsections focus on the material and methodology which outlines 

the remote sensing datasets used, field datasets collected, LiDAR and SAR pre-processing and metric 

generation, modelling protocols, mapping and finally validation and error assessment. Section 3.5 
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describes the modelling, mapping and error results while sections 3.6 and 3.7 discuss the main study 

outcomes and concluding remarks, respectively.  

 

3.3 Study Area 
 

The Kruger National Park regional study area is located in the Lowveld region of north-eastern South 

Africa, within the savannah biome (31°00’ to 31°50’ E longitude, 24°33’ to 25°00’ S latitude).  The 

study area included portions of the southern Kruger National Park, the neighbouring Sabi Sands 

Private Game Reserve, and the densely populated Bushbuckridge Municipal District (BBR) (Figure 

3.1).   The area is characterised by short, dry winters and a wet summer with an annual precipitation 

varying from 235mm and 1000mm, and is representative of southern Africa savannahs.  This rainfall 

range, together with grazing pressures, fire, geology, mega-herbivore activity and anthropogenic use 

(fuelwood collection and bush clearing for cultivation) govern the vegetation structure present in 

this biome.  The vegetation comprise particularly of Clay Thornbush, Mixed Bushveld and Sweet and 

Sour Lowveld Bushveld (Mucina and Rutherford, 2006).  The woody vegetation in the region is 

generally characterized as open forest with a canopy cover ranging from 20-60%, a predominant 

height range of 2 to 5m and biomass below 60 t/ha (Mathieu et al., 2013).  The Sabi Sands Wildetuin 

consists of a group of private owners with a strong eco-tourism based approach to conservation with 

the Kruger National Park being more geared towards large-scale public conservation via the inclusion 

of large tracts of land for protection.  The communal rangelands of BBR are primarily utilised for 

livestock ranching, fuelwood harvesting and various non-commercial farming practices (Wessels et 

al., 2013, 2011).  This study region was selected to represent the differences in the woody structure 

(e.g. riparian zones, dense shrubs, sparse tall trees etc.) and spatial patterns of the different land 

management and disturbance regimes (communal rangeland management, private game reserve 

and national park management), varying vegetation types (lowveld savannah and mixed forest fringe 

species) and geological substrates (granite and gabbro). 
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Figure 3.1: The Southern Kruger National Park region and the spatial coverage of all implemented remote sensing datasets.  The solid red line indicates the coverage of the 2009 
RADARSAT-2 scenes while the solid gold line indicates the two scenes of the 2010 ALOS PALSAR dual-pol imagery. The dashed grey line indicates the five scenes of the 2012 TerraSAR-X 
StripMap imagery. The shaded black areas represent the coverage of the 2012 CAO LiDAR sensor tree cover product. The red squares indicate the 38 sample sites where field data 
collections took place. 
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3.4 Materials and Methodology 
 
The general methodology sought to develop woody structural metric models between collected field 

data and airborne LiDAR data for detailed localised metric maps (25m spatial resolution to match the 

field data plots). These LiDAR derived metric products (CC, TCV and AGB) were then used as the 

ground truth for model up-scaling at the regional scale using multi-frequency SAR intensity 

backscatter datasets (X-, C- and L-band).  This was achieved by integrating the LiDAR and SAR 

datasets with the use of a sampling grid and the extracted values were subjected to modelling using 

the Random Forest (RF) algorithm (Breiman, 2001).  Different SAR frequencies were modelled in the 

form of various SAR frequency combination scenarios.  The SAR-derived woody structural metrics 

were then validated using the LiDAR-derived woody structural metrics (CC, TCV and AGB) to 

ascertain error statistics and error distribution.      

 

3.4.1 Remote sensing data 

 

Five TerraSAR-X X-band dual-polarized (HH and HV), four RADARSAT-2 C-band quad-polarized (HH, 

VV, VH, and HV) and two ALOS PALSAR L-band dual-polarized (HH and HV) SAR intensity datasets 

(summarized in Table 3.1) were acquired to cover the study transect shown in Figure 3.1.  Only dual 

polarized SAR data (HH and HV) was used because the HV polarization parameter is known to better 

model the structure of woody vegetation through volumetric backscatter interactions, while HH is 

also reported as been sensitive to structure although to a lesser extent than the cross-polarized 

band (Collins et al., 2009; Mathieu et al., 2013; Mitchard et al., 2009).  Further, HH/HV was the 

common polarization configuration available for all three sensors.  Winter seasonal SAR acquisitions 

were chosen because winter in the Lowveld is the dry season and exhibits the lowest level of 

moisture in the landscape.  The tree leaves are off along with dry soil and dry grasses.  This reduced 

the chance of interference of the SAR signal with variable moisture content while allowing a greater 

penetration of microwaves into the canopies.  In the same region (Mathieu et al., 2013) reported the 

best retrieval of woody structural parameters with RADARSAT-2 data acquired in winter. An 

extensive airborne LiDAR dataset (total coverage of c.a. 63000 ha) were acquired for this study 

(Figure 3.1) by the Carnegie Airborne Observatory-2 AToMS sensor during April-May 2012.  For our 

datasets, the LiDAR was operated at a pulse repetition frequency of 50 kHz with a 0.56m laser spot 

spacing and an average point density of 6.4 points per m2 from a flying altitude of 1000m above 

ground level (Asner et al., 2012). In comparison with the LiDAR dataset, the SAR images were 

acquired during the winter 2009 (RADARSAT-2), 2010 (ALOS PALSAR), and 2012 (TerraSAR-X). 
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Unfortunately, the last ALOS PALSAR winter scenes were acquired during 2010 in the study area and 

no RADARSAT imagery were available closer to 2012. 

 

3.4.2 Field data 

 

Field data were collected in April – May, and November – December 2012 across 38 sampling sites 

(in Figure 3.1).  These sites provided ground truth data to model and validate the LiDAR derived 

woody structural metric products to be used to model the SAR-based woody structural metrics.  

Ground sampling sites were located to represent the diversity in woody structure of the different 

vegetation types, management regimes, and geological substrates mentioned above.  Each site 

covered a 100m X 100m area and vegetation measurements were taken from four clustered 25m X 

25m sampling plots (with minimum distance > 50m, identified from geostatistic range assessments, 

(Wessels et al., 2011)), located at each of the four corners of the site (Figure 3.2).  The 100m X 100m 

sites were positioned using high resolution imagery from Google Earth as well as earlier LiDAR 

datasets acquired in 2008 – 2010 to ensure that they are representative of the surrounding 

landscape. 

 

Field AGB estimates were derived from height and stem diameter measurements using an allometric 

biomass estimation equation ((Colgan et al., 2013) – Equation 3.1 in Appendix 3A).  The allometric 

equation was developed following destructive harvesting of 17 savannah tree species present in the 

study area (Number of trees sampled =707; R2 = 0.98; relative Root Square Error = 52%; ranging from 

0.2 – 4531 kg per tree, (Colgan et al., 2013)). Tree height was measured using a height pole and Laser 

vertex/rangefinder, while stem diameter was measured using callipers and Diameter above Breast 

Height (DBH) tape.  Stem diameter was measured at 10cm above the ground and for multi-stemmed 

plants every individual stem was measured as separate individuals (e.g. species such as 

Dichrostachys cinerea).  

 

Due to logistical and time constrains associated with measuring every tree within the sample plot 

two main stem diameter ‘zones’ were identified inside the site to increase sampling efficiency while 

still yielding representative quantities of biomass estimates (Figure 3.2).  The first diameter zone was 

the 25m X 25m plot where all trees with a stem diameter of 5cm and greater were recorded, 

provided that they had a height of 1.5m or greater, and the second diameter zone was a 10m X 10m 

area positioned at the inner corner of the 25m X 25m plot where all trees with a stem diameter 
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between 3 and 5cm and greater than 1.5m were also recorded. This allowed catering for a few sites, 

mostly in the communal lands, where most of the AGB consisted of dense stands of multi-stemmed 

plants (coppicing) with low DBH (Matsika et al., 2012).  A total of 152 25m X 25m biomass plots were 

sampled.  Individual tree level AGB was derived using Colgan’s allometric equation (Colgan et al., 

2013).  AGB was then calculated for each diameter zone by summing the relevant tree level AGB 

values which was then subjected to particular AGB up-scaling factor (Equation 3.2 in Appendix 3B).  

The complete plot level AGB was calculated by summing all the corrected AGB subtotals for the stem 

diameter zones.    

 

One or two sampling plots were chosen for most sites for CC data collection – the north east 25m X 

25m plot and/or the south west 25m X 25m plot (DBH zone 2 – Figure 3.2).  CC values were 

estimated following the vertical densitometer protocol (Ko et al., 2009; Stumpf, 1993), conceptually 

a point intercept sampling approach, and one of the most time-efficient techniques to implement.  

The point intercept method is a small angle approach well suited to measure the vertical canopy 

cover – i.e. vertical projection of canopy foliage onto a horizontal surface –, and as such is the most 

directly comparable with cover derived from remote sensing imagery such as LiDAR (Fiala et al., 

2006).  The sampling procedure involved laying down transects along a fixed 25m measuring tape 

orientated from north to south and moving from west to east within the subplot at 2m increments 

(Figure 3.2).  Along these transects, the presence of canopy cover was determined using a 5m pole 

placed vertically above each sampled points every 2m along the transects.  At each sampled point 

the presence of cover was coded as Y.  For plot level canopy cover, in terms of percentage at the 

25m X 25m scale, the CC presence and absence data were subjected to the formula below (Equation 

3.3):   

Plot level CC (%) = (ƩY/169) X 100      Equation 3.3 

Where Y represents the presence of cover data.  The value 169 represents the total number of 

sampling points in a 25m X 25m plot conducted at 2m sampling increments.  A total of 37 (25m X 

25m) plots of CC were recorded during the field campaign.     
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Figure 3.2: Ground sampling design including ground tree biomass and tree cover collection protocols (50m spacing 
between sample plots coincide with the auto-correlation distance – refer to data integration of section 3.4.5) 
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3.4.3 LiDAR data processing, woody structural metrics and validation 

 

Two LiDAR datasets were utilised to derive the LiDAR tree structure metrics.  For the first dataset, 

~1m Digital Elevation Models (DEM) and top-of-canopy surface models (CSM) were created by 

processing the raw LiDAR point clouds according to the steps outlined in (Asner et al., 2012).  Canopy 

height models (CHM, pixel size of 1.12m) were computed by subtracting the DEM from the CSM.  For 

the second dataset, the raw point cloud data were further processed to pseudo waveforms, in which 

the LiDAR hits or returns falling within a cube placed above the ground were binned into volumetric 

pixels (voxels of 5m X 5m horizontal X 1m vertical) and weighted relative to the total number of hits 

within the vertical column (the result – LiDAR slicer data) (Asner et al., 2009). 

 

Three woody structural metrics were derived from the processed LiDAR datasets. The derivation of 

the three metrics excluded all woody vegetation below a height threshold of 0.5m as to exclude the 

grassy savannah component.  The Carnegie Airborne Observatory (CAO) LiDAR data were validated 

against field height measurements of approximately 800 trees.  There was a strong relationship (R2 = 

0.93, p-value < 0.001) but a fraction of woody plants below 1.5-1.7m were not detected by the LiDAR 

(Wessels et al., 2011).  This would introduce a source of error in the modelling process.  However, 

since our objective was to investigate the potential contribution of short microwaves (X-band and/or 

C-band) in detecting the shrubby layer we still preferred to use a 0.5m height threshold over a higher 

height threshold at 1.5m.  In addition, all metric products have been resampled and computed at the 

25m spatial resolution to correspond with the ground data measurements (plot size of 25m X 25m) 

collected in the field for metric validation.  These metrics are described in detail below: 

1) Woody Canopy Cover (CC) is defined as the area vertically projected on a horizontal plane by 

woody plant canopies (Jennings et al., 1999).  The metric was created by first applying a data 

mask to the LiDAR CHM image in order to create a spatial array of 0s (no woody canopy) and 

1s (presence of a woody canopy).  A percentage woody canopy cover distribution image 

(summing all the 1’s and dividing by 625 and then percentage) was calculated at a spatial 

resolution of 25m.  This metric was validated against the 37 25m X 25m CC ground truth 

plots (Figure 3.3).  Results yielded a strong, positive, unbiased relationship (R2=0.79) with a 

low Root Mean Squared Error (RMSE) (12.4%) and Standard Error of Prediction (SEP) (23%).   
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2) Total Canopy Volume (TCV) is a metric which approximates the area under the curve of the 

pseudo waveform (i.e. a plot displaying the LiDAR return frequency-by-height; (Muss et al., 

2011)) and indicates the volume occupied by vegetation matter within the vertical profile.  

The metric was computed from the pseudo waveform LiDAR data (i.e. voxel) by the addition 

of the within-canopy LiDAR returns at different heights or slices (incrementally increasing by 

1m) above 0.5m (Asner et al., 2009), and the value was converted to hectare.  The TCV 

LiDAR metric was not validated with ground collected data as a suitable field sampling 

approach was yet to be defined for this type of savannah environment.  However, in 

(Mathieu et al., 2013), the TCV metric, in comparison to all the other metrics, was best 

correlated with RADARSAT-2 backscatter and was thus considered a suitable metric in this 

study. 

   

3) Above ground woody biomass (AGB) is defined as the mass of live organic matter present 

above the ground surface (Bombelli et al., 2009) and is expressed in this study as tonnes per 

hectare (t/ha).  The AGB LiDAR derived metric was modelled using a linear regression, 

ground estimated AGB (within 25m field plots) and a simple HGT X CC LiDAR metric (where 

Figure 3.3: Validation results of field-measured woody Canopy Cover (CC) versus LiDAR derived CC (above 0.5m height, 
Number of observations =37) 
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HGT is the mean top-of-canopy height and CC is the canopy cover of a 25m pixel resolution) 

(Colgan et al., 2012).  65% of the 152 ground estimated AGB was used for model 

development while the remaining 35% was used for model validation.  The validation results 

of ground versus LiDAR AGB (Figure 3.4) indicate a moderate positive correlation (R2=0.63).  

With the use of allometric equations from (Colgan et al., 2013) for ground AGB estimation, 

the RMSE (19.2 t/ha) and SEP (63.8%) is, however, high with underestimation at high 

biomass levels by the LiDAR.  Due to the intensive and time consuming nature of sampling 

these very high biomass plots, an insufficient number of these plots may have been sampled 

to suitably train the model which thus led to such a deviation from the 1:1 line at the high 

biomass levels in Figure 3.4.  In the absence of better biomass estimates, the LiDAR derived 

AGB metric was deemed sufficient for the modelling and validation. 

 

 

3.4.4 SAR data and processing 

 

The SAR intensity images (X-, C- and L-band) were pre-processed according to the following steps: 

multi-looking, radiometric calibration (conversion of raw digital numbers into sigma naught (σ0) 

backscatter values), geocoding, topographic normalization of the backscatter and filtering.  These 

steps were compiled in the form of scripts in GAMMATM radar processing software (Gamma Remote 

Sensing, Copyright © 2000-2011) for the Dual Polarised TerraSAR-X X-band (StripMap, Level 1b, 

Figure 3.4: Validation results of field-measured Above Ground Biomass (AGB) versus LiDAR derived AGB (above 0.5m height, 
Number of observations =53) 
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Multi Look Ground Range Detected), Fine Quad Polarised RADARSAT-2 C-band (Single Look Complex) 

and Dual Polarised ALOS PALSAR L-band (Level 1.1) data.  A 20m Digital Elevation Model (DEM) and a 

90m Shuttle Radar Topography Mission (STRM) DEM were both used for the geocoding and 

orthorectification of the X-, C- and L-band SAR imagery.  The 20m DEM was computed from South 

African 1:50 000 scale topographic maps (20m digital contours, spot-heights, coastline and inland 

water area data – ComputaMaps; www.computamaps.com) with Root Mean Square (RMS) 

planimetric error of 15.24m and a total vertical RMS error of 6.8m.  The 90m (3 arc sec) STRM DEM 

was gap-filled using Aster Global Digital Elevation Map data and was derived from 20m interval 

contour lines extracted from 1:50 000 topographical maps.  An automated hydrological correction 

was applied to correct inaccuracies along river lines and tributaries (Weepener et al., 2011).  The 

multi-looking factors and filtering were chosen to best minimize the effect of speckle while not 

deteriorating the spatial detail captured by the sensors. 4:4, 1:5 and 2:8 range and azimuth multi-

looking factors were implemented for the X-, C- and L-band datasets respectively.  All datasets were 

resampled, using a bicubic-log spline interpolation function, to their final map geometry resolutions.  

This was achieved by applying a DEM oversampling factor (DEM resolution / Final image resolution) 

to the multi-looked SAR datasets which was set in the “gc_map” module under the GAMMA 

Differential Interferometry and Geocoding package.  The original pixel size, multi-looking factors 

used in the pre-processing, modified pixel size (after multi-looking) and the final pixel size (i.e. map 

geometry) of the different SAR datasets were summarised in Table 3.2.  Finally, a Lee filter (3 pixel X 

3 pixel filtering window) (Lee, 1980) was applied to the images.  It is important to note that the full 

extents varied for the different SAR datasets due to sensor coverage programming and specifications 

(Figure 3.1). 

 
Table 3.1: SAR and LiDAR datasets acquired and utilised for the modelling of woody structural metrics  

Imagery Sensor Mode 
Incidence 

angle 
Acquisition 

time Season 

1 

TerraSAR-X 
X-band ß 

StripMap Dual 
Polarized (HH & 

HV) 

38.1-39.3° 08/09/2012 

Late Winter 
2012 

2 21.3-22.8° 23/08/2012 

3 37.2-38.4° 28/08/2012 

4 36.2-37.4° 19/09/2012 

5 39.1-40.2° 30/09/2012 

1 

RADARSAT-2 
C-band ¥ 

Quad Polarized 
(HH, HV, VH, 

VV) but only HH 
and HV used 

34.4 - 36.0° 13/08/2009 

Winter 2009 
2 39.3 - 40.1° 06/08/2009 

3 32.4 - 34.0° 06/09/2009 

4 37.4 - 38.9° 30/08/2009 

1 ALOS PALSAR 
L-band σ 

Dual Polarized 
(HH & HV) 

34.3° 
14/08/2010 

Winter 2010 
2 31/08/2010 

AGB (kg) Product 
CAO LiDAR Ф 

 

Discrete 
Footprint 

 

Nadir 
 

1/04/2012-
24/05/2012 

End summer 
2012 

CC (%) Product 
TCV Product 

ß: http://www.geoimage.com.au/satellite/TerraSar ; ¥: http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-

tableau.asp ; σ: http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm ; Ф: Asner et al., (2012) 

http://www.computamaps.com/
http://www.geoimage.com.au/satellite/TerraSar
http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm
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Table 3.2: Original, modified and final SAR pixel size changes during multi-looking and pre-processing steps 

 
 

3.4.5 Data integration, modelling protocols and mapping 

 

Before modelling could be conducted the different datasets had to be processed to a common 

spatial grid.  A sampling grid strategy was implemented as the relationship between dependent 

(LiDAR) and independent (SAR backscatter intensity) datasets were not evident on a pixel-by-pixel 

basis mainly due to issues of SAR speckle and pixel-level inaccuracy of co-registration between 

datasets.  This strategy also served as a means of extracting information from various remote 

sensing datasets of varying spatial resolutions (see Table 3.1 and Table 3.2) without the need for 

pixel level fusion procedures.  A regular spatial grid made up of 105m resolution cells at 50m 

distance spacing was created in QGIS 2.2 (Quantum GIS, Copyright © 2004-2014) and applied over 

the datasets.  The choice of the cell size was informed by (Mathieu et al., 2013), who tested various 

grid sizes ranging from 15m and 495m with RADARSAT-2 C-band data, and reported the 105m grid 

size as the resolution which provided the best trade-off between the finest spatial 

resolution/mapping scale and strongest correlation with the LiDAR woody structure parameters.  

Similar results (50-125m grid size) were reported with ALOS PALSAR L-band data in the region 

(Urbazaev et al., 2015).  The 50m distance spacing between the grid cells was chosen to avoid 

autocorrelation effects arising from the inherent distribution of the vegetation structural parameters 

across the landscape (Wessels et al., 2011).  Informal settlements, the main roads and water 

surfaces such as rivers and dams were masked and excluded from the analysis.  Mean values within 

each cell were extracted for the SAR (X-HH, X-HV, C-HH, C-HV, L-HH and L-HV) and LiDAR metric 

datasets (CC, TCV and AGB).  Due to the differences in spatial coverage of the multi-frequency SAR 

datasets in relation to the LiDAR coverage (Figure 3.1), a varying number of data records (21170 

records for X-band, 17980 records for C-band and 21467 records for L-band) were obtained during 

aggregation to the 105m grid.  Various data mining, regression and machine learning algorithms 

(linear regression, support vector machines, REP decision trees, artificial neural network and random 

forest) were tested in (Naidoo et al., 2014) and  Random Forest (Breiman, 2001) was found to be the 

SAR Dataset 
Original Pixel Size 

[m] (Range X 
Azimuth) 

Multi-Looking 
factors (no. Looks 

for Range X 
Azimuth) 

Modified Pixel 
Size [m] (after 
multi-looking) 

Final Pixel Size 
[m] (map 

geometry)Ф 

ALOS PALSAR FBD 9.37 X 3.23 2 X 8  18.74 X 25.84 12.5 X 12.5 

RADARSAT-2 SLC 4.70 X 5.10 1 X 1  4.70 X 5.10  5 X 5 

TerraSAR-X StripMap MGD 2.75 X 2.75 4 X 4  11 X 11 12.5 X 12.5 

Ф Resolutions used in the modelling stage but all were resampled to 12.5m for mapping 
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most robust and efficient, in terms of running time and accuracies (Ismail et al., 2010; Prasad et al., 

2006).  The article of (Naidoo et al., 2014) is available in Appendix 3C in its entirety.  Unlike other 

traditional and fast learning decision trees (e.g. Classification And Regression Trees or CART), RF is 

insensitive to small changes in the training datasets and are not prone to overfitting (Ismail et al., 

2010; Prasad et al., 2006).  Additionally, RF is less complex and less computer intensive in 

comparison to the high levels of customisation required for Artificial Neural Networks (ANN) and the 

long ‘learning’ or training times for Support Vector Machines (SVM) (Anguita et al., 2010). RF 

requires two main user-defined inputs – the number of trees built in the ‘forest’ or ‘ntree’ and the 

number of possible splitting variables for each node or ‘mtry’ (Ismail et al., 2010; Prasad et al., 2006).   

 

RF was applied, using R rattle data mining software (Togaware Pty Ltd., Copyright © 2006-2014), to 

the data with 35% of the data being used for model training and the remaining 65% being used for 

model validation.  For the modelling process, the SAR frequency datasets were selected as the input 

(independent) variables while the LiDAR derived metrics were selected as the target (dependent) 

variables.  The random forest models were built using the default setting parameters (‘ntrees’ = 500 

and ‘mtry’ = √# SAR predictors) and the trees were allowed to grow without pruning. Predicted 

versus observed scatterplots and validation scores were outputted to calculate the model accuracy 

statistics.  The coefficient of determination (R²), Root Mean Square Error (RMSE) and Standard Error 

of Prediction (SEP in % which also known as the Relative RMSE) were computed and the modelling 

algorithm accuracies were compared for the individual SAR scenarios.  RMSE and SEP are considered 

to be more informative in assessing model performance than R2 and its derivatives (e.g. adjusted R2).  

Seven modelling SAR scenarios (X-band only, C-band only, L-band only, X+C-band, X+L-band, C+L-

band and X+C+L-band) were chosen to investigate the relationships between the individual SAR 

frequencies alone and different multi-frequency SAR combinations correlated against the three 

LiDAR metrics.   

 

The best performing RF model, for each woody structural metric, was applied to the relevant SAR 

imagery, which were all clipped to a common coverage, resampled (pixel aggregate) to a common 

resolution of 12.5m to match the coarsest L-band and stacked, by using a mapping script.  This script 

was developed in the R statistical software (Version 2.15.2, The R Foundation for Statistical 

Computing, Copyright © 2012) which utilised the combination of the ‘ModelMap’, ‘Random Forest’ 

and Geospatial Data Abstraction Library (GDAL) modules.  The map products were imported into 

ArcMap 10.1 (ESRI, Copyright© 1995-2014) and displayed in discrete class intervals (total of 6 
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classes) to best illustrate the tree structural metric distribution representative of the entire modelled 

ranges.   

3.4.6 Error assessment 

 

The purpose of this section was to investigate the error produced by the different SAR models under 

varying tree structural scenarios, and to ascertain whether spatial patterns in error were associated 

with specific vegetation structural cohort types (e.g. grassland versus woodland conditions etc.).  

Error statistics and maps were created by subtracting the LiDAR-derived and SAR-derived woody 

(LiDAR – SAR) structural metric maps for TCV, AGB and CC.  The SAR derived metric maps were 

resampled to 25m, via pixel aggregate, to match the LiDAR metric spatial resolution first before the 

subtraction.  The error statistics for all metrics were documented but the TCV error maps were 

chosen for presentation over CC due to the metric’s three dimensional properties which would best 

capture the SAR backscatter interactions.  AGB error maps, however,  were not displayed due to the 

high error in the dense forest canopies (plots not displayed but supported by the error observed 

between the ground AGB and LiDAR derived AGB in Figure 3.4, before AGB up-scaling to the SAR).  

For ease of interpretation of the error statistics and maps, the error values were grouped into 5 

main groups using intervals which best covered the error range observed in the different metrics.  

These groups were major overestimation, minor overestimation, negligible error, minor 

underestimation and major underestimation. 

 

Additionally, we assessed the following main vegetation structural cohort types typical of savannah 

landscapes: low cover and variable tree height (e.g. sparse veld), high cover and high tree height 

(e.g. forests) and high cover and low tree height (e.g. bush encroaching shrubs).  The combined use 

of CC and vegetation height metrics best described these structural cohorts than the use of AGB 

and/or TCV metrics.  Box and whisker plots were created from the mean LiDAR-SAR difference 

values (i.e. prediction error), which were extracted from the same sampling (105m) grid used in the 

predictor variable extraction process, and interpreted.  A total of 17559 difference pixel values were 

used to generate the boxplots with the outlier values being removed.  Similar error assessment 

analyses were conducted over different landscape geologies (e.g. granite versus gabbro) and 

topographic features (e.g. crest, slope and valleys) but the error distribution patterns were fairly 

similar without any distinct patterns to comment on.  The complete methodology have been 

summarized and compiled in the form a methodological schema (Figure 3.5). 
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Figure 3.5: Methodology schema describing the data integration and modelling process 
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3.5 Results 

3.5.1 Modelling Accuracy Assessment 

 

Table 3.3: Woody Canopy Cover (CC), Total Canopy Volume (TCV) and Above Ground Biomass (AGB) parameter 
modelling accuracy assessment (validation) results obtained from the Random Forest algorithm according to seven SAR 
frequency scenarios 

  CC (%) TCV (unitless per hectare) AGB (tonnes per hectare) 

SAR Frequency R² RMSE (SEP %) R² RMSE (SEP %) R² RMSE (SEP %) 

X-band only 0.34 18.12 (50.87) 0.35 35534.50 (33.79) 0.32 10.88 (59.82) 

C-band only 0.61 13.20 (38.50) 0.66 24731.06 (24.07) 0.60 7.81 (43.66) 

L-band only 0.77 10.59 (29.64) 0.79 19902.79 (18.88) 0.78 6.05 (32.90) 

X+C-band 0.69 11.71 (33.94) 0.72 22243.64 (21.59) 0.67 7.19 (40.33) 

X+L-band 0.80 9.90 (27.78) 0.82 18609.04 (17.70) 0.81 5.70 (31.35) 

C+L-band 0.81 9.23 (26.94) 0.83 17236.50 (16.77) 0.81 5.45 (30.44) 

X+C+L-band 0.83 8.76 (25.40) 0.85 16443.57 (15.96) 0.83 5.20 (29.18) 

Datasets split into 35% Training and 65% Validation for modelling 
 

 

Table 3.3 illustrates the validation performances of the different SAR predictors, under various multi-

frequency SAR scenarios, in predicting the three woody structural LiDAR metrics (CC, TCV and AGB).  

When examining the individual SAR frequency performances for modelling all three metrics, the 

longer wavelength L-band PALSAR predictors consistently yielded higher accuracies in comparison to 

the shorter wavelength predictors of both X-band TerraSAR-X and C-band Radarsat-2.  The X-band 

TerraSAR-X predictors by far consistently produced the lowest modelling accuracies.  The 

combination of the short wavelength SAR datasets (X- and C-band) improved the tree structural 

modelling over the individual dataset accuracies results but never produced accuracies greater than 

the use of the L-band dataset alone.  The combined use of all three SAR frequencies (X-, C- and L-

band) data in the modelling process consistently yielded the highest accuracies for modelling all 

three structural metrics (refer to the highlighted results for each metric in Table 3.3).  In comparison 

to the results for L-band alone, there was a relative improvement of 10% or greater for all three 

structural metrics in modelling accuracies when the shorter wavelength datasets (X- and C-band) 

were added.  However, the inclusion of the L-band frequency contributed the most to the overall 

accuracies.  Overall, the three metrics were modelled at high accuracies under the multi-frequency 

scenario (X-, C- and L-band) and with similar patterns when considering the various individual 

scenarios. 
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Figure 3.6: Observed versus Predicted Total woody Canopy Volume (TCV) scatter density plots (A-G) (dotted line is 1:1) 

 



88 
 

Figures 3.6A-G illustrates, by way of the 1:1 line, the extent of over-prediction and under-prediction 

by the models which is gradually reduced towards the multi-frequency scenarios.  The TCV results 

were chosen for representation in Figures 3.6A-G as the metric yielded the highest overall modelled 

accuracies and the remaining metrics (CC and AGB) displayed similar trends throughout the different 

SAR frequency combinations.  For TCV (Figures 3.6A-G), general over-prediction is observed at values 

less than ±100000 (no unit) TCV while general under-prediction is observed at values greater than 

this threshold. 

   

3.5.2 Tree Structure Metric and Error Maps  

 

All three metrics were mapped for the study area (Figure 3.7i-iii) using the multi-frequency SAR 

models (X+C+L-band).  Figures 3.7(i-iii) illustrate the spatial distributions of AGB (Figure 3.7i), TCV 

(Figure 3.7ii) and CC (Figure 3.7iii) which overall were very similar with high and low AGB and TCV 

regions coinciding with high and low CC.  The spatial distribution of these metrics, coupled with the 

authors’ knowledge and observations, will be elaborated upon in detail in the discussion section 

(3.6).  Figure 3.8 shows the AGB vs. CC scatterplot for AOI ‘A’ (Figure 3.7), a dense forested site. The 

point cloud generally displays a high correlation between the 2D (CC) and 3D (AGB) variable, but also 

a triangular shape with an increasing base as the CC increases up to 75% (highlight by the white 

labels in figure 3.8).  Hence, dense cover conditions (CC>70%) are characterized by AGB values 

varying from moderate (35-40 t/ha) to high (>60 t/ha), corresponding to a range of tree sizes from 

coppicing thicket and medium sized tree bush encroachment to taller tree forests. 
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Figure 3.7: X+C+L SAR derived tree structural metric maps, for i) Above Ground Biomass (AGB), ii) Total woody Canopy 
Volume (TCV) and iii) woody Canopy Cover (CC), using random forest. Letters A-F represents key areas of interest for 
discussion (for all three metrics). The black boxes represent the rough extents of the LiDAR-SAR CC scenario difference 
maps for Area of Interests ‘A’ and ‘C’. 
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Examples of TCV error maps for dense forested (black box near ‘A’ in Figure 3.7iii) and sparse gabbro 

(black box over ‘C’ in Figure 3.7iii) sites were presented in Figures 3.9 and 3.10, respectively.  Total 

CC, TCV and AGB error statistics were calculated to investigate the contributions of the four main 

SAR frequencies scenarios (X-band, C-band, L-band and X+C+L-band) to the modelling and mapping 

error (Table 3.4).  

 

 

 

 

 

Low point density High point density 

Tall tree 

forests 

Coppicing 

thickets 

Figure 3.8: Scatterplot of Above Ground Biomass (AGB), y-axis, versus woody Canopy Cover (CC), x-axis, under dense cover 
conditions (plotted from pixels extracted from the Area of Interest ‘A’) 
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Table 3.4: Total woody Canopy Cover (CC), Total Canopy Volume (TCV) and Above Ground Biomass (AGB) % error across 
the entire LiDAR-SAR coverage for the four main SAR frequency scenarios (Number of observations = 17559) 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-15%) 21.02 13.87 12.78 9.43 

Minor overestimation (-15% to -5%) 17.30 16.38 16.74 16.85 

Negligible error (-5% to 5%) 19.52 24.58 31.34 31.84 

Minor underestimation (5% to 15%) 13.87 16.95 19.27 20.08 

Major underestimation (>15%) 28.29 28.21 19.87 21.80 

TCV Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-50k) 7.54 1.69 0.40 0.35 

Minor overestimation (-50k to -10k) 28.58 22.96 22.32 18.57 

Negligible error (-10k to 10k) 4.64 8.26 15.56 16.62 

Minor underestimation (10k to 50k) 32.41 58.43 57.12 60.31 

Major underestimation (>50k) 26.82 8.66 4.60 4.14 

AGB Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-15t/ha) 4.53 1.95 0.79 0.65 

Minor overestimation (-15t/ha to -5t/ha) 27.46 18.85 15.47 13.16 

Negligible error (-5t/ha to 5t/ha) 13.29 22.05 36.42 36.05 

Minor underestimation (5t/ha to 15t/ha) 25.07 41.00 37.24 39.70 

Major underestimation (>15t/ha) 29.65 16.15 10.08 10.43 
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i) X-Band TCV Error ii) C-Band TCV Error 

iii) L-Band TCV Error iv) X+C+L-Band TCV Error 

v) LiDAR-derived TCV 

Figure 3.9: LiDAR - SAR scenario difference (error) maps (i-iv) of Total woody Canopy Volume (TCV) for the Xanthia Forest Area of 
Interest (close to ‘A’); v) 25m LiDAR-derived TCV map 
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i) X-Band TCV Error ii) C-Band TCV Error 

iii) L-Band TCV Error iv) X+C+L-Band TCV Error 

v) LiDAR-derived TCV 

Figure 3.10: LiDAR - SAR scenario difference (error) maps (i-iv) of Total woody Canopy Volume (TCV) for the Gabbro Intrusions Area of 
Interest ‘C’; v) 25m LiDAR-derived TCV map 

 



94 
 

In Table 3.4, there is a noticeable decline in major overestimation and major underestimation with 

an increase in negligible error for all three metrics from shorter wavelengths (X-band to C-band) to 

the longer wavelength (L-band).  For all metrics, the X+C+L-band combined scenario further reduced 

major overestimation and marginally increased negligible error but at the cost of an increase in 

major underestimation in comparison to the L-band results.  The TCV metric, under L-band and 

X+C+L-band scenarios, illustrated the most noticeable reduction in major overestimation and 

underestimation, in comparison to the other metrics, but at the cost of a higher percentage of minor 

underestimation (~60% between 10 000 to 50 000 TCV units).  The greatest percentage increase in 

negligible error (-5t/ha to 5t/ha) was noticed in AGB metric for the L-band and X+C+L-band 

combined scenarios.  More specifically for the TCV metric, under dense forested conditions (Figures 

3.9i-v), the X-band scenario (Figure 3.9i) illustrate major TCV underestimation.  C-band results 

(Figure 3.9ii) indicate an overall decrease of patches of major TCV underestimation but some of 

these have been replaced with major TCV overestimation across less dense patches of large trees 

(see encircled area in Figure 3.9ii).  Further improvement is visible for the L-band scenario (Figure 

3.9iii) with a noticeable increase in the minor TCV underestimation (10 000 to 50 000 TCV units) and 

negligible TCV error (evident in Table 3.4).   Finally, the X+C+L scenario in Figure 3.9iv illustrated 

noticeable increases in the negligible TCV error coverage, especially over the dense green ridge 

visible in the LiDAR TCV of Figure 3.9v, but also indicated an increase in major TCV underestimation 

over dense vegetation patches north of the ridge (see encircle area in Figure 3.9iv).  Patches of major 

TCV overestimation, however, still persist across riparian zones of minor tributaries (rectangle area 

in Figure 3.9iv).  Under sparse vegetated conditions across gabbro intrusions (Figures 3.10-i-v), 

however, X-band and C-band scenarios (Figures 3.10i and 3.10ii) indicate vast extents of major TCV 

overestimation for the sparse vegetation areas and major TCV underestimation for the dense 

forested patches (see encircled area in Figure  3.10i).  The L-band scenario (Figure 3.10iii) illustrates 

a drastic improvement with an extensive increase in negligible TCV error across the Area of Interest 

(AOI).  Across patches of dense vegetation, major TCV underestimation still persists (similar to the 

trend in Figure 3.9).  The X+C+L-band scenario (Figure 3.10iv) also yields favourable results similar to 

the L-band scenario with no visible improvement.  More quantitative results (box-plots, Figures 

3.11i-ii) were introduced next to further assess the individual SAR frequency error contributions 

under different sparse and dense vegetation conditions. 
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i) ii) 

Figure 3.11: Woody Canopy Cover (CC) Error box plots of: i) low LiDAR CC (<40%) and variable LiDAR vegetation height and ii) dense LiDAR CC (>70%) and variable LiDAR vegetation height (+’ve values = CC 
underestimation; -‘ve values = CC overestimation; dashed line partitions the four main SAR scenarios across the x-axis classes, centre point = mean value, box = standard error and whiskers = standard 
deviation) (Number of pixels = 17559) 
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CC error boxplots of the four main SAR frequency scenarios, Figure 3.11, were chosen to investigate 

error across vegetation structural types, classified from the LiDAR CHM, and including sparse shrubs 

(CC <40% and height <3m) or trees (CC <40% and height >3m) (Figure 3.11i), and dense forested (CC 

>70% and height >3m) or bush encroached (CC >70% and height <3m) conditions (Figure 3.11ii).  In 

general, SAR derived CC is mostly overestimated across sparse vegetation but is underestimated 

across conditions of dense cover which coincides with the main trends of Figures 3.9i-v and 3.10i-v.  

The L-band scenario yielded the lowest overall CC errors (in terms of mean error or variance, or 

both) across both low levels of CC (<40%) and low height (<3m), and dense CC (>70%) across all 

height (<3m to >5m) in comparison to the X-band (highest variability and mean CC error) and C-

band.  Thus under sparse and low vegetation and bush encroaching conditions, it is the L-band which 

yields the lower levels of CC error and not the shorter wavelengths (X-band or C-band) as we may 

have expected.  Also, the inclusion of the shorter wavelength datasets (X-band and C-band) with the 

L-band dataset led to minor improvements in the overall variability and mean of CC error across 

most sparse vegetation structural conditions (except regarding vegetation conditions with CC <40% 

and height >5m which is inconclusive) and across tall dense vegetation conditions (CC >70% and 

height >5m).  Most significant improvement of the addition of the high frequency data occurred for 

the sparse and tallest trees (CC <40% and >3m) conditions. 

 

3.6 Discussion 

 

The modelling results indicated that it was the longer wavelength L-band dataset which contributed 

the most to the successful estimates of all three woody structural metrics.  This finding agrees with 

other studies in the literature across a variety of ecosystem types such as coniferous forests (Dobson 

et al., 1992), boreal forests (Saatchi and Moghaddam, 2000) and temperate forests (Lucas et al., 

2006a).  The results obtained for the L-band can be attributed to its ability to penetrate deeper into 

the canopy, allowing the signal to interact the most with the larger tree constituents such as the 

trunk and branches (Mitchard et al., 2009), and thus produces stronger correlations with the LiDAR 

metrics.  Despite the leaf-off conditions of most trees in winter, the shorter wavelengths (X- and C-

band), 5.6cm for RADARSAT-2 and 3.1cm for TerraSAR-X, may have had a limited penetration of the 

canopy, and generally produced higher errors than the L-band for dense tree canopy (Figure 3.11ii).  

In the case of open woodlands (CC<40, Figure 3.11i), results suggest that some penetration did occur 

through the larger gaps with some good performance of C- and X-band compared to L-band (see 

tree height >3 m). However, C-band may have also been more sensitive to variability of surface 

roughness features (e.g. dense to sparse grass cover, fire scars etc.) which were too small to affect 



97 
 

the coarser L-band (Bourgeau-chavez et al., 2002; Menges et al., 2004; Wang et al., 2013).  This 

interaction of the smaller wavelengths with these surface features may have introduced noise, 

which could have weakened correlations between the SAR signal and the LiDAR metrics.      

 

The integration of the shorter wavelengths (e.g. X-band, C-band and X+C band), with L-band, yielded 

relatively small improvements in comparison to the L-band result alone (a reduction in SEP by ~3% 

and less for some metrics).  The combination of all three frequencies yielded the highest overall 

accuracies for all metrics than each SAR frequency dataset alone.  This result implies that the 

combination of short wavelength and long wavelength SAR datasets (X+C+L-band) does provide 

improved estimation in the modelling of the complete vegetation structure in terms of CC, TCV and 

AGB. As an aside to the modelling results, CC and AGB field data were initially investigated as a 

LiDAR-substitute for SAR model calibration and validation but preliminary results showed poorer 

modelling accuracies (R²<0.60) in comparison to the LiDAR derived results. This demonstrated the 

importance of extensive LiDAR coverage as the preferred source for modelling.     

 

The three metric total percentage error statistics (Table 3.4), the TCV error AOI maps (Figures 3.9-

10i-v) and the CC error box plots (Figures 3.11i-ii) reaffirmed the modelling accuracy observations 

but provided greater insight into the specific SAR frequency contributions to the overall prediction 

error under a variety of woody structural conditions.  The use of L-band alone and its integration 

with the shorter wavelengths reduced the overall metric overestimation error (mean error and 

variability) under sparse vegetation conditions while reducing overall metric underestimation under 

dense vegetated conditions, in comparison to the shorter wavelengths alone and their 

combinations.  These observations thus go against the first part of the main hypothesis made in this 

study which hypothesised the importance of shorter wavelengths for interaction with the finer 

woody structural elements and shrubby vegetation cohorts as L-band appears to be more effective 

in this regard.  The incorporation of the shorter wavelengths with the L-band improved the overall 

metric error budget by reducing the overall mean error and the overall variability of the error under 

most vegetation structural conditions.  Additionally, L-band and X+C+L-band were more suited for 

assessing the 3D metrics (TCV and AGB) than the single 2D metric (CC) with the highest percentage 

of negligible AGB error and lowest percentages of major TCV under- and overestimation being 

observed.  These results can be supported by the fact that the L-band was expected to penetrate 

deeper and interact more with the lower levels of vegetation structure than the X- and C-band but 

the shorter wavelengths may have provided minor assistance to the L-band by interacting with the 
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smaller canopy elements (Rosenqvist et al., 2003).  Further investigation will be needed to ascertain 

the exact cause of these trends but the overall results, however, advocate the suitability of the L-

band over C- and X-band for analysing dense forested environments (>70% CC with an expected 

error ranging from ~7% to ~18%) and thus confirms the second part of the main hypothesis which 

stated that the L-band SAR signal interacts with the major tree structural components (e.g. trunk and 

main branches typical of forested areas) (Carreiras et al., 2013; Lucas et al., 2006a; Mitchard et al., 

2012).  In the absence of L-band data, C-band has proven to be effective in sparser cover, i.e. less 

than 40% CC, savannah environments which coincided with the recommendations made by 

(Mathieu et al., 2013).   

 

Among the three structural metrics, TCV was consistently modelled with higher accuracies, amongst 

all seven SAR scenarios (Table 3.3).  This result concurs with that of (Mathieu et al., 2013).  TCV is a 

metric which indicates the volume of vegetation present within the vertical structure and its higher 

modelled accuracies could be attributed to the leaf-off conditions typical of the dry winter season 

which allowed for greater wave penetration into the canopy for all wavelengths, even the shorter 

wavelengths.  CC and AGB metrics yielded similar R2 values with higher SEP values observed for AGB 

which may be due to the associated error propagated through the allometric equation and the LiDAR 

model (results of Figure 3.4).  Since SAR is a system which utilises penetrating radio waves, the SAR 

signals will be expected to be more related to 3D structural metrics such as TCV and AGB rather than 

to the 2D CC metric (which achieved marginally poorer modelled results).  This is due to the fact that 

CC is a metric for which the 2D horizontal coverage fluctuates seasonally depending on the 

phenological state of the vegetation, at least in comparison to TCV and AGB, which relies on the 3D 

nature of the woody structure which includes height and is thus more consistent across seasons (in 

the absence of disturbance). 

 

The multi-frequency (X+C+L-band) model maps created for AGB (Figure 3.7i), TCV (Figure 3.7ii) and 

CC (Figure 3.7iii) illustrate patterns and distributions resulting from influence of numerous biotic 

(mega-herbivore herbivory and anthropogenic pressures such as fuelwood extraction and cattle 

ranching) and abiotic factors (fire regimes, geology and topographic features) relevant to the study 

area.  In order to discuss the common patterns in CC, TCV and AGB in these maps, it will be 

collectively referred to as “woody vegetation”. Dense woody vegetation patterns are observed in the 

protected forested woodlands (Bushbuckridge Nature Reserve) and in the exotic pine plantations 

within the vicinity of A.  Generally, the riparian zones of major rivers and tributaries (e.g. B, the Sabie 
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River catchment) have high values of CC, TCV and AGB compared to lower levels on the hill crests.  In 

contrast to the vegetation occurring on granitic soils, the intrusions of the Timbavati gabbro geology 

group (Figure 3.7 C) have very low woody CC, TCV and AGB.  These geological substrates naturally 

support more open landscapes than the more densely vegetated granite soils.  Rangeland areas in 

and within the vicinity of informal settlements, such as Justicea (F), also showed lower levels of CC, 

TCV and AGB which could be linked to the heavy reliance of the local populace on fuelwood 

collection for energy requirements (Shackleton et al., 1994; Wessels et al., 2013, 2011).  The area of 

interest E (Athole area which consisted of historical rotational grazing camps which are currently 

inactive – Barend Erasmus, personal communication, 27/02/2013) possesses a sharp fence line 

contrast in tree structure between the dense woody vegetation evident in the northern extents of 

Athole (i.e. north of fence) and the sparse woody vegetation in Sabi Sands Private Game Reserve (i.e. 

south of fence).  The extended absence of grazing and browsing pressures in the old pasture and 

paddock enclosures in the northern reaches of the Athole fence line boundary (Figure 3.7 E) caused 

dense woody vegetation which contrasted sharply with the sparser woody vegetation in the more 

open and highly accessed areas south of the fence boundary.  Additionally, the dense woody 

vegetation associated with the Acacia welwitschii thicket which dominates the ecca shales geological 

group of Southern Kruger National Park (outside map extents) was clearly visible at D (Mathieu et 

al., 2013).  In conclusion, the accuracy and credibility of these maps and their trends have been 

supported by the various observations made during field visits and by the authors’ general 

knowledge of the study area.  The general range of these tree structural metric values also agreed 

with the ranges reported in other related studies conducted in this savannah region (Colgan et al., 

2012; Mathieu et al., 2013). 

 

Although overall modelling and mapping results yielded favourable accuracies, it is, however, 

important to acknowledge the different sources of error which were introduced in this study. The 

first error source was the temporal difference between the acquisition of the SAR predictor datasets 

and the reference datasets such as collected field data and/or LiDAR datasets. This was unavoidable 

due to sensor failure (e.g. ALOS PALSAR in early 2011) and logistical restrictions to the current 

research project (e.g. specific RADARSAT-2 datasets available from collaborations). Although there 

has been documented evidence of big tree loss in the study region (Asner and Levick, 2012), no 

major error was observed in the modelling results, especially when the 2010 L-band model was 

trained and validated using 2012 LiDAR data which produced expected results for this environment 

(Colgan et al., 2012; Mathieu et al., 2013).  This loss in trees which occurred during the different SAR 

dataset acquisitions times (between 2009 and 2012) may have also introduced a certain margin of 
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error in the modelling results.  It was expected, however, that the main structure of the remaining 

vegetation would not have changed prominently enough to extensively vary backscatter target 

interactions between the different acquisition times.  A final source of error was introduced by the 

fact that the LiDAR reference dataset, which was set to target woody canopies with complete 

foliage, was acquired during the wet-dry transition season where the senescence process had just 

started.  This may have resulted in a distorted representation of the woody structural metrics 

expected on the ground.  Understanding these sources of error will help improve future studies by 

promoting the creation of more accurate models.    

 

 

3.7 Concluding Remarks 

 

This study investigated the accuracy of modelling and mapping above ground biomass (AGB), woody 

canopy cover (CC) and total canopy volume (TCV) in heterogeneous South African savannahs using 

multi-frequency SAR datasets (X-band, C-band and L-band including their combinations).  Various 

studies have implemented L-band SAR data for tree structural assessment in a savannah type 

environment (Carreiras et al., 2013; Mitchard et al., 2012) but the use of shorter wavelengths, such 

as C-band, have also been proven to perform relatively well (Mathieu et al., 2013).  This study also 

served to compare the three SAR frequency datasets (X-, C- and L-band) in the same study region of 

(Mathieu et al., 2013) and is the first attempt in an African Savannah context.  It was hypothesized 

that the shorter SAR wavelengths (e.g. X-band, C-band), since interacting with the finer woody plant 

elements (e.g. branchlets) would be useful for mapping the shrubby/thicket layer while the longer 

SAR wavelengths (e.g. L-band) would interact with larger vegetation elements such as major 

branches and trunks typical of forested areas (Mitchard et al., 2009; Vollrath, 2010).  It was thus 

proposed that the combination of these different SAR frequencies would provide a better 

assessment of the savannah woody element than the individual SAR frequencies (Schmullius and 

Evans, 1997). 

 

After reviewing all the modelling and error assessment results, it can be concluded the L-band SAR 

frequency was more effective in the modelling of the CC, TCV and AGB metrics in Southern African 

savannahs than the shorter wavelengths (X- and C-band) both as individual and combined (X+C-

band) datasets.  Although the integration of all three frequencies (X+C+L-band) yielded the best 

overall results for all three metrics, the improvements were noticeable but marginal in comparison 
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to the L-band alone.  The results do not warrant the acquisition of all three SAR frequency datasets 

for tree structure monitoring. Further the addition of the shortest wavelengths did not assist in the 

overall reduction of prediction error specifically of the shrubby layer as hypothesized. With the 

recent launch of the ALOS PALSAR-2 L-band sensor, the use of such L-band based models will be 

critical for future accurate tree structure modelling and monitoring at the regional and provincial 

scale.  The modelling results obtained from the C-band SAR frequency alone, however, does yield 

promising results which would make the implementation of similar models to the free data obtained 

from the recently launched Sentinel-1 C-band sensor (launched in April 2014) viable when L-band 

datasets are not available.  Sentinel-1 data are as far as we know the only upcoming operational, 

free and open access SAR dataset available in the near future, especially in Southern Africa.  Building 

up of seasonal / annual time series may also improve on the performance of single date C-band 

imagery.  The inclusion of seasonal optical datasets (e.g. reflectance bands, vegetation indices and 

textures derived from Landsat platforms), which can provide more woody structural information, 

may also augment the modelling results. 

 

As a way forward beyond this study, in order to reduce the error experienced in the AGB results (at 

field collection, LiDAR and SAR levels), new and more robust savannah tree allometric equations, 

with a greater range of representative tree stem and height sizes, will need to be produced but such 

efforts will require extensive ground level harvesting campaigns.  Due to the success of this study, 

particularly the positive results using L-band SAR data, future work will seek to up-scale these results 

to greater regional and provincial areas using more extensive LiDAR calibration and validation 

datasets. 
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Chapter 4: Integration of Optical and L-band Synthetic Aperture Radar 

(SAR) datasets for the assessment of woody fractional cover in the 

Greater Kruger National Park region 

 

4.1 Abstract 
 

Savannahs consist of mixed tree-grass communities and can be best described as an ecosystem 

possessing a continuous herbaceous and a discontinuous woody layer.  The woody component has 

considerable impact on natural and anthropogenic processes; for instance it impacts the fire regime, 

biomass production, nutrient cycling, soil erosion and the water cycle of these environments while 

providing numerous ecosystem resources, such as fuelwood, building material and non-timber 

products, such as fruit and bark and roots which are used for medicinal purposes.  Woody canopy 

cover or CC is the simplest two dimensional metric for assessing the presence of the woody 

component.  Synthetic Aperture Radar (SAR) sensors are particularly well suited and extensively 

used for woody structural measurements, because it senses the canopy geometry to retrieve 

structural information while optical sensors, which have been used successfully in national CC 

monitoring programmes outside South Africa, relies mostly on an optimum contrast between the 

“greenness” of tree canopies and the grass or bare background for CC assessment.  The objective of 

this study was to evaluate the accuracy of modelling CC using multi-temporal datasets of SAR (L-

band ALOS PALSAR) and optical (Landsat-5 TM) sensor data, both independently and in combination, 

in a Random Forest modelling environment.  This research was based on the assumption that the 

integration of optical and SAR sensor data will yield improved results by allowing for the extraction 

of more detailed structural information and reducing associated uncertainty than the individual 

datasets.  Additional objectives saw the testing of Landsat-5 image seasonality for the preferred 

acquisition season and the inclusion of spectral vegetation indices and image textures, as possible 

optical enhanced predictors, for improved CC modelling. Due to its accuracy, extensive airborne 

Light Detection and Ranging (LiDAR) data was used for model training and validation.  Results 

showed that Landsat-5 imagery acquired in the summer and autumn seasons yielded the highest 

single season modelling accuracies using RF, depending on the year but the combination of multi-

seasonal images yielded higher accuracies (R2 between ~0.6-0.7).  The derivation of spectral 

vegetation indices and image textures and their combinations with optical reflectance bands 

provided minimal improvement with no optical-only product combination yielding accuracies 

greater than winter SAR L-band backscatter alone (R2 of ~0.8).  However, there was significant, yet 

modest, improvement (R2 of ~0.08, ~1.9% of RMSE and ~7.5% of SEP) in accuracy when 2010 multi-
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seasonal optical reflectance bands were combined with the L-band backscatter variables.  This 

research shows that considering the importance of savannahs in the region, future monitoring of 

woody canopy cover will require priority access to L-band SAR imagery from planned missions such 

as SAOCOM, TerraSAR-L, and NISAR.  However, it is recommended by the authors that these results 

be verified in other bioregions, especially those dominated by evergreen canopies such as 

indigenous forest, thickets, and plantations.  Finally, the integration of seasonally appropriate and 

cloud-free Landsat-5 image reflectance and L-band HH and HV backscatter data does provide a 

significant improvement for CC modelling at the higher end of the model performance. 

Keywords: Woody canopy cover, SAR, LiDAR, Landsat-5, textures, spectral vegetation indices, 

Random Forest 

 

4.2 Introduction 
  

Savannahs consist of mixed tree-grass communities and can be best described as an ecosystem 

possessing a continuous herbaceous and a discontinuous woody layer (Sankaran et al., 2008).  

Savannahs cover half of the African continent and occupy one fifth of the global land surface 

(Scholes and Walker, 1993).  The woody component has considerable impact on natural and 

anthropogenic processes, for instance it impacts the fire regime, biomass production, nutrient 

cycling, soil erosion and the water cycle of these environments (Sankaran et al., 2008) while 

providing numerous ecosystem resources, such as fuelwood, building material and non-timber 

products, such as fruit and bark and roots which are used for medicinal purposes (Shackleton et al., 

2007; Twine, 2005).  At the regional scale, the quantification of carbon captured in woody plants also 

plays an important role in understanding the global carbon cycle and fluxes between carbon sinks 

and sources (Valentini et al., 2014; Viergever et al., 2008b).  Monitoring regional woody resources is 

essential to its sustainable management, which is threatened by adverse activities, such as 

deforestation, excessive fuelwood extraction and charcoal production (Shackleton et al., 1994; 

Wessels et al., 2013).  

 

The woody component can be represented by a variety of woody structural parameters such as 

vegetation height, fractional cover, above ground biomass, basal area and canopy volume.  Woody 

canopy cover is the simplest two dimensional metric for assessing the presence of the woody 

component and can be defined as the area vertically projected on a horizontal plane by woody plant 

canopies (Jennings et al., 1999).  When expressed as a percentage per unit area, this metric is 
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referred to as fractional canopy cover or CC.  CC can be combined with canopy height, to provide an 

informative indicator of volume and serve as a direct proxy for biomass (Colgan et al., 2012).  In 

complex environments such as the heterogeneous savannahs of Southern Africa, CC also varies 

considerably across a variety of structural classes (e.g. from tall closed forests to short closed, bush 

encroached shrubs to sparsely distributed tall trees with a short shrub understory – (Edwards, 

1983)).  In South Africa and southern Africa there is no locally calibrated and validated national maps 

of CC, despite it being recognised as an Essential Biodiversity Variable by the international research 

community (Pereira et al., 2013). 

 

In contrast to the limited spatial scope of ground based techniques, remote sensing is considered as 

the most appropriate tool for assessing woody structure across large areas.  This is due to its ability 

to sense the high spatio-temporal variability, species diversity and phenological status, over large 

geographical scales – a defining but challenging set of characteristics typical of African Savannahs 

(Archibald and Scholes, 2007; Cho et al., 2012a). Synthetic Aperture Radar (SAR) sensors are 

particularly well suited and extensively used for woody structural measurements, because of their 

capacity to capture within-canopy properties (Collins et al., 2009; Le Toan et al., 2011; Santoro et al., 

2007; Sun et al., 2011).  SAR sensors are useful to regional scale studies due to their all-weather 

capabilities and lack of sensitivity to dense cloud cover and hazy conditions (e.g. fire smoke) which 

limit optical data acquisitions (Mitchard et al., 2011).  Among the different available SAR 

frequencies, the L-band (a longer wavelength between 15 and 30cm) has been proven to be the 

preferred wavelength ((Carreiras et al., 2013; Mitchard et al., 2012; Ryan et al., 2011; Santos et al., 

2002) and most effective in estimating woody structure in forests and savannahs (Lucas et al., 

2006a; Naidoo et al., 2015).  This is due to the fact that the signal of longer SAR wavelengths (e.g. P-

band and L-band) can penetrate deeper into the vegetation and can interact with the major 

constituents of vegetation such as the main branches and trunks (Mitchard et al., 2009).  Recent 

research in southern African savannahs showed that SAR can also provide a good performance to 

retrieve CC, especially L-band imagery (Mathieu et al., 2013; Naidoo et al., 2015). SAR backscatter 

signal, on the other hand, can be influenced by the variability in soil and canopy moisture, and by the 

variability in surface roughness, which may hamper woody canopy assessment in a particular 

environment (Bucini et al., 2009). 

 

Although not known to be adept in sensing three dimensional vegetation structure (e.g. biomass 

where reflectance saturates readily), multi-spectral optical sensors (with visible, near- and mid-
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infrared spectral coverage) are well suited for mapping two dimensional structure such as canopy 

cover at various spatial scales, and in dense tropical forests (Foody et al., 1997; Hansen and 

Loveland, 2012; Hansen et al., 2008), savannahs (Armston et al., 2009; Boggs, 2010; Lehmann et al., 

2013) and finally shrublands and grasslands (Purevdorj et al., 1998; Ramsey et al., 2004).  In contrast 

with the SAR technology which senses the canopy geometry to retrieve structural information, the 

mapping of canopy cover with optical sensors relies mostly on an optimum contrast between the 

“greenness” of tree canopies and the grass or bare background. Thus, the investigation and use of 

the time period at which a maximum contrast is achieved between green tree canopy and dry grass 

during the annual vegetation cycle is important (Zeidler et al., 2012).  Textural image products, 

which provide information regarding the local variance, can be used as a measure of the canopy 

roughness, gaps, and associated shadow.  In addition, non-parametric classification algorithms and 

spectral unmixing have been implemented for extracting fractional canopy cover at the regional 

scale (Chen et al., 2004; Foody et al., 1997; Lu, 2006; Nichol and Sarker, 2011).  Optical sensor 

technologies with especially medium to coarse spatial resolutions of ≥30m, however, can be limited 

in that they are highly influenced by spectral variation in time and space, mixed pixels and are 

obscured by cloud and shadow (Lu, 2006).  Nevertheless, these optical sensor technologies have 

been adopted into successful national programmes for monitoring temporal woody canopy cover 

changes.  These include the Australian Statewide Landcover and Trees Study (SLATS) (Armston et al., 

2009) and the Australian National Carbon Accounting System – Land Cover Change Program (NCAS-

LCCP) (Lehmann et al., 2013) which utilised Landsat TM and ETM+ data.  Another programme also 

included the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) for monitoring 

North American forest disturbance using Landsat and ASTER datasets (Hansen et al., 2013; Ju et al., 

2012).  Finally, the Amazon Deforestation Monitoring Project (PRODES) which maps deforestation in 

the Amazon using Landsat datasets (Hansen and Loveland, 2012).  Unfortunately, such national 

programmes are not in place for the savannahs of Southern Africa, despite a very large reliance on 

their ecosystem services (Scholes and Biggs, 2004; Wessels et al., 2013).  The ultimate purpose of 

this research is to identify the possible contribution of Landsat to develop a national system for 

monitoring CC in South African savannahs.   

 

Given the sensitivity of optical sensors to photosynthetically active vegetation and the sensitivity of 

SAR backscatter to vegetation structure, their possible integration could yield improved woody 

structure estimates via the provision of complementary information which neither sensor type could 

provide in isolation.  The integration of SAR and optical technologies for woody structure assessment 

have been successfully applied in previous studies (Lucas et al., 2006b; Miles et al., 2003; 
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Moghaddam et al., 2002), which included dense forested environments, savannahs and plantations 

(Bucini et al., 2009; Shimabukuro et al., 2007; Wang and Qi, 2008), with reasonable accuracies 

(R2>0.60).  Unfortunately, none of these studies have taken into account the effects of phenology on 

optical imagery, especially in savannah environments with complex tree and grass phenological 

seasonal changes.  With this in mind, the objective of this study was to evaluate the accuracy of 

modelling CC, at the 30m spatial resolution, using multi-temporal datasets of SAR (L-band ALOS 

PALSAR) and optical (Landsat-5 TM) sensor data, both independently and in combination.  Airborne 

LiDAR data recorded using the Carnegie Airborne Observatory (CAO) Alpha system (Asner et al., 

2007) was used as a training and validation dataset.  This research was based on the premise that 

the integration of optical and SAR sensor data will yield improved results by allowing for the 

extraction of more detailed structural information and reducing associated uncertainty than the 

individual datasets (Roberts et al., 2007).  There were two main sets of research questions in our 

study.  The first set of questions focused on how the accuracy of CC predictions compared when 

using Landsat versus L-band dual-polarised SAR input data, whether the integration of additional 

optical predictor features (e.g. textures and vegetation indices) improved modelling accuracies in 

comparison to the L-band SAR-based CC results and, finally, whether the integration of optical 

Landsat and L-band SAR data yielded any noticeable improvements in CC modelled predictions.  The 

second research question sought to ascertain the season or seasons in which Landsat-5 data 

predicted CC with the highest accuracies.  This question is related to the fact that savannah 

vegetation undergoes distinct seasonal phenological changes during which the green fractional 

cover of grasses and woody plants varies considerably (Fuller et al., 1997; Scholes and Archer, 1997).  

We hypothesized that the season when trees are completely covered in green foliage, while grasses 

are dry, should be the best period to retrieve CC, since there is limited interference by green grass 

(Archibald and Scholes, 2007).  The identification of phenologically optimised optical imagery may 

improve CC estimation, when integrated with SAR data, in these heterogeneous savannahs where 

there is general dearth of such studies.     

 

This paper is structured into four main sections.  The first section (4.3) outlined the study area and 

associated landscape features and climate.  The second (4.4) outlined the main methodological steps 

taken which included the outlining and pre-processing of the different remote sensing datasets 

utilised, the integration of these datasets and modelling scenarios, the modelling algorithm used and 

accuracy assessment and CC mapping.  The third section (4.5) displayed the study’s main findings 

while the fourth and final section (4.6) discussed these findings within context of multi-temporal 

changes in phenology, Landsat acquisition times and reliable regional monitoring applicability. 
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4.3 Study Area 
 

The region under study includes the southern portion of the Greater Kruger National Park Region, 

South Africa, which falls between approximately 23° 39’S to 25° 19’S and 30° 57’E to 32° 11’E.  This 

region consists of the mixture of communal rangelands (Bushbuckridge Municipality District), private 

game reserves (Sabi Sands) and national or provincial parks (southern Kruger National Park, 

Andover) (figure 4.1).  The region covers an extensive range of geologies (e.g. granite, basalt, gabbro, 

tonalite, shale etc.), vegetation types (plantations to Clay Thorn Bushveld, Mixed Bushveld, Sweet 

Lowveld Bushveld and Open Grassland - (Mucina and Rutherford, 2006)), rainfall (mean annual 

precipitation of 1200mm in the west to 550mm in the east- (Shackleton, 2000)), management 

regimes (communal and protected) and disturbance regimes (fire, elephant damage, grazing and 

browsing patterns of herbivores and fuelwood harvesting). 

 

 

 

Figure 4.1: The Southern Kruger National Park study area and coverage of remote sensing modelling datasets  
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4.4 Materials and Methodology 
 

Various scenarios were used to predict CC to determine the respective contribution of the Landsat 

and SAR-based variables. CC derived from very high resolution airborne LiDAR data were used as 

training and validation of the models.  Firstly, models were developed to predict CC using reflectance 

data extracted from Landsat-5 images acquired at different seasons. These Landsat-based modelled 

results were compared to L-band SAR-derived models using ALOS PALSAR dual polarised (HH and 

HV) as input data. Second, the best performing Landsat-5 reflectance model was then expanded to 

include combinations of additional input variables including image texture features and vegetation 

indices.  Finally, the integration of both multi-temporal optical Landsat reflectance and L-band SAR 

datasets were assessed for the possible improvement in CC prediction.  All modelling scenarios were 

implemented using a Random Forest (RF) non-parametric machine learning algorithm (Breiman, 

2001).   

 

4.4.1 Remote Sensing Data 

 

A collection of 2008 and 2010 dual polarised (HH, HV) ALOS PALSAR L-band intensity scenes and 

multi-seasonal Landsat-5 (bands 1-7, excluding the thermal band 6) scenes were collected over the 

study region (table 4.1).  The L-band imagery (2 images for each year) was acquired in winter (25th of 

August and 23rd September (very early spring while landscape is dry and leaf-off) 2008; 14th and 31st 

August 2010) when the environment was dry and the trees devoid of leaves.  These were shown to 

be the best conditions to extract CC with RADARSAT-2 C-band data in the same region (Mathieu et 

al., 2013). Landsat-5 scenes were inventoried from 2007 to 2011 (to match the LiDAR dataset 

available in 2008 and 2010, with an acceptable difference of plus and minus one year) and acquired 

in various seasons to assess the potential effects of differential phenology between trees and 

grasses. Specifically, Landsat-5 imagery were acquired for spring (September- November), summer 

(December - March), autumn (April - May) and winter (June - August), where available, of 2007, 

2008, 2009 and 2010 from U.S Geology Survey Landsat Earth Explorer portal (along path 168 and 

row 77).  In summer, both tree leaves and grasses are green while in autumn, grasses are dry with 

trees remaining green but beginning to lose leaves.  In winter, most trees have lost leaves and 

grasses are dry while in spring, grasses are fairly dry while the trees first undergo a green flush of 

leaves (Archibald and Scholes, 2007). Only Landsat-5 imagery with an overall scene cloud cover of 

≤6% was considered. Due to cloud occurrence one image was available at each season only in 2008; 

three seasons were achieved in 2007 and two in 2009 and 2010 (Table 4.1).  No suitable Landsat-5 
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imagery was available for the year 2011 and was thus not included in the analyses.  Several years 

were considered to assess the possible model inconsistencies which may results from a high inter-

annual variability of rainfall, and associated variability of greenness and phenology. Extensive 

airborne 2008 and 2010 LiDAR dataset (total coverage of c.a. 35000 ha and 10000 ha respectively) 

were acquired for this study (figure 4.1) by the Carnegie Airborne Observatory (CAO) Alpha sensor 

(Asner et al., 2007) during April-May of 2008 and 2010.  

Table 4.1: Landsat-5, ALOS PALSAR and LiDAR data inventory 

  Sensor scene ID Season Date of Acquisition 

Landsat-5 TM LT51680772007047JSA00 Summer 16/02/2007 
Landsat-5 TM LT51680772007143JSA00 Autumn 23/05/2007 
Landsat-5 TM LT51680772007175JSA00 Winter 24/06/2007 
Landsat-5 TM LT51680772007223JSA00 Winter 11/08/2007 
Landsat-5 TM LT51680772008034JSA01 Summer 03/02/2008 
Landsat-5 TM LT51680772008098JSA01 Autumn 07/04/2008 
Landsat-5 TM LT51680772008242JSA00 Winter 29/08/2008 
Landsat-5 TM LT51680772008274JSA02 Spring 30/09/2008 
Landsat-5 TM LT51680772009084JSA00 Summer 25/03/2009 
Landsat-5 TM LT51680772009132JSA00 Autumn 12/05/2009 
Landsat-5 TM LT51680772010023JSA00 Summer 23/01/2010 
Landsat-5 TM LT51680772010119JSA00 Autumn 29/04/2010 
ALOS PALSAR ALPSRP137816680 Winter 25/08/2008 
ALOS PALSAR ALPSRP142046680 Spring 23/09/2008 
ALOS PALSAR ALPSRP242696680 Winter 14/08/2010 
ALOS PALSAR ALPSRP245176680 Winter 31/08/2010 

CAO LiDAR CAO 2008 Autumn April-May 2008 
CAO LiDAR CAO 2010 Autumn April-May 2010 

 

4.4.2 LiDAR Data Processing 

 

1.1m Digital Elevation Models (DEM) and top-of-canopy surface models (CSM) were created by 

processing the raw 2008 and 2010 LiDAR point clouds using REALM (Optech Inc., Vaughn, Canada) 

and TerraScan/TerraMatch (Terrasolid Ltd., Jyvaskyla, Finland) LiDAR software.  Canopy height 

models (CHM, pixel size of 1.12m) were computed by subtracting the DEM from the CSM. The 2008 

and 2010 LiDAR fractional woody canopy cover metric were then created by first applying a data 

mask to the LiDAR CHM image in order to create a spatial array of 0s (no woody canopy) and 1s 

(presence of a woody canopy).  Fractional woody canopy cover distribution products were calculated 

at 25m spatial resolution using equation 4.1: 
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𝐿𝑖𝐷𝐴𝑅 𝐶𝐶 (%) =  
∑(1′𝑠)

625
 𝑋 100        Equation 4.1 

Where 625 is the area (in m2) of a 25m X 25m pixel.  A height threshold of 0.5m was applied to the 

CHM in order to avoid the inclusion of the grass layer in final product.  The 2008 CAO LiDAR data 

were validated against field height measurements of approximately 800 trees.  There was a strong 

relationship (r2 = 0.93, p < 0.001), and only a fraction of woody plants below 1.5-1.7m were not 

detected by the LiDAR (Wessels et al., 2011).  Additionally, a LiDAR derived woody canopy cover 

product obtained from a new LiDAR campaign done in 2012 correlated well with ground CC data 

collected from 37 25m X 25m sites in May/April 2012 (R2=0.79; Root Mean Square Error=12.4%) and 

thus this CAO LiDAR sensor technology was considered adequate for calibration and validation 

dataset extraction for this study. 

 

4.4.3 SAR Data Processing 

 

The 2008 and 2010 level 1.1 ALOS PALSAR L-band intensity datasets (HH, HV) were processed in 

GAMMATM SAR remote sensing software in which a script was developed to achieve the following 

steps: multi-looking, radiometric calibration (from raw digital numbers to sigma nought backscatter), 

geocoding and topographic normalization.  Multi-looking factors of 2 and 8 was applied to the range 

and azimuth, respectively, to best remove unwanted speckle and distortions. This was sufficient to 

have the majority of the speckle removed, while preserving image detail, and hence no filtering was 

applied.  A 20m DEM was used for the geocoding and topographic normalization.  It was computed 

from 1:50 000 South African topographic maps (20m digital contours, spot-heights, coastline and 

inland water area data – ComputaMaps; www.computamaps.com) with Root Mean Square 

planimetric error of 15.24m and a total vertical RMS error of 6.8m.  As a final step the imagery was 

resampled, via bicubic-log spline interpolation function, by using a DEM oversampling factor of 1.6, 

to achieve a fixed spatial resolution of 12.5m to create images with a finer spatial detail.   

 

4.4.4 Landsat-5 Optical Data Processing and Derived Products 

 

The Landsat imagery, in raw digital number format, underwent atmospheric correction with the use 

of ATCOR 2 (Multi-spectral sensor atmospheric correction for flat terrain) which converted the raw 

digital number data to top of canopy (TOC) reflectance using a Modtran®-5 radiative transfer code.  

The necessary information (e.g. Min and Max radiance values) from the default post May 2003 

calibration file was used.  Dry rural, fall (spring) rural, mid-latitude summer and winter rural 

http://www.computamaps.com/
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atmospheric models were also utilised with the visibility distance set between 9.0km and 59km 

depending on the season and year (historical Skukuza visibility data obtained from 

http://weatherspark.com were used if no values were automatically recommended by ATCOR).   

 

The TOC reflectance of the individual images was used as the main model input variables to be 

tested.  However, additional vegetation indices and image textures were derived from the best 

performing Landsat seasonal image for further analyses.  This included a number of grey-level co-

occurrence matrices (GLCM) and spectral vegetation indices (e.g. Enhanced Vegetation Index or EVI 

and Soil Adjusted Vegetation Index or SAVI) which have been known to be sensitive to vegetation 

structure (table 4.2).  The selected vegetation indices which use the red, near-infrared and mid-

infrared bands were also effectively correlated with the vegetation structure of various forested and 

woodland environments (Cohen et al., 2003; Freitas et al., 2005; Zheng et al., 2004).  The soil-

adjusted vegetation index (SAVI) was included over other more common indices (e.g. NDVI and 

single ratios) as it includes a soil adjustment factor which reduces sensitivity to soil and moisture 

conditions in the environment (Huete and Jackson, 1988; Jiang et al., 2008).  As a more advanced 

vegetation index, the enhanced vegetation index (EVI) optimises the vegetation signal (especially in 

high biomass environments) by reducing the influence of atmospheric effects and the canopy 

background signal (Jiang et al., 2008).  EVI is also known to be more linearly correlated to leaf area 

index (LAI), a major vegetation structural parameter derived from optical data, than other spectral 

indices.  The non-linear vegetation index (NLI) was developed to account for the possible non-linear 

relationship between indices and biophysical parameters (Gong et al., 2003).  Finally, the moisture 

vegetation index (MVI) was chosen as it possesses a higher signal saturation threshold especially in 

dense, high biomass environments (Freitas et al., 2005). 

           

GLCM texture parameters, such as variance and entropy, were also selected as they were reported 

to be strongly correlated with vegetation structure (Asner et al., 2002; Nichol and Sarker, 2011) and 

in some case even better correlated than spectral indices (Lu, 2005).  Preliminary results illustrated 

that variance, entropy, dissimilarity and contrast textures, derived from the bands 1 to 5 and 7, were 

particularly correlated with CC (results not presented).  The combination of these selected indices 

and textures could provide more detailed structural CC information than the optical reflectance 

bands alone.    

 

http://weatherspark.com/
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Table 4.2: Reflectance, indices and textural optical products derived from Landsat-5 data  

Type Product Formulae or description if not applicable Reference 

Reflectance Raw TOC reflectance 

Band 1 (450-520nm) – Blue 

Band 2 (520-600nm) – Green 

Band 3 (630-690nm) – Red 

Band 4 (760-900nm) – NIR 

Band 5 (1550-1750nm) – MIR5 

Band 7 (2080-2350nm) – MIR7 

 

Vegetation Index Enhanced Vegetation Index (EVI) 2.5 𝑋 
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + (6 𝑋 𝑅𝑒𝑑) − (7.5 𝑋 𝐵𝑙𝑢𝑒) + 1)
 (Huete et al., 1997) 

Vegetation Index Modified Simple Ratio (MSR) 

(
𝑁𝐼𝑅
𝑅𝑒𝑑

) − 1

√𝑁𝐼𝑅
𝑅𝑒𝑑

+ 1

 (Sims and Gamon, 

2002) 

Vegetation Index Non-linear Vegetation Index (NLI) 
𝑁𝐼𝑅2 − 𝑅𝑒𝑑

𝑁𝐼𝑅2 + 𝑅𝑒𝑑
 

(Goel and Qin, 

1994) 

Vegetation Index Soil-Adjusted Vegetation Index (SAVI) 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.5
 𝑋 (1 + 0.5) 

(Huete and Jackson, 

1988) 

Vegetation Index Simple Ratio (SR) 
𝑁𝐼𝑅

𝑅𝑒𝑑
 (Jordan, 1969) 

Vegetation Index 
Normalised Difference Vegetation Index 

(NDVI) 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (Rouse et al., 1973) 

Vegetation Index Moisture Vegetation Index (MVI band 7) 
𝑁𝐼𝑅 − 𝑀𝐼𝑅7

𝑁𝐼𝑅 + 𝑀𝐼𝑅7
 

(Sousa and Ponzoni, 

1998) 

GLCM Textures 
Variance, Entropy, Dissimilarity & 

Contrast (3 X 3 window) 
Applied to bands 1-7 

(Haralick et al., 

1973) 

 

 

4.4.5 Data Analysis Grid  

 

To analyse the data of different resolutions, a fixed grid of 105m X 105m cells, with a 50m spacing to 

avoid spatial autocorrelation of CC, was used to extract SAR, optical and LiDAR CC products.  The grid 

was created to match the extent of the LiDAR CC product coverage (i.e. the calibration/validation 

dataset for CC) and exclude any cells occupying water bodies, main roads, rivers and informal 

settlements and especially clouds (in the Landsat imagery).  The resolution of the grid cells was 

supported by (Mathieu et al., 2013) and (Urbazaev et al., 2015) as the resolution which provided the 

best trade-off between the finest mapping resolution and strongest correlation with the LiDAR CC 

metrics.  The extraction process was conducted in ENVI 4.8 where mean values for each cell in the 

grid were extracted.  Due to the varying conditions of the different Landsat imagery (i.e. by way of 

cloud cover) and the differences in LiDAR coverage between 2008 and 2010, the total number of 

observations included in the modelling also varied and ranged between 1174 and 8804.  

 

4.4.6 Modelling Algorithms, Modelling Scenarios, Model Validation and CC Mapping 

 

A random forest (RF) non-parametric machine learning algorithm (Breiman, 2001) was applied in the 

R rattle modelling software with 35% of the data being used for model training and the remaining 

 TOC= Top of Canopy; NIR = Near Infrared; MIR = Middle Infrared 
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65% being used for model validation.  Other well-known parametric algorithms, such as linear 

regression, and non-parametric algorithms, such as Support Vector machines (SVM), REP Tree 

decision tree and Artificial Neural Network, were also tested but preliminary results showed that RF 

consistently obtained higher modelling accuracies.  Due to its use of multiple decision trees, bagging 

and internal cross-validation mechanisms, RF is seen as a major improvement over other traditional 

decision tree types and when compared to the other non-parametric algorithms. The algorithm is 

easy to implement and is robust as it only requires two main user-defined inputs (number of trees 

built in the ‘forest’ and the number of possible splitting variables for each node - (Ismail et al., 2010; 

Prasad et al., 2006)).   

 

Before the final implementation of RF, efforts were made to test the generalisation of RF modelling 

by introducing an additional independent test dataset for model tuning before validation.   During 

the tuning phase, the total number of trees (‘ntree’) in the forest and the RF tree complexity were 

varied to test their influence on accuracy whilst trying to limit the complexity of the RF model.  RF 

tree complexity included the minimum number of terminal nodes (‘nodesize’) and the maximum 

number of terminal nodes that the trees can have in the forest (‘maxnodes’) (Breiman, 2001).  After 

repeating the process three times, results showed that an ‘unpruned’ (i.e. no limitation on a tree’s 

depth and number of terminal nodes) tree architecture with 200 trees within the forest, yielded the 

optimum results (refer to Appendix section; Figures 4A and 4B).  In the light of these preliminary 

results the RF models was created based on the following parameters: ‘ntrees’ = 200 and ‘mtry’ = √# 

SAR predictors (a rule of thumb for ‘mtry’ which was supported by (Liaw and Wiener, 2002)) with the 

trees being allowed to grow unpruned. 

 

For the modelling process, several scenarios were assessed.  The optical reflectance bands served as 

input variables which were tested individually (12 individual Landsat images) in order to ascertain 

the best season for predicting woody fractional cover.  All available seasonal images were also 

combined for each year (four years in total) in order to investigate any improvements using multi-

seasonal datasets.  Seven additional scenarios using reflectance, texture and vegetation indices were 

also proposed in order to test the benefits of more advanced optical metrics.  This was only 

performed for the best performing optical reflectance bands-only scenario mentioned above.  2008 

and 2010 L-band SAR dataset-only scenarios served as the scenario of comparison for the optical-

only tests.  Due to the large number of vegetation indices and textures used in this study, which may 

display high degrees of co-linearity, a RF variable importance measure called the permutation 
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accuracy or %IncMSE (percentage increase in mean squared error) was considered to select the top 

three indices and texture variables for inclusion in the RF ‘Textures’ and ‘Indices’ modelling 

scenarios.  %IncMSE records the percentage increase in the mean squared errors in the model when 

a particular variable is assigned random values while the remaining variables are left unchanged 

(Liaw and Wiener, 2002).  The higher the resultant error, the more important that particular variable 

is to the model.   

 

Finally, the SAR datasets were integrated with the five best performing seasonal Landsat-5 images 

and the combined multi-seasonal Landsat-5 datasets for each year to quantify the benefits of 

combining SAR and optical data for the modelling of CC.  The RF validation results of the different 

scenarios were expressed in the form of coefficient of determination (R2), root mean square error 

(RMSE) and Standard error of prediction (SEP).  SEP refers to the standard deviation of the prediction 

errors and is a measure of the unexplained variation of a model.  The most accurate model, together 

with the most relevant independent variables, was implemented to produce a CC map.  The ALOS 

PALSAR images were resampled to 30m spatial resolution (using pixel aggregated resampling) and 

clipped to fit the Landsat-5 image and stacked for mapping.  The CC RF mapping was conducted 

using the Model-Map module of the R statistical software.   

 

4.5 Results 

4.5.1 Individual and multi-seasonal Landsat-5 reflectance compared to SAR 

Dataset Acquisition Date Season of Imagery R² RMSE (%) SEP (%) Total No. Obs* 

In
d

iv
id

u
al

 L
an

d
sa

t-
5 

TM
 

16/02/2007¹ Summer 0.47 12.64 52.02 8804 

23/05/2007¹ Autumn 0.34 13.96 58.46 8804 

24/06/2007¹ Winter 0.32 14.25 58.76 8804 

11/08/2007¹ Winter 0.32 14.10 58.69 8733 

03/02/2008¹ Summer 0.53 11.84 49.24 8804 

07/04/2008¹ Autumn 0.46 12.89 52.64 8010 

29/08/2008¹ Winter 0.37 13.60 56.73 8804 

30/09/2008¹ Spring 0.40 13.19 53.2 8339 

25/03/2009¹ Summer 0.44 12.76 52.86 8804 

12/05/2009¹ Autumn 0.50 12.04 49.6 8697 

23/01/2010² Summer 0.64 14.77 46 2098 

29/04/2010² Autumn 0.65 13.55 44.43 3201 

M
u
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i-
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al
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n
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t-
5
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M

 2007¹ All available images 0.58 11.27 47.23 8733 

2008¹ All available images 0.64 10.53 43.31 8010 

2009¹ All available images 0.57 11.36 46.92 8697 

Table 4.3: Individual seasonal Landsat-5, multi-seasonal Landsat-5 and individual SAR RF modelled CC validation results 
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When examining the individual seasonal Landsat-5 reflectance accuracies (table 4.3), the season 

which yielded the highest model accuracies varied between years; summer was best in 2007 and 

2008, and autumn the best in 2009 and 2010.  Amongst all the individual datasets, the April 2010 

Landsat-5 reflectance (autumn) dataset yielded the highest model accuracies in comparison to the 

other individual images (according to R2 and SEP values).  The winter datasets that were available in 

2007 and 2008 yielded the poorest modelled CC results.  Overall the performance of single Landsat 

datasets was poor with a SEP varying between 44 and 58%.  Combining all the multi-seasonal images 

for each year improved the accuracies by an RMSE of ~1-2% and SEP of ~4-6% compared to the best 

individual seasonal image for that year.  However, both individual seasonal and combined multi-

seasonal image yielded significantly lower accuracies than those of the individual SAR images.  For 

instance, the SAR models produced in 2008 and 2010 had a SEP of 15 and 10% lower, compared to 

the best Landsat season of that specific year.  Moreover, both SAR models produced consistent 

results, with a similar R2 and SEP. 

 

4.5.2 Optical reflectance, textures and indices compared and integrated with SAR data results 

 

 
 

2010² All available images 0.72 12.84 39.75 2098 

SA
R

 25/08/2008¹ Winter 0.80 7.88 32.08 8804 

14/08/2010² Winter 0.81 10.17 33.16 3201 

2010 Optical Product(s)1 R² RMSE (%) SEP (%) Total No. Obs 

Reflectance only 0.65 13.55 44.43 3201 
Textures only* 0.03 23.66 77.96 3201 
Indices only* 0.45 17.22 57.16 3201 

Reflectance +Textures* 0.67 13.30 43.74 3201 
Reflectance + Indices* 0.66 13.52 44.93 3201 
Indices* + Textures* 0.47 17.06 55.87 3201 

Reflectance + Textures* + Indices* 0.68 12.98 43.53 3201 

2010 SAR only1 0.81 10.17 33.16 3201 

Dataset Acquisition Year Season of Imagery R2 RMSE (%) SEP (%) Total No. Obs 

SA
R

 +
 

B
es

t 
La

n
d

sa
t-

5
 T

M
 2007¹ SAR + Summer 0.84 6.89 28.73 8733 

2008¹ SAR + Summer 0.85 6.84 28.24 8010 
2009¹ SAR + Autumn 0.83 7.09 29.82 8697 

Table 4.4: Reflectance, indices and textural Landsat-5 (autumn 2010 image) product RF modelled CC validation results 

* Variable depending on LiDAR coverage per year (35% training; 65% validation) and LT cloud cover; ¹ 2008 LiDAR dataset for 
the reference dataset; ² 2010 LiDAR dataset for the reference dataset  

Table 4.5: Integrated SAR and best performing/multi-seasonal Landsat-5 reflectance RF modelled CC validation results (per year) 

¹ Utilized the 2010 LiDAR dataset as the reference dataset; * Top 3 indices/textures used based on %IncMSE 
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Image textures and spectral vegetation indices (top 3 of each parameter selected according to the 

highest %IncMSE) were added as additional features to the best performing Landsat-5 reflectance 

dataset (April 2010 according to table 4.3) in order to determine if these improve the prediction of 

CC (table 4.4).  The optical reflectance-only scenario yielded the best results, followed by the derived 

vegetation indices, and the textures-only produced by far the poorest results.  However, the 

combination of reflectance and textures yielded marginally better results than the reflectance and 

indices combination which suggested that image textures do provide more additional information in 

comparison to the indices.  Combining all three datasets (reflectance, textures and indices) provided 

the highest overall accuracy, however improvement was marginal compared to the optical 

reflectance-only scenario.  Although not presented here, in the interest of brevity, these results were 

consistent for other years (2007, 2008 and 2009).  Combining the best seasonal Landsat-5 

reflectance dataset per year with SAR data brought about modest, but significant improvements 

(improved SEP of ~4-5%) in the modelled CC accuracies for the individual years in comparison to 

SAR-only scenarios (table 4.5).  Also, the difference in accuracy between the best seasonal 

reflectance and combined multi-seasonal images, integrated with SAR datasets, were minimal 

(improved SEP of 0.5-1%).  The year 2010 obtained the highest accuracies, (R2=0.89; RMSE=8.32%; 

SEP=25.64% for the integrated SAR and multi-seasonal dataset).  The combination of 2010 SAR data 

with 2010 Autumn Landsat-5 reflectance and the three most important vegetation indices and 

textures did not improve the combined 2010 SAR and 2010 Autumn Landsat-5 reflectance results.  

The best trade-off between accuracy and complexity were given by the 2010 integrated SAR and 

autumn season reflectance model (R2=0.88; RMSE=8.51%; SEP=26.15%), as it used a single SAR and 

single Landsat-5 image.  This model was therefore used to create the regional CC map (figure 4.2). 

 

2010² SAR + Autumn 0.88 8.51 26.15 3201 

SA
R

 +
 

O
p
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l *
 

P
ro

d
u
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s 

 

20102 SAR + Autumn 0.88 8.15 26.90 3201 

SA
R

 +
 M

u
lt

i-

se
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o
n
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d
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5

 

TM
 

2007¹ All available images 0.85 6.75 28.37 8733 

2008¹ All available images 0.85 6.67 27.34 8010 

2009¹ All available images 0.84 6.91 28.79 8697 

2010² All available images 0.89 8.32 25.64 2098 

SA
R

 2008¹ Winter 0.80 7.88 32.08 8804 
2010² Winter 0.81 10.17 33.16 3201 

¹Utilized the 2008 LiDAR dataset as the reference dataset and 2008 SAR dataset as one of input variables; ²Utilized the 2010 
LiDAR dataset as the reference dataset and 2010 SAR dataset as one of input variables; * Optical Products refers to the 

Reflectance + Textures + Indices scenario in Table 4.4 
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The observed CC versus predicted CC XY scatterplots (figures 4.3i-iii) supported the main findings 

from Landsat-5 reflectance-only, SAR-only and integrated SAR backscatter and Landsat-5 reflectance 

analyses.  The 2008 multi-seasonal Landsat-5 reflectance only scatterplot (figure 4.3i) illustrated 

noticeable overestimation below 25% observed CC mark with major underestimation beyond this 

point, according to the 1:1 line.  In comparison, the 2008 SAR-only scatterplot (figure 4.3ii) 

illustrated drastic improvements in reducing the severity of CC overestimation and underestimation.  

The integration of the SAR and multi-seasonal reflectance scatterplot (figure 4.3iii) however, yielded 

a similar trend to the SAR-only scatterplot with a slightly tighter clustering of points around the 1:1 

line. 
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Figure 4.2: Regional scale CC map of the study area using the best performing RF integrated L-band and single date Landsat-5 
band reflectance model (2010 L-band & 2010 Autumn LT5 image; coverage excludes extensive cloud cover to the east)  
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i)  ii)  iii) 

Figure 4.3: Predicted CC versus Observed CC scatterplots for: i) 2008 Multi-seasonal Landsat-5 Reflectance-only, ii) 2008 SAR-only and iii) integrated 2008 Multi-seasonal 
Landsat-5 Reflectance and SAR modelled validation results  

R2 = 0.64 
RMSE = 10.53% 
SEP = 43.31% 

R2 = 0.80 
RMSE = 7.88% 
SEP = 32.08% 

R2 = 0.85 
RMSE = 6.67% 
SEP = 27.34% 
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4.6 Discussion 
 

This study was carried out as a step towards addressing the need for a long term (requiring data and 

sensor continuity), accurate and repeatable regional woody canopy cover mapping in southern 

African forests and savannahs.  A previous study demonstrated that L-band ALOS PALSAR data has 

the potential for accurate tree cover mapping in South African savannahs, and outperformed C-band 

RADARSAT-2 and X-band TerraSAR data (Naidoo et al., 2015). Since Landsat data are freely available 

and routinely used for regional forest monitoring in tropical forests and Australian savannahs 

(Armston et al., 2009; Hansen et al., 2013; Lehmann et al., 2013), this study sought to compare and 

integrate optical imagery (Landsat-5 reflectance, vegetation indices and textures) and SAR data 

(ALOS PALSAR L-band) across various seasons in order to determine if multi-temporal datasets and 

the combination of sensor technologies improves the accuracy of woody canopy cover mapping.   

 

In this study, it was hypothesized that the season when trees are covered in green foliage, while 

grasses are dry, should be the best period to retrieve CC, since there is limited interference by green 

grass (Archibald and Scholes, 2007; Fuller and Prince, 1996; Fuller, 1998; Justice et al., 1985).  RF 

modelling results of the individual Landsat-5 seasonal images (table 4.3) indicated that summer and 

autumn seasons yielded the highest accuracies, for particular years, with the winter imagery 

consistently yielding the poorest results.  A detailed examination of the temporal phenological 

fluctuations in tree and grass greenness by way of MODIS EVI time series (Jin et al., 2013) was 

explored to explain these seasonal results (figure 4.4).  This EVI information was linked to 

precipitation data which is one of the main drivers of phenological cycles and interannual 

fluctuations in greenness from the plot to regional scales (Scanlon et al., 2005).  Monthly EVI values 

(aggregated from 8 day image composites), extracted from the pixels of the 500m MODIS MCD43 

BRDF-corrected surface reflectance data (Schaaf et al., 2002), were selected across two types of 

landscapes: grass dominated gabbro and tree dominated granite, for the years 2005 to 2013 (a total 

of 368 pixels extracted for tree and grass dominated landscapes – refer to the Appendix 4 section for 

exact methodology) (Venter et al., 2003).  Generally, EVI values follow a distinct cyclical but variable 

pattern for trees and grasses, with EVI values peaking during summer (January-February) but falling 

noticeably to the lowest point in each year during the late winter and early spring (July-September).  

Generally in savannahs, trees green up earlier than the grasses which only starts greening up after 

the first rains of the growing season but senesce more rapidly ((Archibald and Scholes, 2007; 

Chidumayo, 2001) also visible in figure 4.4).  Hence, trees have a longer green period compared to 

grasses ((Higgins et al., 2011); figure 4.4).  (Archibald and Scholes, 2007) illustrated, at the landscape 
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scale, that trees and grasses have different seasonal patterns of leaf display.  Savannah trees have a 

less variable inter-annual phenological cycle since trees use their long-term, accumulated water 

reserves and are constrained by its architecture (i.e. limited by root system distribution) in contrast 

to the more variable phenological cycle of grasses that rely on short term resources such as summer 

rainfall.  The fluctuations in rainfall therefore caused more variable grass phenological cycles which 

would make the separation between tree and grass patterns even more difficult. For instance, in 

2009 (wet year) the grass dominated landscape reached a higher maximum EVI value compared to 

the tree dominated landscape, while the opposite was observed during a typically dry year in 2007. 

 

In order to ascertain the periods throughout the year where the difference between tree and grass 

greenness were the greatest, we plotted this difference through time (grass EVI minus tree EVI) 

(Figure 4.5).  The periods when the difference in EVI was the most pronounced were brief moments 

in late spring or during some autumn periods, or in some cases brief summer periods in a dry year 

(as the case in 2007 and 2010), throughout the time series, with these peak differences varying 

greatly between years and even in some cases where these differences are small (e.g. years 2009 

and 2010).  The higher accuracies obtained from the summer Landsat images in years 2007 were 

most likely caused by dry conditions which resulted in larger differences in the spectral 

characteristics of grasses and trees.  This was not the case when conditions were wetter, with 

greener grasses (e.g. in 2009).  It is important to note that the above patterns were not observed in 

every year but there was a significant trend between the corresponding difference in EVI and 

modelled SEP values of the seasonal Landsat-5 images (R2 = 0.37; p < 0.05).  The poor results 

obtained with the only spring image available (year 2008) is linked to the image timing which was 

acquired too early during the spring season while trees had not started to flush leaves (Figure 4.4-

4.5).  In winter, since most of the trees are deciduous and shed their leaves when grasses are dry, 

the EVI contrast is consistently the smallest and produced the poorest results.  In contrast, the 

dominance of evergreen tree canopies with dry grass, during the prolonged winter periods, supports 

the successful use of Landsat for mapping tree cover in the Australian landscapes of the SLATS and 

NCAS-LCCP programmes (Armston et al., 2009; Lehmann et al., 2013).  The brief transitional periods 

experienced in our South African landscapes during which the contrast between green trees (high 

tree EVI) and dry grass (low grass EVI) is high are difficult to target, as none of the historic Landsat 

image acquisition dates actually fell within the period of biggest EVI difference (Figure 4.5), and thus 

cannot be reliably used to take advantage of this difference.  In addition, unavoidable presence of 

clouds, which at times occur irrespective of season, confounds matters further. 



122 
 

0

20

40

60

80

100

120

140

160

180

200

0

0.1

0.2

0.3

0.4

0.5

0.6

2
0

0
5

/0
1

/0
1

2
0

0
5

/0
4

/0
1

2
0

0
5

/0
7

/0
1

2
0

0
5

/1
0

/0
1

2
0

0
6

/0
1

/0
1

2
0

0
6

/0
4

/0
1

2
0

0
6

/0
7

/0
1

2
0

0
6

/1
0

/0
1

2
0

0
7

/0
1

/0
1

2
0

0
7

/0
4

/0
1

2
0

0
7

/0
7

/0
1

2
0

0
7

/1
0

/0
1

2
0

0
8

/0
1

/0
1

2
0

0
8

/0
4

/0
1

2
0

0
8

/0
7

/0
1

2
0

0
8

/1
0

/0
1

2
0

0
9

/0
1

/0
1

2
0

0
9

/0
4

/0
1

2
0

0
9

/0
7

/0
1

2
0

0
9

/1
0

/0
1

2
0

1
0

/0
1

/0
1

2
0

1
0

/0
4

/0
1

2
0

1
0

/0
7

/0
1

2
0

1
0

/1
0

/0
1

2
0

1
1

/0
1

/0
1

2
0

1
1

/0
4

/0
1

2
0

1
1

/0
7

/0
1

2
0

1
1

/1
0

/0
1

2
0

1
2

/0
1

/0
1

2
0

1
2

/0
4

/0
1

2
0

1
2

/0
7

/0
1

2
0

1
2

/1
0

/0
1

R
ai

n
fa

ll 
(m

m
) 

En
h

an
ce

d
 V

e
ge

ta
ti

o
n

 I
n

d
e

x 
(E

V
I)

 

Rainfall L1_Grass L8_Trees

Figure 4.4: Temporal fluctuations of mean EVI values (extracted from MODIS data) over a predominant grassland site (L1) and a predominant woodland site (L8) 
between the beginning of 2005 and end of 2012. Rainfall measurements between beginning of 2007 and end of 2011 have also been included  
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Figure 4.5: Temporal differences of mean grass and tree EVI values (extracted from MODIS data) over a predominant grassland site and a predominant woodland site 
between the beginning of 2005 and end of 2012. Red lines with numbers indicate the multi-seasonal Landsat-5 image acquisition dates 
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Attempts were made to improve on the single date Landsat-5 modelling results by using multi-

seasonal Landsat images per year and various vegetation indices and image textures derived from 

the best seasonal image (i.e. the autumn 2010 image).  These additions yielded slightly improved 

model results over the best single date Landsat-5 images results (improved SEP of ~1-5%; table 4.3 

and 4.4).  The incorporation of multi-seasonal images for each year provided complimentary spectral 

information that is not present in a single season (e.g. the dry grass signal not present in summer 

seasons).  The addition of image textures with the spectral reflectance contributed more towards 

improving modelling accuracies (improved SEP of 1%) than the incorporation of vegetation indices, 

though marginally, which may have contained more redundant spectral information.  Since image 

textures are sensitive to the local variations in brightness arising from the biophysical properties of 

the tree canopy e.g. shadow (Asner et al., 2002), the textures may have contributed more to the 

distinguishing of the tree and grass components for CC modelling in the autumn 2010 image than 

the spectral indices.   

 

Despite the limited improvements provided by the inclusion of indices, textures and multi-seasonal 

reflectance data, none of the best performing Landsat-5 only models had accuracies that measured 

up to those obtained with a single winter L-band SAR image (R2 = 0.72 versus R2 = 0.81).  These 

results are in contrast with those of (Laurin et al., 2013) where optical Landsat textures contributed 

the most to improving accuracy, surpassing the contribution of SAR backscatter.  The highest 

modelled CC accuracies achieved by Landsat derived optical products (R2=0.72; RMSE=~12%) in our 

study was significantly lower than the CC accuracies achieved in the Australian Statewide Landcover 

and Trees Study (SLATS) Program (Armston et al., 2009) and the Australian National Carbon 

Accounting System – Land Cover Change Program (NCAS-LCCP) (Lehmann et al., 2013) which 

mapped savannah and forested landscapes (R2>0.79 and RMSE<10%).  The limited accuracies 

achieved by Landsat-5 only RF models (table 4.3 and 4.4) clearly indicated that the implementation 

of a CC monitoring system based solely on Landsat-derived data will not be adequate in the South 

African Savannahs.  L-band SAR data prove to be a much more effective alternative for reliable and 

consistent CC mapping and monitoring in this open forest environment.   

 

The integration of the SAR dataset with the best single season and multi-seasonal Landsat-5 

reflectance yielded models with the highest accuracies, which corroborates findings in previous 

studies (Laurin et al., 2013; Lucas et al., 2006b; Moghaddam et al., 2002; Rosenqvist et al., 2003; 

Townsend, 2002).  For instance, the SAR-only and the multi-seasonal Landsat only models explained 
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81% and 72% of the CC variance, respectively, while a model combining the two explained 89% of 

the variance.  The significant increase in accuracy (7.5% improvement of SEP) at the high end of the 

model performance demonstrated that optical reflectance data provided additional information 

which is complementary to that captured by the SAR backscatter.  Significant complementarity 

between SAR and Landsat data was demonstrated by (Lehmann et al., 2015) with the combined 

datasets yielding highly accurate results within the Australian NCAS-LCCP (global classification 

accuracy of 90%).  Additionally, in this study the differences in accuracy between the best single 

seasonal and combined multi-seasonal reflectance datasets, when both integrated with SAR 

datasets, were minimal (e.g. for 2010, R2 = 0.88 versus R2 = 0.89).  In closing, this study provides 

important insights for the development of a national woody vegetation monitoring programme for 

South African savannahs where extensive L-band SAR and LiDAR calibration and validation datasets 

need to be prioritised for acquisition.  The combination of winter SAR scenes with summer/autumn 

Landsat-5 scenes would be the optimal data inputs in an operational CC mapping programme.  The 

recent launch of the ALOS PALSAR-2 (L-band) sensor ensures long-term provision of L-band SAR data 

on which an operational woody vegetation monitoring system could be based, although the high 

cost may be a limiting factor.     

 

4.7 Conclusions 
 

This study aimed to map regional-scale woody fractional cover (CC) at the highest possible 

accuracies using SAR (L-band ALOS PALSAR) and multi-seasonal optical (Landsat-5 TM) data.  

Landsat-5 imagery acquired in the summer and autumn seasons yielded the highest single season 

modelling accuracies, depending on the year, but the combination of multi-seasonal Landsat-5 

images yielded higher accuracies.  The addition of vegetation indices and image textures and their 

combinations to the spectral reflectance bands provided minimal improvements, with none of the 

optical-only combinations yielding accuracies greater than those achieved using any single winter 

SAR L-band image.  Due to the unpredictability of the narrow temporal ‘window’ during which trees 

and grass may differ sufficiently in phenological greenness, CC mapping and monitoring in savannahs 

based solely on Landsat data, is not recommended.  Extensive cloud cover during the summer or 

even autumn seasons further compounds this problem.  However, there was significant, yet modest, 

improvement (R2 of ~0.08, ~1.9% of RMSE and ~7.5% of SEP) in accuracy when 2010 multi-seasonal 

optical reflectance bands were combined with the L-band backscatter variables (i.e. the best 

performing SAR and optical integrated dataset scenario). The best trade-off, however, between 

accuracy and complexity was given by a model using 2010 winter SAR and autumn season Landsat-5 
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reflectance as input variables, as the model utilised a single SAR and single Landsat-5 image.  The 

authors recommend that further testing of the performance of Landsat imagery, alone and in 

combination with winter SAR data, be conducted in other southern African vegetation types where 

tree canopies are evergreen, such as in commercial plantations, indigenous forests and thickets, and 

where Landsat may produce a better performance.  It is also recommended that a system based on 

L-band SAR datasets, with supporting airborne LiDAR data for model calibration and validation, 

should be applied to other bioregions (e.g. afromontane and coastal indigenous forests) before a 

national CC monitoring programme can be established in the future.  
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Chapter 5: Scaling-up methods for national woody fractional cover 

mapping: Experiments and guideline on the amount of field plots and 

airborne LiDAR data required for training and validation 

 

5.1 Abstract 
 

Accurate mapping of woody fractional canopy cover (CC) at the country-wide scale remains 

challenging due to the large image data volumes of sufficiently high resolution.  Both field plots and 

LiDAR datasets serve as representative training and validation datasets for country-wide CC mapping 

using SAR data. This study sought to establish the optimal quantity of field plots and LiDAR 

coverages required to train a Random Forest model to map CC at a country-wide scale using ALOS 

PALSAR HH and HV backscatter and DEM ancillary variables.  35% of randomly selected training data, 

from the five main biomes (Fynbos and Thicket, Indigenous Forest, Savannah and Grassland) and the 

Savannah biome alone were used to train RF models and validated against a fixed dataset of each of 

the biomes.  Field plots were simulated from the high resolution LiDAR data.  This approach assessed 

the representativeness of the samples and the optimal number of field plots and quantity (size and 

number) of LiDAR coverage.  Optimal number of field plots and the quantity of LiDAR coverage were 

selected where the modelling results showed the highest accuracy, i.e. the lowest Root Mean Square 

Error (RMSE), with respect to sampling effort.  The results have shown that the Savannah-only 

training dataset yielded high accuracies across Grasslands, moderate accuracies across Thickets but 

poorer accuracies in the Indigenous Forests and Fynbos biomes.  Sampling the training data across 

all available biomes yielded higher accuracies.  From the LiDAR-simulated field plot analysis, it was 

concluded that a minimum of 500, 1ha field plots, i.e. 125 1ha field plots equally sampled within 0-

20%, 20-40%, 40-60% and >60% CC ranges, would be sufficient for effective modelling of CC at the 

country-wide scale.  Additional field plots, beyond this number (500) would improve the overall 

accuracies only slightly, but incurred significant increases in sampling efforts and costs.  The analyses 

also suggest that the most economical LiDAR acquisition strategy would include only four separate 

5000ha LiDAR acquisitions, distributed across the five vegetated biomes.  Thus, an optimal sampling 

strategy would require only 20000ha of the total number of 122052ha of LiDAR at our disposal.  The 

study found that much less LiDAR data were required to train the models than originally expected, 

provided that the acquisitions were sufficiently diverse in CC and vegetation type and could also be 

cheaper to acquire than collecting 500 1ha field plots. 

Keywords: Woody canopy cover, SAR, LiDAR, training, validation, Random Forest 
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5.2 Introduction 
 

A variety of national, regional and global woody fractional cover products are available around the 

world.  Such regional or country-wide initiatives include the Australian State-wide Land cover and 

Trees Study (SLATS) (Armston et al., 2009), the Australian National Carbon Accounting System – Land 

Cover Change Program (NCAS-LCCP, (Lehmann et al., 2013)), the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) of North America (Ju et al., 2012) and the Amazon 

Deforestation Monitoring Project (PRODES, (Hansen and Loveland, 2012)) which have been derived 

from locally calibrated datasets.  Global initiatives, such as the MODIS Vegetation Continuous Field 

(VCF, (Townshend et al., 2011)), the JAXA Forest/Non-Forest (FNF, (Shimada et al., 2014)), Hansen’s 

global maps of forest cover change (Hansen et al., 2013) and Sexton’s continuous fields of tree cover 

(Sexton et al., 2013), provide a significant means for large-scale woody fractional cover (CC) 

monitoring.  These programmes focused on mapping woody fractional cover or CC, and global forest 

change in some cases, (i.e. the area vertically projected on a horizontal plane by plant canopies – 

(Jennings et al., 1999)) as it is one of the simplest metrics for monitoring the woody vegetation 

component.  Within South Africa, the Savannah biome is the largest and makes up 35% of the 

country (Van Wilgen, 2009).  In this biome, total CC values can range from dispersed trees in open-

grasslands (~5%) to near-closed canopy woodlands (~60%) and more than 80% in riparian zones 

(Venter et al., 2003).  In this country, recent work has shown that woody plants may have increased 

at a rate of 5-6% per decade, suggesting the occurrence of bush encroachment which can adversely 

affect the environment via the reduction of land productivity (e.g. reduced livestock grazing), the 

alteration of species composition and reduction of water availability (O’Connor et al., 2014; 

Shackleton et al., 1994).  Bush encroachment can also provide positive environmental impacts such 

as  carbon sequestration (Mitchard et al., 2011; Sankaran et al., 2008) and the provision of 

anthropogenic ecosystem services, such as fuelwood (Shackleton et al., 2007).  However, 

competitive claims over natural resources (grazing, fuelwood provision and biodiversity) can only be 

managed if information on spatial patterns, and most importantly temporal dynamics, are available.  

The regular and accurate monitoring of CC is thus warranted.  Unfortunately, such dedicated woody 

vegetation monitoring programmes are currently not in place for South Africa, but current research 

may make it a reality in the near future.  

 

The majority of such programmes make use of optical datasets (e.g. Landsat and MODIS) due to 

their regular, long-term coverage, medium spatial resolution and easy, free data access.  Under 
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particular circumstances, these optical sensors can take advantage of the differences in seasonal 

tree and grass phenologies to map CC successfully (as the case in the Australian SLATS programme).  

However, within the context of South Africa, (Naidoo et al., 2016) demonstrated that an L-band SAR 

system, particularly winter acquisitions, would be more accurate in modelling CC than optical-based 

sensors given the specificities of the phenological cycle of woody versus grass components of the 

South African savannah vegetation.  Given that SAR is also unaffected by cloud cover, haze and 

smoke, L-band SAR data is particularly useful for woody vegetation monitoring in South Africa.     

 

Upscaling from local pilot studies to the national scale present a number of challenges.  The first 

challenge is in the mass-downloading, storage, processing, and analyses of large volumes of medium 

resolution satellite data, e.g. Landsat.  This challenge is currently being overcome by advances in 

information technology, specifically high performing computing (Hansen and Loveland, 2012), and 

with the delivery to the community of global medium resolution mosaics such as for the sensor, 

ALOS PALSAR (JAXA).  The second challenge is that upscaling typically decreases modelling 

performances because of large environmental conditions prevailing over large areas, such as 

topography, rainfall and vegetation type, which increases the variability within the remote sensing 

sensor signal (Wu and Li, 2009).  Within the context of vegetation cover, for instance, (Sankaran et 

al., 2005) demonstrated that maximum woody cover can be constrained in Savannahs which receive 

a mean annual precipitation less than 650mm.  Vegetation cover is also influenced by topographical 

parameters (such as elevation, slope and aspect) which control the direction and speed of flow and 

the accumulation of water in the landscape as a result of gravitational forces (Florinsky and 

Kuryakova, 1996).  A solution to this challenge would involve the incorporation of such 

environmental conditions, in the form of ancillary modelling input variables, into the modelling 

process.  Finally, the biggest challenge, however, is the availability of representative training and 

validation datasets which serve as the backbone of remote sensing–based vegetation monitoring 

programmes.  Field measurements, in most of these cases, are typically used to train and validate 

other higher resolution satellite datasets via model upscaling.  Due to the labour and time intensive 

nature of field measurements, lack of standard methods, and the poor spatial distribution of field 

data, a more spatially representative and reliable alternative is required (Bombelli et al., 2009).   

 

Airborne LiDAR data has served as an accurate and reliable source of training and validation for 

model upscaling and mapping (Englhart et al., 2011; Montesano et al., 2016; Naidoo et al., 2016, 



130 
 

2015).  Compared to other high resolution optical imagery, airborne LiDAR,  is the most expensive 

with a cost of approximately 1-5 US$ per hectare depending on the total coverage, sensor 

specifications and location of deployment (Hummel et al., 2011; Kelly and Di Tommaso, 2015; 

Thompson et al., 2013; Wulder et al., 2008).  This fee, however, excludes airport logistical costs and 

aircraft fees (e.g. rental and fuel costs) and manoeuvring costs which vary on the number of turns 

the aircraft has to perform during the acquisition.  In most situations, wall-to-wall acquisitions of an 

entire country, particular as large as South Africa (122.1 million ha), is to date not financially feasible 

as a base line cover, and hence from a monitoring perspective.  Thus there needs to be a trade-off 

between the area sampled with LiDAR and the total cost incurred (Ene et al., 2016; Wulder et al., 

2008) for using these datasets nationally for calibration and validation of satellite remote sensing 

models.  LiDAR can sample much larger, representative areas at higher detail than possible through 

extensive field sampling.  In fact (Hummel et al., 2011) found that LiDAR data acquisition and 

processing costs were comparable with field data collection across the same area.  Moreover, LiDAR 

data have been found  to be on par with corresponding field measurements (Næsset and Økland, 

2002; Nickless et al., 2009; Wulder et al., 2008).  However, testing the suitability (via modelling 

requirements and financial costs) of both LiDAR and field plot measurements for upscale modelling 

efforts would be beneficial especially when LiDAR datasets are not available.  A limited number of 

studies have successfully utilised or tested field plots, of varying number and size of plots, for 

upscaling modelling efforts of vegetation structure (Saatchi et al., 2007; Urbazaev et al., 2015).   

 

Even though it is expected that the cost of LiDAR data will reduce in the near future (Asner, 2009), 

costs will remain high enough to warrant the design of optimal LiDAR sampling schemes at the 

national scale.  It is thus important to establish a guideline for the quantity and distribution of LiDAR 

acquisitions, and associated field plots, required for training and validation of models in a national 

CC monitoring system.  Thanks to a combination of national (ESKOM and SANParks) and 

international (Carnegie Airborne Observatory or CAO) collaborations, a total of roughly 122 052 

hectares (ha) of airborne LiDAR coverage, acquired between 2009 and 2013 across South Africa, was 

assembled for this study.  This large collection of LiDAR datasets were used as the main source for 

model training and validation, and served as a source from which 1ha field plots were simulated.  

The main aim of this study was to ascertain the optimal representative sampling of airborne LiDAR 

data and LiDAR simulated field plots, across Savannah-only and all main biomes, for the up-scaled 

modelling of woody fractional cover (CC) at the country level using ALOS PALSAR L-band SAR data.  

The Savannah biome was chosen as the point of comparison for other biomes as it is the biggest 
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vegetated biome in South Africa and possesses one of the most representative CC range while also 

serving as a cost effective alternative to sampling across all biomes.  Secondary objectives include 

the investigation of the inclusion of regional, environmental variables (i.e. elevation-based and 

rainfall variables) for potential modelling improvements.   To achieve this aim and secondary 

objectives, the research questions were: 

1) Does the inclusion of regionally stable ancillary variables such as elevation, slope, and aspect 

and rainfall gradient information assist L-band HH and HV backscatter in modelling CC at the 

country wide scale? 

2) What is the impact of having LiDAR data that are limited to a single biome, i.e. the 

Savannah? More specifically, is LiDAR data which is limited to the Savannah biome (as 

specified in (Rutherford et al., 2006)) sufficient for training and validation for L-band SAR-

based modelling and mapping of CC for the whole country?  Also, how do these results of 

using LiDAR from the Savannah only compare to those where diverse LiDAR datasets from 

Fynbos, Thicket, Grassland and Indigenous Forest biomes are used?  

3) What is the optimal amount of field plots, as simulated from LiDAR datasets, required for 

modelling and mapping of CC with L-band SAR across the country and in Savannahs only?  

The ‘optimal amount’, in this case, refers to the point of the most favourable trade-off 

between modelling accuracies and sampling effort (i.e. number of field plots). 

4) What is the optimal amount, in terms of area (hectares) and number and size of acquisitions 

of LiDAR data required for optimal L-band SAR-based modelling and mapping of CC within (i) 

the Savannah and (ii) country-wide, in comparison with the accuracies achieved using an 

optimal number of field plots?  The ‘optimal amount’, in this case, refers to the point of the 

most favourable trade-off between modelling accuracies and sampling effort (i.e. the 

number, size and total coverage of LiDAR acquisitions while taking into account the cost 

effectiveness of the various LiDAR acquisition specifications). 

 

5.3 Study Area 
 

The study area chosen for this study is the entire country of South Africa (SA) and mainly echoes the 

information provided in the Study Area section of Chapter 2.  The information provided here, in this 

chapter, briefly describes the key geological, climate, general topography and ecosystem related 

vegetation feature types found in SA.  At the country level, average temperatures are generally mild 

but can vary according to location and proximity to the oceans.  Annual average precipitation is 
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about 450mm with a high-to-low rainfall gradient existing from east to west which mainly limits 

forest distribution.  The country possesses a diverse range of more than 60 different geological 

substrates.  This ranges from granite, basalt and gabbro derivatives which dominate lowveld 

Savannah to mudstone and shale derivatives of the Karoo and central portions of the country to 

name a few (http://waterresourceswr2012.co.za/).  Geologies are more mixed along the South 

African east and west coasts.  With respect to the general topography of the country, areas of low 

elevation such as the Lowveld of Mpumalanga and coastal regions (with concentrated mountain 

ranges in the Western Cape region) and areas of high elevation, e.g. the Highveld in the central 

interior, are separated by the presence of a prominent ridged escarpment running across the 

country’s southern extents  (Weepener et al., 2011).  Many of the major rivers and tributaries cut 

through the escarpment from the high lying interior and mountainous areas towards the coastal 

areas and finally, out to sea.  This diverse terrain, together with the various underlying geological 

substrates, supports an equal diversity of vegetation types across the country. These range from a 

variety of widespread thorned, mixed and sweet bushveld types in the Savannah biome, to 

subtropical thickets of Eastern Cape, to concentrated patches of natural Afromontane, coastal and 

mistbelt forest types around South Africa, and to the highly endemic, sclerophyllous patches of 

fynbos in the Western Cape region (Mucina and Rutherford, 2006).  Distributed within these biomes, 

particularly over higher rainfall regions within the eastern and southern parts of the country (e.g. 

within parts of the Savannah, Fynbos and Forest biomes), are patches of commercial plantations 

(Dye and Versfeld, 2007).  These plantations are roughly made up of 57% Pine, 35% Eucalyptus and 

8% Acacia mearnsii (Black Wattle) and are grown for timber pole and pulp production (Dye and 

Versfeld, 2007).  The study area, including biome and airborne LiDAR coverage, is displayed below in 

figure 5.1. 

 

http://waterresourceswr2012.co.za/
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Figure 5.1: Study area of South Africa, including biome (Mucina and Rutherford, 2006) and airborne LiDAR acquisition 
coverage 

 

5.4 Materials and methodology 
 

The proposed methodology in this chapter draws upon the major findings, by way of recommended 

remote sensing datasets and analytical techniques, of chapters 2, 3 and 4.  The extensive LiDAR 

datasets, used for the global forest product validation assessment in chapter 2, was used as the main 

training and validation source while L-band ALOS PALSAR FBD Global image mosaic datasets (25m) 

were used as the main input variable for the modelling procedures.  A bootstrapped Random Forest 

(RF) machine learning algorithm was used in the modelling approach.  The modelling dataset, 

consisting of LiDAR CC metric as the dependent and ALOS PALSAR HH and HV dB backscatter as 

independent variables, was split into various modelling scenarios to test the robustness of the RF 

model sampling and address the research questions.  Regional environmental indicators, such as 
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elevation, aspect and slope, and rainfall information were also utilised as additional input variables 

in the RF modelling. 

 

5.4.1 Airborne LiDAR datasets and processing 

 

The extensive LiDAR datasets, utilised in chapter 2 (Section 2.4.4), was used in its entirety for this 

chapter with the identical processing steps being followed.  For the sake of brevity, this information 

will not be repeated.  These LiDAR datasets, which covered approximately 122 052 hectares (ha), 

were flown between 2009 and 2013 and across different ecosystems (ranging from coastal forests to 

savannahs, bushveld, thornveld, thickets and plantations) of South Africa (see Table 2.1).  In terms of 

coverage, these LiDAR datasets were mostly acquired across the eastern half of SA where the 

majority of forested vegetation occurs.  This distribution is the result of the 400mm “rainfall line” or 

isohyet which separates forested areas of mean annual rainfall greater than 400mm, in the eastern 

regions of South Africa, and non-forested areas of less than 400mm, in the western regions of South 

Africa.  Though the processing of these datasets remain unchanged from chapter 2, the way in which 

the data were extracted differed and will be elaborated in a later section (5.4.4).  As outlined in the 

previous chapters (2, 3 and 4), the woody canopy cover (CC) was derived from each LiDAR CHM 

dataset by extracting the total number of woody vegetation pixels divided by the total number of 

LiDAR pixels (can vary depending on the resolution of the processed CHM) within a 25m X 25m pixel 

resolution (corresponding to the pixel size of the ALOS PALSAR global mosaic), then multiplied by 

100 to get a percentage. 

 

5.4.2 ALOS PALSAR FBD global image mosaic 

 

25m 2010 ALOS PALSAR HH and HV global image mosaics were utilised as it was the only consistent 

L-band SAR dataset available for the South African country-wide coverage and  were publicly 

available for download from the JAXA dataset portal 

(http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm).  This global mosaic has been both 

radiometrically and geometrically calibrated using particular processing and mosaicking steps 

described in (Shimada and Ohtaki, 2010), therefore only limited additional SAR image processing 

steps were required.  After downloading the imagery for the whole country, the subsequent product 

required converting the raw Digital Number (DN) to Sigma dB (dB), using a calibration formula 

http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm
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(equation 5.1) provided by JAXA, and mosaicking into easy to handle image ‘chunks’ (consisting of 

roughly three scenes) in ENVI 4.8.  This procedure was conducted for both HH and HV polarisations. 

Backscatter values (dB) = 10 X log10 (DN2) – 83.0                                               Equation 5.1 

The image chunks were projected from their native geographic WGS84 projection to an Albers Equal 

Area projection.  As mentioned in Chapter 2, this was done to fix an alignment issue between the 

ALOS PALSAR mosaic and the various LiDAR datasets which was evident during preliminary analysis 

runs.  The solution, through trail-and-error, was to shift the ALOS PALSAR mosaic datasets by a 

constant configuration of 75m westwards and 50m northwards.  

 

5.4.3 Ancillary environmental parameters 

 

Because of the regional scale of the analysis, the benefit of the inclusion of additional regional 

environmental variables to model CC was tested rather than the use of direct measurement 

variables.  Aspect (i.e. the direction that a surface faces in degrees clockwise from North; 0-360°) and 

Slope (i.e. the percentage or degree change in elevation over distance) variables were derived from 

SRTM30m digital elevation model data (i.e. Elevation or the height above sea level in metres) 

(https://remotepixel.ca/projects/srtm_leaflet.html) using the raster surface toolbox (in 3D Analyst 

Tools) in ArcMap 10.1.  Finally a 2005 country-wide climate rainfall map (200-1000mm and greater) 

was obtained from the South African Water Research Commission (WRC) to add general rainfall class 

information (200-400mm, 400-600mm, 600-800mm, 800-1000mm and >1000mm) to the extracted 

data.  These variables were chosen as they do play a role in influencing the distribution of CC across 

South Africa and was expected to help capture some of the variability of CC across the landscape 

during the modelling approach.  (Sankaran et al., 2005) demonstrated that maximum woody cover 

can be constrained in Savannahs which receive a mean annual precipitation less than 650mm.  

Vegetation cover is also known to depend on topographical parameters (such as elevation, slope and 

aspect) which control the direction and speed of flow and the accumulation of water in the 

landscape as a result of gravitational forces (Florinsky and Kuryakova, 1996). 

 

5.4.4 Dataset integration and extraction process 

 

A fixed grid of 105m X 105m cells, with a 50m distance to avoid spatial autocorrelation, was 

implemented to extract corresponding LiDAR, SAR and ancillary data values for creation of the 

https://remotepixel.ca/projects/srtm_leaflet.html
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training dataset.  This method was described in the data integration sections of chapters 3 and 4 

(Naidoo et al., 2016, 2015).  The grids were created in QGIS with an Albers Equal Area projection to 

define the grid size and spacing distance but were re-projected to a WGS84 geographic projection to 

allow for overlaying over the different LiDAR and SAR datasets which possessed different 

projections.  These grids were clipped to the different LiDAR flight extents and cells which fell partly 

or fully across water bodies, seasonal agriculture centre-pivot plots, powerlines, urban settlements 

and infrastructure were removed to allow for uncontaminated SAR to LiDAR correlations.  The cells 

were removed via visual interpretation in which Google Earth was used as a backdrop.  Zonal 

statistics in the Spatial Analyst Toolbox (ArcMap 10.1) was used to extract the aggregated mean cell 

values of the different dataset types.  Variables including mean LiDAR CC, SAR HH and HV 

backscatter and ancillary DEM parameters and rainfall information were extracted for a  total of 

48 007 cells, which were treated as individual samples.  

 

85.46% of the samples (i.e. the extracted cells) fell within the Savannah biome, 13.26% within the 

Grassland biome, and 0.87% within the Indigenous Forest biome (Figure 5.2). Thicket and Fynbos 

biome coverage was very small (0.08% and 0.26% respectively).  The biome layer was derived from a 

2006 national vegetation map produced by (Mucina and Rutherford, 2006). Biomes are described  as 

a land grouping, governed by climate, which possesses plants and animals living together with the 

same degree of permanence and demonstrate large-scale patterns in global plant cover (Mucina and 

Rutherford, 2006). The LiDAR samples were also classified according to Willis’s vegetation structural 

classification scheme (Willis, 2002) for southern Africa to ascertain the structural variability of the 

samples (Figure 5.3i), captured at the individual LiDAR acquisition scale, and thus at a higher 

resolution than the coarser biome scale.  Willis’s classification scheme considers the mean canopy 

cover and tree height and was implemented by classifying the LiDAR derived CC and height metrics 

according to the scheme (Figure 5.3ii). 
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Figure 5.2: Approximate hectare and percentage coverage of samples in all LiDAR datasets according to biome 

 

32ha 
126ha 

6367ha 419ha 

41023ha 

40ha 

Azonal

Fynbos

Grassland

Indigenous Forest

Savannah

Albany Thicket

Percentage 
 (%) 

0.26 

13.26 

0.87 

85.46 

0.08 

0.07 

126 

6367 

419 

41023 

40 

32 

Hectare 
 (ha) 



138 
 

 

Figure 5.3: i) Samples according to vegetation structural classes (including hectare and percentage coverage 
statistics per class); ii) Vegetation structural classes (Willis, 2002) according to average height and projected 
woody plant canopy cover which was used to classify i) 

 

Despite the bias of the LiDAR dataset collected predominantly over the Savannah biome, a large 

number of the vegetation structural classes were well represented in our sample (Figure 5.3i), from 

grasslands to open or close woodlands, and dense natural forests or thickets. This illustrated a 
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higher degree of vegetation structural variability being captured by the extracted data than one 

would have expected from only examining earlier biome distribution results (Figure 5.2).  In Figure 

5.3i), however, the vegetation structural classes less than 1m in height (i.e. grassland and shrubland 

classes) were not well presented.  This was due to the combination of the 0.5m height threshold 

being applied to the LiDAR CHMs, to remove the influence of the grass layer on CC estimates, and 

due to the reduced capacity of LiDAR to detect vegetation less than 1m in height (Wessels et al., 

2011).  

 

5.4.5 Modelling process – algorithm, modelling scenarios and validation 

 

A Random Forest (RF) (Breiman, 2001) machine learning algorithm was implemented for the 

modelling approach as it performed well in related studies, within the context of CC prediction, in 

South Africa (Naidoo et al., 2016, 2015, 2014).  Recommended by these previous studies and others 

(Ismail et al., 2010; Prasad et al., 2006), the default number of trees in the forest, or ntree, (i.e. 500) 

and the default number of possible splitting variables for each node, or mtry, (i.e. square root of the 

number of input parameters used) were implemented. 

   

For the first research question, HH and HV backscatter variables were assessed alone and together 

with the addition of DEM ancillary and rainfall information variables for CC modelling.  The resultant 

four modelling scenarios were: (i) HH and HV backscatter only; (ii) backscatter and DEM parameters 

(elevation, slope and aspect); (iii) backscatter and rainfall information and (iv) backscatter, DEM 

parameters and rainfall information combined.  35% of the total extracted dataset (here referred to, 

throughout the chapter, as the all-biome dataset) was randomly selected for RF training and the 

model was validated against a fixed validation dataset.  In order to mitigate the sampling bias 

towards the Savannah biome, a fixed validation dataset was selected from the extracted dataset 

which was excluded from the model training process.  40 samples were randomly selected from 

each biome category of the all-biome dataset (Savannah, Grassland, Indigenous Forest, Thicket and 

Fynbos) for inclusion into the fixed validation dataset, thus resulting in a total number of 200 

samples.  The 32 samples from the azonal vegetation class were excluded from the creation of the 

fixed validation dataset.  The number of 40 samples was chosen as it was the maximum number of 

observations present in the Thicket biome which was the least represented biome in the extracted 

dataset (Figure 5.2).  Unfortunately, this meant that no training samples from the Thicket biome 

could have been utilised in the modelling approach as all samples were incorporated in the fixed 
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validation dataset.  This fixed validation dataset, which was considered to be both appropriate in 

terms of the RF modelling validation and representative in terms of vegetation structure and CC, was 

used for validating all the scenarios assessed to address the different research questions.  This also 

facilitated the comparison of the various scenarios.  The RF algorithm was performed with cross-

validation (K-fold of 10) for added model stability.  The accuracy assessment statistics, which 

included the mean coefficient of determination (R2), the mean Root Mean Squared Error (RMSE), the 

mean Standard Error of Prediction (SEP) and their 95% confidence interval (CI) counterparts, were 

recorded. 

 

The best performing combination of variables (i.e. backscatter and/or ancillary variables) was used in 

the modelling processes of the remaining research questions.  For the second research question, the 

samples extracted from Savannahs only were used for RF training (35% randomly selected) and the 

resultant models were validated against the five individual biomes in the fixed validation dataset: 

Savannahs (scenario v), Grasslands (scenario vi), Indigenous Forests (scenario vii), Thickets (scenario 

viii) and Fynbos (scenario ix) and total validation accuracy (scenario x).  These scenarios (v-x) were 

repeated in which the same number of training data (approximately 14 344 observations used in the 

Savannah-only case) was randomly selected from the all-biome dataset to keep the comparison of 

validation results consistent.  The final two research questions were discussed in the upcoming 

sections (5.4.6 and 5.4.7) which dealt with ascertaining the optimal amount of training data (i.e. 

LiDAR simulated field plots and LiDAR acquisitions specifications) required for CC modelling and 

mapping at the country scale.  Ascertaining the optimal training data amount is vital for reduced 

sampling efforts, optimised modelling accuracies and for reducing training data acquisition costs.  

 

5.4.6 Optimal amount of LiDAR simulated 1 hectare field plots 

 

This section served to create a sampling guideline for users who do not have possession of LiDAR 

datasets and will be relying on the collection of field plots for CC upscaling at the country scale.  To 

test the optimal amount of field plots required for country-wide CC modelling and mapping, we 

simulated field plots from the LiDAR data for both the complete and the Savannah-only extracted 

datasets.  48 007 extracted LiDAR cells approximate 48 007 1ha simulated field plots.  For the 

analysis, discrete amounts of training data, which increased gradually according to increasing 

number of 1ha “field plots” (i.e. 12, 24, 48, 100, 248, 500, 1000, 2000, 3000, 5000, 10000, 15000 and 
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20000 X 1ha field plots), were selected in a stratified random manner, according to four broad CC 

classes (0-20%, 20-40%, 40-60% and >60%), and used as training data for RF models.  The selection 

process for the stratified 1ha random sampling was forced to extract an equal number of “field 

plots” within each of these four CC classes.  These four broad CC classes were also chosen as it was 

practical enough for users to replicate from a variety of reference remote sensing sources (e.g. 

Google Earth or aerial photographs) during the “field plot” pre-selection process.  This CC class 

stratification would prevent potential sampling bias of “field plots” across the CC range (e.g. 

sampling more “field plots” in the lower and medium CC ranges than the higher CC ranges etc.).  This 

process is standard practice when selecting field plots.  The fixed validation dataset, used in section 

5.4.5, was also used for RF model validation to prevent model validation bias. A cross-validation (K-

fold of 10) approach was again implemented.  The validation-based mean R2, RMSE and their CI 

counterparts (upper and lower limits) were plotted against the corresponding number of 1ha “field 

plots”, used for model training.  The optimal number of 1ha “field plots” was determined by 

examining the percentage change in both R2 and RMSE as the number of “field plots” was increased, 

while considering sampling effort/size versus the gains in accuracy.  

  

5.4.7 Optimal LiDAR training amount in terms of hectare coverage 

 

This section served to create a sampling guideline for users who intend to acquire airborne LiDAR for 

CC upscaling at the country scale.  Factors controlling the optimal amount of LiDAR are complex as 

individual acquisition/track size; the number of acquisitions/tracks; the distribution of 

acquisitions/tracks and total acquisition coverage all influence the training data available for 

modelling, the achievable modelling accuracy and also subsequent LiDAR costs.  For instance, 

airborne LiDAR can be economical if acquired in tracks instead of large areas but a larger sample 

area will provide more training sample data but in turn incur higher costs (such as aircraft 

deployment, manoeuvring and other related logistical costs).  However, increasing the number of 

acquired LiDAR tracks will also drive up costs.  Also for country wide mapping of CC, sampling across 

diverse CC ranges and vegetated biomes are also necessary.  Balancing these factors along with the 

users’ requirements and available budget is challenging but essential.   

 

This section followed a procedure fairly similar to the previous optimal field plot section (section 

5.4.6) but instead of dealing with individual simulated 1ha “field plots”, the entire LiDAR dataset 
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(48007 cells) was split up into a number of contiguous data chunks, of varying sizes in hectares, in 

order to simulate typical airborne LiDAR acquisitions (i.e. the number, size and subsequent total 

acquisition area in ha) for country-wide CC modelling and mapping.  Simulated LiDAR chunks or 

acquisition sizes (of contiguous data) of 250ha, 500ha, 1000ha, 2500ha, 5000ha and 10000ha and 

the number of these acquisition sizes were tested and compared to the modelling performance of 

the optimal number of simulated field plots.  The analysis was conducted for both the complete and 

the Savannah-only extracted dataset.  To create the chunks of contiguous data, a unique identifier 

number was assigned to all the data entries which made up a specific chunk size (varied depending 

on the chunk size).  This unique identifier then followed a sequential numeric sequence to segment 

the rest of the total LiDAR dataset.  These unique chunk identifiers were used for the random 

selection process in which the specific number of chunks was selected and used in the modelling 

process.  Data (i.e. extracted cells of section 5.4.4) which did not fit exactly in a chunk was not 

included in the analysis.  This strategy constrained the sampling of training data to a prescribed 

population size (i.e. LiDAR acquisition(s)).  Data contiguity was assumed based on the manner in 

which the LiDAR was extracted which was geographically (i.e. spatially connected sequence of cell 

extraction) for the individual datasets (Table 2.1).  Within each simulated LiDAR population (e.g. 

LiDAR acquisition size and number of acquisitions), 35% of data were selected for model training and 

the fixed validation dataset, used in the above sections, were again used for model testing.  A cross-

validation (K-fold of 10) approach was again implemented.  The validation-based mean R2 and RMSE, 

including their confidence intervals, were plotted against the corresponding number of simulated 

LiDAR acquisitions for each particular LiDAR acquisition size.  The optimal number of LiDAR 

acquisitions for each LiDAR acquisition size, was determined as the point where both the R2 and 

RMSE values closely matched the modelling performance of the optimal number of simulated field 

plots (above).  This was done as a point of comparison between the optimal number of “field plots” 

and the equivalent, optimal LiDAR acquisition specifications.  
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5.5 Results 
 

5.5.1 RF Modelling results (validation) according to modelling scenarios 

 

Table 5.1: Accuracies of models including combinations of various predictive variables derived from L-band HH/HV backscatter, Digital Elevation Model and rainfall  

Modelling scenarios 10 iterations 
 

Random Selection with fixed validation and 35% training R² R² CI 
RMSE 

(%) 
RMSE 

CI 
SEP 
(%) 

SEP 
CI 

N 
(training) 

N 
(validation) 

Scenario (i) HH and HV backscatter only 0.65 0.007 23.48 0.205 42.90 0.375 16732 200 

Scenario (ii) HH and HV backscatter & DEM parameters (elevation, 
slope & aspect) 0.74 0.004 19.19 0.163 35.07 0.297 16732 200 

Scenario (iii) HH and HV backscatter & Rainfall classes (200-400, 400-
600, 600-800, 800-1000 and >1000mm) 

0.68 0.005 22.35 0.185 40.84 0.338 16732 200 

Scenario (iv) HH and HV backscatter & DEM parameters (elevation, 
slope & aspect) & Rainfall classes (200-400, 400-600, 600-800, 800-
1000 and >1000mm) 

0.77 0.005 17.49 0.237 31.95 0.432 16732 200 

 CI = confidence interval, DEM = digital elevation model, R
2
= coefficient of determination, RMSE= Root Mean Square Error; SEP= standard error of prediction; N = total number of observations 

 
Table 5.2:  Accuracies of models based on training from Savannah-only versus all-biome data and validated with data from five different biomes 

Modelling scenarios (10 iterations) Savannah-only Dataset All-Biome Dataset 
 Random Selection with fixed validation and 35% 

training R² R² CI 
RMSE 

(%) 
RMSE 

CI 
SEP 
(%) 

SEP 
CI R² R² CI 

RMSE 
(%) 

RMSE 
CI 

SEP 
(%) 

SEP 
CI 

N 
(training) 

N 
(validation) 

Scenario (v) - Validated on Savannahs*  0.83 0.015 8.94 0.361 26.38 1.065 0.82 0.012 9.15 0.322 27.01 0.950 14344 40 

Scenario (vi) - Validated on Grasslands* 0.73 0.016 15.03 0.276 91.46 1.680 0.82 0.016 11.59 0.465 70.51 2.832 14344 40 

Scenario (vii) - Validated on Indigenous Forests* 0.42 0.015 34.06 0.857 41.20 1.036 0.55 0.021 18.81 0.758 22.75 0.917 14344 40 

Scenario (viii) - Validated on Thickets* 0.52 0.011 25.05 0.317 34.21 0.433 0.53 0.008 24.61 0.334 33.60 0.456 14344 40 

Scenario (ix) - Validated on Fynbos* 0.45 0.015 19.40 0.262 28.79 0.389 0.45 0.030 19.64 0.561 29.14 0.832 14344 40 

Scenario (x) - Validated on complete validation 
dataset* 

0.70 0.006 21.08 0.281 38.51 0.513 0.77 0.006 17.85 0.251 32.62 0.458 14344 200 

* Variables from scenario (iv) was used 
 CI = confidence interval, R

2
= coefficient of determination, RMSE= Root Mean Square Error; SEP= standard error of prediction; N = total number of observations 
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The addition of ancillary parameters to the HH and HV SAR backscatter improved the accuracy of 

predicted CC (3-5% improvement in RMSE) than when using the SAR backscatter alone (Table 5.1).  

The DEM ancillary variables contributed the most to this improvement (R2=0.74; RMSE=19.19%; 

SEP=35.07%).  However, when HH and HV SAR backscatter was combined with the DEM variables 

Figure 5.4: Scatterplots of the mean predicted CC versus mean observed LiDAR derived CC resulting 
from models validated over five individual biomes (i-v) and the complete fixed validation dataset (vi) 
while using Savannah-only data for training. Error bars indicate confidence intervals of each point at 
the biome level. Black dotted line indicates the 1:1 trend line. 

R² = 0.83, RMSE = 8.94%, SEP = 26.38% R² = 0.42, RMSE = 34.06%, SEP = 41.20% 

R² = 0.52, RMSE = 25.05%, SEP = 34.21% R² = 0.45, RMSE = 19.40%, SEP = 28.79% 

R² = 0.73, RMSE = 15.03%, SEP = 91.46% 

R² = 0.70,  
RMSE = 21.08%, 
SEP = 38.51% 

i) ii) 

iii) iv) 

v) 
vi) 
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and rainfall, the highest accuracy was achieved (R2=0.77; RMSE=17.49%; SEP=31.95%).  The 

confidence intervals (CI) were particularly low for the scenarios (i-iv) which indicated consistent RF 

modelled results.  The highest accuracies were achieved in scenario (iv) and therefore this 

combination of variables was used for all the remaining scenarios (v-x) and analyses.  Table 5.2 

indicates the model accuracies achieved from the use of Savannah-only training data (including 

Figure 5.4) versus the complete dataset over five separate biome regions.  With training data limited 

to the Savannahs,  the modelling performance was suited to biomes with low to intermediate CC 

ranges as high accuracies was documented across the Savannah (R2 = 0.83, RMSE = 8.94%) and 

Grassland biomes (R2 = 0.73, RMSE = 15.03%).  Accuracies, however, were lower for the Indigenous 

Forest and Thicket biomes with a trend of gross under-prediction of CC, at the high CC classes 

(Figures 5.4ii and iii).  When training data were incorporated from the all-biome dataset, results 

generally improved across all biomes especially across the Indigenous Forest and Grassland biomes 

with an improvement of an RMSE of 11.31% and 3.44% respectively.  Improvements in accuracy 

across the Thicket biome, however, were negligible.  However, in the case of the Fynbos biome, no 

improvements were observed with poor accuracies being achieved when using both the all-biome 

and Savannah-only training datasets (R2=0.45; RMSE=~19.50%; SEP=~29%).  The Savannah-only 

training dataset obtained favourable results (R2=0.70; RMSE=21.08%; SEP=38.51%) with an 

improvement achieved from including training data from all the other biomes (increases in R2 = 0.07, 

RMSE = 3.23% and SEP = 5.89%). 

 

5.5.2 Optimal field plot amount 

 

Figures 5.5 and 5.6 illustrated both the mean R2 and RMSE values, and their incremental percentage 

change with increasing number of simulated 1ha field plots, used as training from both the all-biome 

dataset and Savannah-only dataset.  Regardless of the training dataset used and as expected, both 

the R2 and RMSE values improved with increasing number of 1ha field plots until it reached a plateau 

beyond which the accuracies did not improve noticeably with the increase in sampling effort.  The 

optimal trade-off point was reached at 500 1ha field plots for the all-biome dataset, achieving a 

mean R2 and RMSE of 0.73 and 19.39% respectively.  Although there were significant percentage 

improvements in R2 and RMSE of 3.25% and 6.13%, respectively, between 248 and 500 field plots, 

the percentage increase reduced to 0.96% and 2.96% (for R2 and RMSE, respectively) between 500 

and 1000 plots (Figure 5.5).  This total of 500 1ha field plots amounts to only approximately 1% of 

the total LiDAR dataset.  According to the stratified sampling scheme, this total implies that 125 1ha 
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field plot sites would be required as training within each of the 0-20%, 20-40%, 40-60% and >60% CC 

ranges across the entire South Africa.  Increasing the number of training field plots beyond 500 did 

however yield improvements in accuracies (not greater than 3% in percentage change in R2 and 

RMSE and with signs of plateauing between 10000 and 20000 1ha field plots) but it required 2-4 

times the number of field plots to achieve this.  The upper and lower R2 and RMSE confidence 

intervals (CI), also, was large at the lower number of field plots but quickly reduced until negligible at 

the 500 field plots (Figure 5.5).  Although 500 1ha plot number was considered optimal due to the 

high accuracies achieved with a reasonable sampling effort, the recommended/optimal amount is 

ultimately informed by a user’s required accuracy and budget available for field sampling. 

   

 

Figure 5.5: RF validation accuracies, including % change, across the different training sampling sizes obtained from the 
all-biome dataset. In the % change table, +’ve values indicate a percentage increase while –‘ve values indicate a 
percentage decrease (No. = number; ha = hectares) 
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Figure 5.6: RF validation accuracies, including % change, across the different training sampling sizes obtained from the 
Savannah-only dataset.  In the % change table, +’ve values indicate a percentage increase while –‘ve values indicate a 
percentage decrease (No. = number; ha = hectares) 

 

When the field plots for training was limited to the Savannah-only dataset (Scenario x), the optimal 

trade-off point was also reached at 500 1ha field plots (Figure 5.6).  The last major improvement in 

R2 and RMSE according to the percentage change statistics (improvements of 4.29% and 6.55% for R2 

and RMSE, respectively) was observed between 248 and 500 plots.  The performance was slightly 

poorer but comparable to the results where the all-biome dataset was sampled (Figure 5.5) with 

mean R2, RMSE and SEP values of 0.70, 20.81% and 38.03% respectively.  Similarly to Figure 5.5, the 

modelling performance improved marginally with the increasing number of training field plots past 

the 500 1ha field plot mark (less than a 1.7% improvement in R2 and RMSE) but, unlike Figure 5.5, 

the modelling performance plateaued at the 2000 1ha field plot mark with no further, noticeable 

improvements in R² and RMSE.  The R2 and RMSE CI intervals, observed in Figure 5.6, also tapered to 

and remained negligible beyond the 500 1ha field plot mark.    

 

5.5.3 Optimal amount of LiDAR data required 
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Results from the all-biome dataset, were given in Figures 5.7 and 5.8.  As the results from the 

Savannah-only dataset yielded similar patterns to the all-biome dataset, although with slightly lower 

accuracies, it was briefly summarised in Table 5.3.  
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Figure 5.7: CC R
2
 validation accuracies according to the number of simulated LiDAR acquisitions of different sizes used for RF modelling from the all-biome dataset (scenario (iv)). The red 

solid line indicates the mean R
2
 value obtained from the 500 1ha field plot result while the red dotted line indicates the corresponding upper and lower Confidence Interval limits  
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Figure 5.8: CC RMSE validation accuracies according to the number of simulated LiDAR acquisitions of different sizes used for RF modelling from the all-biome dataset (scenario iv). The 
red solid line indicates the mean RMSE value obtained from the 500 1ha field plot result while the red dotted lines indicate the corresponding upper and lower Confidence Interval limits. 
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Table 5.3: Summarised CC RF validation accuracies according to the number, size and total hectares of simulated LiDAR 
acquisitions acquired from the all-biome dataset and Savannah-only dataset 

LiDAR  
acquisition size 

 
No. LiDAR  

acquisitions 

Total 
acquired 

LiDAR 
coverage 

Complete Dataset Savannah-only Dataset 

 R² (CI) RMSE (%) (CI) R² (CI) RMSE (%) (CI) 

250ha 30 7500ha 0.72 (0.040) 20.00 (1.867) 0.70 (0.008) 21.13 (0.305) 

500ha 20 10000ha 0.74 (0.017) 19.45 (0.937) 0.70 (0.009) 21.08 (0.348) 

1000ha 15 15000ha 0.73 (0.024) 19.75 (1.663) 0.70 (0.009) 21.09 (0.288) 

2500ha 8 20000ha 0.73 (0.024) 19.76 (1.587) 0.70 (0.009) 21.11 (0.356) 

5000ha 4 20000ha 0.72 (0.021) 19.84 (1.322) 0.70 (0.005) 21.11 (0.229) 

10000ha 3 30000ha 0.74 (0.027) 19.05 (1.329) 0.70 (0.008) 20.99 (0.292) 

500 1ha plots  500ha 0.73 (0.009) 19.40 (0.427) 0.70 (0.011) 20.81 (0.450) 

 

Figures 5.7 and 5.8 illustrated the RF model accuracy (R2 and RMSE) with simulated LiDAR 

acquisitions, obtained from the all-biome dataset, of varying sizes (in terms of hectares) and 

increasing number of acquisitions in comparison to that of the optimal 500 1ha field plot benchmark 

(also see Table 5.3).  It was found that both the optimal number of LiDAR acquisitions and the size or 

coverage was the same for both the all-biome and Savannah-only datasets in reaching the field plot 

benchmark but with varying obtained accuracies.  The all-biome dataset, however, always obtained 

higher modelling accuracies than the Savannah-only dataset for all LiDAR acquisition sizes.  These 

graphs and table illustrated a distinct trend where a larger number (e.g. 20 and 30) of smaller 

simulated LiDAR flight acquisitions (e.g. 250ha and 500ha) yielded a smaller overall area acquired 

(e.g. 7500ha and 10000ha) than the fewer number of larger acquisitions (e.g. four 5000ha LiDAR 

flights which equated to a total of 20000ha flown).  The confidence intervals were particularly high 

when acquiring a limited number (1-3) of the small acquisitions (250ha-1000ha) (Figures 5.7 and 

5.8).  These confidence intervals remained variable as the number of acquisitions increased but 

eventually stabilised and reduced towards the 500 1ha benchmark.  The LiDAR acquisition size of 

10 000ha did show the most stable results with generally small confidence intervals being observed 

with the increasing number of acquisitions but suggested the highest total LiDAR acquisition 

coverage (30 000ha) for matching the field plot benchmark.  For the sake of a more reliable 

recommendation on the LiDAR acquisition specifications, the mean validation accuracy result (both 

R2 and RMSE) which firmly occurred within the confidence range of the 500 1ha benchmark was 

used to select the optimal number of LiDAR acquisitions of the various sizes.  Though anyone of 

these LiDAR specification results (i.e. number, size and total area acquired) in table 5.3 could be 

selected by a potential user, depending on the available budget, the four 5000ha LiDAR acquisition 

specification was recommended by the author.  This choice was elaborated upon in the discussion 

section next.   
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5.6 Discussion 
 

With the increasing financial and logistical challenges associated with acquiring sufficient training 

and validation datasets at the country wide scale, this chapter sought to establish a guideline for the 

LiDAR acquisition in terms of acquisition size, number of acquisitions, representativeness and total 

coverage, as well as and the quantity and representativeness of field plots, simulated from LiDAR 

data, within South Africa.  In addition, this study also sought to establish whether sampling within 

the Savannah biome only compared to sampling five biomes (in five vegetation biomes), was 

sufficient for Random Forest (RF) model training and subsequent country-wide CC modelling.  

Various ancillary input variables (derived DEM parameters and rainfall information) were also tested 

in combination with L-band HH and HV ALOS PALSAR backscatter, and compared to SAR backscatter 

alone, for the RF modelling of CC.  

 

The addition of DEM parameters (elevation, slope and aspect) to HH and HV backscatter data 

yielded significantly improved accuracies over the use of backscatter alone and the combination of 

backscatter with rainfall class information (table 5.1).  It was previously demonstrated that an RF 

model can use the DEM parameters as a topographic landscape separator for  associating particular 

CC ranges with particular physical landscape conditions (Li and Chen, 2005).  For example, high CC 

values would be associated with steep slopes and riverine areas while low CC values would be 

associated with mid-slope areas and flat, high altitude grasslands.  An example of such an 

observation can be seen from the transition from the Drakensberg escarpment to the Lowveld areas 

of Mpumalanga and is supported by  (Florinsky and Kuryakova, 1996) who noted that topography 

controls the accumulation and availability of water in the landscape (via gravitational forces).  This in 

turn controls vegetation distribution and cover.  The final addition of rainfall class information, 

together with DEM parameters and backscatter data, improved RF modelling results further as areas 

of high rainfall generally correlated well with higher values of CC (e.g. Indigenous Forests along the 

east coast of SA) and vice versa for the low rainfall, low CC areas (e.g. wooded grassland, Savannah).  

Although rainfall and CC is positively correlated at the biome scale, examples exist where high CC 

values (> 70%) are found in more arid environments which have less than 500mm of rainfall (e.g. low 

height Albany Thickets of Eastern Cape, (Mucina and Rutherford, 2006)).  Within the Savannah 

context, however, (Sankaran et al., 2005) demonstrated that maximum CC is constrained by rainfall, 

particularly areas receiving a mean annual precipitation less than 650mm, but CC is also influenced 
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at the landscape scale by the geology and locally by disturbance forces such as fire, human activities, 

and herbivory which tend to decrease the woody component (Staver et al., 2011). 

 

In terms of the suitability of Savannah-only data for RF model training, it was evident that the 

accuracies were relatively poor across biomes of high CC such as Thickets and Indigenous Forest, 

which grossly underestimated CC (Figure 5.4, table 5.2), but high accuracies were observed for 

medium to low CC biomes such as Savannahs and Grasslands.  When utilising the all-biome dataset 

(LiDAR across all five biomes) for the selection of model training data, improvements in the high CC 

biomes (particularly Indigenous Forests) were observed.  These results were considered fair (i.e. 

without bias), despite an over representation of data from Savannahs, as the same number of 

samples were randomly selected for each biome during the validation process.  This in turn implied 

that a Savannah-only training dataset would not be sufficient to achieve high accuracies in the high 

CC value range, for successful modelling of CC at the country-wide scale.  Despite this apparent 

outcome, these results serve as a benchmark for limited sampling within a single, dominant biome 

for the purpose of country-wide CC modelling.  The plateauing of the simulated field plot results 

(figure 5.6) and lower simulated LiDAR acquisition accuracy results (table 5.3) also supported the fact 

that the modelling of CC, at the country-scale, was limited in terms of achievable accuracies when RF 

training data was restricted to the Savannah biome only.  Also, there were limited possibilities for 

further improvements in the modelling accuracy even with the increase of training data used for RF 

training.  The simulated field plot and LiDAR acquisition results will be discussed at a later stage.  An 

anomaly, however, was observed within the Fynbos biome modelling result in which similarly poor 

results were observed between the Savannah-only and the all-biome dataset.  Of the total 126 

samples collected over the Fynbos biome, 86 samples were available for potential selection in the 

training process of the all-biome dataset but no improvement was observed.  A number of factors 

may explain this poor performance such as relief-induced variations on SAR backscatter due to the 

high slope angles, though this is partially corrected but not fully eliminated at the image processing 

phase, and the inability of the L-band to detect a range of cover of low-lying shrublands and needle-

like leaved (sclerophyllous) vegetation types due to its large wavelength (~23cm) (Bayer et al., 1991; 

Mitchard et al., 2009).   

 

From the optimal field plot analysis, the results adhered to the ‘Law of Diminishing Returns’ (Collins 

English Dictionary, 2012) where after reaching a particular training amount (500 1ha plots or 125 



154 
 

1ha plots collected within the four main CC classes), there was marginal improvement (<3%; Figures 

5.5 and 5.6) in CC modelling accuracies, despite increasing training samples.  In other words, past 

this point, the gains in RF accuracy were small with the increase in sampling effort (i.e. the number 

of field plots and associated logistical costs).  Acquiring more field plots past this point, in order to 

obtain higher overall modelling accuracies, are entirely at the discretion of the data users if budget is 

not an issue.  However, this is only recommended to sample across the five biomes rather than in 

savannahs only as improvements in modelling accuracy were more tangible.  It is, however, very 

difficult to compare the 500 1ha plot amount, and the optimal LiDAR acquisition amount, with other 

studies as the author believes that this study is the first of its kind at a country scale to achieve this 

goal but the recommended optimal field plot number is not unrealistic to achieve at the country 

scale with a similar number of plots being acquired in (Saatchi et al., 2007).  In the southern Kruger 

National Park region, however, (Urbazaev et al., 2015) found that a minimum of 180 samples (50m 

by 50m in size) was optimal (i.e. the point where the R2 and RMSE accuracies stabilised) for CC 

model training and validation but these results were limited to a small geographical area and a CC 

range predominately less than 50%.  The fact that the 500 1ha field plot amount can be stratified 

into the collection of 125 1ha field plots randomly within broad 0-20%, 20-40%, 40-60% and >60% CC 

ranges means that potential users can plan field campaigns more effective and efficiently by 

avoiding sampling bias especially in less frequent CC classes (e.g. greater than 60% CC range in 

Savannahs).  The use of these four broad CC classes for sampling stratification also means that users 

can use a variety of remote sensing services (e.g. Google Earth) and reference datasets (e.g. aerial 

photographs) to help with field campaign planning.   

 

Regarding the optimal LiDAR amount results, it was clear that LiDAR data contiguity was a major 

factor in influencing modelling accuracies.  In other words, acquiring many small sized LiDAR 

acquisitions (e.g. 250ha each in size) across the Savannah or all-biome dataset, yielded accuracies 

similar to the respective field plot benchmark with significantly lower total acquired LiDAR coverage 

than much larger contiguous LiDAR acquisitions (e.g. 10 000ha each in size).  The number and size of 

the LiDAR acquisitions drive the total cost incurred so a brief cost analysis was conducted to 

determine the most cost effective acquisition specification.  For this analysis, the conservative 

amount of 3 US$ per ha cost and a fixed plane mobilisation fee (pilot rates etc.) of R40 000 per flight 

(roughly expected according to local providers, e.g. the Southern Mapping Company or SMC) was 

considered.  The travelling cost of the plane, to and from the acquisition sites, was excluded as this 
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fee can be waivered if the plane is present in the acquisition vicinity as a result of another contract 

(SMC, personal communication – 20 February 2017).  

  

Table 5.4: Cost analysis of optimal LiDAR acquisition specifications of varying size and number (according to table 5.3) 

Cost Items 30 X 250ha 20 X 500ha 15 X 1000ha 8 X 2500ha 4 X 5000ha 3 X 10000ha 

Cost per ha (3$ per ha; 1$ = R12.95) R 291 375 R 388 500 R 582 750 R 777 000 R 777 000 R 1 165 500 

Mobilisation costs  
(R40 000 X # acquisitions)* 

R 1 200 000 R 800 000 R 600 000 R 320 000 R 160 000 R 120 000 

Total R 1 491 375 R 1 188 500 R 1 182 750 R 1 097 000 R 937 000 R 1 285 500 

*Airplane travelling fees to and from acquisitions excluded 
 

The acquisition of many small (e.g. 250ha) LiDAR flights is not financially feasible from an airborne 

LiDAR campaign perspective (~R1.5 million; table 5.4).  The same can be said for very few but large 

LiDAR acquisition sizes such as 10 000ha which can also be expensive to acquire using an airborne 

platform due to acquisition duration and logistics etc. (~R1.2 million; table 5.4).  Based on the 

number of acquisitions, not too many to incur extensive costs and not too few to lack potential CC 

representativeness within the sampling biome(s), and the size of these acquisition, including the 

total acquisition area, the four 5000ha LiDAR acquisition specification, based on the results of table 

5.4 above, can be considered the most appropriate from a cost (total cost of R937 000) and 

statistical point of view and closely matched the accuracies obtained from the 500 1ha simulated 

field plots (table 5.3).  Additionally, if the user is interested in capturing the CC variability across all 

five vegetated biomes (Savannah, Grassland, Indigenous Forests, Fynbos and Thickets) for maximum 

modelling accuracy potential, this LiDAR configuration would be the most feasible in achieving this.  

Although the eight 2500ha LiDAR acquisition specification did cover a total area of 20 000ha which 

was similar to that of the four 5000ha LiDAR acquisition specification, the doubling of the number of 

LiDAR acquisitions would be more expensive (table 5.4) especially when needing to be acquired 

across all five vegetated biomes.  LiDAR has often been reported as expensive to acquire (Hummel et 

al., 2011; Kelly and Di Tommaso, 2015).  However, this study illustrated that not so much, in terms of 

total hectare coverage (coupled with a cost effective acquisition specification), was actually needed, 

provided that the acquisition(s) were representative of the CC range, for accurate CC mapping at the 

country wide scale.  This was possible as sufficient CC, and vegetation structural, variability could be 

present within the individual LiDAR acquisition(s) to sufficiently train the RF model.  One of many 

examples of this was the Applebosch Ndwedwe LiDAR acquisition (approximately 650ha in size) in 

Figure 5.9 below which shows the wide range of CC and vegetation structural types present in a 

relatively small dataset.  There has also been an increase in the amount of airborne LiDAR being 

collected over recent years for utility installations and infrastructure monitoring (e.g. powerlines, 
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roads, pipelines etc.).  These can be sourced and made available to users at no cost, in a number of 

instances.  With this increase in popularity and regularity of use, it is expected that the cost of LiDAR 

data will reduce in the near future (Asner, 2009). 

 

 

Figure 5.9: Variability of woody fractional cover (i) and vegetation structure (ii) across Applebosch Ndwedwe LiDAR 

 

Ultimately the preferred LiDAR acquisition specification, based on the guidelines presented in Table 

5.3, is dependent on the data user’s preferences and budget.  Overall, this outcome also supported 

the results from (Ene et al., 2016; Wulder et al., 2012) which discouraged the acquisition of ‘wall-to-

wall’ LiDAR coverage and promoted for more cost effective partial coverages.  To briefly test which 

option is the most cost effective – the optimal LiDAR acquisition specification (four 5000ha 

ii) 

i) 

% 
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acquisitions) or the optimal number of field plots (500 1ha field plots) – another cost analysis was 

conducted.  Similar to the LiDAR cost assessment, field costs for a field campaign aiming to acquire 

CC data from 500 1ha field plots were estimated.  We considered a team of three labourers and one 

specialist.  Assuming that two field plots could be realistically collected per day by the team, a 

variety of per day cost items (charge out rates, transport hire, accommodation, subsistence, 

equipment and fuel) were considered.  These figures were based on the author’s experience in 

organising such field campaigns in the past. 

   

Table 5.5: Cost analysis of the optimal number of field plots versus the optimal LiDAR acquisition specification 

Items 500 1ha field plots Items 
4 X 5000ha LiDAR 
acquisitions 

Field team of three workers 
rates per day (R300) X 3 pp. = R900 

Cost per ha  
(3$ per ha; 1$ 
@ R12.95) R 777 000 

Team specialist rate per day R 650 

Mobilisation 
costs  
(R40 000 X 4 
acquisitions)* R 160 000 

Transport hire costs per day R 1 000   
 Accommodation per day (R600) X 4pp. = R2400   
 Subsistence costs per day (R200) X 4pp. = R800   
 Fuel costs per day R 500   
 Number of days (2 sites per 

day) 250 days   
 Sub-total R 1 562 500   
 Equipment costs (DGPS, tapes 

and poles) R 80 000   
 Total R 1 642 500 Total R 937 000 

*Airplane travelling fees to and from acquisitions excluded 
 

Taking the cost of the variety of items outlined in table 5.5, it was evident that the 20 000ha (i.e. four 

5000ha acquisitions) of acquired LiDAR data costed much less (R705 500 cheaper) than collecting 

data from 500 1ha plots at the country-wide scale.  Acquiring LiDAR data, under the scenario 

considered in table 5.5, instead of field plots would yield a 43% cost saving to a potential user.   

Another issue considering field plot CC acquisition would be determining the amount of time and 

optimal size of the work force needed to sample 500 1ha plots across various CC and biome ranges.  

LiDAR, as a source of training and validation, appears to be both the cost effective, convenient and 

time-saving choice for CC modelling at the SA scale.   
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5.7 Conclusions 
 

This study sought to establish guidelines for the quantity of LiDAR and LiDAR simulated field plots 

recommended as reliable sources of training and validation in SA national CC modelling efforts using 

HH and HV polarised L-band ALOS PALSAR global mosaic and ancillary variable data.  In term of the 

model input variable results, it was evident that the inclusion of ancillary DEM variables (slope, 

aspect and elevation) and rainfall classes (200-400mm, 400-600mm, 600-800mm, 800-1000mm and 

>1000mm), together with HH and HV backscatter, yielded the highest RF modelling accuracies of all 

other input variable combinations.  The sampling of RF training data from the Savannah biome-only 

yielded high accuracies across Grasslands and Savannahs, moderate accuracies across Thickets but 

poor accuracies across Indigenous Forests and Fynbos biomes.  Sampling the training data across all 

five vegetated biomes yielded higher accuracies.  From the LiDAR simulated field plot analysis, it was 

concluded that an optimal number of 500 1ha field plots, i.e. 125 1ha field plots equally sampled 

within 0-20%, 20-40%, 40-60% and >60% CC ranges, would be required for effective modelling of CC 

at the South African country-wide scale.  Collecting additional field plots, past this point, would 

provide a limited increase in the overall accuracies (when using the complete dataset only for 

training data selection) but require significant increases in sampling efforts and costs.  Concluding on 

the recommended optimal LiDAR amount, which matched the accuracies obtained from the 500 1ha 

field plots, was more challenging as a variety of LiDAR acquisition specifications (i.e. size of 

acquisition, number of acquisitions and total hectares acquired) could achieve this result.  Choosing 

the best LiDAR acquisition would depend solely on the data user’s available budget.  By balancing 

the LiDAR acquisition coverage, number of acquisitions and expectant costs, the authors recommend 

an acquisition of four separate 5000ha LiDAR acquisitions (i.e. 20 000ha of total acquired coverage) 

across the five vegetated biomes.  Overall, this study found that much less LiDAR data were required 

to train the RF models than originally expected, provided that the acquisitions were sufficiently 

diverse in CC and vegetation type and was also cheaper to acquire than collecting 500 1ha field 

plots.  In conclusion, the recommendations put forward served merely as guidelines which could 

help reduce overall sampling effort while maximizing modelling accuracies of CC at the country-wide 

scale. 
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Chapter 6: Study conclusions, recommendations and ways forward 
 

This study sought to evaluate various methods for estimating and upscaling woody structural metrics 

of South African savannahs using integrated SAR and optical remote sensing datasets and LiDAR 

datasets as training and validation data sources.  This study came about due to the urgent need for 

an active monitoring system for monitoring the status of the woody component across South Africa, 

especially over the savannah biome which has received less attention in the international literature.  

Since there are very limited research on the use of remote sensing for modelling and mapping the 

woody component in South Africa, this study built the foundation of fundamental knowledge and 

identified the initial steps for developing such a monitoring system.  It is believed that this study is 

the first of its kind to establish accurate modelling approaches for the mapping of the woody 

component in the complex and heterogeneous savannah biome of South Africa, using integrated 

SAR and optical data.  These steps involved firstly assessing existing global forest products across 

South Africa with a special focus on product accuracies in savannahs.  The next steps involved 

establishing accurate SAR and integrated optical models to predict and map the woody component 

at the local to regional scale within the savannah environment.  In the process, the most suitable 

SAR frequency and the best seasonal optical data source for increasing modelling accuracies, was 

established.  The final step involved establishing some guidelines for best practices to upscale these 

methods to national woody component mapping while optimising the amount of training and 

validation data required to reliably achieve this.  The current chapter serves as a summary of all the 

key conclusions emerging from the research conducted in the previous chapters.  Recommendations 

and ways forward are also suggested to take this research further in both the conceptual and 

scientific contexts.  This section will be structured on a per chapter basis. 

 

Before attempts could be made to improve current woody structural products, the detailed 

validation of current global forest products was necessary to justify the overall research theme.  

Chapter 2’s study sought to validate the accuracies of two global forest products, the 30m Landsat 

Vegetation Continuous Field (VCF) and the recently introduced 25m JAXA ALOS PALSAR Forest/Non-

Forest (FNF) global products, against an extensive collection of airborne LiDAR data.  Special focus 

was given to savannahs which are largely under-represented and even excluded by such global 

products.  It was found that the FNF product grossly under-represented the distribution of forests in 

savannah environments (20-80% CC ranges), due to the inadequate HV backscatter threshold chosen 

in its creation (Shimada et al., 2014).  The FNF product, however, most accurately detected the Non-
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forest class (0-10% CC range) and also showed limited use in detecting closed forest cover class (90-

100%) and Natural Forest and Shrub Forest tree structural classes.  The Landsat VCF product 

displayed strong CC underestimation with increasing variability and mean error for CC values greater 

than 30%.  The moderate accuracies at the 10-20% CC range and in the open woodland tree 

structural class suggests that the VCF product could be potentially applicable in low CC environments 

such as grasslands and sparse savannahs but can also marginally detect closed canopy environments 

(90-100% CC range).   

 

It is recommended that more extensive ground-truth datasets, especially over medium to dense 

forested areas and/or specific bioregions, would need to be incorporated to train the regression tree 

algorithm which was used to create the Landsat VCF product.  Additionally, the characterisation of 

CC in the Landsat VCF product could be successfully improved by integrating multi-source and multi-

resolution map products as achieved for the MODIS VCF product in specific studies (Montesano et 

al., 2009; Song et al., 2013).  For the FNF product, it is recommended that a lower HV dB threshold 

(such as -19 dB), used for the product derivation, be implemented to improve forest detectability in 

savannah environments of South Africa.  This chapter provides a detailed understanding of the 

potential strengths and weaknesses of these two popular global forest products which is vital in 

allowing potential data users to make informed decisions when choosing to use these products or 

not.  In the light of these results, a fixed definition of forests is necessary and a more accurate forest 

product, which has been specifically calibrated from locally collected datasets, will need to be 

developed to capture the full CC range found in the heterogeneous South African savannahs.  

Overall, there is a major need for improvement in the derivation and accuracy of such products 

within the context of South Africa and its savannahs.  Chapters 3 to 5, in this thesis, sought to 

achieve this goal. 

 

In chapter 3, the study aimed to test and compare the accuracy of modelling woody above ground 

biomass (AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs using a 

combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) radar 

datasets.  The assessment of these three SAR frequencies (separately and in combination) has not 

been conducted before in a savannah environment.  It was hypothesized that the combination of 

shorter wavelength with longer wavelength SAR datasets, in a modelling approach, will yield an 

improved assessment of woody structure based on the assumption that X- and C-band SAR signals 
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interact with the finer woody structural constituents while the L-band SAR signal interacts with the 

major tree structural components.   In accordance with literature in other environments the L-band 

SAR frequency was conclusively found to be more effective in the modelling of the CC, TCV and AGB 

metrics in South African savannahs than the shorter wavelengths (X- and C-band) both as individual 

and combined (X+C-band) datasets.  Although the integration of all three frequencies (X+C+L-band) 

yielded the best overall results for all three metrics, the improvements were noticeable but marginal 

in the light of the L-band results alone.  C-band, however, was found to yield promising results, 

especially across open savannah environments, which would make the implementation of similar 

woody structure models which use regular, free, data obtained from the Sentinel-1 C-band sensor 

viable when L-band datasets are not available.  The results, thus, do not warrant the acquisition of all 

three SAR frequency datasets for tree structure monitoring.  Furthermore, the addition of the 

shortest wavelengths (X-band and C-band) did not assist in the overall reduction of prediction error 

specifically of the shrubby layer as hypothesized in the chapter study.  In chapter 4 it was proposed 

that the inclusion of seasonal optical datasets (e.g. reflectance bands, vegetation indices and 

textures derived from Landsat platforms), which can provide more woody structural information, 

may also augment the modelling results.  The inclusion of these optical predictor variables, together 

with the positive results of the L-band SAR in modelling CC, were tested in the next chapter.     

 

As a way forward, in order to reduce the error experienced in the AGB estimation (at the field 

collection, LiDAR and SAR levels), new and more robust savannah tree allometric equations, with a 

greater range of representative tree stem and height sizes, will need to be produced.  To elaborate 

this study solely implemented the Colgan (2013) AGB allometric equation for tree level AGB 

estimations (accumulated at plot level) for AGB upscaling efforts but this equation was limited in 

that it was built on trees which were sampled over a relatively small geographical area (a mining site 

of less than 1km2 in area) in the Savannah Lowveld with a limited number of large trees harvested 

(i.e. DBH > 30cm and dry mass > 4 tonnes).  Other equation limitations were observed in more 

regional allometric equations such as (Nickless et al., 2011) in which the equation was only 

applicable to trees with a DBH less than or equal to 33cm.  Temperate or hardwood generic 

allometric equations are usually applied to trees greater than this maximum DBH which would 

introduce error at the ground level of AGB calculation.  More robust allometric equations, derived 

from a more regionally representative sampling range which especially encompasses larger tree 

sizes (greater than 30cm in DBH), needs to be developed.  Such efforts, however, would require 

extensive destructive harvesting campaigns which could be costly and conflict with ecological 
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management objectives, such as the preservation of biodiversity.  Additionally when upscaling 

ground AGB to LiDAR, further research needs to be conducted on the implementation of other 

LiDAR-derived predictor variables (other than the H x CC metric used in this study) such as maximum 

height and crown area metrics.  In this study, ground AGB was aggregated and upscaled to the 25m 

spatial resolution using the LiDAR dataset but the implementation of more advanced techniques 

such as individual tree crown object-oriented AGB modelling should be investigated further for 

improved LiDAR-derived AGB. 

 

The research in chapter 4, was based on the premise that the integration of optical and SAR sensor 

data will yield improved results by allowing for the extraction of more detailed structural 

information and reducing associated uncertainty than when using the individual datasets.  We 

mainly tested how the accuracy of woody canopy cover (CC) predictions compared when using 

Landsat versus L-band dual-polarised SAR input data, whether the integration of additional optical 

predictor features (e.g. textures and vegetation indices) improved modelling accuracies in 

comparison to the L-band SAR-based CC accuracies and finally, whether the integration of optical 

Landsat and L-band SAR data yielded any noticeable improvements.  This study also sought to 

ascertain the season or seasons in which Landsat-5 data predicted CC with the highest accuracies.  It 

was found that Landsat-5 imagery acquired in the summer and autumn seasons yielded the highest 

single season modelling accuracies, depending on the year, but the combination of multi-seasonal 

Landsat-5 images yielded higher accuracies.  The addition of vegetation indices and image textures 

and their combinations to the spectral reflectance bands provided minimal improvements, with 

none of the optical-only combinations yielding accuracies greater than those achieved using any 

single winter SAR L-band image.  Also due to the unpredictability of the narrow temporal ‘window’ 

during which trees and grass may differ sufficiently in phenological greenness, CC mapping and 

monitoring in savannahs based solely on Landsat data, is not recommended.  The finding that 

Landsat data alone achieves significantly lower accuracies than the L-band SAR based estimates 

contrast with other studies in Australia and is a significant contribution to the research topic.  There 

was significant, yet modest, improvement in accuracy when 2010 multi-seasonal optical reflectance 

were combined with the L-band backscatter variables.  The best trade-off, however, between 

accuracy and complexity was given by a model using 2010 winter SAR and autumn season Landsat-5 

reflectance as input variables.  Extensive cloud cover, however, during the summer or even autumn 

seasons may adversely affect modelling accuracies by reducing the amount of available training 

data.  It is recommended that further testing of the performance of Landsat imagery, alone and in 
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combination with winter SAR data, be conducted in other southern African vegetation types where 

tree canopies are evergreen, such as in commercial plantations, indigenous forests and thickets, and 

where Landsat may produce better performance.  It is also recommended that a system based on L-

band SAR datasets, with supporting airborne LiDAR data for model calibration and validation, should 

be applied to other bioregions (e.g. afromontane and coastal indigenous forests) before a national 

CC monitoring programme can be established in the future.  Looking at the future research 

opportunities, with the reduced revisit time of approximately five days and the recent launch of 

Sentinel 2B (7th March 2017), the Sentinel 2 series of satellites could help monitor phenological 

changes between tree and grasses in savannahs at a greater temporal interval than Landsat thus 

increasing the chance of acquiring optical imagery at the ideal phenological window which could 

assist L-band SAR for improved CC mapping.  

 

Finally, chapter 5 sought to establish guidelines for the optimal, representative sampling of airborne 

LiDAR data and LiDAR simulated field plots, across Savannah-only and all main biomes, for the up-

scaled modelling of woody fractional cover (CC) at the country level using ALOS PALSAR L-band SAR 

data.  The inclusion of regional environmental variables (i.e. elevation-based and rainfall variables) 

were also investigated for potential modelling improvements.  It was found that the inclusion of 

ancillary DEM variables (slope, aspect and elevation) and rainfall classes (200-400mm, 400-600mm, 

600-800mm, 800-1000mm and >1000mm), together with HH and HV backscatter, yielded the 

highest RF modelling accuracies of all other input variable combinations.  Additionally, the sampling 

of RF training data from across the Savannah biome-only yielded high accuracies across grasslands 

and savannahs, moderate accuracies across thickets, but poorer accuracies across indigenous forests 

and fynbos biomes.  Sampling the training data across all five vegetated biomes yielded higher 

accuracies.  In terms of the LiDAR simulated field plot analysis, it was concluded that an optimum 

number of 500 1ha field plots, i.e. 125 1ha field plots equally sampled within 0-20%, 20-40%, 40-60% 

and >60% CC ranges, would be required for effective modelling of CC at the South African country-

wide scale.  Collecting additional field plots, past this point, would provide an added boost to the 

overall accuracies (when using the complete all-biome dataset only for training data selection) but at 

a significant increase of sampling efforts and costs which might not be warranted (cost versus 

accuracy paradigm).  Drawing conclusions on the recommended optimum LiDAR amount, which 

matched the accuracies obtained from the 500 1ha field plots, was more challenging, because a 

variety of LiDAR acquisition specifications (i.e. size of acquisition, number of acquisitions and total 

hectares acquired) could achieve this result.  Choosing the best LiDAR acquisition would depend 
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solely on the available budget.  By balancing the LiDAR acquisition coverage, number of acquisitions, 

the authors recommend an acquisition of four separate 5000ha LiDAR acquisitions (i.e. 20 000ha of 

total acquired coverage) across the five vegetated biomes.  According to a brief cost analysis, this 

LiDAR acquisition configuration was also considered to be the most cost effective.  Overall, this study 

found that much less LiDAR data is required to train the RF models than originally expected, 

provided that the acquisitions were sufficiently diverse in CC and vegetation type and was also 

cheaper to acquire than collecting 500 1ha field plots.   

 

In closing, this study brought forward various scientifically sound methodologies, which made use of 

a suite of LiDAR, SAR and optical remote sensing datasets, for estimating vegetation woody 

structural attributes of South African savannahs.  Using the lessons learnt from the key findings 

above, a new woody canopy cover map product, for the country of South Africa, can be created 

which can be more accurate than other available global forest products.  The creation of such a 

product can serve as an essential stepping stone towards the establishment of an operational 

monitoring system for South African ecosystems.  In accordance with this goal, a SAR-derived CC 

map, using just HH and HV backscatter (R2 = 0.65; RMSE = 23.48%; SEP = 42.90%) as input variables, 

was created which is believed to be the first, locally calibrated and validated CC map created for the 

entire country of South Africa at the 25m spatial resolution (Figure 6.1).  The next step would entail 

the creation of such detailed, national scale products (Figure 6.1) in a multi-temporal fashion (yearly) 

in order to document woody vegetation change across the years and in the process, highlight areas 

of vegetation loss (e.g. deforestation) and gain (e.g. bush encroachment).  An additional challenge 

associated with multi-temporal change detection, however, would involve the appropriate 

management of the product error across the multiple product years and also the propagated error 

through the upscaling process for each year.  Addressing this challenge is crucial for the 

understanding of actual vegetation change in the national landscape.  Once established, such a 

monitoring system will ultimately help to address the numerous environmental issues that plague 

South African savannahs.  These include assisting in curbing threats of bush encroachment mainly 

due to rising global CO2 levels, deforestation through subsistence fuel wood removal, big tree loss in 

reserves due to elephant and fire forces and finally the spread of invasive alien species (IAPs) 

choking vital riparian zones as well as watersheds.  Finally, the establishment of such a monitoring 

system will also allow the country of South Africa to meet its policy and legal obligations in terms of 

the regular monitoring of the status of forests and carbon stock levels at the national scale. 
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Figure 6.1: Woody fractional canopy cover (CC) map of the South African Region (including parts of neighbouring countries) 
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Appendices 
 

Appendix 2A: Example of poor VCF accuracy statistics according to 

stratified CC ranges and vegetation structural classes 

 

 

Figure 2A: XY density scatterplot of Landsat (Hansen) VCF CC values versus LiDAR CC for: 1) the 40 to 80 CC 
range and 2) the Woodland structural class 

 

Appendix 2B: FNF confusion matrix results based on new HV Forest class 

threshold of -19 dB 
 

1) 

2) 
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Table 2B: Confusion matrix results of the new Forest/Non-Forest product using a HV threshold of -19dB 

  LiDAR 

New FNF Forest (F) 
Non-Forest 

(NF) Grand Total 

Forest (F) 21908 288 22196 

Non-Forest (NF) 15060 10775 25835 

Grand Total 36968 11063 48031 

Producer's Acc. 59.26 97.40   

Overall Acc.     68.05 

 

 

Appendix 3A: Colgan et al. (2013) biomass allometric equation 
 

M = 0.109D(1.39+0.14ln(D)) H0.73 ƿ0.80       Equation 3.1 

Where M = biomass in kg/Ha, D = Diameter above breast height (DBH) in cm, H = height of tree in 

metres and ƿ = mean wood specific gravity (fixed at a mean value of 0.9) which is unitless.  

 

Appendix 3B: Plot level above ground biomass up-scaling factors 
 

Total 25m X 25m AGB plot = X + Y + (Z*6.25)     Equation 3.2 

Where X is the total AGB of stems ≥ 10cm DBH, Y is total AGB of stems between 5 and 10cm DBH 

and Z is the total AGB of stems between 3 and 5cm DBH.  The up-scaling factor of 6.25 was used as 

stems between 3 and 5cm were only sampled within the 10 by 10m (i.e. DBH zone 1) subplot and 

not sampled for the rest of the 25 by 25m grid (i.e. DBH zone 2). So 625m2 (i.e. total area of the 25 X 

25m sample plot) divided by 100m2 (area of the 10 by 10m subplot) is 6.25.  All remaining stems 

within the 25 by 25m sample plot, which subscribed to the remaining DBH conditions (i.e. ≥5cm 

DBH), were measured and therefore did not require any up-scaling factors.  

 

Appendix 3C: The assessment of various data mining algorithms for 

modelling savannah woody cover 
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ABSTRACT 

 

The woody component in African Savannahs provides essential ecosystem services such as fuel 

wood and construction timber to large populations of rural communities. Woody canopy cover (i.e. 

the percentage area occupied by woody canopy or CC) is a key parameter of the woody component. 

Synthetic Aperture Radar (SAR) is effective at assessing the woody component, because of its 

capacity to image within-canopy properties of the vegetation while offering an all-weather capacity 

to map relatively large extents of the woody component. This study compared the modelling 

accuracies of woody canopy cover (CC), in South African Savannahs, through the assessment of a set 

of modelling approaches (Linear Regression, Support Vector Machines, REPTree decision tree, 

Artificial Neural Network and Random Forest) with the use of X-band (TerraSAR-X), C-band 

(RADARSAT-2) and L-band (ALOS PALSAR) datasets. This study illustrated that the ANN, REPTree and 

RF non-parametric modelling algorithms were the most ideal with high CC prediction accuracies 

throughout the different scenarios. Results also illustrated that the acquisition of L-band data be 

prioritized due to the high accuracies achieved by the L-band dataset alone in comparison to the 

individual shorter wavelengths. The study provides promising results for developing regional 

savannah woody cover maps using limited LiDAR training data and SAR images. 

 

mailto:LNaidoo@csir.co.za
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Index Terms— Woody canopy cover, Savannahs, Synthetic Aperture Radar, Multi-frequency, 

Non-parametric 

 

1. INTRODUCTION – BACKGROUND, AIMS AND OBJECTIVES 

 

The woody component in African Savannahs provides essential ecosystem services such as fuelwood 

and construction timber to large populations of rural communities. The woody component is also an 

important physical attribute for many ecological processes and impact the fire regime, vegetation 

production, nutrient cycling, soil erosion and the water cycle of these environments [1]. In order to 

monitor and manage these fuelwood reserves and carbon stock, the structural parameters of the 

woody components needs to be estimated over large areas. Woody canopy cover (i.e. the 

percentage area occupied by woody canopy or CC) is a simple and key parameter of the woody 

component and is used for the estimation of above ground biomass by combining it with tree height 

[2]. 

 

Active remote sensing sensors such as Light Detection And Ranging (LiDAR) and Synthetic 

Aperture Radar (SAR) are effective at assessing the woody component, because of their capacity to 

image within-canopy properties of the vegetation [3], [4], [5]. SAR-based approach, furthermore, 

offers an all-weather capacity to map relatively large extents of the woody component, which 

cannot be easily achieved with LiDAR only [6]. In line with the protocols outlined in the GOFC-GOLD 

Sourcebook [7], for extensive regional CC modelling, mapping potential and capacity to incorporate 

such diverse datasets, a robust but accurate modelling approach is needed. Both parametric and 

non-parametric modelling approaches can fulfill this criterion. Parametric approaches are based on 

particular assumptions about the input variable(s) distribution while in non-parametric approaches, 

the input variable(s) do not take a predetermined form but are built from information derived from 

the dataset(s) itself [8]. 

 

This study compared the modelling accuracies of woody canopy cover (CC), in South African 

Savannahs, through the assessment of a set of modelling approaches (from simple parametric Linear 

Regression to more complex non-parametric algorithms such as Support Vector Machines, REPTree 

decision tree, Artificial Neural Network and Random Forest) with the use of X-band (TerraSAR-X), C-

band (RADARSAT-2) and L-band (ALOS PALSAR) datasets. Since this work feeds into a bigger 

programme for robust CC modelling development and automated mapping potential, minimal 
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algorithm parameter tuning and optimization was conducted. With this in mind, the default 

parameter values recommended by the various software proprietors were thus used in this study. 

Finally, CC was derived from airborne LiDAR data to train the models and evaluate the SAR modelling 

accuracies. The following research questions were posed in accordance to this study’s main 

objectives: 

 

1) Which modelling technique yielded the best CC modelled accuracies? 

2) Which SAR frequency (e.g. X-, C- or L-band) yielded the highest accuracies for predicting CC? 

 

2. MATERIALS AND METHODOLOGY 

 

Five 2012 TerraSAR-X X-band (Dual pol. StripMap), four 2009 Radarsat-2 C-band (Qual pol. Fine 

beam but only HH and HV data was used in this study) and two 2010 ALOS PALSAR L-band (Dual pol. 

FBD) images were acquired for the Southern Kruger National Park region (31°00’ to 31°50’ Long E; 

24°33’ to 25°00’ Lat S).  This area is made up of a mixture of communal rangelands (e.g. 

Bushbuckridge), private game reserves (e.g. Sabi Sands) and national parks (e.g. Kruger Park).  The 

woody vegetation in the region is generally characterized as open forest with a canopy cover ranging 

from 20-60%, a predominant height range of 2 to 5m and biomass below 60T/ha [9]. The SAR 

imagery was acquired in winter when it is dry with the lowest moisture levels and leaf-off conditions.  

Dry conditions allow for minimal SAR signal noise from moisture variability [9].  The SAR intensity 

imagery underwent the following pre-processing steps: multi-looking (range and azimuth factor of 

2:8 for L-band, 1:5 for C-band and 4:4 for X-band), radiometric calibration (conversion into σ0 

backscatter values), geocoding and topographically normalization of the backscatter (90m SRTM 

DEM) and filtering (3X3m sigma Lee filter). 

 

LiDAR data were acquired by the Carnegie Airborne Observatory AToMS sensor in summer 2012 

and processed according to steps outlined in [10].  The LiDAR CC product was derived from a Canopy 

height model (CHM, pixel size of 1.12m) that was computed by subtracting a DEM from a Canopy 

Surface Model obtained from the raw point cloud. The percentage area of 25 x 25m area covered by 

woody canopy was calculated (using the CHM values above 0.5m to exclude the grass layer) to 

create the LiDAR CC product.  For the modelling, the LiDAR CC and SAR datasets were combined 

using a fixed spatial grid of 105m cells, spaced 50m apart to avoid spatial autocorrelation [9].  
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Polygon shapefiles of the informal settlements, the main roads, rivers and dams were used to 

remove any grid cells occupying those features.  Mean values within each 105m cell were extracted 

from the SAR and LiDAR CC datasets. This resulted in a dataset of approximately 21000 samples.   

 

Five popular regression and data mining algorithms were applied to specific scenarios derived 

from the extracted data: linear regression (LR) [11], Support Vector Machines (SVM) [12], REPTree 

[13], Artificial Neural Network (ANN) [14] and Random Forest (RF) [15].  LR is the simplest to 

implement but are sensitive to outliers and are not suited to non-linearly distributed data. ANN (a 

feed-forward version used in this study with the hidden layer nodes set at a default value of 10), 

SVM (Polykernel algorithm with default RegSMOImproved optimizer) and RF are more suited to 

complex datasets but are ‘black-box’ in nature with specific software requirements. Additionally 

ANN and SVM are more computationally intensive and time consuming due to the level of 

complexity and customization that is required [16], [17].  REPTree decision tree (unconstrained with 

a default value of 3 number of folds for growing the rule set) have also been proven to be an 

effective technique [18] but, like most decision tree algorithms, are sensitive to small changes in the 

training datasets and are vulnerable to overfitting [19]. RF, however, is easier to implement as it only 

requires two main user-defined inputs – the number of trees in the forest (default = 500 trees) and 

the number of possible splitting variables for each node (default rule is the square root of number of 

predictor variables used i.e. 1 in this study) [20].  

 

The various data input scenarios included X-band, C-band and L-band only.  Models were computed 

in WEKA 3.6.9 and R rattle software. Data were split into a random 35% for model training and 

random 65% for model validation. The entire modelling process was repeated 10 times for 

robustness and cross-validation (allowing varying training/validation datasets) while calculating 

averaged coefficient of determination (R²), root mean square error (RMSE) and standard error of 

prediction (SEP) statistics (including their 95% confidence intervals or CI).  Average predicted CC 

versus observed CC plots was also created. 
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Table 1: Validation accuracies for modelling CC across various SAR frequencies and algorithms (N= no. of observations) 

 

3. RESULTS AND DISCUSSION 

 

In terms of the modelling algorithm results (table 1), LR and SVM both yielded poorer accuracies in 

comparison to REPTree, ANN and RF algorithms which obtained similarly high accuracies. This 

indicated that the implementation of mostly non-parametric algorithms (particularly ANN) were 

most suited for modelling CC in this heterogeneous savannah environment. LR performed poorly 

due to the fact that the relationships between the SAR predictor variables and CC were not linear 

(results not shown) while SVM’s poor performance could be attributed to insufficient learning or 

training by the algorithm (requires the tuning of ‘hyperparameters’) [17]. Additional 

experimentation to find the optimal algorithm parameters (e.g. selecting a more effective kernel 

Band X [N = 13761] C [N = 11687] 

Algorithm R² (CI) RMSE (CI) SEP (CI) R² (CI) RMSE (CI) SEP (CI) 

LR 0.30 (0.002) 18.57 (0.023) 52.18 (0.084) 0.55 (0.002) 14.04 (0.034) 40.88 (0.123) 

SVM 0.30 (0.002) 18.72 (0.036) 52.68 (0.112) 0.55 (0.002) 14.48 (0.099) 42.09 (0.280) 

REPTree 0.36 (0.005) 17.74 (0.089) 49.86 (0.282) 0.63 (0.002) 12.91 (0.032) 37.53 (0.127) 

ANN 0.39 (0.009) 17.29 (0.152) 48.52 (0.394) 0.65 (0.002) 12.56 (0.033) 36.50 (0.090) 

RF 0.34 (0.003) 18.14 (0.040) 51.06 (0.153) 0.61 (0.002) 13.20 (0.031) 38.29 (0.117) 

Band L [N = 13954]  

Algorithm R² (CI) RMSE (CI) SEP (CI)    

LR 0.71 (0.002) 11.88 (0.050) 33.36 (0.154)    

SVM 0.71 (0.003) 12.34 (0.083) 34.65 (0.246)    

REPTree 0.78 (0.002) 10.40 (0.045) 29.16 (0.145)    

ANN 0.79 (0.003) 10.15 (0.066) 28.49 (0.178)    

RF 0.77 (0.001) 10.61 (0.027) 29.79 (0.075)    

Figure 1: Mean RF predicted CC versus mean observed CC for each multi-frequency scenario (The dotted line refers to the 1:1 line) 

L-band 

R²=0.77 
RMSE=10.61% 
SEP=29.79% 

C-band 

R²=0.61 
RMSE=13.20% 
SEP=38.29% 

X-band 

R²=0.34 
RMSE=18.14% 
SEP=51.06% 
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algorithm and optimizer), instead of the implementation of the default parameters, could also have 

improved the SVM results. Preliminary results also showed that when datasets were combined, RF 

yielded higher accuracies than the other algorithms examined in this study, which indicate that RF is 

more suited for larger predictor datasets (to be explored in upcoming publications). Additionally, the 

overall low CI values indicated that the derived models were very robust and stable across the 

various iterations.   

 

For the individual SAR frequencies, the L-band dataset yielded the highest modelled accuracies 

across all algorithms with the X-band dataset yielding the poorest results.  This L-band result can be 

attributed to the ability of longer wavelengths to interact with the main tree structural constituents 

(particularly in tree canopies with patchy crown architectures of which the shorter wavelengths 

might not fully capture) thus resulting in a better correlation with the LiDAR CC metric. These 

modelling results were supported by the mean predicted versus mean observed CC scatterplots for 

each scenario (figure 1 – RF results). The levels of major CC over-prediction and under-prediction (in 

relation to the dotted 1:1 line where predicted CC equals observed CC) noticeably improved as one 

progressed from the X-band plot to the C-band and to finally the L-band band plot. These modelling 

results highlighted the important contribution of the L-band in CC modelling in this environment. 

The preference for L-band SAR datasets for tree structure modelling has been supported by 

numerous studies [21], [22] and this study’s outcome corroborated those in [23]. The study provides 

promising results for developing regional savannah woody cover maps using limited LiDAR training 

data and SAR images. 

 

4. CONCLUDING REMARKS 

 

This study illustrated that the ANN, REPTree and RF non-parametric modelling algorithms were 

found to be robust while yielding consistently higher CC prediction accuracies throughout the 

different band scenarios. One of these algorithms could be implemented for continuous mapping 

potential of CC when future datasets become available. Results also illustrated that the acquisition 

of L-band data should be prioritized due to the high accuracies achieved by the L-band dataset alone 

in comparison to the individual shorter wavelengths (e.g. X-band and/or C-band). The recent launch 

of the ALOS PALSAR-2 (L-band) sensor will ensure further woody structure modelling potential for 
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future studies. The robust C-band results, however, still bode well for future work involving the 

Sentinel-1 sensor (recently launched) where free C-band data will be made available. 
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Appendices 4A and 4B: Random Forest optimisation attempts 

 

 

Figure 4A: Root Mean Square Error (RMSE) variability box plot, derived from modelled 2008 L-band SAR and 
LT5 summer reflectance data results, for analysing the different RF tuning parameters (Unpr = unpruned; nd 
= nodesize; mx = maxnodes; solid bar = mean RMSE; whiskers = max/min range; dots = outliers)  
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Methodology for the creation of the EVI phenology graphs (Figures 4.4 and 4.5) 

 

The EVI monthly values were extracted from all the 500m MODIS pixels which fell exactly within 

LiDAR coverages of specific grass (‘L1’ grass EVI values and phenology) and tree (‘L8’ tree EVI values 

and phenology) dominated landscapes between years 2005 and 2013. The multi-temporal EVI values 

were extracted from the WAMIS database (http://wamis.meraka.org.za/).  Scene level EVI values 

were averaged for each date and plotted in figure 4.4 together with the monthly rainfall averages.  

The monthly average rainfall data was extracted from Graskop, Skukuza and Phalaborwa weather 

station, in Mpumalanga, and provided by the South African Weather Services.  Figure 4.5 was 

created by subtracting the tree EVI values from the grass EVI values to get the difference EVI values 

which were plotted over the same time interval of figure 4.4.  The approximate acquisition dates of 

the multi-temporal Landsat-5 imagery were also added to figure 4.5. 

 

Figure 4B: Root Mean Square Error (RMSE) line graph, derived from modelled 2008 L-band SAR and LT5 
summer reflectance data results, for analysing the different RF tuning parameters across varying number of 
trees in the forest (NTrees = number of trees; nd = nodesize; mx = maxnodes)  

http://wamis.meraka.org.za/

