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Summary

In this dissertation, we �t various �nancial models to observed stock prices and we calcu-

late the option prices under each of these models. All of the models considered are based

on Lévy processes, which are processes with independent and identically distributed in-

crements. The processes are popular in �nance due to their �exibility and their desirable

mathematical properties. The models considered include the celebrated Black-Scholes

model, under which the log-retuns are assumed to be driven by a Brownian motion. Two

other classes of models are included in this study, both of which are generalizations of the

Black-Scholes model. The �rst class is the geometric Lévy process models, of which the

Black-Scholes is a special case. Two speci�c examples within this class are considered, the

two models use the normal inverse Gaussian and Meixner processes to model log-returns.

The second class of model considered generalizes the Black-Scholes while modeling the

passing of time using an increasing stochastic process. The two speci�c examples consid-

ered models time using a Pareto and a lognormal process.

The aim of this dissertation is to explore the question of which model to use in a given

�nancial market. To this end, we �t each of the models considered to observed log-returns.

Following this step we calculate the prices of options available in this market. This is done

in order to compare the prices calculated under the models to the prices observed in the

market. In each case the Esscher transform is used in order to calculate the equivalent

martingale measure used for the calculation of the option prices. Note that this is not

the approach typically employed by �nancial practitioners. In practice these models are

often calibrated to the observed option prices, meaning that the parameters of the models

are chosen so as to minimise some distance measure between the observed and calculated

option prices. In this dissertation we depart from this methodology in order to determine

if the models �tted to the stock prices are capable of producing realistic option prices.

When analysing the results obtained we use a two fold approach. The �rst step is to

determine which of the models considered provides the best �t to the observed log-returns

(this is done by comparing the integrated squared errors between the resulting densities

and a kernel density estimate), and the second step is to compare the calculated and

10
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observed option prices (using the root mean square error calculated between the two sets

of option prices). We conclude that, surprisingly, the model that �ts the stock price data

best often does not provide an adequate �t to the option prices, and vice versa.

Keywords : geometric Meixner model, exponential lognormal-normal model, expo-

nential Pareto-normal model, geometric normal inverse Gaussian model, Black-Scholes

model, martingale, arbitrage, Esscher transform method, Fourier method, Lévy processes,

in�nitely divisible.



Chapter 1

Introduction

In this chapter an overview of, and a motivation for this study are given. This is done in

Section 1.1. The objectives of this study are listed in Section 1.2. In Section 1.3, we give

brief summaries of the chapters to follow.

1.1 Overview and motivation

The trade in options constitutes a substantial proportion of all trades made in a �nancial

market. An option is a �nancial asset deriving its value from some underlying assets. These

assets are mostly stocks and bonds. There has been an increase in the recent studies on

the quanti�cation of the risk involved in holding these options, see [2]. The calculation of

option prices is a non-trivial task, a great deal of research is done on this topic, see [1].

Various types of options are available. In this report we focus on the European call option.

This option type, discussed in Section 2.3.1, is one of the most basic options available.

In this study, we consider various types of option price models based on the class of

Lévy processes. The reason being that the Lévy processes have desirable mathematical

properties, they are �exible and are often used in the �nancial literature. Within the class

of Lévy processes, we consider most popular model which is the Black-Scholes model.

This model assumes that the stock prices are from an exponential Brownian motion.

Other �nancial models considered assume that the stock prices follow an exponential

Lévy process with jumps, see [16]. These models include the geometric normal inverse

Gaussian model and the geometric Meixner distribution.

There are also other models that generalize time as a stochastic process. These models

that take into account the fact that the number of trades per given time-interval are not the

same. They are called subordinated/time-changed models. In these models the number

of trades is assumed to be a random variable which follow a particular distribution. The

12
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models considered in this context are the exponential lognormal-normal model and the

exponential Pareto-normal model.

We want to make predictions of option prices using di�erent �nancial models. This is

done by �rst estimating the parameters of the model by �tting the models to the observed

stock price data. Based on these estimated parameters, we then calculate the option prices.

In practice, the parameters are often attained through the method of calibration which

entails minimising the discrepancy between the observed and calculated option prices.

This method actually violates the economic theory because the models` parameters have

speci�c interpretations.

Changes of probability measure form an integral part of option pricing. This is be-

cause pricing options using the real world probability measure allows for the existence of

arbitrage. Arbitrage is not allowed in any market because it enables market participants

to have a chance of enjoying risk-less pro�t. Therefore a new probability measure has

to be derived so as to curb arbitrage. In this study we look at one of the methods of

changing the probability measure called the Esscher transform method. We will also use

two di�erent methods of calculating option prices. These are numerical integration and

the Monte Carlo simulation method.

In this study, we are going to compare models in two-folds. The �rst fold is to see

which �nancial model �ts the observed stock price data best. The second one is to see

which model mimics the observed option prices closest. These ranks are subjective to

the form of the data set being used. If the stock price data set being used is normally

distributed then the Black-Scholes model will be the best one. If the data is non-normal,

then other models will perform better than the Black-Scholes model.

We also want to investigate if the integrated square errors (ISEs) match up with the

root mean square errors (RMSEs) of these �nancial models. This means that we want

to see if it is always true that if the �nancial model �ts the stock price data well then it

will also predict the option prices very well. In other words, we want to investigate the

existence of a discrepancy between the model �t and the option price calculation.

1.2 Objectives

The objectives of this study are to:

� Analyse and discuss di�erent �nancial models.

� Discuss changes in probability measure brought about by the Esscher transform

method.
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� Fit the di�erent �nancial models to observed stock price data.

� Calculate option prices under each of the models considered.

� Compare models to see which one �ts the stock price data well.

� Compare models to see which one mimics the observed option prices well.

1.3 Outline of the dissertation

Chapter 2 : Financial markets

In this chapter we de�ne the most important �nancial concepts used in the remainder of

the study. We also discuss the assumptions used in this dissertation. The various types of

di�erent market participants are also brie�y touched upon.

Chapter 3 : Lévy processes

A de�nition and properties of a Lévy process are discussed in this chapter. Three types of

Lévy processes are discussed. These are the Brownian motion, normal inverse Gaussian

and the geometric Meixner processes.

Chapter 4 : Option pricing models

Di�erent option pricing models will be analysed and discussed in this chapter. Explana-

tions of how the models` parameters change when we change the probability measure, are

also included here. The disadvantages of using some of the models are also discussed.

Chapter 5 : Empirical results

Di�erent option pricing models are �tted to the observed stock price data. The parameters

of the models are also estimated. Option prices are calculated using these di�erent models.

Chapter 6 : Conclusion

Comparison and analysis of the models to see which model �ts the observed stock prices

better, is done in this chapter. This is done by using the integrated squared error as our

ranking criterion. Option prices calculated using these models are also compared using

the root mean square error to see which model best mimics the observed option prices.



Chapter 2

Financial markets

2.1 A �nancial market

A �nancial market is a business arena where assets, which are monetary in nature or can

easily be converted to money are traded, see [9]. These assets include stocks, bonds and

derivatives, such as bonds. The de�nitions of these assets will be discussed shortly after

the de�nition of the �ltered probability space in which we will be working throughout.

Below, we are mainly concentrating on stocks and bonds since derivatives are derived from

the manipulation of these assets.

Throughout this study, we shall assume a �ltered probability space; (Ω, F , Ft, P ).
Ft is a �ltration that is right-continuous and non-decreasing. Two processes are de�ned

on this �ltered probability space, a stock process and a bond process. These processes

are S = {St : t ≥ 0} and B = {Bt : t ≥ 0}, respectively. The process S represents

the monetary value of a single share or a bundle (multiple shares) in a public traded

investment. The �ltration Ft, is the sigma algebra generated by St, see [9]. The de�nition

of sigma algebra is as follows:

F is a σ − algebra if the following conditions are met:

1. Ω ∈ F . Ω comprises of all possible events in the space.

2. For every event A ∈ F implies Ac ∈ F .

3. If A1, A2, A3....... ∈ F , then
⋃∞
j=1Aj ∈ F .

Thus, Ft contains the history of the process from time 0 until time t. We assume that

there exists a time T ∗ > t such that FT ∗ = F since most investments have a �nite lifetime,

see [19]. This means that F contains the history of the whole process.

15
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Continuing with our de�nition of the �ltered probability space, we have P which is

the probability measure that determines the behavior of our stock price process, St. The

measure P is called the objective probability measure. This measure is crucial because it

is used in the determination of the probability distribution function of St.

The process Bt is a risk-free �nancial security that pays a single bulk of money at a

future date. A risk-free �nancial asset is one that has a probability of one that at the

end of the speci�ed period, it will accumulate pro�t in the form of interest gained. The

value of the bond at time zero is equals to one, that is, B0 = 1. This value is assumed to

increase exponentially at the risk free interest rate, r > 0

Bt = ert, r > 0,

where t ≥ 0. The interest rate r, is assumed to be constant, positive and known through-

out. The relationship between the value of the bond at time t > 0 and its value at time

t = 0 analysed through the manipulation of the risk-free interest rate.

2.2 Assumptions made in the �nancial market

In order to �nd a tractable model for the calculation of option prices that mimic what

is happening in the real �nancial market, simplifying assumptions are needed. These are

listed below:

1. Absence of market frictions:

This implies that there are no transaction costs, no bid-ask spread, no taxes, no

margin requirement. The bid-ask spread is the di�erence between the amount that

the seller of an asset is willing to accept for his asset (the ask price) and the amount

the buyer is prepared to pay for the asset (the bid price), see [18]. In a real �nancial

market, in order for a market participant to be allowed to start trading, he or she

is required to have a certain amount of money in his account. This is called margin

requirement. This is done to reduce the risk of default faced by both parties to a

trade. In reality all �nancial markets has frictions but for simplicity, it is assumed

that there is no type of any market friction, see [18].

2. Absence of default risk:

Default risk is one of the risks that is inherent when trading in any �nancial market.

It is the risk that is caused by macro-economics adverse incidents, like economic

depressions, see [18]. For instance, a depression can lead to traders not being able to
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honor their payments which may adversely a�ect other market participants. So the

assumption of the absence of default risk enables our �nancial market to be simple

and easy to understand.

3. Absence of price increase due to increase in demand:

This means that a single trader can trade an unlimited amount of a single type of a

security without causing a change in the security`s price. This assumption is satis�ed

to a greater extent when working in a very large �nancial market, see [18]. In real

markets, however, this does not hold even for large markets.

4. Rational subgroups:

This means that market participants are individuals who act rationally. For instance,

investors are assumed to prefer a gain to a loss, see [18].

5. Short selling is allowed:

This means that it is possible for market participants to hold negative quantities of

assets in their portfolio, see [5].

6. Perfect divisibility of assets:

Traders in the �nancial market are allowed to hold any number of assets. This means

that market participants are allowed to hold not only integer values of assets but

also fractions of assets, see [5].

7. There will be no dividends payable to shareholders.

Since we now have a market that is governed by the above assumptions, we can now give

a formal de�nition of a portfolio. We shall use portfolios in the calculation of the option

prices. We can buy stocks and bonds which has the value that is equivalent to the payo�

of the derivative at time T , see [9]. If we can build a portfolio with the same value of the

derivative at time t = T , then the expected value of that portfolio at time t = 0, is the

same as the value of the derivative at that time as well. This expectation is calculated

under the risk free probability measure.

De�nition of a portfolio

A collection of di�erent assets held by a single market participant is called a portfolio. A

simple �nancial market may consist of two assets namely, bonds and stocks, see [9]. A

particular portfolio can be de�ned as a combination of stocks and bonds held by a trader
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in the market at a speci�c point in time. We shall use the following notation to denote a

portfolio at time t, which is a 2− dimensional process given as

pt = (pBt , p
S
t ),

where pBt and pSt represents the number of units held at time t of both bonds and stocks

respectively, see [5]. In order to attain the value of the portfolio pt, it is necessary to

multiply the number of units of bonds by its price at time t, Bt, and to add the number

of units of stock at time t multiplied by the stock price at that time, St. The value of the

portfolio is given as

V p
t = pBt Bt + pSt St.

An important concept that is derived from the de�nition above is the one of a self-

�nancing portfolio. A self-�nancing portfolio strategy is one that does not require any

additional funds when buying assets once the �rst investment is made, see [18]. A portfolio

is said to be self-�nancing if

dV p
t = pBt dBt + pSt dSt.

This means that if a portfolio is self-�nancing then the change in the portfolio`s value

is solely due to the change in the value of the assets that make up the portfolio, see

[5]. Self-�nancing strategies are going to be of interest when calculating the price of any

derivative. Throughout this study, the terms portfolio and strategy are going to be used

interchangeably.

De�nition of a derivative

A derivative is a �nancial instrument whose monetary value is dependent on the values

of the other more basic assets, and other underlying variables, see [18]. The underlying

variables that are used to construct derivatives are assets or a combination of assets being

traded in the �nancial market. These assets includes bonds and stocks and other things.

There are di�erent kinds of derivatives but our main focus will be on options.

2.3 Options

There are many di�erent kinds of options. Our main focus is on European options. The

latter comprises of two di�erent types namely, call and put option. There are two distinct

parties involved in the writing of an option. These parties are the buyer and the seller,

the latter is also called the writer of the option, see [18].Formal de�nitions of European
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call and put options are given below. Let K be de�ned as the strike price, which is the

money to be paid for the European option at maturity time T . This price is stipulated

at the beginning of the contract. Let ST be the stock price at the time of the maturity of

the option.

There are many groups of options. These classi�cations are based on whether or not

St > K, where K is amount agreed on, to buy the option. The initial one is the group of

options that brings an in�ow of money. These are called in themoney. The second group

is the one with options that break even, thus they bring a zero gain. They are called

at themoney. The last group is the one with options that actually brings losses. They are

called out of money, see [18].

2.3.1 European call options

A European call option is a contract that gives the holder the right (but not the obligation)

to buy a predetermined number of units of speci�c underlying assets at the maturity time

namely, T , at a price that is �xed at the outset, K, see [5]. The name call emanates from

the fact that the holder of the contingent claim has the right to buy the asset from the

seller, which is, to call the asset from the seller of the contract, see [18]. The time of the

payo� of the European call option is �xed since the option can be exercised at the time

to maturity date of the option. The payo� is given as follows

[ST −K]+ =

ST −K, ST > K,

0, ST ≤ K.

2.3.2 European put options

A European put option is a contract that gives the holder the right (but not the obligation)

to sell a predetermined number of units of speci�c underlying assets at the maturity time

T , at a price that is �xed at the start of the contract, K, see [5]. The name put emanates

from the fact that the holder of the contingent claim has the right to sell the asset, which

is, to put the asset to the buyer of the contract, see [18]. The payo� is given as follows

[K − ST ]+ =

K − ST , ST ≤ K,

0, ST > K.

Let the price of the options held at a particular time t denoted by Πt. This means

that all the prices of options are processes that depends on time. The introduction of this
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new asset with price Πt, leads to the extension of our �nancial market to contain three

classes of assets. These are stocks, bonds and options. The new de�nition of the portfolio

will be extended as follows

pt = (pΠt , p
S
t , p

B
t ),

where pΠt is the number of options that are contained in a certain portfolio of a given

market participant at time t. The value of the portfolio needs to be amended because of

the addition of another asset. The new value of the portfolio will now be as follows

V p
t = pΠt Πt + pBt Bt + pSt St.

The de�nition of a self-�nancing strategy will also change. It will now be characterized

by the following equation,

dV p
t = pΠt dΠt + pBt dBt + pSt dSt.

The price that will be of interest is the price of the European call option at time t = 0,

which is denoted by Π0. For the rest of the study, the subscript 0 will be eliminated. This

leaves the prices of options at time t = 0, denoted just as Π.

2.4 Arbitrage and the de�nition of locally equivalent

martingale measures

An arbitrage opportunity is a trading strategy that requires no money to construct at time

t = 0, with a probability of losing money equal to zero, and the probability of making

money at some point in the future, greater than zero, see [18]. Formally, the de�nition of

arbitrage is as follows:

A portfolio strategy constitutes an arbitrage opportunity if;

1. the portfolio pt is self �nancing.

2. the initial value of the portfolio p is zero, V p
0 = 0.

3. P (V p
T ≥ 0) = 1 and P (V p

T > 0) > 0, where T > 0, see [19].

This implies that a market participant holding this portfolio has a probability of making

money without injecting initial capital or without being exposed to any sort of risk, see [5].

Arbitrage is unrealistic and it allows traders to enjoy the possibility of unlimited risk-less
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pro�t which is contrary to economic theory. Below is an example that shows how the

elimination of arbitrage enforces a speci�c price for a certain derivative.

Consider a market participant who is selling a forward contract. He is required to,

upon receiving of the agreed amount, deliver an asset (usually a stock) at maturity time

T . The seller could borrow money amounting to S0 (which is the stock price at time zero)

and then buy the stock and hold this stock until the maturity of the contract. Upon the

expiration of the contract, the seller should pay back the amount borrowed. The amount

paid will include the original price as well as interest. The repaid amount at the maturity

of the contract will be S0e
rT . If the seller of the contract agreed to receive an amount less

than S0e
rT in exchange of the stock which costs S0 at time 0, then the buyer will make

a pro�t with a probability equal to one. This implies that the forward price has a lower

bound which equates to S0e
rT .

Now also, considering the context of the buyer of the forward contract. If, upon writing

the contract, the buyer agrees to pay more than S0e
rT then with probability equal to one,

the seller makes a pro�t, see [5]. Therefore, again the forward price has an upper bound

which is S0e
rT . Let fT denote the price of the contract above such that

S0e
rT ≤ fT ≤ S0e

rT ,

Therefore, the unique arbitrage-free price of the forward contract is

fT = S0e
rT .

If a market participant strikes a di�erent price than S0e
rT , then it will be certain that

someone in the market will exploit the opportunity of gaining risk-less pro�t, by buying and

selling the derivative in large quantities. This would constitutes an arbitrage opportunity.

As a result, fT is then called the arbitrage-free price, see [5].

There exists a close link between the concept of arbitrage-free and a locally equivalent

martingale measure (LEMM). The de�nition of a locally equivalent martingale measure is

provided in the next section.

2.4.1 Local equivalence

Consider two probability measures, P and P ∗ de�ned on a common probability space.

These two measures of probability are said to be equivalent if and only if

P (G) > 0⇐⇒ P ∗(G) > 0,
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for every measurable event G. Equivalence between the two measures P and P ∗ is denoted

by P ∼ P ∗, see [19].

De�ne Pn = P |Fn and P ∗n = P ∗|Fn to be the probability measures restricted to Fn.
The probability measures P and P ∗ are said to be locally equivalent for all n = 1, 2, 3, ..,

if

Pn(G) > 0⇐⇒ P ∗n(G) > 0,

for all G ∈ Fn, see [19].

Martingales

A stochastic process Xt is said to be a martingale with respect to the objective probability

measure Q if and only if the following conditions are met:

1. EQ(|Xt|) <∞, for all t.

2. EQ(Xt|Fs) = XS, for all s ≤ t, see [5]. This means that the expected value of Xt

conditioned on the �ltration up to time s is equals to the value of the process Xs.

With the de�nition of a martingale and local equivalence given above, we can now join

the two, to formally de�ne a locally equivalent martingale measure as follows:

De�nition of locally equivalent martingale measures

A probability measure, Q is said to be a locally equivalent martingale measure with respect

to another probability measure P , if;

� Q is locally equivalent to P .

�
St
Bt

= e−rtSt forms a Q−martingale, see [16]

The importance of this de�nition stems from the fact that option prices can be calculated

as the expected value with respect to a locally equivalent martingale measure.

There are di�erent methods in which we can calculate the locally equivalent martingale

measure Q. We are going to use a method known as the Esscher transform. Application of

the Esscher transform method gives rise to a unique locally equivalent martingale measure.

The Esscher transform

In models that are continuous, it is easy to obtain an equivalent martingale measure by

changing the drift. This is not case for models with jumps as there will be a number of
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di�erent equivalent measures obtained by altering the distribution of the jumps, see [9]. In

order to obtain an equivalent martingale measure, we use the Esscher transform method

de�ned below.

In this study, the Esscher transform method is used to construct the locally equivalent

martingale measure for each of the models considered. The probability measure used

uniquely identi�es the density of the stochastic process at every point in time. Let ft be

the density function of the random process Yt, under the objective probability measure P .

For every τ ∈ R such that ∫ ∞
−∞

exp(τx)ft(x)dx <∞,

a unique density function can be obtained as follows

f τt (y) =
exp(τy)ft(y)∫∞

−∞ exp(τy)ft(y)dy
. (2.1)

Let the probability measure under which the density of Yt is f τt , be denoted by P τ .

Di�erent probability measures are attained be changing the value of τ in equation (2.1).

In order to apply this technique, we need a unique value of τ which ensures that exp(−rt)St
forms a P τ -martingale. A P τ -martingale measure is formed if and only if the following

equation is satis�ed

exp(r)φ(−iτ) = φ(−i(1 + τ)), (2.2)

where φ is de�ned as the characteristic function of Yt, see [16]. The characteristic function

is de�ned as

φy(u) = E(exp(iuy)).

Equation (2.2) has a unique solution denoted as τ ∗.

The Esscher transform, by de�nition, provides martingale probability measures. We

now need to see if the probability measure obtained from the Esscher transform is equiva-

lent to P by using the Radon-Nikodym theorem. This theorem states that, the probability

measures P and Q are equivalent if the derivative dQ
dP

satis�es the following the result, see

[5]

0 < EQ(YT ) = EP

(
dQ

dP
YT

)
<∞. (2.3)

Equation (2.3) can only be positive if and only if dQ
dP

> 0. Therefore, the derivative of P τ

with respect to P, given by

dP τ

dP
=

exp(τy)∫∞
−∞ exp(τy)ft(y)dy

. (2.4)
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Equation (2.4) is strictly positive and bounded for all real values of y. As a result, P τ and

P are equivalent probability measures, see [5].

Since equivalence of measures implies local equivalence, the resulting probability mea-

sures can be used in the calculation of arbitrage-free option prices, see [5]. If the market

is complete then, there exists only one locally equivalent martingale measure Q. In this

case, the Esscher transform can be used to obtain this measure.

2.5 The calculation of European option prices

Considered below are three of the most important methods of calculating option prices

which we call direct numerical integration, Monte Carlo simulation and the Fourier in-

version method. Direct numerical integration is only implemented when the probability

density function of the option price process or of other functions (mostly the log returns

or just log(St) is known, see [9]. Monte Carlo simulation and the Fourier inversion method

are mostly used when calculating option prices using complicated density functions.

The calculation of option prices is easier when the distribution function is known.

For instance, the expected value with respect to a locally equivalent martingale measure

(LEMM) Q, is the arbitrage free price of the call option. It is given as

Π = e−rTEQ
[(
ST −K+

)]
, (2.5)

which is the discounted value of the expected payo�.

2.5.1 Direct numerical integration

Let ft be the density function of the logarithm of the stock process, log (St), for t ≥ 0,

under the measure of probability Q. If the density function at the maturity time, fT is

known then the price of a European call option can be calculated numerically as follows

Π = e−rT
∫ ∞
log
(
K
S0

) (Sex −K) fT (x)dx,

where T is the time when the contract expires, K is the amount agreed on to pay for the

option and S0 is the stock price at time t = 0.
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2.5.2 Monte Carlo simulation

There are instances where the density function of the option prices process is not known or

it is di�cult to attain. In such situations, the Monte Carlo simulation is used to simulate

ST in equation (2.5). This means that, in order to calculate the option price, we simulate

the payo�s then calculate their average. We then discount the average payo�s to the

present value.

2.5.3 Fourier inversion

The Fourier inversion method uses the characteristic function of the given distribution.

Let φN(t) represents the characteristic function. Using the Fourier inversion method we

attain a new density function of the form,

f
(Q)
YT

(y) =
1

2π

∫ ∞
−∞

φN(t)exp(−ity)dt (2.6)

The integration in (2.6) can be approximated using a Riemann sum since the integrand is

continuous and smooth. This is done as

1

2π

∑
tεT

φN(t)exp(−ity)4t, (2.7)

where T = { t
n

: |t| < nb} for su�ciently large values of n and b. These values are obtained

such that;

φN(nb) ≈ 0.

The interval width 1
n
should be very small so as to approximate the characteristic function

well.

2.6 The various kinds of market participants

Market participants trade in di�erent assets in the market (stocks, bonds and all di�erent

types of derivatives). These traders behave in di�erent manner which leads to classi�ca-

tions de�ned below.

2.6.1 Arbitrageurs

These traders are in the market only to search for risk less pro�t. They mostly combine

markets by transacting in more than one market, see [18]. In every market they venture
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in, arbitrage will rapidly varnish since through trading, the market will reach economic

equilibrium, in which demand equals supply. Arbitrageurs are not only opportunists but

they actually participate in the market on a full time basis.

2.6.2 Hedgers

Hedging is the way mostly used by many excelling businesses in order to ensure survival in

the unpredictable and competitive trading arenas, see [18]. Hedgers basically utilizes the

markets in which derivatives are traded to insure themselves from unfavorable �uctuations

of currencies, prices and, or interest rates. The main attempt of hedgers is to try minimize

chances of being exposed to excessive risk.

2.6.3 Speculators

Speculators are the risk takers. They make use of the trading markets to make massive

pro�ts rapidly by taking risks that most rational market participants avoid, see [18]. Spec-

ulators are di�erent from hedgers in the sense that, the former are actually opportunists.

Their available funds are invested in such a way that for the majority of times, they ac-

tually retain large sums of pro�t with certainty. Generally, speculators enjoy large sums

of pro�ts because they invest in very high risk investments.



Chapter 3

Lévy processes

Lévy processes are named after a French mathematician by the name of Paul Lévy who

spearheaded the �eld, see [16]. The de�nition of a Lévy process is given below. Let

Y = (Yt : t ≥ 0) be a process de�ned on a �ltered probability space stated in Section 2.1

3.1 De�nition of a Lévy process

A process Y = (Yt : t ≥ 0) is said to be a Lévy process if, see [16] :

� Y is a stochastic process.

� Y0 = 0.

� Yt+s − Yt, for every s, t ≥ 0, is independent.

� The increments are stationary.

In�nitely divisible distributions and Lévy processes are closely related. For each in�nitely

divisible distribution, there exists a Lévy process and vice versa. The de�nition of an

in�nitely divisible distribution is given below.

A probability measure λ de�ned on R is in�nitely divisible if for every positive integer

n ≥ 2, there exists independent and identically distributed random variablesX1, X2, ..., Xn,

such that,
∑n

i=1Xi has a probability measure, λ, see [9].

Since we now know what a Lévy process is, we can now go ahead and de�ne a geometric

Lévy process which is the exponent of the Lévy process

exp (Yt) .

27
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Throughout the study, we consider the �nancial market de�ned in Section 2.1. We add

one more characteristic of the market, which is, under the objective probability measure

P , the stock price process is now modeled as

St = S0exp (Yt) ,

where Yt is a Lévy process and S0 is the stock price at time t = 0. In this section we

consider the case where Yt is a normal inverse Gaussian model.

Di�erent distributions discussed below are in�nitely divisible which means that the

corresponding stochastic processes are Lévy processes. Below we de�ne a normal inverse

Gaussian distribution and show that it is in�nitely divisible, which makes it a Lévy process.

3.2 The normal inverse Gaussian distribution

A normal inverse Gaussian distribution has a density function given as

f(x; Θ) =
αδ

π

exp(δ√α2 − β2 + β(x− µ)
) K1

(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

 , −∞ < x <∞.

(3.1)

The parameters of this distribution should be in such a way that α > 0, |β| < α, δ > 0

and µ ∈ R.
The random variableX that follows the normal inverse Gaussian distribution is denoted

as X ∼ N ◦ IG(Θ). This distribution has a characteristic function given as

φ(t; Θ) = exp
(
iµt− δ

(√
α2 − (β + it)2 −

√
α2 − β2

))
.

The normal inverse Gaussian distribution has the mean, variance, skewness and kurtosis

denoted as m1(Θ), m2(Θ), m3(Θ) and m4(Θ) respectively. These four moments are given
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by

m1(Θ) = µ+
βδ√
α2 − β2

,

m2(Θ) =
α2δ√

(α2 − β2)3
,

m3(Θ) =
3β

α
√
δ(α2 − β2)0.5

,

m4(Θ) = 3

(
1 +

α2 + 4β2

α2δ
√
α2 − β2

)
. (3.2)

We now need to show that the normal inverse Gaussian distribution is an in�nitely

divisible distribution. We de�ne a process which follows a normal inverse Gaussian distri-

bution as

X = (Xt; t ≥ 0) , (3.3)

where the increments are independent and identically normal inverse Gaussian distributed

and X0 = 0. Let Xn =
∑n

j=0 ∆Xj where n ≥ 2 and the ∆Xj`s are independent increments

which follow a normal inverse Gaussian distribution with parameter set Θ = (α, β, δ, µ).

The characteristic function of a sum of these random variables is given as

φ∑n
j=0∆Xj

(u) = E

[
exp

(
iu

n∑
j=0

∆Xj

)]
= E [exp (iu∆X1)] .E [exp (iu∆X2)] ...E [exp (iu∆Xn)]

= φ∆X1(u).φ∆X2(u)...φ∆Xn(u)

= Πn
j=1

{
exp

(
iµu− δ

(√
α2 − (β + iu)2 −

√
α2 − β2

))}
= exp

{
n∑
j=1

(
iµu− δ

(√
α2 − (β + iu)2 −

√
α2 − β2

))}

= exp

(
n∑
j=1

iµu−
n∑
j=1

δ
(√

α2 − (β + iu)2 −
√
α2 − β2

))
= exp

(
iµun− δn

(√
α2 − (β + iu)2 −

√
α2 − β2

))
. (3.4)

Equation (3.4) is the characteristic equation of a random variable which follows a normal

inverse Gaussian distribution with parameter set Θ∗ = (α, β, δn, µn). This implies that

Xn v N ◦ IG (Θ∗) ,
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under the objective probability measure. This proves that this distribution is in�nitely di-

visible. Since it has been proved that the normal inverse Gaussian distribution is in�nitely

divisible, therefore, the process de�ned on (3.3) is indeed a Lévy process.

Below we de�ne another Lévy process which is called the Brownian motion. The

background and the properties of the Brownian motion are given below. Before we discuss

about the Brownian motion we should de�ne the normal distribution and its properties.

3.3 The normal distribution

One of the most important distributions that is used in many areas of statistics is the

normal distribution. The normal distribution is denoted by N(µ, σ2) where µ ∈ R is the

mean and σ2 > 0 is the variance of the distribution, see [16]. The normal distribution is

de�ned on the real number line. The density function of the normal distribution is given

as

fX(x, µ, σ2) =
1√
2πσ

exp

[
−1

2

(
(x− µ)

σ

)2
]
, −∞ < x <∞.

The normal distribution`s characteristic function is

φ
(
u;µ, σ2

)
= exp

(
iuµ− 1

2
σ2u2

)
.

Properties of the normal distribution

The normal distribution has a mean and variance denoted as µ and σ2, respectively. The

skewness of the normal distribution is zero. This is because the normal distribution is

symmetrical.

3.4 Brownian motion

Brownian motion was �rst introduced in 1828, by Robert Brown, when he observed pollen

particles in suspension under a microscope, see [9]. He observed that the particles moved

in an irregular motion. It was in 1900 when Bachelier considered Brownian motion as one

of the models that could be used for stock prices, see [16]. Later in 1905, it was considered

that the Brownian motion was a model of suspended particles. Bachelier observed that,

if the kinetic theory of �uids was correct, then the molecules of the �uid would shift

indiscriminately and so a minute molecule would receive an arbitrary number of strikes

of random vigor and from random directions in any short period of time, see [16]. This
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would ensure that a very small particle would move in exactly the way discussed by Robert

Brown in 1828.

Albert Einstein also used the Brownian motion theory to estimate parameters in most

of his research, for example, when he invented the theory of relativity. In 1923, Norbert

Wiener, mathematically formalized the de�nition of the Brownian motion for the �rst

time. In 1965 Samuelson used Brownian motion as a tool to model stock prices in his

work. The Brownian motion process is often denoted by Wt for t ≥ 0, see [16].

The de�nition of a Brownian motion

The stochastic process W = (Wt : t ≥ 0) is a Brownian motion if the following conditions

are met;

� W0 = 0, and also, Wt is continuous for t ≥ 0,

� W has stationary increments,

� the increments Wt+s−Wt are normally distributed with mean 0 and variance s and

is independent of the history of the process up until time t, see [16].

Properties of a Brownian motion

1. W is everywhere continuous but it is nowhere di�erentiable shown in �gure 3.1, see

[5]. This is because the jaggedness of the Brownian motion process never smooth

out even when you zoom in the process. This is illustrated by the graph in Figure

3.1 below.

2. As time t → ∞, Wt will hit every value on the real number line, regardless of how

large or negative it is.

3. Wt has a scaling property which states that if W = (Wt : t ≥ 0) is a Brownian

motion, then, for every constant d 6= 0

W • =
(
W •
t = dW t

d2
, t ≥ 0

)
,

is a Brownian motion as well, see [5].



CHAPTER 3. LÉVY PROCESSES 32

Figure 3.1: Standard Brownian motion getting to values below zero

From the properties of the Brownian motion and the graph given above, we notice that

the standard Brownian motion also reaches negative values. This is not required when

we use the Brownian motion to model the stock prices because stock prices will never be

negative. We then need to manipulate the standard Brownian motion so that it does not

get to negative values. This is done by applying an exponent function to the standard

Brownian motion. The manipulated Brownian motion is called the geometric Brownian

motion. This transformed Brownian motion is important because it gives the basis of the

Black-Scholes model discussed in chapter 4 for option prices calculations.

The text below comes from a book called Financial derivatives pricing, applications

and mathematics, see [6]. The formal de�nition of the geometric Brownian motion is given

below.

3.4.1 Geometric Brownian motion

With the de�nition of the Brownian motionW , we can now de�ne a stochastic process that

is important for our calculation of option prices, an extension of the standard Brownian

motion which is called the geometric Brownian motion. The evolution of a stock price

process S = (St : t ≥ 0), under a particular model is as follows. We will look at how the

stock price S will change in an interval of time, from t to t+4t, where 4t, represents an
in�nitely small time change. Let 4St, be de�ned as

4St = St+4t − St.
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Thus, 4St is the change in stock price from time t to t +4t. The return of the stock in

the time interval [t, t+4t] is
4St
St

.

Economically, it is reasonable to anticipate that the stock-return comprises of two parts

which are; a random part and a systematic part, see [16]. Let us consider the random

part �rst. Since the stock price �uctuates stochastically, a reliable assumption is that the

variance of the return, 4St
St

over the time interval [t, t+4t] is proportional to the length

of the interval, given as

4t = t+4t− t.

Therefore, the random part of the stock-return is modeled by σ4Wt, see [16]. The variable

4Wt is considered as the normally distributed noise term with the mean equal to zero and

variance equal to 4t, see [16]. The scale parameter, σ > 0, describes how much e�ect the

noise has. Thus it describes the magnitude of how the stock price �uctuates, see [5]. The

variance of the return equals σ24t, in total. The variance of the stock-return is calculated

as follows

var (σ4Wt) = σ2var (4Wt)

= σ24t,

since 4Wt ∼ N (0,4t). The volatility of the stock price is governed by σ, see [5].

For the systematic part, we assume that the length of the period considered is propor-

tional to the stock's expected return over that period. This implies that, in an interval

of length 4t, the expected stock-return is given by µ4tSt, where µ is the drift-parameter

representing the average rate of the stock-return. The deterministic part of the return of

the stock is modeled by µ4t, see [16].
Combining the two components that model the returns of the stock, we attain the

following equation

4St = µSt4t+ σ4WtSt

= St (µ4t+ σ4Wt) .

The process 4St is stochastic, therefore as 4t → 0, we attain a stochastic di�erential

equation given as

dSt = St (µdt+ σdWt) ,

where S0 > 0. There is a unique solution for the stochastic di�erential equation given
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above. It is given as

St = S0exp (γt+ σWt) ,

where S0 > 0 and γ = µ, see [5]. The above exponential function is called the geometric

Brownian motion with a drift and St is the stock price process.

If we apply the log function on the equation above we get

log(St)− log(S0) = log
St
S0

= γt+ σWt. (3.5)

From equation above, we note that log
(
St
S0

)
follows a normal distribution with mean equal

to γt and variance equal to σ2t, thus

log

(
St
S0

)
∼ N

(
γt, σ2t

)
,

see [16]. This implies that the stock price process (St : t ≥ 0) follows a log normal distri-

bution. The log normal distribution and the geometric Brownian form the basis of the

Black-Scholes model for pricing options in the continuous time discussed in chapter 4.

The logarithm of the stock price is a simple arithmetic of Brownian motion given in (3.5),

therefore conditional probability density function of the logarithm of the stock price at

time to maturity T is, see [6]

log (ST ) |log (S0) ∼ N
(
log (S0) + γT, σ2T

)
. (3.6)

Below we de�ne the Meixner distribution. We also show that its an in�nitely divisible

distribution meaning that the processes emanating from this distribution will be Lévy

processes.

3.5 The Meixner distribution

The density function of the Meixner distribution is given as

f (x∗;α, β, δ) =

(
2cos

(
β
2

))
2δ

2απΓ (2δ)
exp

(
β (x∗)

α

)
|Γ(δ +

(
i (x∗)

α

)
|2, (3.7)

where X∗ is a random variables which follows the Meixner distribution, −π < β < π,

δ > 0, α > 0 and Γ is a gamma function, see [16]. The gamma function is an installed
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package in most of the statistical software packages, which makes it easier to compute.

The Meixner distribution has a characteristic function as follows

φX∗ (u;α, β, δ) =

 cos
(
β
2

)
cosh

(
(αu−iβ)

2

)
2δ

. (3.8)

We need to add a location parameter µ, in the distribution by rede�ning the random

variable as

X = X∗ + µ.

We need to include the location parameter in the density function so that we can manip-

ulate it in order to get to the Q martingale measure. The new random variable will have

the following density function

f (x;α, β, δ) =

(
2cos

(
β
2

))
2δ

2απΓ (2δ)
exp

(
β(x− µ)

α

)
|Γ(δ +

(
i(x− µ)

α

)
|2. (3.9)

The characteristic function of the new random variable will be attained as

φX (u;α, β, δ) = E
[
eiuX

]
= E

[
eiu((X+µ)

]
= E

[
eiuµ

(
eiu(X∗)

)]
= eiuµE

[(
eiu(X∗)

)]
= eiuµφX∗ (u;α, β, δ)

= eiuµ

 cos
(
β
2

)
cosh

(
(αu−iβ)

2

)
2δ

. (3.10)

The Meixner distribution has the mean, variance, skewness and kurtosis denoted as

m1 (α, β, δ, µ), m2 (α, β, δ, µ), m3 (α, β, δ, µ) and m4 (α, β, δ, µ) respectively. These four
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moments are de�ned as follows

m1(u;α, β, δ, µ) = µ+ αδtan (β/2)

m2(α, β, δ, µ) =
α2δ

2

(
1

cos2
(
β
2

))

m3(α, β, δ, µ) =

√
2

δ
sin

(
β

2

)
m4(α, β, δ, µ) = 3 +

(
(2=cos (β))

δ

)
. (3.11)

We are now going to show that the Meixner distribution is a Lévy process. This is

done by showing that the Meixner distribution is in�nitely divisible. Let

X = (Xt; t ≥ 0) , (3.12)

be a stochastic process that follows a Meixner distribution and P = X1 +X2 +X3 + ...+

Xn, where Xt‘s are independent and identically distributed, see [19]. The characteristic

function of P is de�ned as

φP (u) = E [exp (iuP )]

= E [exp (iu (X1 +X2 +X3 + ...+Xn))]

= E [exp (iuX1) exp (iuX2) exp (iuX3) ...exp (iuXn)] (3.13)

= E [exp (iuX1)] .E [exp (iuX2)] .E [exp (iuX3)] ...E [exp (iuXn)]

= φ∆X1(u).φ∆X2(u).φ∆X2(u)...φ∆Xn(u)

= Πn
j=1

expiuµ
 cos

(
β
2

)
cosh

(
(αu−iβ)

2

)
2δ


= exp

{
n∑
j=1

(iµu)

}
Πn
j=1


 cos

(
β
2

)
cosh

(
(αu−iβ)

2

)
2δ


= exp

(
n∑
j=1

iµu

)Πn
j=1

 cos
(
β
2

)
cosh

(
(αu−iβ)

2

)
2δ


= exp (iµun)

 cos
(
β
2

)
cosh

(
(αu−iβ)

2

)
2δn

. (3.14)



CHAPTER 3. LÉVY PROCESSES 37

Equation (3.14) is the characteristic function of the Meixner distribution with parameter

set (α, β, δn, µn). This shows that the Meixner distribution is indeed an in�nitely divisible

distribution. Therefore, the process given in (3.12) is a Lévy process.



Chapter 4

Option pricing models

4.1 The Black-Scholes model

The Black-Scholes model for the calculation of option prices is one of the models which

gives a closed-form solution, see [6]. The initial step towards the understanding of how to

calculate the prices of options in more complicated markets, is the understanding of the

Black-Scholes model because it gives the basis of option pricing. The Black-scholes model

discussed is also a Lévy process since the normal distribution is in�nitely divisible.

4.1.1 The Black-Scholes model for pricing options

The Black-Scholes model was initially developed by Fischer Black and Myron Scholes in

1969, see [9]. In 1970 Robert Merton, corrected an error that was made on the proof of

the Black-Scholes model. Under this model, the stock price process is assumed to follow

a geometric Brownian motion.

From the explanation given in Section 3.4.1, the geometric Brownian motioned is used

to model the stock price process St for 0 ≤ t ≤ T , see [15]. It is given as

St = S0exp (γt+ σWt) ,

where γ = µ andWt is a standard Brownian motion. As mentioned above, the parameters

γ and σ re�ect the drift and volatility of the process respectively. It is assumed that these

parameters are constant. The second asset is the risk-free one and it is called a bond. The

de�nition of the bond process Bt for t ≥ 0, is given in Chapter 2 but for ease of reference,

it is again given below

Bt = ert, r ≥ 0,

38
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where r is the continuously compounded risk-free interest rate, see [18].

The Black�Scholes model is said to be market complete. Using the Esscher trans-

form method discussed in Section 2.4, we note that the risk-neutral stock price process

(St, t ≥ 0) will still be a geometric Brownian motion with the same volatility σ but drift

γ term is changed to

µ = r − 1

2
σ2.

The detailed reader is referred to the paper titled, Option pricing by Esscher transforms,

see [17]. The stock process is given as

St = S0exp

((
r − 1

2
σ2

)
t+ σWt

)
,

With the de�nition of the stock price in a risk-neutral setting, we can now calculate the

fair prices of European call options.

Since we are going to be concentrating on European call options, below is the explicit

formula of the calculation of the European call option using the Black-Scholes model. Note

that the prices of other options are calculated in the same manner. The discussion below

comes from a book called Financial derivatives, application and mathematics, see [6].

Explicit formulae for European call option price

There are two methods that can be used to calculate the price of the European call

option using the Black-Scholes model. The �rst method is to directly use the the normal

distribution function values. The second method is to use numerical integration, and it is

also given below. Derivations of the two methods are given below.

The European call option has a payo� function given as

C (ST ) = max [0, (ST −K)] . (4.1)

The price of the European call option at time t = 0, is given below

Π = exp (−rT )EQ [C (ST )]

= exp (−rT )EQ [max [0, (ST −K)]] . (4.2)

Equation (4.2) gives the same answer as equation (2.5). In order to calculate the closed

form solution for equation (4.2), we initially write equation (4.1), in terms of the logarith-
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mic function of ST , see [6]. Thus,

C (ST ) = max [0, (exp (log (ST )))−K] = [ST −K] +. (4.3)

To calculate equation (4.2), using the payo� transformed in terms of the logarithm of the

stock price in (4.3), we use integration. Thus the expected value in (4.2) is expressed in

terms of the integral of the conditional density function of the logarithm of stock price

(3.6), see [6]. From the distribution (3.6), equation (4.2), and equation (4.3), we can

calculate the European call option price as follows

Π = exp (−rT )EQ [C (ST )]

= exp(−rT )EQ [max [0, (exp (log (ST ))−K)]]

= exp(−rT )

∫ ∞
log(K)

[exp (log (ST ))−K]
1√

2πσ2T

exp

[
−
[
log (ST )− log (S0)−

(
r − 1

2
σ2
)
T
]

2

2σ2T

]
dlog (ST )

=
1√

2πσ2T
exp(−rT )∫ ∞

log(K)

exp

[
log (ST )−

[
log (ST )− log (S0)−

(
r − 1

2
σ2
)
T
]

2

2σ2T

]
dlog (ST )−K 1√

2πσ2T
exp (−rT )∫ ∞

log(K)

exp

[
−
[
log(ST )− log(S0)− (r − 1

2
σ2)T

]
2

2σ2T

]
dlog (ST ) . (4.4)

From equation (4.4) we notice that there are two separate integrals which we can solve

separately. We are going to manipulate the two integrals so that both of them will be in

the form of the normal distribution function with mean equal to zero and variance equal to

one, that is a standard normal distribution function, see [9] . We start with manipulating

the �rst integral by letting

Z = log

(
ST
S0

)
,

and noting that;

dZ = dlog (ST ) .
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Given the above transformation, the �rst integral can be stated as

1√
2πσ2T

exp(−rT )S0

∫ ∞
log
(
K
S0

) exp
[
Z −

[
Z −

(
r − 1

2
σ2
)
T
]

2

2σ2T

]
dZ. (4.5)

Expanding the expression given above and grouping like terms in the exponent, we get

1√
2πσ2T

exp(−rT )S0

∫ ∞
log
(
K
S0

) exp
[

2Zσ2T − Z2 + 2Z
(
r − 1

2
σ2
)
T −

(
r − 1

2
σ2
)

2T 2

2σ2T

]
dZ.

To further simplify the integral above we use the method of completing the square on the

expression on the numerator of the exponent. This is done by subtracting 2rσ2T 2 and

adding the same term. This gives us the following integral

1√
2πσ2T

exp(−rT )S0

∫ ∞
log
(
K
S0

) exp
[
rT −

Z2 − 2Z
(
r + 1

2
σ2
)
T +

(
r + 1

2
σ2
)

2T 2

2σ2T

]
dZ,

which implies to

1√
2πσ2T

S0

∫ ∞
log
(
K
S0

) exp
[
−

[Z −
(
r + 1

2
σ2
)
T ]2

2σ2T

]
dZ. (4.6)

Transforming the integral above again by letting

Y =
Z −

(
r + 1

2
σ2
)
T

σ
√
T

,

and noting that

dZ = σ
√
TdY,

gives a simpli�ed expression in the exponent function given below

S0

∫ ∞(
log K

S0
−(r+ 1

2σ
2)T

σ
√
T

) 1√
2π
exp

[
−Y

2

2

]
dY. (4.7)

The integral (4.7), is the standard normal distribution that is valued at −
log K

S0
−(r+ 1

2
σ2)T

σ
√
T
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[6]. Therefore equation (4.4) can be expressed as

Π = Φ

(
log K

S0
+ (r + 1

2
σ2)T

σ
√
T

)
−K 1√

2πσ2T
exp(−rT )

∫ ∞
log(K)

exp

[
−
[
log (ST )− log (S0)−

(
r − 1

2
σ2
)
T
]

2

2σ2T

]
dlog (ST ) .

Since 4.7 is the of a standard normal distribution function, we use the fact that

1− Φ(x) = Φ(−x). (4.8)

The function Φ represents the distribution function of a standard normal.

We will now transform the second integral given on equation (4.4) in the similar way

as we did for the �rst integral, see [6]. This is done such that the integral can be in terms

of a standard normal distribution function. Let

Y =
log (ST )− log (S0)−

(
r − 1

2
σ2
)
T

σ
√
T

,

and

σ
√
TdY = d (log (ST )) ,

which gives the expression given below

Kexp(−rT )

∫ ∞(
log K

S0
−(r− 1

2σ
2)T

σ
√
T

) 1√
2π
exp

[
−Y

2

2

]
dY.

The expression above is the transformed integral evaluated at −
log K

S0
−(r− 1

2
σ2)T

σ
√
T

. Using

the fact given in (4.8) and combining the solutions of the two integrals in (4.4), we can

therefore give the price of the option as

Π = S0

Φ

 log
(
K
S0

)
+
(
r + 1

2
σ2
)
T

σ
√
T

−Kexp(−rT )Φ

 log
(
K
S0

)
+
(
r − 1

2
σ2
)
T

σ
√
T

 .

(4.9)

The second method of calculating the European call option prices using numerical

integration is given below. Note that, the strike price, maturity time, interest rate and

payo� are de�ned the same way as above. The stock price at time T > 0 is de�ned as

ST = S0exp (XT ) ,



CHAPTER 4. OPTION PRICING MODELS 43

where,

XT = µT + σWT ,

and WT is a standard Brownian motion, µ is the drift parameter and σ is the volatility

parameter, see [6]. After applying the Esscher transform method, the drift parameter

should be equal to

µ = r − 1

2
σ2,

in order to move from the probability measure P to the locally equivalent martingale

measure, Q. Thus,

Π = e−rTEQ
(
[ST −K] +

)
= e−rTEQ [(ST −K) | (ST ≥ K)] (4.10)

= e−rTEQ [(ST −K) | (S0exp (XT ) ≥ K)]

= e−rTEQ [(ST −K) | (S0exp (µT + σWT ) ≥ K)]

= e−rTEQ

[
(ST −K) |

(
(µT + σWT ) ≥ log

(
K

S0

))]
= e−rTEQ

[
(ST −K) |

(
(µT + σWT ) ≥ log

(
K

S0

))]

= e−rTEQ

(ST −K) |

WT√
T
≥
log
(
K
S0

)
− µT

σ
√
T

 (4.11)

= e−rTEQ

(ST −K) |

Z ≥ log
(
K
S0

)
− µT

σ
√
T


= e−rTEQ

(S0exp (µT + σWT )−K) |

Z ≥ log
(
K
S0

)
− µT

σ
√
T


= e−rTEQ

(S0exp
(
µT + σ

√
TZ
)
−K

)
|

Z ≥ log
(
K
S0

)
− µT

σ
√
T

 (4.12)

= e−rT
∫ ∞
log( KS0

)−µT
σ
√
T

[(
S0exp

(
µT + σ

√
Tz
)
−K

)]
φ(z)dz (4.13)

Numerical integration is performed on equation (4.13). On equation (4.10), we have

a conditional expectation because the payo� of (ST −K) is only going to exist on the
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condition that the stock price is greater than the strike price. We know that

WT ∼ N (0, T ) ,

therefore standardizing WT , gives

WT − 0√
T

=
WT√
T

= Z ∼ N (0, 1) (4.14)

which is what was done on equation (4.11). Using (4.14), we get that

WT√
T

= Z,

which leads to

WT =
√
TZ,

as shown in equation (4.12). The function φ(z) given in equation (4.13) is the density

function of the standard normal random variable.

Equations (4.9) and (4.13) give the same value for the European call option price. In

other �nancial models that are going to follow, we will be using numerical integration and

the Monte Carlo simulation to calculate the option prices.

Even though the Black-Scholes model is one of the popular �nancial models used to

calculate option prices, it has some shortcomings. These are discussed below.

4.1.2 Drawbacks of the Black-Scholes model

The Black-Scholes model assumes that the log-returns follow a normal distribution. Below,

we consider two departures from normality in observed log-returns, thus in skewness and

in kurtosis of the log-returns. As a result, the normal distribution may not be a realistic

model for log-returns.

Skewness measures the extent of asymmetry of a given distribution. The normal dis-

tribution is symmetric, and therefore has a skewness of zero. This is not the case for the

log-returns, which are typically negatively skewed.

Kurtosis measures how heavy or light the tails of a distribution are. It is de�ned as

E [Y − µ] 4

(σ2) 2
,
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where µ is the mean, σ2 is the variance of the random variableY respectively. The log-

returns data has heavier tails than those of the normal distribution. Therefore, assuming

that the log returns of the stock price follow a normal distribution might not the best

solution.

We need to look for other models that best explains the distribution of the log-returns.

These models should be �exible enough in order to cater for the excess kurtosis and heavy

tails that are inherent in log returns data. Below we have some models that �ts better

the log-returns.

4.2 The geometric normal inverse Gaussian process model

The parameters α, β, δ, µ can be estimated from the observed data. These estimated

parameters are under the objective probability measure P . Application of the Esscher

transform method changes the parameters to

α, β + η, δ, µ, (4.15)

where η is the solution to the equation

r − µ− δ
(√

α2 − (β + η) 2 −
√
α2 − (β + η + 1) 2

)
= 0,

where r is the compounded interest rate, see [16]. We can now calculate the arbitrage-free

option price under the new probability measure that has the new set of parameters given

in (4.15).

4.2.1 Numerical complications encountered

The density function of the normal inverse Gaussian distribution given in equation (3.1),

includes a Bessel function, K1(z). This Bessel and the exponential function turns to

in�nity when α and δ become large values. The softwares like R or SAS, will quickly stop

the density function calculations when they encounter parameter sets with these large

values. This hinders the ability to calculate the best option prices due to the fact that we

now have to restrict our parameter sets to be in the range that is accepted by the software.
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4.3 The geometric Meixner process model

In order to calculate the arbitrage free option price, we need a locally equivalent martingale

measure Q. This measure is attained through the Esscher transform method. Under this

method, the parameters of the Meixner model are changed to

α, αϑ∗ + β, δ, µ,

where ϑ∗ is a solution of the the following equation

ϑ∗ =
1

α

β + 2arctan

−cos (α2 )+ exp
(

(µ−r)
2δ

)
sin
(
α
2

)
 ,

where r is the interest rate, see [16] and [11].

There are certain cases where the density function of the Meixner model is di�cult to

calculate. This happens when α turns to zero and β and δ turns to in�nity. In such cases

we use a method known as the Fourier inversion method (discussed in chapter 2) in order

to approximate the density function.

4.4 Subordinated models for option pricing

The �nancial models discussed above are under the assumption that the number of trades

on a particular stock are constant on speci�c time intervals, for instance hours. This is

not always the case since the trading environment, for example, in the �rst hour, is not

the same as the trading environment in the second hour. In this section, we are going to

consider models that take into account the randomness of the number of trades per time

interval. These are called subordinated (time changed) models.

These models were �rst introduced by Clark in 1973 when he modeled the �rst di�er-

ence of the stock prices, thus

∆St = St − St−1. (4.16)

On short time intervals, for instance hourly intervals, empirical evidence suggest that the

following relations hold approximately

E [∆St] = 0 (4.17)

and

E [∆St∆Sl] = 0 (4.18)
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for t 6= l. This means that the expected value of the change in stock price is equal to zero.

Equation (4.18) implies that changes in stock price at di�erent times are uncorrelated.

This means that there exists independence at di�erent time intervals.

Another fact often remarked in the �nancial literature is that the distribution of the

returns is leptokurtic, meaning that it has a kurtosis that is greater than 3. This implies

that ∆St is not normally distributed. Note that ∆St is a summation of a large number of

smaller stock price changes. Since ∆St does not follow a normal distribution, it implies

that some necessary conditions for the central limit theorem does not hold.

The suggestion that the subordinated models follow a random walk comes from the

paper published by Clark in 1973, see [8].

4.4.1 A random walk model

A random walk model is suggested since it can cater for the properties of ∆St given in

equation (4.18), see [8]. There are some theoretical justi�cations for why random walk is

used to model ∆St and these are given in [4]. The author argued that if the changes in the

stock prices are correlated then market participants can buy and sell large quantities of

that particular stock, at correct times and make unlimited pro�t. For instance, if ∆St−1 is

positively correlated to ∆St, see [19]. A market participant who can access this information

and observing that ∆St−1 is negative will know that ∆St will likely be negative. A market

participant will sell large quantities of stock at time t − 1. However, if it happens that

many traders employ the same strategy then the demand of the stock decreases and the

supply is increased. This leads to an increase in the stock price until the correlation is

discarded.

From the above-mentioned arguments it seems valid to model ∆St as follows

∆St = ∆St−1 + εt,

where

E [εt] = 0,

and

E [εlεt] = 0,

for all l 6= t, where εt follows some heavy-tailed distribution.

The frequency at which the stock price changes is di�erent given identical time inter-

vals, see [8]. This implies that the distribution of ∆St is not normal. We can subordinate

∆St to normality. This is done by making the number of small price changes that makes
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up ∆St, a random variable. Thus we no longer assume that there is a constant number of

small price changes in every time period. In his paper, Clark hypothesise that, εt in the

random walk model is the sum of a random number of random variables that are normally

distributed. As mentioned above, the central limit theorem conditions are not met by

∆St but we can attain generalizations of the central limit theorem that can help us get to

normality. These generalizations are special cases of Anscombe`s theorem, see [3].

4.4.2 Generalization 1

Denote Nn = N1, N2, N3, ... to be a sequence of positive integer random variables such

that

limn→∞

(
Nn

n

)
= 1.

Also, let Xn = X1, X2, X3, ... be a sequence that is independent of Nn. Also, let the se-

quence X1, X2, X3, ... be random variables that are independent and identically distributed

with mean equal to zero and variance equals to unity, see [3]. Then

D =
YNn√
n
,

converges to a standard normal distribution, as n turns to in�nity, where

YNn =
Nn∑
i=1

Xi.

Proof

Let the characteristic function of a random variable, Y be denoted by ΦY and

Cn (t) = ΦD(t).

In order to show that the random variable D follows a standard normal distribution, it is

su�cient to show that

limn→∞Cn(t) = exp

(
−1

2
t2
)
.
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Now, consider

Cn(t) = ΦD(t)

= ΦYNn√
n

(t)

= E

[
exp

(
it
YNn√
n

)]
= E

[
exp

(
it

∑Nn
i=1Xi√
n

)]

= E

[
E

[
exp

(
it

∑Nn
i=1Xi√
n

)
|Nn

]]

= E

[(
ΦX1

(
t√
n

))Nn]

= E

[
exp

(
Nn

n
nlog

(
ΦX1

(
t√
n

)))]
(4.19)

In the fourth equality, we applied the tower law of expected values. The �fth equality holds

because the random variables X1, X2, X3, ... are independent and identically distributed.

Applying limits on both sides of (4.19) we get

limn→∞Cn(t) = limn→∞E

[
exp

(
Nn

n
nlog(

(
ΦX1

(
t√
n

)))]
= E

[
exp

(
limn→∞

{
Nn

n

}
limn→∞

{
nlog

(
ΦX1

(
t√
n

))})]
= E

[
exp

(
−1

2
t2
)]

= exp

(
−1

2
t2
)
, (4.20)
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From the second to the third equality, we used the fact that

limn→∞

{
nlog

(
ΦX1

(
t√
n

))}
= limn→∞log(

(
Φ

(
t√
n

))n
= log limn→∞

(
ΦX1

(
t√
n

))n
= exp

[
limn→∞logE

[
e
itX√
n

]n]
= exp

[
limn→∞logE

[
e
it

∑n
j=1 Xj√
n

]n]
= exp

[
log limn→∞E

[
e
it

∑n
j=1 Xj√
n

]n]
= log

(
exp

(
−1

2
t2
))

= −1

2
t2,

which emanates from the central limit theorem. This is because, the third equality has the

sum of a large number of independent and identically distributed characteristic functions,

which in this case are the random variables, see [19]. The interchanging of the expected

value and the limit is justi�ed by Lebesgue`s dominated convergence theorem since the

|Φ(·)| ≤ 1.

4.4.3 Generalization 2

Let Nn = bHnc for large values of n, where bHnc is the integer part of Hn. Thus

bHnc ≤ Hn, see [3]. The variable H is random and it has a mean of one and variance

that is greater than zero. Let the sequence X1, X2, X3, ... be independent random variables

that are identically distributed with zero mean and variance equal to one. The random

variable H and the sequence X1, X2, X3, ... are independent. Then, the distribution of

YNn√
n
,

given H, converges to a normal distribution with zero mean and variance equal to H,

where

YNn =
Nn∑
i=1

Xi.
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Proof

Cn(t) = ΦYNn√
n

(t)

= E

[
exp

(
it

∑Nn
i=1Xi√
n

)]

= E

[
E

[
exp

(
it

∑Nn
i=1Xi√
n

)
|Nn

]]

= E

[(
ΦX1

(
t√
n

))Nn
|Nn

]

= E

[
exp

(
Nn

n
nlog

(
ΦX1

(
t√
n

)))
|Nn

]
limn→∞Cn(t) = limn→∞E

[
exp

(
Nn

n
nlog

(
ΦX1

(
t√
n

)))
|Nn

]
= E

[
exp

(
limn→∞

{
Nn

n

}[
limn→∞

{
nlog

(
ΦX1

(
t√
n

))}])
|Nn

]
=

[
exp

(
H
[
limn→∞

{
nlogE

[
e
itX√
n

]}])
|Nn

]
(4.21)

= exp
[
H limn→∞logE

[
e
itX√
n

]n
|Nn

]
= exp

[
H limn→∞logE

[
e
it

∑n
j=1 Xj√
n

]n
|Nn

]
= exp

[
H log limn→∞E

[
e
it

∑n
j=1 Xj√
n

]n
|Nn

]
= exp

[
H log

(
e−

1
2
t2
)
|Nn

]
= exp

(
−1

2
Ht2

)
(4.22)

On the seventh going to the eighth equality we used the fact that

limn→∞

{
Nn

n

}
= limn→∞

bHnc
n

= H

Both generalizations imply non-constant frequency of trades and we will use it to build

the time-changed models below.
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4.4.4 Time changed stochastic processes

Consider a stochastic process Y1, Y2, Y3, ... with the subscript of a sequence of increasing

integers. We can change the subscript as follows Yt1 , Yt2 , Yt3 , ... where t1, t2, t3, ... are real-

izations from a non-decreasing stochastic process, say Tt. A new stochastic process will be

formed. This new process YTt , is called a time-changed stochastic process, subordinated

to Yt. The stochastic process Tt is called the directing process. The distribution of ∆Yt is

said to be subordinated by the distribution of ∆YTt = YTt − YTt−1 .

Below, we consider the properties of the distribution of ∆YTt

Properties

De�ne Yt and Tt to be two independent stochastic processes that have stationary and

independent increments. Below, we consider some properties of the subordinated process

obtained from these two processes under certain conditions. If the following four properties

hold;

E [∆Yt] = 0,

V ar [∆Yt] = σ2,

E [∆Tt] = µ,

Tt+1 − Tt ≥ 0,

for all t ≥ 0, then the process YTt has independent and stationary increments, see [19].

Also,

E [∆YTt ] = 0,

and

V ar [∆YTt ] = µσ2,

for all t ≥ 0.

Proof

The independence and stationarity of the increments of Yt and Tt lead to the independence

and stationarity of the increments of ∆YTt



CHAPTER 4. OPTION PRICING MODELS 53

E [∆YTt ] = E [E [∆Yt|Tt+1, Tt]]

= E [∆Yt]E [∆Tt]

= 0 . µ

= 0.

The second equality emanates from the evidence that the processes Yt and Tt are indepen-

dent. Consider,

V ar [∆YTt ] = var [E [∆Yt|Tt+1, Tt]] + E [var [∆Yt|Tt+1, Tt]]

= var [∆TtE [∆Yt]] + E [∆Ttvar [∆Yt]]

= (E [∆Yt])
2var [∆Tt] + var [∆Yt]E [∆Tt]

= 0 . var [∆Tt] + σ2µ

= µσ2.

We can see that the V ar [∆YTt ] is not in�uenced by var [∆Tt]. This implies that we can

attain many di�erent distributions of ∆YTt with the same mean and variance stated above,

by only changing var [∆Tt].

As was discussed in chapter 4.1, the �nancial log-returns (or �nancial returns) have

a kurtosis that is greater than 3. This means that the normal distribution does not

capture all of the observed properties of the returns, and a distribution which can take the

leptokurtic nature of the �nancial returns data into account is required. A theorem below

suggest that we can �t the log-returns with any kurtosis value by changing the variance

of ∆Tt.

Theorem 1

If Yt and Tt are processes de�ned as above and ∆Yt is a random variable that follows a

normal distribution then an increase in var [∆Tt] will cause an increase in the kurtosis of

∆YTt , see [19].
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Proof

kurt [∆YTt ] =
E [[∆YTt ]

4]

V ar [∆YTt ]
2

=
E
[[
YTt+1 − YTt

]
4
]

E2
[[
YTt+1 − YTt

]
2
]

=
1

µ2σ4
E
[
E
[
(YTt+1 − YTt)4|Tt+1, Tt

]]
=

3

µ2σ4
E
[
E
[
YTt+1 − YTt)2|Tt+1, Tt

]]
=

3

µ2
E
[
[∆Tt]

2
]

=
3

µ2

{
E2 [∆Tt] + var [∆Tt]

}
= 3

(
1 +

var[∆Tt]

µ2

)
.

From the third equality going forth, we used the fact that
[(
YTt+1 − YTt

)
|Tt+1, Tt

]
is a

random variable that follows a normal distribution. Therefore,

kurt
[(
YTt+1 − YTt

)
|Tt+1, Tt

]
=

E
[[

(YTt+1 − YTt)|Tt+1, Tt
]

4
]

E2
[[(

YTt+1 − YTt
)
|Tt+1, Tt

]
2
]

= 3.

This theorem helps us to come up with models that best �t the �nancial returns data

since we can change the kurtosis of the distribution of ∆YTt by increasing the variance of

∆Tt.

4.4.5 Time-changed Brownian motions

Below we consider the general form of the density function of ∆YTt where Yt is a Brownian

motion. In addition to the general case, we consider some speci�c density functions.

Theorem 2

If Tt and Yt are de�ned as independent processes with independent and stationary incre-

ments and ∆Tt follows a distribution with a density function denoted as u and ∆Yt ∼
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N(µ, σ2), see [19]. Then, the density function of ∆YTt is given as,

f(y) =
1

σ
√

2π

∫ ∞
0

exp

(
−(y − µx) 2

2σ2x

)
u(x)√
x
dx.

Proof

Let F denote the probability distribution function of ∆YTt . Using the notation Y∆Tt =

YTt+1 − YTt , we obtain

F (y) = P
((
YTt+1 − YTt

)
≤ y
)

= P (Y∆Tt ≤ y)

= E [P (Y∆Tt ≤ y|∆Tt)]

= E

[
P

(
Y∆Tt − µ∆Tt

σ
√

∆Tt
≤ y − µ∆Tt

σ
√

∆Tt
|∆Tt

)]
= E

[
P

(
Z ≤ y − µ∆Tt

σ
√

∆Tt
|∆Tt

)]

= E

∫ (
y−µ∆Tt
σ
√

∆Tt

)
−∞

1√
2π
exp

(
−1

2
z2

)
dz


= E

[
Φ

(
y − µ∆Tt

σ
√

∆Tt

)]
. (4.23)

In the fourth equality, we are standardizing since Y∆Tt ∼ N (µ∆Tt, σ
2∆Tt) . On the second

equality Y∆Tt and ∆YTt are equal because they converge to the same distribution. The

standard normal distribution function is denoted by Φ in the sixth equality. In order to

attain the density function of ∆YTt , we partially di�erentiate (4.23) with respect to y as
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follows

f(y) =
∂

∂y
E

[
Φ

(
y − µ∆Tt

σ
√

∆Tt

)]
= E

[
∂

∂y
Φ

(
y − µ∆Tt

σ
√

∆Tt

)]
= E

[
φ

(
y − µ∆Tt

σ
√

∆Tt

)
1

σ
√

∆Tt

]
=

∫ ∞
0

1

σ
√
x
φ

(
y − µx
σ
√
x

)
u (x) dx

=

∫ ∞
0

1

σ
√

2πx
exp

(
−1

2

(
y − µx
σ
√
x

)2
)
u(x)dx

=
1

σ
√

2π

∫ ∞
0

exp

(
−(y − µx) 2

2σ2x

)
u(x)√
x
dx. (4.24)

The density function of the standard normal distribution is denoted by φ. On the fourth

equality we used the fact that,

E [g (X)] =

∫ ∞
−∞

g(x)f(x)dx,

where f(x) is the density function of the random variable X.

The directing processes used to model the time process Tt are the lognormal and Pareto

distributions. The resulting density functions of the time changed stochastic processes are

given in the following two corollaries.

Corollary 1

The density function of ∆YTt , given that ∆Tt follows a lognormal distribution with pa-

rameters α and β, is

f(y) =
1

2πβσ

∫ ∞
0

x−
3
2 exp

[
−(y − µx) 2

2xσ2
− (log(x)− α) 2

2β2

]
dx. (4.25)

The distribution of YTt is called the lognormal-normal.
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Proof

f(y) =
1

σ
√

2π

∫ ∞
0

exp

(
−(y − µx) 2

2σ2x

)
u(x)√
x
dx

=
1

σ
√

2π

∫ ∞
0

exp

(
−(y − µx) 2

2σ2x

)
1

xβ
√

2πx
exp

(
(log(x)− α) 2

2β2

)
dx

=
1

σ
√

2π

1

β
√

2π

∫ ∞
0

exp

(
−(y − µx)2

2σ2x

)
1

x3
2

exp

(
(log(x)− α) 2

2β2

)
dx

=
1

βσ2π

∫ ∞
0

x−
3
2 exp

(
−(y − µx) 2

2σ2x

)
exp

(
(log(x)− α) 2

2β2

)
dx. (4.26)

Corollary 2

If ∆Tt follows a Pareto distribution with parameters a and g, then ∆YTt has the following

density function,

f(y) =
aba

σ
√

2π

∫ ∞
0

1√
x(a+ x)(b+1)

exp

(
−(y − µx)

2σ2x

)
dx.

The distribution of ∆YTt is called the Pareto-normal.

Proof

f(y) =
1

σ
√

2π

∫ ∞
0

exp

(
−(y − µx) 2

2σ2x

u(x)√
x

)
dx

=
1

σ
√

2π

∫ ∞
0

exp

(
−(y − µx)

2σ2x

)(
aba√

x(a+ x)(b+1)

)
dx

=
aba

σ
√

2π

∫ ∞
0

1√
x(a+ x)(b+1)

exp

(
−(y − µx)

2σ2x

)
dx (4.27)

4.4.6 Subordinated Lévy process models

Under the subordinated exponential Lévy process models, we de�ne our stock process as

follows,

St = S0exp (YTt) ,

where Yt is a Lévy process that is independent of the subordinator process Tt.

In order to calculate arbitrage free option price, we need to change from the objective

probability measure P to an equivalent martingale measure Q. This is done by calculating

the value of τ (from the Esscher transform) that ensures that the discounted stock price
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process follows a Q martingale. This happens if and only if,

exp(−r)E [S1] = S0

S0E [exp (Y1)] = exp(r)S0

E [exp (Y1)] = exp(r)∫ ∞
−∞

exp(y)fY1(y)dy = exp(r)∫ ∞
−∞

exp(y)f(y)exp(τy)∫∞
−∞ exp(τx)fX(x)dx

dy = exp(r)∫ ∞
−∞

exp((τ + 1)y)f(y)∫∞
−∞ exp(τx)fX(x)dx

dy = exp(r)

1∫∞
−∞ exp(τx)fX(x)dx

∫ ∞
−∞

exp((τ + 1)y)f(y)dy = exp(r) (4.28)

We used subscript t = 1 from the �rst equality through out the proof. We can use

numerical integration to solve (4.28) in order to get the value of τ that makes exp(−r)St
a martingale. Our density function under the martingale measure Q will be attained

by substituting the value of τ in the formula (2.1). Once the martingale measure Q is

obtained then we can now calculate the arbitrage free option prices.



Chapter 5

Empirical results

5.1 Introduction

In this chapter we �t each of the models discussed in the previous chapter to the observed

stock price data. Following this step, we calculate the corresponding option prices under

the probability measure obtained using the Esscher transform method. All the program-

ming is done in R. The reason we �t the models �rst is because we need to see how much

of the observed stock data is being explained by the models. We are going to compare the

models and see which one best �ts the stock price data. This is going to be done using

integrated square error (ISE). The integrated square error is de�ned as,

ISE =

∫ ∞
−∞

(fh(y)− fe(y)) 2dy,

where fh is the kernel density estimate and fe is the estimated distribution. The expres-

sion above can be calculated using numerical integration as an approximation as it is not

given in closed form. The ISE considered here is a discretised approximation. This ap-

proximation is obtained by evaluating the function provided above in 512 equally spaced

points determined by a subroutine in R. The model that gives the smallest ISE value is

considered to be the best model.

We use maximum likelihood estimation to estimate the parameters of the models. We

also employ an optimisation procedure in R called the Nelder-Mead. This is usually used

when we are changing the probability measures using the Esscher transform method. For

fh we used the Gaussian kernel density estimate and the bandwidth is chosen according

to the Silverman`s rule of thumb. For a review of the choice of bandwidth, see [12].

We are also going to calculate the option prices using these models and see which

model predicts the observed option prices better than the others. The criterion used to

59
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compare the option prices is the root mean square error denoted as RMSE. It is de�ned

as,

RMSE =

√√√√ 1

n

n∑
k=1

(πok − πek) 2

where πo and πe are the observed and estimated option prices, respectively and n is the

number of the option prices considered. The subscript k is indicates the kth observed or

calculated option price. The model that gives the least RMSE is considered to be the best

model.

We are considering two di�erent data sets in our analysis. The �rst data set is from

S&P 500 in the year of 2002. The data set consist of 126 observed option prices and 74

observed stock prices. The second data is from Eurostoxx. It has 254 observed stock prices

and 144 observed option prices. The reason we used these data sets is because there are

accessible easily and they give di�erent results discussed at the end of the next chapter .

Current option prices data are di�cult and expensive to get.

5.2 Model �tting

In this section we are �tting the �nancial models to the the S&P 500 data set.

5.2.1 The Black-Scholes model

Fitting the Black-Scholes models entails �tting a normal distribution to the observed log-

returns. When �tting the normal distribution we obtain the following estimates;

µ̂ = 0.0011 and σ̂2 = 0.0124.

Figure 5.1 shows a kernel density estimate of the log-returns (in green). In order to aid

comparison, the estimated normal density is superimposed (in red) in the �gure. The

integrated square error is given to be;

ISE = 0.08703349.
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Figure 5.1: The Kernel estimated density of the observed log-returns (green) with �tted
normal density (red) superimposed

5.2.2 The geometric normal inverse Gaussian process model

From Figure 5.2 we see that the geometric normal inverse Gaussian model explains the

variation in the observed log-returns well but not as well as the Black-Scholes model. When

�tting the geometric normal inverse Gaussian model we obtain the following estimates;

α̂ = 106.1905, β̂ = 2.1024, µ̂ = 0.000825 and δ̂ = 0.0171.

Figure 5.2 shows a kernel density estimate of the log-returns (in green). In order to aid

comparison, the estimated geometric normal inverse Gaussian density is superimposed (in

red) in the �gure. The integrated square error is given to be;

ISE = 0.4501165.

We can see that the integrated square error value of the geometric normal inverse Gaussian

model is greater than that of the Black-Scholes model. This means that the Black-Scholes

model �ts the observed log-returns better.
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Figure 5.2: The Kernel estimated density of the observed log-returns (green) with �tted
geometric normal inverse Gaussian density (red) superimposed

5.2.3 The geometric Meixner process model

Figure 5.3 shows that the geometric Meixner model �ts the stock price data better than

the geometric normal inverse Gaussian model. The estimated parameters of the model

are;

α̂ = 0.00209, β̂ = 1.8089, µ̂ = −0.0639 and δ̂ = 24.1465.

The integrated square error is given to be;

ISE = 0.3143507.

This value is smaller than the one for the geometric normal inverse Gaussian model.

Figure 5.3: The Kernel estimated density of the observed log-returns (green) with �tted
geometric Meixner density (red) superimposed
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5.2.4 The exponential lognormal-normal process model

Figure 5.4 shows that the lognormal-normal model �ts the stock price data better than

the geometric normal inverse Gaussian model and the geometric Meixner model. The

estimated parameters of the model are;

α̂ = 0.2995, β̂ = 0.4889, µ̂ = 0.000253 and σ̂2 = 0.00937.

The integrated square error is given to be;

ISE = 0.1150531.

This value is lower than that of the geometric normal inverse Gaussian model but greater

than that of the Black-Scholes model.

Figure 5.4: The Kernel estimated density of the observed log-returns (green) with �tted
exponential lognormal-normal density (red) superimposed

5.2.5 The exponential Pareto-normal process model

From Figure 5.5 we see that the exponential Pareto-normal model does not explain the

variation in the observed log-returns well. When �tting the exponential Pareto-normal

model we obtain the following estimates;

ĝ = 0.0219, ĥ = 44.7359, µ̂ = −0.2553 and σ̂2 = 0.5656.

Figure 5.5 shows a kernel density estimate of the log-returns (in green). In order to aid

comparison, the estimated exponential Pareto-normal density is superimposed (in red) in
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the �gure. The integrated square error is given to be;

ISE = 1.346161.

This is highest ISE value attained so far which means that the exponential Pareto-

normal model is the model that least �ts the observed log-returns of the S&P 500 data.

Figure 5.5: The Kernel estimated density of the observed log-returns (green) with �tted
exponential Pareto-normal density (red) superimposed

5.3 Calculation of the empirical option prices

In this section we are going to use the models discussed above to calculate the option

prices. We will also compare these empirical option prices with the observed ones to see

which model best mimics the real world option prices. As discussed in Section 5.1 we will

be using the root mean square error (RMSE) as the ranking criterion.
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5.3.1 The Black-Scholes model

Figure 5.6: Empirical (red) and observed (black) option prices

The graph above shows that the option prices calculated from the Black-Scholes model

are almost the same as the observed ones. Option prices with strike prices that are greater

than $1 100, are being over-estimated by the empirical option prices. The root mean

square error value of the Black-Scholes model is given below,

RMSE = 10.17715.

5.3.2 The geometric normal inverse Gaussian process model

Figure 5.7: Empirical (red) and observed (black) option prices

The geometric normal inverse Gaussian model option prices are under-estimating the

observed option prices. This is seen above as most of the black small circles are above

the corresponding red ones. The graph shown in Figure (5.2) shows that the geometric

normal inverse Gaussian model does not �t the stock price data well which will not be a
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surprise when the model gives option prices that under-estimates the observed ones. We

can already expect the root mean square value to be higher than that of the Black-Scholes

model,

RMSE = 16.45665.

The root mean square error value of the geometric normal inverse Gaussian model is

greater than the one for the Black-Scholes model. This implies that the Black-Scholes

model mimics the real world option prices better.

5.3.3 The exponential lognormal-normal process model

Figure 5.8: Empirical (red) and observed (black) option prices

The exponential lognormal-normal model over-estimates the observed option prices. This

is seen from Figure (5.8) as the empirical option prices plots above the corresponding

observed option prices. The root mean square error value of the exponential lognormal-

normal model is given below,

RMSE = 23.0822.

The above RMSE value is the greatest so far which means that the exponential lognormal-

normal is, so far, the least in mimicking the real world option prices. From Figure (5.4)

we see that the model �ts the stock price data very well. However, it still gave us an

over-estimation of the option prices. This means that it is not always the case that a

model which �ts the stock prices well gives the best option prices.
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5.3.4 The exponential Pareto-normal process model

Figure 5.9: Empirical (red) and observed (black) option prices

From Figure (5.9) we see that the option price calculated using the exponential Pareto-

normal model under-estimates the observed option prices. This is further seen in Figure

(5.5) as the density of the exponential Pareto-normal has a greater kurtosis than the real

world stock price data. The root mean square error is given below,

RMSE = 13.29202

This RMSE value is smaller than that of the other models except the one for the Black-

Scholes model. This means that even though the exponential Pareto-normal under-

estimates the option prices, it is the second best so far.
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5.3.5 The geometric Meixner process model

Figure 5.10: Empirical (black) and observed (red) option prices

From Figure (5.10) we see that this model mimics the observed option price better than

most models mentioned above. This is seen as most of the empirical option prices are

so close to the corresponding observed option prices. Further evidence is attained from

Figure (5.3), which shows that the density of the model �ts the stock price well. The root

mean square error is given below,

RMSE = 11.47488.

This value is the second smallest compared to the ones above.

We are now going to analyse the data set from Eurostoxx to see if we will get the same

results. We will apply the same criteria as above to see which model �ts the stock price

data best and which model mimics the real world option prices.

5.4 Model �tting

5.4.1 The Black-Scholes model

Fitting the Black-Scholes models entails �tting a normal distribution to the observed log-

returns. When �tting the normal distribution we obtain the following estimates;

µ̂ = 0.0006214 and σ̂2 = 0.02017.
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Figure 5.11 shows a kernel density estimate of the log-returns (in green). In order to aid

comparison, the estimated normal density is superimposed (in red) in the �gure. The

integrated square error is given to be;

ISE = 0.2015346.

Figure 5.11: The Kernel estimated density of the observed log-returns (green) with �tted
normal density (red) superimposed

5.4.2 The geometric normal inverse Gaussian process model

From Figure 5.12 we see that the geometric normal inverse Gaussian model explains the

variation in the observed log-returns well better than the Black-Scholes model. When

�tting the geometric normal inverse Gaussian model we obtain the following estimates;

α̂ = 49.0987, β̂ = 3.2245, µ̂ = −0.001253 and δ̂ = 0.0223.

Figure 5.12 shows a kernel density estimate of the log-returns (in green). In order to aid

comparison, the estimated geometric normal inverse Gaussian density is superimposed (in

red) in the �gure. The integrated square error is given to be;

ISE = 0.1359597.

We can see that the integrated square error value of the geometric normal inverse Gaussian

model is smaller than that of the Black-Scholes model. This means that the geometric

normal inverse Gaussian model �ts the observed log-returns better.
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Figure 5.12: The Kernel estimated density of the observed log-returns (green) with �tted
geometric normal inverse Gaussian density (red) superimposed

5.4.3 The geometric Meixner process model

Figure 5.13 shows that the geometric Meixner model does not �t the observed log-returns

data better than the geometric normal inverse Gaussian model. The estimated parameters

of the model are;

α̂ = 0.006044, β̂ = 1.0494, µ̂ = −0..05739 and δ̂ = 16.5452.

The integrated square error is given to be;

ISE = 0.198733.

This value is greater than the ISE value of the geometric normal inverse Gaussian models.

Figure 5.13: The Kernel estimated density of the observed log-returns (green) with �tted
geometric Meixner density (red) superimposed
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5.4.4 The exponential lognormal-normal process model

Figure 5.14 shows that the exponential lognormal-normal model �ts the stock price data

better than the geometric normal inverse Gaussian model. The estimated parameters of

the model are;

α̂ = 1.2209, β̂ = 0.6295, µ̂ = 0.0001277 and σ̂2 = 0.009969.

The integrated square error is given to be;

ISE = 0.1008621.

This value is lower than that of the geometric normal inverse Gaussian model and that of

the Black-Scholes model.

Figure 5.14: The Kernel estimated density of the observed log-returns (green) with �tted
exponential lognormal-normal density (red) superimposed

5.4.5 The exponential Pareto-normal process model

From Figure 5.15 we see that the exponential Pareto-normal model does not explain the

variation in the observed log-returns well. When �tting the exponential Pareto-normal

model we obtain the following estimates;

ĝ = 0.01596, ĥ = 23.5141, µ̂ = 0.864 and σ̂2 = 0.8281.

Figure 5.15 shows a kernel density estimate of the log-returns (in green). In order to aid

comparison, the estimated exponential Pareto-normal density is superimposed (in red) in
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the �gure. The integrated square error is given to be;

ISE = 0.7625883.

This is the highest ISE value attained so far which means that the exponential Pareto-

normal model is the model that least �ts the observed log-returns.

Figure 5.15: The Kernel estimated density of the observed log-returns (green) with �tted
exponential Pareto-normal density (red) superimposed

5.5 Empirical option prices calculation

We are going to calculate the empirical option prices using the above-mentioned �nancial

models. We are also going to plot both the empirical and the observed option prices to

clearly see how well the models can estimate the option prices. The root mean square

error is going to be used as a ranking criterion to see which model mimics best the real

world option prices.
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5.5.1 The Black-Scholes model

Figure 5.16: Empirical (red) and observed (black) option prices

From Figure (5.16) we see that the Black-Scholes model estimates the observed option

prices well for options with the strike price between $1 050 and $1 600. Option prices

with the strike price greater than $1 600 are over-estimated. This shown with the red

circles higher than the black ones. Further evidence is attained from Figure (5.11), which

depicts the density of the Black-Scholes model having a lower kurtosis value than that of

the stock price data. The root mean square error is given below,

RMSE = 131.6587.

5.5.2 The geometric normal inverse Gaussian process model

Figure 5.17: Empirical (red) and observed (black) option prices

Overally, the geometric normal inverse Gaussian model over-estimates the observed stock

prices. Option prices with strike prices between $3 100 and $3 300 were estimated well.
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The root mean square error value is given below,

RMSE = 151.1887

This value is greater than that of the Black-Scholes model. This means that the Black-

Scholes model is better in terms of mimicking the observed option prices.

5.5.3 The exponential lognormal-normal process model

Figure 5.18: Empirical (red) and observed (black) option prices

Option prices with the strike price below $1 400 are being under-estimated by the model.

From the strike price greater than $1 400, the model over-estimates the observed option

prices. The extent of over-estimation is better than that of the Black-Scholes model. This

is seen by the root mean square value of the exponential lognormal-normal model being

smaller than that of the Black-Scholes. The RMSE value is given below,

RMSE = 117.0116.
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5.5.4 The exponential Pareto-normal process model

Figure 5.19: Empirical (red) and observed (black) option prices

The exponential Pareto-normal model under-estimates all the observed option prices. This

is expected as its density has a kurtosis greater than that of the observed stock prices.

The model only mimics very well, the option price with a strike price of about $5 600.

The root mean square error is given as;

RMSE = 120.7591.

The RMSE value given above is greater than the exponential lognormal-normal one but

less than the Black-Scholes one. This means that the exponential Pareto-normal model is

better than the Black-Scholes model.
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5.5.5 The geometric Meixner process model

Figure 5.20: Empirical (red) and observed (black) option prices

The option prices calculated using the geometric Meixner model over-estimates the ob-

served option prices. This is seen in Figure (5.20), where the red circles are plotting above

the black ones. This implies that though the model �ts the stock price data well, it does

not guarantee that the empirical option prices will also be good estimates of the observed

option prices. Figure (5.13) shows a good �t of the model to stock price data. The level

of error is quanti�ed by the RMSE given below.

RMSE = 129.1696.

The above RMSE value is the second largest from the ones calculated so far. This means

that the geometric Meixner model is the second least in mimicking the real world option

prices.
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Conclusion

Below we compare the results obtained in the previous chapter. This is done in order to see

which model �ts the log-returns best. We use the integrated square error as our ranking

criterion. We also compare the di�erent root mean square errors for di�erent models to see

which model mimics the observed option prices best. In Section 6.1 we analyse the results

from the �rst data set. Analysis of the second data set is going to be done in Section 6.2.

Overall conclusion is going to be done in Section 6.3.

We analysed two di�erent sets of observed log-returns and the corresponding observed

option prices. One data set is from the S&P 500 and the second one is from Eurostoxx.

We speci�cally chose these data sets because they are readily available.

6.1 Analysis of the results attained from the S&P 500

data set

Below, is a compilation of the integrated square errors (ISE) attained from di�erent �nan-

cial models using the �rst data set.

Financial model Integrated square error

the Black-Scholes model 0.0870
the geometric normal inverse Gaussian process model 0.4501
the exponential lognormal-normal process model 0.1151
the exponential Pareto-normal process model 1.346161

the geometric Meixner process model 0.3144

Table 6.1: The integrated square errors for di�erent �nancial models

From the table above we see that the Black-Scholes model has the smallest integrated

square error value. This means that the Black-Scholes model is the one that �ts the

77
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log returns data best. The exponential Pareto-normal model has the highest ISE value

meaning that it gives least �t to the log returns data. We are now going to see which

�nancial model gives better empirical option prices which mimics the real world option

prices. This is done through the root mean square errors given below;

Financial model Root mean square error

the Black-Scholes model 10.1772
the geometric normal inverse Gaussian process model 16.4567
the exponential lognormal-normal process model 23.0822
the exponential Pareto-normal process model 13.292

the geometric Meixner process model 11.4749

Table 6.2: The root mean square errors for di�erent �nancial models

From the above table we see that the Black-Scholes model has the smallest root mean

square error value. This means that it is the best model that mimics the observed option

prices. This is not surprising because the Black-Scholes model �t the log returns data

better than the other models. The exponential lognormal-normal model has the largest

RMSE value .Note that the exponential Pareto-normal model preforms quite well in terms

of the RMSE in spite of providing a substantially higher ISE than any of the other models.

We now analyse the second data set.

6.2 Analysis of the results attained from the Eurostoxx

data set

The integrated square errors calculated from the second data set are given below.

Financial model Integrated square error

the Black-Scholes model 0.2015
the geometric normal inverse Gaussian process model 0.136
the exponential lognormal-normal process model 0.1009
the exponential Pareto-normal process model 0.7626

the geometric Meixner process model 0.1987

Table 6.3: The integrated square errors for di�erent �nancial models

The exponential lognormal-normal model has the smallest ISE value. This means that

it �ts the log returns data better than the other models. The exponential Pareto-normal

model has the largest integrated square error. The table of the RMSE values is given

below.
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Financial model Root mean square error

the Black-Scholes model 131.6587
the geometric normal inverse Gaussian process model 151.1887
the exponential lognormal-normal process model 117.0116
the exponential Pareto-normal process model 120.7591

the geometric Meixner process model 129.1696

Table 6.4: The root mean square errors for di�erent �nancial models

From the table above, we see that the exponential lognormal-normal model has the

smallest root mean square error value. This implies that it estimates the observed option

prices better than the other models. The geometric normal inverse Gaussian model has

the largest RMSE value, meaning that it is the least one.

Compare the performance of the geometric normal inverse Gaussian model and the

exponential Pareto-normal model. The geometric normal inverse Gaussian model provides

a small ISE and a large RMSE while the opposite is true for the exponential Pareto-normal

model

6.3 Conclusion

In this study, we discuss �ve di�erent �nancial models which are Lévy processes. The

�rst of these models is the Black-Scholes model, under which the log-return process is

assumed to be a Brownian motion. Other �nancial models assume that the stock returns

are from a Lévy process that has jumps. These models are the geometric normal inverse

Gaussian, geometric Meixner and the time-changed models. The time-changed models

assume the number of trades per given time interval to be a random variable which follow a

speci�c distribution. These models are the exponential Pareto-normal and the exponential

lognormal-normal models.

We also showed how we manipulate the parameters of these models when moving from

the objective probability measure to the equivalent martingale measure. This is done so as

to ensure that the option prices calculated under these models are arbitrage-free. We also

compared the di�erent �nancial models to see which model �ts the log return data better

than the others and which model best mimics the real world option prices. Before we

calculated the option prices we �rst had to estimate the parameters using the observed log

returns data. From the analysis done above, we saw that the best model �t depends the

nature of the data set. If the log-returns are normally distributed then the Black-Scholes

model tends to be the best model in both cases. This is shown in the analysis of the S&P

500 data set given in Section 6.1. If the log-returns are not normally distributed then
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other models will be the best �t. This shown in Section 6.2 as we analysed the Eurostoxx

data set when the exponential lognormal-normal model became the best �t.

Again, from the analysis done above we saw that sometimes when the model �ts the

log returns data very well then it will also mimic the observed option prices well. This

is shown when the Black-Scholes and the exponential lognormal-normal models were the

best in �tting both the log returns data and the observed option prices. However, this is

not always the case. Some models �t the log returns data well but still give bad empirical

option prices. This is shown in Section 6.2 as the geometric normal inverse Gaussian model

was the second best in �tting the log returns data but the �fth in estimating the option

prices. This situation is also elaborated on Section 6.1 as the exponential lognormal-normal

model was the second best in �tting the log-returns, but performed worst in estimating the

observed option prices. This means that there exists some level of discrepancy between

the model �t and the option price calculation.
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Appendix

Algorithms for calculating option prices using the di�erent �nancial

models

In this chapter we are going to list the algorithms used to �t the �nancial models to the

log returns of the stock prices.

The Black-Scholes model

� Calculate the log-returns from the stock prices.

� Estimate the parameters mean and variance using the log returns. This is because

the Black-Scholes model follows the normal distribution when using the log returns

� Generate the normal density function values with the mean and variance estimated

above.

� Plot the log returns and the generated normal density values on the same axes to

see which if it �ts the data well.

� Use the Black-Scholes formula to calculate the option prices. The formula is given

as;

Π = S0

(
Φ

(
log K

S0
+
(
r + 1

2
σ2
)
T

σ
√
T

))
−Kexp(−rT )Φ

(
log K

S0
+
(
r − 1

2
σ2
)
T

σ
√
T

)
.

where Φ represents the normal distribution function.

� Repeat the previous step for di�erent values of K and T .

The geometric normal inverse Gaussian process model

� Calculate the log returns from the stock prices.
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� Estimate the parameters (α, β, µ, δ) using the maximum likelihood estimation.

� Generate the density function values with the parameters estimated above.

� Plot the log returns and the generated density values on the same axes to see which

if it �ts the data well.

� Esscher transform method is used to change from the objective probability measure

to a martingale measure by manipulating the estimated parameters. In this instance

only the parameter β is a�ected.

� There is no precise formula for the calculation of the option price using the geometric

normal inverse Gaussian model. This leads to the usage of numerical integration. In

this instance only the parameter β is a�ected.

� Numerical integration is performed on the following equation;

e−rT
∫ ∞(

log K
S0
−µT

σ
√
T

) [(S0exp
(
µT + σ

√
TZ
)
−K

)]
φ(z)dz

where φ represents the density function of the geometric normal inverse Gaussian

model.

� There are instances where the parameters gets so large which leads to di�culties in

the density function calculation. This problem can be circumvented by using the

Fourier method discussed in section (3.4.3).

The exponential lognormal-normal process model

� Calculate the log returns from the stock prices.

� Estimate the parameters (α, β, µ, σ) using the maximum likelihood estimation.

� Generate the density function values with the parameters estimated above.

� Plot the log returns and the generated density values on the same axes to see which

if it �ts the data well.

� Esscher transform method is used to change from the objective probability measure

to a martingale measure by manipulating the estimated parameters. This is done
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by optimising the following equation to get the value of τ ;

1∫∞
−∞ exp(τx)fX(x)dx

∫ ∞
−∞

exp((τ + 1)y)f(y)dy = exp(r).

The martingale density function will be f(y + τ).

� Calculation of the option prices is done using the numerical integration on the fol-

lowing equation;

e−rT
∫ ∞
log K

S0

(
S0e

YTt −K
)
)f
(
y + τ ;µ, σ2, α.β

)
dy.

The exponential Pareto-normal process model

� Calculate the log returns from the stock prices.

� Estimate the parameters (g, h, µ, σ) using the maximum likelihood estimation.

� Generate the density function values with the parameters estimated above.

� Plot the log returns and the generated density values on the same axes to see which

if it �ts the data well.

� Esscher transform method is used to change from the objective probability measure

to a martingale measure by manipulating the estimated parameters. This is done

by optimising the following equation to get the value of τ ;

1∫∞
−∞ exp(τx)fX(x)dx

∫ ∞
−∞

exp((τ + 1)y)f(y)dy = exp(r).

The martingale density function will be f(y + τ).

� Calculation of the option prices is done using the numerical integration on the fol-

lowing equation;

e−rT
∫ ∞
log K

S0

(S0e
YTt −K)f(y + τ ;µ, σ2, g.h)dy.

The geometric Meixner process model

� Calculate the log returns from the stock prices.

� Estimate the parameters (α, β, µ, δ) using the maximum likelihood estimation.
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� Generate the density function values with the parameters estimated above.

� Plot the log returns and the generated density values on the same axes to see which

if it �ts the data well.

� Esscher transform method is used to change from the objective probability measure

to a martingale measure by manipulating the estimated parameters. In this instance

only the parameter β is a�ected.

� There is no precise formula for the calculation of the option price using the geometric

normal inverse Gaussian model. This leads to the usage of numerical integration. In

this instance only the parameter β is a�ected.

� Numerical integration is performed on the following equation;

e−rT
∫ ∞
log K

S0

[(S0exp (YT )−K)] f
(Q)
YT

(y)dy

where f
(Q)
Yt

(y) represents the density function of the geometric Meixner model.

� There are instances where the parameters gets so large which leads to di�culties in

the density function calculation. This problem can be circumvented by using the

Fourier method discussed in section (3.4.3).

R-codes for the S&P 500 data set

Black-Scholes model

###########################################################

#Entering the data

set.seed(12345)

data = read.csv("S&P 500 2002 DATA.csv")

prices = data[,5]

prices = prices[1:126]

prices = prices[length(prices):1]

plot(prices,type = "l")

#########################################################################

# Enter the option price data
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Data <- read.csv("C:/Users/Clemence R Kwinje/Desktop/R Files/OptionData/Schoutens/Schoutens.csv")

T <- Data[,1]

Strike_price <- Data[,2]

Option_price <- Data[,3]

n2 = length(Strike_price)

plot(Strike_price,Option_price)

#########################################################################

#Calculating log-returns

n = length(prices)-1

logrets = 1:n*0

for (j in 1:n){

logrets[j] = log(prices[j+1]/prices[j])

}

plot(logrets,type = "l")

plot(hist(logrets))

lines(density(logrets))

###########################################################

# Fit normal distribution

muHat = mean(logrets)

sigmaHat = sd(logrets)*sqrt((n-1)/n)

#sum(log(dnorm(logrets,muHat,sigmaHat)))

#install.packages("nortest")

#library(nortest)

#cvm.test(logrets)

plot(density(logrets))

x_min = min(logrets)

x_max = max(logrets)

x = seq(x_min,x_max,(x_max-x_min)/999)

plot(density(logrets))
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lines(x,dnorm(x,muHat,sigmaHat),col = "red",type = "l")

#########################################################################

#ISE:

xx = density(logrets)$x

yy = density(logrets)$y

yy2 = dnorm(xx,muHat,sigmaHat)

plot(xx,yy,type="l",col="red")

lines(xx,yy2)

plot(xx,(yy-yy2)^2,type="l",col="red")

ISE = sum((yy-yy2)^2)*(xx[2]-xx[1])

ISE

#########################################################################

# Calculating option prices

sig=sigmaHat

S=1124.47

r=0.007/252

BlackScholesPrice <- function(sig,S,T,r,Strike_price){

m=exp(-r*T)

a1=(log(S/Strike_price)+(r+0.5*sig^2)*T)/(sig*sqrt(T))

a2=(log(S/Strike_price)+(r-0.5*sig^2)*T)/(sig*sqrt(T))

b1=pnorm(a1, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

b2=pnorm(a2, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

OpPrice=S*b1-Strike_price*m*b2

return(OpPrice)

}
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CalcP <- BlackScholesPrice(sig,S,T,r,Strike_price)

plot(Strike_price,CalcP,col="red")

#########################################################################

# Comparing option prices

plot(Strike_price,Option_price,col="black")

points(Strike_price,CalcP,col="red")

RMSE = sqrt(mean((Option_price - CalcP)^2))

RMSE

#########################################################################

The geometric normal inverse Gaussian process model

###########################################################

#Entering the data

set.seed(12345)

data = read.csv("S&P 500 2002 DATA.csv")

prices = data[,5]

prices = prices[1:126]

prices = prices[length(prices):1]

plot(prices,type = "l")

#########################################################################

# Enter the option price data

Data <- read.csv("C:/Users/Clemence R Kwinje/Desktop/R Files/OptionData/Schoutens/Schoutens.csv")

T <- Data[,1]

Strike_price <- Data[,2]

Option_price <- Data[,3]

n2 = length(Strike_price)

plot(Strike_price,Option_price)

#########################################################################

#Calculating log-returns
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n = length(prices)-1

logrets = 1:n*0

for (j in 1:n){

logrets[j] = log(prices[j+1]/prices[j])

}

plot(logrets,type = "l")

plot(hist(logrets))

lines(density(logrets))

###########################################################

#NoIG density

alpha = 2

beta = 1

mu = 1

delta = 1

#install.packages("Bessel")

library(Bessel)

f_NoIG <- function(x,alpha,beta,mu,delta){

f = alpha*delta/pi*exp(delta*sqrt(alpha^2-beta^2)+beta*(x-mu))*BesselK(alpha*sqrt(delta^2+(x-mu)^2),1)/sqrt(delta^2+(x-mu)^2);

return(f)

}

x_min = -1

x_max = 5

x = seq(x_min,x_max,(x_max-x_min)/999)

y = f_NoIG(x,alpha,beta,mu,delta)

plot(x,y,type="l")

###########################################################

# NoIG likelihood
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LLvec = f_NoIG(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec)

if (alpha>0 & alpha>abs(beta) & delta>0){

LLvec = f_NoIG(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec)

} else {

LL = -Inf

}

parms = c(alpha,beta,mu,delta)

minLL_NoIG <- function(parms){

alpha = parms[1]

beta = parms[2]

mu = parms[3]

delta = parms[4]

if (alpha>0 & alpha>abs(beta) & delta>0){

LLvec = f_NoIG(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec)

} else {

LL = -Inf

}

minLL = -LL

return(minLL)

}

parms = c(alpha,beta,mu,delta)

mLL = minLL_NoIG(parms)

###########################################################

# Starting values
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n_startvals = 1000

alpha_s <- runif(n_startvals,1,100)

beta_s <- runif(n_startvals,-80,80)

mu_s <- runif(n_startvals,-10,10)

delta_s <- runif(n_startvals,1,100)

startvals = rep(0,4)

startevals = 1:n_startvals*0

besteval = Inf

for (k in 1:n_startvals){

sparms <- c(alpha_s[k],beta_s[k],mu_s[k],delta_s[k])

startevals[k] <- minLL_NoIG(sparms)

if (is.finite(startevals[k]) & startevals[k]<besteval){

startvals = sparms

besteval = startevals[k]

}

}

besteval

startvals

minLL_NoIG(startvals)

optm <- optim(startvals,minLL_NoIG)

alphaHat = optm$par[1]

betaHat = optm$par[2]

muHat = optm$par[3]

deltaHat = optm$par[4]

x_grid = density(logrets)$x

Density = density(logrets)$y

plot(x_grid,Density,type="l",col="red",ylim=c(0,45))
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fx2_grid = f_NoIG(x_grid,alphaHat,betaHat,muHat,deltaHat)

lines(x_grid,fx2_grid,type="l")

##########################################################

#ISE:

xx = density(logrets)$x

yy = density(logrets)$y

yy2 = f_NoIG(xx,alphaHat,betaHat,muHat,deltaHat)

plot(xx,yy,type="l",col="red")

lines(xx,yy2)

plot(xx,(yy-yy2)^2,type="l",col="red")

ISE = sum((yy-yy2)^2)*(xx[2]-xx[1])

ISE

#####################################################

r=0.007/252

obj <- function(theta){

T1 = muHat

T2 = sqrt(alphaHat^2-(betaHat+theta)^2)

T3 = sqrt(alphaHat^2-(betaHat+theta+1)^2)

objf = abs(T1 + deltaHat*(T2-T3) - r)

return(objf)

}

optm = optimize(obj,c(-20,20))

theta = optm$min

betaHat = betaHat + theta
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obj(theta)

#############################################################

#Option Price Calculation

NoIG_density <- function(x){

alpha = parms[1]

beta = parms[2]

mu = parms[3]*Tj

delta = parms[4]*Tj

f = alpha*delta/pi*exp(delta*sqrt(alpha^2-beta^2)+beta*(x-mu))*BesselK(alpha*sqrt(delta^2+(x-mu)^2),1)/sqrt(delta^2+(x-mu)^2);

return(f)

}

S0 = 1124.41

parms = c(alphaHat,betaHat,muHat,deltaHat)

#plot(x_grid,NoIG_density(x_grid),type="l")

integrand <- function(x){

intg = (S0*exp(x)-Kj)*NoIG_density(x)

return(intg)

}

OptPrice = rep(0,length(Option_price))

for (j in 1:length(Option_price)){

Kj = Strike_price[j]

Tj = T[j]

OptPrice[j] = exp(-r*Tj)*integrate(integrand,log(Kj/S0),3)$value

}

plot(Strike_price,Option_price,col="black")

points(Strike_price,OptPrice,col="red")

#########################################################################
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# Comparing option prices

RMSE = sqrt(mean((Option_price-OptPrice)^2))

RMSE

The exponential lognormal-normal process model

###########################################################

#Entering the data

rm(list=ls())

set.seed(12345)

data = read.csv("S&P 500 2002 DATA.csv")

prices = data[,5]

prices = prices[length(prices):1]

plot(prices,type = "l")

#########################################################################

# Enter the option price data

Data <- read.csv("C:/Users/Clemence R Kwinje/Desktop/R Files/OptionData/Schoutens/Schoutens.csv")

T <- Data[,1]

Strike_price <- Data[,2]

Option_price <- Data[,3]

n2 = length(Strike_price)

plot(Strike_price,Option_price)

#########################################################################

#Calculating log-returns

n = length(prices)-1

logrets = 1:n*0

for (j in 1:n){

logrets[j] = log(prices[j+1]/prices[j])

}

plot(logrets,type = "l")

plot(hist(logrets))

lines(density(logrets))
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###########################################################

#Pareto-normal density

alpha = 4.11

beta = 3.44

mu = 0

sigma = 0.008

integrand <- function(y){

T1 = (y)^(3/2)

T2 = -(x-mu*y)^2/(2*sigma^2*y)

T3 = -(log(y)-alpha)^2/(2*beta^2)

f = 1/T1*exp(T2+T3)

return(f)

}

#x = 1

#y = seq(0.01,3,0.01)

#plot(integrand(y),type="l")

x_grid = seq(-0.05,0.05,0.0001)

fx = rep(0,length(x_grid))

for (j in 1:length(x_grid)){

x = x_grid[j]

fx[j] = 1/(sigma*2*pi*beta)*integrate(integrand,0,Inf)$value

}

plot(x_grid,fx,type="l")

sum(fx)*(x_grid[2]-x_grid[1])

f_PN <- function(x_grid,alpha,beta,mu,sigma){

integrand <- function(y){

T1 = (y)^(3/2)
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T2 = -(x-mu*y)^2/(2*sigma^2*y)

T3 = -(log(y)-alpha)^2/(2*beta^2)

f = 1/T1*exp(T2+T3)

return(f)

}

fx = rep(0,length(x_grid))

for (j in 1:length(x_grid)){

x = x_grid[j]

fx[j] = 1/(sigma*2*pi*beta)*integrate(integrand,0,Inf)$value

}

return(fx)

}

fx = PN_density(x_grid,alpha,beta,mu,sigma)

plot(x_grid,fx,type="l")

###########################################################

# Pareto-normal likelihood

LLvec = f_PN(logrets,alpha,beta,mu,sigma)

LLvec = log(LLvec)

LL = sum(LLvec)

if (alpha>0 & beta>0 & sigma>0){

LLvec = f_PN(logrets,alpha,beta,mu,sigma)

LLvec = log(LLvec)

LL = sum(LLvec)

} else {

LL = -Inf

}

parms = c(alpha,beta,mu,sigma)

minLL_PN <- function(parms){

alpha = parms[1]
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beta = parms[2]

mu = parms[3]

sigma = parms[4]

if (alpha>0 & beta>0 & sigma>0){

LLvec = f_PN(logrets,alpha,beta,mu,sigma)

LLvec = log(LLvec)

LL = sum(LLvec)

} else {

LL = -Inf

}

minLL = -LL

return(minLL)

}

parms = c(alpha,beta,mu,sigma)

mLL = minLL_PN(parms)

###########################################################

# Starting values

n_startvals = 1000

alpha_s <- runif(n_startvals,0.01,1)

beta_s <- runif(n_startvals,0.01,1)

mu_s <- runif(n_startvals,-0.1,0.1)

sigma_s <- runif(n_startvals,0.01,1)

startvals = rep(0,4)

startevals = 1:n_startvals*0

besteval = Inf

pb = winProgressBar(title="Calculting starting values", label="0% done")

for (k in 1:n_startvals){

sparms <- c(alpha_s[k],beta_s[k],mu_s[k],sigma_s[k])

startevals[k] <- minLL_PN(sparms)

if (is.finite(startevals[k]) & startevals[k]<besteval){

startvals = sparms
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besteval = startevals[k]

}

info <- sprintf("%d%% done", floor((k/n_startvals*100)))

setWinProgressBar(pb, k/n_startvals, label=info)

}

close(pb)

besteval

startvals

minLL_PN(startvals)

#####################################################

#Optimisation

optm <- optim(startvals,minLL_PN)

alphaHat = optm$par[1]

betaHat = optm$par[2]

muHat = optm$par[3]

sigmaHat = optm$par[4]

x_min = min(logrets)

x_max = max(logrets)

x = seq(x_min,x_max,(x_max-x_min)/999)

Density = f_PN(x,alphaHat,betaHat,muHat,sigmaHat)

plot(x,Density,col="red",type="l",ylim=c(0,40),xlim=c(-0.05,0.05))

lines(density(logrets,adjust=1))

####################################################

#ISE:

xx = density(logrets)$x

yy = density(logrets)$y

yy2 = f_PN(xx,alphaHat,betaHat,muHat,sigmaHat)

plot(xx,yy,type="l",col="red")
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lines(xx,yy2)

plot(xx,(yy-yy2)^2,type="l",col="red")

ISE = sum((yy-yy2)^2)*(xx[2]-xx[1])

ISE

#####################################################

#Determining the value of lambda in the Esscher transform

f_PN_parm <- function(x_grid){

alpha = parms[1]

beta = parms[2]

mu = parms[3]

sigma = parms[4]

integrand <- function(y){

T1 = (y)^(3/2)

T2 = -(x-mu*y)^2/(2*sigma^2*y)

T3 = -(log(y)-alpha)^2/(2*beta^2)

f = 1/T1*exp(T2+T3)

return(f)

}

fx = rep(0,length(x_grid))

for (j in 1:length(x_grid)){

x = x_grid[j]

fx[j] = 1/(sigma*2*pi*beta)*integrate(integrand,0,Inf)$value

}

return(fx)

}

obj <- function(lambda){

integrand1 <- function(x){

intg = exp((1+lambda)*x)*f_PN_parm(x)

return(intg)

}
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integrand2 <- function(x){

intg = exp(lambda*x)*f_PN_parm(x)

return(intg)

}

I1 = integrate(integrand1,-50,50)$value

I2 = integrate(integrand2,-50,50)$value

objf = abs(I1/I2-exp(r))

return(objf)

}

r = 0.007/252

parms = c(alphaHat,betaHat,muHat,sigmaHat)

optm = optimize(obj,c(-1,1))

lambda = optm$min

#############################################################

#Calculating density under the measure Q

parm = c(alphaHat,betaHat,muHat,sigmaHat)

Q_density <- function(x){

integrnd <- function(x){

intg = exp(lambda*x)*f_PN_parm(x)

return(intg)

}

T1 = f_PN_parm(x)*exp(lambda*x)

T2 = integrate(integrnd,-10,10)$value

f = T1/T2

return(f)

}

df = (x_max-x_min)

x = seq(x_min-df,x_max+df,(x_max-x_min)*3/999)

y1 = f_PN(x,alphaHat,betaHat,muHat,sigmaHat)

y2 = Q_density(x)
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#############################################################

#Comparison of densities under P and Q (these should be close)

plot(x,y1,col="red")

lines(x,y2)

sum(y2)*(x[2]-x[1])

#############################################################

#Calculate distribution function under Q

Fx = cumsum(y2)*(x[2]-x[1])

plot(x,Fx,type="l")

#############################################################

#Simulating from the distribution under Q

library("pracma")

PN_sim <- function(nsim){

U = sort(runif(nsim))

U[U<min(Fx)] = min(Fx)

U[U>max(Fx)] = max(Fx)

X = interp1(Fx,x,U,method="linear")

return(X)

}

PN_sim(20)

#############################################################

#Comparing simulated and calculated densities

df = (x_max-x_min)

x = seq(x_min-df,x_max+df,(x_max-x_min)*3/999)

y = Q_density(x)

X = PN_sim(1e6)

plot(density(X),lwd=3)
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lines(x,y,col="red")

#############################################################

#Simulating a stock price at time Tj

S0 = 1124.47

Tj = 50

S0*exp(sum(PN_sim(Tj)))

#############################################################

#Estimating option prices using simulation

npaths = 100000

OptPrice = rep(0,length(Option_price))

pb = winProgressBar(title="Calculting option prices", label="0% done")

for (j in 1:length(Option_price)){

Kj = Strike_price[j]

Tj = T[j]

payoff = rep(0,npaths)

for (k in 1:npaths){

payoff[k] = max(S0*exp(sum(PN_sim(Tj)))-Kj,0)

}

OptPrice[j] = exp(-r*Tj)*mean(payoff)

info <- sprintf("%d%% done", floor((j/length(Option_price)*100)))

setWinProgressBar(pb, j/length(Option_price), label=info)

}

close(pb)

plot(Strike_price,OptPrice)

#########################################################################

# Comparing option prices

plot(Strike_price,Option_price,col="black")

points(Strike_price,OptPrice,col="red")

RMSE = sqrt(mean((Option_price - OptPrice)^2))
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RMSE

#########################################################################

The exponential Pareto-normal process model

###########################################################

#Entering the data

rm(list=ls())

set.seed(12345)

data = read.csv("S&P 500 2002 DATA.csv")

prices = data[,5]

prices = prices[length(prices):1]

plot(prices,type = "l")

#########################################################################

# Enter the option price data

Data <- read.csv("C:/Users/Clemence R Kwinje/Desktop/R Files/OptionData/Schoutens/Schoutens.csv")

T <- Data[,1]

Strike_price <- Data[,2]

Option_price <- Data[,3]

n2 = length(Strike_price)

plot(Strike_price,Option_price)

#########################################################################

#Calculating log-returns

n = length(prices)-1

logrets = 1:n*0

for (j in 1:n){

logrets[j] = log(prices[j+1]/prices[j])

}

plot(logrets,type = "l")

plot(hist(logrets))

lines(density(logrets))
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###########################################################

#Pareto-normal density

g = 4.11

h = 3.44

mu = 0

sigma = 0.008

integrand <- function(y){

T1 = sqrt(y)*(g+y)^(h+1)

T2 = -(x-mu*y)^2/(2*sigma^2*y)

f = 1/T1*exp(T2)

return(f)

}

#x = 1

#y = seq(0.01,3,0.01)

#plot(integrand(y),type="l")

x_grid = seq(-0.05,0.05,0.0001)

fx = rep(0,length(x_grid))

for (j in 1:length(x_grid)){

x = x_grid[j]

fx[j] = h*g^h/(sigma*sqrt(2*pi))*integrate(integrand,0,Inf)$value

}

plot(x_grid,fx,type="l")

sum(fx)*(x_grid[2]-x_grid[1])

f_PN <- function(x_grid,g,h,mu,sigma){

integrand <- function(y){

T1 = sqrt(y)*(g+y)^(h+1)

T2 = -(x-mu*y)^2/(2*sigma^2*y)
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f = 1/T1*exp(T2)

return(f)

}

fx = rep(0,length(x_grid))

for (j in 1:length(x_grid)){

x = x_grid[j]

fx[j] = h*g^h/(sigma*sqrt(2*pi))*integrate(integrand,0,Inf)$value

}

return(fx)

}

fx = PN_density(x_grid,g,h,mu,sigma)

plot(x_grid,fx,type="l")

###########################################################

# Pareto-normal likelihood

LLvec = f_PN(logrets,g,h,mu,sigma)

LLvec = log(LLvec)

LL = sum(LLvec)

if (g>0 & h>0 & sigma>0){

LLvec = f_PN(logrets,g,h,mu,sigma)

LLvec = log(LLvec)

LL = sum(LLvec)

} else {

LL = -Inf

}

parms = c(g,h,mu,sigma)

minLL_PN <- function(parms){

g = parms[1]

h = parms[2]

mu = parms[3]
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sigma = parms[4]

if (g>0 & h>0 & sigma>0){

LLvec = f_PN(logrets,g,h,mu,sigma)

LLvec = log(LLvec)

LL = sum(LLvec)

} else {

LL = -Inf

}

minLL = -LL

return(minLL)

}

parms = c(g,h,mu,sigma)

mLL = minLL_PN(parms)

###########################################################

# Starting values

n_startvals = 1000

g_s <- runif(n_startvals,0.01,1)

h_s <- runif(n_startvals,0.01,1)

mu_s <- runif(n_startvals,-0.1,0.1)

sigma_s <- runif(n_startvals,0.01,1)

startvals = rep(0,4)

startevals = 1:n_startvals*0

besteval = Inf

pb = winProgressBar(title="Calculting starting values", label="0% done")

for (k in 1:n_startvals){

sparms <- c(g_s[k],h_s[k],mu_s[k],sigma_s[k])

startevals[k] <- minLL_PN(sparms)

if (is.finite(startevals[k]) & startevals[k]<besteval){

startvals = sparms

besteval = startevals[k]

}
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info <- sprintf("%d%% done", floor((k/n_startvals*100)))

setWinProgressBar(pb, k/n_startvals, label=info)

}

close(pb)

besteval

startvals

minLL_PN(startvals)

#####################################################

#Optimisation

optm <- optim(startvals,minLL_PN)

gHat = optm$par[1]

hHat = optm$par[2]

muHat = optm$par[3]

sigmaHat = optm$par[4]

x_min = min(logrets)

x_max = max(logrets)

x = seq(x_min,x_max,(x_max-x_min)/999)

Density = f_PN(x,gHat,hHat,muHat,sigmaHat)

plot(x,Density,col="red",type="l",ylim=c(0,60),xlim=c(-0.05,0.05))

lines(density(logrets,adjust=1))

####################################################

#ISE:

xx = density(logrets)$x

yy = density(logrets)$y

yy2 = f_PN(xx,gHat,hHat,muHat,sigmaHat)

plot(xx,yy,type="l",col="red")

lines(xx,yy2)
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plot(xx,(yy-yy2)^2,type="l",col="red")

ISE = sum((yy-yy2)^2)*(xx[2]-xx[1])

ISE

#####################################################

#Determining the value of lambda in the Esscher transform

f_PN_parm <- function(x_grid){

g = parms[1]

h = parms[2]

mu = parms[3]

sigma = parms[4]

integrand <- function(y){

T1 = sqrt(y)*(g+y)^(h+1)

T2 = -(x-mu*y)^2/(2*sigma^2*y)

f = 1/T1*exp(T2)

return(f)

}

fx = rep(0,length(x_grid))

for (j in 1:length(x_grid)){

x = x_grid[j]

fx[j] = h*g^h/(sigma*sqrt(2*pi))*integrate(integrand,0,Inf)$value

}

return(fx)

}

obj <- function(lambda){

integrand1 <- function(x){

intg = exp((1+lambda)*x)*f_PN_parm(x)

return(intg)

}

integrand2 <- function(x){

intg = exp(lambda*x)*f_PN_parm(x)

return(intg)
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}

I1 = integrate(integrand1,-50,50)$value

I2 = integrate(integrand2,-50,50)$value

objf = abs(I1/I2-exp(r))

return(objf)

}

r = 0.007/252

parms = c(gHat,hHat,muHat,sigmaHat)

optm = optimize(obj,c(-1,1))

lambda = optm$min

#############################################################

#Calculating density under the measure Q

parm = c(gHat,hHat,muHat,sigmaHat)

Q_density <- function(x){

integrnd <- function(x){

intg = exp(lambda*x)*f_PN_parm(x)

return(intg)

}

T1 = f_PN_parm(x)*exp(lambda*x)

T2 = integrate(integrnd,-10,10)$value

f = T1/T2

return(f)

}

df = (x_max-x_min)

x = seq(x_min-df,x_max+df,(x_max-x_min)*3/999)

y1 = f_PN(x,gHat,hHat,muHat,sigmaHat)

y2 = Q_density(x)

#############################################################

#Comparison of densities under P and Q (these should be close)
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plot(x,y1,col="red")

lines(x,y2)

sum(y2)*(x[2]-x[1])

#############################################################

#Calculate distribution function under Q

Fx = cumsum(y2)*(x[2]-x[1])

plot(x,Fx,type="l")

#############################################################

#Simulating from the distribution under Q

library("pracma")

PN_sim <- function(nsim){

U = sort(runif(nsim))

U[U<min(Fx)] = min(Fx)

U[U>max(Fx)] = max(Fx)

X = interp1(Fx,x,U,method="linear")

return(X)

}

PN_sim(20)

#############################################################

#Comparing simulated and calculated densities

df = (x_max-x_min)

x = seq(x_min-df,x_max+df,(x_max-x_min)*3/999)

y = Q_density(x)

X = PN_sim(1e6)

plot(density(X),lwd=3)

lines(x,y,col="red")

#############################################################
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#Simulating a stock price at time Tj

S0 = 1124.47

Tj = 50

S0*exp(sum(PN_sim(Tj)))

#############################################################

#Estimating option prices using simulation

npaths = 100000

OptPrice = rep(0,length(Option_price))

pb = winProgressBar(title="Calculting option prices", label="0% done")

for (j in 1:length(Option_price)){

Kj = Strike_price[j]

Tj = T[j]

payoff = rep(0,npaths)

for (k in 1:npaths){

payoff[k] = max(S0*exp(sum(PN_sim(Tj)))-Kj,0)

}

OptPrice[j] = exp(-r*Tj)*mean(payoff)

info <- sprintf("%d%% done", floor((j/length(Option_price)*100)))

setWinProgressBar(pb, j/length(Option_price), label=info)

}

close(pb)

plot(Strike_price,OptPrice)

#########################################################################

# Comparing option prices

plot(Strike_price,Option_price,col="black")

points(Strike_price,OptPrice,col="red")

RMSE = sqrt(mean((Option_price - OptPrice)^2))

RMSE

#########################################################################
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The geometric Meixner process model

###########################################################

#Entering the data

rm(list=ls())

set.seed(12345)

data = read.csv("S&P 500 2002 DATA.csv")

prices = data[,5]

prices = prices[length(prices):1]

plot(prices,type = "l")

#########################################################################

# Enter the option price data

Data <- read.csv("C:/Users/Clemence R Kwinje/Desktop/R Files/OptionData/Schoutens/Schoutens.csv")

T <- Data[,1]

K <- Data[,2]

ObsP <- Data[,3]

n2 = length(K)

plot(K,ObsP)

#########################################################################

#Calculating log-returns

n = length(prices)-1

logrets = 1:n*0

for (j in 1:n){

logrets[j] = log(prices[j+1]/prices[j])

}

plot(logrets,type = "l")

plot(hist(logrets))

lines(density(logrets))

###########################################################

#Meixner density

#install.packages("pracma")

library(pracma)
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f_Meixner <- function(x,alpha,beta,mu,delta){

T1 = ((2*cos(beta/2))^(2*delta))

T2 = (2*alpha*pi*gamma(2*delta))

T3 = (beta*(x-mu)/alpha)

T4 = abs(gammaz(delta+1i*((x-mu)/alpha)))

f_Meixner = T1/T2*exp(T3)*T4^2;

return(f_Meixner)

}

alpha = 2

beta = 1

mu = 0

delta = 1

x_min = -3

x_max = 8

x = seq(x_min,x_max,(x_max-x_min)/999)

y = f_Meixner(x,alpha,beta,mu,delta)

plot(x,y,type="l")

###########################################################

# Meixner likelihood

LLvec = f_Meixner(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec)

if (alpha>0 & abs(beta)<pi & delta>0){

LLvec = f_Meixner(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec)

} else {
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LL = -Inf

}

parms = c(alpha,beta,mu,delta)

minLL_Meixner <- function(parms){

alpha = parms[1]

beta = parms[2]

mu = parms[3]

delta = parms[4]

if (alpha>0 & abs(beta)<pi & delta>0){

LLvec = f_Meixner(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec)

} else {

LL = -Inf

}

minLL = -LL

return(minLL)

}

parms = c(alpha,beta,mu,delta)

mLL = minLL_Meixner(parms)

###########################################################

# Starting values

n_startvals = 100000

alpha_s <- runif(n_startvals,0.01,100)

beta_s <- runif(n_startvals,-pi,pi)

mu_s <- runif(n_startvals,-10,10)

delta_s <- runif(n_startvals,0.01,100)

pb = winProgressBar(title="Calculting starting values", label="0% done")

startvals = rep(0,4)
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startevals = rep(0,n_startvals)

besteval = Inf

for (k in 1:n_startvals){

sparms <- c(alpha_s[k],beta_s[k],mu_s[k],delta_s[k])

startevals[k] <- minLL_Meixner(sparms)

if (is.finite(startevals[k]) & startevals[k]<besteval){

startvals = sparms

besteval = startevals[k]

}

info <- sprintf("%d%% done", floor((k/n_startvals*100)))

setWinProgressBar(pb, k/n_startvals, label=info)

}

close(pb)

besteval

startvals

minLL_Meixner(startvals)

optm <- optim(startvals,minLL_Meixner)

alphaHat = optm$par[1]

betaHat = optm$par[2]

muHat = optm$par[3]

deltaHat = optm$par[4]

x_min = min(logrets)

x_max = max(logrets)

x = seq(x_min,x_max,(x_max-x_min)/999)

Density = f_Meixner(x,alphaHat,betaHat,muHat,deltaHat)

plot(x,Density,col="red",type="l",ylim=c(0,35),xlim=c(-0.07,0.07))

lines(density(logrets,adjust=1.5))

#####################################################

#ISE:
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xx = density(logrets)$x

yy = density(logrets)$y

yy2 = f_Meixner(xx,alphaHat,betaHat,muHat,deltaHat)

plot(xx,yy,type="l",col="red")

lines(xx,yy2)

plot(xx,(yy-yy2)^2,type="l",col="red")

ISE = sum((yy-yy2)^2)*(xx[2]-xx[1])

ISE

#####################################################

r=0.007/252

T1a = -cos(alphaHat/2)+exp((muHat-r)/(2*deltaHat))

T1b = sin(alphaHat/2)

T1 = T1a/T1b

theta = -1/alphaHat*(betaHat+2*atan(T1))

betaHat = betaHat + alphaHat*theta

#############################################################

#Option Price Calculation

Meixner_density_parms <- function(x){

alpha = parms[1]

beta = parms[2]

mu = parms[3]*Tj

delta = parms[4]*Tj

T1 = ((2*cos(beta/2))^(2*delta))

T2 = (2*alpha*pi*gamma(2*delta))

T3 = (beta*(x-mu)/alpha)

T4 = abs(gammaz(delta+1i*((x-mu)/alpha)))

f_Meixner = T1/T2*exp(T3)*T4^2;
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return(f_Meixner)

}

Meixner_density_FI <- function(x){

integrand <- function(t){

alpha = parms[1]

beta = parms[2]

mu = parms[3]*Tj

delta = parms[4]*Tj

phi = exp(1i*mu*t)*(cos(beta/2)/cosh((alpha*t-1i*beta)/2))^(2*delta)

intg = Re(phi*exp(-1i*t*x))

return(intg)

}

f_Meixner = 1/(2*pi)*integrate(integrand,-Inf,Inf)$value

return(f_Meixner)

}

parms = c(alphaHat,betaHat,muHat,deltaHat)

Tj = 1;

#Comparisons between the

x_grid = seq(-0.02,0.02,0.0001)

fx1 = rep(0,length(x_grid))

fx2 = rep(0,length(x_grid))

for (j in 1:length(x_grid)){

fx1[j] = Meixner_density_parms(x_grid[j])

fx2[j] = Meixner_density_FI(x_grid[j])

}

plot(x_grid,fx1,col="red")

lines(x_grid,fx2)

S0 = 2476.61
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vMeixner_density_FI = Vectorize(Meixner_density_FI)

#Meixner_density_parms(0)

#Meixner_density_FI(0)

#vMeixner_density_FI(0)

#vMeixner_density_FI(c(0,0.01))

integrand1 <- function(x){

intg1 = (S0*exp(x)-Kj)*vMeixner_density_FI(x)

return(intg1)

}

#Kj = 1

#integrand1(c(0,0.01,0.02))

OptPrice = rep(0,length(ObsP))

pb = winProgressBar(title="Calculting option prices", label="0% done")

for (j in 1:length(ObsP)){

Kj = K[j]

Tj = T[j]

OptPrice[j] = exp(-r*Tj)*integrate(integrand1,log(Kj/S0),3)$value

info = sprintf("%d%% done", floor((j/length(ObsP)*100)))

setWinProgressBar(pb, j/length(ObsP), label=info)

}

close(pb)

#########################################################################

# Comparing option prices

plot(K,ObsP,col="red")

points(K,OptPrice)

RMSE = sqrt(mean((ObsP - OptPrice)^2))

RMSE

The code for the Eurostoxx data set is the same as the code used for the S&P 500 data

set.


