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Abstract

In this study the �nite mixture of multivariate Gaussian distributions is discussed in detail including

the derivation of maximum likelihood estimators, a discussion on identi�ability of mixture components

as well as a discussion on the singularities typically occurring during the estimation process. Examples

demonstrate the application of the �nite mixture of univariate and bivariate Gaussian distributions.

The �nite mixture of multivariate Gaussian regressions is discussed including the derivation of

maximum likelihood estimators. An example is used to demonstrate the application of the mixture of

regressions model. Two methods of calculating the coe�cient of determination for measuring model

performance are introduced.

The application of �nite mixtures of Gaussian distributions and regressions to image segmentation

problems is examined. The traditional �nite mixture models however, have a shortcoming in that

commonality of location of observations (pixels) is not taken into account when clustering the data.

In literature, this shortcoming is addressed by including a Markov random �eld prior for the mixing

probabilities and the present study discusses this theoretical development. The resulting �nite spatial

variant mixture of Gaussian regressions model is de�ned and its application is demonstrated in a simu-

lated example. It was found that the spatial variant mixture of Gaussian regressions delivered accurate

spatial clustering results and simultaneously accurately estimated the component model parameters.

This study contributes an application of the spatial variant mixture of Gaussian regressions model

in the agricultural context: maize yields in the Free State are modelled as a function of precipitation,

type of maize and season; GPS coordinates linked to the observations provide the location informa-

tion. A simple linear regression and traditional mixture of Gaussian regressions model were �tted for

comparative purposes and the latter identi�ed three distinct clusters without accounting for location

information. It was found that the application of the spatial variant mixture of regressions model

resulted in spatially distinct and informative clusters, especially with respect to the type of maize

covariate. However, the estimated component regression models for this data set were quite similar.

The investigated data set was not perfectly suited for the spatial variant mixture of regressions model

application and possible solutions were proposed to improve the model results in future studies. A key

learning from the present study is that the e�ectiveness of the spatial variant mixture of regressions

model is dependent on the clear and distinguishable spatial dependencies in the underlying data set

when it is applied to map-type data.
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Chapter 1

Introduction

The �elds of econometrics, chemometrics, biology and engineering have presented problems involving

heterogeneous covariate dependent populations and have been studied in literature at the classi�cation

level (identifying the homogeneous sub populations) and the inference level (estimating the correspond-

ing models) [33]. While many other clustering methods like k-means and hierarchical clustering provide

assignments of observations to respective groups, only the mixture models calculate the classi�cation

probabilities and therefore provide very useful additional information [34].

Pearson, in 1894, was �rst to de�ne the mixture of Gaussian distributions and he asserted that

the analytical implications for only a two-component mixture of Gaussian distributions, rendered the

application of the general theory to a real numerical example, highly unlikely [41]. More than a century

later, a myriad of applications (some of which are mentioned and discussed throughout this document)

can be found, many times more complex and challenging than the early de�nition given by Pearson.

In this study the �nite mixture of multivariate Gaussian distributions is discussed and maximum

likelihood estimators are derived to be used in the EM algorithm. Common problems associated with

the �nite mixture of Gaussian distributions: identi�ability of components of a mixture distribution [50]

as well as the singularity problem encountered during estimation [35], are discussed and accompanied

by relevant literature summaries and examples.

The �nite mixture of multivariate Gaussian regressions model is examined and maximum likeli-

hood estimators are derived. The application of the two-component mixture of regressions model is

demonstrated with the help of an example and two methods by which the coe�cient of determination(
R2
)
can be calculated for a �nite mixture of Gaussian regressions model are proposed.

Finite mixture models have been successfully applied in the image segmentation1 context including

problems in the �eld of bioinformatics [4], the image retrieval context [21], MRI image segmentation

[40] and aerial and satellite image segmentation [42]. Classical �nite mixture models are not only

rigorous measures for clustering performance but also assign each observation to the component that

most likely generated it, based on a mixing probability. However, classical �nite mixture models have

1Image segmentation is the process that groups image pixels together based on attributes such as their intensity and
spatial location [5]

11



CHAPTER 1. INTRODUCTION 12

shortcomings in that shared location information is not taken into account when grouping data [40].

That is, in an image segmentation context, apart from pixel intensity values the pixel (observation)

location should also inform which cluster each pixel belongs to. In order to deal with the location

information in image segmentation problems, an approach incorporating a Markov random �eld was

introduced [10] with applications including series of satellite images [17], segmentation of brain MR

images and mammographic images [57, 49].

Consequently, the multivariate mixture of Gaussian regressions theory is discussed in the image

segmentation context application. Some background on the Markov random �eld theory is given and

the resulting spatial variant mixture of Gaussian regressions model is de�ned and applied to a simulated

example. The ability of the spatial variant mixture of regressions model to deliver spatially explicit

clusters and simultaneously accurately estimate corresponding regression parameters is demonstrated.

The present study contributes the application of the spatial variant mixture of Gaussian regressions

model to the agricultural context. Maize yield data in the Free State is modelled as a function of,

precipitation, type of maize and season (time). The traditional mixture of regressions model is also

�tted for comparative purposes.



Chapter 2

Finite mixture of multivariate

Gaussian distributions

2.1 The �nite mixture of multivariate Gaussian distributions

While many other clustering methods like k-means and hierarchical clustering provide assignments

of observations to respective groups, only the mixture models calculate the classi�cation probabilities

[34] and therefore provide very useful additional information (i.e. the probability of each observation

to belong to the di�erent clusters).

The �nite multivariate mixture of distributions presupposes a multivariate random variable Y (a

(p× 1) dimensional vector), for which the moments characterising its distribution need to be estimated,

given an observed sample: {Y1,Y2, ...,YN}. The �nite mixture of distributions poses that K inde-

pendent data generating distributions of the same family (e.g. Gaussian), were involved in generating

the observed sample of Y. The �nite mixture of distributions methodology provides a model structure

through which the clustering of Y into the K data generating distributions, and the estimation of the

moments characterising those distributions is achieved simultaneously. The following discussion will

be limited to the �nite mixture of Gaussian distributions.

A �nite mixture of multivariate Gaussian distributions model assumes that a set of K independent

Gaussian distributions characterised by the �rst and second moments: (µ1,Σ1) , (µ2,Σ2) , . . . , (µK ,ΣK)

describe heterogeneous subgroups in the variable or feature of interest, Y [20]. Furthermore, for each

observation of Y a hidden random indicator variable S, taking on an integer between 1 and K, chooses

one of the K distributions to generate Y. The indicator variable S follows an unknown discrete prob-

ability distribution Π = (π1, π2, ..., πK) where
∑K
j=1 πj = 1 for all i, and is assumed to be mutually

13



CHAPTER 2. FINITE MIXTURE OF MULTIVARIATE GAUSSIAN DISTRIBUTIONS 14

independent over observations i = 1, 2, . . . , N1. In the simplest case, we have no prior information

about Π and the underlying K distributions are given below, with each Y observation being generated

by one of the K multivariate Gaussian distributions with probability πj , j = 1, 2, . . . ,K:

Y1 ∼ N (µ1,Σ1) , with probability π1

Y2 ∼ N (µ2,Σ2) , with probability π2

...

YK ∼ N (µK,ΣK) , with probability πK

where πK = 1 −
∑K−1
j=1 πj . The variable Y can be written in, what is called the explicit generative

representation [26].

Y = ∆1Y1 + ∆2Y2 + · · ·+ ∆KYK (2.1.1)

where

∆j =

1 with probability πj

0 otherwise

K∑
j=1

∆j = 1 for all i.

Note that the ∆′js ∈ {0, 1} for j = 1, 2, . . . ,K contain the same information as is contained in S

de�ned above and the two de�nitions can be used interchangeably so that ∆j = I (S = j).

The generative representation is explicit in the sense that during a mixture model simulation the

∆′js are generated and dependent on the outcomes, deliver Y1 or Y2 or · · · YK. The set of param-

eters Θ = {µ1,µ2, . . . ,µK, Σ1,Σ2, . . . ,ΣK,π1, π2, . . . , πK} is unknown. We de�ne g∆j (∆j = 1) =

P (∆j = 1) = πj and it is known that if ∆j = 1 then Y = Yj ∼ N
(
µj,Σj

)
. The probability density

function of Y can be given by:

1Observations in a sample are said to be independent if they are not connected in any way. In addition to being
independent, observations in a sample are often assumed to be identically distributed i.e. they originate from the
same probability distribution. In statistics one often assumes a sample to be independent and identically distributed,
abbreviated as i.i.d.
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p (Y|Θ) = gY (y|Θ)

=

K∑
j=1

gYj
(y|θj)

=

K∑
j=1

gYj|∆j
(y|θj,∆j = 1) g∆j

(∆j = 1) (conditional probability)

=

K∑
j=1

πj .φθj (y) (2.1.2)

where φθj (y) = gYj|∆j
(y|θj,∆j = 1) =

(
1

(2π)
p
2 |Σj|

1
2

)
exp

(
− 1

2

(
y − µj

)′
Σ−1

j

(
y − µj

))
is the multi-

variate Gaussian density function and θj =
(
µj,Σj

)
.

2.2 Estimation of Θ using the EM algorithm

Various estimation methods have been developed and improved over time. In his application of

a two-component mixture of Gaussian distributions, Pearson used method of moments (MM) esti-

mators to estimate the model parameters [41]. For the two-component Gaussian mixture estimation,

�ve parameters: Θ =
{
µ1, µ2, σ

2
1 , σ

2
2 , π
}
, need to be estimated and therefore the �rst �ve moments

were required to �nd the solutions. This led to Pearson de�ning the well-known nonic equation that

needed to be solved to �nd the parameter estimates. In 1967, Cohen developed an expedient way

of calculating the MM estimates as derived by Pearson by circumventing the direct solving of the

nonic equation [13]. Day then compared the method of moments, minimum χ2, Bayes and maxi-

mum likelihood estimators for the two component mixture of distributions model and found that the

maximum likelihood estimators were superior to the alternative estimators due to either the sampling

properties of the estimates or the complexity of the computation [15]. In 1978, Quandt and Ramsey

introduced the moment generating function (MGF) estimator as an alternative to the sum of squares

and maximum likelihood estimators which is suitable for small sample sizes [45]. However, Quandt and

Ramsey compared the performance of their MGF estimator only to the MM estimator (as developed

by Cohen). In his comment on Quandt and Ramsey's work, Hosmer compared the MGF estimator

with the maximum likelihood (ML) estimator and concluded that the two methods could be used in

conjunction: when the MGF estimator identi�es several possible estimates, the ML estimator could

be used to decide on the best estimate [32].

Finally, Dempster, Laird and Rubin proved that the iterative maximum likelihood estimates are of

EM (Expectation-Maximisation) type which implied that when convergence is achieved, it is to a local

maximum [26, 16]. The EM algorithm is widely used in literature as an expedient way of �nding the

maximum likelihood estimates of a K-component mixture of distributions model. The detailed EM

algorithm is described in the following section.
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2.2.1 Deriving the log-likelihood function and the expectation step

Since the model is de�ned using a hidden random indicator variable S, the likelihood function

excluding the hidden random indicator variable is known as the incomplete likelihood function, given

below.

L (Θ; Y) =

N∏
i=1

(p (Y|Θ))

=

N∏
i=1


K∑
j=1

πjφθj (y)


=

N∏
i=1

 K∑
j=1

πj

(
1

(2π)
p
2 |Σj|

1
2

)
exp

(
−1

2

(
y − µj

) ′Σ−1
j

(
y − µj

)) . (2.2.1)

Direct maximisation of this likelihood function has its challenges, referring to the summed terms

inside the logarithm if the likelihood function is rewritten as the log-likelihood:

lnL (Θ; Y) =

N∑
i=1

ln

 K∑
j=1

πjφθj (y)


and therefore an application of the EM algorithm is discussed as a pragmatic way of �nding the

maximum likelihood estimates.

Assume, for the moment, that the random indicator variable S is observable. We therefore have

both data sets Y and S available. Then the complete likelihood is given by the joint distribution over

all observations in a sample of size N :
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L (Θ; Y, S) =

N∏
i=1

{p (Y, S|Θ)}

=

N∏
i=1

{p (Y|S,Θ) .p (S|Θ)} (Bayes′ Rule)

=

N∏
i=1


 K∑
j=1

∆ijφθj (y)

 .
 K∑
j=1

∆ijπj


=

N∏
i=1


 K∑
j=1

∆ij

(
1

(2π)
p/2 |Σj|1/2

)
exp

(
−1

2

(
y − µj

) ′Σ−1
j

(
y − µj

)) .
 K∑
j=1

∆ijπj


=

 K∑
j=1

(
1

(2π)
Np/2 |Σj|N/2

)
exp

(
N∑
i=1

−1

2
∆ij .

(
y − µj

) ′Σ−1
j

(
y − µj

))
.

N∏
i=1

 K∑
j=1

(∆ijπj)


=

 K∑
j=1

(
1

(2π)
Np/2 |Σj|N/2

)
exp

(
−1

2
tr
(
∆ijΣj

−1
(
yj − µj1

′) (yj − µj1
′) ′))

.

N∏
i=1

 K∑
j=1

(∆jπj)

 . (2.2.2)

Equation (2.2.2) follows from Lemma 2a and 2b in the Appendix, where yj = (y1 y2 ... yN)
′
. Now,

de�ne the weighted average of y: ȳ = 1∑N
i=1 ∆ij

∑N
i=1 ∆ij .yi and A =

∑N
i=1 ∆ij (yi − ȳ) (yi − ȳ) ′ =

(y − ȳ1′) Dj (y − ȳ1′) ′ where Dj is a (N ×N) diagonal matrix with {∆1j ,∆2j , ...,∆Nj} on the main

diagonal. It is shown in Lemma 2c that the multivariate Gaussian density function can be rewritten

in terms of ȳ and A:
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L (Θ; Y, S) =

 K∑
j=1

(
1

(2π)
Np/2 |Σj|N/2

)
exp

(
−1

2
trΣ−1

j A− N

2

(
ȳ − µj

) ′Σ−1
j

(
ȳ − µj

))
.

N∏
i=1

 K∑
j=1

(∆ijπj)


lnL (Θ; Y, S) = ln

 K∑
j=1

(
1

(2π)
Np/2 |Σj|N/2

)
exp

(
−1

2
trΣ−1

j A− N

2

(
ȳ − µj

) ′Σ−1
j

(
ȳ − µj

))
+

N∑
i=1

ln

 K∑
j=1

(∆ijπj)


lnL (Θ; Y, S) =

K∑
j=1

[(
−Np

2
. ln (2π)− N

2
. ln |Σj| −

1

2
trΣ−1

j A− N

2

(
ȳ − µj

) ′Σ−1
j

(
ȳ − µj

))]

+

N∑
i=1

K∑
j=1

∆ij . ln (πj) . (2.2.3)

Now, in Equation (2.2.3) it seems like the log of the sum is equated to the sum of the logs. However,

it is presumed to be known which distribution Y originated from i.e. ∆il = 1 while ∆ij = 0 for all

j 6= l, j ∈ {1, 2, . . . ,K} (i.e. only the lth element in the sum
∑K
j=1 (·) is non-zero). In summary, the

complete likelihood is given by:

lnL (Θ; Y, S) =

K∑
j=1

[
lnφθj

(y)
]

+

N∑
i=1

K∑
j=1

∆ij . ln (πj) (2.2.4)

where φθj (y) is now the distribution function of the weighted observations: ∆ijyi. Since the ∆ij 's are

usually unknown, their expected value is used:

E (∆ij |Y,Θ) = 0.P (∆ij = 0|Y,Θ) + 1.P (∆ij = 1|Y,Θ)

= P (∆ij = 1|Y,Θ)

= γij . (2.2.5)

This is known as the responsibility of model j for observation i [26]; or more intuitively stated, the

weight observation i contributes to the estimation of the parameters associated with model j. The

Q-function results from taking the expected value of the complete log-likelihood (Equation (2.2.4))

with respect to the hidden indicator random variable ∆ij :
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Q = E∆ij
[lnL (Θ; Y, S)]

= E∆ij


K∑
j=1

[
lnφθj (yi)

]
+

N∑
i=1

K∑
j=1

∆ij . ln (πj)


=

K∑
j=1

[
lnφθj (yi)

]
+

N∑
i=1

K∑
j=1

[γij . ln (πj)] (2.2.6)

The maximum likelihood estimates for Θ can now be obtained by maximising the Q-function.

The expectation and maximisation steps of the EM algorithm will be shown explicitly for the lth

component (j = l) in the mixture of multivariate Gaussian distributions, but follow similarly for all

j = 1, 2, . . . ,K.

First, an expression for E (∆il|Y,Θ) needs to be obtained in the expectation step of the EM

algorithm, which performs a so-called soft assignment of the observations to each component of the

mixture (calculating the responsibilities).

γ̂il = P (∆il = 1|Y,Θ)

=
P (∆il = 1) .P (Y|∆il = 1,Θ)∑K
j=1 P (∆ij = 1) .P (Y|∆ij = 1,Θ)

(Law of total probability)

=
πl.φθl

(y)∑K
j=1 πjφθj

(y)
(2.2.7)

The expected value of the indicator variable ∆ij (for each model j = 1, 2, . . . ,K) is equal to the

probability of observation yi being generated from distribution j divided by the sum of the probability

of yi being generated from any of the K distributions.

2.2.2 The maximisation step

Now, to obtain the maximum likelihood estimator µ̂l, take the partial derivative of Q with respect

to µl:

δQ

δµl

=
δ

δµl


K∑
j=1

[
lnφθj

(yi)
]

+

N∑
i=1

K∑
j=1

[γij . ln (πj)]


=

δ

δµl


K∑
j=1

[
lnφθj

(yi)
]

+ 0


=

δ

δµl

{
−Np

2
. ln (2π)− N

2
. ln |Σl| −

1

2
trΣ−1

l A− N

2
(ȳ − µl)

′Σ−1
l (ȳ − µl) + 0

}
Since it is known that Σl is a positive de�nite matrix, the log-likelihood is maximised for all values

of Σl where ȳ = µl (Lemma 2d). Therefore, according to the de�nition of ȳ, the maximum likelihood

estimator for µl is given by:
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µ̂l =

∑N
i=1 γ̂ilyi∑N
i=1 γ̂il

(2.2.8)

To obtain the maximum likelihood estimate of Σ̂l, take the partial derivative of Q with respect to

Σl:

δQ

δΣl
=

δ

δΣl


K∑
j=1

[
lnφθj

(yi)
]

+

N∑
i=1

K∑
j=1

[γij . ln (πj)]


=

δ

δΣl


K∑
j=1

[
lnφθj

(yi)
]

+ 0


=

δ

δΣl

{[
−Np

2
. ln (2π)− N

2
. ln |Σl| −

1

2
trΣ−1

l A− N

2
(ȳ − µl)

′Σ−1
l (ȳ − µl) + 0

]}
Now, the result proven in Lemma 2d can be applied, using Lemma 1 to �nd the maximum likelihood

estimator for Σl:

Σ̂l =
A∑N
i=1 γ̂il

=
(y − ȳ) Gj (y − ȳ) ′∑N

i=1 γ̂il

where Gj is a (N ×N) diagonal matrix with {γ̂1j , γ̂2j , ..., γ̂Nj} on the main diagonal (Gj =

E∆ij (Dj)). The estimates can be seen as a weighted average (with respect to the responsibilities)

of the usual maximum likelihood estimators for the Gaussian distribution. The probability of yi be-

longing to model j (πj) is estimated by the sum of the responsibilities with respect to model j (the

e�ective number of observations in cluster j [3]) divided by N :

π̂j =

∑N
i=1 γ̂ij
N

(2.2.9)

Using the results derived in the text above, the EM algorithm for a K-component mixture of

multivariate Gaussian distributions is given:
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Algorithm 2.1 EM algorithm for a K-component mixture of multivariate Gaussian distributions

1. Find relevant starting values for the parameters in Θ =
{µ1,µ2, . . . ,µK,Σ1,Σ2, . . . ,ΣK, π1, π2, . . . , πK}

2. Expectation step: calculate the responsibilities

γ̂il =
πl.φθl

(yi)∑K
j=1 πjφθj (yi)

3. Maximisation step: calculate the weighted average maximum likelihood estimates and mixing
probabilities for l = 1, 2, . . . ,K.

µ̂l =

∑N
i=1 γ̂ilyi∑N
i=1 γ̂il

Σ̂l =
(y − ȳ) Gj (y − ȳ) ′∑N

i=1 γ̂il

π̂l =

∑N
i=1 γ̂il
N

4. Repeat step 2. and 3. until convergence is achieved.

Note that convergence is achieved when the change in estimated parameters from one iteration of

the algorithm to the next is negligible. The examples in Section 2.4 and 2.6 include discussions on

�nding the starting values for Algorithm 2.1.

In the following sections the literature on the identi�ability of the mixing distributions (compo-

nents) and the well-known singularity problem arising during the estimation of mixing distributions

(components) will be discussed. Examples will accompany these discussions to demonstrate princi-

ples and to illustrate how the EM algorithm is applied to estimate the �nite mixture of Gaussian

distributions model for the univariate and multivariate case.

2.3 Identi�ability of mixture distribution components

Identi�ability of �nite mixture models is essential for their consistent estimation [20] in that it

allows for the recovery of the mixing distributions, also referred to as components, from the mixture

[37, 28]. Therefore as Holzmann et al pointed out, the assumption of identi�ability �lies at the heart

of most statistical theory and practice� [28, 52].

Frühwirth-Schnatter distinguishes between three types of nonidenti�ability namely,

1. Nonidenti�ability due to invariance to relabeling the components of the mixture distribution,

2. Nonidenti�ability due to potential over�tting and

3. Nonidenti�ability as a generic property of a certain class of mixture distributions [20].
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The �rst type of nonidenti�ability is also referred to as the label-switching problem [26]: all the param-

eters are related and only di�er in terms of the sequence of the components [20]. This nonidenti�ability

plays a role in parameter estimation and can be easily addressed [20] by ensuring that the order of the

components remains consistent throughout the estimation process.

Nonidenti�ability due to potential over�tting was noted by Crawford, who showed that any mixture

of K − 1 components de�nes a nonidenti�ability subset in the parameter space ΘK (mixtures with

K components) where one component is empty or two components are equal [20, 14]. It is therefore

important that the number of components of a mixture be estimated if this is not known a priori, in

order to address this nonidenti�ability.

The third type of nonidenti�ability is referred to in the study of identi�ability of �nite mixtures

[28] and was pioneered by Teicher in 1961 [20]. He proved that the class of mixtures of a one-parameter

additively-closed family of distributions is identi�able [50]. Teicher's de�nition of identi�ability of �nite

mixture distributions is widely used and built on in literature:

F = {F (x, θ)} is a parametric family of n-dimensional CDF's having parameter space Rm1 , a subset

of Euclidean m space Rm. Let G be any m-dimensional CDF de�ned on the parameter space Rm1

such that G assigns probability 1 to �nitely many mass points {θ1, · · · , θN} in Rm1 , p (θi) being the

mass at θi. Then under the mapping Q de�ned below, G is transformed into the n-dimensional CDF

Q (G) =

N∑
i=1

p (θi)F (x | θi)

= H (x)

G is called a mixing distribution and H (x) is a �nite mixture on F . Let G be the set of all mixing

distributions G as described above. Then the image H =Q (G), the set of all �nite mixtures on F ,

is the convex hull of F a. We say that H is identi�able if Q is a one-to-one function, i.e., if

(G1 6= G2) implies (Q (G1) 6= Q (G2))

aThe convex hull or envelope of a set of points X in a Euclidean space is the smallest convex set that contains X.

In summary, F is identi�able if the set H of �nite mixtures generated by F is identi�able [54].

Teicher thereby established theorems and propositions by which one may establish the identi�ability

of mixtures for more families of distributions (beyond the normal and Poisson distributions) [50].

Furthermore, Teicher proved that the class of all �nite mixtures of normal (Gaussian) and gamma

distributions are identi�able [51]. He also proved that �nite mixtures of the Poisson distributions are

identi�able and that �nite mixtures of the uniform and binomial distributions are not.

In 1968 Yakowitz and Spragins expanded on Teicher's study of identi�ability of �nite mixtures by

modifying his results to include multivariate CDF's and they proved that a family of CDF's induce

identi�able �nite mixtures if and only if the said family is linearly independent in its span over the

�eld of real numbers [55]. They proved that �nite mixtures of the following families are identi�able:

n-dimensional normal (Gaussian) family, n-dimensional exponential family and the union of the two,
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the one-dimensional Cauchy and one-dimensional negative binomial families. The identi�ability of

�nite mixtures on general measurable spaces was studied by Chandra [11]. Holzmann et al studied

the identi�ability of �nite mixtures of elliptical densities [28]. Yakowitz further related the statistical

subject of identi�ability of �nite mixtures to the �eld of unsupervised learning in the engineering

context and pointed out that consequently unsupervised learning is possible under surprisingly lenient

conditions [54].

This study is limited to the discussion and application of �nite mixture of Gaussian distributions

which have been proven to be identi�able in the univariate [51] and multivariate cases [55]. The estima-

tions of mixing distributions (mixture components), based on observations from mixture distributions

included in this study, can therefore be meaningfully discussed.

2.4 Example - mixture of univariate Gaussian distributions

A univariate Gaussian mixture of distributions model is �tted to simulated data originating from

two univariate Gaussian distributions (white noise is added) to demonstrate that the model identi�es

the component distributions well even if the location of the distributions are the same.

A random sample of size N = 200 was generated to simulate a two component mixture of Gaussian

distribution with equal component-means and di�erent variances so that Y = Yj with probability

π = 0.5 ; the simulated data is shown as overlayed histograms in Figure 2.4.1.

Y1 ∼ N (10, 0.5)

Y2 ∼ N (10, 50)
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Figure 2.4.1: Overlayed histograms of simulated data: component 1 and 2

The model to be estimated is a two-component univariate mixture of Gaussian distributions:

Y = π.Y1 + (1− π) .Y2

The EM algorithm, as it is given for the multivariate Gaussian case in Algorithm 2.1, was used to

�nd the maximum likelihood estimates of the parameters Θ =
{
π1, π2, µ1, µ2, σ

2
1 , σ

2
2

}
. The starting

values for the parameters were selected by choosing two random observations for the means, setting

the overall sample variance as the starting value for both component variances and setting the starting

values for the mixing probabilities to π = 1
K = 1

2 . The parameter estimates are given below.

π̂1 = 0.498

π̂2 = 0.502

µ̂1 = 10.15

µ̂2 = 10.13

σ̂2
1 = 0.47

σ̂2
2 = 45.68

The estimated parameters are close to the known theoretical parameter values. The likelihood

function was calculated in every EM algorithm step and is graphically displayed in Figure 2.4.2. It

is clear that the log-likelihood of the estimated model increased with each algorithm step and the
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parameter values that maximise the log-likelihood function were chosen as the parameter estimates.

Figure 2.4.2: Log-likelihood function value in each EM step

The estimated mixture distribution with the estimated responsibilities of the respective components

are graphically displayed in Figure 2.4.3. The mixture distribution for Y where the responsibility for

component 1: γ1 = E (∆i1) = E (Y = Y1) is higher than for component 2 corresponds with the

component 1 mixing distribution in terms of shape and location (Y1 ∼ N (10, 0.5)). On the other

hand, where the component 2 responsibilities are higher than the component 1 responsibilities the

mixture distribution resembles the component 2 distribution (Y2 ∼ N (10, 50)) in shape and location.
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Figure 2.4.3: Mixture distribution with responsibilities for each component

Not every pair of observations chosen as the starting values for the means yield estimates for two

di�erent components. In a lot of cases, the EM algorithm converges to a single solution and gives an

error as soon as one component's variance captures nearly all the variance in the sample and the other

goes to zero - upon which the likelihood function becomes ill-speci�ed. This problem is known as the

singularity problem related to estimating mixtures of distributions and will be discussed in more detail

in the following section.

2.5 Singularity problem during estimation

2.5.1 EM Algorithm di�culties

As mentioned in the example in Section 2.4, the EM algorithm is not always successful in estimating

the parameters of a mixture of Gaussian distributions. The algorithm breaks down when the variance of

a component σ2
j becomes numerically zero in, say, step m of the algorithm, or in the multivariate case,

when Σj becomes singular or near-singular. This occurs when the responsibilities of the jth component

contain too many zeros. Consequently during step m+ 1 of the EM algorithm, the calculation of the

responsibilities through Equation (2.2.5) is no longer possible.

This problem often occurs when the EM algorithm is used to estimate a �nite mixture of Gaussian

distributions while over�tting the number of components [20]. This over�tting also often results from

the choice of starting values i.e. two component mean and / or variance starting values are chosen

to be su�ciently close to each other that the EM algorithm steps converge to the same underlying
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component, leading to many zero-responsibilities for the �extra� component parameters.

Therefore, the choice of starting values and number of components in the mixture are both impor-

tant when attempting to estimate the components using an EM algorithm. Regarding starting values,

Hastie, Tibshirani and Friedman [26] suggest that any random observations can be used for starting

values for the means; the component variance-covariance matrices can all be set equal to the overall

sample variance-covariance matrix and the initial mixing probabilities to be uniformly assigned i.e., for

a K = 2 component mixture π1 = π2 = 1
K = 1

2 . Regarding the number of components, the probability

density function of the data (to which a mixture model needs to be �tted) needs to be estimated using

numerical techniques (e.g. kernel estimation) and diagnostic or exploratory analysis on this estimated

probability density function can be performed to attempt to identify the number of components in the

mixture.

2.5.2 Unboundedness of the mixture likelihood function

As �rst noted by Kiefer and Wolfowitz in 1956, the likelihood function of a univariate mixture of

Gaussian distributions is unbounded and has many local spurious modes [35]. In 1969, Day noted that

the unboundedness of the likelihood function is also applicable to the multivariate Gaussian mixtures

where each observation y gives rise to a singularity 2 on the boundary of the parameter space [15].

The Kiefer Wolfowitz example is revisited to demonstrate the singularity problem.

The mixture of two Gaussian distributions is considered:

Y = πY1 + (1− π)Y2

where π is �xed and it is assumed that Y1 ∼ N (µ, 1) and Y2 ∼ N
(
µ, σ2

2

)
, therefore µ and σ2

2 are

unknown.

p
(
y|µ, σ2

2

)
=

N∏
i=1

{πφθ1 (y) + (1− π)φθ2 (y)}

=

N∏
i=2

{
π

(
1

2π (1)

) 1
2

exp

(
− 1

2 (1)
(yi − µ)

2

)
+ (1− π)

(
1

2πσ2
2

) 1
2

exp

(
− 1

2σ2
2

(yi − µ)
2

)}
.

Now, it is clear that whenever µ = yi:

p
(
y|µ = yi, σ

2
2

)
=

N∏
i=2

{
π

(
1

2π (1)

) 1
2

(1) + (1− π)

(
1

2πσ2
2

) 1
2

(1)

}
.

Then as σ2
2 tends to zero, the mixture likelihood function is dominated by a term proportional to

1
σ2
2
, leading to:

2A region where values tend to in�nity.
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lim
σ2
2→0

p
(
y|µ = yi, σ

2
2

)
= ∞.

In Figure 2.5.1 the log likelihood of the N = 20 observation Kiefer-Wolfowitz example (where µ = 0

and σ2
2 = 4 and π = 0.2) was calculated for a range of possible values for µ and σ2

2 . A local maximum is

observed for the theoretical parameter values however, it is seen that for µ = yi; i = 1, 2, . . . N various

local maxima's occur.

Figure 2.5.1: Log-likelihood of Kiefer-Wolfowitz example

Since these spurious local maxima exist, there does not exist a global maximiser of the likelihood

function on the unconstrained parameter space [43]. Consequently, other estimation approaches were

investigated or various levels of constraints were applied to the component variance ratios in order to

enable maximum likelihood estimation.

In Figure 2.5.2 µ is kept constant at µ = 0 and µ = y10 = −0.22627 and the resulting log-likelihood

is plotted against σ2. It is seen that as σ2 goes to zero, the likelihood increases, more so with µ = y10.

Figure 2.5.2: Log-likelihood against σ2
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2.5.3 Dealing with sources of unboundedness

Frühwirth-Schnatter points out that it is the modeller's complete ignorance about ratio between vari-

ances of the various components, that leads to the unboundedness of the mixture likelihood function

[20]. Throughout literature, various ways of imposing a condition on the variance structure of the

mixture were investigated. Hathaway concluded that constraints on the relative size of the standard

deviations in the univariate Gaussian mixture model result in a bounded likelihood function [27]. In

1978 Quandt and Ramsey suggested that the constraint σ1 = cσ2 with c known is su�cient to make

the likelihood function bounded [45]. Phillips then proposed a less restrictive constraint:

min
i,j

(
σi
σj

)
≥ c > 0. (2.5.1)

Hathaway [27] showed that constraints like the one above, ensure a global maximiser of the likeli-

hood function for a univariate Gaussian mixture. Phillips generalised this result to apply to mixture

of regressions [43] and showed that searching for the maximiser of the likelihood surface on the con-

strained parameter space (called the constrained MLE) is a well-posed strategy and generally produces

reasonable estimates.

Hartley asserts that Quandt and Ramsey might have over exaggerated the importance of the

computational obstacles to maximum likelihood estimation [25]. In his simulation studies Hosmer

found that the iterative maximum likelihood estimates (e.g. EM algorithm) will not converge to the

parameter values associated with the singularities if the sample size is big enough (n < 300) and if the

components are separated well enough (satisfying |µ2−µ1|
min(σ1,σ2) ≥ 3) [31]. Caudill and Acharya showed

through Monte-carlo simulations that the incidence of singularities for the two component normal

regression mixture problem may be signi�cantly lower than for the mixture of univariate normal

distributions [9]. Due to the multiple spurious local maximas of the likelihood function, Hartley

suggests that the statistician should experiment with di�erent starting values and where multiple

solutions arise, select the solution that maximises the likelihood function [25].

2.6 Example - mixture of multivariate Gaussian distributions

This example demonstrates the application of a multivariate mixture of Gaussian distributions and

shows that the components with equal means can be identi�ed.

A random sample of N = 200 observations was drawn from either of two bivariate Gaussian

distributions, based on the probability π = 0.6 , so that Y = (1− π) Y1 + πY2 .

Y1 ∼ N

([
1

1

]
,

[
1 0

0 1

])

Y2 ∼ N

([
1

1

]
,

[
10 0

0 10

])

Figure 2.6.1 below displays the sample observations from the two Gaussian distributions. Note

that the shape of the two distributions look similar but when one takes the axes' scales into account,
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they clearly di�er according to the parameters selected above.

Figure 2.6.1: 3D-Scatterplot of simulated data (Y1 left; Y2 right)

A two-component mixture of bivariate Gaussian distributions is estimated:

Y = π.Y1 + (1− π) .Y2

where Y1 ∼ N

([
µ11

µ12

]
,

[
σ

(1)
11 σ

(1)
12

σ
(1)
21 σ

(1)
22

])
and Y2 ∼ N

([
µ21

µ22

]
,

[
σ

(2)
11 σ

(2)
12

σ
(2)
21 σ

(2)
22

])
.

The EM algorithm in Algorithm 2.1, was used to �nd the maximum likelihood estimates of the

parameters Θ =
{
π, µ11, µ12, µ21, µ22, σ

(1)
11 , σ

(1)
12 , σ

(1)
21 , σ

(1)
22 , σ

(2)
11 , σ

(2)
12 , σ

(2)
21 , σ

(2)
22

}
. The parameter esti-

mates after convergence of the algorithm are given in Table 2.6.1. The estimated parameters are

relatively close to the theoretical parameter values.

Table 2.6.1: Parameter estimates of two component bivariate mixture of Gaussian distributions

Component 1 (Y1) Component 2 (Y2)

π̂ 0.41 0.59[
µ̂j1
µ̂j2

] [
1.14
0.79

] [
0.44
1.03

]
[
σ̂

(j)
11 σ̂

(j)
12

σ̂
(j)
21 σ̂

(j)
22

] [
0.95 0.03
0.03 1.19

] [
10.44 0.34
0.34 9.09

]

The estimated mixture of bivariate Gaussian distributions is graphically displayed in Figure 2.6.2

(viewed from two di�erent sides) and the distribution very clearly does not resemble a simple Gaussian

distribution but a combination of the two component Gaussian distributions - note the bulge at the

base.
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Figure 2.6.2: Mixture distribution of two-component bivariate mixture

The original observations are �hard-clustered� as being generated from distribution Y1 or Y2 re-

spectively i.e. if the estimated responsibility for observation i is higher for component 1, the observation

is clustered in cluster Y1 and otherwise in cluster Y2 . The classi�cation result is graphically displayed

in Figure 2.6.3. It is clear that the observations in the center are attributed to Y1 and the observa-

tions in the outer regions are attributed to Y2 . This is consistent with how the original sample was

generated and therefore one can conclude that clustering was achieved successfully.
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Figure 2.6.3: Graphical representation of classi�cation result



Chapter 3

Finite mixture of multivariate

regressions

The multivariate mixture of regressions involves relating a random (p× 1) dimensional random vec-

tor Y, to a set of explanatory variables or covariates (X1,X2, ...,Xq−1) through a regression type

model. The conditional mean of Y is assumed to be a function of (p× q) dimensional matrix

X =
[

1 X1 X2 ... X(q−1)

]
so that

E (Y|X) = Xβ

where β is a (q × 1) vector of regression coe�cients. In some instances it is inadequate to assume

that β is constant over all observations of Y and the �nite mixture of regressions model is a way of

dealing with this heterogeneity.

3.1 The �nite mixture of multivariate Gaussian regressions

Instead of �tting a single regression type model to the available data set, there is some evidence that

the population contains multiple underlying regression type models or relationships often referred to as

regimes. This study will consider linear regression models where the error term is assumed to follow an

Gaussian distribution. A �nite mixture of regressions model assumes that a set of K independent re-

gression models, characterised by (β1,Σ1) , (β2,Σ2) , . . . , (βK,ΣK) describe heterogeneous subgroups

in the model of interest. Moreover, for each pair of observations (Y,X) a hidden random indicator

variable S can take on integers 1 to K and thereby chooses one of the K models to generate Y. The

indicator variable S follows an unknown discrete probability distribution Π = (π1, π2, ..., πK) where∑K
j=1 πj = 1 and is assumed to be mutually independent over each observation i = 1, 2, . . . , N . In the

simplest case, we have no prior information about Π and the resulting K regression models are given

below, with each Y being generated by one of the K models with a certain probability:

33
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Y1 = Xβ1 + ε1, with probability π1

Y2 = Xβ2 + ε2, with probability π2

...

YK = XβK + εK, with probability πK

where πK = 1−
∑K−1
j=1 πj and εj ∼ N(0,Σj). Therefore Yj can be modelled by a Gaussian distribution:

Yj ∼ N (Xβj ,Σj) for j = 1, 2, . . . ,K.

In economics, a mixture of regressions model is also described as a switching regression system

which is equivalent to assuming the presence of a so-called structural change [45]. In the speci�cation

above, the investigator is assumed to be ignorant of what moves the system from one structural form

to another (also described as an unobservable latent variable) as opposed to situations where the

structural change may depend deterministically on some observable variables. In other words, nature

is assumed to generate each Y from X by regime j with probability πj [36, 44].

Another way to denote this notion is to maintain, that for each model j = 1, 2, ...,K an indicator

variable ∆j exists which takes on the value 1 with probability πj and is otherwise zero, essentially

capturing the same information contained in S such that I (S = j) = ∆j . De�ne the ∆′js as adhering

to the constraint:
∑K
j=1 ∆j = 1, implying that for each observation Y only one of the K regression

models can be chosen as the data generating process. This notation allows us to write the data

generating process for each observation of Y in a generative form:

Y = ∆1Y1 + ∆2Y2 + · · ·+ ∆KYK (3.1.1)

with the set of parameters Θ = {β1,β2, . . . ,βK,Σ1,Σ2, . . . ,ΣK, π1, π2, . . . , πK} unknown. It is

known that g∆j
(∆j) = P (∆j = 1) = πj then, similar to Equation (2.1.2), the probability density

function of Y 1 is given by

p (Y|Θ) = gY (y|Θ)

=

K∑
j=1

πjφθj (y) (3.1.2)

where φθj (y) is the p-variate Gaussian density function with µ = Xβj and θj =
(
βj,Σj

)
. It is

important to note here, that the estimation of a �nite mixture of regressions model with Gaussian

error terms is equivalent to estimating parameters of a �nite mixture of Gaussian distributions with

µj = Xβj and therefore the results derived in Section 2.2 follow in a similar fashion [36, 20].

1Upper case Y indicates the random variable, while lower case y denotes the observed value. Upper case X denotes
the matrix of observed values or random variables.
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3.2 Estimation of Θ using the EM algorithm

3.2.1 Deriving the log-likelihood function and the expectation step

The model is de�ned using a hidden random indicator variable S therefore the likelihood function

excluding this hidden random variable is regarded as the incomplete likelihood function given below

(similar to Equation (2.2.1)).

L (Θ; Y) =

N∏
i=1

 K∑
j=1

πj

(
1

(2π)
p
2 |Σj|

1
2

)
exp

(
−1

2

(
y −Xβj

)′
Σ−1

j

(
y −Xβj

)) .

When the likelihood is rewritten into the log-likelihood form, direct maximisation proves to be

challenging due to the sum of the terms inside the logarithm. Therefore the EM algorithm is used to

simplify the maximum likelihood calculations [16].

Assume, for the moment, that the random indicator variable S is observed: the ∆′js in Y =

∆1Y1 + ∆2Y2 + · · · + ∆KYK are known with P (∆ij = 1) = πj . We therefore have both data sets

Y and S available. Then the complete likelihood is derived, just as in the previous chapter, using the

Lemmas in the Appendix, to get the following:

lnL (Θ; Y, S) =

K∑
j=1

[(
−Np

2
. ln (2π)− N

2
. ln |Σj| −

1

2
trΣ−1

j A− N

2

(
ȳ −Xβj

) ′Σ−1
j

(
ȳ −Xβj

))]

+

N∑
i=1

K∑
j=1

∆ij . ln (πj)

where y = (y1 y2 ... yN), ȳ =
∑N

i=1 ∆ijyi∑N
i=1 ∆ij

and A =
∑N
i=1 ∆ij (yi − ȳ) (yi − ȳ) ′ = (y − ȳ1′) Dj (y − ȳ1′) ′

where Dj is a (N ×N) diagonal matrix with {∆1j ,∆2j , . . . ,∆Nj} on the main diagonal.

In reality ∆′ijs are unknown and therefore we use the expected value and the fact that each ∆ij

can take on either 1 or 0 for j = 1, 2, ...,K. This is known as the expectation step of the EM algorithm.

E (∆ij |Y,Θ) = 0.P (∆ij = 0|Y,Θ) + 1.P (∆ij = 1|Y,Θ)

= γij .

As in the mixtures of Gaussian distributions case, the expected value of ∆ij is called the respon-

sibility of model j for observation yi which can be described as the weight observation yi contributes

towards the estimation of the parameters of model j. The Q-function results from taking the expected

value of the complete log-likelihood with respect to the hidden indicator random variable ∆ij :



CHAPTER 3. FINITE MIXTURE OF MULTIVARIATE REGRESSIONS 36

Q = E∆ij
[lnL (Θ; Y, S)]

= E∆ij{
K∑
j=1

[(
−Np

2
. ln (2π)− N

2
. ln |Σj| −

1

2
trΣ−1

j A− N

2

(
ȳ −Xβj

) ′Σ−1
j

(
ȳ −Xβj

))]

+

N∑
i=1

K∑
j=1

γij . ln (πj)}

where ȳ =
∑N

i=1 γijyi∑N
i=1 γij

and A =
∑N
i=1 γij (yi − ȳ) (yi − ȳ) ′ = (y − ȳ1′) Gj (y − ȳ1′) ′ where Gj is a

(N ×N) diagonal matrix with {γ1j , γ2j , . . . , γNj} on the main diagonal. The maximum likelihood

estimates for Θ can now be obtained by maximising the Q-function.

First, an expression for E (∆ij |Y,Θ) for j = 1, 2, ...,K needs to be obtained in order to perform

the necessary calculation for the expectation step of the EM algorithm. The results will be shown for

the lth component with the remaining components following in similar fashion:

γ̂il = P (∆il = 1|Y,Θ)

=
P (∆il = 1) .P (Y|∆il = 1,Θ)∑K
j=1 P (∆ij = 1) .P (Y|∆ij = 1,Θ)

(Law of total probability)

=
πl.φθl (y)∑K
j=1 πjφθj (y)

. (3.2.1)

Intuitively, the expected value of the hidden indicator random variable for the lth component model

(∆il) is equal to the probability of observation y being generated by model l divided by the sum of

the probability of y being generated by any of the j = 1, 2, . . . ,K models.

3.2.2 The maximisation step of the EM algorithm

The equations for the maximisation step for the EM Algorithm are given for the lth component in

the mixture of regressions model, and follow in a similar fashion for all K components. To obtain the

maximum likelihood estimator for β̂l, take the partial derivative of Q with respect to βl:

δQ

δβl

=
δ

δβl


K∑
j=1

[
−Np

2
. ln (2π)− N

2
. ln |Σj| −

1

2
trΣ−1

j A− N

2

(
ȳ −Xβj

) ′Σ−1
j

(
ȳ −Xβj

)]
+ 0


=

δ

δβl

(
−Np

2
. ln (2π)− N

2
. ln |Σl| −

1

2
trΣ−1

l A− N

2
(ȳ −Xβl)

′Σ−1
l (ȳ −Xβl)

)
Since it is known that Σl is a positive de�nite matrix, the log-likelihood is maximised for all values

of Σl where ȳ = Xβl (Lemma 2d). Therefore the maximum likelihood estimator for βl is given below:



CHAPTER 3. FINITE MIXTURE OF MULTIVARIATE REGRESSIONS 37

ȳ = Xβ̂l∑N
i=1 γ̂ijyi∑N
i=1 γ̂ij

= Xβ̂l∑N
i=1 γ̂ijyi

′X∑N
i=1 γ̂ij

= X′Xβ̂l

β̂l =

(∑N
i=1 γ̂ijyi

′X
)

(X′X)
−1∑N

i=1 γ̂il
(3.2.2)

To �nd the maximum likelihood estimator Σ̂l, take the partial derivative of Q with respect to Σl:

δQ

δΣl
=

δ

δΣl


K∑
j=1

[
−Np

2
. ln (2π)− N

2
. ln |Σj| −

1

2
trΣ−1

j A− N

2

(
ȳ −Xβj

) ′Σ−1
j

(
ȳ −Xβj

)
+ 0

]
=

δ

δΣl

(
−Np

2
. ln (2π)− N

2
. ln |Σl| −

1

2
trΣ−1

l A− N

2
(ȳ −Xβl)

′Σ−1
l (ȳ −Xβl)

)
.

Now, we can apply the result proven in Lemma 2d, using Lemma 1 to �nd the maximum likelihood

estimator of Σl:

Σ̂l =
A∑N
i=1 γ̂il

=
(y − ȳ) Gl (y − ȳ) ′∑N

i=1 γ̂il

=
(y −Xβl) Gl (y −Xβl)

′∑N
i=1 γ̂il

.

Similar to Equation (2.2.8); where Gl is a (N ×N) diagonal matrix, containing the estimated

responsibilities γ̂il for i = 1, 2, ..., N on the main diagonal.

The estimates can be seen as a weighted average (by estimated responsibilities) of the usual max-

imum likelihood estimates for a simple linear regression model. The probability of y belonging to

model j (πj) is estimated by the sum of the responsibilities of model j for all the observations divided

by N :

π̂j =

∑N
i=1 γ̂ij
N

. (3.2.3)

The EM algorithm for estimating the components of the mixture of multivariate regressions model

is then given below. The de�nition of convergence remains the same as in Algorithm 2.1 and the

example in Section 3.3 demonstrates how the starting values for this algorithm are typically found.
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Algorithm 3.1 EM algorithm for a K-component mixture of multivariate Gaussian regressions model

1. Find relevant starting values for the parameters in Θ =
{β1,β2, ...,βK,Σ1,Σ2, ...,ΣK, π1, π2, ..., πK}

2. Expectation step: calculate the responsibilities

γ̂il =
πl.φθl (yi)∑K
j=1 πjφθj (yi)

3. Maximisation step: calculate the weighted average maximum likelihood estimates and mixing
probabilities for l = 1, 2, ...,K.

β̂l =

(∑N
i=1 γ̂ijyi

′X
)

(X′X)
−1∑N

i=1 γ̂il

Σ̂l =

(
y −Xβ̂l

)
Gl

(
y −Xβ̂l

)
′∑N

i=1 γ̂il

π̂l =

∑N
i=1 γ̂il
N

4. Repeat step 2. and 3. until convergence is achieved.

3.3 Example - mixture of univariate Gaussian regressions

The application of a �nite mixture of Gaussian regressions model will be demonstrated based on a

simulated example and two methods of calculating the coe�cient of determination for the �nite mixture

of regressions model will be discussed.

A data set with a total of N = 500 observations was generated consisting of Y1 and Y2 as a function

of X; where X is a �xed set of random N (0, 1) observations, and

Y1 = α1 + β1X + ε1

Y2 = α2 + β2X + ε2.

The theoretical parameter values for the generated data are given by Θ = {α1 = 0, β1 = 1, α2 =

3, β2 = 1.2, π = 0.6}. Therefore Y = Y1 with probability π = 0.6 and Y = Y2 with probability

1 − π = 0.4. The generated data is plotted in Figure 3.3.1, coloured by component and includes the

theoretical component regression lines (note that Response represents Y1 and Y2 observations).
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Figure 3.3.1: Simulated mixture of regressions data

Ignoring the underlying mixture of regressions, a simple linear regression is �tted to the data using

the regression procedure (proc reg) in SAS. With an R2 = 0.25, the resulting model explains 25% of

the variation in Y .

E(Y |X) = 1.24 + 1.04X

Both parameters in the estimated model are signi�cant (the null hypothesis of a zero parameter

is rejected at a 1% signi�cance level in both cases) and the overall model �ts reasonably well, even

though its performance is not excellent. The �tted model is illustrated in the Figure 3.3.2.
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Figure 3.3.2: Simple linear regression model �t

The �nite mixture models procedure (proc fmm) in SAS is used to �t a model where the assumption

of a mixture of two regressions is incorporated, essentially estimating the exact model structure from

which the data was generated. The estimated parameters, Θ̂, are given in the table below:

Table 3.3.1: Estimated mixture of regression parameters

Θ Θ̂ Θ Θ̂

α1 0.03 α2 2.99
β1 0.92 β2 1.18
π 0.59

All the parameter estimates are signi�cantly di�erent from zero, apart from α̂1 which is theoreti-

cally, equal to zero and is expected not to be di�erent from zero. The estimates are very close to the

theoretical values. The resulting component regression model estimates are given by

E (Y1|X) = 0.03 + 0.92X

E (Y2|X) = 2.99 + 1.18X.

The component regression models have been accurately estimated (i.e. the estimated parameters are

close to the theoretical parameter values). The clustering result is investigated by hard clustering2 the

observations. The corresponding clustering result is shown in Figure 3.3.3 and resembles the original

theoretical clustering closely, however, the slight overlap in the original clusters is not captured by the

2hard clustering is when the observations are assigned to the cluster for which the highest responsibility was estimated
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hard clustering, although the magnitudes of the estimated responsibilities re�ect this overlap.

Figure 3.3.3: Mixture of regressions clustering result

Ideally, one would like to evaluate the goodness of �t for the two-component mixture of regressions

model, in order to decide whether it �ts better than the simple linear regression model. The coe�cient

of determination for the simple linear regression model is traditionally calculated as:

R2 = 1− SSE

SST
= 1−

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)

2 = 0.25.

This study has explored two methods of calculating the coe�cient of determination for the mixture

of regressions model. The �rst method involves hard clustering of the observations; essentially splitting

up the data set into two groups representing the two clusters. The estimated parameters for the

respective clusters, can then be used to calculate the R2 statistic for each cluster.

R2
Y1

= 1−
∑n1

i=1 (yi − ŷ1i)
2∑n1

i=1 (y1i − ȳ1)
2 = 0.45

R2
Y2

= 1−
∑n2

i=1 (yi − ŷ2i)
2∑n2

i=1 (y2i − ȳ2)
2 = 0.63

45% of the variation in cluster 1 was explained by component 1 of the mixture of regressions model

and 63% of the variation in cluster 2 was explained by component 2. Both components' R2 statistics

are a signi�cant improvement on the simple linear regressions R2 however, K = 2 R2 statistics are not

strictly comparable with a single R2 statistic in order to decide which model �ts best.
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The second method involves calculating a weighted R2 statistic where each observation's residuals

for component 1 and component 2 are weighted with the corresponding responsibilities.

R2
weighted = 1−

∑n
i=1

[
γ̂1i (yi − ŷ1i)

2
+ γ̂2i (yi − ŷ2i)

2
]

∑n
i=1 (yi − ȳweighted)2 = 0.75

where ȳweighted =
∑n

i=1(γ̂1iyi+γ̂2iyi)

n =
∑n

i=1 yi
n = ȳ since

∑K
j=1 γ̂j = 1. This weighted R2 statistic

indicates that 75% of the total variation in Y is explained by the two-component mixture of regressions

model which is signi�cantly higher than the simple linear regression model R2. Therefore, as expected,

the mixture of regression model �ts the data better and would be the chosen model based on the

coe�cient of determination.



Chapter 4

The spatial variant mixture of

regressions model

Traditional mixture models have been widely used as a pixel labeling or clustering technique and some

applications are discussed here. Finite mixture models have been successfully applied in, among other

�elds, bioinformatics [4], the image retrieval context [21], MRI image segmentation [40] and aerial and

satellite image segmentation [42].

Some improvements and developments around the application of �nite mixture models for im-

age segmentation are listed. Gupta and Sortrakul developed a selective-sampling-Gaussian-mixture-

parameter-estimation segmentation algorithm which performed well in accurately segmenting diverse

images, including degraded images [24]. Permuter et al found that their Gaussian mixture models

formulation showed an overall performance improvement relative to other models in terms of the clas-

si�cation of man-made and natural areas in aerial images [42]. In addressing the model selection

problem of choosing the appropriate number of components in a Gaussian mixture model, Lu and Ip

introduce an entropy regularized likelihood (ERL) learning algorithm which outperforms other compet-

itive learning algorithms in the application of unsupervised image segmentation [39]. An unsupervised

algorithm that estimates the parameters and number of components of a �nite mixture model on-

line, was developed and the objective of computational speed was achieved which made it particularly

relevant for image processing [22].

Nikou et al conclude that �nite mixture models are not only a rigorous measure for clustering

performance but also hold the advantage of assigning each pixel to the component that most likely

generated it based on the mixing probability [40]. In the following section the mixture of regressions

model will be formulated as it is applied in the image segmentation context, followed by the model

speci�cation of the spatial variant mixture of regressions model.

43
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4.1 Traditional mixture of regressions model applied in an im-

age context

Consider spatiotemporal data: {Yil}l=1,...,T
i=1,...,N where i denotes the spatial index and l denotes the time

index corresponding to time t = tl. The data consists of T images each with N pixels and therefore

for each pixel we have an �observation� of a T dimensional time series which can be regarded as a

multivariate dependent variable Y, with an observation represented as yi =
[
yi1 yi2 · · · yiT

]
.

The model, or what Blekas et al refer to as �the curve� [6], to be �tted to the data can be formulated

as follows:

Y = Xβ + e

where

X =


1 t1 · · · tp1
1 t2 · · · tp2
...

...
...

...

1 tT · · · tpT


β′ =

(
β0 β1 · · · βp

)
(X is known as the Vandermonde matrix) and e is a T -dimensional vector assumed to follow a Gaussian

distribution and to be independent over time; e ∼ i.i.d. N (0,Σ). The joint probability density of Y

can be modelled by a Gaussian distribution N (Xβ,Σ). In the case where the pixels i = 1, 2, . . . , N

need to be clustered into various �models� (i.e., subgroups of pixels exhibit heterogeneous changes of

pixel intensity over time), multiple regression functions can be formulated as:

Y1 = Xβ1 + e1

Y2 = Xβ2 + e2

...

YK = XβK + eK

where ej ∼ i.i.d. N (0,Σj). These j = 1, 2, . . . ,K regression models capture the heterogeneous sources

of curves or the assumption that the data came from K di�erent data generating processes (of the

same family of distributions). The generative form of Y is formulated using hidden indicator variables

∆j where j = 1, 2, . . . ,K, each taking on either 0 or 1 and
∑K
j=1 ∆j = 1 (therefore only one regression

model is chosen for each pixel).

Y = ∆1Y1 + · · ·∆KYK

Now, similar to Equation (2.1.2) and (3.1.2). the probability density function of Y is given by
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p (Y|Θ) =

K∑
j=1

πjp (Y|θj)

where p (Y|θj) = N (Xβj ,Σj) and θj = (βj ,Σj); πj for j = 1, 2, ...,K are the mixing probabilities

adhering to the following constraints πj ≥ 0 for all j = 1, 2, . . . ,K and
∑K
j=1 πj = 1. According to this

model, pixel i with sequence of pixel intensities yi, will have been generated from the jth regression

model with probability πj .

The maximum likelihood estimation of this model is performed expediently using the EM algo-

rithm and is widely known in mixture model literature. The estimation algorithm performs two steps

iteratively: the expectation step during which the responsibilities (γij = E (∆ij)) of each pixel towards

the K models are estimated (see Equation (2.2.7) and (3.2.1)).

γ̂ij =
πjp (Y|θj)∑K
s=1 πsp (Y|θs)

The second step is themaximisation step whereby the mixture parameter estimators are determined

by maximising the complete likelihood function and similar to the results derived in Section 3.2.2, the

update rules for the parameters are given below.

π̂j =

∑N
i=1 γ̂ij
N

β̂j =

(∑N
i=1 γ̂ijyi

′X
)

(X′X)
−1∑N

i=1 γ̂ij

σ̂2
ju =

∑N
i=1 γ̂ij

(
yiu −

[
Xβ̂j

]
u

)2

∑N
i=1 γ̂ij

where [·]u indicates the uth component of the T -dimensional vector. Σ̂j are assumed to be diagonal

matrices with σ̂2
ju; u = 1, 2, . . . , T on the main diagonal. Σ̂j is assumed to be diagonal to simplify

some derivations and calculations and it is important to note that the covariance structure of the π′js

allows for spatial dependence, not necessarily the covariance structure of the dependent variable.

4.2 Spatial variant mixture of regressions model

Classical �nite mixture models, in the image processing context, have shortcomings in that commonal-

ity of location is not taken into account when grouping the data [40] that is, apart from pixel intensity

values, the relative pixel location should also be used in determining the cluster or segment to which

each pixel belongs. To overcome this shortcoming an approach incorporating a Markov random �eld

was proposed by Chalmond in 1989 [10]. The Markov random �eld incorporates the pixel location

information in terms of the pixel labeling. Some studies are mentioned that investigated and improved
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the Markov random �eld approach, in conjunction with �nite mixture models, towards incorporating

pixel locations in the clustering algorithm.

Caillol et al introduced fuzziness in Gaussian mixtures and modelled spatial information in both

the segmentation and parameter estimation levels [8]. Sanjay-Gopal and Herbert proposed the spatial

variant �nite mixture model for pixel labeling and image segmentation; with their generalised EM

maximum a posteriori1 algorithm they bridged the gap between computationally intensive algorithms

based on random �elds and simpler segmentation algorithms based on mixture models [47]. Cai and

Liu proposed Markov random �eld models for pattern recognition which provide a natural and �exible

framework for modelling interactions between spatially related random variables [7]. A novel spa-

tially constrained generative model also based on the Markov random �eld approach was proposed by

Diplaros et al; they concluded that their EM algorithm for image segmentation is simple to implement

and performs competitively in terms of speed and solution quality, compared to other Markov random

�eld algorithms for image segmentation [18]. Zhang et al proposed a modi�ed Gaussian mixture model

algorithm - incorporating the Markov random �eld - that increased the robustness of the traditional

Gaussian mixture model to noise in terms of image segmentation [56].

There is a vast literature that demonstrates the application of the Gaussian mixture model with

Markov random �elds in image segmentation problems; a few are mentioned here: Dezzani and Al-

Dousari [17] applied a Markov random �eld based approach to investigate the rate of change of oil

residue deposits in Kuwait - this analysis was based on satellite images over a given time period.

Zhang et al applied the Markov random �eld and EM algorithm in the segmentation of brain MR

images [57]. Suliga, Deklerck and Nyssen used the Markov random �eld approach to classify masses on

mammographic images with emphasis on e�cient clustering on image edges [49]. Blekas et al applied

the spatial variant mixture of regresssions model to spatiotemporal data (speci�cally hear MR images)

[6].

In the following section, the spatial variant mixture of regressions model will be de�ned, after

providing some background knowledge for the Markov random �eld theory.

4.2.1 Background theory

Spatial variation in terms of the pixel clustering, when using �nite mixture models for image segmen-

tation, is introduced through a Markov random �eld and has been applied and investigated throughout

literature (as demonstrated previously). A Markov random �eld is de�ned as a set of nodes as well

as a set of links which connect pairs of nodes; nodes correspond to a variable or group of variables

[3]. The Markov random �eld is an undirected graph as illustrated in Figure 4.2.1 and is a graphical

de�nition of a probability distribution. One can �nd a way to express the joint distribution p (x) of all

the variables or group of variables represented in the Markov random �eld, as a product of functions

de�ned over sets of variables that are local to the graph [3]. The appropriate notion of locality needs

to be identi�ed (i.e. sets of variables within a locality on the graph), here the concept of cliques will

be used.

A clique is a subset of nodes in a graph such that there exists a link between all pairs of nodes

1Again, the word posteriori does not refer to a Bayesian methodology, but in mixture model literature responsibilities
are often referred to as posterior probabilities, given the prior knowledge about the distribution Π.
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in the subset [3]. The green and blue groups in Figure 4.2.1 are examples of cliques. The blue group

is also a maximal clique, de�ned as a clique for which it is impossible to include other nodes from

the graph without it ceasing to be a clique [3]. Bishop states that the joint distribution p (x) of the

Markov random �eld can be decomposed into a product of functions of variables in maximal cliques

(cliques are by de�nition subsets of maximal cliques and therefore this result extends to general cliques

as well).

Let C represent a clique and xC the set of variables in that clique, then the joint distribution can

be written as a product of the potential functions ψC (xC) over the maximal cliques of the graph:

p (x) =
1

Z

∏
C

ψC (xC) . (4.2.1)

Z is a normalising constant given by Z =
∑
x

∏
C ψC (xC) which ensures that the joint distribution

is a probability measure and p (x) ≥ 0 since potential functions satisfy ψC (xC) ≥ 0. Potential

functions2 are strictly positive and can conveniently be expressed in terms of exponentials: ψC (xC) =

exp {−E (xC)} where E (xC) is called an energy function 3. The joint probability function p (x) is

de�ned by the product of potentials and so the total energy is obtained by adding the energies of each

of the maximal cliques [3].

Figure 4.2.1: Example of a Markov random �eld [3]

A Gibbs distribution is a probability measure p on the state space of the Markov random �eld (all

image pixels), that is represented as

p (x) =
1

Z
exp

(
U (x)

T

)
(4.2.2)

where Z and T are constants and U is called the energy function and is of the form: U (x) =∑
C VC (xC) where C is the set of cliques. VC (x) depends on the coordinates or pixels that lie in

C [19].

Now, the Hammersley-Cli�ord theorem [12] states that �the set of distributions that are consistent

with the set of conditional independence statements that can be read from the graph, using graph

separation, are identical to the set of distributions that can be expressed as a factorization of the

2A potential function is an arbitrary non negative function over a maximal clique
3An energy function expresses the correlation between the variables in the maximal clique
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form in Equation (4.2.1) with respect to maximal cliques�. In other words, the theorem states that an

undirected graph G is a Gibbs random �eld (i.e. its density can be factorised over the cliques of the

graph resulting in a Gibbs distribution) if and only if the undirected graph G describes a probability

distribution that has a positive density function that satis�es one of the Markov properties - like the

conditional independence properties.

This fundamental theorem is named after John Hammersley and Peter Cli�ord who proved the

equivalence in an unpublished paper in 1971. Geo�rey Grimmett [23] and Sherman [48] also proved

the theorem in 1973 with a further proof by Julian Besag in 1974 [2].

The concepts and theory discussed in this section are used in the model speci�cation of the �nite

spatial variant mixture of regressions model as set out by Blekas et al [6].

4.2.2 Model speci�cation

This model assumes the probabilities of the data labels πij to be random variables where i = 1, 2, .., N

indexes the pixels and j = 1, 2, . . . ,K the clusters. To handle this information a Markov random

�eld is constructed in order to formulate the prior distribution for the data labels. Note, that this

prior distribution is not related to the Bayesian context, but represents prior additional knowledge

about the distribution Π, of the random indicator variable S, as mentioned in Section 2.1 and 3.1.

The Markov random �eld construction can be described as follows: let every pixel data label (πij)

for the jth cluster represent a node in the Markov random �eld and let all the nodes be linked to

their neighbours according to their position in the image. Suppose the image consists of R rows and

C columns of pixels (then R × C = N). Then a pixel in row r where 1 ≤ r ≤ R and column c

where1 ≤ c ≤ C is linked with the eight pixels surrounding it and the pixels on the sides and in the

corners of the image are linked with less than eight neighbouring pixels. Figure 4.2.2 illustrates these

linkages and demonstrates three type of cliques: π1's clique is marked in blue, πC+3's clique is marked

in orange and π3C+1's clique is depicted in green. In a similar fashion, a clique corresponding to each

pixel labels can be de�ned.
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Figure 4.2.2: Markov random �eld illustration for the jth cluster

The mixture density function is given by

f (y|Θ) =

K∑
j=1

πijp (y|θj)

where Θ =
{
{πij}Ni=1 ,θj

}K
j=1

, πij ≥ 0. The πij 's are said to follow a Gibbs distribution with density

function

p (π) =
1

Z
exp

(∑N
i=1 VN i (π)

T

)
.

Relating this back to the Gibbs distribution de�ned in Equation (4.2.2): the energy function is given

by U (π) =
∑N
i=1 VN i (π), where Ni are the cliques demonstrated in Figure 4.2.2 and there are as many

cliques as there are pixels (N). That means, that each clique (also called neighbourhood) includes the

pixel labels of the eight linked neighbouring pixels for the jth cluster. VN i (π) represents the clique

potential functions which are given by VN i (π) =
∑
mεNi

(πij − πmj)2
according to the Gaussian-

Markov random �eld formulation with di�erent variances at each cluster (ξj) [40]. Therefore, spatial

dependency is modelled by the Markov random �eld prior �tted to the data label mixing probabilities.

Z = ξ−Nj is a normalising constant and T = 2ξ2
j is the regularisation parameter. The factorised

prior distribution function of the πij 's is then given by
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p (π) =

K∏
j=1

ξ−Nj exp

(
−
∑N
i=1

∑
mεNi

(πij − πmj)2

2ξ2
j

)
.

This prior enforces smoothness of di�erent degrees at each cluster (ξj) and can be estimated directly

from the data. The details of this derivation are found in Nikou et al [40]. It is assumed that the

errors of the labels for all spatial locations and clusters j = 1, 2, ...,K are independently identically

distributed N
(
0, ξ2

j

)
random variables. For this model where a prior p(π) is de�ned over the pixel

labels, Bishop states that the EM algorithm can be used to �nd the Maximum a Posteriori (MAP)

solutions. In this case the E-step remains the same as in the traditional maximum likelihood case and

the Q-function to be maximised in the M-step is given by Q (Θ; Y) = Q
(
Θold; Y

)
+ log .p (π) [3].

The complete likelihood (Q-function) to be maximised (also called the Maximum a Posteriori -MAP-

function) is then given by

Q (Θ; Y) =

N∑
i=1

K∑
j=1

γij [log (πij) + log (p (y|θj))] +

K∑
j=1

[
−N log ξj −

∑N
i=1

∑
mεNi

(πij − πmj)2

2ξ2
j

]

=

N∑
i=1

K∑
j=1

{
γij [log (πij) + log (p (y|θj))]− log (ξj)−

∑
mεNi

(πij − πmj)2

2ξ2
j

}
.

Estimation of the mixture parameters (βj ,Σj) ∈ Θ remains the same as in the traditional mixture

of Gaussian regressions model detailed in Section 3. The estimation of the probabilities of the pixel

labels πij is not as straightforward, keeping in mind that the maximisation procedure should take the

following constraints into account: 0 ≤ πij ≤ 1 for all i and j and
∑K
j=1 πij = 1 for all i. Blekas

et al presented a projection algorithm to achieve this, which involves projecting the gradient of the

MAP function onto the hyperplane of the constraints after which a line search is performed along the

direction of the projected gradient to �nd the label parameters {πij} that maximise the Q-function

[5].

First take the derivative of the Q-function with respect to πij and set equal to zero:
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δ

δπij
Q (Θ; Y) =

δ

δπij

N∑
i=1

K∑
j=1

{
γij [log (πij) + log (p (y|θj))]− log (ξj)−

∑
mεNi

(πij − πmj)2

2ξ2
j

}

= γij
δ

δπij
log (πij) + 0− 0− δ

δπij

(∑
mεNi

(πij − πmj)2

2ξ2
j

)

=
γij
πij
− δ

δπij

(∑
mεNi

(
π2
ij − 2πijπmj + π2

mj

)
2ξ2
j

)
= 0

⇒
γijξ

2
j

|Ni|
− πij
|Ni| 2

.

(
|Ni| 2.πij − 2

∑
mεNi

πmj

)
= 0

⇒ −π2
ij + πij π̃ij +

γijξ
2
j

|Ni|
= 0

⇒ π2
ij − πij π̃ij −

γijξ
2
j

|Ni|
= 0 (4.2.3)

where π̃ij = 1
|Ni|

∑
mεNi

πmj ; the mean of the jth cluster probability in the neighbourhood of πij .

To solve δ
δπij

Q (Θ; Y) = 0 , the roots to quadratic Equation (4.2.3) need to be found. Select the

root with the positive sign since it yields to constraint πij ≥ 0:

πij =
π̃ij +

√
π̃2
ij + 4

γijξ2j
|Ni|

2
. (4.2.4)

It should be noted that the neighbourhood Ni can contain updated πij and �non-updated� πij 's.

The solution in Equation (4.2.4) however is not �nal since it does not adhere to the constraints

0 ≤ πij ≤ 1 for all i and j and
∑K
j=1 πij = 1 for all i. These constraints de�ne a convex hull 4; thus

after calculating the updated πij using Equation (4.2.4), we project them onto the convex hull (i.e.,

the constraints). Blekas et al describe an e�cient quadratic programming algorithm for this purpose

[5].

Denote aij (j = 1, 2, ...,K) the label parameter values (πij ≥ 0) calculated from Equation (4.2.4).

Given a vector ai ∈ RK with aij ≥ 0 and the hyperplane
∑K
j=1 xj = 1, the point on the hyperplane

with non negative components that is closest to ai needs to be found. This problem can be formulated

as a linear constrained convex quadratic programming problem for each pixel (i = 1, 2, . . . , N):

min
x

K∑
j=1

(xj − aj)2
subject to

K∑
j=1

xj = 1

and xj ≥ 0 ∀ j = 1, 2, . . . ,K.

The quadratic programming problem formulated above can be solved using a few approaches; here

a Lagrange multiplier method is used. See the Lagrange function below:

4a convex hull of a set of points X in a Euclidean space is the smallest convex set that contains X
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L (x, λ0, λj) =
1

2

K∑
j=1

(xj − aj)2 − λ0

 K∑
j=1

xj − 1

− K∑
j=1

λjxj

where λ0 is the multiplier for the equality and λj (j = 1, 2, ...,K) are the multipliers for the inequality

constraints.

First order necessary conditions imply

xj = aj + λ0 + λj . (4.2.5)

Combining Equation (4.2.5) with the constraint
∑K
j=1 xj = 1 we get

K∑
j=1

aj +

K∑
j=1

λ0 +

K∑
j=1

λj = 1

Kλ0 = 1−
K∑
j=1

aj −
K∑
j=1

λj

λ0 =
1

K
− 1

K

K∑
j=1

aj −
1

K

K∑
j=1

λj , (4.2.6)

and substituting Equation (4.2.6) back into Equation (4.2.5), we get

xj =
1

K
+ aj −

1

K

K∑
j=1

aj + λj −
1

K

K∑
j=1

λj . (4.2.7)

Note that bj = 1
K + aj − 1

K

∑K
j=1 aj is a projection of aj onto hyperplane

∑K
j=1 xj = 1.

The λj 's must be chosen so as to satisfy the inequality constraints. Kuhn-Tucker conditions state

that at the minimiser x∗, λj ≥ 0, λj > 0 if x∗j = 0 (active constraint), λjx
∗
j = 0 [5]. Given this

information, Blekas et al [5] present a very e�cient iterative strategy for calculating the λj 's for the

problem:

1. Let x denote the vector at the current iteration.

2. Initially, set xj = bj∀j.

3. In general there exist m negative components in xj .

4. De�ne corresponding set of indices S = {j, where xj < 0} (�nding the active set of constraints

for the current vector x).
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(a) for all j /∈ S: λj = 0

(b) for all j ∈ S: xj = x∗j = 0. Then the corresponding λj is calculated by solving an m ×m
linear system that force the inequalities to be satis�ed as equalities: xj+λj− 1

K

∑K
j=1 λj = 0,

leading to 5

λj =
1

m− k
∑
k∈S

xk − xj

(c) calculate the updated xj values for j /∈ S using the new vector λ via Equation (4.2.7).

5. These steps are repeated until a feasible point is obtained (i.e., xj ≥ 0∀j as desired).

It is important to note, that once a xj becomes zero, it remains so.

Finally, the Maximum a Posteriori (MAP) EM algorithm for the model formulation is given below:

Algorithm 4.1 MAP EM algorithm for the K-component spatial variant mixture of Gaussian regres-
sions model

1. Choose appropriate starting values for the parameters, Θ.

2. Expectation step: calculate the responsibilities.

γ̂ij =
πij .p (yi|θj)∑K
s=1 πisp (yi|θs)

3. Maximisation step: calculate the maximum likelihood estimates:

β̂j =

(∑N
i=1 γ̂ijyi

′X
)

(X′X)
−1∑N

i=1 γ̂ij

σ̂2
ju =

∑N
i=1 γ̂ij

(
yiu −

[
Xβ̂j

]
u

)2

∑N
i=1 γ̂ij

ξ̂2
j =

1

N

N∑
i=1

∑
m∈Ni

(π̂ij − π̂mj)2

Calculating the mixing probability estimates involves another iterative algorithm as set out in
the discussion above.

4. Repeat step 2 and 3 until convergence is achieved.

4.3 Example - spatial variant mixture of Gaussian regressions

To illustrate how the spatial variant mixture of Gaussian regressions model discussed above works,

5Note, that the k in this formula is a counter and does not refer to the number of mixture components: K
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an example was designed by generating spatiotemporal data. A 16× 16 pixel image was designed and

divided into 8 sections which were randomly assigned to K = 3 clusters. For each cluster, the pixel

intensity was set to increase and / or decrease along a pre-de�ned polynomial function for ten time

steps (t = 1, 2, . . . , 10) to simulate �pixel intensity change over time�. The spatial variant mixture of

regressions model was then used to identify and estimate the component regression models.

4.3.1 The generated data

A 16× 16 pixel image was designed to consist of 3 clusters illustrated in white, blue and red in Figure

4.3.1.

Figure 4.3.1: Designed 16× 16 image

The pixel intensities were then adjusted over 10 time steps along prede�ned second-degree polyno-

mial regression functions given below. The pixels in the white area in Figure 4.3.1 were set to follow

the function Y1, the blue area was set to follow Y2 and the red area was set to follow the function

Y3.

Y1 = 0.85t− 0.10t2 (4.3.1)

Y2 = −0.5t + 0.06t2

Y3 = −0.05t + 0.02t2
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The change of the pixel intensities over time is illustrated in Figure 4.3.2 below and the colouring

of the graph matches that of Figure 4.3.1 (i.e. the pixels in the red areas in Figure 4.3.1 were set to

change over time according to the red line in Figure 4.3.2).

Figure 4.3.2: Pixel changes over time - 3 models

Gaussian white noise was added to each time-step and the resulting spatiotemporal data from time

t = 1 to time t = 10 is shown in Table 4.3.1. It is clear that the simulated image was divided into

K = 3 groups with the regions as indicated in Figure 4.3.1 that change according to the functions

for Y1, Y2 and Y3. The three clusters of di�erent pixel intensity changes over time are clearly

distinguishable despite the Gaussian white noise. In the next section the spatial variant mixture of

Gaussian regressions model will be �tted to the simulated spatiotemporal data.
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Table 4.3.1: Simulated image with three clusters over time
t Simulated image t Simulated image

1 6

2 7

3 8

4 9

5 10

4.3.2 The model to be �tted

The model to be �tted to the data is a spatial variant of the �nite mixture of Gaussian regressions

model. It is known that the spatiotemporal data contains K = 3 clusters and that for each pixel a

sequence of pixel intensities for t = 1, 2, . . . , 10 is observed. Therefore the generative form of the model

to be �tted is given by Y = ∆1Y1 + ∆2Y2 + (1−∆1 −∆2) Y3 where

Y1 = β11t + β12t
2 + e1

Y2 = β21t + β22t
2 + e2

Y3 = β31t + β32t
2 + e3.
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Y, Y1, Y2, Y3 are (10× 1) dimensional vectors of pixel intensity sequences for each observation

and t is a (10× 1) vector containing time steps, ej ∼ i.i.d. N (0,Σj) and P (∆j = 1) = πj . The model

can be rewritten in matrix notation:

Yj = Xβj + ej

where

X =



t1 t21

t2 t22

t3 t23

t4 t24

t5 t25

t6 t26

t7 t27

t8 t28

t9 t29

t10 t210



=



1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100


βj =

[
βj1

βj2

]

and Yj ∼ i.i.d. N (Xβj ,Σj) for j = 1, 2, 3. Thus far, the model describes the traditional �nite

mixture of multivariate Gaussian regressions model with p = 2 explanatory variables, K = 3 clusters

andN = 256 observations of T = 10 dimensional vectors, where each observation (in this case, sequence

of pixel intensities at each pixel) is classi�ed into group j with probability πj .

The model incorporates spatial location information, also called spatial dependency information,

by estimating K = 3 mixing probabilities for each pixel with the help of a Markov random �eld. This

model speci�cation captures the notion that neighbouring pixels are likely to be classi�ed into the

same cluster and allows for varying levels of smoothness (or variance) between clusters. Therefore the

spatial variant generative form of the model is given by Y = ∆i1Y1 + ∆i2Y2 + (1−∆i1 −∆i2) Y3 ,

i = 1, 2, . . . , N where P (∆ij = 1) = πij .

Let the mixing probabilities for the jth cluster be random variables representing the nodes of a

Markov random �eld. The links between nodes are de�ned such that the neighbouring pixels of pixel i

are linked (usually the 8 adjacent pixels - note that for i in the corners and along the sides of the image

less than 8 pixels will be linked). Therefore, the ith clique of the Markov random �eld Ni contains
the 8 (or less) adjacent pixels to pixel i. Following the theory discussed in Section 4.2.1, the mixing

probabilities follow a Gibbs distribution.
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πij ∼
K∏
j=1

ξ−Nj exp

(∑N
i=1

∑
m∈Ni

(πij − πmj)2

2ξ2
j

)

It is assumed that the errors of the mixing probabilities for clusters j = 1, 2, ...,K are i.i.d. N
(
0, ξ2

j

)
distributed. The Maximum a Posteriori EM algorithm as detailed in Algorithm 4.1 was used to

estimate the model.

4.3.3 The estimated model

The parameters Θj =
{
βj ,Σj , πij , ξ

2
j

}
for j = 1, 2, 3 were estimated using starting values, selected as

follows:

• For βj , K = 3 random observations of Y were selected and the corresponding starting values

were calculated: βj = (X′.X)
−1
. (X′.Y).

• It is assumed that Σj is a diagonal matrix with 1
K

∑N
i=1

(
Y − Ȳ

)2
on the main diagonal as

starting values for j = 1, 2, 3.

• πij = 1
K = 1

3 for i = 1, 2, . . . , N and j = 1, 2, 3.

• ξ2
j = 1

K = 1
3 for j = 1, 2, 3.

After convergence of the EM algorithm, the estimated regression models are given by

Y1 = 0.83t− 0.10t2 (4.3.2)

Y2 = −0.47t + 0.06t2

Y3 = −0.08t + 0.025t2,

where the variances Σj are assumed to be diagonal matrices with the following vectors on the main

diagonals:
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0.010 0.000 0.005

0.010 0.007 0.009

0.008 0.002 0.002

0.010 0.006 0.005

0.012 0.003 0.009

0.017 0.004 0.003

0.007 0.010 0.019

0.008 0.002 0.004

0.006 0.002 0.003

0.010 0.015 0.004


and the estimated variances of the mixing probabilities are given by

ξ2
1 = 0.0000931

ξ2
2 = 0.0000592

ξ2
3 = 9.533× e−6.

Note that label switching has been accounted for so that Y1 in Equation (4.3.2) corresponds to Y1

in Equation (4.3.1) etc. The estimated parameters are reasonably close to the theoretical parameters

and it can be inferred that the model speci�cation and algorithm accurately estimated the three

di�erent models according to which pixel intensities changed over time.

The estimated responsibilities ( γij = E (∆ij), i = 1, 2, . . . , N and j = 1, 2, 3) and mixing proba-

bilities (πij) are best illustrated graphically as set out in Table 4.3.2 and 4.3.3 and discussed below.

A given pixel is assigned to the cluster for which the estimated responsibility is the largest therefore

the estimated responsibilities indicate how well the underlying clusters were identi�ed. The estimates

for γ1 are highest (red) for the areas that were indicated white in Figure 4.3.1, indicating that the

correct areas were identi�ed as cluster 1. Similarly, the estimates for γ2 and γ3 are highest for the

areas that were indicated as blue and red in Figure 4.3.1 respectively. It is interesting to note that

the estimates of γ2 in the areas known to be cluster 3 and the estimates of γ3 in the areas known

to be cluster 2 are not as close to 0 as the estimates of γ1 in areas known to be cluster 2 and 3.

This observation indicates that pixels in cluster 2 and cluster 3 contribute to the estimation of the

parameters associated with both cluster 2 and 3 to some extent (as is typical for a fuzzy clustering

method).
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Table 4.3.2: Estimated responsibilities
Cluster Visual representation of estimated responsibilities

γ̂1

γ̂2

γ̂3

Even though the mixing probabilities don't di�er a lot across clusters (see the scale in Table 4.3.3) -

the colouring in the visual representations does show clearly that the estimated mixing probabilities for

clusters 1 (π̂1), 2 (π̂2) and 3 (π̂3) are highest in the areas known to be clusters 1, 2 and 3 respectively.

Therefore the probability of belonging to cluster j is higher in locations known to belong to cluster j,

for j = 1, 2, 3.
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Table 4.3.3: Estimated mixing probabilities
Cluster Visual representation of the estimated mixing probabilities

π̂1

π̂2

π̂3

The estimated responsibilities and mixing probabilities indicate that the model speci�cation and

applied algorithm identi�ed the clusters correctly.

Another typical useful illustration of the clustering results of �nite mixture models is to plot

the dependent variable against the independent variables and colouring the observations by cluster.

This example however, deals with multivariate dependent (sequence of pixel changes over time) and
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independent variables (time steps t = t1, t2, . . . t10) therefore, this representation of the clustering

results is adjusted as follows. In Figure 4.3.3 the estimated mean pixel change over time is shown

in thick dotted lines for cluster 1 (black), cluster 2 (blue) and cluster 3 (red). Additionally, �ve

observations from each cluster (pixel intensity sequences that were classi�ed according to the maximum

estimated responsibilities) were randomly selected, plotted on the same graph and coloured according

to the classi�ed cluster. This graph aims to demonstrate that the clusters are not only spatially

correctly classi�ed (see Tables 4.3.2 and 4.3.3) but are also clearly distinguishable in a �dependent

vs independent variable� plot. For example, the observations that were classi�ed to be in cluster 1

(black) roughly follow the same pattern as the estimated conditional mean for cluster 1 and are clearly

�grouped�.

Figure 4.3.3: Illustrating the clustering results

This example therefore demonstrated that the �nite spatial variant mixture of regressions model

(with Gaussian error terms) simultaneously identi�es underlying clusters correctly and estimates the

regression models accurately, for spatiotemporal data. In the following chapter this model will be

applied to maize yield data in the Free State, South Africa.



Chapter 5

Application: maize yields

Agricultural production is signi�cantly a�ected by environmental factors (i.e., weather, temperature

and precipitation) which in�uence crop growth and development and cause large intra-seasonal yield

variability; furthermore, crop agronomic management (i.e., fertilizer application, planting irrigation,

tillage etc.) can o�set weather related yield losses [1]. This study argues that agronomic management

practices and microclimates1 can cause some farmers to mitigate climate variability more e�ciently

than others. Neither management practices nor microclimates can be directly observed given available

yield and gridded spatial data. The present study therefore aims to identify groupings or patterns in

maize yield data caused by these unobservable variables.

Environmental factors including the quality and type of natural resources and climatic conditions

vary spatially; therefore, these factors clearly introduce a spatially dependent aspect to the problem.

Neighbouring farmers, or farms within the same proximity, are more likely to participate in interac-

tions (e.g., study groups or learning events) where management practices are discussed or advice is

exchanged, than farmers separated by large distances. Similarly, unobservable microclimates or soil-

plant-atmosphere continuums, naturally occur within a spatial proximity. The spatial orientation of

agronomic management practices, microclimates and gridded precipitation data (covariate) suggest

that the spatial variant mixture of regressions model is a suitable model to identify spatially speci�c

clusters of maize yields (where nearest-neighbour yield observations are more likely to be found in the

same cluster) and estimate their respective regression functions.

The aim of this study is to estimate maize yields in the Free State province as a function of type

of maize produced (yellow or white), precipitation and season (harvesting year) while simultaneously

identifying spatially explicit clusters of similar yield functions by �tting the spatial variant mixture of

regressions model. The maize yield data, type of maize and the season in which it was produced was

obtained from the Department of Agriculture Forestry and Fisheries' objective yield survey database.

Precipitation data was obtained from the Tropical Rainfall Measurement Mission (TRMM) database,

disseminated by the Goddard Earth Sciences Data and Information Services Center (GES DISC). It is

important to note that large intra-annual variability of seasonal precipitation, especially in rain-scarce

regions, has caused crop model errors and has previously led to di�culties in including precipitation

1The weather in a particular small area, especially when this is di�erent from the weather in the surrounding area.
[30]

63
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in statistical crop models [53, 46]; in this regard this study has been no di�erent.

The estimation of agricultural yields is also known as crop modelling and various types of crop

models are brie�y discussed to contextualise this study. The data used in this study is discussed in more

detail and followed by exploratory analysis. Finally, a simple linear regression model and traditional

mixture of Gaussian regressions model are �tted to the data in order to facilitate comparisons with

the �tted spatial variant mixture of Gaussian regressions model. The EM algorithm converged to a

solution with three distinct spatial clusters; however, it is important to note that the clusters di�er

only slightly in terms of parameter estimates and further investigation is warranted.

5.1 Types of crop models and this study

Di�erent types of crop yield forecasting models have been developed in literature and can be

categorised as follows:

• Crop Simulation Models (CSM) are computerised representations that simulate of crop growth,

development and yield through mathematical equations as functions of soil conditions, weather

and management practices [29]. Their strength lies in the ability of CSM's to extrapolate the

temporal patterns of crop growth and yield beyond a single experimental site. CSM's are useful in

gaining scienti�c insight into crop physiological processes and evaluating the impact of agronomic

practices. Applications listed by Hogenboom include impacts of global warming, crop response to

sowing dates and spacing, characterisations of production environments and regional targeting

of technologies. Extensive input data on cultivar, management practices and soil conditions,

unavailable in many parts of the world, is required for CSM's [38].

• Mechanistic Models use fundamental mechanisms of plant and soil processes to simulate speci�c

outcomes, and are often used for academic purposes to gain a better understanding of speci�c

plant-related processes and interactions, rather than for problem solving purposes [1].

• Functional Models to simulate complex processes through simpli�ed approaches and are often

simpli�ed versions or parts of the mechanistic models (e.g., a plant's photosynthesis process

whereby solar radiation is converted to energy can be depicted by a functional model: energy is

a function of, among other factors, solar radiation).

• Statistical Models for crop yield forecasting are simple and less parameter-intensive; in essence a

simple statistical model is built using historical yield data and several agro-meteorological param-

eters (e.g. temperature and rainfall). Statistical models however are limited in the information

they can provide beyond the range of values for which the model is parameterised; they do not

take the timing of stresses occurring during crop growth into account and are also incapable of

giving farmers important agronomic advice [1]. Because of variations in soils, landscapes and

weather, beyond what is included in the population information used to estimate the statistical

information, the results of statistical models generally cannot be extrapolated in space and time.

The spatial variant mixture of regressions model to be �tted in this study, is classi�ed as a statistical

model. Advantages of statistical crop forecasting models include their limited reliance on �eld cali-
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bration data and the transparent assessment of model performance (e.g. coe�cient of determination

and con�dence intervals around model coe�cients and predictions); note that similar statistics can be

combined with process-based models (i.e., CSM, mechanistic and functional models) but in practice

rarely are [38]. Serious shortcomings of statistical crop forecasting models include problems with co-

linearity (e.g. temperature and precipitation) and assumptions of stationarity in the case of time-series

models [38]. Lobell asserts that statistical crop forecasting models based on temporal and or or spatial

variation in crop yields are widely used to investigate the impact of climate changes (recent and future)

on crop yields.

5.2 The data

It is well established that in modelling, simulating or forecasting maize yields various input variables

including weather data (precipitation, temperature, solar radiation and wind speed), crop data (variety

and growth attributes), soil data (thickness of soil, pH, sand and clay percentages etc.), and crop

management data (planting date, seed rate, irrigation, fertiliser application etc.) are typically used

depending on the complexity of the model [1]. The data sets used in this particular statistical crop

model are restricted to precipitation and information accompanying the objective yield survey data

and are discussed below.

Objective yield surveys for maize are conducted annually in the South African maize production

area in three provinces (Free State, North West and Mpumalanga) by the National Crop Statistics

Consortium (NCSC) comprising of the Agricultural Research Council (ARC), SiQ and Geoterraim-

age. These surveys are aimed at estimating yield by taking in-�eld measurements during April in

Mpumalanga and May in the Free State and North West each year, when the maize has reached physi-

ological maturity. Seven hundred sampling locations (farming units) within the Free State, North West

and Mpumalanga provinces are allocated proportional to the total area of cultivation for white maize

and yellow maize under dryland or irrigated cultivation. The crop-speci�c total area of cultivation is

determined by the Producer Independent Crop Estimates System (PICES) developed by the NCSC

and these �gures are released in February each year. Enumerators (ARC) visit each location and follow

a prede�ned sampling methodology designed to ensure randomness in cob selection and eventual yield

estimation. Upon arrival at the farming unit location, the average estimated yield (based on �ve ran-

dom sampling points) is recorded per identi�ed location (farming unit) with the �eld GPS coordinates

linked to it.

The seven hundred locations to be visited are identi�ed by SiQ from their database of farming units

throughout the three provinces. This database is renewed on average every 5 years. Annually, these

farming units are contacted telephonically to determine the area planted per crop type, for the given

season. The hectares covered by the farming units database are then expanded proportionally to match

the total crop type area in each province (as determined by PICES) from which the seven hundred

locations are randomly selected. SiQ's methodology selects the seven hundred locations within each

province with a probability proportional to size, making it a self-weighting sample (i.e., large farming

units will likely have more than one sampling location included in the seven hundred).

The objective yield survey database from harvesting seasons 2004 to 2017 was obtained from the
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Department of Agriculture, Forestry and Fisheries (DAFF) containing average maize yields (Yestyield)
2 for yellow and white maize (Xtype) under dryland or irrigation production (XDryIrr) over the Free

State, Mpumalanga and North West provinces (XProvince), as well as a code (XCode) indicating the

farming unit from which the yield observation was recorded and GPS coordinates linked to the �eld

where the sample was taken (XLat, XLong). The number of realised samples di�ers each year depending

on the availability of farmers and their willingness to co-operate.

The second data set obtained was a precipitation database with a high spatial and temporal resolu-

tion. The Tropical Rainfall Measurement Mission (TRMM) database was used, which is disseminated

by the Goddard Earth Sciences Data and Information Services Center (GES DISC). The 3B42 product

was used, containing a 3-hourly surface precipitation estimate at a spatial resolution of 0.25 degrees (ap-

proximately 25 km grid) from 1 July 2000 to 30 June 2017. This database and product has previously

been used in agricultural modelling applications [46, 53]. The total rainfall from October to March for

each season in the South African summer grain production region was calculated (XSeasonRain) and

the timing of the rainfall (monthly rainfall) was also processed as possible explanatory variable.

Exploratory analysis was performed on the data and key results are presented in the following

section.

5.3 Exploratory analysis

5.3.1 Analysing the data and selecting the appropriate covariates

A frequency table provides an overview of the objective yield database, showing the number of yield

observations in the total database for di�erent combinations of white maize, yellow maize, dryland and

irrigation production per province (Table 5.3.1).

Table 5.3.1: Frequency table: objective yield data base 2004 - 2017

Province Production type White Maize Yellow Maize Total

Free State
Dryland 2079 1174 3253
Irrigation 71 133 204
Total 2150 1307 3457

Mpumalanga
Dryland 582 975 1557
Irrigation 115 80 195
Total 697 1055 1752

North West
Dryland 1942 504 2446
Irrigation 120 79 199
Total 2062 583 2645

Grand total 4909 2945 7854

The number of yield observations captured di�ers each season as illustrated in Table 5.3.2. Note

that the grand total in Table 5.3.1 di�ers from that in Table 5.3.2: the Province indicator was blank

for 18 yield observations. These observations were discarded.

2Note that the yield observations are objective yield estimates (as per the explanation above) and that throughout
this study �estimated yields� will be used interchangeably with �observed yields� therefore, the yields estimated from the
models to be �tted will be referred to as �predicted yields�.
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Table 5.3.2: Number of objective yield observations per season

Season (harvesting year) Number of observations Mean Standard deviation

2004 286 3.08 1.86
2005 244 4.02 2.14
2006 438 4.01 2.26
2007 562 3.08 2.46
2008 675 4.41 1.86
2009 748 4.56 2.02
2010 638 4.82 2.24
2011 666 5.05 2.57
2012 582 4.43 2.66
2013 578 4.08 2.75
2014 568 5.43 2.19
2015 604 4.03 3.01
2016 635 3.54 2.73
2017 648 6.59 2.52

Grand total 7872

The frequency table in Table 5.3.1 is repeated for the 2017 harvesting season in order to further

understand the typical composition of the annual objective yield surveys. It is clear that very few

irrigation maize yield observations are recorded annually, and since maize production under irrigation

is not strictly comparable with dryland production the irrigated yield observations will be excluded

from the analysis.

Table 5.3.3: Frequency table: objective yield survey for harvesting season 2017

Province Production type White Maize Yellow Maize Total

Free State
Dryland 225 74 299
Irrigation 10 7 17
Total 235 81 316

Mpumalanga
Dryland 40 94 134
Irrigation 8 8 16
Total 48 102 150

North West
Dryland 133 32 165
Irrigation 9 8 17
Total 142 40 182

Grand total 425 223 648

The objective yield observation locations (latitudes and longitudes) for all seasons are plotted and

white and yellow maize yields are indicated by colour in Figure 5.3.1. This �gure can be interpreted

like a map with the north-western region representing the North West province, the north-eastern

region representing Mpumalanga and the center and southern area coinciding with the Free State. It

seems that in the eastern part of the Free State as well as in Mpumalanga yellow maize is typically

planted, more so than white maize, and in the North West province and western part of the Free State

white maize is preferred.
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Figure 5.3.1: All yield observation by type of maize

Figure 5.3.1 indicates that the Free State has an interesting spatial combination of white and yellow

maize yield observations. Thus, it was decided to restrict this analysis to the dryland yield observations

in the Free State province. Therefore, a total of 3253 yield observations of which 2079 are white maize

and 1174 are yellow maize yields, will be used. The following exploratory analysis relates to the Free

State dryland yield observations.

The farming units are referred to as codes and Figure 5.3.2 shows the number of farming units

that were visited x = 1, 2, 3, . . . times (i.e., a farming unit was visited x times over the past 14 years).

38% of the farming units in the Free State were visited twice over the past 14 years of objective yield

surveys. 16% of farming units were visited three times and 10% four times while only 6% of farming

units in the Free State were visited 9 times or more throughout the past 14 years of objective yield

surveys.

These multiple observations per farming unit can be seen as repeated measures, in which case the

model needs to account for this structure. However, it can be argued that the observations (YEstY ield)

are taken at a �eld level (see Section 5.2) and the locations of these observations are captured in the

XLat and XLong GPS coordinates. More often than not, the GPS coordinates of multiple observations

taken on a given farm unit di�er, after taking drift into account. Therefore, the repeated measures
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structure was not incorporated into the model speci�cation.

Figure 5.3.2: Number of farming units per years of involvement

The relevant season's total rainfall was linked to the yield observation by performing a spatial

join3 between the gridded TRMM precipitation data and the GPS coordinates of the objective yield

database (i.e., the October to March rainfall in the season in which the speci�c yield observation was

recorded, was linked to the yield observation as variable XSeasonRain). Then histograms of the season's

total rainfall were compiled per season (i.e., year in which maize was harvested), see Figure 5.3.3. It

is clear that the distribution of total rainfall di�ers across seasons: sometimes the total rainfall in a

season at the yield observation points had a range of less than 400mm (e.g. 2011) whereas in the 2017

season the range is approximately 600mm. The shape of the season rainfall histograms also range from

symmetric (e.g. 2010, 2011, 2015) to quite heavy-tailed (e.g. 2005, 2006, 2017).

3R was used to transform the precipitation data sets into a raster format, which was then joined with the GPS
locations of the yield observations
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Total rainfall for harvesting year 2004 to 2010 Total rainfall for harvesting year 2011 to 2017

Figure 5.3.3: Histograms of total rainfall by season

Precipitation is used as the main explanatory variable and scatter plots of rainfall to observed

yields were compiled to see whether the expected positive correlation is observed. Figure 5.3.4 shows

the scatter plot for total season rainfall to estimated yield. A slight positive linear relationship is

visible. It is interesting to observe a near-45◦ angled cloud of points towards the left top of the bulk

of points which contrasts with the �atter cloud of points extending towards the bottom right. Also,

when looking at the distinction between white and yellow maize yields, the shape of the white maize

yield scatter plot di�ers a bit form the yellow maize yield scatter plot.

The positive relationship between the estimated yield observations and total season rainfall is not

very strong, suggesting that factors besides rainfall, play a role in di�erentiating high from low maize

yields (e.g. timing of rainfall, temperature etc.).
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Figure 5.3.4: Scatter plot of season rainfall to yield

Even though the absolute amount of rainfall in a given season is important, the timing of that

rainfall can also have a big impact on yield. Therefore, this study will look at the scatter plot of

yield against the total precipitation for each month during the summer production region growing

season. From Table 5.3.4 it seems that October rainfall is not clearly positively correlated with the

observed yield, whereas November rainfall seems to hold a slight positive linear correlation with the

observed yield. This points toward the fact that the early summer rain enables farmers to plant their

summer crops earlier which might have positive impacts on yield, or that the early rain (after planting)

improves the plant's production. The pattern of the December, January and February scatter plots

is very similar to that in Figure 5.3.4 with a slight positive linear relationship between the monthly

rainfall and yield. During February most of the maize crop in the Free State reaches �owering and

fruit forming stages during which rain is crucial towards determining yield. Lastly, the March rainfall

vs yield scatter plot does have similarities with the total seasonal rainfall scatter plot. However, the

eastern part of the Free State does not typically receive signi�cant amounts of rain in March, and as

a result the shape of the scatter plot is contracted and does not suggest a clear positive relationship

between March monthly rainfall and yield.

Once more, the exploratory analysis of precipitation data suggests that the relationship between

the estimated maize yield observations and precipitation is not very strong and that a model with

precipitation as its main explanatory variable will likely not explain a large proportion of variation in

the estimated yield observations.
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Table 5.3.4: Scatter plots of monthly rainfall to yield
Monthly rainfall to yield Monthly rainfall to yield

October November

December January

February March

Referring back to Figure 5.3.4, some extremely high yields were observed keeping in mind that

these are all dryland maize yields. The �rst (top) box plot in Figure 5.3.5 shows the estimated yields

and the box plot indicates that observed yield observations larger than 9.5 tonnes per hectare (t/ha)

to be outliers, also µestyield + 3.σestyield = 10.5. Therefore, 10 t/ha was chosen as the cut-o� point for

outliers; Figure 5.3.6 below shows the observed yield data plotted against observation number with a

reference line at a yield of 10 t/ha. Subsequently the yields greater than 10 t/ha (keeping in mind

that dryland maize yields are seldom above 10 t/ha) were removed from the data set, resulting in the

second (bottom) box plot in Figure 5.3.5; 40 observations were removed as outliers. The data was
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sorted according to season and the estimated yields were plotted against observation number in Figure

5.3.7.

Figure 5.3.5: Box plot of observed yields before (top) and after (bottom) outliers were removed

Figure 5.3.6: Observed yields

The resulting data set excluding the outliers is plotted against season in Figure 5.3.7. The data
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clearly looks more randomly distributed in terms of estimated yield. The colouring clearly shows the

record seasons 2014 and 2017 had higher than average yields and during the drought in 2015 and

2016 lower than average yields were realised. After removing the outliers, the data set contained 3213

observations.

Following these key exploratory analyses the variables to be included in the analysis will be selected

and a simple linear regression will be �tted in the next section so that the spatial variant mixture of

regressions model can be compared to the simple linear regression results.

Figure 5.3.7: Observed yields without outliers, coloured by season

5.3.2 Simple linear regression

The maize yield data (without outliers) will be modelled as a function of the total season's rainfall, the

season and the type of maize planted. November and February monthly rainfall regression parameters

were signi�cantly di�erent from zero according to the t-test, however since the total season's rainfall

is a function of the two the regression will run into co-linearity problems. The regression including

the total season's rainfall yielded a higher R2, therefore total season rainfall was included in the �nal

model instead of the November and February monthly rainfall. Note that the total season's rainfall

and season variables were standardised to have a mean of 0 and standard deviation 1 to account for

disparate scales. The simple linear regression model to be �tted can be described by:

Yestyield = β0 + β1XSeasonRain + β2XSeason + β3XType + ε
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where ε is the error term and is assumed to be independent and identically Gaussian distributed and

the variable de�nitions are given in Table 5.3.5.

Table 5.3.5: Variable de�nitions

Variable De�nition

Yestyield Estimated yield from objective yield survey (dependent variable)
XSeasonRain Total rainfall for October to March in relevant season
XSeason Season: harvest year e.g. 2005
XType Maize type: for yellow maize XType = 1, white maize XType = 2

The estimated model is given by

Ŷestyield = 2.74 + 0.44.XSeasonRain + 0.42.XSeason + 0.83.XType.

All the parameters are signi�cantly di�erent from zero with p-values of the t-test all less than

0.0001. The overall model �ts reasonably well, but does not explain a large share of the total variation

in the yields with the adjusted R2 of 9.1% (i.e. 9.1% of the variation in the maize yields is explained

by the model) and the SSE = 11 105.

The mean observed yield Yestyield is plotted against the mean predicted values from the model

Ŷestyield per season in Figure 5.3.8, demonstrating to what extent the model captured the changes of

yields over time. The trend and turning points of the mean observed yield (per season) have been

accurately captured by the predicted values with the exception of seasons 2013, 2014 and 2015. Neither

the correct turning points nor the absolute magnitude of the mean observed yields were estimated

accurately during these three years. This indicates that factors beyond the covariates included in this

model caused the �uctuations in average yield during this time (keep in mind that 2014 was an all-time

record harvest year at the time followed by two consecutive drought years).

The model can be improved by including more covariates (for example temperature, solar radi-

ation, soil types etc.), however this study was aimed at focusing speci�cally on precipitation data.

Furthermore, it was previously mentioned that statistical crop models, like this regression model, do

not take the full extent of detail in terms of the production process into account (for example CSM's)

and the aim therefore, is not to explain all the variation but to quantify speci�c relationships between

dependent and independent variables.
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Figure 5.3.8: Observed vs predicted yield

The observed and predicted maize yields are plotted against rainfall in Figure 5.3.9 and it is clear

that a lot of variation in the maize yields has gone unexplained, but the expected positive relationship

between rainfall and maize yields is clearly visible. It seems also that the predicted values in Figure

5.3.9 form three distinct groups; given that the categorical covariate, type of maize, only contains

two categories (white and yellow maize), these three distinct groups could be indicative of another

unobservable variable causing three underlying clusters.

Figure 5.3.9: Observed vs predicted yields by rainfall - simple linear regression
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The residuals from the regression r = Yestyield − Ŷestyield were plotted against the predicted values

in Figure 5.3.10 and coloured according to the groups indicated in Figure 5.3.9. The three groups

are clearly visible. Group 1 included seasons 2009-2017 while group 3 included only seasons 2004-

2008. Group 3 contained yellow maize observations only, while group 1 consists of mainly white maize

observations. Therefore, group 1 containing mainly white maize planted in the most recent 8 years

clearly contains higher predicted yields while group 3 consisting of mainly yellow maize planted in the

�rst 5 years has lower predicted values. Furthermore, group 2 contains average predicted yields (in

every season). Overall, besides the observed and discussed grouping, the residuals vs predicted values

plot does not exhibit a speci�c pattern.

The three groups suggested by Figure 5.3.9 can be partially explained by the covariates included in

the model however, their cause will be investigated further using the traditional mixture of regression

model as well as the spatial variant mixture of regressions model in following sections.

Figure 5.3.10: Residuals plotted against predicted values

5.4 Applying the spatial variant mixture of regressions model

Before applying a mixture of regressions model the number of components of the mixture needs to be

determined or estimated. To this end, the �nite mixture models procedure (proc fmm) in SAS was

run to identify the 'best' number of components for a traditional mixture of regressions model �tted
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to the data based on the Bayesian Information Criteria (BIC) [3]. The model with three components

was identi�ed as minimizing the BIC, as was also expected from the simple linear regression analysis

and Figure 5.3.9 and 5.3.10 in the previous section. The traditional mixture of regressions model is

�tted in order to facilitate comparison with the spatial variant mixture of regressions model. Since

K = 3 components are identi�ed as appropriate for the traditional mixture of regressions model, the

same number of components are �tted for the spatial variant mixture of regressions model, so that

the additional location information accounted for by the spatial variant mixture of regressions model

and di�erences between the two model results can be studied. The results of the respective models are

discussed in subsequent sections below.

5.4.1 Traditional mixture of regressions model

The traditional mixture of regressions model to be �tted can be written in the generative form with

random indicator variables ∆j : Y = ∆1Y1 + ∆2Y2 + ∆3Y3 where
∑3
j=1 ∆j = 1 and ∆ij ≥ 0 for all

i = 1, 2, . . . , N and j = 1, 2, 3

Yj = Xβj + ej

X =
[

1 XSeasonRain XSeason XType

]

βj =


βj,int

βj,SeasonRain

βj,Season

βj,Type


ej ∼ i.i.d. N (0, σj) and P (∆j = 1) = πj for j = 1, 2, 3; therefore Yj can be modelled by a Gaussian

distribution N (Xβj , σj).

The estimated component regression models (after the EM algorithm converged) with the maximum

likelihood parameter estimates for the traditional mixture of regressions model are given below:

Ŷ1 = 3.954− 0.197.XSeasonRain − 1.917.XSeason − 0.013.XType (5.4.1)

Ŷ2 = 3.213 + 0.435.XSeasonRain + 0.992.XSeason + 1.030.XType

Ŷ3 = 2.098 + 0.337.XSeasonRain + 0.139.XSeason + 0.444.XType.

The estimated error variances are given by
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σ̂1 = 1.257

σ̂2 = 2.330

σ̂3 = 1.191

and the estimated mixing probabilities:

π̂1 = 0.134

π̂2 = 0.544

π̂3 = 0.322.

The estimated parameters clearly de�ne three di�erent sets of relationships between the dependent

and independent variables. With the SSE = 11 166, marginally higher than that of the simple linear

regression, the extent to which yield variation is explained by the traditional mixture of regressions

model is similar to that of the simple linear regression.

The estimated component regression models were used to calculate predicted yields and preliminary

analysis was performed on the mean maize yields per season. The regression models for all of the

clusters failed to capture the correct turning points and magnitude of yields in seasons 2013, 2014 and

2015 (as in the simple linear regression results). Cluster 1 exhibits a prominent downward trend over

time, which will be investigated further, while cluster 2 seems to capture the upper �band� of historic

yield trends and cluster 3 seems to capture the lower yield observation trend.

The clustering result is shown in two views: in Figure 5.4.1 the locations of the observations

(latitude and longitude) were plotted like in a map and the markers coloured according to the highest

responsibility for each observation; in Figure 5.4.2 the observed yields were plotted against rainfall with

the markers indicating the cluster with the highest responsibility for each observation. In Figure 5.4.1,

the observations found in the respective clusters seem to be uniformly distributed in terms of location

(i.e., no pattern linked to the di�erent clusters is observed). On the other hand, in Figure 5.4.2 a clear

distinction between the clusters is observed: cluster 2 generally consists of higher yields and cluster 3

of lower yields, which is consistent with the preliminary analysis of mean yield per cluster. Cluster 1

groups selected observations with particularly high and low yields for a range of low to high rainfall

respectively. When investigating cluster 1 in some more detail, it was observed that the cloud with low

yields contains only observations from the 2015 and 2016 seasons, while the cloud of points with high

yields contains observations from the 2004 season to the 2008 season. Relating this observation back

to the parameter estimates in Equation (5.4.1) - cluster 1 is characterised by a negative relationship

between yields and rainfall as well as season. Figure 5.3.7 shows the extreme drought years in 2015

and 2016 in contrast with the relatively high yields in 2004 to 2008; keeping in mind that cluster 1

contains the highest observations in seasons 2004 to 2008 and the lowest yield observations in seasons

2015 and 2016.
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Figure 5.4.1: Map-view of yield observations coloured according to clusters
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Figure 5.4.2: Observed yield by rainfall coloured according to clusters

The residuals from the traditional mixture of Gaussian regressions model are plotted against the

predicted values in Figure 5.4.3, and are coloured according to the identi�ed clusters. Clearly the

clusters di�er from the observed groups illustrated in Figure 5.3.10. Furthermore, it is clear that some

observations in cluster 1 were overestimated (the observations in seasons 2004 to 2008) and others were

underestimated (observations from the 2015 and 2016 seasons).
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Figure 5.4.3: Residuals against predicted values, by cluster

In the following section the spatial variant mixture of regressions model will be speci�ed and �tted

to the same set of data.

5.4.2 Spatial variant mixture of regressions model

The model to be �tted can be written in the generative form as follows: Y = ∆i1Y1 + ∆i2Y2 + · · · +
∆iKYK where

∑K
j=1 ∆ij = 1 and ∆ij ≥ 0 for all i = 1, 2, . . . , N and j = 1, 2, . . . ,K

Yj = Xβj + ej

where

X =
[

1 XSeasonRain XSeason XType

]

βj =


βj,int

βj,SeasonRain

βj,Season

βj,Type
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ej ∼ i.i.d. N (0, σj) and P (∆ij = 1) = πij for j = 1, 2, . . . ,K; therefore Yj can be modelled by a

Gaussian distribution N (Xβj , σj). It is important to note here that Yj is a univariate dependent

variable, unlike the example in Section 4.3 which worked with a multivariate response variable. The

model describes a univariate mixture of Gaussian regressions model with p = 4 explanatory variables,

K = 3 clusters and N = 3213 observations of T = 1 dimensional vectors, where the ith observation

(objective yield estimate) is classi�ed into group j with probability πij .

Let the jth component mixing probabilities for observations i = 1, 2, . . . , N be random variables

or nodes in a Markov random �eld with the relevant GPS coordinates for observations i = 1, 2, . . . , N

indicating the node positions in space. Since the yield observations are not distributed uniformly across

space, the linkages between the nodes are de�ned such that each observation is linked to its 8 nearest

neighbours, found by identifying the 8 nodes with the smallest euclidean distance between the various

GPS coordinates. The ith clique Ni of the Markov random �eld is therefore de�ned as containing the

8 nearest neighbour nodes relative to node i. Following the theory set out in Section 4.2.1, the mixing

probabilities are de�ned to be distributed according to a Gibbs distribution given below

πij ∼
K∏
j=1

ξ−Nj exp

(
−
∑N
i=1

∑
m∈Ni

(πij − πmj)2

2ξ2
j

)
.

It is assumed that the errors of the mixing probabilities for clusters j = 1, 2, . . . ,K are i.i.d. N
(
0, ξ2

j

)
distributed. Algorithm 4.1 was used to estimate the model speci�ed above with parameters Θj ={
βj , σj , πij , ξ

2
j

}
for j = 1, 2, . . . ,K. The starting values for the algorithm were selected as follows:

• For βj , K random dependent and independent observation pairs (Yk,Xk) were selected and the

corresponding starting values were calculated: βj = (X′k.Xk)
−1
. (X′k.Yk).

• For σj the starting values were taken as 1
K

∑N
i=1

(
Yi − Ȳ

)2
where Ȳ = 1

K

∑N
i=1 Yi for j =

1, 2, . . . ,K.

• πij = 1
K for i = 1, 2, . . . , N and j = 1, 2, . . . ,K.

• ξ2
j = 1

K for j = 1, 2, . . . ,K.

A K = 3 cluster spatial variant mixture of regressions model was �tted to the data with the mixing

probabilities incorporating the spatial location information in the estimation as speci�ed above. The

parameter estimates and results are discussed below.

The estimated parameters (after the algorithm converged) are given in Equation (5.4.2) below.

Ŷ1 = 0.693 + 0.042.XSeasonRain + 0.054.XSeason + 1.156.XType

Ŷ2 = 0.694 + 0.048.XSeasonRain + 0.055.XSeason + 1.156.XType (5.4.2)

Ŷ3 = 0.690 + 0.032.XSeasonRain + 0.058.XSeason + 1.154.XType.
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The error variance estimates are given by

σ̂1 = 6.04

σ̂2 = 6.07

σ̂3 = 5.98

and the estimated variances of the mixing probabilities are given by

ξ̂1 = 0.0000079

ξ̂2 = 0.0000102

ξ̂3 = 0.0000091.

The estimated mixing probabilities are best displayed graphically, see Figure 5.4.4, where each

observation i = 1, 2, . . . , N is illustrated as belonging to the cluster with the largest mixing probability.

It is clear that certain areas or locations have a higher probability of belonging to cluster j than others

and that these areas are close together (e.g. the central Free State seems to have a higher probability

to belong to cluster 3). This observation is consistent with the model de�nition.

Figure 5.4.4: Estimated mixing probabilities (K = 3)
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The estimated regression models di�er from the estimated simple linear regression model, and unlike

the traditional mixture of regressions model, the estimated parameters seem to be very similar across

clusters. The sum of squared errors for the estimated spatial variant mixture of regressions model

equals SSE = 19 348, which is higher than that of the simple linear regression and the traditional

mixture of regressions model, suggesting that the spatial variant mixture of regressions model with

three clusters is not an improvement in terms of overall explanation of maize yield variance.

The estimated regression models were used to calculate predicted yields and were compared with

observed yields. The component regression models do not capture the �uctuations in maize yields

over time (mean yield per season) as well as the simple linear regression and traditional mixture of

regressions models. This observation suggests that the season covariate is fairly constant with respect

to di�erent locations in the Free State; practically, the regions where maize was planted did not change

drastically from one season to the next.

The residuals from the �tted model show that the maize yields were generally underestimated by

the spatial variant mixture of regressions model, and that the residuals form two well separated groups,

see Figure 5.4.5. It is also demonstrated that the two distinct groups in the residuals represent the

type of maize (yellow or white maize). Observing such a distinct pattern in a residuals plot indicates

that the �tted regression model is not an adequate model for the data. Due to these two distinct

groups the residuals from the spatial variant mixture of regressions model do not seem to be normally

distributed.

Figure 5.4.5: Residuals against predicted values- spatial variant mixture of regressions model



CHAPTER 5. APPLICATION: MAIZE YIELDS 86

The clustering result for K = 3 clusters is shown in a map representation in Figure 5.4.6; the obser-

vations i = 1, 2, . . . , N are illustrated as belonging to the cluster for which the estimated responsibility

(E (∆ij) = γij) is the highest. The clustering result clearly incorporates the spatial dependency infor-

mation suggesting that yield observations in spatial proximity will likely belong to the same cluster.

The cluster assignment using the responsibilities corresponds roughly with the mixing probability es-

timates illustrated in Figure 5.4.4: the central and parts of the western Free State are likely to belong

to cluster 3, large parts of the far-eastern and far-western Free State have the highest probability to

belong to cluster 1 whereas the north-eastern parts of the Free State have the highest probability of

belonging to cluster 2, together with smaller pockets throughout the western Free State. Preliminary

investigation of cluster 2 shows that this cluster has the highest mean rainfall and the locations of

cluster 2 in Figure 5.4.6 suggests smaller regions where a combination of environmental circumstances

(like microclimates) contribute to higher rainfall. Investigation of the altitude, surrounding topography

and temperatures at these locations is required to con�rm this notion.

Figure 5.4.6: Map-view of clustering result - spatial variant mixture of regressions model

Further investigation showed that the yield observations included in cluster 1 had the smallest

mean rainfall. The observations in all three clusters are evenly distributed across the seasons variable,

but cluster 1 comprises of 61% yellow maize yield observations, and cluster 2 and 3 comprise of

55% and 34% yellow maize yield observations respectively. Cluster 1 can therefore be described as

containing mostly yellow maize yield observations and cluster 3 as containing mostly white maize yield

observations. Consider this observation while comparing Figure 5.4.6 and Figure 5.3.1, and it becomes
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clear that the remark is consistent with the original data structure in that cluster 1 and 3 locations

(Figure 5.4.6 ) coincide with areas where yellow and white maize are predominantly planted (Figure

5.3.1).

Figure 5.4.7 illustrates the clustering result by plotting the observed yields against standardised

rainfall and colouring the markers according to the clusters. It seems like cluster 3 does not include

yield observations with as high rainfall values as seen in cluster 1 and 2 however the distinction is

unclear. In contrast to Figure 5.4.6, Figure 5.4.7 does not seem to clearly distinguish three de�nite

clusters.

Figure 5.4.7: Observed yield by rainfall - spatial variant mixture of regressions model

After �tting the spatial variant mixture of regressions model for K = 3 clusters the study found

that the resulting regression functions were very similar across clusters, this is evident in Figure 5.4.7.

When comparing the clustering from the spatial variant mixture of regressions model in Figure 5.4.7

with that of the traditional mixture of regressions model in Figure 5.4.2 it is clear that the clustering

result illustrated in the latter (clustering results for the traditional mixture of Gaussian regressions

model) yields more distinct clusters. However, the opposite is true when the clustering result in Figure

5.4.6 is compared with that in Figure 5.4.1; the spatial variant mixture of regressions model provides

informative spatial clustering.

Retrospectively, it is likely that this speci�c data set was not perfectly suited for the spatial vari-

ant mixture of regressions model, in that the latent variables: agronomic management practices and

microclimates, were not clearly represented in the amount or type of data available (the �tted model
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residuals in Figure 5.4.5 clearly demonstrate that the data set was not a good �t). This was also evi-

dent in the fact that the traditional mixture of regressions model clearly identi�ed distinct regression

functions across the three clusters without accounting for spatial information; whereas the spatial vari-

ant mixture of regressions model identi�ed spatially distinct clusters with relatively similar regression

functions across clusters. Ideally one would have liked to have seen spatially signi�cant clusters and

distinct regression functions in the results of the �tted spatial variant mixture of regressions model, as

was demonstrated in Section 4.3. Even though this data set has a spatial underpinning as discussed

in Section 5 and the spatial variant mixture of regressions model delivers useful spatial clustering, it

did not deliver particularly heterogeneous regression models for the identi�ed clusters; suggesting that

not all of the covariates included in the analysis have a clear spatial dependence.

What stood out however, is that the type of maize produced was the covariate that clearly di�ered

according to location (see Figure 5.4.6) and that this was also depicted in the resulting clusters (as

discussed above). On the other hand, even though rainfall di�ers slightly across regions in the Free

State - the distinction is not as clear or extreme as for the type of maize covariate. The season variable

is not location speci�c either, in that the area where maize was grown did not change drastically over

the years considered here. A lesson learned therefore is that the spatial variant mixture of regressions

model performed well in terms of distinguishing clusters and estimating their respective regression

models with respect to the variable that has a clear spatial dependence.



Chapter 6

Conclusion and future work

This study provides a detailed discussion of �nite mixture of multivariate Gaussian distributions

and the maximum likelihood estimators were derived for the general K-component case. It was demon-

strated that this model correctly identi�es and estimates the mixture components in the univariate

and bivariate cases even when the location of the mixing distributions are equal and only variances

di�er. The study also demonstrated the theory and application of the �nite mixture of multivari-

ate Gaussian regressions model. Evaluation of model performance was brie�y discussed for the �nite

mixture of multivariate Gaussian regressions model and two methods for calculating the coe�cient of

determination were put forward.

The application of mixtures of Gaussian distributions and regression models in the image segmen-

tation context was discussed. The present study reviewed the incorporation of a Markov random �eld

to model the pixel location information, and the resulting spatial variant mixture of Gaussian regres-

sions model was de�ned. An example was designed to illustrate the application of the model. The

clusters were spatially correctly identi�ed and the corresponding regression functions were accurately

estimated.

The spatial variant mixture of regressions model was applied to the agricultural context: dryland

maize yield observations in the Free State were modelled as a function of maize type, precipitation

and season (time). A traditional mixture of Gaussian regressions model was �tted for comparative

purposes, and it clearly identi�ed three distinct clusters without accounting for location information.

The spatial variant mixture of Gaussian regressions model successfully identi�ed underlying spatial

clustering, particularly with respect to the maize type covariate. However, it was found that the

estimated regression parameters were similar across clusters, suggesting that not all the covariates

contained su�cient spatial information. Keep in mind, that a statistical model inherently simpli�es

the crop production process and that a myriad of factors and interactions determine crop yields.

Retrospectively, it was found that the investigated data set was not perfectly suited for the spatial

variant mixture of regressions model, consequently this study suggests that more spatially-speci�c

covariates be included in the regression (e.g., soil type, solar radiation and temperature).

It is recommended that the following points and recommendations are investigated in future:

• Formalisation of model performance measurements for �nite mixtures of regressions models is

required.

89



CHAPTER 6. CONCLUSION AND FUTURE WORK 90

• Expand the example on the performance of the spatial variant mixture of Gaussian regressions

model to a formal simulation study [6] (using Monte-Carlo Markov Chain methodology), with a

focus on map-type images.

• Include more spatially-speci�c covariates in the spatial variant mixture of Gaussian regressions

model (e.g., soil type, solar radiation and temperature) to improve the model �t.

• Use a gridded approach to model spatial dependency for map-type data, as opposed to the

coordinates approach used in the present study.

• The random errors in the component regression models can be assumed to be skew-Gaussian

distributed (rather than ej ∼ i.i.d. N (0,Σj)) to improve model performance in real-life appli-

cations.

• Use a spatial regression model for the mixture component models rather than the simple linear

regression model.

• Bayesian modelling can be used as another way of incorporating a prior and thereby to model

spatial dependency.

The spatial variant mixture of Gaussian regressions model is a powerful tool to incorporate spatial

dependencies in the fuzzy clustering model. It has the potential to extract spatially explicit clusters and

simultaneously estimate corresponding regression models. However, the application depends on data

sets that contain discernible spatial information; various applications in the agricultural production

and consumption context will be investigated in future.



Appendix A

Results for deriving the MLE's

Lemma's for deriving the maximum likelihood estimators for the multivariate Gaussian distribution:

A.1 Lemma 1

Consider the function f (C) = 1
2N. ln |C| −

1
2 tr (CD) where C > 0 and D > 0. f (C) is at a

maximum if C = ND−1.

De�ne C0 with characteristic roots λ1, λ2, ..., λk such that C = D−
1
2 C0D−

1
2 .

Proof

f (C) =
1

2
N. ln

∣∣∣D− 1
2 C0D−

1
2

∣∣∣− 1

2
tr
(
D−

1
2 C0D−

1
2 D
)

=
1

2
N. ln

∣∣D−1C0

∣∣− 1

2
tr
(
D−1DC0

)
=

1

2
N. ln

∣∣D−1
∣∣+

1

2
N. ln |C0| −

1

2
tr (C0)

=
1

2
N. ln

∣∣D−1
∣∣+

1

2

k∑
i=1

{N. ln (λi)− λi} (A.1.1)

Let g (λ) = N. ln (λ)−λ. Find λ which maximises g (λ) by taking the derivative and setting it equal

to zero:

d

dλ
g (λ) = 0

N

λ
− 1 = 0

N = λ

Take the second derivative to con�rm that this is indeed a maximum:
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d2

d2λ
g (λ) |λ=N =

−N
λ2
|λ=N

=
−1

N
< 0

therefore g (λ) is maximised where λ = N . It follows therefore that A.1.1 is maximised where the

characteristic roots of C0 are equal to N ; C0 = I.N . Therefore, f (C) is maximised where

C = D−
1
2 C0D−

1
2

= D−
1
2 I.ND−

1
2

= N.D−1

?

A.2 Lemma 2 - Maximum likelihood estimators of the multi-

variate Gaussian distribution

Suppose Y1,Y2, ...,YN, N > p is a random sample of N (p× 1) vector observations form a

N (µ,Σ)distribution with µ : p× 1. Let Y = (Y1,Y2, ...,YN). Then E (Y) = (µµ ... µ) = µ1′. The

observed sample is y = (y1,y2, ...,yN).

a)
It can be shown that

∑N
α=1 (yα − µ) ′Σ−1 (yα − µ) = tr

[
Σ−1 (y − µ1′) (y − µ1′) ′

]
Proof

N∑
α=1

(yα − µ)
′
Σ−1 (yα − µ) =

N∑
α=1

tr
[
(yα − µ) ′Σ−1 (yα − µ)

]
(trace of a constant)

= tr

[
N∑
α=1

(yα − µ) ′Σ−1 (yα − µ)

]
(sum of a trace)

= tr
[
(y − µ1′) ′Σ−1 (y − µ1′)

]
= tr

[
Σ−1 (y − µ1′) (y − µ1′) ′

]
(trace multiplication)

?

b)
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The likelihood function of the multivariate Gaussian distribution is given by

L (µ,Σ) =
1

(2π)
Np/2 |Σ|N/2

. exp

(
−1

2
tr
(
Σ−1 (y − µ1′) (y − µ1′) ′

))

Proof

L (µ,Σ) =

N∏
α=1

[
1

(2π)
p/2 |Σ|1/2

exp

(
−1

2
(yα − µ) ′Σ−1 (yα − µ)

)]

=
1

(2π)
Np/2 |Σ|N/2

exp

(
−1

2

N∑
α=1

(yα − µ) ′Σ−1 (yα − µ)

)

=
1

(2π)
Np/2 |Σ|N/2

exp

(
−1

2
tr
(
Σ−1 (y − µ1′) (y − µ1′) ′

))
(using result in a))(A.2.1)

?

c)
L (µ,Σ) can be written in terms of ȳ = 1

N

∑N
α=1 yα and A =

∑N
α=1 (yα − ȳ) (yα − ȳ) ′ =

(y − ȳ1′) (y − ȳ1′) ′:

L (µ,Σ) =
1

(2π)
Np/2 |Σ|N/2

exp

{
−1

2
trΣ−1A− N

2
(ȳ − µ) ′Σ−1 (ȳ − µ)

}

Proof

(y − µ1′) (y − µ1′) ′ =

N∑
α=1

(yα − µ) (yα − µ) ′

=

N∑
α=1

((yα − ȳ) + (ȳ − µ)) ((yα − ȳ) + (ȳ − µ)) ′

= A +N(ȳ − µ) (ȳ − µ)
′

(A.2.2)

since the cross products are a zero matrix, e.g.:
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N∑
α=1

= (yα − ȳ) (ȳ − µ)
′

=

(
N∑
α=1

yα −
N∑
α=1

ȳ

)
(ȳ − µ)

′

= (N ȳ −N ȳ) (ȳ − µ)
′

= 0

Therefore, the result in c) is proven by combining the result in Equation (A.2.1) and (A.2.2):

L (µ,Σ) =
1

(2π)
Np/2 |Σ|N/2

exp

(
−1

2
tr
(
Σ−1

(
A +N(ȳ − µ) (ȳ − µ)

′)))
=

1

(2π)
Np/2 |Σ|N/2

exp

{
−1

2
trΣ−1A− N

2
(ȳ − µ) ′Σ−1 (ȳ − µ)

}
(A.2.3)

?

d)
The maximum likelihood estimator for Σ is given by Σ̂ = 1

NA = 1
N

∑N
α=1 (yα − ȳ) (yα − ȳ) ′

Proof
From Equation (A.2.3) it follows that lnL (µ,Σ) = −Np

2 ln (2π)+N
2 ln |Σ|−1− 1

2 trΣ
−1A−N2 (ȳ − µ) ′Σ−1 (ȳ − µ) .

We see that since Σ−1 is positive de�nite, L (µ,Σ) is maximised for any Σ if ȳ = µ; µ̂ = ȳ.

If we then want to maximise L (µ,Σ) in terms of Σ, when ȳ = µ , we need to maximise lnL (µ,Σ) =
N
2 ln |Σ|−1 − 1

2 trΣ
−1A.

Applying Lemma 1; set C = Σ−1 and D = A then lnL (µ,Σ) is maximised where Σ̂
−1

= NA−1;

therefore Σ̂ = 1
NA = 1

N

∑N
α=1 (yα − ȳ) (yα − ȳ) ′

?



Appendix B

Standard statistical results used

throughout this document

Table B.0.1: Standard statistical results

Description Result

Bayes' rule P (A ∩B|C) = P (A|B,C) .P (B|C)
Conditional probability P (A ∩B) = P (A|B) .P (B)

Law of total probability P (A|B) = P (Bl).P (A|Bl)∑
j P (Bj).P (A|Bj)

Trace of a constant tr (c) = c where c is a constant
Sum of a trace tr (A+B) = tr (A) + tr (B)

Trace multiplication tr (AB) = tr (BA)
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