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Abstract: This paper explores the potential diversification benefits of socially responsible investments
for conventional stock portfolios by examining the risk spillovers and dynamic correlations between
conventional and sustainability stock indexes from a number of regions. We observe significant
unidirectional volatility transmissions from conventional to sustainable equities, suggesting that
the criteria applied for socially responsible investments do not necessarily shield these securities
from common market shocks. While significant dynamic correlations are observed between
sustainable and conventional stocks, particularly in Europe, the analysis of both in- and out-of-sample
dynamic portfolios suggests that supplementing conventional stock portfolios with sustainable
counterparts improves the risk/return profile of stock portfolios in all regions. The findings overall
suggest that sustainable investments can indeed provide diversification gains for conventional stock
portfolios globally.
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1. Introduction

In the wake of the recent global financial crisis, enormous negative impacts have been felt by
conventional institutions and markets. Understandably, a need has been felt for exploring alternatives
to conventional financial practices in order to reduce investment risks, increase returns, enhance
financial stability, and reassure investors and financial markets. In this regard, academic research on
socially responsible investing (SRI), though originally initiated by religious groups like Quakers
and Methodists around the eighteenth century [1], has intensified, as has received attention in
popular media (http://www.ussif.org/). One reason for the increased interest in SRI investments is
that they combine the pursuit of financial returns with non-financial considerations relating to the
environment, social issues, and governance (ESG), and hence, are perceived to be less risky compared
to conventional alternatives.

As will be seen from the literature review segment below, research on SRI has primarily focused on
the risk–return characteristics of these securities in relation to conventional investments. A missing area
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of research in this regard is whether these securities offer diversification opportunities for conventional
investments, based on a formal portfolio allocation exercise. Against this backdrop, our study is the
first to address the issue of diversification (or risk hedging) between SRI and conventional investments
by considering the regime-switching and volatility interactions between these two types of assets for
the entire world economy and a number of regions including North America, Europe and Asia-Pacific.
It must be noted that North America and Europe are the largest regions in terms of SRI assets,
accounting for 99 percent of the global share for sustainable investing assets [2]. To that end, by
examining the risk spillovers and dynamic correlations across SRI investments and conventional assets
from different regions, this study provides a comparative analysis of the interaction of these assets
with conventional markets, thus enlarging our understanding of whether or not socially responsible
investing can indeed benefit investors financially.

In addition to the analysis of dynamic interactions across conventional and SRI assets, we
also derive dynamic hedging strategies by adopting a Markov regime-switching Generalized
Autoregressive Conditional Heteroskedasticity GARCH model with dynamic conditional correlations
(MS-DCC-GARCH). This model allows us to capture both the time-variation in conditional volatility of
the markets under consideration according to different regimes and their dynamic links (correlations).
By utilizing a time-varying regime-switching specification, we not only account for the well-established
nonlinearity that exists in financial markets, but also examine the possibility that SRI significantly
reduces the downside risk [3]. Our spillover tests yield significant unidirectional volatility
transmissions from conventional to sustainable equities, suggesting that the criteria applied for
socially responsible investments do not necessarily shield these securities from common market shocks.
While the results from the MS-DCC-GARCH model indicates significant time variation in the dynamic
correlations between conventional and sustainable equities, particularly in Europe, the analysis of
both in- and out-of-sample portfolios suggests that supplementing conventional stock portfolios
with sustainable counterparts improves the risk/return profile of stock portfolios in all regions.
Improvement in risk adjusted returns is particularly striking for the broader world index and the
Asia-Pacific region when the negative risk adjusted returns for undiversified, conventional portfolios
turn around to positive values when the conventional index is supplemented by the sustainable
counterpart. However, our portfolio analysis also suggests that these diversification gains can only
be achieved by implementing an investment strategy that aims to minimize portfolio risk and utilize
sustainable assets in the short leg of the portfolio. The findings overall provide useful guidance for
the implementation of effective SRI risk management and for policy regulations. A significant finding
of this study is that socially responsible investment does not result in lower risk-adjusted portfolio
returns when information on market regimes and dynamic investing strategies are used. This finding is
important since it implies that individual investors and fund managers can pursue socially responsible
investments without sacrificing returns.

The remainder of the study is organized as follows: Section 2 summarizes the relevant literature
and Section 3 presents the MS-DCC-GARCH model used in the analysis. Section 4 describes the data
and presents the estimation results, volatility spillover tests and dynamic correlation analysis. Section 5
provides the in- and out-of-sample portfolio performance comparisons and Section 6 concludes
the paper.

2. Literature Review

In his pioneering works [4,5], Markowitz lay the foundation for the efficient diversification of
investment portfolios and how spreading out a portfolio’s holdings across various assets can improve
the risk/return profile for investors. In applications of this concept to socially responsible investments,
a number of studies including [1,3,6–9] claim that non-financial elements provide SRI investors with
extra utility or satisfaction. In addition, as pointed out by [1,9–12], SRI investors tend to believe
that ESG factors materially affect the returns in a positive way, which, in turn, can lead to lower
costs involved in the avoidance or minimization of environmental and reputational risks, and better
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management and better customer satisfaction that eventually impacts revenues in a positive way.
Possibly, these are the reasons that have led the global SRI (sustainable investment) market to grow
steadily both in absolute and relative terms. According to the Global Sustainable Investment Review
of 2014 [2], released by the Global Sustainable Investment Association (GSIA), SRI has risen from
$13.3 trillion at the outset of 2012 to $21.4 trillion at the start of 2014, which corresponds to an increase
from 21.5 percent to 30.2 percent of the professionally managed assets in Europe, the United States,
Canada, Asia, Japan, Australasia and Africa.

With support for SRI expanding since the 1960s due to the rise of the civil rights movement,
environmentalism and concerns about globalization [1], formal research in this area is not new, and can
be associated first with [13]. There are now a number of studies on SRI which have investigated the
following aspects, primarily through the lens of mutual funds, but also through regional SRI indexes
for not only the US, but also Europe and other major developed economies. (a) Performance (i.e.,
risk–return characteristics relative to conventional indexes), using mutual funds and broad market
indexes [11,12,14–38] and at firm-level [3,34,39–45]. These studies, however, fail to provide clear-cut
empirical evidence on whether SRI does yield higher returns after adjusting for risks. Similarly, studies
on (b) ratings [46–48], and (c) screenings [49] in terms of sustainability, do not seem to provide clear
cut evidence in terms of higher returns either. Studies of (d) predictability and determinants of returns
and volatility [50,51], highlight the role of various forms of uncertainties related to economic policies;
and (e) co-movements of SRI indexes and with conventional indexes across various regions [1,52] have
been shown to exist, especially when nonlinearity is taken into account.

As can be seen from the above discussion, research on SRI has primarily focused on the risk–return
characteristics of these securities in relation to conventional investments. A missing area of research in
this regard is whether these securities offer diversification opportunities for conventional investments,
based on a formal portfolio allocation exercise. Some tangential discussion regarding diversification
is available in [52], where cointegration analysis is performed for the US between the Dow Jones
Sustainability Index and the Dow Jones Industrial Average Index. The authors show that while there
is no evidence of linear cointegration due to nonlinearity and regime changes, cointegration can be
detected using a quantile-regression based approach. This paper then goes on to suggest that this result
implies that there are no long-run diversification opportunities in the US between SRI and conventional
investments. However, no formal portfolio allocation exercise is performed by [52], which is what
we aim to address in this paper based on a MS-DCC-GARCH model, i.e., a variant of the original
DCC-GARCH model of [53], with Markov-switching (as detailed in [54]). Note that these types of
models have also been widely used in analyzing hedges and safe-haven properties of various assets
(see [55] for a detailed discussion in this regard) and also comparing Islamic and conventional equities
(see for example, [56] for further details), with the latter being somewhat related to our analysis, given
the importance of Sharia rules imposed on screening the equities included in Islamic indices.

3. Methodology

The dynamic conditional correlation (DCC) model used in the study follows [57–59] and more
recently [60]. Let Rt = [Rs,t, Rc,t]′ be the (2 × 1) vector of returns where Rs,t and Rc,t are the return on
SRI represented by a sustainability index and the return on conventional investment represented by a
conventional market index, respectively. The model is constructed in a bivariate fashion with pairs
of SRI and conventional investment returns for the entire world economy and a number of regional
indexes representing North America, Europe, and Asia-Pacific. The GARCH specification for the
volatility spillover model follows [61] and is specified as

Rt = Φ0 +
p
∑

i=1
ΦiRt−i + εt

εt = Dtzt

(1)
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where Dt = diag(h1/2
s,t , h1/2

c,t ) is the vector of the conditional volatility terms. The conditional mean
of the return vector Rt is specified as a vector autoregressive (VAR) process of order p with (2 × 2)
parameter matrices Φi, i = 1, 2, ..., p. The unexplained component εt follows a GARCH specification
described as εt|ψt−1 ∼ ID(0, Pt) where Pt is the time-varying variance–covariance matrix. Denoting
the conditional variance matrix as Ht = [hs,t, hc,t]′, we impose the following specification which allows
for volatility spillover in the model

Ht = c + Aε
(2)
t−1 + BHt−1 (2)

where c is a (2 × 1) vector of constants, A and B are (2 × 2) matrices for the ARCH and GARCH
effects and ε

(2)
t = [ε2

s,t, ε2
c,t]
′. Note that the non-diagonal forms of the matrices A and B allow

volatility spillovers across the series. Following [52], we allow conditional correlations to vary
over time by specifying the variance–covariance matrix as Pt = DtΓtDt where Γt is the conditional
correlation matrix.

A distinct feature of the model is that the conditional correlation matrix, Γt, is characterized
by regime-switching as governed by a discrete Markov process and is defined as Γt =

diag{Qt}−1/2Qtdiag{Qt}−1/2. In order to incorporate regime shifts into the DCC model shown
in Equations (1) and (2), we follow [57] and introduce a Markov regime-switching dynamic correlation
model by specifying Qt as

Qt = [1− α(st)− β(st)]Q + α(st)ε
(2)
t−1 + β(st)Qt−1 (3)

where Q is the unconditional covariance matrix of the standardized residuals. In Equation (3), α(st)

and β(st) are the regime-dependent parameters that control the regime-switching system dynamics
where st ∈ {1, 2} is the state or regime variable following a first-order, two-state discrete Markov
process. Note that the variances in this specification are regime-independent whereas the covariances
(or correlations) are both time-varying and regime-switching (We estimate the MS-DCC-GARCH
model using the two-step approach of [53,62]. In the second step, we use the modified Hamilton filter
proposed by [57] to solve the path-dependence problem [63–65] and estimate the regime-switching
conditional covariances accordingly). As [57] note, the specification in which all parameters are regime
dependent is highly unstable due to the large number of switching parameters. Therefore, we restrict
the regime dependent structure to the time-varying correlations only. Thus, the model allows both
volatility spillovers and regime-switching dynamic correlations. The specification is then completed
by defining the transition probabilities of the Markov process as pij = P(st+1 = i

∣∣st = j) where pij is
the probability of being in regime i at time t + 1 given that the market was in regime j at time t with
regimes i and j taking values in {1, 2}. Finally, the transition probabilities satisfy ∑2

i=1 pij = 1.
The MS-DCC-GARCH model we specified above has several advantages over the standard

DCC-GARCH model. Caporin and McAleer [66] lists and explains ten limitations of the standard
DCC-GARCH model. Most of these are technical and the extent of their significance are not well
known. How important the technical issues are, usually depends on the complexity of the specification
and how far the data is from the assumptions. Two of the limitations, however, might have series
consequences for the portfolio analysis. First, as pointed out by [66], the dynamic conditional
correlations of the standard DCC-GARCH model are specified for the standardized residuals
and, indeed, the standard DCC-GARCH model does not yield dynamic conditional correlations.
Second, the standard DCC-GARCH model is not dynamic empirically, because the effect of news
in this model is inherently extremely small. Additionally, the standard DCC-GARCH model is a
single regime model and completely ignores the typical regime-switching behavior of the financial
markets. The MS-DCC-GARCH model used in this study does not have these three limitations of
the standard DCC-GARCH models. The MS-DCC-GARCH model has dynamic conditional time
varying correlations, is asymmetric in its treatment of the conditional variance matrix and, therefore,
is inherently dynamic.
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4. Empirical Findings

4.1. Data

In our empirical analysis, we use daily data for Dow Jones sustainability and conventional indices
obtained from Datastream. The conventional indices include the Dow Jones global indices for the
World (GLOBAL), North America (AMRCS), Europe (EUROPE) and Asia-Pacific (ASPCF). Similarly,
the corresponding Dow Jones sustainability indices for the above-mentioned regions are denoted by
SIWORLD, SINAMR, SIEUROPE, and SIASPCF, respectively. The sample period is from 1 January
2004 to 2 September 2015, including 3044 observations. Table 1 presents the descriptive statistics for
logarithmic returns.

Table 1. Descriptive statistics for returns (%).

SIWOLRD SINAMRC SIEUROPE SIASPCF GLOBAL AMRCS EUROPE ASPCF

Mean 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01
S.D. 1.14 1.14 1.45 1.32 1.10 1.22 1.42 1.16
Min −7.77 −8.99 −9.93 −10.33 −7.89 −9.74 −10.13 −9.11
Max 8.84 9.45 10.46 10.84 9.88 10.51 10.51 9.01

Skewness −0.30 −0.42 −0.09 −0.34 −0.44 −0.48 −0.12 −0.47
Kurtosis 8.95 11.30 7.59 6.35 9.89 11.40 7.58 6.72

JB 10,227.42 *** 16,313.24 *** 7318.62 *** 5190.91 *** 12,516.18 *** 16,620.02 *** 7301.17 *** 5855.89 ***
Q(1) 34.07 *** 16.53 *** 1.14 0.96 85.75 *** 9.92 *** 0.10 1.32
Q(5) 57.59 *** 31.22 *** 29.83 *** 7.18 98.61 *** 19.57 *** 26.79 *** 4.34

ARCH(1) 120.66 *** 202.02 *** 113.33 *** 94.02 *** 152.65 *** 140.80 *** 100.00 *** 82.70 ***
ARCH(5) 798.47 *** 797.38 *** 593.67 *** 899.63 *** 915.00 *** 789.89 *** 611.35 *** 837.62 ***

n 3044 3044 3044 3044 3044 3044 3044 3044

Pearson Correlation Coefficient Estimates

World Americas Europe Asia-Pacific

Full
sample 0.966 0.987 0.995 0.976

Subprime
Crises
Period

0.967 0.992 0.996 0.985

Note: This table gives the descriptive statistics for logarithmic returns. SIWORLD, SINAMR, SIEUROPE, and
SIASPCF denote Dow Jones Sustainability Indices (DJSI) for the World, North America, Europe, and Asia-Pacific,
respectively, while GLOBAL, AMRCS, EUROPE, and ASPCF denote Dow Jones conventional Global Indices
(DJGI) for the World, Americas, Europe and Asia-Pacific. The daily data covers the period 1 January 2004 to
2 September 2015 with n = 3044 observations. In addition to the mean, the standard deviation (S.D.), minimum
(min), maximum (max), skewness, and kurtosis statistics, the table reports the Jarque–Bera normality test (JB), the
Ljung–Box first (Q(1)), the fourth (Q(5)) autocorrelation tests, and the first (ARCH(1)) and the fourth (ARCH(5))
order Lagrange multiplier (LM) tests for the autoregressive conditional heteroscedasticity (ARCH), and Pearson
correlations coefficient estimates. Full sample and subprime mortgage crises period (December 2007–June 2009)
Pearson correlation coefficients are reported for World, Americas, Europe, and ASIA-Pacific, which represented the
sustainability and conventional index pairs, (SIWORLD GLOBAL), (SINAMRC AMRCS), (SIEUROPE UROPE),
and (SIASPCF ASPCF), respectively. The asterisks ***, ** and * represent significance at the 1%, 5%, and 10%
levels, respectively.

Despite similar values for mean returns, we generally observe higher return volatility for the
sustainability indices compared to their conventional counterparts. It can be argued that the economic,
environmental and social criteria applied in the selection of firms to be included in these indices
limit the potential to mitigate idiosyncratic risks in these portfolios, thus leading to higher return
volatility compared to broader based conventional indices. On the other hand, all return series exhibit
negative skewness, implying greater likelihood of experiencing losses. Similarly, all return series have
kurtosis values higher than the normal distribution, implying the presence of extreme movements. It is
possible that the inclusion of the global financial crisis (GFC) in the sample period drives the patterns
observed in higher order moments. The impact of the GFC is evident in the time series plots presented
in Figure 1. Both conventional and sustainable stock indices sustained significant losses during the
2007/2008 crisis period and then again during early 2012 at the height of the Eurozone crisis.
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America, Europe, and Asia-Pacific, respectively. 

Table 1 also reports the Pearson correlation coefficient estimates for the pairs of sustainability 
and conventional indices for each of the four regions, i.e., World, North America, Europe, and Asia-
Pacific. The correlations coefficients are reported both for the full sample and the subprime mortgage 
crises period (December 2007–June 2009) for comparison purposes. Estimates of the correlation 
coefficients for all regions, both in the full sample and subprime mortgage crises period, are found to 
be above 96%, suggesting a high degree of co-movement across sustainable and conventional 
investment returns. While we observe the highest correlation estimates in the case of Europe, we see 
that correlations do not exhibit a significantly different pattern during the subprime mortgage crises 
period. 

4.2. Model Identification 

The MS-DCC-GARCH model requires prior identification of the VAR order p in Equation (1) 
and univariate GARCH models that are used to obtain conditional volatility estimates in Equations 

Figure 1. Time-series plots of conventional and sustainability indexes. Note: This figure provides the
plots of the daily levels of the conventional and sustainability indices for the period 1 January 2004 to
2 September 2015. SIWORLD (GLOBAL), SINAMR (AMRCS), SIEUROPE (EUROPE), and SIASPCF
(ASPCF) denote Dow Jones Sustainability (Conventional Global) Indices for the World, North America,
Europe, and Asia-Pacific, respectively.

Table 1 also reports the Pearson correlation coefficient estimates for the pairs of sustainability and
conventional indices for each of the four regions, i.e., World, North America, Europe, and Asia-Pacific.
The correlations coefficients are reported both for the full sample and the subprime mortgage crises
period (December 2007–June 2009) for comparison purposes. Estimates of the correlation coefficients
for all regions, both in the full sample and subprime mortgage crises period, are found to be above 96%,
suggesting a high degree of co-movement across sustainable and conventional investment returns.
While we observe the highest correlation estimates in the case of Europe, we see that correlations do
not exhibit a significantly different pattern during the subprime mortgage crises period.
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4.2. Model Identification

The MS-DCC-GARCH model requires prior identification of the VAR order p in Equation (1) and
univariate GARCH models that are used to obtain conditional volatility estimates in Equations (2) and
(3). We first identified the univariate GARCH models using the Akaike information criterion (AIC)
to fit the GARCH(1,1) models with a conditional mean that is specified as an autoregressive process
of order p, AR(p), leading to a AR(p)-GARCH(1,1) model. We selected the AR order p using the AIC.
In order check for possible misspecifications, we performed conditional heteroskedasticity and serial
correlation diagnostics. The Lagrange multiplier (LM) test was used for conditional heteroskedasticity
diagnosis, while the Ljung–Box portmanteau test (Q) was used for the serial correlation diagnostic.

Table 2 reports the diagnostics for the univariate AR(p)-GARCH(1,1) model and also presents the
selected AR orders p where the maximum p was set equal to 10. The selected AR orders vary from 0
to 5 and Ljung–Box tests with the orders 10 and 20 show that the selected orders were sufficient to
capture serial correlations in the series. The LM tests do not reject the null of no first order ARCH
effects even at the 10% level, except SINAMRC, for which non-rejection occurred only at the 1% level.
Given the results in Table 2, we decided that a GARCH(1,1) specification with the AR orders selected
by the AIC sufficiently models the conditional heteroskedasticity in all series. In order to select the
VAR orders in Equation (1), we used the Bayesian information criterion (BIC) with a maximum order
equal to 10. The BIC selected an order of one for all four VAR specifications for the four regions. Finally,
the MS-DCC-GARCH models were estimated using the maximum likelihood (ML) method based on
these specifications.

Table 2. Univariate AR(p)-GARCH(1,1) fit diagnostics.

ARCH-LM(1) JB Q(10) Q(20) p

SIWOLRD
2.724 197.383 *** 5.454 19.214

4(0.010) (<0.001) (0.793) (0.443)

SINAMRC
5.277 ** 427.863*** 6.409 17.684

2(0.022) (<0.001) (0.698) (0.544)

SIEUROPE
0.122 230.330 *** 4.802 16.135

0(0.727) (<0.001) (0.851) (0.648)

SIASPCF
0.001 92.166 *** 4.638 11.789

4(0.980) (<0.001) (0.865) (0.895)

GLOBAL
2.160 244.572 *** 4.439 19.661

4(0.142) (<0.001) (0.880) (0.415)

AMRCS
5.790 436.193 *** 7.645 18.204

2(0.016) (<0.001) (0.570) (0.509)

EUROPE
0.294 220.475 *** 4.543 16.985

0(0.588) (<0.001) (0.872) (0.591)

ASPCF
0.311 160.252 *** 7.192 16.732

4(0.577) (<0.001) (0.617) (0.608)

Note: The table reports diagnostic tests for univariate autoregressive GARCH model fits. An AR(p)-GARCH(1,1)
model was fitted to each series. The AR order p was selected by the Akaike information criterion (AIC). Table
reports the Jarque–Bera normality test (JB), the Ljung-Box 10th (Q(10)) and the 20th (Q(20)) autocorrelation tests,
and the first (ARCH(1)) order Lagrange multiplier (LM) tests for the autoregressive conditional heteroscedasticity
(ARCH). The p-values of the tests are given in parentheses. The asterisks ***, ** and * represent significance at the
1%, 5%, and 10% levels, respectively. The symbol “>” signifies “less than” the number it precedes.

4.3. Volatility Spillover Tests

Table 3 presents the parameter estimates for the MS-DCC-GARCH model described in
Equations (1)–(3). As explained earlier, the model is structured to allow for possible bidirectional
volatility spillovers across the sustainable and conventional market segments for each global and
regional index examined. We observe in Panel A generally insignificant shock spillovers across
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the sustainable and conventional markets, indicated by insignificant aij (i 6= j) estimates for all
regional indexes. On the other hand, significant and positive volatility spillovers are observed from
conventional to sustainable indices, implied by highly significant b12 estimates consistently for each
region. This finding suggests that uncertainty regarding global equity markets spills over to the
market for sustainable stocks, driving return volatility in this market segment. Risk transmissions,
however, are found to be unidirectional, implied by insignificant spillover effects from sustainable
to conventional indexes. It can thus be argued that sustainable stocks do not necessarily exhibit
segmentation from their conventional counterparts and are driven by the common fundamental
uncertainties affecting equity markets globally. The findings also suggest that the criteria applied in
the identification of socially responsible investments do not necessarily shield these stocks from equity
market shocks.

Table 3. Estimates of the MS-DCC-GARCH model.

Parameters
Models

World Americas Europe Asia-Pasiific

Panel A: Spillover parameters

cs 0.0033 (0.0139) 0.0159 (0.0099) 0.0052 (0.0371) 0.0319 (0.0289)
cc 0.0159 (0.0305) 0.0176 (0.0378) 0.0202 (0.0672) 0.0168 (0.0317)

as,s 0.0358 (0.0304) 0.0162 (0.0303) 0.0189 (0.0821) 0.0173 (0.0562)
as,c 0.0633 (0.7564) 0.0249 (1.9827) 0.0082 (2.8751) 0.0110 (2.8601)
ac,s 0.0252 (0.8179) 0.0582 (1.7571) 0.0593 (2.9988) 0.1014 (3.7029)
ac,c 0.0337 *** (0.0106) 0.0786 *** (0.0092) 0.0772 ** (0.0365) 0.0945 *** (0.0192)
bs,s 0.1266 *** (0.0265) 0.1496 *** (0.0388) 0.2183 *** (0.0590) 0.1549 *** (0.0229)
bs,c 0.4627 *** (0.0253) 0.6228 *** (0.0306) 0.4593 *** (0.0721) 0.3965 *** (0.0526)
bc,s 0.8503 (0.6626) 0.6612 (2.3041) 0.7239 (2.9214) 0.9425 (2.1682)
bc,c 0.4003 (0.7189) 0.3353 (2.0511) 0.4324 (3.0450) 0.3686 (2.8084)

Panel B: DCC parameters

α(st = 1) 0.0181 *** (0.0036) 0.0427 *** (0.0040) 0.0880 *** (0.0054) 0.0361 *** (0.0060)
β(st = 1) 0.9750 *** (0.0063) 0.9430 *** (0.0058) 0.8528 *** (0.0102) 0.9553 *** (0.0147)
α(st = 2) 0.0677 *** (0.0250) 0.0839 *** (0.0108) 0.1073 *** (0.0301) 0.0778 * (0.0444)
β(st = 2) 0.7769 *** (0.0999) 0.8730 *** (0.0172) 0.8095 *** (0.0602) 0.8314 *** (0.1668)

Panel C: Regime Inference

log L of MS-DCC −4029.247 −3084.625 −2785.198 −4495.000
log L of DCC −5103.762 −4034.694 −3898.901 −5275.907

AIC of MS-DCC 2.661 2.041 1.844 2.968
AIC of DCC 3.360 2.658 2.569 3.474

LR linearity Test 2149.030 *** 1900.138 *** 2227.405 *** 1561.813 ***
p11 0.982 0.984 0.969 0.979
p22 0.935 0.930 0.889 0.930
n1 2387.100 2478.600 2377.700 2352.100
n2 655.900 564.400 665.300 690.900

Prob(Regime 1) 0.781 0.812 0.781 0.770
Prob(Regime 2) 0.219 0.188 0.219 0.230

Duration of Regime 1 55.140 61.670 32.080 47.740
Duration of Regime 2 15.420 14.320 8.980 14.220

Note: This table reports the estimates of the MS-DCC-GARCH model given in Equations (1)–(3). The matrix R for
the World, Americas, Europe, and Asia-Pacific models are formed as R = (SIWORLD GLOBAL), R = (SINAMRC
AMRCS), R = (SIEUROPE UROPE), and R = (SIASPCF ASPCF), respectively. The GARCH part of the model is
specified as a GARCH(1,1). The subscript s denotes the SRI return series while subscript c denotes conventional
return series. The models are estimates over the full sample period 1 January 2004–2 September 2015 with
n = 3044 observations. The lag order for the Vector Autoregressive VAR part of the model was selected by the AIC
and is one for all four models. The MS-DCC-GARCH model was estimated using the maximum likelihood (ML)
method. The likelihood ratio (LR) linearity test is reported with p-value of the [67]. Standard errors of the estimates
are given in parentheses. log L stands for the log likelihood, pii for the regime transition probabilities, Prob (Regime
i) for the ergodic (limit) probability of regime i, and ni for the number of observations falling in regime i according
to the ergodic probability. ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively.
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Examining the volatility persistence coefficients measured by (aii + bii), we generally observe
moderate to weak volatility persistence, relatively weaker in the case of sustainable indexes.
The volatility persistence coefficients for the conventional (sustainable) indices are estimated as
0.433 (0.162), 0.413 (0.165), 0.509 (0.237), and 0.463 (0.172) for the World, Americas, Europe, and
Asia-Pacific regions, respectively. Considering positive own volatility shocks observed in the case
of sustainable indexes, implied by highly significant b11 estimates, it can be argued that historical
information on return and volatility in sustainable equity markets could be utilized in forecasting
future volatility despite the evidence of weak volatility persistence in these markets.

Formal tests of causality in volatility between the conventional and sustainable stock markets
are presented in Table 4. Four alternative spillover tests are utilized to test the null hypothesis of no
unidirectional volatility spillover from market X to market Y (X⇒ Y) and no bidirectional spillover
between markets X and Y (X⇔ Y). The first test is a Wald test involving two zero restrictions on the
relevant parameters in matrices A and B in Equation (2). The next two tests are the LM-based robust
(NT-R) and non-robust (NT-NR) tests of causality in conditional variance proposed by [68]. Finally, the
fourth test (HH) is the Hafner-Herwartz [69] LM test of causality on conditional variance.

Table 4. Volatility spillover tests.

Test Type Wald NT-R NT-NR HH

Panel A: Unidirectional volatility spillovers from conventional to sustainable

H0 : GLOBAL⇒ SIWORLD 26.0335 *** 33.5088 *** 9.9801 *** 7.9773 **
H0 : AMRCS⇒ SINMARC 3.9563 1.7234 5.2534 2.3548

H0 : EUROPE⇒ SIEUROPE 6.9236 3.9381 5.1069 9.6125 **
H0 : ASPCF⇒ SIASPCF 7.2269 5.2085 4.9439 7.6233

Panel B: Unidirectional volatility spillovers from sustainable to conventional

H0 : SIWORLD⇒ GLOBAL 5.7180 * 9.9768 *** 13.6846 *** 3.0029
H0 : SINMARC⇒ AMRCS 1.8908 1.1614 5.285 2.1588

H0 : SIEUROPE⇒ EUROPE 4.4583 2.2569 3.0597 0.338
H0 : SIASPCF⇒ ASPCF 4.7144 3.1005 2.1225 0.3585

Panel C: Bi-directional volatility spillovers between sustainable and conventional

H0 : GLOBAL⇔ SIWORLD 19.4387 *** 0.2948 32.5822 *** 42.6304 ***
H0 : AMRCS⇔ SINMARC 5.847 2.8848 10.5384 ** 4.5136

H0 : EUROPE⇔ SIEUROPE 11.3819 ** 6.195 8.1666 * 9.9505 **
H0 : ASPCF⇔ SIASPCF 11.9413 ** 8.3090 * 7.0664 7.9818 *

Note: The table reports causality tests for testing the null hypothesis of no one unidirectional volatility spillover
from variable X to variable Y, demoted, X ⇒ Y as well as the bidirectional volatility spillover, denoted X ⇔ Y.
The Wald tests for testing the no volatility spillover restrictions were imposed on Equation (1). The tests report
that the tests are distributed as Chi-square with 2 and 4 degrees of freedom, respectively, for unidirectional and
bidirectional tests. The HH test is the [69] LM test of causality on conditional variance. NT-R is the [68] robust test
of the causality in conditional variance, while the NT-NR is the non-robust version of the [68] test. HH, NT-R, and
NT-NR tests are LM tests and the univariate specification for conditional variances is a GARCH(1,1) model. We
compute HH, NT-R, and NT-NR tests to tests only causality in conditional variance from X variable (Japan or US) to
Y variable. ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively.

Examining the unidirectional spillover tests from the conventional to sustainable indices reported
in Panel A, we find that all four tests consistently reject no causality in variance in the case of the broader
world index, further supporting prior evidence of significant volatility spillovers from conventional
to sustainable stocks. Although not as consistently significant as in the conventional-to-sustainable
case, some evidence of volatility spillover in the opposite direction is also found for the world index
in Panel B, supported particularly by the causality tests of [68]. On the other hand, the formal
unidirectional tests for the other regions reported in Panels A and B did not generally yield evidence
of risk transmissions in either direction for regional indices. The tests for bidirectional spillover effects
reported in Panel C further support prior findings for the world index, indicating bi-directional risk
transmissions across the sustainable and conventional stock indices. On the other hand, we observe
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largely inconsistent test results for regional indices, consistent with the findings in Panels A and B.
Overall, the format tests clearly indicate significant risk transmissions from conventional to sustainable
stocks in the case of the world index while somewhat weaker evidence of volatility spillover in the
opposite direction is also observed.

4.4. Dynamic Correlations

The regime-switching specification that governs the data is tested against the static alternative
using a battery of specification tests including the likelihood ratio (LR) linearity test with a p-value
of [64], further supported the Akaike (AIC) information criteria. Both formal tests and the information
criteria reported in Panel C of Table 3 consistently favor a two-regime MS-DCC-GARCH specification
over the static DCC-GARCH alternative, indicating strong support for the presence of two distinct
market regimes. The smoothed probability plots for the first regime reported in Figure 2 indicate that
the first regime largely corresponds to normal market periods with the smoothed probabilities for this
regime dropping to near zero values during the GFC period, as well as the late-2011 and early-2012
periods when the Eurozone uncertainty hit its peak. Therefore, we conclude that the first regime
characterizes normal (or low) volatility periods while the second regime is the high volatility regime.
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periods where the smoothed probability of regime 1 is the maximum.

Panel B in Table 3 presents the parameter estimates for the MS-DCC-GARCH model that generates
the regime-specific conditional correlations. We observe highly significant α(st) and β(st) estimates in
both regime 1 (low volatility) and regime 2 (high volatility), implying significant correlations between
the conventional and sustainable market indices in both regimes. The sums α(st) + β(st) are estimated
as 0.99 (0.83), 0.98 (0.95), 0.94 (0.90) and 0.99 (0.90) for the low (high) volatility regime for the World,
North America, Europe, and Asia-Pacific regions, respectively, suggesting that correlations are highly
persistent in both regimes consistently across all regions. Relatively higher values of α(st) + β(st) for
the regional indices in both regimes imply that the correlation persistence is more pronounced at the
regional level, possibly driven by regional fundamentals driving return dynamics in equity markets.
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The inferences from the MS-DCC parameter estimates reported in Panel B are further
supported by the probability weighted dynamic conditional correlations reported in Figure 3
(The probability weighted time-varying conditional correlations ρij,t are calculated as ρij,t = p1,tρij,1,t +

(1− p1,t)ρij,2,t, where ρij,k,t, k = 1, 2, are the time-varying conditional correlations in regime k and
p1,t = P(st = 1|ψt−1) is the predictive probability of being in regime 1 at time t given the information
set ψt−1 available through time t− 1). The dynamic correlations are highly time-varying for most
regions, with the exception of European markets where correlations consistently range in the upper 90%.
The significant time variation in the case of the other regional indices, however, further confirms the use
of the DCC specification against the constant correlation alternative. Examining the plots in Figure 3, we
see that both the global and regional indices exhibit a high degree of association between conventional
and sustainable stocks, more consistently in the case of European stocks. Despite the high level of
correlations found across all regional indices, however, a somewhat decreasing pattern in conditional
correlations is observed for the Asia-Pacific region, suggesting that sustainable securities might have
relatively better diversification potential for equity investors in this region. Nevertheless, the dynamic
correlations clearly indicate a high degree of association between sustainable and conventional market
indices, suggesting that sustainable stocks may have limited diversification benefits for conventional
equity portfolios globally.
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Figure 3. Dynamic correlation estimates from the MS-DCC-GARCH. Note: Figure plots the
dynamic correlation estimates from the MS-DCC-GARCH model given in Equations (1)–(3).
The correlations are obtained as the correlation coefficients are regime dependent and directly
obtained from Equations (1)–(4) using the ML estimation. Since the correlations are regime-dependent
and the two sets of correlations ρij,1,t and ρij,2,t are estimated for regimes 1 and 2, we obtain
ρij,t = p1,tρij,1,t + (1− p1,t)ρij,2,t, where p1,t = P(st = 1|ψt−1) is the predictive probability of being
in regime 1 at time t given the information set ψt−1 available through time t− 1. See Note to Table 3
for model details.

5. Portfolio Analysis

Having examined the dynamic conditional correlations between sustainable and conventional
stocks, we next focus our attention on the risk and return tradeoffs offered by sustainable stocks
for conventional equity investors. For this purpose, we consider a currently ‘undiversified’ investor,
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i.e., an investor who is fully invested in a conventional stock index, and form bivariate portfolios by
supplementing the undiversified portfolios with sustainable counterparts one at a time. Two alternative
bivariate portfolios are examined, one based on the risk-minimizing portfolio strategy of [70]. (This
model follows the dynamic risk-minimizing hedge ratio of [70] computed as θ∗t = −h12,t/h2,t where
hi,t = var(Ri,t) and h12,t = cov(R1,t, R2,t) with the subscripts 1 and 2 representing the assets in the
bivariate portfolio. In our application, this is based on a $1 long position in the conventional portfolio.)
The other is based on the optimal portfolio weight of [71]. (This model follows the minimum-variance
portfolio formula of [71], where the regime-independent covariances used in the computation of
portfolio weights are obtained as the probability weighted average of regime-dependent covariances
with the corresponding predictive regime probabilities as the weights.) A similar procedure is applied
in a similar context in [58–60,72].

Table 5 presents the summary statistics for the in-sample period covering
2 January 2004–19 February 2014, with 2644 observations. We report in the table the summary
statistics for portfolio returns as well as the optimal portfolio weights based on the portfolio strategies
of [70,71]. Hedge effectiveness (HE), measured as the percentage of portfolio return volatility that
is reduced by supplementing the undiversified portfolio with the sustainable index, along with the
corresponding Sharpe ratios, are also reported in the table. Panels A, B, C and D in Table 5 present the
findings for the ‘undiversified’ stock portfolios representing an investor who is currently fully invested
in the conventional Dow Jones World, Americas, Europe, and Asia-Pacific indices, respectively. In each
panel, the row labeled ‘undiversified’ provides the summary statistics for an undiversified investor
who is currently fully invested in the corresponding conventional market.

Table 5. Summary statistics for in-sample portfolios.

Mean S.D. Min Max HE Sharpe Ratio

Panel A: World Market

Undiversified Portfolio Return 0.028 1.154 −7.886 9.883 – 0.024
MS-DCC-GARCH Hedged Portfolio Return 0.018 0.295 −1.928 1.961 93.567 0.061

DCC-GARCH Hedged Portfolio Return 0.017 0.293 −1.931 2.026 93.478 0.058
MS-DCC-GARCH Optimal Portfolio Return 0.034 1.012 −8.413 7.775 23.082 0.034

DCC-GARCH Optimal Portfolio Return 0.024 0.940 −6.590 9.883 33.664 0.026
MS-DCC-GARCH Optimal Hedge Ratio 0.929 0.070 0.780 1.209 – –

DCC-GARCH Optimal Hedge Ratio 0.935 0.059 0.814 1.122 – –
MS-DCC-GARCH Optimal Portfolio Weight 0.618 0.417 0.000 1.000 – –

DCC-GARCH Optimal Portfolio Weight 0.635 0.407 0.000 1.000 – –

Panel B: Americas Market

Undiversified Portfolio Return 0.022 1.268 −9.736 10.515 – 0.017
MS-DCC-GARCH Hedged Portfolio Return 0.010 0.199 −1.177 0.959 97.533 0.050

DCC-GARCH Hedged Portfolio Return 0.009 0.201 −1.177 1.068 97.478 0.045
MS-DCC-GARCH Optimal Portfolio Return 0.009 0.458 −9.453 8.993 16.666 0.020

DCC-GARCH Optimal Portfolio Return 0.009 0.472 −9.453 8.993 14.638 0.019
MS-DCC-GARCH Optimal Hedge Ratio 1.047 0.053 0.828 1.221 – –

DCC-GARCH Optimal Hedge Ratio 1.042 0.015 0.960 1.080 – –
MS-DCC-GARCH Optimal Portfolio Weight 0.078 0.216 0.000 1.000 – –

DCC-GARCH Optimal Portfolio Weight 0.002 0.027 0.000 1.000 – –

Panel C: European Market

Undiversified Portfolio Return 0.019 1.476 −10.130 10.512 – 0.013
MS-DCC-GARCH Hedged Portfolio Return 0.006 0.149 −1.804 1.601 98.987 0.040

DCC-GARCH Hedged Portfolio Return 0.005 0.149 −1.804 1.601 98.979 0.034
MS-DCC-GARCH Optimal Portfolio Return 0.038 1.429 −10.130 10.512 6.342 0.027

DCC-GARCH Optimal Portfolio Return 0.015 1.466 −10.130 10.512 1.354 0.010
MS-DCC-GARCH Optimal Hedge Ratio 0.977 0.028 0.865 1.088 – –

DCC-GARCH Optimal Hedge Ratio 0.977 0.006 0.956 0.996 – –
MS-DCC-GARCH Optimal Portfolio Weight 0.744 0.409 0.000 1.000 – –

DCC-GARCH Optimal Portfolio Weight 0.980 0.073 0.295 1.000 – –

Panel D: Asia-Pacific Market

Undiversified Portfolio Return 0.017 1.218 −9.114 9.008 – 0.014
MS-DCC-GARCH Hedged Portfolio Return 0.005 0.239 −1.431 1.434 96.135 0.021

DCC-GARCH Hedged Portfolio Return 0.003 0.240 −1.340 1.295 96.104 0.013
MS-DCC-GARCH Optimal Portfolio Return 0.016 1.094 −9.114 9.008 3.775 0.015

DCC-GARCH Optimal Portfolio Return 0.017 1.192 −9.114 9.008 0.000 0.014
MS-DCC-GARCH Optimal Hedge Ratio 0.854 0.052 0.700 1.052 – –

DCC-GARCH Optimal Hedge Ratio 0.851 0.005 0.837 0.868 – –
MS-DCC-GARCH Optimal Portfolio Weight 0.977 0.130 0.000 1.000 – –

DCC-GARCH Optimal Portfolio Weight 1.000 0.000 1.000 1.000 – –

Note: The in-sample period covers 2 January 2004–19 February 2014 with 2644 observations. HE stands for the
hedge effectiveness index.
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As expected, the risk-minimizing portfolio strategy of [70] yields the largest reduction in return
volatility, consistently in all panels. For example, focusing on Panel A, while the undiversified portfolio
that is fully invested in the conventional world index has return volatility of 1.154%, supplementing
the portfolio with the sustainable counterpart helps reduce portfolio risk down to 0.295% (0.293%),
leading to a 93.5% (93.4%) reduction in portfolio volatility based on the MS-DCC (DCC) specification,
respectively. Clearly the high conditional correlations between the conventional and sustainable stock
indices reported earlier help reduce return volatility in the hedged portfolio as the strategy by [70]
takes a short position in the corresponding sustainable index. On the other hand, the optimal portfolio
weight strategy of [71] does not work as effectively in mitigating portfolio risk, yielding about 33%
risk reduction at best in the case of the world index in Panel A.

Examining the Sharpe ratios reported in the last column in each panel, we observe that
supplementing the conventional portfolio with a position in the sustainable counterpart leads to
a significant improvement in risk-adjusted returns in all panels. The improvement in Sharpe
ratios is especially evident in the case of the risk-minimizing portfolio strategy of [70], where
risk-adjusted returns are more than double in most regions, with the exception of Asia-Pacific in
Panel D. Furthermore, comparing the risk adjusted returns and hedge effectiveness values for the
MS-DCC-GARCH- and DCC-GARCH-based portfolios, we observe that the MS-DCC-GARCH model
yields more favorable outcomes across all panels, underscoring the superiority of dynamic specification
over the static counterpart. Overall, the in-sample portfolio findings reported in Table 5 suggest that
supplementing conventional stock portfolios with their sustainable counterparts could both help
reduce portfolio volatility and yield much improved risk-adjusted returns. However, this can only
be achieved following the risk-minimizing portfolio strategy of [70], which takes advantage of the
high correlations between the conventional and sustainable stocks by taking a short position in the
sustainable index.

The in-sample portfolio results reported in Table 5 are further supported by the out-of-sample
results reported in Table 6. The out-of-sample period covers 20 February 2014–2 September 2014,
including 400 observations, with the estimates obtained as one-step forecasts recursively during the
out-of-sample period. Consistent with the findings in Table 5, we observe that the risk-minimizing
portfolio strategy yields a significant reduction in portfolio risk when the conventional index is
supplemented by a position in the sustainable counterpart. The largest risk reduction is observed for
the Americas (Panel B) and Europe (Panel C), with more than 96% of return volatility eliminated in the
hedged portfolio. Interestingly, hedging the conventional portfolio risk with a short position in the
sustainable counterpart also helps improve the risk/return profile of the portfolio in all regions. More
strikingly, the negative Sharpe ratios observed for the World and Asia-Pacific indexes turn around
to positive risk adjusted returns when the conventional index is supplemented by the sustainable
counterpart. A similar improvement in risk-adjusted returns is also observed in other panels, indicating
significant diversification benefits from sustainable stocks. In sum, despite the high conditional
correlations observed between conventional and sustainable market indices, the analysis of both in-
and out-of-sample portfolios clearly suggest significant diversification gains from supplementing
conventional portfolios by positions in sustainable stocks. However, these diversification gains can only
be achieved by implementing the risk-minimizing portfolio strategy of [67], which takes advantage of
the high correlations by taking opposite positions in the conventional and sustainable portfolios.
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Table 6. Summary statistics for out-of-sample portfolios.

Mean S.D. Min Max HE Sharpe Ratio

Panel A: World Market

Undiversified Portfolio Return −0.015 0.686 −3.986 2.119 – -0.022
MS-DCC-GARCH Hedged Portfolio Return 0.008 0.219 −1.154 1.369 89.818 0.037

DCC-GARCH Hedged Portfolio Return 0.008 0.220 −1.206 1.375 89.712 0.036
MS-DCC-GARCH Optimal Portfolio Return 0.018 0.525 −2.284 3.038 41.380 0.034

DCC-GARCH Optimal Portfolio Return 0.010 0.566 −2.284 2.488 32.011 0.018
MS-DCC-GARCH Optimal Hedge Ratio 0.916 0.069 0.760 1.071 – –

DCC-GARCH Optimal Hedge Ratio 0.927 0.041 0.844 1.025 – –
MS-DCC-GARCH Optimal Portfolio Weight 0.648 0.390 0.000 1.000 – –

DCC-GARCH Optimal Portfolio Weight 0.734 0.299 0.000 1.000 – –

Panel B: Americas Market

Undiversified Portfolio Return 0.002 0.792 −3.988 3.438 – 0.003
MS-DCC-GARCH Hedged Portfolio Return 0.006 0.141 −0.661 0.458 96.830 0.043

DCC-GARCH Hedged Portfolio Return 0.006 0.152 −0.649 0.500 96.287 0.039
MS-DCC-GARCH Optimal Portfolio Return 0.005 0.700 −2.903 3.438 21.883 0.007

DCC-GARCH Optimal Portfolio Return 0.003 0.800 −3.552 3.853 −2.088 0.004
MS-DCC-GARCH Optimal Hedge Ratio 0.995 0.050 0.864 1.161 – –

DCC-GARCH Optimal Hedge Ratio 1.037 0.011 0.994 1.073 – –
MS-DCC-GARCH Optimal Portfolio Weight 0.370 0.421 0.000 1.000 – –

DCC-GARCH Optimal Portfolio Weight 0.001 0.011 0.000 0.153 – –

Panel C: European Market

Undiversified Portfolio Return −0.040 0.917 −3.182 3.122 – −0.044
MS-DCC-GARCH Hedged Portfolio Return −0.001 0.132 −1.067 1.181 97.930 −0.008

DCC-GARCH Hedged Portfolio Return −0.002 0.132 −1.095 1.181 97.928 −0.015
MS-DCC-GARCH Optimal Portfolio Return −0.032 0.827 −2.911 3.122 18.625 −0.039

DCC-GARCH Optimal Portfolio Return −0.039 0.891 −3.182 3.122 5.500 −0.044
MS-DCC-GARCH Optimal Hedge Ratio 0.975 0.029 0.840 1.060 – –

DCC-GARCH Optimal Hedge Ratio 0.981 0.006 0.967 0.997 – –
MS-DCC-GARCH Optimal Portfolio Weight 0.734 0.393 0.000 1.000 – –

DCC-GARCH Optimal Portfolio Weight 0.933 0.165 0.200 1.000 – –

Panel D: Asia-Pacific Market

Undiversified Portfolio Return −0.019 0.708 −4.425 2.146 – −0.027
MS-DCC-GARCH Hedged Portfolio Return 0.003 0.328 −4.267 0.851 78.579 0.009

DCC-GARCH Hedged Portfolio Return 0.002 0.332 −4.370 0.886 78.034 0.006
MS-DCC-GARCH Optimal Portfolio Return −0.007 0.639 −2.305 2.146 18.430 −0.011

DCC-GARCH Optimal Portfolio Return −0.019 0.708 −4.425 2.146 0.000 −0.027
MS-DCC-GARCH Optimal Hedge Ratio 0.824 0.063 0.686 1.080 – –

DCC-GARCH Optimal Hedge Ratio 0.845 0.005 0.835 0.861 – –
MS-DCC-GARCH Optimal Portfolio Weight 0.928 0.222 0.000 1.000 – –

DCC-GARCH Optimal Portfolio Weight 1.000 0.000 1.000 1.000 – –

Note: The out-of-sample period covers 20 February 2014–2 September 2014 with 400 observations. HE stands for
the hedge effectiveness index.

6. Conclusions

This paper explores the potential diversification benefits of socially responsible investments
for conventional stock portfolios by examining the risk transmissions and dynamic correlations
between conventional and sustainable stock indices from a number of regions. Utilizing a Markov
regime-switching GARCH model with dynamic conditional correlations (MS-DCC-GARCH), we find
evidence of significant and positive volatility spillovers from conventional to sustainable equities,
suggesting that uncertainty regarding global equity markets spills over to the market for sustainable
stocks, driving return volatility in this market segment. Risk transmissions, however, are found to
be unidirectional, implied by largely insignificant spillover effects from sustainable to conventional
indexes. We argue that the economic, environmental and social criteria applied in the selection of
firms to be included in socially responsible indices do not necessarily shield these stocks from common
equity market shocks. Despite the presence of risk transmissions from conventional markets, however,
our findings also suggest that historical information on return and volatility in sustainable equity
markets could be utilized in forecasting future volatility in these markets. Thus, investors and trustees
of institutional funds who are concerned about stability in the market for sustainable investments
should not only monitor volatility in global conventional markets, but also supplement their volatility
forecasting models by measures of historical risk and return dynamics in these markets.



Sustainability 2017, 9, 1799 15 of 18

Similarly, the analysis of dynamic conditional correlations suggests that both the global and
regional indices exhibit a high degree of association between conventional and sustainable stocks,
more consistently in the case of European stocks. Although significant time-variations in the dynamic
correlations are observed between conventional and sustainable stock returns, we estimate particularly
high correlations that consistently range in the upper 90% in the case of Europe. Interestingly, however,
despite the high correlations observed, the analysis of both in- and out-of-sample portfolios suggests
that significant diversification gains can be obtained from supplementing conventional portfolios by
positions in sustainable stocks. Improvement in risk adjusted returns is particularly striking for the
broader world index and the Asia-Pacific region when the negative Sharpe ratios for undiversified,
conventional portfolios turn around to positive values when the conventional index is supplemented
by the sustainable counterpart. However, our portfolio analysis also suggests that these diversification
gains can only be achieved by implementing an investment strategy that aims to minimize portfolio
risk and utilize sustainable assets in the short leg of the portfolio.

Given the availability of various exchange-traded funds that allow investors to choose investments
based on social and personal criteria, our findings have significant implications for both retail and
institutional investors. Thanks to the rapid growth experienced in the SRI market segment, investors
have their choices when it comes to allocating parts of their portfolios in various exchange traded funds
that reflect this growing segment. Furthermore, the fact that these funds are offered to investors at low
cost makes transaction costs less of a concern from a retail investor perspective. More importantly,
unlike the case for individual stocks, for which uptick rules apply, diversifying into SRIs via short
positions in exchange traded funds that do not have the uptick rules means that investors will have
greater flexibility in the creation of diversified portfolios as we recommend in our empirical results.
Overall, the findings suggest that sustainable investments can indeed provide significant diversification
gains for conventional stock portfolios globally and the fact that these investments are easily accessible
at low cost via a myriad of exchange traded funds makes them an appealing investment tool both for
retail and institutional investors.
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