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A Note on the Equivalence of Control Systems

on Lie Groups

Rory Biggs, Claudiu C.Remsing

Abstract. We consider state space equivalence and (a specialization of) feedback
equivalence in the context of left-invariant control affine systems. Simple algebraic
characterizations of both local and global forms of these equivalence relations are
obtained. Several illustrative examples regarding the classification of systems on low-
dimensional Lie groups are discussed in some detail.
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1 Introduction

Invariant control systems on (real, finite dimensional) Lie groups have been
a topic of interest in mathematical control theory since the early 1970’s (see,
e.g., [22, 27, 28, 34]). These systems form a natural framework for various (vari-
ational) problems in mathematical physics, mechanics, elasticity, and dynamical
systems (see, e.g., [3, 20,27,32]).

In order to understand the local geometry of control systems, one needs to intro-
duce some natural equivalence relations. The most natural equivalence relation is
equivalence up to coordinate changes in the state space (viz. state space equivalence).
Another weaker equivalence relation often considered is feedback equivalence; here
state-dependent transformations of the controls are also allowed (see, e.g., [26,33]).

In this note we consider state space equivalence and feedback equivalence in the
context of left-invariant control affine systems. We adapt Krener’s (general) char-
acterization of local state space equivalence [30] to this context. A global analogue
is also obtained. Two examples pertaining to classification of systems on the Eu-
clidean group SE (2) and pseudo-orthogonal group SO (2, 1)0 are provided. We
specialize feedback equivalence in the context of left-invariant control affine systems
by restricting to transformations compatible with the Lie group structure. This is
called detached feedback equivalence. Characterizations of local (resp. global) de-
tached feedback equivalence are obtained in terms of Lie algebra (resp. Lie group)
isomorphisms. Further three examples pertaining to the classification of systems
on low-dimensional Lie groups (namely SE (2), SO (2, 1)0 and the oscillator group)
are provided. Some remarks conclude the paper. A detailed treatment of these
equivalence relations can be found in [18].
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2 Invariant control systems

An ℓ-input left-invariant control affine system Σ = (G,Ξ) takes the form

ġ = Ξ(g, u) = g(A+ u1B1 + · · · + uℓBℓ), g ∈ G, u ∈ R
ℓ.

Here the state space G is a connected Lie group with Lie algebra g, and
A,B1, . . . , Bℓ ∈ g. For the sake of simplicity we shall assume that G ⊆ GL (n,R)
is a matrix Lie group. The dynamics Ξ : G × R

ℓ → TG are invariant under left
translations, i.e., Ξ(g, u) = g Ξ(1, u) for all g ∈ G, u ∈ R

ℓ. The parametrization

map

Ξ(1, ·) : R
ℓ → g, u 7→ A+ u1B1 + · · · + uℓBℓ

is assumed to be injective (i.e., B1, . . . , Bℓ are linearly independent). The trace

Γ = im Ξ(1, ·) ⊂ g of the system is the affine subspace

A+ Γ0 = A+ 〈B1, . . . , Bℓ〉 .

A system is called homogeneous if A ∈ Γ0 and inhomogeneous otherwise; a system
has full rank if its trace Γ generates the whole Lie algebra g. When G is fixed, we
shall specify a system Σ by simply writing

Σ : A+ u1B1 + · · · + uℓBℓ.

Remark 1. Any controllable system has full rank. On the other hand, any full-
rank homogeneous system is controllable. Likewise, full-rank systems evolving on
certain Lie groups, such as compact groups and Euclidean groups, are known to be
controllable.

3 State Space Equivalence

Let Σ = (G,Ξ) and Σ = (G′,Ξ′) be two left-invariant control affine systems with
the same input space R

ℓ. The systems Σ and Σ′ are locally state space equivalent

(shortly Sloc-equivalent) if there exists a diffeomorphism φ : N ⊆ G → N ′ ⊆ G′

such that Tgφ · Ξ(g, u) = Ξ(φ(g), u) for all g ∈ G and u ∈ R
ℓ. Here N and N ′

are some neighbourhoods of the identity elements 1 ∈ G and 1′ ∈ G′, respectively,
and it is assumed that φ(1) = 1′. Σ and Σ′ are state space equivalent (shortly
S-equivalent) if this happens globally (i.e., N = G and N ′ = G′).

Remark 2. The assumption φ(1) = 1′ can always be met by composing φ with
some appropriate left translations.

Krener’s result [30] states that full-rank systems Σ and Σ′ are Sloc-equivalent if
and only if there exists a linear isomorphism ψ : T1G → T1G′ such that the equality

ψ[· · · [Ξu1,Ξu2 ], . . . ,Ξuk
](1) = [· · · [Ξ′

u1
,Ξ′

u2
], . . . ,Ξ′

uk
](1)

holds for any k ≥ 1 and any u1, . . . , uk ∈ R
ℓ. Here Ξu is the vector field specified

by Ξu(g) = Ξ(g, u). Hence in the context of left-invariant systems we have the
following characterization.
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Theorem 1. Two full-rank systems Σ and Σ′ are Sloc-equivalent if and only if

there exists a Lie algebra isomorphism ψ : g → g
′ such that ψ · Ξ(1, u) = Ξ′(1, u)

for every u ∈ R
ℓ.

Remark 3. If full-rank systems Σ and Σ′ are Sloc-equivalent and G and G′ are
simply connected, then Σ and Σ′ are S-equivalent.

On the other hand, we have the following global analogue of this result.

Theorem 2. Two full-rank systems Σ and Σ′ are S-equivalent if and only if there

exists a Lie group isomorphism φ : G → G′ such that T1φ · Ξ(1, u) = Ξ′(1, u) for

every u ∈ R
ℓ.

Proof. Suppose Σ and Σ′ are S-equivalent. Then there exists a diffeomorphism
φ : G → G′ such that φ∗Ξu = Ξ′

u. Clearly φ satisfies T1φ · Ξ(1, u) = Ξ′(1, u).
We have φ∗[Ξu,Ξv] = [φ∗Ξu, φ∗Ξv] = [Ξ′

u,Ξ
′
v]. As Σ has full rank, it follows that

φ preserves left-invariant vector fields and so φ is a Lie group isomorphism (see,
e.g., [7]). Conversely, suppose φ : G → G′ is a Lie group isomorphism such that
T1φ ·Ξ(1, u) = Ξ′(1′, u). By left invariance and as φ is an isomorphism we have that
Tgφ·Ξ(g, u) = Tgφ·g Ξ(1, u) = T1Lφ(g)·T1φ·Ξ(1, u) = φ(g) Ξ′(1, u) = Ξ′(φ(g), u).

We conclude the section with some specific examples on the classification, under
local state space equivalence, of systems on some three-dimensional Lie groups.

Example 1 ( see [1]). The Euclidean group

SE (2) =











1 0 0
x cos z − sin z
y sin z cos z



 : x, y, z ∈ R







has Lie algebra se (2) given by










0 0 0
x 0 −z
y z 0



 = xE1 + yE2 + zE3 : x, y, z ∈ R







.

The nonzero commutator relations for the ordered basis (E1, E2, E3) are [E2, E3] =
E1 and [E3, E1] = E2.

Any two-input inhomogeneous full-rank system on SE (2) is Sloc-equivalent to
exactly one of the following full-rank systems:

Σ
(2,1)
1,αβγ

: αE3 + u1(E1 + γ1E2) + u2(βE2)

Σ
(2,1)
2,αβγ

: βE1 + γ1E2 + γ2E3 + u1(αE3) + u2E2

Σ
(2,1)
3,αβγ

: βE1 + γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3)

or, in matrix form

Σ
(2,1)
1,αβγ

:





0 1 0
0 γ1 β

α 0 0



 , Σ
(2,1)
2,αβγ

:





β 0 0
γ1 0 1
γ2 α 0



 , Σ
(2,1)
3,αβγ

:





β 0 0
γ1 1 0
γ2 γ3 α



 .
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Here α > 0, β 6= 0 and γ1, γ2, γ3 ∈ R parametrize families of class representatives,
each different values yielding distinct (non-equivalent) class representatives.

The group of automorphisms Aut(se (2)) is given by











x y v

−ςy ςx w

0 0 ς



 :
x, y, v, w ∈ R,

x2 + y2 6= 0, ς = ±1







.

Let Σ :
∑

aiEi + u1
∑

biEi + u2
∑

ciEi be a two-input inhomogeneous full-rank
system; in matrix form

Σ :





a1 b1 c1
a2 b2 c2
a3 b3 c3



 .

It straightforward to show that there exists an automorphism ψ ∈ Aut (se (2)) such
that

ψ ·





a1 b1 c1
a2 b2 c2
a3 b3 c3



 =





0 1 0
0 γ1 β

α 0 0



 if b3 = 0 and c3 = 0

ψ ·





a1 b1 c1
a2 b2 c2
a3 b3 c3



 =





β 0 0
γ1 0 1
γ2 α 0



 if b3 6= 0 and c3 = 0

ψ ·





a1 b1 c1
a2 b2 c2
a3 b3 c3



 =





β 0 0
γ1 1 0
γ2 γ3 α



 if c3 6= 0.

Thus Σ is Sloc-equivalent to Σ1,αβγ, Σ2,αβγ, or Σ3,αβγ. It is a simple matter to
verify that no two of the class representatives are equivalent.

Example 2 (see [19]). The pseudo-orthogonal group

SO (2, 1) = {g ∈ R
3×3 : g⊤Jg = g, det g = 1}

is a three-dimensional simple Lie group. Here J = diag(1, 1,−1). The identity
component of SO (2, 1) is SO (2, 1)0 = {g ∈ SO (2, 1) : g33 > 0}. Its Lie algebra
so (2, 1) is given by











0 z y

−z 0 x

y x 0



 = xE1 + yE2 + zE3 : x, y, z ∈ R







and has commutator relations [E2, E3] = E1, [E3, E1] = E2, and [E1, E2] = −E3.
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Any two-input homogeneous full-rank system on SO (2, 1)0 is Sloc-equivalent to
exactly one of the following full-rank systems (displayed in matrix form):

Σ
(2,0)
1,αγ

:





γ3 α2 0
0 0 0
γ2 γ1 α1



 , Σ
(2,0)
2,βγ

:





γ3 β + γ1 1
0 0 0
γ2 γ1 1



 ,

Σ
(2,0)
3,αβγ

:





(β + 1
4)γ2 β + 1

4 0
γ3 γ1 α1

(β − 1
4)γ2 β − 1

4 0



 .

Here αi > 0, β 6= 0 and γi ∈ R parametrize families of class representatives, each
different values yielding distinct (non-equivalent) class representatives.

The group Aut(so (2, 1)) of automorphisms of so (2, 1) is exactly SO (2, 1). The
(Lorentzian) product ⊙ on so (2, 1) is given by A ⊙ B = a1b1 + a2b2 − a3b3;
here A =

∑

aiEi and B =
∑

biEi. Any automorphism ψ preserves ⊙, i.e.,
(ψ · A) ⊙ (ψ · B) = A ⊙ B. Furthermore, the group Aut(so (2, 1)) acts transitively
on each of the hyperboloids (and punctured cone) Hα = {A ∈ so (2, 1) : A ⊙ B =
α, A 6= 0}. Hence for every A ∈ so (2, 1), there exists ψ ∈ Aut(so (2, 1)) such that
ψ · A equals αE2, αE3, or E1 + E3. The subgroup of automorphisms fixing these
elements are {exp(tE2), ς ◦ exp(tE2) : t ∈ R}, where

ς =





−1 0 0
0 1 0
0 0 −1





{exp(tE3) : t ∈ R}, and {exp(t(E1 + E3)) : t ∈ R}, respectively. Moreover,
any automorphism fixing at least two of E1, E2, E3, and E1 + E3 is the identity
automorphism.

Suppose Σ : A+ u1B1 + u2B2 is a two-input homogeneous full-rank system on
SO (2, 1)0. Then there exists an automorphism ψ ∈ Aut(so (2, 1)) such that ψ ·B2

equals αE2, αE3 or E1 +E3. Hence Σ is equivalent to Σ′ : A′ + u1B
′
1 + u2(αE3),

Σ′ : A′+u1B
′
1+u2(E1+E3), or Σ′ : A′+u1B

′
1+u2(αE2). In each case we then further

reduce the system by considering the action of the subgroup of automorphisms fixing
E3, E1 + E3, or E2, respectively, on the system.

4 Detached Feedback Equivalence

Two systems Σ and Σ′ are (globally) feedback equivalent if there exists a dif-
feomorphism Φ : G × R

ℓ → G′ × R
ℓ′ , (g, u) 7→ (φ(g), ϕ(g, u)) transforming the first

system into the second, i.e., Tgφ · Ξ(g, u) = Ξ′(φ(g), ϕ(g, u)). We specialize feed-
back equivalence, by requiring that the transformation u′ = ϕ(g, u) is constant over
the state space; such transformations are exactly those that are compatible with
the Lie group structure (cf. [7]). More precisely, Σ and Σ′ are called locally de-

tached feedback equivalent (shortly DFloc-equivalent) if there exist diffeomorphims
φ : N ⊆ G → N ′ ⊆ G′ and ϕ : R

ℓ → R
ℓ′ such that Tgφ ·Ξ(g, u) = Ξ′(φ(g), ϕ(u)) for
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g ∈ N , u ∈ R
ℓ. Here N and N ′ are some neighbourhoods of the identity elements

1 ∈ G and 1′ ∈ G′ and it is assumed that φ(1) = 1′. On the other hand, Σ and
Σ′ are called detached feedback equivalent (shortly DF -equivalent) if this happens
globally (i.e., N = G and N ′ = G′).

Theorem 3. Two full-rank systems Σ and Σ′ are DFloc-equivalent if and only if

there exists a Lie algebra isomorphism ψ : g → g
′ such that ψ · Γ = Γ′.

Proof. Suppose Σ and Σ′ are DFloc-equivalent, i.e., there exist diffeomorphisms
φ : N ⊆ G → N ′ ⊆ G′ and ϕ : R

ℓ → R
ℓ′ such that Tgφ · Ξ(g, u) =

Ξ′(φ(g), ϕ(u)). Then T1φ · Ξ(1, u) = Ξ′(1′, ϕ(u)) and so T1φ · Γ = Γ′. It re-
mains to be shown that T1φ preserves the Lie bracket. We have that φ∗[Ξu,Ξv] =
[φ∗Ξu, φ∗Ξv] for left-invariant vector fields Ξu = Ξ(·, u) and Ξv = Ξ(·, v). Hence,
T1φ · [Ξu(1),Ξv(1)] = [Ξ′

ϕ(u)(1
′),Ξ′

ϕ(v)(1
′)] = [T1φ · Ξu(1), T1φ · Ξv(1)]. Likewise

T1φ · [Ξu(1), [Ξu(1),Ξw(1)]] = [T1φ · Ξu(1), T1φ · [Ξv(1),Ξw(1)]] and similarly for
higher order commutators. As the elements Ξu(1), u ∈ R

ℓ generate g, it follows
that T1φ is a Lie algebra isomorphism.

Conversely, suppose ψ is a Lie algebra isomorphism such that ψ · Γ = Γ′.
Then there exist neighbourhoods N and N ′ of 1 and 1′, respectively, and a local
group isomorphism φ : N → N ′ such that T1φ = ψ (see, e.g., [29]). Also, there
exists a unique affine isomorphism ϕ : R

ℓ → R
ℓ′ such that ψ ·Ξ(1, u) = Ξ′(1, ϕ(u)).

Therefore, (locally) we get Tgφ·Ξ(g, u) = T1Lφ(g)·ψ·Ξ(1, u) = T1Lφ(g)·Ξ
′(1′, ϕ(u)) =

Ξ′(φ(g), ϕ(u)). Hence Σ and Σ′ are DFloc-equivalent.

The global analogue of the characterization for detached feedback equivalence
follows similarly (and so the proof is omitted).

Theorem 4. Two full-rank systems Σ and Σ′ are DF -equivalent if and only if

there exists a Lie group isomorphism φ : G → G′ such that T1φ · Γ = Γ′.

We conclude the section with some specific examples on the classification, under
local detached feedback equivalence, of systems on some low-dimensional Lie groups.

Example 3 ( see [12]). Any two-input inhomogeneous full-rank system on the Eu-
clidean group SE (2) is DFloc-equivalent to exactly one of the following full-rank
systems:

Σ1 : E1 + u1E2 + u2E3,

Σ2,α : αE3 + u1E1 + u2E2.

Here α > 0 parametrizes a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Let Σ be an inhomogeneous system with trace Γ =
∑

aiEi + 〈
∑

biEi,
∑

ciEi〉.
If E3(Γ0) 6= {0}, then Γ = a′1E1 + a′2E2 + 〈b′1E1 + b′2E2, c

′
1E1 + c′2E2 + E3〉. (Here

E3 denotes the corresponding element of the dual basis.) As (b′1)
2 + (b′2)

2 6= 0, the
equation

[

b′2 −b′1
b′1 b′2

] [

v1
v2

]

=

[

a′2
a′1

]
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has a unique solution (with v2 6= 0). Therefore

ψ =





v2b
′
2 v2b

′
1 c′1

−v2b
′
1 v2b

′
2 c′2

0 0 1





is an automorphism such that ψ · Γ1 = ψ · (E1 + 〈E2, E3〉) = Γ. Thus Σ
is DFloc-equivalent to Σ1. On the other hand, suppose E3(Γ0) = {0}. Then
Γ = a3E3 + 〈E1, E2〉. Hence ψ = diag (1, 1, sgn (a3)) is an automorphism such that
ψ · Γ = αE3 + 〈E1, E2〉 with α > 0. Thus Σ is DFloc-equivalent to Σ2,α. As
the subspace 〈E1, E2〉 is invariant (under automorphisms), Σ1 and Σ2,α cannot be
DFloc-equivalent. It is easy to show that Σ2,α and Σ2,α′ are DFloc-equivalent only
if α = α′.

Example 4 (see [10]). Any two-input homogeneous full-rank system on the pseudo-
orthogonal group SO (2, 1) is DFloc-equivalent to exactly one of the following full-
rank systems:

Σ1 : u1E1 + u2E2,

Σ2 : u1E2 + u2E3.

Let Σ be a two-input homogeneous full-rank system with trace Γ = 〈A,B〉. The
sign σ(Γ) of Γ is given by

σ(Γ) = sgn

(
∣

∣

∣

∣

A⊙A A⊙B

A⊙B B ⊙B

∣

∣

∣

∣

)

.

(It is easy to show that σ(Γ) does not depend on the parametrization.) As ⊙ is
preserved by automorphisms, it follows that σ(ψ · Γ) = σ(Γ). A straightforward
computation shows that if σ(Γ) = 0, then Σ does not have full rank.

Suppose σ(Γ) = −1. Then we may assume that a3 6= 0. Hence Γ =
〈a′1E1 + a′2E2 +E3, r sin θE1 + r cos θE2〉. Thus

ψ =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1





is an automorphism such that ψ · Γ = 〈a′′1E1 + E3, E2〉. Now, as σ(ψ · Γ) = −1, we
have (a′′1)

2 − 1 < 0 and so ψ · Γ = 〈sinhϑE1 + coshϑE3, E2〉. Therefore

ψ′ =





coshϑ 0 − sinhϑ
0 1 0

− sinhϑ 0 cosh ϑ





is an automorphism such that ψ′ · ψ · Γ = 〈E3, E2〉. Thus Σ is DFloc-equivalent to
Σ1. If σ(Γ) = 1, then a similar argument shows that there exists an automorphism
ψ such that ψ · Γ = 〈E1, E2〉 (and so Σ is DFloc-equivalent to Σ2). Lastly, as
σ(Γ1) = 1 and σ(Γ2) = −1, it follows that Σ1 and Σ2 are not equivalent.
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Example 5 (see [15]). The (four-dimensional) oscillator Lie group has parametriza-
tion

Osc :









1 −y cos θ − z sin θ z cos θ − y sin θ −2x
0 cos θ sin θ z

0 − sin θ cos θ y

0 0 0 1









where x, y, z, θ ∈ R. Its Lie algebra likewise has parametrization

osc :









0 −y z −2x
0 0 θ z

0 −θ 0 y

0 0 0 0









= xE1 + yE2 + zE3 + θE4

where x, y, z, θ ∈ R. The nonzero commutator relations are [E2, E3] = E1,
[E2, E4] = −E3, and [E3, E4] = E2. Osc decomposes as a semidirect product
H3 ⋊SO (2) of the Heisenberg group H3 and orthogonal group SO (2); furthermore,
it is a nontrivial central extension of the Euclidean group SE (2) ([25]). The os-
cillator group was first studied by Streater [35]; it is associated with the harmonic
oscillator problem, from whence it gets its name. This group (and its higher dimen-
sional analogues) have been studied by several authors in both differential geometry
and mathematical physics (see, e.g., [21,23,24,31]).

Any homogeneous full-rank system on Osc is DFloc-equivalent to exactly one of
the following full rank systems:

Σ(2,0) : u1E2 + u2E4

Σ
(3,0)
1 : u1E1 + u2E2 + u3E4

Σ
(3,0)
2 : u1E2 + u2E3 + u3E4

Σ(4,0) : u1E1 + u2E2 + u3E3 + u4E4.

The group of automorphisms takes the form

Aut(osc) :









σ
(

x2 + y2
)

wy − σvx −wx− σvy u

0 x y v

0 −σy σx w

0 0 0 σ









where x, y, u, v, w ∈ R, x2 + y2 6= 0, and σ = ±1. Clearly no single-input homoge-
neous system has full rank. Suppose Σ is a two-input full-rank system with trace
Γ = 〈

∑

aiEi,
∑

biEi〉. As Σ has full rank, it follows that E4(Γ) 6= {0}. Hence
Γ = 〈a′1E1 + a′2E2 + a′3E3 + E4, b

′
1E1 + b′2E2 + b′3E3〉. Therefore,

ψ =









1 a′2 a′3 −a1 − (a′2)
2 − (a′3)

2

0 1 0 −a′2
0 0 1 −a′3
0 0 0 1
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is an automorphism such that ψ ·Γ = 〈E4, b
′′
1E1 + r cos θE2 + r sin θE3〉 with r > 0.

(We have that r 6= 0 as Σ has full rank.) Accordingly,

ψ′ =











1
r2 −

b′′1 cos θ

r3 −
b′′1 sin θ

r3 0

0 cos θ
r

sin θ
r

b′′1
r2

0 − sin θ
r

cos θ
r

0
0 0 0 1











is an automorphism such that (ψ′ ◦ ψ) · Γ =
〈

E2,
b′′1
r2E2 + E4

〉

= 〈E2, E4〉. Conse-

quently Σ is DFloc-equivalent to Σ(2,0). The three-input case is similar, although
somewhat more involved. (The four-input case is trivial.)

Remark 4. The examples discussed in this note deal only with the local case. The
approach for the global case is very similar; however, one needs to first determine
the subgroup dAut(G) of Aut(g). For SE (2) and SO (2, 1)0 it turns out that
dAut(G) = Aut(g) (see, e.g., [16, 19]). For the oscillator group, this does not hold
true.

5 Closing Remarks

State space equivalence is a very strong equivalence relation. Hence, any general
classification leads to a large number of equivalence classes and so is of little use
(except perhaps in low dimensions, e.g., [1, 19]). On the other hand, detached feed-
back equivalence is noticeably weaker, and so leads to far fewer equivalence classes.
On three-dimensional Lie groups, a full classification (both local and global) of sys-
tems under detached feedback equivalence has been achieved ([8, 10–12], and [16];
see also [13, 17]). In the same vein, on several other low-dimensional (matrix) Lie
groups, important classification results have also been obtained (cf. [2, 5, 15]).

Detached feedback equivalence has a natural extension to invariant optimal con-
trol problems (cf. [9, 14]). Two optimal control problems are cost equivalent if the
underlying control systems are detached feedback equivalent and the change of con-
trols ϕ is compatible with the costs. (Such a perspective was used to classify the cor-
responding sub-Riemannian structures on the Heisenberg groups [6]; see also [4,5].)
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2004.

[30] Krener A. J. On the equivalence of control systems and the linearization of nonlinear sys-
tems. SIAM J. Control, 1973, 11, 670–676.

[31] Levichev A.V. Chronogeometry of an electromagnetic wave given by a biinvariant metric
on the oscillator groups. Siberian Math. J., 1986, 27, 237–245.

[32] Puta M. Optimal control problems on matrix Lie groups. New Developments in Differential
Geometry, Kluwer, Dordrecht, 1999, 361–373.

[33] Respondek W., Tall I. A. Feedback equivalence of nonlinear control systems: a survey on
formal approach. Chaos in Automatic Control, CRC Press, Boca Raton, 2006, 137–262.

[34] Sachkov Yu.L. Control theory on Lie groups. J. Math. Sci., 2009, 156, 381–439.

[35] Streater R.F. The representations of the oscillator group. Comm. Math. Phys., 1967, 4,
217–236.

Rory Biggs

Department of Mathematics and Applied Mathematics
University of Pretoria
0083 Hartfield, South Africa
E-mail: rory.biggs@up.ac.za

Claudiu C. Remsing

Department of Mathematics
Rhodes University
6140 Grahamstown, South Africa
E-mail: c.c.remsing@ru.ac.za

Received April 22, 2017


