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Abstract 
A technique is presented in which the spectral response of a wide-band infrared measuring instrument is obtained by 

means of calibration type measurements of a blackbody at various temperature settings and the application of a 

mathematical technique to these measurements. Successful application of the developed technique is enabled by 

Tikhonov regularization, which ensures a stable solution to the ill-posed problem of the Fredholm integral equation of 

the first kind describing the blackbody measurements made by the instrument. The quality of the solution strongly 

depends, however, on the accuracy of the measurements and the accuracy of the modelled spectrum in describing the 

emission from the blackbody source.  

The technique is studied by means of an application to modelled results of instrument measurements, and is then applied 

to actual measurements made with an infrared camera. It is shown that the technique can, in the absence of specific 

manufacturer supplied information of the instrument and specialized equipment, be an alternative to the theoretical 

calculation of the instrument response spectrum or to an experimental determination of the instrument spectral response 

during which measurements are made of a spectrally tuneable radiation source like a blackbody and monochromator.  

Keywords: Infrared measurements, spectral response, Fredholm integral of the first kind, Tikhonov 

regularization.  

1. INTRODUCTION

In the field of radiometry, the infrared characteristics of an object of interest are inferred from radiation 

measurements  done with calibrated instruments like cameras and spectrometers [1]. Such instruments, which 

are in common use in the military environment, usually function in one of the atmospheric windows in which 

attenuation by the atmospheric constituents allows a reasonable distance of propagation of the infrared 

radiation before total extinction. These windows, or spectral bands, are loosely defined as near-infrared (NIR, 

          ),  short-wave infrared (SWIR,           ), medium-wave (or mid-wave) infrared (MWIR, 

     ) and long-wave infrared (LWIR,        ) [2]. The optical systems associated with these 

instruments, typically composed of lenses, reflective elements, windows, filters and anti-reflection coatings, 

need to be transparent (or fully reflective) to the infrared wavelengths within one (or several) of the 

mentioned spectral bands in order for the radiated energy from the object of interest to reach the detector. The 

detector itself needs to be designed and manufactured as to be sensitive in the required wavelength band.  

In practice, no optical system is fully transparent at all wavelengths [3] within a spectral band, and the 

sensitivity of the widely used infrared photon detectors can also be assumed to have a non-flat spectral 

response to incoming radiation [4]. The response of the other main type of detectors in common use, i.e. 

thermal detectors, is generally wavelength independent [4], but spectral selectivity is also introduced to this 

type of detector whenever a surface coating with selective spectral absorptivity properties is applied to the 

detector. The combined effects of spectral selectivity in the optical system transmission and detector response 

result in the instrument, as a whole, having a non-flat spectral response to any radiation measured by it. 

The influence of a non-flat instrument spectral response can largely be factored out by a calibration 

procedure. During this procedure an infrared source, like a blackbody with known Planck distributions of 

radiated energy at different temperature settings, is used as the object of interest to be measured by the 

instrument. The output signals of the instrument can then be correlated with the known temperature or 

radiance values of the blackbody being measured, so that the non-flat spectral instrument response is 

compensated for. In such a way, the instrument signal obtained from measuring a blackbody of unknown 

temperature can be inferred from the calibration information. However, for objects with non-blackbody 

spectra, such as spectrally selective emitters like gases, or grey bodies with constant emissivities smaller than 

one, the inferred temperature will most probably not agree with the object‟s thermodynamic temperature and 

is called the radiometric temperature (see [5] for the definitions of several types of radiometric temperatures). 

Moreover, for measurements during which the infrared signature of an object must be determined over a 
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distance for which the atmospheric and other environmental contributions to the observed radiation is non-

negligible, the measured radiation (and associated radiometric temperature), digress even more from the true 

value of that of the object of interest. In order to correctly model the radiance measured by the instrument, or 

to attempt to infer the source radiance value of the object of interest during data reduction by correcting for 

exogenous influences on the measurement, the instrument spectral response is required [6]. 

In general, the instrument spectral response can be determined by one of two methods: 

 Theoretically by having information from the manufacturer in hand, like the detector responsivity as 

calculated from the spectral quantum efficiency of a photon detector [7], the spectral absorption of the 

surface of a thermal detector and the spectral transmission of the optical system and any filter or 

coating forming part of it. 

 Purely experimentally with the use of a spectrally tuneable radiation source, like an infrared source 

and monochromator of some sort, capable of generating infrared radiance within a narrow wavelength 

band of which the centre frequency can be swept through the spectral wide-band (NIR, SWIR, MWIR 

or LWIR) in which the instrument operates, e.g. [8]. 

The first method typically, in practice, suffers from incomplete or unavailable information. Furthermore, the 

spectral information supplied by a manufacturer most likely consists only of typical values of quantum 

efficiency and transmission for a batch of detectors and optical systems, instead of the exact values of the 

specific component purchased. 

The second method can be considered as the preferred method, since any manufacturing deviation from the 

design norm is automatically apprehended in the measurements. The problem here might be the lack of the 

appropriate, specialized, and usually costly, equipment. Also, due to the nature of a narrow band radiation 

source, the amount of radiation energy decreases as the resolution (determined by the width of the tuneable 

narrow wavelength band) increases, which might present instrument dependent problems related to 

inadequate sensitivity. 

The goal of the research reported on in this article is to present a promising alternative method to the two 

mentioned traditional methods for determining the spectral response of an infrared measuring instrument. The 

main idea behind this method is to use only a blackbody, which is a standard piece of equipment in any 

infrared laboratory, and a very low temperature object for calibration type measurements from which the 

instrument spectral response can be retrieved after applying an appropriate mathematical technique. 

In Section 2.1 the mathematical technique is developed by starting from the basic measurement equation for 

calibration type measurements. The technique is considered novel in the sense that it demonstrates that it is in 

principle possible to obtain the instrument spectral response of a wide-band instrument from measurements of 

a blackbody without the use of a monochromator. However, although the spectral response recovery is in 

principle possible, it does come with complications arising from the instability of the solution. Fortunately, an 

attempt can be made to stabilize this type of unstable solution arising from the inversion of ill-conditioned 

matrices; to this effect, the regularization method of Tikhonov is introduced. After introduction of this 

stabilization method, the technique is applied in Section 2.2 to synthetically generated measurements, i.e. 

measurement results with no measurement errors but with unstable solutions. The behaviour of the technique 

with the mentioned regularization method is then demonstrated by an investigation into its dependency on the 

controllable aspects, i.e. controllable parameters, used during the process of obtaining a solution, followed by 

a discussion of the findings in Section 2.3.  

Section 3.1 presents the spectral response of a real instrument, a MWIR camera, as obtained from the two 

earlier mentioned traditional methods. In order to utilize the proposed technique for obtaining the camera 

spectral response, it is showed in Section 3.2 how a realistic model of the signal output from the instrument 

should be constructed before attempting to resolve its spectral responsivity. This model is considered 

sufficiently generic to be applicable to a wide range of infrared (IR) camera models. The measurement setup 

of the calibration type measurements is then also described in detail to enable any interested party to replicate 

these types of measurements. It is then shown that, although it is in principle possible to resolve the spectral 

response of an instrument by the proposed technique as illustrated in Section 2, a high degree of accuracy are 

required in the measurements and in the knowledge of the observed object radiance spectrum. The purely 

experimentally determined camera spectral response (second method described above), considered as an 

absolute reference, is then used to compare the solutions obtained from the proposed technique against and 

also to obtain an indication of the required degree of measurement accuracy for the technique to be applied 

successfully.  
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Section 4 summarizes the research done and the findings and limitations when applying the proposed 

technique, with some reflections on possible future research and other applications.  

2. TECHNIQUE FOR RESOLVING THE INSTRUMENT SPECTRAL RESPONSE

2.1 Theory 

The measurement of an object by an ideal instrument, without any exogenous influences, can be described by 

the measurement equation (cf. [9]) 

  ∫     ( )  ( )  
  

  

   (1) 

where   (units of [V] or [A]) is the signal obtained from the instrument as a result of the observed object 

having a wavelength ( ) dependent  radiance     ( ) ,   
            -. The wavelengths    and   

demarcate the spectral band in which the instrument is sensitive to radiation, and   ( ) is the spectral 

radiance responsivity of the instrument, which is the ratio of the output of the instrument to that of the spectral 

radiance of the observed object (units of [(V or A)/(                )-). The responsivity can be written 

as 

  ( )    (  ) ( )       ( )  (2) 

where        (  ) is the spectral responsivity at the wavelength at which    obtains its maximum value, 

i.e. at wavelength   , so that  ( )    ( )      forms the normalized spectral responsivity, which are often 

used in these type of measurement equations (see e.g. [10–12]).     forms a wavelength independent 

conversion factor (and therefore removable from under the integration sign in Equation (1)), which both 

scales the calculated radiance back to the correct level and also converts it into instrument signal units (  to 

 ), whenever the normalized spectral responsivity   is used in the measurement equation as is shown later in 

Equation (4). The use of    introduces a simplification in the notation used in the technique under 

development, with   containing only the essence of the desired information to be retrieved– the shape of the 

spectral response and not so much the absolute level of this spectrum.   

The object radiance,     ( ), describes all contributions from all sources of radiance reaching the instrument, 

but in the rest of this section it will be considered to consist only of a blackbody, described by Planck‟s law 

   (   )  
    

  
 

 
  
     

  (3) 

with    (   ) being the blackbody radiance,   the velocity of light,   the Planck constant,   the Boltzmann 

constant and   the temperature of the blackbody. The implied assumption when setting          in the 

measurement equation, is that the radiance observed by the instrument is only from this one source having a 

fixed temperature   and a constant spectral emissivity of     , and that there are no exogenous influences 

on this blackbody measurement from the atmosphere or any other sources, like the thermal radiation from the 

camera itself. This assumption will serve in assisting the demonstration of the proposed technique, but will be 

adapted in Section 3 when real measurements are used in the application of the technique. Eq.  (1) can now be 

rewritten as 

 ( )      ∫    (   ) ( )  
  

  

        ( )  (4) 

describing the signal obtained from the measuring instrument when observing a blackbody with temperature 

 , for which the radiance spectrum    (   ) is theoretically known. The peak-normalized radiance [13,14] 

for the instrument specific  ( ), as defined in the above equation, is denoted by    ( ). It must be noted that 

Eq. (4) is a Fredholm Integral equation of the First Kind (IFK) [15–17], which have the generic form  ( )  

∫  (   )
  
  

 ( )  , where the kernel  (   ) is a known function of the two variables   and  ,  ( ) is an 

unknown function  to be solved and  ( ) is known for different values of  , usually obtained from 

measurements.  With the kernel in Eq. (4) being Planck‟s law, the goal is now to obtain the unknown  ( ), or 
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     ( ), after which the value of     can also be obtained in a straightforward manner. Note that the 

   (   ) kernel is not separable into factors containing only   and   respectively, which negates the 

possibility of removing   from under the integral sign, thereby complicating any analytical solution. 

The first step is to discretize the integral in Eq. (4) by means of a quadrature formula. A closed quadrature 

formula for numerical integration yields 

   ( )  ∑     (    ) (  )

 

   

  
(5) 

with       and      , where    are the weights associated with the chosen quadrature formula. For 

equally spaced wavelength intervals           , the extended trapezoidal rule [16] prescribes the weights 

to be             and                . For each measurement made of a blackbody at a 

specific temperature   , as is done during calibration of an instrument, Eq. (4) can now be written as 

          (  )      ∑     (     ) (  )      ∑      

 

   

 

   

  (6) 

where the shorthand     (  ),           (     ) and       (  ) is used. Each of   temperature 

measurements can be described by Eq. (6), thereby forming a system of equations, which can be written in 

matrix form as 
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The system of calibration measurement equations, given by Eq. (7), can now be written in a more compact 

form as 

        . (9) 

The columns of the radiance matrix   represent the model space   , with its dimension   being determined 

by the number of wavelengths over which the model (blackbody radiance) is described. The rows of   

represent the data space   , with its dimension   being determined by the number of measurements 

available. If    , the system is square and an exact solution might exist. If    , the system is 

underdetermined with infinitely many or no solutions, which is not useful in obtaining a unique solution of  . 

If    , the system is square or overdetermined and a least-squares (LS) solution can be obtained. In the 

context of this work, Eq. (7) is considered to represent either a square or an overdetermined system of 

equations with the number of wavelength nodes  , at which the blackbody emission (model) values are 

calculated, being the same or less than the number of blackbody temperatures  . It, however, makes sense to 

use the maximum allowable value of the modelling parameter   without the system being underdetermined, 

so that     is mostly used in the remainder of the work, except where the effect of     will be 
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illustrated later. The aim with a LS solution is to minimize the Euclidian residual vector norm, i.e. it is 

attempted to obtain 

               . (10) 

 

The solution for   in Eq. (10) is obtained by multiplying both sides of Eq. (9) from the left by the transpose of 

 , i.e.   , and then multiplying both sides from the left by  
 

    
(   )  , giving the set of normal equations 

   
 

    
(   )

  
    

 

    
  ̃     ,  (11) 

with   ̃     .  

Eq. (11) has a unique solution whenever matrix   ̃ is invertible (and    ) [16]. Unfortunately, IFKs are 

often extremely ill-conditioned [16], with very unpleasant properties inherent to them [15], and are therefore 

not easily invertible. It is in fact stated by Wing [15], that “A solution to … the IFK … can seldom be 

obtained in closed form. Frequently, in practical situations, a reliable approximation to the solution cannot 

even be found …  It is usually necessary to settle for less information than we would like”. The author then 

states that he prefers to rather speak of resolving, than solving, IFK problems, a preference which will be 

maintained in this article as far as possible synonymously with the term recovered. Wing also states that it is 

clear from the unboundedness of the inverse kernel and the fact that small changes in the measured data (  in 

this context) may produce “wild” behaviour in the solution ( ), that a means must often be found to “tame” 

this solution function; “Researchers should be quite aware that they have a great deal of control over and 

responsibility for this taming”. The making of subjective judgements and the use of insight, intuition and 

educated guesses are then stated as necessities in solving IFK problems. Inverse blackbody radiation 

problems, similar to the one addressed here but for which a different parameter than emissivity is sought, are 

no different [18,19]. It is the intention to show in this article what is required to tame the spectral response 

solution function, and to show the degree of success of what can be achieved with error free synthetic data as 

well as data containing uncertainties from a MWIR camera.  

In order to easily diagnose the condition of   ̃ (i.e. how invertible it is), the singular value decomposition 

(SVD) technique is firstly be used to factor    (being an     matrix) into an     orthogonal matrix  , 

an     diagonal matrix   having singular values    on the diagonal and the transpose of an     

orthogonal matrix   [16], i.e.  

       . (12) 

The SVD of   then allows easy calculation of the condition number,  , of  ̃ since 

 
 ( ̃)  

    
 

    
   (13) 

where      and      are the largest and smallest singular values amongst    respectively. This condition 

number assists in determining the behaviour of  ̃ upon inversion –  if    , the matrix is singular; if     

(not infinite) the matrix is ill-conditioned; if   is closer to one, the matrix is well-conditioned [15,16,20].   

The approach towards the stable inversion of   ̃ in this work is by means of the regularization method of 

Tikhonov [15,17,19]. In this method, the minimization of the residual vector norm in Eq. (10) is replaced by 

the penalized LS problem 

     *           
          

 +,  (14) 

i.e. solutions of large norm   is now penalized, with the scalar     being called the regularization 

parameter. The first term, when small, guarantees that   is „nearly‟ a LS solution, while the second term tends 

to damp out instabilities in   [19]. The balance between the two terms, i.e. the normal LS solution of   and 

the damping of instabilities in  , is determined by the value of   (some literature  uses   ). This regularized 

version of Eq. (10) now represents a well-posed problem from which a well behaved solution should be 

obtainable. The LS solution for Eq. (14) is 

    
 

    
 ( ̃    )
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where   is an identity matrix with the same dimensions as   ̃. The solution is unique for a specific value of   

and is called the Tikhonov approximation to     , the minimum norm solution of the normal equations, where 

   is the Moore-Penrose generalized inverse of    [19]. It can be seen that Eq. (15) is identical to Eq. (11), 

except for  ̃ which is now replaced by  ̃    , i.e. the scalar value   was added to all elements on the 

diagonal of   ̃. 

Substitution of Eq. (12) into Eq. (15) results in the SVD implementation of the Tikhonov regularization [17]  

    
 

    
  (      )      . (16) 

It was found in the work of Section 2.2 that the above SVD version of the Tikhonov regularization results in 

more stable solutions than Eq. (15) when    , and was therefore used in this work. 

The   values added to the diagonal elements of     in Eq. (16), stabilizes the solution of    by improving 

the condition number of the matrix to be inverted, which is now [20] 

  ( ̃    )  
    
   

    
   

. (17) 

It can be seen that as    , Eq. (15) approaches its original form of Eq. (11) and a more  accurate solution 

should be reached. This is, however, at the cost of numerical stability of the solution as can be seen from Eq. 

(17) which approaches Eq. (13) when    , so that a compromise between an accurate solution for    with 

small  , lying close to an erratic solution (i.e. ill-conditioned), and a less accurate solution for    with larger 

 , being  more stable (i.e. well-conditioned), exists (cf. [17,21]).  

If      is not known, Eq. (16) can be rewritten as  

          ( 
     )       (18) 

and    can be obtained by normalizing the solution obtained on the right hand side of Eq. (18) with respect to 

its maximum component, i.e. by dividing by     (      ).  

The optimal value of   can be determined by visual inspection of the results (visual inspection is also used by 

Wing [15] to determine the best solution) – the value of   can be continually decreased up to the point where 

the solution starts to appear erratic; the optimal   value would be that used in obtaining the solution that just 

precedes the start of the erratic behaviour. Two noticeable, more formal methods for optimal   value 

determination are that of the Discrepancy Principle, which connects the   determination with the error level 

of the data (if known) [17,19,22], and the L-curve method [17,22], which requires no knowledge of the 

error/noise level of the data. In the L-curve method, solutions must first be calculated for a range of   values, 

  , with   the index referring to a specific   value in the range, so that a range of solutions     is obtained. 

The values of the logarithm of the residual norm              , appearing in the first term of Eq. (14), is 

plotted against the logarithm of the solution norm          , appearing in the second term of Eq. (14), which 

then typically forms an L-shaped curve. This L-curve displays the compromise between the minimization of 

the residual norm (good LS solution) and the solution norm (damping of instabilities). The optimal   value is 

the specific   value used in the calculation of the data point situated in the corner of the L-curve, defined as 

the point on the curve that has maximum curvature. The selection of the corner data point on the L-curve can 

be done manually or an attempt can be made to calculate its position – a discussion by Hansen on the 

difficulties involved in computing the point of maximum curvature can be found in [22]; the manual method 

is used and illustrated in the subsequent sections.  

 

2.2 Spectral response recovery from modelled measurements  

The following aspects/parameters are controllable during the design and setup of the measurement equation, 

Eq. (9), and the application of the penalized LS solution,  Eq. (15) (and the subsequent SVD implementation 

thereof as given in Eq. (16)), for resolving the spectral recovery: 

1. The number of temperature measurements,   (  , with      ), or equivalently the temperature 

difference    between temperature values over a given temperature range. The temperature 

difference, however, needs not to be constant.  

2. The temperature range covered by the measured    , ,     -. 



 

 
 

 

7 

 

3. The number of wavelength nodes,   (  , with      ), or equivalently the wavelength difference 

   between equally spaced wavelength values. The wavelength difference needs to be constant when 

the Trapezoidal quadrature rule is used in the numerical integration. 

4. The wavelength range/band covered by   , ,     -, over which the blackbody spectrum is modelled. 

5. The value of  . 

The first two parameters are measurement parameters which must be decided on during the planning of a 

measurement session, while the following two parameters are modelling parameters which must be fixed 

before it is attempted to resolve the spectral response with the technique outlined in Section 2.1. The last 

parameter,  , is the solution regularization parameter which must also be fixed before the actual application 

of Eq. (16). The dependency of the technique on these parameters will now be demonstrated by making use of 

modelled „synthetic‟, noise free values for   containing no measurement uncertainties. These values are 

obtained by first calculating   in Eq. (8) by using Eq. (3) and the weights prescribed by the Trapezoidal rule, 

after which   is multiplied an arbitrarily designed normalized response spectrum   to obtain   . In order to 

obtain the right hand side of Eq. (9), the value of      is chosen to be             (  ) so that vector    is 

normalized by its maximum value with the convenient effect that the components of   is scaled between zero 

and one over the covered temperature range. Note the implicit assumption that    is directly proportional to 

   . For these, and all other calculations in this work, the Matlab® software package (version 9.0.0.341360 - 

R2016a) was used on a 64 bit personal computer. The aspects influencing the calculation of   and the impact 

thereof on the exact values of     as obtained from    will firstly be discussed, before it is attempted to 

resolve   from only   and the fabricated  .  

Fig. 1 shows the blackbody spectra    (   ), calculated from Eq. (3), for a set of      temperatures   
*              +   . The modelled low resolution spectra, with        wavelength nodes having 

resolution of          , compared to the high resolution spectra with       wavelength nodes with 

resulting resolution of          , clearly show the deviation of the lower resolution spectrum from the 

more accurate, smoother high resolution spectra. This deviation is especially obvious close to the peak value 

associated with each blackbody temperature (described by Wienn‟s displacement law). It should therefore 

come as no surprise that the areas under the respective curves might differ and the integral of the high 

resolution curve would be more accurate than the integral of the low resolution curve for a blackbody of 

specified temperature. The implication is that the value of  , and therefore the value of   , would have an 

impact on the calculation of a numerical integral of     in Eq. (3) over a specified wavelength range. The 

value of   therefore impacts on the calculation of the accuracy of the numerical integral given by Eq. (5) – the 

parameter   should be large enough in order to model the measured signal with adequate accuracy. 

Fig. 2 shows the peak-normalized        band radiance modelled „calibration‟ curves for different values 

of   , with     in each instance, calculated with Eq. (5) for a normalized spectral responsivity  ( ) having 

a flat spectral response with value of one over        and zero response outside this region (this spectral 

block response is shown in the graphs of Fig. 4 by a thick black curve). The smoothness of each curve 

increases as the number of data points defining the curve, i.e. the number of chosen temperatures   in the 

            temperature range, increases – the least smooth curve is for     , while the smoothest 

curve is for       . Furthermore, as noted in the previous paragraph, the accuracy of the calculations 

using Eq. (5) increases as the number of wavelength nodes   increases, so that, with    , the accuracy of 

each curve increases as the number of temperatures   increases. It can be seen that as   increases, the 

different curves converge towards and settles on the curve with the highest value of  , i.e the curve with 

1301 temperature values with         and an accompanying number of 1301 wavelength nodes.  

It should be noted that the accuracy of the curves in Fig. 2 is, besides being influenced by  , also influenced 

by the specific wavelength range/band of interest as covered by [     - and as imposed by  ( ), since for the 

same   and    used in the calculations, a calculated value of    (  ) at a specific    can be more accurate in 

one wavelength range than in another, e.g. the calculated     at a high value of    is more accurate in the 

       band than in the        band. This is due to the larger approximation errors (as touched on  

earlier) of the numerical integral around the peak radiance values, which are situated in       ; this can 

easily be gathered by comparison of the solid and dotted blackbody curves  for high temperatures show in Fig. 

1 in this band. It can be said that above some value of   (  ), the values of     would be adequately 

modelled in a specific wavelength band for a specific response spectrum. 
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Fig. 1. Illustration of blackbody spectra over           for different temperatures. It can be seen how the low 

resolution spectra with      and           (solid lines) deviates from the more accurate high resolution spectra 

      and           (dotted lines), especially around the peak of each spectrum associated with the higher 

temperatures. 

 

Fig. 2. The peak-normalized radiance as a function of blackbody temperature for the block spectral response over 

       shown in Fig. 4, i.e. calibration curves. The curves were calculated using different numbers of blackbody 

temperatures,  , and wavelength nodes,  , although   was chosen so that    . Only straight line interpolation 

between data points was used in plotting these curves. 
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Fig. 3 shows the relationship between the modelled   and     values as calculated by Eq. (6) for the   

     block response and temperature values used in Fig. 1 for the case when      (with    ), i.e. for 

  *              +   . The relationship is ideal in the sense that   is directly proportional to    , as 

can be gathered from Eqs. (6) and (9), with no noise threshold or any non-linearities present in  . For cases 

where     , as will be used later in resolving  , the gradient of the straight line fit to the data points will 

be different to the one shown in the figure due to the improved accuracy of the calculated     values. 

 

 

Fig. 3. The modelled signal values,  , resulting from the peak normalized radiance,    ( ), at different blackbody 

temperatures. 

Having gained some insight into the importance of the role played by the measurement parameter   (and the 

associated   ) and the modelling parameters   (with associated   ) and wavelength band ,     - in setting 

up the measurement equation given by Eq. (9), the dependency of the recovery technique, as condensed by 

Eq. (16) or Eq. (18), on these as well as the remaining parameters of   and temperature range ,     -, will 

now be demonstrated; in this respect, Fig. 4 shows the results (to be discussed) of various spectral response 

recoveries in which different values of the mentioned parameters were used, given only the   and   values (as 

calculated from the mentioned        block response) as input. Although the value of      was considered 

to be unknown, the value of    could be obtained in each instance by normalizing the vector calculated on the 

right hand side of Eq. (18) by its largest component. 

To start off with, calibration measurements were modelled for blackbody spectra over the temperature range 

            with          . The number of wavelength nodes was set equal to the number of 

temperatures, i.e.    , with      and therefore           over a wavelength range of       
      (the applicable calibration curve, with           and       , is shown in Fig. 2). The 

characteristics of the Tikhonov approximation towards the spectral response recovery for these setup 

parameters can be observed as a function of   in Fig. 4a – at the relatively large value of     the solution is 

stable, although not that accurate; at the smallest value of     (i.e. no regularization), the solution becomes 

erratic, with extreme values outside the MWIR response wavelength band; over some optimal range of   

values, between         and         in this case (note that the green coloured curve lies on top of the 

cyan coloured curve),  the resolved response spectrum appears to be reasonable in comparison with the 

correct spectrum shown in black (in spite of its calibration curve in Fig. 2 seeming less than adequately 

accurate). The value of   can also be obtained from the   values used in the calculation of the corner point(s) 

of the L-curve shown in Fig. 5, calculated from                              . The values of   for 

the three points clustered in the corner position of the curve are               and      , which agrees 

with the results obtained from the visual inspection. The L-curves obtained for the remainder of the solutions 

shown in Fig. 4b - Fig. 4f (discussion to follow hereafter) all had optimal   values over this wide range, with 

small to no distinction that could be made between their solutions.  
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Modelling of the measurements of the previous paragraph were repeated over the same blackbody 

temperature range of             but with an increase in the number of  temperatures from      to 

     , with the resultant value of the constant temperature interval decreasing from           to 

        . The modelling parameter   was again set equal to the now larger value of  . Using these 

„measurements‟, the resolved spectra in Fig. 4b are now smoother for the three largest values of   due to the 

higher wavelength resolution, although these spectra are not necessarily better solutions than those obtained in 

Fig. 4a.  A value of           was found to give a relatively good recovery of the response spectrum, 

although instability is already starting to show. The value of     results in a totally erratic response 

spectrum.  

Fig. 4c shows the recovered response spectra for the same temperature interval of          between 

different blackbody modelled measurements as used for Fig. 4b, but for a much narrower temperature range 

of             . The most useable solution was also found at        . Although the wavelength 

resolution of the spectrum is not ideal (      ), the recovered response can still be used in determining 

the wavelength band in which the instrument operates (clearly MWIR in this case). This solution is, however, 

not as good as that obtained in Fig. 4a and Fig. 4b. 

In Fig. 4d, the same temperature range and interval was used than in Fig. 4b, but with   
 

 
  (now an 

overdetermined system of measurement equations). Although the wavelength resolution is half that than for 

Fig. 4b, the quality of the best recovered response spectra (             ) appears to be similar than 

that of Fig. 4b.  

The parameter values used in obtaining the recovered spectra shown in Fig. 4e are the same as those used for 

Fig. 4b, except for the wavelength range which was chosen to be relatively narrow around the MWIR band, 

i.e.             , and the resulting smaller value of             (i.e. higher wavelength resolution). 

It can be seen that the recovered response spectrum in Fig. 4e (             ) agrees more closely to 

the correct spectrum than that shown in Fig. 4b. 

The spectra shown in Fig. 4f were obtained by increasing the temperature resolution used for Fig. 4e by 

setting         with a resulting change from             to              Comparison of the 

recovered high resolution spectra of Fig. 4f and the lower resolution spectra of Fig. 4e yields little difference 

between them, as was the case in the comparisons of Fig. 4b with Fig. 4a and Fig. 4b with Fig. 4d.   

The spectral recovery of synthetically generated data is now further explored in order to illustrate that the 

technique is also able to recover spectra of more complex shapes than that of the        block response 

used so far.  

From Eq. (5) it is clear that due to the dependency of    ( ) on  ( ), different shapes of  ( ) should result 

in different      vs.   curves. Fig. 6b illustrates the calibration curves of peak-normalized radiance calculated 

from Eq. (5) as a function of blackbody temperature (similar to curves in Fig. 2) covering             

with          as modelled for the different instrument spectral responses shown in Fig. 6a. These 

calibration curves (Fig. 6b) differ from each other as a result of the mentioned differences in the spectral 

responses – note how some curves cross each other, indicating that these curves do not just differ by a scaling 

factor.  

Using an adequate temperature and wavelength range and resolution (cf. the discussion on the curve 

accuracies in Fig. 2), the spectral response should be resolvable from the curves of Fig. 6. In order to 

demonstrate this claim, the resolved normalized response spectrum of each of these instrument response 

curves are shown in Fig. 7. In each case, the wavelength range was chosen as to tightly fit around the known 

response spectrum. This can always be done for any unknown  ( ) by firstly recovering the spectrum over a 

wide wavelength range, as shown in Fig. 4a-d, and then narrowing down on the wavelength region in which 

  ( ) is shown to have a non-zero response, as was done in Fig. 4e-f.  The optimal values of    were obtained 

from the method of visual inspection as well as the L-curve procedure.  
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Fig. 4. The correct spectral response,  ( ), used in the calculation of the instrument output signal,  , is shown by thick 

black curves together with the resolved response spectra,   , obtained by using different values of   for modelled 

blackbody measurements with 

a)           covering the range            , the number of wavelength nodes equal to the number of 

temperatures, i.e.        and therefore              over a wavelength range of            . Note that 

cyan and green curves lie on top of each other. 

b)          covering the range              with        ,             over            .  

c)          covering the range            with       ,            over            . Note that 

cyan and green curves lie on top of each other. 

d)          covering the range             with      
 

 
 ,            over            .  

e)          covering the range             with        ,             over             .  

f)         covering the range             with        ,             over             . Note that 

cyan and green curves lie on top of each other. 
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Fig. 5. The L-curve of the solutions shown in Fig. 4a. The   value(s) used for the calculation of the data points in the 

corner of the curve give the optimal value(s) of  . The   values used in the calculation of the curve was   
                           . 
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Fig. 6. The (b) modelled peak-normalized radiance,    ( ), as a function of blackbody temperature,  , as calculated 

from (a)  different normalized response spectra  ( ). The colours and line types of the spectra in (b) agrees with the 

colours used in (a). 
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Fig. 7. The resolved normalized spectral response of the various, arbitrary response spectra shown in Fig. 6, for   
          and         . The number of wavelength nodes was chosen such that    . 

 

2.3 Insights gained from applying the technique to the modelled measurements 

During the application of Tikhonov regularization in Eq. (16) to the data as modelled by Eq. (9), the value of 

the regularization parameter   was obtained on the basis of visual inspection of the computed solution as well 

as from the L-curve selection method. During the visual inspection method, the order of magnitude of the 

smallest value of  , which is supposed to give the best representation of the actual response function, was 

easily (and quickly) obtained by calculating the solution   ( ) for a decreasing series of   values. The value 

of   to be used is that which almost results in numerical instability of the computed solution – this could just 

as easily be seen in the results of Fig. 4. Changes to the value of   within the correct order of magnitude do 

typically not result in any critical changes to the computed solution, so that the visual inspection method with 

systematic experimentation with the   value is a viable method of resolving the response spectrum.  

Determination of the optimal value of   using the L-curve method resulted in answers which were in good 

agreement with the visual inspection method. In some cases, more than one data point cluttered together in the 

corner of the L-curve. The use of the   values of these cluttered data points resulted in recovered spectra 

which were mostly indistinguishable from each other, thus giving a range of optimal   values.   

Although the study in Section 2.2 on the behaviour of the applied technique with respect to the different 

measurement and modelling parameters was not exhaustive, some important insights could still be gained: 
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 The number of wavelength nodes   should be large enough to enable accurate modelling of     in the 

measurement equation, Eq. (9). It would therefore be good practice to set   equal to the maximum value 

for which the system of measurement equations is not underdetermined, i.e. a square system with    .  

The implication is that the number of temperatures   should be sufficient to allow accurate modelling of 

   . 

 Although higher values of   results in a recovered response spectrum with higher wavelength resolution, 

it does not guarantee the increased stability of the solution. 

 A wider range of temperature values resulted in a better solution of the response spectrum, so that it is 

advisable to cover the widest possible temperature range that can be measured.  

 Since complex shapes generally require more data points to describe them, complex response spectra can 

only be described by spectral response data with sufficiently high wavelength resolution, specified by  . 

However, if   is too large (and therefore    too small),      and        become very close in value, 

resulting in columns   and     of matrix  ̃ to be nearly equal. These nearly equal columns  cause  ̃ to be 

almost singular, and  ̃   can be expected to exhibit poor behaviour [15]. Other quadrature schemes than 

the Trapezoidal method, possibly better fitted to the combination of blackbody curve and expected shape 

and region covered by the response spectrum, can be used and might improve the numerical results [15]. 

 The modelling wavelength range should fit tightly around the expected wavelength region covered by the 

response spectrum. If this region is unknown, the calculations can be started over a wide range, and then 

repeated over a narrower range after the region of active spectral response has been determined.   

 

Resolving the IFK in Eq. (4) not only requires a regularization method, but also subject knowledge regarding 

the problem at hand. In this respect, it is known that the normalized spectral responsivity is bounded by  

   ( )   . Finalization in resolving    ( ), e.g. the spectra shown in Fig. 4 and Fig. 7, can be obtained by 

imposing responsivity boundaries of   ( )    for all negative values of   ( ). Furthermore, from knowledge 

of the detector material (e.g. InSb or HgCdTe) when working with a real instrument and qualitative 

transmission properties of the optical system (e.g. knowledge of the infrared band for which the lens was 

manufactured, e.g. LWIR), it should be known whether only one (Fig. 7a,b,c,f) or several (Fig. 7d,e) 

wavelength regions of non-zero spectral responsivity exist. If only one region exists, then all   ( )    can be 

set to zero in wavelength regions suspected not to partake in the instrument responsivity. In order to 

determine whether the adjustments to   ( ) during finalization of the resolution has not wrecked the true 

response   ( ), the left hand side of  Eq. (9) can be calculated using   ( ), i.e.    , and its relationship with 

the measured   can be tested (as in Fig. 3) to determine whether the expected linear dependency exists. Any 

major deviation from this assumed linear relationship would indicate an inadequately resolved responsivity. 

Care must however be taken if it is known that the instrument has such a nature that the output signal varies 

non-linearly with the observed radiance. In such a case, the non-linearity must first be characterized and then 

an attempt can be made to linearize the output signal [23,24], after which the outlined technique can possibly 

be applied. 

 

3. DETERMINING THE SPECTRAL RESPONSE OF AN INFRARED CAMERA  

The spectral response for a (2003 model) Cedip Jade III MWIR camera, our camera under investigation 

(CUI), with a cooled InSb SCD Gemini detector was determined using the three methods mentioned in 

Section 1, i.e. theoretically, purely experimentally and by using the technique outlined in Section 2.1. This 

camera has an image resolution of         pixels with a field of view (FOV) of approx.        obtained 

by using a       lens with an f-number of      . 

3.1 Theoretically and purely experimentally 

Theoretically, the spectral responsivity for this instrument can be written as 

 

        ( )           ( )      ( )   ( )     ( ), (19) 

 

where          ( )    ( )   is detector responsivity,   is a constant,   is the spectral quantum efficiency 

and       ( ),    ( ) and      ( ) are the spectral transmissions of the dewar window, anti-reflection 



 

 
 

 

16 

 

coating on the dewar window and the lens respectively. The normalized detector spectral responses would 

then be 

 

 
         ( )  

         ( )

         (  )
 (20) 

 

and the normalized instrument response is 

 

 
      ( )  

      ( )

      (  )
  (21) 

 

where          ( ) has a maximum value at    and        ( ) has a maximum value at   . Typically 

representative transmission data of       ( ) and    ( ) for this camera model were obtained from the 

manufacturer and are shown in Fig. 8 together with          ( ) and        ( ). The silicon lens, with its own 

anti-reflection coatings, has a flat transmission spectrum in the MWIR region (not shown in the figure). 

 

 

Fig. 8. The spectral transmissions of the optical components (    and       ) and normalized detector responsivity 

(         ) of the MWIR camera, together with the normalized instrument response (      ) calculated from these 

variables and experimentally determined instrument responses (        and        ) by using a CVF. 

 

The spectral response of two camera models identical to the CUIs, one with a 50 mm lens (       ) and the 

other with a 100 mm lens (       ), were obtained purely experimentally with the use of a circular variable 

filter (CVF) wheel (model S134-LR of Optical Coatings Laboratory Inc.) [25]. The spectral responses so 

obtained are also shown in Fig. 8. It can be seen that these response curves differ from the theoretically 
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determined curve, and they also differ from each other (although not much) – this indicates the probable 

deviations of the manufactured components of the camera from the typical data available on these 

components. The experimentally determined camera responses will be considered as the most accurate 

representation of their actual response spectra, with the response spectrum of the camera with the 50 mm lens 

that will be used as a reference spectrum to verify any resolved spectrum against. 

3.2 Resolving the instrument response by the proposed technique  

The measurement with an ideal instrument of the infrared radiation from an object of interest, with no 

influences on the measurement by the environment, was described in Section 2.1. The CUI is, however, a real 

instrument subjected to influences from its environment and a realistic model of the signal output from the 

instrument should be constructed before attempting to resolve its spectral responsivity.  

3.2.1 Refinement of the proposed technique for a non-ideal instrument 

When the CUI is observing a blackbody, the measurement equation for the total signal output of the camera, 

    , can be modelled (cf. [26,27]) by 

 
     

 

  
, ( )    (  )    (  )   -      (22) 

where  ( ) is the component of      originating from the observed blackbody radiance (as defined in Section 

2.1),   (  ) is the component of      originating from the inside environment of the camera which has 

stabilized at the camera internal temperature,   , and   (  ) is the signal component resulting from the 

detector dark current, which is dependent on the detector temperature,   . The contribution of these 

components are all dependent on the integration time setting,  , of the camera during a measurement. Any 

possibly remaining integration time dependent signal components are represented by „ ‟ in Eq. (22). Any   
independent contributions to     , like an offset in the readout circuitry, is represented by    . The influence 

of the outside environment is considered to be limited to the blackbody radiance when observed over a small 

distance, so that atmospheric radiation (path radiance) and attenuation are assumed to be negligible.  

If, before the start of a set of measurements, the camera has stabilized in an environment with a controlled and 

constant climate, the values of    and    and probably any other remaining   dependent parameters, can be 

considered as constant so that the dependency of      on the variables   and   can be explicitly written as 

 
    (   )  

  ( )

  
  

 

  
,  (  )    (  )   -      (23) 

The blackbody contribution is separated from the rest of   dependent terms in the above equation. The first 

goal is to determine the value of  ( ), when having only available the values of     (   ) for given 

blackbody temperatures and integration times. This goal is addressed by removal of the blackbody during a 

measurement so that the remainder of the terms, resulting from the instrument being a real instrument as 

opposed to an ideal instrument, can be determined. With the values of these terms known, the value of  ( ) 
can easily be determined.  

If a blackbody, or any other object, with temperature of     is measured by an ideal instrument under a non-

intervening environment, the instrument should have a zero output signal. When measured with a real 

instrument, like the CUI, the contribution of the first term in Eq. (23) should be zero, so that the measurement 

equation for this measurement now becomes 

 
    (      )  

 

  
,  (  )    (  )   -       (24) 

After substitution of Eq. (24) into Eq. (23), the measurement equation becomes 

 
    (   )  

  ( )

  
      (      )   (25) 

and the value of  ( ) is obtained as 

   ( )

  
      (   )      (      )  (26) 

i.e. for a given integration time     ,  

  (    )      (    )      (       )   (27) 
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Resolvement of the normalized spectral response   ( ) can now be attemped by replacement of the signal 

from an ideal instrument  ( ) in Eq. (4) by  (    ), i.e. 

 
    ∫  ( )   (   )  

  

  

     (    )      (       )   (28) 

The components of the signal vector   in Eq. (16) are, for the specific    used during measurements, now set 

to 

        (     )      (        ) (29) 
 

  

after which    can be resolved. 

 

3.2.2 Measurement setup and results 

Measurements were obtained after alignment of the CUI with each of two types of blackbodies, a cavity 

blackbody and a flat-plate calibrator, respectively. The       aperture cavity blackbody, an EOI model 

CS1250-100,  has an emissivity of      to      with a stability of          [28] and was calibrated by an 

accredited service provider over the temperature range of       to         with a measurement uncertainty 

of      .  The Fluke 9133 portable infrared calibrator, shown in Fig. 9, has a target circular area with 

diameter of 57 mm, stability of         and is capable of covering a temperature range of        to       . 

Its target area plate was painted with Nextel 811-21, having an approximate constant spectral emissivity of 

     [29] over the MWIR band. The accuracy of its temperature settings is not known.  

 

Fig. 9. The MWIR camera under investigation aligned with a flat-plate blackbody. 

The output signal   of the CUI is a 14-bit digitized voltage signal, with dynamic range of         (    
 ) digital levels [  -, also called grey levels. Signal values above          are not used in order to stay 

well clear from any saturation effects close to the camera‟s saturation level of         . Before starting any 

measurements at a specific integration time  , a two-point non-uniformity correction (NUC) of the image 

pixels is done by means of measurements of a uniform flat-plate filling the FOV of the camera. 

The cavity blackbody was used for high temperature measurements (above the upper limit of the flat-plate 

blackbody) using a short integration time, while the flat-plate blackbody was used for lower temperatures 

recorded with longer integration times. Measurements were done within a climate controlled environment 

after the CUI‟s internal temperature has stabilized, thereby attempting to keep the output signal originating 

from the camera‟s internal emission constant. The temperature of the camera detector is always kept constant 

during operation at      by its own internal control system, thereby maintaining the dark current at a constant 

level.  

To realize Equation (24), measurements of liquid nitrogen (     ) over a short range of about       were 

considered as sufficient in order to ensure that no measurable, external blackbody/object radiation is observed 

by the camera. It was then attempted to do measurements of the blackbody over the widest temperature range 

possible (without the addition of a neutral density filter to the CUI) – for this reason three different integration 

times, collectively covering the lowest up to the highest temperatures measurable by the CUI, were used. The 
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recording of a sequence of at least 100 image frames over 5 - 10 seconds of each of the blackbodies at each of 

the temperature settings    followed. The values of    was ~5    over the temperature range ,       -    

for the integration time         with     ,       over the temperature range ,       -    for 

         (except for the highest temperatures for which    was decreased to      ) with      and 

      over the temperature range ,      -    for           with     . In consideration of the 

uncertainties related to the blackbodies‟ settings, stability and exact output spectra, values of    much smaller 

than       was not considered sensible.  Fig. 10 shows the measured output signal   of a group of     

pixels (averaged over the 16 pixels in each image frame as well as over the sequence of the recorded frames) 

near the centre of the recorded images as function of the blackbody temperature   at the different CUI 

integration times respectively. It can be seen that the three integration times span different blackbody 

temperature ranges and that the number of blackbody temperatures at which measurements were made within 

these ranges differ.  

The internal temperature of the camera was kept as constant as possible, although during the         
measurements, the camera temperature still varied by up to     ; during the          and         
measurements, it was possible to maintain the camera temperature variation below       . Although an NUC 

was applied for each integration time, such a correction is rarely ever perfect over a wide range of recorded 

temperatures, so that small variations between pixel values will persist. In spite of an imperfect NUC, 

different selections of pixels did not influence the results significantly – experimentation with    values 

obtained from single pixels or groups of pixels at different positions in the image did not have any significant 

influence on the solutions to be presented in Section 3.2.3. However, it is expected that as the quality of the 

NUC worsens, the measurement results will be negatively influenced with a subsequent negative effect on the 

spectral response resolutions.  

 

 

Fig. 10. The measured instrument output signal   (circular markers) as a function of blackbody temperature. The cavity 

blackbody was used for integration time        , while the flat plate blackbody was used for          and   
       . Also shown is the reference   values (solid markers and lines) obtained by fitting the measured   to the 

calculated     (shown in Fig. 11) by using the reference spectrum         in Section 3.1. Note the small differences 

between the measured and reference   values, especially for        .  
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Fig. 11a, c and e show the measured signals    at the three different values of   vs. the peak-normalized values 

   , with     calculated from Eq. (6) by employing the reference response spectrum         (of Section 3.1). 

As mentioned in Section 3.1,         is considered as the most accurate representation of the actual response 

spectra of the CUI, and a linear relationship is expected between   and    , especially for this CUI [26]. 

Deviations from such a linear relationship are therefore considered to be the result of measurement 

inaccuracies resulting from the blackbody source and CUI and not of an inadequate/inaccurate responsivity 

spectrum of the CUI (as might be the case as stated at the end of Section 2.3).  

A least squares straight line fit was applied to the measured   and     data in order to determine the deviation 

of the measured   values from the fitted line. The difference between the measured values and the values 

predicted by the fitted line, which will be referred to as the reference   values, is shown in Fig. 11b, d and f 

for the three respective integration times, with the associated Root Mean Square Error (RMSE) also indicated 

in the figure caption. It is expected that more accurately known spectra from the blackbody instrument and a 

more stable measuring instrument would result in an improved   vs.     straight line fit with a smaller 

RMSE. 
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Fig. 11. The camera measured output signal   (red circles) vs.    ( ), with    ( ) calculated from Eq. (6) using         

for (a)        , (c)          and (e)          . The straight blue line in each graph is the least squares fit to the 

data. The difference between the straight line fit and the measured signal values for the three different   values used in 

(a), (c) and (e) are shown in (b) with           (      of dynamic range), (d) with           (      of 

dynamic range) and (f) with          (      of dynamic range) respectively.  
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3.2.3 Resolving the camera normalized spectral response  

An important difference between the modelled measurements of Section 2.2 and the real measurements 

obtained with the CUI in this section is the measurement inaccuracies present in the real recordings. As 

mentioned in Section 2.1 when Wing [15] was quoted, small changes in the measured data may produce wild 

behaviour in the solution so that the solution have to be tamed using various means. Although great care was 

taken doing the CUI calibration type measurements as accurately as possible with the available equipment, 

non-ideal features of the measurements existed in the form of uncertainties of the emissivity, stability and 

temperature settings of the two blackbodies. Furthermore, variations occurred in the internal temperature of 

the CUI during the measurements (which would have an influence on the recorded DL values), in spite of a 

conscience effort to control and stabilize its environment. However, processing of the different sets of data 

obtained for the different integration times from the two different types of blackbodies used, with all the 

uncertainties involved, is considered to be a good test for the consistency of the proposed technique.   

Recovery of the CUI response spectrum was attempted by using the measured DL values as shown in Fig. 10, 

as well as the reference s (DL) values obtained from the straight line fit to the data which can be considered as 

a more accurate set of measurements. Recovered spectra were obtained for a range of   values for each 

integration time, using as modelling parameter values both a wide wavelength range covering         and 

a narrower range covering        during the application of Eq. (16). The results for the reference DL 

values are discussed first, where after the solutions for the measured DL values are discussed. 

Starting with the CUI reference DL recordings done with integration time         of      temperatures 

over the range ,       -    with        , solutions of the spectral response were obtained with the 

modelling parameters      (i.e.           ) and [     -          for 

  *                     +. The logarithmic values of the solution norms         and residual norms  
          , as associated with the solutions resulting from each   value, were plotted against each other to 

obtain the L-curves as shown in Fig. 12a. The corner position obtained form         was easily 

identified and are marked in the figure. The recovered response spectrum associated with this   value is 

shown by the black curve in Fig. 13a. Identification of the active response region within the wide band 

covering         can easily identified as the        MWIR band, so that the modelling wavelength 

range was subsequently narrowed down to       . The L-curve for this narrowed wavelength band, with a 

corner point associated with       , is shown in Fig. 12b with the resulting recovered spectrum shown by 

the black curve in Fig. 13b. It can be seen that this recovered spectrum, which represents the best solution for 

all the   values, is a reasonable representation of the known         spectrum shown in blue. 

The recovered spectra associated with the corner point   values in the remaining figures Fig. 12c to Fig. 12f 

for the reference DL recordings with integration times          and        , as solved over ,     -  
        and       , are shown in Fig. 12c to Fig. 12f respectively. The similarities in the recovered 

response spectra solved over the         range are easily observed, as is the case for the spectra solved 

over       . 

The spectra were then also recovered for the measured DL values, i.e. from the „less accurate‟ unadjusted 

measurements. In the same fashion as described above, L-curves were obtained from solutions associated 

with different   values – these L-curves are shown in Fig. 14. The solutions obtained for the   values of the 

corner points of the curves are plotted in red in Fig. 13. It was found that not all spectra recovered using these 

  values gave acceptable results – this was the case for the spectra shown in Fig. 13d and Fig. 13f. Acceptable 

solutions were found by visual inspection for the data points indicated in green on the L-curves; the solutions 

calculated with the associated   values are also plotted in green in Fig. 13d and Fig. 13f. Also shown in Fig. 

13e is the slightly improved solution of the response spectrum when the   value of the data point next to the 

corner point of the L-curve in Fig. 14e was used.  
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Fig. 12. The L-curves obtained from the response spectra as recovered from the reference data. The 

integration time and wavelength region used during recovery are shown for each graph. The   values used for 

the creation of the L-curves are also indicated (grey solid markers), as well as the   value associated with the 

corner point of the curve (black circle).  
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Fig. 13. The known spectral response         (in blue) and the solutions to the spectral response of the CUI from 

measurements (in red) and theoretically adjusted reference measurements (in black) at different integration times, as 

indicated on the plots, and for the different wavelength ranges of           and          used as input. The 

applicable parameters used in obtaining these solutions are shown in the corresponding sub-figures of Fig. 12 and Fig. 

14. 
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Fig. 14. The L-curves obtained from the response spectra as recovered from the measured data. The 

integration time and wavelength region used during recovery are shown for each graph. The   values used for 

the creation of the L-curves are also indicated (grey solid markers), as well as the   value associated with the 

corner point of the curve (red circle) and the   value resulting in the best visual agreement with the known 

response spectrum (green circle).  

 

In Fig. 15 the theoretical and experimentally CVF determined (reference) response spectra of Section 3.1 are 

shown together with some of the resolved spectra based on the solutions shown in Fig. 13. Finalization in 

resolving the spectra were done according to procedure described in Section 2.3, i.e. all negative values were 

changed to zero and any non-zero responses separated from the main response settled in the            

region were also changed to zero. A few remarks can be made regarding the shown spectra: 

 There is a reasonable (though not perfect) agreement in the wavelength position of maximum values 

of the resolved spectra with that of the reference spectrum        . 

 The theoretically adjusted signal values compare relatively well with        , and compare better than 

the theoretically calculated response spectrum       .  

 In comparing the resolved spectrum using the unadjusted signal measurements with that obtained by 

using the theoretically adjusted signal measurements, it can inferred that measurements made with 

improved accuracy would result in improved spectral response recovery. 



26 

Fig. 15. The resolved spectral response for the CUI together with the theoretical and experimentally 

determined responses as presented in Section 3.1.  

4. CONCLUSION

A technique was presented for resolving the spectral response of a wide-band infrared measuring instrument 

based on calibration type measurements of a blackbody at different temperatures and the mathematical 

technique as outlined in Section 2. The technique addresses the solution of a Fredholm integral equation of 

the first kind, which describes blackbody measurements by the measuring instrument. It was shown that 

during the attempt to solve the instrument response spectrum, subject matter knowledge is required in 

tailoring the inputs to the technique as well as the initial solution produced by the technique, and hence this 

process is referred to as „resolving‟ the response spectrum. 

A significant part of the mathematical technique is centred on the Tikhonov regularization method used 

during the inversion of the radiance matrix in the Fredholm equation, which is constructed from modelled 

values of blackbody spectra. The suitability of the blackbody spectral model, and thus the accuracy of the 

radiance matrix, is subject to the fidelity of the commercially available blackbody source instruments in 

accurately representing Planck‟s law in their emission spectra at different temperature settings.   

The technique was first tested by means of error-free, synthetically generated instrument output signals 

resulting from a „measured‟ blackbody source. It was shown that the solutions obtained from the synthetic 

signals for the response spectra were in reasonable agreement with the response spectra used in the generation 

of these signals. The accuracy of the resolved spectra is highly dependent on the value of the regularization 

parameter   – a larger value of   results in a more stable solution, but with lower accuracy, whereas a smaller 

value of   results in a more accurate solution, but with an increasing tendency of instability. The method of 

visual inspection as well as the L-curve method were explained and used to obtain optimal   values, which 

can typically cover a range of values.  

It is stated by Wing [15] that the optimal value of   is not only determined by the matrix to be inverted ( ̃ in

this work), but also by the statistical distribution of the error in the data and the data itself; this can be 

confirmed by the attempt to recover the response spectrum of an IR camera by using real calibration type 

measurements, considered to contain relative large uncertainties, that were done with the camera. In this 

respect, not all response spectra could be successfully recovered by the L-curve method, and the method of 
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visual inspection had to be employed in order to obtain reasonable response spectra. The measurements made 

were then also adjusted to be representative of more accurate measurements, after which the instrument 

spectrum could be recovered with great success by using only the L-curve method. In consideration of these 

results, together with the results of the error free synthetic data, it seems that the technique requires a high 

degree of accuracy in the measurements in order to be applied successfully. Quantification of the required 

degree of accuracy, as well as the investigation into possible improvements of the presented method, is 

foreseen in future research.   

In the use of the response spectrum during normal data reduction activities for obtaining the IR characteristics 

of objects of interest (as described in Section 1), differences in the actual response spectrum and the resolved 

response spectrum might, under certain operational circumstances, become less critical – for example, for 

measurements of objects over long distances, the atmosphere introduces a cut-off for radiation with    
    in the MWIR band (easily verifiable using radiative transfer code like Modtran

TM
). Such an 

environmental filter would make the over-extension of a resolved response spectrum to wavelengths longer 

than       (see e.g Fig. 15) of little consequence during data reduction when used together with the modelled 

atmospheric spectral transmission.    

Other infrared sources with known emission spectra can also be used after appropriate modification of the 

radiance matrix, which could result in a more stable matrix inversion. Also, other methods than Tikhonov 

regularization for stable matrix inversion exist and need to be investigated for possible improved solutions 

when using measurements characterised by non-negligible margins of error.  

Application of the technique can, besides instrument spectral response recovery, also be extended to optical 

filter transmission characterization if high accuracy measurements are possible, or at least filter transmission 

band identification of unspecified filters when only lower accuracy measurements are possible.  
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Highlights

•     A technique for obtaining spectral responses of infrared instruments is presented.
•     Monochromator type measurements are not required.
•     Calculations demanding instrument spectral specifications are not required.
•     Accurate calibration type measurements are required.
•     A mathematical technique for processing the measurements is presented.
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