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Abstract 

ISTVS embarked on a project in 2016 that aims at updating the current ISTVS standards related to nomenclature, 

definitions, and measurement techniques for modelling, parameterizing, and, respectively, testing and validation of soft 

soil parameters and vehicle running gear-terrain interaction. As part of this project, a comprehensive literature review 

was conducted on the parameterization of fundamental terramechanics models. Soil parameters of the empirical models 

to assess off-road vehicle mobility, and parameters of the models to characterize the response of the terrain interacting 

with running gears or plates from the existing terramechanics literature and other researchers’ reports were identified. 

This review documents and summarizes the modelling approaches that may be applicable to real-time applications of 

terramechanics in simulation, as well as in controller design. 

Keywords: Soil modeling; Pressure-sinkage models; Shear stress-displacement models; Vibration models; ISTVS 

standards; Terramechanics; Off-road vehicle dynamics 

1. Introduction

Modelling terrain-vehicle and terrain-machinery interaction has been the mission of the International Society of

Terrain-Vehicle Systems (ISTVS) since its inception in 1962. Off-road vehicles, earthmoving and construction 

equipment, and agricultural and forestry machinery remain vital to the global economy. In 2016, the ISTVS embarked 

on a project to update the existing ISTVS standards in an attempt to bring standardization and conformity to the 

community working in the field of terramechanics. Additionally, many real-time applications of Terramechanics and 
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off-road vehicle dynamics have emerged over the past two decades. This presents an opportunity to improve the 

measurement and control of off-road vehicles and machinery. The two main application fields are real-time dynamic 

simulation and real-time controller design.  

An extensive literature review was performed as part of the ISTVS standards initiative. This paper reports 

specifically on the aspects of this literature review that could be potentially valuable for real-time applications, 

including: 

a) Pressure sinkage models for zero slip (applicable to non-driven and non-steered wheels)

b) Pressure sinkage models for non-zero slip (applicable to driven and/or steered wheels)

c) Shear stress – shear displacement models (traction / braking)

d) Running gear-terrain or plate-terrain vibration models

For real-time controller design and implementation, the focus is on states, parameters and properties that 

a) are known beforehand (as in rover applications where moisture content may be known, e.g. dry lunar dust)

b) can be directly measured in real time e.g. wheel slip, rut depth, slip angle, etc. (Botha and Els, 2015a), (Botha

and Els, 2015b), (Johnson et al., 2017)

c) can be ―previewed‖ or obtained from a detailed terrain map (e.g. terrain profile, slope etc.) or from wheelbase

preview where events on the front wheel of a vehicle can be used to predict or estimate what will happen on

the 2
nd

, 3
rd

 etc. wheels in the same rut or track (Linström et al., 2018)

d) can be estimated using easily measureable vehicle states (e.g. mass, center of mass  position etc.) (Sandu et al.,

2015) 

This work, therefore, includes a thorough review of the literature to demonstrate which soil parameters, modelling 

techniques, experimental methodologies and equipment have been used or are currently being used by the community 

with a view to standardizing experimental procedures for measurement of soil parameters and parameterization of 

terramechanics models. Lack of standardization is currently an obstacle in terramechanics research because different 

equipment and methodologies make comparison of results between different studies extremely difficult. 

Section 2 discusses some work done towards implementing terramechanics modeling in real-time and some of the 

challenges experienced in the real-time environment. Section 3 describes the most common soil paramters of empirical 

off-road vehicle mobility models. Section 4 discusses modelling terrain response to vehicle loading and describes the 
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equipment and methodologies used to parameterize these models. Section 5 introduces some emerging measurement 

techniques that hold potential for real-time application in the terramechanics community. 

The approach can be summarized as: i) the soil paramters of terramehcanics models are extracted and listed besides 

introducations of the models; ii) the information about the parameterization of terramehcanics models from the previous 

literature is gathered and tabulated with the test soil and experimental methodology listed. Although terramechanics 

model parameters include soil parameteres, vehicle parameters, etc., only soil parameters are discussed herein. In the 

interest of space, only fundamental models about terrain response, plate-terrain interaction, and running gear-terrain 

interaction which the authors of this paper think have been reasonably parameterized are investigated herein. Models 

that are derived based on those fundamentals, e.g., multiple models reviewed by Taheri et al (Taheri et al., 2015), or 

without rigorous parameterization are not included in this work.  

2. Existing terramechanics research in the real-time environment

Madsen et al. applied parallel computing techniques and incorporated soil mechanics theoretical models

(Boussinesq equation, Cerruti equation, and bulldozing force equation) and an empirical shear stress-displacement 

model into the real-time simulation of vehicle running on soft soil (Madsen et al., 2012) . The Boussinesq equation and 

the Cerruti equation were used to compute the soil vertical stress induced by vertical and horizontal forces respectively. 

The bulldozing force equation and Janosi and Hanamoto empirical shear stress-displacement equation were utilized to 

calculate the tire force. Apart from the simulation of flexible tire-soil interaction when a vehicle traverses soft soil, the 

real-time simulation of a planetary rover over deformable terrain performed in the Rover Analysis, Modeling and 

Simulation (ROAMS) system also applied fundamental soil mechanics models such as the equation of the Mohr-

Coulomb failure criterion (Jain et al., 2004).  

Experimental tests on a wheel rolling over planetary Regolith Simulant in a single wheel test bed were used to 

parameterize a tire-soil traction model (Yoshida et al., 2006). Data from the tests was used to create plots of drawbar 

pull vs. slip ratio to identify the traction margin and slip. This traction model was used in a real-time traction controller 

to calculate drawbar pull and slope climbing capability for planetary rovers. 

Another example of using data from experimental tests in off-road conditions for traction controller design is, 

Savitski et al. conducted tire-ice traction tests at various levels of tire normal load and created a database using the test 

data for the real-time traction control of a sport utility vehicle on an icy road (Savitski et al., 2017).  
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It is evident from these real-time applications that some fundamental terramechanics models, fundamental soil 

mechanics models, and experimental tests in off-road conditions play important roles in those applications. When using 

the fundamental terramechanics and soil mechanics models, model parameterization is an essential requirement. 

Parameterization inevitably requires appropriate experimental tests in off-road conditions if the employed model aims to 

accurately capture physics. Selection of appropriate test equipment, soil parameters and measurement methods result in 

effective experimental tests under off-road conditions, Furthermore, proper arrangements of experimental tests 

contribute to an effective parameterization methodology for a model.  

3. Soil parameters required for empirical off-road vehicle mobility models

The empirical models to assess off-road vehicle mobility (OVM) establish relationships between the model outputs

and model inputs purely based on experimental data. The model output can be some of the vehicle mobility parameters 

such as drawbar pull coefficient, motion resistance, drawbar pull efficiency, etc. The model inputs include vehicle 

parameters and soil parameters. The most typical soil parameters of the OVM empirical models available in literature 

are summarized in Table 1. Due to the large number of the OVM empirical models that have been proposed in the past, 

and because of this paper’s topic focusing on soil parameters, formulas and other details of the cited OVM empirical 

models are not presented here, and readers interested in the formulas and more details should consult the references 

listed, or papers with comprehensive review on OVM empirical models (M. I. Lyasko, 2010), (M. Lyasko, 2010a), 

(Taheri et al., 2015), (Tiwari et al., 2010). 

Table 1 Summary of soil parameters for empirical models to assess off-road vehicle mobility. 

Soil Parameters Example Use of the Soil Parameter in OVM Empirical Model References 

Cone index (CI) Tire-clay numeric to correlate with drawbar coefficient (Freitag, 1966) 

Sand penetration 

resistance gradient 

Tire-sand numeric to correlate with drawbar coefficient (Turnage, 1972) 

Remolding index (RI) Towed motion resistance coefficient, net maximum drawbar pull coefficient (Rula and Nuttall, 1971) 

Rating cone index (RCI) 

Natural cover (roots), Net traction ratio, rolling resistance ratio (Schreiber and Kutzbach, 
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Upper soil strength, 2008) 

Lower soil strength, 

Clay content, 

Soil moisture content 

Penetration resistance  

(pressure) 

Draught (drawbar pull if there is no plough), travel speed (Boon et al., 2005) 

Gravimetric water content 

Soil slope 

Soil cohesion Mobility number to correlate with the lateral force ratio (Gee-Clough and Sommer, 

1981) Soil friction angle 

Compared with soil physical property parameters such as bulk density and water content, and soil mechanics 

parameters such as soil cohesion and soil friction angle, soil parameters such as Cone Index (CI), Remolding Index (RI), 

Rating Cone Index (RCI), and penetration resistance gradient which can be evaluated or measured by cone penetrometer 

are more commonly used in OVM empirical models (M. I. Lyasko, 2010). Mentioned yet not defined in the ISTVS 1977 

standards, the cone index (CI), or sometimes referred to as the cone penetration resistance (pressure), was defined by the 

ASABE Standards (ASAE, 1999) as the force per unit base area required to push the cone penetrometer through a 

specified small increment of soil. The cone index (CI) serves as the soil parameter in many OVM empirical models, an 

example is an OVM empirical model specifically for clay that correlates a tire performance parameter such as drawbar 

coefficient or drawbar efficiency at certain slip ratio to a dimensionless soil-tire numeric, the clay-tire numeric (Freitag, 

1966). For purely frictional terrain such as sand, the soil-tire numeric is the tire-sand numeric which uses the sand 

penetration resistance gradient instead of CI as the soil parameter. (Rula and Nuttall, 1971), (Turnage, 1974). The RI 

(Sloss, 1977) is defined as the ratio of the remolding soil strength to the original strength. The RCI is simply the product 

of the CI and the RI and it assesses the soil strength for the soil subjected to repeated traffic. For fine-grained soils, 

traction performance parameters can be modelled empirically as the function of the difference between RCI and a 

vehicle parameter called the vehicle cone index (Rula and Nuttall, 1971). 

Although use of CI-related soil parameters can be largely seen in development of OVM empirical models, the CI –

related soil parameters alone cannot fully characterize the soil strength, as water content and bulk density can also 

influence the soil strength (M. I. Lyasko, 2010), (Ayers and Perumpral, 1982). Gee-Clough and Sommer doubted the 

validity of CI to characterize the soil strength in OVM empirical model, and came up with new mobility numbers that 
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used traditional soil mechanics parameters such as soil cohesion and soil friction angle. These new mobility numbers 

were used to be the model inputs of the empirical models to compute wheel steering forces (Gee-Clough and Sommer, 

1981). Schreiber and Kutzbach modelled the net traction ratio and rolling resistance ratio as empirical functions of tire 

parameters and soil parameters such as natural cover, upper soil strength, lower soil strength, clay content, and soil 

moisture content (Schreiber and Kutzbach, 2008). Other than the clay content and the soil moisture content which are 

common soil physical property parameters, the rest of the soil parameters were not defined, and how to determine them 

experimentally was no explained by Schreiber and Kutzbach, though their sample values were given (Schreiber and 

Kutzbach, 2008). Spatial maps of tractor travel speed, terrain slope gradiant, wheel slip, wheel torque, draught, 

penetration resistance and moisture content were measured and plotted (Boon et al., 2005). Based on these maps, Boon 

et al. empirically modelled travel speed as a function of wheel slip, wheel torque and terrain slope gradient, and draught 

as a function of travel speed, penetration resistance, and moisture content (Boon et al., 2005).  

As can be seen from Table 1, parameterization of the OVM emprical models listed requires measurements of some 

soil physical property parameters, soil mechanics parameters, and CI-related soil parameters. The authors of this paper 

think these soil parameters are difficult, impractical or impossible to measure during real-time vehicle operation but 

together with the OVM empirical models have value during the development stages of vehicles and controllers 

(Vantsevich et al., 2017). 

4. Modelling terrain response

The characterization of soil response to various loading scenarios is one of the primary interests of the

terramechanics community. There are many models available to characterize the terrain response using different 

approaches, and depending on the approach, these models can be divided into three categories:  

1. theoretical models, i.e., models derived from theory of mechanics or theory of other branches of physics,

experimental results are used to validate not to derive these models;

2. empirical models, i.e., models derived from experimental results, and other experimental results are need to

validate these models; and

3. semi-empirical models, i.e., the derivation of these models are based on combination of experimental results and

theories of physics.
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Some of these models are valuable not only because they can accurately depict terrain behavior under specific 

loading, but also because they are able to be conveniently incorporated into the chosen methodologies to study off-road 

vehicle or running gear performance or because they provide the basis to develop a more complex, higher fidelity model. 

Examples of more complex, higher fidelity models are the finite element model or the hybrid model to characterize the 

tire-terrain interaction (Taheri et al., 2015). This section details the models available in the literature and list the 

equipment and tests required to parameterize them. 

4.1 Pressure-sinkage models 

In the ISTVS 1977 standards, sinkage was defined as the distance from the lowest point on the track or wheel (the 

running gear) to the undisturbed soil or snow surface, measured normal to the surface (Sloss, 1977). In this article, what 

was defined in the ISTVS 1977 standards is named sinkage of some running gear (e.g., sinkage of wheel, sinkage of tire, 

etc.) and the term sinkage only means the sinkage of terrain, a type of terrain response, which is in agreement with the 

sinkage defined by Wong (Wong, 2008). 

Pressure-sinkage models seek to quantify the amount of sinkage experienced when soil is subjected to a specific 

pressure from some pressure source. The pressure source can be a circular plate, rectangular plate, or a certain running 

gear, such as a wheel or tire. The sinkage due to the normal load of the pressure source is named static sinkage 

(Ishigami, 2008). The sinkage due to the slip between the pressure source and terrain is named slip sinkage, unlike some 

planetary rover wheel research in which such sinkage was named dynamic sinkage (Ishigami, 2008). When slip doesn’t 

occur between the pressure source and the terrain, and the vertical acceleration of the pressure source is negligible, the 

sinkage can be assumed to be purely static sinkage. When slip occurs, the sinkage is considered to be made up of two 

components, one is static sinkage, and the other is slip sinkage (Reece, 1965), (Ishigami, 2008). This section divides the 

pressure-sinkage models into two groups, the models for zero slip, and the models for non-zero slip, and give 

introductions about them respectively.  

4.1.1 Pressure-sinkage models for zero slip 

Multiple efforts have been made to develop empirical models that characterize the pressure-sinkage relationship. 

Assuming that the soil to be modelled from the surface to the depth of interest is homogeneous, Bernstein proposed an 
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empirical model that has possibly the simplest form to characterize the pressure-sinkage relationship for plate-soil 

interaction (Bernstein, 1913): 

np kz
 (1) 

where p  is the pressure applied to the soil, z  is the sinkage of soil, and the sinkage modulus k  and the sinkage 

exponent n  are model parameters. 

Later, the Bernstein model was modified for soil under a circular plate of diameter D such that the sinkage modulus 

would have a specific dimension, as shown in Eq. (2) (Saakyan, 1959). This model indicates that when the sinkage is 

small as the circular plate comes into contact with the soil, the rate of pressure increase could be very large. Kacigin and 

Guskovt confirmed this with experimental results of a plate-sinkage test (Kacigin and Guskovt, 1968). 

n
z

p k
D

 
  

  (2) 

Bekker separated the sinkage modulus of the Bernstein model into two parts, one represents the effect of soil 

cohesion, and the other represents the effect of the angle of internal shearing resistance. Also, the geometry of the 

contact patch was taken into account by the Bekker model, as shown below (Bekker, 1969): 

nck
p k z

b


 
  
 

(3) 

where b  is the smaller dimension of the contact patch, 
ck  is a sinkage modulus influenced by soil cohesion, and k  is a 

sinkage modulus influenced by soil friction angle. 

Inspired by the approach adopted by Osman (Osman, 1964) and Meyerhof (Meyerhof, 1951) to study the failure 

pattern of the soil under a long flat plate, Reece developed two pressure-sinkage models (Eqs. (4) and (5)) where Eq. (5) 

was developed for very compact soils (Reece, 1965), (Onafeko and Reece, 1967). Unlike the Bekker model, the model 

parameters of Eq. (5) are dimensionless, and the dimension of the model parameters of Eqs. (4) is independent from the 

value of the sinkage exponent: 

 1 2

n
z

p k k b
b

 
   

 
(4) 

where 
1k  and 

2k  are model parameters, 
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 
n

c

z
p ck k b

b


 
   

 
(5) 

where c  is the soil cohension, and   is the unit weight of the soil. 

Later, by combining the bearing capacity models proposed by Terzaghi and Housel, and the Bekker or Reece 

pressure-sinkage model, a new pressure-sinkage model for plate-soil interaction was found by Youssef and Ali (Youssef 

and Ali, 1982): 

  1 2

n
n z

p K bK
b

 
 

   
 

(6) 

where 
1K  and 

2K  are soil shear strength values, and   and   are dimensionless geometric constants. 

These aforementioned pressure-sinkage models are valid only for one type of pressure source, namely a plate 

pressing vertically (in the global coordinate system) against the soil (no lateral or longitudinal motion) such that the 

pressure in the plate-soil interface is vertical. For a wheel interacting with soil, the soil is also compressed in the radial 

direction. Assuming that the radial stress acting on the wheel rim is equal to the normal pressure beneath a plate at the 

same depth, and that the radial stress distribution is symmetric w.r.t. the radius that passes the maximum radial stress 

point, the Reece pressure-sinkage model was modified to characterize the radial stress along the wheel-soil interface 

(Wong and Reece, 1967a), (Wong and Reece, 1967b): 

     

     

1 2 1 1

2

1 2 1 1 1 2

2

cos cos

( )

cos cos

n
n

M

n
n

M M

M

r
k k b

b
p

r
k k b

b

    


 

      
 

  
     

 
 

     
                 

(7) 

where   is an arbitrary wheel angle, 
1 is the entry angle (the acute angle between the centerline of the wheel and the

beginning of contact), 
2 is the exit angle (the acute angle between the centerline of the wheel and the end of contact),

M is the maximum radial stress point, and r  is the radius of the wheel.

Noticing the dependence of pressure-sinkage relationship upon the test wheel diameter, a pressure-sinkage model 

specifically for the wheel-soil interaction was developed by Meirion-Griffith and Spenko (Meirion-Griffith and Spenko, 

2011): 

ˆ ˆˆ n mp kz D (8) 
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where D  is the diameter of the wheel, and k̂ , n̂  and m̂  are model parameters.

Later, the model was modified with the wheel width included for small-diameter wheel on compacted soil 

(Meirion-Griffith and Spenko, 2013): 

 
ˆˆˆ mnp kz bl (9) 

2

0 0l Dz z 

(1

0) 

where b  is the wheel width, l  is the horizontally projected length of the wheel-soil contact patch, and 
0z  is the 

maximum wheel sinkage. 

All these empirical pressure-sinkage models introduced so far share one common feature namely that the sinkage z  

has a sinkage exponent n . There are other empirical pressure-sinkage models without this feature that include an 

exponential function of the sinkage z . Korchunov studied the pressure-relationship of moist soil that had low bearing 

capacity and proved theoretically and experimentally the following model predicted sinkage in good agreement with the 

experiment data (Korchunov, 1948), (Kacigin and Guskovt, 1968): 

 0 01 exp /p p z k    

(1

1) 

0 0 0

M
p A B

S
 

(1

2) 

where 
0k  is the deformation constant with the same unit as that of the sinkage z , 

0p  is the bearing capacity for plates 

of different sizes, 
0A  is the maximum compressive stress, 

0B  is the maximum resistance along the plate perimeter, M

is the perimeter of the plate, and S  is the area of the plate. 

Later, Evans proposed an empirical pressure-sinkage model with similar form to that of the Korchunov model 

specifically for track-clay interaction. (Evans, 1953) (Plackett, 1985): 

  8.28 1 expp c K z b  

(1

3) 

where c  is the clay cohesion, b  is the track width, and K  is an empirical model parameter. 

Almost in the same era when the Bekker model was proposed, Kacigin and Guskovt established a semi-empricial 

hyperbolic law to characterize pressure-sinkage relationship of soil based on the experimental pressure-sinkage curve 
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(Kacigin and Guskovt, 1968). The derivation of the model took into account the feature of the pressure-sinkage curve at 

small sinkage, which could be represented by a linear function, and the feature of the pressure-sinkage curve at large 

sinkage where the pressure approaches an asymptote that represents the bearing capacity of the soil: 

 

 
0

0

0

1 exp 2

1 exp 2

kz p
p p

kz p

 


 

(1

4) 

where 
0p  is the bearing capacity of the soil, and k  is the coefficient of volumetric compression. 

Gottenland and Bonoit proposed an empirical sinkage-pressure model for circular plate-soil interaction (Gotteland 

and Benoit, 2006). The model is a product of one linear function of the sinkage z and another compound function that 

includes an exponential function of the sinkage z . The first linear function captures the linear sinkage-pressure 

relationship for both the elastic zone and the plastic zone of the sinkage-pressure plot. The transition from the elastic 

zone to the plastic zone is characterized by the second compound function with the exponential term. The model 

features two different asymptotes for the elastic zone and the plastic zone respectively, which disassociates the elastic 

and plastic behaviors of the soil: 

0

1 1
1 expm m

m m m

m

C s s z
p z

CB B B 

   
           

 
(1

5) 

where B  is the plate diameter, and 
mC , 

0s , 
ms  and m  are the model parameters. 

For the same soil but different plates or running gears, the classical empirical pressure-sinkage models, such as the 

Bekker model and the Reece model, will have a constant sinkage exponent and a varying sinkage modulus. By setting a 

constant sinkage modulus and the remaining part as a function of plate or running gear parameters and motion state 

parameters, Ding el al. developed a model (the Ding et al. 2014 model) that can reflect the influence of normal load, 

plate or running gear dimension, or slip in pressure-sinkage relationship (Ding et al., 2014). The general form of Ding et 

al. 2014 model is: 

s Np K z
(1

6) 

where 
sK  is the sinkage modulus of the terrain in units of Pa/m, and 

N is a dimensionless function of plate or running

gear parameters such as the radius and width, and of motion state parameters such as the sinkage, normal load and slip. 
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The expression of the dimensionless function depends on the soil type and the experimental pressure-sinkage data, 

and plays a key role in accuracy of this model. For the soils with their Bekker model parameters listed by (Wong, 2008), 

their dimensionless function can be given by Eq. (17) if the soils have sinkage exponents larger than 0.3. 

 0 1 01

0

n n z z

N

z

z


 

 
  
 

(1

7) 

where 
0 1mz  , and 

0n  and 
1n  are the function parameters. 

If the soils have sinkage exponents smaller than 0.3, which means the plastic phase of the pressure-sinkage 

relationship already begins at small sinkage, their dimensionless function can be written as: 

   
2

0 1 0 2 0

1
N

n n z z n z z
 

 

(1

8) 

where 
0n , 

1n  and 
2n  are the function parameters. 

In cases of small normal load less than 300 N and circular plates with radii from 25 mm to 50 mm, the running gear 

dimension effect was characterized by the dimensionless function: 

0 11

0

n n r

N

z

z


 

 
  
 

(1

9) 

where r  is the radius of the circulate plate. 

In cases of normal loads smaller than 7000 N and circular plates with radii ranging from 25.4 mm to 152.4 mm, the 

plate dimension effect can be characterized by: 

2
0 1 21

0

n n r n r

N

z

z


  

 
  
 

(2

0) 

However, Ding et al., made an observation that the model accuracy could be improved for such cases by setting the 

dimensionless function as an explicit function of the normal load, as shown below. By doing so, the plate dimension 

effect is implicitly considered as the values of function parameters 
0n , 

1n  and 
2n  differ between two plates of different 

dimensions. 

2
0 1 21

0

n n W n W

N

z

z


  

 
  
 

(2

1) 

where W  is the normal load applied to the soil by the plate. 
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There is, however, a concern regarding the influence of normal load on the pressure-sinkage relationship as 

described in (Ding et al., 2014). By replacing the normal load as the product of the plate area and pressure (Ding et al., 

2014) in Eq. (21), and substituting the Eq. (21) to the general form of Ding et al. 2014 model, one end up with Eq. (22): 

 ,p f z p
(2

2) 

Eq.(22) is an implicit function. Solving this implicit equation, the pressure will be represented as a new explicit 

function of sinkage z, which has a different form from that of the Ding et al. 2014 model. The new explicit function will 

show no influence of the normal load.  

In cases of large normal loads smaller than 12000 N and rectangular plates with 457mm length and widths ranging 

from 12.5 to 101.6mm, the dimensionless function is similar to that in the cases of large normal load and circular plate 

as described above, with the only difference being that the radius is replaced by the width of the rectangular plate. Also, 

for cases of large normal load and rectangular plates, model accuracy could be improved by setting the normal load 

instead of plate width as the explicit variable of the dimensionless function (Ding et al., 2014). 

In an in-situ steering test (Ding et al., 2017), a steering moment was applied to a wheel that had been previously in 

static equilibrium, then the wheel started to rotate about its vertical axis at a constant yaw rate. Ding el al. observed that 

during the steering test, sinkage increased with steering angle. This is because the steering produces soil flow, while in 

static equilibrium, there is no soil flow. When steering happens to the wheel previously in static equilibrium, sinkage 

will consist of static sinkage due to the wheel normal load plus an additional sinkage (steering sinkage) due to the 

steering. The Bekker model was modified by Ding et al. to take the steering sinkage into account: 

( , )s sN Wck
p k z

b





 
  
 

(2

3) 

1 1

0 1( , )
W

s s sN W n n
   

   

(2

4) 

where 
sN  is the sinkage exponent as a function of steering angle 

s and the normal load of the wheel W , and 
0n , 

1n , 

and 
1 , and 

1  are the model parameter of the sinkage exponent model. 

Pressure-sinkage models have also been proposed for organic terrain (unless specified to be organic terrain, all the 

terrains that appear in this paper are non-organic terrain). Assuming that the organic terrain (muskeg) is made up of two 
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layers, the surface mat and the peat, Wong et al. came up with an empirical pressure-sinkage model for the muskeg 

(Wong et al., 1982): 

24 / ifp m h crp k z m z D z z  
(2

5) 

4hD A L
(2

6) 

where pk  is the stiffness parameter for the peat, 
mm  is the strength parameter for the surface mat, 

hD  is the hydraulic 

diameter of the contact patch, 
crz  is the critical sinkage where breaking of the surface mat starts, A  is the area of the 

contact patch, and L  is the perimeter of the contact patch. 

For vehicles with multiple axles, where the wheels follow the same ruts, apply multiple loading-unloading-

reloading cycles are applied to the soil. Wong et al. developed Eqs. (27) and (28) to characterize the pressure-sinkage 

relationship for the unloading-reloading cycle (Wong et al., 1984): 

( )u u up p k z z  
(2

7) 

0 +u u uk k A z
(2

8) 

where 
up  and 

uz  are the pressure and sinkage, respectively, when unloading starts, 
uk  is the average slope of the 

unloading-reloading line on the pressure-sinkage plot, and 
0k  and 

uA  are model parameters. 

In classical soil mechanics, for studies of foundation and settlement, the following empirical model that links soil 

sinkage, normal load and plate-soil contact patch can be used (Tsytovich, 1963): 

z Tp A
(2

9) 

where T  is the model parameter, and A  is the area of the plate-soil contact patch. 

For the same soil, the model parameter T  remains the same and doesn’t vary with the size of the plate. It was 

found that for contact areas ranging from 0.0005 to 0.25 m
2
, the empirical model can be applied to dry sand and dry 

sandy loam with good agreement with experimental results. It is however not applicable to to wet loam and clay (M. 

Lyasko, 2010b).  
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Also, for the studies of settlement in classical soil mechanics, the soil can be treated as an elastoplastic material. 

When the pressure applied to the soil is small such that the stress in the soil below the load point (the location where the 

pressure is applied) doesn’t pass the elastic limit of the stress-strain curve, the soil deformation can be regarded as 

elastic behavior. Assuming the soil to be semi-infinite, homogeneous, isotropic and elastic, Eq. (30), based on works of 

Boussinesq can be used to relate the sinkage to the pressure (Boussinesq, 1885): 

2

2

1f

E z
p

C B




(3

0) 

where E  is the Young’s modulus,   is the Poisson’s ratio, B  is a geometry parameter that characterizes the plate 

dimension, and fC  is the shape coefficient for the plate. 

In cases of large pressure, where the stress in the soil exceeds a certain limit on the stress-strain curve, soil failure 

happens and the soil begins to collapse. The pressure which, if exceeded, results in soil failure is referred to as the 

bearing capacity. The bearing capacity can be characterized theoretically by (Terzaghi, 1944): 

(3

1) 

where z is the vertical distance between the soil top surface and the place where the plate rests (depth of foundation), c is 

the cohesion of the soil, γ is the unit weight of the soil, λγ, λc, and λq are the shape coefficients of the plate, and Nc, Nγ, 

and Nq are the bearing capacity factors that are functions of soil friction angle ϕ and the shape coefficients λγ, λc, λq. 

Kogure et al. proposed a theoretical pressure-sinkage model for the soil under a circular plate. The assumptions 

behind the model was that the normal pressure at a soil depth z, uniformly distributed at the same soil depth, was given 

by the ordinates of a paraboloid, and the ratio of normal pressure and vertical strain linearly decreases with the increase 

of the pressure. The model is given by (Kogure et al., 1983): 

0

0 0

2
2 log

8 2

M Cpp
z r

CM M Cp

 
  

  

(3

2) 

where C and M0 are the model parameters of linear function about the normal pressure and the vertical strain. 

According to the works of Upadhyaya et al., Lyasko, and Ding et al. (Upadhyaya et al., 1993), (M. Lyasko, 2010b), 

(Ding et al., 2017), the model parameters of the classical empirical pressure-sinkage models are dependent on the 

running gear or plate dimensions, normal load levels and some other factors. They are thus non-invariant parameters. 

Also, all the aforementioned pressure-sinkage models describe the behavior of soil without hardpan. To characterize the 

2
c c q q

B
p cN N N z       
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pressure-sinkage of soil using a few basic invariant soil parameters and taking into account the hardpan effect, Ageikin 

developed an analytical model that takes account soil hardpan effect (Ageikin, 1987a), (Ageikin, 1987b): 

1

2

2

H

H o

EB z
p

Ez B A BJQ




(3

3) 

where E is the Young’s modulus, B is the geometric parameter of the plate in contact with the soil, that is, the width (or 

smaller dimension) of a rectangular plate, or the radius of a circular plate, and model parameters BH, Q, J and Ao are 

computed by: 

 
arctan

2

i

H

B
B

H z

B




 
 
 

(34) 
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(35) 

tan
4 2

oS
 

  
 

 (36) 
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o

H z
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 
  

 
(37) 
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
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
(38) 

0.64 1o

B
A

H

 
  

 
(39) 

where Co is the soil cohesion, ϕo is the angle of soil internal shearing resistance, γ is the soil bulk density, Bi is the 

bearing capacities of soil with infinite hardpan H, BH is the bearing capacities of soil with finite hardpan H, H is the 

hardpan depth, i.e., the thickness of upper soil layer that is relatively soft and can be deformed under a normal load, and 

L is the plate length. 

Lyasko pointed out some limitations of the Ageikin model (M. Lyasko, 2010b). For example, the equation to 

compute the bearing capacities of soil with infinite hardpan in the Ageikin model cannot work for certain types of soil. 

The analytical model of stress distribution for the soil under a plate which provides the basis for the derivation of the 

Ageikin model falsely depends on average ground pressure. Resolving the limitations of the Ageikin model, Lyasko 

derived an analytical model given by (M. Lyasko, 2010b): 
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1 2

1
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



(4

0) 

where the model parameters 
1D , 

2D , ω,  , and 
iB  are computed by: 

 
1

2
arctan

2

H z
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

 
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 (41) 
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 (42) 

 1.14 2.15oA J     (43) 
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(46) 

where   is the dimensionless contact pressure concentration coefficient,   is the dimensionless coefficient, and other 

parameters and variables have the same meaning as that of the Ageikin model. 

4.1.2 Pressure-sinkage models for non-zero slip 

When slip occurs in the running gear-terrain or plate-terrain interface, tangential forces are generated perpendicular 

to the direction of normal pressure. This tangential force causes tangential deformation and the layer of soil in contact 

with the driven wheel or tire is ―peeled‖ off and removed, causing slip sinkage. This phenomenon is more obvious in 

frictional soil than in completely cohesive soil (Reece, 1965). Reece found that when the running gear is operated on 

soil at non-zero slip, the sinkage is the sum of static sinkage and slip sinkage (Reece, 1965): 

o jz z z 
(4

7) 

where 
oz  is the static sinkage, and jz  is the slip sinkage. 
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For the grouser-soil interaction, Reece proposed the following model to predict the slip including slip sinkage 

(Reece, 1964):  

1

gr

o

h i
z z

i
 


(48) 

where grh  is the grouser height, and i  is the slip ratio. 

Vasil’ev et al. applied the Bekker model in their study of sinkage at non-zero slip of running gear and devised an 

analytical model to determine the sinkage (Vasil’ev et al., 1969):  

o pz z iH   (49) 

where Hp is the depth of propagation of soil deformation which can be only evaluated experimentally. 

Lyasko observed that these two models behave poorly at slip ratios higher than 35% as the sinkage computed with 

these two models is not in good agreement with the test data. The model proposed by Ksenevich et al. can predict 

sinkage at slip ratio ranging from 0% to 65% in an acceptable error from the test data (M. Lyasko, 2010c). The 

Ksecenevich et al. model was based on an assumption that when the rigid wheel is running on the soil, the work done by 

the pushing force can be equal to the vertical work done in deforming the soil, and the model is given by (Ksenevich et 

al., 1985): 

1

1 0.5
o

i
z z

i

 
  

 
(50) 

Although the Bekker model and Reece model don’t account for the slip sinkage, based on these classical empirical 

models, several empirical models have been proposed to work effectively for non-zero slip situations. 

Gee-Clough modified the Bekker model by multiplying it by a function of slip to address the overestimation of the 

Bekker model in the case of deep sinkage and far-from-zero negative slip ratio (positive skid) (Gee-Clough, 1976): 

 
 2 1

1
n nnck

p k z i
b



  
   
 

(51) 

where i is the skid of the wheel that makes the magnitude of the multiplier to the Bekker model smaller than 1. 

Also by modifying the Bekker model, slip sinkage was taken into account in the Ding et al. model (Ding et al., 

2010), (Gao et al., 2013). The sinkage exponent of the Bekker model was no longer a model parameter, but a linear 

function of slip ratio for positive slip and a quadratic function of slip for skid (negative slip) as given by:  
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nck
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

 
  
 

(52) 

0 1 if 0n n n s s    (53) 

2

0 1 2 if 0n n n s n s s     (54) 

where s is the slip ratio of the wheel, and 
0n ,

1n , and 
2n  are model parameters in addition to the model parameters of 

the Bekker model. 

The Ding et al. 2014 model, as described in Section 4.1.1., will be capable of predicting pressure and explicitly 

including slip ratio as a variable, if the dimensionless function is properly formulated. For cases of the positive slip, and 

the positive slip and negative slip with wheel lug effect considered, the dimensionless functions are given respectively 

by (Ding et al., 2014): 
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where 
0 1mz  , s is the slip ratio of the wheel, and 

0n , 
1n  , 

2n  and 
3n  are the function parameters. 

It can be seen from the above dimensionless functions as functions of slip that only the influence of slip in the 

pressure-sinkage relationship (slip effect) is explicitly accounted for while other effects such as lug effects, running gear 

dimension effects, etc., are implicitly accounted. Parameterization of the dimensionless function for cases of positive 

slip (based on test results) showed the variation of 
0n  and 

1n  is not big among wheels of different dimensions (Ding 

et al., 2014). 

To compute the radial stress along the wheel-soil interface in cases of non-zero slip, the pressure-sinkage model not 

only needs to account for the effect of slip, but also the maximum radial stress point. The position of the maximum 

radial stress point changes with the change in slip ratio, and the maximum radial stress angle can be a linear function of 

slip as shown below (Wong and Reece, 1967a): 
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 1 2 1M c c i    (58) 

where 
1 is the entry angle, i is the slip of the wheel, and c1 and c2 are model parameters.

4.1.3 Summary and model parameterization 

The pressure-sinkage models introduced up to this point are summarized in Table 2, It should be noted that all the 

models listed in the table are static models and not dynamic models. Taking a fully parameterized Bekker model for 

example, when the pressure is given, the sinkage will be obtained by using the Bekker model as a constant value, not as 

a function of time. This means that the model cannot characterize how sinkage evolves with time under a given pressure. 

Unless the sinkage exponent is equal to one for certain types of soil, all the pressure-sinkage models represent pressure 

as a nonlinear function of sinkage for a steady-state penetration.  

Most of the model parameters of the empirical and semi empirical pressure-sinkage models introduced above are 

non-invariant parameters (M. Lyasko, 2010b) except for the soil mechanics parameters and the soil physical property 

parameters. For a given soil condition, the non-invariant model parameters are dependent on plate dimensions, plate 

shapes, as well as penetration speed of the plate (Wong et al., 1982), (Upadhyaya et al., 1993), (Apfelbeck et al., 2011), 

(Ding et al., 2014). This partly explains the poor extrapolation of some empirical pressure-sinkage models, such as the 

Bekker model (Wong, 2008), because the plate-soil contact condition for parameterization of the model is different 

from that of application, and the use of the non-invariant model parameters with constant values can cause modelling 

errors.  

The model parameters of the theoretical pressure-sinkage models introduced above are classical soil mechanics 

parameters and invariant parameters, i.e. the parameter value only depends on soil condition and not on plate-soil 

contact condition. Some of the theoretical pressure-sinkage models (e.g., the Lyasko model and the Ageikin model), 

though claimed to accurately represent the pressure-sinkage relationship with easier model parameterization than 

classical empirical and semi empirical models have not been applied to derive off-road tire/wheel dynamics model, 

possibly because of their complex form. The relatively simpler forms of the empirical and semi empirical pressure 

models makes it easy for them to be analytically integrated to calculate the vertical or horizontal wheel/tire force (Wong 

and Reece, 1967a), (Wong, 2008). This is not the case for the theoretical pressure-sinkage models with complex forms.  
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The parameterization methodologies for pressures-sinkage models are summarized in Table 3. For empirical and 

semi empirical models, the main test conducted in most of the parameterization methodologies is the sinkage test in 

which a plate or a cone penetrometer penetrates the soil, and the pressure and penetration depth are simultaneously 

recorded. Since the empirical and semi empirical models characterize steady state penetration, the penetration of the 

plate or cone in a sinkage test is preferably controlled to be a quasi-static penetration, i.e., with a constant penetration 

rate. In a sinkage test, the stress condition of soil is supposed to resemble the stress condition of the soil interacting with 

the running gear, which may explain why the cone penetrometer is not favored in most of the sinkage tests in this paper, 

as the cone-soil interaction doesn’t resemble the running gear-soil interaction. Therefore, the selection of the plate size 

and plate shape tends to mimic the size and shape of the running gear-soil contact patch. Once the data about the 

pressure and the sinkage is obtained, depending on the form of the empirical and semi empirical model, in some cases, 

the model parameters can be calculated by using a few sets of data, e.g., the model parameters of the Eq. (14) (Kacigin 

and Guskovt, 1968); in most other cases, the model parameter can be determined by performing regression analysis, 

examples can be found in (Wong, 1980) and (Apfelbeck et al., 2011). 

Occasionally when it comes to parameterizing the Bekker model or the Reece model incorporated into a semi 

empirical wheel dynamics model, e.g., in (Gao et al., 2013), the dynamic wheel-soil test is performed. In the test, the 

vertical wheel force and longitudinal wheel force are measured and recorded as part of the experimental data, and the 

experimental data is used in an optimization process where the model parameters of the Bekker model or Reece model 

are tuned such that the difference between the simulation result and the experimental data reaches a desirable range. The 

idea of this parameterization process is similar to the idea of the ―Wheel Bevameter‖ (Plackett, 1985). Parameterization 

of empirical pressure-sinkage models that account for slip sinkage or steering effects requires dynamic wheel-soil 

testing at non-zero slip ratios or steering angle.  

As for the parameterization of the theoretical pressure-sinkage model, the soil mechanics parameters need to be 

evaluated, and this can be done by routine classical soil mechanics experimental methodologies. Since the soil 

mechanics parameters are invariant parameters, parameterization is needed only once for one type of soil, unlike the fact 

that parameterization needs to be completed multiple times for one soil and plates of various shapes and sizes. However, 

among the model parameters of the theoretical pressure-sinkage models, there are soil cohesion and soil friction angle, 

the two model parameters of the Mohr-Coulomb failure model. It should be noted that even for the same soil, different 

shear tests can produce different evaluation results of the soil cohesion and soil friction angle (Okello, 1991). This can 
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cause difficulties in the parameterization of some theoretical pressure-sinkage models or may result in modelling errors 

when using them.  

Table 2 Summary of pressure-sinkage models available in literature. 

Model 

Parameters 

Model 

Nature 

Slip 

Sinkage 

Effect 

Steering 

Effect 

Running 

Gear/Plate 

Size Effect 

Hardpan 

Effect 

Lug 

Effect 

Unloading-

reloading 

Effect 

Equation 

No.  

Reference 

k, n Empirical No No No No No No (1)  (Bernstein, 

1913) 

k, n Empirical No No Yes No No No (2) (Saakyan, 1959) 

ck , k , n Empirical No No Yes No No No (3) (Bekker, 1969) 

1k , 2k , n Empirical No No Yes No No No (4) (Onafeko and 

Reece, 1967) 

ck , k , n , c

,   

Semi 

empirical 

No No Yes No No No (5) (Reece, 1965) 

1K , 2K , 

 ,  , n

Semi 

empirical 

No No Yes No No No (6) (Youssef and 

Ali, 1982) 

1k , 2k , n , 1c

, 2c

Semi 

empirical 

No No Yes No No No (7) (Wong and 

Reece, 1967a) 

k̂ , m̂ , n̂ Empirical No No Yes No No No (8) (Meirion-

Griffith and 

Spenko, 2011) 

k̂ , m̂ , n̂ Empirical No No Yes No No No (9)(10) (Meirion-

Griffith and 

Spenko, 2013) 

k0, A0, B0 Semi 

empirical 

No No Yes No No No (11)(12) (Korchunov, 

1948) 

c, K Semi 

empirical 

No No Yes No No No (13) (Evans, 1953) 

k, p0 Semi 

empirical 

No No Yes No No No (14) (Kacigin and 

Guskovt, 1968) 
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Model 

Parameters 

Model 

Nature 

Slip 

Sinkage 

Effect 

Steering 

Effect 

Running 

Gear/Plate 

Size Effect 

Hardpan 

Effect 

Lug 

Effect 

Unloading-

reloading 

Effect 

Equation 

No.  

Reference 

mC , 0s , 

ms , m  

Empirical No No Yes No No No (15) (Gotteland and 

Benoit, 2006) 

Ks, n0, n1 Empirical No No No No No No (16)(17)  (Ding et al., 

2014) 

Ks, n0, n1, n2 Empirical No No No No No No (16) (18) (Ding et al., 

2014) 

Ks, n0, n1 Empirical No No Yes No No No (16) (19) (Ding et al., 

2014) 

Ks, n0, n1, n2 Empirical No No No No No No (16) (20) (Ding et al., 

2014) 

ck , k , 0n , 1n

, 1  , 1  

Empirical No Yes Yes No No No (23)(24) (Ding et al., 

2017) 

pk , mm Semi 

empirical 

No No Yes No No No (25)(26) (Wong et al., 

1982) 

0k , uA Empirical No No No No No Yes (27)(28) (Wong et al., 

1984) 

T Empirical No No No No No No (29) (Tsytovich, 

1963) 

E, ν Theoretical No No Yes No No No (30) (Boussinesq, 

1885) 

c, ϕ, γ Theoretical No No Yes No No No (31) (Terzaghi, 

1944) 

C, M0 Theoretical No No Yes No No No (32) (Kogure et al., 

1983) 

Co , ϕo, γ, E Theoretical No No Yes Yes No No (33) - (39) (Ageikin, 

1987a), 

(Ageikin, 

1987b) 

Co , ϕo, γ, E Theoretical No No Yes Yes No No (40) - (46) (M. Lyasko, 

2010b) 
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Model 

Parameters 

Model 

Nature 

Slip 

Sinkage 

Effect 

Steering 

Effect 

Running 

Gear/Plate 

Size Effect 

Hardpan 

Effect 

Lug 

Effect 

Unloading-

reloading 

Effect 

Equation 

No.  

Reference 

N/A Empirical Yes No No No Yes No (48) (Reece, 1964) 

pH Empirical Yes No No No No No (49) (Vasil’ev et al., 

1969) 

N/A Theoretical Yes No No No No No (50) (Ksenevich et 

al., 1985) 

ck , k , n Semi-

empirical 

Yes No Yes No No No (51) (Gee-Clough, 

1976) 

ck , k , 0n , 1n Empirical Yes No Yes No No No (52)(53) (Ding et al., 

2010) 

ck , k , 0n , 1n

, 2n

Empirical Yes No Yes No No No (52)(54) (Gao et al., 

2013) 

Ks, n0, n1 Empirical Yes No No No No No (16)(55) (Ding et al., 

2014) 

Ks, n0, n1, n2 Empirical Yes No No No Yes No (16)(56) (Ding et al., 

2014) 

Ks, n0, n1, n2, 

n3 

Empirical Yes No No No Yes No (16)(57) (Ding et al., 

2014) 

Table 3 Summary of parameterization methodologies for the pressure-sinkage models. 

Experimental 

Methodology 

Employed Instruments Parameter 

Determined 

Soil Type Equation 

No. 

Reference 

Sinkage test Bevameter with circular plate and 

Rammsonde cone 

n , k , ck Snow (3) (Wong and Irwin, 1992) 

k, n (1) 

Sinkage test  Test rig driven by a dc motor that is 

equipped with a force transducer, 

rotary potentiometer, etc., and 

circular plates 

n , k , ck Sand (3) (McKyes and Fan, 1985) 

Sinkage test Bevameter with automatic data 

processing unit and circulate plates 

n , k , ck Snow, sand (3) (Wong, 1980) 

ck , k , n , c , 



(5) 
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Experimental 

Methodology 

Employed Instruments Parameter 

Determined 

Soil Type Equation 

No. 

Reference 

Sinkage test Penetration-shear device, 

combined, sinkage plates 

k, n Loam (1)  (Upadhyaya et al., 1993) 

n , 

cck k b  

(5) 

Sinkage test Grenoble sinkage equipment with 

circular plate powered by hydraulic 

ram 

m , mC , ms

0s

Silty sand, 

sand, silt 

(15) (Gotteland and Benoit, 2006) 

n , k , ck

Sinkage test Vehicle-mounted bevameter with 

circular and rectangular plates, 

portable automatic data-processing 

system 

pk , mm , ok , 

uA

Muskeg (25)(26) (Wong et al., 1982) 

Sinkage test Bevameter with circular and 

rectangular plates 

n , k , ck Sand, clay (3) (Apfelbeck et al., 2011) 

Sinkage test Tractor-mounted bevameter with 

circular, oval, and rectangular plates 

n , k , ck Loam (3) (Massah and Noorolahi, 2010) 

Sinkage test Hydraulic Bevameter with 

rectangular plate 

k, n Sand (1) (Onafeko and Reece, 1967) 

c, ϕ, γ (31) 

Sinkage test Circular and rectangular plates 
1K , 2K ,  , 

 , n

Sand, clayey 

sand 

(6) (Youssef and Ali, 1982) 

Dynamic wheel-

soil test  

Wheel test rig, load cells 
1c , 2c Sand (58) (Wong and Reece, 1967a),  

Sinkage test  Pressure-sinkage testbed that 

includes a wheel section, force 

sensor, and linear actuator and 

potentiometer  

k̂ , m̂ , n̂ Sand, calcium 

silicate, earth 

(8) (Meirion-Griffith and Spenko, 2011) 

Sinkage test  Pressure-sinkage testbed that 

includes a wheel section, force 

sensor, and linear actuator and 

potentiometer 

k̂ , m̂ , n̂ Kaolin 

clay/silt mix 

(9)(10) (Meirion-Griffith and Spenko, 2013) 

Sinkage test  N/A 
0p , k Sandy loam, 

loam, clay  

(14) (Kacigin and Guskovt, 1968) 
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Experimental 

Methodology 

Employed Instruments Parameter 

Determined 

Soil Type Equation 

No. 

Reference 

Dynamic wheel-

soil test 

Wheel–soil interaction testbed that 

is equipped with a displacement 

sensor, a six-axis F/T sensor, a 

torque sensor, etc. 

Ks, n0, n1 Sand (16)(55) (Ding et al., 2014) 

Ks, n0, n1, n2 (16)(56) 

Ks, n0, n1, n2, 

n3 

(16)(57) 

Sinkage test  Wheel–soil interaction testbed 

equipped with a circular plate, 

displacement sensor, F/T sensor, 

etc.  

Ks, n0, n1 Sand (16) (19) (Ding et al., 2014) 

n , k , ck (3) 

Sinkage test  Circular plates Ks, n0, n1, n2 Sand (16) (20)  (Ding et al., 2014), (Reece, 1964) 

n , k , ck (3) 

Dynamic wheel-

soil steering test  

Wheel–soil interaction testbed that 

is equipped with a displacement 

sensor, a six-axis F/T sensor, a 

torque sensor, etc. 

ck , k , 0n , 1n , 

1 , 1  

Sand (23)(24) (Ding et al., 2017) 

Sinkage test  Circular and rectangular plates T Sandy loam, 

sand, clay, 

loam, clayey 

sand 

(29) (M. Lyasko, 2010b), (Bekker, 1969), 

(Wills, 1966), (Hvorslev, 1970), (Sela 

and Ehrlich, 1972), (Rusanov, 1998), 

(Youssef and Ali, 1982), (Reece, 

1964) 

n , k , ck (3) 

Sinkage test  Rectangular plates k, p0 Sand, loam, 

clay 

(14) (M. Lyasko, 2010b), (Wills, 1966), 

Sinkage test  Rectangular and circular plates m , mC , ms

0s

Sand (15) (M. Lyasko, 2010b), (Sela and 

Ehrlich, 1972) 

Sinkage test  Rectangular and circular plates Co , ϕo, γ, E Sand, sandy 

loam, clay, 

loam 

(40) - (46) (M. Lyasko, 2010b), (Bekker, 1969), 

(Wills, 1966), (Rusanov, 1998), 

(Reece, 1964) 

Dynamic wheel-

soil test, sinkage 

test 

Wheel–soil interaction testbed that 

is equipped with a circular plate,  a 

displacement sensor, a six-axis F/T 

sensor, a torque sensor, etc. 

ck , k , 0n , 1n , 

2n

Sand (52)(54) (Gao et al., 2013) 
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4.2 Shear stress-displacement models 

Beside the pressure-sinkage model, another fundamental model in the study of running gear-soil interaction is the 

shear stress-displacement model. With the geometry of the running gear-soil interface known and these two models 

fully parameterized, the thrust due to the shear stress, the motion resistance due to the pressure, and the drawbar pull 

that is the difference between the thrust and the motion resistance can be computed. 

Shear stress-displacement models are used to determine the tangential interactive stress in the running gear-soil or 

plate-soil interface. The tangential interactive stress causes the soil flow under the interface. For the running gear, the 

integral of tangential interactive stress provides thrust, and part of the vertical reaction force to balance the normal load. 

Regardless of the magnitude of the shear displacement, a maximum shear stress (the shear strength) exists and is 

governed by the Mohr-Coulomb failure criterion, as shown below:  

max tanc     (59) 

where τmax is the maximum shear strength that leads to soil failure, c is the soil cohesion, and ϕ is the angle of soil 

internal shearing resistance (soil friction angle).  

Eq. (59) (The Mohr-Coulomb equation) is not the only equation used to determine the maximum shear stress when 

soil failure happens. Several modified versions of the equation above were proposed in the past to accurately model the 

shear strength for clay (Sun et al., 2006), for unsaturated soil (Hilf, 1956), and for partially saturated soil (Bishop et al., 

1960). However, because of its adequate characterization of the shear strength and the simplicity of its form, the Mohr-

Coulomb equation is widely (perhaps the most widely) used in the terramechanics community. It is incorporated into 

many semi empirical shear stress-displacement models, and it provides the basis for derivation of some semi empirical 

shear stress-displacement models, which is introduced in the rest of this section.  

The three earliest pioneers were M. G. Bekker, G. I. Pokrovski, and Z. Janosi who laid the foundation for the 

development of the shear stress-displacement model. For the soil with a shear stress-displacement profile that displays a 

maximum shear stress (a hump), Bekker developed the following model (Bekker, 1956), (Bekker, 1969): 

    
    

2 2

2 2 1 2 2 1

max
2 2

2 2 1 0 2 2 1 0

exp 1 exp 1

exp 1 exp 1

K K K j K K K j

K K K j K K K j

 

         
      

 
         
      

(60) 
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where τ is the shear stress, j is the shear displacement, τmax is the shear strength that can be characterized by the Mohr-

Coulomb equation, j0 is the shear displacement at the maximum shear stress τmax, and 
1K and 

2K  are empirical model 

parameters. Wong pointed out that determining the values of 
1K and 

2K for the Bekker shear stress-displacement model 

is involved (Wong and Preston-Thomas, 1983).  

For most types of soil, at a very high level of shear displacement, the shear stress remains almost at a constant value 

even though the shear displacement increases. Prokovski proposed a model to represent this feature of the shear-stress 

displacement profile (Pokrovski, 1937): 

   1 2 3 4exp 1 expC C j C C j              (61) 
 

where 
1C , 

2C , 
3C , and 

4C  are the empirical model parameters.    

Some shear stress-displacement profiles don’t have a hump. The shear stress increases with the shear displacement 

and then approaches a constant value. This feature was observed for the internal shearing of dry sand, saturated clay, 

fresh snow and peat, and plate-soil shearing of sand, peat, snow and muskeg (Kacigin and Guskovt, 1968), (Wong and 

Preston-Thomas, 1983), (Okello, 1991). To describe these shear stress-displacement relationships, Janosi and Hanomoto 

modified the Bekker model, resulting in (Janosi, 1961): 

 max 1 exp j K       (62) 
 

where K is the shear deformation modulus. 

It is worth noting that when setting 
1C  of the Pokrovksi model to zero and treating 

3C  to be the maximum shear 

stress, the Pokrovski and the Janosi and Hnaomoto models are equivalent. The Pokrovski model actually works for both 

the shear stress-displacement profile with a hump and that without a hump. The premise is that both have a constant 

shear stress at a high level of shear displacement. Inspired by the Pokrovski model, Kacigin and Guskovt developed a 

shear stress-displacement as shown below (Kacigin and Guskovt, 1968): 

 
 1 tanh

cosh
res

a
j K

j K




 
 

  
  

 
(6

3) 

 

0.825

max2.55 1
res

a




 
  

 
 

(6

4) 
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where 
res  is the residual stress and it has a constant value at which the shear stress remains regardless of the increase in 

the shear displacement, a  is the model parameter, K
 is the shear displacement where the shear stress reaches its 

maximum.  

Later, Oida found that the Kacigin and Guskovt model only works for the case where the ratio of maximum shear 

stress to the residual stress is 2.7554. Oida proposed a corrected model based on the Pokrovski model (Oida, 1975): 

 
max

1 1
1 exp log 1

1 1
1 1 exp log 1

1 1 2 2 2

r

r

r r

r

rr r r

Kj
K

K K Kj
K

K KK K K





 

    
    

                     
           

 
  

(65) 

where K
 is the shear displacement where the shear stress reach its maximum, and 

rK  is the ratio of the residual shear 

stress τres to the maximum shear stress τmax. 

The Oida model applies only to the shear stress-displacement profile with a hump and residual stress. This kind of 

profile was observed for certain types of loam and snow covers  (Wong, 2009). Because of the complex form of the 

Oida model, its parameterization using the experimental shear stress-displacement data was found to be an involved 

process, especially to identify the proper value of 
rK (Wong and Preston-Thomas, 1983). To overcome this obstacle, 

inspired by the Pokrovski model, the following model was proposed by Wong (Wong and Preston-Thomas, 1983): 

 
(1 / ) ( / )

max

1
1 1 e 1 e

1 1/

j K j K

r

r

K
K e

    
   

             
(66) 

For a shear stress-displacement profile with a hump and a residual stress, Sela hypothesized that the shear stress-

displacement model consists of two functions, one due to soil cohesion and the other due to soil friction angle (Sela, 

1964). Two functions may be respectively from experimental shear stress-displacement curve for two types of soil. One 

is completely cohesive and the other is completely frictional. Although without experimental data for validation, Sela 

hypothesizes that those two functions are given by Eqs. (67) and (68): 

exp 1c

c c

j j
c

d d


 
  

 

(6

7) 

tan 1 exp
j

p
d





 
  

    
   

(6

8)
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c      
(6

9) 

where p is the normal pressure on the shear plane, dc is the shear displacement at the maximum cohesive shear stress, 

and dϕ is the frictional displacement constant. 

Influenced by Sela’s hypothesis (Sela, 1964) and noticing different shear behaviors of Mojave mars soil simulant at 

the same normal stress yet different soil density, Senatore and Iagnemma proposed the following shear stress-

displacement model that accounts for the influence of the soil density on the shear stress-displacement curve (Senatore 

and Iagnemma, 2011): 

 exp(1 ) 1 exp( )res

k j
j k j k

k


 

 
     

 
(70) 

where kγ is the model parameter related to the influence of soil density on the shear stress, and k is a model parameter. 

For some organic type of soil (e.g., muskeg mat) the shear stress-displacement profile has a hump without a 

residual stress. In other words, after reaching the maximum shear stress, the shear stress will continually decrease with 

an increase of shear displacement. Wong et al. suggested the following model for this type of shear stress behavior 

(Wong et al., 1979): 

max exp 1
j j

K K

 
   

    
  

(71) 

where K
 is the shear displacement where the shear stress reaches its maximum. 

Later, Lyasko found that by proper selection of values of model parameters, the Pokrovski model can also be used 

to portray the shear stress-displacement profile for those aforementioned organic types of soil (M. I. Lyasko, 2010). 

Ageikin thought model parameters such as Kr, Kω, and τmax are non-invariant plate-soil paramters, and their values 

can vary with the shear plate size for a given soil condition. With an attempt to use invariant soil parameters as model 

parameters, Ageikin proposed the shear stress-displacement model below. The model parameters of the Mohr-Coulomb 

equation and two soil shear parameters are the invariant model parameters for the Ageikin model, and their values 

remain the same at a given soil condition regardless of the shear plate size and geometry (Ageikin, 1987a), (Ageikin, 

1987b), (Ageikin, 1992). 
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(72) 

where tgr is the grouser pitch, c is the soil cohesion, p is the applied average ground pressure, υ is the soil friction angle, 

and m
’
 and E

’
 are soil shear parameters.  

The shear stress-displacement models are summarized in Table 4. It can be seen from Table 4 that the maximum 

shear stress needs to be determined to parameterize the shear stress-displacement model. As previously mentioned, the 

Mohr-Coulomb equation is widely used to represent the maximum shear stress for the shear stress-displacement model. 

Many traditional soil mechanics experimental methodologies can be applied for the parameterization of the Mohr-

Coulomb equation. Therefore, together with these soil mechanics methodologies, the parameterization methodologies 

for the shear stress-displacement models are listed in Table 5. 

Table 4 Summary of shear stress-displacement available in literature. 

Model Parameters Model Nature Applicable Shear Stress-

Displacement Curve Feature 

Equation 

No. 

Reference 

τmaxs, K Semi empirical A (62)  (Janosi, 1961) 

max , K  Semi empirical B (71) (Wong et al., 1979) 

1C , 2C , 3C , 4C Empirical A, B, C (61) (Pokrovski, 1937) 

max , 0j , 1K , 2K Semi empirical B, C (60) (Bekker, 1969) 

dc, dϕ, c, ϕ Semi empirical C (67)(68)(69) (Sela, 1964) 

max , res , K , Semi empirical A, C (63)(64) (Kacigin and Guskovt, 1968) 

max , K , rK Semi empirical C (65) (Oida, 1975) 

max , K , rK Semi empirical C (66) (Wong and Preston-Thomas, 

1983) 

τres, kγ, k Semi empirical C (70) (Senatore and Iagnemma, 2011) 
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c, ϕ, m’, E’ Semi empirical A, C (72) (Ageikin, 1987a), (Ageikin, 

1987b), (Ageikin, 1992) 

Shear Stress-Displacement Curve 

Feature No. 

Description 

A No hump, shear stress increases with the shear displacement until reaches an asymptote at large shear 

displacement. 

B A hump of maximum shear stress, to the right of the hump, shear stress continually decreases with the 

increase of shear displacement. 

C A hump of maximum shear stress, to the right of the hump, shear stress decreases with the increase of 

shear displacement until reaches a residual stress. 

Table 5 Summary of parameterization methodologies for the shear stress-displacement model and the Mohr-Coulomb equation available in literature. 

Experimental 

Methodology 

Employed Instruments Parameter 

Determined 

Soil Type Equation 

No. 

Reference 

Direct shear test Modified direct shear box ϕ Sand (59) (Cerato and 

Lutenegger, 2006), 

(Guo, 2008) 

Direct shear test Modified direct shear apparatus c, ϕ Clay loam (59) (Gan et al., 1988) 

Direct shear test Direct shear testing machine c, ϕ, K Loam (59) (62) (Godbole et al., 1993) 

Direct shear test Direct shear box c, ϕ, K Mojave Martian 

Simulant 

(59) (62) (Smith, 2014) 

Direct shear test Direct shear box ϕ Sand (59) (Matsuoka et al., 

2001) 

Triaxial test Triaxial test apparatus. ϕ Sand (59) (Baker, 2004), 

Triaxial test Triaxial test apparatus. c, ϕ Clay (59) (Baker, 2004), 

(Peterson, 1988) 
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Triaxial test Triaxial test apparatus. c, ϕ Sandy clay (59) (Rahardjo et al., 

2004), 

Unconfined 

compression test 

Unconfined compression test 

apparatus. 

c Clay (59) (Kamei and Iwasaki, 

1995); (Matsuoka et 

al., 2001); (Campbell 

and Hudson, 1969) 

Vane shear test Miniature vane shear c Clay (59) (Bolton et al., 1993) 

Vane shear test Shear vane c Sandy clay, loam, 

clay, sandy loam 

(59) (Okello, 1991) 

Vane shear test Shear vane c Clay loam, clay, 

silt clay loam 

(59) (Sridharan and 

Prakash, 1999) 

Shear test Bevameter c, ϕ, K Loam (59) (62) (Park et al., 2008) 

Torsional  shear test Bevameter, circular grouser c, ϕ Sand, silt (59) (Apfelbeck et al., 

2011) 

Torsional  shear test Bevameter with automatic data 

processing unit, annular shear plates 

with grouser 

c, ϕ, K, Kω, Kr Sand, snow, 

muskeg, sandy 

loam, clayey 

loam, loam, 

(59) (65) 

(66) (71) 

(Wong, 1980), (Wong 

et al., 1984), (Wong, 

2009) 

Torsional  shear test Wheel–soil interaction testbed, 

shearing plate with grouser 

c, ϕ, K Sand (59) (62) (Gao et al., 2013) 

Translational shear test Penetration-shear device, 

combined, grouser plates 

c, ϕ, K Loam (59) (62) (Upadhyaya et al., 

1993) 

Among the traditional soil mechanics methodologies for shear strength of soil, the vane shear test cannot be used to 

evaluate the soil friction angle because when shearing of the soil happens as the vane is in a rotation, the normal stress to 

the soil in the shearing movement is zero; only the direct shear test can be used to parameterize the shear stress-

displacement model, because only the direct shear test can record the shear displacement. However, the direct shear tests 

listed in Table 5 are only applicable to the internal shearing of soil and not to the plate-shearing of soil. In 

terramechanics, the plate-shearing of soil is important for the study of traction performance of wheel-soil and tire-soil 

interaction. By contrast, the bevameter can be used to investigate both the internal shearing of soil and plate-shearing of 

soil depending on the profile of the chosen shearing plate mounted to the bevameter. When conducting the shear test for 
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the parameterization of the shear stress-displacement model, the size, shape and profile of the shearing plate or the size 

of the direct shear box, and the shearing rate need to be properly selected in order to accurately capture the feature of the 

running gear-soil interaction to be modelled. It is suggested that the rule of thumb is to make sure the shear behavior in 

the shear test needs to closely resemble the shear behavior of the running gear-soil interface to be modelled in terms of 

type of shearing (i.e., internal shearing of soil or the plate-shearing of soil) and of shear rate (i.e., the shear rate may need 

to be equal to the slip velocity of the running gear to be modelled ) (Wong et al., 1984). The type of shearing and the 

shear rate clearly influence the model parameterization results according to the data collected by Wong (Wong, 2009). 

Table 5 also indicates that to determine the same set of parameters for the same type of soil, more than one methodology 

can be applied. For example, both the torsional shear test using a Bevameter and the direct shear test using the direct 

shear box can be performed to the loam such that the cohesion, the soil friction angle, and the shear deformation 

modulus are evaluated. However, this fact doesn’t mean the evaluation result will be the same for these two 

experimental methodologies. For example, to determine the value of the soil cohesion which Lyasko call the invariant 

soil parameter (M. Lyasko, 2010b), different traditional soil mechanics experimental methodologies applied to the same 

soil led to different values of the soil cohesion (Okello, 1991). The diversity of the shear test methodologies causes 

difficulties not only in the correct selection of parameterization methodologies for the shear stress-displacement model 

or for the shear strength model, but also in comparing the terramechanics research results.  

4.3 Running gear-terrain or plate-terrain vibration models 

Running gear-terrain or plate-terrain vibration models are used to model the interaction between running gears and 

terrain or plates and terrain due to vibration induced by the motion of the running gear or the plate. As introduced next, 

these models can either predict the soil compaction, the displacement of the wheel axle, or the interactive force, or 

account for phenomenon caused by vibration that occur in the running gear-terrain interface. This approach to 

modelling is relatively recent and testing procedures and equipment are yet to be standardized.  

Hildebrand et al. proposed two models based on both a linear method and a rheologically-based non-linear method 

to study the vehicle vibrations, soil vibrations and soil compaction as the vehicle traverses the soft terrain (Hildebrand et 

al., 2008). Surface profile variation, tire and suspension features, and soil parameters were taken as the model input. In 

the linear model, the tire-soil contact force, the soil response, vehicle response and the soil sinkage can be captured 

respectively by: 
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where F is the tire-soil contact force, 
FFS  is the spectral density of tire-soil contact force, 

soilY  is the soil displacement 

response, 
soil soilY YS  is the spectral density of soil displacement, 

vehY  is the vehicle displacment response, 
veh vehY YS is the 

spectral density of vehicle displacement, 
cY  is the soil compaction displacement, and 

c cY YS  is the spectral density of soil 

compaction displacement. 

The model parameters of the equations above are the dynamic stiffness of the soil and vehicle in series 
sysK , the 

soil dynamic stiffness 
soilK , the vehicle dynamic stiffness 

vehK , the non-recoverable strain per cycle of the Proctor 

test 
,c proc , and the elastic strain per cycle of the Proctor test 

,e proc . The equation to calculate the vehicle dynamic 

stiffness depends on how the vehicle is modelled analytically. Such equations for a rigid wheel and half-axle are given 

in Eqs. (81) and (82), yet the equation to calculate the vehicle dynamic stiffness for a unsuspended vehicle with 

compliant and damped tires is more complex, and readers interested can refer to (Hildebrand et al., 2008). 

2

veh uK M   (81) 
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where 
uM  is the unsprung mass (the mass of tire and axle),   is the circular frequency of the wheel, 

tirek  is the static tire 

stiffness, 
veh  is the natural frequency of vehicle mass on tire compliance, and 

tire  is the tire loss factor. 

To calculate the dynamic stiffness of soil, the soil is treated as a bed of springs that are not independent but a part of 

a continuous medium, and the solution of the point receptance (the inverse of the soil dynamic stiffness that excludes 

the loss factor) of an elastic half-space is given by the integral as shown in Eqs. (83) - (85). The assumption behind this 

approach is that the wavelength is larger than the size of the tire-soil contact patch at the frequency range of interest 

(Hildebrand et al., 2008). 
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(85) 

Where α is the point receptance of soil for excitation under tire by a force distributed uniformly over conctact zone, 
0

is the root of   , δ is the vanishing parameter, 
Pk  is the P-wave number, r  is the radius of tire-soil contact patch, 

and 
1J  is the Bessel function of the first-order. 

Besides the approach above to treat soil as a bed of springs, the equation to calculate the soil dynamic stiffness 

incorporates a high-strain loss factor η that is calculated by assuming a linear stress-strain cycle per blow of the Proctor 

test (hence, the model is named the ―linear model‖), as shown in Eqs. (86) - (91). The loss factor is the imaginary 

component of the soil dynamic stiffness 
soilK , and represents damping. The loss factor is correlated with some soil 

parameters that can be evaluated by the modified proctor test and seismic test. 

1
soil

i
K






 (86) 
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Where 

 Ec,proc is the specific energy per blow of the Proctor test,

 D is the soil bulk modulus of elasticity,

 G is the shear modulus of the soil,

 ν is the Poisson’s ratio of soil,

 cS is the S-wave speed of soil,

 cP is the P-wave speed of soil,

 ρ is the density of soil,

 γd is the dry specific weight of soil, and

 γd,max is the dry specific weight of soil attainable in a modified Proctor compaction test.

Once the soil dynamic stiffness and the vehicle dynamic stiffness are known, the soil-vehicle system dynamic 

stiffness can be obtained by  

( ) soil veh

sys

soil veh

K K
K

K K
 


(92) 

The linear model described above loses validity for very soft soil whose damping level is correspondingly very 

high. To cope with the very high damping level, a non-linear model based on the Rheological model was developed. 

This non-linear model treats the soil as a non-linear viscous-thixotropic dashpot connected in series with a linear 

dynamic stiffness element, as shown below by (Hildebrand et al., 2008) 
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where ( )hs   is the point receptance of a half-space to a force distributed uniformly over circular area, and 
eqC  is the 

equivalent linear damping coefficient. 

The set of equations Eq. (83) – (85) that give solution to the inverse of the soil dynamic stiffness (the point 

receptance) that excludes the loss factor also works for the linear dynamic stiffness element of the non-linear model, 

which means ( )hs   can be computed the same way as using Eq. (83) – (85) to compute α. The equivalent linear 

damping coefficient is related to the time-average power dissipation by the viscous-thixotropic damping W , as 

indicated by the Eq. (94): 

2
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where a, B, m are the soil rheological parameter, and p is the average pressure over the tire-soil contact zone. 

Cuong et al. modelled the tire-soil interaction as a single degree of freedom (DOF) mass-spring-damper system and 

studied the influence of tire inflation pressure, soil moisture content, depth of test soil, and tire normal load on the 

damping ratio (Cuong et al., 2014). The equation of motion for the tire-soil interaction system is: 

22 0n nz z z   && & (98) 

eq

n

eq

k

m
  (99) 
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eq eq
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m k
  (100) 
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Where z is the displacement of wheel axle, 
n  is the undamped natural angular frequency,   is the damping ratio, 

eqm

is tire load, equivalently the static and dynamic wheel normal load, 
eqk  is the equivalent stiffness constant of tire-soil 

system, and 
eqc  is the equivalent damping coefficient of tire-soil system. 

In on-road tire dynamics, a single DOF mass-spring-damper system has been widely used to study the vertical 

vibration of the tire on a rigid road (Wong, 2008). The spring constant/characteristic (if nonlinear) and the damping 

coefficient are regarded as the function of tire properties. By contrast, the single DOF mass-spring-damper system 

applied by Cuong et al. assumes that the spring constant and damping coefficient are influenced not only by tire 

properties but also by soil properties (Cuong et al., 2014). Hence, the spring constant is called the equivalent stiffness 

constant, unlike the spring constant for on-road tire dynamics named called the stiffness of the tire.  

Irani et al. conducted a dynamic wheel-soil test in which a rigid smooth wheel moved in a straight line at a constant 

wheel normal load (applied by the dead weight) and at a preset wheel slip ratio that was controlled around a given 

value. As for the test result, it was found that the measured drawbar pull fluctuated around a mean value with time, and 

the rut profile after the traffic had cyclic peaks and troughs. Irani et al. claimed that the models based on traditional 

terramechanics approach cannot explain the drawbar pull fluctuations. To account for these fluctuations, a dynamic 

pressure-sinkage model with an empirical vibration term for the smooth wheel-soil interface was developed as shown 

below (Irani et al., 2010): 

 ( ) sinnck
p z k z A t

b
 

 
    
 

(101) 

where kc, kϕ and n are the model parameters of the Bekker model, A is the amplitude of the pressure oscillations, ω is the 

frequency of the oscillations, and Φ is the phase shift. 

The frequency of the oscillations is empirically modeled as a linear function of the wheel slip ratio: 

( ) ii k i C  
(10

2) 

where i is the wheel slip ratio, and kc and C are empirical model parameters. 

Eqs. (101) - (102) were incorporated into a semi empirical wheel dynamic model, and the model parameterization 

was completed to the empirical vibration term of Eq. (101) by using the test data from the dynamic wheel-soil test. The 

drawbar pull computed by the semi empirical wheel dynamic model matched the measured drawbar pull within an 

acceptable errors (Irani et al., 2010). The authors of this paper think Eqs. (101) - (102) don’t explain physically why the 
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pressure under the wheel in motion fluctuates with time. Although Irani et al. claimed the fluctuation in the drawbar pull 

cannot be accounted for by traditional terramechanics approach, proof about this claim was not given in (Irani et al., 

2010). Hence the possibility that traditional terramechanics approach could account for the fluctuation in the drawbar 

pull measured in the dynamic wheel-soil test is not ruled out. Since the test soil could be inhomogeneous, the authors of 

this paper think the values of the kc and kυ in the Bekker model might not have constant values everywhere in the test 

soil. Therefore, even the wheel normal load has a constant value prescribed by the dead weight, the geometry of the 

wheel-soil interface, i.e., the maximum soil sinkage right beneath the wheel center, the entry angle, etc., might vary as 

the wheel moves longitudinally. The variation in the geometry of the wheel-soil interface could lead to the variation or 

fluctuation in the drawbar pull. 

For the wheel with grousers, Irani et al. modified the model as shown by Eqs. (101) - (102) to account for the 

fluctuation in drawbar pull, vertical soil reaction force, and wheel sinkage observed in the dynamic wheel-soil test (Irani 

et al., 2011). The modified model is:  

   ( ) sin

n

c

z
p z ck bk A t

b
 
 

     
 

 
(10

3) 

where c, k
’
c, γ, b, and k

’
υ are the model parameters of the Reece pressure-sinkage model.

Compared with Eq. (102), the frequency of the oscillations is not dependent on the slip ratio but on the the number 

of wheel grousers ng and the angular velocity of the wheel ωw, and is given by:  

w

gn


 

(10

4) 

Besides, unlike the model for smooth wheel, the amplitude factor A doesn’t have a constant value at given slip ratio 

and normal load, but consists of two terms respectively due to passive compression and active expansion of the soil 

interacting with the grouser, and to the change in soil density during the grouser-soil interaction, as shown by: 

A A A  
(10

5) 

g pA k 
(10

6) 

a cA k l d   (10
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7) 

where Aσ is the factor related to the active and passive stresses due to the grouser-terrain interaction, Aγ is the factor 

related to the change in local soil density around the wheel and grouser because of the soil deformation, k
’
g is an

empirical model parameter, 
p  is the mean of the passive stresses from the grousers in contact with the terrain, k

’
a is an

empirical model parameter, lc is the contact length, and dγ is the change in weight density of the soil. 

A semi empirical wheel model that incorporated Eqs. (103) - (107) was found to capture the experimental data 

about drawbar pull, vertical soil reaction force, and wheel sinkage within acceptable errors at 66 N wheel normal load. 

However, this semi empirical model couldn’t produce results that matched the experimental data at 15 N wheel normal 

load. Irani et al. explained that the model parameters of Eqs. (106) - (107) were tuned at 66 N wheel normal load, hence 

these values of model parameters were not supposed to produce good simulation results at 15 N wheel normal load that 

was hugely different from 66 N wheel normal load (Irani et al., 2011). 

Table 6 summarizes the aforementioned vibration models in terms of model parameters, analysis domain and 

output parameters. These vibration models, unlike the pressure-sinkage empirical model and the shear displacement-

shear stress model, are a collection of theoretical model that can be analyzed either from the time domain or the 

frequency domain. These vibration models only characterize the vibration in the vertical direction, and hence they have 

the potential to be extended for the study of vehicle ride comfort over the soft soil. The experimental methodologies to 

parameterize the vibration models are briefed in  

Table 7. Test ideas for the parameterization come from vibration theory, wave propagation and traditional soil 

property tests.  

Table 6 Vibration models for soil compaction available in literature. 

Model Name Analysis Domain Model Parameters Model Outputs Equation No. Reference 

Single DOF 

mass-spring-

damper model for 

tire-soil system 

Time domain 
n ,  z (98) –(100) (Cuong et al., 

2014) 

Non-linear tire-

soil interaction 

model 

Time domain a , B , m ,  , Sc , Pc soilY , vehY , cY , F (73) - (92) (Hildebrand et al., 

2008) 
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Linear tire-soil 

interaction model 

Frequency domain 
d , ,maxd ,  , 

,c procE , Sc , Pc

soilY , vehY , cY , F (73) - (85), 

(92) - (97) 

(Hildebrand et al., 

2008) 

Dynamic 

pressure-sinkage 

model for a 

smooth wheel 

Time domain kc, kυ, n, C, A, Φ, ki, p (101) - (102) (Irani et al., 2010) 

Dynamic 

pressure-sinkage 

model for a wheel 

with grousers 

Time domain c, k’
c, γ, k’

υ, k
’
g, k

’
a, Φ, p (103) - (107) (Irani et al., 2011) 

Table 7 Parameterization of vibration models for soil compaction. 

Experimental Methodology Employed Instruments Parameter 

Determined 

Soil Type Equation 

No. 

Reference 

Free vibration logarithm decay 

method

Vibration Test Rig, a single-

direction accelerometer


Sandy loam (98) –(100) (Cuong et al., 

2014)

Modified proctor test, seismic 

test, measurement of soil 

density

hammer, sample cylinder, 

SASW and/or refraction 

seismics, scale

a , B , m , Sc , 

Pc

clay (73) - (92) (Hildebrand et al., 

2008)

Measurement of dry bulk 

density, modified Proctor test, 

seismic test

Oven, scale, hammer, 

sample cylinder, SASW 

and/or refraction seismics

d , ,maxd ,  , 

,c procE , Sc , Pc

Clay, loam (73) - (85), 

(92) - (97) 

(Hildebrand et al., 

2008)

Dynamic wheel-soil test Single wheel testbed with a 

JR3 6 d. o. f. transducer, a 

FUTEK torque sensor, and 

a linear potentiometer 

C, A, ki, Sand (101) - (102) (Irani et al., 2010) 

Dynamic wheel-soil test Single wheel testbed with a 

JR3 6 d. o. f. transducer, a 

FUTEK torque sensor, and 

a linear potentiometer 

k’
g, k

’
a Sand (103) - (107) (Irani et al., 2011) 

Parameterization of either the linear or the non-linear version of the tire-soil interaction vibration model, requires 

the seismic test to determine the S-wave speed and P-wave speed of the soil to be modelled. Performing the modified 
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Proctor test is also needed, yet its procedures slightly differ between parameterization of linear model and that of non-

linear model. In the modified Proctor test, for the linear model, the maximum dry bulk density is measured, while for 

the non-linear model, the final compaction strain is measured and recorded as a reference value. Using the non-linear 

model, simulation of the modified Proctor test is run for several times during which the soil rheological model 

parameters a, B, and m are varied such that the final compaction strain obtained from the simulation result will reach the 

reference value (Hildebrand et al., 2008).  

Free decaying vibration tests are performed to parameterize the model applied by Cuong et al. The test tire drops 

from a height of 200mm to the test soil surface. After impacting the test soil and under the constraint of the vertical slide 

guide bar, the test tire starts free-decay vibration. The vertical acceleration and vertical displacement of the test tire are 

recorded, and the Free-vibration logarithm decay method is applied to the recorded data for the evaluation of the 

damping ratio.  

Measurements of drawbar pull and rut profile from dynamic wheel-soil tests are needed to parameterize the 

dynamic pressure-sinkage model proposed by Irani et al. for a smooth wheel. From the multiple plots of drawbar pull vs 

time obtained from the test at various levels of slip ratio, the values of frequency of the oscillations ω are identified for 

each of the test slip ratios, and the model parameters of Eq. (102) are determined by using linear regression analysis. 

The values of the amplitude factor A are manually tuned such that the drawbar pull computed by the semi empirical 

wheel dynamics model that incorporates Eqs. (101) - (102) fits the drawbar pull measured in the test (Irani et al., 2010). 

Similar parameterization method can be applied to the dynamic pressure-sinkage model for the wheel with grousers 

proposed by by Irani et al. The model parameters of Eqs. (106) - (107) k
’
g and k

’
a are tuned to make the simulation

results match the experimental results (Irani et al., 2011). However, for both dynamic pressure-sinkage models, how the 

value of the phase shift Φ is determined was not described in (Irani et al., 2010), (Irani et al., 2011). 

5. Emerging techniques applicable to a real-time terramechanics environment

As mentioned in the Introduction, real-time applications may assist in estimating states, parameters, and properties

used to model the terrain-vehicle interaction. This section highlights several parameters needed to model: 1) sinkage and 

slip of some running gear or of some implement; and 2) forces or pressures acting on the running gear or implement 
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5.1 Sinkage and slip measurement 

Measurement of the sinkage while operating an off-road vehicle or using earthmoving machinery comprises of two 

parts, an elastic sinkage (or deformation) and a plastic sinkage (or deformation).  This is very difficult to measure 

separately and the elastic region of the sinkage has to be inferred in post processing from measured forces.  The forces 

applied during these tests are usually quasi-static of nature. Botha, Els, Shoop, Becker, and Sopher (Botha et al., 2016) 

developed a three-dimensional spatial measurement technique that can be used to measure the rut profile behind a 

rolling wheel. The measurement technique utilizes several inexpensive webcams to capture images of the soil in front of 

and behind a moving wheel. The cameras placed in front of the wheel measure the undisturbed terrain and the cameras 

behind the wheel measure the ensuing rut after the wheel has passed. This measurement technique is capable of 

measuring the three-dimensional rut profile with an accuracy of approximately 1mm. At this stage, the measurement 

technique is not capable of processing the image data in real-time, but it is expected that sufficient advances in both the 

algorithm and processing power may soon result in this technique being suitable for real-time application. This rut 

profile measurement technique enables one to measure the plastic deformation of the soil with relative ease. Figure 1 

shows a typical result of measuring the rut depth in sand. 

Figure 1. The deformed point cloud with a colour map applied to represent the relative distance to the undeformed profile 
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Measurement of the elastic deformation is considerably more complex, as it has to be measured in situ with the 

wheel obstructing the view. Guthrie, Botha, Jimenez, Els & Sandu (Guthrie et al., 2017) investigated a novel 

approach to measuring the elastic deformation by inserting two webcams into the wheel. The webcams are between 

the rim and the tyre and are oriented so that the contact patch area is in view constantly. The experimental setup is 

called the Tyre-Terrain Camera System (T2CAM) and is shown in Figure 2. A mechanical mechanism stabilizes 

the cameras to ensure that the contact patch is permanently in view. 

Figure 2. T2CAM imaging system used to measure tire contact patch deformation 

By measuring the contact patch deformation and assuming that the tire rubber compound is much stiffer than the 

soil, one can get a good estimate of the sinkage while the wheel is moving over the soil. Assuming that the total sinkage 

is a combination of the elastic and plastic deformation, the elastic sinkage can be separated from the plastic sinkage. 

Using the T2CAM to measure the elastic sinkage of soft terrain is still work in progress, but is already delivering 

promising results. Several updates to the T2CAM are planned, including the addition of more sensors to allow for some 

validation of the experimental results. 

When slip (longitudinal and lateral) is present in the tire-terrain interface, accurate slip measurement is also of 

utmost importance. Using digital image correlation techniques, Botha and Els (Botha and Els, 2015a), Botha and Els 

(Botha and Els, 2015b), developed a measurement capability that can directly measure the longitudinal and lateral slip 

conditions in the tire-terrain interface. Johnson, Botha and Els (Johnson et al., 2017) extended this approach to measure 
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the side-slip angle of a vehicle in real-time and hence these approaches may be used to measure the tire-terrain slip 

directly, in real-time. 

5.2 Force measurement 

The measurement of forces and moments has been well established in the literature. There are numerous examples 

of wheel force transducers available on the commercial market, although these wheel force transducers are typically 

very expensive and designed for relatively low loads. The loads are typically associated with that experienced by a 

passenger vehicle. The Vehicle Dynamics Group at the University of Pretoria designed and tested a wheel force 

transducer that makes use of six individual single component load cells to measure the forces and moments acting on a 

tire (Becker and Els, 2012). The original design was for 16 inch rims, but the design has recently been scaled to account 

for very large off-road tyres. The updated wheel force transducers have a static load rating of 150 kN and a dynamic 

load rating of 300 kN.  

The wheel force transducer design is intended to be integrated with the T2CAM, thus providing all six forces and 

moments acting on the wheel along with the full field deformation of the undisturbed terrain, the contact patch 

deformation and the subsequent rut form by the wheel. The wheel force transducer is designed to fit 29 inch rims and is 

shown in Figure 3. 

Figure 3. The 29 inch wheel force transducers with static load rating of 150 kN 

6. Conclusion and future work

Although terramechanics has incorporated theoretical concepts and experimental methodologies from traditional

soil mechanics and vehicle engineering, each of which has its own standards, the ISTVS mainly considers the terrain-
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vehicle interaction research that has specific needs. These specific needs require a well-defined, cohesive, and 

consistent set of standards. Thus, the objective of this study is to support an update and enhancement of the ISTVS 

standards. The first step was to conduct a literature survey on the soil parameters and parameterization methodologies 

for fundamental terramechanics models. This phase also produced a large collection and classification of published 

studies related to soil parameters measurement and soil modeling techniques. The use of terramechanics modelling in 

the emerging field of real-time measurement was also discussed. 

A few conclusions can be drawn from the work conducted for this study so far. There is no reference method for 

the parameterization of most terramechanics fundamental models. Furthermore, multiple experimental methods could 

be used to parameterize the same terramechanics model; however, the results of one method may differ from those 

obtained with another method, and it is hard to know which one is more accurate. Thus, the difficulty of establishing 

standards for terramechanics tests is increased due to such challenges. Also, it can be seen that the experimental 

methodologies for the parameterization of the pressure-sinkage empirical models, and the shear displacement-shear 

stress models rely mostly on the plate-sinkage tests and soil shear tests. These two types of tests may need to be 

standardized in ISTVS standard. Also, attention needs to be paid to which types of soil need to be tested in order to 

validate a newly proposed model, this aspect might also be specified in a future ISTVS standard. For the vibration 

models, their parameterization methodologies have included ideas from other disciplines and are still evolving. In this 

case, the conventional experimental methodologies are insufficient, and more research is needed to produce standards 

useful for terramechanics studies. 

Recent emerging technologies, such as digital image correlation techniques and the development of wheel force 

transducers capable of withstanding very high loads, may bring a new dawn in the world of terramechanics. The 

imaging techniques have the ability to provide full field deformation in front of, inside and behind a rolling tire, while 

the large wheel force transducers are capable of measuring forces up to 300 kN. 

Future work will be focused on clearly stating the proposed related updates for the ISTVS standards for soil 

properties and mobility of vehicles on soil, as well as creating the repositories for all the soil parameters, testing 

facilities, and other information collected during the project. On top of that, an open database of soil properties and 

testing facilities will be built for the ISTVS community. 
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