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Abstract 

Poaching can have devastating impacts on animal and plant numbers, and in many countries 
has reached crisis levels, with illegal hunters employing increasingly sophisticated 
techniques. We used data from an 8‐year study in Savé Valley Conservancy, Zimbabwe, to 
show how geographic profiling—a mathematical technique originally developed in 
criminology and recently applied to animal foraging and epidemiology—can be adapted for 
use in investigations of wildlife crime. The data set contained information on over 10,000 
incidents of illegal hunting and the deaths of 6,454 wild animals. We used a subset of data 
for which the illegal hunters’ identities were known. Our model identified the illegal 
hunters’ home villages based on the spatial locations of the hunting incidences (e.g., 
snares). Identification of the villages was improved by manipulating the probability surface 
inside the conservancy to reflect the fact that although the illegal hunters mostly live 
outside the conservancy, the majority of hunting occurs inside the conservancy (in 
criminology terms, commuter crime). These results combined with rigorous simulations 
showed for the first time how geographic profiling can be combined with GIS data and 
applied to situations with more complex spatial patterns, for example, where landscape 
heterogeneity means some parts of the study area are less likely to be used (e.g., aquatic 
areas for terrestrial animals) or where landscape permeability differs (e.g., forest bats tend 
not to fly over open areas). More broadly, these results show how geographic profiling can 
be used to target antipoaching interventions more effectively and more efficiently and to 
develop management strategies and conservation plans in a range of conservation 
scenarios.  

Keywords: Bayesian models, bushmeat, geographic profiling, ivory, rhino horn, snaring, 
spatial analysis 
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Introduction 

Geographic profiling is a statistical technique developed originally in criminology to 
prioritise large lists of suspects in cases of serial crime such as murder, rape, and arson 
(Rossmo 2000). More recently, the model has been successfully applied to biological data 
sets (Le Comber et al. 2006; Le Comber et al. 2011; Le Comber & Stevenson et al. 2012; 
Faulkner et al. 2015). In criminology the model uses the locations of linked crimes to 
calculate the probability of offender residence for each point within the study area. These 
probabilities are then ranked to produce a geoprofile, with suspects higher on the profile 
investigated first.  

Illegal hunting represents one of the most severe threats to wildlife worldwide (Ripple et al. 
2016). The severity of the threat is such that a growing number of species are suffering 
population declines and becoming threatened with extinction (Ripple et al. 2015, 2016). In 
Africa, wildlife hunting is conducted to obtain bushmeat for subsistence and for wildlife 
products such as ivory, rhinoceros horn, pangolin scales, and leopard skins for international 
and local trade (e.g., Biggs et al. 2013; Lindsey et al. 2013, 2017). The resources available to 
tackle illegal hunting are severely limited; thus, protecting wildlife populations in the vast 
landscapes in which they occur is extremely challenging (Mansourian & Dudley 2008; 
Lindsey et al. 2016). There is an urgent need to develop technological solutions to give law 
enforcement agencies the edge over illegal hunters.  

Although illegal hunting is prevalent even in times of relative peace, it can intensify during 
times of political instability (Cumming 2004). In Zimbabwe, illegal hunting began to rise with 
the onset of the land‐reform program in which subsistence farmers were resettled onto 
private farms and wildlife ranches (Du Toit 2004). In 2001, settlers began to move into a 
large wildlife area in southeastern Zimbabwe, the Savé Valley Conservancy (SVC). Financial 
losses realized through illegal hunting in SVC were at least US$1 million per year (Lindsey 
et al. 2011), which highlights the fact that the crisis is as much an economic as a 
conservation problem.  

We examined how geographic profiling (GP) can be adapted for use in investigations of 
wildlife crime with data from an 8‐year study in SVC that include more than 10,000 incidents 
of illegal hunting and records of the deaths of 6,454 wild animals.  

Geographic profiling is a statistical technique developed originally in criminology to 
prioritize large lists of suspects in cases of serial crime such as murder, rape, and arson 
(Rossmo 2000). More recently, the model has been applied successfully to biological data 
sets (Le Comber et al. 2006; Le Comber et al. 2011; Le Comber & Stevenson et al. 2012; 
Faulkner et al. 2015). In criminology, locations of linked crimes are used in this model to 
calculate the probability of offender residence for each point within the study area. These 
probabilities are then ranked to produce a geoprofile; suspects higher on the profile are 
investigated first.  

Despite the success of GP in a range of disparate fields within biology, the model's 
application has to date largely ignored a great deal of spatial complexity and differences in 
habitat, many of which are likely to be important; for example, freshwater aquatic 
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invertebrates are generally restricted to ponds, lakes, and streams. In SVC, illegal hunters 
live mostly outside the conservancy, but the animals they are hunting occur almost 
exclusively inside the conservancy. In criminology, such a scenario results in what would be 
referred to as commuter crime. In contrast to the normal assumptions of the model, in 
which the majority of offenders commit crimes close to their anchor point (usually a home 
or workplace) (Brantingham & Brantingham 1981; Meaney 2004), in commuter crime 
offenders travel some distance to specific locations to commit their crimes because of the 
clustered nature of potential crime sites (e.g., opportunities for high‐value shoplifting are 
likely to occur in city centers, with few or no opportunities for criminals near their homes) 
(Canter & Larkin 1993).  

We addressed the issue of commuter crime with a post hoc manipulation of the geoprofile 
in which we adjusted the model probabilities inside SVC in ways that reflected the fact that 
the illegal hunters would in most cases live outside SVC. We sought to determine first how 
an approach originally developed in crime science could be applied to wildlife crime and 
second to extend the GP method to show how post hoc adjustment of the resulting 
geoprofile might improve model performance. Specifically, we asked whether GP can be 
used to identify illegal hunters from hunting incidences alone and whether it can be 
improved by incorporating geospatial data, in this case to deal with the issue of commuter 
crime.  

Methods 

Ethics 

The data relating to the incidents of illegal hunting are a subset of data collected by Lindsey 
et al. (2011). As part of that study, antipoaching scouts from the ranches comprising SVC 
were interviewed on a monthly basis and the locations of incidents of illegal hunting (e.g., 
poaching, snares) recorded. For a subset of these incidents, illegal hunters had been 
observed or caught by scouts as part of their routine patrols. Where the hunters were 
known to the scouts, the locations of their towns or villages (and not individual addresses) 
were recorded; these are the data we used. Thus, none of the data we used can be used to 
identify individuals (particularly because the data were collected 12 years ago). No 
additional data or analyses were shared with the police or antipoaching scouts.  

General Approach 

We examined how an approach originally developed in crime science could be applied to 
wildlife crime and extended the GP method to show how post hoc adjustment of the 
geoprofile can improve model performance. In the particular case examined here, the 
majority of incidents of illegal hunting originated outside SVC, even though the incidents 
themselves mostly occurred inside the conservancy. To address this, we divided the 
geoprofile—a matrix describing, for each point in the study area, the probability that there 
is a source at that point –into areas inside SVC and outside SVC with a shapefile. We then 
adjusted our estimate of the probability of source location inside the conservancy to reflect 
our belief that source locations within the conservancy are less likely than source locations 
outside the conservancy. We considered a range of manipulations in which we reduced the 
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probability of source location for points inside the conservancy by factors from 0.1 to 
0.000001. We also considered the extreme case where the probability of source location is 
set to zero inside the conservancy.  

 

Figure 1.  Savé Valley Conservancy in southeastern Zimbabwe. 
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Study Area 

The SVC (20°24′48.10″S, 32° 8′19.61″E) is a wildlife area (3450 km2) in arid southeastern 
Zimbabwe (Fig. 1) composed of 26 individual wildlife ranches held in ownership by private, 
government, and local community entities. Although there are no internal fences between 
ranches, 350 km of double perimeter fencing serves as a boundary between wildlife within 
SVC and the surrounding high‐density human settlements. The SVC is home to an 
abundance of animals such as impala (Aepyceros melampus), zebra (Equus quagga), 
wildebeest (Connochaetes taurinus), buffalo (Syncerus caffer), giraffe (Giraffa 
camelopardalis), elephant (Loxodonta africana), leopard (Panthera pardus), cheetah 
(Acinonyx jubatus), wild dog (Lycaon pictus), and black (Diceros bicornis) and white 
rhinoceros (Ceratotherium simum).  

In 2001, trends of increasing wildlife populations within SVC began to reverse with the 
implementation of Zimbabwe's land‐reform program. Subsistence farmers began to settle 
within SVC and removed large tracts of perimeter fencing, enough to make over 400,000 
wire snares (Lindsey et al. 2009), which are used to catch wildlife for bushmeat. In 
Zimbabwe, hunting using snares is prohibited by law (Trapping of Animals [Control] Act 
[Chapter 20:21]), as is the possession or sale of illegally obtained bushmeat (Parks and 
Wildlife Act chapter 20:14).  

Data 

Illegal hunting data were collected from August 2005 to July 2009 from antipoaching 
managers on each ranch in SVC (Lindsey et al. 2011). We used a subset of these data for 
which the illegal hunters’ identities were known. This included 151 hunting incidents and 47 
known illegal hunters. The most hunting incidents per individual was 32; most individuals 
hunted just one time. The method of hunting varied: snares (66), dogs (60), fishing (13), 
snares and dogs (3), and other (9).  

Geographic Profiling and the DPM Model 

The Dirichlet process mixture (DPM) model is described fully in Verity et al. (2014) and 
extended in Faulkner et al. (2016). In brief, constructing a geoprofile can be broken down 
into 2 related tasks: allocating crimes to clusters and finding the sources of the clusters. 
Solving these 2 problems together is difficult, but each is simple if the answer to the other is 
known. That is, if one knows which crimes come from which sources, finding the sources is 
straightforward because they are most likely to be found at the spatial means of these 
clusters. Similarly, if one knows where the sources are, allocating crimes to clusters is easy 
because crimes are most likely to originate from the closest source. The solution is to 
alternate between these two problems in a process known as Gibbs sampling (Geman & 
Geman 1984). The Gibbs sampler begins by randomly assigning crimes to clusters and 
then—conditional on this clustering—estimates the locations of the sources. Then—
conditional on these source locations—crimes are reassigned to clusters. These two steps 
are repeated thousands of times with standard Bayesian Markov chain Monte Carlo (MCMC) 
methods until the model converges on a posterior distribution of interest. Crucially, it is not 
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necessary to decide on the number of clusters because at each step there is a finite, positive 
probability that a crime comes from a previously unseen source.  

Model Implementation 

We implemented the DPM model described in R (R Core Team 2014) with version 2.0.0 of 
the package Rgeoprofile introduced by Verity et al. (2014) and extended by Faulkner et al 
(2016) (available from https://github.com/bobverity/Rgeoprofile). Models settings are 
explained in detail in Verity et al (2014). Here, the settings used were sigma mean = 1, sigma 
squared shape = 2, samples = 10,000, chains = 10, burnin = 1,000. Broadly speaking sigma 
represents the standard deviation (in kilometers) of the dispersal distribution around the 
source, and sigma mean is the initial prior on this. Sigma squared shape relates to the shape 
parameter of the inverse‐gamma prior on sigma and has a value of 2, which corresponds to 
a weakly informative distribution. Faulkner et al. (2016) contains details of the underlying 
mathematics. These settings correspond to a diffuse prior on sigma of 1 km, implying that 
39% of the poaching events occur within 1km of the source, 87% within 2 km, and 99% 
within 3 km; however, the model disregards this prior if the data warrant it. A value of 1 km 
is a value typical of human patterns of movement (Rossmo 2000). The parameters samples, 
chains, and burnin are all standard parameters relating to the MCMC.  

Model Evaluation 

The model output is assessed in 2 ways: hit score and Gini coefficient. The model's 
performance in finding an individual source can be calculated using the hit score. The hit 
score is the proportion of the total area covering the crimes (in this case the hunting 
incidents) that has to be searched before that source is located. This score is calculated by 
ranking each grid square within the total search area and dividing the ranked score of the 
grid square in which the source is located by the total number of grid squares to give a value 
from 0 to 1: the smaller the hit score the more efficient the search strategy. For example, a 
suspect site with a hit score of 0.1 would be located after searching one‐tenth of the total 
search area.  

Overall model performance—across all sources—was compared by calculating the gini 
coefficient or Gini index. The Gini coefficient is essentially a measure of inequality (it is often 
used to look at wealth distribution) (Gini 1921). We compared the proportion of illegal 
hunting incidents that had identified sources with the proportion of the total area searched. 
A strategy that finds sources exactly in proportion to the area searched has a Gini coefficient 
of 0. In contrast, a perfect search strategy has a Gini coefficient of 1. The higher the Gini 
coefficient, the more effective the search.  

Simulations 

To further test the accuracy of the model with and without the incorporated spatial data, 
we compared 1000 simulated data sets; each dealing with a simplified case of a study area 
spanning −1° to 1° longitude and −1° to 1° latitude and a central conservancy from −0.5° to 
0.5° longitude and −0.5° to 0.5° latitude. We randomly generated 36 sources from a uniform 
distribution within the study area but outside the simulated conservancy and 11 sources 
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within the conservancy, again from a uniform distribution. The ratio of 36:11 was chosen 
because it reflected the spatial distribution of crimes in the SVC data set. For each of these 
47 sources, we generated a large number of crimes from a bivariate normal distribution 
with a standard deviation of 20 km around the source and subsampled from this distribution 
to select a maximum of 12 crimes per source such that all of the crimes occurred within the 
simulated conservancy. This constraint means that for sources farther from the 
conservancy, the realized number of crimes was in some cases <12. Sources for which no 
crimes fell within the conservancy were excluded from the analysis. For each data set, 8 
analyses were carried out: the unmodified DPM model and then the same modifications 
that were used on the real data set (that is, multiplying by factors from 0.1 to 1 × 10–6 and 
by zero). To account for the paired nature of the design (each analysis was run on the same 
data set), the data were analyzed using an analysis of variance on the differences obtained 
by subtracting the unmodified DPM hit scores from the hit scores for each of the other 
analyses. Thus, negative values indicated cases in which the modified version of the model 
outperformed the unmodified DPM.  

Spatial Data 

To account for the issue of commuter crime, we incorporated spatial information into the 
model post hoc. Shapefiles for SVC were superimposed on the geoprofile, and the 
probability of offender residence within SVC were reduced by multiplying points within the 
SVC by 1 × 10n, where n ranged from −1 to −6. We also considered the case in which SVC 
was excluded entirely by multiplying by zero within SVC. Effectively, this forced the model to 
give greater weight to potential locations outside SVC to different extents. The results of 
this approach were compared with a simple ring‐search strategy in which searches are 
conducted outward from an illegal hunting incident in circles of increasing radii (e.g., Smith 
et al. 2015).  

Results 

Simulations 

Across the 1,000 replicates, the model identified the sources of illegal hunting located 
outside the specified area (here, the area comprising the simulated conservancy) better 
when the model was adjusted (Fig. 2a). The hit scores improved as the adjustment on the 
surface increased until it stopped having an effect at an adjustment of 0.001. [ANOVA: 
adjusted surface F7,226504 = 21953, p < 0.0001; location (inside or outside) F1,226504 = 3181562, 
p < 0.0001, interaction F7,226504 = 201110, p < 0.0001].  
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Figure 2.  The difference in hit score (proportion of area that has to be searched before the source of the 

wildlife crime is located) for sources of wildlife crime located inside and outside Savé Valley Conservancy based 

on (a) actual or (b) simulated data for the Dirichlet process mixture model and for different manipulations of 

the probability surface inside the conservancy, from 0.1 to 1 × 10
–6

 and for 0. Each boxplot shows hinges 

(versions of the first and third quartiles); notches show 1.58 times the IQR/sqrt(n) and roughly correspond to 

95% confidence limits. For a detailed description, see the R help file for boxplot.stats (R Development Core 

Team 2014 [http://www.R-project.org]).  

Spatial Data 

The geoprofiles produced by the standard DPM model and the subsequent adjusted 
surfaces are shown in Fig. 3. Figure 3a shows the results of the basic DPM model before we 
corrected for the commuter crime issue. Figures 3b and 3c show the geoprofiles when the 
probability values inside SVC were multiplied by 0.001 and 0. Hit scores improved as the 
adjustment on the surface increased, and again the model identified the sources located 
outside the specified area better when the model was adjusted (ANOVA: adjusted surface 
F7,360 = 7.993, p < 0.0001; location (inside or outside) F1,360 = 1241.61, p < 0.0001, interaction 
F7,360 = 77.328, p < 0.0001) (Fig 2b). The proportions of illegal hunters located using the 
different methods of spatial targeting were also compared. All of the analyses in which we 
used the adjusted geoprofiles located 50% of the illegal hunters through searches of <20% 
of the area; hit scores for sources outside SVC improved and hit scores for those inside SVC 
worsened.  
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Figure 3. Geoprofiles showing (a) the unadjusted Dirichlet process mixture (DPM) model (b) when areas inside 

the conservancy are multiplied by 0.001 and (c) when areas inside the conservancy are multiplied by 0. Black 

circles show the locations of hunting incidents and red squares the locations of illegal hunters. Contours show 

5% increments of the geoprofile; lighter colors represent higher parts of the geoprofile.  

The adjusted geoprofile (with a multiplication of 0.001 inside SVC) (Fig. 3b) also 
outperformed a simple ring search (Fig. 4). Although the GP hit scores were higher for the 
small number of sources inside the conservancy (t = 6.00, df = 10, p = 0.0001), they were 
lower for the larger number of sources outside the conservancy (t = 18.5, df = 35, p < 
0.0001), searching on average 13% less of the total area than the ring search. Overall, the 
adjusted geoprofile identified the sources of more incidents of illegal hunting while 
searching a smaller area, with a Gini coefficient of 0.879 compared with 0.825 for the ring 
search, finding the sources for 50% of the incidents while searching 11% of the search area, 
as opposed to 18%.  
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Figure 4. Results of a ring‐search strategy in which the search for the perpetrator of a wildlife crime extends 

outward from an incident of illegal hunting in circles of expanding radii (black circles, locations of hunting 

incidents; red squares, locations of illegal hunters; contours, increments of 20%).  
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Discussion 

Crimes committed against the environment and animals—variously termed green crime 
(Lynch & Stretsky 2003), conservation crime, and environmental crime (Gibbs et al. 2010)—
have had an increasing profile in recent years (Wellsmith 2011). The field of criminology has 
historically shown little interest in such crimes, largely leaving environmental issues to other 
disciplines (Lynch & Stretsky 2003). We found that GP can be used successfully to identify 
areas where illegal hunters may live and could be used to target law enforcement 
interventions and community engagement efforts in these areas to prevent reoffending. We 
also demonstrated for the first time how incorporating spatial information can improve the 
efficiency of the model; the model outperformed an alternative ring‐search strategy. 
Crucially, the DPM model identified the sources of 50% of illegal hunting incidents after 
searching just 11% of the study area, as opposed to 18% with the ring‐search method. 
Clearly, across the spatial scales that often characterize reserves and conservancies, such an 
improvement in efficiency may be of considerable benefit.  

The origins of GP lie in criminology, and we took the modifications to the model that have 
been developed in biology back to this source. In criminal investigations, limitations of 
resources and time mean that a search‐prioritization tool such as GP can be of great 
practical utility. The same can be said for conservation where resources and time are likely 
to be heavily limited (Stevenson et al. 2012; Faulkner et al. 2016).  

There has been an increase in the scale of commercial hunting and the wildlife trade as the 
population expands and as techniques used by hunters improve (e.g., Fa & Brown 2009; Di 
Minin et al. 2015; Naidoo et al. 2016). Traditionally conservation actions have depended on 
the hypothesis that different illegal wildlife actions occur in different places; commercial 
trade occurs close to cities and coastal areas (Di Minin et al. 2015) and illegal hunting 
incidents cluster in rural areas, where the primary motivation for hunting is subsistence 
(Sanchez‐Mercado et al. 2016). However, it has recently been shown that subsistence 
hunting and wildlife trade maybe spatially correlated (Sanchez‐Mercado et al. 2016). In fact, 
spatial patterns of hunting differ from case to case, just as the techniques used by the illegal 
hunters and the pressures driving hunting vary among countries, time of year, species, and 
protected areas as illegal hunters adapt to—for example—differences in terrain and 
accessibility to protected areas and to the population changes that occur among the animals 
(Risdianto et al. 2016). Geographic profiling provides one way of identifying locations that 
are the source of hunting—in most cases areas where illegal hunters live—on a case‐by‐case 
basis. This could have important implications for the design and implementation of effective 
and efficient conservation actions because it could allow limited law enforcement resources 
to be focused on communities where it is needed most and help focus conservation efforts 
in and generate economic benefits from wildlife for these local communities (Knapp 2012; 
Cooney et al. 2016). Such focusing of efforts is key. Law enforcement and protected‐area 
management are expensive, and enormous budget deficits exist in African countries 
(Lindsey et al. 2016, 2017). Traditional antipoaching patrols are reactive and attempt to find 
evidence of hunting after it has happened or after illegal hunters have entered the area 
(Lotter & Clark 2014). Due to the large areas that are often involved and the difficulty 
associated with finding snares and traps and catching illegal hunters on the move, such 
interventions often fail to prevent hunting incidents and are of limited efficacy. Our method, 
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especially if combined with information from intelligence operations, has the potential to 
allow for both preventative outreach efforts with the communities and households most 
involved in illegal hunting and much more targeted law enforcement efforts (Lotter & Clark 
2014).  

Beyond the case we describe here, our results illustrate how more complex spatial 
information can be incorporated within the DPM model framework. In many instances—
notably in biology but also in criminology—treating the study area—the target backcloth in 
criminology—as homogenous will fail to take into account important information. For 
example, if one were to search for plants that occur only above 400 m or mosquitoes that 
breed only in water, it may be the case that large parts of the study area could be excluded 
from the search, creating a more efficient search strategy. More complex manipulations of 
the model output – use of continuous variables rather than the categorical inside or 
outside—are also possible, for example, when the probability of finding an anchor point is 
proportional to elevation, soil pH, distance from water, etc.  

In some cases, of course, it will not be obvious precisely what manipulation of the final 
model output will be most appropriate, and selecting a particular manipulation will require 
expert input. In our study, for example, it is clear that entirely excluding areas inside SVC 
from the search would miss a number of sources (Fig. 3c). Multiplying by 0.001, in contrast, 
effectively excluded large areas within SVC that were unlikely to be of interest while 
prioritizing the areas of highest probability within SVC (Fig. 3b).  

Our results show that GP can successfully identify areas where illegal hunters may live based 
only on the spatial locations of hunting incidents such as traps and snares. This has 
important implications for management strategies and conservation plans in terms of 
targeting particular areas with community‐based initiatives. We suggest that being able to 
target control efforts in this way will make hunting interventions more efficient and cost‐
effective. More broadly, we demonstrated for the first time how incorporating additional 
spatial information can improve the overall efficiency of the DPM model.  
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