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Synopsis

The simplicial homology global optimisation (SHGO) algorithm is a general purpose

global optimisation algorithm based on applications of simplicial integral homology and

combinatorial topology. SHGO approximates the homology groups of a complex built on

a hypersurface homeomorphic to a complex on the objective function. This provides both

approximations of locally convex subdomains in the search space through Sperner’s lemma

(Sperner, 1928) and a useful visual tool for characterising and efficiently solving higher

dimensional black and grey box optimisation problems. This complex is built up using

sampling points within the feasible search space as vertices. The algorithm is specialised

in finding all the local minima of an objective function with expensive function evalua-

tions efficiently which is especially suitable to applications such as energy landscape ex-

ploration. SHGO was initially developed as an improvement on the topographical global

optimisation (TGO) method first proposed by Törn (1986; 1990; 1992). It is proven that

the SHGO algorithm will always outperform TGO on function evaluations if the objective

function is Lipschitz smooth. In this dissertation SHGO is applied to non-convex prob-

lems with linear and box constraints with bounds placed on the variables. Numerical ex-

periments on linearly constrained test problems show that SHGO gives competitive results

compared to TGO and the recently developed Lc-DISIMPL algorithm (Paulavičius and

Žilinskas, 2016) as well as the PSwarm and DIRECT-L1 algorithms. Furthermore SHGO

is compared with the TGO, basinhopping (BH) and differential evolution (DE) global

optimisation algorithms over a large selection of black-box problems with bounds placed

on the variables from the SciPy (Jones, Oliphant, Peterson, et al., 2001–) benchmarking

test suite. A Python implementation of the SHGO and TGO algorithms published under

a MIT license can be found from https://bitbucket.org/upiamcompthermo/shgo/.

Keywords: Global optimisation, SHGO, Computational homology

Mathematics Subject Classification (2010) 90C26 Nonconvex programming,

global optimisation
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CHAPTER 1

Introduction

1.1 Objective function statement and nomenclature

Consider a general optimisation problem of the form

min
x

f(x)

s.t. g(x) ≥ 0 (1.1)

The continuous real objective function f(x) maps a vector of dimension n to a scalar value.

It can be either smooth or non-smooth depending on the local minimisation method used.

The variables x are assumed to be bounded. In this dissertation we mainly consider real,

smooth, but not necessarily convex functions with linear constraint functions. In addition

it is assumed that the objective function has a finite number of local minima

f : Rn → R (1.2)

g maps the set of linear constraints

g : [l,u]n → Rm (1.3)

for example if lower and upper bounds li and ui are implemented for each variable then

we have an initially defined hyperrectangle

x ∈ Ω ⊆ [l,u]n = [l1, u1] × [l2, u2] × . . . × [ln, un] ⊆ Rn (1.4)

where Ω is the limited feasible subset excluding points outside the bounds and constraints.

Ω = {x ∈ [l,u]n | gi(x) ≥ 0,∀i = 1, . . . ,m} (1.5)

Since the constraints in g are linear the set Ω is always a compact space.

1
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CHAPTER 1. INTRODUCTION 2

In the development of SHGO several concepts from algebraic and combinatorial topol-

ogy (Henle, 1979) are required. The following definition was adapted from Hatcher (2002:

p. 9)

Definition 1. A k-simplex is a set of n+1 vertices in a convex polyhedron of dimension

n. Formally if the n+1 points are the n+1 standard n+1 basis vectors for R(n+1). Then

the n-dimensional k-simplex is the set

Sn =

{
(t1, . . . , tn+1) ∈ Rn+1 |

n+1∑
1

tn+1 = 1, ti ≥ 0

}

For example, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. We will use

the following combinatorial definition of a simplicial complex (Hatcher, 2002: p. 107)

Definition 2. A simplicial complex H is a set H0 of vertices together with sets Hn of

n-simplices, which are (n+ 1)-element subsets of H0. The only requirement is that each

(k + 1)-elements subset of the vertices of an n-simplex in Hn is a k-simplex, in Hk .

Thus each n-simplex has n+ 1 distinct vertices, and no other n-simplex has this same

set of vertices.

In this publication the H symbol will be used to represent a (finite) simplicial com-

plex rather than the more standard ∆ to avoid confusion with the difference and Lapla-

cian operators common in optimisation. The superscript Hk represents the subset of

k−dimensional simplices where for an n dimensional problem the highest dimensional

k−simplex contains n+ 1 vertices. Finally we define a k-chain (Henle, 1979)

Definition 3. A k-chain is a union of simplices.

For example a 0-chain is a set of vertices, a 1-chain is a set of edges and a 2-chain is

a set of triangles. C(Hk) denotes a k−chain of k−simplices. A vertex in H0 is denoted

by vi. If vi and vj are two endpoints of a directed edge in H1 from vi to vj then the

symbol vivj represents the edge so that it is bounded by the 0−chain ∂ (vivj) = vj − vi
and similarly for an edge directed from vj to vi, we have, ∂ (vjvi) = ∂ (−vivj) = vi − vj.
Higher dimensional simplices can be represented and directed in a similar manner, for

example a triangle consisting of three vertices vi, vj and vk directed as vivjvk has the

boundary of directed edges ∂ (vivjvj) = vivj + vjvk + vjvi.

1.2 Multimodal objective functions and local min-

ima mapping

Non-convex problems are commonly solved using global optimisation methods. One such

example is the topographical global optimisation (TGO) method (Henderson, de Sá Rêgo,
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CHAPTER 1. INTRODUCTION 3

Sacco, and Rodrigues, 2015; Törn, 1986; Törn, 1990; Törn & Viitanen, 1992) which is

a clustering algorithm that finds several local minima from which the (probable) global

minimum is found. It is often desirable to find all the local minima of the objective

function for example in applications such as energy landscape exploration of potential

models wherein mapping the local minima of the potential functions can provide valu-

able insights into the system. Algorithms such as the basin-hopping global optimisation

algorithm are typically used to find these points (Wales, 2015).

The graph extracted from the topographical global optimisation (TGO) (Henderson

et al., 2015; Törn, 1986; Törn, 1990; Törn & Viitanen, 1992) topograph (as described in

Chapter 2) is unsatisfactory in some ways. Primarily because several starting points in

the same locally convex domain can be generated even when enough information from

the objective function sampling is known to prevent this from occurring. This leads to

superfluous function evaluations in the local minimisation step of the algorithm. Contrary

to intuition, this problem is exacerbated by increasing the number of initial sampling

points used in the algorithm as demonstrated in Chapter 2. This can lead to a very large

number of function evaluations required to solve the problem. In particular in multimodal

energy surfaces where the local minima can often be located in short distances relative to

the search space (Zhang and Rangaiah, 2011) and thus requires a large number of initial

sampling to locate all these domains. Some shortcomings in using the TGO method to

map local minima are:

• Geometric information available from the sampling points is being disregarded by

the graphs built up using only the Euclidean distance metric.

• Knowledge of the number and location of local minimisers in a given sampling set

is not being used to the full extent.

• More than one minimiser might be produced in the same locally convex domain

and there is no guarantee that a minimiser set produced by TGO will be in the

locally convex domains of all local minima even if the number of local minima is

known and a minimiser set of this cardinality is produced.

By constructing a directed simplicial complex it will be shown that the simplicial

homology global optimisation (SHGO) algorithm does not produce superfluous starting

points for the class of all Lipschitz smooth functions resulting in more efficient per-

formance for these problems compared to TGO. The directed complex is also used to

approximate the homology group of the objective function hypersurface which, using

integral homology version of the Invariance Theorem (Henle, 1979), allows for efficient

mapping of optimisation problems where the number of local minima is known a-priori.
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CHAPTER 1. INTRODUCTION 4

1.3 Derivative-free methods for Lipschitz optimsa-

tion problems

Both the SHGO and TGO algorithms only make use of function evaluations without

requiring the derivatives of objective functions. This makes them applicable to black-

box global optimisation problems. A recent review and experimental comparison of 22

derivative-free optimisation algorithms by Rios and Sahinidis (2013) concluded that global

optimisation solvers solvers such as TOMLAB/MULTI-MIN, TOMLAB/GLCCLUSTER,

MCS and TOMLAB/LGO perform better, on average, than other derivative-free solvers

in terms of solution quality within 2500 function evaluations. Both the TOMLAB/GLC-

CLUSTER and MCS (Huyer and Neumaier, 1999) implementations are based on the

well-known DIRECT (DIviding RECTangle) algorithm (Jones, Perttunen, and Stuck-

man, 1993).

The DISIMPL (DIviding SIMPLices) algorithm was recently proposed by Paulavičius

and Žilinskas (2014b). The experimental investigation in Paulavičius & Žilinskas

(2014b) shows that the proposed simplicial algorithm gives very competitive results

compared to the DIRECT algorithm. DISIMPL has been extended in Paulavičius and

Žilinskas (2014a); Paulavičius, Sergeyev, Kvasov, and Žilinskas (2014). The Gb-DISIMPL

(Globally-biased DISIMPL) was compared in Paulavičius et al. (2014) to the DIRECT

and DIRECTl methods in extensive numerical experiments on 800 multidimensional mul-

tiextremal test functions.

In a recent adaption of DISIMPL for linearly constrained optimisation problems, Lc-

DISIMPL (Paulavičius & Žilinskas, 2016) showed extremely competitive results compared

to the PSwarm (Vaz and Vicente, 2009) and DIRECT-L1 algorithms (Finkel, 2003). In

particular the Lc-DISIMPL-v algorithm was shown to solve the problems in a fewer

number of function evaluations on average and was the only algorithm to converge on

all of the test problems. In this dissertation both the SHGO and TGO algorithms were

tested on the same problem set and the results are compared to the data from Paulavičius

& Žilinskas (2016) which also contains results on the PSwarm (Vaz & Vicente, 2009) and

DIRECT-L1 algorithms (Finkel, 2003).

The DISIMPL algorithm is the most similar to SHGO in the sense that both make use

of a simplicial complex. DISIMPL uses a simplicial complex in a spatial partitioning of

the initial search space. Since the geometric structure of the two algorithms are related,

it is reasonable to expect some theoretical relation of its properties. In particular the

graph structure in the DISIMPL-v algorithm (Paulavičius & Žilinskas, 2016) can be used

to build the directed simplicial complex used by SHGO. In Chapter 5 we also show how

some of the same principles developed for SHGO can also be applied in the DISIMPL-v

algorithm since the same information is readily available to the algorithm.
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CHAPTER 1. INTRODUCTION 5

1.4 Structure

The TGO method is briefly reviewed in Chapter 2 closely following the formalism devel-

oped by Henderson et al. (2015). In Chapter 3 we provide numerical examples of TGO

which is then used as an informal experimental motivation for extending the algorithm.

These two chapters are important for continuity and understanding of the improved fea-

tures of SHGO, in particular Definition 9 which will be used as a performance criterion.

In Chapter 4 we present the most immediately apparent extension of TGO and illustrate

the shortcomings of that approach. The new SHGO method is then formally presented

in Chapter 5. In Chapter 6 we provide experimental results of linearly constrained prob-

lems comparing the SHGO, TGO, Lc-DISIMPL (Paulavičius & Žilinskas, 2016), PSwarm

(Vaz & Vicente, 2009) and DIRECT-L1 (Finkel, 2003) algorithms. Furthermore SHGO is

compared with the TGO, basinhopping (BH) and differential evolution (DE) global opti-

misation algorithms over a large selection of black-box problems from the SciPy (Jones,

Oliphant, Peterson, et al., 2001–) global optimisation benchmarking test suite. We con-

clude with various recommendations for possible further improvements of SHGO.

A very quick introduction to SHGO, along with installation and usage instructions

can be found on the public website for the project: https://stefan-endres.github.io/shgo/
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CHAPTER 2

Topographical Global Optimisation

(TGO)

The Topographical Global Optimisation (TGO) was originally conceived by Törn (1990)

and Henderson et al. (Henderson et al., 2015; Henderson, de Sá Rêgo, and Imbiriba,

2017) introduced new formalisms and empirical methods to determine hyperparameters

described in this section. Henderson et al. (2015) also presents the algorithm in an

introductory fashion. It is in essence an iterative clustering algorithm that maps the

hypersurface of the objective function into a topography matrix (called a t-matrix) and

then finds a certain number of starting points referred to as local minimisers. A local

search using the local minimisers as starting points is then used to find each minimum

from which the global minimum is finally calculated. Henderson et al. (2015) used the

feasible direction interior-point method proposed by Herskovits (1998) in this step. The

feasible direction interior-point method allows for minimisation of problems with linear

and/or nonlinear equality constraints; an extension by Henderson et al. (2015) of the

original applications of Törn (1990). The TGO method consists of three steps:

1. Uniform random sampling generation of N points in the search space.

2. Construction of the topograph, which is a directed graph with the sampled points

as vertices on a k-nearest neighbours basis with the direction of the arc directed

towards a point with a larger function value.

3. Local minimisation of topograph minimisers.

2.1 Step 1: Random Sampling Point generation

In order to generate the uniform sampling points within Ω the deterministic Sobol se-

quence is used in this dissertation (Henderson et al., 2015; Sobol, 1967). Other possible

low discrepancy sequences such as the Halton and Van der Corput sequences (Kuipers and

6
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CHAPTER 2. TOPOGRAPHICAL GLOBAL OPTIMISATION (TGO) 7

Niederreiter, 1974) can also be used in this step. An efficient Gray code implementation

was proposed by Antonov and Saleev (1979) wherein a single XOR operation for each

dimension can be used to find the next sampling point in the sequence xn,i = xn−1,i⊕vk,i.
An adaptation of this method is available in the open source Python library UQToolbox

(Bigoni, 2016). The Sobol sequenced points are generated within the n dimensional hy-

percube [0, 1]n ∈ Rn, providing a uniform distribution on the hypersurface within this

space. In the current implementation this set of points is stretched across the lower and

upper bounds to form the hyperrectangle [l,u]n = [l1, u1]× [l2, u2]×· · ·× [ln, un] ⊆ Rn.

The subset of feasible points contained in Ω is found by discarding any points lying

outside the constraints g(x) > 0.

2.2 Step 2: Construction of the topograph

The topograph is constructed from the generated sampling points within Ω. From the

topograph several global minimisers in f are found using the definitions developed in this

chapter which are then used as starting points for local minimisation routines. First N

points are selected from the uniformly generated sequence of points within the feasible

domain of Ω ⊂ Rn. Points generated by the sequence that lie outside the constraints

are excluded. The points are denoted by pi, i = 1, 2, 3 . . . N . Next for each point pi

a reference list is constructed by ordering the other N − 1 points from their nearest to

farthest Euclidean distances. These ordered lists make up the rows of the topography

matrix (or topograph). Furthermore, for some point pj ∈ {1, 2, 3 . . . (N − 1)} in the row

with the first entry pi, a sign is assigned as follows:

sign(pj) =

f(pj) ≥ f(pi) → +

f(pj) < f(pi) → −

In order to demonstrate this construction we will define this ordered list in such a way

that the increasing indices represent an ordered list of the nearest points to p1, that is

‖pi − pi+1‖ ≤ ‖pi+1 − pi+2‖ ∀i . Suppose for example that f(p2) ≥ f(p1), f(p3) < f(p1)

and f(pN) ≥ f(p1), the resulting topograph with the first row known is:

t-matrix =


p1 +p2 −p3 . . . +pN
...

...
...

. . .
...

pN pj . . . pj pj

 (2.1)

Note that the remaining rows (represented by unknown points and signs pj) are con-

structed similarly to the first row for every pi row. The topography matrix can be

interpreted as a directed graph, where the signs represent the directed arcs on the graph.

It should also be noted that if g contains non-linear constraints then the graphs produced
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CHAPTER 2. TOPOGRAPHICAL GLOBAL OPTIMISATION (TGO) 8

by the topograph may be connected across disconnected and/or non-convex subspaces of

Ω. Finally, it should further be noted that these signs represent direction of the graph

structure only, they are not the usual operation of a scalar acting on a vector. Example

1 in Chapter 3 demonstrates the construction of the topograph numerically.

Given an integer 1 ≤ k ≤ (N − 1), the N × k submatrix obtained by considering only

the k-nearest neighbours is called the k-t-matrix. For example for k = 1:

1-t-matrix =


p1 +p2

...
...

pN pj

 (2.2)

for k = 2:

2-t-matrix =


p1 +p2 −p3

...
...

...

pN pj pj

 (2.3)

and so forth. The k-t-matrix is a representation of its k+-topograph where every row

forms a directed subgraph.

The following definitions adapted from Henderson et al. (2015) are used to find the

global minimisers of the objective function

Definition 4. Given an integer 1 ≤ k ≤ (N − 1), the ith row of the k-t-matrix is said to

be a positive row, if all its elements have a plus sign. That is iff f(pj) ≥ f(pi) ∀j.

Definition 5. Given an integer 1 ≤ k ≤ (N − 1), a sampling point pi has a positive

reference in the k-t-matrix, if there exists j 6= i such that (a) the jth row of the k-t-matrix

is a positive row and (b) the number +i is an element of this jth row.

Definition 6. Given an integer 1 ≤ k ≤ (N − 1), the sample point pi is called a local

minimiser of f in the k+-topograph if the ith row of the k-t-matrix is a positive row.

Definition 7. Given an integer 1 ≤ k ≤ (N−1), the sample point pi is a global minimiser

of f in the k+-topograph if pi is a local minimiser of f in the k+-topograph and, in

addition, pi has no positive references in the k-t-matrix.

The following propositions can be readily demonstrated to show the consistency of

the aforementioned definitions (Henderson et al., 2015).

Proposition 1. Given an integer 1 ≤ k ≤ (N − 1), the sample point pi is a global

minimiser of f in the k+-topograph if and only if the sample point pi is the only minimiser

of f in the k+-topograph which is global.

Proposition 2. Given an integer 1 ≤ k ≤ (N − 1), then the ith row of k-t-matrix is the

only positive row of this matrix if and only if the sample point pi is the only minimiser

of f in the k+-topograph which is global.
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CHAPTER 2. TOPOGRAPHICAL GLOBAL OPTIMISATION (TGO) 9

Corollary 1. Given an integer 1 ≤ k ≤ (N − 1), if the sample point pi is the only local

minimiser of f in the k+-topograph, then pi is a global minimiser of f in this graph.

In this publication we will use the paradigm that all local minimisers of f in the k+

-topograph will be used for the local search (Paradigm 2.2 in Henderson et al. (2015)).

As described in Törn & Viitanen (1992) the number of local minimisers of f in the k+-

topograph is greater than or equal to number of global minimisers in the topograph. We

will therefore employ the following definition

Definition 8. Given an integer 1 ≤ k ≤ (N − 1), the minimiser pool Mk is the set

containing all local minimisers pi in the in the k+-topograph. The total number of starting

points used in the local search step is equal to the cardinality of the minimiser pool |Mk|.

The entire point of using k-t-matrices is because a t-matrix will always have at most

one local (and thus global) minimiser. This is undesirable since this sampling point is not

necessarily the starting point closest to the true global minimum of the objective function.

Henderson et al. (2015) developed a semi-empirical formula producing an integer value

kc which is used as an estimate for the optimal value for the integer k.

2.3 Step 3: Local minimisation

Each of the minimisers from the kc-t-topograph is now used as a starting point in a lo-

cal minimisation routine. The resulting minima are used to find the global minimum.

Conceivably various local optimisation routines can be used to address a broad class of

optimisations problems. For problems with non-linear inequality constraints Henderson

et al. (2015) used the feasible direction interior-point method proposed by Herskovits

(1998) minimising the objective function f subject to the set of inequality constraint

functions g using the minimiser set as the initial starting points for the algorithm. An al-

gorithm used to solve the feasible direction interior-point method using the set of starting

points calculated in step 2 is presented in detail by Henderson et al. (2015).

In this publication we will mainly be using the sequential least squares quadratic

programming optimisation algorithm (SLSQP) contained in the SciPy library originally

developed by Kraft (Kraft, 1988, 1994). The Python implementation of the TGO algo-

rithm published under an open source licence uses this algorithm as implemented in the

SciPy library (Endres, 2016–b; Jones et al., 2001–).
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CHAPTER 3

Motivation and a one-dimensional

prelude

In this section we will demonstrate how the Euclidean distance criterion in the TGO

method disregards useful information about the (approximate) geometry of the objective

function and we show how known information can be used effectively both in global

optimisation and in mapping the local minima of objective functions as efficiently as

possible. We also show how two important hyperparameters used by TGO, namely

the number of sampling points N and the choice of k can be iteratively selected by

intelligently exploiting information known from the topograph. This draws parallels to

other works on iterative versions of TGO (I-TGO) (Törn and Viitanen, 1996) trying to

extract information from black-box objective functions. The informal, but intuitive ideas

developed here will later be extended more rigorously to higher dimensional surfaces.

Note that from Equation (1.5) Ω is always a compact space, this fact is important in

several proofs used in this Section.

Example 1 Consider the following objective function

min
x

f(x) =
sin(x)

x
, x ∈ Ω = [1, 20] (3.1)

In this instance of the bounded optimisation problem there are 3 local minima which we

will try to map in as few function evaluations as possible.

Following the TGO procedure we start by generating low-discrepancy sampling points.

The first N = 10 points in the 1-dimensional Sobol sequence is given by P = {p1 =

1.0, p2 = 10.5, p3 = 15.25, p4 = 5.75, p5 = 8.125, p6 = 17.625, p7 = 12.875, p8 = 3.375, p9 =

4.5625, p10 = 14.0625} ⊂ Ω. After mapping the objective function at the set of sampling

10
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CHAPTER 3. MOTIVATION AND A ONE-DIMENSIONAL PRELUDE 11

points

f :



p1 = 1.0

p2 = 10.5

p3 = 15.25

p4 = 5.75

p5 = 8.125

p6 = 17.625

p7 = 12.875

p8 = 3.375

p9 = 4.5625

p10 = 14.0625.



→



f1 = 0.84147

f2 = −0.08378

f3 = 0.02899

f4 = −0.08840

f5 = 0.11858

f6 = −0.05337

f7 = 0.02359

f8 = −0.06853

f9 = −0.21672

f10 = 0.07091



(3.2)

the corresponding topograph is constructed

p1 −p8 −p9 −p4 −p5 −p2 −p7 −p10 −p3 −p6
p2 +p5 +p7 +p10 +p3 −p4 −p9 +p6 +p8 +p1

p3 +p10 −p6 −p7 −p2 +p5 −p4 −p9 −p8 +p1

p4 −p9 +p5 +p8 +p1 +p2 +p7 +p10 +p3 +p6

p5 −p2 −p4 −p9 −p7 −p8 −p10 +p1 −p3 −p6
p6 +p3 +p10 +p7 −p2 +p5 −p4 −p9 −p8 +p1

p7 +p10 −p2 +p3 +p5 −p6 −p4 −p9 −p8 +p1

p8 −p9 +p1 −p4 +p5 −p2 +p7 +p10 +p3 +p6

p9 +p4 +p8 +p1 +p5 +p2 +p7 +p10 +p3 +p6

p10 −p3 −p7 −p2 −p6 +p5 −p4 −p9 −p8 +p1



(3.3)

The sampling points together with the objective function evaluations are plotted in

Figure 3.1. Using the empirical relation from Henderson et al. (2015) the optimal kc is

calculated at kc = 8. Using Definition 6 we find that the resulting 8-t-matrix has only

one minimiser; the global minimiser at p9 = 4.5625. For the local minimisation we use

the SLSQP method as implemented in the function scipy.optimize.minimize (Jones et al.,

2001–) to find the approximate global minimum at x = 4.4934.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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Figure 3.1: Test function give by Equation (3.1) with 10 Sobol sequenced sampling points

Observing Figure 3.1 it is immediately apparent that the set of 10 sampling points

alone provides adequate information to deduce that there are at least 3 local minima.

Observe that there are at least two other local minima since f(p2) < f(p7) < f(p5). So

at least one local minimum exists in the domain (p5, p7) ⊂ R since between p5 and p2 we

must have, by the mean value theorem (MVT), df
dx
< 0 for some domain x ∈ [p5, p2] ⊂ R.

Similarly for x ∈ [p2, p7] ⊂ R we have by MVT df
dx
> 0. Since f is a smooth, continuous

function for x ∈ (0,∞) there must exist at least one stationary point x ∈ (p5, p7) ⊂ R
where df

dx
= 0. Furthermore we observe f(p6) < f(p3) indicating another minimum in

the domain x ∈ (p3, 20] ⊂ R since the minimum must be either on the boundary or in

x ∈ (p3, 20] ⊂ R by the same argument as above.

The empirical relation by Henderson et al. (2015) was mainly developed for the pur-

pose of finding the global minimum. Therefore if only 10 sampling points are available,

then in order to find more local minima using the TGO method, it is required to force a

lower k value. Alternatively, since kc is a function of N , simply sampling more points is

sufficient to find all the local minima using Henderson’s formula for this test problem. For

example at N = 16 all 3 local minima are produced by TGO with Henderson’s formula.

Figure 3.2 shows the number of minimisers found at different k values for this example.
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CHAPTER 3. MOTIVATION AND A ONE-DIMENSIONAL PRELUDE 13
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k

1
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3
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5

|Mk|

Figure 3.2: Number of minimisers |Mk| found using the TGO method for different k values
at N = 10

The maximum minimiser set (other than using every sampling point as a starting point)

can be trivially extracted by setting k = 1 and calculating |M1|. However, in this Ex-

ample it leads to more starting points than optimal since at least two minimisers will be

in the same convex basin domain and therefore converge to same minimum in the local

minimisation step. This results in superfluous function evaluations without extracting

more useful information from the objective function.

This idea drives the motivation behind the following definition.

Definition 9. For a given set P of N sampling points, kopt is any integer 1 ≤ k ≤
(N − 1) that will produce the optimal minimiser set Mkopt containing the maximum set

of minimisers such that no two starting points extracted from Mkopt will lead to the same

minimum in the local optimisation step for some tolerance ε. In other words every element

contained in Mkopt should lie in a unique locally convex sub-domain.

Note that for a given N , Mkopt might not produce all the true local minima of an

objective function. What’s important is that, given the information known from the

sampling, the maximum number of local minima are found. In addition, no function

evaluations are wasted in the local minimisation step which lead to the same minimum.

In Example 1 for N = 10 the optimal k values are kopt = {2, 3} which will pro-

duce 3 minimisers |M2| = |M3| = 3. We will now show that these lower k val-

ues carry unexploited information on the best approximate geometry for the objective

function. For example in Figure 3.3 we plot the |Mk| values corresponding to the set

k = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} for every sampling point range N ∈ [2, 50].

From Figure 3.3 we notice the special property of k = 3 for one dimensional objective
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Figure 3.3: Number of minimisers |Mk| found using the TGO method for the given k values
at various sampling points N

functions sampled with the Sobol sequence.

Firstly, for a lower number of sampling pointsN it provides a higher number of starting

minimisers than k > 3. Note that by inspection of Definition 6 it can be determined that

any k > 3 value will always produce an equal or lower number of minimisers than k = 3.

When adding columns to a positive row there are only two possibilities: the next sampling

point in the row can either have a positive or a negative sign. All other elements in the

row have a positive sign by definition (see Definition 6). If the next sampling point in

the row has a positive sign then the row will just remain a positive row and the number

of minimisers remain the same. If the point is a negative reference point then the row

will no longer be a positive row and thus the point is no longer a minimiser, lowering the

total.

Secondly it can be observed that k = 3 never calculates a number of starting min-

imisers higher than optimal unlike k < 3. Therefore by using k = 3 in Example 1 TGO

will always find as many minimisers in as few sampling1 function evaluations as possible

and furthermore all local minima will be found when N ≥ 10. It should be noted that

the total number of function evaluations depends on the particular local minimisation

algorithm used. However, it is apparent that each minimiser starting point is in a unique

locally convex domain. It is tempting for an optimisation practitioner to use the size of

1not necessarily total function evaluations since starting points closer to the local minima may provide
better performance for a given local minimisation routines
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CHAPTER 3. MOTIVATION AND A ONE-DIMENSIONAL PRELUDE 15

the set of minimisers |M3| as a stopping criterion for iterative sampling N of one dimen-

sional objective functions. The practical usefulness of this idea can be demonstrated with

the following example:

Example 2 The following instance of the optimisation problem has 13 local minima in

the given domain

min
x

f(x) = −x sin(x), x ∈ Ω = [1, 80] (3.4)

From Figure 3.4 we can deduce that the minimum number of sampling points required

for k = 3 to find all local minima using the Sobol sequence is N = 40, this sampling

is shown in Figure 3.5. If N < 40 then there aren’t enough sampling points to deduce

that there are at least 13 locally convex domains from using the same arguments as in

Example 1. Note for example that if we used a sequence that skipped p1 then N = 39

would be adequate since l = 1 < p32 < p33. Using our Python implementation of TGO

(Endres, 2016–b) with N = 40 all 13 local minima of the objective function were found

in a total of 285 function evaluations.

An example of a stopping criterion would be to stop sampling if |M3| is unchanged af-

ter, say, 10 sampling point evaluations. The rate at which the number of elements in |M3|
grows with increasing N also provides a heuristic for characterising the multimodality

and the geometry of the objective function. Objective functions that have a large number

of local minima in a small domain (and relatively fewer minima in other larger domains)

will have a much smaller growth in |M3| for a given low-discrepancy sampling. This idea

of continuously classifying and extracting approximate function characteristic informa-

tion from the sampling points will be formalised and extended to higher dimensions in

Chapter 5.

There is a simple reason why the 3-t-matrix has this quality in the first dimension

for the optimisation problem given in Equation (3.1). However, it is not guaranteed that

this property holds for any sampling point distribution. In fact it holds true only under

the following conditions:

1. Consider all points in the ordered sampling set from the smallest to greatest x value

P = {pi | p0 < p1 < p2 . . . < pN − 1, pi ∈ (xl, xu)}, excluding the supremum

and infimum.

2. For any given point pi the Euclidean distance between pi and 2 of its nearest sam-

pling points pi−1 < pi < pi+1 should be less than the relative difference between pi

and a fourth point in the sampling sequence |pi − pj| where j 6= i, i− 1, i+ 1.

In fact it is easy to prove both that for a locally, strictly convex domain of f the

3−topograph construction can produce a larger minimiser poolM3 than optimal. It can

also be shown that a construction must exist where the optimal number of minimisers will
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Figure 3.4: Number of minimisers |Mk| found using the TGO method for the given k values
at various sampling points N
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Figure 3.5: Plot of the objective function in Example 2 for N = 40 sampling points
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CHAPTER 3. MOTIVATION AND A ONE-DIMENSIONAL PRELUDE 17

always be extracted regardless of the sampling distribution. Furthermore it can be shown

that at most 3 sampling points within a locally convex domain x ∈ [xl, xu] is required to

produce enough information so that only one minimiser in the domain is produced.

Theorem 1. There exists a 1-dimensional sampling sequence such that k = 3 will produce

a minimiser pool larger than optimal as defined by Definition 9.

Proof. Consider a subdomain x ∈ [xl, xu] ⊂ R for which f is strictly convex. We define

the set of N sampling points P ordered in such a way that

P = {pi | p0 < p1 < p2 < . . . < pN−1, pi ∈ (xl, xu)}

Let F = {f0, f1, f2, . . . , fN−1} be set of one-to-one function values corresponding to

the points mapped by f : P → F .

Suppose we have f1 < f0 and f1 < f2 < f3, . . . fN−1. By construction we have

|p1 − p2| < |p1 − p3| < |p1 − p4| < |p1 − p5| then by the Definitions 4, 5 and 6 p1 is a

minimiser of the 3 − t−topograph. Suppose we have a sampling distribution such that

|p2−p3| < |p1−p2|, |p2−p4| < |p1−p2| and |p2−p5| < |p1−p2| then by the Definitions 4, 5

and 6 p3 is also a minimiser of the 3− t−topograph. Therefore more than two minimisers

are produced in the same locally convex sub-domain of [xl, xu]. We have shown thatM3

can produce a minimiser pool larger than optimal which concludes the proof.

Lemma 1. A construction exists that will always produce a minimiser pool larger than

optimal as defined by Definition 9 for any given 1-dimensional sampling sequence.

Now suppose that instead of using only the Euclidean distance metric we also invoke

knowledge of the nearest point in all cartesian directions. We use the criterion that a

minimiser point pi is a minimiser iff with the ordering constructed in P and F we have

fi < fi−1 and fi < fi+1. With this definition if the point pi is a minimiser then no other

point meets the criterion since by construction of the sampling in the locally convex

domain f0 > f1 > · · · > fi−1 > fi and fi+1 < fi+2 < fi+3 < · · · < fN−1. This proves

Lemma 1.

Finally note that only information from the 3 points in the locally convex sub-domain

of [xl, xu] and their corresponding function values fi−1, fi and fi+1 are needed to produce

a minimiser using this criterion.

There is an important consequence here for low discrepancy sequences in higher dimen-

sions and for less well behaved objective functions. In both these cases. the topographs

connected with the Euclidean distance metrics will discard available information about

the local geometry of the objective function surface. This produces larger than optimal

minimiser pools leading to very high numbers of function evaluations needed to solve the

problem.
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In the following section we will develop a more efficient algorithm that will make use

of this information. SHGO will always produce equivalent results to this algorithm in the

one dimensional case.
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CHAPTER 4

Axially directed topograph

Based on the observations from Chapter 3 we develop the ATGO (axially directed topo-

graphical global optimisation) algorithm that, for a given sampling set, always uses the

optimal number of starting minimisers as defined for one dimensional objective functions

without requiring a-priori specification of the k parameter. Here a new graph structure is

proposed and attempts are made to directly extend the idea to higher dimensions by con-

necting every vertex to the nearest vertex in every cartesian axis direction. In Theorem 2

we show that the one dimensional properties of this algorithm does not extend to higher

dimensions which finally leads us to the built up complexes in Chapter 5. The main

conclusion of this section is that simpler graph structures cannot be used to find locally

convex sub-domains of a function in the same way that was accomplished in Chapter 3.

The algorithm proceeds in the same way as TGO described in Chapter 2 except for

step 2 where a new structure described in Section 4.1 replaces the topograph.

4.1 Axially directed topograph

Let F be the set of scalar outputs mapped by the objective function f : P → F for a given

sampling set P ⊆ Ω ⊆ Rn. The scalar elements fi ∈ F have one-to-one correspondence

with the vector elements pi ∈ P where the integer i ∈ {1, 2, 3, . . . , N} indicates the

sampling point index. The vector pi in turn has components xij where the integer j ∈
{1, 2, 3, . . . , n} indicates the dimension of the scalar value ∀i(xi1, xi2, xi3, . . . , xin) ∈ pi.

We wish to construct a graph that is ordered along the coordinate axes, this is done

by formally defining the following related partially ordered sets.

Definition 10. Given a finite structured set of N feasible ordered sampling points P =

(p1,p2, . . . ,pN) with its corresponding objective function outputs F = (f 1, f 2, . . . , fN),

the index set of P is given as the ordered set I = (i = {1, 2, 3, . . . , N},≤)

Note that the initial ordering of the index set is arbitrary. What’s important is that

an ordered index set is defined. This ordering will allow us to keep track of any vertex in

19
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CHAPTER 4. AXIALLY DIRECTED TOPOGRAPH 20

the graph to its corresponding sampling point in P so that the corresponding objective

function only needs to be evaluated once. Herein the order is taken as the order that is

generated by the Sobol sequence.

Definition 11. Given a set of feasible sampling points P ⊆ Ω ⊆ Rn define Xj for every

dimension j ∈ {1, 2, 3, . . . , n} as the partially ordered set Xj = {pi | ∀i(xij < xi+1
j )}.

The definition is demonstrated with the following numerical example:

Example 3 Given set of the first 5 points in the 2-dimensional Sobol sequence bounded

by the 2-cube:

P = ((0, 0), (0.5, 0.5), (0.75, 0.25), (0.25, 0.75), (0.375, 0.375) ) ⊆ [0, 1]× [0, 1] ⊆ R2

let f(x) = x21 + x22 so that

F = (0, 0.5, 0.625, 0.625, 0.28125)

then

X1 = ((0, 0), (0.25, 0.75), (0.375, 0.375), (0.5, 0.5), (0.75, 0.25))

and

X2 = ((0, 0), (0.75, 0.25), (0.375, 0.375), (0.5, 0.5), (0.25, 0.75))

The corresponding index sets are I1 = (1, 4, 5, 2, 3) and I2 = (1, 3, 5, 2, 4).

Definition 12. For every dimension j, Fj is the partially ordered set such that the

position of the elements Xj correspond to the original index sampling of P, Fj =

{f i,kj | ∀i(xij < xi+1
j ), f i,kj = fk ∈ F , k ⊆ I}

That is the first superscript i of the elements f i,k indicate the ordering in Fj,
while the second superscript k indicates the corresponding scalar value of f i,k in F .

Ordering the example we have F1 = (0, 0.625, 0.28125, 0.5, 0.625) and F2 =

(0, 0.625, 0.28125, 0.5, 0.625).

Definition 13. For every dimension j, define the partially ordered sets of cardinality N

such that F+
j = {f i,kj − f i−1,kj | ∀i(xij < xi+1

j ), f i,kj = fk ∈ F , i = {1, 2, . . . , N, k ⊂ I}}
and F−j = {f i,kj − f i+1,k

j | ∀i(xij < xi+1
j ), f i,kj = fk ∈ F , i = {0, 1, . . . , N − 1}, k ⊂ I}

These sets are essentially objective function differences between the sampling points
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CHAPTER 4. AXIALLY DIRECTED TOPOGRAPH 21

along each dimensional Cartesesian axis. Continuing from the numerical example we have

F+
1 = ( 0.625,−0.34375, 0.21875, 0.125)

F+
2 = (−0.625, 0.34375,−0.21875,−0.125)

F−1 = ( 0.625,−0.34375, 0.21875, 0.125)

F−2 = (−0.625, 0.34375,−0.21875,−0.125)

We denote the elements as f+i,k
j ∈ F+

j and f−i,kj ∈ F−j for every dimension j ∈
{1, 2, 3, . . . , n}, cartesian ordering i ⊆ I and corresponding sampling point k ∈ I. The

usefulness of these abstract constructions is apparent in the following definition.

Definition 14. For a given sampling set P. The minimiser pool M is defined as

M =Mc ∪Mlb ∪Mub

where

Mc =
{

pi | ∀j
(

(f+i
j > 0) ∧ (f

−(i+1)
j > 0)

)
, i = {1, 2, 3, . . . , N − 1}

}
Mlb =

{
pi | ∀j

(
f−ij < 0

)
, i = {0}

}
Mub =

{
pi | ∀j

(
f+i
j < 0

)
, i = {N}

}
That is, we simply check the finite difference between sampling points in every carte-

sian direction. In addition we check if the sampling points on the boundaries are min-

imisers.

Theorem 2. The minimiser pool M from Definition 14 always produces a set that is

either smaller than or equal to the optimum minimiser pool as defined by Definition 9 iff

j = 1.

Proof. The proof for j = 1 follows the same argument from Chapter 3. By Definition

10, 11 and 12 we have the ordering constructed as P and F1. If a given point pi is

a minimiser with f+i
1 > 0 and f−i1 > 0, then we have by Definition 13 f i < f i−1 and

f i < f i+1, conversely if a given point pi is not a minimiser then either f+i
1 < 0 or f−i1 > 0

so that regardless of the sampling method used and the Euclidean distance between points

a minimiser will never be generated for any point that has ((f i > f i−1) ∧ (f i > f i+1)) ∨
((f i < f i−1) ∧ (f i < f i+1)).

If j > 1 we have no such guarantee for a higher dimensional locally convex domain.

As a counter example consider the set of points

P = ((0, 0), (0.25, 0.25), (0.75, 0.125), (0.125, 0.75))

on the same function as above, the minimiser set produced isM = {(0, 0), (0.25, 0.25)}
which is clearly larger than optimal and will produce the same local minimum.
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This unsatisfactory result for higher dimensions could still potentially show good

performance for more regular spaced sampling such as grids, however, as we will see in

the next section the SHGO algorithm can guarantee that the optimal minimiser set will

be produced for any dimension.

4.2 Implementation

Algorithm 1 provides a high-level overview of the ATGO algorithm. A Python imple-

mentation of this algorithm can be found in Endres (2016–a).

Algorithm 1 ATGO algorithm

1: procedure Initialisation
2: Input an objective function f , constraint functions g and variable bounds and

[l,u]n.
3: Input N initial sampling points.
4: Define a sampling sequence that generates a set X of sampling points in the unit

hypercube space [0,1]n

5: end procedure
6: procedure Initial sampling
7: P = ∅
8: while |P| < N do
9: Generate N − |P| sequential sampling points X ⊂ Rn

10: Stretch X over the lower and upper bounds [l,u]n

11: P = {Xi | g(Xi) ≥ 0,∀Xi ∈ X} ∪ P . (Find P in the feasible subset Ω
by discarding any points mapped outside the linear constraints g and adding to the
current set of P .)

12: Set X = ∅
13: end while
14: Find F from the objective function f : P → F
15: end procedure
16: procedure Construct M
17: Calculate M from the sets P and F using Definitions 11 through 14.
18: end procedure
19: procedure Local minimisation
20: Calculate the approximate local minima of f using a local minimisation routine

with the elements of M as starting points. . These local minimisations can be
performed in parallel.

21: end procedure
22: procedure Process return objects
23: Order the final outputs of the minima of f found in the local minimisation step

to find the approximate global minimum.
24: end procedure
25:

26: return the approximate global minimum and a list of all the minima found in the
local minimisation step.
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CHAPTER 5

Simplicial Homology Global

Optimisation

5.1 Overview

The SHGO method strongly relies on constructing a simplicial complex using the sam-

pled points of an objective function f as vertices. From this construction of the complex

H we use the resulting directed subgraph which contains the set of all 1−chains from

the elements of H1 ∈ H to find minimiser pools using definitions similar to the meth-

ods demonstrated in the previous sections. This is accomplished by the application of

Sperner’s lemma (Sperner, 1928) allowing us to approximate the domains of stationary

points for any objective function in the feasible search space Ω.

It is proved that, if provided with an adequate sampling set, the construction of H
will produce the same homology groups. This result is used to show that for the given

sampling set of vertices H0 ∈ H we always extract the optimal minimiser pool similar to

the one-dimensional case described in Chapter 3, but extended to higher dimensions.

The algorithm itself consists of four steps which will be described in detail:

1. Uniform sampling point generation of N vertices in the search space within the

bounded and constrained subspace of Ω from which the 0−chains of H0 are con-

structed.

2. Construction of the directed simplicial complex H by triangulation of the vertices.

3. Construction of the minimiser pool M ⊂ H0 by repeated application of Sperner’s

lemma.

4. Local minimisation using the starting points defined in M.

We will start by formally defining the construction of H from a given set of feasible

sampling points P and proving its properties.

23
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5.2 Directed simplicial complex approximation of

the objective function

Consider again the general objective function mapping in the continuous domain f : Rn →
R. The purpose of this section is to describe a discrete mapping h : P → H to provide

a simplicial approximation for the surface of f . To guide the reader the methods will be

demonstrated on the simple 2-dimensional optimisation problem defined in Example 4.

The use of a 2-dimensional surface allows for a demonstration of the techniques while the

abstractions defined are readily extended to higher dimensions.

We start by formally defining the set of vertices from which 0-chains of the simplicial

complex are built and the of edges from which the 1-chains of H are built.

Definition 15. Let X be the set of sampling points generated by a sampling sequence in

the bounded hyperrectangle [l,u]n. The set P = {x ∈ X | g(x) ≥ 0} is a set of points

within the feasible set Ω .

Definition 16. For an objective function f , F is the set of scalar outputs mapped by the

objective function f : P → F for a given sampling set P ⊆ Ω ⊆ Rn.

Definition 17. Let H be a directed simplicial complex. Then H0 := P is the set of all

vertices of H .

Definition 18. For a given set of vertices H0, the simplicial complex H is constructed

by a triangulation connecting every vertex in H0. The triangulation supplies a set of

undirected edges E.

Definition 19. The set H1 is constructed by directing every edge in E. A vertex vi ∈ H0

is the connected to another vertex vj by an edge contained in E. The edge is directed as

vivj from vi to vj iff f(vi) < f(vj) so that ∂ (vivj) = vj − vi. Similarly an edge is directed

as vjvi from vj to vi iff f(vi) > f(vj) so that ∂ (vjvi) = vi − vj.

For practical computational reasons we must also consider the case where f(vi) =

f(vj). If neither vi or vj is already a minimiser we will make use of rule that the incidence

direction of the connecting edge is always directed towards the vertex that was generated

earliest by the sampling point sequence. If vi is not connected to another vertex vk then

we leave the notation vivk undefined and let ∂ (vivk) = 0. We let the higher dimensional

simplices of Hk, k = 2, 3, . . . n+ 1 be directed in any arbitrary direction which completes

the construction of the complex h : P → H. We can now use H to find the minimiser

pool for the local minimisation starting points used by the algorithm:

Definition 20. A vertex vi is a minimiser iff every edge connected to vi is directed away

from vi, that is ∂ (vivj) = (vj 6=i− vi)∨ 0 ∀vj 6=i ∈ H0. The minimiser pool M is the set of

all minimisers.
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We will also make extensive use of star notation (Hatcher, 2002; Henle, 1979):

Definition 21. The star of a vertex vi, written st (vi), is the set of points Q such that

every simplex containing Q contains vi.

The k−chain C(Hk), k = n + 1 of simplices in st (vi) forms a boundary cycle

∂(C(Hn+1)) with ∂ (∂(C(Hn+1))) = ∅. The faces of ∂(Hn+1) are the bounds of the

domain defined by st (vi).

A visual demonstration of these constructions and notations is provided in the follow-

ing numerical example:

Example 4 The Ursem01 function for two dimensions is defined as follows (Gavana,

2016)

min f(x) = − sin (2x1 − 0.5π)− 3 cos (x2)− 0.5x1, x ∈ Ω = [0, 9]× [−2.5, 2.5]

Figure 5.1 provides a 3 dimensional plot of this function. The function has three local

minima within the domain x ∈ [0, 9]× [−2.5, 2.5].

We use a set P of N = 15 sampling points from the 2-dimensional Sobol sequence.

First map out the objective function values:

f :



v0 = (0.0,−2.5)

v1 = (4.6, 0.0)

v2 = (6.9,−1.25)

v3 = (2.3, 1.25)

v4 = (3.45,−0.625)

v5 = (8.05, 1.875)

v6 = (5.75,−1.875)

v7 = (1.15, 0.625)

v8 = (1.725,−0.9375)

v9 = (6.325, 1.5625)

v10 = (8.625,−2.1875)

v11 = (4.025, 0.3125)

v12 = (2.875,−1.5625)

v13 = (7.475, 0.9375)

v14 = (5.175,−0.3125)



→



f0 = 3.403

f1 = −6.275

f2 = −4.0651

f3 = −2.208

f4 = −3.3429

f5 = −4.051

f6 = −1.493

f7 = −3.674

f8 = −3.591

f9 = −2.191

f10 = −2.606

f11 = −5.062

f12 = −0.601

f13 = −6.239

f14 = −6.044



(5.1)

From Definition 17 we find H0 from P . Next we use Delaunay triangulation to find a

set of connected edges according to Definition 18. Any triangulation scheme resulting in

a simplicial complex can be used. Next the edges are directed from the calculated values

of F using Definition 19. Finally from Definition 20 we find the minimiser set M =
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Figure 5.1: A 3-dimensional surface plot of the optimisation test function given in Example
4 f(x) = − sin (2x1 − 0.5π)− 3 cos (x2) − 0.5x1 for the domain x ∈ Ω = [0, 9] ×
[−2.5, 2.5]

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. SIMPLICIAL HOMOLOGY GLOBAL OPTIMISATION 27

0 2 4 6 8
x1

2

1

0

1

2

x2

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

-6
.0

0
0

-6.000

-4.000

-4.000

-2.000

0.000

0.000

Figure 5.2: A directed complex H with N = 15 forming a simplicial approximation for an
objective function. There are three minimiser vertices v1, v7 and v13 shown by the
big red dots. The area shaded in grey represents the domain defined by st (v1)

{v1, v7, v13}. The resulting structure is shown in Figure 5.2. Also shown in Figure 5.2

is the domain of st (v1) for a visual description of Definition 21. Next we increase the

sampling size to N = 150 points and repeat the procedure. The resulting complex is

shown in Figure 5.3. Notice that while the minimiser vertices have changed (now closer

to the true continuous local minima), the cardinality of the minimiser pool |M| remains

unchanged. That is, given an adequate number sampling points |M| will cease to grow

with increasing N , providing a heuristic for the number of sampling points needed to

approximately map all minima of an objective function. This useful property of the

SHGO algorithm is proven formally in Section 5.4.
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Figure 5.3: A directed complexH forming a simplicial approximation for an objective function
with 150 vertices. There are three minimiser vertices given by the big red dots
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Figure 5.4: A Sperner labelling of a 2-simplex, every vertex of the n-simplex is labelled with
a set of labels 1, 2, ..., n+ 1. Any vertices on the boundary (n− 1)-simplices of the
n-simplex may only contain the labels of its boundary vertices

5.3 Guarantee of stationary points in sub-domains

near minimiser points

This section is devoted to proving the following theorem:

Theorem 3. Given a minimiser vi ∈M ⊆ H0 on the surface of a continuous, Lipschitz

smooth objective function f with a compact bounded domain in Rn and range R, there

exists at least one stationary point of f within the domain defined by st (vi).

Proof. Our strategy relies on finding a simplex with a Sperner labelling where each label

represents a different n+ 1 label in every vector direction of the gradient vector field ∇f
of f where of the n + 1 Cartesian directions we require only a vector pointing towards

a section defined by n + 1 hyperplane cuts, the remainder of the proof then proceeds

as usual for Brouwer’s fixed point theorem (Brouwer, 1911) found in for example Henle

(1979: p. 40) utilising Sperner’s lemma. Figure 5.4 provides a visual example of a Sperner

labelling of a 2-simplex for the reader’s benefit. Figure 5.5 shows a geometrical example

of how Brouwer applied this lemma on vector fields in his fixed point theorem.

Theorem 4. (Sperner’s lemma (Sperner, 1928)) Every Sperner labelling of a triangula-

tion of a n-dimensional simplex contains a cell labelled with a complete set of labels: 1,2,

. . . , n+1.
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Figure 5.5: A Sperner labelling applied by assigning directions in a vector field

Start with the observation that for any minimiser vi ∈M ⊆ H0 we have by construc-

tion that for any vertex vj with incidence on a connecting edge vivj that f(vi) < f(vj),

so by the MVT there is at least one point on vivj where ∇f points towards a Cartesian

direction in a section that can receive a unique Sperner label. If we have n + 1 vertices

with incidence on an edge vivj ⊆ H1 in every required Cartesian direction then we have

a simplex within st (vi) with a Sperner labelling.

In the case where we do not have n + 1 vertices in every required section then by

construction there is no vertex between vi and the boundary of f defined by Ω in the

required section. In the case where the constraint is not active and there exists at least

one point vk boundary where ∇f does not point towards the boundary and by the MVT

vk can receive a unique Sperner label from which we can construct a simplex within st (vi)

with Sperner labelling.

Following the combinatorial version of Brouwer’s fixed point theorem (Henle, 1979)

since ∇f is continuous and the domain st (vi) is compact we can produce a sequence

of complete triangulations with arbitrarily small size in which the size of the simplices

decreases toward zero. This sequence produces a sequence of vertices with gradients

∇f(V ) pointing in every n+ 1 direction. By continuity there is a vector ∇f(X) near the

sequences, since the zero vector is the only vector pointing in all n+ 1 directions we have

a point X bounded by the domain defined by st (vi) where ∇f(X) = 0̄. In the case where

the constraint is active a local minimum lies on the constraint which is in the domain

defined st (vi). This concludes the proof.
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Figure 5.6 provides a visual demonstration of the proof using the complex from Ex-

ample 4. Here we have divided the plane so that the 3 required directions are [0, π
2
),

[π
2
, π) and [π, 2π). Note that this division is arbitrary and any n+ 1 = 3 subdivisions can

be chosen as long as all possible n + 1 = 3 directions can form a simplex in the space

are covered. The three possible simplices are contained within the star domains of each

minimiser st (v1), st (v7) and st (v13).

First consider the minimiser v13. There are three possible edges in [π
2
, π) on which a

point exists that can be used as a vertex to receive a Sperner labelling for that direction

namely v13v14, v13v2 and v13v10. The only possible edges in the [0, π
2
), [π

2
, π) directions are

v13v5 and v13v9 respectively. The simplex v5v9v10 drawn in Figure 5.6 is not necessarily

the simplex with a Sperner labelling. The three vertices of the Sperner simplex which are

proven to exist through the MVT exists on each of the edges v13v14, v13v2 and v13v10 in a

subdomain of this simplex v5v9v10. For example the simplex surrounding the minimiser

v1 is a possible Sperner simplex with vertices on the edges in every required direction.

Note that if the edge v13v14 was chosen instead of v13v10 then the local minimum

of the function would be outside the domain of the simplex with the Sperner labelling.

This is an important observation because it demonstrates that Theorem 3 cannot be

used to further refine the location of the local minimum from the domain st (v13) using

mechanisms of the proof, it only states that at least one local minimum exists within

st (v13).

The boundaries of st (v13) can be found using the 3−chain C13(H3) of simplices in

st (v13), recall that the directions of simplices higher than dimension 2 are undefined and

so the directions can be arbitrarily chosen

C13(H3) = v13v10v5 + v13v5v9 + v13v9v14 + v13v14v2 + v13v2v10

C13(H3) clearly forms a cycle, applying the boundary operator we find the faces

defining the bounds of the domain of st (vi) which in this case is the chain of edges with

defined direction

∂(C13(H3)) = −v10v5 + v5v9 − v9v14 + v14v2 + v2v10

thus ∂ (∂(C(H3))) = ∅.
v7 = (1.15, 0.625) is an example of a minimiser that does not have all three required

directions for a Sperner labelling, the light red shaded area represents the area wherein a

local minimum can exist. For example on the lines x1 = 0 for x2 ∈ [0.625, 2.5] or x2 = 2.5

for x1 ∈ [0, 1.15] there will either exist a point p where the gradient ∇f(p) points in any

direction pointing towards [3
2
π, 0) in which case and edge v13p exists that points in the

[π
2
, π) direction and we have a simplex with a Sperner labelling. For example the dotted

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. SIMPLICIAL HOMOLOGY GLOBAL OPTIMISATION 32

0 2 4 6 8

x1

−2

−1

0

1

2

x2

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

-7.500

-6.000

-6.000

-4.500

-4.500

-3
.0

00

-1.500

-1.500

0.000

0.000

0.000
0.000

1.500

1.500

1.
50

0

1.500

Figure 5.6: Visual demonstration of the proof by finding simplices with Sperner labellings.
The three circled crosses are the (approximate) minimima of the objective function
within the given bounds. The three possible Sperner simplices are contained
within the star domains of each minimiser st (v1), st (v7) and st (v13). v7 is an
example of simplices without complete Sperner labelings, the red shaded area
around v7 is the bounded domain wherein at least one local minimum exist
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line on Figure 5.6 with the Sperner simplex represented by blue shaded around v7. If

such a point does not exists then all points on those lines points in the [0, 3
2
π) direction

and so one or more local minimum lies somewhere on the boundary which is within the

defined area.

It should be noted that in software implementations of shgo the boundaries of the

star domain of a minimiser ∂ (st(v1)) can be passed to any local optimisation routine that

handles constraints constraints. Therefore, if the local minimisation routine is guaranteed

to not produce an output outside the supplied bounds, then any iteration of shgo will

not produce a solution outside the designated star domain for every minimiser.

There have been several developments in the extension of this lemma which could

prove useful in applications extending the SHGO algorithm. One of the most interest-

ing is by De Loera, Peterson, and Edward Su (2002) where they proved the Atanassov

conjecture (Atanassov, 1996) that for any polytope with N vertices there are N − n

simplices that receive a complete set of Sperner labels. Meunier (2006) further extended

this theorem and more recently Musin (2015) extended the theorems to a large class of

manifolds with or without boundary. These theorems could prove useful for extending

the algorithm to make use of this information. More explicitly, SHGO currently uses

knowledge of the objective function evaluations, but only in a Boolean sense (in the form

of directed edges). The theorems by Meunier and Musin allow us to extend Sperner’s

lemma to a simplicial complex built in a (n + 1)-dimensional non-euclidean space. This

would allow the application of ideas from discrete differential geometry. For example

the Gauss-Bonnet theorem holds for discrete simplicial surfaces (Keenan Crane, 2013).

The Gauss-Bonnet theorem provides a relation between the total Gaussian curvature and

the Euler characteristic of a surface. By simple summation of the angle defect around

every vertex we can determine the Euler characteristic of a continuous surface. As will be

demonstrated in Section 5.4 the simplicial complex used by SHGO is homeomorphic to

complexes built on other topological hypersurfaces. Therefore when using explicit coor-

dinates of the expected homomorphism the summation can be used to compare the error

with the Euler characteristic which provides a metric for how accurately the objective

function surface has been sampled. In global optimisation theory a simplicial complex

built in this space can be used for approximating local and global Lipschitz constants for

an objective function while still retaining the ability to detect locally convex sub-domains

in the search space.
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5.4 Invariance of the directed complex within a

bounded rectangle

We now have a guarantee of finding stationary points in sub-domains near stationary

points. However, we would also like to ensure that SHGO does not generate more than

one minimiser starting point per convex sub-domain. This can only be guaranteed when

an objective function surface is ”adequately sampled”. For black box functions there is

no way to know if the number and distribution of sampling points is adequate without

more information (for example if the number of local minima are known in the problem).

However, it is an important property of the algorithm that |M| will stop increasing with

higher sampling after this point. First we define an adequately sampled surface.

Definition 22. Consider a simplicial complex H built on an objective function f with

a compact feasible set Ω using Definitions 17 through 20. The surface is said to be

adequately sampled if there is one and only one true stationary point within every

domain defined by Theorem 3.

The remainder of this section is devoted to proving the following theorem which holds

in the case where Ω = [l,u]n.

Theorem 5. (Invariance of an adequately sampled simplicial complex H) For a given

continuous objective function f that is adequately sampled by a sampling set of size N . If

the cardinality of the minimiser pool extracted from the directed simplex H is |M|. Then

any further increase of the sampling set N will not increase |M|.

Proof. The proof relies on a homomorphism between the simplicial complex H con-

structed in the bounded hyperrectangle Ω and the homology (mod 2) groups of a con-

structed surface S on which we can invoke the invariance theorem.

Define the n-torus S0 from the compact, bounded hyperrectangle Ω by identification of

the opposite faces and all extreme vertices. Now for every strict local minimum point p ∈
Ω puncture a hypersphere and after appropriate identification the resulting n-dimensional

manifold Sg is a connected g sum of g tori S := S0 #S1 # · · · #Sg−1 (g times).

For the reader’s benefit Figures 5.7 and 5.8 demonstrates the process geometrically.

Figure 5.7 shows how to puncture a hypersphere and make the usual identifications in a

2-dimensional problem. Figure 5.8 demonstrates the construction of Sg.
Any triangulation K of the topological space S is homeomorphic to S, Hk(K) ∼=

Hk(S) ∀k ⊂ Z. Note that this homomorphism is for a mod 2 homology between a

triangulation K and the surface S and is thus undirected. A triangulation corresponding

to all vertices and faces of K can be directed according to Definition 17, Definition 18

and Definition 19 providing the directed simplicial complex H. By construction we have,

for an adequately sampled simplicial complex H, an equality which exists between the
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Figure 5.7: The process of puncturing a hypersphere at a minimiser point in a compact search
space. Start by identifying a minimiser point in the H1 (∼= K1) graph. By con-
struction, our initial complex exists on the (hyper-)surface of an n-dimensional
torus S0 such that the rest of K1 is connected and compact. We puncture a
hypersphere at the minimiser point and identify the resulting edges (or (n − 1)-
simplices in higher dimensional problems). Next we shrink (a topoligical (ie con-
tinuous) transformation) the remainder of the simplicial complex to the faces and
vertices of our (hyper-)plane model. Make the appropriate identifications for S0
and glue the identified and connected face z (a (n−1)-simplex) that resulted from
the hypersphere puncture. The other faces (ie (n− 1)-simplices) are connected in
the usual way for tori constructions)
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Figure 5.8: The process of puncturing a new hypersphere on S0 #S1 can be repeated
for any new minimiser point without loss of generality producing S :=
S0 #S1 # · · · #Sg−1 (g times)

cardinality ofM and the Betti numbers of S as |M| = h1 = rank(H1(S)) = rank(H1(K)).

Here we invoke the invariance theorem

Theorem 6. (Invariance theorem(Henle, 1979)) The homology groups associated with a

triangulation K of the a compact, connected surface S are independent of K. In other

words, the groups H0(K), H1(K) and H2(K) do not depend on the simplices, incidence

coefficients, or anything else arising from the choice of the particular triangulation K;

they depend only on the surface S itself.

The invariance theorem can be extended to higher dimensional triangulable spaces

using singular homology through the Eilenberg-Steenrod Axioms (Eilenberg and Steen-

rod, 1952; Henle, 1979). As a direct consequence any triangulation of S will produce the

same homology groups for K.

Adding any new sampling point within the corresponding subdomains of st (vi) ∀i(vi ∈
M ⊆ H0) as defined in Theorem 3 will by Definitions 17 through 20 need to be connected

directly to vi by a new edge or the triangulation is no longer a simplicial complex and

thus not increase |M| since only one vertex will be the new minimiser.

After adding any sampling point outside a domain st (vi) then, through the established

homomorphism, any construction of H will produce the same homology groups since

rank(H1(K)) remains unchanged and it is thus not possible for a new vertex to be wrongly

identified as a minimiser in the triangulation H.

This concludes the proof that any increase in N will not further increase |M|.
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It is important to note that Theorem 5 is only applicable to complexes with adequate

sampling as defined, that is to say it is entirely possible that, in complexes with less

that adequate sampling, two starting minimiser elements ofM will converge to the same

local minimum. This flaw is inherent in the fact that there is insufficient information

to completely identify the minima of a surface (and could be overcome if some extra

information about f is known).

Theorem 3 and Theorem 5 also lead to the following corollary about an optimisation

problem:

Corollary 2. Consider any objective function f : Ω ⊆ Rn → R. Consider also a local

minimisation routine that is guaranteed to converge to a local minimum in the same

locally convex domain as the starting point inputted to the algorithm. Alternatively the

local minimisation routine is guaranteed to converge to a point within a set of bounds

(provided by the boundary of the k-chain around st (vi), ∂
(
C(Hk)

)
, k = n+ 1). If such

a local minimisation routine uses an element vi ∈M as a starting point and the routine

leads to a minimum outside or on st (vi) and in addition the minimum is not contained

in the set H0. Then it can be concluded that either search space is not adequately sampled

or f is not a Lipschitz smooth function.

Therefore according to Corollary 2 if the number of local minima are known, as in

for example phase equilibria problems, then we can extract valuable information about

the objective function. In particular it can be determined whether or not the objective

function is Lipschitz smooth. Alternatively if the function is known to be Lipschitz

smooth then Corollary 2 can be used to prove the sampling is insufficient when the

condition is not met. When this happens it is also now known that there are more

local minima to be found, one or more of which might possibly be the global minimum.

Corollary 2 does not, however, provide any guarantee that the sampling is sufficient when

the conditions are met.
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5.5 Sampling generation

Using the Sobol sequence sampling point generation proceeds in a similar way as that

described in Section 2.1. However, rather than only generating an arbitrary number

of predefined sampling points we will also consider heuristic methods starting with the

minimum amount of sampling points required to triangulate an n-dimensional space.

For example start with the minimum amount of sampling points to construct an n-

dimensional simplex and continue sampling while continuously calculating the H1(H)

homology groups of the complex. Using the definitions described in this section the

sampling is continued until the growth rate of the approximated homology groups slows

appreciably.

In this publication the Sobol sequenced sampling points are triangulated using De-

launay triangulation as implemented in the SciPy library Jones et al. (2001–). A major

disadvantage to this triangulation scheme is that it does not scale well to higher di-

mensions since it relies on solving convex hull using the quickhull method developed by

Barber and Dobkin (1996). There are several possibilities for mitigating this problem.

Since the Sobol sequence is deterministic the triangulations can be calculated and stored

in a database. For SHGO another possibility whereby the convex hull does not need to

be solved by using symmetry generated triangulation was developed. Building on the ini-

tial n-cube triangulation developed by Paulavičius & Žilinskas (Paulavičius & Žilinskas,

2014a; Žilinskas, 2008) and using the symmetry groups Sn, n = {1, 2, 3, . . . ,n} to gen-

erate an initial triangulation. Subsequent uniform sampling that ensures a symmetrical

triangulation is generated in the next generation of simplices. This is done by an ordering

of edges and using the cycle (123 . . . n− 1) to ensure that we always split every simplex

by a hyperplane that goes through a new (child) vertex on the longest edge of simplex

and every other vertex in the parent simplex that does not have incidence on the edge.

Figure 5.9 demonstrates the symmetry of this sampling in n = 2 where the longest edge

in the initial triangulation was sampled. Here an iteration is defined as any generation of

sub-triangulations that provides a triangulation symmetrical to the initial triangulation.

An implementation of this sampling sequence is available at Endres (2016–a).

In this publication we will use both the Sobol and the hypercube triangulation sam-

pling sequences. Sobol provides a more direct comparison to the TGO algorithm while

the second sequence is more similar to the DISIMPL-v algorithm. We will refer to the dif-

ferent uses of sampling sequences as SHGO-Sobol and SHGO-Simpl in the experimental

results in Chapter 6.
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Figure 5.9: Triangulation of a unit hypercube shown in 2 dimensions for 4 iterations

5.6 Invariance and convergence of non-continuous,

non-linear optimisation problems with bounded

variables

In this section we again consider Equation (1.1), but now consider the case where g is

non-linear. In addition we allow f to be non-continuous (in having removable or jump

discontinuities) and non-linear. It is still assumed that the variables x are bounded.

Furthermore we assume that there is a feasible solution so that Ω 6= ∅ and that there

exists at least point in range of f mapped within the domain Ω. We will prove that

if the simplicial sampling sequence (Endres, 2016–a) is used, then SHGO will retain

the Invariance property of Theorem 5. Secondly convergence of the SHGO algorithm is

proved when the number of sampling points tends to infinity.

Before proving these properties we will need to define a new construction to deal with

discontinuities in f . From Definition 15 and Definition 16 it is clear that f will only

map a subset of feasible domain Ω, therefore only points within the this domain need to

be considered. A new construction replacing Definition 16 that considers discontinuities

(such as singularities) in the hypersurface of f is now defined:

Definition 23. For an objective function f , F is the set of scalar outputs mapped by the

objective function f : P → F for a given sampling set P ⊆ Ω ⊆ Rn. If a mapping of a
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vertex vi does not exist, then we define the mapping as f : vi → ∞. Any such point is

excluded from the set M.

Note from Definition 19 that any vertex v, f(v) = ∞ that is connected to another

vertex in Ω that maps to a finite value will never be a minimiser.

Theorem 7. (Invariance of an adequately sampled simplicial complex H in a non-convex,

non-compact space Ω) For a given non-continuous, non-linear objective function f that is

adequately sampled by a sampling set of size N . If the cardinality of the minimiser pool

extracted from the directed simplex H is |M|. Then any further increase of the sampling

set N will not increase |M|.

Proof. Theorem 5 holds for any compact hyperrectangular space B0 = [x1l , x
1
u]× [x2l , x

2
u]×

· · · × [xnl , x
n
u]. Consider a set of subspaces Bi ∼= B0 with Bi ⊆ Ω ∀i ∈ I. That is, Bi

is any compact, rectangular subspace of Ω that is homeomorphic to B0 (which is also

homeomorphic to a point) and can, therefore, be shrunk or expanded to arbitrary sizes

while retaining compactness. Therefore any triangulation Ki of Bi retains the Invariance

property from Theorem 5.

We allow all Bi to be connected or disconnected subspaces with respect to any other

Bj∈I within Ω. Now consider the (mod 2) homology groups H1(Ki) of Ki. Since the

homology groups are abelian groups the rank is additive over arbitrary direct sums:

rank

(⊕
i∈I

H1(Ki)
)

=
∑
i∈I

rank(H1(Ki))

Therefore the triangulations of both connected and disconnected subspaces Bi within a

possibly non-compact space Ω will retain the same total rank. After adequate sampling,

the rank of H1(Ki) will not increase by Theorem 5. Any point that is not in Ω is not

connected to any graph structure by Definition 15 and Definition 16 and therefore cannot

increase the rank of any homology group H1(Ki). Finally any vertex vi ∈ Ω for which

f(vi) does not exist will by Definition 23 be mapped to infinity by Definition 23. By

Definition 20, vi can not be a minimiser and therefore cannot increase the rank of any

homology group H1(Ki). For the reader’s benefit Figure 5.10 demonstrates this property

geometrically.

We have shown that the total rank of the homology groups triangulated on all con-

nected and disconnected subspaces Bi ∈ Ω will not increase after adequate sampling. It

remains to be proven that these subspaces exist within Ω. We adapt the convergence

proof used by Paulavičius et al. (2014) for subdivided simplicial complexes.

Proposition 3. For any point x ∈ Ω and any ε > 0 there exists an iteration k(ε) ≥ 1

and a point xki ∈ Hn ∈ Ω such that
∥∥xki − x

∥∥ < ε.
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Figure 5.10: Visual demonstration on surfaces with non-linear constraints, the shaded region
is unfeasible. The vertices of the points mapped to infinity have undirected edges,
therefore they do not form simplicial complexes in the integral homology. The
surfaces of each disconnected simplicial complex Ki can be constructed from the
compact version of the invariance theorem. The rank of the abelian homology
groups H1(Ki) is additive over arbitrary direct sums

Sampling points xi are vertices H0 belonging to the set of n-dimensional simplices

Hn. Let δkmax be the largest diameter of the largest simplex. Since the subdivision is

symmetrical all simplices have the same diameter δkmax after every iteration of the complex.

At every iteration the diameter will be divided through the longest edge, thus reducing

the simplices’ volumes. After a sufficiently large number of iterations all simplices will

have the diameter smaller than ε. Therefore the vertices of the complex will converge to

any and all points inside compact subspaces Bi within Ω. Since we have assumed that

Ω 6= ∅ this proves the existence of subspaces Bi.
This concludes the proof of Theorem 7

From this proof the convergence to a global minimum within Ω, if it exists, also

trivially follows by noting that Bi is homeomorphic to a point and that Theorem 3

applies to any minimiser in Bi. In practice Definition 23 is implemented in Endres (2016–

a) by using exception handling that can capture any mathematical errors in addition to

converting any none float numbers outputted by an objective function to infinity objects.
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5.7 Theoretical comparison to the DISIMPL algo-

rithm

The DISIMPL algorithm developed by Paulavičius & Žilinskas (Paulavičius & Žilinskas,

2014b,a; Paulavičius et al., 2014) is based on spatial partitioning of the search space.

DISIMPL-v in particular should have a similar initial complex as SHGO-Simpl for box

problems since this algorithm samples on the vertices of the simplicial complex (while

DISIMPL-c samples at the geometric centre of the simplices which is more appropriate

for higher dimensional problems). The graph structure of DISIMPL-v can thus be used

to construct the directed complex H and the homological properties can be calculated

and applied. An example of one such application is given in the following paragraph.

At every iteration of the DISIMPL algorithm potentially optimal simplices are selected

for refinement by considerations the Lipschitz properties of the optimisation problem. In

general a combination of promising simplices with good function evaluations (related to

local exploration of the search space) and simplices with larger hypervolumes (related to

global exploration of the search space). Gb-DISIMPL (Paulavičius et al., 2014) is a very

promising acceleration technique accomplished by switching between a ”global phase”

and a ”usual phase”. The global phase is focused on exploring simplices with larger

hyper volumes and excludes smaller simplices which are potentially optimal in the usual

phase. This technique prevents excessive evaluations near local minima as demonstrated

in Paulavičius et al. (2014). Local minima can put a ”drag” on the progress of refining

the minimum because the algorithm selects many neighbouring simplices that are slightly

worse on the function values, but also slightly larger in volume. A meta-parameter is used

in Gb-DISIMPL to select the simplices to be excluded in the global phase and was shown

in Paulavičius et al. (2014) to be very efficient. However, using knowledge from the

directed complex of H, the domain containing these simplices near the local minima

could also be identified more explicitly through a Sperner labelling if the function is

known to be Lipschitz smooth.

5.8 Algorithm implementation

We consider two modes for the SHGO algorithm. In the first a finite number of sampling

points N are specified and sampling is continued until an Ω set of cardinality N is

produced and no further sampling occurs. This method is demonstrated by Algorithm 2.

The main reason for this algorithm is to present a more direct comparison to TGO that

can be used in numerical experiments.

For the purposes of global optimisation and local minima exploration Algorithm 3

is more appropriate. By continuously calculating the H1(H) homology group several
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termination criteria can be used to end the sampling. For example if the amount of local

minima is known the sampling can be terminated once |M| is large enough. Another

example with many possible heuristics is tracking the historical difference in |M| over

|P| and terminating sampling if |M| is unchanged after a certain increase in |P|. In

optimisation problems where the global minimum is known we can also use the stopping

criteria such as the one defined by Paulavičius & Žilinskas (2016).

pe = 100%×


min{F}−f∗
|f∗| , f∗ 6= 0

min{F}, f ∗ = 0

Here min{F} is the minimum function evaluation obtained including values obtained

in the output of the local minimisation step as shown in the algorithm. Whatever ter-

mination criterion is used it requires an input H1(H) or min{F} and should output a

Boolean, we will refer to this function as TERM(H1(H),min{F}) in Algorithm 3. In

the practical implementation of the algorithm the user can also specify a finite number

of iterations and/or sampling points. This functionality has been programmed into the

TERM(H1(H),min{F}) function.

Open source python implementations of both of these algorithms are available and

were published under a MIT compatible license (Endres, 2016–a).
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Algorithm 2 SHGO finite sampling algorithm

1: procedure Initialisation
2: Input an objective function f , constraint functions g and variable bounds and

[l,u]n.
3: Input N initial sampling points.
4: Define a sampling sequence that generates a set X of sampling points in the unit

hypercube space [0,1]n

5: end procedure
6: procedure Initial sampling
7: P = ∅
8: while |P| < N do
9: Generate N − |P| sequential sampling points X ⊂ Rn

10: Stretch X over the lower and upper bounds [l,u]n

11: P = {Xi | g(Xi) ≥ 0,∀Xi ∈ X} ∪ P . (Find P in the feasible subset Ω
by discarding any points mapped outside the linear constraints g and adding to the
current set of P .)

12: Set X = ∅
13: end while
14: Find F from the objective function f : P → F
15: end procedure
16: procedure Construct directed complex H
17: Calculate H from h : P → H
18: end procedure
19: procedure Construct M
20: Find M from Definition 20.
21: end procedure
22: procedure Local minimisation
23: Calculate the approximate local minima of f using a local minimisation routine

with the elements of M as starting points. . These local minimisations can be
performed in parallel.

24: end procedure
25: procedure Process return objects
26: Order the final outputs of the minima of f found in the local minimisation step

to find the approximate global minimum.
27: end procedure
28:

29: return the approximate global minimum and a list of all the minima found in the
local minimisation step.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. SIMPLICIAL HOMOLOGY GLOBAL OPTIMISATION 45

Algorithm 3 SHGO homology group growth algorithm

1: procedure Initialisation
2: Input an objective function f , constraint functions g and variable bounds and

[l,u]n.
3: Input N initial sampling points.
4: Define a sampling sequence that generates a set X of sampling points in the unit

hypercube space [0,1]n

5: Define the empty set ME = ∅ of vertices evaluated by a local minimisation.
6: end procedure
7: while TERM(H1(H),min{F}) is False do
8: procedure Sampling
9: P = ∅

10: while |P| < N do
11: Generate N − |P| sequential sampling points X ⊂ Rn

12: Stretch X over the lower and upper bounds [l,u]n

13: P = {Xi | g(Xi) ≥ 0,∀Xi ∈ X} ∪ P . (Find P in the feasible subset Ω
by discarding any points mapped outside the linear constraints g and adding to the
current set of P .)

14: Set X = ∅
15: end while
16: Find F from the objective function f : P → F for any new points in P
17: end procedure
18: procedure Construct/append directed complex H
19: Calculate H from h : P → H . (If H was already constructed new points in
P are incorporated into the triangulation.)

20: Calculate H1(H)
21: end procedure
22: procedure Construct M
23: Find M from Definition 20.
24: end procedure
25: procedure Local minimisation
26: Calculate the approximate local minima of f using a local minimisation routine

with the elements of M\ME as starting points. . Process the most promising
points first.

27: ME =ME ∩M . This excludes the evaluation any element vi ∈M that
is known to be the only point that in the domain ∂st(vj) where vj is known to any
point already used as a starting point in Step 27. If any new vi ∈ M not in ME is
known to be the only point ∂st(vj) it can also be excluded.

28: Add the function outputs of the local minimisation routine to F
29: end procedure
30: Find new value of TERM(H1)(H,min{F})
31: end while
32: procedure Process return objects
33: Order the final outputs of the minima of f found in the local minimisation step

to find the approximate global minimum.
34: end procedure
35:

36: return the approximate global minimum and a list of all the minima found in the
local minimisation step.
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CHAPTER 6

Experimental Results

6.1 Comparison to algorithms that can solve prob-

lems with linear constraints

In this section we provide experimental comparisons on 22 linearly constrained problems

comparing the SHGO, TGO, Lc-DISIMPL (Paulavičius & Žilinskas, 2016), PSwarm (Vaz

& Vicente, 2009) and DIRECT-L1 (Finkel, 2003) algorithms. Note that the data for

the Lc-DISIMPL, PSwarm and DIRECT-L1 algorithms was taken from Paulavičius &

Žilinskas (2016). The same error of pe = 0.01% used by Paulavičius & Žilinskas (2016) was

also used in this publication. To provide a fair comparison of TGO to SHGO and the other

solvers the TGO algorithm was modified to stop sampling when it produced a minimiser

that lead to the global minimum of the problem. Table 6.1 shows the results. Here f.e.

is the total number of objective function evaluations required to solve the function and

p.f.e. is the total number of penalty function evaluations. Paulavičius & Žilinskas (2016)

used DIRECT-L1 with the 3 different penalty parameters (p.p.) shown in the table. The

PSwarm solver was run 10 times for each test problem.

The SHGO-Simpl, SHGO-Sobol and TGO (using Henderson’s formula for kc) al-

gorithms were able to solve all 22 problems. The lowest average number of function

evaluations was achieved by SHGO-Simpl followed by SHGO-Sobol and TGO. It can be

observed that Lc-DISIMPL-v achieved a better performance than any other algorithm

for the horst-1 to horst-6, hs024, hs035, s232, s250 and bunnag2 problems. As noted

in Paulavičius & Žilinskas (2016) the initial triangulation of Lc-DISIMPL-v evaluates

the function values at the vertices of the simplices and therefore for some of the tested

problems the solutions were found after initial triangulation on one of the vertices of the

feasible region. It is also possible to initiate SHGO with such an initial triangulation by

definition the first few vertices in X as the intercepts of the linear constraints in a similar

way to Paulavičius & Žilinskas (2016) and then continuing to add sampling points as

normal.

46
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Table 6.2 provides additional information for SHGO and TGO including the total

number of function evaluations required by the algorithm to solve the problem (f.e.), the

number of minimisers generated as starting points by the algorithm (nlmin), the number

of unique local minima mapped by the algorithm (nulmin) and the total processing time

(runtime) in seconds.

It can be seen that neither of the SHGO algorithms produced more starting points

leading to the same local minima as predicted by the theory for adequately sampled func-

tion surfaces. On the contrary TGO produced more than one starting point in the same

locally convex domain on some test problems which lead to extra function evaluations,

producing a poorer overall performance. While SHGO-Simpl had the lowest number of

average function evaluations, a higher processing run time is observed compared to the

other 2 algorithms. This can be explained by the fact the triangulation code for the sam-

pling has, not yet been optimised, which consumed most of the run time. SHGO-Sobol

and TGO use the same sampling generation code and it is observed that SHGO-Sobol

has a lower processing run time as expected.

The source code used to produce these results including the scripts that run the test

benchmarking suite is publically available at Endres (2016–a). The specifications of the

system used to run the test problems can be found in Appendix A.
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Table 6.1: Function evaluation comparisons for test problems with linear constraints.

shgo- tgo Lc-DSIMPL-c PSwarmc DIRECT-L1c

-simpl -sobol -v -c Minimum Average Maximum p.p. = 10 p.p. = 102 p.p.=106

Problem f.e. f.e. f.e. f.e. f.e. f.e. p.f.e f.e. p.f.e. f.e. p.f.e f.e f.e. f.e.

horst-1 97 24 34 7 249 167 182 1329b(3) 1343b(3) 4100b(3) 4101b(3) 287a 3689 >100000

horst-2 10 11 11 5 171 160 176 424 492 768 867 265a 10829 >100000

horst-3 6 7 6 5 249 42 43 44 45 46 47 5a 591 617

horst-4 10 25 24 8 260 90 179 114 194 129 211 58293a >100000 >100000

horst-5 20 15 15 8 259 106 150 134 192 214 302 7a >100000 >100000

horst-6 22 59 77 10 284 90 172 110 192 133 227 11a 739a >100000

horst-7 10 15 13 10 220 188 201 380 403 919 957 7a 71a >100000

hs021 24 23 23 189 133 110 110 189 192 392 405 97 97 97

hs024 24 15 36 3 141 101 153 118 172 138 195 19a 57a >100000

hs035 37 41 35 630 721 266 311 316 369 327 373 >100000 >100000 >100000

hs036 105 20 103 8 314 179 179 396 401 561 574 25a 49a >100000

hs037 72 63 258 186 9129 127 131 160 167 201 574 7a 7a >100000

hs038 225 1029 389 3379 >100000 53662 54445 58576 59821 65677 67660 7401 5885 6511

hs044 199 35 51 20 440 148b(9) 218b(9) 186b(9) 281b(9) 201b(9) 299b(9) 90283 >100000 >100000

hs076 56 37 44 548 4794 132 198 203 286 275 341 19135 >100000 >100000

s224 166 165 165 49 463 105 107 121 122 157 158 7a 431 457

s231 99 99 383 2137 655 542 1011 2366 3020 4116 4800 1261 1209 43341

s232 24 15 22 3 141 105 144 119 171 162 236 19a 57a >100000

s250 105 20 103 8 314 296 296 367 375 495 498 25a 49a >100000

s251 72 63 258 186 9127 83 84 129 137 175 180 7a 7a >100000

bunnag1 34 47 39 630 721 132 142 214 228 411 438 1529 1495 1463

bunnag2 46 36 35 16 500 150 153 252 259 410 426 >100000 >100000 >100000

Average 66 88 100 366 >5877 2590 2672 3011 3130 3637 3812 >17213 >28421 >75113

a result is outside the feasible region
b(t) t out of 10 times the global solution was not reached
c results produced by Paulavičius & Žilinskas (2016)
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Table 6.2: Total and average performance over all 22 test problems.

f.e. nlmin nulmin runtime (s)
problem name

All shgo-simpl 1463 26 26 0.27294
shgo-sobol 1864 23 23 0.11225
tgo 2123 29 25 0.093607

Average shgo-simplicial 65 1 1 0.012852
shgo-sobol 88 1 1 0.004144
tgo 100 1 1 0.004542

6.2 Function evaluations and comparison to other

open source global optimisation algorithms

In this section we present numerical experiments comparing the SHGO and TGO algo-

rithms with the SciPy implementations (Jones et al., 2001–) of basinhopping (BH) (Li

and Scheraga, 1987; Wales, 2003; Wales and Doye, 1997; Wales and Scheraga, 1999) and

differential evolution (DE) (Storn and Price, 1997). These algorithms were chosen both

because the open source versions are readily available in the SciPy project and because

BH is commonly used in energy surface optimisations (Wales, 2015) from which the moti-

vation for developing SHGO grew. DE has also been applied in optimising Gibbs energy

surfaces for phase equilibria calculations (Zhang & Rangaiah, 2011). The optimisation

problems in Appendix A were selected from the SciPy global optimisation benchmark-

ing test suite (Adorio and Dilman, 2005; Gavana, 2016; Jamil and Yang, 2013; Mishra,

2007, 2006; NIST, 2016). The test suite contains multi-modal problems with box con-

straints, they are described in detail in Gavana (2016). We again used the stopping

criteria pe = 0.01% for SHGO and TGO. For the stochastic algorithms (BH and DE) the

starting points provided by the test suite were used. For every test the algorithm was

terminated if the global minimum was not found after 10 minutes of processing time and

the test was flagged as a fail. For comparisons we used normalised performance profiles

(Dolan and Moré, 2002) using function evaluations and processing time as performance

criteria. In total 180 test problems were used.

From Figure 6.1 it can be observed that for this problem set SHGO-Sobol was the

best performing algorithm, followed closely by TGO and SHGO-Simpl. Figure 6.2 pro-

vides a clearer comparison between these three algorithms. While the performance of

all 3 algorithms are comparable, SHGO-Sobol tends to outperform TGO, solving more

problems for a given number of function evaluations. This is expected since, for the

same sampling point sequence, TGO produced more than one starting point in the same
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Figure 6.1: Performance profiles for SHGO, TGO, DE and BH on SciPy benchmarking test
suite

locally convex domain on some test problems which leads to extra function evaluations.

In total TGO produced 403 minima of which only 393 minima were unique while all of

the 225 minima produced by SHGO-Sobol were unique. SHGO-Simpl produced 238 of

which all 238 were unique. It is apparent that SHGO-Simpl performed worse compared

to the other sampling methods despite a better performance on the test problem set with

linear constraints. There are two reasons for this result. First of all, the uniformity prop-

erties of the Sobol sequence hold only for hypercubes. Therefore, it is lost for geometries

defined by the search spaces inside linear constraints. Secondly the current code for the

triangulation of the simplex cannot add only one sampling point per iteration, but must

split all the simplices until the symmetry of the entire complex is restored. This leads to

a much higher number of function evaluations during the sampling step of the algorithm.

Table A.1 in Appendix A shows the raw numerical results. Note that, unlike the data

in performance profiles, failed test runs did not get set to the worst case performance

criteria by any solver (in order to preserve the raw data). Therefore the total and average

function evaluations and processing times are misleading. The Table is mostly useful for

comparisons on a particular test problem as well as comparing the total number of minima

and unique minima found.

6.3 Invariance and optimum minimiser pool

The following 4 optimisation test problems were used to demonstrate the applications of

Theorem 5 and to show the minimiser pool growth compared to TGO over a large number

of sampling points. The results plotted in Figure 6.3 shows that SHGO performed as
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Figure 6.2: Performance profiles zoomed in to the range of f.e. = [0, 1000] function evaluations
and [0, 0.4] seconds run time

expected with the minimiser pool staying at the optimum cardinality to map all the local

minima once the sampling is adequate as well as the shortcomings of the TGO especially

in the higher dimensional test problems where the the minimiser pool tends to grow

rapidly with the number sampling points N .

The Ursem01 function for two dimensions is defined as follows (Gavana, 2016)

f(x) = − sin (2x1 − 0.5π)− 3 cos (x2)− 0.5x1, x ∈ Ω = [0, 9]× [−2, 2] (6.1)

The paraboloid function for six dimensions is defined as follows

f(x) =
6∑
i=1

x2i , x ∈ Ω = [−10, 10]6 (6.2)

The Bird function for two dimensions is defined as follows (Gavana, 2016)

f(x) = (x1 − x2)2 + e[1−sin(x1)]
2

cos (x2) + e[1−cos(x2)]
2

sin (x1) ,

x ∈ Ω = [−2π, 2π]2 (6.3)

The Schwefel01 function for six dimensions is defined as follows (Gavana, 2016)

f(x) =

(
n∑
i=1

x2i

)√π
, x ∈ Ω = [−100, 100]6 (6.4)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. EXPERIMENTAL RESULTS 52

0 500 1000 1500 2000 2500 3000 3500 4000

N

0

50

100

150

200

250

300

350

400

450

|Mk|       

(a)                             

TGO k= 3

TGO k= 4

TGO kc
SHGO

0 500 1000 1500 2000 2500 3000 3500 4000

N

0

10

20

30

40

50

60

|Mk|       

(b)                             

TGO kc
SHGO

0 1000 2000 3000 4000 5000 6000

N

0

5

10

15

20

25

|Mk|       

(c)                             

TGO kc
SHGO

0 500 1000 1500 2000 2500 3000 3500 4000

N

0

10

20

30

40

50

60

|Mk|       

(d)                             

TGO kc
SHGO

Figure 6.3: (a) The minimiser pool growth of the TGO and SHGO algorithms for the smooth
objective function described in Example 3 and restated in Equation (6.1) for
convenience, the SHGO never increases above the optimum of |M| = 3, for TGO
3 different values of the k parameter are shown. (b) The minimiser pool growth for
the six-dimensional paraboloid problem defined by Equation (6.2), note that even
though the problem has only one minimum, the minimiser pool for TGO set at
k = kc tends to increase for increasing sampling points N . In general this problem
is exacerbated in higher dimensions while SHGO stays at the optimum |M| = 1.
The TGO minimiser pool for k = 3 and k = 4 are not shown here because the
minimiser pool grows too rapidly. (c) The minimiser pool growth for the two
dimensional Bird problem defined by Equation (6.3), an important observation
here is that |M| is higher than optimum for SHGO before the sampling is adequate
as defined by Equation (5) which happens at the after there are N = 1722 Sobol
sequenced points after which |M| stays at the optimum value equal to the number
of unique local minima with increasing N . (d) The minimiser pool growth for the
six dimensional Schwefel01 problem defined by Equation (6.4), here again |M| for
TGO set at kc grows rapidly with N while |M| for SHGO stays constant at the
optimum.
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CHAPTER 7

Concluding remarks

The SHGO algorithm developed here shows promising properties and performance. On

problems with linear constraints it was shown to provide competitive results to the TGO,

Lc-DISIMPL, PSwarm and DIRECT-L1 algorithms. The use of a simplicial complex pro-

vides access to a wealth of tools from combinatorial topology and the growing field of com-

putational homology. It is hoped that these will drive further extensions and development

of the algorithm. Many challenges remain such as finding the most appropriate sampling

sequences for different classes of problems, and finding computer resource-efficient trian-

gulation schemes. Due to the useful characterisations of objective function hypersurfaces

provided by the homology groups of the simplicial complex, SHGO allows an optimisa-

tion practitioner with a useful visual tool for understanding and efficiently solving higher

dimensional black and grey box optimisation problems.

The main initial driving force behind the development of this algorithm grew out of a

need for efficient, deterministic and reliable global optimisation methods for applications

in phase equilibria modelling and calculations. However, the SHGO algorithm described

here is appropriate for solving a wider class of global optimisation problems, including

those where mapping all the local minima is of interest and where only the global optima

is needed. It is especially appropriate for computationally expensive black and grey box

functions common in science and engineering as described for example by Shan and Wang

(2010).

Some key features of SHGO are that, when the optimisation search space is adequately

sampled (or enough information is available to determine that all local minima have been

mapped) then it is guaranteed that only one starting point for every locally convex domain

will be produced by the algorithm. Note that in optimisation problems where the number

of local minima is known, the sampling can stop and the local minimisation step started

without superfluous function evaluations. However, for optimisation problems with an

unknown number of local minima is unknown (and thus we can never truly know if all

local minima has been found for any finite number of sampling), the guarantee still holds

that SHGO will not produce superfluous starting points that lead to the same stationary

53
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points. In addition because the homology groups can be calculated as sampling progresses

an optimisation practitioner can both visualise the extent of the optimisation problem’s

multi-modality and use intelligent stopping criteria for the sampling stage.
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APPENDIX A

Numerical results for selected

optimisation problems

Table A.1 shows respectively: the name of the optimisation test problem (Problem), the

name of the algorithm (Alg), number of dimensions (n) of the optimisation problem, the

number of function evaluations required by the algorithm to solve the problem (nfev),

the number of minimisers generated as starting points by the algorithm (nlmin), the

number of unique local minima mapped by the algorithm (nulmin), whether successful

convergence to the global minima was achieved (Success) and finally the the CPU run

time measured in seconds (Runtime). For all these test problems the algorithm was

terminated if the algorithm ran for longer than 10 minutes.

The optimisation runs were done on a computer with the following specifications:

• CPU: Intel Core i7-6700K CPU @ 4.2GHz

• Kernel: x86 64 Linux 4.12.10-1-ARCH

• RAM: 15973MiB

Table A.1: Comparison of the performance of SHGO, TGO, BH and DE over a wide selection
of optimisation test problems.

ndim nfev nlmin nulmin success runtime

Problem Alg

All bh 0 1358408 0 0 - -

de 0 934804 0 0 - -

shgo-simplicial 0 72240 238 238 - -

shgo-sobol 0 29694 225 225 - -

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

tgo 0 63533 403 393 - -

Average bh 0 7546 0 0 - 0.108971

de 0 5193 0 0 - 0.188172

shgo-simplicial 0 401 1 1 - 1.115545

shgo-sobol 0 164 1 1 - 0.004778

tgo 0 352 2 2 - 0.008672

Ackley01 bh 2 16107 0 0 True 0.298839

de 2 3423 0 0 True 0.190420

shgo-simplicial 2 54 1 1 True 0.001750

shgo-sobol 2 52 1 1 True 0.041898

tgo 2 52 1 1 True 0.001998

Ackley02 bh 2 11844 0 0 True 0.090117

de 2 456 0 0 True 0.010810

shgo-simplicial 2 90 1 1 True 0.001905

shgo-sobol 2 88 1 1 True 0.001738

tgo 2 88 1 1 True 0.001615

Ackley03 bh 2 2370 0 0 False 0.040504

de 2 421 0 0 True 0.013166

shgo-simplicial 2 59 1 1 True 0.001444

shgo-sobol 2 57 1 1 True 0.001529

tgo 2 57 1 1 True 0.001432

Adjiman bh 2 2070 0 0 False 0.046875

de 2 532 0 0 True 0.037358

shgo-simplicial 2 26 1 1 True 0.003626

shgo-sobol 2 36 1 1 True 0.004907

tgo 2 36 1 1 True 0.004410

Alpine01 bh 2 32928 0 0 True 0.303166

de 2 4423 0 0 True 0.138957

shgo-simplicial 2 55 1 1 True 0.001360

shgo-sobol 2 53 1 1 True 0.001466

tgo 2 53 1 1 True 0.001400

Alpine02 bh 2 1617 0 0 True 0.024743

de 2 492 0 0 True 0.014723

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-simplicial 2 153 5 5 True 0.005421

shgo-sobol 2 62 1 1 True 0.001830

tgo 2 108 3 3 True 0.002290

BartelsConn bh 2 19857 0 0 True 0.205387

de 2 1282 0 0 True 0.036180

shgo-simplicial 2 55 1 1 True 0.001298

shgo-sobol 2 53 1 1 True 0.001491

tgo 2 53 1 1 True 0.001306

Beale bh 2 6306 0 0 False 0.045135

de 2 4803 0 0 True 0.127161

shgo-simplicial 2 63 1 1 True 0.001226

shgo-sobol 2 61 1 1 True 0.001339

tgo 2 61 1 1 True 0.001239

BiggsExp02 bh 2 3009 0 0 True 0.079360

de 2 4003 0 0 True 0.177575

shgo-simplicial 2 147 2 2 True 0.005318

shgo-sobol 2 128 1 1 True 0.004324

tgo 2 128 1 1 True 0.004133

BiggsExp03 bh 3 5812 0 0 True 0.134723

de 3 10564 0 0 True 0.492391

shgo-simplicial 3 145 1 1 True 0.007089

shgo-sobol 3 151 1 1 True 0.005064

tgo 3 151 1 1 True 0.004900

BiggsExp04 bh 4 13095 0 0 True 0.295152

de 4 29765 0 0 True 1.368383

shgo-simplicial 4 1091 1 1 True 0.167113

shgo-sobol 4 384 1 1 True 0.011662

tgo 4 384 1 1 True 0.011372

BiggsExp05 bh 5 14346 0 0 False 0.468451

de 5 7632 0 0 False 0.461430

shgo-simplicial 5 607 1 1 True 0.023766

shgo-sobol 5 583 1 1 True 0.019824

tgo 5 583 1 1 True 0.019717

Bird bh 2 2421 0 0 False 0.038661

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

de 2 695 0 0 True 0.021481

shgo-simplicial 2 42 1 1 True 0.001750

shgo-sobol 2 43 1 1 True 0.001341

tgo 2 43 1 1 True 0.001209

Bohachevsky1 bh 2 3510 0 0 True 0.037407

de 2 2763 0 0 True 0.077462

shgo-simplicial 2 9 1 1 True 0.000461

shgo-sobol 2 7 1 1 True 0.000564

tgo 2 7 1 1 True 0.000511

Bohachevsky2 bh 2 3471 0 0 True 0.037333

de 2 2923 0 0 True 0.080887

shgo-simplicial 2 9 1 1 True 0.000520

shgo-sobol 2 7 1 1 True 0.000620

tgo 2 7 1 1 True 0.000496

Bohachevsky3 bh 2 3438 0 0 True 0.033962

de 2 3043 0 0 True 0.081093

shgo-simplicial 2 9 1 1 True 0.000478

shgo-sobol 2 7 1 1 True 0.000603

tgo 2 7 1 1 True 0.000481

BoxBetts bh 3 8096 0 0 True 0.181494

de 3 11944 0 0 True 0.525109

shgo-simplicial 3 89 1 1 True 0.003011

shgo-sobol 3 76 1 1 True 0.002723

tgo 3 76 1 1 True 0.002527

Branin01 bh 2 2229 0 0 True 0.027123

de 2 615 0 0 True 0.017054

shgo-simplicial 2 39 1 1 True 0.000982

shgo-sobol 2 37 1 1 True 0.001067

tgo 2 37 1 1 True 0.000935

Branin02 bh 2 2094 0 0 True 0.031920

de 2 735 0 0 True 0.022043

shgo-simplicial 2 111 2 2 True 0.004283

shgo-sobol 2 44 1 1 True 0.001358

tgo 2 71 2 2 True 0.001664

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

Brent bh 2 915 0 0 True 0.016313

de 2 6443 0 0 True 0.176477

shgo-simplicial 2 9 1 1 True 0.000487

shgo-sobol 2 7 1 1 True 0.000596

tgo 2 7 1 1 True 0.000502

Brown bh 2 1857 0 0 True 0.038897

de 2 4083 0 0 True 0.146456

shgo-simplicial 2 34 1 1 True 0.001163

shgo-sobol 2 36 1 1 True 0.001331

tgo 2 36 1 1 True 0.001246

Bukin02 bh 2 663 0 0 False 0.014341

de 2 815 0 0 True 0.021064

shgo-simplicial 2 20 1 1 True 0.000664

shgo-sobol 2 18 1 1 True 0.000764

tgo 2 18 1 1 True 0.000643

Bukin04 bh 2 17166 0 0 True 0.098578

de 2 4103 0 0 True 0.110858

shgo-simplicial 2 26 1 1 True 0.000751

shgo-sobol 2 24 1 1 True 0.001064

tgo 2 24 1 1 True 0.000798

Bukin06 bh 2 22014 0 0 False 0.179138

de 2 2623 0 0 False 0.075753

shgo-simplicial 2 1007 5 5 True 0.021791

shgo-sobol 2 741 3 3 True 0.012376

tgo 2 1169 5 5 True 0.017350

CarromTable bh 2 1899 0 0 False 0.035184

de 2 972 0 0 True 0.034849

shgo-simplicial 2 36 1 1 True 0.001454

shgo-sobol 2 31 1 1 True 0.001087

tgo 2 31 1 1 True 0.000984

Cigar bh 2 8193 0 0 True 0.088217

de 2 3743 0 0 True 0.124895

shgo-simplicial 2 20 1 1 True 0.000687

shgo-sobol 2 18 1 1 True 0.000797

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

tgo 2 18 1 1 True 0.000693

Colville bh 4 12965 0 0 True 0.103124

de 4 29685 0 0 True 0.837259

shgo-simplicial 4 225 1 1 True 0.014057

shgo-sobol 4 1029 2 2 True 0.060954

tgo 4 3039 10 2 True 0.054228

Corana bh 4 2555 0 0 False 0.073994

de 4 4085 0 0 True 0.192973

shgo-simplicial 4 23 1 1 True 0.002139

shgo-sobol 4 12 1 1 True 0.000986

tgo 4 12 1 1 True 0.000847

CosineMixture bh 2 348 0 0 False 0.014602

de 2 1166 0 0 True 0.037936

shgo-simplicial 2 17 1 1 True 0.001120

shgo-sobol 2 7 1 1 True 0.000641

tgo 2 7 1 1 True 0.000552

CrossInTray bh 2 1578 0 0 False 0.028986

de 2 489 0 0 True 0.019297

shgo-simplicial 2 69 1 1 True 0.003238

shgo-sobol 2 33 1 1 True 0.001108

tgo 2 33 1 1 True 0.001020

CrossLegTable bh 2 17355 0 0 True 0.209052

de 2 4783 0 0 False 0.154005

shgo-simplicial 2 9 1 1 True 0.000545

shgo-sobol 2 7 1 1 True 0.000651

tgo 2 7 1 1 True 0.000640

CrownedCross bh 2 17130 0 0 False 0.210953

de 2 4263 0 0 False 0.136233

shgo-simplicial 2 9 1 1 True 0.000558

shgo-sobol 2 7 1 1 True 0.000644

tgo 2 7 1 1 True 0.000520

Cube bh 2 8529 0 0 True 0.053030

de 2 5243 0 0 True 0.125904

shgo-simplicial 2 146 1 1 True 0.002060

Continued on next page

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



APPENDIX A. NUMERICAL RESULTS FOR SELECTEDOPTIMISATION PROBLEMS66

ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-sobol 2 144 1 1 True 0.002167

tgo 2 144 1 1 True 0.002071

Damavandi bh 2 1566 0 0 False 0.026171

de 2 535 0 0 False 0.015558

shgo-simplicial 2 578 2 2 True 0.034168

shgo-sobol 2 60 2 2 True 0.001825

tgo 2 97 2 2 True 0.002025

DeVilliersGlasser01 bh 4 16805 0 0 True 0.554629

de 4 24265 0 0 True 1.200274

shgo-simplicial 4 439 2 2 True 0.024691

shgo-sobol 4 446 1 1 True 0.044395

tgo 4 667 9 9 True 0.023041

Deb01 bh 2 5565 0 0 True 0.065591

de 2 1532 0 0 True 0.048103

shgo-simplicial 2 28 1 1 True 0.001334

shgo-sobol 2 18 1 1 True 0.000828

tgo 2 18 1 1 True 0.000741

Deb03 bh 2 5310 0 0 False 0.076148

de 2 40103 0 0 False 1.453880

shgo-simplicial 2 4234 4 4 True 0.082374

shgo-sobol 2 83 1 1 True 0.002579

tgo 2 1476 2 2 True 0.029756

Decanomial bh 2 9465 0 0 True 0.117149

de 2 3383 0 0 True 0.107160

shgo-simplicial 2 256 1 1 True 0.005111

shgo-sobol 2 200 1 1 True 0.004302

tgo 2 200 1 1 True 0.004083

Deceptive bh 2 441 0 0 False 0.017110

de 2 913 0 0 True 0.025888

shgo-simplicial 2 449 9 9 True 0.017866

shgo-sobol 2 533 4 4 True 0.012727

tgo 2 667 5 5 True 0.015315

DeckkersAarts bh 2 2844 0 0 True 0.026594

de 2 670 0 0 True 0.016102

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-simplicial 2 86 1 1 True 0.003099

shgo-sobol 2 99 2 2 True 0.002026

tgo 2 167 2 2 True 0.002544

DefCorrSpring bh 2 2055 0 0 True 0.043273

de 2 892 0 0 True 0.032436

shgo-simplicial 2 9 1 1 True 0.000695

shgo-sobol 2 7 1 1 True 0.000676

tgo 2 7 1 1 True 0.000560

DixonPrice bh 2 3639 0 0 True 0.059777

de 2 4563 0 0 True 0.160772

shgo-simplicial 2 627 3 3 True 0.039069

shgo-sobol 2 93 2 2 True 0.002869

tgo 2 92 2 2 True 0.002412

Dolan bh 5 51084 0 0 True 0.390904

de 5 78692 0 0 True 2.479181

shgo-simplicial 5 264 1 1 True 0.007559

shgo-sobol 5 240 1 1 True 0.004052

tgo 5 240 1 1 True 0.003832

DropWave bh 2 2337 0 0 True 0.036634

de 2 1012 0 0 True 0.032547

shgo-simplicial 2 9 1 1 True 0.000526

shgo-sobol 2 7 1 1 True 0.000634

tgo 2 7 1 1 True 0.000524

Easom bh 2 303 0 0 False 0.013139

de 2 83 0 0 False 0.001927

shgo-simplicial 2 2126 1 1 True 0.139017

shgo-sobol 2 2210 1 1 True 0.049775

tgo 2 2210 1 1 True 0.323876

EggCrate bh 2 1935 0 0 False 0.025269

de 2 3963 0 0 True 0.110584

shgo-simplicial 2 9 1 1 True 0.000492

shgo-sobol 2 7 1 1 True 0.000619

tgo 2 7 1 1 True 0.000511

EggHolder bh 2 1983 0 0 False 0.046486

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

de 2 941 0 0 False 0.036749

shgo-simplicial 2 616 2 2 True 0.042003

shgo-sobol 2 233 4 4 True 0.007344

tgo 2 293 5 5 True 0.008198

EAVD bh 2 3219 0 0 True 0.031350

de 2 1301 0 0 True 0.034577

shgo-simplicial 2 33094 2 2 True 2.799852

shgo-sobol 2 277 3 3 True 0.005578

tgo 2 351 4 4 True 0.005266

Exp2 bh 2 2892 0 0 True 0.078883

de 2 4003 0 0 True 0.184855

shgo-simplicial 2 56 1 1 True 0.002597

shgo-sobol 2 137 1 1 True 0.004752

tgo 2 137 1 1 True 0.004762

Exponential bh 2 1515 0 0 True 0.026072

de 2 286 0 0 True 0.008401

shgo-simplicial 2 9 1 1 True 0.000546

shgo-sobol 2 7 1 1 True 0.000624

tgo 2 7 1 1 True 0.000538

FreudensteinRoth bh 2 5262 0 0 True 0.041467

de 2 4103 0 0 True 0.100865

shgo-simplicial 2 356 7 7 True 0.012095

shgo-sobol 2 49 1 1 True 0.001195

tgo 2 49 1 1 True 0.001008

Gear bh 4 505 0 0 False 0.013874

de 4 11445 0 0 True 0.336399

shgo-simplicial 4 23 1 1 True 0.001465

shgo-sobol 4 31 1 1 True 0.001925

tgo 4 37 2 2 True 0.001130

Giunta bh 2 2301 0 0 True 0.046305

de 2 449 0 0 True 0.015731

shgo-simplicial 2 34 2 2 True 0.001792

shgo-sobol 2 31 1 1 True 0.001276

tgo 2 31 1 1 True 0.001143

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

GoldsteinPrice bh 2 4587 0 0 True 0.050597

de 2 781 0 0 True 0.021106

shgo-simplicial 2 85 1 1 True 0.001664

shgo-sobol 2 83 1 1 True 0.001773

tgo 2 83 1 1 True 0.001681

Griewank bh 2 1872 0 0 False 0.039220

de 2 3283 0 0 True 0.124090

shgo-simplicial 2 9 1 1 True 0.000633

shgo-sobol 2 7 1 1 True 0.000710

tgo 2 7 1 1 True 0.000604

Gulf bh 3 404 0 0 False 0.025843

de 3 15244 0 0 True 0.924735

shgo-simplicial 3 650 3 3 True 0.050251

shgo-sobol 3 234 1 1 True 0.010897

tgo 3 234 1 1 True 0.010778

Hansen bh 2 3432 0 0 True 0.104063

de 2 1341 0 0 True 0.071333

shgo-simplicial 2 130 3 3 True 0.004946

shgo-sobol 2 114 1 1 True 0.004238

tgo 2 379 7 7 True 0.014041

Hartmann3 bh 3 7464 0 0 True 0.132592

de 3 720 0 0 True 0.026820

shgo-simplicial 3 70 1 1 True 0.002384

shgo-sobol 3 54 1 1 True 0.001875

tgo 3 53 1 1 True 0.001753

Hartmann6 bh 6 16625 0 0 True 0.268922

de 6 2230 0 0 True 0.091498

shgo-simplicial 6 181 1 1 True 0.026658

shgo-sobol 6 153 1 1 True 0.006292

tgo 6 443 3 2 True 0.010686

HelicalValley bh 3 7688 0 0 True 0.078989

de 3 12124 0 0 True 0.361064

shgo-simplicial 3 1456 4 4 True 0.129628

shgo-sobol 3 136 2 2 True 0.003249

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

tgo 3 137 2 2 True 0.002614

HimmelBlau bh 2 2529 0 0 True 0.023512

de 2 4683 0 0 True 0.114841

shgo-simplicial 2 66 1 1 True 0.001178

shgo-sobol 2 45 1 1 True 0.001055

tgo 2 45 1 1 True 0.000950

HolderTable bh 2 1857 0 0 False 0.031476

de 2 415 0 0 True 0.012619

shgo-simplicial 2 179 2 2 True 0.010071

shgo-sobol 2 97 2 2 True 0.002625

tgo 2 117 3 3 True 0.002640

Hosaki bh 2 2526 0 0 False 0.029150

de 2 335 0 0 True 0.008496

shgo-simplicial 2 47 1 1 True 0.001053

shgo-sobol 2 29 1 1 True 0.000968

tgo 2 29 1 1 True 0.000827

Infinity bh 2 2583 0 0 True 0.040846

de 2 3803 0 0 True 0.126713

shgo-simplicial 2 13 1 1 True 0.001057

shgo-sobol 2 150 1 1 True 0.004148

tgo 2 121 1 1 True 0.002820

JennrichSampson bh 2 10632 0 0 True 0.209818

de 2 904 0 0 True 0.033887

shgo-simplicial 2 52 1 1 True 0.001704

shgo-sobol 2 50 1 1 True 0.001765

tgo 2 50 1 1 True 0.001640

Judge bh 2 3207 0 0 True 0.072541

de 2 741 0 0 True 0.031098

shgo-simplicial 2 53 1 1 True 0.001520

shgo-sobol 2 51 1 1 True 0.001924

tgo 2 51 1 1 True 0.001817

Katsuura bh 2 474 0 0 False 0.025357

de 2 2006 0 0 True 0.110219

shgo-simplicial 2 9 1 1 True 0.000852

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-sobol 2 7 1 1 True 0.000788

tgo 2 7 1 1 True 0.000699

Keane bh 2 1566 0 0 True 0.023998

de 2 7523 0 0 True 0.215796

shgo-simplicial 2 1502 2 2 True 0.028949

shgo-sobol 2 14 1 1 True 0.000787

tgo 2 7 1 1 True 0.000507

Kowalik bh 4 14660 0 0 True 0.248955

de 4 6755 0 0 True 0.267475

shgo-simplicial 4 240 1 1 True 0.006430

shgo-sobol 4 229 1 1 True 0.005653

tgo 4 228 1 1 True 0.005533

Langermann bh 2 2877 0 0 True 0.098686

de 2 692 0 0 True 0.035666

shgo-simplicial 2 397 5 5 True 0.023237

shgo-sobol 2 49 1 1 True 0.002482

tgo 2 49 1 1 True 0.002274

LennardJones bh 6 10374 0 0 True 0.058650

de 6 15748 0 0 True 0.451860

shgo-simplicial 6 124 1 1 True 0.001939

shgo-sobol 6 81 1 1 True 0.002031

tgo 6 173 1 1 True 0.002409

Leon bh 2 6207 0 0 True 0.042320

de 2 5363 0 0 True 0.129094

shgo-simplicial 2 99 1 1 True 0.001523

shgo-sobol 2 97 1 1 True 0.001644

tgo 2 97 1 1 True 0.001533

Levy03 bh 2 2670 0 0 False 0.067339

de 2 3803 0 0 True 0.163955

shgo-simplicial 2 45 1 1 True 0.001729

shgo-sobol 2 43 1 1 True 0.001749

tgo 2 43 1 1 True 0.001647

Levy13 bh 2 4491 0 0 True 0.053878

de 2 3803 0 0 True 0.114689

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-simplicial 2 20 1 1 True 0.000724

shgo-sobol 2 18 1 1 True 0.000825

tgo 2 18 1 1 True 0.000704

Matyas bh 2 1803 0 0 True 0.018082

de 2 4323 0 0 True 0.103091

shgo-simplicial 2 9 1 1 True 0.000461

shgo-sobol 2 7 1 1 True 0.000587

tgo 2 7 1 1 True 0.000470

McCormick bh 2 2073 0 0 False 0.023725

de 2 495 0 0 True 0.012853

shgo-simplicial 2 42 1 1 True 0.000948

shgo-sobol 2 40 1 1 True 0.001059

tgo 2 40 1 1 True 0.000956

Michalewicz bh 2 4320 0 0 True 0.070726

de 2 498 0 0 True 0.017048

shgo-simplicial 2 50 1 1 True 0.001517

shgo-sobol 2 48 1 1 True 0.001593

tgo 2 48 1 1 True 0.001480

MieleCantrell bh 4 9270 0 0 True 0.084157

de 4 42965 0 0 True 1.297974

shgo-simplicial 4 455 1 1 True 0.007732

shgo-sobol 4 444 1 1 True 0.006351

tgo 4 443 1 1 True 0.006228

Mishra01 bh 2 1830 0 0 False 0.025162

de 2 406 0 0 True 0.011320

shgo-simplicial 2 0 0 0 False 0.000000

shgo-sobol 2 11 1 1 True 0.000743

tgo 2 11 1 1 True 0.000581

Mishra02 bh 2 1752 0 0 False 0.028230

de 2 566 0 0 True 0.017230

shgo-simplicial 2 9 1 1 True 0.000513

shgo-sobol 2 0 0 0 False 0.000000

tgo 2 0 0 0 False 0.000000

Mishra03 bh 2 21105 0 0 False 0.191135

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

de 2 2028 0 0 False 0.057982

shgo-simplicial 2 70 1 1 True 0.001465

shgo-sobol 2 68 1 1 True 0.001578

tgo 2 68 1 1 True 0.001521

Mishra04 bh 2 23679 0 0 False 0.212897

de 2 1663 0 0 False 0.048371

shgo-simplicial 2 599 3 3 True 0.016789

shgo-sobol 2 4357 8 8 True 0.072626

tgo 2 9363 18 18 True 0.149810

Mishra05 bh 2 7512 0 0 False 0.100622

de 2 852 0 0 False 0.026962

shgo-simplicial 2 50 1 1 True 0.001769

shgo-sobol 2 142 2 2 True 0.003643

tgo 2 263 3 3 True 0.005386

Mishra06 bh 2 2346 0 0 False 0.042102

de 2 695 0 0 True 0.022795

shgo-simplicial 2 62 1 1 True 0.002086

shgo-sobol 2 121 2 2 True 0.003196

tgo 2 170 2 2 True 0.003860

Mishra07 bh 2 1230 0 0 True 0.028053

de 2 7043 0 0 True 0.250454

shgo-simplicial 2 170 1 1 True 0.024871

shgo-sobol 2 47 2 2 True 0.001797

tgo 2 84 3 3 True 0.002268

Mishra08 bh 2 9831 0 0 True 0.122770

de 2 2903 0 0 True 0.092307

shgo-simplicial 2 243 1 1 True 0.004905

shgo-sobol 2 235 1 1 True 0.005008

tgo 2 235 1 1 True 0.004814

Mishra10 bh 2 303 0 0 False 0.010973

de 2 923 0 0 True 0.021494

shgo-simplicial 2 9 1 1 True 0.000476

shgo-sobol 2 7 1 1 True 0.000583

tgo 2 7 1 1 True 0.000472

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

Mishra11 bh 2 1140 0 0 True 0.022872

de 2 6443 0 0 True 0.207037

shgo-simplicial 2 9 1 1 True 0.000561

shgo-sobol 2 7 1 1 True 0.000644

tgo 2 7 1 1 True 0.000520

MultiModal bh 2 21084 0 0 True 0.192647

de 2 3643 0 0 True 0.111857

shgo-simplicial 2 9 1 1 True 0.000544

shgo-sobol 2 7 1 1 True 0.000635

tgo 2 7 1 1 True 0.000513

NeedleEye bh 2 10005 0 0 True 0.088015

de 2 247 0 0 True 0.004802

shgo-simplicial 2 9 1 1 True 0.000515

shgo-sobol 2 7 1 1 True 0.000609

tgo 2 7 1 1 True 0.000502

NewFunction01 bh 2 20874 0 0 False 0.170837

de 2 1683 0 0 False 0.045641

shgo-simplicial 2 3813 6 6 True 0.064411

shgo-sobol 2 1569 6 6 True 0.026975

tgo 2 10079 23 23 True 0.155735

NewFunction02 bh 2 22662 0 0 False 0.186096

de 2 1721 0 0 False 0.045242

shgo-simplicial 2 159 1 1 True 0.004481

shgo-sobol 2 341 2 2 True 0.005782

tgo 2 361 2 2 True 0.005829

OddSquare bh 2 303 0 0 False 0.015612

de 2 1238 0 0 True 0.042061

shgo-simplicial 2 0 0 0 False 0.000000

shgo-sobol 2 204 1 1 True 0.006156

tgo 2 487 8 8 True 0.012439

Parsopoulos bh 2 1608 0 0 True 0.020883

de 2 4163 0 0 True 0.110717

shgo-simplicial 2 30 1 1 True 0.001201

shgo-sobol 2 39 1 1 True 0.001080

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

tgo 2 39 1 1 True 0.000929

Pathological bh 2 8106 0 0 True 0.192009

de 2 2498 0 0 True 0.109880

shgo-simplicial 2 20 1 1 True 0.000988

shgo-sobol 2 18 1 1 True 0.001041

tgo 2 18 1 1 True 0.001183

Paviani bh 10 13970 0 0 False 0.231402

de 10 6088 0 0 True 0.261439

shgo-simplicial 10 1257 1 1 True 180.467203

shgo-sobol 10 364 1 1 True 0.013044

tgo 10 358 1 1 True 0.007403

PenHolder bh 2 1512 0 0 False 0.029009

de 2 532 0 0 True 0.017184

shgo-simplicial 2 117 2 2 True 0.004500

shgo-sobol 2 86 2 2 True 0.002352

tgo 2 74 2 2 True 0.001852

Penalty01 bh 2 3300 0 0 True 0.103837

de 2 3803 0 0 True 0.192800

shgo-simplicial 2 45 1 1 True 0.002049

shgo-sobol 2 43 1 1 True 0.002108

tgo 2 43 1 1 True 0.001994

PermFunction01 bh 2 4599 0 0 True 0.132834

de 2 4963 0 0 True 0.250583

shgo-simplicial 2 83 1 1 True 0.003318

shgo-sobol 2 70 1 1 True 0.002988

tgo 2 70 1 1 True 0.002867

PermFunction02 bh 2 4665 0 0 True 0.130644

de 2 4563 0 0 True 0.228565

shgo-simplicial 2 73 1 1 True 0.002946

shgo-sobol 2 71 1 1 True 0.002968

tgo 2 71 1 1 True 0.002847

Pinter bh 2 3075 0 0 False 0.121511

de 2 4043 0 0 True 0.230878

shgo-simplicial 2 9 1 1 True 0.000793

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-sobol 2 7 1 1 True 0.000814

tgo 2 7 1 1 True 0.000695

Plateau bh 2 303 0 0 False 0.012533

de 2 283 0 0 True 0.007515

shgo-simplicial 2 9 1 1 True 0.000512

shgo-sobol 2 7 1 1 True 0.000612

tgo 2 7 1 1 True 0.000497

Powell bh 4 14285 0 0 True 0.090999

de 4 35285 0 0 True 0.939842

shgo-simplicial 4 220 1 1 True 0.003550

shgo-sobol 4 209 1 1 True 0.002965

tgo 4 208 1 1 True 0.002803

PowerSum bh 4 53785 0 0 True 1.136949

de 4 80125 0 0 True 3.736967

shgo-simplicial 4 386 1 1 True 0.011866

shgo-sobol 4 641 1 1 True 0.018445

tgo 4 640 1 1 True 0.018284

Price01 bh 2 921 0 0 True 0.016215

de 2 4003 0 0 True 0.106303

shgo-simplicial 2 14 1 1 True 0.000571

shgo-sobol 2 12 1 1 True 0.000679

tgo 2 12 1 1 True 0.000559

Price02 bh 2 1614 0 0 False 0.028523

de 2 732 0 0 False 0.023422

shgo-simplicial 2 9 1 1 True 0.000519

shgo-sobol 2 7 1 1 True 0.000657

tgo 2 7 1 1 True 0.000557

Price03 bh 2 5136 0 0 True 0.040620

de 2 4283 0 0 True 0.107037

shgo-simplicial 2 58 1 1 True 0.001118

shgo-sobol 2 56 1 1 True 0.001240

tgo 2 56 1 1 True 0.001102

Price04 bh 2 6984 0 0 True 0.050386

de 2 40043 0 0 True 1.001060

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-simplicial 2 9 1 1 True 0.000480

shgo-sobol 2 7 1 1 True 0.000593

tgo 2 7 1 1 True 0.000484

Quadratic bh 2 1917 0 0 True 0.019071

de 2 378 0 0 True 0.008401

shgo-simplicial 2 35 1 1 True 0.000803

shgo-sobol 2 33 1 1 True 0.000902

tgo 2 33 1 1 True 0.000795

Quintic bh 2 35934 0 0 True 0.653358

de 2 3823 0 0 True 0.155548

shgo-simplicial 2 114 1 1 True 0.003436

shgo-sobol 2 112 1 1 True 0.003479

tgo 2 112 1 1 True 0.003377

Rana bh 2 1851 0 0 False 0.044188

de 2 1055 0 0 False 0.041408

shgo-simplicial 2 292 5 5 True 0.010485

shgo-sobol 2 651 10 10 True 0.019660

tgo 2 1157 20 20 True 0.032245

Rastrigin bh 2 3198 0 0 True 0.045106

de 2 2323 0 0 True 0.075224

shgo-simplicial 2 20 1 1 True 0.000758

shgo-sobol 2 18 1 1 True 0.000832

tgo 2 18 1 1 True 0.000722

Ratkowsky01 bh 4 5355 0 0 False 0.108619

de 4 3595 0 0 False 0.147932

shgo-simplicial 4 286 1 1 True 0.008561

shgo-sobol 4 187 1 1 True 0.005141

tgo 4 186 1 1 True 0.005016

Ratkowsky02 bh 3 18628 0 0 True 0.325850

de 3 2308 0 0 True 0.089465

shgo-simplicial 3 124 1 1 True 0.005340

shgo-sobol 3 111 1 1 True 0.002979

tgo 3 110 1 1 True 0.002856

Ripple01 bh 2 5961 0 0 False 0.124923

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

de 2 824 0 0 False 0.033875

shgo-simplicial 2 153 3 3 True 0.006820

shgo-sobol 2 476 1 1 True 0.016043

tgo 2 1879 29 29 True 0.061017

Ripple25 bh 2 3426 0 0 False 0.068602

de 2 815 0 0 True 0.030853

shgo-simplicial 2 106 3 3 True 0.005244

shgo-sobol 2 99 1 1 True 0.003343

tgo 2 372 9 9 True 0.009879

Rosenbrock bh 2 6324 0 0 True 0.100650

de 2 4923 0 0 True 0.173339

shgo-simplicial 2 118 1 1 True 0.002990

shgo-sobol 2 116 1 1 True 0.003024

tgo 2 116 1 1 True 0.002962

RosenbrockModified bh 2 5790 0 0 False 0.058106

de 2 898 0 0 True 0.024119

shgo-simplicial 2 128 2 2 True 0.004098

shgo-sobol 2 66 1 1 True 0.001674

tgo 2 66 1 1 True 0.001431

RotatedEllipse01 bh 2 1566 0 0 True 0.019852

de 2 3923 0 0 True 0.101885

shgo-simplicial 2 9 1 1 True 0.000527

shgo-sobol 2 7 1 1 True 0.000608

tgo 2 7 1 1 True 0.000489

RotatedEllipse02 bh 2 1542 0 0 True 0.016783

de 2 3763 0 0 True 0.091090

shgo-simplicial 2 9 1 1 True 0.000463

shgo-sobol 2 7 1 1 True 0.000584

tgo 2 7 1 1 True 0.000468

Salomon bh 2 7743 0 0 True 0.090562

de 2 1489 0 0 False 0.048057

shgo-simplicial 2 40 1 1 True 0.001145

shgo-sobol 2 38 1 1 True 0.001219

tgo 2 38 1 1 True 0.001105

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

Sargan bh 2 1536 0 0 True 0.062461

de 2 4003 0 0 True 0.234294

shgo-simplicial 2 9 1 1 True 0.000796

shgo-sobol 2 7 1 1 True 0.000806

tgo 2 7 1 1 True 0.000697

Schaffer01 bh 2 3273 0 0 False 0.030547

de 2 2883 0 0 True 0.076986

shgo-simplicial 2 9 1 1 True 0.000513

shgo-sobol 2 7 1 1 True 0.000602

tgo 2 7 1 1 True 0.000492

Schaffer02 bh 2 4806 0 0 False 0.043977

de 2 2803 0 0 True 0.077345

shgo-simplicial 2 9 1 1 True 0.000485

shgo-sobol 2 7 1 1 True 0.000590

tgo 2 7 1 1 True 0.000489

Schaffer03 bh 2 6183 0 0 False 0.065953

de 2 3289 0 0 True 0.094391

shgo-simplicial 2 0 0 0 False 0.000000

shgo-sobol 2 870 2 2 True 0.014601

tgo 2 6986 15 15 True 0.112689

Schaffer04 bh 2 4956 0 0 False 0.054692

de 2 1769 0 0 True 0.051488

shgo-simplicial 2 0 0 0 False 0.000000

shgo-sobol 2 956 2 2 True 0.016079

tgo 2 7424 16 16 True 0.120559

Schwefel01 bh 2 2592 0 0 True 0.034659

de 2 4003 0 0 True 0.119275

shgo-simplicial 2 9 1 1 True 0.002122

shgo-sobol 2 7 1 1 True 0.000628

tgo 2 7 1 1 True 0.000508

Schwefel02 bh 2 1530 0 0 True 0.051924

de 2 4563 0 0 True 0.231409

shgo-simplicial 2 9 1 1 True 0.000774

shgo-sobol 2 7 1 1 True 0.000781

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

tgo 2 7 1 1 True 0.000653

Schwefel04 bh 2 2856 0 0 True 0.047694

de 2 4403 0 0 True 0.148907

shgo-simplicial 2 47 1 1 True 0.001346

shgo-sobol 2 45 1 1 True 0.001410

tgo 2 45 1 1 True 0.001343

Schwefel06 bh 2 32622 0 0 True 0.224756

de 2 4263 0 0 True 0.114865

shgo-simplicial 2 150 1 1 True 0.002512

shgo-sobol 2 148 1 1 True 0.002586

tgo 2 148 1 1 True 0.002469

Schwefel20 bh 2 37062 0 0 True 0.251657

de 2 3663 0 0 True 0.102275

shgo-simplicial 2 72 1 1 True 0.001425

shgo-sobol 2 70 1 1 True 0.001518

tgo 2 70 1 1 True 0.001410

Schwefel21 bh 2 30786 0 0 True 0.151423

de 2 4263 0 0 True 0.103540

shgo-simplicial 2 23 1 1 True 0.000652

shgo-sobol 2 21 1 1 True 0.000780

tgo 2 21 1 1 True 0.000653

Schwefel22 bh 2 34536 0 0 True 0.315124

de 2 3903 0 0 True 0.119683

shgo-simplicial 2 75 1 1 True 0.001700

shgo-sobol 2 73 1 1 True 0.001798

tgo 2 73 1 1 True 0.001667

Schwefel26 bh 2 1377 0 0 False 0.023562

de 2 1763 0 0 True 0.059069

shgo-simplicial 2 85 2 2 True 0.060432

shgo-sobol 2 46 1 1 True 0.001913

tgo 2 46 1 1 True 0.001716

Schwefel36 bh 2 531 0 0 False 0.012828

de 2 741 0 0 True 0.017205

shgo-simplicial 2 593 1 1 True 0.029588

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-sobol 2 514 1 1 True 0.010140

tgo 2 80 2 2 True 0.001428

Shekel05 bh 4 4765 0 0 False 0.077725

de 4 2505 0 0 True 0.095390

shgo-simplicial 4 118 1 1 True 0.003752

shgo-sobol 4 107 1 1 True 0.002920

tgo 4 106 1 1 True 0.002766

Shekel07 bh 4 5720 0 0 True 0.091560

de 4 2590 0 0 True 0.099127

shgo-simplicial 4 134 1 1 True 0.004098

shgo-sobol 4 123 1 1 True 0.003263

tgo 4 122 1 1 True 0.003110

Shekel10 bh 4 4365 0 0 False 0.073112

de 4 2500 0 0 False 0.097044

shgo-simplicial 4 142 1 1 True 0.004259

shgo-sobol 4 131 1 1 True 0.003466

tgo 4 130 1 1 True 0.003383

Shubert01 bh 2 3111 0 0 True 0.067104

de 2 1467 0 0 True 0.061174

shgo-simplicial 2 0 0 0 False 0.000000

shgo-sobol 2 76 1 1 True 0.003538

tgo 2 157 3 3 True 0.005496

Shubert03 bh 2 3000 0 0 True 0.069237

de 2 1055 0 0 True 0.045163

shgo-simplicial 2 0 0 0 False 0.000000

shgo-sobol 2 51 1 1 True 0.002095

tgo 2 51 1 1 True 0.001756

Shubert04 bh 2 3024 0 0 True 0.069495

de 2 1175 0 0 True 0.049131

shgo-simplicial 2 0 0 0 False 0.000000

shgo-sobol 2 142 3 3 True 0.004916

tgo 2 178 4 4 True 0.005449

SineEnvelope bh 2 1416 0 0 False 0.034150

de 2 1449 0 0 False 0.053516

Continued on next page

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



APPENDIX A. NUMERICAL RESULTS FOR SELECTEDOPTIMISATION PROBLEMS82

ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-simplicial 2 9 1 1 True 0.000597

shgo-sobol 2 7 1 1 True 0.000680

tgo 2 7 1 1 True 0.000574

SixHumpCamel bh 2 3030 0 0 True 0.028893

de 2 615 0 0 True 0.014982

shgo-simplicial 2 175 1 1 True 0.009341

shgo-sobol 2 42 1 1 True 0.001182

tgo 2 42 1 1 True 0.000968

Sodp bh 2 3648 0 0 True 0.051512

de 2 4043 0 0 True 0.130966

shgo-simplicial 2 9 1 1 True 0.000509

shgo-sobol 2 7 1 1 True 0.000609

tgo 2 7 1 1 True 0.000515

Sphere bh 2 909 0 0 True 0.017210

de 2 3603 0 0 True 0.101877

shgo-simplicial 2 9 1 1 True 0.000493

shgo-sobol 2 7 1 1 True 0.000607

tgo 2 7 1 1 True 0.000493

Step bh 2 303 0 0 False 0.012524

de 2 1083 0 0 True 0.030122

shgo-simplicial 2 9 1 1 True 0.000481

shgo-sobol 2 7 1 1 True 0.000605

tgo 2 7 1 1 True 0.000497

Step2 bh 2 303 0 0 False 0.013313

de 2 843 0 0 True 0.025589

shgo-simplicial 2 9 1 1 True 0.000516

shgo-sobol 2 7 1 1 True 0.000630

tgo 2 7 1 1 True 0.000509

StretchedV bh 2 1866 0 0 True 0.039634

de 2 1529 0 0 True 0.055269

shgo-simplicial 2 43 1 1 True 0.001558

shgo-sobol 2 41 1 1 True 0.001483

tgo 2 41 1 1 True 0.001373

StyblinskiTang bh 2 2031 0 0 False 0.036926

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

de 2 492 0 0 True 0.015949

shgo-simplicial 2 41 1 1 True 0.001222

shgo-sobol 2 48 1 1 True 0.001570

tgo 2 48 1 1 True 0.001405

TestTubeHolder bh 2 1563 0 0 False 0.027345

de 2 852 0 0 True 0.025876

shgo-simplicial 2 0 0 0 False 0.000000

shgo-sobol 2 895 1 1 True 0.024863

tgo 2 1101 31 30 True 0.023859

ThreeHumpCamel bh 2 2247 0 0 True 0.022462

de 2 4163 0 0 True 0.103089

shgo-simplicial 2 9 1 1 True 0.000438

shgo-sobol 2 7 1 1 True 0.000586

tgo 2 7 1 1 True 0.000479

Treccani bh 2 2658 0 0 True 0.023854

de 2 2403 0 0 True 0.062638

shgo-simplicial 2 9 1 1 True 0.000466

shgo-sobol 2 7 1 1 True 0.000592

tgo 2 7 1 1 True 0.000476

Trid bh 6 9387 0 0 True 0.115005

de 6 4178 0 0 True 0.146371

shgo-simplicial 6 152 1 1 True 0.025636

shgo-sobol 6 98 1 1 True 0.002638

tgo 6 94 1 1 True 0.002139

Trigonometric01 bh 2 6288 0 0 True 0.149112

de 2 6843 0 0 True 0.316741

shgo-simplicial 2 9 1 1 True 0.000654

shgo-sobol 2 7 1 1 True 0.000729

tgo 2 7 1 1 True 0.000627

Tripod bh 2 27252 0 0 False 0.200039

de 2 3863 0 0 True 0.111605

shgo-simplicial 2 163 2 2 True 0.004474

shgo-sobol 2 254 2 2 True 0.004403

tgo 2 254 2 2 True 0.004049

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

Ursem01 bh 2 1911 0 0 False 0.023793

de 2 332 0 0 True 0.008287

shgo-simplicial 2 22 1 1 True 0.000700

shgo-sobol 2 29 1 1 True 0.000926

tgo 2 29 1 1 True 0.000811

Ursem03 bh 2 5286 0 0 False 0.072546

de 2 782 0 0 True 0.019909

shgo-simplicial 2 55 1 1 True 0.001412

shgo-sobol 2 53 1 1 True 0.001487

tgo 2 53 1 1 True 0.001377

Ursem04 bh 2 16347 0 0 True 0.138740

de 2 591 0 0 True 0.013742

shgo-simplicial 2 97 1 1 True 0.001742

shgo-sobol 2 95 1 1 True 0.001855

tgo 2 95 1 1 True 0.001740

UrsemWaves bh 2 420 0 0 False 0.014496

de 2 498 0 0 False 0.013866

shgo-simplicial 2 13 2 2 True 0.000739

shgo-sobol 2 19 1 1 True 0.000854

tgo 2 19 1 1 True 0.000707

VSS bh 2 2448 0 0 False 0.034364

de 2 655 0 0 True 0.019093

shgo-simplicial 2 9 1 1 True 0.000497

shgo-sobol 2 7 1 1 True 0.000617

tgo 2 7 1 1 True 0.000507

Vincent bh 2 2805 0 0 True 0.056584

de 2 753 0 0 True 0.021509

shgo-simplicial 2 42 1 1 True 0.001052

shgo-sobol 2 31 1 1 True 0.001015

tgo 2 31 1 1 True 0.000920

Watson bh 6 33320 0 0 True 1.415519

de 6 23095 0 0 True 1.642898

shgo-simplicial 6 337 1 1 True 0.042924

shgo-sobol 6 283 1 1 True 0.016899

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

tgo 6 279 1 1 True 0.015085

Wavy bh 2 3465 0 0 False 0.054129

de 2 2603 0 0 True 0.089450

shgo-simplicial 2 9 1 1 True 0.000559

shgo-sobol 2 7 1 1 True 0.000659

tgo 2 7 1 1 True 0.000548

WayburnSeader01 bh 2 6933 0 0 True 0.052945

de 2 4823 0 0 True 0.127303

shgo-simplicial 2 111 1 1 True 0.001713

shgo-sobol 2 109 1 1 True 0.001851

tgo 2 109 1 1 True 0.001741

WayburnSeader02 bh 2 6732 0 0 True 0.055006

de 2 5043 0 0 True 0.126818

shgo-simplicial 2 150 1 1 True 0.002188

shgo-sobol 2 148 1 1 True 0.002326

tgo 2 148 1 1 True 0.002210

Weierstrass bh 2 30213 0 0 False 1.013885

de 2 3623 0 0 True 0.210147

shgo-simplicial 2 2225 1 1 True 0.218606

shgo-sobol 2 0 0 0 False 0.000000

tgo 2 0 0 0 False 0.000000

Whitley bh 2 5244 0 0 False 0.123444

de 2 1618 0 0 False 0.071220

shgo-simplicial 2 34 1 1 True 0.001424

shgo-sobol 2 32 1 1 True 0.001498

tgo 2 32 1 1 True 0.001402

Wolfe bh 3 1156 0 0 False 0.015604

de 3 16444 0 0 True 0.422252

shgo-simplicial 3 14 1 1 True 0.001167

shgo-sobol 3 10 1 1 True 0.000682

tgo 3 9 1 1 True 0.000555

XinSheYang01 bh 2 7632 0 0 False 0.097735

de 2 6663 0 0 True 0.220974

shgo-simplicial 2 153 1 1 True 0.003723

Continued on next page

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



APPENDIX A. NUMERICAL RESULTS FOR SELECTEDOPTIMISATION PROBLEMS86

ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-sobol 2 77 1 1 True 0.002016

tgo 2 149 1 1 True 0.003290

XinSheYang02 bh 2 2691 0 0 False 0.046717

de 2 4223 0 0 True 0.141718

shgo-simplicial 2 65 1 1 True 0.001683

shgo-sobol 2 63 1 1 True 0.001770

tgo 2 63 1 1 True 0.001675

XinSheYang03 bh 2 312 0 0 False 0.017095

de 2 1409 0 0 True 0.058742

shgo-simplicial 2 9 1 1 True 0.000640

shgo-sobol 2 7 1 1 True 0.000714

tgo 2 7 1 1 True 0.000594

XinSheYang04 bh 2 1791 0 0 False 0.044684

de 2 1795 0 0 True 0.065124

shgo-simplicial 2 77 1 1 True 0.002366

shgo-sobol 2 75 1 1 True 0.002478

tgo 2 75 1 1 True 0.002320

Xor bh 9 7940 0 0 False 0.207127

de 9 1520 0 0 False 0.061928

shgo-simplicial 9 645 1 1 True 15.690898

shgo-sobol 9 197 1 1 True 0.017347

tgo 9 208 2 2 True 0.006470

YaoLiu04 bh 2 29316 0 0 True 0.173835

de 2 3903 0 0 True 0.100743

shgo-simplicial 2 23 1 1 True 0.000677

shgo-sobol 2 21 1 1 True 0.000803

tgo 2 21 1 1 True 0.000677

YaoLiu09 bh 2 3300 0 0 True 0.049375

de 2 2843 0 0 True 0.093783

shgo-simplicial 2 20 1 1 True 0.000767

shgo-sobol 2 18 1 1 True 0.000867

tgo 2 18 1 1 True 0.000758

Zacharov bh 2 2046 0 0 True 0.039036

de 2 4043 0 0 True 0.143251

Continued on next page
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ndim nfev nlmin nulmin success runtime

Problem Alg

shgo-simplicial 2 46 1 1 True 0.001841

shgo-sobol 2 45 1 1 True 0.001503

tgo 2 45 1 1 True 0.001399

ZeroSum bh 2 20538 0 0 False 0.245236

de 2 1743 0 0 False 0.056568

shgo-simplicial 2 0 0 0 False 0.000000

shgo-sobol 2 23 1 1 True 0.001420

tgo 2 0 0 0 False 0.000000

Zettl bh 2 4167 0 0 True 0.033280

de 2 861 0 0 True 0.020092

shgo-simplicial 2 116 1 1 True 0.001764

shgo-sobol 2 114 1 1 True 0.001909

tgo 2 114 1 1 True 0.001793

Zimmerman bh 2 24543 0 0 False 0.277145

de 2 6503 0 0 True 0.207111

shgo-simplicial 2 3032 1 1 True 0.173071

shgo-sobol 2 1585 1 1 True 0.033359

tgo 2 1585 1 1 True 0.041850

Zirilli bh 2 2562 0 0 False 0.023889

de 2 575 0 0 True 0.013579

shgo-simplicial 2 34 1 1 True 0.000779

shgo-sobol 2 32 1 1 True 0.000948

tgo 2 32 1 1 True 0.000811
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