
How do cyclists make their way?

- A GPS-based revealed preference study in Copenhagen

Abstract:  
It is the objective of the study to determine the extent to which human navigation is affected by 

perceptions of our immediate surroundings or by already established knowledge in terms of a 

cognitive map. The motivation is to contribute to the knowledge about human navigation and to 

inform planning with estimates of bicyclists’ route preferences and ‘willingness-to-pay’ (in terms 

of transport distance vs utility/disutility of route characteristics). The core method is choice 

modelling of observed route data. 1,267 trips performed by 183 cyclists in Copenhagen 

(Denmark) were recorded by GPS. The trips were map-matched to a digital road and path 

network, which enabled the generation of choice sets: one for navigation as influenced by 

perception of immediate surroundings, comprising edges connected to network-nodes (hereafter 

called the edge dataset), and one for navigation based on a priori knowledge, comprising the trip 

itself and a number of alternative routes generated by a labelling algorithm (hereafter called the 

route dataset). The results document that choices based on characteristics of both the route and 

the edge data can be estimated and provide reasonable and significant parameter estimates 

regarding cyclists’ preferences. Length was significant and negative, illustrating that cyclists – 

everything else kept equal – prefer to bike shorter distances. Preferences regarding characteristics 

of bike path, presence of traffic lights and road types show similar results to the two types of data; 

most importantly that routes with facilities, such as curbed tracks and segregated bikeways, were 

significantly preferred. The study concludes that cyclists’ wayfinding can be modelled as choices 

based on both an edge dataset and a route dataset and, thus, may be influenced by both perceived 

information and a priori knowledge. We suggest that future analyses of movement and route 

preferences take both modes into account as actual movement may be based on a combination of 

the two and because assessment of the influence of the immediate, perceivable surroundings can 

provide information not to be considered in a wayfinding approach. In our case differences in 

preferences along the route is for example found, but this can be expanded in future studies to 

also include dynamic aspects such as weather and crowding.  
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1. Introduction
Movement, the pattern of relocation of individuals, can be conceived at different temporal and/or 

spatial scales. This includes e.g. movement between cities due to a change in life phase, 

migrating between the North and South according to season, the daily commute from home to 

work or school, or simply the movement pattern when mowing the lawn. While some types of 

movement are directed towards a pre-determined destination, others rather aim at ‘consuming’ 

the environment along the taken route. Such ‘undirected wayfinding’ (Weiner et al, 2009) may 

be in the form of exploring, shopping, hunting or enjoying nature while hiking. Montello (2005) 

has suggested the term ‘navigation’ for goal-directed and coordinated movement which can be 

divided into two components: ‘locomotion’ and ‘wayfinding’. Locomotion is movement 

coordinated by the local environment, as it is directly perceptible to our sensory and motor 

systems. Wayfinding is planned and efficient movements based on 
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spatial knowledge in form of a cognitive map (Montello and Sas, 2006). In actual 

navigation, neither of the two is in action in isolation. Rather, a combination is 

constantly applied even though behaviour based on only one of the two can be  

observed in extreme cases (Montello and Sas, 2006).  

It can be hypothesised that navigation in unfamiliar environments primarily will be 

influenced by locomotion based on perceptible surroundings and legible landmarks 

(Lynch, 1960), and that navigation in well-known areas will take advantage of 

existing knowledge which, accordingly, can be characterised as wayfinding. 

Navigation as a sub-category of spatial behaviour involves choices between 

alternatives or, as Rushton (1976, p119) states, that the spatial choices process must 

be seen ‘…. as the subjective selection of the most preferred alternative from a subset 

of alternatives’. Accordingly studies of navigation must be based not only on what the 

subject actually does, but also on the alternative options that were apparently 

considered, but not chosen. In relation to navigation constrained by a transport 

infrastructure, modelled as a topological network, we suggest that the set of 

options/choices available during wayfinding is the potential routes leading from start 

to end of a trip (including the recorded route). Wayfinding therefore consist of only 

one choice in the very beginning of the trip. Locomotion, on the other hand,is based 

on immediately perceived information during the trip, and therefore consist of a 

number of choices along the route. For each node of a recorded route, the set of 

choices is constituted by the edges connected to the node. Generation of route and 

edge choice sets can be further constrained, which will be discussed in detail below. 

In the present study, our primary aim is to assess the extent to which human 

navigation related to bicycle movement is affected by perception involved in 

locomotion in addition to wayfinding. Secondarily, we investigate whether the 

attributes involved influence navigators’ utility in a similar or comparable way for the 

two components of navigation. 

2. Knowledge of cyclist behaviour and preferences
Cycling is receiving increasing political attention as an alternative to automobile 

transport (Parkin and Horton, 2012; Pucher and Buehler, 2012). The reasons for this 

include a) a desire to reduce congestion in the transport network and parking 

facilities, b) an environment protection aim from e.g. particle contamination and CO2 

emissions, and c) a wish to increase citizens’ physical activity and, thereby, improve 

their health (see, for instance, Krizek et al., 2009; Ogilvie et al., 2011). Policy 

initiatives that aim to improve urban design/infrastructure to encourage bicycling 

have been implemented in many cities around the world (see e.g., Dextre et al., 2013). 

Improvements to bicycle infrastructure are regarded as the main instrument to 

achieving such a goal (Parkin and Koorey, 2012). However, studies of cyclists’ actual 

reactions to such improvements, for instance, as willingness to ‘pay’ in terms of 

increased distance are still in the developmental phase. This paper addresses this 

question by studying cyclists’ navigational behaviour in Copenhagen, Denmark. From 

an international perspective Copenhagen is special due to its long-standing tradition 

of cycling and pro-cycling planning (Gössling, 2013); a total of 35% of all trips made 

by inhabitants in the Municipality of Copenhagen are made by bicycle (Jensen 2013; 

Buehler and Pucher 2012). 
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Several GPS-based studies of cyclists’ route preferences and navigation have been 

conducted and for a recent review we refer to Buehler and Dill (2016). In 

applications, cyclists’ recorded routes are often compared to shortest paths (see e.g. 

Harvey et al., 2008 and Winters et al., 2010). Yeboah and Alvanides (2014) are 

extending this approach by including certain constrains. Some studies consider 

general characteristics of the environment contained in corridors surrounding 

recorded tracks without explicitly considering routes afforded by the topology of the 

street network (Yeboah, et al., 2015; Madsen et al., 2014). 

Only a limited number of studies have attempted to apply choice models, based on 

GPS-recordings, to reveal preferences involved in biking. Menghini et al. (2010) 

presented a route choice model for bicyclists, based on GPS observations. A total of 

3,387 cycling trips were revealed from transport trajectories performed by 2,435 

citizens of Zürich, Switzerland. No personal characteristics were made available. 

Alternative routes were generated by searches for the shortest distance between origin 

and destination and the removal of edges in turn until the required set of unique routes 

was identified. Only a few explaining environmental parameters were included. The 

results reveal that length dominates the cyclists’ choices, but that the distribution of 

bicycle paths also has a considerable, albeit substantially lesser impact. In addition, 

the gradient of slopes has a strong, negative impact too. 

Boarch et al. (2012) present a study of 164 utilitarian bicyclists’ (i.e. commuters) 

route preferences in Portland, US, to assess the relative attractiveness of different 

types of bicycle, other characteristics of the infrastructure, and environmental 

attributes such as slope gradient. Alternative routes were generated by a constrained 

labelling algorithm guided by minimising/maximising given attributes of the potential 

routes. Among the findings of the study, slope had a negative impact as had signs and 

traffic signals. Effects of gender, age group, or parental status were also tested in 

Boarch et al. (2012), but no significant differences were found. Other studies have 

detected gender effects, including Boarch, et al (2016) where the effect on mode 

choice is mentioned and Vedel et.al. (2017) as an example of a stated preference 

study where a gender effect is detected.  

Hood et al. (2011) collected GPS trajectories with a smart phone application. A total 

of 3,034 bicycle trips were recorded which had been made by 366 respondents. 

Alternatives were generated by repeated shortest path searches with progressive 

randomisation of network impedances. The results reveal that respondents preferred 

bicycle lanes to other types of bicycle facilities. This is particularly the case for 

infrequent cyclists. Further, the study showed that cyclists expressed a negative utility 

for length, as well as for turns.  

The study presented by Halldórsdóttir et al., (2015) was conducted in Copenhagen, 

Denmark like the present study. In total 2,681,108 GPS-points comprising 5,027 

bicycle trips were identified. Respondents’ age and gender profiles and trip and 

weather-related attributes were also included. Alternative routes were generated by a 

doubly stochastic generation function. The study found that cyclists were sensitive to 

length, cycling the wrong way, turn frequency, and terrain gradient. 
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In all four studies, a path size parameter was used to cater for collinearity of (partly) 

overlapping alternatives (see below for details). And more important, they are all 

entirely based on the assumption of wayfinding, i.e. that navigation is complete a 

priori knowledge 

The present study adds to the existing literature on bicycle behaviour and preferences, 

firstly, by analysing choices based on both route and edge data and, secondly, by 

investigating preferences for the quality of the bikeway infrastructure and topology, 

and the character of the environment in terms of shopping streets and green 

surroundings. 

3. Data

3.1 GPS recordings 
Respondents were recruited as part of a questionnaire survey conducted in 

Copenhagen in April/May, 2011 (see Vedel et al., 2017). Respondents to the 

questionnaire survey were contacted via flyers which were distributed at 16 locations 

in the Copenhagen area and recruited during working hours on weekdays. The sample 

is considered to represent commuting cyclists, rather than recreationalists. A total of 

1,262 volunteered to participate in the GPS survey, but since only 70 GPS devices 

were available for the project, 210 respondents were randomly selected, stratified over 

the 16 locations previously applied to ensure an even distribution over all the case 

areas. Each respondent had to carry a GPS unit for a week, from Monday morning to 

Sunday evening. A total of 27 cyclists failed to complete the GPS tracking, which 

meant that recordings of 183 cyclists performing 1,267 trips were included in the 

study. The average trip duration was 20 minutes, over a distance of 4.46 km, at a 

speed of 13.31 km/h. The distribution of the recorded point over the road network of 

Copenhagen is shown in supplementary online material, figure 1. 

Profiles of gender, age, income and educational level of the participating cyclists were 

collected by the questionnaire survey (Vedel et al. 2017). See in the supplementary 

materials, table A3, for summary statistics. 

3.2 Road network and traffic lights 
The road network and its transport-related attributes were extracted from the Open 

Street Map (2017)
1
. A total of 6,186 km of infrastructure, comprising 64,866 edges

was applied. Also, from OSM 794, traffic lights were extracted and applied to the 

study. Edges were classified regarding road types and cycle infrastructure according 

to the categorisation used in Open Street Map. The distribution of the network over 

classes is found in supplementary online materials A1 and A2. 

The edges of the network were further attributed with their proximity (closer than 50 

m) to green environments based on digital maps of forests, parks and protected areas.

More than 60 % of the road network was situated further than 50 m from green 

spaces, whereas 19% of the network was completely within 50 m of green spaces. 

For the edge dataset, we created a dummy variable indicating whether the node is in 

the first 25%, in the middle, or in the last section of the route. 

1
 The quality of OSM depends on location but is here expected to be sufficient for the purpose of the 

study. 
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Table 1. Variables included in the route and the edge datasets.
Dataset Variable name Description

Effort variables Route Distance The length of the route (km)
Edge Angle to destination An edge’s deviation from a direct line towards the

destination (degree)
Route Right turns Number of right turns along the route
Edge Right turn Whether a given edge is a right turn from the entrance

into a node
Route Left turns Number of left turns along the route
Edge Left turn Whether a given edge is a left turn from the entrance into

a node
Bikeway quality Route Bike track The proportion (0–1) of the route that has a bike track

alongside a road
Edge Bike track Whether a given edge is a bike track alongside a road
Route Bike lane The proportion (0–1) of the route that has a bike lane

alongside a road
Edge Bike lane Whether a given edge has a bike lane
Route Segregated bikeway The proportion (0–1) of the route that is a segregated

bikeway
Edge Segregated bikeway Whether a given edge is a segregated bikeway
Route Bikeway shared with

pedestrians
The proportion (0–1) of a route that is a bikeway shared
with pedestrians

Edge Bikeway shared with
pedestrians

Whether a given edge is a bikeway shared with
pedestrians

Road/environment Route Traffic road The proportion (0–1) of a route (0–1) that is along a traffic
road

Edge Traffic road Whether a given edge is a traffic road
Edge Local road Whether a given edge is a local road
Edge Green environment The percentage of the edge that is near to nature areas

5



Figure 1. Flow chart of the data processing.
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A list of all variables included in the route and the edges datasets is found in Table 1. 

4. Method
The steps of the data processing, enrichment and analysis are presented in figure 1. 

The steps are described in detail in the following sections. 

4.1 Filtering and pre-processing 
Out of the 2,753,401 originally recorded raw points, 2,162,577 remained for 

further analysis after a filtering process (Harder et al., 2011).  

4.2 Stop detection 
A core process in calculating semantic trajectories is identification of points recorded 

while moving or standing still (Parent et al., 2013). For our study, this was 

performed prior to their inclusion in the present study, and – for each point - was 

based on averaging speed, distance, and angular deviation within a spatial and 

temporal 

‘window’ around it (Jensen et al., 2009). Between stops a total of 1,267 trips were 

identified. On average, 91 points were recorded per trip. Respondents performed an 

average of 6.3 trips. 

4.3 Map-matching  
A map-matched route is the series of connected network edges that best represents a 

set of recorded GPS-points between closest to the first and last point of a trip. In the 

present case, all points of a trip are linked to their closest edge of the network. 

Therefore, each edge is marked with the number of points that are related to it. The 

route with the highest point density, i.e. number of points per unit of length, will be 

matched to the trip, (for further details, see the on-line material or visit the GitHub 

page of the projects (Snizek et al., 2011)). 

4.4 Generation of choice sets  
To generating feasible route alternatives,  we applied an approach based on labelling, 

where the network is traversed from a node of origin, edge by edge, until the 

destination node is reached or one of a set of constraints has been met (Skov-Petersen 

et al., 2010). In networks representing real world infrastructure, the number of 

potential alternatives will often be exhaustive and will not be manageable in terms of 

computation time. Therefore, a set of heuristic constraints to the search must be 

applied. At the same time, the proposed alternative needs to be realistic, i.e. a 

navigating individual would in fact consider it.  

The search was carried out in two stages. Stage 2 was only applied when no 

alternative routes had been found during stage 1. A range of combinations for the two 

stages was tested. Eventually the following was applied: 

 Sub-network: In stage 1, a sub-network was used within which the search was

performed, including only edges not more than 100 m from the matched route. In

stage 2, this distance was set to 1000 m.
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 Maximum length of the route: In stage 1, the search was stopped when the length

was 50% longer than the matched route. In stage 2, the overhead length was set to

25%. 

 Search strategy: In stage 1, a depth first search was applied with priority being

given to the edge leading most directly towards the destination. When the

destination had been reached, one step edge back was taken and the forward

search was repeated (including edges that had not been tested yet). Out of all

identified routes 20 were randomly selected. In stage 2, the forward search was

performed with no priority given to direction; here, the search was reset to the

origin every time a destination had been reached.

The code applied to perform the map matching process and generation of choice 

alternatives is available in the supplementary online information and can be obtained 

from the authors. 

To address the problems related to the potential overlap of alternative routes in a 

choice set, a path size (PS) value (Frejinger et al. 2009) was calculated for each route 

alternative. The PS is 0 in the case where an alternative has no overlap with any of the 

other alternatives and it is 1 when the alternative completely overlaps all other 

alternatives. 

For each alternative route, the distribution of road types, bicycle facilities, total length 

and the number of left-, right-, and U-turns was recorded. Turns were counted at 

nodes and were assessed as the angular deviation between the ingoing (from start- to 

end node) and the outgoing edge (left: >45⁰, <135⁰, U turn: >135⁰, <225⁰ etc.). 

An example of route choices is given in supplementary online material, figure 2. 

Compared to the route data set, creating choice sets to analyse locomotion (hereafter 

referred to as edge data set) is far simpler, only involving selecting all edges 

connected to a node based on the network topology. In our study, we excluded the 

‘entry edge’. The choice set includes edge attributes for each edge connected to the 

present node and in addition deviations between angle from the start to end node of 

the edge and the angle to the destination of the trip. Inclusion of the angle towards the 

destination is not entirely in line with the idea of locomotion as it requires a 

superficial idea of the direction towards the destination. But it was included to reflect 

some degree of wayfinding. 

4.5 Statistical model 
The choice between entire routes or between edges at a given node is estimated as 

discrete choices within the random utility framework (see, e.g. Train, 2003). Thus, the 

utility of a given choice (route or edge) j for individual n is modelled as: 

𝑈𝑛𝑗 = 𝑉𝑛𝑗 + 𝜀𝑛𝑗  

where Vnj is an observable part depending on the characteristics and εnj is stochastic 

and unobserved. Assuming that an individual is utility maximising, he or she will 

choose an alternative over another if the utility derived is greater. Using the 

conditional logit model, the probability of individual n choosing alternative k over a 

set of J alternatives can be modelled as: 
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𝑃𝑟𝑛𝑘 =
exp⁡(𝜇𝛽′𝑋𝑛𝑘)

∑ exp⁡(𝜇𝛽′𝑋𝑛𝑘)
𝐽
𝑗

where β is a vector of parameters to be estimated to the corresponding characteristics

given by X, and μ is a scale parameter taking into account the variance of the 

unobserved part of the utility. 
2

If an attribute is used as numerator, the scale parameter cancels out and the ratio 

between the attributes can be compared. In the route dataset, a natural denominator is 

distance, whereby the ratio between a given characteristic and distance can be 

interpreted as a willingness to travel further to take or avoid a route with this 

characteristic. For the edge data set, the denominator used is the angle between a 

given edge (start to end) and a direct, Euclidian approach to the destination, i.e. how 

much an individual is willing to deviate from a direct route to avoid or obtain certain 

characteristics. 

It is possible to extend the models and make them more advanced so that they can 

take heterogeneity of various sorts into account. In the present study we 

accommodated for heterogeneity by also analysing data with a random parameter 

models, where a distributions is assumed over the parameters taking the panel 

structure of the data into account. These models yielded similar results as the 

conditional logit models and consequently, we use and report results of the simplest 

approach and show results from the random parameter models in the supplementary 

online material, table A4 and A5.  

The code applied to perform the statistical analysis is available in the supplementary 

online information and can be obtained from the authors. 

5. Results

5.1 Route dataset (navigation based on wayfinding) 

First we analyse our data based on the assumption that cyclists use a wayfinding 

strategy, i.e. decide on their entire route from their point of departure. The results are 

presented in Table 2 below.  

The first set of variables all represents some kind of effort in biking; distance, the 

number of turns, and traffic lights related to the chosen route. As expected, we see 

that distance is associated with disutility, which means that cyclists prefer shorter 

routes to longer ones. We also see that the number of turns on a given route is 

associated with disutility and, that right turns are preferred to left turns.  

The next four variables in Table 2 represent different qualities of a bikeway as 

opposed to none. As expected, the results show that cyclists are more likely to choose 

a route when the proportion of any of these bikeways qualities increases. At the same 

time, there seems to be no significant difference between the different types of 

2
 This does not matter for a single model, but if one wants to compare parameter estimates between 

models, adjustments need to be made. 
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Table 2. Parameter estimates for a conditional logit model of the route data set.

Parameter
st.
error p WTT 95% Confidence interval

Distance (km) −4.16 *** 0.209 >0.0001
Left turns −0.194 *** 0.0356 >0.0001 −0.0466 −0.0646 −0.0287
Right turns −0.0789 ** 0.0350 0.0239 −0.0190 −0.0358 −0.00215
Traffic lights 0.308 *** 0.0380 >0.0001 0.0742 0.0573 0.0911
Bike track 5.56 *** 0.496 >0.0001 1.34 1.068 1.61
Bike lane 6.35 *** 1.11 >0.0001 1.53 0.986 2.07
Segregated biking lane 6.60 *** 1.06 >0.0001 1.59 1.06 2.11
Biking lane shared with pedestrians 2.58 *** 0.65 0.0001 0.620 0.309 0.931
Traffic road −2.94 *** 0.757 0.0001 −0.707 −1.07 −0.345
Shopping street −7.09 8.75 0.4178 −1.71 −5.82 2.41
Ln Pathsize correction 1.40 *** 0.151 >0.0001 0.337 0.269 0.405
N Individuals 179
N Observations 1,265
LL −883.31
McFadden’s R2 0.74

*** and ** = Significance at 1% and 5% levels respectively.
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bikeways, except for bikepaths that are shared with pedestrians, which has a 

significantly lower utility than the other bikeways, although it is still positive. 

Analysing different road types and using main road as the reference, a traffic road is 

less popular than other road types, while local roads are the most popular. All other 

road types, e.g. shopping streets and the amount of green environment along the 

chosen route are insignificant in terms of influencing the choice of route.     

Finally, we see that the variable ‘path size’ correcting for route overlap is significant 

and positive (Frejinger et al., 2009), which indicates that not correcting for this would 

introduce a bias. 

In Table 2, we also calculate the Willingness to Travel (WTT) estimates by using the 

distance, measured in kilometres, as denominator. The WTT estimates clearly 

demonstrate that the preferences for bikeway types dominate the route types. As the 

variables indicate the proportion of a route that has the given characteristics, it means 

that a respondent is, at the margin, willing to travel 13.4 m further per percentage 

increase in bike track separated from the road instead of none.  

5.2 Edge dataset (navigation based on locomotion) 
We now turn to analysing our data based on choices made between edge connecting 

nodes along a route. The results are presented in Table 3 and, once again, they show 

that the variables related to what we term effort, have a negative effect on the choice 

made at each node. The parameter estimate of ‘Angle to Destination’ shows that the 

more direct towards the destination an edge is – in terms of the angle – the higher is 

the likelihood that the cyclist will choose that edge. As was also the case for the 

results from the route data analysis, we see that turns are related to disutility, although 

this model seems to show no significant difference between left, right and U-turns. 
3

The different types of bikeways are also preferred to the reference in this model, but 

here the estimates are significantly different from each other, with the segregated 

biking paths (i.e. bike paths that do not run alongside roads with motorised traffic) 

being the most preferred. Again, the biking paths shared with pedestrians are the least 

preferred, significantly different from bike tracks and lanes. 

The variable that represents the proportion of green environment, such as parks and 

forests, is negative and significant. 

The type of roads also affects the edge choice. Traffic roads and local roads both 

affect the choice positively (over the reference). The last type of road in the model 

is shopping streets and the negative sign of the parameter indicates that these are 

less popular options compared to other kind of roads.  

3
 Notice that the actual edge that leads to the node where the choice was made was removed. 

Accordingly, U-turning edges are other edges leading from the node in an opposite direction of the 

present (>135⁰ ;< 225⁰). 
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Table 3. Parameter estimates of a conditional logit model of the edge data set.

Parameter
St.
error p WTT 95% Confidence interval

Angle to destination −1.80 *** 0.0150 >0.0001
left turn −0.948 *** 0.0156 >0.0001 −0.527 −0.547 −0.508
Right turn −0.920 *** 0.0155 >0.0001 −0.512 −0.531 −0.492
U-turn −0.905 *** 0.0568 >0.0001 −0.503 −0.566 −0.440
Bike track 0.571 *** 0.0268 >0.0001 0.318 0.288 0.348
Bike lane 0.716 *** 0.0465 >0.0001 0.398 0.347 0.449
Segregated bike lane 0.735 *** 0.0414 >0.0001 0.409 0.363 0.454
Biking lane shared with pedestrians 0.218 *** 0.0280 >0.0001 0.121 0.0908 0.152
Percentage green environment −0.0680 *** 0.0130 >0.0001 −0.0378 −0.0520 −0.0237
Traffic road 0.247 *** 0.0420 >0.0001 0.138 0.0916 0.183
Local road 0.292 *** 0.0281 >0.0001 0.162 0.131 0.193
Shopping street −0.144 *** 0.0249 >0.0001 −0.0803 −0.107 −0.0531
N Individuals 179
N Observations 83,487
LL −34,132.86
McFadden’s R2 0.49

*** = Significance at 1% level.
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Table 4. Parameter estimates of a conditional logit model of the edge data set, including significant 
interaction terms with the start or the end of the trip.

Parameter
St.
error p WTT 95% Confidence interval

Start x Angle to destination 0.303 *** 0.0327 >0.0001 0.172 0.138 0.206
Angle to destination −1.761 *** 0.0213 >0.0001 −1
End x Angle to destination −0.774 *** 0.0437 >0.0001 −0.440 −0.494 −0.385
left turn −1.01 *** 0.0171 >0.0001 −57.0 −59.5 −54.6
End x left turn 0.175 *** 0.0377 >0.0001 9.91 5.70 14.1
Right turn −0.983 *** 0.0170 >0.0001 −55.8 −58.2 −53.4
End x right turn 0.260 *** 0.0370 >0.0001 14.7 10.6 18.9
U-turn −0.893 *** 0.0565 >0.0001 −50.7 −57.1 −44.2
Bike track 0.735 *** 0.0221 >0.0001 41.8 39.1 44.5
Bike lane 0.849 *** 0.0453 >0.0001 48.2 43.0 53.4
Segregated bikeway 0.688 *** 0.0414 >0.0001 39.1 34.4 43.7
Start x bikeway shared with pedestrians −0.168 *** 0.0547 0.0021 −9.56 −15.6 −3.47
Bikeway shared with pedestrians 0.234 *** 0.0320 >0.0001 13.3 9.75 16.9
Percentage green environment −0.0641 *** 0.0131 >0.0001 −3.64 −5.10 −2.18
Start x Traffic road 0.168 ** 0.0800 0.0355 9.55 0.653 18.4
Traffic road −0.0192 0.0421 0.6491 −1.09 −5.78 3.60
Start x Shopping street 0.195 *** 0.0457 >0.0001 11.1 5.94 16.1
Shopping street −0.301 *** 0.0276 >0.0001 −17.1 −20.2 −13.9
N Individuals 179
N Observations 83,487
LL –33,852.91
McFadden’s R2 0.50

*** and ** = Significance at 1% and 5% levels respectively.
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Each choice situation (nodes) has been related to a dummy variable, which states 

whether the edge choice was made during the start (first 25% of all nodes) or the end 

(last 25% of all nodes). These two dummies were interacted with all the variables 

presented in Table 3 to see whether preferences change over the route. The results of 

a parsimonious model, where all insignificant interactions were left out, are presented 

in Table 4. 

In general, the results show that for a number of the parameters the utility vary along 

the route. The disutility of choosing an edge with a highly conflicting angle relative 

to the destination is less pronounced in the beginning of the trip, but much more 

important at the end. The results also show that the disutility of turning left or right 

diminishes at the end of the route, whereas the negative utility of U-turns remains 

constant. 

For biking paths shared with pedestrians, we see that the positive preference for this 

is largely eliminated in the beginning of the route. The positive utility related to 

traffic roads seems to only exist in the beginning of the trip, whereas the negative 

utility found for shopping streets is less negative in the beginning of the trip.  

6. Discussion
Overall, our results show that analysing preferences based on the edge datasets 

(reflecting the locomotive component of navigation) is possible and reveals similar 

results, and sometimes more nuanced results than studies based on route choices 

(discussed in details below). The two models are based on different types of data, and 

consequently are not easy to compare in terms of statistical performance. However, 

we compared the number of correct predictions in each dataset by estimating 

parameters based on random draws of 80% of the samples and then using the 

estimated parameters to predict choices on the remaining 20% of the samples. In this 

way, we were able to predict more than 80% of the choices on the edge data set, i.e. 

where the actual choice at the edges where identical to the predicted choice, and more 

than 70% of the route choices, i.e. where the predicted route is identical to the entire 

route actually biked by the cyclist. In addition to this we also compared the length of 

the predicted route that overlaps the chosen route. For both datasets, the overlap was 

about 86%. Still, the indicator is not fully comparable, as the overlap for the route 

data is potentially higher than reported here, due to the structure of the data.
4
 Yet,

they do not serve as a firm indicator as to whether commuter cyclists’ navigation is 

dominated by ‘wayfinding’ or ‘locomotion’. This may reflect that cyclists are 

combining strategies at different times and places along the route between the starting 

point and destination. This is indicated by the results shown in Table 4, where we 

show how preferences differed in the beginning and the end of a route. 

With respect to the route data set, cyclist’s preferences, the results were as expected 

and largely in line with the findings from other studies. Biking distance and the 

number of turns on a given route are associated with disutility. An interesting 

observation is that right turns are preferred to left turns. As traffic in Denmark is on 

4
 For the edge data, we can estimate the exact length of the overlap between predicted and chosen 

routes. For the route data, we only calculate the length of the correctly predicted routes in relation to 

the total length of all routes.  
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the right, the reason for the lower disutility of right turns compared to left turns is 

probably because right turns are easier to make as they do not involve having to cross 

the lane of oncoming traffic.  At traffic lights, a right turn also involves less waiting 

time for cyclists who are willing to make the turn even when the light is red
5
. We also

found that cyclists prefer routes with a high number of traffic lights which might 

represent a safer way of crossing roads compared to crossings that are not regulated 

by traffic lights. We do acknowledge that traffic lights might be installed more 

frequently along more popular routes, and thus the parameter is rather indicating a 

confounding effect. 

Turning to the edge data set, in general, we see the same pattern as for the route 

dataset. The angle to destination and turns were associated with disutility, and various 

types of bikeways were preferred. The variable that represents the proportion of green 

environment was negative and significant. This is in contrast to the findings sampled 

from the same population by Vedel et al (2017) but by the use of stated preference 

data.  A possible explanation is that these areas are sometimes darker and less safe 

compared to built-up environments and furthermore recreational quality of green 

areas varies (Panduro & Veie, 2013). Further analysis to take the time of day and age 

into account might confirm or deny this hypothesis, but we were unable to establish a 

significant relationship to validate this. 

Traffic roads (secondary arterial roads) and local roads both affect the choice of route 

positively. Although traffic roads may have much more traffic in the form of fellow 

cyclists and motor vehicles, they are often main arteries that offer an easy connection 

to other roads and central parts of the city. Local roads, on the other hand, might be 

preferred to other types of roads as they are, in general, quieter and safer. 

We have had focus on movement behaviour for the general public’s cycling 

behaviour. For future policy purposes it could also be relevant to consider different 

user groups’ preferences – gender, age but also for people with specific bike facility 

needs like cargo bikes or bikes for disabled people.  

Regarding external validity testing, our results show similar findings as Vedel et al 

(2017). The average additional cycling distance in that study was 40% compared to 

28% found here. The difference can both be due to a hypothetical bias which can be 

found in stated preferences studies as Vedel et al (2017) and to be collinear with other 

characteristics in our study causing pure effects of single characteristics to be less 

likely.  

This study and the four similar studies referred to above (Boarch et al., 2012, 

Menghini et al., 2010, Halldórsdóttir et al., 2015, and Hood et al., 2011) find that 

disutility is associated with distance and utility is associated with bicycle facilities 

along roads and segregated bikeways.  The disutility associated with turns found in 

the present study was also reported by Boarch et al. (2012), Hood et al. (2011), and 

Halldórsdóttir et al.(2015). 

5
 This is illegal in most places, although it is often practiced 
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Besides an interest in the cognitive aspects of navigation including edge-based choice 

set generation, a number of additional reasons for further pursuing this type of 

analysis in future studies on movement behaviour and navigation can be suggested: 

 There is no need to generate alternatives as in wayfinding, which means that

potential selection biases can be avoided.

 Locomotion as part of navigation can take into account reactions to emerging or

sudden, dynamic events. Reaction to unforeseen congestion, changes in traffic

signals, malfunctioning street lights, etc. cannot be analysed with an assumption

of a priori knowledge for obvious reasons.

 Edge-based analysis can be applied on-the-fly, i.e. while navigating. That is, route

preferences can be revealed during navigation and applied to forward route

suggestions.

 Edge-based analysis can be conducted on the basis of smaller samples (of routes

or respondents) than when based on route datasets.

 It may add more detailed estimates for on-line navigation tools for cyclists (see

e.g. Google, 2018; Lovelace et al., 2017) and in relation to agent based simulation

of bicyclists behaviour (Snizek, 2015; Yeboah, 2014, Smith, et al. 2017).

On the other hand, the analysis of edge datasets can represent an econometric 

challenge due to the many observations, each of which contains little information, and 

this is especially the case if heterogeneity is to be addressed further than we do here. 

Yet it poses an interesting way ahead, e.g. in terms of linking it to the theory of 

planned behaviour (Ajzen, 1991) which links behaviour to attitudes, norms and 

perceived behavioural control. 

This is an initial attempt to analyse edge datasets, and it has proven to be useful. We 

applied it to a commuting case, where one would expect the routes to be well-known 

and preferences well-established. Analysing data in the same way for recreational 

cyclists or new-comers to an area, e.g. tourists, may reveal new aspects as we would 

expect locomotive behaviour to be more dominant (especially in the absence of map-

based information). 

It may be beneficial for future research to address: 

 The conditions and situations that in particular would lead to dominance of one or

the other navigation mode (Montello and Sas, 2006).

 The development of methods that can analyse wayfinding and locomotion in

conjunction, and thereby revealing clusters of behaviour that are influenced by

both modes of navigation.

 Methods that may enable comparison of the utility provided by the two modes of

analysis. Ways ahead here may be the use of the recursive logit model as

suggested by Fosgerau et al. (2013).

Finally a note should be made on the sample and validity of the results: while 

representativeness may be reasonable, it is worth noticing that there may be a self-

selection bias in that people volunteer to track themselves, and it is possible that they 

as a consequence change behaviour compared to their daily routines. This latter may 

be avoided to some extend by tracking people over longer time. 
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7. Conclusion
This study has analysed bicyclists’ navigational behaviour in Copenhagen. The 

findings indicate that navigation and route preference can be analysed based on the 

assumptions that subjects have perfect knowledge about their environment (in our 

study termed ‘wayfinding’) and that it can also be based on perception of the 

immediate, perceptible environment (here termed ‘locomotion’). Analyses of the two 

choice sets, generated from cyclists’ tracks recorded by GPS, reveal similar 

tendencies of several of the environmental attributes. 

Navigation based on wayfinding is the most commonly applied approach in present 

day route preference studies in transport modelling. A main concern of studies is the 

generation of choice sets including alternative, unbiased routes. This obstacle can be 

avoided by applying approaches that assume that navigation is based on locomotion, 

where the choice set of potential edges is given with no further simulation required. 

Further, our study reveals new aspects of navigation behaviour as, for example, 

different preferences along the route. Therefore, this study suggests that future studies 

of route preferences should consider conducting analyses that are based on edge 

selection instead of, or in combination with, analyses that are based entirely on 

choices between routes as in wayfinding navigation.  
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