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Abstract. We introduce a hybrid proximal point algorithm and establish

its strong convergence to a common solution of a proximal point of a lower
semi-continuous mapping and a fixed point of a demicontractive mapping in

the framework of a CAT(0) space. As applications of our new result, we

solve variational inequality problems for these mappings on a Hilbert space.
Illustrative example is given to validate theoretical result obtained herein.

1. Introduction

Let H be a real Hilbert space with the inner product 〈., .〉 which induces the norm
||.||, and T a self mapping on a nonempty, closed and convex subset C of H. A
point z ∈ C is called a fixed point of T if and only if Tz = z. The set of all fixed
points of T is denoted by F (T ).
Recall that a mapping T : C → C is called k-strict pseudo-contraction (in the sense
of Browder-Petryshyn [8] ) if for all x, y ∈ C, there exists k ∈ [0, 1) such that

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2.

Strict pseudo-contractions have many applications because of their connection with
inverse strongly monotone operators. Indeed, if A is a strongly monotone operator,
then T = I − A is a strict pseudo-contraction, where I is identity mapping on C
and the problem of finding zeros for A reduces to a fixed point problem for T , and
vice versa ( [13, 47]).

A mapping T : C → C is called nonexpansive if for all x, y ∈ C, we have

||Tx− Ty|| ≤ ||x− y||.

Note that the class of strict pseudo-contractions includes the class of nonexpansive
mappings.
The mapping T is said to be demicontractive (or k-demicontractive) if there exists
k ∈ (0, 1) such that

(1.1) ||Tx− p||2 ≤ ||x− p||2 + k||Tx− x||2 ∀ x ∈ C, p ∈ F (T ).

Note that, the class of demicontractive mappings properly includes the class of
quasi-nonexpansive mappings for k ≥ 0. A mapping T : C → H is called γ−inverse
strongly monotone (see [11]) if there exists a positive real number γ such that

〈Tx− Ty, x− y〉 ≥ γ||Tx− Ty||2 for all x, y ∈ C.

Key words and phrases. Proximal point, Demicontractive mapping, Fixed point, 4 conver-
gence, Strong convergence, CAT(0) space. 2010 Mathematics Subject classification. 47H09, 47J25.



2 G. C. UGWUNNADI 1, A. R. KHAN 2 AND M. ABBAS 3

The Mann iteration process [41] is defined by the sequence {xn} :

(1.2)

{
x1 = x ∈ C

xn+1 = αnxn + (1− αn)Txn, n ≥ 1
,

where {αn}∞n=1 ⊂ (0, 1).
The problem of approximating fixed points of nonexpansive mappings via the above
iteration process has been extensively studied by Reich [42] (in this connection, see
also [43]).

It is known [42] that if T is nonexpansive on a closed and convex subset C of a
uniformly convex Banach space with a Frecht differentiable norm and F (T ) 6= ∅,
then the sequence {xn} generated by Mann iteration process converges weakly to a
fixed point of T provided that the control sequence {αn}∞n=1 satisfies

∑∞
n=1 αn(1−

αn) =∞. The Mann iterative algorithm also gives weak convergence in the broader
setting of strict pseudocontractions [37] (see also [5]).

However, in view of the counterexample in [22], Mann iterative algorithm does
not converge strongly, in general. Thus, to obtain strong convergence, one needs
to modify the Mann iterative algorithm and strengthen the hypotheses on the
mapping. Recently, Hussain et al. [27] obtained strong convergence of an iterative
method for nonexpansive mappings. Marino et al. [36] showed that the result in
[27] is also true for strict pseudo-contractions under different assumptions on the
coefficients.

On the other hand, the proximal point algorithm (PPA) is an optimization
method which provides a minimizer of a convex lower semicontinuous function on
a Hilbert space. Its origin goes back to the work in [39] and references therein.
Rockafellar [45] raised a question as to whether the PPA always converges strongly
which was answered in negative by Guler [24] (in this connection see also [10] and
[5]).

The structure of ambient space plays a vital role in solving a fixed point equation.
Banach space being a vector space possesses a convex structure in a natural way.
Thus geometric properties of Banach space provide a natural setting to study the
existence of fixed points of certain mappings.

However, metric spaces do not have the convex structure. Ever since Takahashi
[49], studied fixed points of nonexpansive mappings in the setting of convex metric
spaces, different convex structures have been introduced in metric spaces. CAT(0)
space is a typical example of a convex metric space and Hilbert ball with the hyper-
bolic metric is another important example of CAT(0) spaces ( for details, see the
book by Goebel and Reich [23]). It is well known that pre-Hilbert spaces, R-trees
[7] and Euclidean buildings [9] are CAT(0) spaces. For a thorough discussion of
these spaces and their role in various branches of mathematics, we refer to [7] and
references therein. The study of fixed points in the setup of CAT(0) spaces was ini-
tiated by Kirk ([29, 30]). He showed that every nonexpansive mapping defined on a
nonempty closed, convex and bounded subset of a CAT(0) space always has a fixed
point. Lim [32] introduced the notion of 4-convergence in metric spaces. Kirk
and Panyanak [31] studied this concept in the framework of CAT(0) spaces and
showed that many results which involve weak convergence such as Opial property
and Kadec-Klee property have precise analogues in this setting. Later on, Dhom-
pongsa and Panyanak [20] obtained 4-convergence results for the Picard, Mann,
and Ishikawa algorithms in CAT(0) spaces.
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Recently, many algorithms for solving optimization problems in linear spaces (Eu-
clidean spaces, Hilbert spaces, and Banach spaces) have been studied in the setup
of differentiable manifolds ( [21, 33, 44]).

Bačák [4] has considered the PPA in the framework of a CAT(0) space (X, d) as
follows:

Let f : X → (−∞,∞] be a proper convex and lower semi-continuous function.
Define a sequence {xn} by x1 ∈ X

xn+1 = arg min
y∈X

(
f(y) + 1

2λn
d2(y, xn)

)
,

where λn > 0, and n ≥ 1. It has been shown that if f has a minimizer and∑∞
n=1 λn =∞, then {xn}, 4−converges to the minimizer of f [3].

Cholamjiak et al. [15] established that if f : X → (−∞,∞] is a proper convex and
lower semi-continuous function, where X is a complete CAT(0) space. Let T1 and T2
be nonexpansive mappings onX such that Ω := F (T1)

⋂
F (T2)

⋂
arg miny∈X f(y) 6=

∅. Define for arbitrary x0 ∈ X, sequence {xn} by:

(1.3)


zn = arg min

y∈X
[f(y) + 1

2λn
d2(y, xn)]

yn = (1− βn)xn ⊕ βnT1zn
xn+1 = (1− αn)T1xn ⊕ αnT2yn

where {αn} and {βn} are sequences such that for some a, b, we have 0 < a ≤
αn, βn ≤ b < 1 and {λn} is a sequence such that λn ≥ λ > 0 for all n ∈ N and for
some λ. Then {xn} strongly converges to a point in Ω.
Recently Chang et al. [12] introduced the following S− type iteration process to
compute minimizer of a convex function and a common fixed point of asymptotically
nonexpansive mappings in CAT(0) spaces for an arbitrary x0 ∈ C, let {xn} be the
sequence defined by:

(1.4)


zn = arg min

y∈C
[f(y) + 1

2λn
d2(y, xn)]

yn = αnxn ⊕ βnTn1 xn ⊕ γnTn2 zn
xn+1 = δnT

n
2 xn ⊕ ηnSn1 xn + ξnS

n
2 yn,

where Ω := F (T1)
⋂
F (T2)

⋂
F (S1)

⋂
F (S2)

⋂
arg miny∈C f(y) 6= ∅ and {αn},

{βn}, {γn}, {δn}, {ηn}, {ξn} are sequences in [0,1] with conditions αn+βn+γn = 1
and δn + ηn + ξn = 1, where 0 < a ≤ αn, βn, γn, δn, ηn, ξn ≤ b < 1. They proved
strong and 4−convergence of the sequence {xn} to a point in Ω .

In this paper, we establish strong convergence of a hybrid proximal point algo-
rithm to a fixed point of an L-Lipschitizian demicontractive mapping and minimizer
of a proper convex and lower semi-continuous function defined on a nonempty closed
and convex subset of a complete CAT(0) space, that is, we find a common solution
for a fixed point of demicontractive mapping and minimizer of a proper convex and
lower semi-continuous function. We also give some applications of our result.



4 G. C. UGWUNNADI 1, A. R. KHAN 2 AND M. ABBAS 3

2. Preliminaries

We denote by N, R+, R the set of natural numbers, the set of nonnegative real
numbers and the set of real numbers, respectively.

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y (or,
a geodesic from x to y) is a map γ : [a, b] ⊆ R→ X such that γ(a) = x, γ(b) = y,
and d(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ [a, b]. In particular, γ is an isometry and
d(x, y) = b − a. A geodesic segment in X is the image γ([a, b]) of a geodesic path
in X joining x and y. A metric space X is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic if there
is exactly one geodesic joining x and y for each x, y ∈ X. A geodesic segment is
denoted by [x, y], if it is unique.

A geodesic triangle 4(x1, x2, x3) in a geodesic space X consists of three points
x1, x2, x3 of X, called the vertices of 4(x1, x2, x3) and three geodesic segments
joining each pair of vertices called the edges of4(x1, x2, x3). A comparison triangle
of a geodesic triangle 4(x1, x2, x3) is the triangle 4̄(x1, x2, x3) := 4(x̄1, x̄2, x̄3) in
the Euclidean space R2 such that

d(xi, xj) = dR2(x̄i, ȳj), ∀i, j = 1, 2, 3.

A geodesic space X is a CAT(0) space, if for each geodesic triangle 4(x1, x2, x3) in
X and its comparison triangle 4̄ := 4(x̄1, x̄2, x̄3) in R2, the following comparison
axiom called CAT(0) inequality

d(x, y) ≤ dR2(x̄, ȳ)

is satisfied for all x, y ∈ 4 and all comparison points x̄, ȳ ∈ 4̄.
The reader interested in detailed study of such spaces is referred to [7] and references
therein.

Let x, y ∈ X and λ ∈ [0, 1]. Throughout this paper, we will use the notation
λx⊕ (1− λ)y for the unique point z ∈ [x, y] satisfying

d(z, x) = (1− λ)d(x, y) and d(z, y) = λd(x, y).

A subset C of a CAT(0) space is convex if it includes each geodesic segment joining
any two points in C, that is, [x, y] ⊆ C for all x, y ∈ C.

Berg and Nikolaev [6] introduced the concept of quasilinearization in a metric
space X as follows:

Denote a pair (a, b) ∈ X ×X by
−→
ab and call it a vector. The quasilinearization

is a map 〈., .〉 : (X ×X)× (X ×X)→ R defined by

〈
−→
ab,
−→
cd〉 =

1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
, ∀a, b, c, d ∈ X.

It is easily seen that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and

(2.1) 〈−→ax,
−→
cd〉+ 〈

−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 for all a, b, c, d, x ∈ X.

We say that X satisfies the Cauchy-Schwarz inequality if

(2.2) 〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d)

for all a, b, c, d ∈ X. It is known that a geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality [6].

Using the concept of a quasilinearization, Liu and Chang [34] defined demicontrac-
tive mappings in CAT(0) spaces as follows:
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Definition 2.1. Let (X, d) be a CAT(0) space. A mapping T : X → X is said to
be demicontractive if F (T ) 6= ∅ and there exists a constant λ ∈ [0, 1) such that

〈
−−→
Txp,−→xp〉 ≤ d2(x, p)− λd2(x, Tx), ∀ x ∈ X, p ∈ F (T )

It is easy to show that the above inequality is equivalent to

d2(Tx, p) ≤ d2(x, p) + (1− 2λ)d2(x, Tx).

which implies

(2.3) d2(Tx, p) ≤ d2(x, p) + kd2(x, Tx), where k = 1− 2λ.

Lemma 2.2. [20] [17] Let X be a CAT(0) space, x, y, z ∈ X and λ ∈ [0, 1]. Then

(i): d(λx⊕ (1− λ)y, z) ≤ λd(x, z) + (1− λ)d(y, z) .
(ii): d2(λx⊕ (1− λ)y, z) ≤ λd2(x, z) + (1− λ)d2(y, z)− λ(1− λ)d2(x, y).
(iii): d2(λx⊕ (1− λ)y, z) ≤ λ2d2(x, z) + (1− λ)2d2(y, z) + 2λ(1− λ)〈−→xz,−→yz〉.

Let {xn} be a bounded sequence in a complete CAT(0) space X. For x ∈ X, we
set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is well known that in a CAT(0) space, A({xn}) consists of exactly one point( [19]).
A sequence {xn} in X is called 4−convergent to x ∈ X, denoted by 4 − lim

n
xn

= x if x is the unique asymptotic center of {un}, for every subsequence {un} of
{xn}.

Lemma 2.3. [31] Every bounded sequence in a complete CAT(0) space always has
a 4−convergent subsequence.

Lemma 2.4. [18]If {xn} is a bounded sequence in a closed and convex subset C of
a complete CAT(0) space, then the asymptotic center of {xn} is in C.

Let {xn} be a bounded sequence in a complete CAT(0) space X, and C be a
closed and convex subset of X which contains {xn}. We employ the notation

{xn}⇀ w ⇔ lim sup
n→∞

d(xn, w) = inf
x∈C

(lim sup
n→∞

d(xn, x)).

We note that {xn}⇀ w if and only if A({xn}) = {w} (see [40]).

Lemma 2.5. [40] If {xn} is a bounded sequence in a closed and convex subset C
of a complete CAT(0) space, then 4− lim

n→∞
xn = p implies that {xn}⇀ p.

Lemma 2.6. [26] Let {xn} be a sequence in a complete CAT(0) space X, and
x ∈ X. Then {xn} is 4−convergent to x if and only if lim supn→∞〈−−→xxn,−→xy〉 ≤ 0
for all y ∈ X.
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A function f : C → (−∞,∞] defined on a convex subset C of a CAT(0) space is
convex if, for any x and y in C with geodesic segment [x, y] := {γx,y(λ) : 0 ≤ λ ≤
1} := {λx⊕ (1− λ)y : 0 ≤ λ ≤ 1}, the function f ◦ γ is convex, that is,

f(γx,y(λ)) := f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

For examples of convex functions in CAT(0), we refer to [12].
For any λ > 0, define the Moreau-Yosida resolvent of f in CAT(0) space X as

follows:

(2.4) Jλ(x) = arg min
y∈X

[
f(y) +

1

2λ
d2(y, x)

]
, ∀ x ∈ X.

Let f : X → (−∞,∞] be a proper convex and lower semi-continuous function. It
is known [1] that the set F (Jλ) of fixed points of the resolvent associated with f
coincides with arg min

y∈X
f(y), the set of minimizers of f . Also for any λ > 0, the

resolvent Jλ of f is nonexpansive [25].

Lemma 2.7. (Sub-differential inequality [2]) Let (X,d) be a complete CAT(0) space
and f : X → (−∞,∞] a proper convex and lower semi-continuous. Then, for all
x, y ∈ X and λ > 0, the following inequality holds:

(2.5)
1

2λ
d2(Jλx, y)− 1

2λ
d2(x, y) +

1

2λ
d2(x, Jλx) + f(Jλx) ≤ f(y).

Lemma 2.8. (The resolvent identity [25, 39]) Let (X,d) be a complete CAT(0)
space and f : X → (−∞,∞] a proper convex and lower semi-continuous. Then the
following identity holds:

Jλx =
(λ− µ

λ
Jλx⊕

µ

λ
x
)

for all x ∈ X and λ > µ > 0.

Lemma 2.9. ([35]) If {an} is a sequence of real numbers and there exists a sub-
sequence {ni} of {n} such that ani

< ani+1 for all i ∈ N, then there exists a
nondecreasing sequence {mk} ⊂ N such that mk →∞ and the following properties
are satisfied:

amk
≤ amk+1 and ak ≤ amk+1.

for all sufficiently large numbers k ∈ N. In fact, mk = max{j ≤ k : aj < aj+1}.

Lemma 2.10. ( [50]) If {an} is a sequence of nonnegative real numbers satisfying
the following inequality:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where, (i) {αn} ⊂ [0, 1],
∑
αn =∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 0) and∑

γn <∞. Then, an → 0 as n→∞.

The condition of demicontractivity or the more restrictive condition of quasi-
nonexpansivity is not sufficient for the convergence of the Mann iteration, even in
finite dimensional spaces; some additional smoothness properties of the mapping T
, like the continuity or demiclosedness are required (cf. [14]).

Definition 2.11. [14] A self mapping T on a Banach space is said to be demiclosed
at y, if for any sequence {xn} which converges weakly to x, and if the sequence
{T (xn)} converges strongly to y, then T (x) = y.
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In particular, if y = 0, then T is demiclosed at 0. As the concept of ∆-
convergence in CAT(0) space is analogue of weak convergence in Banach space,
so the following is an analogue of Definition 2.11 in CAT(0) space.

Lemma 2.12. [40] Let X be a complete CAT(0) space. A mapping T : X → X
is said to be ∆-demiclosed at 0, if for any bounded sequence {xn} in X such that
4− lim

n→∞
xn = p and lim

n→∞
d(xn, Txn) = 0, we have Tp = p.

3. Main result

Theorem 3.1. Let (X, d) be a complete CAT(0) space, f : X → (−∞,∞] a proper
convex and lower semi-continuous function and T : X → X an L-Lipschitizan demi-
contractive mapping such that T is ∆-demiclosed at 0 and Ω := F (T )

⋂
arg min
y∈X

f(y) 6=

∅. If {αn}∞n=1 and {βn}∞n=1 are sequences in (0,1) satisfying the following condi-
tions:

(c1) limn→∞ αn = 0;
(c2)

∑∞
n=1 αn =∞;

(c3) 0 < ε ≤ βn < 1− 2k, ∀n ≥ 1 and some ε > 0 and k ∈ [0, 1),

then the following hybrid proximal point algorithm {xn}∞n=1 defined for any x1 ∈
X,

(3.1)


zn = arg min

y∈X
[f(y) + 1

2λn
d2(y, xn)]

yn = ((1− αn)zn)
xn+1 = (1− βn)zn ⊕ βnTyn

converges strongly to p ∈ Ω.

Proof. Let p ∈ Ω. Then f(p) ≤ f(y), ∀ y ∈ X. Thus, by Lemma 2.7, we obtain

f(p) +
1

2λn
d2(p, p) ≤ f(y) +

1

2λn
d2(y, p), ∀ y ∈ X,

and hence it follows from (2.5) that p = Jλn
p, ∀ n ≥ 1. Indeed, from (2.4) and

(3.1) , we have zn = Jλn
xn and as Jλn

is nonexpansive (see [25]), so we obtain

d(zn, p) = d(Jλnxn, Jλnp) ≤ d(xn, p).

Using (3.1) and Lemma 2.2 (ii), we obtain

d2(yn, p) = d2((1− αn)zn), p)

≤ αnd
2(0, p) + (1− αn)d2(zn, p)− αn(1− αn)d2(0, zn).



8 G. C. UGWUNNADI 1, A. R. KHAN 2 AND M. ABBAS 3

Also from (3.1) and (2.3), we obtain

d2(xn+1, p) = d2((1− βn)zn ⊕ βnTyn, p)
≤ (1− βn)d2(zn, p) + βnd

2(Tyn, p)− βn(1− βn)d2(zn, T yn)

≤ (1− βn)d2(zn, p) + βn[d2(yn, p) + kd2(yn, Tyn)]

−βn(1− βn)d2(zn, T yn)

≤ (1− βn)d2(zn, p) + βnd
2(yn, p) + βnk[d(yn, zn) + (zn, T yn)]2

−βn(1− βn)d2(zn, T yn)

≤ (1− βn)d2(zn, p) + βnd
2(yn, p) + 2kβnd

2(yn, zn)

−βn(1− βn − 2k)d2(zn, T yn)(3.2)

≤ (1− βn)d2(zn, p) + βnd
2(yn, p)

+β[αnd
2(0, zn) + (1− αn)d2(zn, zn)− αn(1− αn)d2(0, zn)]

−βn(1− βn − 2k)d2(zn, Tyn)

≤ (1− αn)d2(zn, p) + βnd
2(yn, p) + 2kβnα

2
nd

2(0, zn)

−βn(1− βn − 2k)d2(zn, Tyn)

≤ (1− βn)d2(zn, p) + αnβnd
2(0, p) + (1− αn)βnd

2(zn, p)

−αnβn(1− αn)d2(0, zn) + 2kβnα
2
nd

2(0, zn)

−βn(1− βn − 2k)d2(zn, Tyn)

≤ (1− αnβn)d2(xn, p) + (1− αnβn)d2(0, p)

−αnβn[1− αn − 2kαn]d2(0, zn)

−βn(1− βn − 2k)d2(zn, Tyn)

≤ (1− αnβn)d2(xn, p) + (1− αnβn)d2(0, p)

≤ max{d2(xn, p), d
2(0, p)}.

By induction, we obtain

d2(xn, p) ≤ max
{
d2(x1, p), d

2(0, p)
}
.

Thus {xn}∞n=1 is bounded, and hence {yn}∞n=1 is bounded. By (3.1) and Lemma
2.2 (iii), we have

(3.3) d2(yn, p) ≤ α2
nd

2(0, p) + (1− αn)2d2(zn, p) + 2αn(1− αn)〈−→0p,−→znp〉.

Substituting (3.3) into (3.2), we obtain

d2(xn+1, p) ≤ (1− αnβn)d2(zn, p) + 2αnβn[αnd
2(0, p) + 2kαnd

2(0, zn)

+2(1− αn)〈−→0p,−→znp〉]− βn(1− βn − 2k)d2(zn, Tyn)

≤ (1− αnβn)d2(xn, p) + 2αnβn[αnd
2(0, p) + 2kαnd

2(0, zn)

+2(1− αn)〈−→0p,−→znp〉]− βn(1− βn − 2k)d2(zn, Tyn)(3.4)

≤ (1− αnβn)d2(xn, p) + 2αnβn[αnd
2(0, p)

+2kαnd
2(0, zn) + 2(1− αn)〈−→0p,−→znp〉].(3.5)

As {xn} and {zn} are bounded, so there exists D > 0 such that

[αnd
2(0, p) + 2kαnd

2(0, zn) + 2(1− αn)〈−→0p,−−→xnp〉] ≤ D.
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Now from (3.4), we obtain

βn(1− βn − 2k)d2(zn, Tyn) ≤ d2(xn, p)− d2(xn+1, p)

+αnβn[D − d2(xn, p)].(3.6)

We have now the following two cases.
Case 1: Assume that {d(xn, p)} is non-increasing. Then {d(xn, p)} is convergent.
It follows from (3.6) that

βn(1− βn − 2k)d2(zn, Tyn)→ 0 as n→∞
which implies that

(3.7) d(zn, Tyn)→ 0 as n→∞
Now from (3.1) and Lemma 2.2 (i), we obtain

d(yn, zn) = d(((1− αn)zn), zn)

≤ αnd(0, zn) + (1− αn)d(zn, zn)→ 0 as n→∞.(3.8)

By (3.7) and (3.8), we obtain that

(3.9) d(yn, T yn) ≤ d(yn, zn) + d(zn, T yn)→ 0 as n→∞.
Note that

1

2λn
d2(zn, p)−

1

2λn
d2(xn, p) +

1

2λn
d2(xn, zn) ≤ f(p)− f(zn).

As f(p) ≤ f(zn) for all n ≥ 1, so we have

(3.10) d2(xn, zn) ≤ d2(xn, p)− d2(zn, p).

Thus

d2(xn+1, p) ≤ (1− βn)d2(zn, p) + βnd
2(yn, p)2kα

2
nβnd

2(0, zn)

≤ (1− βn)d2(xn, p) + αnβnd
2(0, p) + (1− αn)βnd

2(zn, p)

−αnβn(1− αn − 2kαn)d2(0, zn)

≤ (1− βn)d2(xn, p) + αnβnd
2(0, p) + (1− αn)βnd

2(zn, p).

Hence

d2(xn, p) ≤ 1

βn

(
d2(xn, p)− d2(xn+1, p)

)
+αnd

2(0, p) + (1− αn)d2(zn, p).(3.11)

Now by (3.10) and (3.11), we have

d2(xn, zn) ≤ 1

βn

(
d2(xn, p)− d2(xn+1, p)

)
+αn

(
d2(0, p)− d2(zn, p)

)
.

Since {xn} and {zn} are bounded and {d(xn, p)} is non-increasing sequence, there-
fore lim

n→∞
d(xn, zn) = 0 and lim

n→∞
d(xn, yn) = 0. Also from (3.9), we obtain that

lim
n→∞

d(xn, T yn) = 0

and

d(xn, Txn) ≤ d(xn, yn) + d(yn, T yn) + d(Tyn, Txn)

≤ (1 + L)d(xn, yn) + d(yn, Tyn).
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Thus

(3.12) lim
n→∞

d(xn, Txn) = 0.

As λn ≥ λ > 0, so by Lemma 2.8 and Lemma 2.2(i), we obtain

d(Jλxn, Jλn
xn) = d

(
Jλxn, Jλ

(λn − λ
λn

Jλnxn ⊕
λ

λn
xn

))
≤ d(xn, (1−

λ

λn
)Jλn

xn ⊕
λ

λn
xn)

≤ (1− λ

λn
)d(xn, zn)→ 0 as n→∞.

Also,

(3.13) d(xn, Jλxn) ≤ d(xn, zn) + d(zn, Jλxn)→ 0 as n→∞.
Since {xn} is bounded and X is a complete CAT(0) space, therefore by Lemma

2.3, there exists a subsequence {xni
} of {xn} such that 4− limxni

= v ∈ X. Then,
from (3.12) and the fact that T is ∆-demiclosed at 0, we obtain that v ∈ F (T ).
From (3.13) and the fact that Jλ is nonexpansive [25], we have v ∈ Ω. By Lemma
2.6, we have

(3.14) lim sup〈−→0v,−−→xnv〉 ≤ 0.

Note that from (2.1) and (2.2), we obtain

〈−→0v,−→znv〉 = 〈−→0v,−−−→znxn〉+ 〈−→0v,−−→xnv〉
≤ d(0, v)d(zn, xn) + 〈−→0v,−−→xnv〉,

so from lim
n→∞

d(xn, zn) = 0 and (3.14), we have

lim sup〈−→0v,−→znv〉 ≤ 0.

Using v := p in (3.5), we obtain that

d2(xn+1, p) ≤ (1− αnβn)d2(xn, v) + 2αnβn[αnd
2(0, v) + 2kαnd

2(0, zn)

+(1− αn)〈−→0v,−→znv〉].(3.15)

Consequently,
d2(xn+1, v) ≤ (1− αnβn)d2(xn, v) + αnβnσn,

where σn := αnd
2(0, v) + 2kαnd

2(0, zn) + (1 − αn)〈−→0v,−→znv〉. It follows from
Lemma 2.10 that d(xn, v)→ 0 as n→∞, that is, xn → v as n→∞ .

Case 2: Assume that {d(xn, p)}n≥1 is non-decreasing sequence. Now, there exists
a subsequence {ni} of {n} such that

d(xni
, p) < d(xni+1, p)

for all i ∈ N. Now by Lemma 2.9, there exists an increasing sequence {mj}j≥1 such
that mj → ∞, d(xmj

, p) ≤ d(xmj+1, p) and d(xj , p) ≤ d(xmj+1, p) for all j ≥ 1.
Also from (3.6) and the fact that αmj

→ 0, we obtain

βmj (1− βmj − 2k)d2(zmj , Txmj ) ≤ d2(xmj , p)− d2(xmj+1, p)

+αmjβmj [D − d2(xmj , p)].

This implies d(zmj , Txmj ) → 0 as j → ∞. Thus, as in Case 1, we obtain that
d(xmj

, Txmj
)→ 0 as j →∞. Following arguments similar to those in the proof of
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Case 1, we get lim sup〈−→0v,−−−→xmj
v〉 ≤ 0. Also from the inequality (3.15), we obtain

that,

d2(xmj+1, p) ≤ (1− αmjβmj )d2(xmj , v)

+2αmjβmj [αmjd
2(0, v) + 2kαmjd

2(0, zmj )(3.16)

+(1− αmj
)〈−→0v,−−−→zmj

v〉]

which implies that

αmj
βmj

d2(xmj
, p) ≤ d2(xmj

, v)− d(xmj+1, p) + 2αmj
βmj

[αmj
d2(0, v)

+2kαmjd
2(0, zmj ) + (1− αmj )〈−→0v,−−−→zmjv〉]

In particular, d2(xmj
, v) ≤ d2(xmj+1, v) and αmj

βmj
> 0 give that

d2(v, xmj
) ≤ [αmj

d2(0, v) + 2kαmj
d2(0, zmj

) + (1− αmj
)〈−→0v,−−−→zmj

v〉].

Using lim sup〈−→0v,−−−→zmj
v〉 ≤ 0 and the fact that αmj

→ 0 as j → ∞, we obtain that
d(xmj

, v) → 0 as j → ∞. This together with (3.16) implies that d(xmj+1, v) → 0
as j →∞. But d(xj , v) ≤ d(xmj+1, v), for all j ≥ 1. Thus we obtain that xj → v.
Hence the result follows. �

Remark 3.2. Theorem 3.1 extends the result of Bačák [4] from weak convergence
to strong convergence and the result of Cholamjiak et al. [15] from nonexpanvive
mapping to Lipschitzian demicontractive mapping. Also Theorem 3.1 extended
the result in [36] from strict pseudo-contractive mapping in a real Hilbert space to
Lipschitzian demicontractive mapping in a more general space than Hilbert space.
We studied a new hybrid proximal point algorithm for solving convex minimization
problem as well as fixed point problem of Lipschitzian demicontractive mappings
in CAT(0) spaces. Our method of proof is different from that of Cholamjiak et al.
[15] and Chang et al. [12].

Remark 3.3. Since every Hilbert space is a complete CAT(0) space [28], there-
fore Theorem 3.1 is an extension and generalization of the results of Guler [24],
Rockafellar [45] and Kamimura and Takahashi [48].

4. Applications

Let C be a nonempty closed and convex subset of a real Hilbert space. The
normal cone for C at a point x ∈ C, denoted by NC(x), is defined by

NC(x) = {x∗ ∈ H : 〈y − x, x∗〉 ≤ 0,∀ y ∈ C}.

For a proper lower semicontinuous convex function f : H → (−∞,∞], the subdif-
ferential mapping ∂f of f is defined by

∂f(x) = {x∗ ∈ H : f(x) + 〈y − x, x∗〉 ≤ f(y), ∀ x, y ∈ H}.(4.1)

Rockafelllar [46] proved that ∂f in (4.1) is a maximal monotone operator. The
mapping (I + λ∂f)−1 is called the resolvent of the operator ∂f with parameter
λ > 0, so the proximal operator is equivalent to resolvent of the subdifferential
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operator, that is,

x = arg min
x

(f(x) +
1

2λ
||x− u||22)

⇔ 0 ∈ ∂f(x) +
1

λ
(x− u)

⇔ u ∈ x+ λ∂f(x)

⇔ x ∈ (I + λ∂f)−1(u).(4.2)

Let iC be the indicator function of C, that is,

iC(x) =

{
0, if x ∈ C
∞, if x /∈ C

Then iC : H → (−∞,∞] is a lower semicontinuous function on H and ∂iC is a
maximal monotone mapping. Let Jλx = (I + λ∂iC)−1x for all λ > 0 and x ∈ H.
From the fact that ∂iCx = NCx for x ∈ C, (see [47]), we obtain

u ∈ Jλ ⇔ x ∈ u+ λ∂iCu⇔ x ∈ u+ λNCu

⇔ x− u ∈ λNCu⇔ 〈x− u, y − u〉 ≤ 0, ∀y ∈ C
⇔ u = PCx;(4.3)

but x ∈ (I + λ∂f)−1(u), and so it follows that

x = arg min
x

(iC(x) +
1

2λ
||x− u||22)

⇔ x ∈ (A+ ∂iC)−1(0)

⇔ 0 ∈ (A+ ∂iC)x⇔ −Ax ∈ iCx
⇔ 〈−Ax, y − x〉 ≤ 0, ∀ y ∈ C
⇔ x ∈ V I(C,A)

and hence

x = arg min
x

(f(x) +
1

2λ
||x− u||22)

⇔ x ∈ (A+ ∂iC)−1(0)

⇔ x ∈ V I(C,A).(4.4)

Now using Theorem 3.1, we obtain strong convergence theorems for approximating
a fixed point of an L-Lipschitizan demicontractive mapping and solution of the
variational inequality problem for γ-inverse monotone mapping.

Theorem 4.1. Let C be a nonempty closed and convex subset of a real Hilbert
space H, T : C → C an L-Lipschitizan demicontractive mapping such that T is
demiclosed at 0 and A : C → H be a γ-inverse strongly monotone mapping and
B : C → H be a maximal monotone such that F (T )

⋂
V I(C,A) 6= ∅. If {αn}∞n=1,

{βn}∞n=1 are sequences in (0,1) and {λn} ∈ (a, b) ⊂ (a, 2λ) satisfying the following
conditions:

(c1) limn→∞ αn = 0;
(c2)

∑∞
n=1 αn =∞;

(c3) 0 < ε ≤ βn < 1− 2k,
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then the following hybrid proximal point algorithm {xn}∞n=1 defined for any
x1 ∈ C,

(4.5)

 zn = PC(xn − λnAxn)
yn = PC((1− αn)zn)
xn+1 = (1− βn)zn + βnTyn

converges strongly to the minimum-norm point p of F (T )
⋂
V I(C,A).

Proof. Put Bx = ∂iCx. The conclusion follows from Theorem 3.1 in view of (4.4).
�

Theorem 4.2. Let C be a nonempty closed and convex subset of a real Hilbert
space H, T : C → C an L-Lipschitizan demicontractive mapping such that T is
demiclosed at 0 and A,B : C → H be maximal monotone mappings such that
Ω := F (T )

⋂
(A + B)−1(0) 6= ∅. If {αn}∞n=1, {βn}∞n=1 are sequences in (0,1)

satisfying the following conditions:

(c1) limn→∞ αn = 0;
(c2)

∑∞
n=1 αn =∞;

(c3) 0 < ε ≤ βn < 1− 2k,

then the following hybrid proximal point algorithm {xn}∞n=1 defined for any x1 ∈
C,

(4.6)

 yn = PC((1− αn)Uλn
(xn − λnAxn))

xn+1 = (1− βn)Uλn
xn + βnTyn

( here Uλn
xn := (I + λnB)−1xn and λn ⊂ (a, 1), a > 0) converges strongly to the

minimum-norm point x∗ of Ω.

Proof. We know that ∂f is maximal monotone. From (4.2) and (4.3), we have that
0 ∈ ∂f(x) if and only if f(x) = min

y∈H
f(y) and y ∈ (I + ∂iC)−1(x) if and only if

y = PCx for all x ∈ H, y ∈ C. The conclusion now follows from Theorem 3.1. �

4.1. Numerical example. We give an example in support of Theorem 3.1. Let
X = R4 be endowed with Euclidean norm ||.||2. For each x = (x(1), x(2), x(3), x(4)) ∈
X, let A : X → X be defined by A(x) = (2x(1) +x(3), x(2) +x(4), x(3)−x(1), 2x(4)−
x(2)), which is continuous linear and monotone mapping. We define f : X →
(−∞,∞] by

f(x) =
1

2
||Ax− a||22,

where

A =


2 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 2

 and a =


0
0
0
0

 .

The function f is proper convex and lower semi continuous function, (cf. [16, 38]).
Then, for λn = 1 for each n ≥ 1, we obtain from (cf. [38]) that

zn := Proxf (x) = arg min
y∈X

[f(y) +
1

2λn
d2(y, xn)]

= (I +ATA)−1(x+ATa)

= (I +ATA)−1x.(4.7)
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Let x = (x(1), x(2), x(3), x(4)) ∈ X and T be a self mapping on X defined by Tx =
− 3

2x. Then T is a demicontractive mapping with k = 1
5 . Now αn = 1

10n+7 , βn =
3n−1
50n satisfy Condition (c1)-(c3) in Theorem 3.1. Therefore, for any x1 ∈ X,

algorithm (3.1) in view of (4.7) becomes
zn = (I +ATA)−1xn

yn = 10n+6
10n+7zn

xn+1 = 47n+1
50n zn + 3−9n

100n yn, n ≥ 1.

(4.8)

By (1.3), the algorithm of Cholamjiak et al. [15], using Tix = 9x
10 for each i = 1, 2

and αn = n
10n+1 , βn = 3n−1

50n , we obtain by (4.7)
zn = (I +ATA)−1xn

yn = 9n+1
10n+1xn + 9n

10(10n+1)zn

xn+1 = 9(47n+1)
500n xn + 27n−9

500n yn, n ≥ 1.

(4.9)

By (1.4), the algorithm of Chang et al. [12], using Tix = Six = 9x
10 for each i = 1, 2

and αn = n
10n+1 , βn = 3n−1

50n γn = 1−(αn+βn), δn = 2n+1
6n+1 , ηn = 3n−2

6n+1 , ξn = n+2
6n+1 ,

we obtain by (4.7),
zn = (I +ATA)−1xn

yn = 75n2−9n−1
50n(10n+1)xn + 9(420n2+57n+1)

500n(10n+1) zn

xn+1 = 45n−9
10(6n+1)xn + 9n+18

10(6n+1)yn, n ≥ 1.

(4.10)

The following tables show results of our numerical experiment based on MATLAB
software.

No. of iterations xn = (x
(1)
n , x

(2)
n , x

(3)
n , x

(4)
n ) Erros=||xn − xn−1||2

1 (7.0000, 6.0000, 3.0000, 2.0000)
2 (0.9829, 2.7150, 0.4275,−0.0088) 7.5928
3 (0.1548, 1.3126,−0.0659,−0.2420) 1.7176
4 (0.0419, 0.6624,−0.1170,−0.1845) 0.6644
5 (0.0205, 0.3425,−0.0867,−0.1126) 0.3300
...

...
...

19 (0.0396, 0.4790,−0.1738,−0.1882)e−04 0.0000

Table 1. Numerical results for the algorithm (4.8)
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No. of iterations xn = (x
(1)
n , x

(2)
n , x

(3)
n , x

(4)
n ) Erros=||xn − xn−1||2

1 (7.0000, 6.0000, 3.0000, 2.0000)
2 (6.2803, 5.3892, 2.6916, 1.7934) 1.0143
3 (5.6291, 4.8376, 2.4125, 1.6064) 0.9172
4 (5.0437, 4.3415, 2.1616, 1.4382) 0.8246
5 (4.5184, 3.8958, 1.9365, 1.2874) 0.7403
...

...
...

19 (0.9645, 0.8528, 0.4133, 0.2715) 0.1600

Table 2. Numerical results for the algorithm (4.9)

No. of iterations xn = (x
(1)
n , x

(2)
n , x

(3)
n , x

(4)
n ) Erros=||xn − xn−1||2

1 (7.0000, 6.0000, 3.0000, 2.0000)
2 (4.2571, 4.2742, 1.8266, 1.1196) 3.5572
3 (2.9551, 3.2895, 1.2580, 0.7189) 1.7745
4 (2.1430, 2.5995, 0.9011, 0.4793) 1.1490
5 (1.5886, 2.0823, 0.6572, 0.3228) 0.8117
...

...
...

19 (0.0430, 0.1350, 0.0048,−0.0130) 0.0302

Table 3. Numerical results for the algorithm (4.10)

References

[1] R.P. Agarwal, D. O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly

asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8(2007), 61-79.
[2] L. Ambrosio, N. Gigli, and G. Savare, Gradient Flows in Metric Spaces and in the Space

of Probability Measures, 2nd edn.Lectures in Mathematics ETH Zurich. Birkhäuser, Basel
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