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Highlights 

• Mediterranean oaks are endangered by infection with an invasive alien oomycete. 

• Forecasts based on SDM showed an expansion of the plant pathogen within Andalusia. 

• Our SDMs verified the known environmental suitability and provided new insights. 

• Phytosanitary management zones may be set from the current and future distribution. 
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Abstract 

Since the mid-20th century, trees in the Andalusian oak dehesa and forests have exhibited 

stress that often ends in the death of the tree. These events have been associated with 

Phytophthora cinnamomi, a soil-borne root pathogen, which causes root rot, bark cankers, 

decay and mortality - known as oak decline. Phytophthora cinnamomi is most virulent under 

high ambient temperatures combined with moist soils, i.e., in Mediterranean areas. We used 

presence/absence point locations of the Andalusian Network for Damage Monitoring in Forest 

Ecosystems (RED SEDA) pathogen survey and four categories of environmental variables - 

meteorological, edaphic, topographic and tree cover - to accurately predict Phytophthora 

cinnamomi current and future potential distribution within Andalusia, for a range of climate 

change scenarios, using ensemble species distribution models (SDMs). We assessed which 

categories of environmental variables explained the distribution of the pathogen, obtained 

accurate predictions for the current potential distribution of Phytophthora cinnamomi 

(AUC>0.95, TSS>0.70, Kappa>0.65) and forecasted its future potential distribution. 

Subsequently, we classified the sites of the pathogen survey within the RED SEDA network in 

three zones according to the already-recorded presence of the pathogen and the current and 

future predicted probability of occurrence. Finally, we suggested phytosanitary management 

strategies for each zone.  

 

Key words: biomod2, Ensemble Species Distribution Modelling, Mediterranean oak 

woodlands, Oak Decline, Phytophthora cinnamomi  
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1. Introduction 

Phytophthora cinnamomi Rands (Pc) is a soil-borne root pathogen, which causes root rot, bark 

cankers and mortality of many plant species including trees (e.g. oak, olive); shrubs and herbs 

(Serrano et al., 2011; Shearer et al., 2012; Jung et al., 2017). This pathogen spreads by 

chlamydospores and water-borne zoospores. Its mycelium grows in the cortical cells, phloem 

and xylem of roots weakening the host. Pc is most virulent in high (>30ºC) ambient 

temperatures combined with moist soils (Shearer et al., 2007; Burgess et al., 2017; Jung et al., 

2017). The oomycete has been reported in eastern South Africa (Zentmyer, 1988), southern 

California (Kovacs et al., 2011; Cunniffe et al., 2016), western Australia (Shearer et al., 2004; 

2007; 2012) and southern Europe (Brasier, 1996; Duque-Lazo et al., 2016); all areas with a 

Mediterranean climate; that is cool, wet, snow-free during winters alternating with hot, dry 

summers (de Sampaio e Paiva Camilo-Alves et al., 2013; Scanu et al., 2013; Burgess et al., 

2017). Since the mid-20th century, Quercus species in Andalusia have exhibited stress that 

usually ends in the death of the tree and have been associated with Pc (Brasier, 1996; Sánchez 

et al., 2002). 

In Andalusia, the evergreen Holm and Cork oak (Quercus ilex L. and Q. suber Lam.) are 

common trees. Locally, semi-deciduous Portuguese oak (Quercus faginea L.) and the Pyrenean 

oak (Quercus pyrenaica Willd.) occur. These oaks are widespread in the dehesa, an agro-silvo-

pastoral ecosystem (Campos et al., 2013; Duque-Lazo and Navarro-Cerrillo, 2017) with 10 –80 

trees per hectare of semi-natural pasture, locally rotated with fodder crops (Esselink and van 

Gils, 1994; Campos et al., 2013). Dehesa is usually monospecific and the oaks are uniformly 

spaced and lopped to maintain an open tree canopy for pasture and crop. Until the 1960s 

African swine fever epidemic, the dehesa was primarily an acorn-Iberian hog-charcoal farming 

system and since then mainly transformed into beef cattle and/or sheep ranching with a 

recreational hunting component (e.g. Paniza Cabrera, 2015). The crop (grains; vetch; clover) 
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serves the livestock component. Dehesa is found in undulating and hilly terrain (Esselink and 

van Gils, 1994) while at steeper slopes oak forest occurs.  

Worldwide, drier climates are forecasted for the 21st century in the Mediterranean Basin. In 

particular, a rise in mean annual temperatures of 0.3 to 0.5 °C and a decrease of about 15% in 

the average annual precipitation until 2050 (Acacio et al., 2016) is expected. Recent studies 

show productivity decline (Iglesias et al., 2016; Pulido et al., 2017), reduced environmental 

tolerance (San Miguel-Ayanz et al., 2016) and increased mortality (Colangelo et al., 2017) in 

oaks, mainly related to changes in climate and/or land use (Godinho et al., 2016). The 

transformation of dehesa farming in the 1960s may have contributed to the spread of the oak 

decline caused by Pc (Beaufoy, 1998; Plieninger et al., 2015). In addition, climate change might 

enhance the activity of oak related pathogens, as Pc (de Sampaio e Paiva Camilo-Alves et al., 

2013; Burgess et al., 2017), xylophage insects (Duque-Lazo and Navarro-Cerrillo, 2017) and 

other pests and diseases (Lieutier and Paine, 2016). For example, Pérez-Sierra et al. (2013) 

claimed that higher minimum winter temperatures might have a positive effect on Pc 

virulence. 

Oak decline caused by Pc is a phytosanitary issue in Spain (Pérez-Sierra et al., 2013), Portugal 

(Moreira and Martins, 2005; de Sampaio e Paiva Camilo-Alves et al., 2013) and elsewhere in 

the Mediterranean Basin (Balcì and Halmschlager, 2003; Scanu et al., 2013). The strategy is to 

prevent invasion of new areas by Pc by reduction of zoospores dispersal. Where the oomycete 

has been identified, access of humans, animals and nurseries stock is restricted. Other 

practices are application fungicide (e.g. potassium phosphonate), liming (Serrano et al., 2012) 

and planting resistant oak (de Sampaio e Paiva Camilo-Alves et al., 2013).  

The potential geographic distribution of Pc under current climatic conditions has been 

modelled globally (Burgess et al., 2017), for Europe (Brasier and Scott, 1994), France (Desprez-

Loustau et al., 2007), Italy (Scanu et al., 2015), southwestern Spain and southwestern Australia 

(Duque-Lazo et al., 2016) and southwestern USA (Cunniffe et al., 2016) at coarse resolutions 
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(>1 km2) based, among others on meteorological data. To the best of our knowledge, the 

distribution of Pc has not been forecasted based on climate change scenarios, at fine 

resolution and at subnational level.  

The aim of this study is to forecast the distribution of Pc and therefore the future extent of the 

oak decline caused by Pc and determine which drivers influence its spatial distribution. Firstly; 

we assessed the importance of non-collinear variables from the Andalusia Environmental 

Information Network (REDIAM) dataset consisting of four categories of environmental 

variables: meteorological, edaphic, topographic, tree cover and their combinations. Secondly; 

the different categories of environmental variables were used individually and combined to 

predict the current distribution of Pc. Thirdly; model predictions were projected into the future 

to assess the distribution of the pathogen under climate change scenarios. Finally, the current 

and future probability of occurrence was intersected with the Andalusian Network for Damage 

Monitoring in Forest Ecosystems (RED SEDA) point locations to suggest an appropriate 

management strategy for control of Oak decline caused by Pc. 

 

2. Material and Methods 

2.1. Study area 

We selected the area within Andalusia region (36.06º - 40.11º N and -8.09º - -1.47º W; 87,268 

km2) covered by semi-natural oak vegetation, of which about a third is covered by the dehesa 

(Figure 1). Andalusia is the southernmost region of Spain and is situated in the Mediterranean 

climatic domain, except for small areas above 2,000 m a.s.l. (Figure 1). 
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Figure 1. Location of the study area and the presence/absence of Phytophthora cinnamomi against the 

background of the Quercus spp. distribution, elevation, Guadalquivir River and the dehesa. 

 

2.2. Phytophthora cinnamomi data 

Location records (2001-2013) of the presence (n=125) and absence (n=203) of Pc were 

extracted from the Andalusian Network for Damage Monitoring in Forest Ecosystems (RED 

SEDA; Junta de Andalucía, 2016) and from Duque-Lazo et al. (2016). The RED SEDA surveys the 

plots centered at the nodes of an 8 x 8 km grid established by a random systematic sample 

design within the dehesa and oak forest areas (Figure 1). Within each plot, twenty-four living 

trees (diameter at breast height >7cm), located around each grid node, are annually inspected 

visually for the following decline symptoms: chlorosis, cankers or defoliation without an 

apparent causal agent (Duque-Lazo and Navarro-Cerrillo, 2017). In addition, the surveyors take 

two soil samples per tree with decline symptoms, one close to the trunk and the other at a 

distance of 1.5 m. Subsequently, the laboratory at Cordoba University tests for the presence of 

P. cinnamomi by soil analysis (Ruiz-Gomez et al., 2012). 
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2.3. Environmental variables 

The environmental data layers were downloaded from the Andalusia Environmental 

Information Network (REDIAM; 

http://www.juntadeandalucia.es/medioambiente/site/rediam/portada/). The dataset (72) 

contains four categories of variables: meteorological (e.g. temperature, precipitation, 

evapotranspiration; 18), topographic (e.g. elevation, slope steepness, slope aspect; 24), 

edaphic (e.g. texture, soil pH, sand content; 17) and tree cover (e.g. tree density, coniferous, 

broadleaf, woodland, 13). The meteorological data cover the period from 1960 to 2000 and 

the topographic variable were obtained and re-sampled from a digital elevation model with 5 

meter spatial resolution (Junta de Andalucía, 2016). All variables were re-sampled to a final 

spatial resolution of 200x200 m (Table 1, Appendix A). 

The number of initial variables (72) was reduced by stepwise analysis of collinearity (Kukunda 

et al., 2018) and a selection procedure based on the optimisation of the Area Under the Curve 

(AUC) of the receiver Operating characteristic (ROC) value generated by the random forest (RF) 

model using the AUCRF R package (Calle et al., 2011). Variables with a Variance Inflation Factor 

(VIF)>10 were removed from the posterior analysis (Table 1). The collinearity analysis was 

performed in R (R Core Development Team, 2017) using the R package usdm (Naimi, 2013).  

We generated ensemble species distribution models (SDMs) with all combinations of the four 

categories of variables (Table A1, Appendix A) and forecasted for the periods 2011-2040, 2041-

2070 and 2071-2099. For each period, we considered four Global Circulation Models (BCM2, 

CNCM3, ECHAM5, EGMAM) and three special reports on emission scenarios (SRA1B, SRA2, 

SRB1; IPCC, 2014). In addition, we averaged the layers of the climate forecasts of the four 

considered Global Circulation Models (GCMs) into a merged model (MEAN), which was used as 

another layer set to predict the future distribution of Pc; i.e., we ended up with five GCMs 

(BCM2, CNCM3, ECHAM5, EGMAM, MEAN) and three scenarios (SRA1B, SRA2, SRB1), 
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Table 1. Accuracy of all combinations of categories of predictor variables. AUCcv: AUC value after cross-validation. No cat: number of categories; No var: 

Number of selected variables; Model selection (bold font) by AUC.  

Categories of environmental variables 
Max 
AUC 

AUC 
cv 

No 
cat 

No var. Model (codes for variables in Table A.1, Appendix A) 

Tree cover + Climate + Topographic 0.806 0.777 3 8 TP_ELEV+FR_OAK+NDC+ETO+TP_PEND+NDF+COD_HID+DS_WATER  
Tree cover + Topographic + Edaphic 0.796 0.775 3 6 FR_OAK+TP_ELEV+CA+PH+TP_RSD_V+CRAD 
Tree cover + Topographic 0.795 0.778 2 6 TP_ELEV+FR_OAK +TP_PEND+ COD_HID+DS_WATER+TP_RSD_O 
Tree cover + Climate + Topographic + Edaphic 0.790 0.776 4 6 TP_ELEV+FR_OAK+TP_PEND+CRAD +DS_WATER 
Tree cover + Climate + Edaphic 0.780 0.763 3 9 CA+FR_OAK+ETO+T_MIN+NDF+TMC+CRAD+MO_SUP+PS 
Tree cover + Climate  0.776 0.764 2 8 FR_OAK+T_MAX+ETO+T_MIN+TMC+FR_OLIVE+BROADLEAVES+CONIFEROUS 
Climate + Topographic  0.772 0.736 2 7 TP_ELEV+TP_PEND+ETO+TMC+COD_HID+DS_WATER+BH 
Tree cover + Edaphic 0.769 0.756 2 9 FR_OAK+CA+OH+MO_SUP+MO+ARC+FR_WATER+FR_OLIVE+BROADLEAVES 
Climate + Topographic + Edaphic 0.767 0.734 3 6 TP_ELEV+PH+LIM+MO_SUP+DS_WATER+TMC 
Edaphic 0.745 0.730 1 4 CA+PH+MO_SUP+CIC 
Climate + Edaphic 0.744 0.721 2 8 CA+ETO+MO_SUP+TMC+T_MIN+NDF+CRAD+DF 
Climate  0.739 0.720 1 2 T_MIN+ETO 
Topographic + Edaphic 0.721 0.700 2 6 CA+TP_PEND+MO_SUP+COD_HID+TP_RSH_O+PS 
Topographic  0.720 0.693 1 4 TP_ELEV+TP-PEND+COD_HID+TP_RSH_O 
Tree cover  0.689 0.636 1 2 FR_OAK+FCC_TREE 
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generating 15 possible future predictions of Pc distributions per combination of explanatory 

variables (Duque-Lazo et al., 2018). 

 

2.4. Species Distribution Models 

We used all 10 SDM techniques available in the biomod2 R package (See footprint Figure 3). 

Ensemble models were built to reduce the biases and limitations inherent to the use of 

individual SDM techniques; the assembly platform of biomod2 version 3.3.1 was used(Thuiller 

et al., 2017). 

 

2.5. Model Evaluation 

The evaluation model focused on quantifying the reliability of the results of the models. In the 

absence of an independent dataset, we split the data into 70% training and 30% evaluation 

subsets (Duque-Lazo et al., 2016). Because SDMs predict probabilities of occurrence ranging 

between zero and one, but observations are binary absence/presence values (represented by 

zero and one, respectively), a transformation was required to validate model output. This can 

be done by setting a threshold, and recoding probabilities into presence or absence. However, 

the selection of a threshold for recoding may be subjective and therefore we applied a 

threshold-independent statistic, the area under the curve (AUC) of receiver operator plots, to 

evaluate the discriminatory capacity of the model output. In addition, maximum Cohen’s 

Kappa and the maximum True Skills Statistics (TSS, Allouche et al., 2006) were used. These 

defined the threshold as the value where this statistic reaches its maximum value. AUC values 

above 0.9 represent high discriminatory capacity for a distribution model, while values 

between 0.7 and 0.9 indicate models with good discriminatory capacity (Thuiller et al., 2003). 

Cohen’s Kappa (K) corrects the overall accuracy of model predictions for the accuracy expected 

to occur by chance, values close to one represents perfect agreement. The TSS compares the 

number of correct forecasts, minus those attributable to random guessing, to that of a 
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Figure 2. Average response curve of Phytophthora cinnamomi for the selected models (see Table 2). Grey band indicates the standard deviation between the response 

curves of different model predictions selected in Table 2. 
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Figure 3. Boxplots of adjusted accuracy values (AUC, Kappa, TSS) obtained with the following ten different distribution model algorithms: Artificial Neural Networks 

(ANN), Boosted Regression Trees (BRT), Classification and Regression Tress (CART), Flexible Discriminate Analysis (FDA), Generalize Additive Models (GAM), Generalize 

Lineal Models (GLM), Multivariate Adaptive Regression Splines (MARS), Maximum Entropy (MAXENT), Random Forest (RF) and Surface Range Envelop (SRE). A) Tree 

cover, climatic and topographic variables; B) Tree cover, topographic and edaphic variables; C) Tree cover and topographic variables; and D) Tree cover, climatic, 

topographic and edaphic variables.  
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hypothetical set of perfect forecasts, where +1 indicates perfect agreement and zero or 

negative values indicate a performance no better than random (Allouche et al., 2006)..  

 

2.6. Ensemble modelling 

Ensemble models combine several distribution models to obtain a single model minimizing the 

biases and inaccuracies of single models(Duque-Lazo and Navarro-Cerrillo, 2017; Duque-Lazo 

et al., 2018; Kukunda et al., 2018). In this study, we report on the mean, median, coefficient of 

variation, upper and lower confidence interval (CISUP and CIINF respectively), committee 

averaging (CA) and probability mean weight decay (MWD) ensemble modelling techniques. 

The CISUP & CIINF are calculated as the confidence interval around the mean probability 

(Thuiller et al., 2016). The CA was achieved by a binary (presence/absence) transformation 

using the threshold of single model predictions. The threshold is the maximum score of the 

evaluation metric (TSS) for the evaluated dataset. Subsequently, the probability value of each 

pixel was calculated by the mean of single pixel predictions. The MWD ensemble modelling 

scaled the individual model predictions according to their accuracy statistic value (AUC) and 

the sum of all individual models(Duque-Lazo and Navarro-Cerrillo, 2017; Duque-Lazo et al., 

2018; Kukunda et al., 2018). We made ensemble predictions based on all single models with an 

AUC>0.80 

 

2.7. Forecasts  

To assess the future distribution of Pc we used the model with the best AUC values. We kept 

the current values of the tree cover, edaphic and topographic variables constant over the 

forecasted period. The climatic variables were obtained by projecting the identified important 

climatic variables into the future for each of the selected climate change scenarios. 
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2.8. Distribution maps and management strategy 

To assess the priority areas for phytosanitary interventions, we developed distribution 

categories from the predicted current and future potential distribution of Pc and the 

associated distribution map of oaks. We proposed the following phytosanitary zones. Zone A 

for areas with identified Pc presence; Zone B for areas where Pc is currently absent but its 

presence is predicted with high probability under current environmental conditions or is 

forecasted with high probability under future climatic conditions; Zone C applies to areas 

where Pc is currently absent and its presence is predicted and forecasted with low probability. 

We classified probability categories for the distribution map as <25% (low) versus >25% (high) 

probability of occurrence. The 25% threshold was selected in order to favour oak conservation 

versus its threatened status due to the presence of Pc (Liu et al., 2005). The recommended 

phytosanitary policy for zone A is prevention of outward dispersal of the oomycete. Zone B 

areas are to be protected against introduction of the oomycete. For Zone C continued 

monitoring of the symptoms of oak decline caused by Pc is foreseen.  

 

3. Results 

3.1. Model selection 

The combination of non-collinear variables (Table A2) of tree cover, climatic and topographic 

variables yielded the highest AUC (0.81) and cross-validation AUCcv (0.777) value (Table 1). The 

combination tree cover, topographic and edaphic variables ranked second and showed a 

nearly-identical AUC value (0.80) and a marginally-lower AUCcv value (0.775; Table 1). The 

combination of tree cover and topographic variables ranked third, with equally high values for 

AUC (0.80) and AUCcv (0.778; Table 1). The combination of all four categories of variables was 

the fourth-most accurate, performing nearly the same as the other three models, with an AUC 

value of 0.79 and an AUCcv value of 0.775 (Table 1). These results suggested that the 
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distribution of Pc within the study area might be independent of the type of variables used. 

Furthermore, it seems that climate is less influenced category of variable. 

 

3.2. Variable importance and response curves 

Oak cover (FR_OAK) together with elevation (TP_ELEV), were the most-important 

environmental predictors across all four models (A-D) (Table 2). The oak cover was correlated 

positively and almost-linearly with the probability of Pc occurrence. The relationship between 

elevation and probability of Pc occurrence presented a negative relationship the higher the 

elevation the lower the probability of Pc occurrence. The average number of hot days (NDC) 

and the average number of cold days showed a decreasing probability of Pc. The lower the 

average reference evapotranspiration, the lower was the probability of Pc occurrence. The 

topographic variables showed that the oomycete avoid steep slopes and prefer zones with 

higher incoming solar radiation in summer and sunny autumns. The soil pH and active lime 

(AC) were the most-important pair of edaphic variables, but at low probability levels, followed 

by water retention capacity. It seems that Pc avoid alkaline soils (lower pH and high content of 

active lime) while it prefers soils with high water retention capacity (Figure 2).  

 

3.3. Model selection and validation 

The single-algorithm model predictions were compared by their accuracy given by TSS, Kappa 

and AUC and showed, overall, high model accuracy (Figure 3 A-D). The highest values were 

achieved by the single-algorithm models developed with the tree cover, climatic and edaphic 

variables, followed by the model developed with the tree cover, edaphic and topographic 

variables and the model built with tree cover and topographic variables; the models developed 

with the complete set of variables presented the lowest accuracies. AUC values >0.85 were 

reached by GAM, GLM, MAXENT, RF and BRT, though MAXENT generally showed a higher 

standard deviation. Overall, the BRT and GAM delivered the best accuracies, considering the 

14



Table 2. Variable importance ranking for models built with combinations of the four categories of variables A-D). In bold selected variables to run the 

forecast. Selected variables in bold. 

Nº 
Selected 
Variables 

A) Tree cover, Climatic & Topographic B) Tree cover, Topographic & Edaphic C) Tree cover & Topographic D) All categories  

Variable Importance Probability Variable Importance Probability Variable Importance Probability Variable Importance Probability 

1 Elevation 18,96 1,00 Elevation 22,81 1,00 Elevation 31,97 1,00 Elevation 26,84 1,00 

2 Oak cover 16,83 1,00 Oak cover 21,90 1,00 Oak cover 28,18 1,00 Oak cover 22,27 1,00 

3 Warm days 14,61 0,95 Active lime 17,23 0,99 Slope 23,46 1,00 Slope 16,36 0,97 

4 Evapotranspiration 13,71 0,95 pH 16,38 0,97 
Hydraulic 
conditions 

21,05 0,84 Water retention 16,09 0,90 

5 Slope 12,02 0,85 Radiation summer 13,61 0,81 Distance to water 20,63 0,97 Distance to water 15,36 0,95 

6 Cold days 11,75 0,69 Water retention 13,20 0,84 Radiation autumn 17,62 0,51   
  

7 Hydraulic cond. 11,19 0,66 
   

  
  

  
  

8 Distance to water 10,18 0,59   
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Table 3. Adjustment values obtained with the ensemble models of Phytophthora cinnamomi. 

A-D from Table 2. 

A) Ensemble model Kappa TSS AUC Sensitivity Specificity 

 Mean 0.69 0.70 0.93 0.90 0.80 

 Lower Confident interval (CIINF) 0.69 0.70 0.93 0.83 0.86 

 Upper Confident interval (CISUP) 0.69 0.70 0.93 0.90 0.81 

 Median 0.68 0.68 0.92 0.86 0.83 

 Committee averaging (CA) 0.70 0.72 0.95 0.94 0.78 

 Probability mean weight decay (MWD) 0.69 0.70 0.93 0.90 0.80 

B) Ensemble model Kappa TSS AUC Sensitivity Specificity 

 Mean 0.65 0.65 0.90 0.78 0.87 

 Lower Confident interval (CIINF) 0.64 0.64 0.89 0.79 0.85 

 Upper Confident interval (CISUP) 0.67 0.66 0.90 0.78 0.89 

 Median 0.64 0.65 0.88 0.82 0.83 

 Committee averaging (CA) 0.65 0.66 0.92 0.86 0.79 

 Probability mean weight decay (MWD) 0.65 0.65 0.90 0.78 0.87 

C) Ensemble model Kappa TSS AUC Sensitivity Specificity 

 Mean 0.63 0.63 0.91 0.89 0.74 

 Lower Confident interval (CIINF) 0.63 0.63 0.90 0.89 0.74 

 Upper Confident interval (CISUP) 0.62 0.63 0.91 0.90 0.74 

 Median 0.62 0.62 0.89 0.90 0.72 

 Committee averaging (CA) 0.68 0.65 0.93 0.71 0.94 

 Probability mean weight decay (MWD) 0.63 0.63 0.91 0.89 0.74 

D) Ensemble model Kappa TSS AUC Sensitivity Specificity 

 Mean 0.63 0.63 0.91 0.89 0.74 

 Lower Confident interval (CIINF) 0.63 0.63 0.90 0.89 0.74 

 Upper Confident interval (CISUP) 0.62 0.63 0.91 0.90 0.74 

 Median 0.62 0.62 0.89 0.90 0.72 

 Committee averaging (CA) 0.68 0.66 0.93 0.71 0.94 

 Probability mean weight decay (MWD) 0.63 0.63 0.91 0.89 0.74 
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three statistics (Kappa, TSS and AUC). The maximum values obtained for TSS were acceptable 

(>0.65) for RF, BRT, MAXENT and GAM; as well as the Kappa values (K>0.65) for GAM and BRT. 

The predictive performance of the rest of the single-algorithm models was poorer (Figure 3). 

The ensemble models outclassed the accuracy of the single-algorithm model predictions with 

an overall AUC>0.90 (good), TSS>0.63 (acceptable) and K>0.60 (acceptable). The committee 

averaging (CA) ensemble approach built with the combination of tree cover, climatic and 

topographic variables generated the highest individual AUC (0.95), Kappa (0.70) and TSS (0.72) 

values. Moreover, this ensemble model presented a true positive rate (sensitivity) of 0.94 and 

a true negative rate (specificity) of 0.78 (Table 3). With the same set of response variables, the 

mean and MWD ensemble models also returned accurate predictions (Table 3). 

 

3.4. Distribution maps: Predicted and forecasted distribution 

A high probability of occurrence was predicted in western and central north Andalusia (Figure 

4). The second area with a high probability of occurrence was Los Alcornocales Natural Park in 

the southwest (Figure 4), while the eastern part of the study area showed lower probabilities 

of occurrence. Consequently, even without climate change nearly all oak formations seem to 

be threatened. The Pc distribution area was forecasted to shrink in the coming decades (Figure 

5). Later on, the Pc distribution may increase (GCM, CNCM3 and ECHAM5, Figure 6). Only 

minor differences in the forecasted distribution areas were obtained with the various climate 

scenarios and ensemble models. The forecasted direction of the expansion is the same across 

scenarios and ensemble models (Figure 5). 
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Figure 4. Current probability of oak decline caused by Phytophthora cinnamomi occurrence as predicted 

by the committee averaging ensemble models in Table 3A built with tree cover, climatic and 

topographic type of environmental variables;  

 

The distribution area of Pc within Andalusia might expand in response to climate change 

scenarios (Figure 6). All forecasted based on the GCMs and scenarios showed larger suitability 

areas for Pc in 2099 compared with the prediction for the current climate condition. The 

forecasts showed a downward trend in the next two decades up to 2040 and from them an 

upward trend ultimately exceeding the predicted current distribution. The most-pessimistic 

scenarios were provided by CNCM3 and ECHAM5 in the SRA1B scenario. The average 

forecasted trend (MEAN) was a rapid decrease until 2040, a rapid gain until 2070 and a minor 

increase in the last period (Figure 6). The ensemble model estimated by MWD over-predicted 

the distribution of Pc in comparison with the prediction assessed by the CA ensemble model 

(Figure 6). 
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Figure 5. Future potential distribution of Phytophthora cinnamomi across future climate change scenarios estimates by the MEAN GCM and predicted by committee averaging ensemble model 

built with tree cover, climatic and edaphic variables. Colour range indicated the probability of occurrence of Phytophthora cinnamomi and colour dots refers to the assigned management zones 

to the RED SEDA point locations.  
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Figure 6: Percentage of loss area of habitat suitability of Phytophthora cinnamomi under future projections (2040. 2070 and 2099); different scenarios (SRA2. SRA1B and SRB1), five Global 

Circulation Models (GCM): BCM2, CNCM3, ECHAM5, EGMAM and MEAN; Percentage of habitat suitability increased/decreased over the total present (100%) area of Phytophthora cinnamomi 

predicted by the Probability Mean Weight Decay (MWD) and Committee averaging (CA) ensemble model. 
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3.5. Analysis of current and future protection and conservation 

There were detected 120 sites (38%) with Pc (yellow dots) and 203 sites (62%) without it (blue 

and green dots; Figures 4 & 5; Table 4). All sites where Pc was present were dominated by oak 

(Q. ilex, Q. suber, Q. faginea or Q. pyrenaica). At the sites with Pc, prevention of the dispersal 

of the oomycete has been recommended (de Sampaio e Paiva Camilo-Alves et al., 2013). We 

have assumed that the actual presence of Pc will remain constant over time and therefore the 

need for dispersal prevention as well (Table 4). In the current situation there are more sites in 

conservation zones than in protection zones. Under the forecasted conditions, conservation 

would have to be converted to protection zones. Conversion to conservation zoning status 

would be most often required for oak-dominated sites.  

Table 4: Percentage of points classified according to the current and future management zones based 

on the forecasted probability of occurrence of Phytophthora cinnamomi. All refers to all tested sites and 

oak dominated stands to those sites where oaks were the main species. Values represent the 

percentage of sites presence in each category.  

Scenarios Year 
All  Oak dominated stands 

Prevention Protection Conservation Prevention Protection Conservation 

Present 2011 38,11 9,45 52,44 19,51 5,79 37,50 

SRA1B 

2040 38,11 10,98 50,91 19,51 7,32 35,98 

2070 38,11 11,28 50,61 19,51 7,32 35,98 

2099 38,11 10,98 50,91 19,51 6,71 36,59 

SRA2 

2040 38,11 10,98 50,91 19,51 7,32 35,98 

2070 38,11 11,28 50,61 19,51 7,62 35,67 

2099 38,11 11,28 50,61 19,51 6,71 36,59 

SRB1 

2040 38,11 10,98 50,91 19,51 7,62 35,67 

2070 38,11 10,98 50,91 19,51 6,71 36,59 

2099 38,11 12,20 49,70 19,51 7,62 35,67 

 

 

4. Discussion 

4.1. Categories of environmental variables 

Our study reveals that it is possible to predict the current and future distribution of the oak 

decline caused by Phytophthora cinnamomi within the oak cover in Andalusia and, 
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consequently determine which drivers influence in its spatial distribution. The current 

distribution could be assessed by various combinations of two to four categories of 

environmental variables (Table 1, first four rows). However, the nearly-identical model 

outcomes suggest that these categories might be spatially related notwithstanding prior 

removal of collinear variables (Table A2, Appendix A). Substitution of major categories of 

variables without effect on SDM accuracy was also reported elsewhere (van Gils et al., 2014). 

Combinations of tree cover, climatic and topographic variables were also used successfully to 

predict the distribution of Phytophthora ramorum associated with Sudden Oak Death in 

Oregon (Václavík et al., 2010). In Addition, dispersal distance at the ten meters scale 

differentiated the actual from the potential distribution of the Phytophthora sp. Instead in our 

study, tree cover and flow direction were used as a proxy of Pc dispersal direction (Sena et al., 

2018). Earlier predictions of the potential distribution of Phytophthora sp. used a more limited 

set of variable categories (Wilson et al., 2003; Meentemeyer et al., 2004; Guo et al., 2005; 

Moreira and Martins, 2005; Václavík et al., 2010; Chadfield and Pautasso, 2012; Scanu et al., 

2013; Duque-Lazo et al., 2016).  

These studies mainly considered climatic and land cover predictors of potential host species. 

Soil variables have rarely been taken into account (but see Moreira and Martins, 2005), though 

the impact of edaphic variables on infection by Pc has been established (Corcobado et al., 

2013). Moreover, soil waterlogging, soil depth and soil compaction have also been identified as 

significant factors associated with Holm and Cork oak decline (de Sampaio e Paiva Camilo-

Alves et al., 2013) and has been pointed out that the distribution of Pc at landscape level 

depend on soil moisture and temperature (Sena et al., 2018).  

 

4.2. Selected variables and response curves 

As expected, topographic variables (elevation, slope steepness, solar radiation, hours of 

sunshine and distance-to-water) contributed to the resulting models (Duque-Lazo et al., 2016). 
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Elevation and Slope steepness could be proxies for oak presence/absence in the coarser 

resolution of the cited previous article. The importance of oak related variables together with 

topographic variables suggests that the topo-climate variables, elevation and Incoming Solar 

Radiation, were better spatial climatic predictors for the pathogen than the regional 

meteorological climate variables. Elevation might be a ‘paradoxical’ climate proxy in the 

context of probability of occurrence of oak decline caused by Pc. This may be explained by the 

nature of DEM-derived data (elevation and Incoming solar radiation) versus are interpolated 

point measurements of meteorological stations that are further apart than the grid size of the 

digital elevation model. Moreover, meteorological stations are unlikely to be randomly 

distributed in the research area and/or elevation and/or aspect (van Gils et al., 2014). We 

found that the higher the elevation (the colder the climate), the lower the probability of the 

pathogen occurrence; the lower the reference evapotranspiration (the wetter the soil) the 

higher the probability of the pathogen (both as expected). The steeper the slope, the lower the 

probability of the pathogen; this might be related to the water availability. In steeper slopes 

can water run off downhill carrying the spores of Pc. We found that cover of the potential Pc 

host (Quercus sp.) was positively related with the probability of occurrence of Pc (cf. Guo et al., 

2005; Chadfield and Pautasso, 2012; Duque-Lazo et al., 2016). 

The response curves of the number of frost and hot days were Gaussian, which is at an 

intermediate number of days with extreme temperatures, high or low, the probability of the 

pathogen is high. This seems fitting for a species of tropical origin (Jung et al., 2017) as in the 

tropics temperatures are neither so low nor such high as at montane Mediterranean 

elevations or continental Mediterranean latitudes (Sena et al., 2018). 

Furthermore, cold and hot stresses were also found to be relevant indicators of the probability 

of occurrence of Pc (Burgess et al., 2017), as were minimum and maximum temperature 

(Meentemeyer et al., 2004) or mean summer temperature (Duque-Lazo et al., 2016). The 

importance of the number of days with minimum temperature <5ºC in our models 
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corresponds with the finding that Pc occurs in areas free of severe frosts (Burgess et al., 2017). 

The increased probability of occurrence with the number of days above 35ºC might be related 

to the ability of Pc to cope with drought better than the roots of the oaks (de Sampaio e Paiva 

Camilo-Alves et al., 2013). Moreover, it has been found winter temperature controls the 

distribution of Pc at landscape level (Burgess et al., 2017; Sena et al., 2018).  

We found that the more alkaline the soil, the higher content on active lime, the lower the 

probability of Pc occurrence. Pc shows low virulence and incidence in soils with medium-high 

calcium content in Andalusia (Serrano et al., 2012) and Australia (Broadbent and Baker, 1974); 

therefore, the Australian liming remedy has been recommended for Andalusia (Serrano et al., 

2012). The higher the water retention capacity of the soil (the wetter the soil, i.e. the longer 

the soil might stay wet), the higher the probability of Pc. Water it is known as the natural 

dispersal medium of Pc. Pc requires humid soil, soils with high water retention capacity tend to 

maintain the humidity for longer periods, or free running water in the soil together with the 

presence of root of the host to be able to colonize new individuals (Sena et al., 2018). 

Consequently, oak growing in acid soil with high water retention capacity might be more 

suitable to be infected. 

 

4.3. Model accuracy 

The most accurate individual models were BRT, GAM, RF, GLM and MAXENT. The robustness 

of MAXENT and GLM for Pc distribution in Andalusia has been reported previously (Duque-

Lazo et al., 2016). Elswhere, RF has been shown to be a solid alternative (Duque-Lazo et al., 

2018). Although the Kappa values were sometimes acceptable (>0.70, GAM), mostly they were 

only just better than random (>0.65). As expected, the ensemble model approach achieved still 

-higher accuracies (Duque-Lazo and Navarro-Cerrillo, 2017). Though, TSS values were mainly 

acceptable (>0.70), Kappa value rarely was over 0.70 (see committee averaging ensemble 

model, Table 3A). These results suggest that we developed models with high discriminatory 
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capacity but we assessed acceptable accurate maps. This might be due to that we are 

estimating the spatial distribution of an invasive species which is not in equilibrium with the 

environment (Václavík and Meentemeyer, 2009).  

 

4.4. Distribution maps 

The areas highlighted as higher probability of occurrence of the oak decline caused by Pc 

corresponded with already positive identified presence of the pathogen. The probability of 

occurrence of Pc increased in areas closer to the Guadalquivir River (Duque-Lazo et al., 2016), 

while the areas identified with high probability of occurrence decreased north-east. This trend 

might have a climate component determine by lower temperatures which is support by the 

future predictions increasing the probability of occurrence in areas closer to the Guadalquivir 

river (Duque-Lazo et al., 2016; Sena et al., 2018). 

 

4.5. Forecast distribution 

Our forecast of Pc distribution shows a reduction of the habitat suitability in the next two 

decades and expansion afterwards, assuming the unchanged presence/absence of the host 

oak over the forecasting period. However, climate change may also affect oak distribution. The 

distribution of Holm oak has been predicted to expand (Vayreda et al., 2016), while those of 

Cork, Portuguese and Pyrenean oaks within Andalusia were predicted to diminish under the 

CNCM3 SRA1B climate change scenario (López-Tirado and Hidalgo, 2016). Moreover, the 

decreased might be given for an increasing aridity in the study area. 

 

4.6. Identification of priority areas for intervention  

Sixty percent of the surveyed sites were classified as protection or conservation zones, mostly 

within oak-dominated stands. Consequently, strategies are required to prevent the spread of 

the oomycete. However, the implementation of a general management strategy, which 
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satisfies the requirements of each site, is a complex task. Each site might need a specific study 

to assess the combinations of factors related to the oak decline caused by Pc and, 

consequently, a customised management strategy (Sena et al., 2018).  

We propose the following measures for zone A (Table 5): restricted entry of humans and 

animals, avoidance of earth moving or activities with the potential to move soil and the wash-

down of cars, boots and tools(Dell et al., 2005; Shearer et al., 2007; Sena et al., 2018). In 

addition, the following are also recommended: disinfection with potassium phosphonate 

(Corcobado et al., 2013; de Sampaio e Paiva Camilo-Alves et al., 2013), use of calcium 

containing fertilisers or lime (Serrano et al., 2012), trunk injections of potassium phosphonate 

(Moreno and Obrador, 2007) and afforestation with resistant tree species or resistant varieties 

of Quercus sp. (Weste and Marks, 1987; Sena et al., 2018). Liming or calcium containing 

fertilisers might be only applied where Cork oak is not present (de Sampaio e Paiva Camilo-

Alves et al., 2013). In zone B (Table 5), we recommend wash-down of cars and boots upon 

entry, prohibition of the introduction of plant material from nurseries that are not certified 

free of Phytophtora sp. and afforestation with resistant oak varieties (Weste and Marks, 1987; 

de Sampaio e Paiva Camilo-Alves et al., 2013). Finally, in zone C (Table 5), the entry of plant 

material from nurseries that are not certified free of Phytophtora sp. should be prohibited and 

hygienic and disinfection measures when people, animals or machinery enter from zones A 

and B should be implemented. More information about the direction for conservation and 

management could be found in Sena et al. (2018) 

 

5. Conclusions 

Andalusian dehesa are endangered by oak decline caused by Pc. Ensemble SDMs accurately 

predicted the current and future distributions of Pc within the oak cover of Andalusia. 

Topographic and tree cover variables showed to be the most important categories of variables. 

Climatically, the numbers of hot and cold days stood out as relevant predictors, while pH and 
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active line were the most significant edaphic variables. The current and future potential 

distributions suggest that intervention measures should be implemented to prevent the 

dispersal of the oomycete. However, we have also identified areas within the oak distribution 

where Pc is not present yet and has a low probability of occurrence. The Andalusian 

government should propose and encourage action against oak decline caused by Pc, focusing 

on prevention of outward dispersal of the oomycete from the current presence zone (A), 

protection of suitable zones (B) and conservation of unsuitable zones (C). Guidelines should be 

put in place carefully and each site must be studied and treated individually due to the multi-

causality of oak decline caused by Pc. These results might help to prevent the infection of oak 

by Pc. 
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Appendix A 

 

Fig. A1. Current probability of oak decline caused by Phytophthora cinnamomi occurrence in four classes 

as predicted by the ensemble models highlighted in Table 2. A) Tree cover, climatic and topographic 

variables; B) Tree cover, topographic and edaphic variables; C) Tree cover and topographic variables; 

and D) Tree cover, climatic, topographic and edaphic variables. 
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Table A1. Environmental data used to predict the potential distribution of Phytophthora cinnamomi 
(Source: REDIAM). 

Variable CODE UNITS 

Climatic 

Sum of water balances at the end of each month BH mm 

Average Net Primary Production DF Hours 

Average reference ET ETO mm 

Aridity index IAR 
 

Number of hot days (T-max ≥35 °C) NDC Days 

Number of cold days (T-min ≤0 °C) NDF Days 

Annual precipitation PRC mm 

Annual radiation RN Julian/m
2
 

Annual sum negative differences of precipitation and ET SDEF mm 

Average snow precipitation SNOW mm 

Annual sum positive differences of precipitation and ET SSUP mm 

Average T-max T_MAX °C 

Average T-mean T_MED °C 

Average T-min T_MIN °C 

Average T-max of warmest months TMAXC °C 

Mean temperature warmest month TMC °C 

Mean temperature coldest month TMF °C 

Average T-min of coldest months TMINF °C 

Edaphic 

Average clay content ARC % 

Average sand content ARE % 

Active limestone CA % 

32



 
 

  

Variable CODE UNITS 

Cation exchange capacity CIC meq/100 g 

Water retention capacity CRAD mm/m 

Edaphic soil types EDAPH Categorical 

Average silt content LIM % 

Lithology LITHO Categorical 

Average organic matter in the profile MO % 

Average organic matter surface horizon MO_SUP % 

Nitrogen content N_SUP % 

Percent base saturation PBS % 

Soil pH PH – 

Soil depth PS cm 

Substrate SUBST Categorical 

Texture TEXTURE USDA-class 

Average content of fine particles (Ø < 2 mm) TF % 

Topographic 

Hydraulic conditions COD_HID – 

Distance to pastures DS_PAST m 

Distance to river DS_RIVER m 

Distance to water DS_WATER m 

Flow accumulation FLOWACUM L 

Flow direction FLOWDIR m 

Flow direction down FLOWDIRD m 

Flow direction up FLOWDIRUP m 

Composite topographic index ICT – 
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Variable CODE UNITS 

Topographic moisture index ITH – 

DEM TP_ELEV m 

East – west orientation TP_ES_OE Degree 

Slope aspect TP_EXPO Degree 

Slope steepness TP_PEND Degree 

Radiation in winter TP_RSD_I Julian/m
2
 

Radiation in autumn TP_RSD_O Julian/m
2
 

Radiation in spring TP_RSD_P Julian/m
2
 

Radiation in summer TP_RSD_V Julian/m
2
 

Sunshine   TP_RSH Hours 

Sun shine in winter TP_RSH_I Hours 

Sun shine in autumn TP_RSH_O Hours 

Sun shine in spring TP_RSH_P Hours 

Sun shine in summer TP_RSH_V Hours 

North to south orientation TP_SU_NO Degree 

Tree cover 

Agroforestry AGROF Categorical 

Broadleaf BROADL Categorical 

Canopy FCC (Trees and shrubs) FCC % 

Canopy FCC by trees FCC_TREE % 

Coniferous CONIF Categorical 

Density of trees FR_TREE % 

Distance to tree DS_TREE m 

Mixed forest cover MIXF Categorical 
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Variable CODE UNITS 

Normalize difference vegetation index NDVI Value * 100 

Oak cover FR_OAK % 

Olive tree cover FR_OLIVE % 

Olives grove OLIVES Categorical 

Woodland cover WOODLANDS Categorical 

Table A2. Collinearity analysis for each combination of response variables analysed. A) Tree cover, 
climatic and topographic variables; B) Tree cover, topographic and edaphic variables; C) Tree cover and 
topographic variables; and D) Tree cover, climatic, topographic and edaphic variables. 

Models A) B) C) D) 

Non-collinear variables 

Climatic 

1 BH 5.16 – – 5.89 

2 DF 5.69 – – 6.66 

3 ETO 7.86 – – 8.41 

4 NDC 6.74 – – 7.95 

5 NDF 3.13 – – 4.17 

6 RN 8.23 – – 8.77 

7 TMC 3.43 – – 4.54 

Edaphic 

8 ARC – 5.61 – 5.84 

9 CA – 1.86 – 2.42 

10 CIC – 2.10 – 2.41 

11 CRAD – 4.20 – 4.44 

12 EDAPH – 1.21 – 1.25 

13 LIM – 6.08 – 5.99 
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Models A) B) C) D) 

Non-collinear variables 

14 LITHO – 1.61 – 1.62 

15 MO – 6.14 – 6.75 

16 MO_SUP – 5.21 – 5.85 

17 N_SUP – 1.81 – 1.93 

18 PH – 3.86 – 4.34 

19 PS – 2.68 – 2.92 

20 PSB – 1.49 – 1.59 

21 SUBSTR – 2.15 – 2.34 

22 TEXTURE – 3.76 – 3.75 

23 TF – 2.30 – 2.36 

Topographic 

24 COD_HID 1.36 6.38 1.22 6.34 

25 DS_WATER 1.59 1.60 1.45 1.64 

26 DS_PAST 1.53 1.65 1.51 1.61 

27 DS_RIVER 1.24 1.23 1.22 1.24 

28 FLOWACUM 3.18 5.17 4.32 3.72 

29 FLOWDIR 1.42 1.50 1.42 1.45 

30 FLOWDIRDOWN 1.30 1.37 1.25 1.33 

31 FLOWDIRUP 3.83 6.08 5.10 4.37 

32 ICT 1.80 1.84 1.82 1.81 

34 ITH 3.06 2.71 2.71 2.71 

35 TP_ELEV 4.00 2.85 1.86 4.89 

36 TP_ES_OE 1.65 1.68 1.62 1.68 
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Models A) B) C) D) 

Non-collinear variables 

37 TP_EXPO 1.66 1.68 1.62 1.71 

38 TP_PEND 8.96 – – – 

39 TP_RSD_I 3.93 3.53 3.46 3.95 

40 TP_RSD_O 3.12 3.12 3.00 3.14 

41 TP_RSD_V 7.04 3.85 3.64 4.00 

42 TP_RSH_O 3.13 3.06 3.01 3.20 

43 TP_RSH_P 4.82 4.96 5.14 4.88 

44 TP_RSH_V 5.84 5.75 5.70 5.80 

45 TP_SU_NO 2.94 3.08 2.90 2.97 

Tree cover 

46 AGROF 1.82 1.84 1.85 1.99 

47 BROADL 1.55 1.60 1.51 1.65 

48 CONIF 1.29 1.32 1.28 1.31 

49 DS_TREE 1.59 1.63 1.61 1.67 

50 FCC_TREE 2.64 2.73 2.11 2.95 

51 FCC_TOT 2.44 2.34 2.16 2.54 

52 FR_TREE 1.59 1.62 1.55 1.66 

53 FR_OLIVO 2.94 2.72 2.57 3.06 

54 FR_OAK 2.29 2.45 2.17 2.53 

55 MIXF 1.04 1.04 1.04 1.06 

56 NDVI 1.65 1.74 1.68 1.71 

57 OLIVES 2.65 2.39 2.36 2.57 

58 WOODLANDS 1.27 1.36 1.24 1.36 
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Table A3. Parametric characterization of Phytophthora cinnamomi defined by the Upper Confident 
interval ensemble model approach developed by the tree cover, climate and topographic categories of 
variables (A). 

Variable Min 1st Q Median 3rd Q Max 

Climatic 

Sum of water balances at the end of each month 24.7 631.9 974.2 1550.0 8570.0 

Average Net Primary Production 560.0 1858.2 2384.0 2791.1 3935.0 

Average reference ET 709.2 995.4 1029.7 1060.4 1242.4 

Aridity index 56.9 143.6 170.3 197.0 321.9 

Number of warm days (T-max ≥35 °C) 0.0 0.1 0.1 0.1 0.3 

Number of cold days (T-min ≤0 °C) 0.0 390.3 438.8 482.6 756.0 

Annual precipitation 0.0 58.0 118.7 204.7 372.3 

Annual radiation 312.4 537.7 607.1 704.1 1539.5 

Annual sum negative differences of rain and ET 49.2 104.0 107.0 108.6 116.6 

Average snow precipitation 333.3 583.5 628.6 672.0 804.6 

Annual sum positive differences of rain and ET 7.3 151.6 204.9 279.9 1110.0 

Average T-max 199.6 227.0 235.4 241.7 256.4 

Average T-mean 138.0 163.0 172.0 177.0 189.0 

Average T-min 65.5 99.0 107.0 115.0 143.0 

Average T-max of warmest months 279.0 341.0 346.0 351.7 378.0 

Mean temperature warmest month 223.0 256.7 263.0 267.0 290.0 

Mean temperature coldest month 24.7 85.0 96.0 103.0 123.0 

Average T-min of coldest months 15.3 33.0 45.0 54.3 92.0 

Edaphic 

Average clay content 7.9 23.3 27.1 32.1 57.4 

Average sand content 8.8 42.3 48.7 55.5 79.5 
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Variable Min 1st Q Median 3rd Q Max 

Active limestone 0.1 1.3 1.8 6.3 25.3 

Cation exchange capacity 0.2 10.9 13.8 17.2 41.3 

Water retention capacity 63.1 127.2 135.9 145.4 199.2 

Edaphic soil type 1.0 14.0 17.0 42.0 57.0 

Average silt content 2.2 18.7 22.9 27.0 54.7 

Lithology 1.0 12.0 25.0 37.0 41.0 

Average organic matter in the profile 0.4 1.0 1.2 1.4 3.4 

Average organic matter surface horizon 0.3 1.4 1.6 1.9 3.8 

Nitrogen content 4.7 5.8 6.3 7.5 8.2 

Percent base saturation 25.0 100.0 148.1 150.0 250.0 

Soil pH 7.6 92.4 97.2 99.9 100.0 

Soil depth 1.0 1.0 1.0 1.0 1.0 

Substrate 1.0 2.0 7.0 7.0 11.0 

Texture 5.0 44.2 57.7 74.7 100.0 

Average content of fine particles (Ø < 2 mm) 7.9 23.3 27.1 32.1 57.4 

Topographic 

Hydraulic conditions 11.8 22.1 31.2 46.9 259.0 

Distance to pastures 0.0 209.6 486.7 904.4 7730.9 

Distance to river 0.0 44.7 214.1 686.2 7175.4 

Distance to water 0.0 0.4 2.1 10.3 14669.5 

Flow accumulation 1.0 4.0 13.4 42.1 255.0 

Flow direction 0.0 1590.0 3578.6 8278.3 82765.2 

Flow direction down 0.0 67.5 321.2 911.6 45127.7 

Flow direction up 2.6 4.4 5.4 6.7 19.1 
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Variable Min 1st Q Median 3rd Q Max 

Composite topographic index 4.3 7.0 8.0 9.0 17.0 

Topographic moisture index 1.0 1.0 1.0 1.0 1.0 

DEM 9.0 138.7 225.2 384.5 833.7 

East – west orientation 1.0 38.3 50.0 65.4 100.0 

Slope aspect 0.0 2.5 6.7 14.8 137.6 

Slope steepness 0.6 2075.7 2180.4 2307.7 4040.3 

Radiation in winter 1244.2 3954.6 4871.0 5183.0 5907.8 

Radiation in autumn 2508.4 5209.2 5295.0 5400.3 6455.7 

Radiation in spring 5226.0 7636.8 7671.9 7704.8 7849.0 

Radiation in summer 2.9 9.4 10.0 11.0 12.0 

Sunshine 6.7 11.3 12.0 12.0 12.0 

Sun shine in winter 9.0 13.7 14.0 14.3 15.0 

Sun shine in autumn 0.0 28.2 49.7 62.9 100.0 

Sun shine in spring 11.8 22.1 31.2 46.9 259.0 

Sun shine in summer 0.0 209.6 486.7 904.4 7730.9 

North -south orientation 0.0 44.7 214.1 686.2 7175.4 

Tree cover 

Agroforestry 1.0 1.0 1.0 1.0 1.0 

Broadleaf 1.0 1.0 1.0 1.0 1.0 

Coniferous 1.0 1.0 1.0 1.0 1.0 

Canopy FCC 0.0 197.0 624.4 1375.5 6844.3 

Canopy FCC by trees 4.0 23.4 30.1 36.5 81.8 

Olive trees cover 4.1 62.8 78.2 86.7 98.8 

Oaks cover 0.0 1.0 2.7 4.7 97.9 
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Variable Min 1st Q Median 3rd Q Max 

Density of trees 0.0 2.0 8.3 23.4 98.3 

Distance to tree 0.0 215.7 505.7 902.0 4303.8 

Mixed forest cover 0.0 48.6 71.5 89.3 100.0 

Normalize difference vegetation index 1.0 1.0 1.0 1.0 1.0 

Olives grove 0.0 7.3 14.8 25.5 91.5 

Woodland cover 1.0 1.0 1.0 1.0 1.0 

 

41


	Highlights
	Appendix A



