
Hybrid non-linear model predictive control of a run-of-mine ore

grinding mill circuit

S. Bothaa, J.D. le Rouxa, I.K. Craiga,∗

aDepartment of Electrical, Electronic, and Computer Engineering, University of Pretoria, Pretoria, South
Africa.

Abstract

A hybrid non-linear model predictive controller (HNMPC) is developed for a run-of-mine
ore grinding mill circuit. A continuous-time grinding mill circuit model is presented with a
hydrocyclone cluster as the primary classifier. The discrete-time component is the switching
of hydrocyclones in the hydrocyclone cluster. The resulting model is a hybrid non-linear
model with both continuous and discrete dynamics. A simulation of the HNMPC shows the
advantages of using the hydrocyclone cluster as an additional manipulated variable. The
advantages of the HNMPC is illustrated by comparing its performance to a non-linear MPC
where no switching of hydrocyclones is possible. The genetic algorithm based HNMPC
showed increased controller stability in its ability to incorporate discrete dynamics into the
controller directly. The methods discussed in this paper can be used to incorporate different
types of discrete dynamics into advanced grinding mill circuit controllers due to the modular
presentation of the model and HNMPC controller design.

Keywords: advanced process control, comminution, genetic algorithm, grinding mill,
hydrocyclone cluster, hybrid modelling, hybrid non-linear model predictive control

1. Introduction

A run-of-mine (ROM) ore milling circuit is used to grind incoming ore bearing precious
minerals to within a specification, e.g. 70% of the product particles must be smaller than
75µm. The fine product produced from the milling circuit allows for the separation of the
precious minerals from the gangue material [1]. In order to improve the recovery rate of the
valuable metals in the downstream processes, the particles discharged from the grinding mill
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circuit should have a consistent quality, i.e. remain within specification [2]. Efficient control
of the grinding mill circuit is therefore essential to achieve the desired product specifications
in terms of throughput and quality.

Generally, the better the quality of a product, the lower the throughput of the plant,
and vice versa [3]. Because of the interaction between the control objectives for quality
and throughput, the aim is to maintain quality as close to the minimum specification as set
by the downstream processes, thereby maximizing throughput even in the presence of large
disturbances [3]. In addition to these control objectives, a grinding mill circuit controller
should also aim to increase energy efficiency and at all times ensure process stability [4].

The downstream process requirements play a critical role in the steady-state optimisation
objective of the grinding mill circuit. Although the local optimisation objectives for the
grinding mill circuit is to maintain a constant product fineness and maximise throughput,
the key revenue generating variable for the mineral processing plant is the concentrate grade
of the downstream process (the separation circuit). In [5, 6] the product size distribution
specification for the grinding mill circuit is continuously set by the separation circuit to
improve the separation circuit’s economic performance. An economic objective function is
used in [7] where a predictive controller sets the targets for an advanced regulatory controller
on the grinding circuit. The objective function optimised the income generated from the
plant as a function of the feed ore grade to the grinding circuit, the separator tailings grade
and the recovery of the plant.

The economic evaluation of a grinding mill circuit is done by using the relationship be-
tween the grinding mill circuit product particle size and the separation concentrate recovery
and grade curve [8]. Economic plant-wide optimisation for a mineral processing plant is
therefore limited to the operating range of the grinding mill circuit [9]. Due to this lim-
itation, grinding mill circuit controllers should be designed to optimise over a wide range
of steady-state regions, incorporate various different controlled- and manipulated variables
(MVs), and benefit from all dynamics in the circuit to reject upstream disturbances quickly.
These findings are in line with [10] where a systematic procedure is given to find suitable
controlled variables (CVs) in order to construct a control architecture capable of achieving
the plant-wide economic optimisation objective.

The norm for industrial milling circuit control is single-loop proportional-integral-derivative
(PID) controllers despite strong interactions between the loops [11]. Single loop PID con-
trollers do not allow for any trade-off between the control objectives. Therefore, if one of
the loops hit a constraint, the other loops can not attempt to offset the resulting set-point
error. A variety of multivariable controllers were developed to achieve the optimal trade of
between the control objectives and improvements in product quality, throughput, and power
consumption [2, 12, 13, 14].

The design of advanced multivariable controllers involves identifying additional MVs to
improve the circuit’s operating region [15, 16, 17, 18]. In [15] the range of quality control
was increased by independently manipulating the mill’s water feed-rate instead of fixing the
water feed-rate as a ratio of the ore feed-rate. Similarly in [18] the range of quality control
was increased by manually switching cyclones in a hydrocyclone cluster. Power consumption
reduction while maintaining quality was achieved in [19] by alternating between different
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Figure 1: Non-linear model predictive control.

stockpiles as ore feed and whether a secondary grinding stage is used or not. In [16] and
[17] the mill speed is used as an additional MV to reduce mill power consumption, and to
independently control quality and throughput.

One of the most common advanced process control methods is model predictive control
(MPC). MPC is a control technique where optimal control is applied in an iterative fashion
[20]. The control problem is solved at each iteration based on the plant measurements,
predicted states and the past control actions. The controller predicts the plant outputs
(according to some dynamic plant model) over a prediction horizon given a vector of control
moves. During controller execution an optimiser will estimate the optimal control moves
over a control horizon, that drive the process to the desired operating point (defined by
reference setpoints and optimisation objectives) according to an objective function based on
the predicted plant outputs. Once the optimal control move vector is calculated only the
first move is implemented and the process is repeated at the next execution interval [21].
Non-linear MPC (NMPC) follows the same principle of operation as a linear MPC, except a
non-linear model is used to predict the plant outputs and the solver should be able to cope
with possible local minima and non-linear models. The block diagram in Fig. 1 illustrates
the NMPC principle.

The robust non-linear model predictive controller (MPC) developed in [3] showed that
even in the presence of large disturbances and model mismatch it was possible to efficiently
control a grinding mill circuit. The controller was capable of controlling over a larger oper-
ating region than linear MPC controllers such as the ones in [2, 13]. Furthermore, due to
the large non-linearities in the grinding mill circuit, a non-linear MPC capable of predicting
and controlling the non-linear dynamics is highly desirable.

The key drawbacks in using model based predictive controllers is model mismatch be-
cause of the difficulty to estimate model parameters and complex solutions with unrealistic
execution intervals [3, 20, 22]. The reduced complexity model in [1] was proven qualitatively
accurate and uses as few parameters and states as possible. The model made it possible to
design the robust non-linear MPC of [3]. Although the controller was not feasible for online

3



application at the time, technological improvements (in the form of multi-core processors)
have made it possible to implement non-linear MPC controllers with complex models in
real time [23]. A drawback of non-linear MPC controllers is that discrete components in
the circuit cannot be integrated directly in the controller [24]. This leaves certain tasks to
operator intervention and could result in sub-optimal operation.

Hybrid model predictive control (HMPC) is capable of controlling a process by predicting
according to continuous- and discrete-time events, and manipulating continuous and discrete
components [25, 26]. In [19] a linear HMPC was implemented to select which stockpile to feed
from or if the secondary grinding stage should be active. Similarly, [27] gives a framework
for HMPC of grinding mill circuits, where linear steady-state models are considered. The
models are converted to a specific class of hybrid systems and then specialised packages
such as HYSDEL are used to generate and solve the objective function [27, 28]. These
set methods of solving the hybrid model and control problem ensure reasonable controller
execution time.

The work in this study builds on [18] where the benefits of switching hydrocyclones in
and out of a cluster are shown. The novel approach in this paper is the on-line switch-
ing of hydrocyclones in a cluster with the use of HNMPC. The controller benefits from a
larger operating region due to the non-linear model, and being able to switch the discrete
components thereby further increasing the operating region. The aim is to show that more
effective control of a grinding mill circuit can be achieved in the presence of disturbances
compared to conventional non-linear MPC. A full non-linear model is used to capture the
dynamic continuous time properties of the circuit, and the model is adapted to contain the
discrete dynamics of the hydrocyclone cluster switching. HNMPC is achieved by using a
genetic algorithm in order to minimize the objective function.

Section 2 gives a discription of the process and the full hybrid non-linear model is dis-
cussed in Section 3. The controller design is given Section 4 and the simulation results of a
non-linear MPC and HNMPC under identical conditions are given in Section 5. The final
discussion is given in Section 6.

2. Process Description

A closed single-stage grinding mill circuit with a hydrocyclone cluster is shown in Fig. 2.
The circuit consists of a semi-autogenous (SAG) mill with an end-discharge screen, a sump
and a hydrocyclone cluster. The end-discharge screen consists of a grate and a pulp lifter.
The mill receives four different input streams from a feeder module: run-of-mine ore (MFO),
water (MFW ), steel balls (MFB) and underflow from the hydrocyclone cluster. Water is
added to assist with the transport of particles and steel balls are added to assist with the
breakage of rocks in the mill. The fraction of the mill volume filled with water, ore and steel
balls is represented by JT . The mill is the most power intensive element in a grinding mill
circuit and the power draw of the mill motor is represented by Pmill [4]. The slurry mixture
of ground ore and water in the mill is discharged into the sump through an end-discharge
screen that limits the particle size of the discharged slurry. The level of the slurry in the
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sump is represented by SV OL. The slurry in the sump is diluted with additional water
(SFW ) before it is pumped to the hydrocyclone cluster.

A hydrocyclone separates the particles smaller than the specification size from parti-
cles larger than the specification size. The control target is generally to grind ore such
that a percentage of the ground ore falls below a specification size. The in-specification
particles are discharged from the hydrocyclone overflow as a final product, while the out-of-
specification particles are recycled through the hydrocyclone underflow back to the mill for
further grinding [1].

Grinding mill circuit designs can vary to use a hydrocyclone cluster instead of just one
hydrocyclone. A hydrocyclone cluster allows for smaller cyclones to achieve a finer cut while
maintaining high volumetric flow-rates [29]. For a cluster of hydrocyclones, CFF is the
total feed to the hydrocyclone cluster and CFD is the density of the feed stream. The
final product quality is referred to as the product particle size estimate (PSE), which is the
fraction of particles in the hydrocyclone cluster overflow smaller than the specification size.
The throughput (THP ) is the mass flow-rate of solids of the hydrocyclone cluster overflow.
The commonly used variables for control of the grinding mill circuit are given in Table 1
[11].

3. Process Model

In this section the dynamic phenomenological non-linear population balance model of
[1] is described, where the mill, sump and hydrocyclone are modelled separately. The hy-
drocyclone model is expanded to describe a cluster of hydrocyclones such that a non-linear
hybrid model is created to describe the circuit in Fig. 2. The model uses fewer parameters
and states for the mill and hydrocyclone than [30] and [31] do, mainly by using fewer size
classes to characterise the material in the circuit. The study in [32] specifically looked at
what the effect is on controller performance if the number of size classes is reduced. It was
found that even with the reduced number of size classes, the model still gives sufficiently
accurate results for process control without any noticeable loss in controller performance
[32].

The model was fitted to industrial data, and validated in [1] for a range of operating
conditions. It was found that the output variables of the model change in the correct direc-
tions with orders of magnitude similar to the validation dataset. The model was validated
for process control, meaning it is not accurate enough for green fields grinding mill circuit
design, but is qualitatively accurate and can be used for predictive controller design. This
model forms the basis for the controller package StarCS RNMPC of Mintek [23].

The model uses three size classes to describe the material in the circuit: rocks, coarse
ore and fine ore. The ore in the mill that is too large to pass through the end-discharge
screen (larger than 22.4 mm) are referred to as rocks. Material discharged through the end-
discharge screen which is larger than the specification size (smaller than 22.4 mm but larger
than 75 µm) is referred to as coarse ore, and material which is smaller than the specification
size (smaller than 75 µm) is referred to as fine ore [1]. Solids are defined as the sum of fine
and coarse ore.
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Figure 2: Single stage grinding mill circuit with a hydrocyclone cluster.

To model the material in the circuit, the model uses five states: water, rocks, solids, fines,
and balls. It is important to note that although there are three size classes, the model does
not have a model state for coarse material, but rather one for solids. The choice not to model
coarse ore but rather solids simplify the modelling of the mill and the sump. Table 2 gives
a description of each of the symbols and their respective subscripts as used in the model. In
Table 2 the variable V denotes volumetric flow-rates in m3/h and X denotes the states of
the model as volume of material in m3. The first subscript indicates the process unit (mill,
sump, cyclone), the second subscript specifies the state (water, balls, rocks, solids, fines),
and in the case of flow-rates the third subscript indicates an inflow, outflow, or underflow.

3.1. Model parameter values and descriptions

The nomenclature for the grinding mill circuit model is given in Table 3. The values for
the parameters are taken from [1].
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Table 1: Grinding mill circuit variables

Variable Description Unit
Manipulated Variables
MFW Flow-rate of water to the mill [m3/h]
MFO Feed-rate of ore to the mill [t/h]
MFB Feed-rate of steel balls to the mill [t/h]
SFW Flow-rate of water to the sump [m3/h]
CFF Flow-rate of slurry to the hydrocyclone cluster [m3/h]

Controlled Variables
JT Fraction of the mill volume filled with charge [-]
SV OL Volume of slurry in sump [m3]
PSE Product particle size estimate [-]

Measured Variables
Pmill Power draw of the mill motor [kW]
THP Throughput [t/h]
CFD Hydrocyclone feed density [t/m3]

Table 2: Description of subscripts

Subscript Description
X∆− m-mill; s-sump; c-hydrocyclone cluster; ci-ith hydrocyclone
X−∆ w-water; s-solids; c-coarse; f-fines; r-rocks; b-balls
V−−∆ i-inflow; o-outflow; u-underflow

3.2. Mill Module

The mill is modelled by incorporating the effects of mill power draw and slurry rheology
in the calculation of the mill load and breakage power functions. The constituents of charge
in the milling circuit are represented by five states: rocks (Xmr), solids (Xms), fines (Xmf ),
balls (Xmb) and water (Xmw). The model describes the states by considering the inflow,
outflow, generation and consumption of each state.

The dynamics of the mill hold-ups are governed by the following state equations,

Ẋmw =Vmwi − Vmwo + Vcwu (1a)

Ẋms =Vmsi − Vmso + Vcsu +RC (1b)

Ẋmf =Vmfi − Vmfo + Vcfu + FP (1c)

Ẋmr =Vmri −RC (1d)

Ẋmb =Vmbi −BC (1e)

where Vmwi, Vmsi, Vmfi, Vmri, and Vmbi (m3/h) are the feed rate of water, solids, fines,
rocks and balls into the mill respectively; Vcwu, Vcsu, and Vcfu (m3/h) are the flow-rates
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Table 3: Mill model parameters from [1]

Parameter Value Description
αf 0.055 Fraction of fines in the feed ore
αr 0.465 Fraction of rocks in the feed ore
αP 1.0 Fractional power reduction per fractional reduction from

maximum mill speed
αφf 0.01 Fractional change in kW/fines produced per change in fractional

filling of mill
αspeed 0.72 Fraction of critical mill speed
δPs 17.46 Power-change parameter for fraction of solids in the mill
δPv 17.46 Power-change parameter for volume of mill filled
DB 7.85 Density of steel balls [t/m3]
DS 3.2 Density of feed ore [t/m3]
εsv 0.6 Maximum fraction solids by volume of slurry at zero slurry flow
φb 90.0 Steel abrasion factor [kWh/t]
φf 29.5 Power needed per tonne of fines produced [kWh/t]
φr 6.72 Rock abrasion factor [kWh/t]

ϕPmax 0.57 Rheology factor for maximum mill power draw
Pmax 1670 Maximum mill motor power draw [kW]
vmill 59.12 Mill volume [m3]
vPmax 0.34 Fraction of mill volume filled for maximum power draw
VV 88.0 Volumetric flow per “flowing volume” driving force [h−1]
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of the water, solids and fines at the underflow of the hydrocyclone cluster respectively;
Vmwo, Vmso, and Vmfo (m3/h) are the flow-rates of water, solids from the mill to the sump
respectively. RC, BC, and FP (m3/h) represent rock consumption, ball consumption and
fines production respectively.

Material is fed to a mill through a feeder module. The input streams into the mill are,

Vmwi =MFW (2a)

Vmsi =
MFO

DS

(1− αr) (2b)

Vmfi =
MFO

DS

αf (2c)

Vmri =
MFO

DS

αr (2d)

Vmbi =
MFB

DB

(2e)

where DS and DB (t/m3) are the densities of the feed ore and the steel balls respectively;
parameters αf and αr represent the fraction of fines and rocks in MFO respectively.

The material discharge flow-rates from the mill to the sump are,

Vmwo =VV ϕXmw
Xmw

Xms +Xmw

(3a)

Vmso =VV ϕXmw
Xms

Xms +Xmw

(3b)

Vmfo =VV ϕXmw
Xmf

Xms +Xmw

(3c)

where VV (1/h) is the discharge rate and ϕ is an empirical function called the rheology
factor. Parameter VV accounts for the shape and build of the end-discharge screen.

The rheology factor incorporates the effect of the fluidity and density of the slurry in the
calculation of the milling circuits performance [33]. A rheology factor of one will indicate
the slurry is non-flowing, while a rheology factor of zero is the result of no solids in the
slurry and is therefore only water. The rheology factor is calculated as,

ϕ =
(
max

[
0,
(

1−
(

1
εsv
− 1
)

Xms

Xmw

)])0.5
(4)

where εsv is the fraction of solids in the slurry that will result in no flow.
The material consumption and generation equations are,
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RC =
Pmillϕ

DSφr

(
Xmr

Xmr +Xms

)
(5)

FP =
Pmill
DSφf

[
1 + αφf

(
Xmw +Xmr +Xms +Xmb

vmill
− vPmax

)]−1

(6)

BC =
Pmillϕ

φb

(
Xmb

DS (Xmr +Xms) +DBXmb

)
(7)

where Pmill (kW ) is the power draw of the mill, φb and φr (kWh/t) are the abrasion factors
of balls and rocks, φf (kWh/t) is the power needed per tonne of fines produced, αφf is the
fractional change in φf as a result of the mill filling and vPmax is the maximum mill filling
for maximum power draw. Small steel particles resulting from steel ball wear will exit the
mill as part of the solids of the mill. However, since the breakage is slow compared to the
breakage of solids, it has a negligible dynamic effect on Xms. The fine steel particles will
eventually form part of the gangue in downstream units.

The fraction of the mill filled is a critical controlled variable (CV) to ensure stable
operation of the grinding mill circuit. The load of the mill is calculated as,

JT = Xmw+Xms+Xmr+Xmb

vmill
(8)

where vmill (m3) is the volumetric size of the mill. The power draw of the mill is defined as,

Pmill = Pmax{1− δPvZ2
x − δPsZ2

r} · (αspeed)αP (9)

where Pmax (kW ) is the maximum mill power draw, αspeed is the fraction of critical mill
speed, αP is the fractional change in mill power draw due to a change in αspeed, δPv and
δPs are parameters estimating power draw change due to the volume of the mill filled and
fraction of solids in the mill respectively. The effect of the total charge on mill power is
modelled by the empirical definition of

Zx = JT
ϕPmax

− 1, (10)

and the effect of the solids content on the mill power is modelled by the empirical definition
of

Zr = ϕ
ϕPmax

− 1, (11)

where ϕPmax is the rheology factor at maximum mill power draw.

3.3. Sump Module

Because of the end-discharge screen of the mill which prevents rocks and balls from
exiting the mill, the sump will not have any steel balls or rocks. The sump states are: water
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(Xsw), solids (Xss), and fines (Xsf ). The dynamics of the sump hold-ups are governed by
the following state equations,

Ẋsw =Vmwo − Vswo + SFW (12a)

Ẋss =Vmso − Vsso (12b)

Ẋsf =Vmfo − Vsfo, (12c)

where Vswo, Vsso and Vsfo (m3/h) are the sump discharge flow-rates of water, solids and fines
respectively. It is assumed the slurry in the sump is fully mixed. The discharge of each state
from the sump through the variable speed pump is defined as,

Vswo =CFF
Xsw

Xsw +Xss

(13a)

Vsso =CFF
Xss

Xsw +Xss

(13b)

Vsfo =CFF
Xsf

Xsw +Xss

. (13c)

The volume of the slurry in the sump, SV OL (m3), is controlled to ensure the sump
does not run dry or overflows. The hydrocyclone feed density, CFD (t/m3), is manipulated
by the feed rate of water to the sump, SFW (m3/h). In this study, CFD is not directly
controlled, but minimized where possible in order to maximise circulating load and increase
classifier performance [23]. The two output variables are modelled as,

SV OL =Xss +Xsw (14a)

CFD =
Xsw +XssDs

Xsw +Xss

. (14b)

3.4. Hydrocyclone cluster model

A hybrid model is a model that incorporates continuous and discrete time dynamics
[34]. A grinding mill circuit that contains a cluster of hydrocyclones can be represented
by a hybrid model with the switching in and out of hydrocyclones making up the discrete
dynamics [35]. Such circuits are often controlled using a layered approach, with a bottom
layer controlling the continuous dynamics of the mill and sump, and a top layer controlling
the switching of individual cyclones in the cluster [36]. By incorporating the continuous and
switching dynamics in one model an advanced hybrid controller is able to consider all CVs
in the circuit to ensure optimal operation of the process [37].

Hybrid models are often modelled as Mixed Logical Dynamical (MLD) models. Such
models make it relatively simple to formulate a hybrid controller, and special software pack-
ages such as HYSDEL can automatically convert the controller objective function to a set
of linear inequalities that are used to solve the control problem [25, 38].

In this study the complete non-linear hybrid model is considered for the controller design
and simulation. The complete hybrid non-linear state space model containing the contin-
uous dynamics of the mill, sump, and hydrocyclones, and the discrete dynamics of the

11



hydrocyclone activation variables takes the common form of

ẋ = f(t,x,u, ρ)
y = h(t,x,u, ρ)
with
x ∈ R
u ∈ R
y ∈ R
ρ ∈ {1, 0},

(15)

where x, y, and u represents the plant’s state, measured, and manipulated variables re-
spectively. The activation signals for the individual cyclones in the hydrocyclone cluster are
contained in ρ. The variables are given by,

x = [Xmw, Xms, Xmf , Xmr, Xmb, Xsw, Xss, Xsf ]
T

u = [MFO,MFW,MFB, SFW,CFF ]T

y = [JT , Pmill, SV OL,CFD,PSE, THP ]T .
(16)

Function f is given by (1) and (12), and function h is given by (8), (9), (14), and (22). The
vector ρ consists of all the activation variables for each hydrocyclone ρi where i is used to
indicate a specific hydrocyclone, i.e.

ρi =

{
1 if hydrocyclone ON

0 if hydrocyclone OFF
(17)

i = 1, 2, 3..., Ncyclones,

where Ncyclones is the total number of hydrocyclones in the cluster. The number of active
cyclones in the cluster is defined as,

NActiveCyclones =

Ncyclones∑
n=1

ρi. (18)

The hydrocyclone modelled in [1] is represented as a set of static non-linear volumetric
flow-rate equations based on the Plitt hydrocyclone model. Similar to the Plitt model,
the model is based on the assumption that the corrected classification size is exponentially
proportional to the fraction of solids in the total inflow volume, inversely proportional to
the total cyclone feed flow and can be modelled independent of feed size characteristics [39].
Although these are simplifying assumptions, the aim is not necessarily to be quantitatively
accurate but to be qualitatively accurate. The minimum requirement for controller design
is a model with responses in the correct directions [32].

The non-linear hydrocyclone cluster model is formulated by assuming identical cyclones
that can be switched on or off using activation variables. Since identical hydrocyclones are
used, it is assumed the parameters for each hydrocyclone will be the same. Also, since the
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cut of the cyclone is assumed independent of the feed size, the cyclone parameters are not
influenced by the small set of size classes.

Flow-rates at the underflow of each i-th hydrocyclone are calculated as

CFFi =
CFF

Ncyclones∑
n=1

ρi

(19a)

Vcicu =ρi
CFFi (Xss −Xsf )

Xsw +Xss

(
1− C1 exp

(
−CFFi
εc

))(
1−

(
Fi
C2

)C3
)(

1− PC4
i

)
(19b)

Vciwu =ρi
Xsw (Vcicu − FuiVcicu)
FuiXsw + FuiXsf −Xsf

(19c)

Vcifu =ρi
Xsf (Vcicu − FuiVcicu)
FuiXsw + FuiXsf −Xsf

(19d)

Vcisu =Vcicu + Vcifu (19e)

where CFFi (m3/h) refers to the hydrocyclone feed for each individual hydrocyclone; Vcicu,
Vciwu,Vcifu, and Vcisu (m3/h) are the underflow of coarse ore, water, fines and solids for the
i-th hydrocyclone respectively; Fi = Vsso/CFF is the fraction of solids in the cyclone feed;
Pi = Vsfo/Vsso is the fraction fines in the feed solids; εc (m3/h) relates to the coarse split; C1

relates to the split at low-flows when the centrifugal force on particles is small; C2 normalizes
the fraction solids in the feed according to maximum packing fraction of solid particles; and
C3 and C4 adjusts the sharpness of the dependency on Fi and Pi. The fraction of solids in
the underflow volume for each hydrocyclone is,

Fui = 0.6−
(

0.6− Xss

Xsw+Xss

)
exp

(
−Vcicu
αsuεc

)
(20)

where αsu relates to the fraction solids in the underflow, and the constant factor 0.6 is related
to the maximum packing fraction of material [40].

The total underflow recycled to the mill is the summation of all the underflow streams.
The flow-rates at the overflow of each hydrocyclone are,

Vciso =ρi
CFFiXss

Xss +Xsw

+ ρi
Xsf (Vcicu − FunVcicu)
FuiXsw + FuiXsf −Xsf

− Vcicu (21a)

Vcifo =ρi
CFFiXsf

Xss +Xsw

− ρi
Xsf (Vcicu − FuiVcicu)
FuiXsw + FuiXsf −Xsf

(21b)

Vciwo =ρi
CFFiXsw

Xss +Xsw

− Vciwu. (21c)

The total overflow of solids, fines and water for the hydrocyclone cluster is the summation
of all the individual overflows of solids, fines and water respectively. The grinding mill circuit
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Table 4: Hydrocyclone parameters

Parm Value Description
αsu 0.915 Parameter related to fraction solids in

underflow
C1 0.6 Constant
C2 0.7 Constant
C3 4.0 Constant
C4 4.0 Constant
εc 15.867 Parameter related to coarse split [m3/h]

throughput (THP ) and quality (PSE) is calculated as,

Vcfo =

Ncyclones∑
i=1

Vcifo (22a)

Vcso =

Ncyclones∑
i=1

Vciso (22b)

PSE =
Vcfo
Vcso

(22c)

THP =VcsoDs, (22d)

where Vcfo and Vcso (m3/h) are the overflow flow-rates of fines and solids respectively for
the cluster as a whole.

In this study the single hydrocyclone in [1] is replaced with a cluster of 9 hydrocyclones,
with a nominal operating value of 8 hydrocyclones. A minimum of 6 cyclones must always
be active. The individual hydrocyclone parameters were refitted in this study to produce
similar steady-state results as in [1].

It was found that the dimensionless parameters C1, C2, C3, C4 and αsu are not influenced
by a change in the nominal flow of the hydrocyclone. Consequently, only εc needed to
be refitted from the data provided in [1] in order to use a cluster of 8 hydrocyclones at
nominal conditions rather than one. The total coarse split for the survey data in [1] was
Vccu/Vcci = 0.967. This can also be expressed as,

Vccu
Vcci

= 1− C1e
−CFF

εc . (23)

For identical cyclones, each individual coarse split should be equal to the total coarse split.
Therefore, CFFi = 46.75m3/h at nominal flow can be used to calculate εc for the hydrocy-
clones in the cluster. The nomenclature for the hydrocyclone cluster is given in Table 4.

4. Controller design

Two controller scenarios are simulated and the results compared:
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A base case NMPC controller where the number of active cyclones remain constant, i.e.
there are no discrete dynamics. The available MVs and CVs are:

u =[MFO,SFW,CFF ]T (24a)

y =[JT , SV OL, PSE]T (24b)

An HNMPC controller where the number of active cyclones can be increased or decreased.
The available MVs and CVs are:

u =[MFO,SFW,CFF,NActiveCyclones]
T (25a)

y =[JT , SV OL, PSE]T (25b)

In (24) and (25) the vector u contains the MVs and the vector y contains the CVs. As
discussed in Section 3, the grinding mill circuit also has MFW and MFB as process inputs.
However, they are not considered in the formulation of the control problem. MFW is kept
at a constant ratio to MFO, and MFB is kept constant.

4.1. Controller designs

The aim of both controllers are formulated using a receding horizon control approach
[22]:

min
uk,··· ,uk+Nc−1

J(uk, · · · , uk+Nc−1, xk) (26a)

s.t. xk+1 = f(xk, uk) (26b)

yk = h(xk, uk) (26c)

ul ≤ uk ≤ uu (26d)

yl ≤ yk ≤ yu (26e)

where ul and uu represent the lower and upper limits of the MVs respectively, and yl and
yu represent the lower and upper limits of the CVs respectively. f and h are the discretised
models of (15). The initial states are given in Table 5 and the initial conditions and operating
limits for the CVs and MVs are given in Table 6. For this study JT and PSE are controlled
at setpoint, while SV OL is controlled in a range between low and high soft-limits.

The performance function, J , penalises large changes in MV moves, as well as any
deviations between the CVs and their setpoints or deviations beyond the soft limits. The
performance function is adapted from [20] and is given as,

J(·) =
Np−1∑
n=0

[(
yrk+n|k − ŷk+n|k

)T
Qr

(
yrk+n|k − ŷk+n|k

)
+ Sk+n|kQsSk+n|k

]
+

Nc−1∑
n=0

∆uk+i|k
TR∆uk+i|k

(27)

where yr is the CV setpoint, ŷ is the predicted output, matrices Qr, Qs and R are the
weighting matrices for setpoint tracking, slack variables and control action respectively, and
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Nc and Np are the control and prediction horizons respectively. The slack variable Sn is
defined as,

Sn =


yn − ysh ; yn > ysh

yn − ysl ; yn < ysl

0 ; ysl ≤ yn ≤ ysh

(28)

where ysh and ysl are the soft high and low limits. A soft limit is used for a variable
controlled in a range where the range is still well within the hard constraints of the variable.
Therefore, if a soft limit is violated the controller will control the violation the same as a
set-point deviation and will not regard it as an infeasible solution (which is the case when a
hard constraint is reached).

The objective function is formulated such that the energy in the MVs is minimised, i.e.
the objective function penalizes large MV moves such that minimum energy is expended to
reach the control objective. Although energy in the form of Pmill can be included in the
objective function explicitly, it falls outside the scope of this study.

Full-state feedback is assumed for both controllers with added state noise of 2%. Full-
state feedback is a significant assumption as the measurements available in industrial grind-
ing mill circuits are limited [11]. In Fig. 1 the model states are estimated from the process
measurements. Therefore, full-state feedback assumes that the five mill states and three
sump states can be measured directly or estimated from available measurements.

Although various state estimators have been investigated for grinding mills [31, 41, 42,
43], it remains a challenge to estimate mill hold-ups [17, 44]. In the aforementioned state
estimators the states could be estimated with an average state error of less than 2%. Due
to the accuracy of these state estimators an assumption to use 2% state noise is sufficient
considering that if the state estimator is added to the control loop, the controller will still
perform as it did in this study. It is assumed that all of the base-layer actuator control loops
are ideal. Model-plant mismatch (as in [45]) is not considered in this study. It is assumed
that the process model is an accurate reflection of the plant.

Table 5: Initial states used by NMPC and HNMPC

State Initial Value Unit

Xmw 4.6295 [m3]
Xms 4.6533 [m3]
Xmf 0.9611 [m3]
Xmr 1.9946 [m3]
Xmb 8.2321 [m3]
Xsw 6.8636 [m3]
Xss 3.1364 [m3]
Xsf 0.6478 [m3]
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Table 6: Initial conditions and operating limits used by NMPC and HNMPC

Variable Initial Value Min Max Unit

Manipulated Variables
MFO 65 0 200 [t/h]
SFW 140.47 0 300 [m3/h]
CFF 374 200 450 [m3/h]

Controlled Variables
JT 0.33 0.2 0.4 [-]
SV OL 10 2.5 38 [m3]
PSE 0.67 0.5 0.8 [-]

4.1.1. Controller weights

For the controller set-up the strongest emphasis is placed on achieving the PSE set-
point. Maintaining PSE is important for successful concentration of valuable materials in
the downstream processes and is a key performance indicator that should be tightly con-
trolled. The Qr and Qs weighting matrices were formulated by ensuring that when PSE
or JT deviates from the setpoint by 1%, the effect on the cost function will be the same
as when SV OL deviates 5% from its soft limits. This ensures that the controller will be
equally aggressive in bringing PSE and JT back to setpoint, but less aggressive with SV OL.
Mathematically this can be represented as,

Qr1 (1%JTSP )2 = Qr2 (1%PSESP )2 = Qs (5%SV OLsl)
2 . (29)

The setpoints for JT and PSE are taken as the initial steady-state conditions in Table 6.
The soft limits for SV OL are chosen within the hard constraints in Table 6. The lower soft
limit (SV OLsl) is chosen as 10m3 (which is also the starting condition of the simulation) and
the upper soft limit (SV OLsu) is chosen as 35m3. These chosen values allow a big enough
safety margin between the soft high and low and the absolute high and low limits for the
sump.

Similarly, the R weighting matrix for the input variables was determined such that 1%
changes of half the ranges of CFF , MFO and SFW will produce the same error in the cost
function,

R1

(
1%MFOrange

2

)2

= R2

(
1%SFWrange

2

)2

= R3

(
1%CFFrange

2

)2

. (30)

The R matrix was scaled to produce 1% of the error compared to the Q matrix, or
mathematically,

R1

(
1%MFOrange

2

)2

= 0.01Qr1 (1%JTSP )2 (31)

By choosing Qs = 10, the weighting matrices are calculated from (29) by using the initial
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simulation setpoints from Table 6 as,

Qr = 103

[
230 0

0 55.7

]
(32)

and by using the result from (32) and the ranges in Table 6 with the relation in (31) the R
weighting matrix can be calculated as,

R =

0.025 0 0

0 0.0111 0

0 0 0.0082

 (33)

4.1.2. Prediction and Control Horizons

The prediction horizon, Np, should generally be chosen such that the longest settling
time for all of the outputs are observed [21]. Since the mill and sump act as integrators, this
is impractical and therefore a trial and error approach was followed. For a sampling time
of Ts = 10 s, the prediction horizon resulting in the best results was Np = 36 (6 minutes).
The control horizon was chosen as half of the prediction horizon Nc = 18 (3 minutes).

4.2. NMPC implementation

The cost function was minimized using the fmincon function with the Sequential Quadratic
Programming (sqp) algorithm in MATLAB1 to solve the values for the three MVs. The op-
timiser propagates the grinding mill model as presented in Section 3 using a 4th order
Runge-Kutta algorithm.

4.3. HNMPC implementation

The grinding mill circuit with a hydrocyclone cluster contains hybrid dynamics and
therefore requires a solver that can calculate the control moves while handling the non-
linearities as well as the discontinuities caused by the switching of hydrocyclones.

In [25, 46] the HMPC controller used particle swarm optimisation (PSO) to solve the
objective function. In [25] PSO was successfully implemented on a linear system, however
in [46] they showed that for the PSO to handle non-linearities the algorithm needs to be
adapted in order to ensure that a global minimum is found, and not just a local minimum.

The genetic algorithm (GA) is a solver that has shown advantage over solvers such
as PSO because of its ability to accommodate strong non-linearities, large variations in
initial “guess” inputs, mixed integer dynamics (with various switching components) and
convergence to a global minimum in the presence of many local minima [26, 47]. The GA is
used as the solver in this paper because of these advantages.

The genetic algorithm calculates a set of solutions called the population. The population
aims to minimise the GA fitness function within constraints. The first GA iteration uses the

1MATLAB is a registered trademark of The MathWorks Inc.
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initial population to generate a new population through a mutation function. The mutation
uses the best fit variable values in the population and then discards the other variable
values and defines new values based on a stochastic function. The process is repeated until
the minimum fitness function value is reached, or the maximum number of generations is
exceeded [48].

The Matlab ga function was used to implement the genetic algorithm to form the hy-
brid non-linear model predictive control (HNMPC) solution. The most important hyper-
parameters for the ga function is the fitness limit, tolerance, maximum number of generations
and population size.

The fitness limit and fitness tolerance were chosen based on the influences of the CVs
on the objective function. The default value of the fitness limit is negative infinity, and
it was altered to 0.1 to ensure that even if there is a small controller offset on the process
outputs, the solver will terminate instead of executing until it reaches the maximum number
of generations. It is possible to calculate a fitness limit directly from the objective function by
substituting in the nominal CV values, allowed setpoint offsets and assuming no changes in
MVs. However, this method can become complex since the error is not inherently distributed
between the CVs and the controller could produce infeasible solutions where two CVs are
at setpoint, and one has an offset more than the allowed error. The fitness tolerance was
chosen as 10% of the fitness limit. In abnormal situations the CVs might not get to setpoint,
and if only a local limit is possible, then the solver should also terminate if the objective
function value can no longer be decreased by more than the fitness tolerance.

The maximum number of generations and population size has to be chosen in an iterative
manner. In a case where the desired operating region cannot be achieved over the prediction
horizon, the solver will execute until the maximum number of generations is reached. The
population size is the number of parallel attempts at minimising the objective function per
generation. Firstly the maximum number of generations was left at the default value, and
a suitable value was chosen for the population size by reducing the value until a point is
reached where the controller performance deteriorates. Thereafter the maximum number of
generations was chosen by forcing the solver to run to the maximum number of iterations
and then ensuring that the solver execution time is 20% less than the controller execution
interval time. If at this stage no controller performance degradation is observed, the number
of allowed generations is systematically reduced while monitoring controller performance.

The hyper-parameters for the ga function are therefore:

• The fitness function is the non-linear quadratic objective function in (27).

• The fitness limit is 0.1 and the fitness tolerance is 0.01.

• The maximum number of generations is 20 with a population size of 25.

• There are 55 variables to solve during each iteration: 3 MVs times the control horizon
of 18, plus the integer value NActiveCyclones indicating the number of active cyclones
over the prediction horizon.
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The number of active hydrocyclones is included in the HNMPC controller as one vari-
able over the prediction horizon. The state of each individual hydrocyclone is given as an
activation variable ρi in (17). Instead of the HNMPC solving 9 discrete variables ρi for
each hydrocyclone where each variable has a value of one or zero, it rather solves one inte-
ger variable NActiveCyclones. This approach reduces the computational time for the control
moves and will remain valid as long as identical hydrocyclones are used. Additionally, the
switching of hydrocyclones has a large dynamic influence on the plant, and in order to avoid
sporadic switching leading to plant instability, hydrocyclones can only be switched once per
prediction horizon. In other words continuous control moves are made at every execution
interval over the control horizon, while hydrocyclone switching can only be done once. This
ensures that after a switching event occurred a new one will only take place again after 6
minutes.

Once NActiveCyclones is solved, it is converted to a vector to use in the model to assign
values for each value of ρi. The limits will therefore be,

5 < NActiveCyclones < 10 (34)

The CFF constraint in Table 6 is the total feed to the hydrocyclone cluster at nominal
conditions (i.e. 8 active cyclones). Therefore, when the hydrocyclones in the cluster are
switched the constraint for CFF changes to,

200
NActiveCyclones

8
≤ CFF ≤ 450

NActiveCyclones

8
(35)

The number of active cyclones does not influence the constraints for the feed to the mill,
or the flow rate of water to the sump.

The constraints on all MVs were added directly in the ga function as hard constraints,
ensuring a feasible solution in all operating conditions.

5. Simulation Results and Discussion

5.1. Simulation Scenario

The aim of the simulation is to disturb the plant (initially at steady-state), and observe
how the NMPC and HNMPC controllers react to the upset. The grinding mill circuit was
simulated for both controllers with the following general conditions:

• Simulation time of Tf = 3.5h and a sampling rate of Ts = 10s.

• The mill inlet water MFW is kept at a constant 7% of MFO and the feed rate of
balls into the mill MFB is kept at a constant 5.68 t/h.

• The plant configuration is the same for both controllers, however NMPC only has 8
active cyclones, and the HNMPC can switch between 6 and 9 active cyclones.

• 2% random state noise was added to all the mill and sump states at each iteration.
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• A disturbance in the hardness of the ore is simulated at t = 12 min by increasing φf to
36.87 kWh/t and φr to 8.4 kWh/t from their nominal values of 29.5 kWh/t and 6.72
kWh/t respectively. A further hardness disturbance is simulated at t = 107 min by
decreasing φf from 36.87 kwh/t to 19.2 kWh/t and φr from 6.72 kWh/t to 4.4 kWh/t.

• A disturbance in the mill feed size distribution is simulated by increasing αr to 0.765
from its nominal value of 0.465 at t = 180 min, and then down to 0.365 at t = 195
min.

• The CV JT is kept constant at its nominal value of 0.33 throughout the simulation.

• The CV SV OL is allowed to drift between 10m3 and 35m3, but should be controlled
back to the operating region if the soft limits are violated.

• The CV PSE is stepped from its nominal value of 0.67 to 0.73 at t = 30 min, and to
0.64 at t = 145 min.

These disturbances correspond to a case where a stockpile change results in large variances in
ore hardness until the feed stabilises. It also creates a scenario where the product quality goes
off-specification unless some advanced regulatory control is installed or operators intervene.

The disturbances are simulated using discrete value changes to the simulation model
parameters. This means the disturbance will take effect on the mill feed, the breakage rates
of the current mill load and circulating load. To simulate a mixture of the old and new
feed hardness, the variable could be changed using a first order reaction curve. However, in
this study a first order change in hardness (as opposed to the step) showed no noticeable
influence on the controller response, and the discrete step made the interpretation of results
simpler.

5.2. Controller performance metrics

The performance of the controllers need to be quantified in order to evaluate and compare
them. This section provides the metrics used to quantify the performance of the economic
variables (PSE and THP ) as well as the setpoint control of JT . The deviation from setpoint
for PSE and JT is quantified by calculating the sum of all squared errors (similar to [4]),

PSEPerformance =

Nf∑
k=0

(PSEr(k)− PSE(k))2 (36a)

JTperformance =

Nf∑
k=0

(JrT (k)− JT (k))2 , (36b)

where PSEr is the PSE setpoint and JrT is the JT setpoint.The average throughput for
the duration of the simulation is calculated as,

THPAverage =
1

Nf

Nf∑
k=0

THP (k) (37)
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Figure 3: Simulation disturbances. Top: Power needed per tonne of fines produced φf . Middle: Rock
abrasion factor φr. Bottom: Fraction of rocks in the feed αr.

5.3. Results

The disturbances added to the simulation are shown in Fig. 3. A summary for the
performance metrics of PSE, JT and average throughput is given in Table 7. This summary
of results show that both controllers could control JT well. The HNMPC was capable
of maintaining the PSE setpoint with a 50% reduction in error during the disturbances
compared to the NMPC. An average throughput increase of 4.8% was observed for the
HNMPC controller for the duration of the simulation.

Table 7: Controller performance

Metric HNMPC NMPC

PSEPerformance 0.0973 0.2083
JTperformance 0.0012 0.0013
THPAverage 68.8 t/h 65.8 t/h

The simulation results of the controllers are shown in Figures 4, 5, and 6.
Fig. 4 shows the responses of the CVs during the disturbances. The responses for the

continuous MVs are shown in Fig. 5. With the initial increase in hardness, as shown in Fig. 3,
it can be observed in Fig. 5 that both controllers compensate for the hardness change by
increasing CFF as it is the primary handle for controlling PSE. Both controllers decrease
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Figure 4: Top: fraction of the mill filled JT . Middle: volume of slurry in sump SV OL. Bottom: product
particle size estimate PSE. Legend: YSP is the desired setpoint, YSU and YSL are the upper and lower soft
limits for the sump level respectively, YNMPC and YHNMPC are the outputs when the NMPC and HNMPC
controllers are used respectively.

MFO to compensate for the longer residence time of the material in the mill (due to the
increased energy required to break the ore). With the increase in CFF the sump level
goes down and SFW is increased to maintain the sump level. Both controllers quickly
compensated for the increase in ore hardness.

With the increase in the PSE setpoint the HNMPC switched off a hydrocyclone as
seen in Fig. 5. CFF is increased for each hydrocyclone to meet the PSE requirement.
The NMPC achieves this by increasing the total CFF to the cluster, and the HNMPC
achieves it by switching off a hydrocyclone. For both controllers more particles are discharged
through the underflow of the hydrocyclones causing the sump level to increase. The reduction
in the number of cyclones (for the HNMPC) results in a higher effective CFF for each
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Figure 5: Top: mill solids feed rate MFO. Middle Top: sump water feed rate SFW . Middle Bottom:
hydrocyclone feed flow rate CFF . Bottom: number of active cyclones NActiveCyclones. Legend: UNMPC

and UHNMPC are the NMPC and HNMPC controller outputs. UU and UL are the hard constraints for the
upper and lower limits of the MVs respectively.

individual hydrocyclone with a lower total CFF to the cluster. The HNMPC benefits from
a reduced circulating load over the NMPC (due to the reduced total CFF and the slower
sump level increase). With the increased hardness of ore coupled with the PSE increase
neither controller can maintain PSE when the sump is ultimately at maximum capacity.
PSE has a constant ramp down from setpoint as all possible handles for controlling the
PSE are at their constraints. Alternatively the option is available to switch off one more
hydrocyclone; however the controller does not consider this move as the sump is already
at it‘s maximum operating capacity and switching off a hydrocyclone results in a lower
CFF , and therefore to maintain the mass balance over the sump SFW has to decrease,
which increases the CFD and therefore further reduces classifier performance. The HNMPC
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Figure 6: Top: throughput THP . Middle: mill power draw Pmill. Bottom: hydrocyclone feed density
CFD. Legend: YNMPC and YHNMPC are the outputs when the NMPC and HNMPC controllers are used
respectively.

controller can however maintain the setpoint for longer. Both controllers maintain load to
within 1% of the desired setpoint.

When the hardness of the feed ore is decreased, as seen in Fig. 3, the residence time of
the material in the mill reduced and more fines are discharged from the mill. To maintain
PSE both controllers keep CFF fixed, and the PSE setpoint quickly recovers with the
increase in discharge rate of fines from the mill. With the increase in material meeting the
quality specification more particles are discharged from the classifier, and the level of the
sump decreases. The controllers reduce SFW in order to control the sump level.

When the PSE setpoint drops, both controllers respond the same by decreasing CFF .
However, as seen from Fig. 5, the HNMPC switched on two additional hydrocyclones. This
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control move is warranted as with the additional hydrocyclones the reduction in CFF is
not as much as with only 8 active hydrocyclones. This results in a smaller penalty in the
objective function as a result of the rate of change of CFF . Additionally, with the softer feed
ore, the circuit capacity can be maximised as a higher CFF is possible with 9 hydrocyclones
as compared to 8. This results in a final steady-state condition where a higher throughput
is possible while maintaining PSE. Should the process conditions return to the initial
conditions, the HNMPC can switch off a hydrocyclone to achieve the same feed rate per
hydrocyclone as the NMPC.

By observing the free variables in Fig. 6 it can be seen that throughout the simulation
CFD was kept within limits and is similar for both controllers.

The power usage for both controllers went down when the hardness increased as both
controllers decreased MFO. However, during the increase in PSE setpoint the power used
by the mill was higher for the HNMPC than the NMPC. During the setpoint change the
NMPC controller could not maintain PSE and a significant reduction in throughput is
observed. At the end of the simulation, the power draw of the mill is higher for the HNMPC
than for the NMPC. This is as a result of a higher MFO causing a higher throughput.
The power consumption also remains more constant for the HNMPC as a result of the
better process stability. Although higher power does not necessarily coincide with higher
throughput [49], the HNMPC has a more stable power usage than NMPC.

It is clear from Fig. 6 that the HNMPC uses on average more power (kW) than NMPC,
albeit with smaller deviations. However, it should be noted from Table 7 that HNMPC
achieves a higher throughput with much less deviation from setpoint for PSE and JT than
NMPC. It could be argued that though NMPC uses less mill power, this is at a cost of more
MV movement, reduced throughput, and a larger variation in product quality.

The throughput for both controllers is similar throughout the entire simulation. However
for the final steady-state condition (at the end of the simulation) the HNMPC allows the
circuit to operate at a state where the throughput is 15% higher than the NMPC. This is due
to 9 active hydrocyclones increasing the flow capacity of the hydrocyclone cluster allowing
a higher throughput of fines through the circuit (i.e. ensuring that the residence time of the
material in the mill is the bottleneck and not the hydrocyclone cluster). Because the HNMPC
is able to dynamically simulate the effects of switching hydrocyclones in and out, a resulting
benefit is that it improves throughput while maintaining product quality. In response to the
disturbances acting on the plant, the HNMPC controller uses the discrete MV to prioritise
plant stability during the first half of the simulation, and in the second half to increase
throughput. In the case of NMPC the controller is not capable of automatically switching the
hydrocyclones which causes a deviation from the desired product quality when ore hardness
is increased, and limits the throughput achieved when the ore hardness is reduced from the
nominal value (as in the second half of the simulation). When both controllers have the same
number of active hydrocyclones, they exhibit similar control actions. As seen in Fig. 6, there
is a sharp limitation in the throughput for NMPC after 3.2 hours, when compared to the
HNMPC. However, the average throughput for NMPC is 59.3 t/h until this point, whereas it
is 58.9 t/h for the HNMPC. This was expected since the HNMPC achieved a higher product
quality during that time (closer to the desired value than the NMPC) and therefore a lower
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throughput was expected due to the inverse relationship between throughput and quality.
Throughput should only be maximised if the product quality is achieved.

Similarly from 2.3 hours to the end of the simulation when the feed size distribution
was disturbed, as seen in Fig. 3, both controllers were able to easily compensate for the
additional disturbance and maintain the CV setpoints.

Both controllers required similar computational effort. In situations where the minimum
fitness function value was achieved over the receding horizon, the HNMPC took on average
0.4s to solve, while the NMPC took 0.5s. Similarly in cases where the controller reached
the maximum number of iterations (for example just after disturbance or setpoint change),
then the HNMPC takes 6s to solve, while the NMPC takes 7s. These values depend on
the maximum number of iterations chosen for each solver, and in both cases the maximum
number of iterations was chosen so that the control solution tends the process to the desired
operating point. Both controllers executed well within time of the execution interval of
10 seconds. These are promising results for the genetic algorithm based HNMPC since it
included additional MVs and mixed integer dynamics.

In a simple case where only one hydrocyclone can be switched on or off per iteration, three
parallel NMPC controllers could be considered to evaluate if switching will be beneficial,
however it will increase computational effort. During nominal conditions no switching will
be required, and therefore one NMPC will execute within 0.5s, while the parallel NMPC’s
will take 7s. The average computational effort is therefore increased since the parallel pool
of controllers will take 7s to solve at each iteration. This is an avoidable situation with the
HNMPC and is therefore not recommended.

6. Discussion and Conclusion

A continuous time ROM ore grinding mill circuit model was expanded into a hybrid
model which explicitly describes the discrete dynamics of switching cyclones in a cluster of
cyclones. The parameters for the hydrocyclone were re-fitted to ensure the correct steady-
state for the circuit with the hydrocyclone cluster model.

A base case NMPC controller was designed and implemented to compare its performance
against that of a controller that can incorporate discrete switching. An HNMPC was devel-
oped using the non-linear model and a genetic algorithm as the solver. The controllers were
tested in a simulation with large changes in feed ore hardness and product quality setpoints.
During the dynamic simulation the HNMPC showed promise in switching cyclones to main-
tain operating setpoints. An advanced regulatory controller would first have to wait for a
certain MV to hit a constraint to switch an element. However, the HNMPC can anticipate
when switching is required and can therefore reject disturbances more quickly. Similarly a
static optimisation objective can be used to implement switching rules, but then the switch-
ing effect will be a disturbance for the NMPC and dynamic optimisation benefits are not
achieved.

Over the duration of the simulation the PSE performance for the HNMPC was double
that of the NMPC as the average particle size error squared was halved with the HNMPC.
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Both controllers controlled the load in the mill adequately. An average throughput increase
of 4.8% was recorded for the HNMPC over the NMPC over the duration of the simulation.

In this paper some simplifying assumptions were made in order to demonstrate the
advantages that HNMPC can bring when using a hydrocyclone cluster as an additional
manipulated variable. These assumptions include that the process model was assumed
accurate, transport delays were omitted, ideal sensors and actuators were assumed, and
full-state feedback was used. In reality, some important grinding circuit variables are not
measured, sensors and actuators are not ideal, and transport delays are not negligible.

These issues do however impact on all controllers, including model based ones, and should
be carefully considered as addressed briefly in what follows.

Full-state feedback was assumed in this paper. This was done noting the development of
various state estimators for grinding mill circuits [31, 41, 42, 43], and a normal distribution
of state noise larger than the average errors of those estimators was added to the full-state
feedback in an attempt to make the simulations more realistic.

The simulation further did not assume any model mismatch, apart from the disturbances
induced. These can however be mitigated as shown in [45] if not too severe. For practical
implementation of advanced process controllers (such as HNMPC) it is important to note
that if the ranges of the controller MVs and CVs are set up correctly, even in the presence
of quite severe model mismatch, plant stability can be ensured with proper operation of the
base-layer control loops and conservative tuning of the HNMPC.

Implementing an HNMPC is similar to implementing an NMPC which is becoming easier
to implement due to the increased availability of suitable vendor platforms (see e.g. [23]).
What remains a challenge is to accurately model the plant to be controlled, and to keep this
model up to date.

The HNMPC and NMPC respond identically to transport delay mismatch between the
simulation model and the control model. Both can cope with transport delay errors of up to
6 iterations (i.e. 60s) before any noticeable controller performance degradation is noticed.
However, in this study since the effect is the same on both controllers it was not considered
or included, but it is an important model variable that should be carefully modelled for
industrial implementation.

The key contribution as shown in this study was that there is underlying benefit in
incorporating discrete process input variables in the controller formulation. The benefits
were illustrated quantitatively (given the ideal simulation environment and the performance
metrics), but also qualitatively (considering all the assumptions made, but noting the types
of control moves made). The benefits noted were improved stability and improvements in
throughput when manipulating the switching of hydrocyclones in a cluster.

6.1. Future work

This article presented the formulation of a hybrid predictive controller that allows for
the incorporation of discrete process input variables directly into the control problem. This
means that switching of these discrete MVs are no longer left to operator discretion or
additional control layers. However, towards the final industrial implementation of such a
controller there are still some issues that should be investigated, including:
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• A state estimator should be developed for the hybrid model to estimate the states.
The study should preferably use a different simulation model and controller model to
illustrate the capabilities of the controller. If sufficient results are achieved using state
estimation, an industrial implementation should definitely be considered.

• HNMPC could potentially be used in the plantwide control of grinding mill circuits.
The plantwide controller can incorporate the downstream flotation circuit into the
hybrid model, as well as the upstream stockpiles (in order to activate flotation banks
or to choose ore feed stockpiles).

• Grinding mill circuits with various multiple mills in parallel can benefit from imple-
menting economic HNMPC to improve the energy efficiency of the circuit in real time
by switching grinding mill stages. A time-of-use term can be added to the objective
function to optimise the energy usage of a circuit as a whole.

• Fault tolerant control can benefit from the additional discrete MVs [50]. For example
if the hydrocyclone cluster feed flow were to get stuck on a value due to a faulty control
loop or a faulty control valve, and the fault is identified the controller could consider
manipulating hydrocyclones in the cluster instead of opting to switch off the plant.
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