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Summary

Oil palm production is of economical importance in several southern countries. The increasing demand of oil palm
put a lot of pressure in several places where the rain forest and thus the tropical diversity is in danger due to
deforestation. With the land already cultivated, we need to improve the yields, which means to increase the pro-
duction of fruits in plots. One way is to increase the pollination or the fruit set through pollination. Palm tree has a
specific entomophilous pollinator, a weevil, Elaeidobius spp, that absolutely needs male inflorescence to complete its 
lifecycle. In young plots (3-7 years old), mainly female inflorescences are produced and thus the pollinator
population cannot maintain, resulting in a bad fruit set, and, thus, a bad production. That is why several questions
arise: What is the mean number of male inflorescences (per ha) needed to maintain the pollinators population above a
certain threshold? And, in terms of yield, what is the optimal size of the population to reach an optimal fruit set? We
propose, compare and discuss two different modeling approaches to develop preliminary models to study the
dynamics of the Pollinator population, and obtain some rough estimates of the fruit set. We derive some simulations
and discuss these preliminary results
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1 INTRODUCTION

In the last decades, oil palm (Elaeis guinensis Jacq.) has become a major crops around the World, particularly in
South-East Asia and South America, in tropical countries with high rainfall, located around the equator. It originated
from West Africa, but was taken to South- and Central America in the 16-17th centuries, and than to the East. Palm oil
are extracted from the fruit, that is widely used in food, cosmetics, as well as in the development of biofuel1. Compared
to other oil crops, oil palm gives the highest yields per hectare (approximately 4 tons/hectare), which explains its
rapid expansion. One palm tree produces around 40 kg of oil palm, according to several exogenous and endogenous
parameters, like climatic parameters and pollination.
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Oil palm is monoecious, which means that male and female inflorescences occur separately on the same plant, such
that there is almost no self-pollination. When (wild) palm trees are young, they first produce male inflorescences, and,
after very few and in proportion that shows little or no regularity. Sometimes inflorescences with both male and female
spikelets may occurs, but this is mainly in young palm plantation. This physiology implies a cross-pollination which,
in the case of e. guineensis, is essentially entomophilous. The action of the pollinator is however conditioned by a
moderate-sized palm (young palm tree). When it becomes too tall, usually after 8-9 years, fertilization becomes mainly
anemophilous (pollination by the wind).

However, because of increasing demand (up to 2.8% per year), the cultivated area has increased very fast, impacting
places (rain forest) with high biodiversity. In order to maintain/control this expansion, it is mandatory to increase the
yields. That is why several oil palm selection programs have been launched in order to increase the production of
female inflorescences. Indeed, in optimal growth conditions (e.g. without water stress), selected young oil palm trees
produce mainly female inflorescences. Unfortunately, in young palm trees (3-8 years old), pollination is done by natural
pollinators, which need male inflorescences, to maintain. To circumvent this difficulty, artificial or manual pollination
has been made in South-East Asia until the 80’s (and in fact is already used). This was before the work of Rahman
Anwar Syed.

Rahman Anwar Syed was a Pakistani entomologist who discovered the natural pollinators of oil palm tree in Cameroon
in the late 1970’s2,3,4. His work leaded to the introduction, in the 80’s, of E. kamerunicus, the best among the pollinators,
thanks to its important pollen carrying capacity4. These releases have most often increased the fruit set (percentage
of flowers that develop into fruits), that usually depends on pollination1, in young palm plantations. However, since
the introduction, it has been shown that the maintenance of the population is sometimes difficult (predation by rats,
diseases, weather factors, like rainfall, . . . ), impacting seriously the fruit set.
Our work is a first step towards the complete modeling of palm-pollinator interactions. Thus, we only focus on the

weevils population dynamics and the fruit set estimate, using two different, but complementary from our point of
view, modeling approaches: Continuous modeling and Agent-Based Modeling (shortly ABM). Using simulations, and
comparing both models, we would like to derive some "conditions" to maintain the pollinators population above a
certain threshold in order to reach a good fruit set. We also derive pros and cons of both modeling approaches and
derive future modeling extensions and knowledge improvements, through observations and experiments. The outline of
the paper is as follows: In section 2, we briefly present the interactions between oil palm tree and its main pollinator, E.
kamerunicus. Based on old results, we derive a rough relationship between the fruit set and the size of the pollinators
population. Then, in section 3, we develop the mathematical and the ABM models. Finally, in section 4, we derive
several simulations using both models and discuss the results. The paper ends with a conclusion and several perspectives.

2 ABOUT ELAEIS GUINENSIS AND E. KAMERUNICUS

2.1 About E. Kamerunicus
Since the pioneering work of Syed, some greenhouse or field works have been done on E. kamerunicus and other
Elaeidobius sp. in Cameroon2, in Ivory Coast5,6, in Malaysia, Indonesia, and India 3,4,7,8. Thanks to these studies, we
have some knowledge about the weevil. It has several immature stages (1 eggs stage, 3 larvae stages, and 1 pupae stage).
On average, a female weevil lays 35 eggs. The whole immature stage is completed within a mean period of 10 − 14
days. Its lifespan in the field is estimated around 7 − 10 days. However, we don’t know where and when the weevils
mate. In addition, weevils can also be impacted by rats, spider webs, insecticides, . . . . Clearly, along the year, some of
its parameters may change, but we do not have any data on that.

E. kamerunicus is really host specific, i.e. it is totally dependent on presence of Elais guinensis male inflorescences.
Indeed, the pollinators need male inflorescences to feed and deposit their eggs. According to4 and our own experiments,
E. kamerunicus seem to have a good dispersal ability. Indeed, they are able to find male (and female) inflorescences,
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because they are attracted by anis odors released by male (and also female) inflorescences in anthesis (mean duration: 5
days for male and 2 days for female). Then, larvae and pupae develop, feeding on decaying flowers. Pollination occurs
when weevils visit female inflorescences by accident, attracted by the same aniseed scent as males. Thus clearly, the
population size may depend on the available male inflorescences and the fruit set is obviously related to the number of
visits in female inflorescences and the density of weevils per female inflorescence. E. kamerunicus was selected and
released in the 80’s3 because of its dispersal ability and its ability to carry a lot of pollen grains (see also9,10,11).

2.2 About Palm Tree, Inflorescence, and Fruit Set
Palm tree is studied since decades because of its economical importance. Several research institutes, like CIRAD in
France, and private companies, like PalmElit, in France, have developed an important "Savoir-Faire" in several places
around the world to improve the yields while also lowering the environmental impact. Thus, an abundant literature
exists on palm tree. The interested reader can read the Corley & Tinker’s book1, or the Woittiez et al. review12. In the
following, we shortly summarized the main components we use in our models.
In a standard planting, an inflorescence flowers approximately every 2 weeks: It is either male or female. However,

due to numerous selection, most of the commercial (young) trees have only female inflorescences, such that the density
of male inflorescences per hectare can be really low, which may be problematic to maintain the weevil population, and
thus have a good fruit set. According to collected field data (personal communication from Tristan Durand-Gasselin,
PalmElit), selection between oil palm trees has driven standard trees to produce almost only female inflorescences
along the year, at least the first seven/eight years. That is why, in young plantation, the number of male inflorescences is
really small. Climate can also have a strong effect on the inflorescences sex (for instance water stress may induce male
inflorescences cycles), however we will not take it into account at this stage.
Female inflorescences are of course of main interest for production. Their pollination occurs by deception. Indeed

female inflorescences release the same anis odors than the male inflorescences, thus also attracting pollinators carrying
pollen grains. So pollination occurs: The larger the number of visits, the better the pollination, the fruit set, and thus
the yield. However, according to our knowledge, only male inflorescences are necessary for the pollinator population
dynamics. Therefore we will only consider, at this stage, male inflorescences dynamics in both models.

In fact, they are very few studies on the impact of pollinators on fruit set (or bunch set), because they are difficult to
conduct. However, useful data have been obtained, indicating very complex interactions between E. kamerunicus and
palm tree inflorescences. Indeed, according to10, the number of adults weevils needs to reach at least 20000 individuals
to get a fruit set around 60%. However, according to the literature, the weevils population dynamics seem to be very
complex. Indeed, Syed3 showed that if the weevils population is too large and the number of male inflorescences is low,
this can have a negative effect on the population dynamics (competition for resources).
In most plantations, a standard palm tree density is 143 tree/ha, which leads to the well known pattern provided in

Fig. 1 , page 4)13: The distance between each tree is 9 m., and between each row is 7.8 m. We will consider this pattern
throughout the paper, but it can be adapted to other plantation densities.

3 MODELING THE POLLINATOR POPULATION

As presented in section 2, like other insects, E. kamerunicus has different stages: Eggs stage, 3 larvae stages, 1 pupae
stage, and finally the adult stage. For the sake of simplicity, L represents all non-adult (immature) stages, while P
represents the adult stage or the (potential) pollinator stage. L (P ) number of immature (adults) per hectare. Let
0 ≤ MIA(t) be the total number of Male Inflorescence in Anthesis per hectare at time t. If one female can reach a male
inflorescence, then it can deposit b eggs per day as long as the maximal Larvae capacity per MIA, �, is not reached,
leading to the following daily birth rate per female Pollinator:
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FIGURE 1 Standard planting pattern in oil palm crop: 143 trees per ha

b
(

MIA(t) −
L
�

)

Then, according to the life cycle, after a mean maturation time (in day), 1∕�L, larvae become adults or die at rate �L.
We denote by �P , the adult mortality rate.

Thus, according to the previous assumptions, we derive the following dynamical system:
⎧

⎪

⎨

⎪

⎩

dL
dt

= br� ×
(

MIA(t) −
L
�

)

P −
(

�L + �L
)

L,

dP
dt

= �LL − �PP ,
(1)

where r is the sex-ratio, and � represents a probability for a pollinator to reach one male inflorescence. We complete the
model with initial non-negative conditions, i.e. L(0) ≥ 0 and P (0) ≥ 0.

Remark 1. Note here that we only focus on the weevil population dynamics: The male inflorescences dynamics, MIA(t),
may either be given or be an output of an inflorescence dynamic model.

We set
MIMA = max

t
MIA(t) and MILA = mint MIA(t),

and
 =

{

(L, P ) ∈ ℝ+
2 ∕L ≤ �MIMA , P ≤

�L�
�P

MIMA

}

Theorem 1. System (1) defines a dissipative dynamical system in the set .

Proof The right-hand side of system (1) is a continuously differentiable map (C1). Then, by the Cauchy-Lipschitz
theorem, system (1) provides a unique maximal solution. It remains to show that  is forward-invariant. First, let us
note that system (1) can be rewritten as dx

dx
= A(x)x, with A(x) being a Metzler Matrix (all off diagonal terms are

non-negative) for x ∈ ℝ2
+. Thus, ℝ

2
+ is invariant by system (1), meaning that if x(0) ≥ 0, then x(t) ≥ 0, for all time

t > 0. Then, it is straightforward to verify that the compact set  is an attractive set for system (1), which implies that
system (1) is dissipative.

Let us first assume that MIA(t) is equal to a positive constant, MIC . Then, setting  =
br��LMIC
�P (�L + �L)

, and

following14, Proposition 1, we have:
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Theorem 2. AssumeMIA(t) ≡ MIC is a positive constant, and > 1, then system (1) has a unique positive equilibrium
that is Globally Asymptotically Stable (GAS).

Assume now that MILA > 0, then we have:

Theorem 3. If
 =

br�L�MILA
�P

(

�L + �L
) > 1

then system (1) is permanent.

Proof If we consider the following system:
⎧

⎪

⎨

⎪

⎩

dLs
dt

= br� ×
(

MILA −
Ls
�

)

Ps −
(

�L + �L
)

Ls,

dPs
dt

= �LLs − �PPs.
(2)

In fact, when > 1, model (2) admits a unique positive solutionE∗ = (L∗, P ∗) that is LAS. Bendixson’s criterion shows
that there is no limit cycles, and, thus according to Poincaré-Bendixson, global stability ofE∗ follows such that if Ps(0) >
0 or Ls(0) > 0 then (Ls(t) > 0 and Ps(t) > 0 for all t > 0. In fact, using standard comparison arguments, (Ls, Ps) is a
lower solution of model (1), such that there exists a positive constant � such thatmin{lim inf

t→+∞
L(t), lim inf

t→+∞
P (t)} ≥ �.

Theorem 4. If
M =

br�L�MIMA
�P

(

�L + �L
) < 1

then every solution of system (1) converge globally asymptotically to the trivial equilibrium 0.

Proof It suffices to consider the following Lyapunov function V (t) = L(t) +
�L + �L
�L

P (t), such that at 0, V = 0,

and V̇ ≤
(

br�MIMA −
�P (�L + �L)

�L

)

P − br�LP
�

=
�P (�L + �L)

�L

(

M − 1
)

P − br�LP
�

< 0, for all (L, P ), except
(0, 0).

Let us now consider MIA(t) is periodic over a certain period of time, T > 0, and set

MIA =
1
T

T

∫
0

MIA(t)dt.

In factMIA represents the mean value of MIA, over the period T . Then, assuming 2�P > �L, it is possible to show

Theorem 5. Assume
MIA <

min 2�L + �L, 2�P − �L
br�

(3)
holds, then every solution of system (1) converge globally asymptotically to the trivial equilibrium 0.

Proof We consider the following functional V (t) = 1
2
(

L2 + P 2
)

that is always positive except at the trivial equilibrium.
Computing V̇ , we derive

V̇ =
(

br�
(

MIA(t) −
L
�

))

PL −
(

�L + �L
)

L2 + �LPL − �PP 2.

Then, using the standard inequalities PL ≤ 1
2
(

L2 + P 2
)

, and using the fact that P and L are non-negative, we obtain

V̇ ≤
(

br�MIA(t)
) L2 + P 2

2
−
(

�L + �L
)

L2 + �L
L2 + P 2

2
− �PP 2,

leading to
V̇ ≤

(

br�MIA(t)
) L2 + P 2

2
−
(

�L + 2�L
) L2

2
−
(

2�P − �L
) P 2

2
,
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that is

V̇ ≤
(

br�MIA(t) − min{�L + 2�L, 2�P − �L
)

V .

Solving this inequality leads to V (t) ≤ V (0)e∫
t
0 (br�MIA(�)−min{�L+2�L,2�P−�L)d� . Since, it is well known that for a periodic

or a constant function f , we have

lim
t→∞

1
t

t

∫
0

f (�)d� = 1
T

T

∫
0

f (�)d�.

Thus, we deduce that if (3) is verified, then V (t)→ 0 as t→∞, which implies that the trivial equilibrium 0 is GAS.

Even if model (1) is conceptually helpful to describe the biological system, it relies on the fact that larvae, pollinators
and male inflorescences are homogeneously distributed, which is not the case. Indeed, oil palm trees are distributed as
shown in Fig. 1 , page 4, and therefore, in some sense, the spatial component needs to be taken into account.

3.1 The n-Patch Model
The weevils population dynamics strongly depends on the male inflorescences dynamics that are distributed more or less
randomly over space and time. As soon as a male inflorescence emerges and enters in anthesis, it becomes a breeding
site, participating to the population emergence and maintenance in the area. To take that into account, we consider a
metapopulation model15, also called a n-Patch model or a Patchy Model (see Fig. 2 , page 6)16, where each palm tree i is
a patch, with a sub-population of weevils, (Li, Pi), and i ∈ J = {1, ..., n} (n being the total number of palm trees per ha).

Patch 1

Patch 2

Patch 3

Patch 4

Patch i

Patch n

FIGURE 2 A general n-Patch model

According to the previous section, for each palm tree i, wemay have amale inflorescenceMIA,i, in anthesis every 13-15
days, following a random process (taking into account that more female inflorescences emerge than male inflorescences
on commercial trees in order to improve bunches/fruits production). When MIA,i > 0, then pollinators, Pj , that have
emerged in palm tree j, may be attracted by MIA,i, depending on the distance between tree j and tree i. We will assume
that the "attractivity" function, f , is decreasing according to dij , the distance between i and j, and increasing according
to � > 0 that represents the dispersal ability of the weevil (note that we do not make a difference between male and
female pollinator). In other words, pollinators that are far from IMA,i have little chance to find MIA,i and thus breed.
Altogether, the probability for pollinator Pj to find MIA,i can be modeled by f (�, dij) = e−dij∕�, for instance.
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Of course among the pollinators that are attracted by the inflorescence in anthesis, only female can lay eggs, with a
proportion r. Thus, following model (1), the growth rate is modelled by

br
n
∑

j=1,j≠i
f (�, dij)Pj × (1 −

Li
�i
),

where n is the number of palm trees per hectare. Here, we assume that �i ∈ [�min, �max], where 0 < �min and �max
are the minimal and maximal larvae capacity of a male inflorescence in palm tree i. It is important to understand that
pollinators emerging from inflorescence i will not be able to breed in the same inflorescence because they spread away
immediately after emergence, and the anthesis stage is limited in time (5 days) and maturation time for eggs and larvae
is beyond this anthesis stage. Last but not least, it is highly improbable to have 2 consecutive male inflorescences on
tree i, at least in standard growth condition. Altogether, the Patchy-Model for the weevil population becomes

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dLi
dt

= br
∑n
j=1,j≠i f (�, dij)Pj × (MIA,i(t) −

Li
�i
)

−
(

�L + �L
)

Li,
dPi
dt

= �LLi − �PPi,

(4)

for i = 1, ..., n.
The time-dependent parameter MIA,i(t) comes either from field data or as an output from an other model. We know

that the male inflorescence anthesis lasts 5 days, with an increasing attractivity the first 2-3 days, and a decaying until
day 5. We also assume that MIA(t) is sufficiently smooth in order to apply standard mathematical results. According to
(4), and setting L =

(

L1, ..., Ln
)

, P =
(

P1, ..., Pn
)

, we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dL
dt

= PP −(P )L

dP
dt

= �LL − �PP

(5)

where  is a diagonal matrix

()i,j (P ) =
⎧

⎪

⎨

⎪

⎩

�L + �L + br
∑n
j=1,j≠i f (�, dij)

Pj
�i

j = i,

0 j ≠ i

andp is a non-negative matrix such that

(

P
)

i,j =
{

MIA,i(t) × brf (�, dij) j ≠ i,
0 j = i

We deduce that system (5) is positively invariant, which means that any trajectory starting in the positive orthant
ℝn
+ ×ℝn

+ remains forever in ℝn
+ ×ℝn

+. Thus biologically our system is meaningful. Note also that the right-hand side of
system (5) being Lipschitz continuous, system (5) admits a unique solution. Setting

i =
{

(Li, Pi) ∈ ℝ+
2 ∕L ≤ �iMIA,i,max, P ≤

�L�i
�P

MIA,i,max
}

,

it is straightforward to show that Πni=1i is an absorbing set. Thus the solution of system (5) is bounded. Setting
L =

∑n
i=1 Li and P =

∑n
i=1 Pi, we derive the following system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dL
dt

= br
∑n
i=1

(

∑n
j=1,j≠i f (�, dij)Pj

)

× (MIA,i(t) −
Li
�i
) −

(

�L + �L
)

L,

dP
dt

= �LL − �PP.

(6)
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Then, we assume that whatever � > 0 and whatever i and j in J , there exists dmin and dmax such that fmin = f (�, dmin) ≤
f (�, dij) ≤ fmax = f (�, dmax) such that

n
∑

i=1

( n
∑

j=1,j≠i
f (�, dij)Pj

)

MIA,i(t) ≥

( n
∑

i=1
MIA,i(t)

)

fminP

and
n
∑

i=1

( n
∑

j=1,j≠i
f (�, dij)Pj

)

Li
�i

≤
fmax
�

PL,

where � ≤ �i. From (6), we deduce that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dL
dt

= br
(

(
∑n
i=1MIA,i(t)

)

fmin −
fmaxL
�

)

P −
(

�L + �L
)

L,

dP
dt

= �LL − �PP.

(7)

Thus, assuming that
∑n
i=1 IMA,i(t) ≥ IMA > 0 for all t > 0, and applying Theorem 3, page 5, we deduce that system

(6) is permanent if
patcℎ =

brMIAfmin�l
(�L + �L)�P

> 1

Thus, whenpatcℎ > 1, there exists a positive constant �p such that

min{lim inf
t→+∞

L(t), lim inf
t→+∞

P (t)} ≥ �p.

Let us emphasize that we only here focus on the population establishment in the whole plot and not on each patch.
Indeed, since the anthesis stage is limited in time, the birth term in each patch is positive only during this period of
time. After 2 weeks of development, the young pollinators will leave their inflorescence to seek after another one, in
anthesis, to pursuit the cycle.

Remark 2. Let us also notice that the choice of f (�, dij) = e−dij∕� is not the only choice. Indeed, even if dij is large,
e−dij∕� > 0, which is not always realistic. If we consider a larger plot (more than one hectare for instance), the connection
between palm tree i and j is not always possible. Thus, we may choose a function such that only a palm tree localized
at a certain distance from palm tree i can be reached (in a day) by pollinators emerging from palm tree i. Thus, if we
consider that dmax is the maximum distance that pollinators can travel to reach palm tree i, such that the function f can
be chosen as follows:

f (�, dij) = ��max
{

1 −
dij
dmax

, 0
}

(8)

where �max
{

1 −
dij
dmax

, 0
}

can be seen as the probability for a pollinator to find inflorescence i from inflorescence j.

In fact, it is not only important to show that it is possible to maintain the pollinators population, but also to reach
another threshold, interesting from the pollination or the fruit set point of view. This will be investigated in the subsection
dedicated to the numerical simulations.

3.2 The Agent-Based Modeling Approach
By focusing on local rather than global interactions, Agent-Based Modeling (ABM) appears as an interesting and
complementary approach for studying complex systems17. Especially, ABM is a kind of Individual Based Modeling
(IBM) that not only relies on representing the individuals but also their concrete behaviors, actions, interactions and
physical environment. Therefore, it allows the modeling of relatively complex systems while keeping with a simulation
approach which makes it possible to explicitly represent and analyze the dynamics of these systems, both globally and
with a fairly high degree of detail thanks to the modeling of micro-level interactions. So, ABMs can be seen as artificial
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laboratories wherein it is possible to directly modify the behaviors and interactions of the individuals to observe their
influences on the global dynamics of the studied system18.
In the scope of this research, one major interest of using an ABM relies on the fact that it allows to both model

different individuals and concretely represent the moving of the weevils within the considered parcel, and thus the time
required for each individual to move from one site to another. Therefore, this allows to study the influence of microscopic
aspects on the global dynamics. Especially, we are interested in modeling (1) how the weevils are individually attracted
to palm trees with a male inflorescence, (2) how they explore the parcel (which may lead to leave it), (3) how they
individually pollinate a palm tree, and (4) the dispersal ability of each weevil. Moreover, it is also easy to integrate
different behaviors into the modeling for distinguishing male and female pollinators, and thus their mutual interactions.

To develop the ABM version of our palm / pollinator model, we used TurtleKit1, which is a Java open source ABM
platform19 dedicated to spatialized ABM simulations. Like the popular NetLogo platform20, TurtleKit is based on the
very intuitive Logo programming approach21. However, the TurtleKit’s programming interface is open and sticks to the
Java’s syntax and ecosystem so that its simulation engine can be easily extended and customized, thus allowing the
required optimization for simulating dozens of thousands of agents, as it is the case in this research. Notably, TurtleKit
is designed to allow the use of the General-Purpose computing on Graphics Processing Units (GPGPU) technology for
high performance computing22, which will certainly be a critical asset when we will consider the simulation of several
hectares at once. Moreover, TurtleKit is based on the Agent/Group/Role (AGR) paradigm23, which is an organization-
based model for defining the structure of multi-agent systems and their internal interaction schemes. AGR relies on
three main concepts:

• Agent: An agent is an active, communicating entity playing roles within groups. An agent may hold multiple
roles, and may be member of several groups;

• Group: A group is a set of agents sharing some common characteristic. Two agents may communicate if and
only if they belong to the same group, but an agent may belong to several groups;

• Role: The role is the abstract representation of a functional position of an agent in a group. An agent must play a
role in a group, but an agent may play several roles. And a role may be played by several agents.

In the scope of our modeling, roles are used to both easily distinguish the individuals with respect to their specificity
and specialize their behaviors accordingly. So, in our project we have defined three types of agents: Palm, Pollinator
and Larva.

A Palm agent represents a palm tree within a palm plantation. The palm trees are located within a spatial environment
(a 100m × 100m square) representing the crop, according to Figure 1 . The behavior of a palm agent is very simple and
only computes its next state on a day by day basis, thus implementing the lifecycle which has been previously defined.
So a palm agent may play the following roles:

• growth: When the palm tree is growing. The duration of this role is defined by a parameter called TBIA, which
stands for Time Between Inflorescences in Anthesis. When this duration is reached, the palm tree switches its role
to either male (inflorescence) or female according to a sex ratio, namely MIR (Male Inflorescence Ratio), a
parameter which is set to 0.05 or 0.1 according to different scenarios;

• male: The duration of this role is fixed to 5 days for now. When playing this role, the palm tree attracts the weevils
according to the distance chosen for the Male Inflorescence Attraction Radius (MIAR), i.e. rMAS in Table 2 .
When the duration of this role is reached, the palm tree switches back to the growth role;

• female: The duration of this role is fixed to 2 days. The palm tree does not attract the weevils when playing this
role. When this period ends, the palm tree plays the growth role again.

1www.turtlekit.org
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The Pollinator agent represents a single weevil and plays only either the male role or the female role. Pollinator
agents have a more complex behavioral model since it relies on several atomic behaviors which can be triggered
according to the role they play:

• looking: This behavior is used when the Pollinator is looking for a male palm tree. When it detects one, it goes
directly to it. When the Pollinator reaches its target, it then either triggers the pollinate behavior (for female)
or feed (for male). Note that the target may change dynamically according to the palm tree life-cycle;

• explore: The Pollinator explores only the space around it without feeling the need to find a palm tree. It may
therefore leave the parcel and thus the simulation as well;

• feed (only male): The purpose of this behavior is only to model that a male pollinator stays a while on a palm tree;

• pollinate (only female): This behavior models that a female weevil starts to spawn larvae on the male
inflorescence, according to a number of larvae per day per female which is set to 3 (parameter b in Table 2 ).
Also, new larvae can only be added if the maximal larvae capacity of a male inflorescence is not yet reached
(� = 104, as defined in Table 2 );

• dead: This behavior is triggered when Pollinator agents reach the end of their life expectancy, thus leaving the
simulation.

Finally, the Larva agent is the simplest one since its behavior only relies on creating a new male or female adult
Pollinator when it reaches its maturation time (14 days as defined in Table 2 ), according to the parameter implementing
the sex-ratio set to 2/3 (i.e. r in Table 2 ). Still, a larva may die before reaching the adult stage according to the larvae
death rate �L (0.05 percent per day). So larva agents play only one single role in the simulation, namely Larva.

4 SIMULATIONS

We now derive some simulations for the patchy model and the ABM. Since we are not only interested in the population
dynamics but on the relationship with the fruit set, we briefly discuss in the next subsection the data obtained by Syed.

4.1 Fruit Set Estimates
The weevils population dynamics is driven by Model (4). However, we are mainly interested in the fruit set or the
bunches production. Of course, several factors can affect the fruit set, however it is clearly stated that E. kamerunicus is
essential in palm tree plantation, at least when the plantation is young. In the beginning of the 80’s, after the discovery
of the pollinators by Syed, E. kamerunicus has been introduced in Malaysia and Indonesia. As a result, in most places,
an increase of the fruit set has been observed during the first years. However, in some places, the fruit set did not
increase nor varied so much. Thus, entomologists started to study the relationship between the weevils population and
the fruit set, trying to define a pollination force, or at least estimate the number of pollinators allowing a good fruit set
or even reaching the optimum fruit set threshold, i.e. 70%.

In10, the authors summarized various results about the number of pollinators required to reach a certain fruit set. For
instance some authors indicated that at least 20000 weevils are necessary to have a fruit set of 60%. To the best of our
knowledge, the most precise work is Syed & Salleh’s24, showing that 1500 adult weevils can pollinate about 50% of
fruits, and the optimum fruit set (around 70% and above) is obtained with 3000 adult weevils per female inflorescence.
As far as we know, no other works of this type have been done since then.

Syed & Salleh’s24 provides very interesting data between the weevils population per ha and the fruit set. Some of these
data are summarized in Fig.3 , page 11: The points represent the fruit sets estimated in different areas under different
weevils density per hectare. Unfortunately, we do not have so much details about how these data have been recorded.
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The blue curve in Fig.3 , page 11, is a nonlinear approximation of the potential fruit set according to the weevil
population size per hectare, following

FS(t) ≈ a log10(P (t)), (9)

where a = 0.1491 and a 95% confidence interval [0.1401451, 0.1579961]. This is a rough relationship. However, it
seems clear that a mean density above 20000 weevils per ha is necessary to have a fruit set above 60%, as claimed in
the literature. We will use (9) in the numerical simulations to estimate the fruit set and its variation with respect to the
time, for each population estimate, and for discussions.
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FIGURE 3 Relationship between the fruit set and the mean number of weevils per ha, based on field data24. The gray
area represents the 95% confidence interval.

4.2 Simulations with the Patchy Odes Model
Simulations have been carried out using a MacBook Pro with 16Gb Memory and a 2,2 GHz Intel Core i7. Parameters
values used to setup simulations are given in Table 2 , page 20. We first consider simulations with f (�, dij) = e−dij∕�

and then with f as defined in (8), page 8.
We need additional data related to MIA. We build MIA data for each palm tree taking into account that each palm

tree produces an inflorescences every 2 weeks (preferably female inflorescences). Thus, we will consider two MIA data
(see Fig. 4 , page 12): The first one where the daily mean density of MIA is 2.1, case (a), and the second with a daily
mean density of 4.4, case (b).

It is very important to understand that a MIA density IMA means that, in mean, IMA male inflorescences are always
in anthesis.

We run simulations for the two MIA densities using the parameters values given in Table 2 , page 20. We also start
with an initial population of 100 adults.
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FIGURE 4 Time evolution of MIA per ha, with a mean number equal to (a) 2.1 and (b) 4.2
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FIGURE 5 Time evolution of (a) E. kamerunicus population on one hectare, (b) the fruit set, when the daily mean
density of MIA is 2.1 and � = 20

As seen in Figs. 5 (a) and 6 (a), page 13, the population size varies significantly, according to the number of MIA
available for breeding (Fig. 4 ). Clearly the mean number of MIA has a great effect on the population size, even if the
variability of the latter is important.

It is also interesting to notice the difference in the delay needed for the population to settle. When the MIA density is
small, then the population needs a longer time to settle and then increase, while this is much faster when the MIA is
greater than 4. However, the settlement and the population size may also depend on other parameters, such as �.
In fact, using the relationship between the fruit set and the population size per ha, Figs. 5 (b) and 6 (b), page 13,

show clearly that large amplitudes in the population size do not impact too much the fruit set variation. In fact, once the
population is large enough, even with large variation, the fruit set can reach and maintain around the threshold of 70%.
This agrees well with the literature. However, data are needed to validate these preliminary results.
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FIGURE 6 Time evolution of (a) E. kamerunicus population on one hectare, (b) the fruit set, when the daily mean
density of MIA is 4.2 and � = 20
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FIGURE 7 Time evolution of (a) E. kamerunicus population on one hectare, (b) the fruit set, when the daily mean
density of MIA is 4.2. Two cases: � = 20

2
= 10 and � = 20

3

Fig. 5 (b), page 12, with � = 20, shows clearly that the weevils population is not sufficient to reach the optimal fruit
set. In fact, with a mean daily number of MIA around 2.1, a fruit set around 0.6−0.65 can be reached.In Fig. 6 (b), page
13, we clearly show that when the mean number of MIA is between 4 − 5, the optimal fruit set, 70%, can be reached.

Of course, these simulations take place in an "optimal" environment (without heavy rainfall, predation on the larvae
population, . . . ).

If for instance, we take into account additional events that may disturb the weevils spreading (like female inflorescences
in anthesis, heavy rainfall, . . . ), these may impact � > 0 and/or dmax: A small � implies a bad dispersal ability such
that the emerging weevils are not necessarily able to find new MIA to deposit their eggs. As example, if we consider
� = 20

2
= 10 or � = 20

3
, we show in Fig. 7 , page 13, that this may impact the population dynamics: The population
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either settle or disappear. Consequently, � is an important parameter that needs further investigations for estimating its
interval of values, under different weather and/or natural conditions. It is now interesting to provide the same simulations,
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FIGURE 8 Time evolution of E. kamerunicus population (per ha), the fruit set, when the daily mean density of MIA
is 4.2, and � = 20 for different values of dmax: (a) dmax = 60, (b) dmax = 50, (c) dmax = 40, (d) dmax = 30

but taking into account that all patches are not (directly) connected to each other, i.e. using the attractiveness function
defined in (8), page 8. In Fig. 8 we show simulations whenMIA = 4.2, � = 20, � = 0.02, and various values for dmax:
The weevils population is persistent in all cases, but the smaller the value of dmax the lower the number of connected
patches. In other words, the matrix P is sparse when dmax is small. This coupled with the fact that the mean number
of MIA is small, i.e. IMA = 2.1 leads to Fig. 9 , page 15, where the weevils population takes a long time to settle and,
in fact, is not able to settle when dmax is less than 45m.

In fact, it is clear that if for any reason the dispersal from one patch to another is limited, the population has less chance
to settle or sustain. Thus, obviously, if along the season, dmax varies, then this can have an impact on the population
permanence, thus on its size, and finally on the fruit set.
Whatever the function chosen to take into account the dispersal capacity and the weevil’s ability to find a MIA, it

is clear that the parameters �, dmax and � are of utmost importance to estimate. This needs to be done through field
experiments.

In the next subsection, we consider an ABM approach that seems to be more "realistic" from the biological point of
view, in that sense that each insect will be simulated. At first glance, this approach may be seen opposite to the patchy
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FIGURE 9 Time evolution of E. kamerunicus population (per ha), the fruit set, when the daily mean density of MIA
is 2.1, and � = 20 for different values of dmax: (a) dmax = 60, (b) dmax = 50

model. However, it can be more complicated to develop since the deep understanding of all processes are needed in
order to implement all possible behaviours.

4.3 Simulations using ABM
Simulations have been carried out using a workstation with 16Gb of memory and a 3.5GHz Xeon processor. Moreover,
we considered the same biological parameters than those used for simulating the deterministic model (that is those
given in Table 2 , page 20).
We considered also the same data for the male inflorescence in anthesis (with MIA mean densities of 2.1 and 4.2),

and have done about one hundred simulations for each scenario. One run for a 2.1MIA mean density takes about 5
minutes and around 10 minutes for 4.2. This drastic increase of simulation time is due to the fact that, in the second
case, there are more individual weevils thanks to more breeding sites, and consequently the simulator has to manage
and compute far more individual behaviours.
In Fig. 10 (a), page 16, and Fig. 11 (a), page 17, we show the mean behavior obtained with 100 ABM simulations

of the weevils population per hectare for each MIA density. Clearly, although the populations maximum size are
approximately equivalent, the mean sizes are lower compared to those obtained with the deterministic model, mainly
because of a larger amplitude in the population dynamics. This is principally due to the fact that, with an ABM approach,
each individual behavior is simulated, which leads to diverse trajectories for all insects, and thus introduces more
sensitivity to micro-level conditions. For instance, when there is only one or two male inflorescences available, if a new
one takes place far from a crowded breeding site then the population may severely decrease. Of course, these results
may depend on different parameters like the range of attraction of the MIA and the dispersal ability of the weevils.

Of course, drastic changes in the pollinators population automatically impact the fruit set, as illustrated in Fig. 10 (b),
page 16, and Fig. 11 (b), page 17, where the variations in fruit set are much more important than those obtained with
the deterministic model.
Compared to the fruit set estimate obtained with the deterministic model (see Figs. 5 and 6 ), the ABM fruit set

estimates are lower than the optimal value 0.7. However, according to field experts, the MIA mean value required to
maintain a weevil population, and thus reach the optimal fruit set, should be in [4,… , 7]. This is almost confirmed by
our numerical simulations. However, we did not take into account all processes and in particular the fact that Female
Inflorescences in Anthesis (FIA) can also attract the weevils and thus reduce drastically their spreading to MIA. Of
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4 Turtlekit-ABM: Mean time evolution of the total Pollinator population per hectare (IMA=2.1)
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FIGURE 10 ABM simulations. Time evolution of (a) the pollinator population; (b) the potential fruit set when the
MIA is 2.1

course, visits in FIA are necessary for pollination and thus fruit set. Finally, several parameters may be related to
environmental parameters that may disturb the weevils population.
Although all these simulation results need to be compared with real data, which are really scarce in the (available)

literature. Then, we believe that the population size estimate stands between the deterministic and the ABM simulations.
The main advantage of the deterministic approach is that simulations are obtained in less than 10 seconds, while it takes
several minutes for only one simulation with the ABM. In addition, the mathematical model can be studied theoretically
and, eventually, derive useful information on some parameters and/or all possible dynamics. Finally, it could evolved to
a stochastic model, taking into account some stochasticity in the parameters, like in the ABM.

4.4 Agent-Based Model Sensitivity Analysis
For gaining more insights on the ABM, we performed a sensitivity analysis based on the extended-Fourier Amplitude
Sensitivity Testing (eFAST)25 method which we used in the context of the R software, i.e. by using the fast99 function
of the sensitivity package of the R environment. One the main advantage of this method is that it allows the estimation
of first order and total Sobol indices for all the factors (p indices and each with a set of n values) at a total cost of n × p
simulations. As a consequence, this method decreases drastically the simulations number and thus the computation
time. Here follows the description of the experimental settings used for this analysis.

FAST relies on specifying the bounds of the different parameters (factors). Those are used for computing the factors’
values to be considered for each experiment by discretizing the corresponding intervals according to particular sample
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4 Turtlekit-ABM: Mean time evolution of the total Pollinator population per hectare (IMA=4.2)
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FIGURE 11 ABM simulations. Time evolution of (a) the pollinator population; (b) the potential fruit set when the
MIA is 4.2

size. So, the ABM parameters we tested and their bounds, i.e minimum and maximum values, are given below, in Table
1 , page 17.

Parameter Acronym Min value Max value

Time Between Inflorescences in Anthesis TBIA 9 18
Male Inflorescence Ratio MIR 0.01 0.15
Palm Larvae Capacity � PLC 5000 20000
Male Inflorescence Attraction Radius rmas MIAR 2 30
Larva Maturation Time (days) LMT 10 20
Larvae mortality percentage LM 0.03 0.09
Larvae Per day per Female LPF 1 6
Larvae Female Ratio LFR 0.6 0.8
Pollinator Longevity (days) PL 5 10
Pollinator Speed (m/h) PS 16 48

TABLE 1 Bounds used for the extended-FAST sensibility analysis of the ABM

Using these bounds, we set a FAST sample size of 256 as input for generating the experimental plan required for the
analysis, which leaded to a plan composed of 2560 simulations, for each of which we consider two model responses:
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The averaged populations of (1) adults and (2) larvae. For being able to carry out this analysis, we used a 25 Xeon
CPUs cluster with 256 Gb of RAM.
Fig. 12 , page 18, and Fig. 13 , page 19, show the results obtained using the previous experimental settings using

FAST. From this sensibility analysis, we can draw several conclusions considering different perspectives as now
discussed.

TBIA MIR PLC MIAR LMT LM LPF LFR PL PS
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FIGURE 12 Sensitivity analysis against the larvae population dynamics

Firstly, about the ABM itself, one can see that all the parameters have some influence on the outputs, which suggests
that we can keep on working on researching their most relevant values with respect to their biological reality.

Secondly, considering the qualitative aspect of the results, one can see that LPF, LM, LMT, MIR and PL are the most
influential parameters for now. This is coherent with the fact that those biological parameters are intuitively crucial
with respect to the population dynamics. For instance, it comes as no surprise that the number of Larvae Per Female
(LPF) greatly influences the resulting populations. So, this analysis gives us some guidelines for future research (data
acquisition) on the field. Especially, as LPF seems to be the most critical parameter, it is therefore crucial to validate
this parameter using field observations since very different values can be found in the literature. So, the same remark
holds for the Male Inflorescence Ratio (MIR), the larvae mortality and their maturation time (respectively LM and
LMT) and the adult weevils life expectancy (PL).
Finally, the fact that the Male Inflorescence Attraction Radius (MIAR) and the pollinator speed parameters do not

play a significant role on their own gives us some clues about how we can improve the individual behaviors modeling.
Indeed, this suggests that how the weevils move and explore their environment could be revised so that they have
more significant impact as it is surely the case in the field reality. For now, all the modeled weevils have equivalent
behaviors from a qualitative point of view. In addition, we implicitely assume that the "plume" of attraction of each
male inflorescence is a disk of radius MIAR, while it is known that this can be very complex, in particular when wind
occurs under the canopy, spreading anis odors on a wide range. This may certainly change the behaviour of the weevils
and thus impact their dispersal.
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FIGURE 13 Sensitivity analysis against the adults population dynamics

5 CONCLUSION

This work is a first step towards the complete modeling of oil palm-pollinator interactions, that is a very complex systems
for which we have only a very partial knowledge. Surprisingly, from the agronomic point of view, if oil palm has been
very well studied and various practices developed in different places around the world, little is known about Elaeidobius
sp. and other pollinators and their interactions with palm trees. Syed and collaborators have done an amazing work in
the early 80’s leading to the introduction of E. kameirunicus in Malaysia, however since then, only some "sporadic"
field works, which are not always useful from the modeling point of view, have been conducted. However, modeling is
a powerful tool to test assumptions and/or think on real experiments to validate or refute these assumptions. Since we
have only a partial knowledge on the whole system, mathematical modeling, through ODEs, is powerful in that sense
that we do not need to have detailed system knowledge. Conversely, an ABM approach needs deeper knowledge to
realistically implement and simulate the system. Moreover, patchy models simulations are fast, while the ABM is more
labour intensive due to multiple individual behavior computations. This, of course, makes the ABM simulations more
"realistic" and allows to study other aspects of this complex system.
However, even at this preliminary modeling stage, we would like to emphasize that both approaches are highly

complementary. Complementary in that sense that both models can be helpful to determine the important parameters or
missing knowledge on which one has to focus on and/or prioritize.
Based on this first modeling step, and our preliminary results, we intend to go further in terms of experiments,

modeling, analysis, and simulations. Clearly, field experiments are needed to increase our knowledge about the weevils
and their interactions with the inflorescences. This additional knowledge are particularly important for the ABM
approach that is only based on simulations (in the sense of all aspects of ABM cannot be theoretically analyzed) and of
course, they will be useful to improve the patchy model too, as well as to better estimate the parameters.

Last but not least, additional experiments on the relationship between the fruit set and the weevils population size per
ha (or per inflorescence) should be updated. Indeed, since the 80’s, new palm trees varieties have been selected leading,
probably, to changes within their relationship with the weevils population (positively or negatively).
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From the modeling point of view, our models can be improved or complexified taking into account the role of female
inflorescences on the pollinator dispersal, and the fruit set.

Acknowledgments. The first author thanks PalmElit and CIRAD for financial support and fruitfull discussions.

ANNEXE A: BIOLOGICAL PARAMETERS OF ELAEIDOBIUS KAMERUNICUS

According to the literature8,7,6 and field experts knowledge, we have considered the following values for the model
parameters

Parameters Mean value

Adult death rate, �P 1/7 (day−1)
Larvae death rate �L 0.05 (day−1)
Larvae full development, 1∕� 14 (day)
spreading ability, � 20, 10, 20/3 (estimated)
sex-ratio, r 2/3
Newborns per Female, b 3 (day−1)
Max. Larvae Capacity, � 104

Pollinator speed, vMAS 20 (m/h)
MIA - radius of attraction, rMAS 25 (m)

TABLE 2 E. kamerunicus parameters
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