Influence of $K_3Fe(CN)_6$ on the electrochemical performance of carbon derived from waste tyres by K_2CO_3 activation

Bello^{1, 2}, D. Y. Momodu², M. J. Madito², K Makgopa³, Khavharendwe M. Rambau⁴, Julien Dangbegno² Nicholas M. Musyoka⁴ and N. Manyala^{2*}

¹Department of Materials Science and Engineering, African University of Science and Technology (AUST), Abuja, Nigeria

²Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028, South Africa.

³Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa.

⁴HySA Infrastructure Center of Competence, Materials Science and Manufacturing Council for Scientific and Industrial Research (CSIR), Meiring Naude Road, Brummeria, 395 Pretoria, 0001, South Africa

^{*}Email address: ncholu.manyala@up.ac.za (N. Manyala)

Corresponding author Tel: +27 (0)12 420 3549, Fax: +27 (0)12 420 2516

Supplementary Material

Figure S1. (a) XRD of the optimised 1:8 carbon material, (b) Raman spectra and (c) the FTIR absorbance spectra for the activated carbon samples for varying K_2CO_3 content

Figure S2. (a) N_2 isotherms and (b) NLDFT PSD of all the five samples (c) bar chart showing SSA vs. raw material: K_2CO_3 ratio for all the five samples.

Samples	BET SSA (m ² g ⁻¹)	Total pore volume (cm ³ /g)	Micropore volume (cm ³ /g)
AC-1 (1:2)	147.9	0.058	0.041
AC-2 (1:4)	240.9	0.096	0.065
AC-3 (1:6)	286.6	0.108	0.078
AC-4 (1:8)	320.4	0.132	0.095
AC-5 (1:10)	385.4	0.157	0.088

Table S1 SSA properties extracted from gas sorption analysis

Figure S3 SEM micrographs of the five samples at different magnification (a) sample 1 (1:2) (b) sample 2 (1:4), (c) sample 3 (1:6), (c) sample 4 (1:8) and (e) sample 5 (1:10).

Figure S4 Electrochemical measurement of the five sample 1 M KNO₃ neutral electrolyte (a) CV at 10 mV s⁻¹, (b) GCD at 1 Ag⁻¹ and (c) C_{SP} vs. ratio of sample and K_2CO_3 . The result also show that the sample with the ratio of 1:8 is the best sample as observed in figure S1 (d), but with a C_{SP} higher in the acidic media.

Figure S5 electrochemistry of the optimised 1:8 sample (a) CV at different scan rates (b) the GCD at different current densities in 1 M KNO₃ electrolyte (c) CV and (d) GCD in different concentrations of $K_3Fe(CN)_6$ in 1 M KNO₃.

Figure S6 electrochemistry of the optimised 1:8 sample (a) CV at different scan rates (b) the GCD at different current densities in 1 M HNO₃ electrolyte (c) CV at different scan rates (d) the GCD at different current densities in 1 M H_2SO_4 electrolyte

Figure S7 (a)relationship between cathodic and anodic current vs. square root of scan rate of the optimised 1:8 sample in 1 M KNO_3 - $K_3Fe(CN)_6$. Showing linear fit indicating a diffusion controlled process and Figure S6 (b) compares the stability in 1 M HNO_3 and 1 M HNO_3 - $K_3Fe(CN)_6$.

Figure S8 EIS fitting and equivalent circuit diagram of the electrode in the 1 M HNO_3 electrolyte showing similar circuit with the electrodes in the 1 M HNO_3 - 1 M $K_3Fe(CN)_6$.

Table S2	Fitting	parameters	for the	electrode
----------	---------	------------	---------	-----------

Samples	Rs	CPE (Q)	n	RL	R _{CT}	CL
	(Ω)			(Ω)	(Ω)	(F)
1 M HNO ₃ -K ₃ Fe(CN) ₆	2.7	0.25	0.95	0.33	0.15	0.26
1 M HNO ₃	3.15	0.11	0.95	1.2	0.18	0.11

 $X^2 = 2.7, X/\sqrt{N} = 0.25$ (1 M HNO₃-K₃Fe(CN)₆), $X^2 = 0.1, X/\sqrt{N} = 0.707$ (1 M HNO₃).