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1 Introduction

In this paper we are interested in the stochastic version of the following system of partial differential

equations (PDE)

%(u— aAu) —eAu + rot(u — aAu) x u+ Vp = f,

(1.1)
divu = 0,
which is a simplified system describing the motion of a homogeneous incompressible grade-two

fluid with density p = 1, viscosity € > 0 and stress moduli @ > 0. Hereafter we understand that in

R? the rotational of a vector u = (u®,u®) is a scalar function defined by

ou®  pu®

rotu = ,
(91’1 63:2

and for any vector and scalar functions v = (v(!),v(?)) and 2

rotu x v = (—v® rotu, v rot u),

rot(z xv)=v-Vz:= V(l);—; + V(Q)%.

The grade-two fluid is a particular case of differential fluids of complexity n; we refer to [58]
for the definitions and the derivation of the above system. The system (1.1) is frequently used to
describe fluid models in petroleum industry, polymer technology and suspensions of liquid crystals.
It was also used in [53] to study the connection of Turbulence Theory to non-Newtonian fluids,
especially fluids of differential type. When ¢ = 0, the system (1.1) reduces to what is known as
the Lagrangian averaged Euler equations (LAEs) which appeared for the first time in the context
of averaged fluid models in [31] and [32]. The derivation of LAEs used averaging and asymptotic

methods in the variational formulation. The LAEs are also closely related to the following equation
Up — Ugzt + 2KU; — 3UUL = 2UzUpy + Uz Ugry,

where ug, gy, . .., denote partial derivatives with respect to the variable z, x and then y, .. .. This
equation was proposed by Camassa and Holm in [10] to describe a special model of shallow water.

As in the case of the grade-two fluid this new model of shallow water also reduces to LAEs when
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k = 0 and in this case it was shown in [36] that it is the geodesic spray of the weak Riemannian
metric on the diffeomorphism group of the line or the circle. The articles [54] and [55] also contain
interesting discussions concerning the grade-two fluids and the LAEs. The study of the physical
properties, such as boundedness and stability, of the grade-two fluids based on (1.1) was initiated
in [21], [22] and [25]. The first mathematical analysis was carried out in [13] and [14] where the first
optimal result about the existence and uniqueness of weak solution was proved. Since then, the
problem (1.1) has been the subject of intensive mathematical analysis which has generated several
important results. We refer to [15], [1], [34], [44], [47], [28] and [27] for few interesting papers about
the mathematical theory of grade-two fluids. For a detailed of past and recent results related to
the deterministic grade-two fluid and the LAEs we refer to [26] and [46].

In this paper we are interested in a stochastic model for grade-two fluid in the two-dimensional
torus T? = (0,27) x (0,27). More precisely, we assume that a finite time horizon [0,T], and an

initial value £ are given and we consider in (0,7'] x T? the following stochastic system

d(u — aAu) + (—eAu + rot(u — aAu) x u+ Vp)dt = veG(u)dW in T? x [0,7T], (1.2a)

divu=0 on T? x [0,7], (1.2b)
(u) =0, (1.2¢)
u(0) = ¢, (1.2d)

where u = (u(l)7 u(2)) and p represent the random velocity and the modified pressure, respectively,
and (uy = §, u(z)dx for an integrable function u. The stochastic process {W(t); t € [0,T]} is
a cylindrical Wiener process evolving on a given separable Hilbert space 4).We assume that the

initial condition &, the velocity field u as well as the pressure is periodic in the following sense
u(z + 2me;, t) = u(x,t), reR? te0,T]. (1.3)

where e, ey is the canonical basis of R2. In what follows when we refer to problem (1.2) we always
mean the system (1.2) with the boundary condition (1.3).
Denoting by A the Stokes operator and C(rot v, u) the projection of rot v x u onto the space

of square integrable, divergence free and periodic functions with zero mean, see Subsection 2.1, the
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problem (1.2) can be written as an abstract stochastic evolution equation of the form
dv + [eAu + C(rot v, u)]dt = 2 G(u)dW,
v =u+ aAu,

u(0) = ¢&.

In contrast to the deterministic result, there are only few works related to problem (1.2). By using
the method elaborated in [13] the global existence of both martingale and strong (in the stochastic
calculus sense) solutions were proved in [49], [51], [11]. Convergence of the solution of (1.2) to the
weak martingale solution of the two dimensional stochastic Navier-Stokes equations was established
in [50]. Existence of a global weak martingale solution for the grade-two fluids driven by external
forcing of Lévy noise type is shown in [30]. Some important results related to the problem (1.2)
were recently proved in [64], [59] and [65]. By Odasso’s exponential mixing criterion [45] it was
shown in [59] that the problem (1.2) has a unique invariant measure which is exponentially mixing.
The large and moderate deviation estimates for the solution to (1.2) were respectively established
in [64] and [65] by the weak convergence method of Budhiraja and Dupuis [5].

Our interest in this paper is related to Large Deviations Principle (LDP) and Moderate De-
viations Principle (MDP) in small noise diffusion. Roughly speaking, in the study of MDP one is
interested in probabilities of deviations of lower speed than in the classical LDP. In small diffusion
(the coefficient of the noise is usually multiplied by 5%) the speed for LDP is usually of order ¢

and the speed for MDP is of order A?(g) where X : (0,1] — (0,0) is a function satisfying
A(e) — o0 and E%/\(é‘) —0ase—0. (1.4)

Observe that since since A(g) converges to oo as slow as desired, then the MDP bridges the gap
between the Central Limit Theorem and the LDP. We refer, for instance, to [29] and [35] for more
detailed explanation and historical account of the MDP. We refer, for instance, to [4], [2], [3], [12],
[64], [65] [5], [6], [12], [19], [37], [39], [62], [61], [60] and references therein for a small sample of
results from the extensive literature devoted to MDP and LDP for stochastic differential equations

with small noise.
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In this paper we will study the LDP and MDP for the inviscid model of grade-two fluids. For
this purpose we assume that the coefficient of the noise is multiplied by the square root of the
viscosity which is denoted by e and analyse the asymptotic behaviour, as € — 0, of the trajectories
family of (u°).e(o,1] and (5*%)\*1(5)@5 — U]>5€(0¢1] where A(+) is a function satisfying (1.4) and u

is the solution to the deterministic system

0yv +C(rotv,u) =0 (1.5a)
v =u+caAu (1.5b)
u(0) = ¢&. (1.5¢)

System (1.5) is the inviscid model of the grade-two fluid and is known in the literature as the
Lagrangian Averaged Euler (LAE) equations. Many prominent mathematicians have studied the
LAE equations and their studies have generated several important results. Without being exhaus-
tive we refer to [23], [33], [42], [63], [9], [7], [38], [40], [41] and references therein for the amount of

mathematical results related to the theory of LAEs.

In order to describe the main results of the paper, let us denote by V the subspace of the
Sobolev space H!(T) consisting of periodic, divergence free functions that have zero mean, and by
W the subspace of V consisting of functions v € V such that rot(v — aAv) € L?(T?). Roughly

speaking, the main results in this paper can be summarized in the following theorem.

Theorem. Let s € {0, 1}.

+s

(LDP) If¢ e D(AST) and G : V — L (4, D(A%l)) is Lipschitz continuous with respect to the L?-

norm. Then, the family of solutions (u¥).c(,1] to (1.2) satisfies an LDP on C([0,T]; D(A1*2))

with speed 1.

(MDP) If ¢ € D(A2t3) and G : V — % (A, D(A"T)) is Lipschitz continuous with respect to the L2-

norm. Then, (e‘éA_l(a)[us — u]) 01] satisfies an LDP on C([0,T]; D(A'*3)) with speed
e€(0,

A\2(g), where ZQ(%,D(A%)) denotes the space of all Hilbert-Schmidt operators from 7%

s+1

onto D(A™2 ).
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The first part of the theorem presents an LDP result and the second one is a MDP for the

family of solutions (u).e(,1) to (1.2). We should note that since & € D(A¥) one would expect

that the LDP should hold in the space C([0,T]; D(A3J§5 )), but we will explain in Remark 3.12 why

we only have an LDP in C([0,T]; D(A'*%)) and why we are unable to treat the case s € (0, 1).
In this paper we present a unifying approach to the LDP and MDP for the solution to (1.2)

instead of giving two separate proofs of these two results. To this end, we fix d € {0, 1} and consider

the following problem

dve® + [eAu® + A\s(e)C(rot v=°, u®?) + §(C(rot v°, u) + C(rot v,u™’))| dt

— eX; (@) Au dt + 2251 (e)G(u + A5 (e)u®)dWw, (1.6a)
Vil = (0 + aAu?), (1.6b)
u™’(0) = (1-9)¢, (1.6¢)

where u is the unique solution to (1.5), v = u + aAu, and As, ¢ € {0, 1}, is defined by

1ifd=0
As(e) = (1.7)

e2A(e) if § = 1.
The major part of the present paper is devoted to the proof of the following result.

s41

Theorem. Let 6,5 € {0,1}, £ € VAH3 and G : V — L(H#,D(A=")) be a map which is

Lipschitz continuous with respect to the L2-norm . Then, the family of solutions (ue";)ee(o’l] to

(1.6) satisfies an LDP on C([0,T]; D(A'*%)) with speed e~ \3(¢).

The items (LDP) and (MDP) in the former theorem follow from the latter theorem. In fact,
for § = 0 problem (1.6) is exactly the problem (1.2) and, by the definition of As, the LDP speed
e 1M\3(g) is equal to e 1. For § = 1 problem (1.6) reduces to

dn® + [EAy8 + E%)\(E)C(I'Ot n°,y°) + (C(rot n°,u) + C(rot v,ye))] dt
=\"He)G(u+ S%A(E)ya)dI/V, (1.8a)
n° = (y° + aAy®), (1.8b)

y (0) =0, (1.8¢)
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which has a unique solution y© = e~ 2A~1(¢)[u® — u]. By the last theorem and the definition of
As(g) the family of random variables (5_%)\_1(5)[u5 - u])se(o’l] satisfies an LDP on C([0,T]; W)
with speed A\?(g).

As in [64], [65], [2], [3] and [12] our proof is based on weak convergence approach to LDP and
Budhiraja-Dupuis’ results on representation of functionals of Brownian motion, see [5] and [6].

However, we should mention that in addition to the presentation of a unifying approach to LDP

and MDP for the grade-two fluids our paper differ from [64] and [65] in the following respect:

1. in contrast to [65] our estimates are uniform with respect to the viscosity, and thus as in [2]
and [3] we are allowed to let the fluid viscosity, which is denoted by &, to converge to zero.

2. While the authors in [64] and [65] were only able to prove their LDP and MDP results on the big-
ger space C([0,T]; V), we are able to establish our results on the smaller space C([0,T]; D(A))
under the same assumptions as in the [64] and [65]. Imposing further regularity on the noise
and the initial data we are able to prove the LDP and MDP on C([0,T]; W).

)

3. Finally, unlike in [64] and [65] we directly work with the infinite dimensional solution u

instead of using their finite-dimensional projection (Galerkin approximation).

We should also note that some parts of our proofs also differ to the approaches used in several
papers that deal with the LDP for hydrodynamical models with small noise, see [12], [19], and
other models [37], [39] and [62]. We postpone the description of this difference to Remark 3.17 as
it requires the introduction of additional notation and technical terms. We are mainly inspired by
[2] and [3], but our model does not fall in their frameworks. In fact, the viscous models considered
in [2] and [3] are parabolic semilinear evolution equations and in this paper we are dealing with
non-parabolic fully nonlinear PDEs. The main difference also lies in the techniques used for the
derivations of uniform estimates. We finally note that we were also very much inspired by the
recent paper [4].

To close this introduction we outline the structure of the paper. In section 2 we introduce
the notations and recall or prove elementary results frequently used in the paper. The standing

hypotheses, the main results and their proofs are given in Section 3. Sections 4 and 5 are devoted
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to the proofs of intermediary results that are needed to establish the main results. To keep the

paper self-contained we recall or prove important theorems that are scattered in the literature.

2 Notations and auxiliary results
2.1 Notations: Functional spaces

We introduce necessary definitions of functional spaces frequently used in this work. Throughout
this paper we denote by LP(T?) and W™P(T?), p € [1,0], m € N, the Lebesgue and Sobolev spaces
of functions defined on T?. The spaces of u € LP(T?) and W™P(T?) which are 27-periodic in each
direction 0z;, i = 1,2, see for example [16], are denoted by LP(T?) and W™ P(T?), respectively.
We simply write L? (resp. W™ P) instead of LP(T?) (resp. WP (T?)) when there is no risk of
ambiguity. We will also use the notation H™ := W™2, For non integer r > 0 the Sobolev space H"
is defined by using classical interpolation method. The space [C%,(R?)]? := CX (R?,R?) denotes
the space of functions which are infinitely differentiable and 2m-periodic in each direction Ox;,
i =1,2 (see also (1.3)).

In what follows we still denote by X the space of R?-valued functions such that each component

belongs to X. We also introduce the following spaces
H-= {u € LQ('JI‘2);JT2 u(z)dr =0, divu= 0},
V = HY(T?) ~n H.

It is well-known, see [57], that H and V are the closure of

v = fue G |

u(z)dx =0, divu= O},

T2

with respect to the L? and H! norms. We denote by (-,-) and | - | the inner product and the
norm induced by the inner product and the norm in L?(T?) on H, respectively. Let IT : L?(T?) —
H be the Helmholtz-Leray projection, and A = —ITA be the Stokes operator with the domain

D(A) = H%(T?) n H. It is well-known that A is a self-adjoint positive operator with compact

inverse, see for instance [57, Chapter 1, Section 2.6]. Hence, it has an orthonormal sequence of
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eigenvectors {e;; j € N} with corresponding eigenvalues 0 < Ay < A2 < ... The domain of A", r € R
is characterized by

D(A") =V n H?",
see [16, page 43].
The inner product and the norm induced by that of H}(T?) on V are denoted respectively by
((-,-)) := (Az-, A2.) and || - || := |A2-|. Observe that in the space V, the norm |-|| is equivalent

to the norm generated by the following scalar product

(0, w))o = (u,w) + a((u,w)), for any uweV. (2.1)
More precisely, we have
2 2 1 2
allul]” < ul)Z < ()\1 + a) [lu||*,Vu e V. (2.2)

From now on, we will equip V with the norm ||ul|, generated by the inner product defined in (2.1).

Note that we also have the equivalence of norms
colrot u| < |Ju|| < ¢1|rot u|, for any ue H' with divu =0, (2.3)

where as in [47] any two dimensional vector u = (u"), u(®) is identified with the three dimensional

vector (u®,u®,0), androtu = (0,0, asﬁ) . 85‘;;)) is identified with the scalar
ou®  ou®
rotu = -

01 0xy

We also introduce the following space
W ={ueV; rot(u+ aAu) e L*(T?)},
which is a Hilbert space equipped with the norm generated by the following scalar product
((u,v))w =(rot(u + cAu),rot(v + aAv)), Yu, ve W,

see [15]. Note that for v € V, arot Av € L(T?) is understood in the weak sense. We recall that

there exist constants co, c3 > 0 such that for all ue W

collullgs < ||rot(u + aAu)|| < csl|lullms, (2.4)
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see [15].

For any Banach space B we denote its dual by B* and by {f,v) the action of any element f of
B* on an element v € B. By identifying H with its dual space H* via the Riesz representation,
we have the Gelfand-Lions triple

VcHcCV™

where each space is dense in the next one and the inclusions are continuous. It follows from the

above identification that we can write
(v,w) = (v,w), (2.5)

forany ve Hywe'V.

2.2 Some useful results and inequalities

In this subsection we will prove several results which are essential for the subsequent analysis.
Let p;, i = 1,2, 3, be three positive numbers satisfying Z?zl pi_1 =1.Let c: LP* xLP2 xLP* — R

be a trilinear form defined by

c(h,d,0) = (¥ x ¢,0), pell, peLl?, pelP.

By Holder’s inequality, there exists a constant Ky > 0 such that for any v; € LPi i € {1,2, 3}

3
le(¥1, 2, 9s)| < Ko [ Jlleillue: -
i=1

In particular, we formulate the following lemma which is a consequence of the last observation and

the definition of ¢(-, -, -).

Lemma 2.1. One can find a continuous bilinear map C : L? x V. — V* such that for any y € L2,

veV,weV

<C(y,v),w> = (y X V,W), (26)

C(y,v),v)=0. (2.7)
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Proof. From the observation preceding the lemma the trilinear form ¢ : L? x L* x L* — R is
continuous, hence, by the continuous embedding V < L*, the restriction, which is still denoted by
¢, of c on L? x V x V is continuous too. We now conclude the proof of the existence of the bilinear
map C : L? x V — V* satisfying (2.6) by the celebrated Riesz representation, see [20, Theorem
5.5.1].

As in [47], we identify any two dimensional vector (f1, f2) with the three dimensional vector
(f1, f2,0) . With this in mind, we can easily prove that the vector y x v is perpendicular to v in

R3 from which follows the identity (2.7). O

Remark 2.2. (i) The bilinear map C(-, -) can be defined on various spaces, but the above definition
is enough for our purpose.

(i) Remark that the identity (2.7) implies that for any y e L?, ve V, we V

(Cly,v),w) = =(C(y, W), V). (2.8)

(iii) Observe also that due to the continuous embedding H* = L® C(-,-) continuously maps L? x W

onto L2. More precisely, there exists a constant K; > 0 such that for any ¢ € L? and ¢ € W

C(, 9)| < Kalglll¢llw- (2.9)

We will state and prove an important lemma later on, but for now let us introduce few additional
notations. Let p; be positive numbers satisfying Z?:l pi_1 = 1. We define the well-known trilinear

form b used in the mathematical theory of the Navier-Stokes equation by

2
= er Vi(2)0ig; (x)p; () dz,

i,j=1
for any 1) € LP*, p € W1P2 and ¢ € LP?. We recall the following properties of b which can be proved
first for smooth functions and then for less regular ones by using standard density argument, see

for instance [57, Chapter 2, §1] and [16, Chapter 6].
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1. Let p;, i € {1,2}, be numbers such that p;' + 2p;* = 1. If ¢ € LP* is divergence free and

¢ € WhP2 then

b(y, ¢, ¢) = 0. (2.10)

The identity (2.10) implies that if p;, ¢ € {1,2,3}, are numbers satisfying Zilp;l =1, and

1 € LPt is divergence free, ¢ € LP* and ¢ € W1P2 then

2. There exists a constant Ky > 0 such that

||wHLp1 HVQ/)HLT’Z HC,OHLPg y V'L/) e LP* with le?,ZJ = 0, (725 € Wl’pQ,(p € Lpg,
(v, ¢, 0)| < K>

[¢llue [[VellLes [|4llLes, Vi € L with dive =0, € WhP2, ¢ e L5,
(2.12)

We now give the following identity

((rot ¢) x 1, ) = b(¥, ¢, ) — b(p, ¢, 1)), YeLP ge WHP? and p e L. (2.13)

The above identity is proved first for smooth functions and then extended to less regular functions
by using standard density argument. We refer to [13] and [1] for the detail of the proofs.

We are now ready to state and prove the important lemma we alluded earlier.

Lemma 2.3. There exists a constant K3 > 0 such that

[(C(rot(p — adg), ), o)< Ksllollll4llllelw, for any de W, eV, peW, (2.14)

(KC(rot(¢ — adg), ), p)l< Kslollllvlwlell, for any ¢ e W, e W, peV. (2.15)

Proof. The proofs of the two inequalities (2.14) and (2.15) are very similar, hence we will only

prove (2.14). Let us fix ¢ € W, ¢ € V and ¢ € W. From (2.6) and (2.13) we infer that

<C(I‘Ot(¢ - aAqS), 1/))’ <)0> = b(¢7 ¢7 QO) - b((p, ¢7 ¢) - a(b(d)v A¢7 90) + b(@a A¢7 ’l/)))

We will only estimate the last two terms of the above identity since the first two terms can be

estimated from above by the right-hand side of (2.14) by using (2.12). For this aim we observe



Viscosity limit and deviations principles for a grade-two fluid driven by multiplicative noise 13

that by an integration-by-parts

2
b(d}a A¢7 QD) = Z [b(aﬁwv P, a[(,b) + b(/lzzja a@@a a€¢)]7
=1

from which along with Hélder’s inequality we infer that there exists a constant K; > 0 such that

2 2
b(¥, A, )| < K1 D 10e[IVepllLe 6] + K1 Y. [0l Vpl|nal|V (0e) s
=1

l=1

Using Sobolev inequalities we readily infer that there exists a constant K5 > 0 such that

b(, A¢, )| < Ko l[[|16]| 10l mas-

Similarly, there exists a constant K3 > 0 such that

b, Ad, )| < Ks[9[l1 6] [l 0]l mas-

Owing to the equivalence of the norms ||¢||gs and ||¢|lw, see (2.4), we easily derive the estimate
(2.14) from the last two estimates.

For ¢ € W, ¢ € W and ¢ € V we infer from (2.8) that

(C(rot(¢ — ), ), p) = —(C(rot(¢ — al),¢), ¥).

With this in mind we can prove (2.15) with the same argument as we used for the proof of (2.14).
This completes the proof of the lemma. O
3 Main results

This section, which is divided in several subsections, is devoted to the statement and proof of our
main results.

3.1 The standing hypotheses on the noise coefficient

Throughout we fix a complete filtered probability space Z := (£2,.%,F,P) where the filtration
F = {%#,; te[0,T]} satisfies the usual conditions. We also fix two separable Hilbert spaces 7%

and 7 such that the canonical injection ¢ : % — # is Hilbert-Schmidt. The operator @ = w*,
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where +* is the adjoint of ¢, is symmetric, nonnegative and since ¢ is Hilbert-Schmidt it is also of
trace class. Moreover, from [48, Corollary C.0.6] we infer that % = Q2 (J¢). Now, let W be a

cylindrical Wiener process evolving on 4. It is well-known, see [17, Theorem 4.5], that W has the

following series representation

W(t) = X, vaiBi(thi, te[0.T],

where {8;; j € N} is a sequence of mutually independent and identically distributed standard
Brownian motions, {h;;j € N} is an orthonormal basis of % consisting of eigenvectors of ) and
{¢;; 7 € N} is the family of eigenvalues of Q. It is also well-known, see [17, Section 4.1] and [48,
Section 2.5.1|, that W is an #’-valued Wiener process with covariance Q.

Now, we recall few basic facts about stochastic integrals with respect to a cylindrical Wiener
process evolving on J%). For this purpose, let K be a separable Banach space, £ (54, K) the space
of all bounded linear K-valued operators defined on %, and .#2(K) := .#?(2 x [0,T];K) the

space of all equivalence classes of F-progressively measurable processes ¥ : 2x[0,T] — K satisfying
T
EJ | (r)|kdr < .
0
We denote by % (5%, K) the Hilbert space of all operators ¥ € £ (5, K) satisfying
[ee]
1913, 1) = D, 1A% < oo
j=1

From the theory of stochastic integration on infinite dimensional Hilbert space, see [43, Chapter

5, Section 26 | and [17, Chapter 4|, for any ¥ € #2(%(#,K)) the process M defined by

M(t) L P()dW (1), t € [0, T,

is a K-valued martingale. Moreover, we have the following Ité isometry

“(

and the Burkholder-Davis-Gundy’s (BDG’s) inequality

2

f@(r)dW(r) ) = E(Lt |¢(r)|f%(%x)dr>7\ﬁe [0,7], (3.1)

0

K

q

JS U (r)dW (r) q> < C E <Lt Ll7(r)|f%(%,K)dr> E,Vt € [0,T],Vq e (1,0). (3.2)

0

E( sup
0<s<t

We now give the standing hypotheses on the coeflicient of the noise G.



Viscosity limit and deviations principles for a grade-two fluid driven by multiplicative noise 15

1+s

(Gs) Let s € {0,1} and G : V — %(5%; D(A™2)), be a map satisfying: there exists a constant

¢4 > 0 such that for any u,veV

|G(u) — G(V)||$2(‘%’D(A1;s)) < cqlu—vl. (3.3)

Remark 3.1.

(a) Note that Assumption (Gs) implies that there exists a constant ¢s > 0 such that

|G(u) = GV)|zo 0, v) < esu =V,

|G|z, m,v) < es(1+ [ufa),

and

Irot[G(u) — G(V)]|.2,(.L2(12)) < csllu—V]a,
Irot G(u)] 2, (sm.12(r2)) < cs(1+ [[ula),

for any u, ve V.

(b) Assumption (Gs) with s = 1 yields that there exists a number ¢g > 0 such that

IVrot[G(u) — G(V)]|.2,(,L2(r2)) < cs[u—V]a,

[Vrot G(u)| 2, 12(r2) < co(1+ [ula),

for any u, ve V.

(c) Owing to the first two items, if u € .Z2(V), then rot G(u), as well as V rot G(u), belongs to
ME(L(HH, L*(T?))) and the stochastic integral S(t) 2G(u(r))dW (r), 2 € {rot, Vrot} is a well
defined L?(T?)-valued martingale.

(d) Ttem (a) was very important in [52] for the proof of the existence of weak martingale solution

to (1.2).

3.2 Statement of the main results

In order to state our main results we briefly recall few definitions and theorems from LDP theory.

Let £ be a Polish space and B(€) its Borel o-algebra.
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Definition 3.2. A function I : &€ — [0, 0] is a (good) rate function if it is lower semicontinuous

and the level sets {e € £;1(e) < a}, a € [0,0), are compact subsets of £.

Next let ¢ be a real-valued map defined on [0, 00) such that
o(e) > w0 as e — .

Definition 3.3. Let (2, F7,P) be a complete probability space. An £-valued random variable
(Xe)ee(0,1] satisfies the LDP on &€ with speed o(¢) and rate function I if and only if the following

two conditions hold

(a) for any closed set F' < &

limsup o~ (¢) log (X, € F) < — inf I(z);

e—0 zeF

(b) for any open set O < &

liminf o~ '(e) log P(X. € O) > — inf I(z).

e—0 zeO

We also consider a function A : (0,1] — (0, ) satisfying (1.4), i.e.,
Ae) — o0 and £2 A(€) — 0 as € — 0.
For ¢ € {0,1} we introduce the function s defined by

1ifd=0
As(e) = (3.4)

g2 \(e)if 6 = 1.

Remark 3.4. From the definition of A; and the properties of A we derive that for ¢ € {0,1}
As(e) > 1—0ase— 0. (3.5)

These notations will be used to describe the unifying approach to the LDP and MDP results
stated in the first theorem of the introduction.
In the following propositions we give some results related to the well-posedness and regularity

of the solution to (1.5) and (1.6).
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Proposition 3.5. For any £ € W the problem (1.5) has a unique solution u € C([0,T]; W)

satisfying (1.5) in the weak sense and

sup |lu(r)[lw < Ro, (3.6)

0<s<T
where Ry > 0 is a constant depending on o, T and ||&||w only.
If in addition £ € D(A¥), s> 1, then ue L®(0,T; H>**) and there exists a constant Ry > 0

(which may depend on o, T and ||€||gs+s ) such that

sup |[u(r)ms < R, (3.7)

0<r<T
Proof. This proposition is a corollary of Theorem B.1 and Theorem B.2. In fact the existence and
uniqueness of a solution u € C([0,T]; W) follows from setting ¢ = 0, § = 0, o = 0 in Theorem

B.1. The regularity result follows from Theorem B.2. O

Proposition 3.6. Letd € {0,1}, £ € D(As%g) and p € [1,00). If Assumption (Gs) is satisfied with

5 =0, i.e.,(G0), then the problem (1.6) has a unique solution u®’ € C([0,T]; W) satisfying

E sup [[u™’(r)|Ry < Re, (3.8)

0<s<T

where Ry > 0 is a constant which may depend on € € (0,1).

Proof. For § = 0 the problem (1.6) reduces to the stochastic model for grade-two fluid. Under
Assumption (GO) it is proved in [52], see also [49], that for § = 0 problem (1.6) has a weak mar-
tingale solution satisfying (3.8) and which is pathwise unique. Thus, by the Watanabe-Yamada’s
theorem, see [48], it has a unique strong solution; see also [51] for a direct proof of the existence
and uniqueness of a strong solution.

For § = 1 the problem reduces to (1.8) whose existence of solution can be easily proved using
Galerkin approximation as in [49] and [65]. Here the assumption ¢ € D(A?) is necessary to ensure
that u e L*(0,T; D(A?)) which in its turn enables us to rigorously justify all the required steps to
derive the estimate (3.8) for the Galerkin solutions. We refer to [65, Lemma 5.2] for the stochastic
case and Theorem B.1 for the deterministic case. Thanks to Assumption (GO) one can prove by

arguing as in [52] that if it has a solution then it is pathwise unique. In fact, under the theorem
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assumption it is not difficult to check that u®! := =2 \~1(£)[u® — u] satisfies (1.8) and hence the

only solution. O

Remark 3.7. (i) The estimate in Proposition 3.6 may explode as ¢ is approaching zero, but we
will later on derive new and uniform estimates which are of the essence for our analysis.

(ii) We used the result from [65] to justify the existence of solution to (1.6) for 6 = 1, but our
results does not follow from [65]. In fact, [65, Lemma 3.1] was crucial for the validity of the
results in [65], but the proof of this crucial step depends on [15, Theorem 3.6] which in its turn
relies on estimate which explode when the viscosity v = ¢ — 0, see for instance [15, Eq. (4.11)].

(iii) The existence and uniqueness of a strong solution to (1.6) enables us to define a Borel measur-
able map Fg’é : C([0,T); ) — C(]0,T]; W) such that Fg’é(W) is the unique solution to (1.6)
on the filtered probability space (§2,.%,F,P) with the Wiener process W.

In order to describe the rate functions associated to the LDP and MDP results, we also need

to introduce few additional notations and auxiliary problems. For fixed M > 0 we set
T
S = {h e L2(0,T; 4) - J ()| 2 dr < M}.
0
The set Sjs, endowed with the weak topology
1. (T
dy(h,k) =) ?]L (h(r) = k(r), éx(r)) ,,. dr], (3.9)
k=1
where (€, k > 1) is an orthonormal basis for L2(0,T; %), is a Polish (complete separable metric)
space, see [6].

We also introduce the class .7 as the set of J—valued (%#;)—predictable stochastic processes h

such that SOTHh(r)H%dr < @, a.s. For M > 0 we set
I ={he S :he Sy as}. (3.10)
Now, for § € {0,1}, £ € W and h € L?(0,T; 54) we consider the following problem
opvy + (1= 8)C(rot vi,u)) + 6(C(rot v, u) + C(rot v,ul)) = G(0u + (1 — &)uj)h,  (3.11a)
v) =u) + aAu), (3.11b)

u),(0) = (1 - 6)¢, (3.11c)
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where u € C([0,T]; W) is the unique solution to (1.5) and v = u + cAu.

3+s+96
2

Proposition 3.8. Let §,s € {0,1}, £ € D(A ) and Assumption (Gs) hold. Then for any

3+s

>))-

Moreover, if h € Sy, M > 0, then there exists a deterministic positive constant R > 0 (which

h e L2(0,T; 54) the system (3.11) has a unique solution u € C([0,T]; W) n L*(0,T; D(A

may depend on M, T, a and HSHD(AH;M) ) such that

5
sup |lu s <R3 P—a.s. 3.12
te[OE“]” h||D(A3+g+ ) 3 (3.12)

Proof. Observe that under the assumptions of the present proposition, the unique solution u to
(1.5) belongs to L= (0, T; H3**9) A C ([0, T]; W). With this in mind, the existence and uniqueness

of a solution u$ € C([0,T]; W) satisfying ul e L*(0,T; D(A’%")) follows from setting ¢ = u in

Theorem B.1. O
The above proposition enables us to define a map Fg’é : C([0,T); 4) — C([0,T]; D(A1*+%)),

s €{0,1}, by setting

- ]“50)5(33) is the unique solution uj, to (3.11) if # = §; h(r)dr, h € L*(0,T; #);

- Fgo’é(x) = 0 otherwise.

We will see later on, see Remark 3.15, that this map is in fact Borel measurable.

We are now ready to state our main results.

3+s+4
2

Theorem 3.9. Let §,s € {0,1}, £ € D(A ) and Assumption (Gs) hold. Then, the family
(u®°).(0,1] satisfies an LDP on C([0,T]; D(A'*%)) with speed e *A2(e) and rate function Is given
by

Is(z) = inf {; LT||h(r)||§%dr}. (3.13)

{heL2(0,T5.0):a=I° (5, h(r)dr)}

As usual, we understand that inf ¢ = oo.
Proof. The proof of this theorem wil be given in the next subsection. O

We can divide the result in the above theorem into two parts which will form the following two
corollaries. They give the LDP and MDP on C([0,T]; D(A'*3)), s € {0,1}, for the solution u® to

(1.2).
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Corollary 3.10. Let s € {0,1}, £ € D(A¥) and G satisfies Assumption (Gs). Then, the family
of solutions (u%).e(01] to (1.2) satisfies an LDP on C([0,T]; D(A**2)) with speed e=' and rate

function Iy given by

. 1 ("
Io(z) = inf {f h(r)||?%dr}. (3.14)
{heL2(0,T;56):0=T" (5, h(r)dr)} L 2 Jo

Corollary 3.11. If¢ € D(A%*3) and G satisfies Assumption (Gs), then (5*%)\’1(5)[& - u]) 0]
e€(0,

satisfies an LDP on C([0,T]; D(A'*2)) with speed \%(g) and rate function I, given by

ILi(z) = inf {;LTh(T)”?;%dT}. (3.15)

B {ReL2(0, 7356 ):x=I"" (§, h(r)dr)}
In both corollaries we understand that inf ¢ = 00. To close this subsection we should state the

following important remark.

Remark 3.12. We only considered the case s € {0,1} because we are unable to prove the results
in Proposition 3.5 for s € (0,1). In particular, we are unable to prove that the solution u to (1.5)
belongs to C([0,T]; W) n L®(0,T; H3*%) for s € (0,1). Here, the main issue is that the proof
of Proposition 3.5 uses the results of Theorem B.1 and B.2 which in their turn depend on the

commutator estimate (B.11) which to our knowledge is only true for s > 1.

3+s

2 ))7

Since ¢ € D(A3$) one would expect that the LDP result should hold in C([0,T]; D(A

but we are facing two major issues in getting the LDP in C([0,T]; D(A%)):

(i) the proof of the LDP relies in particular on Proposition 3.14 with 6 = 0 which requires that
e D(A%) for a compactness of the level sets K s in C([0,7]; D(A'*2)). This is more transparent

in the proof of the case s = 0, see proof of (5.6) on page 32.

(ii) For the case s = 1 we do not know whether the solution of the non-viscous model belongs to
C([0,T]; D(A?)). In fact, we only know that it is an element of C'([0,T]; D(A2)) n L*(0,T; H*).
3.3 Proof of Theorem 3.9

This subsection contains the proof of the main result stated in Theorem 3.9. The proof will use

Budhiraja and Dupuis’ representation of functional of Brownian motion and the weak convergence
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approach to LDP, see [5], [6] and Appendix A, and requires several auxiliary results whose proof
will be postponed to subsequent sections or subsections.

Let 6 € {0,1}, £ € W and h € .¥. We consider the following stochastic system

dve® + [sAui’é + As(e)C(rot vE? us®) + 6(C(rot v’ u) + C(rot v, u,i"s))] dt

- [&:Agl(g)Au + G(6u + A5(s)u;>5)h] dt + €225 (e)G(0u + As(e)ui?)dW,

(3.16a)
vi? = (U + aAud?), (3.16b)
u’(0) = (1—6)¢ in T2, (3.16¢)

where u is the solution to (1.5) and v = u + aAu.

Proposition 3.13. Let 6 € {0,1}, £ € V n D(A%é), p € [1,0) and h € . If Assump-
tion (Gs) is satisfied, then the stochastic controlled system (3.16) has a unique solution u,i"s €
LP(£2;C([0,T]; W)) such that

ui"s = Fg’é (W +e 3 As(e) Jo h(r)dr).

Furthermore, if h € Sy for a fixed M > 0, then there exists a constant Ry (which may depend on

||5HD(A3;76) , M, T, a and p) such that

sup E sup [[uS’(t)]3 < Ry. (3.17)
e€(0,1]  te[0,T7]

The proof of Theorem 3.9 heavily relies on the following two propositions.

3+s+9

Proposition 3.14. Let 6,s € {0,1} and & € D(A™= ). Then, the sets Ky = {ul,h € Sy},

M >0, are compact sets of C([0,T]; D(A1*2)).
Proof. The proof of this proposition will be given in Section 5. O

Remark 3.15. The above proposition amounts to say that if (hy)nen < Sy, M > 0, is a se-
0,6 /¢ 0,6(§, h(r)dr)

quence that converges weakly to i € Sy, then I (§g hn(r)dr) strongly converges to I, p

in C([0,T]; D(A'*%)). This implies in particular that the map Sy 3 h — Fgo"s(&) h(r)dr) €

C([0,T]; W) is Borel measurable.
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Proposition 3.16. Let M > 0, (hyp)nen  Fu, h € Py, and (e4)neny < (0, 1] be a sequence con-

3+s+9

verging to 0. Also, let 6,s € {0,1} and € € D(A™ = ). If Assumption (Gs) hold and h,, converges in

distribution to h as pr-valued random variable, then the process Fg"’é (W—Fé‘né As(en) Sy hn(r)dr>

converges in distribution to Fg"s (§, h(r)dr) as C([0,T); D(A*2))-valued random variables.
Proof. The proof will be given in Section 5. O

Remark 3.17. In many papers such as [2, 3, 64, 65] the proof of this proposition is based on
showing that the solution ufl’; is tight on appropriate Polish space, say &X', and then invoking
Prokhorov’s and Skorokhod’s theorems to construct new filtered probability space on which is

defined a (sub)sequence ﬁi: and a random variable u such that

lawy (uy ) = lawy (@),

ui’; — 1 strongly in A a.s. on the new probability space.

Finally, one shows that

which completes the proof.

Our approach differs to this method as we first show that an’é (W + 67:%)\5(5”) 5o hn(r)dr)
converges in probability to Fgo’é (§o hn(r)dr) as C([0,T]; D(A'*2))-valued random variables, see
Lemma 5.1. Then, we prove that Fg"s (§, hn(r)dr) converges in distribution to Ffo’é (§, h(r)dr)
as C([0,T]; D(A'*%))-valued random variables, see Lemma 5.2. We learn this approach from the

recent paper [4] and we believe it is much shorter and simpler than the one we outlined above.

Now, we give the promised proof of our theorem.
Proof of Theorem 3.9. Owing to Propositions 3.14 and 3.16 the assumptions (A1) and (A2) of
Theorem A.2 are satisfied on & = C([0,T]; D(A'*3)), s € {0,1}. Thus, we infer that for § and
s € {0,1} the solution u®’ to (1.6) satisfies an LDP on C([0,7]; D(A'*%)) with speed e~ 1A\2(e)

and rate function I5. This completes the proof of Theorem 3.9. O

Before we proceed to the next section we state the following remarks.
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4 Qualitative studies of the stochastic controlled model: proof of Proposition 3.13

This section is devoted to the proof of Proposition 3.13 which will be divided into parts.

Proof of Proposition 3.13. Part I: Well-posedness of problem (3.16).

Since h € . we have
I 142 g 2
E exp € As(e) | Ih(r)|I7dr | < oo.
0
Thus, by Girsanov’s theorem there exists a probability measure P, such that

T T
% = exp (;51)\5(5)2L ||h(r)||2j%d7’ — 5*%)\5(5)J h(T)dW(r)) ’

0
and the stochastic process W (-) := W(-) + e~ 2 A(e) §o h(r)dr defines a cylindrical Wiener process
evolving on ¢ and defined on the filtered probability space (£2, % ,F,P;). We now infer from
Proposition 3.6 that on (£2,.%,F,P;) the problem (1.6) with driving noise W admits a unique

strong solution ui’é. By Remark 3.7(iil) we have ui’é = Fg’é(W) on (2, #,F Pp,) which reads
u}i’é = F§’5 (W() + 5_5)\(5)J- h(r)dr) on (2, % ,F,P).
0

Part II: Proof of the uniform estimates (3.17)
In order to complete the proof of Proposition 3.13, we need to establish (3.17). For this aim we

fix M > 0 and h € .%); and we prove the following result.

Claim 1. There exists a constant Rs > 0, which depends only on M, p, T, « and ||£]|w , such

that for any € € (0,1]

T

€,0 €,0 — €,0

E[ sup [, (t)llip+2p6f [, ()17~ ay,* (8)[2dt] < Rs. (4.1)
te[0,T] 0

Proof of Claim 1. To alleviate the notation we will denote by u® and u the solution to (3.16) and

(3.11), respectively. We will also set

z° = rot(u® + cAu®),
z =rot(u + aAu),

&= (1-10)¢
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By denoting the identity map on V by Id and using the bilinear map defined in Lemma 2.1,

we can rewrite the first identity in (3.16) in the following form

t

(Id + aA)u®(t) + L (eAu®(r) + As(2)C(2°(r),u(r)) + §[C(2°(r),u(r)) + C(z(r),u®(r))]) dr

=& +0eX; (o) L Au(r)dr + Lt G(du + As(e)u(r))dr

+€%>\El(€)£ G(du + As(e)u®(r))dW (r),

)

(4.2)

for any ¢ € [0,T]. For the sake of simplicity, we will set

o = (Id+aA) oA,
€ :=(1d+aA)toC,

¢ =(Id+aA) 'oG.

With this in mind, we derive from (4.2) that any solution u® of the problem (3.16) with the initial

condition &5 € W satisfies, P a.s.

u®(t) + fo (Ag(a)%(ze(r), u®(r)) + 0[€(2°(r),u(r)) + €(z(r),u®(r)) + aAgl(s)%u(T)]) dr

= (Id + aA) 7' + Lt G (0u + As(e)u® (r)h(r)dr — Lt e/u(r)dr (4.3)

+5%)\(5_1(5)L G (ou+ As(e)u®(r))dW(r),

for any ¢ € [0,T]. Let (7¢)sen be the sequence of stopping times defined by
7 =inf{t > 0: |[rot(u®(t) + cAu®(2))| = £} A T.

Observe that thanks to (3.8) we infer that 7, — T a.s. as £ — .
By the application of It formula, see [43, Theorem 26.5], to [u®(tA7¢)|2 and then to (|Ju(¢)[2)"

we obtain

[us(t A )2 + QPL v [l ()12 [ellu®]* + 8[<C(=7, w), u™) + A5 (o) (w, w))]] (r)dr

— pJ;) ATe ||115(7")||ip*2 (6)\52(5)HG(U + Aé(E)UE)H?fQ(%,V) + Q(G(au + )\5(6)116)}7,,116)) (’I")d’l"

tATe tATe
- 2p€fo (222 u®[*) (r)dr + f(p)ers>(e) L [u® 2P| (du + As(e)u®)u®||34 (r)dr

+ 22057 (e) L : [ () ][22 (u(r), G(du(r) + As(e)us(r)dW (1)) + &P,
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where f(p) = 2p(p — 1). Note that we have used the identity
(((Id + aA) ", v)) = (£, V) for any f e V¥,
and (2.7) to justify that
((€(2%,u®) — 06 (z,u),u)), = 0.

Using Cauchy-Schwarz’s inequality, Young’s inequality and (3.6) we show that there exists a con-
stant Cy > 0 such that for any € > 0 and ¢ > 1

tATe

ﬂwnuwr)n”2<<u<r>,u€<r>>>dr <G (TRSP gl ||u€<r>||ipdr) .

From (2.15) and (3.6) we infer that there exists a constant C; > 0 such that for any ¢ > 0 and

/=1
tATe tATe
fo (C(# (), u(r)), u (r)ydr < Cy j 0 ()22 () wdr
tATe
< ClRof ||u8(r)||ipdr
0

Using Assumption (Gs) with s = 0, Young’s inequality and (3.6) we can find constants Co > 0
and C5 > 0 such that for any ¢ > 0 and £ > 1

tATe

tATe
L [ () 22| G0 + As(£)u)(r) s oyl < Ca(1+ N2(E)) f e (r) |2 dr
+CoT (1 - 62PR§”> ,

and

tAT

tATe
J [u® () |22~ 419 (du + As(e)u)us(r) |34, dr < Ca(1 + A?(E))J [[us (r)|[2Pdr
0 0
CsT (1 + 52PR§P) .

Since h € )y, applications of Cauchy-Schwarz’s inequality, Assumption (Gs) with s = 0, Young’s

inequality and (3.6) imply that there exists a constant C; > 0 such that for any € > 0 and £ > 1

tATe

Lwnu%ﬂip—%awu T Xs()u)h(r), u ()dr < Ca(1 + As(e)) f () 221 ) g

+OMETE (1 + 52PR§P) .
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Collecting all these inequalities together yields

tATe

tATe
[us(t A 7o) 27 + 2P€JO [u® (r) |22l () |Pdr < %0 + L w0 ()|l (r) | 2P dr

Mt AT,

with
M (E) = 2p2 AT S%Pt]f la(r) 2772 (0" (r), G(du(r) + As(e)u® (r)dW (1)),
re
=0 = ||&5|12P + C5T (65Agl(5) +8%P[eA52(e) + M%T%]) + CsTeN;2(e),
T (r) = 076(8)\(;1(6) +1)+ Cg(a)\gz(s) +¢e) 4+ Co(1+ Xs(e)||h(r)] s
where C;, i = 5,...,9, are positive constants which may depend on ||¢||lw, T, «, p, but not on e,
¢>1 and 6.

From Burkholder-Davis-Gundy’s (BDG’s) inequality, Assumption (Gs) with s = 0, Cauchy-
Schwarz’s and Young’s inequalities we infer that there exists a positive constant C1g such that for

any € > 0, £ > 1 and 0 > 0 we have

tATe
Ea/*°(t A 1) < 907 p*Croe)s % (e) (T +(1+ )\g(s))EJ |[u (r)||2Pdr + 62”>
0
(4.4)

+OE  sup [u®(r)[|ZP-
re[0,tATe]

Hence, for t € [0, T] we have, with probability 1

tATe
X(t A7) +2peY (t A7) < D70+ f U (1) X (r)dr + A (1),
0
tATe
E 5%t A 1) < OEX(t A T¢) + 9_1Cf15]Ef X (r)dr + C53,
0

where we have set

X(t) = sup [u*(n)r,  Y(1) r=foIIUE(T)IIip_2||uE(T)IIth

rel0,4]
Cii’ 1= 997 Croed; 2(2) (1 + X3(e)),
Cy 1= CIf (1+ 3(e) (T +6%).
Now, observe that by the definition of \s(e), eA;“(e) — 0, £ € {1,2}, as ¢ — 0. Hence, for any

€0 > 0 one can find positive constants C~'0, C’l, Cs and C5 such that for any e >0and £ > 1

T
f =9 (r)dr < Cy with probability 1, &% < C, C’f’lé <C,, and Cféé < Cs.
0
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The constants Cj, i € {0,...,3}, may depend on ||§||D(A¥), €0, p, T, and ¢, but they do not
depend on € > 0 and ¢ > 1. Now, choosing the constant 6 > 0 so that 20¢C0 < 1 and applying [12,

Lemma A.1] yield
E[X (t A 1¢) + 2peY (t A T0)] < Rs, (4.5)

where Rs = R5(||¢|lw,p,€0,T) does not depend on ¢ € (0,1], h € %) and £ € N. Letting £ — o

now completes the proof of Claim 1. O

We now proceed to the proof of (3.17). We keep the notations in the proof of Claim 1 and we

also set

w® = rotu® and w = rotu.
With these notations in mind we observe that z° satisfies

dz* + (—&?A’LUE + A5(e)u - V£ + 5[u- V& + uf - V2] — dedy(e) Aw + G(Su + )\5(5)115)/1) dt

= e2);1(e)G(0u + A5 (e)ut)dw,

G =rot G and z := (1 — §) rot(£ + Af).

Now, let o € C®(T€) be an even, smooth function such that its support is compact and lies
within a ball of T2, and the ball lifts homeomorphically to the universal covering R%. We also
assume that §, o(x)dz = 1. For each k € N we set g,(-) = k?o(k-) and define the convolution
operator Ji by Jpf = ox * f. We refer to Appendix C for several important properties of Jj. For

the sake of simplicity we set u, = Jiu for any distribution u. The process z; satisfies

dzi + (Ea_lz;i + Xs(e)u® - Vzi + d(u- Vz + Ji(u® - V2)) + RZ’(; B Ea_lw,i> @t
= (5251 () Awi + JuG(Bu + As()u)h) dt + AT ) JuG(Bu + A ()u )W,

2;(0) = (1 — ) rot (& + aA&),
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where
RS = Ms(e)[Jn(u® - V2©) —u® - Vi ] + 6[Jp(u- V) —u- V]
We now apply It6’s formula to the function z — z? and z{ to obtain

dz5|? + 2[ea™t25)? + (Ri’é + 6Ji(u® - Vz), z,i) — 2 (ea wj, 4 deXy ! (e) Awy, 25 dt
=2 (Jké((Su + As(e)u)h, z,i) + Xy 2(e) | TG (du + Ag(a)uE)HiﬂQ(%’Lz)]dt
+2e3 751 () (25, JiG(6u + As(e)u®)dW),

where we have used (2.10) to justify that
(As(e)u® - Vzp + du- Vz, z;) = 0.

Thanks to Lemma C.1, Propositions C.1 and C.3 we can argue as in [52, Proof of Theorem 2.9(b),

page 60] and prove that

dlz°|* +2 [50[71|z€|2 + (5u€ V2 — [ea w® + 5eX; H(e) Aw + G(6u + As(e)u®)h], ze)] dt
= X5 2(@)|IG(0u + As(e)u) 1%, (g 12y + 267 A5 () (25, G0 + Mg ()uf)dIV).

¢|? yields

Now, applying Ito’s formula to the map z — P and |z

dl2*[ + 2p[ea [z — f(p)eA; ()G (0u + As(e)u)us| |3 257~ dt

= pl|z°|?P72 [2 (50471105 +0eX; He) Aw + G(du + As(e)ud), zs)
(4.8)
+eA;2(e)|G(ou + )\5(6)u5)||g2%(%7L2) — 26 (u® - Vz, 25)]

+2pe? A1 (e)]27 222 (25, G(u + As(e)u®)dW),

where G*(-) is the adjoint of G(-) and f(p) := 2p(p — 1). Using the Cauchy-Schwarz and Young
inequalities, the norms equivalence (2.3), the Sobolev embedding V < W and (3.6) we show that

there exists a constant kg > 0 such that for any e >0 and £ > 1

2p [ (e W0, 55(00) 4 025 O Aulr), )0 dr < 2k (505 () o

+[ea™t + ders ()] J
0

() )
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Using (2.12) the Sobolev embedding W < L* and (3.7) we prove that there exists a constant

k1 > 0 such that

tATe tATe
2p(5J- (ug-Vz,za)(r)|z5(r)\2p_2dr < kalf |Vz(r)]]2°(r) |2p 1||u (r)||Ledr
0 0
tATe
< 2p5k1R1J |2%(r)|*Pdr.
0

From Remark 3.1(a), Young’s inequality and (3.6) we derive that

taTy
P [ G + As(e)) 1) o )

tATe
< kape)s 2 (e) [(1 + A?;(e))f |25 (r)|?Pdr + 0*PT (RSP + 1)],
0
for some constant k3 > 0 which does not depends on € € (0,1], § € {0,1} and ¢ > 1. In an almost

similar way we prove that there exists a constant k4 > 0 such that for any € € (0,1] and ¢ > 1
tATe N
2p(p — 1)5/\32(8)J IG*(8u(r) + As(e)us(r)) 2" (r) |54 |2° (r) [P~ 2dr
0
tATe
< 2kup(p — 1)eds % (e) [(1 +2%(e)) f |25 (r)|?Pdr + 6*PT(R2P + 1)]

0

Finally, there exists a constant ks > 0 such that for any € € (0,1] and £ > 1
tATe N
f 125 (1) |22 (G (u + A (2)ud)h(r), 25 (r))dr < ksM2T? (1 + 521’33”))
0
tATe
+es(1+ A5(6))J |25 ()P | ()| s i
0
From these inequalities and (4.8) we infer that
tATe N tATe N 5
125 ( A )22 + zpm—lf |25 (r)[Pdr < 85 + f 50 ()2 (1) PP dr + At A7),
0 0

with

//255()—2p52)\ sup

’I”E[O t]

f |27 (r) P2 (25(r), G(u(r) + As(e)uc (r))dW (r))

+2pé(ea + deX; 1 (e)) L |we (r)|*Pdr,
O (r) = & (ea™ + deAs () + E20|V2(r)| + +é3eds 2(e) (1 + N;(e)) + Ea(1 + Ns(e))|h(r) |
0 = |202P + &50% (e 2(e)T + T3),

where ¢;, i = 0,...,5, are positive constants which may depend on ||£]| DA ) T, o and p, but

notoneand /¢ >1
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Using the same argument as in the proof of (4.4) and (3.6) we infer that for any 6 > 0

B tATe
MO A ) < 907 N2 () (T +(1+ X2 (e)E J |25 ()% dr + Rgp)
0

+0E  sup [25(7)|* + Rs,

re[0,t ATe]
where Rj is the constant from (4.5) and ¢&7 is a positive constant which does not depend on ¢ and

£. Thus, setting

¢
Xs(t) = sup |zs(r)\2p and f’s(t) = f |z€(7“)|27"d7“7
0

o<r<t

we see that for ¢ € [0, T] we have with probability 1

_ 5 _ tATe 5 _ N

Xe(t A1)+ 2p5a_1YE(t ATe) < =0 + f LDE*S(T)XE(T)dT + ///E"s(t A Te),
0

tATe

E A0t A 10) < OEXS(t A 70) + 07 KSR f Xe(r)dr + K5,

0

where 6 > 0 is an arbitrary constant and

K&° = 927eA52(e) (1 + \2(e)),

K% = 071eA52(e)(T + RYY) + Rs.

Observe that from Proposition 3.5 we can find a deterministic positive constant f(g such that
for any ¢ € (0, 1]
T ~ ~
f =0 (r)dr < K, with probability 1.

0

We now argue as in the proof of (4.5) and infer that one can find a positive constant K3, which

may depend on p, T, « and ||§||D(A¥), but not on ¢ such that
E (Xf(t) + 2p€a_1}75(t)> < Ks(1+ (1 - 8)|rot(€ + aAg)2P). (4.9)

This completes the proof of (3.17) and Proposition 3.6. O

5 Proof of Propositions 3.14 & 3.16

This section is devoted to the proof of the crucial Propositions 3.14 and 3.16.
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5.1 Proof of Proposition 3.14

We will now give the proof of Proposition 3.14. For this purpose we fix § € {0,1}, a constant M > 0

8

and consider a sequence (A, )nen © Sy which weakly converges to h € Sys. Let u? (resp. u®) be

the solution to (3.11) corresponding to h, (resp. h). By Proposition 3.8 we have

sup sup |[ud(t)|lw < Ro, (5.1)
neN ¢e[0,T]

Using (2.9) and Assumption (Gs) we easily derive that there exists a constant Ry > 0 such that

for any n e N
[00vn () < Rallupliw (1= 0)[uplw + 8l[ullw) + Rallfn o (1 + Sllulla + (1 = 8)upla),
which along with (5.1) and (3.6) we infer that there exists a constant R} > 0 such that

SupHatufz(')||L2(0,T;D(A)) < RY. (5.2)

neN

These two estimates, Banach-Alaoglu’s theorem and the celebrated Aubin-Lions-Simon com-
pactness theorem, see [56, Corollary 4], implies that one can extract a subsequence, which is not

relabeled, from (uS),cx such that

u’ — @’ weak- # in L°(0,T; W), (5.3)

n

u? — a° strong in C([0, T]; D(A'~%)), (5.4)

for any 0 € (0,1]. Arguing as in [14] or [15] we can show that @® solves (3.11) and by uniqueness
of solution we infer that ’ = u’. The uniqueness of solution also implies that the whole sequence
strongly converges to u® in C([0,T]; D(A'~%)), 6 € (0,1]. Note also that from (5.1) and (5.3) we

infer that the function 22 := rot(y® 4+ aAy?), where y) := u? — u’, satisfies

sup sup |zf,(t)| < Rs, (5.5)
neN te[0,T]

for a constant Rs > 0 independent of n.

Now we will divide the proof into two parts: the case s = 0 and s = 1.
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Case s = (0. We infer from Sobolev interpolation inequality that
Ayl = [ARyhli< Rsl Ay |2 AR50
which along with the estimate (5.5) and the convergence (5.4) easily implies
y2 :=ul —u’ — 0 strongly in C([0,T]; D(A)).

This completes the proof of Proposition 3.14 for the case s = 0.

Case s = 1. To prove the Proposition for the case s = 1 we shall show that
28 — 0 strongly in C([0,T]; W).

To this aim, we first observe that 23 solves

atz;i +(1- 5)[qu . szl + yg . Vz5] + d[u- szl + yfl -Vz]
= G(6u+ (1 —6u)h, — G(du + (1 — §)u’)h,

where we have set

2% = rot(u’ + aAu’), z = rot(u + aAu) and G = rot oG.

We have the following identity

1d

5ol = (Glou+ (1= 0)ul)hn — G(ou + (1= o)u’)h, =4)

mn

(5.8)

The proof of this identity uses the same regularization argument as in the proof of (3.17) and is

omitted. We now invoke (2.12) and (2.4) to infer that there exists a constant Rq; > 0 such that

for any n € N

[z ()7 < R7L (1= &)V ()] + 8|Vz(r)]) [0 (r)[dr + 17 (hy — )(2)]
+ | 1GGu+ (1= 8)u3) = Gl + (1= )’ () (r) |

where for each n € N the linear map 72 : L2(0,T; .5%) — C([0, T]; R) is defined by

TIp() = f(é(éu T+ (1= Y )(r), 28 (r))dr, e L2(0,T; 7).

0

(5.9)

(5.10)
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From Assumption (Gs) and Remark 3.1(a) and the continuous embedding V. W we infer that

there exists a constant R > 0 such that

L [G(ou+ (1 - d)u)) — G(du+ (1= 8)u’)]hn(r)||25(r)|dr < Rs(1 - 6) L |2 () Pl (r) ||
(5.11)

Plugging this inequality in (5.9), using Gronwall’s and the assumption h,, € Sy; yield

\zf,l(t)|2 < LZ‘S(hn — h)(t)|exp <R7L ((1 - §)|Vz5(r)| + §|Vz(7’)|) dr + RgTéM;) ) (5.12)

Now we claim that as n — o

sup |7, (hy — h)(t)] = 0, (5.13)
te[0,T7]

from which altogether with (3.7) completes the proof Proposition 3.14 for the case s = 1.

In order to complete the proof of the whole proposition, it remains to prove (5.13). To this end,
we notice that thanks to the Assumption (Gs), Remark 3.1(a) and the estimate (5.5), the family
(G(6u+ (1 —8)u®)y(), 25(-)), ¥ € Sy, is uniformly bounded in L2(0, T; .#4). Thus, for each n e N
the linear map 973 is bounded and compact. Next, owing to the estimate (5.5) we can and will

assume that there exists 25, € L°(0,T, L?) such that as n — o
20 — 2% weak- * in L*(0,T;L?),
which implies that as n — o
Il 77 = 72l — o, (5.14)

where ||| - ||| denotes the operator norm. Thus, the compactness of ,, n € N, and the weak

convergence of h,, to h implies

ts[té%lc%f(hn —B) D <17 = T2 hn = Bliezo.0m) + | 70 (hn = W)l c(o.11:2) = 0, (5.15)
elo,

as n — o0. This completes the proof of Proposition 3.14.
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5.2 Proof of Proposition 3.16

This section is devoted to the proof of Proposition 3.16. For the time being let us assume that the

following two lemmata hold.

Lemma 5.1. If all assumptions of Proposition 3.16 are satisfied, then for s € {0,1}

lim IP’( sup ||u‘2’:5 — uin(T)HD(A”%) > H) =0, (5.16)

n—o o<r<T
for any Kk > 0.

Lemma 5.2. Under the assumptions of Proposition 3.16, the process Fg’é (So hn(r)dr) converges

in distribution to FEO’5 (So h(r)dr) as C([0,T]; D(A'™2))-valued random variables, where s € {0,1}.

We now give the promised proof of Proposition 3.16.

Proof of Proposition 3.16. Proposition 3.16 readily follows from [20, Theorem 11.3.3], Lemmata

5.1 and 5.2. O
We now proceed to the proofs of Lemmata 5.1 and 5.2.

Proof of Lemma 5.1. To lighten notation we set

€ . 1En,0 € ._ 1€ € €
= w0 yni=up + aAuy, 2

P 1>
u " , =roty,,

Vv, = u, + aAu,, z,:=roty,,

m

W= - W, @5 =7+ QAN W = Tot g,

We also recall that u is the solution to (1.5), v =u+ aAu and z = rotv.

We will first establish the lemma for s = 0. More precisely, we will show that

lim ]P’( sup |5 (r)] = m) =0, (5.17)
n—=%0  \ogr<T
for any x > 0. For this purpose, we first observe that ¢, satisfies
det + (AU, + As(e)C(rot 5, us) + [0s(€)]C(rot vy, 1) + 6(C(rot 5, u) + C(rot v, n5)) di

= (6eA; 1 () Au + [G(Y,E0) — YD) hy) dt + e2 25 ()G (YE0)aw,

n
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where

05(e) = As(e) — (1 =0), Y20 := fu+ As(e)us

n’

and Y := du + (1 — &)u,,.

Applying Ito’s formula to |¢? |?

¢|* and ¢, and using Cauchy-Schwarz’s inequality and Assumption

(Gs) we infer that there exists a constant Rg > 0
Al 2 — 21(=AW + As(£)C(xot 5, uS) + 8(Clrot @5, w) + Cxot v, 1)), 5|t
< 205 [[[es(e)IC(rot v, 7| + 3Xs " ()| Au| + Ro [ As(e)us, — (1 = 8)unllalnl g ]dt  (5-18)
+Roes 2 (e)]|0u + As(2)us |2 + 222 A5 () (95, G(Y,20)dW).
Now, we infer from (2.13), the properties of b(-,-,-) (mainly (2.10), (2.11) and (2.12)), Holder’s

inequality and the Sobolev embedding L* < D(A) that there exists a constant Rig > 0

[(C(rot ¢y, ur), 5| = [b(eh. us, 07| < Rioler ]Iz,
|(C(rot v, 17,), 5| < Ruol2nllh |,
|(Crot ¢f,, u),¢7) < Ruoler|?|z],
and
|(Crot v, m;), ¢7)| < Ruolzlley .
Collecting these inequalities together, plugging them in (5.18) and using Young’s inequality yield
dl5)” < 23051 () (5, GV )W) + €220 + 82225 () |21 + los () [[wall2 1o 1 3
+Raolf [P [1+ 2X5(0) |27 + 05(2)|zal + 0lz] + As(e) IRl ]

which along with Proposition 3.5 implies that

tATN 1 N
|05t A Ta)|> < TZR + f ON (1)lr, () Pdr + 2e5 A5 (€)- A5 (8 A7),

where

E]E\;ﬁ = 2N + 6262\ 2 (e) RS + 05(e)N Ry, (5.19)
O05°(-) = Ns(e) + 0(e) + 26Ro + As (€)1 hn ()] 4,5 (5.20)
ME(t) = L(cpi(r),G(Yi"‘)(r)dW(w)a (5.21)
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and for each number N > 0 the family of stopping times 7, := 7, v is defined by
To,N = 1nf{t = 0; |2, (t)| > N} A {t = 05|25, ()] > N} A T. (5.22)

Now, from an application of BDG’s inequality and Young’s inequality we infer that for any constant

B > 0 there exists a constant Ri; > 0 such that for any n > 1 and N > 1

23N (e)E  sup  |5(r)]

re[0,t ATy ]

1
2

1 . tATH .
<262\ (e)RiE < sup |7 (r A Tn)\zL ||G(Yn’5)(r)||?zﬂz(%,V)dr

re(0,t]

tATH
< €A52(6>R11f0 (1 + 82 [lu() 12 + X5 () un(r)]2)dr

tATH
+ BE sup |5 (r A )|? + Ry f |5, (1) dr
re[0,t] 0

tATH
< BE sup |5 (r A )2 + 6Ag2(5)R11T(1 + 52R§ + )\g(s)N) +eR11 J |<pfl(r)|2dr.
re(0,t] 0

(5.23)
Notice that since (hy)neny © - and by the definitions of gs(g) and As(g), there exists a constant

Ri5 > 1 such that

T £,8
sup elo ON"(Mdr Rio.
neN

Thus, choosing B so that 28R1» < 1 and applying the version of Gronwall’s lemma given in [12,
Lemma A.1] we obtain

E sup @5 (r A )2 < 550 Ria. (5.24)
re(0,t]

Now, since g5(g) — 0 and e\;“(¢) — 0, £ € {1,2}, as € — 0 we infer that
E sup |¢5(r A 7,)|? — 0 as n — 0. (5.25)
re[0,t]
Next, let v > 0 and & > 0 be arbitrary numbers. It is not difficult to check that
P( sup |7, (r)]* = w) <P( sup |7 (r)]*, 7 = T) + P( sup |z,(r)] > N)
re[0,T] re[0,T] re[0,T]

+P( sup [z;(r)[ = N)
re[0,T]

1 1
< —E sup |5, (r)]* + N E sup (lzn(r)] + [z (r)]). (5.26)
K ref0,t] ref0,7]
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Owing to estimate (3.12) and (3.17) one can find N > 0 such that

1
NE sup (|zn(r)] + |25(r)]) <
re[0,T]

o2

Thus, thanks to (5.25) and (5.26) we infer that for all n large enough

P( sup o7, (n)[* = k) <7,
re[0,T]
which completes the proof of Lemma 5.1 for s = 0.

In order to prove the lemma for s = 1, we first recall that wi := rot ¢5. It is not difficult to

prove that w;, satisfies
dw;, + [As(e)(us, - Vws) + o0s(e)n), - Vz,]dt + 6[u - Vwi, + 05 - Vz]dt

— [0eX; M (€)Arot u + G(Y,)hy — GV 0)h,, — eArot u]dt + 2051 () G(Y,E0)dW
where

05(e) = As(e) — (1 =0), Y20 :=du+ As(e)us, Y2 :=du+ (1—0)u,.

Now, for each number NV > 0 we define a family of stopping times 7,, y by
TN = 1Inf{t = 0;|Vz,(t)| > N} A T. (5.27)

For the sake of simplicity we just write 7,, in place of 7,, y. Using a regularization technique as in

the proof of Lemma and It6’s formula we can derive the following identity

tATy

|lws, (t A 7~'n)|2 = —QJ ([eArotu, + os(e)ns, - Vz, + 0ns, - Vz](r),ws (1)) dr
0

+2J AT ((55)\(;1(5)A rotu(r) + [G(er’é) - é(y5)]hn(r),w5 (T)) dr

n n

0 (5.28)

tATh

tATH _ s B
+e)%(e) f IO 2y + 26305 (E) j (e (), GOS0 )dW (1)

= Jin(t) + Jon(t) + J3n(t) + A:(2).
From (2.12), the Sobolev embedding W < L* and (2.4) we infer that there exist constants

Ry3, R14, R15 > 0 such that for any n e N

tATH

Tin(t) < j

tATh
|(eArot ul (r),ws (r))|dr + Ris J |cqu|2 (05(&)|Vzn(r)| + 6Ry) dr
0 0

52 tATH tATH
< ERMJ‘ |z;i\2dr+Rl5J |wfl(r)\2 (1 + 05(e)|Vzn(r)| + dRy) dr,
0 0
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where we used Cauchy-Schwarz’s and Young’s inequalities to obtain the last line. From Assump-
tion (Gs) and Remark 3.1(a), the Sobolev embedding V. < W, Cauchy-Schwarz’s and Young’s

inequalities we derive that there exist 2 constants Rig, R17 > 0 such that for any n e N

tATH

|2(r)[Pdr + Rig JO Jwr ()21 + As ()| (1) L5 )

tATh

ngn(t) < 6252)\6_2(5)}%16\]‘
0

tATH
+R16L |wr, ()] s (&) [[an (r) || a[|Fon (7) [ 52 dr
tATH
< 0%e?A5%(e) RigRoT + Rl?f W (M) P (1 + As (&) [1hn (r) || s, )
0

tATH
R | R0
For the term Js ,, we have the following estimate which easily follows from Assumption (Gs) with

s=1

tATH

(L + % [u(r)12 + A3 ()|zn(r)[)dr + ERmL jwr, (r) [P

tATh
Jg’n(t) < E)\EQ(E)RMJ
0

Now, BDG’s inequality and Young’s inequality yield

E sup |4 (r)|< RioE < sup |wi(r A %n)|2J37n(t)>

re[0,t] re[0,t]
tATH
< PE st]|wa(r A 7~'n)|2 + 5/\5_2(6)R20J (1+ 52Hu(7’)||(2l + A§(€)|zn(r)\2)dr (5.29)
re|0,t 0
tATH
+eRao f |wE (r)|dr, (5.30)
0

for any 8 > 0 and a certain constant Roy > 0 independent of n.

Collecting all these inequalities we obtain that P-a.s.

tATH
sup |w (r A 7~'n)|2 < @;}6 + f Wls\;d(r)|wfl(r)|2dr + sup | (1), (5.31)
re[0,t] 0 re[0,tATy]

with
&5’ = Ry (N2([s2 +e|T + 05() M) + Xy () (0%(e + 1)R2 + 1)T),

L (r) i= 1+ ¢+ 05(e)N + 6Ry + A5 (&) hn(7)]] 10,5

and the process .Z¢ satisfies the estimate (5.30). Notice that by the fact that (hy,)ney € -#a and
by the definitions of gs(¢) and As(e), there exists a constant Rgz > 1 such that

T 3,€,0
sup edo YN (Mdr < Ros.
neN
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Thus, choosing 8 > 0 in such a way that 28R52 < 1 and applying the version of Gronwall’s lemma

given in [12, Lemma A.1] we obtain
E sup |wS(r)]? < 83’ Rya. (5.32)
re[0,t]

Now, since gs(¢) — 0 and eX;*(e) — 0, £ € {1,2}, as € — 0 we infer that LPJEV"s — 0 as € — 0. Thus,

E sup |wg(r)]?* — 0 as n — 0. (5.33)
re[0,t]

Next, let v > 0 and k > 0 be arbitrary numbers. It is not difficult to check that

P( sup |wi(r)]? = k) < P( sup |ws(r)|, 70 =T) + P( sup |Vz,(r)] = N) (5.34)
re[0,T] re(0,T] re[0,T]
1 1
< —FE sup |wé(r)]* + =E sup |Vz,(r)|. (5.35)
K refo,t] N efo.1]

Owing to estimate (3.12) one can find N > 0 such that +E sup,epo, 77| Vzn(r)| < 3. Thus, thanks

to (5.33) and (5.35) we infer that for all n large enough

P( sup |wy,(r)]* = k) <7,
re[0,T]

which completes the proof of Lemma 5.1. O
Proof of Lemma 5.2. Before diving into the depth of the proof we recall that Sy, is a Polish space
when endowed with the metric defined in (3.9). Now, since, by assumption, h,, — h in law as Sy;-
valued random variables, we can infer from the Skorokhod’s theorem that one can find a probability
space (£2,F,P) on which there exist Sjy;-valued random variables h,, h having the same laws as

h, and h, respectively, and satisfying
En — h in S]u, P — a.s.. (536)
From the last property and Proposition 3.14 we derive that for s € {0,1}

rg? (L hn(r)dr) — 1 (fo h(r)dr) in C([0,T); D(A'*3)) P—as.. (5.37)
Observe that Proposition 3.14 implies in particular that 1"50"s : Sy — C([0,T); D(A'™3)) is contin-
uous. Hence, from the equality of the laws of h,, (resp. h) and h,, (resp. h) we infer that the laws of
F£’5 (§y frn(r)dr) and Fém (§, h(r)dr) are equal to the laws of F§’5 (§y hn(r)dr) and F£’5 (§, h(r)dr),

respectively. This observation and the convergence (5.37) complete the proof of Lemma 5.2. O
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A Budhiraja-Dupuis’ theorem

In this appendix we formulate a LDP result which follows from [5, Theorem 3.6 and Theorem 4.4]. Let ¢, %
be two separable Hilbert spaces and W a Wiener process as in Subsection 3.1. We recall that . is the set of all

J¢-valued predictable process h such that

T
2 —
P (L |5, dr < oo) =1 (A1)
We now recall the following result which is exactly [5, Theorem 3.6].

Theorem A.1. Let I' : C([0,T]; %) — R be a bounded, Borel measurable function. Then

1 (T :
_ -rw) _ ; - 2
log Ee int E{ . JO A2, + T (W + jo h(r)dr) } (A.2)

Now, let £ be a Polish space, (¥*).¢(o,1] @ family of Borel measurable maps from C([0,T; /#]) onto £, and
(X%)ee(0,1] @ family of £-valued random variables.We have the following result which can be proved by using

Theorem A.1 and the idea in the proof of [5, Theorem 4.4]|.

Theorem A.2. Let g be a real-valued function defined on (0,00) such that
o(e) > w0 ase — 0.

Assume that there exists a Borel measurable map W0 : C([0,T); #%) — £ such that the following hold:
(A1) if (he)ee(o,1] © M, M > 0, converges in distribution to h € S as Sn-valued random wvariables, then
UE(W + o(e) § he(r)dr) converges in distribution to WO(§, h(r)dr).
(A2) For every M > 0 the set Ky = {@9(§, h(r)dr) : h € S} is a compact subset of £.

Then, the family (X®)ze(0,1] satisfies an LDP with speed 0%(¢) and rate function I given by

1 T
I(z) = inf = h(r)||%.. b. A3
@) {heLZ(o,T;%):mz:WO(SGh(r)dr)}{2Jo I (T)””“} (4-3)

B Some very important auxiliary results

Let 7 be as in Appendix A. We will prove the following theorem.

3+5
2

Theorem B.1. Let € {0,1}, o € L®(0,T; D(A™2 )), n = ¢ + aAp, h € L2(0,T; 7)) and £ € W. If G satisfies

Assumption (Gs) with s = 0, then there exists a unique u‘z € C([0,T]; W) satisfying: for any ¢ € W

(8tv6,¢) + (1 —6)(C(rot v‘;,u‘s),d)) + 6(C(rot vy, ) + C(rotn, ui),(ﬁ) = F;f, (B.1a)
v, = ud + aAul, (B.1b)
u) (0) = & == (1 - 0)¢, (B.1c)

where FY = G(8¢ + (1 — 8)ud)h. If furthermore £ € D(A2), ¢ € L®(0,T; D(A2+%)) and G satisfies Assumption

(Gs) with s = 1, then ul € C([0,T]; W) n L®(0, T; H*).
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Proof. The system we consider is a linear perturbation of the inviscid model for grade-two fluid or Lagrangian
Averaged Euler (LAE) equations. The proof of the well-posedness result is very similar, and is even simpler, to the
one given in [8] where the LAE equations with Navier-slip boundary conditions was analyzed. Thus, we will only
outline the main lines of the proof of the firts part of the theorem and refer the reader to [8], see also [15] and
[49], for the detail. The main idea is to use a Galerkin approximation by considering a special orthonormal basis

{ej; 7 € N} of V whose elements are the eigenfunctions of the spectral problem
e; € W and (rot(¢ + aAv)), rot(e; + aAe;)) = S\j((w, €j))a for all p € W. (B.2)

We should note that for each j e; € H*. The existence of the eigenfunctions and the proof of their regularity can

be found in [13] and [8]. Now for the sake of simplicity we will write u® in place of ug. For each £ € N we denote by

ug(t,x) = ZE: ©? (t)es (x) and v‘g = u‘g + aAug
i=1
the solutions of the system of ODEs
(atv‘z + (1 =d)C(rot v3,ul) + §(C(rot v3, ) + C(rot n,ul)), ei> = (F{,e)), Vie{l,...,4}, (B.3a)
ug(0) = s, (B.3b)
where II; is the orthogonal projection form W onto X, := span{ei,...,es}. We now derive uniform estimates for

u‘g in L®(0,T; V). For this aim, we multiply (B.3) by Lp(is, sum over ¢ € {1,...,¢} and use (2.7) to obtain

1d, s 5 s
5&”“5”3 = (8C(rotv), ) + Fj,up).
Now, using (2.15), Cauchy-Schwarz’s inequality, Assumption (Gs) and Remark 3.1(a) we easily derive that there

exists a constant R > 0 such that for any £ > 1

d

alluglla < R(|[uglla(llellw + (1 = 8)lIhll) + Rlhll g (1 + llella),

which altogether with Gronwall’s lemma imply that

T
sup sup_Jud(r)lla < <H£5lla+RJ Hhmux(l+6||so<r>ua)dr)
eN 0<r<T (0]

- (B.4)
xexp ([ el + (1 = I0)Lrelar) .
Next we shall derive an estimate for rot v‘g in L2. For this purpose we multiply (B.3) by S\igof, use (B.2) and argue

as in [8, pages 1136] to infer that
+ ((1 = &) rot(rot v9 x ul) + d(rot(rot v x @) + rot(rotn x ul)) — rot F¥,rotvi) = 0. (B.5)

Note that all the required steps to derive the above identity are rigorously justified thanks to the regularity of the
345

e;-s and the Assumption ¢ € L*°(0,7; D(A"2 )). Using these regularity assumptions again and (2.11) we derive

the following identity

1d
——Jrot vo|? + 8(ul ~Vrotn,rotv5 = rotF‘;,rotv‘s , B.6
> di [ £ [ h [
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from which along with Cauchy-Schwarz’s inequality, the Sobolev embedding V n L* ¢ W, Assumption (Gs) and

Remark 3.1(a) we derive that there exists a constant R > 0 such that for all £ > 1

d 5 5 5

S ot vel < R@dlrot villlrot nflg + 1+ dllella + (1 = 8)l[uplla)-
Gronwall’s lemma and (B.4) now imply

T
sup sup [rot vi(r)| < (|&slw + RT(1+06 sup [lplla + R° (€, h, ¢)))e’ o e Mllgadr, (B.7)
£eN 0<r<T 0<r<T

where RO (¢, h, @) denotes the term in the right-hand side of (B.4).

With these estimates at hand we can infer that the family (u?)geN is uniformly bounded in L* (0, 7; W). Thanks
to Assumption (Gs), (B.4) and (B.7) we can easily prove that (Btvg)geN is uniformly bounded in L®(0, T'; L?). Now
we can pass to the limit to complete the existence of a solution ul € C([0,T7]; D(A)) nL®(0,T; W). The continuity
of uf : [0,7] - W was established in [44] and in the recent paper [52]. The uniqueness of the solution can also be
established as in [8, Section 4], see also [15, Theorem 3.6].

It now remains to prove the second part of the theorem. Firstly, using the same argument as in [15, Lemma 5.5]

one can show that zi = rot vz € L®(0, T;L?) is the unique solution to

ez + [(1—8)u’ + 5] - Vz =g} (B.8a)

2(0) = rot(&s + aAfs), (B.8b)

where gfL :=rot F;Ls —du’-Vrotn e L2(0,T; H'). Thanks to Assumption (Gs) with s = 1, (B.7) and the assumption
@ € L°°(O,T;D(A2+%)), we have gi e L2(0,T;H"'). Thus, from Theorem B.2, see below, we infer that sz €

L®(0,T; H') or equivalently u® € L® (0, 7; H*). This completes the proof of our theorem. O

We now state and prove the following result which was already used in the previous theorem.

Theorem B.2. For s e [1,00) let
3ifs=1,
0(s) =
s+1ifs>1.

0(s)
Let ¢ € L®(0,T; D(A™2 )), g € L2(0, T; H®) and zo € H®. Then, there exists a unique z € L®(0,T; H®) satisfying

diz+-Vz=g, (B.9a)

z(0) = zp. (B.9b)

Proof. We will follow the approach in [15, Lemma 5.2] and only outline the main idea of the proof. The existence
is derived from Galerkin approximation based on an orthonormal basis {t;;j € N} consisting of the eigenfunctions

family of the spectral problem

¥; € H® and (1, ¢) + (—A) 29, (—A)2¢) = a;(1;, ¢) for any ¢ € H.
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Or equivalently

;€ H® and ¥ + (—A)%¢; = ajpy,
which implies that each 1); is smooth as we want. Now, for each £ € N we denote by P, the orthogonal projection
from H?® onto Yy := span{t1,...,1%,} and we let z¢(t,z) = Z§=1 7;(t)3;(x) be the solution to the following system

of ODEs
(Otzes i) + (- Ve, i) = (g,43), for all i e {1,..., ¢},
2¢(0) = Pyzo.

Multiplying the above system by a;r; and summing over i € {0, ..., ¢} yields

1d
St A%)ze* S [(A°( - Vze), A°20)| + Rllgllas (I + A°)z], (B.10)

where A® := (—A)% and R > 0 is a constant independent of ¢. Observe that

V4L [|zell35: if s = 1, see [15, page 333],
[(A%( - V20), 4°2)| < R (B.11)
19l a1 llzell3gs if s > 1, see [24, Corollary 2.1],

which along with the former identity implies that

t t
I(1 + A7)z (8)] < [[z0]l12s + RL llg(r)llmsdr + RL I(1 + A%)ze(r)[l|%(r) Lo ) dr- (B.12)

Now, Gronwall’s inequality implies that

T T
R
sup sup ||z¢(t)||ms < <||Z()HHS + RJ ||g(r)||Hsdr) e So s (Ml gg0(s) g
LeN 0<s<T 0

One can now pass to the limit to complete the proof of the existence result.
We omit the proof of the uniqueness because it is easy as we are dealing with a linear transport problem with

regular coefficient. O

C Results on regularization by convolution

Let 0 € C®(T?) be an even, smooth function such that its support is compact and lies within a ball on the torus,
and the ball lifts homeomorphically to the universal covering R?. We also assume that STQ o(z)dx = 1. For each
k e N we set o5 (-) = k?o(k-) and define the convolution operator Jy by Jif = o * f.

We state the following result which is very crucial for the analysis in this paper.

Lemma C.1. Let ¢ € L2(0,T; WH®(T2)) and ¢ € L®(0,T; L2(T?)). Then, as k — o0
e - V) = - V(Jpp) = 0 in L2(0, T; L*(T?)).

Proof. This is a special case of [18, part ii) of Lemma II.1], thus we omit the proof. O
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We also recall the following properties of Ji, see for instance [18] and also [52, Proposition 6.3 & Proposition

6.4].
Proposition C.2. For all f € L7Y(0,T;L*(T?)), v € [1,0] and s € [1,0], we have
klingo [k f = Fll~ (0,7;Ls(T2)) = 0- (C1)
Now, let W be a Wiener process with covariance @ as introduced in Subsection 3.1. We state the following
proposition.

Proposition C.3. Let z,¢ € L2(2;1L%(0, T; £ (A, L2(T2)))) be predictable processes. Then, there exists a subse-

quence of Ji which is not relabeled such that

E(sz(s), Ji€(s)dW) — Lt(z(s),g"(s)dW) with probability 1 for all t € [0,T1, (C.2)

as k — o0.

Proof. Thanks to Proposition C.2, the proposition is a corollary of [52, Proposition 6.7], so we omit the proof. [
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