Structural characterization and directed evolution of a novel acetyl xylan esterase reveals thermostability determinants of the Carbohydrate Esterase 7 family

Fiyinfoluwa A. Adesioye,^a Thulani P. Makhalanyane,^a Surendra Vikram,^a Bryan T. Sewell,^b Wolf-Dieter Schubert,^c Don A. Cowan ^a#

^a Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, South Africa

^b Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa;

^c Department of Biochemistry, University of Pretoria, South Africa

SUPPLEMENTAL FIGURES AND TABLES

S1: Most closely	y related proteins	s to the putative	novel Ac	XE-encoding	genes ((Axe1 _{NaM1} ,	Axe1 _{NaM2}	and XynB	_{NaM3} -like)	and their	potential
source organisms	s retrieved from	the non-redunda	nt database	e using BLA	STX 2.4	.0+(1).					

	Protein	Organism	Phylum/Family	Query	E-value	Identity	%GC
				cover (%)		(%)	content
Axe1 _{NaM1}	Hypothetical	Actinopolymorpha alba	Actinobacteria /	98	5e-135	64	
			Norcardiodiacea				
	AcXE	Saccharothrix espanaensis	Actinobacteria /	98	8e-131	61	71.4
			Pseudonorcardiacea				
	ACE	Paenibacillus ehimensis	Firmicutes /	96	4e-130	56	
			Paenibacillaceae				
Axe1 _{NaM2}	AcXE	Arthrobacter sp. 35W	Actinobacteria /	96	2e-151	69	
	AcXE	Microbacterium mangrove	Micrococcacea	95	9e-129	65	72.5
	AcXE	Georgenia sp. SUBG003	Actinobacteria /	97	3e-125	62	
			Bogoriellacea				
XynB _{NaM3} -like	Lipolytic	Pseudonocardia dioxanivorans		86	6e-67	58	
		CB1190	Actinobacteria /				
	Hypothetical	Pseudonocardia dioxanivorans	Pseudonorcardiacea	86	6e-67	58	74.8
	Hypothetical	Pseudonocardia asaccharolytica		81	8e-64	59	

а	Feature 1		#		#		#					
ч.	gi 516274	439	IKILPAGDSI	TNG.[41].	DTDHAGESO	SYQI.[30].	PDIILLMIGTN	D.[8].	ACTADLRS	MLDYML .	[3].PSGGM	II 577
	query	41	LRVMPLGASS	TVG.[38].	DRDHEGRSO	SITL.[15].	PDVVLLHNGTN	D.[8].	ETAERLTA	VLDAIY.	[2] . SDAHN	N 160
	gi 87303449	2	LTIMPMGDSI	THG.[36].	DRDHWGRPO	GWGI.[48].	INVLLLMIGS <mark>N</mark>	D.[32].	ASIDRLKA	FLDEVN.	[7].LQLEL	I 181
	gi 5834678	44	IKIMPLGD <mark>S</mark> I	TYG. [45].	DDNHAGYSO	SYTI.[28].	PDIILLQIGT <mark>N</mark>	D.[7].	GSEERLHK	LLDYLR.	[3].PSNGK	V 183
	gi 42551017	30) LRIMPLGD <mark>S</mark> I	TKG.[38].	DNDHE <mark>G</mark> HSC	5KVL.[14].	PNVVL VHAGT <mark>N</mark>	N.[8].	GSPQILES	IIDGLF.	[3].PDTTV	/L 149
	gi 40747781	291	L LRLLPLGD <mark>S</mark> I	TKG.[47].	DRDHQGLSC	5KRI.[14].	PNVILVHVGT <mark>N</mark>	D.[9].	TAPDRLRA	LLDGLR.	[3].PDAA1	L 420
	gi 111057360	38	B LRILPLGD <mark>S</mark> I	TWG.[37].	DKDNQGFP0	SYTI.[14].	PNVVLLHAGT <mark>N</mark>	D.[12].	QAPQRLGQ	LIDDVL.	[3].PDAV	/I 160
	gi 89241797	30	VRVMPLGD <mark>S</mark> I	TDG.[36].	DHDHE <mark>G</mark> HPO	SWRI.[15].	PRTILLHIGTN	D.[8].	NAPARLSA	LIDKIR.	[3].PQVQL	F 148
	gi 35213333	107	AKVMPLGD <mark>S</mark> I	TEG.[36].	DKNHEGHPO	SYFI.[15].	PETVLLLIGT	D.[8].	GAPGRLSA	LIDQIF.	[3].SSVKL	Y 225
	gi 4959943	59	LRILPLGA <mark>S</mark> I	TWG. [24].	DMVGKAHSO	DVI.[14].	PNVVLINAGT	D.[8].	NAGERMRS	LIETLI.	[5].ANTLI	IV 166
	Feature 1						#	#				
	gi 516274	578	FLCS.[1].P	.[13].NYN	INTVKSVAE	E.[7].VRFA	DVH.[12].DH	HPNGTG	YKKMGNFF	.[4]. 6	55	
	query	161	VAGV W	.[11].EFT	RLSRVVVD	E. [7].ATEV	DTS.[9].DG	LHPNAEG	YRRIAAMW	.[4]. 2	32	
	gi 87303449	182	VATI.[1].T	.[23].EYN	DFIRDTLPD	0. [7]. LRVV	DOF. 81.DG	HPSSQA	FERMAATW	.[4]. 2	65	
	gi 5834678	184	FLTT. [1].P	. [16].KYN	ELIKKVAND	D. [5]. VIYA	DIH. [10].DG	VHPNAGG	YEKMGKYW	.[4]. 2	60	
	gi 42551017	150	VAPV.[1].W	.[11].RFN	PQVIAMIE	(.[5].KHIL	EVP.[9]. <mark>D</mark> E	K <mark>H</mark> PNDSG	YEKMANAW	.[4]. 2	20	
	gi 40747781	421	VSEV.[1].L	.[11].VFN	QALNGIVTE	E.[7].IAVV	PMG. [11].DY	KHPGNOG	YKKMAGAW	.[4]. 4	95	
	gi 111057360	161	VAKI.[1].0	.[11].TEM	NAIPAIVAA	A. [7]. VSVV	DMS. 91. DN	LHPSVAG	YARMGDIW	.[4]. 2	33	
	gi 89241797	149	VAQI.[1].P	.[11].TFN	AALPGIVAG	2.[4].THLV	DQH. [9].DG	VHPNAAG	YDRMAARW	.[4]. 2	18	
	gi 35213333	226	VASI.[1].P	.[11].DYN	AAIPGIVNO	5.[7].VVYV	DIY.[9].DT	VHPDAEG	YAKIADRW	.[4]. 2	98	
	gi 4959943	167	LSTL.[1].P	.[11].SVN	IAQFRELVLE	D.[8].IVLA	DMD.[18].DN	IK <mark>H</mark> PNDYG	YSQMADIW	.[4]. 2	49	
h			170	180	190	0 20 I *		*	220	230	* 1	
υ.	Aug 11 14	171	UETDAVE AVE	AACEDOUD	DERTUTACO	DECETALAN	CALCUVAVALL	COMPELO	UEDRAVOL	VD TH D	WAETTNEL	340
	IVLO	156 1		MASPPUVDU	DENIVIAGO	DCCCLTLAC	SALSKKAKALL	DWPFLC	DEPRAVUL		TAEIINFL	240
	query	100	ILF LD TARLAUS		PORVAAIGT	SUGGGETEAC	AALEPRIKLAA	PVTPFLU	DEPRATE	TD DU	TNEITITE	234
	g1 81539232	158 1	VFIDAVRAVE	AKSHPLID	SKIVALGA	QGGGTTTAV	GGLVKDLAAVA	PUVPFLU	DEPRATIL	ID-KH-P	YKEVGLYL	235
	g1 81855256	15/ 1	REF IDAVRAIDA	ALLGLDEVDE	PERIAVCGD	QGGGISLAV	GGIDPRVKAVM	PDVPFLC	DEPRAVQI	AV-RD-P	YLEIVRFL	234
	1L7A_B	152 (SVYLDAVRALEV	ISSFDEVDE	TRIGVIGG	QGGGLTIAA	AALSDIPKAAV	ADYPYLS	NFERAIDV	AL-EQ-P	PYLEINSFF	229
	gi 81785830	154 H	IVFLDTAQLAN	VMNLPEVDE	EERVAVTGW	SQGGALAIAC	AALEPKIKKVA	PVYPFLS	DYQRVWEM	DLaEK-A	AYDELQTYF	232
	gi 81849206	154	VIFLDTAILARI	VMNMEWVDE	EERVFATGG	SQGGALALAC	AALENRIKGVY	AYYPFLO	DYKRIWVM	DLgGD-S	SYDELIRYF	232
	gi 81845057	152 [OVYLDIYQLVEI	VASLSQVD	EKRLSSYGA	SQGGALALVA	AALNPRIQKTV	AIYPFLS	DFRRVIEI	GNtSE-A	YDELFRYF	230
	gi 504571229	153 H	HIFLDTAQLAGI	VMNMPEVDE	EDRVGVMGP	SQGGGLSLAC	AALEPRVRKVV	SEYPFLS	DYKRVWDL	DLaKN-A	AYQEITDYF	231
	gi 500857360	152 (SVYLDAVRALDV	/IQSFPEVDE	EHRIGVVGG	SQGGALAVAA	AALSDIPKVVV	ADYPYLS	NFERAVDV	AL-EQ-P	PYLEINSYF	229
			250	260	270	28	0 290)	300	310	320	
		1	*	*	*	*	*	*	*		*	
	1VLQ_H	249	(THRDKEE]	VFRTLSYFE	OGVNFAARA	KIPALFSVGL	XDNICPPSTVF	AAYNYYA	GP-KEIRI	YPYNNHE	GGGSFQAV	324
	query	235	RardPRHLREEE	IFSRLGYV	OVQHLAPRV	RAEVLMTVSL	ADKICPPSTQF	AAYNKLO	GP-KDYRL	YPDFAHE	TLPG-TDD	312
	gi 81539232	236	(THRGRSGE	ALRTLSYFE	GVHFAARG	RAPALFSAAL	EDQTCPPSTVF	AAFNAW	HECKTIEV	YDFNDHE	GGGPYQEA	312
	gi 81855256	235	AQHREKKAA	VFETLNYF	OCVNFARRS	KAPALFSVAL	MDEVCPPSTVY	GAFNAYA	GE-KTITE	YEFNNHE	GGQGYQER	310
	1L7A B	230	Rr-nGSPETEVO	AMKTLSYFE	DIMNLADRV	KVPVLMSIGL	IDKVTPPSTVF	AAYNHLE	TK-KELKV	YRYFGHE	YIPAFOTE	307
	gi 81785830	233	RrfdPOHRREAF	IFTKLGYT	DIOHLAPLV	KGEVLLAVGI	TVCPPSTOP	AMYNKI	TT-KSTEL	YPDFAH	DLPGH-RD	310
	gi 81849206	233	(fidPNHENEE)	VENTI GYT	TKNMAHRT	KGKVNMATGI	RODTCPPSTOR	AAVNNTI	CE-KELVI	VDGGOK	VIINI-KD	310
	gi 81845057	231	(fvdPEHETEEE	TMATI AVT	VKNI AHRT	OGEVKMITGI	DODVCYPTTOP	ATYNRI	CD-KTYRT	MPEYAHE	AMNVEVND	309
	gi 504571220	232	21 FADRHERENE	VETKIGYT	WKNI AKPTI	KGDVI MCVGI	MONCEPSTVE	AAVNNTO	SK-KDTKV	VPDVGUE	PMRGE - GD	300
	61 504571229	232 1		ACETI CVER	DI TNI ACUN	NODTIMATCI	TOOTTODSTU	AVANILI	TD_VDI VU	VEVECUE	VICAED T	205
	BT 200021200	200	I -IISUPAVEEN	AFEILSTFL	LINLAGWVI	VUP I LIMATOL	TUTTLE	AVTIVILLE	ID-KULKV	TRIFUE	I-JARTU-I	300

S2: Multiple sequence alignment of NCBI curated domains a. cd01833: XynB-like, with user query (XynB_{NaM3}-like) included. SHD and SGNHD catalytic residues are highlighted in yellow respectively.
b. pfam05448: Axe1 with user query (Axe1_{NaM1}) included. Conserved residues are displayed in red letters (1). Axe1 domain was curated with esterases from *Thermotoga maritima* (IVLQ_H), *Streptomyces coelicolor* (gi 81539232), *Mesorhizobium loti* (gi 81855256), *Bacillus subtilis* (IL7A_B),

Bacillus halodurans (gi 81785830), *Clostridium perfringens* (gi 81849206), *Streptococcus pneumoniae* R6 (gi 81845057), *Thermoanaerobacterium aotearoense* (gi 504571229) and *Bacillus pumilus* (gi 500857360). XynB_like domain was curated with esterases from *Ruminococcuc flavefaciens* (gi 516274), *Synechococcus* sp. WH 5701 (gi 87303449), *Ruminococcus flavefaciens* 17 (gi 5834678), *Gibberella zeae* PH-1 (gi 42551017), *Aspergillus nidulans* FGSC A4 (gi 40747781), *Phaeosphaeria nodorum* SN15 (gi 111057360), *Actinoplanes* sp. SE50/110 (gi 89241797), *Gloeobacter violaceus* PCC 7421 (gi 35213333) and Aspergillus terreus (gi 4959943).

Figure S3: SDS-PAGE of ~36 kDa NaM1 production (lanes 5and 6, pET28a-NaM1 construct) and controls (lanes 2-4, empty vector), as well as, IMAC cobalt-affinity purification (inset).

Figure S4: a. Effect of temperature (10-75°C) on NaM1 activity with and without the addition of NaCl in assay buffer. **b.** Residual NaM1 acetyl esterase activity after incubation at various temperatures (4-60°C) for 1 h.

S5: Effects of **a.** increasing NaCl concentration on NaM1 activity (primary y-axis) and stability (secondary y-axis) at 40°C. Residual activity was determined following incubation of NaM1 for 1h in NaCl of specified concentration. **b.** various trehalose concentrations on NaM1 thermal stability after incubation for 1 h at various temperatures (4-50°C).

Mutant	DNA	Substitution	Amino	acid	Mutation	Distance from S185
	mutation	type	substitution		type	(Å) by Ca
H2	A→G	Transition	N96S		Missense	12.51
	T→C	Transition	F210L		Missense	4.84
E1	А→С	Transversion	T306P		Missense	11.43
F9	A→C	Transversion	E11A		Missense	22.08
D8	A→G	Transition	T94A		Missense	10.92
	C→T	Transition	-		Silent	
B4	A→G	Transition	N228D		Missense	15.08
	T→A	Transversion	-		Silent	
H1	A→T	Transversion	T232S		Missense	20.41
	A→T	Transversion	-		Silent	
B10	A→T	Transversion	T232S		Missense	20.41
H10	A→G	Transition	-		Silent	
	A→C	Transversion	D147A		Missense	30.12
E5N	T→C	Transition	-		Silent	
	T→C	Transition	-		Silent	
4-3	А→С	Transversion	M220L		Missense	18.23
	A→G	Transition	Q319R		Missense	22.16
4-4	Т→А	Transversion	L190Q		Missense	8.63
4-11	Т→А	Transversion	V39E		Missense	28.76
	A→G	Transition	Y106C		Missense	20.82
	Т→А	Transversion	I167N		Missense	23.77
4 e	T→C	Transition	F214L		Missense	14.17

Table S6: Analysis of mutations from the NaM1 epPCR library.

S7: NaM1 mutation map: All mutations selected are located in the core except one located on the outer surface, close to the N-terminus of

NaM1.

S8: Far-uv CD spectrum of wildtype (WT) NaM1 showing denaturation at temperatures >40°C; mutant H2 showing denaturation only at temperatures >60°C and indicating >10°C increase in thermal stability of the wildtype; and mutants NaM1_{N96S} and NaM1_{F210L} showing gradual denaturation from 55°C, indicating co-contribution to thermal stability of H2.

Chain	Component	Quantity	Resolved Histidine(s)
			of His ₆ -tag
Α	Amino acids	324	3
В	Amino acids	322	1
С	Amino acids	319	-
D	Amino acids	322	1
Е	Amino acids	322	1
F	Amino acids	323	1
G	Na ⁺	6	-
Н	SO4 ²⁻	1	-
K	MES (head group)	13	-
L	CHOO-	1	-
S	H ₂ O	2264	-

S9: Chemical composition of NaM1

S10: Size exclusion chromatogram of NaM1_{WT}. Inset A. Native PAGE showing BSA marker (lanes 1&2), NaM1 hexamer eluted at 6 ml (Lane 6) and 7-9 ml (lanes 3-5) respectively. B. SDS-PAGE showing protein ruler (10-150 kDa) and fractions eluted at 5-9 ml (lanes 2-6).

S11: a. Tertiary structure of NaM1: α -helices, β -strand and loops are shown in salmon tan and cyan, respectively. Catalytic residues are in red. **b.** NaM1 quaternary structure: Surface representation of the flattened spherical hexamer (top-view) showing monomers A to F. Active site residues shown as spheres located around the three-fold rotational axes. Catalytic Asp275 and His304 are in blue, while Ser185 is in red. **c.** NaM1 Topology: α -Helices (α 1-11) are represented by blue cylinders, β -strands (β 1-9) by red arrows with relative orientation, and connecting loops by black lines. Loops carrying active site residues (Ser185, His304, Asp275) and the β -interface loop are coloured red and yellow, respectively. The red

asterisks mark secondary elements that harboured thermostabilizing substitutions. The typical α/β hydrolase fold begins with a β -hairpin (Arg56 – Arg76) and ends at the C-terminus, excluding the triple α -helix extension (Phe214 - Val254).

S12: Monomer-monomer	H-bonds,	typical	of eac	n subunit,	involving	subunit	A of	NaM1	(PDBsum
analysis).									

Subunits	Corresponding	Atoms	Interaction	Bond length
	Residues		type	(Å)*
A - B	Arg 18 – His 0	NH2 – ND1	H-bond	2.93
	Trp 218 – Asp 301	NE1 – OD1	H-bond	2.83
	Arg 235 – Glu 305	NH2 – OE1	Salt bridges	2.80
		NH1 – OE2		3.00
	Arg 235 – Asp 301	NH1- O	Salt bridge	2.77
	Arg 240 – Leu 298	NE - O	H-bond	2.96
A - D	Gly 120 – Met 136	O - N	H-bond	2.79
	Gln 121 – Arg 237	O – NE	H-bond	3.09
		O - NH2	H-bond	2.84
	Val 126 – Trp 134	O - N	H-bond	2.87
	Glu 128 – Arg 142	OE1 –NH2	Salt bridge	2.98
	Glu 128 – Glu 128	OE2 - OE2	H-bond	3.07
	Trp 134 – Val 126	N - O	H-bond	2.89
	Met 136 – Gly 120	N - O	H-bond	2.90
	Arg 142 – Glu 128	NH2 – OE1	Salt bridge	2.94
	Arg 237 – Gln 121	NH2 – O	H-bond	2.87
A – C	Leu 298 – Arg 240	O - NE	H-bond	3.02
	Asp 301 – Trp 218	OD1 – NE1	H-bond	2.98
	Asp 301 – Arg 235	O-NH1	Salt bridge	2.97
	Glu 305 – Arg 235	OE2 - NH1	Salt bridges	3.09
		OE1 – NH2		2.94
A - E	Asp 99 – Asp 312	OD2 - N	H-bond	2.95
	Trp 100 – Asp 312	N - OD2	H-bond	2.88
	Ser 101 – Asp 312	OG – OD1	H-bond	2.74
	Ser 101 – Asp 312	N - OD1	H-bond	2.77
	Asp 312 – Asp 99	N - OD2	H-bond	2.82
	Asp 312 – Ser 101	OD1 –N	H-bond	2.82
		OD1 – OG	H-bond	2.69
	Asp 312 – Trp 100	OD2 - N	H-bond	2.88

*Only interactions with inter-atomic distances between 2.6-3.1Å are listed.

Organism	Protein	PDB	Number of	Identity to	Z-score	RMSD
		ID	residues	NaM1 (%)		(Å)
<i>T. saccharolyticum</i>	AcXE	3FCY	317	50	49.6	1.2
JW/SL-YS485						
B. subtilis 168	САН	10DS	316	33	42.8	1.7
B. pumilus PS213	AcXE	3FVT	317	33	42.3	1.8
B. pumilus CECT5072	AcXE	2XLB	317	32	42.3	1.8
T. maritima TM007	AcE/CAH	3M81	322	35	40.6	2.1

S13: Structural homologs of NaM1

S14: Superposition of NaM1 (light brown) with CE7 homologs from *Bacillus subtilis* 168 (PDB: 10DS, pink), *B. pumilus* CECT5072 (2XLB, blue), *Thermoanaerobacterium* sp. (3FCY, cyan), *B. pumilus* PS213 (3FVT, pink), and *Thermotoga maritima* (3M81, salmon) showing structural conservation. N and C-termini are indicated.

Specific Activity (Umg ⁻¹)	AX	7-ACA	CPC	<i>p</i> -NPA	Butyrate	a-NA	4-MUA	pН	Topt (°C)	References
B. pumilus PS213 (rAXE)	13	179	26	88	NS	144	67	8.5	45	(2, 3)
B. subtilis CICC 20034	-	888	484	2949	2.72	741	1086	7.0	50	(4)
B. subtilis SHS 0133	NS	12.4*	7.0*	201*	NS	NS	NS	7.0	55	(5)
B. subtilis 168 [‡]	-	NS	1.18*	266.7*	NS	NS	NS	6.5	50	(6)
B. pumilus CECT5072 [‡]	NS	23.35	81	16.5	-	NS	NS	7.0	45	(7, 8)
A. tengchongensis (EstD1)	-	2.71	NS	NS	7.4*	79.6*	NS	8.5	65	(9)
T. maritima TM0077 [‡]	-	1140 ^a	376 ^a	310.8*	NS	NS	NS	7.5	90	(10)
<i>Thermoanaerobacterium</i> sp.	-	41	91	NS	NS	NS	47	7.0	75	(11)
T. maritima (EstA)	-	80	80	1095*	239*	NS	NS	8.5	95	(12)
B. subtilis (YesT)	0.02	1235	356	1580	NS	217	NS	8.5	35	(13)
NaM1	6	200	NS	488.9	12.96	222	277.8	8.5	30	This study

S15: Specific activities (Umg⁻¹) of functionally characterized 7-ACA deacetylases.

+ active, - inactive, *p-NP*B: para-nitrophenol butyrate, AX: polymeric acetylated xylan, 7-ACA: 7-aminocephalosporanic acid, CPC: cephalosporin C deacetylase, α -NA: α -naphthyl acetate, 4-MUA: 4-methylumbelliferryl acetate, *catalytic efficiency k_{cat}/K_{M} (s⁻¹mM⁻¹), ^aturnover rate (s⁻¹), NS: not stated, [‡]structurally characterized. References 1 – 12 respectively: (2-13).

References

- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 25:3389-3402.
- Degrassi G, Kojic M, Ljubijankic G, Venturi V. 2000. The acetyl xylan esterase of *Bacillus pumilus* belongs to a family of esterases with broad substrate specificity. Microbiology 146:1585-1591.
- Degrassi G, Okeke BC, Bruschi CV, Venturi V. 1998. Purification and characterization of an acetyl xylan esterase from *Bacillus pumilus*. Applied and Environmental Microbiology 64:789-792.
- 4. Tian Q, Song P, Jiang L, Li S, Huang H. 2014. A novel cephalosporin deacetylating acetyl xylan esterase from *Bacillus subtilis* with high activity toward cephalosporin C and 7-aminocephalosporanic acid. Applied Microbiology and Biotechnology 98:2081-9.
- Takimoto A, Mitsushima K, Yagi S, Sonoyama T. 1994. Purification, characterization and partial amino acid sequences of a novel cephalosporin-C deacetylase from *Bacillus subtilis*. Journal of Fermentation and Bioengineering 77:17-22.
- Vincent F, Charnock SJ, Verschueren KH, Turkenburg JP, Scott DJ, Offen WA, Roberts S, Pell G, Gilbert HJ, Davies GJ. 2003. Multifunctional xylooligosaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the *Bacillus subtilis* enzyme at 1.9 Å resolution. Journal of Molecular Biology 330:593-606.
- 7. Martinez-Martinez I, Montoro-Garcia S, Lozada-Ramirez JD, Sanchez-Ferrer A, Garcia-Carmona F. 2007. A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate. Analytical Biochemistry 369:210-217.

- Montoro-García S, Gil-Ortiz F, García-Carmona F, Polo LM, Rubio V, Sánchez-Ferrer Á. 2011. The crystal structure of the cephalosporin deacetylating enzyme acetyl xylan esterase bound to paraoxon explains the low sensitivity of this serine hydrolase to organophosphate inactivation. Biochemical Journal 436:321-330.
- Ding J-M, Yu T-T, Han N-Y, Yu J-L, Li J-J, Yang Y-J, Tang X-H, Xu B, Zhou J-P, Tang H-Z.
 2016. Identification and Characterization of a New 7-Aminocephalosporanic Acid Deacetylase from Thermophilic Bacterium *Alicyclobacillus tengchongensis*. Journal of Bacteriology 198:311-320.
- Levisson M, Han GW, Deller MC, Xu Q, Biely P, Hendriks S, Ten Eyck LF, Flensburg C, Roversi P, Miller MD, McMullan D, von Delft F, Kreusch A, Deacon AM, van der Oost J, Lesley SA, Elsliger MA, Kengen SW, Wilson IA. 2012. Functional and structural characterization of a thermostable acetyl esterase from *Thermotoga maritima*. Proteins 80:1545-59.
- Lorenz WW, Wiegel J. 1997. Isolation, analysis, and expression of two genes from *Thermoanaerobacterium* sp. strain JW/SL YS485: a beta-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity. Journal of Bacteriology 179:5436-5441.
- 12. Levisson M, Sun L, Hendriks S, Swinkels P, Akveld T, Bultema JB, Barendregt A, van den Heuvel RH, Dijkstra BW, van der Oost J. 2009. Crystal structure and biochemical properties of a novel thermostable esterase containing an immunoglobulin-like domain. Journal of Molecular Biology 385:949-962.
- Martínez-Martínez I, Navarro-Fernández J, Daniel Lozada-Ramírez J, García-Carmona F, Sánchez-Ferrer Á. 2008. YesT: a new rhamnogalacturonan acetyl esterase from Bacillus subtilis. Proteins: Structure, Function, and Bioinformatics 71:379-388.

17