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Abstract

This paper presents an autonomous hierarchical control method for a direct expansion air conditioning
system. The control objective is to maintain both thermal comfort and indoor air quality at required levels
while reducing energy consumption and cost. This control method consists of two layers. The upper layer
is an open loop controller that allows obtaining tradeoff steady states by optimizing the energy cost of the
direct expansion air conditioning system and the value of predicted mean vote under the time-of-use price
structure of electricity. On the other hand, the lower layer designs a model predictive controller, which is
in charge of tracking the tradeoff steady states calculated by the upper layer. Control performance of the
proposed control method is compared to a conventional control strategy. The results show that the proposed
control strategy reduces the energy consumption and energy cost of the direct expansion air conditioning
system by 31.38% and 33.85%, respectively, while maintaining both the thermal comfort and indoor air
quality within acceptable ranges, which validate the proposed methodology in terms of both comfort and
energy efficiency.

Keywords: Autonomous hierarchical control, PMV index, model predictive control, energy saving,
time-of-use.

Nomenclature
A1 heat transfer area of the DX evaporator in the dry-cooling region, m2

A2 heat transfer area of the DX evaporator in the wet-cooling region, m2

A0 total heat transfer area of the DX evaporator, m2

Awin total window area, m2

Cc CO2 concentration of conditioning space, ppm
Cs CO2 concentration of supply air, ppm

Cz specific heat of air, kJ kg−1 ◦C−1

G amount of CO2 emission rate of people, m3/s
hfg latent heat of vaporization of water, kJ/kg
hr1 enthalpy of refrigerant at evaporator inlet, kJ/kg
hr2 enthalpy of refrigerant at evaporator outlet, kJ/kg
kspl coefficient of supply fan heat gain, kJ/m3

kP , kI proportional and integral gains of PI controller
mr mass flow rate of refrigerant, kg/s
Mload moisture load of conditioned space, kg/s
Occp number of occupants
Qload sensible heat load of conditioned space, kW
Qrad solar radiative heat flux density, W/m2

Qspl heat gain of supply fan, kW
Td air temperature leaving the dry-cooling region on air side, ◦C
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Ts temperature of supply air from the DX evaporator, ◦C
Tw temperature of the DX evaporator wall, ◦C
Tz air temperature of conditioned space, ◦C
T0 temperature of outside, ◦C
va air face velocity for DX cooling coil, m/s
vf air volumetric flow rate, m3/s
V volume of conditioned space, m3

Vh1 air side volume of the DX evaporator in the dry-cooling region on air side, m3

Vh2 air side volume of the DX evaporator in the wet-cooling region on air side, m3

Ws moisture content of supply air from the DX evaporator, kg/kg dry air
Wz air moisture content of conditioned space, kg/kg dry air
W0 air moisture content of outside, kg/kg dry air
α1 heat transfer coefficient between air and the DX evaporator wall in the dry-cooling region,

kW m−2 ◦C−1

α2 heat transfer coefficient between air and the DX evaporator wall in the wet-cooling region,

kW m−2 ◦C−1

εwin transmissivity of glass of window
ρ density of moist air, kg/m3

1. Introduction

It is well known that the building sector is responsible for almost 40% of the global total energy consump-
tion, costing $350 billion per year. Since energy management of building air conditioning (A/C) systems is
a key factor in improving the energy efficiency and reducing the energy cost of buildings, optimal control of
the A/C systems has increasingly attracted research attention. Energy efficiency improvement of buildings
can also be performed at different levels of time scale and building subsystems such as ambient intelligence
[1]-[3], energy balance [4]-[8], building portfolio management and planning [9]-[14] and energy-water nexus
[15, 16].

Since people spend much time indoors, thermal comfort and indoor air quality (IAQ) are important
issues in A/C control. Thermal comfort has been accomplished by regulating temperature and relative
humidity of indoor air. In view of air quality, CO2 concentration is used as an indicator because carbon
dioxide is the main fluid waste from occupants in a building. The indoor air temperature, humidity and CO2

concentration are affected by A/C systems, lighting, the number of occupants and natural ventilation. They
are also affected by outdoor environment, including the outside temperature, humidity, CO2 concentration
and solar irradiation. The A/C system needs to provide a comfortable environment for occupants with the
minimum energy consumption and cost. There are strong interactions of energy cost and energy consumption
with thermal comfort and IAQ. This crucial fact has been recognised by industrial and academic researchers.

Researchers proposed various control strategies to improve energy efficiency and comfort temperature
[17]-[20]. In [21], the authors proposed an optimization method on room air temperature to improve both
thermal comfort and energy efficiency. In [22], Cigler et al. presented an MPC to minimize the energy
consumption and the value of predicted mean vote (PMV) index simultaneously. The simulation results
showed that it would save 10%-15% energy while keeping the comfort temperature within a level defined by
standards. A hierarchical control method was proposed to improve the energy efficiency while maintaining
the indoor temperature equal to a value such that the PMV index will be equal to zero reported in [23]. The
results showed that it would reduce more energy consumption in comparison with previous work [24]. An
economic model predictive control (MPC) method for optimising the building demand and energy cost under
a TOU price policy under given bounded comfort temperature is studied in [25]. It demonstrated that this
strategy is capable of reducing more energy cost and shifting the peak demand to off-peak hours while keeping
the temperature at comfort bounded. In [26, 27], the authors presented an MPC that minimises the expected
energy cost and bounds of temperature comfort violations. One can note that all the above contributions
focus on improving the energy efficiency of buildings by heating, ventilation and air conditioning (HVAC)
temperature control. However, ensuring the indoor humidity at an appropriate level is also a crucial problem
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since it directly affects building occupants’ thermal comfort and the operating efficiency of building A/C
installations [28]. In fact, in cities with high humid climates, such as Cape Town or Hongkong, high humidity
may still adversely impact indoor thermal comfort level and energy efficiency of building A/C systems even
when indoor air temperature has been maintained at a desired value.

In recent years, a model-based predictive control algorithm proposed for HVAC system to control indoor
temperature and humidity simultaneously taking into account energy efficiency was reported in [29]. In the
study, the indoor air temperature and humidity are considered in two separate control loops. However, the
control method remained inadequate fundamentally. A multi-input-multi-output (MIMO) control strategy
is proposed for controlling the indoor air temperature and humidity simultaneously by varying the speeds
of the compressor and the supply fan in an experimental direct expansion (DX) A/C system in [30]. In
the research, the authors considered the coupling effect between indoor air temperature and humidity; so
that the control accuracy and sensitivity can be improved. However, the control strategy was carried out
based on the linearized system around a particular operational point, i.e., fixing the supply air temperature
and moisture content. For a DX A/C system, its inlet air temperature and humidity affect its output
cooling capacity directly [31]. The development of a physical model-based controller for a variable speed
DX A/C system, aiming at controlling indoor air temperature and humidity simultaneously should be
within its entire possible working range. An artificial neural network (ANN)-based modeling and control
for an experimental variable speed DX A/C system was proposed to control the indoor air temperature and
humidity simultaneously [32]. A real-time neural inverse optimal control for the simultaneous control of
indoor air temperature and humidity using a DX A/C system was reported in [33]. A three-evaporator air
conditioning system for simultaneous indoor air temperature and humidity control was studied in [34]. In
[35], a fuzzy logic controller was developed for temperature and humidity control. The results demonstrated
that the fuzzy logic controller developed can achieve the simultaneous control over indoor air temperature
and humidity, with a reasonable control accuracy and sensitivity.

Nowadays, the indoor air quality (IAQ) is also an important issue for users, especially in office buildings,
since a poor IAQ has a direct effect on work efficiency. In [36, 37], Zhu et. al., studied indoor air temper-
ature, humidity and CO2 concentration control simultaneously without considering their coupling effects.
However, these coupling effects cannot be ignored in many cases. In fact, the experimental investigation
[38] suggested that the indoor CO2 concentration affected indoor air temperature. Furthermore, indoor
humidity was correlated with CO2 concentration according to measurement results reported in [39]. Indoor
air temperature, relative humidity and CO2 levels assessment in academic buildings with different HVAC
systems was studied in [40]. In [41], this study aimed to establish an optimal occupant behavior that can
reduce total energy consumption and improve the thermal comfort, IAQ and visual comfort simultaneously
by an energy simulation and optimization tool. In [42], an energy-optimised open loop controller and a
closed-loop regulation of the multi-input-multi-output (MIMO) MPC schemes for a DX A/C system were
proposed to improve both thermal comfort and IAQ, while minimizing energy consumption. The results
showed that the energy savings were achieved and thermal comfort and IAQ were improved. However, the
setpoints of thermostats are constant over a 24-hour period. This strategy is simple but not optimal in the
sense of energy efficiency or cost-effectiveness. On the other hand, the outside temperature and humidity
are also constant over a 24-hour period in the study, while the outdoor air temperature and humidity vary
over a 24-hour period actually. Besides, a ventilation fan with an independent pressure swing absorption
box was added to improve IAQ, which would increase the complexity and the cost of hardware.

Reduction of energy consumption and cost is important to promote economic and environmental devel-
opment. Therefore, it is of great interest to develop advanced control technologies for building A/C systems
to reduce energy consumption and cost. However, several control methods were proposed recently to reduce
energy consumption and cost of building A/C systems while maintaining thermal comfort and IAQ at re-
quired levels. In this paper, an autonomous hierarchical control method is proposed to ensure occupants’
thermal comfort and IAQ in a certain environment, and at the same time, tries to reduce the energy con-
sumption and cost for a DX A/C system. The use of the DX A/C system has many advantages. When
compared to central chilled water-based A/C systems, DX A/C systems are simpler in system configuration,
more energy efficient [43] and cost less to own and maintain. Therefore, DX A/C systems have been widely
used over recent decades in buildings, especially in small to medium scaled buildings. The proposed control
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strategy will further enhance the performance of DX A/C system. The proposed autonomous hierarchical
controller is formed by two layers. (i) The upper layer consists of a nonlinear optimizer, which provides
trajectory references of indoor air temperature, humidity and CO2 concentration within acceptable ranges.
This controller uses an open loop controller to optimise the energy cost of the DX A/C system and the value
of the PMV index under a TOU price policy. (ii) Meanwhile, the lower layer contains a closed-loop MPC
controller to track adaptively and automatically the trajectory references of indoor air temperature, humid-
ity and CO2 concentration calculated by the upper layer. To demonstrate the advantage of the proposed
control method, we will compare the proposed control and a baseline control strategy.

The contributions of this paper are listed below. The references of indoor air temperature, humidity
and CO2 concentration are not needed. We present a method to autonomously and adaptively optimise and
generate all steady states on required levels of thermal comfort and IAQ which could vary during the day.
The volume of outside air entering into the system is fixed in [37] and [42]. In our study, the volumes of
fresh air entering the DX A/C system are considered to vary with the environment over a 24-hour period
and are optimised by the proposed method. Moreover, a supply fan to drive the pressure swing absorption
with a built-in PI controller is proposed to reduce indoor CO2 concentration in this paper. Hence, it has
the potential of reducing the complexity of computation and the cost of hardware. The PMV index is
traditionally used as an indicator of indoor thermal comfort. In this study, it is used as an indicator of
thermal comfort and that of IAQ when the indoor air CO2 concentration is at its steady state.

The remainder of this paper includes five parts. The nonlinear reduced order dynamical system models,
the energy consumption models of the DX A/C system and the indoor cooling load models are presented
in Section 2. The proposed control method is presented in Section 3. Results are given in Section 4, and
conclusions are drawn in Section 5.

2. System model

2.1. DX A/C system

A DX A/C system is mainly composed of two parts, which are the DX refrigeration plant (refrigerant
side) and air-distribution sub-system (air side). Fig. 1 is the simplified schematic diagram of the DX A/C
system. The DX refrigeration side mainly consists of the following components: a variable speed rotor
compressor, an electronic expansion valve (EEV), a high-efficiency tube-louver-finned DX evaporator and
an air-cooled tube-plant-finned condenser. The evaporator is placed inside the supply air duct on the air
side to work as a DX air cooling coil which is located in the room. The air side includes an air-distribution
ductwork with return air dampers, a variable speed centrifugal supply fan, a pressure swing absorption
(PSA) box, a conditioned space and a damper position which is used to control the proportion of return
air to outside air. The PSA box absorbs the CO2 contaminant concentration to maintain IAQ. The allowed
fresh air is also used to improve indoor fresh air ratio.

2.2. DX A/C models

The dynamic model of the DX A/C system is mainly derived from the principles of energy and mass bal-
ance. The model is highly nonlinear with respect to temperature, moisture content and CO2 concentration.
In this paper, the system is assumed to operate in the cooling mode. The basic operation and assumptions
of the system on the cooling mode are given for the purpose of simplicity as below: (i) It is assumed that
p% of outside air enters into the system and gets mixed with (100 − p)% of recirculated air entering into
the system. (ii) Sufficient air mixing occurs inside the heat exchangers where the air gets conditioned. (iii)
Two regions on the air side of the DX evaporator are shown in Fig. 2, i.e., dry-cooling region (sensible heat
transfer only) and wet-cooling region (sensible and latent heat transfer region). The coupling between both
regions that the outlet air properties of the first one (dry-cooling region) are the inlet air conditions entering
the wet-cooling region. Therefore, the area from zero to A1 pertains to the dry-cooling region and the rest
of the total surface area is the wet-cooling region A2. The boundary between the dry surface and the wet
surface within a DX evaporator can be determined by the distribution of the surface temperature. It is
a time-varying parameter under different conditions. (iv) Thermal losses in air ducts are neglected. (v)
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Figure 1: Simplified diagram of DX air conditioning system.
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Figure 2: Simplified diagram of DX evaporator [44].

The supply air enters into the air-conditioned space to offset the cooling and pollutant loads acting upon
the system. (vi) The air in the conditioned room exhausts through a fan, where (100 − p)% of the air is
recirculated and the rest is exhausted from the system through the fan.

Based on the above assumptions, the dynamic mathematical model for the DX A/C system for controlling
indoor air temperature, moisture content and CO2 concentration is developed based on the energy and mass
conservation principles, which can be described by the following equations:

CzρV
dTz

dt
= Czρvf (Ts − Tz) +Qload, (1)

ρV
dWz

dt
= ρvf (Ws −Wz) +Mload, (2)

CzρVh1
dTd

dt
= Czρvf ((1− p%)Tz + p%T0 − Td) + α1A1(Tw − (1− p%)Tz + p%T0 + Td

2
), (3)

CzρVh2
dTs

dt
+ ρVh2hfg

dWs

dt
=Czρvf (Td − Ts) + hfgρvf ((1− p%)Wz + p%W0 −Ws)+

α2A2(Tw − Td + Ts

2
),

(4)
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CwρwVw
dTw

dt
= α1A1(

(1− p%)Tz + p%T0 + Td

2
− Tw) + α2A2(

Td + Ts

2
− Tw)− (hr2 − hr1)mr, (5)

V
dCc

dt
= vs(Cs − Cc) + Cload. (6)

More details for the system models (1)-(6) can be found in [42] and [44]. Note that the system models
(1)-(5) without outside air entering into the system have been reported and validated by the experimental
demonstrated in [44]. The model (6) has been verified in [45] by using an online learning and estimation
approach for model parameter identification with acceptable accuracy.

We assume that the CO2 concentration absorption rate vs is a PI controller designed by

vs = kP vf + kI

∫ TI

0

vfds. (7)

The relationship among air enthalpy, temperature and the moisture content leaving the evaporator can
be described by:

hs = CzTs + hfgWs. (8)

Then, equations (2) and (4) can be rewritten by

ρV
dWz

dt
= ρvf (

hs − CzTs

hfg
−Wz) +Mload, (9)

ρVh2
dhs

dt
= Czρvf (Td − Ts) + hfgρvf ((1− p%)Wz + p%W0 −

hs − CzTs

hfg
) + α2A2(Tw − Td + Ts

2
). (10)

The air side convective heat transfer coefficients for the louver finned evaporator under both dry-cooling
and wet-cooling regions are calculated as follows [46]:

α1 = je1ρva
Cz

Pr
2
3

, α2 = je2ρva
Cz

Pr
2
3

, (11)

where Pr is Prandtl number, je1 and je2 are the Colburn factors. The air velocity va is described as follows:

vf = dva + ε,

where d (m2) is the cross-sectional area of the conditioned space, ε is the error vector since the air enters or
exits through the door or window.

The left-hand side of (1)-(2) is the heat flow into the conditioned space. On the right-hand side of (1),
the first term denotes the heat transfer from the DX A/C system to the conditioned space, which is positive
if Ts > Tz for the heat mode and negative if Ts < Tz for the cooling mode; the other terms mean the sensible
heat load needs to be removed by the DX A/C system. Similarly, on the right-hand side of (2), the first term
represents the wet-bulb temperature transferred to the conditioned space, which is positive if Ws > Wz for
the humidification mode and negative if Ws < Wz for dehumidification mode; the second term denotes the
moisture load to be removed by the DX A/C system. Eqs. (3), (5) and (10) mean that the heat transfer
takes place in the inside DX A/C system. In equation (3), the first term of the right-hand side represents
the heat transfer between the mixed air and the air side at the evaporator; the second term means the heat
transfer between the mixed air and the evaporator wall. Eq. (6) represents a dynamic balance of indoor
CO2 concentration.

Remark 1: In this paper, the relationship between the moisture content and temperature at the evapo-

rator outlet [44], Ws =
0.0198T 2

s +0.085Ts+4.4984
1000 , has been released since it may not be feasible under different

operating conditions. The proportion of outside air entering into the system is not fixed according to the
changing environment during the day. In our previous work [42], we used a variable air volume (VAV)
ventilation fan with an independent PSA to reduce indoor CO2 concentration. In this paper, we use the
supply fan to drive the PSA with a built-in PI controller. This results in one less independent control input.
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2.3. Load models

Thermal comfort and IAQ are influenced by a set of disturbances, such as external air, solar radiation
through opaque and transparent surfaces and internal heat gains due to appliances, lights, occupants, etc.
Therefore, good performance for controlling indoor air temperature, humidity and CO2 concentration is
required to deal with the disturbances. When the disturbances are neglected, a large error occurs. Never-
theless, a perfect prediction of disturbances in the future is inadequate in practice. Some disturbances can
be measured, such as outside temperature, humidity and CO2 concentration, and others, such as solar radi-
ation and internal gains, cannot but may be estimated. Next, we will provide more details on the sensible
heat load Qload, moisture load Mload, pollutant load Cload.

The indoor sensible heat load is usually related to the internal loads, including occupants, lighting,
equipment, fresh air entering inside and applications and the external loads, including heat transfer conduc-
tion through the building walls, roof, floor, doors and heat transfer by radiation through fenestration such
as windows and skylights. In this paper, we consider the external load including heat loads by radiation
through windows and the fresh air by ventilation. The moisture load is relevant to occupants, equipment,
fresh air entering inside and applications. The CO2 pollutant load is relevant to occupants’ respiration. The
sensible heat and moisture loads from lighting, equipment and applications are easy to identify, based on
their electrical characteristics; the main uncertainties in identifying the sensible heat load and latent heat
loads are from the loads associated with the occupants in the conditioned space. The sensible heat and
moisture loads by occupants are determined through the current CO2 emission. To estimate the sensible
heat, moisture and indoor pollutant loads, a method is proposed as follows:

Qload(t) = Qr,load +Qspl + µCc + ν +Qair, (12a)

Mload(t) = ϕCc + γ +Mair, (12b)

Cload(t) = G ·Occp, (12c)

where µ and ϕ are the sensible heat and moisture gain coefficients, respectively, ν and γ are the certainties
sensible heat and moisture loads, respectively. The heat gain of the supply fan Qspl increases with the air
volumetric flow rate of supply air as follows:

Qspl = ksplvf . (13)

The external heat load by radiation Qr,load through windows is described by the following equation:

Qr,load = nwinεwinAwinQrad, (14)

where nwin denotes whether the conditioned space has a window, i.e., when nwin = 1, if it has a window,
while if nwin = 0, it does not. The fresh air of the sensible heat load Qair and the moisture load Mair in
conditioned space are expressed as follows:

Qair = p%Czρvf (T0 − Tz), (15a)

Mair = p%ρvf (W0 −Wz). (15b)

Remark 2: In this section, a simple method is given to estimate the indoor sensible heat and moisture
loads, and CO2 pollutant load. An alternative method to estimate cooling load has been reported in [26].
Besides, the weather forecast data from the weather station in Cape Town are qualified for this research,
because: 1) the current weather station is precisely predicted and 2) the weather conditions and solar
radiation in this area are relatively stable, indicating that the profiles of the predicted outside temperature,
relative humidity and CO2 concentration are representative.
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2.4. PMV index

The PMV index is used as a human thermal comfort requirement indicator. This indicator was first
proposed by Fanger [47] to predict the average vote of a large group of persons on the thermal sensation
scale. This sensation is expressed by relating the integer range [-3,+3] to the qualitative words cold, cool,
slightly cool, neutral, slightly warm, warm, and hot. PMV is defined by six variables, namely metabolic rate
M (W/m2), clothing insulating Icl (m

2◦C/W), air temperature Tz, air humidity Hz, air velocity va (m/s),
and mean radiant temperature Tr. The PMV index can be described by the following equation [47]:

PMV =(0.303e−0.036M + 0.028)
{
(M −W )− 3.05× 10−3[5733− 6.99(M −W )− Pa]− 0.42[(M−

W )− 58.15]− 1.7× 10−5M(5867− Pa)− 0.0014M(34− Tz)− 3.96× 10−8fcl[(Tcl + 273)4

− (Tr + 273)4]− fclhc · (Tcl − Tz)
}
,

(16)

where W (W/m2) is the external work; Pa is the partial water vapor pressure in Pascal. The surface
temperature of clothing Tcl is given by:

Tcl = 35.7− 0.028(M −W )− Icl

{
3.96× 10−8fcl[(Tcl + 273)4 − (Tr + 273)4] + fclhc(Tcl − Tz)

}
, (17)

and the convective heat transfer coefficient hc is defined as:

hc =

{
h∗
c , if h∗

c > 12.1
√
va,

12.1
√
va, if h∗

c < 12.1
√
va,

(18)

where h∗
c = 2.38 · (Tcl − Tz)

0.25, fcl is the ratio of body surface area covered by clothes to the naked surface
area, can be defined as:

fcl =

{
1.00 + 1.290Icl if Icl ≤ 0.078,
1.05 + 0.645Icl if Icl > 0.078.

(19)

The mean radiant temperature Tr is determined as [48]:

Tr = [(Tg + 273)4 +
1.10× 108v0.6a

ϵD0.4
(Tg − Tz)]

1/4 − 273, (20)

where Tg is the globe temperature; D and ϵ are the globe diameter in meters and the globe emissivity
coefficient, respectively. Pa is related to the relative humidity of the air Hz by means of Antoine’s equation
[49]:

Pa = 10Hze
(16.6536−4030.183/(Tz+235)), (21)

where Hz = 100Wz/Aconv, Aconv is the unit transfer coefficient. The metabolic rate M is determined by
[50]:

M = λG,

where the coefficient λ is a constant. Then the metabolic rate M under a steady state of the indoor CO2

concentration can be rewritten as follows:

M =
λ

Occp
(kP vf + kI

∫ TI

0

vfds)(Cc − Cs).

The PMV can be written as a function of the following variables:

PMV = g(Tz,Wz, Cc, vf , Tr, Icl, Tcl). (22)

Remark 3: There are several existing metrics to measure human (dis)comfort, e.g., temperature con-
straint violations [26], comfort penalty [17], predicted percentage dissatisfied (PPD) [51], and PMV index
[23, 29]. The PMV index has been used as an indicator to maintain indoor comfort temperature [23] and
to control indoor temperature and humidity [29]. In this paper, the equation (22) implies that the modified
PMV index can estimate not only the indoor thermal comfort but also IAQ under a steady state of the
indoor CO2 concentration and keep them in a certain range. This is subjective and can be considered as
perfect when PMV=0.
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2.5. Energy models for the DX A/C system

The DX A/C system components that consume energy include the power input of the evaporator fan,
compressor fan, and condenser. The power to drive the dampers is assumed to be negligible. The total
power consumption Ptot of the DX A/C system at time t then is calculated as [52]:

Ptot = Pe + Pc + Pf , (23)

where the fan power input of the evaporator Pe, the fan power of the compressor Pf and the power input
of the condenser Pc are given below:

Pe = a0 + a1vf ,+a2v
2
f + a3Ts + a4T

2
s + a5Qc + a6Q

2
c + a7vfTs + a8vfQc + a9TsQc, (24)

Pf = b0 + b1Td + b2Ts + b3T
2
d + b4TdTs + b5T

2
s + b6T

3
d + b7T

2
dTs + b8TdT

2
s + b9T

3
s , (25)

Pc = c0 + c1mr + c2m
2
r, (26)

where the coefficients ai (i = 0, 1, . . . , 9), bi (i = 0, 1, . . . , 9), ci (i = 0, 1, 2) are constant and can be
determined by curve-fitting of experimental data in [52]. The indoor cooling load Qc is the summation of
the sensible and latent heat loads.

2.6. Constraints

The DX A/C system is subject to thermal comfort, IAQ and operational constraints defined as below.
(C1) PMV ∈ [PMV,PMV]. The limit of the PMV value means thermal comfort and IAQ are within the

required levels for human.
(C2) Tz ∈ [T z, T z], Wz ∈ [W z,W z], Cc ∈ [Cc, Cc]. The indoor air temperature, moisture content and

CO2 concentration are within the required ranges for occupants in the conditioned space.
(C3) Ts ∈ [T s, T s], Ws ∈ [W s,W s]. The bounds of the supply air temperature and moisture content are

constrained because of the physical characteristics of the coils and the air cooling coils inside the evaporator.
Besides, the upper bounds T s and W s are less than Tz and Wz, respectively, since the DX A/C system is
operating in the cooling mode. The bound of air enthalpy hs satisfies: hs ∈ [CzT s+hfgW s, CzT s+hfgW s]
due to (8).

(C4) Tw ≤ Td. The air temperature after the surface of the DX cooling coil cannot be warm.
(C5) vf ∈ [vf , vf ], mr ∈ [mr,mr]. The upper bounds of the air volumetric flow rate vf and mass flow

rate of refrigerant mr are limited by the physical characteristics of the DX A/C system. The lower bounds
vf > 0 and mr > 0 match minimum operation and ventilation demands.

(C6) p% ∈ [p%, p%). The upper and lower bounds limit the ratio of the fresh air entering indoor.
(C7) Td ≤ (1 − p%)Tz + p%T0, Ws ≤ (1 − p%)Wz + p%W0. The mixed temperature and moisture

content between the fresh air and return air after the DX dry-cooling region and wet-cooling region can only
decrease, respectively.

By collecting the system dynamic equations (1), (3), (5)-(6) and (9)-(10), we reach the following:

ẋ(t) = f(x(t), u(t), w(t)), (27)

where the state vector of the system is denoted by

x = [hs, Tz, Td, Tw,Wz, Cc]
T ,

the control vector is denoted by
u = [vf ,mr]

T ,

the load vector is denoted by
w = [Qload,Mload, Cload]

T ,

9



the output vector is denoted by
y = [Tz,Wz, Cc]

T .

The constraints in (C1)-(C7) are compactly written as

x ∈ X, u ∈ U, PMV ∈ F, p ∈ P, Ts ∈ Ts, Ws ∈ Ws, and h(x) ≤ 0, (28)

where X, U, P, Ts and Ws are bounded sets, and h(x) is a function of state variables.

2.7. TOU Strategy

In this paper, the energy charge is determined based on the TOU strategy. The TOU electricity tariff is
a typical program of demand-side management, in which the electricity price changes over different periods
based on the electricity supply cost; for example, a high price σh for peak periods Th, medium price σm for
standard periods Tm and low price σl for off-peak periods Tl. In this study, the daily TOU electricity price
can be described as

σ(l) =

 σh = 0.20538 $/kW h, l ∈ Th,
σm = 0.05948 $/kW h, l ∈ Tm,
σl = 0.03558 $/kW h, l ∈ Tl,

(29)

where Th = (8, 11]
∪
(19, 21], Tl = (0, 7]

∪
(23, 24] and Tm = (7, 8]

∪
(11, 19]

∪
(21, 23]. $ is the United States

dollar and time T is the whole period of the day with l = 1, . . . , 24. Since there is a big difference in energy
prices between the peak and off-peak hours, cost savings can be expected if significant amount of peak power
consumption is shifted to off-peak hours. To minimize the energy cost, some previous optimization control
strategies are reported in [18, 25]. In this paper, we propose an alternative optimisation control scheme to
minimize not only the energy cost but also the energy consumption.

3. Hierarchical control

Hierarchical control can be interpreted as an attempt to handle complex problems by decomposing
them into smaller subproblems and reassembling their solutions in a hierarchical structure. The idea is to
establish a hierarchical control structure composed of two layers. The two layers are adopted by using a
control schedule, the simplified scheme of which is described in Fig. 3. The main principle of hierarchical
control is as follows. At the upper layer, the objective is performed to compute the optimal conditions
with respect to a performance index representing an economic and environmental criterion over a long-term
scale horizon HL with a sampling period TL. At this stage, a detailed, a physical nonlinear model of the
system although static is used. At the lower layer, a simple linear dynamic model is used to design an
MPC controller, guaranteeing that the target values transmitted from the upper layer are obtained over
a short time horizon hl = TL with a smaller sampling period tl = TL/nl. Fig. 3 implies that the upper
layer sends information to the lower layer at the sampling instant mTL (m = 0, 1, . . . ,∞); meanwhile, the
lower layer receives the information as a task, and then completes the task within the sampling intervals
[mTL + qtl,mTL + (q + 1)tl) (q = 0, 1, . . . , nl − 1).

This paper presents an autonomous hierarchical control approach to obtain a real-time optimisation
scheduling strategy for the DX A/C system to minimise the total energy cost while maintaining the indoor
thermal comfort and IAQ within acceptable ranges. The control method is based on a traditional control
scheme with a reference governor in the upper layer, named the optimization layer, which, by means of a
nonlinear optimizer, is able to generate the steady states and the optimal volume of air entering the system by
optimising the energy cost of the DX A/C system and the value of the PMV index under the TOU strategy.
Then, the lower layer receives the steady states as input, and the closed-loop MPC controller is designed
to track the trajectory references of indoor air temperature, moisture content and CO2 concentration. The
conceptual framework of the proposed autonomous hierarchical control approach is shown in Fig. 4. The
details are provided in the following subsections.
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Figure 4: Conceptual framework of the proposed hierarchical control approach.

3.1. Optimization layer (Upper layer)

At the upper layer, the reference governor has been defined according to the optimization problem de-
scribed by (30). Note that the PMV index (22) and the energy consumption model (23) are the optimization
objectives. At the upper layer, the optimisation problem is considered as an open loop optimal control frame-
work. Considering the DX A/C system (27) and its constraints (28), we formulate the following optimal
controller to generate the steady states.

min(α|PMV (tm0)|+ (1− α)Ptot(tm0)σ(tm0)), (30)

subject to the following constraints:

f(x(tm0), u(tm0), Ts(tm0), p(tm0)) = 0, (31)

x(tm0) ∈ X, u(tm0) ∈ U, PMV (tm0) ∈ F, p(tm0) ∈ P, Ts(tm0) ∈ Ts, Ws(tm0) ∈ Ws, h(x(tm0)) ≤ 0,
(32)

where α is a weighting factor (0 < α < 1), x, u and f(·) are denoted in (27). x(tm0), u(tm0), v(tm0) are the
optimization variables for m = 0, . . . , NL − 1, where v = [p, Ts, Tr, Tcl].

Assuming that all the variables are within the bounded sets, feasible solutions exist for the optimization
problem (30) by using an open loop controller. Among all the feasible solutions, let xs(tm0), us(tm0), vs(tm0)
be the optimal solution of optimization problem (30), and xs(tm0) ∈ Xs, us(tm0) ∈ Us, vs(tm0) ∈ Vs for
m = 0, . . . , NL − 1. Xs,Us,Vs are the optimal sequence points of the state, input and parameter variables.
In this paper, the optimal sequence points are the steady states of equation (31).

Remark 4: The weighting factor α is chosen to balance the tradeoff between the two objectives, which
are energy cost and comfort levels. Specifically, a relative large α gives better comfort level but worse cost
savings. In the case that α is relatively large, more effort is put into optimizing the most comfortable indoor
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air temperature, humidity and CO2, which may result in a loss of balancing capacity. The parameter α can
be adjusted by utilities to achieve different goals.

The above nonlinear steady state optimization algorithm is provided as below.
Algorithm 1. Nonlinear Programming algorithm to the DX A/C system static optimization problem.
Initialization: Given initial state values x(0) and u(0). The initial state values are selected within their

bounds.
1: Input the data of the outside temperature, relative humidity, sensible heat load, latent heat load and

pollutant load.
2: The objective function (30) and constraints in (31) and (32) are converted into the following standard

nonlinear programming so that it can be conveniently solved by the Matlab built-in function fmincon:

minfT
c · z s.t.


c(z) ≤ 0
ceq(z) = 0
A · z ≤ b
Aeq · z = beq
lb ≤ z ≤ ub

(33)

3: Solve the above procedure (33).

3.2. Control layer (Lower layer)

As discussed above, for each every sample period TL, the upper layer controller computes the optimal
steady state point and delivers it into the lower layer. The task of the lower layer receives the steady state as
the trajectory reference and includes a control algorithm trying to drive the system to track the trajectory
reference. Therefore, in this case, this layer consists of a discrete-time MPC controller with a sampling time
of tmq ∈ [mTL + qtl,MTL + (q + 1)tl), m = 0, 1, . . . , NL − 1, q = 0, 1, . . . , tl − 1, which is designed to track
the reference point of indoor air temperature, moisture content and CO2 concentration.

In the sequel, we make a commensurate quantization assumption: all variables are quantised in the
two sampling schemes, i.e., they are represented by the starting values and remain these values in the
same sampling interval, and the objective functions PMV (t), Ptot(t), the TOU function σ(t), and the
constraints in (C1)-(C7) are coarsely quantised, i.e., they take their corresponding values at mTL, for all
t ∈ [mTL, (m+1)TL). This assumption ensures that if the steady state (xs(tmq ), us(tmq )) would be obtained
from the optimisation (30)-(32), then one would have (xs(tmq ), us(tmq )) = (xs(tm0), us(tm0)).

The lower layer receives the reference points of state vector and input vector, which are defined as
xs(tmq ) , [hs,s(tmq ), Tz,s(tmq ), Td,s(tmq ), Tw,s(tmq ),Wz,s(tmq ), Cc,s(tmq )]

T and us(tmq ) = [vf,s(tmq ),
mr,s(tmq )]

T . Define δTz(tmq ) = Tz(tmq )−Tz,s(tmq ), δWz(tmq ) = Wz(tmq )−Wz,s(tmq ), δCc(tmq ) = Cc(tmq )−
Cc,s(tmq ), δhs(tmq ) = hs(tmq )−hs,s(tmq ), δTd(tmq ) = Td(tmq )−Td,s(tmq ), δTw(tmq ) = Tw(tmq )−Tw,s(tmq ),
δvf (tmq ) = vf (tmq ) − vf,s(tmq ), δmr(tmq ) = mr(tmq ) − mr,s(tmq ), as the deviations of states and inputs
from their trajectory references at sampling period [mTL + qtl,mTL + (q + 1)tl). Therefore, the dynamical
mathematical equation of the DX A/C system at time tmq can be linearized and written in a linear state-
space representation:{

δẋ(tmq ) = Ac(xs(tm0), us(tm0))δx(tmq ) +Bc(xs(tm0), us(tm0))δu(tmq ),
y(tmq ) = Cδx(tmq ) + ys(tm0),

(34)

where the state variables δx(tmq ) = x(tmq )− xs(tm0) = [δhs(tmq ), δTz(tmq ), δTd(tmq ), δTw(tmq ), δWz(tmq ),
δCc(tmq

)]T , the input variables δu(tmq
) = u(tmq

)− us(tmq
) = [δvf (tmq

), δmr(tmq
)]T , ys(tm0

) = [Tz,s(tm0
),

Wz(tm0), Cc,s(tm0)]
T and y(tmq ) = [Tz(tmq ),Wz,s(tmq ), Cc(tmq )]

T are the original output variables.
A(xs(tm0

), us(tm0
)), B(xs(tm0

), us(tm0
)), C are the system state matrix, input matrix and output matrix
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at the sampling time tmq , respectively, which can be calculated by:

Ac(xs(tm0), us(tm0)) =
∂f(x(tm0), u(tm0))

∂x(tm0)

∣∣∣∣∣ x(tm0) = xs(tm0)
u(tm0) = us(tm0)

,

Bc(xs(tm0), us(tm0)) =
∂f(x(tm0), u(tm0))

∂u(tm0)

∣∣∣∣∣ x(tm0) = xs(tm0)
u(tm0) = us(tm0)

,

and

C =

 0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Consider the discrete-time version of (34):{
δx(tmq+1) = Ad(xs(tm0), us(tm0))δx(tmq ) +Bd(xs(tm0), us(tm0))δu(tmq ),
y(tmq

) = Cδx(tmq
) + ys(tm0

),
(35)

where x(tmq ), u(tmq ) and y(tmq ) are the state vector, input vector and output vector at sampling instan-

t mTL + qtl, m = 0, 1, . . . , NL − 1, q = 0, 1, . . . , nl − 1. Ad(xs(tm0), us(tm0)) = eAc(xs(tm0
),us(tm0

))tl ,

Bd(xs(tm0), us(tm0)) = (
∫ tl
0

eAc(xs(tm0 ),us(tm0 ))τdτ)Bc(xs(tm0), us(tm0)) are the system state matrix and
input matrix, respectively.

The objective of the proposed MPC controller is to maintain the indoor air temperature, moisture content
and CO2 concentration at the required levels with low energy cost. To achieve this aim, the cost function
to be minimised can be chosen as

minδu J(tmq ) =

np∑
j=1

∥∥y(tmq+j |tmq )− r(tmq+j )
∥∥2

︸ ︷︷ ︸
(a)

+Rδu

nc−1∑
j=0

∥∥δu(tmq+j )
∥∥2

︸ ︷︷ ︸
(b)

,
(36)

subject to:{
δx(tml1

|tmq+1) = Ad(xs(tm0), us(tm0))δx(tml1−1
|tmq ) +Bd(xs(tm0), us(tm0))δu(tml1−1

|tmq ),
y(tml1−1

|tmq ) = Cδx(tml1−1
|tmq ) + ys(tm0),

(37)

δx(tml1
|tmq ) + xs(tm0) ∈ X, δu(tml2

) + us(tm0) ∈ U,
l1 = q + 1, . . . , q + np, l2 = q, . . . , q + nc − 1,

q = 0, 1, . . . , nl − 1, m = 0, 1, . . . , NL − 1.

(38)

where (a) penalizes the indoor air temperature, moisture content and CO2 concentration tracking error and
(b) penalizes the balancing signal tracking error in quadratic forms. The current time index tmq denotes the
current time mTL+qtl; |tmq means that the predicted value is based on the information up to t = mTL+qtl;
np = TL/tl is the prediction horizon; nc = TL/tl is the control horizon; r(tmq+j ) is the reference vector at
step tmq+j ; y(tmq+j |tmq ) is the predicted output vector at step tmq+j ; δu(tmq+j ) is the predicted control
vector at step tmq+j ; Rδu is used as a tuning parameter for the desired closed-loop performance.

Remark 5: The system matrices of the system (34) are updated to Ad(xs(t(m+1)0), us(t(m+1)0)) and
Bd(xs(t(m+1)0), us(t(m+1)0)) when the system transiting from the sampling interval [mTL + (nl − 1)tl, (m+
1)TL) to [(m+ 1)TL, (m+ 1)TL + tl). On the other hand, on sampling interval [(m+ 1)TL, (m+ 1)TL + tl),
the variables δx(tmnl−1) and δu(tmnl−1) as the initial points are fed to the system (37), and the references
are updated in (36). The convergence for this periodic MPC for an optimisation problem over an infinite
time horizon has been proven in [53, 54].
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The proposed MPC algorithm is as below:
Algorithm 2. MPC algorithm to the DX A/C tracking control problem.
Initialization: Given initial state value x(0) and let tmq = 0 (m = 0, q = 0).

1: Compute the optimal solution U(tm0) = [u(tm0), u(tm1), . . . , u(tmnl−1)]
T of the problem formulated

in (36) and (38).
2: Apply the MPC control umpc(tm0) = u(tm0) to the system in the sampling interval [tm0 , tm0 + tl);

the rest of the solutions u(tmq ), q = 1, . . . , nl − 1 are discarded. x(tmq+1) is calculated by x(tmq+1) =
f(x(tmq ), umpc(tmq )).

3: Set tmq := tmq+1 , and update system states, inputs and outputs with control umpc(tm0) and state
equation x(tmq+1) = f(x(tmq ), umpc(tmq )).

4: Until tmq := tmnl−1 , and update system states, inputs and outputs; repeat the steps 1 and 2, we have
obtain that umpc(tmnl−1) = u(tmnl−1). Apply the MPC control umpc(tmnl−1) to the system in the sampling
interval [tmnl−1 , t(m+1)0).

5: Set tmq := t(m+1)0
, measure the state value x(tmnl−1) by the step tmq = tmnl−1 , and umpc(tmnl−1) to

the system x(t(m+1)0
) = f(x(tmnl−1), umpc(tmnl−1)), and update reference r(tm0) := r(t(m+1)0) in (36).

6: Compute the optimal solution U(t(m+1)0) = [u(t(m+1)0), u(t(m+1)1), . . . , u(t(m+1)nl−1
)]T of the prob-

lem formulated in (36) and (38). Then the MPC control umpc(t(m+1)0
) = u(t(m+1)0

) (the remaining
u(t(m+1)q ), q = 1, . . . , nl−1 are discarded) is applied to the system in the sampling interval [t(m+1)0 , t(m+1)0+
tl) to obtain the closed-loop MPC solution x(t(m+1)1

) = f(x(t(m+1)0), umpc(t(m+1)0)) over the period
[t(m+1)0 + tl, t(m+1)0 + 2tl).

7: Set tmq := t(m+1)1
and go to step 1.

Generally, the above MPC algorithm never stops, and it updates the controller at each time interval
[tmq , tmq+1) to include feedback information.

4. Results

Here, a case study is presented to demonstrate the performance of the closed-loop system with the
proposed hierarchical control for the DX A/C system. The proposed hierarchical control strategy is compared
with a baseline strategy through simulations over a 24-hour period.

4.1. System setup

In the case study, an office room is taken as the conditioned space. The volume of the DX conditioned
space is 77m3. The parameters of the DX A/C system are listed in Table 1. For the proposed hierarchical
control strategy, the values of the system dynamic variable constraints are listed in Table 2, and we constrain
the value of the PMV in the range of [−0.5, 0.5] to ensure that the DX A/C system is able to control indoor
thermal comfort and IAQ at acceptable levels. The coefficients of the energy consumption models (23) of
the DX A/C system are taken from [52], which are summarized in Table 3.

Table 1: Parameters of system model

Notations Values Notations Values

ρ 1.2 kg/m3 hfg 2450 kJ/kg
V 77 m3 εwin 0.45
Vh1 0.04 m3 Vh2 0.16 m3

kspl 0.0251 kJ/m3 Cz 1.005 kJ kg−1 ◦C−1

A0 22.07 m2

In this paper, data of the outside temperature and relative humidity in a single summer are given, as
shown in Fig. 5(a). The data is obtained from a meteorological station located in Cape Town, South Africa.
The predicted solar radiative heat flux density profile of Cape Town is shown in Fig. 5(b). The certainty
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Table 2: Constraints of system variables

Notations Values Notations Values

T s 22 ◦C T s 8 ◦C
T z 26 ◦C T z 22 ◦C
T d 22 ◦C T d 10 ◦C
Tw 22 ◦C Tw 10 ◦C
W z 12.3/1000 kg/kg W z 9.85/1000 kg/kg
Cc 800× 10−6 ppm Cc 650× 10−6 ppm
W s 9.85/1000 kg/kg W s 7.85/1000 kg/kg

hs 46.3 kJ/kg hs 27.3 kJ/kg
vf 0.8 m3/s vf 0 m3/s
mr 0.11 kg/s mr 0 kg/s

Table 3: Coefficients of energy consumption models

Notations Values Notations Values

a0 900.5 a1 −8.1
a2 6.18 a3 −0.15
a4 −4.61 a5 0.02
a6 −0.2 a7 0.01
a8 0.12 a9 0.09
b0 −6942 b1 82
b2 −0.7 b3 2.4
b4 −2.5 b5 2.68
b6 0.03 b7 −0.02
b8 0.04 b9 0.0001
c0 138.1 c1 0.52
c2 −2.3

internal sensible and latent heat loads, the external sensible heat load and pollutant load in the conditioned
space are predicted in Fig. 6. The values in Figs. 5-6 at every hour are commensurately quantised. It is
assumed that the PI controller can absorb the CO2 concentration in the air supply, where Cs=360 ppm is
used in this paper.

The TOU schedule for summer hours is summarized in (29); for simplicity, only the TOU energy charge
is used in the cost function. The unit of Relative Humidity (RH) is percent (%). 11.35

1000 kg/kg of moisture
content is equivalent to 60% RH in the conditioned space. In addition, the original nonlinear system (27) is
used as the system to be controlled in the simulation.

4.2. Two scheduling strategies

Here, we consider two strategies to schedule the operation of the DX A/C system in the conditioned space.
One is energy optimised open loop controller and the closed-loop regulation of the MIMO MPC approach,
which serves as a baseline strategy [42], and the other is the proposed energy and comfort optimised open
loop controller and the closed-loop tracking of the MIMO MPC strategy. To simplify the comparison, the
predicted load profiles are the same in both control strategies.

1) Baseline: The baseline can be described as follows: We first select a setpoint for indoor air temperature
and relative humidity based on a comfort zone within the psychrometric chart and a setpoint for CO2

concentration based on the required level of occupants. The ASHRAE comfort zone is shown in [55]. Its
details are omitted here because of space limitations. Under the given setpoint, we can obtain a unique
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Figure 5: (a) Profiles of outside temperature and relative humidity over a 24-hour period. (b) Profiles of
radiative heat flux over a 24-hour period.
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Figure 6: (a) Certainty internal sensible and latent heat loads. (b) pollutant load and external sensible heat
load.
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Figure 7: Cooling loads and electricity rates over a 24-hour period.

steady state of the DX A/C system by solving the equations (1), (3), (5)-(6) and (9)-(10) at every hour over a
24-hour period. The nonlinear model is then linearised around its steady state. An MPC is designed for the
linearised model. The proposed MPC with sampling period 2 min is applied to achieve better performance
on thermal comfort and IAQ with superior energy efficiency simultaneously.
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2) Proposed method: For the proposed control strategy, the details are also given as below: We first
consider the open loop controller to solve the optimization problem (30) to obtain steady states at every
hour. The open loop controller and closed-loop MPC are employed to track the references of temperature,
humidity and CO2 concentration. In the proposed control method, the volume of the outside air entering
indoor is optimized. The optimal volume of the outside air is used in the DX A/C system for closed-loop
MPC controller. The sampling period is set to TL = 1 h; the sampling interval is set to NL = 24 hour;
the sampling period for MPC design is tl = 2 min, the prediction horizon and control horizon are taken
as np = nc = 30 in the lower layer. At each time step, the open loop controller is employed to solve the
optimization problem (30) and the steady states obtained are sent to the lower layer. In Section 4.3, we will
compare the energy consumption and energy cost for the baseline and the proposed strategies next.

4.3. Comparison of two strategies

The performance of both strategies is compared with historical weather data of a specific day in Cape
Town. The total simulation time is K = 24 h. The predicted indoor cooling loads profile is depicted in
Fig. 7 overlaid with an electricity rate for summer hours. We duplicate the indoor cooling loads profile for
the next day to simulate the MPC scheme. The temperature profile of the air leaving the DX evaporator
and p% of the outside air entering into the system over a 24-hour period are shown in Fig. 8(a) and 8(b).
The data is used in the DX A/C system for closed-loop tracking control.
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Figure 8: (a) Supply air temperature over a 24-hour period. (b) p% of fresh air entering into the system
over a 24-hour period.

The controls computed from two strategies are applied to the DX A/C system. The tracking reference
points of indoor air temperature in the conditioned space for the proposed strategy and the setpoint regu-
lation of indoor air temperature for the baseline strategy are depicted in Fig. 9(a). The tracking reference
points of indoor air relative humidity in the conditioned space for the proposed strategy and the setpoint
regulation of indoor air relative humidity for the baseline strategy are depicted in Fig. 9(b). The tracking
reference points of indoor CO2 concentration in the conditioned space for the proposed strategy and the
setpoint regulation of indoor CO2 concentration for the baseline strategy are depicted in Fig. 9(c). We
observe that the indoor temperature, humidity and CO2 concentration for the proposed strategy can track
their reference points well. We also observe that for the proposed strategy the reference points are tallish
during peak hours for temperature and humidity tracking. This is because the proposed controller can
automatically adjust the reference points upward during peak hours such that the energy cost and energy
consumption are minimized while both the thermal comfort and IAQ still maintain in the acceptable ranges.
We further observe that with the baseline strategy under the varying loads, the MPC controller always main-
tains the indoor temperature, humidity and CO2 concentration at their setpoint by regulating the control
inputs. From the local zooming out of Fig. 9, the reference points of indoor air temperature, humidity and
CO2 concentration are reached after a transient process of 18 min. After reaching their reference points,
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the proposed controller maintains the reference points with small variation ranges. Fig. 10 shows the air
volumetric flow rate and mass flow rate of refrigerant over a 24-hour period. The two input variables vary
to drive the indoor air temperature, humidity and CO2 concentration to track their trajectory references
according to the changing environment during the day. In Fig. 11, it can be observed that the values of the
PMV index for the two control methods lie within the expected range [-0.5,0.5].
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Figure 9: (a) Temperature tracking. (b) Relative humidity tracking. (c) CO2 concentration tracking.
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Figure 10: (a) Air volumetric flow rate over a 24-hour period. (b) Mass flow rate of refrigerant over a
24-hour period.
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Figure 11: Profile of the value of the PMV index over a 24-hour period.

Figs. 12(a) and 12(b) illustrate the energy consumption and cost of the DX A/C system operation for
the proposed strategy and the baseline strategy. We observe from Fig. 12(a) and 12(b) that both strategies
consume almost the same energy cost from 0:00 to 7:00. The indoor temperature, humidity and CO2

concentration reference points stay at the lower bound of the PMV index during off-peak hours without
more cost. After 8:00, the energy costs of the baseline and proposed strategies start to increase since the
increased cooling loads are required to be removed and the electric power price is increased. Compared
to the baseline strategy, Fig. 12(a) shows that the proposed method consumes less energy. Comparing the
two strategies, we observe that under the proposed method, more energy costs are reduced during peak
hours. The reason is that the proposed method automatically adjusts upward the reference points such
that the energy consumption and the energy costs are minimized during peak hours while maintaining both
thermal comfort and IAQ at the required levels. From the simulation, it is verified that the major energy
consumption and costs have been reduced effectively during peak hours. We summarize the total energy
consumption, energy cost and comfort levels in Table 4. According to it, the proposed hierarchical control
strategy performs better than the baseline by around 31.38% in terms of total energy consumption, and by
around 33.85% in terms of total energy cost. It can be seen from Table 4 that the proposed control strategy
presents a lower energy consumption and costs compared to the baseline control strategy. The table also
shows that the total values of the PMV index for the proposed control strategy is higher than that of the
baseline control strategy. It is expected that the proposed control strategy reduces energy consumption and
cost at the expenses of the comfort level, which is still reasonably and optimally regulated to acceptable
levels. Therefore, the utilities can choose the two control strategies to implement building DX A/C systems
based on their different aims.

Though it is desirable to calculate the cost savings brought by the proposed control strategy over the
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Figure 12: (a) Energy consumption by two strategies over a 24-hour period. (b) Energy cost by two strategies
over a 24-hour period.

Table 4: Comparison of baseline and proposed strategies

Control strategy Energy consumption (kWh) Energy cost ($)
∑

|PMV|
Baseline control 20.52 1.734 103.33
Proposed control 14.08 1.147 162.32
Saving (%) 31.38 33.85

baseline strategy, it is an impossible task for real buildings to simply compare the cost values of two control
strategies in one day because load factors and ambient temperature and humidity cannot be the same in
every day. To demonstrate the effectiveness of the proposed automatic hierarchical control strategy in
different conditions, the proposed testing days happened to be much warmer than the baseline days in this
test. The weather conditions of the testing days are shown in Table 5. The energy consumption in the
testing days is shown in Fig. 13. From this comparison, all proposed control testing days have much lower
power consumption, showing successful energy efficiency improvement by the proposed control strategy.

Table 5: Weather conditions for the testing days

Date Control Average T0 Average H0 Tmax
0 Hmax

0

12/30 Baseline 28.6 72.4% 33.9 80%
12/31 Proposed 29.2 71.6% 34.2 81%
01/01 Proposed 28.8 72.1% 32.2 79%
01/02 Proposed 28.9 72.4% 33.2 81%
01/03 Proposed 28.1 73.2% 32.0 82%
01/04 Baseline 28.0 72.3% 32.4 79%
01/05 Baseline 27.6 73.4% 32.0 80%

4.4. Parameter sensitivities analysis

The simulation results presented here are obtained under the assumption that the parameters are accurate
and the DX A/C system models can perfectly represent the real system. However, in reality, there usually
exist uncertainties in parameters and models. In this section, a simple uncertainty analysis is carried out
to demonstrate how the uncertainty parameter would affect the potential performance of the proposed
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Figure 13: Energy consumption for the proposed and baseline strategies testing days.

autonomous hierarchical control strategies. Here, we consider the uncertainties of some major parameters of
the DX A/C system, namely, the heat transfer area of the DX evaporator in the dry-cooling region A1 and
the heat transfer area of the DX evaporator in the wet-cooling region A2. The total area A0 = A1 + A2 is
known. Hence, it is only necessary to consider the effect of the uncertainty parameter A1 on the performance
of the proposed control technique. The open loop optimal controller and the closed-loop tracking of the
MPC with different values of the uncertainty parameter A1 are verified through simulation. For the case
study considered here, the simulations for indoor air temperature optimised by open loop optimal controller
and the closed-loop MPC temperature tracking under different parameter values are depicted in Figs. 14-15,
and the results for the open loop optimal controller under all different ranges of the uncertainty parameter
are listed in Table 6. The standard deviations for the steady state of indoor air temperatures are less than
0.2 ◦C. The standard deviations for the objective function values of the open loop controller are less than
6%. The results show that the fluctuation of the control performances caused by parameter uncertainty is
relatively small. Thus, the proposed autonomous hierarchical control strategy is not very sensitive to the
modeling parameter A1 specified here.
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Figure 14: Steady state of indoor air temperature optimised by the open loop controller under different
values of the dry-cooling regions.

5. Conclusions

This work formulates an autonomous hierarchical control problem to minimize energy consumption and
cost while maintaining both thermal comfort and indoor air quality at the required levels for supervisory
control of a direct expansion air conditioning system. It proposes an efficient control algorithm to solve the
autonomous hierarchical control problem based on nonlinear programming and closed-loop model predictive
control. The optimal reference points of indoor air temperature, humidity and CO2 concentration for the
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Figure 15: Closed-loop MPC temperature tracking under different values of the dry-cooling regions.

Table 6: Open loop optimization results under different values of the dry-cooling regions.

Objective function value Area of Portion of A1 Derivation
of open loop optimization dry region m2 %

43.04 (0, 0.05A0] 0.05A0 2.14%
44.23 (0.05A0, 0.10A0] 0.10A0 0.57%
43.98 (0.1A0,0.15A0] 0.15A0

43.00 (0.15A0, 0.20A0] 0.20A0 2.23%
43.20 (0.2A0, 0.25A0] 0.25A0 1.77%
43.48 (0.25A0, 0.30A0] 0.30A0 1.14%
42.87 (0.3A0, 0.35A0] 0.35A0 2.52%
41.57 (0.35A0, 0.40A0] 0.40A0 5.48%
42.54 (0.4A0, 0.45A0] 0.45A0 3.27%
42.47 (0.45A0, 0.50A0] 0.50A0 3.43%
42.21 (0.50A0, 0.55A0] 0.55A0 4.02%
42.26 (0.55A0, 0.60A0] 0.65A0 3.91%
44.00 (0.60A0, 0.70A0] 0.70A0 0.04%
42.22 (0.70A0, 0.75A0] 0.75A0 4.00%
41.91 (0.75A0, 0.80A0] 0.80A0 4.71%
41.60 (0.80A0, 0.85A0] 0.85A0 5.41%
41.52 (0.85A0, 0.90A0] 0.90A0 5.59%
41.70 (0.90A0, 0.95A0] 0.95A0 5.18%

direct expansion air conditioning system are obtained, and the closed-loop model predictive controller steers
the direct expansion air conditioning system to reach the reference points, whereas the energy consumption
and energy costs are reduced. Results show that the proposed control method could achieve a reduction
of the operation energy consumption by 33.9% and cost by 33.85% with the predicted mean vote value in
[-0.5,0.5], respectively. The performances of the proposed control are obtained under the assumption that
the models and parameters can perfectly represent the real system. However, in reality, there usually exist
uncertainties. The uncertainty analysis has been made in this paper. The results show that the proposed
control method is effective because the standard deviations of energy savings are less than 5% in comparison
with around 35% energy saving for normal values. The proposed control method is significant to be applied
in theoretical and practical applications.
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[22] J. Cigler, S. Pŕıvara, Z. Váňa, E. Žáčeková, L. Ferkl, Optimization of predicted mean vote index within model predictive
control framework: Computationally tractable solution, Energy and Buildings, vol. 52, pp. 39-49, 2012.
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