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Abstract

This paper proposes an iterative model-building approach known as quantile boosting to
trace out the predictive value of realized volatility and skewness for gold futures returns.
Controlling for several widely studied market- and sentiment-based variables, we examine
the predictive value of realized moments across alternative forecast horizons and across
the quantiles of the conditional distribution of gold futures returns. We find that the real-
ized moments often significantly improve the predictive value of the estimated forecasting
models at intermediate forecast horizons and across quantiles representing distressed mar-
ket conditions. We argue that realized moments carry information that reflects investors’
tradeoff between diversification and skewed payoffs, particularly during periods of market
stress, which may be especially relevant for gold as the traditional accepted safe haven.
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1 Introduction

The financial market crises and prolonged uncertainty surrounding global economic funda-
mentals have drawn the attention of researchers towards the dynamics of gold returns as
the traditionally accepted safe haven. While the literature has promoted gold as an invest-
ment asset due to its low level of correlation with equity indices (Hillier et al., 2006) and
its counter-cyclical reaction to unexpected macroeconomic news (Roache and Rossi, 2009),
other studies have focused on the determinants of gold returns in the context of its value as
a hedge and/or diversifier for investors (Baur and Lucey, 2010; Ciner et al., 2013). Classic
determinants of gold returns that have been discussed in earlier literature include stock market
returns, exchange-rate movements, oil-price fluctuations, and interest rates (see, for example,
Hammoudeh and Yuan, 2008; Pukthuanthong and Roll, 2011; Reboredo 2013a,b; Pierdzioch
et al. 2014; Beckmann et al., 2015). We contribute to this literature by examining the pre-
dictive value of realized moments for gold futures returns across alternative forecast horizons,
after controlling for well documented market-based variables and widely studied measures of
investor sentiment and uncertainty (Da et al., 2015; Baker et al., 2015). More specifically, we
trace out the incremental predictive value of realized volatility and skewness for gold futures
returns using a recursively estimated quantile-boosting approach recently used in the litera-
ture on gold-price dynamics by Pierdzioch et al. (2016). The approach accounts for model
uncertainty as well as model instability and allows the predictive value of realized moments
to be analyzed across the quantiles of the conditional distribution of gold futures returns that
represent different market conditions. By doing so, the analysis provides new insights to the
predictability of gold futures return that can be useful in hedging and safe-haven analyses.

Research in gold price dynamics and how they relate to stock and bond market returns has
recently experienced renewed interest, particularly following the 2007/08 financial crisis. Con-
sequently, a number of papers have been published in recent years examining the diversification
benefits of gold investments. Traditionally, gold has been studied as a hedge against inflation
and currency depreciation (e.g., Christie-David et al., 2000; Capie et al., 2005; Worthington
and Pahlavani, 2007; Blose, 2010). Following the market turmoil experienced during the credit
crunch of 2008, a number of recent studies have also looked into the diversification and safe-
haven benefits of gold for stock and bond portfolios (e.g., Baur and Lucey, 2010; Baur and
McDermott, 2010; Hood and Malik, 2013; Bredin et al., 2015). While recent studies present
mixed evidence in regards to the dominance of gold as a safe haven compared to other assets
(e.g., Hood and Malik, 2013; Agyei-Ampomah et al., 2014), the literature generally suggests
that gold can work as a hedge and/or safe haven for stock and bond investors both in the U.S.
and in other developed markets. Clearly, modeling gold returns and identifying the market
variables that might have predictive value for gold-price fluctuations is of practical concern for
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hedgers and portfolio managers in the implementation of dynamic diversification and/or hedg-
ing strategies. Identification of primary determinants of gold returns can also help enlarge our
understanding of volatility transmissions between gold and other market segments, which can
especially be useful in cross-hedging strategies. Finally, the findings on gold return dynamics
can be employed in further forecasting exercises given the recent evidence that gold prices can
help forecast real exchange rates, particularly in the case of major commodity exporters (e.g.,
Apergis, 2014).

A significant advantage of the quantile boosting approach utilized in this study is that it
follows an iterative model-building procedure in which the forecasting model is built from
alternative competing predictor variables. In addition to some of the well-documented market-
based variables as well as investor sentiment and uncertainty indicators, we also examine the
predictive value of higher moments measured by the realized volatility and realized skewness,
which we compute using intraday return data. We are particularly interested in the predictive
ability of realized volatility and realized skewness as recent research documents that higher-
order moments may contain significant information regarding future returns and volatility
in stock markets. While studies including Bollerslev et al. (2013) and Corsi et al. (2013)
use realized volatility for forecasting stock-market returns and to develop option-valuation
models, a number of studies in the asset-pricing literature underline the predictive ability
of realized skewness for stock returns. Earlier studies including Barberis and Huang (2004),
Brunnermeier et al. (2007), Mitton and Vorkink (2007) and Boyer et al. (2010) suggest a
link between the skewness of individual securities and investors’ portfolio decisions, while Bali
et al. (2008) utilize skewness in Value at Risk estimations. In cross-sectional tests, Xing et
al. (2010) find that portfolios sorted on a measure related to idiosyncratic skewness generate
differences in returns while studies including Barberis and Huang (2008), Conrad et al. (2013)
and Amaya et al. (2015) show that realized skewness has predictive value over subsequent
returns. More recently, Kraussl et al. (2016) associate skewness with crash risk, enlarging the
scope of risk proxies skewness may be associated with. Hence, we are primarily motivated by
the evidence suggesting that it is important to account for higher moments when analyzing
return dynamics, and the quantile-boosting approach employed in this study provides an
appropriate framework that allows the predictive value of realized moments to be examined
in the presence of other well documented market- and sentiment-based indicators.

Our findings suggest that realized moments can significantly improve the predictive value
of the estimated forecasting models, even after controlling for widely studied market- and
sentiment-based variables. Comparing alternative model specifications that include market-
based variables such as the nominal interest rate, term spread, exchange rates, oil and stock
market returns as well as popular uncertainty and sentiment indicators, we find that a boosted
model that includes realized volatility and skewness often outperforms a simple boosted AR(1)
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model as well as a boosted model that excludes the realized moments from the list of predictor
variables. The predictive value of realized moments is particularly evident for intermediate
forecast horizons and holds in many cases for lower quantiles, suggesting that realized moments
must be taken into account in forecasting exercises that target distressed market periods in
particular. This is especially important for the estimation of tail-risk measures and Value at
Risk projections for periods of market stress.

We organize the remainder of the paper as follows. In Section 2, we explain the quantile-
boosting approach and how we evaluate the accuracy of forecasts. In Section 3, we present
the data, and we explain how we compute the realized moments. In Section 4, we summarize
our empirical results. In Section 5, we conclude with a discussion of practical implications of
our empirical results.

2 Methodology

2.1 The Quantile-Boosting Approach

The starting point of the quantile-boosting approach (see Fenske et al., 2011; Zheng, 2012;
Yuan, 2015; for a least-absolute error boosting approach, see Friedman, 2001) is the following
quantile-regression period-loss function which is standard in the quantile-regression literature
(on quantile regressions, see Koenker, 2005):

L(α, ût+1,α,h) = ût+1,α,h(α− 1(ût+1,α,h < 0)), (1)

where 1(·) denotes the indicator function, ût+1 is the forecast error, and the quantile parameter
can assume values in the interval α ∈ (0, 1). A symmetric loss function obtains for α = 0.5,
while for α < 0.5 (α > 0.5), the loss of a negative forecast error exceeds (falls short of)
the loss of a positive forecast error. Because the optimal forecast depends on the quantile
parameter, the forecast error carries an α-index. For a given α-index, the forecast error for a
given forecast horizon, h, is computed as ût+1,α,h = rt+h − F (β̂α,h, xt), where F (βα,h, xt) =

β̂0,α,h + β̂1,α,hx1,t... + β̂n,α,hxn,t, where rt+h denotes gold futures returns between period of
time t and t + h and β̂j,α,h, j = 0, 1, 2, ..., n denote estimates of quantile-specific regression
coefficients of the predictors, xt.

Similar to Pierdzioch et al. (2016), we use the quantile-boosting approach to estimate the
regression coefficients and to decide which predictors to include in the optimal forecasting
model. To this end, we select for any given α an optimal F (β̂α,h, xt)

∗ by solving

F (β̂α,h, xt)
∗ = arg min

F (β̂α,h,xt)
E [L(α, h, t)] , (2)
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where expectations, E, are computed in terms of L(α, h, t) =
∑t

j=0 L(α, ûj+1,α,h). The min-
imization problem given in Equation (2) is solved by means of a functional-gradient-descent
boosting algorithm (Friedman, 2001; Fenske et al., 2011; for a survey of boosting algorithms,
see Bühlmann and Hothorn, 2007). The algorithm is implemented by iterating over the fol-
lowing steps:

1. Set m = 1 and choose a starting value. Like Fenske et al. (2011), we choose the median
of the response variable as a starting value. We use demeaned data (see Bühlmann and
Hothorn, 2007).

2. Compute the negative gradient vector ût+1,α,h = −∂L(α, t) /∂F (β̂
[m−1]
α,h , α, xt), where

ût+1,α,h = α if ût+1,α,h ≥ 0 and ût+1,α,h = α− 1 if ût+1,α,h < 0.

3. Fit the individual elements of xt to the negative gradient vector. Choose the best
element, κ, as the one that solves minL2 (see Friedman, 2001).

4. Update the vector of regression coefficients β̂[m]
α,h = β̂

[m−1]
α,h + vγ̂

[κ,m]
α,h , where v ∈ (0, 1]

denotes a step-size parameter, and γ̂
[κ,m]
α,h contains as the only non-zero element the

coefficient estimated for κ. Like Fenske et al. (2011) and others, we set v = 0.1. Smaller
values of v lead to more boosting iterations.

5. Update m. Terminate the updating when a final iteration is reached. We determine
the final iteration, m∗, as the one that minimizes the loss function. Similar to Mayr
et al. (2012) and Pierdzioch et al. (2016), we run the algorithm mbreak times. If
m∗ = arg min

m
Lm(α, h, t) satisfiesm∗ ≤ 0.75×mbreak, we stop, where Lm(α, h, t) denotes

the loss in iteration m, given α and h. Otherwise, we set mbreak = mbreak + 10, and
check again if m∗ ≤ 0.75 × mbreak. We continue until we reach mmax = 500, but the
algorithm typically stops much earlier.

Finally, we insert the updated predictors, xt+1, into F (β̂
[m∗]
α,h , xt+1)

∗, and compute an out-of-
sample forecast of gold futures returns. Because the optimal forecasting model may change
over time we use a recursively expanding estimation window to implement the quantile-
boosting approach (see Pierdzioch et al., 2016).

2.2 Forecast Evaluation

We check the informational value of the boosted forecasts by comparing them with the forecasts
from a recursively estimated boosted benchmark model, b. In doing so, we account for the
fact that the quantile-boosting algorithm adjusts forecasts depending on the shape of the loss
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function given in Equation (1) (see Pierdzioch et al., 2015, 2016). Setting α > 0.5 implies
that the loss of a positive forecast error is larger than the loss of a negative forecast error of
the same absolute size, requiring an upward adjustment of forecasts relative to the case of a
symmetric loss function (α = 0.5). Similarly, a quantile parameter of α < 0.5 implies that
the loss of a negative forecast error exceeds the loss of a positive forecast error, requiring a
downward adjustment of forecasts relative to the symmetric benchmark case. As a result,
it is important to condition any evaluation of the informational value of forecasts on the
quantile parameter. We do so by extending the approach proposed by Fair and Shiller (1990)
to a quantile-regression setting (Koenker and Bassett, 1978; Koenker, 2005) and estimate,
separately for every combination of α and h, the following quantile-regression model (see also
the analysis by Gupta et al., 2016):

γ∗α,h = arg min
γα,h

∑
t

L(α, rt+h −Xt+1γα,h), (3)

where the summation runs over the out-of-sample forecasting periods, Xt+1γα,h = γ0,α,h +

γ1,α,hr̂t+h + γ2,α,hr̂
b
t+h, and Lα is of the format of the loss function given in Equation (1). If

the boosted period-t forecasts, r̂t+h, have predictive value for rt+h, and the predictive value
of the period-t benchmark forecasts, r̂bt+h, is completely embedded in r̂t+h, then the estimate
of γ1,α,h should be significantly different from zero while the estimate of γ2,α,h should not.
If both forecasts contain non-overlapping information for rt+h then both coefficients, γ1,α,h
and γ2,α,h, should be significantly different from zero. If both forecasts do not have predictive
value for rt+h then both coefficients should not be significantly different from zero. Finally,
if both forecasts contain the same information for rt+h then the coefficients, γ1,α,h and γ2,α,h,
are not separately identified (see Fair and Shiller, 1990, page 377). Because of the overlapping
structure of the data in case of multiperiod forecasts, we use bootstrap simulations to assess
the significance of the coefficients.

3 Data

3.1 Gold Futures Returns and Realized Moments

Gold futures are traded in NYMEX over a 24h trading day (pit and electronic). We focus
on gold futures prices, rather than spot prices, due to the low transaction costs associated
with futures trading, which makes the analysis more relevant for practical applications in the
context of hedging and/or safe-haven analyses. Furthermore, as Shrestha (2014) notes, one
can expect price discovery to take place primarily in the futures market as the futures price
responds to new information faster than the spot price due to lower transaction costs and ease
of short selling associated with the futures contracts. The futures price data, in continuous
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format, are obtained from www.disktrading.com. Close to expiration of a contract, the position
is rolled over to the next available contract, provided that activity has increased. Daily returns
are computed as the end of day (NYT) price difference (close to close). In the case of intraday
returns, 1-minute prices are obtained via last-tick interpolation (if the price is not available
at the 1-minute stamp, the previously available price is imputed). 1-minute returns are then
computed by taking the log-differences of these prices and these intra-day returns are used to
compute the realized moments. Our data set spans the period of February 2004 to February
2011, reflecting data availability of the investor sentiment index used as one of the predictors
(see Section 3.2).

We use the classical estimator of realized volatility, i.e. the sum of squared intraday returns,
as per Andersen and Bollerslev (1998), realized volatility (RV) is expressed as

RVt =

M∑
i=1

(rt,i)
2 (4)

where rt,i is the intraday M × 1 return vector and i = 1, . . . ,M is the number of intraday
returns. We have M = 1, 440 minutes returns for each trading day. The realized skewness
estimator is computed as

RSKt =

√
M

∑M
i=1(ri,t)

3

RV
3/2
t

(5)

where RVt is the realized variance estimator given in Equation (4). In Section 4.3, we shall
report, as a robustness check, results for alternative widely-studied estimators of realized
moments.

Panel A of Figure 1 plots continuously compounded daily gold futures returns. The sample
minimum of daily returns is -0.08, the maximum is 0.09, the standard deviation is 0.01, and
the sample mean and median are approximately zero. Based on the Jarque-Bera test statistic
(not reported), we can reject normality of the sampling distribution of returns at the highest
levels of significance, which provides some preliminary justification for modeling the quantiles
rather than simply the mean of the conditional distribution of returns. By the same token,
an analysis by means of the BDS test (Brock et al., 1996; results are available upon request)
indicates, for various embedding dimensions, the presence of nonlinearity in the returns series,
further strengthening the case for a quantiles-based modeling approach.

− Please include Figure 1 about here. −

Examining the plots for realized moments presented in Figure 1, we observe several notable
spikes in the realized volatility of gold futures returns, particularly during 2006 and at the
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height of the Global Financial Crisis in 2008 which was a major shock to the global financial
system. While it is not surprising to observe increased volatility in the gold market during
the 2008 market crisis period as investors flocked to this safe haven in order to protect the
value of their portfolios, the spike in volatility during 2006 can be attributed to the increased
involvement of professional investors like hedge funds as gold presented an attractive invest-
ment opportunity, rather than a safe haven, outperforming the stock market during much of
the 2000−2006 period.

The plot for realized skewness presented in Panel C, on the other hand, is characterized by
notable positive spikes in realized skewness during the pre-crisis period, reflecting the sustained
rise in gold prices and possibly some exuberance during this period as Figuerola-Ferretti and
McCrorie (2016) note. Interestingly, the outbreaks in realized skewness do not exactly match
those observed for realized volatility in Panel B, which suggests some degree of separation in
the informational content of these two moments for gold return dynamics. In the aftermath
of the global financial crisis period, however, negative outbreaks in realized skewness become
more evident in the general pattern, reflecting several important developments in financial
markets including news from China in April of an increase in its gold reserves, the IMF’s sale
of gold in August in the context of rising gold prices, and later in 2011, news of stability in
the Eurozone thanks to the approval of austerity cuts in Greece. Overall, the difference in
the patterns observed in the plots for realized volatility and skewness underline the difference
in the informational content these moments might have and further motivates the analysis
regarding their predictive value for gold futures returns.

3.2 Other Predictor Variables

In addition to realized volatility and realized skewness, we consider several market- and
sentiment-based predictors in the construction of the forecasting models. The list of the
predictors comprises determinants of gold returns widely studied in earlier research, but also
includes measures of investor sentiment and uncertainty. Particularly motivated by Kraussl
et al. (2016) that skewness may be associated with crash risk, we control for rival measures of
investor sentiment and market uncertainty in our iterative model-building procedure in order
to assess the incremental predictive value of realized moments for gold futures returns. This
approach renders it possible to quantify the incremental predictive value of realized moments
in the presence of other predictor variables that may contain valuable information regarding
the state of the market, in particular distressed market periods. Below, we provide a brief
description of the additional predictor variables that we utilize in our analysis:

• Investor sentiment. In a recent study, Da et al. (2015) use daily data on Internet search
volume from millions of households to construct an index of market-level sentiment. By
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aggregating the volume of queries related to household concerns (for example, “recession”,
“unemployment”, and “bankruptcy”), they construct a Financial and Economic Attitudes
Revealed by Search (FEARS) index as a new measure of investor sentiment. Da et al.
(2015) show that the FEARS index has predictive power over short-term stock market
reversals as well as temporary increases in volatility. Their data covers the daily period
of 1st July, 2004 to December 31th, 2011, and to the best of our knowledge is the only
available investor-sentiment index at daily frequency. Naturally, our analysis is restricted
to this sample period.

• Nominal interest rate. A number of studies including Hammoudeh and Yuan (2008),
Bhar and Hammoudeh (2011), and Pierdzioch et al. (2014) have suggested the nominal
interest rate as a determinant of gold returns and volatility. For this reason, we use the
3-month T-bill rate as the short-term nominal interest rate and stochastically detrend
the short-term interest rate by its one-month backward looking average (see also, for
example, Rapach et al. 2005).

• Term spread. The term spread, defined as the difference between the yield on 10-year
government bonds and the 3-month T-bill rate, is also considered as a driver of gold
price fluctuations (e.g. Pierdzioch et al., 2014; Bialkowski et al., 2015) as it may contain
information regarding the market’s inflationary expectations as well as future economic
growth prospects.

• Exchange rates. The role of exchange rate movements for gold returns has been examined
in a number of studies including Pukthuanthong and Roll (2011), Reboredo (2013b), and
Reboredo and Rivera-Castro (2014). We use in our empirical analysis the continuously
compounded returns for the dollar/pound and the yen/dollar exchange rates.

• Stock market variables. As mentioned earlier, stock market returns play a key role in
studies that deal with hedging and safe haven benefits of gold investments (Baur and
Lucey, 2010; Baur and McDermott, 2011; Beckmann et al., 2015). We use continuously
compounded returns on the S&P 500 index (closing prices) and the CBOE S&P 100
volatility index (VXO), where the latter measures the expected intensity of market
fluctuations.

• Oil price. Several recent studies including Zhang and Wei (2010), Beckmann and Czu-
daj (2013), Malliaris and Malliaris (2013), and Ewing and Malik (2013) study the link
between the price of gold and the price of oil. We use continuously compounded oil-price
returns (West Texas Intermediate) to represent oil price fluctuations.

• Economic uncertainty. We use the daily equity market uncertainty (EMU) and eco-
nomic policy uncertainty (EPU) indices for the U.S. economy as developed by Baker
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et al. (2015) to measure economic uncertainty. The daily news-based indexes use
newspaper archives from Access World New’s NewsBank service. The primary mea-
sure for this index equals the number of articles that contain at least one term from
each of three sets of terms (economic or economy, uncertain or uncertainty, and legis-
lation, regulation, Congress, Federal Reserve, or White House). Using the same news
source, the EMU index searches for articles containing the terms uncertainty or un-
certain, economic or economy, and one or more of the following terms: equity market,
equity price, stock market, or stock price. Data on these two indices come from the
website: http://www.policyuncertainty.com.

• Contemporaneous daily gold futures returns. Including gold futures returns implies that
the quantile-boosting approach can select a simple AR(1) forecasting model in case the
other predictor variables do not have predictive value for subsequent gold futures returns.

4 Empirical Results

4.1 Structure of the Forecasting Models

For computing our baseline results, we use 75% of the data (1,222 observations; the initializa-
tion period ends in July 2009; as a robustness check, we shall present results for an extended
out-of-sample period in Section 4.4) to initialize the quantile-boosting approach, and the re-
maining data for out-of-sample forecasting. In total, we have 408 out-of-sample forecasts for
every forecast horizon and quantile.

− Please include Figure 2 about here. −

Figure 2 summarizes the number of iterations it takes to find the minimum of the empirical
loss function and the number of predictors selected by the quantile-boosting approach (results
averaged across out-of-sample forecasting periods). A general pattern that emerges is that it
takes more iterations to find the minimum of the loss function for the lower and upper quantiles
than for quantiles closer to the median. For the longer forecasting horizon (ten-days-ahead),
this pattern becomes asymmetric insofar as the lower quantiles require more iterations than
the upper quantiles.

Another pattern that emerges from Figure 2 is that it takes more iterations to find the min-
imum of the loss function for the longer forecast horizons. In line with this pattern, the
quantile-boosting approach selects more predictors for the longer forecast horizons. For one-
day-ahead returns, the quantile-boosting approach mainly selects predictors for the extreme
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lower and upper quantiles. The reason for why the quantile-boosting approach runs only few
iterations and, at the same time, selects no predictors is that, in the case of one-day-ahead
returns, the empirical loss function is very irregular for some quantiles, and so we do not
push the interpretation of the results further for these quantiles. For five-days-ahead returns,
the number of selected predictors increases, but we still observe the pattern that the boosted
forecasting models tend to include more predictors as we move farther away from the median.
For the ten-days-ahead returns, this pattern becomes less pronounced and asymmetric.

− Please include Figure 3 about here. −

Figure 3 shows how often the boosted forecasting models feature the realized moments (re-
sults averaged across out-of-sample forecasting periods). For one-day-ahead returns, realized
volatility mainly enters the boosted forecasting models for several upper and the two lower
quantiles. Realized skewness, in turn, enters the boosted forecasting models only at the two
lowest quantiles, underlining the predictive value of skewness particularly for distressed mar-
ket states and tail risk measures. The predictive value of skewness, particularly during periods
of market stress represented by extreme lower quantiles, has significant implications for safe
haven analyses and portfolio diversification strategies involving positions in gold as a number
of studies have documented the importance of fat tails in asset-allocation decisions (e.g., Xiong
and Idzorek, 2011).

For one-day-ahead returns, we observe, in terms of the frequency of inclusion in the boosted
forecasting models, that realized volatility is generally more dominant than realized skewness,
although its importance as a predictor varies based on the returns quantile considered, fur-
ther supporting the importance of a quantile-based model building approach in forecasting
exercises. For five-day-ahead returns, realized volatility still enters very often the boosted
forecasting models at the upper quantiles, and it gains in importance for the quantiles below
the median. Similarly, the importance of realized skewness substantially increases to up to
approximately 80% for several of the quantiles below the median, and it is included very often
in the boosted forecasting models for the extreme upper quantile.

In the case of ten-day-ahead returns, both realized moments still enter the boosted forecasting
models often for α = 0.85 and α = 0.9. In addition, for quantiles below α ≤ 0.55, the boosted
forecasting models always feature realized volatility. The importance of realized skewness
increases for the quantiles in the range 0.55 ≤ α ≤ 0.7 and remains strong, and in some
cases strengthens even further relative to the results for five-days-ahead returns, for quantiles
below α = 0.4. Overall, the findings clearly point to the predictive value contained in realized
moments with quantile- and forecasting-horizon-based patterns that should be taken into
account in forecasting exercises.
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4.2 Fair-Shiller Regressions

A natural question is whether the quantile-boosting approach outperforms a simple boosted
AR(1) model, which the quantile-boosting model can select as a special case because we include
lagged gold futures returns in our list of potential predictors. Table 1 summarizes the results
of Fair-Shiller regresssions where we compare a boosted forecasting model that includes the
realized moments in the list of potential predictors with a recursively estimated boosted AR(1)
model. For one-day-ahead returns, we have NA entries because the quantile-boosting approach
selects no predictors for some quantiles. For those quantiles for which results are available, the
Fair-Shiller regressions do not yield significant results for both the quantile-boosting approach
and the boosted AR(1) model (with one exception). In contrast, for five-days-ahead returns,
the quantile-boosting approach dominates the boosted AR(1) model for several of the lower
(α ≤ 0.3, except for the lowest quantile) and some upper quantiles (α ≥ 0.75, except for the
largest quantile). For ten-days-ahead returns the dominance of the quantile-boosting approach
becomes stronger for the lower quantiles, while results for the quantiles above the median are
not significant for the quantile-boosting approach.

− Please include Tables 1 − 2 about here. −

Table 2 summarizes the results of Fair-Shiller regressions that compare a boosted model that
excludes the realized moments from the list of predictors and a boosted AR(1) model. We
observe that excluding the realized moments from the list of predictors worsens the predictive
value of five-days-ahead forecasts relative to the boosted AR(1) benchmark model for quantiles
below the median. For few quantiles (mainly α = 0.75 and α = 0.8) above the median, we still
observe significant results. Similarly, deleting the realized moments from the list of potential
predictor variables deteriorates the relative performance of the boosted model for the quantiles
below the median in the case of ten-day-ahead returns.

− Please include Table 3 about here. −

Table 3 summarizes the results of a direct horserace between the forecasts generated using
a boosted model that includes the realized moments in the list of potential predictors with
the forecasts from a boosted model that excludes the realized moments. While the models
do not differ systematically in terms of their predictive value for one-day-ahead returns, the
model that accounts for the realized moments clearly dominates at a five-day-ahead forecast
horizon for the lower quantiles (α ≤ 0.2). For a ten-day-ahead forecast horizon, this dominance
strengthens and extends to quantiles below α ≤ 0.3.
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Overall, the evidence suggests that realized moments contain significant predictive value in
forecasting returns, even in the presence of other well documented market- and sentiment-
based predictors. In particular, the finding that realized skewness serves as a major driver of
forecasting performance for gold returns over the subsequent week is consistent with previous
research on stock returns that idisonsyncratic skewness has predictive power over future re-
turns (e.g., Xing et al, 2010; Conrad et al., 2013) and research on commodities that skewness
can significantly improve the quality of Value at Risk estimates (e.g. Cheng and Hung, 2016).
From a behavioral perspective, the observed predictive value of skewness even in the presence
of other market variables can be related to what Barberis and Huang (2008) suggest as in-
vestors’ preference over highly skewed payoffs, which may be particularly relevant for gold.
Indeed, the finding that realized skewness is important particularly at extreme quantiles, and
at quantiles below the median, can be due to investors’ tradeoff between the benefits of di-
versification and skewness, as Brunnermeier et al. (2007) and Barberis and Huang (2008)
suggest, which can particularly be prevalent during distressed market conditions, leading to
the observed predictive power skewness possesses during such market states. Another possible
explanation for the predictive value of skewness is that investors tend to hold undiversified
portfolios, as noted by Mitton and Vorkink (2007), and thus tend to overinvest in positively
skewed assets during periods of market stress, which may particularly be the case for safe
haven assets such as gold. Nevertheless, whatever the underlying economic rationale might
be, our findings clearly point to the significant predictive value of realized moments during
distressed market periods, even in the presence of other well cited market- and sentiment-
based predictors for gold returns. To that end, our findings provide novel insight to the role
of market sentiment in the market for commodities in that realized moments may contain
valuable information that relates to what Gao and Suss (2015) term as sentiment exposure in
commodity futures returns.

4.3 Alternative Realized Moments

We next study the robustness of our results to a change in how we measure realized moments.
We consider two alternative measures of realized moments. The first alternative measure we
use, which is robust to market-microstructure noise and asynchronous trading, is the realized-
kernel estimator of Barndorf-Nielsen et al (2007). We use the realized-kernel estimator to
compute the realized volatility as follows:

RVt =

H∑
h=−H

k(
h

H + 1
)γh, γh =

M∑
j=|h|+1

rt,jrt,j−|h|, (6)

where k(·) is a kernel function andH is the bandwidth parameter, rt,j is the j-th high frequency
return with j = 1, . . . ,M for day t. We use a flat-top kernel function with H = 1.
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A second alternative measure is the two-times-scales estimator proposed by Zhang et al.
(2005). This estimator uses a slow time scale, K, to estimate the realized volatility (via
subsampling) and a fast time scale, J , to correct for the presence of market micro-structure
noise. We have

RVt = (1− M̄K

M̄J
)−1([X,X]

(K)
t − M̄K

M̄J
[X,X]

(J)
t ), (7)

where M̄K = (M −K + 1)/K, M̄J = (M − J + 1)/J and

[X,X]
(K)
t =

1

K

M−K+1∑
i=1

(Xt,i+K −Xt,i)
2

with Xt,i the i-th intraday price for day t and M the number of intra-day prices. For this
estimator we use 10-minute returns as slow scale and 1-minute returns as fast scale. For both
estimators, we insert RVt into Equation (5) to compute realzed skewness.

− Please include Tables 4 and 5 about here. −

The results of Fair-Shiller regressions (for five-days-ahead and ten-days-ahead returns) sum-
marized in Tables 4 and 5 corroborate the results based on the classical measures of realized
moments. The boosted model that features the realized moments in the list of potential pre-
dictors tends to fare better than a boosted AR(1) model for some of the quantiles below the
median, whereas the boosted model that excludes the realized moments from the list of po-
tential predictors does not outperform an AR(1) benchmark model. A horserace between the
boosted models that include/exclude the realized moments as predictors of gold future returns
shows that, for quantiles in the approximate interval α ≤ 0.2, the coefficient of the forecasts
that account for the predictive value of the realized moments for five-days-ahead returns is
significant, while the coefficient of the benchmark model that excludes the realized moments
is not significant. For ten-days-ahead returns, this interval widens to approximately α ≤ 0.4.
For quantiles 0.25 ≤ α ≤ 0.35 both coefficients are significant.

4.4 Extended Forecasting Period

Having presented evidence on the predictive ability of realized moments for the selected base-
line sample period discussed in Section 4.1, we next analyze an extended out-of-sample fore-
casting period for a robustness check. We use this additional analysis also to shed light on the
time-variation in the predictive value of the realized moments. Specifically, we reserve 50%
of the data for out-of-sample forecasting (the initialization period ends in November 2007)
such that the out-of-sample forecasting period comprises the onset of the financial crisis of
2008/2009. We focus on the case of five-day-ahead and ten-day-ahead returns.
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− Please include Figure 4 about here. −

Figure 4 plots the results for Fair-Shiller regressions for the case of five-days-ahead returns. We
estimate the Fair-Shiller regressions on a rolling-estimation window of length 250 days. Thus,
we start with the first 250 forecasts (that is, approximately one year of trading days) computed
for the extended out-of-sample forecasting period and then move the rolling-estimation window
forward in time on a daily basis. Every dot represents, for a given quantile, a coefficient
significantly different from zero at the 5% significance level.

Comparing the results for a boosted model that includes the realized moments in the list of
potential predictor variables with a boosted AR(1) model, we observe that the coefficient of
the former model is significant more often than that of the boosted AR(1) model, especially at
the lower quantiles. In contrast, the coefficient of the boosted AR(1) model is significant only
occasionally and the significant coefficients are concentrated at few quantiles. At the beginning
of the out-of-sample forecasting period, the coefficient of the boosted model that includes the
realized moments is significant mainly for the largest quantile. As we move the estimation
window forward in time, the coefficient of the boosted model loses its significance for most
quantiles above the median. The coefficient, however, becomes significant for quantiles below
approximately 0.3. This finding further supports our earlier observation that realized moments
possess significant predictive value particularly for distressed market states.

When we exclude the realized moments from the list of potential predictor variables, we
observe a significant coefficient for the largest quantile, but only in the first half of the out-
of-sample period. The coefficient is significant also for a few of the other quantiles during
some periods of time. However, the coefficient completely loses its significance in the second
half of the out-of-sample period, and especially for all quantiles below the median. It, thus,
is not surprising that the Fair-Shiller regressions show that, in the second half of the out-of-
sample period, forecasts computed upon including the realized moments in the list of potential
predictor variables have a better predictive value for the lower quantiles than forecasts that
neglect the informational content of realized moments.

− Please include Figure 5 about here. −

In the case of ten-days-ahead forecasts, the predictive value of the realized moments is mainly
concentrated at the two upper quantiles in the first half of the out-of-sample period. At the
end of the out-of-sample period again the predictive value shifts to the lower quantiles. The
boosted AR(1) model, in contrast, yields a significant coefficient only occasionally and mainly
for the lower quantiles. When we exclude the realized moments from the list of predictor
variables, we still obtain forecasts that yield a significant coefficient for the two upper quantiles
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at the beginning of the out-of-sample period, but the significance of the coefficient becomes
fragile and more scattered across the quantiles as we move the rolling window forward in time.
In particular, we do not observe a systematically significant coefficient for the lower quantiles
in the second half of the out-of-sample period, which is in stark contrast to the results for a
boosted model that inlcudes the realized moments in the list of potential predictors. Finally,
when we directly compare the boosted models that include/exclude the realized moments, the
significance of the coefficients for the two upper quantiles is largely lost, indicating that the
information embedded in the forecasts implied by both models overlap to a substantial extent.
In the second half of the out-of-sample period, the model that includes the realized moments
in the list of potential predictor variables yields much more often significant results, where
the significance of the coefficient is also substantially more stable across time, for quantiles
smaller than approximately 0.4 than the model that never uses the information embedded in
the realized moments to forecast gold futures returns.

5 Concluding Remarks

We have used a recursively estimated quantile-boosting approach to show that realized volatil-
ity and realized skewness have incremental predictive value for gold futures returns over and
above several well-documented market-based variables as well as investor sentiment and un-
certainty indicators. A significant advantage of the recursively estimated quantile-boosting
approach is that it accounts for model uncertainty and model instability, and that it allows
the predictive value of realized moments to be traced out across the quantiles of the condi-
tional distribution of gold futures returns. This is particularly important for regime-based
asset-allocation decisions as well as the estimation of tail-risk measures that focus on periods
of market stress.

We find that realized moments often significantly improve the predictive value of the estimated
forecasting models, even after controlling for widely-studied market-based variables including
the nominal interest rate, term spread, exchange rates, oil and stock market returns as well as
popular uncertainty and sentiment indicators. Based upon a comparison of a boosted model
that includes realized volatility and skewness with alternative boosted models based on an
AR(1) specification and a boosted model that includes only the market- and sentiment-based
predictor variables, we show that realized moments can add significant predictive value for
intermediate forecast horizons and also for extreme and particularly for lower quantiles of the
conditional distribution of gold futures returns. This finding suggests that realized moments
must be taken into account in forecasting exercises that target distressed market periods. By
the same token, the findings may also serve as a guideline in regime-based asset-allocation
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strategies in which gold is utilized as a hedge (or safe haven) in order to protect portfolio
value during distressed market conditions.

While the predictive value of realized moments for gold futures returns may reflect investors’
preference over highly skewed payoffs or the tradeoff between diversification and skewness,
particularly during periods of market stress, it is also possible that realized skewness serves
as a proxy for crash risk as recently noted by Kraussl et al. (2016). To that end, it is not
unexpected to find realized skewness often included in the forecasting model selected by the
quantile-boosting approach. One avenue for future research, therefore, is to examine whether
the realized moments for gold futures returns contain information regarding future crash risk
in financial markets.
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Tables and Figures

Figure 1: Gold Futures Returns and Realized Moments
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Note: This figure and all other empirical results reported in this research were computed using the free R
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Figure 2: Results for Alternative Forecast Horizons
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are averaged across the 408 out-of-sample periods being studied.
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Figure 3: Inclusion of Realized Moments Across Quantiles in the Forecasting Model
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Figure 4: Rolling Fair-Shiller Regressionens (Five-Days-Ahead Returns)
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Note: Every dot represents a p-value smaller than 5%. p-values are based on 1,000 bootstrap simulations.
Results are based on the extended out-of-sample period, where the Fair-Shiller regressions are estimated on
a rolling estimation window of length 250 days. With/AR(1) = results of Fair-Shiller regressions when the
boosted model includes the realized moments in the list of potential predictor variables and a boosted AR(1)
model is the benchmark model. Without/AR(1) = results of Fair-Shiller regressions when the boosted model
excludes the realized moments in the list of potential predictor variables and a boosted AR(1) model is the
benchmark model. Include/Exclude = results of Fair-Shiller regressions include forecasts from the boosted
models that include/exclude the realized moments in the list of potential predictor variables.
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Figure 5: Rolling Fair-Shiller Regressionens (Ten-Days-Ahead Returns)
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Note: Every dot represents a p-value smaller than 5%. p-values are based on 1,000 bootstrap simulations.
Results are based on the extended out-of-sample period, where the Fair-Shiller regressions are estimated on
a rolling estimation window of length 250 days. With/AR(1) = results of Fair-Shiller regressions when the
boosted model includes the realized moments in the list of potential predictor variables and a boosted AR(1)
model is the benchmark model. Without/AR(1) = results of Fair-Shiller regressions when the boosted model
excludes the realized moments in the list of potential predictor variables and a boosted AR(1) model is the
benchmark model. Include/Exclude = results of Fair-Shiller regressions include forecasts from the boosted
models that include/exclude the realized moments in the list of potential predictor variables.
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