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Abstract:  

Distribution-free control charts gained momentum in recent years as they are more efficient 

in detecting a shift when there is a lack of information regarding the underlying process 

distribution. However, a distribution-free control chart for monitoring the process location 

often requires information on the in-control process median. This is somewhat challenging 

because, in practice, any information on the location parameter might not be known in 

advance and estimation of the parameter is therefore required. In view of this, a time-

weighted control chart, labelled as the Generally Weighted Moving Average (GWMA) 

exceedance (EX) chart (in short GWMA-EX chart), is proposed for detection of a shift in the 

unknown process location; this chart is based on an exceedance statistic when there is no 

information available on the process distribution. An extensive performance analysis shows 

that the proposed GWMA-EX control chart is, in many cases, better than its contenders.      

Keywords: nonparametric control chart; GWMA chart; exceedance statistic; precedence 

statistic; average run-length; Monte Carlo simulation. 

 

1. Introduction 

Control charts are efficient tools in statistical process control (SPC) that aim at efficient 

monitoring of streaming process and detecting changes, if any, in process performance as 

early as possible so that a corrective measure can be taken to ensure minimal loss due to a 

downfall in quality. Shewhart-type charts, proposed by Walter A. Shewhart in 1920s, might 

be appealing in practice for its simplicity, but time-weighted control charts such as 

Cumulative Sum (CUSUM) or Exponentially Weighted Moving Average (EWMA) charts 

have proven to be more efficient than Shewhart-type charts in detecting small persistent shift 

(see Montgomery [1]). Generalizing the EWMA charting procedure, Sheu and Lin [2] 

proposed a GWMA control chart for the normal distribution (denoted by GWMA-  ̅ chart) 

that has been shown to be more effective than EWMA, CUSUM and Shewhart-type charts 

(see Hsu et al. [3]) in detecting small shift in process. Chakraborty et al. [4] proposed a 

parametric GWMA chart to monitor time-between-failures when the process distribution is 
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not normal. However, the underlying process distribution may not be known or satisfy the 

distributional assumption always. It has been observed that performance of a parametric 

GWMA chart deviates in departure from distributional assumption (see Chakraborty et al. [5] 

) even when the process parameters are not shifted from its in-control standard. When the 

performance of a control chart is independent (or nearly independent) of the underlying 

process distribution, it is said to be a robust control chart and, for parametric GWMA chart, 

the in-control robustness is often adversely affected. It should be mentioned that Lu [6] and 

Chakraborty et al. [5] proposed GWMA control charts based on the sign statistic (denoted by 

GWMA-SN chart) and Wilcoxon signed-rank statistic (denoted by GWMA-SR chart), 

respectively, for the case when the true process median is known (Case K).  

In many practical situations, however, the true process median may not be known (Case U) 

that to some extent limits the applicability of the distribution-free GWMA charts based on 

sign and Wilcoxon signed-rank statistics. Exceedance (or precedence) tests are well known 

nonparametric two-sample tests based on the number of observations from one of the samples 

that exceed (or precede) a specified (say, the  -th) order statistic of the other sample for 

distributional shift. Precedence/exceedance test statistics are linearly related, and the tests 

based on these statistics are found to be useful in a number of applications including quality 

control and reliability studies with lifetime data. Balakrishnan and Ng [7] have provided a 

detail overview of the precedence/exceedance tests and their properties and applications. 

Balakrishnan and Ng [7] (see page 51) have stated that, ‘Wilcoxon rank-sum test performs 

better than precedence tests if the underlying distribution is close to symmetry, such as the 

normal distribution, gamma distribution with large values of shape parameter and lognormal 

distribution with small values of the shape parameter. However, under some right-skewed 

distributions such as the exponential distribution, gamma distribution with shape parameter 

2.0 and lognormal distribution with shape parameter 0.5, the precedence tests possess higher 
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power than the Wilcoxon’s rank-sum test for small values of  . It is evident that the more 

right skewed the underlying distribution is, the more powerful the precedence test is.’ Here,   

corresponds to the     order statistic that is being used as a reference for the precedence 

chart. Chakraborti et al. [8] studied a class of nonparametric Shewhart-type charts based on 

precedence statistics, referred to as the Shewhart-type precedence charts. Graham et al. [9], 

Graham et al. [10], and Mukherjee et al. [11], respectively, studied EWMA and CUSUM 

charts based on exceedance statistics for small process shift. In this article, we construct a 

distribution-free GWMA chart based on what is known as exceedance statistic for monitoring 

unknown median of a streaming process. This chart is referred to as the GWMA exceedance 

(or GWMA-EX) chart.  

In Section 2, a GWMA control chart based on exceedance statistic is designed and the 

necessary theoretical framework is developed. Design and implementation issues of the 

proposed chart are addressed in Section 3. Next, an illustrative example is provided in 

Section 4. Finally, some concluding remarks are made in Section 5.  

2. GWMA exceedance chart: Theoretical framework 

It is assumed that the in-control reference sample             iid      , where       is 

the cumulative distribution function (c.d.f.) of an unknown continuous distribution and 

         is the unknown location parameter of interest. Now, suppose              , 

         , is the     test sample of size    1, that follow an unknown continuous 

distribution              . Note that a location model for the distribution of the test 

sample is assumed as we intend to design a control chart for monitoring the process location. 

Let    be the unknown true value of the parameter   and         be the shifted 

parameter when the process goes out-of-control (OOC); here,   is the location shift. The 
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process is said to be in-control (IC) when    , i.e., when    . Let      be the     order 

statistic obtained from the Phase I sample of size  . 

We define the exceedance statistic as      the number of          in the     sample, for 

   1, 2, …,  . For the sake of notational simplicity, we use    hereafter to denote the 

exceedance statistic for the     sample in Phase II. 

2.1. GWMA-EX plotting statistic 

GWMA-EX chart is constructed by taking a weighted average of a sequence of the     . Let 

  denote the number of samples until the next occurrence of an event since its last 

occurrence. Then, by summing over all values of  , we can write 

∑          
    ∑          

              .    (1) 

A generally weighted moving average (GWMA) is a weighted moving average (WMA) of a sequence 

of    statistics, where the probability         is regarded as the weight    for the     most recent 

statistic        among the last   of    statistics. The probability         is considered as the weight 

for the starting value, denoted by   , which is taken as the unconditional IC expectation of    

given by              (  (
 

   
)) (see Appendix A4). Therefore, the plotting statistic 

for the GWMA-TBE chart is defined as  

   ∑          
                     for               (2) 

As in Sheu and Lin [2], the distribution of   is taken to be                      , where 

      and     are the two parameters; this is the discrete two-parameter Weibull distribution 

(see Nakagawa and Osaki [12]). So, the weights are given by               . By substituting the 

probability mass function (p.m.f.) of the two-parameter discrete Weibull distribution in equation (2), 

GWMA-EX chart plotting statistic is defined as 

    ∑               
             

  , for         ,     (3) 
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where     (  (
 

   
)). Results A4 and A5 in Appendix show that the use of conditional 

expectation and variance of the sample statistic    requires information about the underlying 

process distribution. For this reason, we determine the control limits by using unconditional 

IC expectation and variance of   . 

2.2. Control limits 

We take          , where   
 

   
. Using Result A4, the unconditional IC expectation 

of    can be determined as 

           
( (  |    ))   ∑ (           ) 

        
( (           ))     

      . 

Thus, 

            .      (4) 

The unconditional IC variance of    is given by 

                
( (  |    ))       

 (   (  |    )). 

Now, 

 (  |    )   ∑ (           ) 
    (           )     

        

 (     
) (           )     

      .  

So, 

       
( (  |    ))  (     

)
 
        

( (           ))  (     
)
           

           
 .   

Then, 

   (  |    )   ∑ (           )
  

      (           )  
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and 

     
(   (  |    ))  ∑ (           )

  
        

(   (           ))    
         

          
 ,  

where    ∑ (           )
  

   , so that 

         (     
)
           

           
    

         

          
 

         

          
((     

)
  

   
   ). 

Thus, the unconditional IC variance of    is 

         
         

          
((     

)
  

   
   ) 

 
       

   
((     

)
 
         ) ,                    (5) 

where    ∑ (           )
  

   . 

So, the exact control limits are given by 

                  √
       

   
                    . (6) 

Thus, the steady-state control limits are given by 

                  √
       

   
           ,  (7) 

with centre-line being          , 

where                  ∑ (           )
  

    and   
 

   
. 

The subscripts ‘e’ and ‘ ’ refer to the exact and steady-state control limits, respectively. 
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The following points are now worth noting: 

 Steady-state control limits are used in order to simplify the application/implementation of 

the chart. For the sake of notational simplicity, we use    ,     hereafter to denote the 

steady-state control limits; 

 We study two-sided GWMA-EX charts with symmetrically placed control limits, i.e., 

equidistant from the centreline   . The methodology can be easily modified wherein an 

one-sided chart is more meaningful or when a two-sided control chart with asymmetric 

control limits is necessary; 

 If any charting statistic    plots on or outside either of the control limits given in Eq. (7), a 

signal is given and the process is declared to be OOC. Otherwise, the process is said to be 

IC, which implies that no location shift has occurred, and so the charting procedure 

continues.  

In the next section, we discuss the design and implementation of the proposed GWMA-EX 

chart in more detail. 

3. The design and implementation of GWMA-EX chart 

Run-length distribution and its characteristics are commonly used measures to design and 

study the performance of a control chart. The average run-length (ARL) is a popular measure 

for a chart’s performance. The design of a control chart typically involves the calculation of 

the chart parameters for a pre-specified IC ARL (denoted by     
 ). Computational aspects of 

the run-length distribution for GWMA-EX chart are described next. 

3.1. Computation of the run-length distribution 

Computation of the run-length distribution for GWMA-EX chart requires some effort. This is 

because of the involvement of     , which is the     order statistic from the reference sample, 

is itself a random variable. There are a number of methods available to calculate the run-
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length distribution of a time-weighted control chart. Three methods are discussed below in 

the context of the proposed chart along with their pros and cons. 

3.1.1. Exact approach 

Suppose the run-length random variable is denoted by  , and    denotes the signalling event 

at the     sample. For any    , the complimentary event   
  can be written as   

       

                  , where, for        , 

{
   

    ∑ (           ) 
                    

   
 

   
    ∑ (           ) 

                    

   
 

     (8) 

and    
           

   
,    

           

   
 and   

 

   
. The conditional     is given by 

          ∑   
 
   , where    ∑ ∑   ∑  (∏   [          ]

 
   )

  
  

  
  

  
  

 for    1, 2, 3,… 

and     1 (see Appendix A6).   [          ] is given in Appendix A1. Unconditioning the 

conditional     given in Appendix A6, the unconditional     is, therefore, 

    =      
(        )   1+∑      

    
 
   .   (9) 

Obtaining      
    , then replacing           (see Appendix A2) in (9), one can obtain a 

closed-form expression for the unconditional     as 

       ∑ ∑ ∑   ∑  (∏ (
(
      

  
)(

        
    

)

(
   

 
)

) 
   )

  
  

  
  

  
  

 
       (10) 

Thus, a control chart based on the exceedance statistic    is distribution-free when the process 

is IC and this is referred to as ‘IC robustness’. This is a very important property of a control 

chart as variation in process performance is not desired for a change in the underlying process 
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distribution when the process is IC. However, ARL value computation by (10) is quite 

involved even with the use of a computer.  

3.1.2. Markov chain approach 

Markov chain approach is another familiar approach to obtain the run-length distribution and 

properties of a time-weighted control chart. However, Sheu and Lin [2], Sheu and Yang [13], 

Lu [6] and Chakraborty et al. [4] have mentioned that     for the GWMA charts cannot be 

obtained very easily by Markov chain approach. In a Case U GWMA chart, computation of 

unconditional     is even heftier with the Markov chain approach. 

3.1.3. Monte Carlo simulation approach 

Monte Carlo simulation approach is, therefore, used to approximate the ARL values. To 

estimate the unconditional run-length distribution and its characteristics through Monte Carlo 

simulation approach for GWMA-EX chart, the following steps are to be adopted: 

1) In order to simulate the run-length distribution, one needs to specify a process 

distribution      , the IC distribution parameter   , reference and test sample sizes   

and  , the shift to be detected denoted by  , and the chart parameters        ; 

2) Generate a reference sample from the specified process distribution       and obtain 

    ; 

3) Generate a test sample of size   and calculate    by counting the number of   

observations in the     test sample that are at least as large as     . The test sample 

should be drawn from        , where      when simulating an IC run-length 

distribution and        when simulating an OOC run-length distribution; 

4) Calculate   and obtain the steady-state control limits in Eq. (7) by using the (     ) 

values chosen in step (1); 
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5) Take     (  (
 

   
)) and calculate the plotting statistic    given in Eq. (3) for 

        and compare each    with the steady-state control limits obtained; 

6) The number of test samples until a    falls on or outside either of the limits is taken as 

an observation from the run-length distribution; 

7) Repeat steps (1)-(6) a large number of times, say, 10,000 times, that gives us 10,000 

observations from the run-length distribution. Using this set of run-length 

observations, we can obtain different distributional properties such as          or 

different percentile of the run-length distribution;  

3.2. The in-control design and implementation 

For chosen values of   and  , the two parameters   and   are varied over a certain range of 

values and for each (   ) combination, the values of the charting constant, i.e.,    0, are 

obtained so that the attained IC     (denoted by     ) is close to (in this case, slightly 

above or below for the use of simulation) the nominal or specified value     
 . The typical 

industry standards for     
  are 370 or 500 and we consider the former in our study. The 

typical recommendation for the smoothing parameter       for an EWMA chart is to 

choose smaller values for smaller shifts (see Montgomery [1], page 423). Because the 

GWMA chart reduces to an EWMA chart when       and    , a larger value of  , 

i.e., closer to 1, should be a reasonable choice for the GWMA chart to detect small shifts. To 

this end, Sheu and Lin [2] noted that (   ) combinations in the intervals 0.5     0.9 and 

0.5     1 enhanced the sensitivity of the GWMA- ̅ chart and outperformed the EWMA- ̅ 

chart for small shifts (i.e., less than 1.5 standard deviations in the location). In our study, we 

set    49, 99,    5, 10, and then considered the range    0.8, 0.9, 0.95 and    0.7, 0.8, 

0.9, 1.0, 1.3, respectively. By using simulations along with a grid search algorithm, we 

obtained the charting constant    0 for the chosen (   ) combination and specified values  
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Table 1: IC and OOC     for different combinations of         for different shift   when        

 , 10 with     
   370. 

             

   49       0 0.05 0.1 0.25 0.5 0.75 1.0 1.5 

   5 0.8 0.7 2.033 369.48 358.96 323.66 182.36 31.79 10.41 6.51 4.14 

  0.8 2.112 369.16 360.33 329.31 185.74 31.77 10.12 6.26 4.06 

  0.9 2.184 370.09 360.94 332.66 185.72 32.22 9.90 6.06 4.03 

  1.0 2.248 370.13 363.06 330.50 187.49 32.94 9.79 5.95 3.92 

  1.3 2.382 371.26 355.39 327.53 195.61 39.49 10.37 5.82 3.84 

 0.9 0.7 1.464 372.82 352.92 323.44 171.05 31.70 11.22 7.68 5.27 

  0.8 1.595 371.98 358.17 338.32 172.02 29.60 10.84 7.37 5.18 

  0.9 1.713 370.14 364.75 332.21 179.75 30.23 10.41 7.08 5.07 

  1.0 1.819 368.93 355.72 336.79 180.44 29.36 10.10 6.79 4.93 

  1.3 2.069 369.11 365.8 329.52 185.43 33.33 9.52 6.22 4.52 

 0.95 0.7 0.951 372.98 353.57 334.12 166.62 31.19 13.22 9.13 6.43 

  0.8 1.089 370.34 347.62 310.26 169.06 30.00 12.65 8.88 6.38 

  0.9 1.228 368.56 349.78 321.38 165.64 30.6 12.08 8.6 6.3 

  1.0 1.363 373.83 359.62 328.24 174.2 30.64 11.48 8.26 6.2 

  1.3 1.715 368.95 358.95 328.1 182.08 29.6 10.17 7.29 5.63 

   10 0.8 0.7 1.716 371.34 346.20 321.47 163.70 21.44 6.64 4.09 2.71 

  0.8 1.799 367.01 369.04 332.38 170.45 21.60 6.22 4.08 2.86 

  0.9 1.871 370.80 358.76 331.82 169.95 21.93 6.06 3.97 2.83 

  1.0 1.943 368.99 353.45 328.11 175.56 23.78 6.07 3.89 2.81 

  1.3 2.119 372.48 373.53 335.21 185.60 26.17 5.84 3.68 2.77 

 0.9 0.7 1.164 372.88 353.62 319.78 161.54 22.83 7.49 5.05 3.50 

  0.8 1.274 374.14 357.50 321.47 167.35 21.34 7.30 4.98 3.56 

  0.9 1.380 374.68 356.03 320.98 171.01 22.56 6.87 4.80 3.49 

  1.0 1.479 370.06 359.48 324.26 166.10 19.40 6.88 4.66 3.42 

  1.3 1.751 372.46 371.39 328.54 173.18 21.61 6.08 4.40 3.36 

 0.95 0.7 0.738 370.05 350.26 323.10 155.84 26.30 9.15 6.24 4.42 

  0.8 0,854 370.13 344.66 326.17 160.90 22.74 8.82 6.29 4.53 

  0.9 0,967 369.04 361.43 329.72 169.01 22.60 8.44 6.19 4.57 

  1.0 1,079 369.79 361.06 326.51 158.52 24.04 8.05 5.99 4.56 

  1.3 1,396 372.89 347.82 328.52 175.51 21.78 7.18 5.47 4.32 
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Table 2: IC and OOC     for different combinations of         for different shift   when        

 , 10 with     
   370. 

             

   99       0 0.05 0.1 0.25 0.5 0.75 1.0 1.5 

   5 0.8 0.7 2.327 370.23 343.01 299.45 112.79 18.64 8.96 6.10 4.03 

  0.8 2.399 369.77 356.15 302.89 117.35 18.96 8.62 5.86 3.98 

  0.9 2.457 370.68 356.75 314.14 125.24 19.11 8.43 5.70 3.92 

  1.0 2.505 370.46 360.68 310.51 127.30 20.61 8.32 5.58 3.88 

  1.3 2.590 370.46 365.21 315.99 140.96 23.30 8.48 5.18 3.54 

 0.9 0.7 1.807 370.58 341.47 294.66 105.59 18.53 9.89 7.01 4.91 

  0.8 1.934 371.27 357.09 298.92 104.85 17.73 9.56 6.75 4.82 

  0.9 2.040 369.77 350.21 291.66 106.79 17.26 9.14 6.58 4.80 

  1.0 2.133 370.68 352.25 300.99 108.72 17.19 8.77 6.26 4.62 

  1.3 2.337 371.68 357.62 307.98 123.74 18.32 8.27 5.84 4.45 

 0.95 0.7 1.223 369.99 343.09 294.77 102.75 20.74 11.58 8.33 5.90 

  0.8 1.382 369.05 340.67 291.89 99.04 19.52 11.15 8.19 5.97 

  0.9 1.536 372.14 349.22 293.54 101.51 18.86 10.75 7.96 5.90 

  1.0 1.669 369.66 350.49 299.98 103.45 18.31 10.28 7.69 5.71 

  1.3 2.016 371.55 350.90 309.11 111.77 17.27 9.14 6.95 5.48 

   10 0.8 0.7 2.078 373.30 349.45 299.65 91.85 11.19 5.55 3.88 2.66 

  0.8 2.145 369.07 346.68 297.00 96.69 11.05 5.34 3.77 2.63 

  0.9 2.214 369.60 357.49 304.81 98.89 10.76 5.21 3.67 2.62 

  1.0 2.274 369.11 354.80 309.76 102.63 11.11 5.14 3.67 2.79 

  1.3 2.408 369.37 352.39 311.23 108.20 12.08 4.90 3.49 2.76 

 0.9 0.7 1.485 370.29 344.77 286.86 89.48 12.25 6.52 4.68 3.36 

  0.8 1.604 372.60 340.35 281.37 85.12 11.62 6.29 4.59 3.35 

  0.9 1.716 368.13 339.16 277.98 79.47 11.48 6.12 4.52 3.34 

  1.0 1.818 370.73 340.89 282.51 84.60 10.98 5.92 4.45 3.34 

  1.3 2.073 372.89 348.34 296.35 96.43 10.74 5.40 4.13 3.22 

 0.95 0.7 0.959 371.00 351.90 298.77 92.72 13.99 7.80 5.63 4.06 

  0.8 1.093 369.72 342.96 281.89 86.29 13.40 7.67 5.67 4.14 

  0.9 1.228 375.11 343.88 285.38 86.76 12.87 7.44 5.65 4.30 

  1.0 1.363 374.78 348.50 286.00 87.34 12.27 7.24 5.59 4.30 

  1.3 1.718 371.06 349.03 286.11 86.17 10.91 6.53 5.18 4.19 

 

of   and  , so that the attained      is approximately equal to     
   370. The values of   

for which the attained      values are close to 370 are reported in Tables 1 and 2 along with 

the corresponding      values in the column for    . We compare our simulation results 

with Graham et al. [9] to ensure that the results are consistent in two different studies. For 

instance, when    99,   = 5, we have (   0.9,    1,    2.133) wherein Graham et al. 

[9], the parameters are (    1,    2.132) for          
 , since      . The   
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values in Tables 1 and 2 are useful in the design and implementation of the GWMA-EX 

chart.  

It is worth noting that, as a usual practice, we focus mostly on the median of the reference 

sample for     , i.e., the     order statistic is the median from Phase I sample as described in 

Section 2. However, we conducted a short performance study for the proposed GWMA-EX 

chart with 25
th

 and 75
th

 percentiles of the Phase I sample taken as     . We observed certain 

issues arising while using other percentiles for GWMA-EX chart instead of the median of the 

Phase I sample in performing process monitoring when the direction of the shift to be 

detected is not specified and for this reason we recommend the use of median of the Phase I 

sample for the GWMA-EX chart. This is discussed in detail in the next section. Although the 

choice of reference sample order statistic and overcoming the challenges arising thereafter are 

interesting problems to study on their own merit, in this paper, we limit ourselves mostly to 

the choice of median since it is a robust measure of the central tendency of distributions of 

any shape and a popular choice of percentiles in practice. We also avoid the complications 

arising from the use of other percentiles by using median of the Phase I reference sample. 

Fig. 1 shows boxplot-like graphs for IC run-length distribution of GWMA-EX charts for 

different         combinations when    49 and    5. It can be observed that the run-

length distribution is a heavily right-skewed distribution. The design of the GWMA-EX chart 

is described in this section in order to provide a general guideline to practitioners. 

Considering practical limitations, we only select a few parameter combinations, as stated 

above, but this study can easily be extended for a larger range of parameter values following 

the same guidelines as we have provided here. In the next section, we discuss the OOC 

performance of the proposed GWMA-EX chart for different shift sizes. 
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Figure 1. Boxplot-like graphs for IC run-length distribution of GWMA-EX charts for different (q, α, L) 

combinations when m = 49, n = 5. 

 

3.3. The out-of-control performance 

The GWMA charts are generally more sensitive than the EWMA charts in detecting small 

shifts (see the results in Sheu and Lin [2], Lu [6] and Sheu and Yang [13]). As observed by 

Graham et al. [9], EWMA exceedance chart (EWMA-EX chart) can be taken as a competitive 

alternative to many parametric and nonparametric control charts (see Graham et al. [9] for 

more details). It is reasonable now to compare the proposed GWMA-EX chart with the 

GWMA- ̅ chart and the EWMA-EX chart for normal and a number of non-normal 

underlying process distributions. 

To study the performance of the GWMA-EX chart, we use the combinations of the 

parameters from Table 1; these combinations ensure that the attained      is close to 370. In 

order to perform a comparison study between different control charts (or between different 

choices of chart parameters), it is important to ensure the IC performance is similar for all 
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competing charts. Once different competing charts are placed at similar IC levels, one can 

select a control chart with minimal      performance as a good chart for practical 

implementation.  

From Tables 1 and 2, we note that in general, multiple combinations of the parameters 

        will yield the same      for some chosen or specified values of   and  . This is 

somewhat challenging because, apart from desiring a sufficiently large     ,      should 

be small for an effective GWMA-EX chart. Therefore, the (     ) combination with the 

minimum      obtained in the scope of our simulation study for a specified shift   is said to 

be the relative optimal combination. The relative optimal design of the GWMA-EX chart 

consists of specifying the desired      and      values as well as the magnitude of the 

process shift that is anticipated and then select that (     ) combination that provides the 

desired     performance; typically, the (     ) combination with the minimum      is 

selected. For example, in Table 1, the combination (   0.95,    0.8,    1.089) has the 

minimum       347.62 among the chosen range of parameters for shift    0.05 for 

     and    5. A detailed study on the optimal design of the GWMA-EX chart is not 

within the scope of this article. We study the      performance of the proposed GWMA-EX 

chart with the specified range of parameter combinations for shift   = 0.05, 0.10, 0.25, 0.50, 

0.75, 1.0 and 1.5. Because the IC distribution of the exceedance statistic is symmetric for      

taken as median, to study      performance, only the positive shifts (i.e., increases in the 

mean/median) are considered; the results are equally applicable for negative or downward 

shifts. Since the Shewhart-type charts are traditionally known to be efficient in detecting 

large shifts, we do not consider shifts more than 1.5; the focus of this study is on efficiently 

detecting small to moderate shifts. 
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Tables 1 and 2 show the IC and OOC     performance of the proposed GWMA-EX chart 

with different combinations of         when shift    0.05, 0.10, 0.25, 0.50, 0.75, 1.0 and 

1.5 for    49, 99 and    5, 10. As observed from the     performance,  

- GWMA-EX chart, with a suitably chosen    1, performs generally better than the 

EWMA-EX chart (i.e., when    ) for    0.5. For example, in order to detect a 

shift of    0.25, a GWMA-EX chart with (   0.8,    0.7,    2.033) has       

182.36 whereas the EWMA-EX chart with (   0.8,    1.0,    2.248) has       

187.49 when    49 and    5. However, many cases such as a GWMA-EX chart 

with q 0.9,  0.7, 0.8, 0.9 are worse than the EWMA-EX chart at  1 when   = 

49 and   = 5;  

- For moderate shift of  0.5, the GWMA-EX chart with  1 works in generally 

better than the EWMA-EX chart, especially at larger design parameter q.   

Although     and      are popular performance measures, we also look at a number of 

percentiles including 1
st
, 5

th
, 25

th
, 50

th 
(or     , 75

th
, 95

th
 and 99

th
 percentiles of the run-

length distribution for the GWMA-EX chart. Results are available upon request from the 

authors. 

We also ran a comparative performance study for the GWMA-EX chart when the     order 

statistic from Phase I sample, i.e.,      is taken as the 75
th

 and 25
th

 percentiles instead of the 

median. The corresponding results are given in Table 3. Our study shows that for an upward 

shift, the choice of       75
th

 percentile of the Phase I sample works significantly better than 

the median irrespective of the choice of (     ) or the choice of shift  . On the other hand, 

for       25
th

 percentile, the run-length distribution of the GWMA-EX chart often 

encounters bias, i.e.,      is often more than      and the performance is uniformly worse 

than when      is taken as the median of the Phase I sample. For the sake of brevity, a 
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selection of results is presented in Table 3.  A more detailed performance study is carried out 

and results are available upon request from the authors.  

 For the ease of performance comparison based on     profiles of two charts, Fig. 2 is 

provided below for specific choice of  ,   and respective  . It is clear that, for an upward 

shift in the process,       75
th

 percentile has uniformly better performance than       

median, but       25
th

 percentile has uniformly lower performance than       median. One 

can similarly conduct a study for downward shift in process as well in which we would 

expect       25
th

 percentile to have uniformly better performance.   

 

Figure 2. IC and OOC ARL for X(r) = 75th, 50th and 25th percentiles of the Phase I sample for upward 

shift when q = 0.8, α = 0.9. 
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Table 3:     values for       75
th

 , 50
th

 and 25
th

 percentiles of the Phase I sample for different shift   

when         . 

             

           0 0.05 0.1 0.25 0.5 0.75 1 1.5 

75
th

 percentile 0.8 0.9 2.120 370.18 324.31 269.85 120.28 22.42 7.07 4.12 2.54 

50
th

 percentile   2.184 370.09 360.94 332.66 185.72 32.22 9.90 6.06 4.03 

25
th

 percentile   2.123 369.86 408.11 411.32 346.7 108.23 25.89 12.85 8.92 

75
th

 percentile  1.0 2.174 371.02 325.56 265.33 122.28 21.78 7.12 4.07 2.51 

50
th

 percentile   2.248 370.13 363.06 330.50 187.49 32.94 9.79 5.95 3.92 

25
th

 percentile   2.175 369.82 403.41 422.48 354.66 116.03 25.30 12.59 8.1 

75
th

 percentile  1.3 2.289 369.11 321.64 262.60 121.94 21.97 6.94 3.98 2.44 

50
th

 percentile   2.382 371.26 355.39 327.53 195.61 39.49 10.37 5.82 3.84 

25
th

 percentile   2.291 369.08 412.64 440.00 410.45 152.92 35.41 14.69 7.59 

75
th

 percentile 0.9 0.9 1.695 370.27 338.72 303.24 145.41 26.57 8.39 5.21 3.34 

50
th

 percentile   1.713 370.14 364.75 332.21 179.75 30.23 10.41 7.08 5.07 

25
th

 percentile   1.694 370.33 383.32 384.48 271.68 63.41 18.83 12.18 9.09 

75
th

 percentile  1.0 1.795 369.40 331.99 296.41 147.05 28.43 8.20 5.08 3.34 

50
th

 percentile   1.819 368.93 355.72 336.79 180.44 29.36 10.10 6.79 4.93 

25
th

 percentile   1.794 370.73 383.24 379.97 273.48 66.44 18.08 11.67 8.82 

75
th

 percentile  1.3 2.036 371.98 333.27 294.29 145.21 28.24 8.05 4.72 3.17 

50
th

 percentile   2.069 369.11 365.80 329.52 185.43 33.33 9.52 6.22 4.52 

25
th

 percentile   2.032 374.05 383.29 392.55 302.79 82.67 20.48 10.96 7.77 

75
th

 percentile 0.95 0.9 1.227 371.01 347.58 304.70 155.50 32.10 10.11 6.52 4.21 

50
th

 percentile   1.228 368.56 349.78 321.38 165.64 30.60 12.08 8.60 6.30 

25
th

 percentile   1.230 368.20 376.61 358.33 235.69 56.76 19.90 14.07 11.04 

75
th

 percentile  1.0 1.365 371.00 339.84 310.56 156.06 31.86 9.85 6.42 4.25 

50
th

 percentile   1.363 373.83 359.62 328.24 174.20 30.64 11.48 8.26 6.20 

25
th

 percentile   1.359 368.73 373.37 362.65 236.59 54.07 18.48 13.02 10.12 

75
th

 percentile  1.3 1.704 368.09 344.24 302.71 156.53 29.47 8.98 5.85 4.10 

50
th

 percentile   1.715 368.95 358.95 328.10 182.08 29.60 10.17 7.29 5.63 

25
th

 percentile   1.704 371.06 377.53 369.95 259.94 63.10 17.31 11.23 8.76 

 

A performance study for the GWMA-EX chart based on the median run-length (   ) is 

being performed for different     . Sample size is taken as    100,    5 and a nominal 

    (denoted by     ) is taken as       350 as a standard selection. For given     and 
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     , we obtain   values so that the attained     is close to the nominal       350 when 

     is taken as 75
th

, 50
th

 and 25
th

 percentiles. These are reported in Table 4, and they show a 

similar result as in    -based study. The problem of bias in the run-length distribution still 

persists with       25
th

 percentile and it has uniformly poorer performance than       

median for upward shift. This is displayed in Fig. 3. Therefore, there is no significant 

improvement observed in    -based performance study. 

According to the study, it is not recommended for a practitioner to use a percentile other than 

median whenever the direction of shift is not specified to be detected. However, given the 

direction of the shift, upward or downward, it may be better to use accordingly an upper or 

lower percentile to obtain a faster shift detection. A similar study based on     can be 

performed for downward shift as well.  

 

Figure 3. IC and OOC MRL for X(r) = 75th, 50th and 25th percentiles of the Phase I sample for upward 

shift when q = 0.8, α = 0.9. 
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Table 4:     values for       75
th

 and 50
th

 percentiles of the Phase I sample for different shift   when 

         . 

             

           0 0.05 0.1 0.25 0.5 0.75 1 1.5 

75
th

 percentile 0.8 0.9 2.596 350.00 217.00 124.00 34.00 10.00 6.00 4.00 3.00 

50
th

 percentile   2.620 350.5 320.00 246.00 58.00 15.00 8.00 6.00 4.00 

25
th

 percentile   2.604 351.00 508.00 582.00 322.50 45.00 19.00 13.00 9.00 

75
th

 percentile  1.0 2.625 350.00 219.50 128.5 35.00 10.00 5.00 4.00 3.00 

50
th

 percentile   2.661 350.5 328.00 247.00 63.00 14.00 8.00 5.00 4.00 

25
th

 percentile   2.627 350.00 468.50 576.50 349.00 48.00 18.00 12.00 8.00 

75
th

 percentile  1.3 2.677 351.00 220.00 134.00 37.00 10.00 5.00 3.00 3.00 

50
th

 percentile   2.735 350.00 329.00 270.00 79.00 16.00 7.00 5.00 4.00 

25
th

 percentile   2.685 350.50 547.00 694.50 647.00 101.00 28.00 14.00 8.00 

75
th

 percentile 0.9 0.9 2.250 350.00 253.00 156.00 37.00 13.00 7.00 5.00 3.00 

50
th

 percentile   2.262 350.00 307.00 215.00 50.00 16.00 9.00 7.00 5.00 

25
th

 percentile   2.250 350.00 405.00 357.00 103.00 27.00 16.00 12.00 10.00 

75
th

 percentile  1.0 2.324 349.00 256.00 149.00 37.00 12.00 7.00 5.00 3.00 

50
th

 percentile   2.340 351.00 319.00 228.00 50.00 15.00 9.00 7.00 5.00 

25
th

 percentile   2.323 350.50 412.00 358.00 112.00 26.00 15.00 11.00 9.00 

75
th

 percentile  1.3 2.491 350.00 246.00 157.00 38.00 11.00 6.00 4.00 3.00 

50
th

 percentile   2.510 351.00 320.00 242.00 60.00 14.00 8.00 6.00 4.00 

25
th

 percentile   2.488 349.00 423.00 412.00 176.00 31.00 14.00 10.00 7.00 

75
th

 percentile 0.95 0.9 1.798 350.00 273.00 165.00 45.00 16.00 10.00 7.00 5.00 

50
th

 percentile   1.792 350.00 306.00 194.00 52.00 19.00 12.00 9.00 7.00 

25
th

 percentile   1.793 349.00 376.00 298.00 83.00 29.00 19.00 15.00 13.00 

75
th

 percentile  1.0 1.921 350.00 251.00 162.00 41.00 15.00 9.00 6.00 4.00 

50
th

 percentile   1.921 350.00 311.00 199.00 48.00 17.00 11.00 9.00 7.00 

25
th

 percentile   1.921 352.00 364.00 294.00 78.00 27.00 17.00 14.00 12.00 

75
th

 percentile  1.3 2.211 349.00 260.00 164.00 39.00 12.00 7.00 6.00 4.00 

50
th

 percentile   2.228 350.5 326.00 234.00 51.00 14.00 9.00 7.00 6.00 

25
th

 percentile   2.214 349.50 388.00 341.00 103.00 23.00 14.00 11.00 9.00 

 

Next, we compare the OOC performance of GWMA-EX chart with EWMA-EX chart and 

thereafter against the GWMA-  chart for the case of process parameter being unknown (Case 
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U). For this purpose, we consider logistic(  
√ 

 
), uniform( √  √ ) and Laplace(  

 

√ 
) as 

non-normal symmetric process distributions. The parameters are chosen for each distribution 

so that the mean is 0 and variance is 1. As skewed alternatives, we consider gamma 

distribution with shape parameters 1,2 and 3 and scale parameter taken to be 1 without loss of 

generality. A summary of the findings is as follows:  

(a) GWMA-EX chart vs. EWMA-EX chart and GWMA- ̅ chart under symmetric 

distributions 

It has been observed from Tables 1 and 2 that GWMA-EX chart, for a suitably chosen    , 

often outperforms EWMA-EX chart (i.e., when    ) under standard normal distribution. 

But the assumption of normality might fail in practice and in that case, it is important to see 

whether the parameter combination for GWMA-EX chart that yields better performance than 

EWMA-EX chart for normality still works well for non-normal distributions. For this 

purpose, we consider the combination    0.9,    0.7,    1.464 for GWMA-EX chart and 

the sample size    49,    5. The design parameter   is taken to be the same for EWMA-

EX chart and thus we take    0.9,    1 and    1.819 for EWMA-EX chart. The idea 

behind taking the same design parameter for GWMA-EX and EWMA-EX charts lies in the 

fact that GWMA-EX chart is a generalization of EWMA-EX chart, and so it is of interest to 

see whether the same design parameter   can provide better performance when adjustment 

parameter   is varied from 1. 

Table 5 shows that the parameter combination    0.9,    0.7,    1.464 for GWMA-EX 

chart that gives better performance than EWMA-EX chart for normality is also providing 

better performance for the considered non-normal symmetric distributions. For example, 

when the process follows Laplace(  
 

√ 
) distribution and    0.1, GWMA-EX chart with 
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parameters    0.9,    0.7,    1.464 has       241.49, while EWMA-EX chart with 

parameters    0.9,    1 and    1.819 has       252.63.   

We also compare the performance of GWMA-EX chart with GWMA- ̅ chart for normal 

distribution designed under Case U. For a detail study on GWMA- ̅ chart for normal 

distribution, the reader is referred to Sheu and Lin [2].  

By adopting a design procedure similar to the one in Sheu and Lin [2], we construct a 

GWMA- ̅ chart for normal distribution for Case U, i.e., when the process location is 

unknown. The design parameter    0.9 and the adjustment parameter    0.7 for GWMA-

 ̅ chart are taken to be the same as the competing GWMA-EX chart. The idea is to see 

whether the same (   ) combination provides similar performance and robustness under 

different distributions when exceedance statistic is used instead of  ̅ in the GWMA model or 

there is improvement. In our study, as specified before, we take the process location 0 and 

variance 1, without loss of generality. The usual approach for designing parametric control 

charts for Case U is to estimate the unknown process parameters from IC Phase I sample, use 

those estimates to obtain the control limits, and then study the chart’s run-length properties. 

For the chosen value of (   0.9,    0.7),    3.290 is obtained for which the attained 

      370.99 for GWMA- ̅ chart in Case U which is close to the nominal     
      for 

        5. Table 5 shows that, for normal process distribution, GWMA- ̅ chart 

performs much better than GWMA-EX chart and EWMA-EX chart, but this is not surprising 

as the GWMA- ̅ chart is designed under the normality assumption and is therefore expected 

to perform better than its nonparametric counterparts when the underlying distribution 

satisfies the distributional assumption for the process. However, when the process 

distribution departs from normality, GWMA- ̅ chart designed for normality becomes volatile 

in its IC behaviour as the attained      starts moving farther from the nominal     
   370. 

For instance, the attained      for GWMA- ̅ chart is 401.32 and 289.19 when the 
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underlying distributions are uniform( √  √ ) and Laplace(  
 

√ 
), respectively. On the other 

hand, the nonparametric counterparts such as GWMA-EX chart and EWMA-EX chart are IC 

robust under non-normality. According to Appendix A1 and A2, the attained      for 

GWMA-EX chart and EWMA-EX chart should not differ for non-normality when the 

process is IC. The small variation in the obtained results in Table 5 is due to variability 

arising from Monte Carlo simulation. The non-robust behaviour of GWMA- ̅ chart for non-

normality makes it to be unsuitable for use in practice when the underlying process 

distribution is either not known or cannot be tested. 

Table 5:     values for the GWMA-EX, EWMA-EX and GWMA-  ̅ charts for various shifts   when 

    
   370 and    49,    5 under symmetric distributions. 

 

  Chart       normal(0,1) logistic(  
√ 

 
) uniform( √  √ ) Laplace(  

 

√ 
) 

 GWMA-EX 0.9 0.7 1.464 372.82 369.26 369.26 371.33 

0.00 EWMA-EX 0.9 1.0 1.819 368.93 378.26 378.26 370.77 

 GWMA-  ̅ 0.9 0.7 3.290 370.99 341.00 401.32 289.19 

 GWMA-EX 0.9 0.7 1.464 352.92 343.83 344.27 318.09 
0.05 EWMA-EX 0.9 1.0 1.819 355.72 351.02 366.68 333.44 

 GWMA-  ̅ 0.9 0.7 3.290 343.99 317.19 382.37 276.60 

 
0.10 

GWMA-EX 0.9 0.7 1.464 323.44 310.37 338.19 241.49 

EWMA-EX 0.9 1.0 1.819 336.79 314.61 351.14 252.63 

GWMA-  ̅ 0.9 0.7 3.290 292.85 270.34 330.298 231.81 

 

0.25 

GWMA-EX 0.9 0.7 1.464 171.05 133.18 246.76 58.82 

EWMA-EX 0.9 1.0 1.819 180.44 139.89 251.41 57.82 

GWMA-  ̅ 0.9 0.7 3.290 82.04 81.12 86.02 71.78 

 GWMA-EX 0.9 0.7 1.464 31.70 21.25 82.72 12.56 
0.50 EWMA-EX 0.9 1.0 1.819 29.36 20.15 86.74 11.25 

 GWMA-  ̅ 0.9 0.7 3.290 14.87 15.12 14.71 15.11 

 GWMA-EX 0.9 0.7 1.464 7.68 6.97 10.75 6.37 
1.00 EWMA-EX 0.9 1.0 1.819 6.79 6.26 9.87 5.76 

 GWMA-  ̅ 0.9 0.7 3.290 5.13 5.21 5.20 5.11 

 

(b) GWMA-EX chart vs. EWMA-EX chart and GWMA- ̅ chart under skewed 

distributions 

In order to study the performance of GWMA-EX chart, EWMA-EX chart and GWMA- ̅ 

chart for skewed distributions, we consider gamma(   ) distribution, where   is the shape 

parameter and   is the scale parameter. It should be noted that, unlike in the case of 

symmetric distributions considered, gamma(   ) distribution has mean and variance as 

functions of parameters   and  . Thus, for a given  , shift in scale parameter   would effect 
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change in both mean and variance simultaneously. Therefore, for gamma(   ) distribution, it 

is not possible to consider mean 0 and variance 1 like we did earlier for symmetric 

distributions.  

We denote the IC scale parameter as    and OOC scale parameter as        . Note that we 

define the shift   
  

  
 differently for the gamma distribution than for symmetric distributions. 

The reason can be explained as follows: If              , then   
 

 
           . 

Therefore, the IC scale parameter    can be taken as 1 without loss of generality. We define 

  

  
   and thus, taking     1 without loss of generality, we have     . For a shift  , it is 

easy to see that, 
 

 
      (  

 

 
) and thus, irrespective of the true value of      , 

 

  
 

 

 
 

would have the same distribution as long as the ratio   is the same. Thus, the chart properties 

will be the same for different    and    as long as their ratio   is the same. But, the absolute 

difference does not take this into consideration since, for the absolute difference        , 

the effect of shift depends on the magnitude of    itself. For instance, 0.05 shift in 1 is not the 

same as 0.05 shift in 5. So, the chart useful for shift 0.05 in     1 cannot be used for shift 

0.05 in     5 if the chart is designed for absolute difference. Taking    = 1 without loss of 

generality would make the chart useful for any IC   , but the OOC performance would vary 

for different    and    even if         is the same. On the other hand, shift in ratio of 0.05 

can be used for any       as long as their ratio is 0.05. We now consider    0.975, 0.95, 

0.9, 0.8, 0.7 for the OOC process and     for the IC process. The construction of GWMA-

EX chart for gamma(   ) distribution is same as for normal or other symmetric distributions. 

But, for GWMA- ̅ chart in Case U, the control limits used for normal distribution are clearly 

unsuitable for gamma(   ) distribution. This is due to the fact that the distribution mean and 

variance are no longer 0 and 1, respectively. If we get the estimate of the process mean from 

IC Phase I sample and plug that in to the control limits with a blunt choice of variance 1, the 
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starting value being replaced by the estimated process mean, GWMA- ̅ chart will perform 

nonsensically when the process is IC. For example, GWMA- ̅ chart with          

             has       341.85 for gamma(1,1) distribution,        59.99 for 

gamma(2,1) distribution, and       30.66 for gamma(3,1) distribution in Case U when 

    ,    5. It is thus clear that the usual GWMA- ̅ chart designed under normal 

assumption does not work well for skewed distributions.  

Note that the control limits for GWMA- ̅ chart are of the form (   
 

√ 
) and since the 

assumption of variance 1 is not reasonable, we take the estimate of both process mean   and 

standard deviation   from the IC Phase I sample and plug these estimates, denoted by   ̂ 

and   ̂, into the control limits. The starting value is also taken as   ̂ instead of 0. Table 6 shows 

that GWMA- ̅ chart is far from IC robustness and it often encounters bias in run-length 

distribution in the case of skewed process distribution. For example, GWMA- ̅ chart with 

                      and    49,    5 has       408.82 for gamma(1,1) 

distribution,        405.98 for gamma(2,1) distribution, and       413.81 for 

gamma(3,1) when the process standard deviation is also replaced by its estimate. Table 6 

shows that, for gamma distribution with shape parameters    1, 2, 3, GWMA-EX chart 

outperforms EWMA-EX chart for all shift    0.7 except for the case of    3 and    0.7 

where EWMA-EX chart occasionally has earlier detection than GWMA-EX chart.   
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Table 6:     values for the GWMA-EX, EWMA-EX and GWMA-  ̅ charts for various shifts   when 

    
   370 and    49,    5 under skewed distributions. 

  Chart       gamma(1,1) gamma(2,1) gamma(3,1) 

 GWMA-EX 0.9 0.7 1.464 368.44 373.83 372.14 

1.00 EWMA-EX 0.9 1.0 1.819 371.33 365.10 371.79 
 GWMA-  ̅ 0.9 0.7 3.290 408.82 405.98 413.81 

 GWMA-EX 0.9 0.7 1.464 363.17 369.06 366.26 

0.975 EWMA-EX 0.9 1.0 1.819 367.73 375.94 356.70 
 GWMA-  ̅ 0.9 0.7 3.290 473.63 495.82 504.24 

 

0.95 

GWMA-EX 0.9 0.7 1.464 359.01 333.14 333.87 

EWMA-EX 0.9 1.0 1.819 363.28 343.60 337.33 

GWMA-  ̅ 0.9 0.7 3.290 571.83 612.79 555.01 

 
0.9 

GWMA-EX 0.9 0.7 1.464 324.08 274.66 256.92 

EWMA-EX 0.9 1.0 1.819 325.94 289.15 250.09 

GWMA-  ̅ 0.9 0.7 3.290 747.99 662.64 546.23 

 GWMA-EX 0.9 0.7 1.464 226.12 134.39 75.63 

0.8 EWMA-EX 0.9 1.0 1.819 231.50 137.93 82.49 
 GWMA-  ̅ 0.9 0.7 3.290 828.29 368.39 159.18 

 GWMA-EX 0.9 0.7 1.464 117.05 39.19 19.68 

0.7 EWMA-EX 0.9 1.0 1.819 121.28 41.24 18.58 

 GWMA-  ̅ 0.9 0.7 3.290 445.61 63.04 18.01 

 

As a general recommendation for implementation of the GWMA-EX chart, it can be said that 

the value of   in 0.8       0.95 and   in the interval 0.7 to 0.9 should be useful in detecting 

a shift of    0.5 while     should be useful in detecting larger shifts. An example is 

provided in the following section to illustrate the proposed GWMA-EX chart.  

4. Illustrative example 

To illustrate the application of the proposed GWMA-EX chart, we draw 49 samples of size 

   5 from normal(0,1) distribution as Phase I dataset to estimate the process median. The 

median of Phase I sample is 0.165. We also draw 200 Phase II random samples from 

normal(0.25,1) distribution which can be regarded as OOC observations from a process with 

location shift    0.25. Table 1 shows that, for    0.25, GWMA-EX chart with (   0.9, 

   0.7,    1.464) has       171.05 and EWMA-EX chart with (   0.9,    1.0,    

1.819) has       180.44. We take    0.9,    0.7,    1.464 and following the same 

approach as in Section 3, GWMA-EX chart is designed. Control limits for GWMA-EX chart 

are obtained as      3.077 and      1.923. An EWMA-EX chart is also designed with 

   0.9,    1.0,    1.819 and the control limits are      3.287 and      1.713. The  
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Figure 4. GWMA-EX and EWMA-EX chart implemented on simulated data. 

 

 

 

attained      for these two charts are close to 370 which put them at a similar IC 

performance level and are therefore comparable. As described before, the chart parameters 

(     ) must be chosen in a way so that the attained      is close to the nominal     
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 Both of the charts are using steady-state control limits. The centreline is equal to 

the unconditional IC expectation of the plotting statistic; 

 The vertical axis is not at the original scale of measurement because the building 

block for GWMA-EX chart and EWMA-EX chart is the exceedance statistic. 

5. Concluding remarks 

The rigid assumption of normality for the process distribution may not hold in practice while 

designing a control chart for monitoring a streaming process. The performance of the 

classical GWMA- ̅ chart becomes worse under skewed distributions when the process 

distribution is unknown. A distribution-free GWMA control chart based on exceedance 

statistic, referred to as GWMA-EX chart, has been constructed in this paper for a process for 

which information on the underlying process distribution as well as the process median are 

not available. Design and relative performance study of the proposed GWMA-EX chart has 

been carried out. It has been observed that the proposed chart, with no information on the true 

IC process median or process distribution, is robust to non-normality when the process is IC 

and it performs just as well and in many cases better than the existing EWMA chart based on 

exceedance statistic when the shift is small. 
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Appendix 

A number of results pertaining the distribution of the exceedance statistic are presented here.   

A1. Conditional on     , the exceedance statistics   ,        , are independent and 

identically distributed as binomial with parameters (    ), where   is the sample size and 

                  , with      being the c.d.f. of the test sample (             ). 

Proof: Given     , the event that every   observation in a test sample is either smaller or 

larger than      follows the properties of a Bernoulli trial. Note that the number of   

observations smaller or larger than     , given     , are independent for every Phase II 

sample. Thus, the random variable    denoting the number of exceedances given by the 

number of   observations in the     test sample that exceed      is binomially distributed 

with parameters (    ), given     , where the probability of success is         

                              . 
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A2. The unconditional IC distribution of    , for all        , is distribution-free and is 

given by the p.m.f.          
(
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A3. The unconditional IC joint distribution of   number of exceedance statistics (         ) 

is distribution-free and is given by the joint p.m.f. 
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where              for all          .  

Proof: The conditional IC joint distribution of the random variables (          ), when 

   , is given by 
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as required. 

A4. The unconditional IC expectation of     is given by        (  (
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Proof: We have 
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 . 

Thus, the unconditional IC expectation of    is given by  
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)). This completes the proof.     

A5. The unconditional IC variance of    is given by         
                

           
. 

Proof: For IC process, we have    . The unconditional IC variance of    is, therefore, 
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Conditional on     , the exceedance statistic      Bin(    ). So, the conditional expectation 

and variance of     are given by, respectively, 
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By substituting (ii) and (iii) in (i), we get 
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Proof: The conditional run-length probabilities can be written as,   [        ]  
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       ] is given in Appendix A1. Thus, we have          ∑               
 
   . Upon 

expanding and re-arranging some of the terms, we obtain  
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   , as required. 
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