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Abstract

This paper is concerned with the global α-exponential stabilization for a class of fractional-

order complex-valued neural networks with time delay. To end this, some new fractional-

order differential inequalities are established, which improve and generalize previously known

criteria. Then, a suitable periodically intermittent control scheme with time delay is pro-

posed for the global α-exponential stabilization of the addressed networks, which include

feedback control as a special case. By using the new fractional-order differential inequalities

and coupling with the Lyapunov method and some other inequality techniques, some novel

delay-independent criteria in terms of real-valued algebraic inequalities are obtained to en-

sure global α-exponential stabilization of the discussed networks, which are very simple to

implement in practice and avoid complex computation on the matrix inequalities. Finally,

an illustrative example with numerical simulations is given to demonstrate the effectiveness

of the theoretical results.
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1 Introduction

Fractional differential systems are the generalizations of the classical integer order differential

systems. Fractional differential systems have gained an increasing attention in recent years

due to their potential applications in many fields of science and engineering. Many significant

contributions have been made in the theory of fractional differential systems [1–8]. Meanwhile,

due to the finite speed of the signal transmission, time delay often exists in almost every system,

and time delay and the order of system could affect the dynamic behavior of system [9]. At

present, fractional calculus has been integrated into artificial neural networks, and fractional-

order neural networks are a kind of potentially applicable networks. many interesting and

important results about stability of fractional-order neural networks with or without delays

have been presented [10–14]. However, there are many fractional-order neural networks that

are unstable in nature. In this case, the controllers have to be added to the neural networks to

guarantee the corresponding asymptotic behaviors.

To improve system performance, various control strategies such as track control [15], adap-

tive control [16], feedback control [17], impulsive control [18] and intermittent control [19] are

adopted based on the actual control requirements. Now, various stabilization criteria are also

established such as exponential stabilization [20], mean square stabilization [21], guaranteed cost

stabilization [22], finite-time stabilization [23,24], delay-independent stabilization [25], sampled-

data stabilization [26]. As a whole, these stabilization strategies have been adopted in the light

of different system structure analysis. On the other hand, an important subject in system analy-

sis is to seek less control cost, simple and efficient methods for system control. The intermittent

control method is often effective and robust compared with continuous control, since each period

in this kind of control scheme is composed of work time(or control time) and rest time and the

controller is activated in each work time and is off in the rest time. So, the system output is

measured intermittently rather than continuously. Owing to those merits, intermittent control

has been successfully applied to stabilize and synchronize neural networks [27–30].

As an extension of real-valued neural networks, complex valued neural networks (CVNNs)

with complex-valued state, input, connection weight and activation function have been one of

the most important research topic in many research areas. In fact, the major goal of studying

CVNNs is not only to explore new dynamic performance but also to resolve some problem which

cannot be solved in real-valued networks. For instance, the xor problem and the detection of

symmetry [31] cannot be settled with a single real-valued neuron, but these can be settled by
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using a single complex-valued neuron with the orthogonal decision boundaries. At present,

the authors [32, 33] investigated stability for integer-order CVNNs with delays. In [34–36], the

authors presented some results on the existence, uniqueness and stability of the equilibrium point

for fractional-order CVNNs with delays. In [37], the Lagrange α-exponential stability and α-

exponential convergence of a class of fractional-order CVNNs are studied by utilizing fractional-

order differential inequalities. The authors [38, 39] studied the stabilization of fractional-order

neural networks by using linear state feedback controls. In [40], the authors proposed two types

of intermittent schemes to control the chaos in fractional-order system. The synchronization for

fractional-order CVNNs [41] is investigated by means of linear delay feedback control. In [42],

the authors researched stabilization of fractional-order singular uncertain systems using the state

feedback and output feedback control. To our knowledge, there are few literatures focusing on

designing periodically intermittent controllers to stabilize fractional-order CVNNs.

Motivated by the above analysis, the aim of this paper is to study α-exponential stabiliza-

tion of fractional-order CVNNs with delay via periodically intermittent control. We will first

establish some new fractional-order differential inequalities and propose a kind of intermittent

control scheme. Besides, some new sufficient conditions in terms of real-valued algebraic inequal-

ities for α-exponential stabilization are obtained based on the new fractional-order differential

inequalities. Different from traditional exponential stabilization, our results include feedback

control as a special case and show that the α-exponential convergence rate depends on the ratio

of control width to control period and the order of differentiation of the system and p-norm, but

does not depends on control width or control period.

This paper is organized as follows. In Section 2, some preliminaries are given. Some new

fractional-order differential inequalities are established in Section 3. The main results are stated

in Section 4. Section 5 presents a numerical example with simulations to verify the main results

and finally a summary is given in Section 6.

2 Preliminaries

Notations: Throughout this paper, R, C, Rn, Cn, Rm×n and Cm×n denote the set of real

numbers, complex numbers, n-dimensional real vector, n-dimensional complex vector, m×n real

and complex matrices, respectively. i represents the imaginary unit, i.e., i =
√
−1. For a ∈ C, |a|

denotes the module of a, a∗ is the complex conjugate of a. M∗ show the conjugate transpose of

complex matrix M . sgn(·) denote sign function. Let F = {1, 2, . . . , n}, N+ = {0, 1, 2, . . .}. For
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z = (z1, z2, . . . , zn)
T with zj = xj + iyj and xj , yj ∈ R for j ∈ F , ∥z∥p =

( n∑
j=1

(|xj |p + |yj |p)
) 1

p ,

where p is a positive integer.

In this section, we will introduce some definitions and some useful lemmas. Throughout

this paper, we choose the Caputo fractional-order derivative.

Definition 1 [2]. The fractional integral of order α of a function f(t) : [t0,+∞) → R is defined

as

Iαf(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)ds, t ≥ t0,

where α > 0, Γ(·) is the Gamma function.

Definition 2 [2]. Caputo derivative of order α of a function f ∈ Cn([t0,+∞), R) is defined by

Dαf(t) =
1

Γ(n− α)

∫ t

t0

f (n)(s)

(t− s)α−n+1
ds, t ≥ t0,

where n is a positive integer such that n− 1 < α < n. Particularly, when 0 < α < 1

Dαf(t) =
1

Γ(1− α)

∫ t

t0

f ′(s)

(t− s)α
ds.

Consider the following fractional-order CVNN with time delay

Dαz(t) = −Cz(t) +Af(z(t)) +Bg(z(t− τ)) + J, (1)

where 0 < α < 1 denotes the order of fractional-order derivative, z(t) = (z1(t), z2(t), . . . , zn(t))
T

∈ Cn corresponds to the state vector, C = diag{c1, c2, . . . , cn} represents the neuron charging

time matrix with cj > 0 for j ∈ F , τ is the time delay, f(z(t)) = (f1(z1(t)), f2(z2(t)), . . . , fn(zn(t)))
T :

Cn → Cn and g(z(t)) = (g1(z1(t−τ)), g2(z2(t−τ)), . . . , gn(zn(t−τ)))T : Cn → Cn are the vector-

valued complex-valued activation functions without and with time delay. A = (ajk)n×n ∈ Cn×n

and B = (bjk)n×n ∈ Cn×n are the connection weight matrix without and with time delays,

respectively. J = (J1, J2, . . . , Jn)
T denotes external input vector.

The initial condition of network (1) is of the form

z(s) = φ(s) + iψ(s), s ∈ [−τ, 0],

where φ(s) = (φ1(s), φ2(s), . . . , φn(s))
T and ψ(s) = (ψ1(s), ψ2(s), . . . , ψn(s))

T are continuous

real-valued vector functions on [−τ, 0].

Definition 3. The point z̃ = (z̃1, z̃2, . . . , z̃n)
T ∈ Cn is called an equilibrium point of (1) if and

only if

−Cz̃ +Af(z̃) +Bg(z̃) + J = 0.
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To stabilize the unstable equilibrium point z̃ of (1), the control model of (1) is described by

Dαz(t) = −Cz(t) +Af(z(t)) +Bg(z(t− τ)) + J + U(t), (2)

where U(t) = u(t) + iv(t) with u(t), v(t) ∈ Rn is a periodically intermittent controller which

need be designed. Note u(t) = (u1(t), u2(t), . . . , un(t))
T , v(t) = (v1(t), v2(t), . . . , vn(t))

T .

Definition 4. Network (2) with intermittent effects is said to be α-exponentially stable if there

exist constants M > 0 and λ > 0 such that

∥z(t)− z̃∥ ≤M sup
−τ≤t≤0

∥z(s)− z̃∥e−λtα

holds for ∀t > 0 and any initial values z(s) = φ(s) + iψ(s) with s ∈ [−τ, 0].

Assumption 1. Let z = x+ iy and ẑ = x̂+ iŷ, fj(z), gj(z) for j ∈ F are separated into their

real and imaginary part as follows

fj(z) = fRj (x, y) + if Ij (x, y), gj(z) = gRj (x, y) + igIj (x, y),

where fRj (·, ·), f Ij (·, ·), gRj (·, ·), gIj (·, ·) : R2 → R and satisfy

|fRj (x̂, ŷ)− fRj (x, y)| ≤ FRR
j |x̂− x|+FRI

j |ŷ− y|, |f Ij (x̂, ŷ)− f Ij (x, y)| ≤ F IR
j |x̂− x|+F II

j |ŷ− y|,

|gRj (x̂, ŷ)− gRj (x, y)| ≤ GRR
j |x̂− x|+GRI

j |ŷ − y|, |gIj (x̂, ŷ)− gIj (x, y)| ≤ GIR
j |x̂− x|+GII

j |ŷ − y|,

where FRR
j , FRI

j , F IR
j , F II

j , GRR
j , GRI

j , GIR
j , GII

j are known positive constants for ∀x, x̂, y, ŷ ∈ R.

Let ej(t) = zj(t) − z̃j = exj (t) + ieyj (t), zj(t) = xj(t) + iyj(t), z̃j = x̃j + iỹj , where

exj (t), e
y
j (t), xj(t), yj(t), x̃j , ỹj ∈ R for j ∈ F , then network (2) can be transformed into

Dαexj (t) =− cje
x
j (t) +

n∑
k=1

aRjk[f
R
k (xk(t), yk(t))− fRk (x̃k, ỹk)]−

n∑
k=1

aIjk[f
I
k (xk(t), yk(t))− f Ik (x̃k, ỹk)]

+

n∑
k=1

bRjk[g
R
k (xk(t− τ), yk(t− τ))− gRk (x̃k, ỹk)]

−
n∑

k=1

bIjk[g
I
k(xk(t− τ), yk(t− τ))− gIk(x̃k, ỹk)] + uj(t), (3)

Dαeyj (t) =− cje
y
j (t) +

n∑
k=1

aRjk[f
I
k (xk(t), yk(t))− f Ik (x̃k, ỹk)] +

n∑
k=1

aIjk[f
R
k (xk(t), yk(t))− fRk (x̃k, ỹk)]

+

n∑
k=1

bRjk[g
I
k(xk(t− τ), yk(t− τ))− gIk(x̃k, ỹk)]

+

n∑
k=1

bIjk[g
R
k (xk(t− τ), yk(t− τ))− gRk (x̃k, ỹk)] + vj(t). (4)
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Lemma 1 [10]. Let n be a positive integer such that n− 1 < α < n. If y(t) ∈ Cn−1[a, b], then

IαDαy(t) = y(t)−
n−1∑
i=0

y(k)(a)

k!
(t− a)k.

In particular, if 0 < α ≤ 1 and y(t) ∈ C[a, b], then

IαDαy(t) = y(t)− y(a).

Lemma 2 [16]. Suppose that x(t) ∈ C[a, b] and meets

Dαx(t) = f(t, x(t)) ≥ 0, 0 < α < 1 (5)

for ∀t ∈ [a, b], then x(t) is monotonously non-decreasing for 0 < α < 1. If

Dαx(t) = f(t, x(t)) ≤ 0, 0 < α < 1 (6)

for ∀t ∈ [a, b], then x(t) is monotonously non-increasing for 0 < α < 1.

Lemma 3(Young inequality). Let a > 0, b > 0, p > 1, q > 1 and 1
p +

1
q = 1, then the inequality

ab ≤ 1
pa

p + 1
q b

q holds, and the equality holds if and only if ap = bq.

3 Some new differential inequalities related to the Caputo frac-

tional derivative

Lemma 4. Assume that x(t), y(t) are continuous and differentiable on [a, b) for ∀a ∈ R, if

Dαx(t) ≤ Dαy(t) for 0 < α < 1 and x(a) = y(a), then

x(t) ≤ y(t), t ∈ [a, b).

Proof. Let Dαx(t) = f(t), Dαy(t) = g(t), then f(t) ≤ g(t). From Lemma 1, one has for

t ∈ [a, b)

x(a) = x(t)− 1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds,

y(a) = y(t)− 1

Γ(α)

∫ t

a
(t− s)α−1g(s)ds.

According to x(a) = y(a), one has

x(t)− y(t) =
1

Γ(α)

∫ t

a
(t− s)α−1(f(s)− g(s))ds,

Since a ≤ s ≤ t ⇒ t− s ≥ 0, 0 < α < 1 ⇒ Γ(α) > 0, and f(t) ≤ g(t) ⇒ f(t)− g(t) ≤ 0. So, we

can conclude on the basis of the above equation that x(t) ≤ y(t).
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Remark 1. When a = 0, Lemma 4 here turns into Theorem 2.4 in [4]. So, Lemma 4 here is

applicable to any continuous and differentiable interval for x(t), y(t) and more general.

Lemma 5. Let G(t) be a real-valued continuous function on [a, b) for ∀a ∈ R, and there exist

a constant θ such that

DαG(t) ≤ θG(t),

where 0 < α ≤ 1, then

G(t) ≤ G(a)e
θ

Γ(α+1)
(t−a)α

.

Proof. According to Definition 1 and Lemma 1, we can have

G(t) ≤ G(a) +
θ

Γ(α)

∫ t

a
(t− s)α−1G(s)ds, t ≥ a.

From the famous Gronwall inequality, we have

G(t) ≤ G(a)e
∫ t
a

θ
Γ(α)

(t−τ)α−1dτ
= G(a)e

θ
Γ(α+1)

(t−a)α
.

The proof is completed.

Remark 2. When a = 0, b = +∞, Lemma 5 here becomes into Lemma 4 in [10]. It is obvious

that Lemma 5 here is an extension of Lemma 4 in [10] at any continuous interval.

Lemma 6. Suppose that a continuous function V (t) : [t0 − τ,+∞) → [0,+∞) meets the

following differential inequality:

DαV (t) ≤ aV (t) + bV (t− τ), ∀t ≥ t0, (7)

where a > 0, b > 0 are constants. Then

V (t) ≤ sup
t0−τ≤s≤t0

V (s)e
a+b

Γ(α+1)
(t−t0)α .

Proof. From (7), it is clear that

DαV (t) ≤ (a+ b)max{V (t), V (t− τ)}.

After fractional integration on both sides of the above inequality from t0 to t, one has

V (t) ≤ V (t0) +
a+ b

Γ(α)

∫ t

t0

(t− s)α−1max{V (s), V (s− τ)}ds. (8)

Definite

W (t) =
a+ b

Γ(α)

∫ t

t0

(t− s)α−1max{V (s), V (s− τ)}ds.
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Using Definition 2 to calculate the fractional-order derivatives of W (t), then

DαW (t) = (a+ b)max{V (t), V (t− τ) ≥ 0.

From Lemma 2, W (t) is monotonously non-decreasing, namely, W (t) ≥W (t− τ), one has

V (t− τ) ≤V (t0) +
a+ b

Γ(α)

∫ t−τ

t0

(t− τ − s)α−1max{V (s), V (s− τ)}ds

≤V (t0) +
a+ b

Γ(α)

∫ t

t0

(t− s)α−1max{V (s), V (s− τ)}ds. (9)

Combining (8) with (9), we get

max{V (t), V (t− τ)} ≤ V (t0) +
a+ b

Γ(α)

∫ t

t0

(t− s)α−1max{V (s), V (s− τ)}ds

From the famous Gronwall inequality, one can obtain

V (t) ≤ max{V (t), V (t− τ)} ≤ V (t0)e
a+b

Γ(α+1)
(t−t0)α ≤ sup

t0−τ≤s≤t0

V (s)e
a+b

Γ(α+1)
(t−t0)α .

Lemma 7. Let p be a positive integer, if x(t) ∈ R is a continuous and differentiable function,

then

Dα|x(t)|p ≤ p|x(t)|p−1Dα|x(t)|, 0 < α ≤ 1, t ≥ t0. (10)

Proof. When p = 1, the inequality (10) is clearly true.

When p ≥ 2, it is equivalent to prove that

Dα|x(t)|p − p|x(t)|p−1Dα|x(t)| ≤ 0. (11)

If x(t) > 0, according to the Definition 2, one has

Dα|x(t)| = 1

Γ(1− α)

∫ t

t0

ẋ(s)

(t− s)α
ds = Dαx(t),

and if xj(t) < 0, then

Dα|x(t)| = − 1

Γ(1− α)

∫ t

t0

ẋ(s)

(t− s)α
ds = −Dαx(t).

Therefore

Dα|x(t)| = sgn(x(t))Dαx(t). (12)

So, we have

Dα|x(t)|p = 1

Γ(1− α)

∫ t

t0

p|x(s)|p−1sgn(x(s))ẋ(s)

(t− s)α
ds.
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Define u(s) = |x(s)|p − p|x(t)|p−1|x(s)|+ (p− 1)|x(t)|p. From Lemma 3, we can obtain

u(s) ≥ 0, u(t) = 0.

Combining (12) with Definition 2, we can obtain

Dα|x(t)|p − p|x(t)|p−1Dα|x(t)|

=
1

Γ(1− α)

∫ t

t0

p
[
|x(s)|p−1 − |x(t)|p−1

]
sgn(x(s))ẋ(s)

(t− s)α
ds

=
1

Γ(1− α)

∫ t

t0

1

(t− s)α
du(s)

=
1

Γ(1− α)
lim
s→t−

u(s)

(t− s)α
− 1

Γ(1− α)

u(t0)

(t− t0)α
− α

Γ(1− α)

∫ t

t0

u(s)(t− s)−α−1ds. (13)

From the first term of the expression (13), we have

1

Γ(1− α)
lim
s→t−

u(s)

(t− s)α
=− lim

s→t−

p|x(s)|p−1sgn(x(s))ẋ(s)− p|x(t)|p−1sg(x(s))ẋ(s)

αΓ(1− α)(t− s)α−1

=− 1

αΓ(1− α)
lim
s→t−

[
p|x(s)|p−1 − p|x(t)|p−1

]
sgn(x(s))ẋ(s)(t− s)1−α

=0.

Owing to u(t) ≥ 0, one has

Dα+|x(t)|p − p|x(t)|p−1Dα+|x(t)|

=− 1

Γ(1− α)

u(t0)

(t− t0)α
− 1

Γ(1− α)

∫ t

t0

u(s)α(t− s)−α−1ds

≤0.

The above inequality indicates that the inequality (10) holds. This completes the proof.

Remark 3. When p = 2, Lemma 7 here becomes into Lemma 1 in [5]. Meanwhile, the case for

α = 1 corresponds to d
dt |x(t)|

p ≤ p|x(t)|p−1 d
dt |x(t)|, it can be considered as a particular case of

Lemma 7 here. So, our result is more general.

4 Main results

In this section, we design a class of periodically intermittent controllers to guarantee α-

exponential stability of system (2).
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The periodically intermittent controller U(t) = u(t) + iv(t) is defined by

if mT ≤ t < mT + δ,

uj(t) = −djexj (t)− sgn(exj (t))
n∑

k=1

(sjk|exk(t− τ)|+ hjk|eyk(t− τ)|),

vj(t) = −qjeyj (t)− sgn(eyj (t))
n∑

k=1

(rjk|exk(t− τ)|+ ljk|eyk(t− τ)|),

if mT + δ ≤ t < (m+ 1)T, uj(t) = vj(t) = 0.

(14)

Under special circumstances, the controller (14) turns into

if mT ≤ t < mT + δ,

uj(t) = −εjexj (t)− sgn(exj (t))
n∑

k=1

ρjk|exk(t− τ)|,

vj(t) = −ϵjeyj (t)− sgn(eyj (t))
n∑

k=1

ϱjk|eyk(t− τ)|,

if mT + δ ≤ t < (m+ 1)T, uj(t) = vj(t) = 0.

(15)

The parameters dj , qj , sjk, rjk, hjk, ljk, εj , ϵj , ρjk, ϱjk are all positive constants determined later.

T > 0 denotes the control period and δ = βT (0 < β < 1) is called the control width and β is

called the control width index.

Theorem 1. Under Assumption 1, network (2) with (14) is α-exponentially stable if there exist

some positive scalars θ, µ, ν and λ such that the following conditions are satisfied for positive

integer p ≥ 2

−p(cj + dj) + (p− 1)
n∑

k=1

(|aRjk|(FRR
k + FRI

k ) + |aIjk|(F II
k + F IR

k ))

+
n∑

k=1

(|aRkj |(FRR
j + FRI

j ) + |aIkj |(F IR
j + |F II

j )) ≤ −θp,

−p(cj + qj) + (p− 1)
n∑

k=1

(|aRjk|(F IR
k + F II

k ) + |aIjk|(FRR
k + FRI

k ))

+
n∑

k=1

(|aRkj |(F IR
j + |F II

j ) + |aIkj |(FRR
j + |FRI

j )) ≤ −θp.

(16)

 |bRjk|GRR
k + |bIjk|GIR

k ≤ sjk, |bRjk|GRI
k + |bIjk|GII

k ≤ hjk,

|bRjk|GIR
k + |bIjk|GRR

k ≤ rjk, |bRjk|GII
k + |bIjk|GRI

k ≤ ljk.
(17)



−pcj + (p− 1)
n∑

k=1

(|aRjk|(FRR
k + FRI

k ) + |aIjk|(F II
k + F IR

k )) +
n∑

k=1

(|aRkj |(FRR
j + FRI

j ) + |aIkj |(F IR
j + |F II

j ))

+(p− 1)
n∑

k=1

(|bRjk|(GRR
k +GRI

k ) + |bIjk|(GIR
k +GII

k )) ≤ µp,

−pcj + (p− 1)
n∑

k=1

(|aRjk|(F IR
k + F II

k ) + |aIjk|(FRR
k + FRI

k )) +
n∑

k=1

(|aRkj |(F IR
j + |F II

j ) + |aIkj |(FRR
j + |FRI

j ))

+(p− 1)
n∑

k=1

(|bRjk|(GIR
k +GII

k ) + |bIjk|(GRR
k +GRI

k )) ≤ µp.

(18)
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n∑
k=1

(|bRkj |+ |bIkj |)(GRR
j +GIR

j ) ≤ ν,

n∑
k=1

(|bRkj |+ |bIkj |)(GRI
j +GII

j ) ≤ ν. (19)

−θβα + (µ+ ν)(1− β)α + λ ≤ 0. (20)

Proof. It is easy to get

Dα|exj (t)| = sgn(exj (t))D
αexj (t), D

α|eyj (t)| = sgn(eyj (t))D
αeyj (t). (21)

Let the Lyapunov function be in the form of

V (t) =

n∑
j=1

|exj (t)|p

p
+

n∑
j=1

|eyj (t)|p

p
. (22)

On the basis of Lemma 7, combining with (21) and calculating the fractional-order derivatives

of V (t) along the solutions of networks (3)-(4), we obtain

DαV (t) ≤
n∑

j=1

|exj (t)|p−1Dα
t0 |e

x
j (t)|+

n∑
j=1

|eyj (t)|
p−1Dα

t0 |e
y
j (t)|

≤ −
n∑

j=1

cj |exj (t)|p +
n∑

j=1

n∑
k=1

|aRjk||exj (t)|p−1[FRR
k |exk(t)|+ FRI

k |eyk(t)|]

+
n∑

j=1

n∑
k=1

|aIjk||exj (t)|p−1[F IR
k |exk(t)|+ F II

k |eyk(t)|]

+
n∑

j=1

n∑
k=1

|bRjk||exj (t)|p−1[GRR
k |exk(t− τ)|+GRI

k |eyk(t− τ)|]

+

n∑
j=1

n∑
k=1

|bIjk||exj (t)|p−1[GIR
k |exk(t− τ)|+GII

k |eyk(t− τ)|]

−
n∑

j=1

cj |eyj (t)|
p +

n∑
j=1

n∑
k=1

|aRjk||e
y
j (t)|

p−1[F IR
k |exk(t)|+ F II

k |eyk(t)|]

+

n∑
j=1

n∑
k=1

|aIjk||e
y
j (t)|

p−1[FRR
k |exk(t)|+ FRI

k |eyk(t)|]

+
n∑

j=1

n∑
k=1

|bRjk||e
y
j (t)|

p−1[GIR
k |exk(t− τ)|+GII

k |eyk(t− τ)|]

+
n∑

j=1

n∑
k=1

|bIjk||e
y
j (t)|

p−1[GRR
k |exk(t− τ)|+GRI

k |eyk(t− τ)|]

+

n∑
j=1

|exj (t)|p−1sgn(exj (t))uj(t) +

n∑
j=1

|eyj (t)|
p−1sgn(eyj (t))vj(t). (23)

According to Lemma 3, we can obtain

|exj (t)|p−1|exk(t)| ≤
p− 1

p
|exj (t)|p +

1

p
|exk(t)|p, |exj (t)|p−1|eyk(t)| ≤

p− 1

p
|exj (t)|p +

1

p
|eyk(t)|

p, (24)
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|eyj (t)|
p−1|exk(t)| ≤

p− 1

p
|eyj (t)|

p +
1

p
|exk(t)|p, |e

y
j (t)|

p−1|eyk(t)| ≤
p− 1

p
|eyj (t)|

p +
1

p
|eyk(t)|

p. (25)

When mT ≤ t < mT + δ for ∀m ∈ N+, from (23)-(25), one has

DαV (t) ≤1

p

n∑
j=1

{
− pcj + (p− 1)

n∑
k=1

(|aRjk|(FRR
k + FRI

k ) + |aIjk|(F IR
k + F II

k ))

+

n∑
k=1

(|aRkj |(FRR
j + FRI

j ) + |aIkj |(F IR
j + |F II

j ))
}
|exj (t)|p

+

n∑
j=1

n∑
k=1

[
|bRjk|GRR

k + |bIjk|GIR
k

]
|exj (t)|p−1|exk(t− τ)|

+

n∑
j=1

n∑
k=1

[
|bRjk|GRI

k + |bIjk|GII
k

]
|exj (t)|p−1|eyk(t− τ)|

+
1

p

n∑
j=1

{
− pcj + (p− 1)

n∑
k=1

(|aRjk|(F IR
k + F II

k ) + |aIjk|(FRR
k + FRI

k ))

+

n∑
k=1

(|aRkj |(F IR
j + |F II

j ) + |aIkj |(FRR
j + |FRI

j ))
}
|eyj (t)|

p

+

n∑
j=1

n∑
k=1

[
|bRjk|GIR

k + |bIjk|GRR
k

]
|eyj (t)|

p−1|exk(t− τ)|

+

n∑
j=1

n∑
k=1

[
|bRjk|GII

k + |bIjk|GRI
k

]
|eyj (t)|

p−1|eyk(t− τ)|

+
n∑

j=1

|exj (t)|p−1sgn(exj (t))uj(t) +
n∑

j=1

|eyj (t)|
p−1sgn(eyj (t))vj(t)

≤1

p

n∑
j=1

{
− p(cj + dj) + (p− 1)

n∑
k=1

(|aRjk|(FRR
k + FRI

k ) + |aIjk|(F IR
k + F II

k ))

+

n∑
k=1

(|aRkj |(FRR
j + FRI

j ) + |aIkj |(F IR
j + |F II

j ))
}
|exj (t)|p

+
n∑

j=1

n∑
k=1

[
|bRjk|GRR

k + |bIjk|GIR
k − sjk

]
|exj (t)|p−1|exk(t− τ)|

+

n∑
j=1

n∑
k=1

[
|bRjk|GRI

k + |bIjk|GII
k − hjk

]
|exj (t)|p−1|eyk(t− τ)|

+
1

p

n∑
j=1

{
− p(cj + qj) + (p− 1)

n∑
k=1

(|aRjk|(F IR
k + F II

k ) + |aIjk|(FRR
k + FRI

k ))

+

n∑
k=1

(|aRkj |(F IR
j + |F II

j ) + |aIkj |(FRR
j + |FRI

j ))
}
|eyj (t)|

p

+

n∑
j=1

n∑
k=1

[
|bRjk|GIR

k + |bIjk|GRR
k − rjk

]
|eyj (t)|

p−1|exk(t− τ)|

12



+

n∑
j=1

n∑
k=1

[
|bRjk|GII

k + |bIjk|GRI
k − ljk

]
|eyj (t)|

p−1|eyk(t− τ)|

≤ − θV (t). (26)

By Lemma 5, we get for mT ≤ t < mT + δ

V (t) ≤ V (mT )e
−θ

Γ(α+1)
(t−mT )α

. (27)

From Lemma 3, we can obtain

|exj (t)|p−1|exk(t− τ)| ≤ p− 1

p
|exj (t)|p +

1

p
|exk(t− τ)|p, (28)

|exj (t)|p−1|eyk(t− τ)| ≤ p− 1

p
|exj (t)|p +

1

p
|eyk(t− τ)|p, (29)

|eyj (t)|
p−1|exk(t− τ)| ≤ p− 1

p
|eyj (t)|

p +
1

p
|exk(t− τ)|p, (30)

|eyj (t)|
p−1|eyk(t− τ)| ≤ p− 1

p
|eyj (t)|

p +
1

p
|eyk(t− τ)|p. (31)

When mT + δ ≤ t < (m+ 1)T for ∀m ∈ N+, substituting (28)-(31) into (23), one has

DαV (t) ≤1

p

n∑
j=1

{
− pcj + (p− 1)

n∑
k=1

(|aRjk|(FRR
k + FRI

k ) + |aIjk|(F IR
k + F II

k ))

+

n∑
k=1

(|aRkj |(FRR
j + FRI

j ) + |aIkj |(F IR
j + |F II

j ))

+ (p− 1)
n∑

k=1

|bRjk|(GRR
k +GRI

k ) + (p− 1)
n∑

k=1

|bIjk|(GIR
k +GII

k )
}
|exj (t)|p

+
1

p

n∑
j=1

n∑
k=1

(|bRkj |+ |bIkj |)(GRR
j +GIR

j )|exj (t− τ)|p

+
1

p

n∑
j=1

{
− pcj + (p− 1)

n∑
k=1

(|aRjk|(F IR
k + F II

k ) + |aIjk|(FRR
k + FRI

k ))

+
n∑

k=1

(|aRkj |(F IR
j + |F II

j ) + |aIkj |(FRR
j + |FRI

j ))

+ (p− 1)
n∑

k=1

|bRjk|(GIR
k +GII

k ) + (p− 1)
n∑

k=1

|bIjk|(GRR
k +GRI

k )
}
|eyj (t)|

p

+
1

p

n∑
j=1

n∑
k=1

(|bRkj |+ |bIkj |)(GRI
j +GII

j )|eyj (t− τ)|p. (32)

Combining with the inequalities (18)-(19) and (32), we get

DαV (t) ≤ µV (t) + νV (t− τ). (33)
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From Lemma 6, based on the inequality (33), one has for mT + δ ≤ t < (m+ 1)T

V (t) ≤V (mT + δ)e
µ+ν

Γ(α+1)
(t−(mT+δ))α

. (34)

Based on the inequalities (27) and (34), then we have for mT + δ ≤ t < (m+ 1)T

V (t) ≤V (mT )e
−θ

Γ(α+1)
δα+ µ+ν

Γ(α+1)
(t−(mT+δ))α

≤V (mT )e
−θβα+(µ+ν)(1−β)α

Γ(α+1)
Tα

.

And

V ((m+ 1)T ) ≤ V (mT )e
−θβα+(µ+ν)(1−β)α

Γ(α+1)
Tα

.

From the above inequality, we can obtain

V (mT ) ≤V ((m− 1)T )e
−θβα+(µ+ν)(1−β)α

Γ(α+1)
Tα

≤V ((m− 2)T )e
2·−θβα+(µ+ν)(1−β)α

Γ(α+1)
Tα

≤ · · ·

≤V (T )e
(m−1)(

−θβα+(µ+ν)(1−β)α

Γ(α+1)
Tα

≤V (0)e
m(

−θβα+(µ+ν)(1−β)α

Γ(α+1)
Tα

.

Therefore, when mT ≤ t < (m+ 1)T , we have

V (t) ≤V (mT )e
−θβα+(µ+ν)(1−β)α

Γ(α+1)
Tα

≤V (0)e
(m+1)(

−θβα+(µ+ν)(1−β)α

Γ(α+1)
Tα

≤V (0)e
−λ

Γ(α+1)
tα
.

That is to say

∥e(t)∥p ≤ ∥e(0)∥e
−λ

pΓ(α+1)
tα ≤ sup

−τ≤s≤0
∥e(s)∥pe

−λ
pΓ(α+1)

tα
.

From Definition 4, network (2) with the controller (14) is α-exponentially stable.

Remark 4. In Theorem 1, we used delayed feedback periodically intermittent controller (14)

to realize the stabilization of network (1). However, the real part and the imaginary part of the

controller (14) depend on not only the past of the real part of states but also the past of the

imaginary part of states. This will give some restrictions on the practical applications. To cope

this, we design the controller (15), where the real part and the imaginary part of the controller

(15) are related to the past of the real part and the imaginary part of states, respectively.
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Remark 5. Because the limit of the Young inequality is p ̸= 1, we solely discuss the case of

p = 1 in the following Theorem 2.

Theorem 2. Under Assumption 1, network (2) with the controller (15) is α-exponentially stable

if there exist some positive scalars θ, µ, ν and λ such that the following conditions are satisfied
−cj − εj +

n∑
k=1

(|aRkj |+ |aIkj |)(|FRR
j + F IR

j ) ≤ −θ, |bRkj |+ |bIkj |)(GRR
j +GIR

j ≤ ρkj ,

−cj − ϵj +
n∑

k=1

(|aRkj |+ |aIkj |)(F II
j + FRI

j ) ≤ −θ, |bRkj |+ |bIkj |)(GRI
j +GII

j ≤ ϱkj ,
(35)


−cj +

n∑
k=1

(|aRkj |+ |aIkj)|(F IR
j + FRR

j ) ≤ µ,
n∑

k=1

(|bRkj |+ |bIkj |)(GRR
j +GIR

j ) ≤ ν,

−cj +
n∑

k=1

(|aRkj |+ |aIkj |)(F II
j + FRI

j ) ≤ µ,
n∑

k=1

(|bRkj |+ |bIkj |)(GRI
j +GII

j ) ≤ ν,
(36)

− θβα + (µ+ ν)(1− β)α + λ ≤ 0. (37)

Proof. Consider the following Lyapunov function:

V (t) =

n∑
j=1

|exj (t)|+
n∑

j=1

|eyj (t)|.

Combining with (21), calculating the fractional-order derivatives of V (t) along the solutions of

system (3)-(4), we can obtain

DαV (t) ≤−
n∑

j=1

cj |exj (t)|+
n∑

j=1

n∑
k=1

|aRjk|[FRR
k |exk(t)|+ FRI

k |eyk(t)|]

+
n∑

j=1

n∑
k=1

|aIjk|[F IR
k |exk(t)|+ F II

k |eyk(t)|]

+
n∑

j=1

n∑
k=1

|bRjk|[GRR
k |exk(t− τ)|+GRI

k |eyk(t− τ)|]

+

n∑
j=1

n∑
k=1

|bIjk|[GIR
k |exk(t− τ)|+GII

k |eyk(t− τ)|] +
n∑

j=1

sgn(exj (t))uj(t)

−
n∑

j=1

cj |eyj (t)|+
n∑

j=1

n∑
k=1

|aRjk|[F IR
k |exk(t)|+ F II

k |eyk(t)|]

+

n∑
j=1

n∑
k=1

|aIjk|[FRR
k |exk(t)|+ FRI

k |eyk(t)|]

+

n∑
j=1

n∑
k=1

|bRjk|[GIR
k |exk(t− τ)|+GII

k |eyk(t− τ)|]

+
n∑

j=1

n∑
k=1

|bIjk|[GRR
k |exk(t− τ)|+GRI

k |eyk(t− τ)|] +
n∑

j=1

sgn(eyj (t))vj(t). (38)
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When mT ≤ t < mT + δ for ∀m ∈ N+, we have

DαV (t) ≤
n∑

j=1

{
− cj − εj +

n∑
k=1

(|aRkj |+ |aIkj |)(FRR
j + F IR

j )
}
|exj (t)|

+

n∑
j=1

n∑
k=1

[
(|bRkj |+ |bIkj |)(GRR

j +GIR
j )− ρkj

]
|exj (t− τ)|

+

n∑
j=1

{
− cj − ϵj +

n∑
k=1

(|aRkj |+ |aIkj |)(F II
j + FRI

j )
}
|exj (t)|

+

n∑
j=1

n∑
k=1

[
(|bRkj |+ |bIkj |)(GRI

j +GII
j )− ϱkj

]
|exj (t− τ)|

≤ − θ
n∑

j=1

|exj (t)| − θ
n∑

j=1

|eyj (t)|

=− θV (t). (39)

Using Lemma 5, we can obtain

V (t) ≤ V (mT )e
−θ

Γ(α+1)
(t−mT )α

. (40)

When mT + δ ≤ t < (m+ 1)T for ∀m ∈ N+, one has

DαV (t) ≤
n∑

j=1

{
− cj +

n∑
k=1

(|aRkj |+ |aIkj |)(F IR
j + FRR

j )
}
|exj (t)|

+

n∑
j=1

{ n∑
k=1

(|bRkj |+ |bIkj |)(GRR
j +GIR

j )
}
|exj (t− τ)|

+

n∑
j=1

{
− cj +

n∑
k=1

(|aRkj |+ |aIkj |)(F II
j + FRI

j )
}
|exj (t)|

+

n∑
j=1

{ n∑
k=1

(|bRkj |+ |bIkj |)(GRI
j +GII

j )
}
|exj (t− τ)|

=µV (t) + νV (t− τ). (41)

By the similar proof of Theorem 1, we can obtain

∥e(t)∥1 ≤ ∥e(0)∥1e
−λ

Γ(α+1)
tα ≤ sup

−τ≤s≤0
∥e(s)∥1e

−λ
Γ(α+1)

tα
.

From Definition 4, network (2) with the controller (15) is α-exponentially stable.

Remark 6.

Remark 7. When β = 1, the periodically intermittent controllers (14) and (15) turn into the

following linear delay feedback controllers, respectively:
uj(t) = −djexj (t)− sgn(exj (t))

n∑
k=1

(sjk|exk(t− τ)|+ hjk|eyk(t− τ)|),

vj(t) = −qjeyj (t)− sgn(eyj (t))
n∑

k=1

(rjk|exk(t− τ)|+ ljk|eyk(t− τ)|).
(42)
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
uj(t) = −εjexj (t)− sgn(exj (t))

n∑
k=1

ρjk|exk(t− τ)|,

vj(t) = −ϵjeyj (t)− sgn(eyj (t))
n∑

k=1

ϱjk|eyk(t− τ)|.
(43)

From the process of derivation of Theorem 1-2, we have the following corollaries:

Corollary 1. Under Assumption 1, network (2) with the controller (42) is α-exponentially

stable if there exists a scalar θ > 0 such that the following conditions are satisfied

−p(cj + dj) + (p− 1)
n∑

k=1

(|aRjk|(FRR
k + FRI

k ) + |aIjk|(F IR
k + F II

k ))

+
n∑

k=1

(|aRkj |+ |aIkj |)(FRR
j + F IR

j ) ≤ −θ,

−p(cj + qj) + (p− 1)
n∑

k=1

(|aRjk|(F IR
k + F II

k ) + |aIjk|(FRR
k + FRI

k ))

+
n∑

k=1

(|aRkj |+ |aIkj |)(FRI
j + F II

j ) ≤ −θ,

 |bRjk|GRR
k + |bIjk|GIR

k − sjk ≤ 0, |bRjk|GRI
k + |bIjk|GII

k − hjk ≤ 0,

|bRjk|GIR
k + |bIjk|GRR

k − rjk ≤ 0, |bRjk|GII
k + |bIjk|GRI

k − ljk ≤ 0.

Corollary 2. Under Assumption 1, network (2) with the controller (43) is α-exponentially

stable if there exists a scalar θ > 0 such that the following conditions are satisfied

−cj − εj +
n∑

k=1

(|aRkj + |aIkj |)(F IR
j + FRR

j ) ≤ −θ,
n∑

k=1

(|bRkj |+ |bIkj |)(GIR
j +GRR

j )−
n∑

k=1

ρkj ≤ 0,

−cj − ϵj +
n∑

k=1

(|aRkj |+ |aIkj |)(F II
j + FRI

j ) ≤ −θ,
n∑

k=1

(|bRkj |+ |bIkj |)(GRI
j +GII

j )−
n∑

k=1

ϱkj ≤ 0.

Remark 7. In n-dimensional real space, network (1) turns into the following fractional-order

real-valued neural networks

Dαxj(t) = −cjxj(t) +
n∑

k=1

ajkfk(xk(t)) +

n∑
k=1

bjkgk(xk(t− τ)) + Jj(t), (44)

where cj > 0, xi(t), fk(·), gk(·), ajk, bjk, Jj(t) ∈ R. And Assumption 1 become the following

assumptions, respectively:

Assumption 1̃. Let x, y ∈ R, functions fj(·) ∈ R is Lipschitz-continuous on R with Lipschitz

constants Fj , Gj > 0, .i.e. |fj(x)− fj(y)| ≤ Fj |x− y|, |gj(x)− gj(y)| ≤ Gj |x− y|, j ∈ F .
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The two periodically intermittent controller (14)-(15) turns into the controller as follow:

if mT ≤ t < mT + δ,

uj(t) = −djej(t)− sgn(ej(t))
n∑

k=1

sjk|exk(t− τ)|,

else

uj(t) = 0.

(45)

From the process of derivation of Theorem 1-2, we have the following result.

Corollary 3. Under Assumption 1̃, network (44) is α-exponentially stabilized via the controller

(45) if there exist a positive integer p ≥ 2, some positive scalars θ, µ, ν and λ such that the

following conditions are satisfied

−pcj − pdj + (p− 1)
n∑

k=1

(|ajk|Fk + |akj |Fj) ≤ −θp,

|bjk|Gk − sjk ≤ 0,

−pcj − pdj + (p− 1)
n∑

k=1

(|ajk|Fk + |akj |Fj) + |bjk|Gk ≤ −θp,
n∑

k=1

|bkj |Gj ≤ vp.

or 

−cj − dj +
n∑

k=1

|akj |Fj ≤ −θ,

|bjk|Gk − sjk ≤ 0,

−cj +
n∑

k=1

|akj |Fj ≤ −θ,∑
k=1

|bkj |Gj ≤ v.

Remark 8: Remark 8. So far, there are some results concerning the exponential stabilization

or synchronization of fractional-order neural networks with or without time delays [38, 39].

However, to the best of our knowledge, there are no results on the α-exponential stabilization

of fractional-order CVNNs with delay or synchronization between two fractional-order CVNNs

with delay via periodically intermittent control. Obviously, our results have optimality in the

control cost for the stabilization, which include feedback control as a special case.

5 An Illustrative example

In this section, using the predictor-corrector scheme for solving nonlinear delay differential

equations of fractional order [43], which have been used for fractional-order chaotic systems with

delay [9, 44], we present a numerical example to show the effectiveness of the obtained results.
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Example 1. Consider the following two-neuron fractional-order CVNN

Dαz(t) = −Cz(t) +Af(z(t)) +Bg(z(t− τ)), (46)

where α = 0.95, τ = 5, let zj(t) = xj(t) + iyj(t), xj(t), yj(t) ∈ R for j = 1, 2. And

fj(zj(t)) = tanh(xj(t)) + yj(t) + i(xj(t) + tanh(yj(t))),

gj(zj(t)) = xj(t) + tanh(yj(t)) + i(tanh(xj(t)) + yj(t)),

C =

 2 0

0 2

 , A =

 1 + 1i 1

−1 1 + 1i

 , B =

 −1− 1i −1i

1i −1− 1i

 .
Let the initial value z1(s) = sin(0.4πt) + i cos(0.4πt) − 1, z2(s) = cos(0.4πt) + i sin(0.4πt) − i.

It is easy to verify that Assumption 1 is satisfied with lRR
j = lIIj = lRI

j = lIRj = 1. Fig.1 and

Fig.2 depict the state curves z1 and z2 of (46) with u(t) = v(t) = 0 in 3-dimension space and

2-dimensional space, respectively. Fig.3 and Fig.4 depict the time responses of real part and

imaginary parts of z1 and z2 of (46) with u(t) = v(t) = 0, respectively.
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Fig.1. Curves z1 and z2 in 3-dimension space without control.
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Fig.2. Curves z1 and z2 in 2-dimension space without control.
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Fig.3. Real parts of z1 and z2 of network (46) without control.
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Fig.4. Imaginary parts of z1 and z2 of network (46) without control.

Case 1. Choosing p = 2, dj = qj = 16, sjk = hjk = rjk = ljk = 2, β = 0.5. We easily

know that the conditions of Theorem 1 are all satisfied and network (46) with the controller

(14) is α-exponentially stable, which is demonstrated in Figs.5-8. Fig.5 and Fig.6 depict the

curves z1 and z2 of (46) with (14) in 3-dimension space and 2-dimensional space, respectively.

Figs.7-8 depict the time responses of real part and imaginary parts of z1 and z2 of (46) with

(14), respectively.

Case 2. Choosing εj = ϵj = 8, ρjk = ϱjk = 3, β = 0.75. It is easy to know that

the conditions of Theorem 2 are all satisfied and network (46) with the controller (15) is α-

exponentially stable, which is demonstrated in Figs.9-12. Fig. 9 and Fig. 10 depict the curves z1

and z2 of (46) with the controller (15) in 3-dimension space and 2-dimensional space, respectively.

Figs.11-12 depict the time responses of real part and imaginary parts of z1 and z2 of (46) with

(15), respectively.
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Fig.5. Curves z1 and z2 of (46) with (14) in 3-dimension space.
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Fig.6. Curves z1 and z2 of (46) with (14) in 2-dimension space.
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Fig.7. Real parts of z1 and z2 of (46) with (14).
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Fig.8. Imaginary parts of z1 and z2 of (46) with (14).
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Fig.9. Curves z1 and z2 of (46) with (15) in 3-dimension space.
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Fig.10. Curves z1 and z2 of (46) with (15) in 2-dimension space.
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Fig.11. Real parts of z1 and z2 of (46) with (15).
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Fig.12. Imaginary parts of z1 and z2 of (46) with (15).
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6 Conclusions

In this paper, we investigate the α-exponential stabilization for a class of fractional-order

CVNNs with delay via periodically intermittent control. By using some fractional-order in-

equalities and coupling with the Lyapunov method, the periodically intermittent controllers are

designed to achieve the α-exponential stabilization for the discussed fractional-order CVNNs.

What’s more, our results include feedback control as a special case and state that the α-

exponential convergence rate relies on the ratio of control width to control period and the

order of differentiation of the system and p-norm, but does not depends on control width or

control period. So far, the periodically intermittent control method is successfully used to stabi-

lize the addressed fractional-order neural networks with delay. For actual problems, we also can

randomly choose the control period for achieving fractional-order CVNN stabilization. An illus-

trative example with simulations based periodically intermittent control method is presented to

illustrate the effectiveness of the obtained results.
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