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Abstract

This paper is concerned with the global a-exponential stabilization for a class of fractional-
order complex-valued neural networks with time delay. To end this, some new fractional-
order differential inequalities are established, which improve and generalize previously known
criteria. Then, a suitable periodically intermittent control scheme with time delay is pro-
posed for the global a-exponential stabilization of the addressed networks, which include
feedback control as a special case. By using the new fractional-order differential inequalities
and coupling with the Lyapunov method and some other inequality techniques, some novel
delay-independent criteria in terms of real-valued algebraic inequalities are obtained to en-
sure global a-exponential stabilization of the discussed networks, which are very simple to
implement in practice and avoid complex computation on the matrix inequalities. Finally,
an illustrative example with numerical simulations is given to demonstrate the effectiveness

of the theoretical results.
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1 Introduction

Fractional differential systems are the generalizations of the classical integer order differential
systems. Fractional differential systems have gained an increasing attention in recent years
due to their potential applications in many fields of science and engineering. Many significant
contributions have been made in the theory of fractional differential systems [1-8]. Meanwhile,
due to the finite speed of the signal transmission, time delay often exists in almost every system,
and time delay and the order of system could affect the dynamic behavior of system [9]. At
present, fractional calculus has been integrated into artificial neural networks, and fractional-
order neural networks are a kind of potentially applicable networks. many interesting and
important results about stability of fractional-order neural networks with or without delays
have been presented [10-14]. However, there are many fractional-order neural networks that
are unstable in nature. In this case, the controllers have to be added to the neural networks to

guarantee the corresponding asymptotic behaviors.

To improve system performance, various control strategies such as track control [15], adap-
tive control [16], feedback control [17], impulsive control [18] and intermittent control [19] are
adopted based on the actual control requirements. Now, various stabilization criteria are also
established such as exponential stabilization [20], mean square stabilization [21], guaranteed cost
stabilization [22], finite-time stabilization [23,24], delay-independent stabilization [25], sampled-
data stabilization [26]. As a whole, these stabilization strategies have been adopted in the light
of different system structure analysis. On the other hand, an important subject in system analy-
sis is to seek less control cost, simple and efficient methods for system control. The intermittent
control method is often effective and robust compared with continuous control, since each period
in this kind of control scheme is composed of work time(or control time) and rest time and the
controller is activated in each work time and is off in the rest time. So, the system output is
measured intermittently rather than continuously. Owing to those merits, intermittent control

has been successfully applied to stabilize and synchronize neural networks [27-30].

As an extension of real-valued neural networks, complex valued neural networks (CVNNs)
with complex-valued state, input, connection weight and activation function have been one of
the most important research topic in many research areas. In fact, the major goal of studying
CVNNEs is not only to explore new dynamic performance but also to resolve some problem which
cannot be solved in real-valued networks. For instance, the xor problem and the detection of

symmetry [31] cannot be settled with a single real-valued neuron, but these can be settled by



using a single complex-valued neuron with the orthogonal decision boundaries. At present,
the authors [32,33] investigated stability for integer-order CVNNs with delays. In [34-36], the
authors presented some results on the existence, uniqueness and stability of the equilibrium point
for fractional-order CVNNs with delays. In [37], the Lagrange a-exponential stability and a-
exponential convergence of a class of fractional-order CVNNSs are studied by utilizing fractional-
order differential inequalities. The authors [38,39] studied the stabilization of fractional-order
neural networks by using linear state feedback controls. In [40], the authors proposed two types
of intermittent schemes to control the chaos in fractional-order system. The synchronization for
fractional-order CVNNs [41] is investigated by means of linear delay feedback control. In [42],
the authors researched stabilization of fractional-order singular uncertain systems using the state
feedback and output feedback control. To our knowledge, there are few literatures focusing on
designing periodically intermittent controllers to stabilize fractional-order CVNNs.

Motivated by the above analysis, the aim of this paper is to study a-exponential stabiliza-
tion of fractional-order CVNNs with delay via periodically intermittent control. We will first
establish some new fractional-order differential inequalities and propose a kind of intermittent
control scheme. Besides, some new sufficient conditions in terms of real-valued algebraic inequal-
ities for a-exponential stabilization are obtained based on the new fractional-order differential
inequalities. Different from traditional exponential stabilization, our results include feedback
control as a special case and show that the a-exponential convergence rate depends on the ratio
of control width to control period and the order of differentiation of the system and p-norm, but
does not depends on control width or control period.

This paper is organized as follows. In Section 2, some preliminaries are given. Some new
fractional-order differential inequalities are established in Section 3. The main results are stated
in Section 4. Section 5 presents a numerical example with simulations to verify the main results

and finally a summary is given in Section 6.

2 Preliminaries

Notations: Throughout this paper, R, C, R™, C", R™*"™ and C"*" denote the set of real
numbers, complex numbers, n-dimensional real vector, n-dimensional complex vector, m x n real
and complex matrices, respectively. i represents the imaginary unit, i.e., i = v/—1. For a € C, |a|
denotes the module of a, a* is the complex conjugate of a. M* show the conjugate transpose of

complex matrix M. sgn(-) denote sign function. Let % = {1,2,...,n}, Ny ={0,1,2,...}. For



n 1
z=(21,22,...,2,)" with z; = zj +iy; and 2;,y; € Rfor j € Z, ||lz[, = ( X (|z; [P + |y;]P)) 7,
j=1
where p is a positive integer.

In this section, we will introduce some definitions and some useful lemmas. Throughout
this paper, we choose the Caputo fractional-order derivative.
Definition 1 [2]. The fractional integral of order « of a function f(¢) : [to, +00) — R is defined

as

L t —5)* L f(s)ds
F(a)/to(t ) f( )d7t2t07

where a > 0, T'(+) is the Gamma function.

1°f(t) =

Definition 2 [2]. Caputo derivative of order « of a function f € C"([tg, +o0), R) is defined by

appy L P ARIC)
D f(t) - F(TL-O&) /to (t_s)oz—n-‘rlds’ tZth

where n is a positive integer such that n — 1 < a < n. Particularly, when 0 < o < 1

app L Lf(s)
D f(t)_F(l—a) /to (t—s)ads'

Consider the following fractional-order CVNN with time delay

D%z(t) = —Cz(t) + Af(2(t)) + Bg(z(t — 7)) + J, (1)
where 0 < o < 1 denotes the order of fractional-order derivative, z(t) = (21(t), z2(t), .. ., zn(t))"
€ C™ corresponds to the state vector, C' = diag{ci,ca,...,cn} represents the neuron charging

time matrix with ¢; > 0 for j € .Z, 7 is the time delay, f(2(t)) = (fi(21(t)), f2(22(2)), . . ., fa(za(®))T :
C" — C"and g(2(t)) = (g1(21(t—7)), g2(22(t—=7)), ..., gn(2n(t—7)))T : C* — C™ are the vector-
valued complex-valued activation functions without and with time delay. A = (a;i)nxn € C**"
and B = (bjp)nxn € C™*™ are the connection weight matrix without and with time delays,

respectively. J = (J1,J2,...,Jn)T denotes external input vector.

The initial condition of network (1) is of the form
2(s) = @(s) +itp(s), s € [-7,0],

where ©(s5) = (¢1(8),02(5),...,0n(s))T and ¥(s) = (Y1(s),¥2(s),...,¥n(s))T are continuous
real-valued vector functions on [—,0].
Definition 3. The point Z = (21, %2,...,%,)T € C" is called an equilibrium point of (1) if and

only if

—C3+ Af(2) + Bg(3) + J = 0.



To stabilize the unstable equilibrium point Z of (1), the control model of (1) is described by
D%z(t) = —Cz(t) + Af(2(t)) + Bg(2(t — 7)) + J + U(¢), (2)

where U(t) = u(t) + iv(t) with u(t),v(t) € R" is a periodically intermittent controller which
need be designed. Note u(t) = (u1(t),ua(t), ..., un(t))T,v(t) = (vi(t),v2(t),...,va(t))T.
Definition 4. Network (2) with intermittent effects is said to be a-exponentially stable if there

exist constants M > 0 and A > 0 such that

I2(t) = 2l < M sup_||z(s) — Z[le ™"
—7<t<0

holds for V¢ > 0 and any initial values z(s) = ¢(s) + it)(s) with s € [—7,0].
Assumption 1. Let z = x + iy and 2 = 2 + g, f;(2), g;(2) for j € F are separated into their

real and imaginary part as follows

fi(z) = i@ y) +if] (2.9), 95 (2) = g (2,y) +ig] (z,y),
where fJR(-, ~),ij(-, -),g]R(‘, -),g]z(-, ) : R? - R and satisfy
7@ 9) = f5 ()| < e — ]+ B G =yl 15(2,9) = [ (@,9)] < Fj e — |+ Fjtlg -y,
975(2,9) — 9 (@, 9)| < GFFE — |+ G g —yl, |9 (2,9) — g (z,9)| < Gi|& — x| + G} g -y,
where FJRR, FjRI, FJ-IR, FjH, GfR, Gfl, G]I-R, GJU are known positive constants for Vx, 2, y, 9 € R.

Let €;(t) = z(t) — z; = €f(t) + iey-(t), zi(t) = x;(t) +iy;(t), Z; = T; + iy;, where

e7(t), e?(t),a:j(t),yj (t),zj,9; € R for j € #, then network (2) can be transformed into

Def(t) = = cjes (8) + > afi[fil(wn(t), yr(t)) = fE (Er, )] Z%k Fi (), un () = fi (Ex, 5]

k=1
+ 3 BB g @t = 7), gt — 7)) — gf @ )]
k=1
N hlgh (et — ), y(t — 7)) — gE(@x, Gi)] + us (1), (3)

DeU(t) == c;el(t) + Y afi [ (@r(t), yu(t)) = S Ero 0] + D afu [ FE (1), i (8) = Sk, )]
k=1

+ Zbﬂc gh (@t = )yt — 7)) — gh(@n )]

* Z biklgk @k (t — 1), ye(t = 7)) — g (Tn, Gie)] + 05 (2) (4)
k=1



Lemma 1 [10]. Let n be a positive integer such that n — 1 < o < n. If y(t) € C"[a,b], then

n—1 (k) a
oyt =y - 3 -t
i=0 )

In particular, if 0 < a <1 and y(t) € C|a, b], then
I“D%(t) = y(t) — y(a).
Lemma 2 [16]. Suppose that z(t) € C|a,b] and meets
D%x(t) = f(t,z(t)) >0, 0<a<l (5)
for Vt € [a, b], then x(t) is monotonously non-decreasing for 0 < o < 1. If
Dx(t) = f(t,z(t)) <0, 0<a<l (6)

for Vt € [a,b], then x(t) is monotonously non-increasing for 0 < o < 1.
Lemma 3(Young inequality). Let a > 0,b>0,p > 1, ¢ > 1 and % + % =1, then the inequality
ab < %ap + %bq holds, and the equality holds if and only if a? = b9.

3 Some new differential inequalities related to the Caputo frac-
tional derivative
Lemma 4. Assume that x(t), y(¢) are continuous and differentiable on [a,b) for Va € R, if
D%x(t) < D*y(t) for 0 < a < 1 and z(a) = y(a), then
z(t) <y(t),t € [a,b).

Proof. Let D%x(t) = f(t), Dy(t) = g(t), then f(t) < g(t). From Lemma 1, one has for
t €la,b)

o0) =a(t) — s [ (6= 9 F (s,
V) = 1(0) - s / (t — )21 g(s)ds.

According to z(a) = y(a), one has

£(t) — y(t) = F(l) / (t — )21 (f(s) — 9(5))ds,

a
Sincea<s<t=t—s>0,0<a<1l=T(a)>0,and f(t) < g(t) = f(t) — g(t) <0. So, we

can conclude on the basis of the above equation that z(t) < y(t).



Remark 1. When ¢ = 0, Lemma 4 here turns into Theorem 2.4 in [4]. So, Lemma 4 here is
applicable to any continuous and differentiable interval for z(t), y(¢) and more general.
Lemma 5. Let G(t) be a real-valued continuous function on [a,b) for Va € R, and there exist

a constant 6 such that

DeG(t) < 0G(t),
where 0 < a < 1, then

G(t) < Gla)eT@rm =)

Proof. According to Definition 1 and Lemma 1, we can have
G(t) < G(a) + b /t(t —5)*7 G (s)ds,t > a
- L) Jq T
From the famous Gronwall inequality, we have
G(t) < Gla)els T@ =M _ G(gyettarn (-0,

The proof is completed.

Remark 2. When a = 0,b = 400, Lemma 5 here becomes into Lemma 4 in [10]. It is obvious
that Lemma 5 here is an extension of Lemma 4 in [10] at any continuous interval.

Lemma 6. Suppose that a continuous function V(¢) : [top — 7,+00) — [0, 4+00) meets the

following differential inequality:
DV (t) < aV () + bV (t —7),Vt > to, (7)
where a > 0,b > 0 are constants. Then
a+b o

4“,150)
V()< sup V(s)eFle+D
to—7<s<tp

Proof. From (7), it is clear that

DV (t) < (a+b)max{V (), V(t — 7)}.

After fractional integration on both sides of the above inequality from ¢y to t, one has

V(1) < V(to) + T“(Z? /t (t = )2 max{V(s), V(s — 7)}ds. (8)
Definite
W(t) = Cli(ty;) /t (t —s)* T max{V(s), V(s — 7)}ds.



Using Definition 2 to calculate the fractional-order derivatives of W (t), then
DWW (t) = (a+ b)max{V (t),V(t—7) > 0.

From Lemma 2, W (¢) is monotonously non-decreasing, namely, W (t) > W (¢ — 7), one has

a t—r
V(t—1)<V(ty) + F(—;;) /t (t—7 —5)* Tmax{V(s),V(s — 7)}ds
<V(to) + Cli(Z;) /t (t — s)* T max{V(s), V(s — 7)}ds. 9)

Combining (8) with (9), we get

max{V (¢),V(t— 1)} < V(to) +

ath [* —8)* T max{V (s s —7)}ds
foy | (6= 9 max(V (), V(s -y

From the famous Gronwall inequality, one can obtain

a+b «@ a+b _ «@
V(t) < max{V (), V(t — 1)} < V(to)eTmm 0" < gup  V(s)eTarn ¢—t),
to—17<s<tp

Lemma 7. Let p be a positive integer, if z(¢) € R is a continuous and differentiable function,

then
D¥z(t)|P < p|:c(t)\p*1D°‘\a:(t)], O<a<lt>t. (10)

Proof. When p = 1, the inequality (10) is clearly true.

When p > 2, it is equivalent to prove that
D|z(8)P — plz(t) P~ D|2(1)] < 0. (11)

If 2(t) > 0, according to the Definition 2, one has

DO (t)] = F(ll— 5 /to (ti_(?)ads — D(t),

and if z;(t) < 0, then

Dz (t)] = _F(ll— S /to (tji(ss))ads — _Do(t).
Therefore
D% z(t)| = sgn(x(t)) Dz (t). (12)
So, we have
apinp L " pla(s) [P~ sgn(x(s))d(s)
D (t)[” = T —a) /to 5o ds.



Define u(s) = |z(s)[P — pla(t)|P~|z(s)| + (p — 1)|x(t)|P. From Lemma 3, we can obtain
u(s) > 0,u(t) = 0.
Combining (12) with Definition 2, we can obtain

Dz (t)]” = pla ()P~ D[ (t)|

1 Eplla(s)P~t — |a(t) [P~ sgn(x(s))i(s)
“I(1—a) /to (t— s) ds
1 t
“Ti—a) /t sl
1 u(s) B 1 u(to) B oY

= lim

! _Sfafl S
R B s Tl T J, M e 0

to

From the first term of the expression (13), we have

U)o ple(s)P sen(a(s))is) — pla()l~ sg(a(s))d(s)
(1 —a)s=t (t—s)® st al'(1— a)(t — s)a1
— ozF(ll—oz) Jim [pla(s)[ = pla(®)/" ]sen(x(s))é(s)(t — )"0

=0.
Owing to u(t) > 0, one has

DF |z (t)P — pla(t)[P~ D |a(t))]
1 U(to) 1

- - tusa —g) 1y
Tl —a)(t—to)> F(l_a)/to (s)a(t —s) d

<0.

The above inequality indicates that the inequality (10) holds. This completes the proof.
Remark 3. When p = 2, Lemma 7 here becomes into Lemma 1 in [5]. Meanwhile, the case for
a = 1 corresponds to %L@(t)\p < p|x(t)|p_1%]a;(t)|, it can be considered as a particular case of

Lemma 7 here. So, our result is more general.

4 Main results

In this section, we design a class of periodically intermittent controllers to guarantee a-

exponential stability of system (2).



The periodically intermittent controller U(t) = u(t) + iv(t) is defined by

ifmT <t<ml+9,

uj(t) = —djej(t) —sgn(ej(t)) kZl(Sjkle?i(t = )|+ hirlei(t = 7)),
" (14)
vi(t) = —qsej(t) — sen(ej(1)) k;(mlek(t =7+ Likleg(t = 7)),
it mT +6<t<(m+1T, wu;(t)=uvt)=0.
Under special circumstances, the controller (14) turns into
ifmT <t<mT+94,
uj(t) = —e;ej(t) —sen(ef(t)) > piklep(t —7)l;
i (15)

vi(t) = —e;ej(t) — sgn(ef(t)) Z ojklex(t — 7)1,

i mT+ 8 <t < (m+ DT, u;(t) =v;(t) =0.

The parameters dj, q;, Sjk, Tjk, hjk, Ljk, €5, €5, Pjk, 0ji are all positive constants determined later.
T > 0 denotes the control period and § = ST(0 < f < 1) is called the control width and 3 is
called the control width index.

Theorem 1. Under Assumption 1, network (2) with (14) is a-exponentially stable if there exist
some positive scalars 6, u, v and A such that the following conditions are satisfied for positive
integer p > 2

n

“ples +ds) + (= 1) 3 (I (R + ) +aly | (B! + F{F)

+ kilua (FRR 1 FRI) 4 |al [(FIR 4 [FIT)) < —0p, o
“ples +a7) + (0= 1) 2 (1AL + F{) 4 Jaly (77 + F))

+ kiluw FIR 4 |FIT) 4 [al |(FRR 4+ |FRI)) < —gp.

Eod

|b |GEE + |b kyGfR<s]k, |b \GRI+|bka|G” < hjk, an
IGET + b5 G < g, IBRIGET + [bIGET < L.

( n n
—pci+(p— )Z(Iajk\(FRRﬂLFRIHIaJkI(F[I+FIR))+k21(|afjl(F]RR+F}RI)+Iaij!(F}fRJrle”))

o
—_

(IBRI(GET + GED) + b3 (G + G < wp,

M:

+(p-1)
k

1
n
—pej+ (p— 1) X (i [(FT + B + lag [(FFF + FE)) + E(IakJI(FIR 1T + lajy | (FfF + |FfT))

o
—

Hp—1) S (VR (GLR + GIT) + bl (GER + GRIY) < pip.
k=

—_

(18)

10



n n

SO+ b D (GET + Gy < v SR + B DGH + @) <. (19)
k=1 k=1
—08% + (u+)(1— B)* + A <0. (20)

Proof. It is easy to get
D®|ej(t)| = sgn(ej () Dej (), D*ej(t)| = sgn(ef(t))D%; (). (21)

Let the Lyapunov function be in the form of

P leE )P el ()P
V(t):z;“;t”—kzghgﬂ. (22)

On the basis of Lemma 7, combining with (21) and calculating the fractional-order derivatives

of V(t) along the solutions of networks (3)-(4), we obtain

n

DVt Z (&)P~' D lej (t |+Z\6 (O~ Dflef (1)]

<- Z%!e \p+ZZ!akae I E ek ()] + e e ()]

=1 k=1

+ZZ|ajk||e WPHE g (1) + Fl el (1)]]
7=1 k=1

+ZZ|bk||e JPHGER g (t — 1) + GRL|ed (¢ — 7))
7j=1 k=1

+ZZ| Lller @) P GER g (t — ) + GEel (¢ — 7)]]
7=1 k=1

= eiled(t |p+ZZ\ajkr|e WPUERer ()| + Bl el ()]
j=1 j=1 k=1

+22|ajkue WPHERR R ()] + F el (1)]]
7j=1k=1

+ZZlb et GERe(t — )| + Gl el (e — 7))

3

M:|

Ll ()P GRR e (t — 7)| + G|l (t — 7))
1 k=1

+ Y 1O sgn(ef (0)us(8) + Y [ef ()P sgn(ed (1))v;(1). (23)

1 j=1

J

<.
Il

According to Lemma 3, we can obtain

SO0 < TSl OF + IO, [ OP o] < TSl O + Sl (24

11



1z p—1 1 . _ p—1 1
[e§ (I er (1) < — G OF + Clek DI, e OF Hep ()] < |G OF +lek (. (25)

When mT <t <mT + § for Ym € N, from (23)-(25), one has

n

DV (1) < { —pej + (0= 1) Y (il (B + B + lag (B + BT

"=

7j=1 k=1
+ > (afs|(FfR + FR) + lafy |(FF% + [F) ez o)
k=1
+ 30D [RIGER + WhIGER e () ekt — 7))
7j=1 k=1
30D [ WRIGE + hIGH |l @l — 7))
71=1 k=1
1 n n
+pz{ pej+ (0= 1) (1B + FY) + afy (B + FE)

k=1

+ Z(Iafjl(FfR +|FfT) + lagg | (Ff* + IFJRI))}\%@)!”

k=1
30 5 [AIGH + WhlGER] Pk - )
j—1k—1
Sy BRIGE + WhIGE |V et - 7)]
7=1 k=1
+Z|e )~ Lsgn(es +Z|e )~ sgn (el (1)) (1)
<! i {~pe+d)+ -1 iwwﬁ + B + oyl (R + L)

j—l k=1

+Z a5 |(ERR + FFT) + oy (F7 + |FI) bes ()P

303 [IBRIGER + [IGER s ez et — 7

7j=1k=1
n
F 20D [BRICHE + bielGE — b le5 (P el =)
j=1 k=1
1 n n
#p 2 ple )+ 0= S+ LD T+ FE)

k=1

3

+Z iy (B4 [FT) + g | (F + IFRI))}\eﬁ(t)!p

3

n

30D [WRIGER + WLIGER = eI et — 7))

7=1k=1

12



3
3

D BRIGE + DI GET = L et ()Pt = 7))

By Lemma 5, we get for mT <t <ml +§
V(t) < V(mT)eain =m0 (27)

From Lemma 3, we can obtain

—1 1
e (t) P ek (t — 7)] < b Ief(t)ler;!ei(t—T)lp’ (28)
_ p—1 1
e (8)P ey (t — 7)] < €5 (D) + ];IeZ(t -7, (29)
_ p—1 1
e ()P Hef (t —7)] < T\e?(t)!p + ];!ei(t — )P, (30)
-1 1
ejt _ekt—T _76]-75 +fekt—7' .
Y(4) [Py <pp Y4\ |P p y P 31

When mT' + 6 <t < (m+ 1)T for Vm € N, substituting (28)-(31) into (23), one has

1 n n

DV(e) < 3 = pes o+ (o= ) (eI + ) o+ Jaf (R + BL)
j=1 k=1
+ 3 (el + F) + oy | (B + |Ff)
k=1
) RIGER + G+ (p—1 Z| LGER + GID e
k=1
1 n n
52 2 b1+ o DGR + Gl e = )P
=1 k=1
1 n n
o e o= ) Y (I B + laf(EE + BE)
j=1 k=1

n

+ D (aggl (B 4+ |FT) + agg (B + |Ff)

k=1
DY RIGEE + GE + Z| TlGER + GED Hevny
k=1
1 n n
+p Ikab |+ b (GF + GiDed(t — )P (32)
Jj= 1

Combining with the inequalities (18)-(19) and (32), we get

DOV () < uV(t) + vV (t — 7). (33)

13



From Lemma 6, based on the inequality (33), one has for mT + 6 <t < (m + 1)T
V(t) <V(mT + §)ettarn ¢=(nT+0), (34)
Based on the inequalities (27) and (34), then we have for mT + 0 <t < (m+ 1)T

V(1) SV(mT)eF(;iil)‘saJr%(t—(mT_s_a))a
—08% 4 (w4 ) (1)
SV(WlT)e F(Ha+1) T .

And

*Gﬁa‘,’(#‘FV)(I*B)a T

V((m+ 1)) < V(mT)e™ oo

From the above inequality, we can obtain

—08%+(utv)(1=5) pa

V(mT) <V((m —1)T)e T(a+1)

LZ08% 4 (ut1) (1=8)% o
<V((m—2)T)e> ™ rtein L

*930‘4’(#4’1’)(1*6)0‘ T

<V(T)e!™ VT

*GBO%L(PA’V)O*B)O‘ T

<V(0)em( T(a+1)

Therefore, when mT <t < (m + 1)T, we have

—08%+ () (1=B)% e

V(t) <V(mT)e T(a+1)

=08+ (pt+v)(1-B) o
( T'(a+1) T

<V (0)e™ Y

<V(0)eTtD” |
That is to say

—A o —A @
le(®)llp < le(O)[[er™@ 0" < sup e(s)|[pere D"

—7<5<0

From Definition 4, network (2) with the controller (14) is a-exponentially stable.

Remark 4. In Theorem 1, we used delayed feedback periodically intermittent controller (14)
to realize the stabilization of network (1). However, the real part and the imaginary part of the
controller (14) depend on not only the past of the real part of states but also the past of the
imaginary part of states. This will give some restrictions on the practical applications. To cope
this, we design the controller (15), where the real part and the imaginary part of the controller

(15) are related to the past of the real part and the imaginary part of states, respectively.
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Remark 5. Because the limit of the Young inequality is p # 1, we solely discuss the case of
p =1 in the following Theorem 2.
Theorem 2. Under Assumption 1, network (2) with the controller (15) is a-exponentially stable

if there exist some positive scalars 6, u, v and A such that the following conditions are satisfied

—C =&+ Z(Iakler\akj\)(\FRRJrFm)< =0, b5+ i D(GFT + GIF < i,

(35)

—C — &+ Z(Iaﬁ\+|akjl)(F”+FR[)< =0, o] + b D(GTT + G < oy,

=+ 3 (loff |+ laf)ICF/ ™ + Ff) < kzub |+ DGR + G <,
- - (36)

—¢j 32 (laigl + laig D + F¥) < kE(!b |+ b DGR+ G <w
—08%+ (p+v)(1-B)*+A<0. (37)

Proof. Consider the following Lyapunov function:
n n
V() =Y lef0)]+ Y [ed (D)
j=1 j=1

Combining with (21), calculating the fractional-order derivatives of V' (t) along the solutions of

system (3)-(4), we can obtain

n
= eilef(t |+ZZ! LEE et (0] + Fi el (0)]]
j=1

7j=1k=1

+ 20 lagllE ek (O] + i lef ()]

j*lk*l
+ZZyb [GER|ex(t — )| + G el (t — 7))
=1 k=1
+ZZ! TG ekt — )| + Gl lef(t — 7)]] +ngn (t))u;(t)
Jj=1k=1 j=1
= gled(t !+ZZ\W Fer ()] + B el ()]
j=1 j=1 k=1
+ZZI%I PR ek )]+ B e (1]
7j=1 k=1
+ZZI G ek (t — )| + G e (t — 7)]]
7=1 k=1
+ZZ; LAGERer(t — 1) + GR el (t — 7)]] —i—ngn (t))v;(t). (38)
J=1k=1 j=1

15



When mT <t <mT + ¢ for Vm € N, we have

b <Z{ —G _€J+Z oy + o, N (FFR + FI®) ez (2)]

7j=1

£ [+ D@+ 1) e )

7=1 k=1

+Z{ e +Z 0l + o, DI+ EFD Yex )]

n

+ ZZ (B + 16 D(GH + GIT) = o] e (¢ = 7))

=1 k=1
—92\6 |—92\e

— V(D). (39)

Using Lemma 5, we can obtain

V(t) < V(mT)emn =m0

When mT + 6 <t < (m+ 1)T for Vm € Ny, one has

Dov(t) <3 { =i+ Y (aff ] + laly ) (F + FFR) e (1)

j=1 k=1

> DB+ DGR + GEF) st - 7)

j=1 k=1

£ —cj+2 afs| + la,DE + D Yeg o)

7=1
F S+ DG + 6 st - o)
j=1 k=1

=pV(t) + vV (t—71). (41)
By the similar proof of Theorem 1, we can obtain

- a - a
le@®)ll < [le(0)1e™@D" < sup e(s)[1eT@ D’

—7<5<0

From Definition 4, network (2) with the controller (15) is a-exponentially stable.
Remark 6.
Remark 7. When § = 1, the periodically intermittent controllers (14) and (15) turn into the
following linear delay feedback controllers, respectively:
u;(t) = —d;ef (t) —sgn(ef (£)) 3- (srle(t — 7)| + hleg(t — 7)),

i (42)
vy(t) = —ase} (1) —sn(e}(1)) 3= (ryelef(t )] + Llel (¢~ 7))
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3

uj(t) = —ejef(t) —sgn(ef () Yo pwlef(t —7)l,
k=l (43)
vj(t) = —ejef(t) —sgn(ef(t)) >° ojulep(t — 7).

k=
From the process of derivation of Theorem 1-2, we have the following corollaries:

3

—_

Corollary 1. Under Assumption 1, network (2) with the controller (42) is a-exponentially

stable if there exists a scalar 8 > 0 such that the following conditions are satisfied

n
—p(ej+dj) +(p—1) Zl(!aﬁl(szR + B + g (FER + ET)

ol

n
+ kZI(IakRj! + lag; ) (FfF + FIT) < -0,

“ples +05) + (0= 1) 3 (0B + B + Jaly (R + FE)

—_

n
+k§1(\a§j\ + laf; N(Ff + FIT) < -0,

DI NGERE 4 (b1 | GEF = 5 <0, [bRIGRT + b5, |G = hjr <0,
|b |G1R+‘ k|GRR_TJk <0, ‘b |G£1+| jk’Ggl_ljk <0.
Corollary 2. Under Assumption 1, network (2) with the controller (43) is a-exponentially

stable if there exists a scalar # > 0 such that the following conditions are satisfied

n
cj—¢&j+ Z (laﬁj + laf,; N (E/ R+ FfIR) < -9,

Z(!b |+ 1o |)(G]I‘R+G§%R)_k¥1/0kj§0>

ey =6 3 (aff |+ lafy D(F + Ff) < =6,

| /\

> (g + g DG+ G = P
k=1 k=1

Remark 7. In n-dimensional real space, network (1) turns into the following fractional-order

real-valued neural networks
n n
Dj(t) = —cjxi(t) + Y ajpful@n(t) + Y bingr(wr(t — 7)) + J;(t), (44)
k=1
where ¢; > 0,2;(t), fu(-), 9%(-), ajk, bjk, Jj(t) € R. And Assumption 1 become the following
assumptions, respectively:
Assumption 1. Let z,y € R, functions fj(-) € R is Lipschitz-continuous on R with Lipschitz
constants Fj, Gj > 0, .de. |fj(x) — fi(y)| < Fjlz —yl, |g;(z) — g;(y)| < Gjle —yl,j € Z.
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The two periodically intermittent controller (14)-(15) turns into the controller as follow:

it mT <t<mT+§,
uj(t) = —dje;(t) —sgn(e;(t)) > sjkler(t — 7)),
k=1 (45)

From the process of derivation of Theorem 1-2, we have the following result.
Corollary 3. Under Assumption 1, network (44) is a-exponentially stabilized via the controller
(45) if there exist a positive integer p > 2, some positive scalars 6, u, v and A such that the

following conditions are satisfied

)
—pcj —pdj + (p — 1) > (|aj| Fr + |ag;|Fy) < —0p,
=1
|bik|Gr — sk <0,
n
—pc; —pd; + (p— 1) D (|ajk Fr, + |axi| Fj) + |bjx|Gr < —0bp,
k=1

n
2 |bij|Gj < vp.
k=1

or
n

—cj —dj + > lag;| Fj < =0,
k=1

|bjk| G — sk <0,
n
—¢j + > laws|Fj < =0,
k=1

> |bkilGy < v.
k=1

Remark 8: Remark 8. So far, there are some results concerning the exponential stabilization
or synchronization of fractional-order neural networks with or without time delays [38, 39].
However, to the best of our knowledge, there are no results on the a-exponential stabilization
of fractional-order CVNNs with delay or synchronization between two fractional-order CVNNs
with delay via periodically intermittent control. Obviously, our results have optimality in the

control cost for the stabilization, which include feedback control as a special case.

5 An Illustrative example

In this section, using the predictor-corrector scheme for solving nonlinear delay differential
equations of fractional order [43], which have been used for fractional-order chaotic systems with

delay [9,44], we present a numerical example to show the effectiveness of the obtained results.
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Example 1. Consider the following two-neuron fractional-order CVNN
D%z(t) = —C=z(t) + Af(2(t)) + Bg(z(t — 1)), (46)
where a = 0.95, 7 = 5, let 2j(t) = z;(t) + iy;(t), z;(t), y;(t) € R for j = 1,2. And
[i(z(8)) = tanh(x;(t)) + y;(t) +i(x;(t) + tanh(y; (1)),
95(2;(t)) = z;(t) + tanh(y;(t)) + i(tanh(z; () + y;(t)),

20 1+1s 1 —1-1s -1
C - A = ’B =
0 2 -1 1+1¢ 14 —1—-1¢
Let the initial value z1(s) = sin(0.4nt) + i cos(0.47wt) — 1, z2(s) = cos(0.47t) 4 isin(0.47t) — 1.
It is easy to verify that Assumption 1 is satisfied with lfR = lfl = lf” = ZJIR = 1. Fig.1 and
Fig.2 depict the state curves z; and zy of (46) with u(¢) = v(t) = 0 in 3-dimension space and
2-dimensional space, respectively. Fig.3 and Fig.4 depict the time responses of real part and

imaginary parts of z; and 23 of (46) with u(t) = v(¢) = 0, respectively.

JE—T)
[R— N0

20

imag —50 —20

Fig.1. Curves z; and 29 in 3-dimension space without control.

imag

—20 —15 —10 -5 o 5 10 15 20
real

Fig.2. Curves z; and z in 2-dimension space without control.
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——— real(z,(®)

—— real(z,(®)

L L L L L L L L
5 10 15 20 25 30 35 40 45 50
t

Fig.3. Real parts of z; and 2, of network (46) without control.

60

—— imag(z, (1)
— imag(z,(H)
40+
20

| R

—20F

imagl)imagz)
J
N
7
O
S
(/
Q
-
O
~
\
/
S
—
\
P
<
\

—60

L L L L L L L L L
o 5 10 15 20 25 30 35 40 a5 50
t

Fig.4. Imaginary parts of z; and 2y of network (46) without control.

Case 1. Choosing p = 2,d; = q; = 16, sji, = hjr = rj = lj, = 2,8 = 0.5. We easily
know that the conditions of Theorem 1 are all satisfied and network (46) with the controller
(14) is a-exponentially stable, which is demonstrated in Figs.5-8. Fig.5 and Fig.6 depict the
curves z; and zz of (46) with (14) in 3-dimension space and 2-dimensional space, respectively.
Figs.7-8 depict the time responses of real part and imaginary parts of z; and z9 of (46) with

(14), respectively.

Case 2. Choosing ¢; = ¢; = 8, pjx = 0jx = 3,8 = 0.75. It is easy to know that
the conditions of Theorem 2 are all satisfied and network (46) with the controller (15) is a-
exponentially stable, which is demonstrated in Figs.9-12. Fig. 9 and Fig. 10 depict the curves z;
and z3 of (46) with the controller (15) in 3-dimension space and 2-dimensional space, respectively.

Figs.11-12 depict the time responses of real part and imaginary parts of z; and 29 of (46) with

(15), respectively.
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imag

real(zl(t)),real(zz(t))

\mag(zl(t)),imag(zz(t))

—_—,0
—_—

imag -2 -2

.
-2 —1.5 -1 —0.5 o 0.5 1
real

.6. Curves z; and zg of (46) with (14) in 2-dimension space.

— € A (zl(t))
— real(zz(t))

—0.5

|
iy

L ,
15 20
t

Fig.7. Real parts of z; and 22 of (46) with (14).

——— imag(z,®
— imag(z, ()

t

Fig.8. Imaginary parts of z; and zy of (46) with (14).
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—_—z,0
—_—,0

.
- -1.5 -1 —-0.5
real

0.5 1

Fig.10. Curves z; and z3 of (46) with (15) in 2-dimension space.

— real(z, (1)
or % V
Fig.11. Real parts of z; and z2 of (46) with (15).

— imag(zl(t))
— imag(zz(t))

L L L
10 15 20

L
25

L L ,
30 35 40

Fig.12. Imaginary parts of z; and zy of (46) with (15).
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6 Conclusions

In this paper, we investigate the a-exponential stabilization for a class of fractional-order
CVNNs with delay via periodically intermittent control. By using some fractional-order in-
equalities and coupling with the Lyapunov method, the periodically intermittent controllers are
designed to achieve the a-exponential stabilization for the discussed fractional-order CVINNs.
What’s more, our results include feedback control as a special case and state that the a-
exponential convergence rate relies on the ratio of control width to control period and the
order of differentiation of the system and p-norm, but does not depends on control width or
control period. So far, the periodically intermittent control method is successfully used to stabi-
lize the addressed fractional-order neural networks with delay. For actual problems, we also can
randomly choose the control period for achieving fractional-order CVNN stabilization. An illus-
trative example with simulations based periodically intermittent control method is presented to

illustrate the effectiveness of the obtained results.
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