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Highlights 

• We analyse the role of geopolitical risks (GPR) in predicting volatility jumps in the DJIA. 
• We examine the period 1899:01 to 2017:12, with the jumps having been computed based on  
   daily data over the same period. 
• Standard linear Granger causality test failed to detect any evidence of GPRs causing volatility  
   jumps 
• Using a nonparametric causality-in-quantiles test detect overwhelming evidence of GPRs  
   predicting volatility jumps of the DJIA over its entire conditional distribution. 

 
Abstract 

In this paper we analyse the role of a news-based index of geopolitical risks (GPRs), in predicting 
volatility jumps in the Dow Jones Industrial Average (DJIA) over the monthly period of 1899:01 
to 2017:12, with the jumps having been computed based on daily data over the same period. 
Standard linear Granger causality test failed to detect any evidence of GPRs causing volatility 
jumps. But given strong evidence of nonlinearity and structural breaks between jumps and 
GPRs, we next used a nonparametric causality-in-quantiles test, since the linear model is 
misspecified. Using this data-driven robust approach we were able to detect overwhelming 
evidence of GPRs predicting volatility jumps of the DJIA over its entire conditional distribution. 
In addition, a cross-quantilogram analysis shows that what matters most for increases in volatility 
jumps are relatively higher GPRs than lower values of the same. 
 
Keywords: Stock Market Volatility Jumps, Geopolitical Risks. 
JEL Codes: C22, G10. 

 
 

 
1. Introduction 

Financial market volatility is an important input in investment decisions, option pricing and 

financial market regulation (Poon and Granger, 2003). Given this, market participants care not 

only about the nature of volatility, but also of its level, with all traders making the distinction 

between good and bad volatilities (Giot et al., 2010). Good volatility is directional, persistent and 

relatively easy to anticipate. Bad volatility however, is jumpy and relatively difficult to foresee. 

Hence, good volatility can be associated with the continuous and persistent part, while bad 

volatility captures the discontinuous and jump component. In this regard, it has been stressed 
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that jumps in volatility can improve the overall fit of volatility models (Duffie et al., 2000; Eraker 

et al., 2003; Broadie et al., 2007; Todorov and Tauchen, 2011). Understandably, a large literature 

has developed trying to not only model volatility jumps, but also attempting to explain the causes 

behind such jumps based on financial variables (Caporin et al., 2016). Related to this line of 

research, Boudoukh et al., (2015) and Baker et al., (2018), motivated by the early work of Cutler 

et al., (1989), have been using text search to connect stock jumps to news.  

 

Against this backdrop, the objective of this paper is to use a news-based index of geopolitical 

risks (GPRs), as developed by Caladara and Iacoviello (2017), to predict volatility jumps in the 

Dow Jones Industrial Average (DJIA) over the monthly period of 1899:01 to 2017:12, with the 

jumps having been computed based on daily data over the same period. Given that asset prices 

are functions of the state of the economy, which in turn is affected by GPRs (Caldara and 

Iacoviello, 2017), recently, studies like Apergis et al., (2017), Caladara and Iacoviello (2017), 

Balcilar et al., (forthcoming), Bouras et al., (forthcoming), and Bouri et al., (forthcoming) have 

related GPRs with stock and bond market returns and volatility, with them indicating that GPRs 

tend to have a more pronounced impact on volatility than returns. As indicated above, given the 

importance of jumps in volatility modelling, especially bad volatility, we, to the best of our 

knowledge, make the first attempt in this paper to predict volatility jumps using information on 

GPRs. If GPRs do predict jumps, then we can say that GPRs tend to affect bad volatility, and 

hence, we would be able to provide an explanation as to why GPRs tend to affect volatility more 

than returns. 

 

For our predictability analysis, we rely on the nonparametric causality-in-quantiles test of Jeong et 

al., (2012), and hence, in the process capturing various phases (sizes) of volatility jumps. 

Understandably, this causality-in-quantiles approach is inherently a time-varying approach as 

various parts of the conditional distribution of volatility jumps would relate to various points in 

time associated with the evolution of jumps. The causality-in-quantile approach has the following 

two novelties: Firstly, it is robust to misspecification errors as it detects the underlying 

dependence structure between the examined time series, which could prove to be particularly 

important as we show that volatility jumps is nonlinearly associated with GPRs, which is not 

surprising given ample evidence of financial market variables being nonlinearly related with its 

predictors (Balcilar et al., 2017). Secondly, via this methodology, we are able to test not only for 

causality-in-mean (1st moment) as in popular nonlinear causality tests of Heimstra and Jones 

(1994), and Diks and Panchenko (2005, 2006), but also for causality that may exist in the tails of 
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the joint distribution of the variables. This is again of paramount importance since our 

dependent variable, i.e., volatility jumps is shown to have fat-tails, as outlined also in Bollerslev et 

al., (2013). In addition, we also use a cross-quantilogram analysis as proposed by Han et al., 

(2016), which in turn allows us to qualify our results from the causality-in-quantiles test further, 

by providing us information of the importance of the size of GPRs, and directional 

predictability.   

 

The remainder of the paper is organized as follows: Section 2 lays out the basics of the 

econometric methodologies involving volatility jumps and the causality-in-quantiles approach; 

Section 3 presents the data and results, with Section 4 concluding the paper. 

 

2. Econometric Methodologies 

2.1. Volatility Jumps 

We employ daily log returns      of the DJIA to estimate the monthly median realized variance 

(    ). In each month  , we retrieve a monthly point estimate of the      by employing all 

daily returns. We calculate monthly volatility by the median realized variance,     , which is the 

best alternative jump-robust estimator of realized variance, as introduced by Andersen et al. 

(2012), as follows: 

      (
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/,      is the daily return for day   within month   and       , where   

is the total number of daily observations within a month. 

 

We also examine the determinants of monthly jumps series. Following, Bekaert and Hoerova 

(2014) we employ the threshold bipower variation (     ) as a jump-free volatility estimator as 

defined in Corsi et al. (2010), as follows: 
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We calculate the jump statistic .    
(    )

/ following Duong and Swanson (2015), as follows: 
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 statistic follow a normal gaussian distribution. 

 

A jump is considered to be significant if the    
(    )

 exceeds the appropriate critical value of 

the standard gaussian distribution, denoted by   , at a   significant level. The jump component 

of volatility in monthly frequency is: 
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where  * + represents an indicator function of the    
(    )

 exceeds of a given critical value of a 

Gaussian distribution.  

 

2.2. Causality-in-Quantiles 

This sub-section provides a brief description of the quantile based methodology based on the 

framework of Jeong et al. (2012). As mentioned earlier, this approach is robust to extreme values 

in the data and captures general nonlinear dynamic dependencies. Let yt denote volatility jumps 

and xt denote the predictor variable, in our case the index capturing GPRs (as described in detail 

in the Data segment of the paper).  

 

Formally, let ),...,( 11 pttt yyY   , ),...,( 11 pttt xxX   , ),( ttt YXZ   and ),( 1| 1  ttZy ZyF
tt  

and ),( 1| 1  ttYy YyF
tt

 denote the conditional distribution functions of ty  given 1tZ  and 1tY , 

respectively. If we denote )|()( 11   ttt ZyQZQ   
and )|()( 11   ttt YyQYQ  , we have 

 
}|)({ 11| 1 ttZy ZZQF

tt
 with probability one. Consequently, the (non)causality in the q -th 

quantile hypotheses to be tested can be specified as: 

                                H0 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}=1,    (5) 

                                H1 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}<1.   (6) 
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Jeong et al. (2012) employ the distance measure )}()|({ 11  tzttt ZfZEJ  , where t  is the 

regression error term and )( 1tz Zf  is the marginal density function of 1tZ . The regression error 

t  emerges based on the null hypothesis in (1), which can only be true if and only if 

   }]|)({1[ 11 ttt ZYQyE  or, equivalently, ttt YQy    )}({1 1 , where 1{×}  is an 

indicator function. Jeong et al. (2012) show that the feasible kernel-based sample analogue of J  

has the following form: 
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where )(K  is the kernel function with bandwidth h ,   is the sample size,   is the lag order, and 

ê
t
is the estimate of the unknown regression error, which is estimated as follows: 

                                                êt =1{yt £Qq (Yt-1)}-q .   (8) 

)(ˆ
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 conditional quantile of ty  given 1tY , and we estimate 

)(ˆ
1tYQ  using the nonparametric kernel method as 

                                                )|(ˆ)(ˆ
1

1

|1 1 



 
 tYyt YFYQ

tt
 ,   (9) 

where )|(ˆ
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 is the Nadarya-Watson kernel estimator given by 
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with )(L  denoting the kernel function and h  the bandwidth.  

 

The empirical implementation of causality testing via quantiles entails specifying three important 

choices: the bandwidth h , the lag order p =4, and the kernel type for )(K  and )(L

respectively. In this study, we make use of lag order of one based on the Schwarz Information 

Criterion (SIC). Note that, when it comes to choosing lags, the SIC is considered to be 

parsimonious compared to other lag-length selection criteria. The SIC helps overcome the issue 

of over-parameterization usually arising with nonparametric frameworks. The bandwidth value is 

chosen by employing the least squares cross-validation techniques.1 Finally, for  ( ) and  ( ) 

Gaussian-type kernels was employed. 

                                                           
1 For each quantile, we determine the bandwidth   using the leave-one-out least-squares cross validation method of 
Racine and Li (2004) and Li and Racine (2004). 
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3. Data and Results 

Monthly data on geopolitical risk (GPR) is based on the work of Caldara and Iacoviello (2017).2 

The GPR index reflects automated text-search results of the electronic archives of 3 national 

newspapers: The Chicago Tribune, The New York Times, and The Washington Post. Caldara 

and Iacoviello (2017) then calculate the index by counting the number of articles related to 

geopolitical risk in each newspaper for each month (as a share of the total number of news 

articles). The index is then normalized to average a value of 100 in the 2000-2009 decade.  

 

The search identifies articles containing references to six groups of words: Group 1 includes 

words associated with explicit mentions of geopolitical risk, as well as mentions of military-

related tensions involving large regions of the world and a U.S. involvement. Group 2 includes 

words directly related to nuclear tensions. Groups 3 and 4 include mentions related to war 

threats and terrorist threats, respectively. Finally, Groups 5 and 6 aim at capturing press coverage 

of actual adverse geopolitical events (as opposed to just risks) which can be reasonably expected 

to lead to increases in geopolitical uncertainty, such as terrorist acts or the beginning of a war. 

 

As indicated above in Sub-section 2.1, we use daily returns of the DJIA to arrive at the monthly 

volatility jump values. Stock returns are computed as the logarithmic first difference of the daily 

DJIA stock price index, with data on the DJIA stock index obtained from the Global Financial 

Database. The choice of the DJIA was natural, given the availability of historical daily data 

stretching as far back as 2nd of May, 1885. Note that our analysis covers the monthly period of 

1899:01 to 2017:12 (i.e., 1428 observations), with the start and end date being purely driven by 

the availability of data on the GPRs index. Figures A1(a) and A1(b) in the Appendix plots the 

volatility jump variable and the GPR index respectively, while Table A1 reports the summary 

statistics of the two variables under consideration. As can be seen from this table, both jump 

(JUMP) and GPR are positively skewed and have excess returns, resulting in non-normal 

distributions, as indicated by the overwhelming rejection (at 1 percent level of significance) of 

the null of normality under the Jarque-Bera test. The heavy-tail of the unconditional distribution 

of volatility jumps provide a preliminary justification for the causality-in-quantiles test used in the 

empirical analysis.  

 

Before we discuss the findings from the causality-in-quantiles tests, for the sake of completeness 

and comparability, we first conducted the standard linear Granger causality test, with a lag-length 

                                                           
2 The data is available for download from: https://www2.bc.edu/matteo-iacoviello/gpr.htm.  

https://www2.bc.edu/matteo-iacoviello/gpr.htm
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of four, as determined by the SIC. The resulting 2(4) statistic yielded a value of 2.4839, with a p-

value of 0.6475, suggesting that the null that GPR does not Granger causes volatility jumps 

cannot be rejected. Therefore, based on the standard linear test, one would conclude of no 

significant GPRs related effects on DJIA volatility jumps. 

 

Given the insignificant results obtained from linear causality tests, we next statistically examine 

the presence of nonlinearity and structural breaks in the relationship JUMP and GPR. 

Nonlinearity and regime changes, if present, would further motivate the use of the 

nonparametric quantiles-in-causality approach, as the quantiles-based test would formally address 

nonlinearity and structural breaks in the relationship between the two variables under 

investigation. For this purpose, we apply the Brock et al., (1996, BDS) test on the residuals from 

the jump equation involving four lags of JUMP and GPR. Table A2 in the Appendix presents 

the results of the BDS test of nonlinearity. As shown in this table, we find strong evidence, at 

highest level of significance, for the rejection of the null of i.i.d. residuals at various embedded 

dimensions (m), which in turn, is indicative of nonlinearity in the relationship JUMP and GPR. 

To further motivate the causality-in-quantiles approach, we next used the powerful UDmax and 

WDmax tests of Bai and Perron (2003), to detect 1 to M structural breaks in the relationship 

between J and GPRs, allowing for heterogenous error distributions across the breaks. When we 

applied these tests again to the jump equation involving four lags of JUMP and GPR, we 

detected five breaks: 1930:10, 1970:11, 1976:12, 1997:02, and 2003:07. These finding indicate 

that, the results based on the linear Granger causality test, cannot be deemed robust and reliable. 

 

Given the strong evidence of nonlinearity and structural breaks in the relationship between 

volatility jumps and GPRs, we now turn our attention to the causality-in-quantiles test, which is 

robust to linear misspecification due to its nonparametric (i.e., data-driven) approach. As can be 

seen from Figure 1, which reports this test for the quantile range of 0.05 to 0.95, the null that 

GPR does not Granger causes JUMP is overwhelmingly rejected at the 5 percent level of 

significance (given the critical value of 1.96), except at the lowest quantile, where the rejection of 

the null holds at the 10 percent level of significance (given the critical value of 1.645). In fact the 

null is rejected at the 1 percent level of significance (given the critical value of 2.575) over the 

quantile range of 0.20 to 0.90. In other words, when we account for nonlinearity and structural 

breaks using a nonparametric approach, we are able to find strong evidence of predictability 

emanating from GPRs onto volatility jumps of the DJIA, with the highest impact at the quantile 

of 0.30, unlike what was observed under the linear framework. To put it alternatively, we observe 



8 
 

that GPRs can predict volatility jumps of the DJIA, irrespective of the magnitude of the jumps 

as captured by the various quantiles of the conditional distribution of JUMP.3, 4 Recalling that the 

literature tends to suggest that GPRs mainly drive volatility, based on our results we can now say 

that the channel through which this happens is that GPRs affect jumps, and hence, bad 

volatilities.    

Figure 1. Causality-in-Quantiles Test Results for DJIA Volatility Jumps due to GPRs 

   
Notes: CV(10%), CV(5%) and CV(1%) are the 10, 5, and 1 percent critical values of 1.645, 1.96, and 2.575 
respectively. The horizontal axis measures the various quantiles while the vertical axis captures the tests statistic. The 
lines corresponding to GPR shows the rejection (non-rejection) of the null of no Granger causality from the various 
GPRs on DJIA volatility jumps at the 10, 5, and 1 percent levels, if the lines are above (below) 1.645, 1.96 and 2.575 
respectively for a specific quantile. 
 

 

                                                           
3 Note that, Caldara and Iacoviello (2017) further disentangle the direct effect of adverse global geopolitical events 
from the effect of pure geopolitical risks by constructing two indexes: The Geopolitical Threats index (GPRT), 
which only includes words belonging to Search groups 1 to 4 (discussed above in the Data segment), and the 
Geopolitical Acts index (GPRA) only includes words belonging to Search groups 5 and 6 (discussed in the Data 
section of the paper). We observed that GPRT was able to significantly predict volatility jumps at the 1 percent level 
over the quantile range of 0.15 to 0.90, while the null was rejected at the 5 percent level for the extreme quantiles of 
0.05 and 0.95. As far as GPRA was concerned, the null was rejected at the 5 percent level over the quantile ranges of 
0.25 to 0.50 and 0.75 to 0.90, while predictability at the 10 percent level was observed for the remaining quantiles, 
barring the extreme ends of 0.05 and 0.95, where no causality was detected. Interestingly, these results suggested that 
threats seem to matter more for jumps than actual acts. Complete details of these results have been presented in 
Figure A2 in the Appendix of the paper. 
4 Based on the suggestion of an anonymous referee, following Uddin et al., (2018), we analysed the role of 
alternative measures of economic uncertainty in predicting volatility jumps. Given our objective to look at long-span 
jumps, we used the historical economic policy uncertainty (EPU) index of Baker et al., (2016) which covers the 
period of 1900:01 to 2014:10, and the news-based volatility index (NVIX) of Manela and Moreira (2017) covering 
the period of 1889:07 to 2016:03. While the results based on the NVIX mirrors that of the GPRs, the EPU is found 
to predict the volatility jumps over the quantile range of 0.25 to 0.85. Complete details of these results are available 
upon request from the authors.  
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3.1. Robustness Analysis 

Based on the suggestions of an anonymous referee, we also repeated our analysis using the cross-

quantilogram approach of Han et al., (2016). The cross-quantilogram measures quantile 

dependence and tests for directional predictability between two time series (x1 and x2). The 

sample cross-quantilogram of Han et al., (2016) is defined as: 

 
     

     

1 1 1 1 2 2 2 21

2 2

1 1 1 1 2 2 2 21 1

ˆ ˆ
ˆ (11)

ˆ ˆ

 

   

 


 



 

T

a t a t kt k

T T

a t a t kt k t k

x q a x q a
k

x q a x q a


 


 
                                           

 

for 0, 1, 2,...,k     given a set of quantiles, the cross-quantilogram considers dependency in 

terms of the direction of deviation from quantiles, and thus, measures the directional 

predictability from one series to another. By construction,    ˆ 1,1a k    with  ˆ 0a k   

corresponding to the case of no directional predictability. 

For our application we consider a very large number of lags in the framework of the 

quantilogram. We consider lags of 60k   which represents 5 years. In Figures 2-4, we provide 

the cross-quantilogram  ˆ
a k  and the portmanteau tests ˆ p

aQ  (i.e., the Box-Ljung version) to 

detect directional predictability from GPRs to volatility jumps. For the quantiles of volatility 

jumps  1 1q a  we consider a wide range for 1 0.05,  0.1,  0.2,  0.3,  0.5,  0.7,  0.8,  0.9a   and 

0.95 . For the quantiles of GPRs  2 2q a  we consider 2 0.1,  0.5a  and 0.9 . In each graph, we 

show the 95% bootstrap confidence intervals of no predictability based on 1,000 bootstrapped 

replications. 

From the figures 2(a) and 2(b), which are for the case when the GPRs is in the lower 

quantile, i.e., 2 0.1a  , we observe that there is no significant relationship between volatility 

jumps at lower quantiles and GPRs. On the other hand, the cross-quantilograms  ˆ
a k for 

1 0.8,  0.9a  and 0.95  are negative and significant for some lags. This mean that when GPRs is 

very low, it is unlikely to cause large volatility jumps. From the figures 3(a) and 3(b), which 

represent the case when the GPRs is in the median, i.e., 2 0.5a  , we observe in some quantiles 

for some lags of the conditional distribution of volatility jumps, a significant positive directional 

predictability from GPRs to volatility jumps. Finally, from the figures 4(a) and 4(b), which are for 

the case when the GPRs is in higher quantile, i.e., 2 0.9a  , we observe that the cross-

quantilograms  ˆ
a k  for 1 0.05,  0.1,  0.2,  0.3,  0.5,  0.7,  0.8,  0.9a  and 0.95  are positive and 

significant for some lags, especially when volatility jumps are in higher quantile. This means that 
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when GPRs is very high, it is likely to cause very large volatility jumps. In sum, as observed from 

the results, in general, higher values of GPRs is likely to have a strong positive impact on 

volatility jumps over its entire conditional distribution, relative to when GPRs is low, in which 

case the effect on volatility jumps is quite weak. 

 
Figure 2. Cross-Quantilograms for lower levels of GPRs 

 

Figure 2(a). The sample cross quantilogram  ˆ
a k  for 2 0.1a   to detect directional predictability from 

GPRs to DJIA Volatility Jumps. Bar graphs describe sample cross-quantilograms and lines are the 95% 

bootstrap confidence intervals. 
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Figure 2(b). Box-Ljung test statistic 
 ˆ p

aQ for each lag p and quantile a using  ˆ
a k  with 2 0.1a  .The 

dashed lines are the 95% bootstrap confidence intervals. 
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Figure 3. Cross-Quantilograms for moderate levels of GPRs 

 

Figure 3(a). The sample cross quantilogram  ˆ
a k  for 2 0.5a   to detect directional predictability from 

GPRs to DJIA Volatility Jumps. Bar graphs describe sample cross-quantilograms and lines are the 95% 

bootstrap confidence intervals. 
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Figure 3(b). Box-Ljung test statistic 
 ˆ p

aQ for each lag p and quantile a using  ˆ
a k  with 2 0.5a  .The 

dashed lines are the 95% bootstrap confidence intervals. 
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Figure 4. Cross-Quantilograms for higher levels of GPRs 

 

Figure 4(a). The sample cross quantilogram  ˆ
a k  for 2 0.9a   to detect directional predictability from 

GPRs to DJIA Volatility Jumps. Bar graphs describe sample cross-quantilograms and lines are the 95% 

bootstrap confidence intervals. 
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Figure 4(b). Box-Ljung test statistic 
 ˆ p

aQ for each lag p and quantile a using  ˆ
a k  with 2 0.9a  .The 

dashed lines are the 95% bootstrap confidence intervals. 

 
4. Conclusions 

In the recent volatility-related literature, it has been stressed that jumps in volatility can improve 

the overall fit of volatility models. Therefore, a large literature has developed trying to not only 

model volatility jumps, but also attempting to explain the causes behind such jumps based on 

financial variables, and more recently, news. Given this, in this paper we analysed the role of a 

news-based index of geopolitical risks (GPRs), in predicting volatility jumps in the Dow Jones 

Industrial Average (DJIA) over the monthly period of 1899:01 to 2017:12, with the jumps having 

been computed based on daily data over the same period. For our predictability analysis, we rely 

on a nonparametric causality-in-quantiles test, which in turn, is robust to misspecication due to 

nonlinearity and structural breaks being a data-driven procedure.  
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Starting off with the standard linear causality test, we were unable to detect any evidence of 

GPRs causing volatility jumps. But, we indicated that linear Granger causality test results cannot 

be relied on because formal tests reveal strong evidence of nonlinearity and structural breaks 

between jumps and GPRs. Hence, linear Granger causality tests are misspecified. When we used 

the nonparametric causality-in-quantiles test instead, we were able to detect overwhelming 

evidence rejecting the null hypothesis that GPRs does not Granger causes jumps over the entire 

conditional distribution of the latter. Thus, our results indicated that when we control for 

misspecification due to nonlinearity and regime changes, it is indeed true that geopolitical events 

can predict movements in volatility jumps of the DJIA, irrespective of the size of such jumps. A 

cross-quantilogram analysis helps us to qualify these results further by showing that what matters 

most for increases in volatility jumps are relatively higher than lower GPRs. Given that daily data 

on GPRs are also available over a shorter sample period, as part of future research it would be 

interesting to extend this paper to a multi-country analysis, whereby volatility jumps could be 

obtained using intraday data on stock markets of various developed and developing economies.   
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APPENDIX A: 
 
Table A1. Summary Statistics 

 
Variable 

Statistic JUMP GPRs 

 Mean 0.0037 1.1322 

 Median 0.0035 0.8050 

 Maximum 0.0111 9.0600 

 Minimum 0.0000 0.0700 

 Std. Dev. 0.0016 1.0001 

 Skewness 0.6358 2.5337 

 Kurtosis 4.3190 12.0903 

 Jarque-Bera 199.7393 6444.5220 

 p-value 0.0000 0.0000 

Observations 1428 
Note: Std. Dev: stands for standard deviation; p-value corresponds to the Jarque-Bera test with the null of 
normality. 
 

 

Table A2. Brock et al., (1996, BDS) Test of Nonlinearity 

Dependent 
Variable 

Independent 
variable 

Dimension 

2 3 4 5 6 

DJIA 
Volatility 

Jumps 
GPRs 8.9545* 10.6314* 11.5813* 12.3718* 13.1163* 

Note: Entries correspond to the z-statistic of the BDS test with the null of i.i.d. residuals, with the test applied to the 
residuals recovered from the jump equation with four lags each of the jump and GPRs variables; * indicates 
rejection of the null hypothesis at 1 percent level of significance.  
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Figure A1. Data Plots 
A1(a). DJIA Volatility Jumps 
 

 
 
A1(b). Geopolitical Risks (GPRs) 
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Figure A2. Causality-in-Quantiles Test Results for DJIA Volatility Jumps due to Threats of 
GPRs (GPRT) and Acts of GPRs (GPRA) 

 
Notes: CV(10%), CV(5%) and CV(1%) are the 10, 5, and 1 percent critical values of 1.645, 1.96, and 2.575 
respectively. The horizontal axis measures the various quantiles while the vertical axis captures the tests statistic. The 
lines corresponding to GPRT and GPRA shows the rejection (non-rejection) of the null of no Granger causality 
from the various GPRT and GPRA respectively on DJIA volatility jumps at the 10, 5, and 1 percent levels, if the 
lines are above (below) 1.645, 1.96 and 2.575 respectively for a specific quantile. 
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