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Abstract

We consider preferences over all random variables on a given nonatomic prob-

ability space. We show that non-trivial and complete preferences cannot simul-

taneously satisfy the two fundamental principles of convexity and continuity. As

an implication of this incompatibility result there cannot exist any non-trivial

continuous utility representations over all random variables that are either quasi-

concave or quasi-convex. This rules out standard risk-averse (or seeking) utility

representations for this large space of random variables.
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1 Introduction

Let us �x an arbitrary nonatomic probability space (
;�; �). The set of all random

variables de�ned over this space, denoted L0 (�), consists of all �-measurable functions

X : 
 ! R. Most of the literature on preferences over random variables restricts

attention to rather small subsets of random variables such as, e.g., random variables

with �nite support. Whenever larger classes of random variables are considered they

typically belong to a technically convenient space Lp (�) � L0 (�), with 1 � p � 1,
such that X 2 Lp (�) with p <1 if, and only if, the integralZ




jXjp d� (1)

exists. For example, L1 (�) collects all random variables with �nite expected value;

L2 (�) collects all random variables with �nite variance; and L1 (�) denotes the set of

all bounded random variables.

This paper takes the most general stand possible by considering preferences over ALL

random variables.1 As our topology of choice we endow L0 (�) with the metric topology

of convergence in probability so that � becomes the reference measure which determines

�-almost everywhere identity of random variables as well as our notions of continuous

preferences and utility representations. To consider preferences over all random variables

comes with a rather surprising insight: For non-trivial preferences that are complete

on the large space L0 (�) (or on some Lp (�) space with 0 < p < 1) we obtain the

incompatibility result that continuity and convexity cannot be simultaneously satis�ed

(Theorem 1). If we want to model non-trivial preferences over the random variables

in L0 (�), we must thus give up at least one of the three fundamental principles of

continuity, convexity, or completeness, respectively. Under the additional assumption

of transitivity, Theorem 2 establishes that continuity is neither compatible with quasi-

concave nor with quasi-convex preferences. It is also not compatible with preference for

diversi�cation (Theorem 3).

Existing decision theoretic models de�ned for �small�subsets of L0 (�) (e.g., for Lp (�)

spaces with 1 � p � 1) are subsumed under our analysis as special cases for which (com-
plete) preferences exist on these respective subsets only. Our analysis demonstrates that

standard decision theoretic modeling choices are limited to �small�spaces as they be-

come incompatible on large spaces. For example, continuous utility representations for

Lp (�) spaces with 1 � p � 1 cannot be extended to continuous utility representa-

tions for the large space L0 (�) for typical speci�cations of globally risk-averse decision

1Our analytical �ndings can be analogously derived for the �smaller�Lp (�) spaces with 0 < p < 1

(cf. Remark 3).
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makers. In particular, our �ndings imply the following limitations for standard utility

representations of either global risk-aversion or global risk-seeking:

� Any non-trivial expected utility representationZ



u (X) d�0 for all X 2 L0 (�) (2)

that is continuous on L0 (�) is neither compatible with a concave nor with a convex

utility function u combined with an additive probability measure �0 on (
;�).

� More generally, any non-trivial Choquet expected utility representationZ C




u (X) d� for all X 2 L0 (�) (3)

that is continuous on L0 (�) is neither compatible with (i) a concave utility function

u combined with any convex non-additive probability measure � on (
;�) nor with

(ii) a convex utility function u combined with any concave non-additive probability

measure � on (
;�).2

One possible way of dealing with these incompatibility results is to give up on contin-

uous utility representations altogether and consider complete preferences over all random

variables that are convex but not continuous (cf. Examples 6 and 7 in Section 5). From

an applicational point of view, however, the lack of a continuous utility representation is

not very attractive because preference maximization problems become harder to analyze.

In case one wants to keep continuous utility representations, there are two alternative

approaches for getting around the incompatibility between convexity and continuity.

The �rst approach is to give up complete preferences on L0 (�) by assuming that not

all X; Y 2 L0 (�) can be compared by the reference relation. For example, one might
consider a preference relation corresponding to a partial rather than a total order on all

random variables in L0 (�) (cf. Example 2 in Section 5). Alternatively, one might restrict

complete preferences to suitable subsets of random variables such that only the random

variables within a given subset are comparable with one-another. A straightforward

example for this approach would be to restrict preferences to the subset L1 (�) � L0 (�)
only whereby these preferences are represented by the random variables�expected values

(also see Example 3 in Section 5). These preferences are linear (i.e., weakly convex) and

continuous as well as complete on L1 (�) because, by de�nition, every random variable

in L1 (�) comes with an expected value. For an example of convex and continuous

preferences that are complete for the non-negative random variables in L1 (�), let us

quote from Nielsen (1984, p.202):
2For the formal de�nition of Choquet integration with respect to the non-additive probability mea-

sure � see Section 4.
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�The conclusion of an exchange between Ryan (1974) and Arrow (1974)

was that if u is a concave and increasing function on the non-negative real

line, and if Z is a random variable on the non-negative real line with �nite

expected value, then the expected value of u (Z) is �nite.�3

The second approach is to give up on convex preferences by restricting attention

to utility functions u that are bounded and therefore neither concave nor convex (cf.

Examples 4 and 5 in Section 5). Wakker (1993) already re�ects on these two alternative

approaches while exploring the role of bounded utility in Savage�s (1954) subjective

expected utility theory:

�Ever since, the extension of Savage�s theorem to unbounded utility has

been an open question, and with that the question "what is wrong with

Savage�s axioms?". [:::] I think that "what is wrong with Savage�s axioms",

is primarily his requirement of completeness of the preference relation on the

set of all (alternatives=) acts [:::].�(p.448)

According to our incompatibility results this friction between complete preferences

over the set of all real-valued Savage acts (i.e., random variables), on the one hand, and

unbounded utility functions, on the other hand, is not speci�c to expected utility. Rather

it applies to all continuous utility representations over random variables such as Choquet

expected utility or max-min expected utility with multiple priors. More generally, the

main insight from our analysis is that the con�ict between the three principles of (i)

continuity, (ii) convexity, and (iii) completeness is a fundamental one that a¤ects any

model of preferences over su¢ ciently large spaces of random variables.4

Should an economist care?

Our analysis should be of interest to decision-theorists because it identi�es limitations

for modeling choices of preferences over large spaces of random variables that are in their

generality, to the best of our knowledge, new to the literature. But are there any reasons

why an economic modeler should care about our incompatibility results? At this point,

we can only provide two brief answers.

3The situation is more complicated for Choquet expected utility representations of preferences over

the non-negative random variables in L1 (�): even if u is concave such representation may fail to exist

for non-convex capacities. For details see Rieger and Wang (2006).
4Another example for this con�ict are risk measures from the mathematical �nance literature. By

our incompatibility result, there cannot exist risk measures de�ned over all random variables that are

simultaneously convex and continuous (cf. Example 5 in Section 5).
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First, the modeler does not need to care as long as he/she (i) either restricts attention

to small spaces of random variables for which standard results for utility representations

apply, or (ii) he/she uses some standard utility representation with a bounded utility

function u for large spaces. In this sense, our analysis con�rms �safe ground�for economic

modeling.

Second, our analysis raises awareness about the fact that the economic modeler might

get into �non-anticipated trouble�whenever both conditions, (i) and (ii), are violated. As

one example consider Blavatskyy (2005) who shows that, in contrast to expected utility

theory, �conventional parameterizations of cumulative prospect theory do not explain

the St. Petersburg paradox�(p.677). That is, for speci�cations of the unbounded utility

(i.e., value) function for gains and of the capacity (i.e., probability weighting function)

that are standard in the experimental prospect theory literature, preferences involving

the lottery of the St. Petersburg paradox do not admit for a Choquet expected utility

representation.

As another example for such non-anticipated trouble note that dynamic macro-

economists have observed that �model uncertainty�may easily lead to exploding mo-

ments of expected utility functions (or of the stochastic discount factor) for strictly

concave period utility functions such as, e.g., CRRA utility that are standard in this

literature (cf. Geweke 2001; Weitzman 2007). This insight culminated in Weitzman�s

(2009) Dismal Theorem about modeling preferences over random consumption streams:

�Seemingly thin-tailed probability distributions (like the normal), which

are actually only thin-tailed conditional on known structural parameters

of the model (like the standard deviation), become tail-fattened (like the

Student-t) after integrating out the structural-parameter uncertainty. This

core issue is generic and cannot be eliminated in any clean way.�(p.9)

In the light of our analysis Weitzman�s Dismal Theorem is not surprising but rather

an illustration of the general insight that expected utility representations might become

impossible when concavity of the utility function is combined with random variables

that belong to large spaces. In addition, our analysis implies that Weitzman�s Dis-

mal Theorem cannot be avoided by replacing expected utility with alternative utility

representations that are continuous.

We hope that our insights about preferences over large spaces of random variables

will prove relevant to economic models that consider in�nite streams of random payo¤s

or/and losses.

The remainder of this paper is organized as follows. Section 2 introduces our formal

framework. Section 3 derives our main incompatibility results whose implications for

5



utility representations are discussed in Section 4. Section 5 presents several examples

which illustrate our analytical �ndings. Finally, in Section 6 we argue in favor of our

topological choice compared to alternative topologies whose de�nitions of continuity

would be compatible with convexity. All formal proofs are relegated to the Appendix.

2 Our topological space of all random variables

Consider the additive probability space (
;�; �). We assume that � is nonatomic,

i.e., there exists for every � > 0 some �nite partition f
1; :::;
ng � � of 
 such that

� (
i) � �; i = 1; :::; n.5

We endow the set of all random variables L0 (�) with the topology of convergence in

probability (cf. Chapters 13.10 and 13.11 in Aliprantis and Border 2006). This topology

is generated by the translation-invariant metric d0 : L0 (�)� L0 (�)! [0; 1) such that

d0 (X; Y ;�) =

Z



jX � Y j
1 + jX � Y jd� (4)

whereby we simply write d0 (X; Y ) instead of d0 (X; Y ;�) whenever it is well-understood

that � is our reference measure.6 That is, for any sequence of random variables fXng1n=1
we have that

d0 (Xn; X)! 0 i¤ 8� > 0, � (jXn �Xj > �)! 0. (5)

The distance between any two random variables is zero under this (essential) metric

whenever both random variables coincide �-almost everywhere; that is, by �xing the

reference measure � we distinguish between equivalence classes of �-measurable functions

rather than between functions themselves.

Note that L0 (�) is a vector space because the operations of addition and scalar

multiplication for all its members are well de�ned. To state the obvious, Z = �X +

(1� �)Y means
Z (!) = �X (!) + (1� �)Y (!) , �-a.e. (6)

so that the �mixture operation�on L0 (�) is an �averaging�of real-valued outcomes in a

given state.7

5For an additive probability space this de�nition is equivalent to the more common de�nition of

a nonatomic � which states that there exists for every A 2 � with � (A) > 0 some B 2 � such that
0 < � (B) < � (A) (for a formal proof of this equivalence see, e.g., Lemma 7.6.22 in Corbae, Stinchcomb,

and Zeman 2009).
6It is only in Remark 11 that we distinguish between two metrics d0 (X;Y ;�) and d0 (X;Y ;�0) for

� 6= �0.
7This mixture operation is di¤erent from the Anscombe-Aumann (1963) mixture operation which

�averages�in any given state over probability distributions de�ned as outcomes of Anscombe-Aumann

acts thereby resulting in a new distribution instead of a new real number.
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Recall that a subset of random variables L � L0 (�) is convex if, and only if,

Y1; :::; Yn 2 L implies �1Y1 + :::+ �nYn 2 L for all �i � 0 s.t.
nX
i=1

�i = 1. (7)

Next recall that the interior of a given subset of a topological space is the largest (in

the sense of set-inclusion) open set included in this subset. The following proposition

will be crucial for deriving our subsequent incompatibility results.

Proposition 1. The only convex subset of L0 (�) with non-empty interior is the set
L0 (�) itself.

Although Proposition 1 seems to be known among experts on functional analysis, we

could not �nd any direct proof thereof in the literature (cf. Remarks 2 and 3 below).

For the sake of completeness, and for the reader�s bene�t, we therefore provide a formal

proof in the Appendix.8 The basic idea of the proof goes as follows. Consider any Y

in the interior of some convex subset of L0 (�), denoted L. For any nonatomic � and

any X 2 L0(�), one can then always �nd a su¢ ciently �ne partition f
1; :::;
ng of 

such that the distance d0 (Yi; Y ) becomes arbitrarily small for Yi = Y + n(X � Y )1
i,
i = 1; :::; n. Assume now that d0 (Yi; Y ), i = 1; :::; n, is su¢ ciently small for all Yi to

belong to L. Since, by construction,

X =
1

n
Y1 + :::+

1

n
Yn, (8)

convexity of L then implies X 2 L. As X 2 L0 (�) was chosen arbitrarily, we obtain the
desired result that L = L0 (�) for any convex L � L0 (�) with non-empty interior.

Remark 1. The proof of Proposition 1 uses the whole space L0 (�) and it does not
necessarily go through for some strict subset of L0 (�). Consider for example the large

subset of L0 (�) that only contains non-negative random variables

L0+ (�) �
�
X 2 L0 (�) j X (!) � 0, �-a.e.

	
(9)

endowed with (4). Denote by 0 2 L0+ (�) any random variable that gives zero �-a.e. In

analogy to the proof of Proposition 1 it can be shown that any convex subset of L0+ (�)

with non-empty interior containing 0 must be L0+ (�) itself (to see this, set Y = 0 in the

proof of Proposition 1).

8We are grateful to an anonymous referee for pointing out to us that a space has no nontrivial open

convex sets if, and only, if this space has a trivial dual. As a consequence, Proposition 1 also follows

from Theorem 13.41 (3) in Aliprantis and Border (2006).

7



However, the argument of Proposition 1 does not go through for subsets of L0+ (�)

that do not contain 0 in their interior. Suppose that we could prove, in analogy to the

proof of Proposition 1, that L = L0+ (�) for any convex L � L0+ (�) whenever there

exists some Y 6= 0 in the interior of L. Consider some X = aY such that 0 � a < 1

and observe that X 2 L0+ (�). We claim that, in contrast to the proof of Proposition

1, we have no longer Yi = Y + n(X � Y )1
i 2 L for all i = 1; :::; n for arbitrarily �ne
partitions f
1; :::;
ng. Note that

Yi (!) =

(
Y (!) for ! 2 
n
i
Y (!)� Y (!)n (1� a) for ! 2 
i.

(10)

Next observe that there will always be L, with small enough diameter

diam (L) � sup
�
d0 (Z;Z 0) j Z;Z 0 2 L

	
, (11)

for which we need a partition into n > 1
1�a disjunct subsets of 
 for the distance d

0 (Yi; Y )

to become su¢ ciently small to allow for all Yi 2 L. But then

n >
1

1� a , Y (!)� Y (!)n (1� a) < 0 for ! 2 
i (12)

so that we end up with the contradiction that some Yi =2L � L0+ (�) because, for all

i, Yi (!)< 0 for ! 2 
i. In that case, convexity of L does no longer imply that

X = 1
n
Y1 + :::+

1
n
Yn 2L0+ (�) belongs to L.

To be speci�c, pick Y = 1
 as interior point and let a = 0, implying X = 0 and

Yi (!) = 1� n for ! 2 
i, so that

d0 (Yi; Y ) =

Z

n
i

jY � Y j
1 + jY � Y jd�+

Z

i

j�nj
1 + j�njd� (13)

=
n

1 + n
� (
i) . (14)

Consider some L with diameter 0 < diam (L) < 1
2
. If n = 1, then 
1 = 
 so that

d0 (Y1; Y ) =
1
2
, implying Y1 =2 L. If n � 2, consider a partition with � (
i) = 1

n
and note

that we can always �nd n large enough such that

d0 (Yi; Y ) =
1

1 + n
< diam (L) , (15)

which is a necessary condition for Yi 2 L. However, for n � 2 we have Yi (!) � �1 for
! 2 
i, implying for any i with � (
i) > 0 (which always exists) that Yi =2 L. If 0 =2 L,
L ( L0+ (�) might thus be a convex set with non-empty interior.
As a consequence, our subsequent incompatibility results for preferences on L0 (�),

which are based on Proposition 1, will, e.g., not apply to preferences restricted to the

non-negative random variables in L0+ (�) (cf. Example 3 in Section 5).
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Remark 2. Observe that Proposition 1 implies that L0 (�) is not locally convex
(Example 8.47 (3) in Aliprantis and Border 2006). This implies in turn that, except for

the trivial null-functional, there does not exist any continuous functional f : L0 (�)! R
which is linear, i.e., that satis�es for all X; Y 2 L0 (�),

f (�X + �Y ) = �f (X) + �f (Y ) for all �; � 2 R. (16)

On the other hand, there exist non-zero continuous linear functionals which separate

points from closed convex subsets for the locally convex spaces Lp (�) with 1 � p � 1
(Corollary 5.80 in Aliprantis and Border 2006). Proposition 1 can thus not be extended

to Lp (�) spaces with 1 � p � 1. As a consequence, our incompatibility results will not
apply to these spaces.

Remark 3. Note that Lp (�) spaces with 0 < p < 1 endowed with the metric

dp (X; Y ) =

Z



jX � Y jp d� (17)

are also locally non-convex spaces on which only the trivial null-functional exists as

continuous linear functional (Theorem 1 in Day 1940). As a consequence, our subsequent

incompatibility results obtained for L0 (�) can be analogously derived for Lp (�) spaces

with 0 < p < 1. As it is, our formal proof of Proposition 1 using the metric (4) employs

the same line of argument as a proof in Rudin (1991, paragraph 1.47) for Lp (�) spaces

with 0 < p < 1 endowed with (17).

3 Main results

3.1 Incompatibility of convexity and continuity

Consider a binary preference relation � on L0 (�) whereby we treat random variables

as identical objects if they coincide �-almost everywhere. The standard interpretations

and notational conventions apply: X � Y means that Y is at least as desirable as X;

an agent is indi¤erent between X and Y , denoted X � Y , i¤ X � Y and Y � X; in

addition, we have strict preference, i.e., X � Y , whenever X � Y holds whereas Y � X
does not. We assume that � is asymmetric (i.e., for all X;Y 2 L0 (�), X � Y implies

not Y � X) and that � is re�exive (i.e., for all X 2 L0 (�), X � X). At this point, we
neither assume completeness nor transitivity of � on L0 (�) (see below).
Let us introduce the super-level (=weakly better) set of X 2 L0 (�) which contains

all random variables that are at least as desirable as X:

S (X) �
�
Z 2 L0 (�) jX � Z

	
. (18)
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Similarly, the sub-level (=weakly worse) set of X 2 L0 (�) contains all random variables
that are weakly less desirable than X:

s(X) �
�
Z 2 L0 (�) jZ � X

	
: (19)

Note that, by re�exivity of �, both sets s (X) and S (X) are non-empty for all X 2
L0 (�).

Next consider the following de�nitions of possible properties that a preference relation

� on L0 (�) may or may not satisfy.

� Non-triviality: 9X; Y; Z 2 L0 (�) such that Y � X and X � Z.

� Completeness: 8X; Y 2 L0 (�), X � Y or Y � X.

� �-continuity: 8X 2 L0 (�), the super-level set S (X) and the sub-level set s(X)
are closed sets with respect to the topology of convergence in probability.

� S-convexity: 8X 2 L0 (�), the super-level set S (X) is convex.

� s-convexity: 8X 2 L0 (�), the sub-level set s (X) is convex.

Without non-triviality the preference relation � is not very interesting. By com-

pleteness, the decision maker is capable of making decisions in any situation. Although

completeness might not always be plausible in empirical situations9, the whole point of

this paper is to assume that a decision maker may have preferences over all random

variables in L0 (�) and study the consequences of this assumption.

In behavioral terms continuity ensures that small changes, with respect to our chosen

metric d0, will not lead to abrupt changes in a decision maker�s choice. More precisely,

�-continuity ensures that whenever a sequence of random variables fYkgk2N with X �
Yk for all k converges in probability to a random variable Y , then also X � Y , i.e.,

preferences will not be reversed in the limit. From an applicational perspective, �-

continuity is necessary for any representation of complete preferences on L0 (�) by some

�-continuous utility function (see Section 4).

S-convexity means that the decision maker likes to mix over the outcomes of random

variables; a feature that is closely associated with behavioral concepts like risk- or/and

uncertainty aversion as well as preference for diversi�cation. s-convexity means the

opposite and is associated with a risk- or/and uncertainty seeking and aversion against

diversi�cation.
9In support of the empirical relevance of incomplete preferences see, e.g., Danan et al. (2015) and

references therein.
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To sum up: None of these �ve properties is behaviorally implausible (whereby S-

convexity is empirically far more relevant than s-convexity). Nevertheless, convexity

and continuity turn out to be incompatible with one another whenever preferences are

non-trivial and complete.

Theorem 1. Consider a binary preference relation � on L0 (�) that is non-trivial and
complete.

(a) The preference relation � cannot simultaneously satisfy �-continuity and S-convexity.

(b) Neither can � simultaneously satisfy �-continuity and s-convexity.

(c) If non-triviality or completeness are dropped, then � might simultaneously satisfy

�-continuity and S-convexity (resp. s-convexity).

Sketch of the proof (for details see the Appendix): De�ne the strictly better and

strictly worse sets of X 2 L0 (�) as follows

S� (X) �
�
Z 2 L0 (�) jX � Z

	
, (20)

s� (X) �
�
Z 2 L0 (�) jZ � X

	
. (21)

Completeness ensures that the topological structure of L0 (�) determines open, resp.

closed, sets with respect to the preference relation � so that Proposition 1 becomes

applicable (cf. Remark 1). In particular, by completeness, �-continuity implies that the

sets S� (X) and s� (X) must be open in the topology of convergence in probability. But

by Proposition 1, S� (X) and s� (X) cannot be open if they are non-empty, convex, strict

subsets of L0 (�). Non-triviality ensures non-emptiness of S� (X) and s� (X) as well as

S� (X) ; s� (X) ( L0 (�).

3.2 Quasi-concave and quasi-convex preferences

Note that the incompatibility result of Theorem 1 does not require transitivity of �
which is de�ned as follows:

� Transitivity: 8X; Y; Z 2 L0 (�) if X � Y and Y � Z, then X � Z.

Transitivity is a standard rationality requirement for economic agents that precludes

the possibility of simple money pumps (cf. Cubit and Sugden 2001). Next consider the

following possible properties of preferences.

� Quasi-concavity: 8X; Y 2 L0 (�) if X � Y , then X � �X + (1� �)Y for all

� 2 [0; 1].
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� Quasi-convexity: 8X; Y 2 L0 (�) if X � Y , then �X + (1� �)Y � Y for all

� 2 [0; 1].

The concept of quasi-concavity�formally de�ned as �uncertainty aversion�over acts

in the Anscombe-Aumann (1963) framework�goes back to Gilboa and Schmeidler (1989,

Axiom A.5) and Schmeidler (1989).10 Because our formal de�nition of quasi-concavity

applies to the outcomes of random variables, the meaning of our de�nition is di¤erent

from the original one formulated for the Anscombe-Aumann framework.

Note that S-convexity implies quasi-concavity. Similarly, s-convexity implies quasi-

convexity. In what follows we establish that these relationships also hold in the other

direction whenever transitivity is satis�ed.

Proposition 2. Assume that � on L0 (�) is complete and transitive.

(a) Then quasi-concavity implies S-convexity.

(b) Then quasi-convexity implies s-convexity.

Combining Theorem 1 and Proposition 2 gives the following results.

Theorem 2. Assume that � is non-trivial, complete, transitive, and �-continuous.

(a) Then � must violate quasi-concavity.

(b) Then � must violate quasi-convexity.

3.3 Preference for diversi�cation

Dekel (1989) has introduced the following de�nition in the context of portfolio choices:11

� Preference for diversi�cation: 8X; Y 2 L0 (�) if X � Y , then X � �X+(1� �)Y
for all � 2 [0; 1].

Quasi-concavity implies preference for diversi�cation. The proof of the following

result establishes that preference for diversi�cation implies quasi-concavity under tran-

sitivity and �-continuity.

10As motivation for his de�nition, Schmeidler (1989) writes: �Intuitively, uncertainty aversion means

that "smoothing" or averaging utility distributions makes the decision maker better o¤. Another way

is to say that substituting objective mixing for subjective mixing makes the decision maker better o¤.�

(p.582) For an alternative approach to uncertainty aversion de�ned over random variables (i.e., Savage

acts) rather than over Anscombe-Aumann acts see Epstein (1999).
11For extensions of Dekel�s (1989) approach see Chateauneuf and Lakhnati (2007) and Chateauneuf

and Tallon (2002). For an excellent survey on this literature see De Giorgi and Mahmoud (2016).
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Theorem 3. Assume that � on L0 (�) is complete, transitive, and �-continuous. Then
� must violate preference for diversi�cation.

Remark 4. One implication of the above analysis is that so-called convex/coherent/sub-
additive risk measures de�ned over all L0 (�) cannot be continuous (see, e.g., Föllmer and

Schied 2002; Delbaen 2002, 2009; Assa 2016). The next section discusses implications

of our analytical �ndings for utility representations.

4 Implications for utility representations

Through the metric (4) the reference measure � pins down, �rstly, what it means for ran-

dom variables to be identical and, secondly, what it means for preferences to be contin-

uous. We say that a utility functional U : L0 (�)! R is �-continuous i¤ d0 (Yk; Y )! 0

implies limk U (Yk) = U (Y ). This section assumes that preferences on L0 (�) are repre-

sented by some �-continuous utility functional.

Assumption 1. Fix some non-trivial and complete preference relation � on L0 (�)

and suppose that there exists some �-continuous functional U : L0 (�) ! R such
that, for all X; Y 2 L0 (�),

X � Y i¤ U (X) � U (Y ) . (22)

For quasi-concave U it must hold that

8X; Y 2 L0 (�) ; � 2 (0; 1) ; U (�X + (1� �)Y ) � min fU (X) ; U (Y )g (23)

whereas we have for quasi-convex U that

8X; Y 2 L0 (�) ; � 2 (0; 1) ;max fU (X) ; U (Y )g � U (�X + (1� �)Y ) . (24)

Proposition 4. Suppose that Assumption 1 holds. Then U can neither be quasi-concave
nor quasi-convex.

Proposition 4 is fundamental in that it holds for any �-continuous utility representa-

tion on L0 (�). In the remainder of this section we discuss implications for the two special

cases of expected utility and Choquet expected utility representations, respectively.
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4.1 Expected utility

Suppose that the utility representation (22) is of the expected utility (EU) form, i.e., for

all X 2 L0 (�),

U (X) � E (u (X)) (25)

=

Z



u (X (!)) d�0 (26)

for some strictly increasing utility function u : R ! R and some additive probability
measure �0 on (
;�). Observe that quasi-concavity of EU preferences holds if u is

concave thereby formally expressing risk-aversion of the EU decision maker. Conversely,

quasi-convexity of EU preferences holds if u is convex thereby expressing risk-seeking.

By Proposition 4, we thus obtain the following result.

Corollary 1. Suppose that Assumption 1 holds such that U is of the EU form (25).

Then the utility function u can neither be concave nor convex.

By Corollary 1, an EU representation over all random variables can thus neither

express global risk-aversion nor global risk-seeking. We will come back to this point in

our Examples 3 and 4 in Section 5.

Remark 5. The quintessence of Corollary 1 already appears in the EU literature
in the form of existence conditions for the integral (26) (cf. Nielsen 1984; Wakker 1993;

Delbaen, Drapeau and Kupper 2011 and references therein). A main insight from this

literature is that boundedness of u is required for any EU representation de�ned over

all random variables: for unbounded u we can always �nd random variables for which

the integral (26) does not exist.12 To see the connection between this literature and

our Corollary 1, observe that any (non-constant) concave u is unbounded from below

whereas any (non-constant) convex u is unbounded from above.

Remark 6. Note that the measure �0 which appears in the EU representation (26)
does not have to be the reference measure �. However, for �0 6= � Assumption 1 requires
that Z




u (X (!)) d�0 =

Z



u (Y (!)) d�0 for all X = Y , �-a.e., (27)

otherwise (26) cannot be a utility representation on L0 (�) as it would assign di¤erent

utilities to �-a.e. identical random variables. Equation (27) is satis�ed if �0 is absolutely

12Cf. Wakker (1993, p.448): �The underlying problem was already observed by Menger (1934). As

soon as utility is unbounded, there exist acts with unbounded expected utility[:::].�
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continuous with respect to � (i.e., for all A 2 �, �0 (A) = 0 if � (A) = 0). As a

consequence, any �0 in the EU representation (26) must also be nonatomic.13 At this

point, one might ask why the reference measure � is used to de�ne continuity for a

EU representation w.r.t. �0 6= �. If both measures are equivalent (i.e., for all A 2 �,
�0 (A) = 0 i¤ � (A) = 0), it is natural to use � as reference measure. If both measures

are not equivalent, however, one might instead want to consider the space (
;�; �0).

Obviously, if (
;�; �0) is nonatomic, the analysis of this paper equivalently applies to

(
;�; �0) such that �0 instead of � becomes the reference measure.

4.2 Choquet expected utility

Denote by � : �! [0; 1] a not necessarily additive probability measure satisfying:

(i) Normalization: � (;) = 0 and � (
) = 1;

(ii) Monotonicity: A � B implies � (A) � � (B).

Suppose now that the utility representation (48) is of the Choquet expected utility

(CEU) form, i.e., for all X 2 L0 (�),

U (X) =

Z C




u (X (!)) d� (28)

where the integral in (28) is the Choquet integral with respect to some �. The Choquet

integral is formally de�ned asZ C




u (X (!)) d� �
Z 1

0

� (u (X (!)) � x) dx�
Z 0

�1
(1� � (u (X (!)) � x)) dx (29)

(for details on Choquet integration and properties of the Choquet integral see Schmeidler

1986 for bounded u and, more generally, Wakker 1993). CEU has been axiomatized

within the Savage (1954) framework�relevant to our model of preferences over random

variables (i.e., Savage acts)�by Gilboa (1987).

We follow the literature and call � convex i¤, for all A;B 2 �,

� (A [B) + � (A \B) � � (A) + � (B) . (30)

� is called concave i¤ the inequality in (30) is reversed. For the EU representation

(25) quasi-concavity (resp. quasi-convexity) of U is simply implied by concavity (resp.

convexity) of u. The case is more complicated for the CEU representation (28) for which

we must additionally consider properties of �. In the Appendix we prove the following

result.
13A formal proof of this fact, which uses the Radon-Nikodym Theorem, is available upon request

from the authors.
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Corollary 2. Suppose that Assumption 1 holds such that U is of the CEU form (28).

Then we can neither have (i) concavity of the utility function u combined with

convexity of the capacity � nor (ii) convexity of the utility function u combined

with concavity of the capacity �.

The analysis in Chew, Karni, and Sa¤ra (1985) implies that CEU preferences ex-

press strong risk-aversion�de�ned as aversion to mean-preserving spreads�if, and only

if, u is concave and � is convex. Consequently, Corollary 2 rules out that a CEU rep-

resentation over all random variables in L0 (�) could express strong risk-aversion. In

addition to strong risk-aversion, Chateauneuf, Cohen, and Meilijson (2005) consider the

concepts of monotone and weak risk-aversion. While all three risk-aversion concepts

are equivalent for EU preferences, Chateauneuf et al. (2005) show that monotone and

weakly risk-averse CEU representations do not necessarily require concavity of u com-

bined with convexity of �. Corollary 2 does thus not apply to these weaker concepts of

risk aversion.14

Remark 7. If Assumption 1 holds for some CEU representation we must have thatZ C




u (X (!)) d� =

Z C




u (Y (!)) d� for all X = Y , �-a.e. (31)

As for an additive measure (cf. Remark 6), this excludes any � with some atom 
� 2 �
such that � (
�) = � > 0 whereas � (A) = 0 for all A � 
�. To see this directly for

L0 (�), suppose that there is some atom such that � (
�) = � > 0 whereas � (A) = 0 for

all A � 
�. Consider the two random variables X; Y 2 L0 (�) and some !� 2 
� such
that

X (!) = Y (!) = 1 for all ! 2 
�n f!�g ,
X (!�) = 0 and Y (!�) = 1 for !� 2 
�,
X (!) = 0 and Y (!) = 0 for all ! 2 
=
�.

Suppose now that Assumption 1 holds for an CEU representation w.r.t. �. Then

U (X) =

Z C




u (X (!)) d� = u (0) (32)

< �u (1) + (1� �)u (0) =
Z C




u (Y (!)) d�

= U (Y )

14The analysis in Chew et al. (1985) and in Chateauneuf et al. (2005) is formulated for rank dependent

utility under risk (see Remark 8).
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as well as

X = Y , �-a.e., U (X) = U (Y ) , (33)

a contradiction.

Remark 8. As in the case of an EU representation w.r.t. �0 6= �, one might ask why
is the additive reference measure � used to de�ne continuity for a CEU representation

w.r.t. a non-additive � 6= � (also see Remark 9 below) One class of CEU representa-

tions for which the choice of an additive reference measure arises naturally is the class

of rank dependent utility under risk (=RDU) representations originally introduced by

Quiggin (1981; 1982). For an RDU representation the non-additive probability measure

� results from the application of an increasing probability weighting/perception function

f : [0; 1] ! [0; 1] with f (0) = 0 and f (1) = 1 to objective probabilities. For any CEU

(i.e., RDU) representation satisfying � (A) = f (� (A)), A 2 �, the objective measure �
becomes the natural reference measure of choice.

Remark 9. At this point it is natural to ask whether our analysis could be ex-
tended to a non-additive probability space (
;�; �) such that � instead of � becomes

the reference measure. While we have to leave the details of such analysis for future

research, let us brie�y sketch the basic question. Suppose that � is nonatomic in the

sense that there exists for every � > 0 some �nite partition f
1; :::;
ng � � of 
 such
that � (
i) � �; i = 1; :::; n. Also suppose that the new metric

dC0 (X; Y ) =

Z C




jX � Y j
1 + jX � Y jd� (34)

is well de�ned to give us the space L0 (�). We then conjecture that, in analogy to

Proposition 1, The only convex subset of L0 (�) with non-empty interior is the set L0 (�)

itself. If is the case, the incompatibility results of this paper would simply follow. But

the open question is under which conditions (34) is well-de�ned.15

Remark 10. The proof of Corollary 2(i) for concave u and convex � uses exactly
three properties of the Choquet expectations operator: (i) monotonicity, (ii) homo-

geneity of degree one, and (iii) super-additivity for convex �; (an analogous proof for

Corollary 2(ii) with convex u would use the fact that the Choquet integral is sub-additive

15The details of this issue are far from obvious to us. For starters, the notion of �-a.e. identical

random variables seems to require restrictions on admissable � to ensure that X = Y , �-a.e. and

Y = Z, �-a.e. implies X = Z, �-a.e. That is, without further restrictions on � (which ones?) we cannot

be sure that dC0 (X;Z) = 0 whenever d
C
0 (X;Y ) = 0 and d

C
0 (Y; Z) = 0.
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for concave �). Suppose that Assumption 1 holds for a max-min MEU (=multiple priors

expected utility) representation of preferences on L0 (�) such that for all X 2 L0 (�)

U (X) = min
�02P

Z



u (X (!)) d�0 (35)

where P denotes some set of probability measures (=priors) on (
;�). Then the minimal
expectations operators on the right side of (35) is also monotone, homogenous of degree

one, and super-additive (cf. Lemmas 3.4 and 3.5 in Gilboa and Schmeidler 1989). By the

same formal argument as for Corollary 2(i), we thus have that there cannot exist any �-

continuous max-min MEU representation of preferences on L0 (�) such that u is concave;

(nor can there exist any �-continuous max-max MEU representation, i.e., U (X) =

max�02P
R


u (X (!)) d�0, for convex u). Similar to the case of an EU representation

w.r.t. �0 6= � (cf. Remark 6), the choice of � as reference measure for the max-min

MEU utility representation (35) is natural whenever all priors in P are equivalent to

�.16

5 Examples

This section illustrates our analytical results through examples that relax di¤erent as-

sumptions of Theorem 1 in order to ensure existence of preferences and/or their utility

representations.

Example 1. [Relaxing non-triviality]. Just consider a degenerate preference relation
such that 8X; Y 2 L0 (�) ; X � Y . This preference relation is (trivially) complete, �-

continuous as well as S-convex (resp. s-convex). Moreover, it can be represented by any

constant functional U : L0 (�)! R.�

Example 2. [Relaxing completeness: Monotonicity]. We say that Y dominates

(�-a.e.) X, denoted X � Y , i¤

X (!) � Y (!) , �-a.e. (36)

Let 8X; Y 2 L0 (�) ; X � Y i¤X � Y and observe that �-continuity and convexity hold
for these incomplete preferences.�

Example 2 relaxes completeness by considering a partial rather than a total preference

relation on L0 (�). Alternatively, we can relax completeness of preferences on L0 (�) by

16An interesting question for future research, related to Footnote 15, is which reference measure

should be chosen for de�ning continuity of MEU presentations if not all priors are equivalent to �.
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considering �complete�preferences that are de�ned for some strict subset of L0 (�) only.

Such preferences are incomplete on L0 (�) because we assume that only random variables

within the given subset are comparable with each other. The following example shows

how continuity and convexity can be reconciled for a suitably chosen subset.

Example 3. [Relaxing completeness: Risk-averse expected utility for non-negative
random variables]. Suppose that � is only de�ned on the set of non-negative random

variables

L0+ (�) �
�
X 2 L0 (�) j X (!) � 0, �-a.e.

	
(37)

and consider an expected utility decision maker with the following utility function

u (x) =
x

1 + x
, for x � 0. (38)

The expected utility of any X 2 L0+ (�) with respect to � is given as the distance (4) of
X from the constantly zero random variable:Z




u (X (!)) d� =

Z



jX (!)� 0j
1 + jX (!)� 0jd� (39)

= d0 (X; 0) 2 [0; 1) . (40)

This decision maker�s preferences on L0+ (�) are �-continuous and, by strict concavity of

u on R+, they are also S-convex on L0+ (�).�

On the one hand, Example 3 shows that continuity and convexity can be easily

reconciled if we restrict attention to preferences that are only complete on a suitable

subset of L0 (�) like L0+ (�) (cf. Remark 1). On the other hand, however, this example

also demonstrates the interpretational shortcomings of such restriction: Why should the

decision maker not be able to compare random variables in L0+ (�) with random variables

that have losses (negative x) in their support? The following example shows how we

could naturally extend the preferences on L0+ (�) from Example 3 to preferences that are

complete on the whole domain L0 (�). However, by establishing completeness on L0 (�)

either �-continuity or convexity has to give (which will be convexity in Example 4).

Example 4. [Relaxing convexity: Expected utility with a reference point at zero].
Recall the preferences from Example 3 but assume now a complete preference ordering

on the whole domain L0 (�). To this purpose de�ne the following (once-di¤erentiable)

utility function:

u (x) =

(
x
1+x

if x � 0
x
1�x if x � 0

(41)
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resulting in an EU representation of �-continuous preferences � on L0 (�). As under

Example 3, the expected utility of any �-a.e. positive X is its distance d0 (X; 0) from

the constant zero random variable. For an �-a.e. negative Y we haveZ



u (Y (!)) d� =

Z



(�) jY (!)� 0j
1 + jY (!)� 0jd� = �d0 (Y; 0) ; (42)

that is, the expected utility of the negative Y is the negative of its distance from this

zero random variable. Consequently, U (X) 2 (�1; 1) for any X 2 L0 (�).
Observe that u is strictly concave for all x > 0 and strictly convex for all x < 0

so that the EU decision maker is risk-averse for positive and risk-seeking for negative

outcomes. From Corollary 1 we know that an EU representation of a �-continuous

preference relation � on L0 (�) is impossible for an utility function that is concave (or

convex) on the whole domain R. This example shows that we can have an �-continuous
EU representation on L0 (�) when we are prepared to give up S-convexity (corresponding

to a concave u, i.e., risk-aversion) as well as s-convexity (corresponding to a convex u,

i.e., risk-seeking) as global properties.

Finally, let us interpret u as a value function from prospect theory (cf. Wakker 2010)

such that positive x correspond to gains with respect to the reference point zero whereas

negative x stand for losses. Under this interpretation giving up on S- and s-convexity for

the above preferences is nothing else than the standard assumption of prospect theory

according to which the bounded value function for gains is (strictly) concave whereas it

is (strictly) convex for losses (cf. Vendrik and Woltjer 2007 and references therein).�

Example 5. [Relaxing convexity: Value-at-Risk]. Recall the de�nition of Value at
Risk (VaR) as a popular risk measure in �nancial applications which is not sub-additive:

VaR�(X) = �sup fx 2 RjP (X � x) � �g (43)

for a �xed con�dence level 1 � � 2 (0; 1). Let 8X; Y 2 L;X � Y i¤ VaR�(X) �
VaR�(Y ). It is easy to see that (the complete and non-trivial) � is �-continuous because
�-continuity implies convergence in distribution. The following example taken from

Embrechts et al. (2002) shows that S-convexity is violated. LetX; Y be two independent

Pareto distributed random variables with FX(x) = FY (x) = 1 � x�1=2; x � 1 and 0,

otherwise. Then it is easy to see that P (X + Y � z) = 1 � 2
p
z�1
z

< P (2X � z), for

z � 2. Consequently, VaR�(X+Y2 ) > VaR�(X) =
VaR�(X)+VaR�(Y )

2
. That is, we have

X; Y 2 S(X) but not X+Y
2
2 S(X) so that S-convexity fails.

As the basis for the Basel II and III capital requirement formula, the VaR criterion

has been heavily criticized in the mathematical �nance literature because it does not

satisfy preference for diversi�cation (cf. Artzner et al. 1997, 1999). On the other
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hand, VaR has the nice feature to ensure continuity of preferences on L0 (�), which is

impossible for convex/coherent/subadditive risk measures (see Remark 4).�

Example 6. [Relaxing continuity: Lexicographic preferences]. De�ne (strict) dom-
inance on an event E 2 � as follows: 8X; Y 2 L0 (�)

X �E Y i¤X (!) � Y (!) , �-a.e. on E;
X <E Y i¤X �E Y and X (!) < Y (!) on some E 0 � E with � (E) > 0.

Fix a collection 
1;
2; ::: of nested events in � such that 
i+1 � 
i, � (
1) = 1 and

� (
i) > � (
i+1) > 0 for all i. De�ne the following lexicographic preferences:

if X <
1 Y then X � Y ,
if neither Y <
i X nor X <
i Y for any i < j but X <
j Y , then X � Y ,
X � Y , else.

First, let us show that the (complete and non-trivial) preference relation � is S-

convex. If not, then X � Y but �Y + (1� �)X � X for some �. Focus on the strict

case X � Y . Then there exists some i � 1 and X;Y such that X <
i Y but neither

Y <
j X nor X <
j Y for j < i. Note that X <
i Y implies X <
i �Y + (1� �)X.
Similarly, neither Y <
j X nor X <
j Y implies neither Y <
j �Y + (1� �)X nor

X <
j �Y + (1� �)X for j < i. Consequently, X � �Y + (1� �)X, a contradiction.
Now focus on X � Y so that, by the same argument, neither Y <
j �Y +(1� �)X nor

X <
j �Y + (1� �)X for any j, implying �Y + (1� �)X � X.
Next observe that � is not �-continuous. To see this, let 
1 = E1[E2, 
2 = E1 and

consider the following random variables:

E1 E2

X 1 0

Yk 1� 1
k
1

Y 1 1

Note that Yk � X for all k but X � Y whereby d0 (Yk; Y )! 0.�

Example 7. [Relaxing continuity: Preferences generated by a linear functional]. An
anonymous referee pointed out to us that it is a standard result in functional analysis

�that every vector space admits nontrivial linear functionals�. For the reader�s bene�t we

sketch the formal argument within our framework. Suppose that there exists a non-zero

linear functional f on L0 (�). Then we can use f to construct a non-trivial, complete,

and convex preference relation as follows:
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X �f Y i¤ f(X) � f(Y ). (44)

This preference relation is non-trivial since f is non-zero (and by linearity thus non-

constant). It is complete since for all X; Y 2 L0 (�) we have either f(X) � f(Y )

or f(Y ) � f(X). It is convex since, for all X; Y; Z 2 L0 (�), if f(Z) � f(X) and

f(Z) � f(Y ) then

f(Z) = �f(Z) + (1� �)f(Z) (45)

� �f(X) + (1� �)f(Y ) = f(�X + (1� �)Y ): (46)

Recall from our Remark 2 that there does not exist any (non-zero) continuous linear

functional on L0 (�). However, that does not mean that there does not exist any linear

functional on this space at all. In what follows, we prove the existence of a linear function

on L0 (�) whereby we use Zorn�s lemma (cf. pp.65-66 in Komjàth and Totik 2006):

Zorn�s Lemma. Suppose that a non-empty partially ordered set (Z; R) has the prop-
erty that every chain has an upper bound, i.e., for any totally ordered set C � Z
there exists MC such that XRMC for all X 2 C. Then the set Z contains at least
one maximal element M, i.e., there is no X 2 Z with MRX and :XRM.

Let O be the set of all linearly independent subsets of L0 (�) that contains the

constant random variable 1. Because of f1g 2 O, O is non-empty. In Zorn�s lemma let

Z = O and R =�. Since O is a set of subsets of L0 (�), (O;�) is partially ordered. On
the other hand, for any chain C one can see thatMC = [A2CA is an upper bound. By
Zorn�s lemma, there must thus exist a maximal setM of linearly independent members

in L0 (�) that also contains 1. We claim thatM is a basis for L0 (�). If not, there exists

some X 2 L0 (�) such that X cannot be written as linear combination of members in

M. That means X is linearly independent from members of M. But if we introduce

X 0 =M[ fXg, thenM ( X 0, which contradicts the maximality ofM.

Now let us construct a linear functional f1 as follows: for every X 2 L0 (�), there
are real numbers fxmgm2M such that X =

P
m2M xmm. Let f1(X) := x1: SinceM is a

basis, the representation X =
P

m2M xmm is unique, and as a result f1 is well de�ned

and linear. �

6 Discussion: Our topology of choice

Mathematical continuity is a relative concept that is determined by the topology we

impose on L0 (�). We will show in a moment that it is easy to come up with topologies
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on L0 (�) that can reconcile convexity with mathematical continuity with respect to these

topologies. This raises the question why we have chosen the topology of convergence in

probability.

The remainder of this section presents three arguments in favor of the d0-metric as

our topology of choice. These arguments can be summarized as follows:

1. A utility representation over the distributions of random variables is continuous if,

and only if, �-continuity holds.

2. The d0-metric is behaviorally plausible and it translates the standard convergence

behavior of random variables from familiar Lp (�) spaces into the larger L0 (�)

space.

3. Any alternative topologies we can think of that reconcile convexity with mathe-

matical continuity require behaviorally implausible notions of convergence.

6.1 Continuous utility representation over distributions

Let us assume that a non-trivial and complete preference relation on L0 (�) can be

represented by some utility function de�ned over the distributions of all random variables

in L0 (�).17 Recall that the distribution FZ of any Z 2 L0 (�) is a probability measure
on the Borel subsets of the real line satisfying

FZ (A) � � (f! 2 
 j Z (!) 2 Ag) . (47)

Assumption 2. Fix some non-trivial and complete preference relation � on L0 (�)

and suppose that there exists some real-valued U such that, for all X; Y 2 L0 (�),

X � Y i¤ U (FX) � U (FY ) . (48)

For a sequence of random variables fYkgk2N we write FYk ) FY whenever the Yk
converge in distribution to Y , i.e., whenever the cumulative distribution functions (=cdf)

17The majority of utility representations reduces preferences over random variables to preferences over

distributions. Notable exceptions are state-dependent utility models. For a good textbook treament of

state-dependent expected utility see Chapter 6.E in Mas-Collel et al. (1995). For a recent overview

on objective and subjective models with state-dependent utility see Karni and Schmeidler (2016) and

references therein.
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of the Yk converge weakly to the cdf of Y .18 We say that U is continuous in distribution

if FYk ) FY implies limk U (FYk) = U (FY ).

Proposition 5. Suppose that Assumption 2 holds. U is continuous in distribution if,

and only if, � is �-continuous.

Most decision-theoretic applications are concerned with the maximization of utility

functions over distributions whereby�mainly out of analytical convenience�these utility

functions are supposed to be continuous. By Proposition 5, such analytical convenience

would not be at hand without �-continuity.

6.2 Lp (�) spaces and the d0-metric

Beyond the mere mathematical de�nition of continuity there is also a behavioral inter-

pretation of what it means that a decision maker has �continuous preferences�. According

to this behavioral interpretation of continuity, preferences should not abruptly switch

in the limit of converging random variables. A good behavioral concept of continuity

should therefore be based on a behaviorally plausible concept of convergence that closely

captures what real-life decision makers may perceive as convergence of random variables.

Let us consider the familiar Lp (�) spaces with 1 � p � 1 which only contain random

variables that come with an expected value.19 The standard topology imposed on these

spaces is generated by the Lp-norm

kXkp =
( �R



jXjp d�

� 1
p for 1 � p <1

inf f� 2 [0;1) j � (f! 2 
 j jX (!)j > �g) = 0g for p =1
(49)

with corresponding metric

dp (X; Y ) = kX � Y kp for all X; Y 2 Lp (�) . (50)

Arguably, most decision-theorists would agree that convergence in the dp-metric is a

behaviorally plausible notion for the convergence behavior of random variables in Lp (�).

When we move from an Lp (�) space to the large L0 (�) space, where the metric

dp is no longer available in general, it would be desirable to have a metric for L0 (�)

18Denote by CDFZ the cdf of Z, formally de�ned as

CDFZ (x) � FZ (�1; x] for all x 2 R.

The CDFYk converge weakly to the CDFY i¤CDFYk (x)! CDFY (x) for all x such that � (Y = x) = 0;

(for more details see Chapter 14 in Billingsley 1995).
19For properties of Lp (�) spaces with 1 � p � 1 see Section 19 in Billingsley (1995).
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that guarantees for any sequence fYkgk2N � Lp (�) the same convergence behavior in

L0 (�) as under the dp-metric. The following proposition shows that the d0-metric is

accomplishing this task.

Proposition 6. Fix some Lp (�) space with 1 � p � 1. Convergence in the dp-metric
implies convergence in the d0-metric, i.e.,

dp (Yk; Y )! 0 implies d0 (Yk; Y )! 0. (51)

6.3 Alternative topologies that establish compatibility between
convexity and continuity

To see that it is actually trivial to ensure compatibility of convexity with some notion of

mathematical continuity, let us �rst consider the discrete topology on L0 (�) generated

by the discrete metric metric dD : L0 (�)� L0 (�)! [0; 1) such that

dD (X; Y ) =

(
0 X = Y , �-a.e.

1 else.
(52)

In this topology all subsets of L0 (�) are closed to the e¤ect that convexity and dD-

continuity are compatible. To impose dD-continuity, however, comes with the drawback

that the corresponding notion of convergence is behaviorally not very plausible.

Example 8. [Convergence under dD-continuity]. Let us revisit the lexicographic
preferences of Example 6 which satisfy convexity but violate �-continuity. These (like

any other) preferences trivially satisfy dD-continuity because only (eventually) constant

sequences of random variables converge under the discrete topology. For the random

variables
E1 E2

Yk 1� 1
k
1

Y 1 1

we can thus have under dD-continuity that Yk � X for all k as well as X � Y because

the Yk no longer converge to Y , i.e.,

lim
k!1

dD (Yk; Y ) = 1. (53)

Arguably, most real-life decision makers would judge that (or: behave as if) the Yk were

increasingly resembling Y for larger k whereby the di¤erence between the Yk and Y
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becomes negligible in the limit. But then any behaviorally relevant concept of continuity

should be based on the notion that the Yk are indeed converging to Y , which is not the

case under dD-continuity.�

The discrete topology stands for the largest topology under which any given con-

vex preference relation over equivalence classes of random variables becomes continuous.

Alternatively, we might consider the smallest topology under which a given convex pref-

erence relation becomes continuous. More precisely, �x some convex preference relation

� and introduce the smallest topology whose closed sets consist of a basis given by

super- and sub-level sets s(X); S(X);8X 2 L0 (�). Indeed, this topology is the small-
est topology under which � is continuous and it is also included in any such topology.

However, the same criticism as under Example 8 applies: Making the (convex) lexico-

graphic preferences of Example 6 continuous is incompatible with any topology in which

Y belongs to some closed set containing all Yk. As in the case of the discrete topology,

the notion of convergence required to make the preferences of Example 6 continuous is

therefore not plausible from a behavioral perspective.

So far we have considered topologies that treat random variables which coincide �-

almost everywhere as identical objects. If we are prepared to give up this notion of

equivalence classes of random variables, preference relations on L0 (�) become possible

that can combine convexity with mathematical continuity.

Example 9. [Abandoning equivalence classes of �-a.e. random variables]. Let


 = [0; 1) and consider the (non-metrizable) topology of pointwise convergence:

for any net X� ! X i¤X�(!)! X(!);8! 2 [0; 1). (54)

For any ! 2 [0; 1), f!(X) = X(!) is a continuous functional in this topology. Conse-

quently, for any �xed ! 2 [0; 1), the complete preference relation � de�ned by

X � Y i¤X(!) < Y (!) (55)

is continuous with respect to pointwise convergence. Obviously, this preference relation

is also convex.�

Under our assumption of a nonatomic �, the preferences described under Example

9 belong to a decision maker who cares about probability zero events. One possible

view is that such preferences are problematic as a decision maker should treat random

variables as identical objects in case they are identical almost everywhere. However, the

opposite view is also viable. An anonymous referee writes: �A good deal of the theory of
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decision making under ambiguity relies on the fact that a "measure-zero event", e.g., a

catastrophic event, may matter for the decision maker.�The following example describes

a continuous and linear utility representation for a decision maker who cares about a

catastrophic (measure zero) event.

Example 10. [Catastrophic event]. As before we consider a nonatomic probability
space (
;�; �) whereby we now assume that f0g � 
 is the catastrophic event. Endow
the set of all �-measurable random variables with the new metric

d�(X; Y ) = (1� �) d0(X; Y )+�
jX(0)� Y (0)j

1 + jX(0)� Y (0)j (56)

for a �xed � 2 (0; 1). We denote this metric space by L0c (�). In contrast to the space
L0 (�)�where X; Y 2 L0 (�) are identical i¤ X = Y , �-a.e.�X; Y 2 L0c (�) are identical
i¤X(0) = Y (0) and X = Y , �-a.e. on 
n f0g. Consider now any complete preferences
on L0c (�) that satisfy, for all X;Y 2 L0c (�),

X(0) < Y (0) and X = Y; �-a.e. on 
n f0g implies X � Y . (57)

That is, although the event f0g has measure zero the decision maker cares about the
outcomes in this event.

We claim that any existing d�-continuous linear utility representation of complete

preferences on L0c (�) satisfying (57) must be of the form U (Y ) = cY (0) where c >

0. The argument is as follows. Suppose that there exists some d�-continuous lin-

ear functional � on L0c (�). Fix � and introduce  : L
0 (�) ! R such that  (Y ) =

�
�
Y � 1f0gY (0)

�
. Observe that  is linear as well as �-continuous on L0 (�). But then

 (Y ) = 0 for all Y as  must be the null-functional (cf. Remark 2). Consequently, we

have for any Y that �
�
Y � 1f0gY (0)

�
= 0 so that, by assumed linearity of �,

� (Y ) = �
�
1f0g

�
Y (0) . (58)

First note that � given by (58) is indeed d�-continuous and linear on L0c (�) so that

there exists a d�-continuous and linear functional on L0c (�) whenever it is of the form

(58). Moreover, because the d�-continuous linear functional � was chosen arbitrarily any

existing d�-continuous and linear functional on L0c (�) must be of the form (58). In other

words, there exists a d�-continuous and linear functional � on L0c (�) if, and only if, � is

of the form (58). Next, by setting U = � and c � �
�
1f0g

�
in (58) we obtain

U (Y ) = cY (0) . (59)

Observe that if U represents preferences satisfying (57), we must have that c > 0.

Consequently, if there exists any d�-continuous and linear utility representation U of
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complete preferences on L0c (�) satisfying (57), we must equivalently have that

X � Y i¤X (0) < Y (0) . (60)

Complete preferences on L0c (�) satisfying (57) can thus only be represented by some d�-

continuous and linear utility functional if nothing else but the payo¤ in the catastrophic

event matters.�

Remark 11. Examples 9 and 10 also demonstrate why the assumption of a nonatomic
measure space is crucial to our incompatibility results. Suppose, e.g., that we have in

Example 10 �0 instead of � such that �0 has exactly one atom at f0g with �0 (0) > 0

whereas, for all A 2 � with A � 
n f0g, �0 (A) = (1� �0 (0))� (A). Then the pref-
erences of Example 10 represented by (59) are linear (i.e., weakly convex) as well as

�0-continuous on L0 (�0) because the metric (4) becomes for �0

d0 (X; Y ;�
0) =

Z

nf0g

jX � Y j
1 + jX � Y jd�

0 +
jX(0)� Y (0)j

1 + jX(0)� Y (0)j�
0 (0) (61)

= (1� �0 (0)) d0(X; Y ;�)+�0 (0)
jX(0)� Y (0)j

1 + jX(0)� Y (0)j , (62)

which coincides for � = �0 (0) with the metric (56) on L0c (�) so that d�-continuity on

L0c (�) in Example 10 is equivalent to �
0-continuity on L0 (�0).
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Appendix: Formal proofs

Proof of Proposition 1. Let L be a convex subset of L0 (�) with non-empty interior
and suppose that Y 2 L0 (�) belongs to the interior of L. Fix some � > 0 such that

Y 0 2 L requires d0 (Y; Y 0) � �. Pick some partition f
1; :::;
ng � � of 
 such that

� (
i) � �; i = 1; :::; n, which always exists for nonatomic �.
ChooseX 2 L0 (�) arbitrarily and introduce Yi = Y +n(X�Y )1
i where 1
i denotes

the indicator function on 
i. For any i = 1; :::; n we have

d0 (Y; Yi) =

Z



jY � Yij
1 + jY � Yij

d� =

Z



jn(X � Y )1
ij
1 + jn(X � Y )1
ij

d� (63)

=

Z



jn(X � Y )j
1 + jn(X � Y )j1
id� (64)

<

Z



1
id� = � (
i) � �: (65)

As a consequence, we can now assume that Yi 2 L for all i = 1; :::; n.
Next note that

1

n

nX
i=1

Yi = Y +
nX
i=1

(X � Y )1
i (66)

= Y +X � Y . (67)

By convexity of L, we thus have

X =
1

n
Y1 + :::+

1

n
Yn 2 L. (68)

Since X 2 L0 (�) was chosen arbitrarily, we obtain L = L0 (�). This also justi�es our
assumption that Yi 2 L for all i = 1; :::; n, which proves the Proposition.��

Proof of Theorem 1. Ad part (a).
Step 1. Suppose that S (X) is convex for some X such that Y � X and X � Z,

which exists by non-triviality. Because of Y � X, we have Y 62 S (X) which implies
S (X) 6= L0 (�). By Proposition 1, S (X) must thus have an empty interior with respect
to the topology of convergence in probability on L0 (�).

Step 2. By non-triviality, we also have that the set

S� (X) �
�
X 0 2 L0 (�) jX � X 0	 � S (X) (69)

is non-empty because of Z 2 S� (X).
Step 3. Combining Step 1 and Step 2 establishes that S� (X) cannot be an open

set in the topology of convergence in probability. However, by completeness,

s (X) = L0 (�) nS� (X) (70)
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so that s (X) cannot be a closed set, which contradicts �-continuity.�
Ad part (b). Just observe that non-triviality implies (i), by s (X) 6= L0 (�) and

Proposition 1, that s (X) has an empty interior as well as (ii) non-emptiness of

s� (X) �
�
X 0 2 L0 (�) jX 0 � X

	
� s (X) . (71)

By an analogue argument as under Step 3, the set

S (X) = L0 (�) ns� (X) (72)

is thus not closed.�
Ad part (c). The validness of this statement is demonstrated through the examples

in Section 5. ��

Proof of Proposition 2. We prove part (a). If S (X) = fXg there is nothing to
prove so let us assume that Y; Z 2 S (X) with Y 6= Z. Without loss of generality, suppose
that, by completeness, Y � Z. If quasi-concavity holds, we have Y � �Z + (1� �)Y .
Finally, since X � Y , transitivity implies X � �Z + (1� �)Y .��

Proof of Theorem 3. By Theorem 2 it is su¢ cient to show that quasi-concave

preferences follow from preference for diversi�cation under the assumptions of Theorem

3.

Step 1. Without loss of generality, suppose that X � Y with X 6= Y (again: if

S (X) = fXg, we don�t have anything to prove). We have to show that preference for
diversi�cation implies

X � �X + (1� �)Y (73)

for � 2 [0; 1]. If X � Y , we immediately obtain (73). So, let us assume X � Y:
Step 2. Because any metric is continuous (3.16 Theorem in Aliprantis and Border

2006), we obtain:

Lemma 1. Fix some � � 0. For any X; Y 2 L0 (�), there exists some � > 0 such that

d0 (q
0X + (1� q0)Y; qX + (1� q)Y ) � � (74)

for all jq0 � qj � �.

Step 3. Introduce

q� = max fq 2 [0; 1] jX � �X + (1� �)Y; 8� 2 [0; q]g . (75)
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By transitivity, we have

X � �X + (1� �)Y (76)

i¤ � 2 [0; q�]. If q� = 1, we have the desired result (73). Suppose now 0 � q� < 1. By
X � Y , d0�continuity and completeness implies that the set

S� (X) �
�
Z 2 L0 (�) jX � Z

	
(77)

is open. Consequently, there exists some number � > 0 such that d0 (Y; Z) � �

implies X � Z, i.e., Z 2 S� (X). By Lemma 1, there exists some � > 0 such

that d0 (Y; �X + (1� �)Y ) � � for all � � �. Consequently, for all � � �, X �
�X+(1� �)Y implying q� � � > 0. That is, we can henceforth assume that 0 < q� < 1.
Step 4. We claim that q� < 1 implies X � q�X + (1� q�)Y . We prove this claim

by way of contradiction. First, suppose that X � q�X + (1� q�)Y . By Lemma 1 and
openness of the set S� (X), there exists some � > 0 such that

d0

�
q
0
X +

�
1� q0

�
Y; q�X + (1� q�)Y

�
� � (78)

for all jq0 � q�j � �. Let q0 = min
�
1; q� + 1

2
�
	
and observe that q0 > q� as well as

X � q0X +
�
1� q0

�
Y . But this contradicts the de�nition of q�.

Next, suppose that X � q�X+(1� q�)Y �. An analogous argument as above results
in some q0 such that q0 < q� as well as q

0
X +

�
1� q0

�
Y � X. Again, a contradiction to

the de�nition of q�.

Step 5. In Step 4 we have proven that X � q�X + (1� q�)Y whenever q� < 1 By

preference for diversi�cation, we thus obtain

X � �X + (1� �) (q�X + (1� q�)Y ) (79)

,
X � (� + (1� �) q�)X + (1� �) (1� q�)Y (80)

for all � 2 [0; 1]. By de�nition of q�,

� + (1� �) q� � q� (81)

for all � 2 [0; 1], which only holds for q� = 1. But this contradicts q� < 1 and gives us
the desired result (73).��

Proof of Proposition 4. �-continuity of preferences is violated if, and only if,
there exists some sequence of random variables fYkgk2N with d0 (Yk; Y ) ! 0 such that

X � Yk for all k but Y � X. By Assumption 1, we then have that U (X) � U (Yk) for
all k and U (Y ) < U (X), which violates �-continuity of U . Consequently, �-continuity
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of U requires �-continuity of preferences. Moreover, by Assumption 1, quasi-concave

(resp. quasi-convex) preferences require a quasi-concave (resp. quasi-convex) U . The

proposition then follows from Theorem 2.��

Proof of Corollary 2. Suppose that � is convex and u is concave. By Proposition 3
(iii) in Schmeidler (1986), convexity of � implies super-additivity of the Choquet integral,

i.e., we have

EC (b+ c) � EC (b) + EC (c) (82)

for real-valued functions b and c whenever these Choquet integrals exist. Applied to an

CEU representation convexity of � thus implies, for any � 2 [0; 1] and all X; Y 2 L0 (�),

EC (�u (X) + (1� �)u (Y )) � EC (�u (X)) + EC ((1� �)u (Y )) (83)

= �EC (u (X)) + (1� �)EC (u (Y )) (84)

whereby the last equality follows because the Choquet integral is homogeneous of degree

one. By concavity of u, for all !,

u (�X (!) + (1� �)Y (!)) � �u (X (!)) + (1� �)u (Y (!)) (85)

so that monotonicity of the Choquet integral implies

EC (u (�X + (1� �)Y )) � EC (�u (X) + (1� �)u (Y )) . (86)

Combining the above inequalities gives

EC (u (�X + (1� �)Y )) � �EC (u (X)) + (1� �)EC (u (Y )) for all X;Y 2 L0 (�) .
(87)

For all X; Y 2 L0 (�) such that EC (u (X)) � EC (u (Y )), we obtain from (87) that

EC (u (�X + (1� �)Y )) � EC (u (Y )) , (88)

which is the de�nition of a quasi-concave EC (u (�)). Collecting the above arguments
gives Corollary 2 (the argument for quasi-convexity proceeds analogously).��

Proof of Proposition 5. The �if�-part is easy since convergence in the d0-metric
implies convergence in distribution; that is, d0 (Yk; Y ) ! 0 implies FYk ) FY (cf., e.g.,

Theorem 25.2 in Billingsley 1995).

The �only if�part is less obvious as convergence in distribution on the same probability

space does not necessarily imply convergence in the d0-metric. Suppose that FYk )
FY . Then F�1Yk converges point-wise to F�1Y where, for any Z, F�1Z denotes the left
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inverse of CDFZ . Let us �x a uniform random variable V on (0; 1) which exists because

the probability space is nonatomic. By construction, the random variable F�1Z (V ) has

the same distribution as the random variable Z, implying, by (48), F�1Yk (V ) � Yk and

F�1Y (V ) � Y . Since the F�1Yk (V ) converge point-wise to F
�1
Y (V ), they also converge in

probability (i.e., in d0). By law-invariance of U , we thus have

lim
k
U(Yk) = lim

k
U(F�1Yk (V )) = U(F

�1
Y (V )) = U(Y ). (89)

��

Proof of Proposition 6. Suppose that f 2 Lp (�) and g 2 Lq (�) with either
1
p
+ 1

q
= 1 or p =1, q = 1. By Hölder�s inequality, we have thatZ




jf � gj d� � kfkp � kgkq . (90)

For any X; Y 2 Lp (�), let

f � jX � Y j , (91)

g � 1

1 + jX � Y j (92)

so that (90) becomes

d0 (X; Y ) � dp (X; Y ) � kgkq . (93)

Since kgkq � 1, convergence in dp implies convergence in d0 on Lp (�).��

33



References

Aliprantis, D.C., Border, K. (2006) In�nite Dimensional Analysis. 2nd edition. Berlin:

Springer.

Anscombe, F.J., Aumann, R.J. (1963) �A De�nition of Subjective Probability�Annals

of American Statistics 34, 199-205.

Arrow K.J. (1974) �The Use of Unbounded Utility Functions in Expected-Utility Max-

imization: Response�The Quarterly Journal of Economics 88, 136-138.

Artzner, P., Delbaen, F., Eber, J., Heath, D. (1997) �Thinking Coherently�Risk 10,
68-71.

Artzner, P., Delbaen, F., Eber, J., Heath, D. (1999) �Coherent Measures of Risk�

Mathematical Finance 9, 203-228.

Assa, H. (2016) �Natural Risk Measures�Mathematics and Financial Economics 10,
441-456.

Billingsley, P. (1995) Probability and Measure. New York: John Wiley.

Blavatskyy, P.R. (2005) �Back to the St. Petersburg Paradox?�Management Science

51, 677-678.

Chateauneuf, A., Lakhnati, G. (2007) �From Sure to Strong Diversi�cation�Economic

Theory 32, 511-522.

Chateauneuf, A., Tallon, J.-M. (2002) �Diversi�cation, Convex Preferences and Non-

empty Core in the Choquet Expected Utility Model�Economic Theory 19, 509-
523.

Chateauneuf, A., Cohen, M., Meilijson, I. (2005) �More Pessimism than Greediness:

A Characterization of Monotone Risk Aversion in the Rank-dependent Expected

Utility Model�Economic Theory 25, 649-667.

Chew, S., Karni, E., Safra, Z. (1987) �Risk Aversion in the Theory of Expected Utility

with Rank Dependent Preferences�Journal of Economic Theory 42, 370-381.

Corbae, D., Stinchcomb, M.B., and Zeman, J. (2009) An Introduction to Mathematical

Analysis for Economic Theory and Econometrics. Princeton: Princeton University

Press.

34



Cubit, R., Sugden, R. (2001) �On Money Pumps�Games and Economic Behavior 37,
121-160.

Day, M.M. (1940) �The Spaces Lp with 0 < p < 1�Bull. Amer. Math. Soc. 46,
816-823.

Danan, E., Gajdos, T., Tallon, J.-M. (2015) �Harsanyi�s Aggregation Theorem with

Incomplete Preferences�American Economic Journal: Microeconomics 7, 61-69.

De Giorgi, E.G., Mahmoud, O. (2016) �Diversi�cation Preferences in the Theory of

Choice�Decisions in Economics and Finance 39, 143-174.

Dekel, E. (1989) �Asset Demands without the Independence Axiom�Econometrica 57,
163-169.

Delbaen, F. (2002) �Coherent Risk Measures on General Probability Spaces� In Ad-

vances in Finance and Stochastics, pp. 1-37. Berlin: Springer.

Delbaen, F. (2009) �Risk Measures for Non-integrable Random Variables�Mathemat-

ical Finance 19, 329-333.

Delbaen, F., Drapeau, S. Kupper, M. (2011) �A von Neumann-Morgenstern Repre-

sentation Result without Weak Continuity Assumption�Journal of Mathematical

Economics 47, 401-408.

Embrechts, P., McNeil, A., Straumann, D. (2002) �Correlation and Dependence in Risk

Management: Properties and Pitfalls�In RISK Management: Value at Risk and

Beyond, pp. 176-223. Cambridge University Press.

Epstein, L.G. (1999) �A De�nition of Uncertainty Aversion�The Review of Economic

Studies 66, 579-608.

Föllmer, H., Schied, A. (2002) �Convex Measures of Risk and Trading Constraints�

Finance and Stochastics 6, 429-447.

Geweke, J. (2001) �A Note on Some Limitations of CRRA Utility�Economics Letters

71, 341-345.

Gilboa, I. (1987) �Expected Utility with Purely Subjective Non-Additive Probabilities�

Journal of Mathematical Economics 16, 65-88.

Gilboa, I., and D. Schmeidler (1989) �Maxmin Expected Utility with Non-Unique Pri-

ors�Journal of Mathematical Economics 18, 141-153.

35



Karni, E., Schmeidler, D. (2016) �An Expected Utility Theory for State-dependent

Preferences�Theory and Decision 81, 467-478.

Komjàth, P., Totik, V. (2006) Problems and Theorems in Classical Set Theory. Berlin:

Springer.

Mas-Colell, A., Whinston, M.D., Green J.R. (1995) Microeconomic Theory. Oxford

University Press.

Menger, K. (1934) �Das Unsicherheitsmoment in der Wertlehre. Betrachtungen im

Anschluss an das sogenannte Petersburger Spiel�Zeitschrift für Nationalökonomie

5, 459-485.

Nielsen, L. (1984) �Unbounded Expected Utility and Continuity�Mathematical Social

Sciences 8, 201-216.

Quiggin, J.P. (1981) �Risk Perception and Risk Aversion among Australian Farmers�

Australian Journal of Agricultural Economics 25, 160-169.

Quiggin, J.P. (1982) �A Theory of Anticipated Utility�Journal of Economic Behavior

and Organization 3, 323-343.

Rieger, O.R., Wang, M. (2006) �Cumulative Prospect Theory and the St. Petersburg

Paradox�Economic Theory 32, 511-522.

Rudin, W. (1991) Functional Analysis. 2nd edition. New York: McGraw-Hill.

Ryan K.J. (1974) �The Use of Unbounded Utility Functions in Expected-Utility Max-

imization: Comment�The Quarterly Journal of Economics 88, 133-135.

Savage, L.J. (1954) The Foundations of Statistics. New York: John Wiley.

Schmeidler, D. (1986) �Integral Representation Without Additivity�Proceedings of the

American Mathematical Society 97, 255-261.

Schmeidler, D. (1989) �Subjective Probability and Expected Utility Without Additiv-

ity�Econometrica 57, 571-587.

Vendrik, M., Woltjer, G. (2007) �Happiness and Loss Aversion: Is Utility Concave or

Convex in Relative Income?�Journal of Public Economics 91, 1423-1448.

Wakker, P.P. (1993) �Unbounded Utility for Savage�s �Foundations of Statistics�and

Other Models�Mathematics of Operations Research 18, 446-485.

36



Wakker, P.P. (2010) Prospect Theory for Risk and Ambiguity. Cambridge University

Press.

Weitzman, M.L. (2007) �Subjective Expectations and Asset-Return Puzzles�American

Economic Review 97, 1102-1130.

Weitzman, M.L. (2009) �On Modeling and Interpreting the Economics of Catastrophic

Climate Change�The Review of Economics and Statistics 91, 1-19.

37


