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Abstract –This paper describes the development of a neural network that is able 

to emulate the vertical force-displacement behaviour of a leaf spring. Special 

emphasis is placed on aspects that affect the predictive capability of a neural 

network such as type, structure, inputs and ability to generalize. These aspects are 

investigated in order to enable the effective use of it to model leaf spring 

behaviour. The results show that with the correct selection of inputs and network 

architecture, the neural network’s ability to generalize can be improved and also 

reduce the required training data. The resulting 2-15-1 feed forward neural 

network is shown to generalize well and requires minimal data to be trained. 

Experimental data was used to train and validate the network. The methodology 

followed is not limited to the application of leaf springs only but should apply to 

various other applications especially ones with similar non-linear characteristics. 

Keywords – leaf spring modelling; multi-leaf spring; neural networks; generalization; 

experimental training data; experimental validation  

1. Introduction

Virtual prototyping, or simulation, has been playing an increasing role in the vehicle 

development process and is used in combination with physical prototyping and testing. In 

order to use virtual prototyping successfully in the development process, accurate and 

efficient simulation models of the various systems, subsystems and components are required. 

This paper will focus on the component level with attention given to the modelling of the 

vertical behaviour of a multi-leaf spring for use in vehicle dynamic simulations. 

Even though leaf springs are frequently used in practice they still hold great challenges in 

creating accurate mathematical models. Many different methods exist that can be used to 

model the leaf spring’s force-displacement characteristics. Fancher et al. (1980) and Cebon 
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(1986) present an analytical model that uses algebraic equations that are able to fit the 

behaviour of the experimentally obtained characteristics of the leaf-spring. An equivalent 

model which models the leaf spring as an equivalent system using a vertical spring (or a 

combination of series and parallel springs) with damper and/or friction elements is used in 

studies by Hoyle (2004) and ElMadany (1987). Another method discretises the leaf spring 

into rigid elements. The rigid elements are connected by torsional springs and dampers. This 

method is known as the discrete or finite segment method and examples of its use in vehicle 

simulations can be found in Huhtala et al. (1994), Yang et al. (2007), Jayakumar et al. (2005) 

and Ekici (2005). A similar technique to the discrete method is the finite element method 

which models the leaf spring using finite element techniques. The use of finite element leaf 

spring models can be found in Moon et al. (2007), Li and Li (2004) and Qin et al. (2002). 

Other techniques that exist are the elasto-plastic leaf spring model (Kat and Els, 2011) and 

models that use neural networks (NN) to emulate the behaviour of the leaf spring (Ghazi 

Zadeh et al., 2000). These models have various advantages and disadvantages. The 

comparison of these models, w.r.t. accuracy, computational efficiency and ease of 

parameterization, is outside the scope of this paper. This study will consider the neural 

network technique. It is expected that this technique will be computationally efficient and 

allow for easy parameterization. 

The study by Ghazi Zadeh et al. (2000) showed that a neural network can be trained to 

accurately emulate the typical nonlinear, hysteretic behaviour of a leaf spring. The leaf spring 

data considered in their study was derived from an analytical model (Fancher et al., 1980) 

representing the typical force-displacement characteristics of a leaf spring. No experimental 

leaf spring data was used. They used two recurrent neural networks with similar architecture; 

one emulating the loading behaviour and the other one the unloading behaviour of the leaf 

spring. A switching algorithm was used to determine which one of the networks should be 
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used depending on whether the spring is loaded or unloaded. Each of the loading and 

unloading neural networks has an architecture of 3 x 10 x 20 x 1. The neural network was 

shown to approximate the analytical model well.  

In the current study, experimental data obtained from a physical multi-leaf spring is used to 

train and validate a neural network model. This data contains typical experimental noise. 

Aspects that affect the predictive capability of the neural network are investigated in order to 

enable the effective use of this approach to model the vertical behaviour of leaf springs. 

Particular focus is placed on the methodology for developing a suitable neural network 

including type, structure, appropriate inputs and ability to generalize. An aim of the 

methodology is to develop a neural network model that requires minimal (experimental) data 

to train it. 

2. Multi-leaf spring characteristics

The multi-leaf spring considered in this study consists of eight blades with uniform cross-

section. The total weight of the multi-leaf spring is 49kg. Figure 1 shows the in-service

setup of the spring. Figure 2 shows a typical force-displacement characteristic of a multi-leaf

spring in compression and tension. In general, the multi-leaf spring will seldom be in

tension as this occurs when the wheels lose contact with the road. This situation may have

a higher possibility of occurring in off-road and very rough road conditions than on smooth

on-road conditions. The two major aspects of the leaf spring that a model has to capture

for the compression part of the cycle are: 1) the spring stiffness and 2) the hysteresis 

behaviour. 
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Figure 1. In-service setup of the leaf spring 

Figure 2. Typical force-displacement characteristic of a multi-leaf spring 

According to Fancher et al. (1980) the force exerted by the leaf spring when deflected, is a 

function of the loading on the spring and the amplitude of the imposed displacement. Other 

factors include leaf beam bending stiffness, friction between each leaf, loaded length, as well 

as boundary friction (between the leaf and the supporting structure) and leaf material 

structural damping. Fancher et al. (1980) and Cebon (1986) found that the spring force is not 

dependent on the frequency of the imposed displacement for excitation frequencies up to 

18Hz. This implies that the force displacement characteristics do not need to be obtained at 
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different input frequencies. Figure 3 shows the force-displacement characteristics of 

the multi-leaf spring used in this study when the amplitude of the displacement input is kept 

the same but the excitation frequency is swept from 0.05 Hz to 4 Hz. From this figure it can 

be observed that the force-displacement characteristic stays the same irrespective of the 

excitation frequency in that frequency range. This is similar to the findings of Fancher et al. 

(1980) and Cebon (1986). 

Figure 3. Force-displacement characteristic of a multi-leaf spring subjected to a sinusoidal 

displacement with frequencies ranging from 0.05 Hz to 4 Hz 

3. Artificial neural networks

Artificial neural networks are inspired by the biological networks found in the brain. Artificial 

neural networks are mathematical simplifications of the biological counterparts on which they 

are based. For details on biological neurons and the networks they form the reader is referred 

to the book by Müller et al. (1995). A model of a simple artificial neuron with one input and 

one output is shown in Figure 4 which has the following mathematical representation for the

output of the neuron: 
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a = f (wp+b) 

Similar to neurons being the building blocks of biological networks, the artificial neurons are 

the building blocks of artificial neural networks. The neuron input p is multiplied by the 

weight w to form the term wp which is sent to the summer. The bias value, b, is also sent to 

the summer and added to the term wp to form the value n which is sent to the transfer 

function (or activation function) f and produces the neuron output a. The transfer function f 

may be a linear or nonlinear function with the most common transfer functions being a hard 

limit transfer function, a linear transfer function and a log-sigmoid transfer function. Transfer 

functions that are continuously differentiable are desirable in neural networks as they allow 

for the back propagation of the error during the training phase which is necessary for weight 

and bias adjustments to achieve convergence. Modelling non-linear behaviour requires the 

use of non-linear transfer functions. The neuron shown in Figure 4  is a single-input 

neuron and can be extended to have multiple inputs. These multiple input neurons can be 

connected in parallel to form layers and layers connected in series to form various network 

architectures (Hagan et al., 1996). The network architecture that will be used in this study is a 

feed forward multilayer network. Other networks that incorporate a feedback of an output to 

an input are called recurrent networks.  

Figure 4. Simple artificial neuron 
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The combination of various neurons into networks will result in a set of weights (w) and 

biases (b). The parameters w and b are the variables of the neural network that are adjusted by 

a learning rule so that the network’s input/output relationship reflects that of the data used for 

training the network. The error between the network output (a) and the targets that are given 

to the neural network via the training set is quantified using a performance index such as the 

Mean Square Error (MSE). The MSE is minimised by means of a back propagation algorithm 

wherein the network parameters (i.e. the weights (w) and biases (b)) are adjusted in order to 

minimize the error between the network output and the target values. Further details about 

this procedure can be found in Hagan et al. (1996), Dreyfus (2005) and Johrendt et al. (2008).  

This brief introduction on neural networks has discussed the concept, the different 

architectures and how they are trained. It has not discussed how to design a neural network. 

The application of a neural network to emulate the behaviour of the multi-leaf spring is 

essentially the approximation of a non-linear function. It is known that neural networks can 

approximate any non-linear function (Dreyfus, 2005). Dreyfus (2005) states that the 

following aspects have to be considered in designing a neural network that will be able to 

approximate a given function: 

1. Find the relevant inputs

2. Collect data necessary for training and testing of the neural network

3. Train the network

4. Find appropriate complexity of the network (i.e. number of layers, number of

neurons per layer) 

5. Assess generalization ability of neural network
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These guidelines will be followed in order to obtain a neural network that is able to emulate 

the vertical force-displacement characteristics of a multi-leaf spring. The five aspects are 

discussed in the following paragraphs.  

3.1. Relevant inputs and network architecture  

It was mentioned in section 2 that the force exerted by the leaf spring is a function of various 

factors. The neural network is not a physics-based approach to modelling of a physical 

system, so the most effective use of the neural network is to use it to relate the input of 

interest (i.e. displacement) to the output of interest (i.e. spring force) of the leaf spring. For 

the purpose of this research, the leaf spring displacement will be used to predict the spring 

force, as the single model output. The combined effect of the various factors is taken into 

account by the neural network, even if they’re not explicitly used as network inputs. 

The inputs used by Ghazi Zadeh et al. (2000) were the deflection at the current time step, the 

absolute value of the deflection change and the force at the previous time step (this was the 

recurrent input). The selection of these input parameters was based on the analytical equation 

of Fancher et al. (1980). Deflection, or displacement, of the spring will also be used as one of 

the input parameters to the neural network in this study. Velocity will be used as the other 

input parameter. The choice of using the displacement as input is obvious as any spring 

develops a force due to it being deflected. The velocity is chosen as it is expected to indicate 

to the neural network whether it’s being loaded or unloaded, as we know that the hysteretic 

nature of the spring force-displacement would make it possible to associate one or more 

values of spring force for each spring deflection point. 

There is no clear method by which the architecture of a neural network should be determined, 

but there are some general guidelines which can be followed. For instance, the number of 

neurons that should be used in order to obtain good generalization from the neural network 
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should be enough to capture the behaviour but no more (Hagan et al., 1996; Dreyfus, 2005). 

The nonlinear function observed in the force-displacement characteristic is not that complex 

and it is assumed that a single hidden layer of 35 neurons will enable the neural network to 

emulate the non-linear behaviour and will therefore serve as a starting point. A higher number 

of neurons (and layers) will result in a higher level of nonlinearity in the network. 

The higher nonlinearity may be needed to capture the nonlinear relationship between the 

inputs and outputs of the system being emulated. However, a higher level of nonlinearity may 

result in the neural network having too many parameters (i.e. weights (w) and biases (b)), 

causing the output of the network to fit the training data very accurately, including the noise 

in the data, but provide an inaccurate output to inputs not in the training data (Dreyfus, 2005). 

This is known as overfitting. Overfitting can affect the ability of the network to generalize. 

Generalization refers to the ability of the neural network to give a sufficiently accurate 

prediction of the system behaviour for situations that were not present in the training data 

(Dreyfus, 2005). This will be discussed further in subsequent sections.  

The initial network is a feed forward neural network with an architecture of two inputs, one 

hidden layer with 35 neurons and one output being the spring force (referred to as a 2-35-1 

network). The transfer functions used in the hidden layer are tan-sigmoid (tansig) functions 

with the output layer using a linear (purelin) transfer function. This is a much simpler neural 

network than the one used by Ghazi Zadeh et al. (2000) described earlier. An advantage of 

using a feed forward network over a recurrent network is that the training of the feed forward 

network is faster. 

3.2. Collect necessary data for training and testing of neural network 

Numerical data was generated from an analytical function (Fancher et al, 1980) in order to 

train and test the neural network in Ghazi Zadeh et al. (2000). In this study experimental data 
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(with its inherent noise) was obtained and used to train, test and validate the neural network. 

The experimental setup used to obtain the force-displacement characteristic of the multi-leaf 

spring in compression is shown in Figure 5. The leaf spring is connected to the dummy

axle which is connected through an interface plate and U-joint to the actuator via a load

cell. The leaf spring is simply supported on bearings by the front and rear supports. This is a

simplified version of the in-service setup of the leaf spring shown in Figure 1.  

The actuator imposes a predefined displacement onto the multi-leaf spring to which the leaf 

spring then exerts a corresponding force. The force exerted by the leaf spring is measured by 

the load cell that is located between the actuator and the multi-leaf spring. 

Figure 5. Experimental setup of the multi-leaf spring. 

Figure 6(a) shows the force-displacement characteristic of the multi-leaf spring that is

obtained when subjected to the displacement signal shown in Figure 6(b). The frequency of

the displacement signal used during testing was 0.25Hz. The inertial loads resulting from 

the maximum acceleration and mass of components, was negligible. The displacement signal 

results in three observable loops on the force-displacement characteristic, i.e. an outer, inner
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and end loop. Each closed loop corresponds to the force produced by the leaf spring when 

subjected to a reciprocating deflection input of different amplitudes. The three loops can be

associated with three different vertical loads with different displacement amplitudes. The 

training set that will be used to train the neural network will be constructed from the

experimental data as discussed in the following section.

 

Figure 6. Three different loops shown on (a) the force-displacement characteristic and (b) force and 

displacement versus data point plots 

3.3. Training the network 

Two training sets were constructed from the experimental data. Training set 1 used data that 

consisted of only the outer force-displacement loop. Training set 2 used data that consisted of 

all the loops in the force-displacement characteristic (see Figure 6). The Levenberg-

Marquardt training algorithm is used in MATLAB
®

 as it is regarded as being the fastest 

algorithm for small to medium sized networks (Mathworks, R2016a). The performance 

index used is the Mean Square Error. Early stopping was also used during the training of

the network to avoid overfitting and ensure that good generalization is achieved by 

the network. 
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Two 2-35-1 neural networks were trained, one using Training set 1 and the other using 

Training set 2. The two neural networks will be referred to as 2-35-1 TS1 and 2-35-1 TS2, 

respectively. After the two networks have been trained, both are simulated by giving them the 

full displacement input signal shown in Figure 6 (b). Figure 7(a) shows the result of the

2-35-1 TS1 neural network compared to the experimental data of the actual leaf spring 

subjected to the same displacement. It can be observed that the neural network emulates 

the leaf spring well for the outer loop for which it was trained. However, for the other loops

it gives inaccurate predictions. When we use the neural network that was trained using all the

loops in the force-displacement characteristic (i.e. 2-35-1 TS2) and compare its prediction 

to the experimentally measured force-displacement characteristic (see Figure 7(b), it can

be observed that this neural network is able to better predict the force for all the loops. 

From the results in Figure 7 it can be concluded that the neural network has difficulty in 

generalizing. In other words, it is not able to correctly predict the force for inputs (in this 

case displacements and velocities) it was not trained with. This implies that in order for the

neural network to be able to emulate the behaviour of the leaf spring it has to be trained with

data over its entire working range. It would be more advantageous to have a network with a

better ability to generalize as this would mean that less experimental data is required and

implies that a less complex experimental testing procedure would be needed. The ability 

of the network to generalize and the noise present on the network’s predictions are addressed 

further in subsequent sections.  
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Figure 7. Comparison of experimental data and neural network predictions. NN 2-35-1 trained (a) 

with outer loop and (b) all loops of force-displacement characteristic 

3.4. Appropriate complexity of the neural network 

The ability of the neural network to generalize and the noise on its predictions may be linked 

to the complexity of the network. In this case reducing the number of hidden neurons (i.e. 

degrees of freedom of the network) may address both issues. The 35 hidden neurons in the 

network were reduced to 15, 9 and 4. Reducing the number of neurons did not reduce the 

noise on the network’s predictions. 

The velocity input signal is obtained by differentiating the displacement. When the velocity 

signal is viewed it is observed that the signal has a lot of noise present. This noise on the 

velocity signal seems to be the source of the noise observed in the predictions of the neural 

network in Figure 7. The velocity signal was smoothed by applying a four point moving

average to the signal. Figure 8 shows the velocity signal before and after the four point 

moving average is applied. Figure 9 shows the results obtained from the two 2-35-1 neural

networks (2-35-1 TS1 and 2-35-1 TS2) when the four point moving average is applied to

the velocity signal. The prediction from the neural network has a lot less noise when applying 

the four point moving average to the velocity input signal. Note, when comparing the results 
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of neural network 2-35-1 TS1 between Figure 7(a) and Figure Figure 9(a) it is not only 

observed that there is less noise on the predictions of the neural network but also a 

noticeable difference in the prediction of the force associated with the displacements of 

the inner and end loops. This has to do with the network’s ability to generalize, which

is discussed in detail in section 3.5. 

Figure 8. Velocity input signal before and after applying the four-point moving average 

Figure 9. Comparison of experimental data and neural network predictions. Four point moving 

average applied to the velocity input signal. NN 2-35-1 trained with (a) outer loop and (b) all loops of 

force-displacement characteristic 

The results in Figure 9(b) show that the 2-35-1 network is able to accurately emulate the

behaviour of the multi-leaf spring when it is trained with a training set containing input-

output data from all the loops. It was observed in Figure 9(a) that the 2-35-1 network had
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difficulties in generalizing the behaviour and was unable to correctly predict the response 

when given inputs that were not included in the training set. As mentioned, generalization is 

expected to improve when the network is as simple as possible while still being able to 

adequately represent the training set (Hagan et al., 1996; Dreyfus, 2005). 

Therefore, the 2-35-1 network’s neurons are reduced. Figure 10 shows how the 

predictions of the neural network (trained with Training set 2) compares to the experimental 

data as the number of neurons is reduced. It can be seen that the number of neurons can be 

reduced until the network has nine neurons at which point the network fails to accurately 

represent the training data. The network with 15 neurons results in a simple network that is 

still able to accurately represent the training data. This architecture should therefore give us a 

network that will be able to generalize better. The ability of the network to generalize is 

discussed further in the following section. 

Figure 10. Effect of reducing neurons on the predictions of the neural network 
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3.5. Assess generalization 

The results in Figure 9(b) show that the neural network is able to predict the spring force

due to a given displacement when it was trained with data that covered the entire 

working range of the inputs. In Figure 9(a) however, it was shown that the neural 

network has difficulty in predicting the correct force for inputs not included in the training 

data. This was referred to as an inability of the neural network to generalize. It should be 

noted that generalization is often used to refer to the ability of the neural network to 

interpolate correctly between the supplied training data, whereas, in the case shown in Figure 

9(a) the neural network is actually trying to extrapolate. In other words, 

generalization with respect to interpolation means the ability of the neural network to give 

the correct output value for input values that was not part of the training set but falls within 

the range of the training set values for the input parameter(s). Generalization with respect to 

extrapolation means the ability of the neural network to give the correct output value for 

input values that was not part of the training set and falls outside the range of the of the 

training set values for the input parameter(s). 

The difference between the generalization ability of the neural network with respect to 

interpolation and extrapolation is discussed using a simple example similar to the one used in 

Hagan et al. (1996). A 1-9-1 feed forward neural network was used to emulate an analytical 

function (         
 

 
  ). After this network was trained it was given a set of inputs. 

The inputs include points that were not part of the training set but are within the range of the 

data in the training set. This network architecture results in the neural network having many 

more adjustable parameters (weights and biases) in comparison to the data points in the 

training set and therefore does not generalize well (see Figure 11(a)). To improve the

generalization of the neural network the number of neurons can be reduced to give the 
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simplest model that is able to adequately represent the training set (Hagan et al., 1996; 

Dreyfus, 2005). When the network architecture is reduced to one having two neurons (i.e. 1-

2-1) the generalization is improved as shown in Figure 11(b). Figure 11(b) shows that for

any input(s) lying between the data points of the training set, the neural network will

give good predictions. With the lower level of nonlinearity of NN 1-2-1 overfitting 

is avoided. Using the 1-2-1 network, the ability of the neural network to extrapolate 

is shown in Figure 12. The 1-2-1 network was trained three separate times. From this 

figure it is clear that the network is not able to predict the correct response for data outside

the range used in the training set. It can be noted that for the region that the network has to 

extrapolate the network predictions differ for each of the three training runs. This is because 

the training process results in different combinations of values for the weights and biases.  

The region where each of these networks interpolates yields similar results, but the region 

where the networks extrapolate show markedly different results. This example indicated 

that the 1-2-1 network is able to generalize well with respect to interpolation but not 

extrapolation. 

Figure 11. Results of (a) NN 1-9-1 and (b) NN 1-2-1 when interpolating (similar to Hagan, Demuth and 

Beale (1996)) 
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Figure 12. Results of 1-2-1 network when interpolating and extrapolating 

The ability of the feed forward 2-35-1 neural network to generalize the behaviour of the 

multi-leaf spring was shown in Figure 9(a) to be unacceptable. The network’s neurons

were reduced from 35 to 15 in paragraph 3.4 and it was shown to be the simplest network

which was still able to adequately capture the behaviour of the multi-leaf spring. This

should improve the generalization ability of the network. The generalization ability of 

the 2-15-1 network is now assessed with attention given to both the interpolation and 

extrapolation ability of the network. 

3.5.1. Generalization with respect to interpolation 

Figure 13(a) shows the results for the 2-15-1 TS1 network that was trained on three 

occasions. It was simulated with a displacement signal having displacements associated with 

all the loops of the force-displacement characteristic. The displacement signal does not have 

any of the displacements used in the training set (Training set 1). The results from this figure 

show that the network has good generalization with respect to interpolation. It is able to 

predict the outer loop of the force-displacement characteristic well.  
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Figure 13. Results of 2-15-1 network using (a) displacement and velocity and (b) displacement and 

sign(xi-xi-1) as inputs, when interpolating and extrapolating 

3.5.2. Generalization with respect to extrapolation 

The predictions of NN 2-15-1 TS1 in Figure 13(a) shows that the network is not able to

predict the spring force for displacements associated with the inner and end loops. It should

be noted that in using the outer loop for training, the displacement values of the inner and

end loops do fall within the range of the training set. However, when the velocity of the 

three loops are considered the velocity of the inner and end loops fall outside the range of the 

velocity of the outer loop that was used for training. The network therefore has to extrapolate. 

Similarly, the network will have to extrapolate when given displacements associated with the 

outer loop at different excitation frequencies to what was used for the outer loop training data. 

The experimental force-displacement characteristic (see Figure 6) that is used to 

generate the training set was obtained using an excitation frequency of 0.25Hz. 

Figure 14(a) shows the results when the 2-15-1 TS1 neural network is simulated with the

outer loop displacement signal but with three different excitation frequencies (0.26, 0.3 and 

0.5Hz). The network gives good predictions when it is simulated with the displacement 

signal having the same excitation frequency of 0.25Hz as used for training. The predictions 

deteriorate as the excitation frequency of the displacement input moves away from the
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excitation frequency used during training. The results in Figure 13(a) are similar to what was

observed in Figure 12, i.e. the network has good generalization with respect to interpolation 

but not with respect to extrapolation. As stated previously, this implies that, in order for the

neural network to be able to emulate the behaviour of the leaf spring, it has to be trained with  

data over its entire working range (i.e. spring displacements and excitation frequencies). I

It would be more advantageous to have a network with a better ability to generalize as this

would require less experimental data for training. 

Figure 14. Results of 2-15-1 network using (a) displacement and velocity and (b) displacement and 

sign(xi-xi-1) as inputs, for different excitation frequencies 

The dependency of the neural network on the excitation frequency is due to the use of 

velocity as one of the inputs. Figure 15 shows the displacement and velocity inputs to the

neural network for displacement associated with the outer loop (as indicated in  Figure 6) 

at different excitation frequencies. Note that the displacement and velocity time histories

have been shifted such that the point where the loading direction on the spring changes

from loading to unloading, coincides. The difference between the velocities for the 

displacement signal having the same amplitude but different frequencies can be seen from
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Figure 15. This difference in the velocities causes the network to extrapolate when given

different excitation frequencies. It is interesting to note that the neural network gives good

force predictions at the point of maximum deflection (see Figure 14(a)). This is the moment

where the loading on the leaf spring changes and the velocity is zero. At this point the

velocity, for all the different excitation frequencies, is similar and therefore the force 

prediction of the network is good for all the excitation frequencies. 

Figure 15. Characteristics of input parameters to neural network for displacements associated with the 

outer loop at different frequencies 

4. Effect of inputs on generalization

The results shown in Figure 14(a) clearly indicate the dependency of the neural network

on the excitation frequency of the displacement input, which is contradictory to the 

behaviour of the physical leaf spring. It was shown in section 2 that the force-displacement 

characteristic of the leaf spring is not dependent on the excitation frequency of the 

displacement input to the leaf spring. This contradiction seems to indicate that velocity may 
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not be a good input to use in order to create a neural network that is able to emulate a multi-

leaf spring. 

The effect of the input(s) on the generalization ability of the neural network is demonstrated 

by using the same 2-15-1 neural network as used in the previous paragraphs but with different 

inputs. The network considered up to now uses the displacement and velocity as inputs. The 

choice of displacement as input, for a spring, is obvious. Velocity was initially chosen as it 

indicates to the neural network whether the leaf spring is being loaded or unloaded. The use 

of velocity causes the network to be dependent on the excitation frequency of the 

displacement signal. This is in contradiction to the behaviour of the physical leaf spring for 

which the characteristics have been shown to be velocity independent (see Figure 3). 

Velocity may therefore not be the best choice for use as an input.  The velocity input is 

replaced by a signal that will still indicate to the network whether it is being loaded or 

unloaded but will not make the network dependent on the excitation frequency of the 

displacement signal. This signal takes the sign of the difference between the displacement at 

the current time step and the previous time step (i.e. sign(xi-xi-1)). Figure 15(c) shows

the characteristics of this input parameter. Comparing this to the characteristic of 

velocity (in Figure 15(b), it can be seen that the outer loop at 0.25 spans the range of 

the input parameter and has the same amplitude for different excitation frequencies. This 

leads to a signal that indicates to the network whether the spring is being loaded or unloaded 

and is not affected by different excitation frequencies. 

The 2-15-1 network using displacement and sign(xi-xi-1) as inputs was trained using the outer 

loop of the experimental force-displacement characteristic. This network was again simulated 

with displacement signals having different excitation frequencies to that used for training. 

The results are shown in Figure 14(b). It can be observed that the network gives similar
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force predictions for displacement signals having different excitation frequencies. The network

is therefore no longer dependent on the excitation frequency of the displacement signal

Figure 13(b) shows the results of this network when trained using the outer loop (Training

set 1) but simulated using all the loops. Comparing Figure 13(b) to Figure 13(a), a significant

improvement in the ability of the network to generalize, particularly with respect to 

extrapolating beyond the range of the training set, can be observed. 

The substitution of velocity with the sign of the difference in displacements at the current and 

previous time steps (sign(xi-xi-1)), greatly improved the ability of the neural network to 

generalize. This improvement was due to the fact that the outer loop spans the range of data 

and has the same amplitude for different excitation frequencies for the input parameter 

sign(xi-xi-1). There are some aspects with respect to the force predictions of the network, 

using displacement and the sign(xi-xi-1) as inputs, that have to be further investigated. These 

aspects include the spikes observed at the points where the direction of loading changes with 

certain displacement inputs as well as the deviation from the experimental force-displacement 

characteristic in certain areas of the inner and end loops (see Figure 13(b)). These 

deviations are most likely due to the input parameter sign(xi-xi-1) used and further illustrate 

the effect of the inputs on the results of the neural network.  

5. Application to other leaf springs and setups

A 2-15-1 neural network, with displacement and the sign(xi-xi-1) as inputs, was derived for the 

multi-leaf spring setup as shown in Figure 5. The 2-15-1 neural network is used to 

emulate the force displacement characteristics of the multi-leaf spring in the in-service setup 

(Figure 1) as well as of a 3-blade parabolic leaf spring in the in-service setup. The blades

in the parabolic leaf spring are spaced such that there is only contact between the blades
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at their ends. The in-service setup of the parabolic leaf spring is similar to the in-service

setup of the multi-leaf spring shown in Figure 1. The 2-15-1 neural network is trained with a

force-displacement data set containing the maximum deflections of the spring, in both

compression and extension, for the in-service setup of the multi-leaf and parabolic leaf spring, 

respectively. The force-displacement characteristics for these two springs in the in-service

setups are obtained using an experimental setup similar to the one shown in Figure 5.

Figure 16 shows the results of the neural network for the in-service setups of the

multi-leaf and parabolic leaf spring simulated with a displacement input contacting 

different amplitudes. A qualitative comparison between the neural network and the 

experimental data shows good agreement. 

Figure 16. Results of 2-15-1 network using displacement and sign(xi-xi-1) as inputs, in emulating the in-

service setups of (a) the multi-leaf spring and (b) a parabolic leaf spring. 

6. Conclusion

The methodology to develop a neural network multi-leaf spring model has been presented. 

Aspects such as choosing relevant inputs, network architecture, network complexity, training 

of the network and the generalization ability of the network were investigated. The effect of 

the inputs on the generalization ability of the neural network was demonstrated using two 2-
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15-1 feed forward neural networks, one having displacement and velocity as network inputs 

and the other displacement and the sign of the difference in displacements at the current and 

previous time steps (sign(xi-xi-1)). It was shown that the generalization ability of the network 

can be improved by the selection of appropriate network inputs. The advantage of a neural 

network with better generalization is that less training data is required. This may not be an 

advantage when training data is generated from an analytical model as in the study by Ghazi 

Zadeh et al. (2000). However, when experimental data is to be used for the training data it 

would be advantageous if a minimal amount of data is sufficient to train the neural network. 

In the case of the leaf spring it means that only data of the outer loop, or in other words, 

force-displacement data of the leaf spring’s maximum displacement range is required. 

Furthermore, appropriate inputs will also focus the network toward interpolation instead of 

extrapolation which, from the results in this study, is a desirable situation. The generalization 

of the network that has to interpolate can be improved by selecting the least amount of 

neurons that is still able to capture the response of the spring.        

The methodology followed resulted in a simple feed forward network with two inputs 

(displacement and sign(xi-xi-1)) and one hidden layer with 15 neurons that is able to emulate 

the vertical force-displacement behaviour of the multi-leaf spring. This neural network 

requires minimal (experimental) data for training and validation. The neural network created 

in this study gives a component level model of the leaf spring which can be extended to 

create more detailed models in order to represent the suspension system. From the results 

obtained in this study it is postulated that the neural network inputs strongly affect the 

“intelligence” of the neural network and influence the generalization ability of the network. 

Well-chosen inputs can improve the generalization of the neural network (especially when 

extrapolating) and may reduce the required range of the training set. 



28 

As stated, neural networks can approximate any non-linear function (Dreyfus, 2005). In 

designing a neural network to approximate a given function (or emulate the characteristics of 

a physical component/system) certain aspects need to be considered (i.e. finding the relevant 

inputs, data necessary for training and testing the neural network, training the network and 

finding the appropriate complexity of the network). By taking these aspects into account one 

should be able to obtain a neural network that can approximate any given non-linear function. 

Considering leaf spring force-displacement characteristics, various leaf spring types (multi-

leaf spring, parabolic leaf spring) and configurations have similar characteristics. It is 

therefore expected that this methodology will be applicable to various leaf springs and 

configurations. Section 5 showed that the neural network model developed is able to emulate 

the force-displacement characteristics of the in-service setups of an 8-blade multi-leaf spring 

and a 3-blade parabolic leaf spring. This is not to say that the methodology, applied to other 

leaf springs (and their boundary conditions), will result in the same neural network 

architectures as developed in this study. The methodology presented is not limited to the 

application of leaf springs only but should apply to various other applications especially those 

with similar non-linear characteristics.  

7. Future work

A thorough validation of the neural network must be done by comparing the predictions of 

the neural network model to experimental data of the leaf spring obtained from subjecting the 

leaf spring to white noise excitation as well as more structured road profile data containing a 

range of amplitudes and frequencies that span the full behaviour of the spring. 
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