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Abstract

The realification of the (2n + 1)-dimensional complex Heisenberg Lie algebra is a (4n + 2)-
dimensional real nilpotent Lie algebra with a 2-dimensional commutator ideal coinciding with the
centre, and admitting the compact algebra sp(n) of derivations. We investigate, in general, whether
a real nilpotent Lie algebra with 2-dimensional commutator ideal coinciding with the centre admits
a compact Lie algebra of derivations. This also gives us the occasion to revisit a series of classic
results, with the expressed aim of attracting the interest of a broader audience.
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1 Introduction

Metabelian Lie algebras h = V ⊕〈x, y〉 of dimension (n+ 2) defined by a pair of alternating forms F1, F2

on the n-dimensional vector space V , putting, for any v, w ∈ V , [v, w] = F1(v, w)x+F2(v, w)y, are called
nilpotent Lie algebras of type {n, 2}. The type {d1, . . . , dc} of a nilpotent Lie algebra g with descending
central series g(i) = [g, g(i−1)] is defined, according to the literature beginning with Vergne [20], by the

integers di = dimg(i−1)

g(i) . Nilpotent (real or complex) Lie algebras of type {n, 2} have been classified firstly

by Gauger [11], applying the canonical reduction of the pair F1, F2, but, according to results of Belitskii,
Lipyanski, and Sergeichuk [3], it is not possible to carry this argument further. On the contrary, it seems
possible to broaden these families of Lie algebras by considering their derivations, this has been done in
[9] extending a real Lie algebras of type {n, 2} by a single compact derivation. We mention that also
nilpotent Lie algebras of type {n, 1, 1} can be explicitly described (cf. [2]), and derivations of a nilpotent
Lie algebra of type {2n, 1, 1} are determined in [1].

In the present paper, we are interested in the following problem. The realification of the (2n + 1)-

dimensional complex Heisenberg Lie algebra ĥ is a (4n+2)-dimensional real Lie algebra h of type {4n, 2},
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(FP7/2007-2013) under grant agreement no. 317721. R. Biggs was primarily funded by the Claude Leon Foundation during
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admitting the compact algebra sp(n) of derivations. We ask, in general, whether a real Lie algebra h
of type {2n, 2} admits a compact Lie algebra of derivations, that is, the Lie algebra of a compact Lie
group, a question arising in the study of the isometry groups of homogeneous nilmanifolds. In fact,
the realifications h = V ⊕ 〈x, y〉 of the complex Heisenberg algebras ĥ are the only H-type algebras
with two-dimensional centre (cf. [19], Section 5, p. 3252), where an H-type algebra is a nilpotent Lie
algebra of class 2 with an inner product such that the operator J : h −→ End(V ), z 7→ Jz, defined by
〈Jzv, w〉 = 〈z, [v, w]〉, fulfills J2

z = −〈z, z〉idV .
Notice that a non-commutative simple compact Lie algebra of derivations of a nilpotent Lie algebra

h of type {2n, 2} must induce the null map on the two-dimensional commutator ideal h′, because a
non-commutative simple compact Lie algebra cannot have a two-dimensional representation.

Generally speaking, for the compact Lie algebra g of a compact Lie group G, the opposite of the
Killing form induces on g an Ad(G)-invariant inner product, and, up to scalar multiplication, this is the
unique Ad(G)-invariant inner product. With respect to this inner product, Ad(G) acts by orthogonal
transformations of SO(g) and ad(g) acts by skew-symmetric matrices of so(g). Therefore, a compact Lie
algebra can be embedded into so(g), a simpler and stronger version of Ado’s theorem.

In the context of (real) nilpotent Lie algebras with low-dimensional commutator ideals, the situation
is as follows. Let g be a nilpotent Lie algebra with commutator ideal g′ and centre z.

• If dim g′ = 0, then g is Abelian and the maximal compact subgroup is O(n).

• If dim g′ = 1 and dim z = 1, then g is the (2n + 1)-dimensional Heisenberg algebra h2n+1 and the
maximal compact subgroup is U(n) = Sp(2n,R)∩O(2n) (cf. [4]). Note that if instead dim z = `+1
then g ∼= h2n+1 ⊕ R`.

• If dim g′ = 2 and dim z = 1, then g is a uniquely determined by its dimension (cf. [2]); the
(2n + 4)- and (2n + 5)-dimensional groups turn out to have maximal compact subgroup U(n) =
Sp(2n,R)∩O(2n). Note again that if instead dim z = `+ 1, then we simply have a trivial Abelian
extension of the case already discussed.

• Finally, if g′ = z and dim g′ = 2, we have the case considered in this paper. This is arguably the
first interesting case (in this list) as there exist Lie algebras of the same dimension of this kind
with different maximal compact subgroups of automorphisms (see Examples 1, 2).

We give remarkable examples for nilmanifolds M such that the group of isometries of M contains the
compact group SO2(R).

In the present Introduction, we introduce the Heisenberg Lie algebra in the contexts of algebra,
complex analysis and quantum mechanics. Although not directly connected, these results appear in
all introductory books in these fields. Nevertheless, they serve us to emphasize the non-trivial rôle of
compact derivations of nilpotent Lie algebras.

1.1 Heisenberg algebra, Wirtinger derivatives, and Weyl algebra

Heisenberg Lie algebras are the most elementary non-Abelian Lie algebras. Such a Lie algebra h =
V ⊕ 〈u〉 has dimension (2n + 1) and is defined by a non-degenerate alternating form F on the 2n-
dimensional subspace V , putting [v, w] = F (v, w)u, for any v, w ∈ V . The choice of a symplectic basis
{p1, q1, . . . , pn, qn} of V allows one to write

[pi, qj ] = δiju, (i, j = 1, . . . , n),

where δij is the Kronecker symbol. This basic definition underpins the reason why one meets Heisenberg
Lie algebras very frequently in the scientific literature.

The same Cauchy-Riemann conditions ∂u/∂q = ∂v/∂p, ∂u/∂p = −∂v/∂q, describing the behaviour
of the real form of a complex holomorphic function h = u + iv of a complex variable z = q + ip,
can be formulated in terms of the Heisenberg Lie algebra, as corresponding to the Wirtinger deriva-
tives ∂/∂z = 1

2 (∂/∂q − i∂/∂p) and ∂/∂z̄ = 1
2 (∂/∂q + i∂/∂p), whose product is the Laplacian operator

1
4∇

2 = 1
4 (∂2/∂p2 + ∂2/∂2q). The realification of the 3-dimensional complex Heisenberg Lie algebra
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ĥ = 〈∂/∂z, z, 1〉 induced by the derivation rule [∂/∂z, z] = 1 is therefore a 6-dimensional real Lie algebra
h = 〈∂/∂q, i ∂/∂p, q, p, 1, i〉, and in the case of multivariate holomorphic functions

h(z1, . . . , zn) = u(q1 + ip1, . . . , qn + ipn) + iv(q1 + ip1, . . . , qn + ipn),

the realification of the (2n+1)-dimensional complex Heisenberg Lie algebra h = 〈∂/∂z1, . . . , ∂/∂zn, z1, . . . , zn, 1〉
is a (4n+ 2)-dimensional real Lie algebra, where the commutator ideal is the Gauss plane C = 〈1, i〉.

Finally, we denote by W the Lie algebra generated by the differential operators xj
h∂k/∂xj

k (with
xj
h
(
f(x)

)
:= xj

hf(x)) (it is actually a Lie subalgebra of the n-th Weyl algebra of differential operators
with polynomial coefficients in n variables). If we map h into W via

ph 7→ xh, qh 7→ −∂/∂xh, u 7→ id,

we obtain an isomorphic copy, because

[xh,−∂/∂xk]
(
f(x)

)
= −xh∂f(x)/∂xk + ∂/∂xk

(
xhf(x)

)
= δhkf(x).

1.2 Oscillator Lie algebra

A classic subject in Mathematical Physics is the description of n uncoupled harmonic oscillators via an
extension of the Heisenberg Lie algebra called, in fact, oscillator Lie algebra, which is defined as follows:
let h be the (2n+ 1)-dimensional Heisenberg Lie algebra, generated by {p1, q1, . . . , pn, qn;u} and defined
by the brackets

[ph, qk] = δhku, (h, k = 1, . . . , n),

and let g (the oscillator algebra) be the extension of h by the outer derivation H, acting as

[H, ph] = qh, [H, qh] = −ph.

We notice that the derivation H is compact, that is, its exponentiation exp(H) generates the com-
pact one-parameter group of automorphisms of h, which rotate each pair (ph, qh) onto (cos(t)ph +
sin(t)qh,− sin(t)ph + cos(t)qh).

The corresponding (simply connected) oscillator groups admit a rich family of bi-invariant Lorentzian
metrics (cf. [6, 10]); indeed, they are the only (indecomposable) connected simply connected non-Abelian
solvable Lie groups which admit a bi-invariant Lorentzian metric [15, 17]. Beyond their significance to
Lorentzian geometry, these groups also have some interesting applications in mathematical physics (see,
e.g., [5, 8, 14]).

Note that the universal enveloping algebra of h contains the element Ĥ = − 1
2

∑
(q2h + p2h) such that

[Ĥ, ph] = −1

2
[q2h, ph] = −1

2
(q2hph − phq2h) = qhu

and, similarly,
[Ĥ, qh] = −phu,

thus one has to factor through 〈u− 1〉, in order to find an isomorphic image of the oscillator algebra.
This induces the physical interpretation of the compact derivation H as the Hamiltonian of a dynam-

ical system obtained by identifying the n vectors pi with the coordinate operators xj : f(x) 7→ xjf(x),
the n vectors qj with the momentum operators ẋj (of unitary mass), the vector u with the identity map
u : ξ 7→ ξ, subjected to the potential V = − 1

2

∑
x2l .

1.3 Compact derivations and Hamiltonians

Alternatively, the representation into the subalgebra W of the n-th Weyl algebra of differential operators
gives one the advantage that, putting H 7→

∑
ajhk xj

h∂k/∂xj
k ∈ W, from [H,xl] = −∂/∂xl and from

[H, ∂/∂xl] = xl, it follows directly that, up to scalar multiplication a id,

H 7→ −1

2

∑(
∂2/∂x2l + x2l

)
.
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This results in another evocative physical interpretation, given by changing of basis {q, p} into the basis

{a, a†} consisting of the vectors a =
√
2
2 (q + ip) and a† =

√
2
2 (q − ip) (notice the affinity to Wirtinger

derivations). Since the quadratic form H = 1
2

∑
i(q

2
i + p2i ) splits in the present non-commutative case as

H =
1

2

∑
i

(q2i + p2i ) =
1

2
(aa† + a†a) = aa† − 1

2
iu,

inductively we find [H, an] = in an and, similarly, [H, a†
n
] = −in a†n. This produces the following

discrete families of eigenvectors for the Hamiltonian H which underlies the quantistic interpretation of
the harmonic oscillator (see [22], §22; [12], §9): for a†v = 0, we get Hv = − 1

2 iv, and more generally,
putting ψn = anv for any integer n, we get a discrete set of eigenspaces

Hψn = Hanv = an(ni+H)v = i

(
n− 1

2

)
ψn.

Similarly, for aw = 0, we get Hw = 1
2 iw, and putting ϕn = a†

n
w, we get Hϕn = i

(
−n− 1

2

)
ϕn. Turning

to the model where p 7→ x and q 7→ −∂/∂x, a solution to a†v = 0, resp. to aw = 0, is given by

a†v =

√
2

2
(q − ip)v =

√
2

2
(−∂/∂x− ix)v(x) = 0,

that is, v′/v = −ix, hence v(x) = exp(− 1
2 ix

2), resp. w(x) = exp( 1
2 ix

2).

1.4 Automorphisms and Riemannian isometries

Let g be a left-invariant Riemannian metric on a (real, connected) n-dimensional simply connected
nilpotent Lie group G with Lie algebra g, i.e., (G,g) is a homogeneous nilmanifold. The group of
isometries Iso(G,g) consists of diffeomorphisms φ : G→ G such that φ∗g = g. The isotropy subgroup of
the identity Iso1(G,g) = {φ ∈ Iso(G,g) : φ(1) = 1} is a subgroup of the automorphism group Aut(G)
([21]). Accordingly, Iso(G,g) decomposes as a semidirect product of the group of left translations and
Iso1(G,g). Moreover, Iso1(G,g) is a subgroup of O(n) and hence is compact. It therefore follows that
the isometry group is at least n-dimensional and at most

(
n+1
2

)
-dimensional.

Proposition 1. Let G be a simply connected nilpotent Lie group and let K ≤ Aut(G) be a compact
subgroup of automorphisms.

1. There exists a left-invariant Riemannian metric g on G such that K ≤ Iso1(G,g).

2. If K is a maximal compact subgroup, then for any left-invariant Riemannian metric g on G we
have that Iso1(G,g) ≤ φKφ−1 for some φ ∈ Aut(G).

Remark 1. G admits O(n) as a (maximal) compact subgroup of automorphisms only in the Abelian
case. Accordingly, if G is nilpotent but non-Abelian, the dimension of Iso(G,g) is strictly less than
1
2n(n+ 1). We note that there do exist non-nilpotent Lie groups that admit a left-invariant Riemannian
metric whose isotropy subgroup could be the entire orthogonal group (e.g., SU(2) with Killing metric).

2 Examples of lower-dimensional nilpotent Lie algebras of type
{n, 2}

Up to isomorphism, the smallest example of a nilpotent Lie algebra h of type {n, 2} is the 5-dimensional
Lie algebra of type {3, 2} given by

[u1, u2] = x, [u1, u3] = y

(cf. [7], the Lie algebra L5,8, p. 646, and [18], the Lie algebra L1
5, p. 162). This Lie algebra does not

have a non-commutative compact Lie algebra of derivations, since its derivations inducing the null map
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on h′ are defined with respect to the basis {u1, u2, u3, x, y} by the matrices
a 0 0 0 0
b −a 0 0 0
c 0 −a 0 0
d1 d2 d3 0 0
d4 d5 d6 0 0

 .

Yet its group of automorphisms contains the group SO2(R), acting as the group of automorphisms of
the form exp(0⊕ it⊕ it), t ∈ R (notice that the latter automorphism does operate non-trivially on h′).

As soon as n = 4, the algebra of derivations of a Lie algebra h of type {n, 2} can contain compact
simple subalgebras, as the following example shows. On the other hand, an example of a Lie algebra of
type {4, 2} which does not contain any compact simple subalgebra is given in Example 2.

Example 1. Let B = {u1, u2, u3, u4, x, y} be a basis of the 6-dimensional Lie algebra h of type {4, 2}
defined by

[u1, u3] = x, [u1, u4] = −y, [u2, u3] = y, [u2, u4] = x

(cf. [7], the Lie algebra L6,22(ε = −1), p. 647, and [18], the Lie algebra #5. (γ = −1), p. 168). A
direct computation shows that the derivations of h which induce the null map on h′ are represented, with
respect to the basis B, by matrices of the form

a1 a2 a3 a4 0 0
−a2 a1 a4 −a3 0 0
−b2 c2 −a1 a2 0 0
c2 b2 −a2 −a1 0 0
d1 d2 d3 d4 0 0
d5 d6 d7 d8 0 0

 .

With a1 = 0, c2 = −a4, b2 = a3, and all the entries di equal to zero, we get an algebra isomorphic to the
compact real form su(2). The 6-dimensional Lie algebra h is manifestly the realification of the complex
Lie algebra of the complex Heisenberg group

N =


 1 α γ

0 1 β
0 0 1

 , α, β, γ ∈ C

 .

Example 2. The six-dimensional Lie algebra g with ordered basis (u1, u2, u3, u4, x, y) and nonzero
commutators given by

[u1, u2] = x, [u1, u3] = y, [u2, u4] = y

has Lie algebra of derivations

Der(g) =




a1 −a2 0 0 0 0
−a3 a4 0 0 0 0
a5 a6 + a7 −a1 + a8 a3 0 0
a6 a9 a2 −a4 + a8 0 0
a10 a11 a12 a13 a1 + a4 0
a14 a15 a16 a17 a7 a8

 : a1, . . . , a17 ∈ R


.

Since the subalgebra of matrices with a1 = a2 = a3 = a4 = 0

s =




0 0 0 0 0 0
0 0 0 0 0 0
a5 a6 + a7 a8 0 0 0
a6 a9 0 a8 0 0
a10 a11 a12 a13 0 0
a14 a15 a16 a17 a7 a8

 : a5, . . . , a17 ∈ R


.

is manifestly a solvable ideal, such that Der(g)/s is isomorphic to gl(2,R), we see that a maximal compact
subalgebra k of g must have dimension one, because s ∩ k = 0.
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Accordingly, the connected component of identity of the automorphism group Aut(g) has (maximal)
compact subgroup 


cos θ − sin θ 0 0 0 0
sin θ cos θ 0 0 0 0

0 0 cos θ − sin θ 0 0
0 0 sin θ cos θ 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 : θ ∈ R


∼= T.

Example 3. The direct sum of the three-dimensional Heisenberg algebra with itself yields a two-step
nilpotent Lie algebra with two-dimensional commutator; its automorphism group has a maximal compact
subgroup isomorphic to T2.

3 Some notation

In order to study nilpotent Lie algebras of type {n, 2} admitting a compact group of automorphisms,
it is necessary to start from the description of the action of a compact one-dimensional group T of
automorphisms, confining oneself to the T -indecomposable case. It turns out that the description depends
on the reduction to canonical form of pairs of skew-Hermitian forms (cf. Theorem 1). Also, it is useful
to represent 2h× 2k real matrices as h× k matrices with coefficients in the algebra of split-quaternions.

3.1 Split-quaternions and pairs of skew-Hermitian forms

We introduce here the Clifford algebra of split-quaternions as the set

H− = {z1 + z2ω : zi ∈ C, ωz = z̄ω, ω2 = 1}.

We recall that, through the usual identification of the complex number z = a + ib with the real matrix(
a b
−b a

)
and of the reflection Ω =

(
0 1
1 0

)
with the split-quaternion ω, one obtains an isomorphism

(
a b
c d

)
7−→

(a+ d

2
+ i

b− c
2

)
+
(b+ c

2
+ i

a− d
2

)
ω

of the algebra of real 2 × 2 matrices with the algebra H− and, more generally, of the space of R2n×2m

matrices with the space of Hn×m− matrices. We denote furthermore:

i) by J =

(
0 1
−1 0

)
the real matrix corresponding to the imaginary unit, by 0 any n×m (real or

complex) zero matrix, and by Im the (real or complex) m-dimensional identity matrix;

ii) by M ′ the transpose of M , and by M† the conjugate transpose of M ;

iii) by M1 ⊕M2 the diagonal block matrix

(
M1 0
0 M2

)
, and by (⊕M) the diagonal block matrix

M ⊕ · · · ⊕M .

With the identification of the split-quaternion matrix ωIn with the 2n× 2n reflection Ω2n = Ω⊕· · ·⊕Ω,
any matrix M ∈ R2n×2m can be written in a unique way as M = M1 +M2Ω2m, where M1 and M2 are
realifications of complex matrices Z1 = M̂1 = (zij), Z2 = M̂2 = (uij) ∈ Cn×m such that, for Z1 = (z̄ij)
and Z2 = (ūij), one has ωIn Zi = Zi ωIm (i = 1, 2).

Since a bilinear form F is skew-Hermitian precisely when iF is Hermitian, the problem of the simul-
taneous reduction to canonical form of a pair of skew-Hermitian forms reduces to the one concerning a
pair of Hermitian forms. Our reference for the following list is the popularizing paper by Lancaster and
Rodman [13], which resumes a very long history.
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A pair (H1, H2) of Hermitian matrices can be reduced, by simultaneous congruence Hi 7→ A†HiA,
into the direct sum of diagonal blocks, which have one of the following four types (other than the null
pair)

i) (±Fε,±Gε);
ii)
(
± (αFε +Gε),±Fε

)
;

iii)

G2ε+1,

 0 0 Fε
0 0 0
Fε 0 0

 ;

iv)

((
0 βFε +Gε

β̄Fε +Gε 0

)
,

(
0 Fε
Fε 0

))
,

(1)

where Fε is the matrix that maps (x1, x2, . . . , xε−1, xε) onto (xε, xε−1, . . . , x2, x1), and Gε is the matrix
that maps (x1, x2, . . . , xε−1, xε) onto (xε−1, xε−2, . . . , x1, 0), α is a real number and β is a complex non-
real number. With the only exception of changing β with β̄, different values of the parameters α and β,
and of the sign ±, correspond to pairs that are not congruent.

3.2 T -indecomposable nilpotent Lie algebra of type {n, 2}
The following setting is the same as that of [9]. Let T be a compact one-dimensional group of auto-
morphisms of a nilpotent Lie algebra h of type {n, 2} (that is, with a 2-dimensional commutator ideal
h′ coinciding with the centre z), let t be the corresponding compact algebra of derivations of h, and let
n = 2m if n is even, and n = 2m+ 1 if n is odd, with n ≥ 3. By the complete reducibility of T , we find
a basis {e1, . . . , en, x, y} of h, such that {x, y} is a basis of h′ = z and such that t operates on h as the
algebra of matrices ∂(t) with parameter t ∈ R, defined as

∂(t) :=

{
(α1t · J ⊕ · · · ⊕ αmt · J)⊕ βt · J for n = 2m,
(0⊕ α1t · J ⊕ · · · ⊕ αmt · J)⊕ βt · J for n = 2m+ 1,

(2)

where βt ·J is the 2× 2 matrix operating on h′ = 〈x, y〉. Notice that, up to rescaling the parameter t, we
can assume that either β = 0 or β = 1. Moreover, the case β = 0 occurs when T is contained in a non-
Abelian compact group, as we noticed earlier, because a non-commutative simple compact Lie algebra
cannot have a two-dimensional representation. Finally, up to interchanging the basis vector of each T -
invariant plane in h, we can assume that αi is non-negative, for all i = 1, . . . ,m, and, up to interchanging
the ordering of the planes in the basis, we can assume that αi ≤ αi+1, for all i = 1, . . . ,m− 1.

In the case where h contains two proper T -invariant ideals i1 and i2 such that [i1, i2] = 0 and
i1 ∩ i2 = h′, we say that h is T -decomposable into the direct sum of i1 and i2 with amalgamated centre,
and we restrict our interest on T -indecomposable Lie algebras h of type {n, 2}. Namely, if h1 and h2 are
two T -indecomposable nilpotent Lie algebras of type {n, 2} such that the action of the group T on the
centre z1 of h1 and on z2 of h2 coincides, then the direct sum of h1 and h2 with amalgamated centre is a
T -decomposable nilpotent Lie algebra of type {n, 2}, and any T -decomposable nilpotent Lie algebra of
type {n, 2} is obtained in this way.

4 Compact derivations of irreducible Lie algebras of type {n, 2}
Once again, we recall that, if k is a simple compact algebra of derivations of the nilpotent Lie algebra
h of type {n, 2}, then it induces on the 2-dimensional commutator subalgebra h′ the null map, the
algebra k having no two-dimensional representation. Any element in k generates a 1-dimensional compact
subalgebra of derivations of h, thus the coefficient β must be zero, in the case where T is contained in a
non-commutative compact group of automorphisms of h.

4.1 One-dimensional compact subalgebra of derivations of h

Theorem 1. Let h be a T -indecomposable Lie algebra of type {n, 2} and let {e1, . . . , en, x, y} be a basis
such that t operates on h as in (2). If β = 0, then n is even, α1 = · · · = αm, and the pair (A,B) is the

realification of a pair of complex skew-Hermitian matrices (Â = iH1, B̂ = iH2), where, up to a change
of basis, (H1, H2) is one of the four pairs in (1).



A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms 8

Proof. With respect to the chosen basis, we define the pair of alternating matrices
(
A = (aij), B = (bij)

)
by putting

[ei, ej ] = aijx+ bijy.

Write for t ∈ R
∂0(t) :=

{
(α1t · J ⊕ · · · ⊕ αmt · J) for n even
(0⊕ α1t · J ⊕ · · · ⊕ αmt · J) for n odd,

hence ∂(t) = ∂0(t)⊕ βt · J . Since t operates as an algebra of derivations of h, that is,

[ei, ej ]
∂(t) = [e

∂(t)
i , ej ] + [ei, e

∂(t)
j ],

for a generator of t, e. g. for t = 1, we get

βB = ∂0(1)′A+A∂0(1)

−βA = ∂0(1)′B +B∂0(1),

and, since β = 0,
0 = ∂0(1)′A+A∂0(1)

0 = ∂0(1)′B +B∂0(1).
(3)

We arrange the matrices A and B into 2× 2 blocks Ahk and Bhk with h, k = 1, . . . ,m (in the case where
n = 2m+ 1, we denote the 1× 2 blocks of the first row with A0k and B0k and we put α0 = 0). Then (3)
is equivalent to

0 = −αhJAhk + αkAhkJ

0 = −αhJBhk + αkBhkJ.
(4)

(Notice that, since α0 = 0, the above equations still hold, with a slight abuse of notation, in the case
where h = 0.)

From the equations (4) we deduce that, if it were αh = 0 6= αk, then Ahk and Bhk would be
zero, but this would mean that h is T -decomposable, a contradiction. It follows that αh is positive for
any h = 1, . . . ,m and n = 2m is even. Considering A and B as split-quaternion matrices, we write
Ahk = z1 + z2ω, Bhk = z3 + z4ω for suitable complex numbers z1, z2, z3, z4. Then the equations (4) give

(αh − αk)z1 = 0, (αh − αk)z3 = 0
(αh + αk)z2 = 0, (αh + αk)z4 = 0.

(5)

The latter two equations in (5) give z2 = 0 = z4, that is, Ahk and Bhk are the realification of two
complex numbers. Moreover, from the former two equations we obtain that either Ahk and Bhk are zero,

or αh = αk. As h is T -indecomposable, we exclude the first case, hence we have that ∂(t) = t·
(

(⊕αJ)
)
⊕0.

Since A and B are the realification of complex m×m skew-Hermitian matrices Â and B̂, and T operates
on them as the complex scalar matrix αiIm, up to a suitable change of basis in the m-dimensional
complex space, which leaves T invariant, we can assume that (Â, B̂) is in the canonical form given in
the claim. Since the only T -invariant real planes are 〈e1, e2〉, . . . , 〈en−1, en〉, each of these pair defines a
T -indecomposable nilpotent Lie algebra over the real numbers.

Remark 2. Up to rescaling the parameter t, we can assume α1 = 1 in the above theorem, but we prefer
to leave it, because, in the case where h is T -decomposable, different values of αk can occur (cf. [16],

3.3). For the same reason, we do not simplify the case where (Â, B̂) =
(
± (αiFε + iGε),±iFε

)
, which,

by the change of basis {x′ = x, y′ = αx+ y} in h′ would transform in (±iGε,±iFε).

Remark 3. For n = 4 and (Â, B̂) of type iv), with ε = 1 and β = −i, we obtain

(Â, B̂) =

((
0 1
−1 0

)
,

(
0 i
i 0

))
,

which corresponds to Example 1. Pairs obtained by the direct sum of t copies of this pair correspond
to the (2t + 1)-dimensional complex Heisenberg algebras. Besides being the only H-type algebra with
two-dimensional centre as mentioned in the introduction, these are the only nilpotent real Lie algebras of
type {n, 2} which are complex Lie algebras (of type {n2 , 1}), because this is the only linearly dependent
pair over C.
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4.2 Compact algebras of derivations of Lie algebras of type {n, 2}
Each of the above T -indecomposable Lie algebras allows a one-parameter compact algebra of derivations,
acting, with respect to the given basis, as

∂(t) = t · (⊕J)⊕ 0,

however, the following holds:

Theorem 2. The only T -indecomposable Lie algebras having a compact non-Abelian Lie algebra of
derivations are the ones where the pair (H1, H2) is of type iv), which admits sp(1) as a maximal compact
algebra of derivations.

Proof. If h is of type i) or ii), then applying (3) we see that each element in Der(h) is the realification of

i


x11 0 . . . 0
x21 x22 . . . 0

...
...

...
...

xε1 xε2 . . . xεε

+ ω


z11 0 . . . 0
z21 z22 . . . 0
...

...
...

...
zε1 zε2 . . . zεε


with xij ∈ R and zij ∈ C. Since the subalgebra s where xii = zii = 0 is manifestly a solvable ideal, such
that Der(h)/s is isomorphic to sl(2,R), a maximal compact subalgebra has dimension one.

Similarly, if h is of type iii), then applying (3) we see that the 2(ε+1)-dimensional ideal k/h′, generated
by the last 2(ε+ 1) elements of the given real basis of h/h′, is invariant under each derivation ∂ ∈ Der(h)
and such that its restriction ∂̄ to k/h′, and, respectively, the derivation ∂̃ induced on h/k are block
matrices of the shape

∂̄ = X ⊕ · · · ⊕X︸ ︷︷ ︸
ε+1

, ∂̃ = Y ⊕ · · · ⊕ Y︸ ︷︷ ︸
ε

,

with X ∈ gl(2,R) and Y = JX ′J . Since the subalgebra s where X = 0 is manifestly a solvable ideal,
such that Der(h)/s is isomorphic to gl(2,R), a maximal compact subalgebra has dimension one.

Finally, if h is of type iv), then applying (3) we see that each element in Der(h) is the realification of
a split-quaternion matrix of the shape (

−Ā1 A2ω
A3ω A1

)
where, for h = 1, 2, 3, the complex matrices Ah are

Ah =

ε∑
k=1

zhkJε(0)k−1 =


zh1 0 0

zh2 zh1 0
. . .

zh3 zh2 zh1
. . .

. . .
. . .

. . .
. . .

 (6)

with Jε(0) the Jordan block of dimension ε and eigenvalue λ = 0. By a conjugation, we put them in the

shape

(
−Ā1 A2

A3 A1

)
, and when we take Ah to be scalar complex matrices of the form

A1 = ixIε, A2 = −Ā3 = zIε,

with x ∈ R and z ∈ C, we get the compact subalgebra k of the elements of the shape

(
−ixIε zIε
−z̄Iε ixIε

)
,

which is manifestly isomorphic to sp(1).
Notice that the subalgebra defined by taking zh1 = 0 in (6), for h = 1, 2, 3, is indeed the nilpotent

radical, and the quotient Lie algebra is manifestly isomorphic to the Lie algebra of matrices of the shape(
z11Iε z21Iε
z31Iε −z11Iε

)
, which in turn is manifestly isomorphic to sl(2,C). Hence, the compact subalgebra

k is maximal. �



A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms 10

Remark 4. The above Theorem 2 shows that nilpotent Lie algebras of type {n, 2} given by a pair of skew-
Hermitian forms (iH1, iH2) with (H1, H2) of type i), ii), and iii) do not admit a non-Abelian compact
algebra of derivations. On the other hand, a direct sum of two algebras of type i), and consequently of
type ii), admits sp(1) as a maximal compact algebra of derivations, operating, with respect to the given
basis, as the realification of the matrices: (

−ixIε zIε
zIε ixIε

)
,

with c0, c ∈ R, z1, . . . , zq ∈ C. Also, a direct sum of q ones of type iii) admits so(2q) as a maximal compact
algebra of derivations, acting on the (2n+ 1)-dimensional Heisenberg Lie algebra h, with n = q(2ε+ 1),
acting with respect to the given basis, as block matrices (∆hk), with 1 ≤ h, k ≤ q, where each block ∆hk

is in turn a diagonal block matrix of type iaI2ε+1, for h = k, and of type

z1I2ε+1 +


z2
−z2

. . .

−z2

ωI2ε+1 ∈ H (2ε+1)×(2ε+1)
−

for h < k. For instance, for q = 2 and ε = 1, the 12× 12 pair (A,B) defining the 14-dimensional real Lie
algebra h is the realification of the 6× 6 pair of skew-Hermitian matrices

(Â, B̂) =




0 i 0
i 0 0
0 0 0

0 i 0
i 0 0
0 0 0

 ,


0 0 i
0 0 0
i 0 0

0 0 i
0 0 0
i 0 0




and each compact derivation is represented, with respect to the given basis, by a matrix of the form

ia1 z1
ia1 z1

ia1 z1
−z̄1 ia2

−z̄1 ia2
−z̄1 ia2

+


z2

−z2
−z2

−z2
z2

z2

ωI6,

with a1, a2 ∈ R and z1, z2 ∈ C.
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algèbres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970) 81–116.
URL http://www.numdam.org/item?id=BSMF_1970__98__81_0

http://dx.doi.org/10.1016/j.geomphys.2011.07.004
http://dx.doi.org/10.1023/B:GEOM.0000033845.70512.13
http://dx.doi.org/10.1016/j.jalgebra.2006.08.006
http://dx.doi.org/10.1063/1.532902
http://dx.doi.org/10.1515/forum-2014-0170
http://dx.doi.org/10.1007/s000130050403
http://dx.doi.org/10.2307/1996506
http://dx.doi.org/10.1088/978-0-7503-1167-0
http://dx.doi.org/10.1137/S003614450444556X
http://dx.doi.org/10.1007/BF00969391
http://dx.doi.org/10.2748/tmj/1178228586
http://www.numdam.org/item?id=ASENS_1985_4_18_3_553_0
http://dx.doi.org/10.1007/BF01171487
http://dx.doi.org/10.1090/S0002-9939-08-09489-6
http://www.numdam.org/item?id=BSMF_1970__98__81_0


A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms 12

[21] E. N. Wilson, Isometry groups on homogeneous nilmanifolds, Geom. Dedicata 12 (3) (1982) 337–
346.
URL http://dx.doi.org/10.1007/BF00147318

[22] P. Woit, Quantum Theory, Groups and Representations: An Introduction, to appear.

http://dx.doi.org/10.1007/BF00147318

	1 Introduction
	1.1 Heisenberg algebra, Wirtinger derivatives, and Weyl algebra
	1.2 Oscillator Lie algebra
	1.3 Compact derivations and Hamiltonians
	1.4 Automorphisms and Riemannian isometries

	2 Examples of lower-dimensional nilpotent Lie algebras of type {n,2}
	3 Some notation
	3.1 Split-quaternions and pairs of skew-Hermitian forms
	3.2 T-indecomposable nilpotent Lie algebra of type {n,2}

	4 Compact derivations of irreducible Lie algebras of type {n,2}
	4.1 One-dimensional compact subalgebra of derivations of h
	4.2 Compact algebras of derivations of Lie algebras of type {n,2}

	References

