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Abstract This paper deals with the following biological question: how influential is the
environmental contamination on the transmission of EVD? Based on the works in [7,33,55],
we design a new mathematical model to address this question by assessing the effect of
the Ebola virus contaminated environment on the dynamical transmission of EVD. The
formulated model captures two infection pathways through both direct human-to-human
transmission and indirect human-to-environment-to-human transmission by incorporating
the environment as a transition and/or reservoir of Ebola viruses. We compute the basic
reproduction number Renv

0 for the model with environmental contamination and prove that
the disease-free equilibrium is globally asymptotically stable (GAS) whenever Renv

0 ≤ 1.
When Renv

0 > 1, we show that the said model has a unique endemic equilibrium which is
GAS. Similar results hold for the free environmental contamination sub-model (without the
incorporation of the indirect transmission). More precisely, for the latter model, calculate
the corresponding basic reproduction number Rh

0 and establish the GAS of the disease-free
and endemic equilibria, whenever Rh

0 ≤ 1 and Rh
0 > 1, respectively. At the endemic level,

we show that the number of infected individuals for the full model with the environmental
contamination is greater than the corresponding number for the free environmental con-
tamination sub-model. In conjunction with the inequality Rh

0 < R
env
0 , our finding suggests a

negative answer to the biological question under investigation, i.e. the contaminated envi-
ronment plays a detrimental role on the transmission dynamics of EVD by increasing the
endemic level and/or the severity of the outbreak. Therefore, it is natural to implement a
control strategy which aim at reducing the severity of the disease by providing adequate
hygienic living conditions, educate populations at risk to follow rigorously those basic hy-
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gienic conditions as well as ask them avoid contact with suspected contaminated objects.
Further, we perform numerical simulations to support the theory.

Keywords Ebola, Reservoir · Environmental transmission · Dynamical system · Stability.
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1 Introduction

The Ebola Virus Disease (EVD) is caused by infection with a virus of the family Filoviridae,
genus Ebolavirus. The Ebola virus was first associated with an outbreak the Democratic
Republic of Congo: DRC (former Zaire) in 1976. Since then many other outbreaks have
occurred mainly in Central Africa. The 2014-2015 outbreak in West Africa is by far the
largest outbreak of Ebola virus disease ever recorded with the Zaire species of the virus [5,
23,53,54]. By October 2014, a total number of 9286 confirmed, probable and suspected cases
of EVD have been reported in eight affected countries worldwide: DRC (70) Guinea (1519),
Liberia (4262), Nigeria (20), Senegal (1), Serra Leone (3410), Spain (1), and USA (3); up to
the end of 14 October. There have been approximately 4595 deaths.

There are five strains of the Ebola virus different with their virulence in humans [9] and
fatality rates: Bundibugyo (30% mortality rate [49]), Ivory Coast (0% [25]), Reston, Sudan
(50% case-fatality rate [41,44]) and Zaire (with mortality rates of 55% to 88% [5,47,55]), all
named after their places of origin. Four of these five have caused disease in humans. While
the Reston virus can not infect humans, no illnesses or deaths have been reported and all
the strains can cause disease in animals [28,38].

Ebola can be caught from both humans, animals and fruit bats. It is transmitted through
close contact with blood, secretions, or other bodily fluids. Infection has been documented
through the handling of infected chimpanzees, gorillas, fruit bats, monkeys, forest antelope
and porcupines found dead or ill in the rainforest.

When an infection does occur in humans, the virus can be spread in several ways
to others. Ebola is spread through direct and/or indirect contact (through broken skin or
mucous membranes in, for example, the eyes, nose, or mouth) with

(a) - blood or body fluids (including but not limited to urine, saliva, sweat, stool, vomits,
breast milk, and semen) of a person who is sick with Ebola.

(b) - infected semen/breast milk of men/women: men who have recovered clinically from
the illness can still spread the virus to their partner through their semen for up to 7 weeks
after recovery. Similarly, women who recovered clinically can still transmit the disease to
their children for weeks through breast-feeding.

(c) - objects (like used needles, bed linen and used syringes, soiled clothing) that have
been contaminated with the virus. Actually, infection can also occur if broken skin or
mucous membranes of a healthy person come into contact with environments that have
become contaminated with an Ebola patient’s infectious fluids such as soiled clothing, bed
linen, or used needles and syringes [33,47,57,59]. Moreover, since, according to the works
in [7,42,59], filoviruses (thus Ebola virus) can survive in liquids, plastic surfaces and on
solid substrates (glasses, sanitary equipments) for 14 to 50 days.

(d) - infected animals and bats: in Africa, Ebola may be spread as a result of handling
bush-meat (wild animals hunted for food) and contact with infected bats. There is no
evidence that mosquitoes or other insects can transmit Ebola virus. Only mammals (for
example, humans, bats, monkeys, and apes) have shown the ability to become infected
with and spread Ebola virus. Ebola virus has also been spreading among wild nonhuman
primates, apparently as a result of their contact with the unidentified reservoir host [4,29,33,
43,40]. This has contributed to a marked reduction in chimpanzee and gorilla populations
and has also triggered human epidemics, presumably due to consumption of sick or dead
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animals as a source of food [24,34]. The primary non-human reservoirs of Ebola are probably
fruit bats [33,40].

(e) - cadavers during burials where mourners have direct contact with the deceased can
also transmit the virus.

(f) - gloves, masks or protective goggles: healthcare workers have frequently been in-
fected while treating Ebola patients. This has occurred through close contact without the
use of gloves, masks or protective goggles. To date, nearly 180 health care workers have
been infected, and more than 80 have died [14]. These latter transmission features [(c)-(f)]
naturally raise the research question under investigation on which we shall focus.

Early on, the symptoms of EVD are non-specific. The disease is often characterized
by the sudden onset of fever, feeling weak, muscle pains, headaches and a sore throat.
This is followed by vomiting, diarrhea, rash, impaired kidney and liver function and, in
some cases, internal and external bleeding. Symptoms can appear from 2 to 21 days after
exposure. Some patients may go on to experience rashes, red eyes, hiccups, chest pains,
difficulty in breathing and swallowing.

Standard treatment is limited to supportive therapy consisting of hydrating the patients,
maintaining their oxygen status and blood pressure and treating them for any complicating
infections. Once a patient recovers from Ebola, he/her is immune to the strain of the virus
he/her contracted [47].

Responses to cases involves isolation and treatment of patients, contact tracing and
monitoring each contact for 21 days (maximum incubation period) after exposure [21,47].
It is difficult to isolate and care for patients with EVD not because the disease is particularly
infectious or the virus particularly hardy, but because a single lapse can be devastating: if
a single case is missed, a single contact becomes ill and if isn’t isolated, another chain of
transmission can start [48]. There are three key preventive interventions.

The first is meticulous infection control in health care settings. The greatest risk of trans-
mission is not from patients with diagnosed infection but from delayed detection and iso-
lation. Since the early symptoms of EVD (fever, nausea, vomiting, diarrhea, and weakness)
are nonspecific and common, patients may expose family caregivers, health care workers,
and other patients before the infection is diagnosed. The second is educating and support-
ing the community to modify long-standing local funeral practices to prevent contact with
body fluids of people who have died from EVD, at least temporarily until the outbreak is
controlled. This key prevention strategy will close the second major route of propagation
of the virus. This is a culturally sensitive issue that requires culturally appropriate out-
reach and education. The third is avoiding handling of bush meat (wild animals hunted
for sustenance) and contact with bats (which may be the primary reservoir of Ebola virus)
which may reduce the risk of initial introduction of Ebola virus into humans. Bush meat
consumption could be reduced through socioeconomic development that increases access
to affordable protein sources. Where bush meat consumption continues, safer slaughter and
handling can be encouraged [47,53,56,57].

Since the onset of EVD in 1976, very few mathematic models [1,2,16,17,22,27,31,48]
have been built and analyzed to help understanding the transmission and the dynamics
of the disease. They all dealt only with human population, neglecting the effect of the
environmental source of transmission. The aforementioned models did not incorporate
the effect of the contaminated environment and the contamination of the environment
by Ebola-infected individuals on the transmission dynamics of EVD in the communities
(hence, they may have under-estimated EVD burden). More precisely, the work in [16],
apart from providing a comprehensive review for the past Ebola models, have mentioned
the influence of the environment on the transmission of EVD, even though, none all the past
Ebola models reviewed there has incorporated that important feature. The purpose of the
current study is to assess the role of the environment on the transmission dynamics of EVD
in a human population. To achieve this objective, two new deterministic compartmental
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models, which incorporate the above and other relevant epidemiological, demographic
and biological features of EVD, are developed. The first model which we shall refer to as
"full model" takes into account the environmental contamination. To allow comparison and
assess the role of the environment, we develop a second model which can be regarded as a
sub model of the full model and does not incorporate the environmental contamination. The
specific goals are to determine the key factors that drive the disease transmission process
and to propose effective and affordable strategies to minimize the spread of the disease. Our
aim in this work is therefore to propose and analyze the proposed models for the dynamic
of EVD in such a complex setting which take into consideration the known (direct) and
suspected/probable (indirect environmental) contamination pathways. The incorporation
of such unavoidable indirect environmental transmission route account for the assessment
of the role of the environment in the spreading and the severity of EVD.

The models have been analyzed theoretically and numerically. From the theoretical
point of view, we have established the following results.

(1) The disease-free equilibrium for the full model is GAS whenever the corresponding
threshold quantity Renv

0 is less than or equal to unity,
(2) In the case Renv

0 > 1, there exists a unique endemic equilibrium for the full model which
is GAS.

(3) For the sub model without the environmental contamination, the disease-free equilib-
rium is GAS when the corresponding basic reproduction numberRh

0 is less than or equal
to unity.

(4) The said sub-model exhibits a unique endemic equilibrium, which is GAS whenever
R

h
0 > 1.

(5) The two models are compared at endemic level and for both cases in items (2) and (4)
above, the number of infected individuals obtained in the presence of the environmental
transmission, is greater than the corresponding number of infected individuals in the
absence of the environmental transmission.

As it is the case for most systems of differential equations that model real-life situations,
the deterministic model designed in this paper can unfortunately not be solved explicitly by
analytic techniques. It is therefore vital to perform numerical simulations through classical
methods that aim at capturing the essential and/or expected properties of the continuous
model. Thus, from the numerical point of view, we first carry out the sensitivity analysis
of the model to identify the most influential parameters on the model output variables,
that is the most robust estimations that are required and secondly apply the fourth Runge-
Kutta method implemented in MatLab language, given its power to produce more precise
approximated and faster convergent solutions in many applied areas.

The rest the paper is organized as follows. In Section 2, we formulate the models: the
model with the environmental contamination (full model) and the sub model without the
environmental contamination. The theoretical analysis of the full model is provided in
Section 3. In Section 4, we give the complete analysis of the sub-model with only direct
transmission (i.e., without the environmental contamination), and the role of the environ-
mental contamination on the transmission of EVD is assessed theoretically and numerically.
Section 5 presents the sensitivity analysis of the full model and the results of numerical sim-
ulations. Section 6 concludes the paper and provides some discussions that highlight few
relevant perspectives.

2 Model formulation

Based on the infection modes displayed in the introduction part, we refer to the transmission
routes (c) to (f) as the "environment". In fact, apart from the human-human contamination
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modes involving direct contacts between infected and susceptible humans ((a) - (b)), there
are the transmission routes (c) to (f) which are indirect and may involve the consumption
of contaminated bush meat (animals hunted for food), manipulation and consumption of
fruits bats, consumption of fruits contaminated by bats during deliverance (harvested in
the rainforest for food during dry season when food is rare). To make our full model as
simple as possible, we then encompass all these transmission modes in one class which we
refer to as "Environment".

Therefore, our full model falls in the modeling framework for human diseases with
free-living pathogens. It involves human individuals as host and the Ebola viruses in the
environment as "reservoir" of pathogens [4,29,33,43,40]. We emphasize that the concentra-
tion of the Ebola viruses in the environment is not an epidemiological class: it is in fact an
environmental compartment referred to as a "pool" of Ebola viruses [20] through which the
human individuals can come into contact with and probably catch the infection.

The presence of the viruses in the environment account for the indirect transmission.
This contaminated environment can be supplied by:

(i) the provision of contaminated Ebola-deceased animals, the manipulation consumption
of infected fruit bats hunted by humans either for food or commercialization;

(ii) the contaminated fruits [26,33] harvested for food during food shortage in the dry
seasons;

(iii) the shedding of viruses by infected/ Ebola-deceased human individuals through their
bed linen, stool, urine, vomits or sweat [47,53,57]. This happens usually in health care
centers or in family homes of infected and Ebola-deceased individuals.

2.1 The state variables

Here, we define the population variables and the epidemiological parameters used to
develop our EVD transmission models. As mentioned above, the full model involves two
populations, namely, the human population, the concentration of free living Ebola virus in
the environment (which account for the indirect transmission).

2.1.1 Human population state variables

The total population of humans at time t, Nh(t) is composed of four disjoint epidemiological
classes, namely: susceptible human individuals to EVD Sh(t) (i.e. who are completely free of
the virus); exposed human individuals to EVD Eh(t) (i.e. infected in latent stage); infectious
humans individuals Ih(t) (i.e. able to transmit EVD) and recovered humans individuals Rh(t)
(i.e. either clinically or completely). It is worth noting that, there is no specific treatment for
EVD, but some patients recover after intensive supportive care by oral re-hydration with
solutions containing electrolytes. Thus, the total human population at time t Nh(t) is

Nh(t) = Sh(t) + Eh(t) + Ih(t) + Rh(t). (2.1)

It is reported in [47,53] on the one hand that, the clinically recovered individuals still
infect people during sexual intercourse. On the other hand that EVD-deceased individuals
can still infect during burial ceremonies where their cadavers are manipulated by family
members and mourners [47,53]. This latter feature is said to play the most important role
in the disease transmission and persistence of EVD [20]. We are not going to use additional
classes to account for these aspects, yet, we stress that the above mentioned facts will
be incorporated in the incidence functions. Thus, it is suitable to model the transmission
dynamics in the human population by a SEIR compartmental model.
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2.1.2 Ebola virus concentration variable in the environment

As reported in [20,33,34,51,59], the indirect transmission through free living Ebola viruses in
the environment occurs. Precisely, according to the works in [7,42], filoviruses (thus Ebola
virus) can survive in liquids, plastic surfaces, and on solid substrates (glasses, sanitary
equipments) for 14 to 50 days and remain viable. Moreover it is shown in [59] that there
is evidence for environmental contamination, which may increase the risk of nosocomial
transmission. Thus, we find it realistic to consider the concentration of the Ebola virus in
the environment, with V(t) being the concentration of any Ebola virus species (Bundibugyo,
Ivory-Coast, Reston, Sudan, Zaire) harmful to humans, animals or bats.

2.2 Assumptions

The dynamics of EVD is governed by the following set of epidemiological hypotheses.

(H1) Infected individuals shed the Ebola viruses in the environment.
(H2) In almost all the EVD outbreaks in Africa, the case fatality rate is greater than or equal

to 1/2. Thus, we assume f ≥ 1/2.
(H3) Ebola-deceased individuals can continue to infect (during funerals).
(H4) Clinically recovered individuals still transmit the disease (through sexual intercourse

or through breast-feeding).
(H5) The Ebola viruses in deceased individuals (the immune system defense is very poor

or inexistent) is assumed to be more virulent than those in alive ones.
(H6) Long live immunity is assumed for recovered individuals. Indeed, the immunity

induced by EVD infection is unknown, since it has never been reported that an individual
have caught the infection for the second time.

2.3 The incidence functions and model equations

Based on the above assumptions, we derive the human-to-human force of infection λhh,
the environment-to human force of infection λhv as well as the differential equations which
describe the time evolution of the state variables under consideration.

2.3.1 Human-Human (human-to-human) force of infection: λhh

The high fatality rate of EVD lead to a big fear of the disease. Therefore, it is reasonable to
assume that during the onset of the disease, people avoid crowded areas, for homogenous
missing is harmful. This leads to a realistic assumption that the human-human force in-
fection should be frequency-dependent (standard). Moreover, on the one hand, according
to hypothesis (H3), Ebola-deceased individuals can still contaminate during funeral prac-
tices if they are manipulated by mourners who enter into contact with their blood or any
other bodily fluids [47,55]. On the other hand, clinically recovered men/women have Ebola
viruses in their semen/breast milk up to seven (07) weeks after recovery [2,47,57]. There-
fore, they can still infect other people via sexual intercourse. Thus, the human-to-human
infection occurs as a result of three contributions:

1) Through an effective contact at rate βhh with an infected human (Ih) who is still alive
leading to the incidence function λhI, with

λhI =
βhhIh

Nh
. (2.2)
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2) Through an effective contact at rate ξhνhγ fβhh with an EVD deceased individual yielding
to the force of infection

λhD =
ξhνhγ fβhhIh

Nh
, (2.3)

where ξh = 1/τh. The quantity γ f is the fraction of infectious individuals who passed
away due to EVD; νh is the virulence of Ebola viruses in the body of a EVD-deceased
person and τh is the mean time that elapse after death before a cadaver is completely
buried.

3) Via effective contact at rate βhhθh(1− f ) with a clinically recovered individual (Rh) yielding
to the incidence function:

λhR =
θhγ(1 − f )βhhIh

Nh
, where θh = 1/rh. (2.4)

The quantityγ1− f ) is the fraction of infectious individuals who clinically recovered from
the disease whereas rh is the mean time that elapse before the complete clearance of Ebola
viruses in the semen or breast milk of recovered individuals. Finally, the human-to-human
force of infection is

λhh = λhI + λhD + λhR =
βhh

Nh

(
1 + ξhνhγ f + θhγ(1 − f )

)
Ih. (2.5)

2.3.2 Environment-Human (Environment-to-human-to-environment) force of infection: λhv

This transmission occurs indirectly. One way is through consumption of Ebola viruses in
contaminated fruits by bats during competition for food in dry seasons, consumption of
contaminated bush meat (animals and bats hunted for food) [33,40]. The other way is
through contact with contaminated linen, urine (on soiled sanitary equipments) or stools
of and infected person [47,53,56]. It is important to stress that humans, and some animals
(non-human primates, apes, antelopes, monkeys, duikers) and fruit bats are mammals and
can share some of the fruits as meal. This amounts in getting infection or consuming the
Ebola viruses, with the Ebola viruses standing for the free living pathogens. Let βhv be the
effective ingestion rate of Ebola virus. Similar to [6,10,18], we assumed that an individual
must consume at least the concentration (K) of Ebola virus equivalent to an amount that
increases the possibility of being infected to about 50%. Thus, following the modeling
framework for diseases transmitted by free living pathogen (Cholera, Typhoid fever, etc...),
we use the Holling type II or Michaelis-Menten function dose response so that the force of
infection is given by

λhv =
βhvV

K + V
. (2.6)

Note however, since the Ebola virus is highly infectious, the minimum infection dose K can
be very low. Thus λhv can be modeled using mass action incidence (i.e. λhv = βhvV).

In summary, the overall force of infection in human’s population denoted by λh is

λh = λhh + λhv =
βhh

(
Ih + ξhνhγ f Ih + θhγ(1 − f )Ih

)
Nh

+
βhvV

K + V
. (2.7)

The susceptible population Sh is replenished by a constant recruitment at rateΛh into the
community. These latter individuals may acquire infection following the force of infection
λh, and die naturally at rate µh. It is assumed that the exposed individuals Eh do not transmit
the disease, maybe as a result of perfect implementation of contact tracing and isolation.
Those who recovered from EVD will not return in the susceptible class, maybe as a result of
their behavior adjustment due to the fear of the disease. The exposed class Eh is generated
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by the susceptible individuals who became infected at rate λh. This latter population is
decreased when they become infectious at rate ω and move to the infectious class Ih, or
when they die naturally at rate µh. The infectious compartment Ih diminish when they
recover (after supportive care) at rate γ and therefore increase the recovered class Rh. Both
the infectious and the recovered population die at rate µh as well.

The concentration V of Ebola viruses in the environment is modeled following [10,18,
50]. We apply the framework modeling of the free living pathogen similar to diseases like,
cholera, typhoid, or yellow fever. Thus, the dynamics of the concentration of the free living
Ebola viruses is given by

dV
dt

= αhIh − µvV, (2.8)

where αh is the sledding rate of Ebola viruses in the environment by infected individuals.
A schematic model flowchart is depicted in Fig. 1. The corresponding system of differ-

ential equations is

Sh Eh Ih Rh 
    ω γ (1-f) µℎ µℎ λℎℎ 

˄ℎ 
µℎ µℎ + γf 

 

Human 

V 

 µ𝑣 

αℎ 

Pathogens  (Virus) 

Fig. 1 Ebola Virus Disease transmission flow diagram



dSh

dt
= Λh −

βhhΦhShIh

Nh
−
βhvShV
K + V

− µhSh,

dEh

dt
=
βhhΦhShIh

Nh
+
βhvShV
K + V

−
(
µh + ω

)
Eh,

dIh

dt
= ωEh −

(
µh + γ

)
Ih,

dRh

dt
= γ(1 − f )Ih − µhRh,

dV
dt

= αhIh − µvV,

(2.9)

where Φh = 1 + ξhνhγ f + θhγ(1 − f ).
Table 1 recapitulates the relevant parameters used to develop the model. Throughout this
paper, we shall refer to system (2.9) as the full model. Note that he associated model



Title Suppressed Due to Excessive Length 9

Parameter Biological interpretation
Λh Recruitment rate of susceptible individuals.
µh Natural dead rate of all individuals.
νh Virulence of Ebola viruses in the corpse of the deceased individuals.
τh Mean burial time.
ξh = 1/τh Modification parameter of infectiousness due to EVD-deceased individuals.
ω Incubation period rate of infected individuals.
γ Removal rate from infectious class due to disease induced death or by recovery.
αh Shedding rate of Ebola viruses in the environment by infected individuals.
rh Mean clearance time of Ebola viruses in the recovered individuals
θh = 1/rh Modification parameter of contact rate of recovered humans due to the presence

of Ebola viruses in the semen/breast milk of a recovered man/woman.
f Proportion of EVD-deceased individuals: case fatality.
K Virus 50 % infectious dose, sufficient to cause EVD infection.
βhh Effective contact rate between susceptible and infected individuals .
βhv Effective contact rate between susceptible individuals and Ebola viruses.
µv Decay rate of Ebola viruses in the environment.

Table 1 Model parameters and their biological/epidemiological interpretations.

without environmental contamination which will be analyzed in details in Subsection 4.1 is
obtained by neglecting the indirect contamination through contact with the contaminated
environment and is modeled by

dSh

dt
= Λh −

βhhΦhShIh

Nh
− µhSh,

dEh

dt
=
βhhΦhShIh

Nh
−

(
µh + ω

)
Eh,

dIh

dt
= ωEh −

(
µh + γ

)
Ih,

dRh

dt
= γ(1 − f )Ih − µhRh.

(2.10)

We shall study in details this model (2.10) later in Subsection 4.1.
It is important to compared the model (2.9) with few deterministic existing models. The

proposed model (2.9) extends the works in [1,2,17,22,31,32,39,51] by:

1. considering the indirect transmission via the environment. None of the above mentioned
works have considered such a aspect while modeling EVD. They concentrated only
on the human population, without modeling the environmental source of the disease
(i.e. from where the disease triggers and enters the human population). Indeed, the
incorporation of the environmental contamination feature is motivated by the fact that,
for almost all the EVD outbreaks, it has been reported the index case (first patient) got
the infection from the environment (after manipulation for food near the rain forests).

2. including the contamination through recovered individuals which is not the case in
none of the works mentioned above.

3. incorporating the demographic dynamics.
4. considering infection through contact with deceased humans (during funerals). More-

over, contrary to [39,51] where an epidemiological class for EVD-deceased individuals
was explicitly considered, our model, for the sake of simplicity do not consider dead
individuals as an explicit compartment. However, these latter individuals are consid-
ered to be infectious until they are completely buried. A part from [31,39], none of the
mentioned works have considered such an important characteristic.

5. modeling the dead-mediated and the clinically recovered-mediated transmissions using
fractions of infectious (Ih) individuals, whereas in [31] the authors explicitly incorporated
the death in the force of infection.
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6. assuming the virulence of the Ebola viruses in EVD-deceased individuals. Actually, the
viruses inside the body of EVD-deceased individuals are supposed to be more virulent
than those in the alive infected individuals.

3 Mathematical analysis of the full model

3.1 Positivity and boundedness of solutions

For the EVD transmission model (2.9) to be epidemiological meaningful, it is important
to prove that all the states variables are non-negative for all time. In other words, solutions
of system (2.9) with non-negative initial data will remain non-negative for all t > 0.

Theorem 3.1 If the initial data (Sh(0),Eh(0), Ih(0),Rh(0),V(0)) ≥ 0, then the solutions (Sh(t),Eh(t), Ih(t),Rh(t),V(t))
of system (2.9) are non-negative for all t > 0, and the positive orthant R5

+ is positively invariant
with respect to the flow of system (2.9).

Furthermore, for initial conditions such that

Nh(0) ≤
Λh

µh
, V(0) ≤

αhΛh

µhµv
,

we have
Nh(t) ≤

Λh

µh
, V(t) ≤

αhΛh

µhµv
, ∀t ≥ 0.

Proof: Suppose Sh(0) ≥ 0, then from the first equation of system (2.9) and an argument on
continuous functions, Sh(t) remains non-negative on a small interval in the right hand side
of t0 = 0. Therefore, there exists tm = sup{t ≥ 0 : Sh(t) ≥ 0}. Obviously tm ≥ 0 by definition.
To show that Sh(t) ≥ 0 for all t ≥ 0, we only need to prove that Sh(tm) > 0. It follows from
the first equation of system (2.9) that

dS(t)
dt

= Λh − (λh(t) + µh)Sh , where λh is given by Eq. (2.7),

which can be rewritten as

d
dt

{
Sh(t) exp

(∫ t

0
(λh(p) + µh)dp

)}
= Λh exp

(∫ t

0
(λh(p) + µh)dp

)
.

Hence, integrating this last relation with respect to t from 0 to tm, we have

Sh(tm) exp
(∫ tm

0
(λh(p) + µh)dp

)
dt − Sh(0) =

∫ tm

0
Λh exp

(∫ t

0
(λh(p) + µh)dp

)
dt

so that the multiplication of both side by exp
(∫ tm

0 −(λh(p) + µh)dp
)

yields

Sh(tm) =

[
Sh(0) +

∫ tm

0
Λh exp

(∫ t

0
(λh(p) + µh)dp

)
dt

]
× exp

(∫ tm

0
−(λh(p) + µh)dp

)
From this, we deduce that Sh(tm) > 0, and thus Sh(t) > 0 for all t > 0.
The same arguments can be used to prove that Eh(t), Ih(t),Rh(t),V(t) ≥ 0 for all t > 0.

Furthermore,
dNh

dt
= Λh − µhNh − γ f Ih ≤ Λh − µhNh.

Thus, by Gronwall inequality, we have

Nh(t) ≤ Nh(0)e−µht +
Λh

µh

(
1 − e−µht) and then Nh(t) ≤

Λh

µh
, ∀t ≥ 0 whenever Nh(0) ≤

Λh

µh
.
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Finally, using the fact that Ih ≤ Nh and the Gronwall inequality, lead us to

V(t) ≤
αhΛh

µhµv
, ∀t ≥ 0 whenever V(0) ≤

αhΛh

µhµv
.

This completes the proof.
�

Combining Theorem 3.1 together with the trivial existence of a unique local solution for
the model (2.9), we have established the following theorem which ensures the mathematical
and biological well-posedness of system (2.9).

Theorem 3.2 The model (2.9) is a dynamical system in the biological feasible compact set

Γh =

{
(Sh,Eh, Ih,Rh,V) ∈ R5

+ : Nh ≤
Λh

µh
, V(t) ≤

αhΛh

µhµv

}
.

3.2 The disease-free equilibrium and its stability

The disease free equilibrium (DFE) of the model is obviously

P0
h =

(
S0

h, 0, 0, 0, 0
)
, with S0

h =
Λh

µh
.

We use the next generation method developed in [3,6,19,52] to compute the basic reproduc-
tion number. The vectorsF = (λhSh, 0, 0, 0)T andW = (

(
µh + ω

)
Eh,−ωEh +

(
µh + γ

)
Ih,−γ(1−

f )Ih+µhRh,−αhIh+µvV)T represent the new infection terms and the remaining transfer terms,
respectively. Their Jacobian matrices evaluated at the DFE are given by

F =


0 βhhΦh 0

βhvΛh

µhK
0 0 0 0
0 0 0 0
0 0 0 0

 and W =


(µh + ω) 0 0 0
−ω (µh + γ) 0 0
0 −γ(1 − f ) µh 0
0 −αh 0 µv

 .
Simple calculations show that the basic reproduction number Renv

0 is given by

R
env
0 =

βhhΦhω

(µh + ω)(µh + γ)
+

αhβhvΛhω

Kµhµv(µh + ω)(µh + γ)
. (3.1)

Remark 3.3 A comparison of the basic reproduction number Renv
0 defined in Eq. (3.1) with those

for the existing models (provided one relaxes some of the hypothesis stated for the modeling) allows
the estimation of the transmissive power of the disease.

The relevance of the reproduction number is due to the following result established in
[52].

Lemma 3.4 The DFE P0
h of system (2.9) is locally asymptotically stable (LAS) if Renv

0 < 1, and
unstable if Renv

0 > 1.

The epidemiological implication of Lemma 3.4 is that the Ebola virus disease can be elimi-
nated from the community whenRenv

0 < 1 if the initial sizes of the different sub-populations
of the model are in the basin of attraction of the DFE P0

h. For a better control on the disease,
the GAS of the DFE is needed. Actually, enlarging the basin of attraction of P0

h to be the entire
Γh is, for the model under consideration a more challenging task. We have the following
result.

Theorem 3.5 The DFE P0
h of the system (2.9) is GAS if Renv

0 < 1 in Γh.
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Proof: Let x = (Eh, Ih,Rh,V) and y = Sh, be the infected and uninfected states, respectively.
The system (2.9) can be re-written as

dx
dt

= (F −W) x − f (x, y)
dy
dt

= g(x, y),
(3.2)

where F and W are given above,

f (x, y) =


(Nh − Sh)

βhhΦhIh

Nh
+ βhvV

(
Λh

µhK
−

Sh

K + V

)
0
0
0

 ; g(x, y) = Λh − λhSh − µhSh.

It is straightforward that f (x, y) ≥ 0 for all (x, y) ∈ Γh. Therefore, dx/dt ≤ (F −W) x, we then
consider the following auxiliary linear subsystem from system(3.2):

dx̂
dt

= (F −W) x̂ (3.3)

From Theorem 2 in [52], we have Renv
0 < 1 ⇐⇒ σ(F −W) < 0, where σ(M) is the stability

modulus of the matrix M. Thus, whenRenv
0 < 1, all the eigenvalues of F−W have negative real

parts. Thus, the non-negative solutions of (3.3) are such that limt→+∞ x̂ = 0, or equivalently
limt→+∞ Êh = limt→+∞ Îh = limt→+∞ V̂ = 0. By the standard comparison principle [30,45]
and the non-negativity of x, the non-negative solutions of (2.9) satisfy limt→+∞ Eh = 0,
limt→+∞ Ih = limt→+∞ V = 0. Therefore, since limt→+∞ x = 0, system (2.9) is an asymptotically
autonomous system [12] (Theorem 2.5) with the limit system as follows

dS̃h

dt
= Λh − µhS̃h. (3.4)

It is obvious that the affine system (3.4) has a unique equilibrium giving by S0
h which is

GAS. This completes the proof.
�

Remark 3.6 An alternative proof of Theorem 3.5 can be done using the Lyapunov techniques.
Indeed, it suffices to use the following Lyapunov function:

L0 (Eh, Ih,Rh,V) =

[
bω
B

+
dωαh

µvB

]
Eh +

[
bµh + γ

B
+

dαh

µv
(
µh + γ

) ] Ih +
d
µv

V, (3.5)

where

b = βhhΦh, d =
βhvΛh

Kµh
and B =

(
µh + γ

) (
µh + ω

)
.

Since S0
h = Λh/µh, the time derivative of L0 is

L̇0 =

[(
bω
B

+
dωαh

µvB

)
Sh

Nh
− 1

]
bIh +

(bω
B

+
dωαh

µvB

)
ShK

S0
h(K + V)

− 1

 dV,

=
[
R

env
0

Sh

Nh
− 1

]
bIh +

Renv
0

ShK
S0

h(K + V)
− 1

 dV,

=
[(
R

env
0 − 1

)
Sh − (Eh + Rh + Ih)

] bIh

Nh

+
[(
R

env
0 − 1

)
KµhS0

hSh − KΛh

(
S0

h − Sh

)
− KΛhS0

hV
] dV

S0
hΛh(K + V)

.

(3.6)
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Thus, if Renv
0 ≤ 1, L̇0 ≤ 0 in Γh. Then, LaSalle’s Invariance Principle applied to the Lyapunov

function L0 allows to extend the GAS of the disease-free equilibrium to the case where Renv
0 = 1. In

summary, P0
h is GAS whenever Renv

0 ≤ 1.

3.3 The endemic equilibrium and its stability

Herein, we compute the endemic equilibrium of system (2.9) and investigate its stability.
Let P∗h = (S∗h,E

∗

h, I
∗

h,R
∗

h,V
∗)T be any endemic equilibrium of system (2.9) where the com-

ponents S∗h,E
∗

h, I
∗

h,R
∗

h and V∗ are the solutions of the following system of equations:
Λh − λ∗hS∗h − µhS∗h = 0
λ∗hS∗h −

(
µh + ω

)
E∗h = 0

ωE∗h −
(
µh + γ

)
I∗h = 0

γ(1 − f )I∗h − µhR∗h = 0
αhI∗h − µvV∗ = 0,

(3.7)

where

λ∗h =
βhhΦhI∗h

N∗h
+
βhvV∗

K + V∗
. (3.8)

From (3.7), S∗h,E
∗

h, I
∗

h,R
∗

h,V
∗ and N∗h = S∗h + E∗h + I∗h + R∗h can be expressed in term of λ∗h as

follows:

S∗h =
Λh

λ∗h + µh
, E∗h =

λ∗hΛh

(λ∗h + µh)(µh + ω)
, I∗h =

λ∗hΛhω

(λ∗h + µh)(µh + ω)(µh + γ)
,

R∗h =
λ∗hΛhωγ(1 − f )

µh(λ∗h + µh)(µh + ω)(µh + γ)
, V∗h =

λ∗hΛhαhω

µv(λ∗h + µh)(µh + ω)(µh + γ)
,

N∗h =
Λh

[
(λ∗h + µh)(µh + ω)(µh + γ) − ωγ fλ∗h

]
µh(λ∗h + µh)(µh + ω)(µh + γ)

.

(3.9)

Substituting Eq. (3.9) into (3.8), the non-zero equilibrium of model (2.9) satisfy the following
quadratic equation in λ∗h:

p (λ∗h)2 + qλ∗h − r = 0, (3.10)

where
p =

(
ωαhΛh + µvKB

) [
µh

(
µh + ω + γ

)
+ ωγ(1 − f )

]
,

q = KµhµvB
(
B − ωγ f

)
+ βhvΛhαhω

(
ωγ f + µhB

)
+ µhB

(
1 − Renv

0

) (
Λhαhω + KµvB

)
,

r = βhhABKωµvµh + βhvαhωµhΛhB − µ2
hµvKB2 = µ2

hµvKB2
[
R

env
0 − 1

]
.

(3.11)

with

A = µhΦh = µh(1 + ξhνhγ f + θhγ(1 − f )) and B = (µh + ω)(µh + γ).

Note that p > 0 and q > 0 whenever Renv
0 ≤ 1. Further r > 0 whenever Renv

0 > 1. Thus, by
applying the Descartes rule of signs to the quadratic equation (3.10), the following result is
established.

Theorem 3.7 For system (2.9), the following statements hold.

– if Renv
0 > 1, there exists an unique endemic equilibrium giving by (3.9) where λ∗h is the solution

of (3.10).
– if Renv

0 ≤ 1, there is no endemic equilibrium and the only steady state is the disease-free equilib-
rium.



14 Berge Tsanou et al.

Actually, the explicit value of λ∗h > 0, which is the unique positive solution of (3.10) is given
by

λ∗h =
−q +

√
q2 + 4pr
2

(3.12)

and the components of P∗h are obtained by substituting this positive root of (3.10) into the
steady-states expressions in (3.7).

Now, we investigate the stability of the unique endemic equilibrium P∗h. We have ob-
tained the following result.

Theorem 3.8 If Renv
0 > 1, then system (2.9) undergoes the trans-critical bifurcation with Renv

0 = 1
being the bifurcation parameter. Moreover, the unique endemic equilibrium defined in Eqs. (3.9)-
(3.12) is LAS.

The proof of this theorem used the Center Manifold Theory as proposed in [13,11] and
is given in the Appendix.

4 Impact of the environmental contamination on the transmission of EVD

In this section, we assess the role of the environmental contamination on the transmission
of EVD. For this assessment to happen, we begin by analyzing system (2.9) without the
indirect environmental contamination.

4.1 Analysis of the sub-model without environmental contamination

We recall that, in the absence of the environmental contamination (i.e., βhv = 0), system (2.9)
reduces to system (2.10), which we repeat here for convenience.

dSh

dt
= Λh −

βhhΦhShIh

Nh
− µhSh,

dEh

dt
=
βhhΦhShIh

Nh
−

(
µh + ω

)
Eh,

dIh

dt
= ωEh −

(
µh + γ

)
Ih,

dRh

dt
= γ(1 − f ) Ih − µhRh,

dV
dt

= αhIh − µvV.

(4.1)

The system (4.1) is mathematically and epidemiological well posed in the feasible region Γh.
Also, system (4.1) is a dynamical system in Γh. The corresponding disease-free equilibrium
X0

h is

X0
h =

(
Λh

µh
, 0, 0, 0, 0

)
.

Without the environmental transmission (i.e. βhv = 0), the basic reproduction number (3.1)
becomes

R
h
0 =

βhhΦhω

(µh + ω)(µh + γ)
. (4.2)

We emphasize this latter the basic reproduction numberRh
0 and the formerRenv

0 will be used
to compare our models at the early stage of the disease and thus numerically assess the
impact of the environmental contamination.



Title Suppressed Due to Excessive Length 15

The existence of the unique endemic equilibrium point

Xh =
(
Sh,Xh, Ih,Rh,V

)
,

is subjected to the human-human basic reproduction number Rh
0 in Eq. (4.2) being larger

than the unity. A simple calculation proves that

Sh =
Λh

[
µh

(
µh + ω + γ

)
+ γω(1 − f )

]
µh

[
B
(
Rh

0 − 1
)

+ µh
(
µh + ω + γ

)
+ γω(1 − f )

] ,
Eh =

(
µh + γ

)
Λh

(
R

h
0 − 1

)
B
(
Rh

0 − 1
)

+ µh
(
µh + ω + γ

)
+ γω(1 − f )

,

Ih =
ωΛh

(
R

h
0 − 1

)
B
(
Rh

0 − 1
)

+ µh
(
µh + ω + γ

)
+ γω(1 − f )

,

Rh =
γ(1 − f )ωΛh

(
R

h
0 − 1

)
µh

[
B
(
Rh

0 − 1
)

+ µh
(
µh + ω + γ

)
+ γω(1 − f )

] ,
V =

ωαhΛh

(
R

h
0 − 1

)
µvB

(
Rh

0 − 1
)

+ µh
(
µh + ω + γ

)
+ γω(1 − f )

.

(4.3)

where

λh =
µhB

(
R

h
0 − 1

)
B − ωγ f

. (4.4)

The global stability analysis of model (4.1) is completely described by the following result.

Theorem 4.1 The following statements are true:

(1) The disease-free equilibrium point X0
h is GAS when Rh

0 ≤ 1 and unstable if Rh
0 > 1.

(2) There is a unique endemic equilibrium point Xh which is GAS whenever Rh
0 > 1.

Proof: The first item is established using the Lyapunov function:

Lh = Lh (Sh,Eh, Ih,Rh,V) =
ω
Bh

Eh +
1

µh + γ
Ih. (4.5)

The Lie derivative of Lh with respect to the vector field given by the right hand side of (4.1)
is

L̇h =

[
βhhΦhωSh

BhNh
− 1

]
Ih = −

[(
1 − Rh

0

)
Sh + Eh + Ih + Rh

] Ih

Nh
. (4.6)

Thus, L̇h ≤ 0 in Γh, and L̇h = 0 if and only if Ih = 0 or Rh
0 = 1 and Eh + Ih + Rh = 0. In both

cases, it is easy to check that the largest invariant set in Mh =
{
(Sh,Eh, Ih,Rh) ∈ Γh/ L̇h = 0

}
is

the disease-free equilibrium point P0
h. Indeed, suppose Ih = 0, then replacing it in the first,

second and fourth equations of (4.1) and solve give Sh(t) = Λh/µh +
[
Sh(0) − Λh/µh

]
e−µht,

Eh(t) = Eh(0)e−(µh+γ)t and Rh(t) = Rh(0)e−µht. Similarly, as t → ∞, V(t) → 0. Thus, as t → ∞,
Sh(t) → Λh/µh, and (Eh(t),Eh(t)) → (0, 0). Hence Mh =

{
P0

h

}
. The GAS of P0

h follows by

LaSalle’s Invariance Principle. For the proof of the GAS of Xh in the second item, we
refer the interested reader to [35,58] where the result is obtained by using the geometrical
approach [36]. This concludes the proof.

�
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4.2 Comparison of systems (2.9) and (4.1) at early stage and at endemic level.

The objective of this section is to compare the dynamics of EVD described by only
direct human-human transmission (cf. Section 4.1) with the the dynamics of EVD in the
case of both direct and indirect environment-to-human-to-environment transmission (cf.
Section 3). Practically, this shall be done at two levels of the outbreak. First at early stage
of the disease by simply comparing the respective basic reproduction numbers. Secondly
at endemic level by quantitatively comparing the infectious components I∗h and Ih of the
corresponding endemic equilibria. Should these comparisons be possible, they allow to
easily assess the impact of the environment compartment in the transmission of EVD.

The first comparison at early stage of the disease is straightforward since

R
env
0 > Rh

0. (4.7)

For the second comparison of the fate of the disease at the endemic level, the simplest
way to tackle it analytically is to study the variations of I∗h = I∗h(βhv) as a function of the
effective contact rate βhv ≥ 0 with the environment, as well as the variations of I∗h = I∗h(αh)
with respect to the shedding rate αh ≥ 0.

Remind that

I∗h = I∗h(βhv) =
λ∗h(βhv)Λhω

(λ∗h(βhv) + µh)(µh + ω)(µh + γ)
,

where

λ∗h = λ∗h(βhv) =
−q(βhv) +

√
q2(βhv) + 4pr(βhv)

2p
.

Note that when there no contamination via the environment, βhv = 0 = K. Thus,
p(0) = p(K = 0) = Λhαhω

(
B − ωγ f

)
, r(0) = r(βhv = 0) = 0 and q(0) = q(βhv = 0) =

Λhαhω
(
µhB − βhhωA

)
.

In this case, the only solution of Eq. (3.10) is

λ∗h(0) = λ∗h(βhv = 0) =
−q(0)
p(0)

=
βhhωA − µhB

B − ωγ f
=
µhB

(
R

h
0 − 1

)
B − ωγ f

.

It clearly appears that λ∗h(0) is equal to λh and consequently I∗h(0) = I∗h(βhv = 0) = Ih.
Now, from Eq. (3.12), the partial derivative of I∗h with respect to βhv satisfies

∂Ih

∂βhv
=
ωαhΛh

(
B − ωγ f

)
(Σ1 − ∆)

2p∆
, (4.8)

where

Σ1 = ωαhΛhµhB + KµhµvBωγ f + βhhωA
(
µvKB + ωαhΛh

)
+ βhvωαhΛh

(
B − ωγ f

)
,

∆ = ∆(βhv) =
√

q2 + 4pr.
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The right hand side of Eq. (4.8) has the same sign as Σ2
1 − ∆

2. Direct calculations show that

Σ2
1 − ∆

2 = Σ2
1 − q2

− 4pr,

= 4ω3α2
hΛ

2
hµhBβhhA + 4K2µ2

hµ
2
vB3ωγ f − 4Kµ2

hµvB3ωαhΛh

+4K2µhµ
2
vB3βhhωA − 4ω3α2

hΛ
2
hµhBβhvγ f − 4K2µ2

hµ
2
vB4 + 4ω2α2

hΛ
2
hµhB2βhv

+4ω2αhΛhµ
2
hB2Kµvγ f + 8ω2αhΛhµhB2βhhAµvK − 4KµhµvB2ω2γ fβhvαhΛh

+4KµhµvB3βhvωαhΛh − 4K2µhµ
2
vB3βhhωA − 4KµhµvB3βhvωαhΛh

+4K2µhµ
2
vB2ω2γ fβhhA + 4KµhµvB2ω2γ fβhvαhΛh + 4K2µ2

hµ
2
vB4

+4K2µ2
hµ

2
vB3γ fω − 4ω2αhΛhµhB2βhhAµvK − 4ω2α2

hΛ
2
hµhB2βhv

−4Kµ2
hµvB3ωαhΛh + 4ω2αhΛhµ

2
hB2Kµvγ f + 4KµhµvBω3γ fβhhAαhΛh

+4ω3α2
hΛ

2
hµhBβhvγ f

= 4ω3α2
hΛ

2
hµhBβhhA + 4ω2αhΛhµhB2βhhAµvK + 4K2µhµ

2
vB2ω2γ fβhhA

+4KµhµvBω3γ fβhhAαhΛh > 0.

Looking at I∗h as a function of the human shedding rate αh (i.e. I∗h = I∗h(αh)), it can be
shown in the similar manner that I∗h(αh) is an increasing function of the shedding rate αh.
Thus, following theorem is straightforward.

Theorem 4.2 The infected component I∗h = I∗h(βhv) of the endemic equilibrium point is a strictly
monotonic increasing function on the interval 0 ≤ βhv < ∞. Similarly, the infected component
I∗h = I∗h(αh) of the endemic equilibrium point is a strictly monotonic increasing function on the
interval 0 ≤ αh < ∞. Moreover, I∗h(βhv = 0) = I∗h(αh = 0) = Ih which is the infected component of
the unique endemic equilibrium point P∗h in Eq. (3.9)-(3.12).

The relevance of Theorem 4.2 is that it suggests a clear answer to the research question
which has motivated this work, by highlighting the detrimental effect of the environmental
contamination on the transmission of EVD. More specifically, Theorem 4.2 in conjunction
with the inequality Renv

0 > Rh
0, show that not only the indirect contamination will increase

the basic reproduction number (thus, the fast spreading of the disease), but the severity of
the disease by increasing the endemic level (Ih(βhv) ≥ I∗h).

5 Numerical simulations

In this section, we present numerical simulations to support the theory presented in the
previous sections and numerically assess the effect of the environmental contamination.
The simulations are implemented in MatLab. The parameters values for human-human
transmission are mostly taken from [46,47,56], while almost all the parameters values for
environment-to-human-environment transmission have been assumed.

5.1 Sensitivity analysis

We have carried out the sensitivity analysis to determine the model’s robustness to
parameter values. This helps to identify the parameters that are most influential in deter-
mining disease dynamics [15]. A Latin Hypercute Sampling (LHS) scheme [8,37] samples
1000 values for each input parameter using a uniform distribution over the range of bio-
logically realistic values, with descriptions and references given in Table 2. Using system
(2.9) and a time period of 500 months, 1000 model simulations are performed by randomly
pairing sampled values for all LHS parameters. Five outcome measures are calculated for
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Parameters Range Values Units Source

Λh Variable 100 indiv.day−1 N/A
µh 0-1 0.33 day−1 [56]
µv 0-1 0.85 day−1 Assumed [7,42]
ξh = 1/τh 0-1 1/4 day−1 [46,56]
τh 1-7 4 day [46,56]
νh 1-5 1.2 day−2 Assumed
ω 1/2-1/21 1/21 day−1 [21,47]
γ 1/7-1/14 1/14 day−1 [56]
αh 10-100 50 cells.(ml.day.indiv)−1 [6]
θh = 1/rh 1/81-1 1/61 day−1 [47]
rh 1-81 61 day [47]
f 0.4-0.9 0.70 unitless [48,47,56]
K 106-109 106 cells.ml−1 [6]
βhh 0-1 day−1 Variable
βhv 0-1 day−1 Variable

Table 2 Numerical values for the parameters of model system (2.9).

each run: susceptible individuals, exposed individuals to EVD, infectious individuals, re-
covered individuals and the virus concentration over the model’s time span. Partial Rank
Correlation Coefficients (PRCC) and corresponding p-values are computed. An output is
assumed sensitive to an input if the corresponding PRCC is less than −0.50 or greater than
+0.50, and the corresponding p-value is less than 5%.

The results are displayed in Table 3 to Table 8.

PRCCs and significance
Parameters Sh Eh Ih Rh V

Λh 0.96∗∗ 0.013 −0.0016 −0.11 0.014

µh −1∗∗ −1∗∗ −0.88∗∗ −0.54∗∗ −0.25∗∗

νh 0.1 −0.044 0.022 −0.11 −0.79∗∗

τh −0.026 −0.1 0.032 0.18∗ 0.045

ξh −0.07 −0.066 0.093 0.01 −0.061

ω −0.026 −0.056 −0.067 −0.022 −0.058

γ −0.57∗∗ −0.98∗∗ 0.99∗∗ 0.92∗∗ 0.9∗∗

αh 0.041 0.12 −0.075 0.66∗∗ −0.0063

rh 0.046 −0.0023 −0.004 −0.03 0.9∗∗

θh 0.12 0.073 0.04 0.041 0.12

f 0.15∗ 0.021 0.031 −0.039 0.055

K −0.055 0.1 0.048 −0.91∗∗ −0.1

βhh −6.9e − 005 −0.05 0.014 0.054 −0.015

βhv −0.54∗∗ 0.37∗∗ −0.0093 −0.075 −0.12

µv 0.071 0.1 0.016 0.006 −0.063

dummy −0.033 0.15∗ −0.1 −0.17∗ 0.084

Table 3 PRCCs of model’s parameters at time t = 4 days

5.2 General dynamics

In this subsection, we numerically illustrate the asymptotic behavior of the full model
and the sub-model without the environment compartment. The GAS of the disease-free
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PRCCs and significance
Parameters Sh Eh Ih Rh V

Λh 0.94∗∗ −0.01 0.053 −0.037 0.012

µh −1∗∗ −1∗∗ −0.93∗∗ −0.86∗∗ −0.71∗∗

νh −0.05 −0.021 −0.035 −0.12 −0.72∗∗

τh −0.0026 −0.064 0.041 0.12 0.0006

ξh −0.033 −0.086 0.042 0.043 −0.049

ω 0.065 −0.068 −0.014 −0.018 −0.069

γ −0.72∗∗ −0.97∗∗ 0.94∗∗ 0.87∗∗ 0.9∗∗

αh 0.016 0.077 −0.11 0.55∗∗ −0.016

rh 0.12 −0.074 −0.077 −0.062 0.91∗∗

θh 0.018 0.015 0.035 0.019 0.13

f 0.088 0.016 0.064 −0.026 0.027

K −0.087 0.062 0.009 −0.87∗∗ −0.14

βhh −0.081 −0.0005 −0.018 0.079 −0.1

βhv −0.79∗∗ 0.79∗∗ 0.0096 −0.0052 −0.071

µv 0.019 0.069 −0.0032 −0.0087 −0.028

dummy 0.0011 0.094 −0.15∗ −0.15∗ 0.047

Table 4 PRCCs of model’s parameters at time t = 15 days

PRCCs and significance
Parameters Sh Eh Ih Rh V

Λh 0.89∗∗ 0.11 0.064 0.036 0.023

µh −0.99∗∗ −0.99∗∗ −0.97∗∗ −0.96∗∗ −0.87∗∗

νh −0.12 −0.022 −0.068 −0.13 −0.79∗∗

τh −0.049 −0.015 0.026 0.072 0.016

ξh −0.074 −0.043 0.05 0.092 −0.03

ω −0.0052 −0.15∗ 0.023 −0.041 −0.054

γ −0.56∗∗ −0.93∗∗ 0.9∗∗ 0.84∗∗ 0.85∗∗

αh 0.015 0.034 −0.17∗ 0.54∗∗ −0.033

rh 0.11 −0.09 −0.095 −0.027 0.89∗∗

θh −0.0039 0.11 0.013 0.006 0.09

f 0.04 −0.016 0.079 0.027 0.028

K −0.041 −0.018 −0.038 −0.86∗∗ −0.13

βhh −0.064 0.038 0.023 0.081 −0.097

βhv −0.7∗∗ 0.86∗∗ 0.17∗ 0.071 0.032

µv 0.0096 0.009 −0.037 −0.014 −0.043

dummy 0.052 0.07 −0.11 −0.14 0.014

Table 5 PRCCs of model’s parameters at time t = 30 days

equilibrium P0
h and the LAS of endemic equilibrium P∗h demonstrated in Theorem 3.5 and

Theorem 3.8 for the model with the environmental contamination are numerically sup-
ported by Fig. 2 and Fig. 3, respectively. However, Fig. 3 further suggests the GAS of P∗h.
Figure 4 illustrates the GAS of the disease-free equilibrium X0

h for the free-environmental
contamination sub-model (4.1) as established in Theorem 3.5, while Fig. 5 supports the
stability of the endemic equilibrium P∗h as shown in Theorem 3.8.
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PRCCs and significance
Parameters Sh Eh Ih Rh V

Λh 0.86∗∗ 0.38∗∗ 0.19∗ 0.089 0.04

µh −0.94∗∗ −0.99∗∗ −0.99∗∗ −0.99∗∗ −0.93∗∗

νh −0.17∗ −0.11 −0.13 −0.1 −0.86∗∗

τh −0.028 4.9e − 005 0.016 0.03 0.06

ξh −0.11 −0.065 0.014 −0.0012 −0.059

ω −0.053 −0.061 −0.0024 −0.025 −0.0073

γ −0.28∗∗ −0.7∗∗ 0.86∗∗ 0.84∗∗ 0.7∗∗

αh 0.051 −0.029 −0.26∗∗ 0.5∗∗ −0.041

rh 0.089 −0.15∗ −0.077 −0.031 0.79∗∗

θh 0.045 0.072 0.03 0.021 0.03

f −0.0058 0.0071 0.056 0.038 −0.0029

K −0.058 −0.11 −0.12 −0.88∗∗ −0.1

βhh −0.031 0.023 0.0039 −0.018 −0.11

βhv −0.5∗∗ 0.84∗∗ 0.57∗∗ 0.24∗∗ 0.14

µv −0.018 0.017 0.041 −0.0075 −0.025

dummy 0.0027 0.097 −0.074 −0.1 0.0062

Table 6 PRCCs of model’s parameters at time t = 60 days

PRCCs and significance
Parameters Sh Eh Ih Rh V

Λh 0.88∗∗ 0.34∗∗ 0.32∗∗ 0.12 0.048

µh −0.9∗∗ −0.98∗∗ −0.99∗∗ −1∗∗ −0.92∗∗

νh −0.11 −0.072 −0.19∗ −0.13 −0.86∗∗

τh −0.053 0.0068 0.014 −0.0015 0.098

ξh −0.12 −0.087 −0.023 −0.0091 −0.066

ω −0.12 −0.021 −0.024 −0.042 0.0067

γ −0.22∗∗ −0.38∗∗ 0.8∗∗ 0.83∗∗ 0.52∗∗

αh 0.016 −0.089 −0.3∗∗ 0.4∗∗ −0.041

rh 0.046 −0.083 −0.11 −0.052 0.64∗∗

θh 0.042 0.039 −0.0061 0.063 0.0012

f −0.051 −0.038 0.039 0.069 −0.043

K −0.1 −0.11 −0.13 −0.87∗∗ −0.077

βhh 0.052 0.048 0.027 −0.039 −0.13

βhv −0.42∗∗ 0.84∗∗ 0.74∗∗ 0.48∗∗ 0.16∗

µv −0.056 0.017 0.0018 −0.0081 −0.0073

dummy −0.031 0.076 −0.022 −0.045 0.03

Table 7 PRCCs of model’s parameters at time t = 90 days

5.3 Impact of the contaminated environment on the endemic level of EVD

Herein, we numerically assess the impact of the contaminated environment on the dynam-
ical transmission of Ebola.

Now, let us analyze the basic reproduction numberRenv
0 . The following numerical results

demonstrate the role of βhv and αh on the basic reproduction number Renv
0 . We begin by in-

vestigating how the basic reproduction numberRenv
0 depends on βhv and αh. The illustration

in Fig. 6 shows that, an increase in βhv and αh results to an increase in Renv
0 . This latter figure

also illustrates that for the chosen parameter values, if βhv does not exceed 0.5 (βhv < 0.5),
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Sensitivity index Parameters with significant sensitivity index
(A) Sensitivity analysis of Susceptible individuals Sh as output of interest

Day4 Day15 Day30
PRCC µh(−), Λh, γ(−), βhv(−), µh(−), Λh, βhv(−), γ(−), µh(−), Λh, βhv(−), γ(−),

(B) Sensitivity analysis of Exposed individuals Eh as output of interest
Day4 Day15 Day30

PRCC µh(−), γ(−), βhv, , µh(−), γ(−), βhv, , µh(−), γ(−), βhv, ,

(C) Sensitivity analysis of Infected individuals Ih as output of interest
Day4 Day15 Day30

PRCC γ, µh(−), , , γ, µh(−), , , µh(−), γ, , ,

(D) Sensitivity analysis of Recovered individuals Rh as output of interest
Day4 Day15 Day30

PRCC γ,K(−), αh, µh(−), K(−), γ, µh(−), αh, µh(−),K(−), γ, αh,

(E) Sensitivity analysis of Free virus individuals V as output of interest
Day4 Day15 Day30

PRCC rh, γ, νh(−), µh(−), rh, γ, νh(−), µh(−), rh, µh(−), γ, νh(−),

Table 8 PRCCs results for the model

then EVD can be controlled irrespective of the value of αh. The infection will equally persist
for βhv > 0.5. To add more evidence on the role of the contaminated environment, Fig. 7
shows the basic reproduction numbersRenv

0 andRh
0 versus the effective contact rate between

susceptible and infected human individuals βhh for βhv = 0.1 and the effective contact rate
between susceptible human individuals and Ebola viruses βhv for βhh = 0.2 when Λh = 500,
µh = 0.033, µv = 0.85, τh = 4, εh = 1/4, νh = 1.2, ω = 1/21, γ = 1/14, θh = 1/61, f = 0.5,
K = 106 and βhv = 0.1. It illustrates that Renv

0 and Rh
0 increases as βhh increases. Also, as βhv

increases, Renv
0 increases, while Rh

0 remains constant.
Figure 8 is an illustration of Theorem 4.2 when the endemic levels are reached for both

the model with and without the environmental contamination. This figure further shows
the increasing behavior of the full model-related infectious component with respect to the
indirect effective contact rate βhv. Once more, this highlights the detrimental role of the
contaminated environment on the transmission dynamics of EVD, for as the individuals
get contaminated from the environment, the number of infected individuals reached at the
endemic equilibrium increases.

Simulation results in Fig. 9 illustrate the effects of the variations of the environmental
contact rate βhv and the shedding rate αh on the number of infectious individuals at endemic
level I∗h. This figure illustrates that an increase on βhv and/or in the shedding rate αh in the
community will increase the prevalence of EVD cases. It suggests that, the survival of Ebola
viruses in the environment may accelerate the spread of EVD in the community. Thus, the
problem of biological control of the virus should be addressed in communities touched by
EVD in order to reduce the burden of the disease.

6 Conclusion and discussions

In this paper, we have formulated two new mathematical models for the dynamical trans-
mission of EVD in which the following factors are incorporated: (i) the indirect transmission
via the environment, (ii) the contamination through recovered individuals, (iii) the demo-
graphic dynamics as well as the concentration of Ebola viruses in the environment, (v)
the infection through contact with Ebola-deceased individuals (during funerals), (iv) the
dead-mediated and the clinically recovered-mediated transmissions using fractions of in-
fectious individuals and (vi) the virulence of the Ebola virus in Ebola-deceased individuals.
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Fig. 2 GAS of the disease-free equilibrium P0
h when Λh = 500, µh = 0.033, µv = 0.85, τh = 4, εh = 1/4, νh = 1.2, ω = 1/21,

γ = 1/14, αh = 0.95, θh = 1/61, f = 0.5, K = 106, βhh = 0.1 and βhv = 0.02 (so that Renv
0 = 0.582 < 1).

A qualitative analysis of the model has been presented and our main findings on the long
run of the system can be summarized as follows.

(1) The disease-free equilibrium for the full model is GAS whenever the corresponding
threshold quantity Renv

0 is less than or equal to unity.
(2) In the case Renv

0 > 1, there exists a unique globally asymptotically stable endemic equi-
librium for the full model.

(3) For the model without the environmental contamination, the corresponding disease-free
equilibrium is GAS when the corresponding basic reproduction number Rh

0 is less than
or equal to unity.
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Fig. 3 Stability of the endemic equilibrium P∗h when Λh = 500, µh = 0.033, µv = 0.85, τh = 4, εh = 1/4, νh = 1.2, ω = 1/21,
γ = 1/14, αh = 0.95, θh = 1/61, f = 0.6, K = 106, βhh = 0.3 and βhv = 0.03 (so that Renv

0 = 1.750 > 1.)

(4) This environmental-free model exhibits a unique endemic equilibrium, which GAS
whenever Rh

0 > 1.
(5) At the endemic level, for both cases in items (2) and (4) above, the number of infected

individuals reached with the influence of environmental transmission is larger than the
corresponding number of infected individuals in the absence of such influence.

Moreover, a quantitative investigation has been performed and the results are as follows:

– We have numerically confirmed all the theoretical results obtained with respect to the
asymptotic dynamics of the model under consideration.

– The sensitivity analysis of the model has been investigated. We have found that as the
time evolves, amongst others, the susceptible and infectious individuals are increasingly
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Fig. 4 GAS of the disease-free equilibrium X0
h when Λh = 500, µh = 0.033, µv = 0.85, τh = 4, εh = 1/4, νh = 1.2, ω = 1/21,

γ = 1/14, αh = 0.95, θh = 1/61, f = 0.6, K = 106, βhh = 0.01, βhv = 0.0 (so that Rh
0 = 0.058 < 1).

sensitive to both the environmental effective contact rate and the shedding rate. This
suggests a detrimental influence of the environmental contamination on the persistence
and the severity of EVD and provides a negative answer to the research question under
investigation.

– Throughout numerical simulations, we have found that some local stability results
established theoretical can be global.

The work in [1] provided a general mathematical model for the transmission dynamics of
EVD in a population stratified into two epidemiological settings: those in the community
and those within the health-care system. The model incorporated traditional/cultural be-
liefs and customs but did not assess the impact of the environmental contamination in the
transmission of EVD. Thus, a reasonable extension of our work will be to add the envi-
ronmental contamination in [1], even though the mathematical analysis will become more
complicated.

Appendix. Proof of Theorem 3.8

To establish Theorem 3.8 when Renv
0 > 1 which shows the local stability of subsystem (2.9),

we used the center manifold theory proposed in [13]. To this end, we introduce the following
change of variables: x1 = Sh, x2 = Eh, x3 = Ih, x4 = Rh, x5 = V. Therefore, x′1 = S′h, x′2 =
E′h, x′3 = I′h, x′4 = R′h, x′5 = V′. The disease-free equilibrium of subsystem (2.9) becomes
x∗0 = (Λh/µh, 0, 0, 0, 0).
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Fig. 5 Stability of the endemic equilibrium Ph when Λh = 500, µh = 0.033, µv = 0.85, τh = 4, εh = 1/4, νh = 1.2,
ω = 1/21, γ = 1/14, αh = 0.95, θh = 1/61, f = 0.6, K = 106, βhh = 0.3 and βhv = 0.0 (so that Rh

0 = 1.774 > 1.
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Fig. 6 (a) 3-D and (b) contour plot showing the effects of βhv and αh on the basic reproduction number Renv
0 when ,

Λh = 500 µh = 0.033, µv = 0.85, τh = 4, εh = 1/4, νh = 1.2, ω = 1/21, γ = 1/14, θh = 1/61, f = 0.5, K = 106 and βhh = 0.2.

Let σv > 0 be the non-negative real numbers such that βhv = σvβhh, , then the basic
reproduction number Renv

0 becomes

R
env
0 =

βhh
(
ΦhωKµhµv + αhσvΛhω

)
Kµhµv(µh + ω)(µh + γ)

.
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Fig. 7 Renv
0 and Rh

0 versus (a) the effective contact rate between susceptible and infected individuals βhh for βhv = 0.2 and
(b) the effective contact rate between susceptible individuals and Ebola viruses βhv for βhh = 0.2. For both figures, Λh = 500,
µh = 0.0033, µv = 0.85, τh = 4, εh = 1/4, νh = 1.2, ω = 1/21, γ = 1/14, θh = 1/61, f = 0.5, K = 106 and αh = 0.95.

Let βhh = φ be the bifurcation parameter, then solving the equation Renv
0 = 1 for βhh yields

βhh = φ = β∗hh =
Kµhµv(µh + ω)(µh + γ)
ΦhωKµhµv + αhσvΛhω

.

Notice that Renv
0 > 1 if and only if βhh > β∗hh.

With these notations, system (2.9) takes the form:

f1 := x′1(t) = Λh −
φΦhx1x3

x1 + x2 + x3 + x4
−
φσvx1x5

K + x5
− µhx1,

f2 := x′2(t) =
φΦhx1x3

x1 + x2 + x3 + x4
+
φσvx1x5

K + x5
−

(
µh + ω

)
x2,

f3 := x′3(t) = ωx2 −
(
µh + γ

)
x3,

f4 := x′4(t) = γ(1 − f )x3 − µhx4,

f5 := x′5(t) = αhx3 − µvx5.

(6.1)

The Jacobian matrix of subsystem (6.1) at the disease-free equilibrium x∗0 when φ = φ∗ is

Jφ∗ =



−µh 0 −φ∗Φh 0 −
φ∗σvΛh

µhK

0 −(µh + ω) φ∗Φh 0
φ∗σvΛh

µhK
0 ω −(µh + γ) 0 0
0 0 γ(1 − f ) −µh 0
0 0 αh 0 −µv


.

It is straightforward that the transformed system (6.1), withφ = φ∗ has a hyperbolic equi-
librium point (i.e., the Jacobian matrix Jφ∗ has a simple eigenvalue with zero real part (here,
zero is a simple eigenvalue), and the remaining eigenvalues have negative real parts). There-
fore the Center Manifold Theory [13] can applied to analyze the dynamics of subsystem (6.1)
near the bifurcation parameterφ = φ∗. It is easy to see that a corresponding right-eigenvector
of Jφ∗ associated to the zero eigenvalue is w = (w1,w2,w3,w4,w5)T , and a corresponding
non-negative left-eigenvector associated to zero is given by v = (v1, v2, v3, v4, v5), where
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Fig. 8 Comparison of I∗h and Ih at endemic levels when Λh = 500, µh = 0.033, µv = 0.85, τh = 4, εh = 1/4, νh = 1.2, ω = 1/21,
γ = 1/14, αh = 0.95, θh = 1/61, f = 0.5 and K = 106. (a) Infected individuals with and without environment for two different
values when βhh = 0.3 and βhv = 0.25 (so that Rh

0 = 1.750 and Renv
0 = 1.774); (b) Infected individuals with and without

environment for βhh = 0.2 and βhv = 0.4 (so that Rh
0 = 1.166 and Renv

0 = 1.205); (c) I∗h for four different values of βhv when
βhh = 0.2; (d) I∗h for three different values of αh when βhh = 0.2 and βhv = 0.1. This is an illustration of Theorem 4.2.
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Fig. 9 I∗h versus (a) the environmental effective contact rate βhv for αh = 0.9 and (b) the human shedding rate αh for βhv = 0.1
when Λh = 500, µh = 0.033, µv = 0.85, τh = 4, εh = 1/4, νh = 1.2, ω = 1/21, γ = 1/14, θh = 1/61, f = 0.5, K = 106 and βhh = 0.2.


w1 = −µv(µh + ω)(µh + γ),
w2 = µhµv(µh + γ),
w3 = µhµvω,
w4 = µvγ(1 − f )ω,
w5 = µhαhω,

and


v1 = 0,
v2 = µhµvωK,
v3 = µhµvK(µh + ω),
v4 = 0,
v5 = σvΛhω.
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To apply Theorem 4.1 in [13] and determine the nature and the direction of the bifurcation
at Renv

0 = 1, we must compute the following quantities:

a =

5∑
k, j,i=1

vkwiw j
∂2 fk
∂xi∂x j

(x∗0, φ
∗); b =

5∑
k,i=1

vkwi
∂2 fk
∂xi∂φ

(x∗0, φ
∗)

The only non-vanishing second partial derivatives of f corresponding to the non-zero
components of v evaluated at

(
x∗0, φ

∗
)

are:

∂2 f2
∂x2∂x3

(x∗0, φ
∗) =

∂2 f2
∂x3∂x4

(x∗0, φ
∗) =

∂2 f2
∂x3∂x5

(x∗0, φ
∗) = −φ∗Φh

µh

Λh
∂2 f2
∂x2

3

(x∗0, φ
∗) = −2φ∗Φh

µh

Λh
;

∂2 f2
∂x1∂x5

(x∗0, φ
∗) =

φ∗σv

K
;

∂2 f2
∂x3∂φ∗

(x∗0, φ
∗) = σv.

Thus,

a = v2

2w1w5
∂2 f2
∂x1∂x5

+ 2w3
∂2 f2
∂x2∂x3

(x∗0, φ
∗) (w2 + w4 + w5) + w2

3

∂2 f2
∂x2

3

(x∗0, φ
∗)


= −2v2

{
− w1w5

φ∗σv

K
+ w3φ∗Φh

µh

Λh
(w2 + w3 + w4 + w5)

}
= −2v2µhµvω

{ (µh + ω)(µh + γ)φ∗αhσv

K

}
−2v2µhµvω

{φ∗Φhµh

Λh

[
µhµv(µh + γ) + µhµvω + µvγ(1 − f ) + µhαhω

] }
< 0

b = v2w3
∂2 f2
∂x3∂φ

(x∗0, φ
∗) = σvµ2

hµ
2
vω

2K > 0.

Thanks to item 4 of Theorem 4.1 in [13], the endemic P∗h of sub-model (2.9) is locally asymp-
totically stable whenRenv

0 > 1, but near to 1. Moreover, the bifurcation of the subsystem (2.9)
around Renv

0 = 1 is trans-critical. The proof is complete.
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