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Abstract: A design pattern approach for conceptualizing the cartographic design 

process is presented. A design pattern presents a solution to a problem by 

describing solutions for the commonalities in problems to be solved. The 

commonalities of the cartographic design process are identified and MapDesign 

is described, a design pattern for generating a set of maps from big geospatial 

data. The MapDesign pattern allows increased map throughput through 

automation and distributed processing, which frees up time for cartographers and 

geographic information scientists to make sense of big geospatial data and to 

select and refine map designs. The description of the MapDesign pattern can aid 

software developers in understanding how to build tools that allow automation 

and distributed processing in parts of the map design process for visualising big 

geospatial data. Conversely, the visual nature of design patterns can assist 

cartographers with understanding how software components interact to produce 

maps. 
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1. Introduction  

Today, ever increasing volumes of data are generated continuously by a large variety of 

sensors, including smartphones, social media users, global positioning systems (GPSs) 

and radio-frequency identification (RFID) tags. The resulting huge volumes of complex 

datasets have become known as ‘big data’. Four characteristics distinguish big data 

from other data: volume, variety, velocity, and veracity (4Vs) (Saha and Srivastava 

2014; Tsou 2015; Ward and Barker 2013). In many cases, big data includes a direct or 

indirect reference to a location on the Earth and can then be referred to as ‘big 
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geospatial data’.  

Big (geospatial) data presents many challenges (Lee and Kang 2015; Robinson 

et al. 2017), amongst others, for the analysis and understanding of large volumes of 

data. Visualisations can assist with understanding such large volumes of data. In the 

case of large volumes of geospatial data, geovisualisations (maps) can assist with 

understanding the data, e.g. by showing spatial patterns in the data. A classic example is 

the map used by Dr John Snow to detect clusters of cholera cases in London in 1854 

(Johnson 2006). Today, maps successfully show spatial patterns in much larger volumes 

of data (MacEachren 1995; Slocum et al. 2009). In some cases, the pattern can be 

detected by just mapping the data (MacEachren and Ganter 1990); in other cases, a 

cartographic technique, such as dot density maps or choropleth maps, make the spatial 

pattern visible (MacEachren 1982; Brewer et al. 1997).  

A design pattern presents a solution to a problem by describing solutions for the 

commonalities in problems to be solved. In this article, we show how design patterns 

can be used to describe solutions to the commonalities and variations in map design, 

and discuss how such patterns can contribute to map design challenges with big 

geospatial data. Firstly, the cartographic design process is presented and extended into a 

design pattern – MapDesign – for designing and generating a set of maps. Secondly, 

software design patterns are used to conceptualise MapDesign. Opportunities for 

automation and parallel processing are pointed out and discussed.  

The paper is structured as follows: Section 2 provides background on the 

cartographic design process and software design patterns. In Section 3, we present 

MapDesign, a design pattern for map design with big geospatial data. The structure of 

MapDesign is presented in terms of well-known software design patterns. An evaluation 
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and discussion of the design pattern approach follows in section 4 and shows that 

benefits are achievable. Concluding remarks are presented in section 5. 

2. Background 

2.1. Cartographic design process  

Cartography is generally defined as the art, science and technology of making and using 

maps (ICA 2003). As a discipline, cartography deals with the conception, production, 

dissemination and study of maps (ICA 2011). Before the 1960s, cartography was 

focused on the manufacturing of maps (Kraak and Ormeling 2003). Due to 

advancements in technologies, as well as the emergence of social media and 

crowdsourcing, the focus in cartography has shifted to conveying spatial information by 

means of a map (Kraak and Ormeling 2003; MacEachren 1995). Cartography 

encapsulates all the tools and processes involved in the production of all types of maps 

(Bolstad 2012; Slocum et al. 2009). Tyner (2010) extends the definition to include the 

design, compilation, construction, projection, reproduction, use, and distribution of 

maps.  

The primary aim of cartography is to communicate geospatial information by 

means of a map. In order to achieve this aim, one needs to identify the intended 

audience, the information to be communicated, and the area of interest (Bolstad 2012; 

Kraak and Ormeling 2003; Slocum et al. 2009; Tyner 2010). These aspects impact on 

other cartographic design decisions, such as the cartographic technique, the scale and 

symbols. The cartographic technique can contribute to, and aid in, the interpretation of 

the map, or it can hinder and obstruct the interpretation thereof. It is thus an important 

consideration in cartographic design for big geospatial data (Rita et al. 2010). The 

cartographic design process in Figure 1 is adapted from various researchers 
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(MacEachren 1995; Slocum et al. 2009; Tyner 2010). The tree in Figure 2 illustrates 

dependencies of design choices in the cartographic design process. Depending on the 

selected cartographic technique, certain classifications are appropriate; and depending 

on the selected classification method, a different numbers of classes are possible.  

 

Figure 1. The cartographic design process (adopted from MacEachren 1995; Slocum et al. 2009; Tyner 

2010) 
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Figure 2. Design choice dependencies 
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The cartographic design process is generally represented in a linear fashion 

(even though some parts of the process may happen in parallel) and designed with an 

individual cartographer in mind who produces a single map. This can be contributed to 

the fact that map making used to be a manual and paper-based process, where any 

changes to a hardcopy map implied starting the process anew. With the rapid increase in 

the volumes of geospatial data and parallel processing opportunities, the cartographic 

design process may need to be adapted. Also, this representation of the cartographic 

design process does not identify design choices and dependencies between them; this 

information is required for software developers who want to automate (parts of) the 

process.  

2.2. Software design patterns 

In software engineering, a design pattern describes a reusable solution for a problem 

that occurs commonly (Shalloway and Trott 2004). Shalloway and Trott (2004) define a 

pattern as ‘a solution to a problem in a context’. Design patterns are developed by 

examining solutions to common problems in existing software, and in best practices 

developed by programmers. A design pattern specifies a solution to a common problem 

at a next level of abstraction compared to object-oriented design. Design patterns have 

the same advantages as object-orientated programming, including abstraction (to use the 

object, a programmer has to only know its interface), reuse (once created, objects can be 

reused by programmers in other programs), and encapsulation (hiding implementation 

details from users of the objects).   

Software design patterns are grouped into the following types: creational, 

behavioural and structural patterns. Creational patterns facilitate the work of creating, 

initializing and configuring objects and classes. They are useful when multiple instances 
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of an object need to be rendered, stored or duplicated. Behavioural patterns facilitate the 

work of algorithmic calculations and communication between classes. Lastly, structural 

patterns enable the modification of the structure of the code, such as the structural 

associations of classes, class associations and hierarchies of class structures. In the 

subsections, we briefly introduce those software design patterns included later in this 

article. The descriptions of the design patterns are based on Gamma et al. (1994) and 

Shalloway and Trott (2004). 

The Object Management Group (OMG) defines Unified Modeling Language 

(UML) as a graphical language for visualising, specifying, constructing, and 

documenting the artifacts of a software-intensive system (OMG 2015). UML, 

specifically class diagrams, is typically used to visually describe the structure of design 

patterns. UML class diagrams describe the structure of a software system, i.e. classes 

with their attributes and operations, and the relationships between classes. UML 

sequence diagrams (also called interaction diagrams) illustrate how objects (instances of 

classes) interact with each other.  

2.2.1 Factory method 

Table 1 provides and overview of the Factory method and the structure is depicted in 

Figure 3.  
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Table 1. Overview: Factory method design pattern (based on Gamma et al. 1994; Shalloway and Trott 

2004) 

Item Description  

Intent Define an interface for creating an object, but let subclasses decide which 

class to instantiate. 

Problem  Use the Factory method when it cannot be anticipated which derived class 

needs to be instantiated. 

Solution The derived class makes the decision on which class to instantiate and how to 

instantiate it.  

Participants  Product, ConcreteProduct, Creator, ConcreteCreator 

Collaborations Creator relies on its subclasses to define the factory method so that it returns 

an instance of the appropriate ConcreteProduct. 

Consequences Clients have to subclass the Creator class to make a particular 

ConcreteProduct.  

Figure 3. The structure of the Factory method design pattern (redrawn from Gamma et al. 1994) 

2.2.2 Strategy  

Table 2 provides and overview of the Strategy design pattern and the structure is 

depicted in Figure 4.  

Table 2. Overview: Strategy design pattern (based on Gamma et al. 1994; Shalloway and Trott 2004) 

Item Description 

Intent Define a family of algorithms, encapsulate each one, and make them 

interchangeable. 

Problem  Use this pattern if the selection of an algorithm to be applied depends on the 

client making the request or the data being acted on.  

Solution Separate the selection of the algorithm from the implementation of the 

algorithm so that the selection can be made based on the context. 

Participants  Strategy, ConcreteStrategy, Context 

Collaborations Strategy and Context interact to implement the chosen algorithm. A context 

forwards requests from its clients to its strategy. 

Consequences The pattern defines a family of algorithms; conditional logic is eliminated; 

and each algorithm must be invoked in the same way. 
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Figure 4. The structure of the Strategy design pattern (redrawn from Gamma et al. 1994) 

2.2.3 Builder  

Table 3 provides and overview of the Builder design pattern and the structure is 

depicted in Figure 5.  

Table 3. Overview: Builder design pattern (based on Gamma et al. 1994) 

Item Description 

Intent Separate the construction of a complex object from its representation so that 

the same construction process can create different representations. 

Problem  Use this pattern if the algorithm for creating a complex object should be 

independent of the parts that make up the object. The construction process 

must allow different representations for the object that is constructed. 

Solution Defines an abstract operation for the construction of each component that a 

director may want to create. By default, the operation does nothing by 

default. Each ConcreteBuilder overrides those operations it’s interested in 

creating. 

Participants  Builder, ConcreteBuilder, Director, Product 

Collaborations The client creates the Director object and configures it with the desired 

Builder object. The Director notifies the builder whenever a part of the 

product should be built. The Builder handles requests from the director and 

adds parts to the product. The client retrieves the product from the builder. 

Consequences With this pattern, one can vary a product’s internal representation; isolate the 

code for construction and representation; and one has finer control over the 

construction process. 
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Figure 5. The structure of the Builder design pattern (redrawn from Gamma et al. 1994) 

2.3 Related work 

Manually designing a map can be very time consuming, even if software is used, and 

various parts of the map design process have been automated, for example, the 

generalisation of features and symbol placement (Foerster et al. 2010; Harrie and Revell 

2007; Kumar 2000; Li 2015). However, there has also been the need to find new 

approaches to design and generate maps from big geospatial data.  

Traditional cartographic tools and processes are designed for small well-defined 

datasets that produce a single map. Cartographers and geographic information scientists 

have to find new ways of designing and generating maps from big geospatial data. 

Researchers have approached this challenge in various ways (Krimbacher 2014; 

Moncrieff et al. 2016; Rautenbach et al. 2013). For example, Rautenbach et al. (2013) 

present ThematicWS, a web service that produces choropleth and proportional symbol 

maps by orchestrating distributed web services: a central controlling process executes 

web services in a specified order and manner to produce the maps; it also handles any 

interactions between the web services. Similarly, Krimbacher (2014) designed and 

developed a service-orientated architecture for thematic map production. To deal with 

rapidly increasing volumes of data, Moncrieff et al. (2016) developed a platform for the 
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exploration and analysis of large dynamic geospatial datasets. Mapping functionality 

was encapsulated in standard web services.  These approaches are typically based on the 

cartographic design process and exhibit commonality (e.g. the order of map design 

tasks) and variation (e.g. different cartographic techniques).  

A design pattern presents a solution to a problem by describing solutions for the 

commonalities in problems to be solved. Software design patterns arose, amongst 

others, from architects who argued that judging the beauty of a building is not only a 

matter of taste; they argued that the quality of the design can also be objectively 

assessed. This idea was transferred to software design in the 1990s (Gamma et al. 1994) 

and many software design patterns have been described since then (Millet and Tune 

2015). It is important to note that even if the pattern is used repeatedly to solve a 

common problem, the outcome, the building or software artifact, may be totally 

different. Visualisation design patterns have been described (Chen 2004, Heer and 

Agrawala 2006, Stolte et al. 2002), some of them for maps, but none of them describe 

the map design process. 

Among the benefits attributed to studying design patterns are that design 

patterns provide a higher perspective on analysis and design, and that design patterns 

improve communication and individual learning. On the practical side, design patterns 

improve the quality of software by simplifying the code and making it easier to 

construct and maintain the code.  

Various design pattern approaches for information visualisation and geographic 

information science have been proposed. For example, Stolte et al. (2002) described 

four patterns that capture the zoom structures in their system, one of them for thematic 

maps. Carral et al. (2013) propose a scale ontology design pattern which can be used to 

document and publish knowledge about map scaling applications on the web. 
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According to Heer and Agrawala (2006), despite a diversity of software architectures 

supporting information visualisation, it is often difficult to identify, evaluate, and re-

apply the design solutions implemented within such frameworks. To overcome this, 

they captured successful solutions as design patterns. These abstract descriptions of 

interacting software components can be customised by programmers to solve 

visualisation design problems within a particular context. 

Chen (2004) described visualisation design patterns that summarise common 

practices and techniques applied in the process of dynamic, analytical data visualisation, 

including maps. They distinguish between visualisation design patterns for users of 

visualisation systems to model, design and perform visualisation tasks, and software 

design patterns for developers to design and implement a visualisation system. They 

point out that visualisation design patterns could impact software development and 

become special software design patterns used by developers of visualisation systems. 

Gordillo et al. (1999) describe design patterns for the most common design 

problems that developers of geographic information system (GIS) applications must 

face. Camara et al. (2001) implemented a number of well-known software design 

patterns in the open source GIS software library, TerraLib. They argue that design 

patterns are well suited to capture the complexity of the components of a GIS. Others 

have also followed this approach, e.g. GeoTools
1
. 

While others have focussed on GIS software, visualisation tasks and 

architectures that support information visualisation, this article expands the cartographic 

design process into a design pattern for map design of a set of maps. The structure of 

this pattern is described in terms of a number of well-known software design patterns. 

                                                           

1
 http://docs.geotools.org/latest/userguide/tutorial/factory.html  

http://docs.geotools.org/latest/userguide/tutorial/factory.html
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3. A design pattern approach for map design 

In this section, we follow the method proposed by Shalloway and Trott (2004) for 

describing a design pattern. In 3.1, the concepts (commonalities) and concrete 

implementations (variations) in the problem domain (map design) are identified. Then, 

after the concept for the required functionality (map design) has been identified, the 

interfaces for the abstractions that encapsulate this are specified in terms of a number of 

well-known software design patterns.  

The first commonality in the cartographic design process is the order of the map 

design tasks (or steps). In Figure 6, we fill in details for each step in the process 

presented earlier in Figure 1. These sub-steps present commonalities in the map design 

process, such as standardising the data and selecting colour schemas for styling. The 

details also represent the variation, such as different ways of standardisation or 

classification of the data.  
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Figure 6. Commonalities and variations in the cartographic design process 

Next, the commonalities and variations for each step are identified with reference to 

Figure 6. Opportunities for automation and parallelisation are identified.  

 

1) Consider the real world phenomenon 

The real world phenomenon to be mapped is a commonality with an endless list 

of variations; theoretically, any real world phenomenon for which big geospatial 

data exists can be mapped. This step cannot be automated. 

2) Decide on the purpose and intended audience  

The cartographer establishes the intent or message of the map that needs to be 
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produced. This is the most important step of the process, as all design and 

implementation choices that follow depend on the outcome of this step. The 

purpose, target audience and output medium are commonalities. Variations for 

the purpose and target audience are open-ended and cannot be automated. Many 

variations in the output media are possible, but any specific implementation is 

likely to implement a finite number of variations.  

3) Collect data 

The cartographer reviews data and identifies one or more datasets suitable for the 

purpose. The theme (attribute/s) in the dataset(s) and the extent (e.g. geographic 

and/or temporal) of interest for the map are specified. The dataset identifier, 

theme and extent are commonalities. Variations of these depend on the outcome 

of earlier steps in the process, e.g. appropriate extents for the data depends on the 

purpose of the map. 

4) Design and construct a set of maps  

During this step, design choices are specified and then the set of maps is 

generated. In some cases, there are dependencies between design choices, e.g. the 

cartographic technique determines which classification methods are applicable (if 

any). Different implementations (variations) of projection, standardisation and 

classification methods are possible. For the other design choices – scale, styling 

and layout – a wide range of options are possible. A cartographer typically plays 

around with different combinations of design choices until satisfied that a map 

meets all the requirements. A map design tool could propose a first set of 

combinations of design choices, which the cartographer adjusts and refines. To 
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facilitate automation and parallelisation, it must be possible to generate a map 

from a combination of pre-specified design choices. This will also make it 

possible to generate a set of maps in parallel. Constructing (rendering) a map 

based on a combination of design choices is another commonality. 

5) Evaluate the set of maps  

The set of maps is evaluated by the cartographer. The final map is selected from 

the subset of map that meets the purpose, i.e. successfully communicates the 

intended message. The evaluation is subjective, relying on the cartographer’s 

experience and preferences. This step cannot be automated. If necessary, the 

previous step is repeated with revised combinations of design choices to produce 

a revised set of maps.   

Final map  

The cartographer selects the map, which, according to him/her, fulfils the 

purpose by successfully communicating the message to the intended target 

audience. The process ends.  

Table 4 describes MapDesign, the design pattern for the above process. 
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Table 4. The MapDesign design pattern 

Item Description  

Pattern name MapDesign 

Intent Generate a set of maps from big geospatial data 

Problem  Maps are generally created by repeating the same steps iteratively until a 

desired design solution is obtained. This process can be time consuming and 

user interaction intensive. In the case of big geospatial data, executing parts of 

the process in parallel increases throughput. 

Solution Allows the cartographer to specify a dataset(s), a theme (attributes) and extent 

from which a set of maps is generated simultaneously, each with a different 

combination of design choices. Maps in this set are evaluated, and if 

necessary, design choices are adjusted and a new set of maps is generated 

until the cartographer selects the final map.  

Participants  MapCreator, ConcreteMapCreator, MapDesign, ConcreteMapDesign, 

ClassificationMethod, ConcreteClassificationMethod, StandardisationMethod, 

ConcreteStandardisationMethod, MapBuilder, ConcreteMapBuilder 

Collaborations The MapCreator relies on its subclasses to define the createMap method so 

that it returns an instance of the appropriate ConcreteMapDesign. 

StandardisationMethod and ClassificationMethod interact with MapDesign to 

execute the chosen algorithm 

MapDesign configures the map. It notifies MapBuilder whenever an element 

of the map should be built. MapBuilder handles these requests and adds 

different elements to the map. MapDesign retrieves the rendered map from 

the ConcreteMapBuilder. 

Consequences Selected steps in the map design process can be automated and generating a 

set of maps in parallel reduces the need for user intervention and increases 

throughput. This allows the cartographer to focus on selecting and refining 

design choices. The implementation can be distributed in a cloud environment 

so that different parts of the process, e.g. standardisation, classification and 

rendering, can be executed in parallel. 

 

To demonstrate the intent of the design pattern, Figure 7 shows the set of maps for a 

specific combination of design choices.  
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Figure 7. Sets of maps generated for a specific combination of design choices. 

The diagram in Figure 8 describes the generic structure of the MapDesign pattern in 
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terms of well-known software design patterns.  

 

Figure 8. The generic structure of the MapDesign design pattern  

 

 

class MapCreator { 

   

  DataSpecification data; 

  DesignSpecification design; 

  LayoutSpecification layout; 

  Stylesheet styling; 

 

  // Fill in data specification 

  data.datasetIdentifier =  

  data.extent =  

  // etc. 

 

  // Fill in design specification 

  design.projection =  

  design.scale =  

  // etc. 

 

  // Fill in layout specification 

  layout.border =  

  layout.legend =  

  // etc. 

 

  // Fill in styling specification 

  styling.colourScheme =  

  styling.symbology =  

  // etc. 
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  MapDesign map = createMap(data, design, layout, styling); 

 

  StandardisedValue standardisedValues = map.standardise(data); 

  ThematicClass classification = map.classify(data, 

standardisedValues,  

design.numberOfClasses); 

   

  map.render(data, classification, standardisedValues,  

             layout, styling);  

 

  return; 

} 

 

class ChoroplethMapCreator { 

       

  public Map createMap(DataSpecification data,  

 DesignSpecification design, 

 LayoutSpecification layout, 

 Stylesheet styling ){   

         

    return new ChoroplethMap(data, design, layout, styling);  

  }   

}   

Figure 9. Pseudo code for the MapCreator and one kind of ConcreteMapCreator 

 

We implemented the MapDesign design pattern in Java to evaluate and verify it. The 

implementation was done with NetBeans 8.2
2
 on a personal computer running MacOS 

Sierra. All the classes and methods of the MapDesign pattern were implemented for 

choropleth and proportional symbol maps with three different standardisation (area-

based, ratio and density) and classification (natural breaks, quantiles and equal 

intervals) methods. The pseudo code to create a choropleth map is shown in Figure 9. 

The sequence diagram in Figure 10 shows how the classes in the MapDesign pattern 

interact with each other to produce the map.  

                                                           

2 https://netbeans.org  

https://netbeans.org/
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Figure 10. Sequence diagram for the MapDesign pattern 

4. Discussion 

In this article, we presented MapDesign, a design pattern for generating a set of maps, 

each with a different combination of design choices. MapDesign is based on 

commonalities (e.g. the order of tasks or steps in the design process and a set of design 

choices) and variations (e.g. specific design choices, such as a specific cartographic 

technique). We pointed out those parts of the design pattern that can be automated. The 

structure of MapDesign was illustrated in UML. 

The design pattern approach has a number of benefits: 1) it makes it possible to 

specify and produce a set of maps from the same input data; 2) a distributed 

implementation with parallel processing, e.g. in a cloud environment, is possible and 

would reduce throughput time; 3) the design pattern is extendible, i.e. additional design 



22  

choices, such as cartographic techniques and classification methods, can be added; 4) 

using software design patterns that are well known to computer scientists reduces 

programmers’ cognitive load when developing or reading code that includes 

cartographic concepts novel to them; and finally, 5) producing a set of maps from the 

same input data frees up time for the cartographer to evaluate, refine and select a map 

design. The results contribute to understanding how tools for the automated design and 

generation of maps from big geospatial data can be developed to assist cartographers 

and geographic information scientists with map design.  

MapDesign can be implemented in a distributed fashion, taking advantage of 

parallel processing and/or (elastic) processing resources available in a cloud 

environment. These are important considerations when generating maps from big 

geospatial data and/or when there is a need to create large volumes of maps. For 

example, MapDesign could be implemented as web services that access distributed big 

geospatial data sources on the web, similar to the architecture proposed by Moncrieff 

(2016) for visual analytics; or by orchestrating a number of web services, an 

architecture proposed by Rautenbach et al. (2013). 

MapDesign differs from the ‘traditional’ cartographic design process or 

cartographic communication model (MacEachren 1995; Slocum et al. 2009; Tyner 

2010) because it generates a set of maps (as opposed to a single map). Instead of 

iteratively fiddling around with a single map design, a set of maps is generated 

simultaneously and the resulting map designs are evaluated and compared by a (human) 

cartographer. If necessary, a revised set of maps is generated for further evaluation until 

the final map is selected. In this way, time-consuming trial-and-error design refinements 

are done in parallel, allowing the cartographer can evaluate more combinations of 
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design choices in a shorter period of time. MapDesign is not aimed at removing the 

human from the map design process, but rather to assist the human with map design.  

The cartographic technique can contribute to, and aid in, the interpretation of a 

map, or it can hinder and obstruct the interpretation thereof. The choice of cartographic 

technique is thus an important consideration in cartographic design (MacEachren and 

Ganter 1990; Brewer et al. 1997; MacEachren 1995; Slocum et al. 2009). MapDesign 

assists the cartographer with choosing an appropriate cartographic technique because it 

reduces the time required to explore and compare different cartographic techniques. In 

the same way, MapDesign is conducive to education because a student or learner can 

readily compare the effects of different combinations of design choices (reference about 

challenges of teaching which cartographic technique is best). 

Krimbacher (2014) suggests that a map can be automatically generated from a 

comprehensive map description, i.e. each map description is a unique combination of 

map design choices. Such map descriptions could be stored for future use, e.g. to 

generate the same map on a new version of the data. The MapDesign design pattern 

allows this use case.  

Communication is a significant challenge in software design (Parnas 2009; 

Capretz and Ahmed 2010; Ahmed et al. 2012). One has to bridge the semantic gap 

between users’ understanding of the business or real world, and the software 

developers’ design of a system that will represent the real world. When designing 

software for mapping, there is a semantic gap between cartographers (who typically do 

not understand code in a programming language) and software developers (who are not 

familiar with map design). The visual nature of design patterns presented in UML 

facilitates communication between stakeholders from different disciplines (Shalloway 

and Trott 2005, Pilone 2005, Petre 2013).  
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The description of MapDesign in this article can aid software developers in 

understanding how to build mapping tools for visualising big geospatial data into a set 

of maps. By using software design patterns that are well known to software developers, 

such as the Factory method, Strategy and Builder, the software developers’ cognitive 

load is reduced when developing or reading code that includes cartographic concepts 

novel to them (Kolfschoten et al. 2010). Design patterns simplify the code because 

abstract classes represent commonalities, e.g. the commonality standardising data is 

represented in the abstract class, StandardisationMethod. Similarly, the description of 

MapDesign can assist cartographers with understanding the software components 

involved, how they are related to each other, and how they interact with each other. 

From a software engineering perspective, the MapDesign design pattern has all 

the advantages that come with object-oriented design, such as: 

 abstraction: to use a specific object (e.g. MapDesign or StandardisationMethod), 

a programmer has to only know its interface; 

 reuse: once objects, such as the different ConcreteMapBuilders, are created, they 

can be reused by programmers in other programs; 

 encapsulation: implementation details are hidden from users of the objects (e.g. 

the details of the algorithms that implement different standardisation methods); 

and  

 extendibility: objects, e.g. ClassificationMethod, can be extended by adding 

specialisations that inherit the attributes and functionality of the base class. 

The MapDesign design pattern can contribute to overcoming the challenge of 

analysing and understanding large volumes of data. For example, studying different 

visualisations (map) of the same big geospatial data can assist with understanding the 
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data; also, generating a set of maps in parallel can speed up the analysis of big 

geospatial data.  

5. Conclusions  

In this paper, we presented, MapDesign, a design pattern for incorporating automation 

and parallelisation into the cartographic design process. This allows increased map 

throughput, which is essential in the age of big geospatial data. The pattern is based on 

commonalities (e.g. a set of design choices) and variations (e.g. specific design choices, 

such as the cartographic technique). MapDesign is conceptualized in terms of a number 

of well-known software design patterns, namely Factory method, Strategy and Builder.   

 ‘Converting’ the cartographic design process into a design pattern that can be 

understood and used by software developers, facilitates communication between 

cartographers and software developers. The mapping design pattern helps software 

developers to understand what map making entails, so that they are in a position to 

develop tools for automating and parallelising map making from big geospatial data.  

As a next step, we want to focus on implementing serialization for a 

comprehensive set of design choices. Such a serialization could contribute towards map 

design interoperability: given the same set of design choices, different applications 

should be able to render identical maps. Another interesting direction would be 

intelligent map design, i.e. software that proposes an appropriate set of design choices, 

based on the characteristics of the input data.  

The MapDesign pattern can guide software developers in building the tools that 

are required to automate and parallelise map design with big geospatial data, thus 

allowing cartographers and others to make sense of big geospatial data. 



26  

References 

Ahmed, F., Capretz, L. F., and Campbell, P. 2012. Evaluating the Demand for Soft 

Skills in Software Development. IT Professional, 14(1), pp.44-49.  

Bolstad, P. 2012. GIS Fundamentals: A First text on Geographic Information Systems. 

4th ed. St. White Bear, United States of America: Eider Press. 

Brewer, C. A., MacEachren, A. M., Pickle, L. W., and Herrmann, D. 1997. Mapping 

mortality: Evaluating color schemes for choropleth maps. Annals of the 

Association of American Geographers, 87(3), pp.411-438.   

Camara, G., Souza, R. C. M., Pedrosa, B. M., Vinhas, L., Monteiro, A. M. V., Paiva, J. 

A. C., Carvalho, M. T., Raoult, B. 2001. Design patterns in GIS development: 

the TerraLib experience. III Simposio Brasileiro de GeoInformatica, Rio de 

Janeiro, RJ. 

Capretz, L. F., and Ahmed, F. 2010. Making sense of software development and 

personality types. IT Professional, 12(1), pp.6-13. 

Carral, D., Scheider, S., Janowicz, K., Vardeman, C., Krisnadhi, A. A., and Hitzler, P. 

2013. An Ontology Design Pattern for Cartographic Map Scaling. Lecture Notes 

in Computer Science, 7882, pp.76-93. 

Chen, H. 2004. Towards Design Patterns for Dynamic Analytical Data Visualization. 

Proceedings of SPIE Visualization and Data Analysis, 18 January 2004, San 

Jose, United States of America.  

Foerster, T., Stoter, J., and Kraak, M-J. 2010. Challenges for Automated Generalisation 

at European Mapping Agencies: A Qualitative and Quantitative Analysis. The 

Cartographic Journal, 47(1), pp.41-54. 

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1994. Design Patterns: Elements of 

Reusable Object-Oriented Software. Indianapolis, United States of America: 

Addison-Wesley Professional. 

Gordillo, S., Balaguer, F., Mostaccio, C., Das Neves, F. 1999. Developing GIS 

Applications with Objects: A Design Patterns Approach. GeoInformatica, 3(1), 

pp.7-32. 

Harrie, L., and Revell, P. 2007. Automation of Vegetation Symbol Placement on 

Ordnance Survey 1:50 000 Scale Maps. The Cartographic Journal, 44(3), 

pp.258-267. 



27 

Heer, J., and Agrawala, M. 2006. Software Design Patterns for Information 

Visualization. IEEE Transactions on visualization and computer graphics, 

12(5), pp.853–860. 

International Cartographic Association (ICA). 2003. A Strategic Plan for the 

International Cartographic Association 2003-2011. Available online at 

http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2003-

2011.pdf, accessed 4 April 2017.  

International Cartographic Association (ICA). 2011. Strategic Plan for the International 

Cartographic Association 2011-2019. available online at 

http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2011-

2019.pdf, accessed 4 April 2017.  

Johnson, S. 2006. The Ghost Map: The Story of London's Most Terrifying Epidemic - 

and How It Changed Science, Cities, and the Modern World. London, England: 

Penguin Books. 

Kolfschoten, G., Lukosch, S., Verbraeck, A., Valentin, E., and de Vreede, G-J. 2010. 

Cognitive learning efficiency through the use of design patterns in teaching. 

Computers and Education, 54, pp.652-660.  

Kraak, M-J., and Ormeling, F. 2003. Cartography: visualization of geospatial data. 

Essex, England: Pearson Education. 

Krimbacher, A. 2014. Service-oriented Architecture for Thematic Cartography on the 

Web. MSc thesis, Eidgenossische Technische Hochschule Zurich, Switzerland.  

Kumar, N. 2000. Automation and Democratization of Cartography: An Example of a 

Mapping System at CEM, University of Durham. The Cartographic Journal, 

37(1), pp.65-77.  

Lee, J-G., and Kang, M. 2015. Geospatial Big Data: Challenges and Opportunities. Big 

Data Research, 2(2), pp.74-81. 

Li, Z. 2015. General Principles for Automated Generation of Schematic Network Maps. 

The Cartographic Journal, 52(4), pp.356-360. 

MacEachren, A. M. 1982. The role of complexity and symbolization method in 

thematic map effectiveness. Annals of the Association of American 

Geographers, 72(4), pp.495-513.   

MacEachren, A. M., and Ganter, J. H. 1990. A pattern identification approach to 

cartographic visualization. Cartographica, 27(2), pp.64-81. 

http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2003-2011.pdf
http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2003-2011.pdf
http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2011-2019.pdf
http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2011-2019.pdf


28  

MacEachren, A. M. 1995. How Maps Work: Representation, Visualization and Design. 

New York, United States of America: The Guilford Press.  

Millet, S., and Tune, S. 2015. Patterns, Principles, and Practices of Domain-Driven 

Design. Indianapolis, United States of America: John Wiley & Sons. 

Moncrieff, S., Turdukulov, U., and Gulland, E. 2016. Integrating geo web services for a 

user driven exploratory analysis. ISPRS Journal of Photogrammetry and Remote 

Sensing, In Press, http://dx.doi.org/10.1016/j.isprsjprs.2016.01.015.  

Object Management Group (OMG). 2015. OMG Unified Modeling Language 

Specification, version 2.5. Available online at http://www.omg.org/, accessed 28 

April 2017. 

Parnas, D. 2006. Agile methods and GSD: The wrong solution to an old but real 

problem. Communication of the ACM, 49(10), pp.29. 

Petre, M. 2013. UML in practice. In 35th International Conference on Software 

Engineering (ICSE 2013), 18-26 May 2013, San Francisco, CA, USA, pp.722–

731. 

Pilone, D. 2005. UML 2.0 in a nutshell. Sebastopol, CA, United States of America: O-

Reilly. 

Rautenbach, V., Coetzee, S., and Iwaniak, A. 2013. Orchestrating OGC web services to 

produce thematic maps in a spatial information infrastructure. Computers, 

Environment and Urban Systems, 37(1), pp.107–120.  

Rita, E., Borbinha, J., and Martins, B. 2010. Extending SLD and SE for cartograms. In 

FOSS4G 2010. 6–9 September 2010, Barcelona, Spain.  

 obinson,  . .,  em ar,  .,  oore,  .B., Buckley,  .,  iang, B., Field, K., Kraak, M-

J., Camboim, S.P., and Sluter, C.R. 2017. Geospatial big data and cartography: 

research challenges and opportunities for making maps that matter, International 

Journal of Cartography, DOI: 10.1080/23729333.2016.1278151.  

Saha, B., and Srivastava, D. 2014. Data quality: The other face of Big Data. 

Proceedings - International Conference on Data Engineering, pp.1294–1297.  

Shalloway, A., and Trott, J. 2004. Design Patterns Explained: A New Perspective on 

Object-Oriented Design. Boston, United States of America: Addison-Wesley 

Professional. 

http://dx.doi.org/10.1016/j.isprsjprs.2016.01.015


29 

Slocum, T. A., McMaster, R. B., Kessler, F. C., and Howard, H. H. 2009. Thematic 

cartography and geovisualization. Upper Saddle River, United States of 

America: Prentice Hall. 

Stolte, C., Tang, D., and Hanrahan, P. 2002. Multiscale visualization using data cubes. 

IEEE Symposium on Information Visualization (InfoVis), 7-14 January 2002, 

Boston, United States of America.  

Tsou, M-H. 2015. Research challenges and opportunities in mapping social media and 

Big Data. Cartography and Geographic Information Science, 42(sup1), pp.70–

74.  

Tyner, J. 2010. Principles of Map Design. New York, United States of America: The 

Guilford Press. 

Ward, J.S., and Barker, A. 2013. Undefined by Data: A Survey of Big Data Definitions. 

arXiv:1309.5821; 2013. 


	1. Introduction
	2. Background
	2.1. Cartographic design process
	2.2. Software design patterns
	2.2.1 Factory method
	2.2.2 Strategy
	2.2.3 Builder

	2.3 Related work

	3. A design pattern approach for map design
	4. Discussion
	5. Conclusions
	References

