
A design pattern approach to map design with big geospatial data

Serena Coetzee
1
 and Victoria Rautenbach

1,*

1
Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South

Africa

*Correspondence to: victoria.rautenbach@up.ac.za

Abstract: A design pattern approach for conceptualizing the cartographic design

process is presented. A design pattern presents a solution to a problem by

describing solutions for the commonalities in problems to be solved. The

commonalities of the cartographic design process are identified and MapDesign

is described, a design pattern for generating a set of maps from big geospatial

data. The MapDesign pattern allows increased map throughput through

automation and distributed processing, which frees up time for cartographers and

geographic information scientists to make sense of big geospatial data and to

select and refine map designs. The description of the MapDesign pattern can aid

software developers in understanding how to build tools that allow automation

and distributed processing in parts of the map design process for visualising big

geospatial data. Conversely, the visual nature of design patterns can assist

cartographers with understanding how software components interact to produce

maps.

Keywords: cartography, map design, design pattern, big data, big geospatial data

1. Introduction

Today, ever increasing volumes of data are generated continuously by a large variety of

sensors, including smartphones, social media users, global positioning systems (GPSs)

and radio-frequency identification (RFID) tags. The resulting huge volumes of complex

datasets have become known as ‘big data’. Four characteristics distinguish big data

from other data: volume, variety, velocity, and veracity (4Vs) (Saha and Srivastava

2014; Tsou 2015; Ward and Barker 2013). In many cases, big data includes a direct or

indirect reference to a location on the Earth and can then be referred to as ‘big

2

geospatial data’.

Big (geospatial) data presents many challenges (Lee and Kang 2015; Robinson

et al. 2017), amongst others, for the analysis and understanding of large volumes of

data. Visualisations can assist with understanding such large volumes of data. In the

case of large volumes of geospatial data, geovisualisations (maps) can assist with

understanding the data, e.g. by showing spatial patterns in the data. A classic example is

the map used by Dr John Snow to detect clusters of cholera cases in London in 1854

(Johnson 2006). Today, maps successfully show spatial patterns in much larger volumes

of data (MacEachren 1995; Slocum et al. 2009). In some cases, the pattern can be

detected by just mapping the data (MacEachren and Ganter 1990); in other cases, a

cartographic technique, such as dot density maps or choropleth maps, make the spatial

pattern visible (MacEachren 1982; Brewer et al. 1997).

A design pattern presents a solution to a problem by describing solutions for the

commonalities in problems to be solved. In this article, we show how design patterns

can be used to describe solutions to the commonalities and variations in map design,

and discuss how such patterns can contribute to map design challenges with big

geospatial data. Firstly, the cartographic design process is presented and extended into a

design pattern – MapDesign – for designing and generating a set of maps. Secondly,

software design patterns are used to conceptualise MapDesign. Opportunities for

automation and parallel processing are pointed out and discussed.

The paper is structured as follows: Section 2 provides background on the

cartographic design process and software design patterns. In Section 3, we present

MapDesign, a design pattern for map design with big geospatial data. The structure of

MapDesign is presented in terms of well-known software design patterns. An evaluation

3

and discussion of the design pattern approach follows in section 4 and shows that

benefits are achievable. Concluding remarks are presented in section 5.

2. Background

2.1. Cartographic design process

Cartography is generally defined as the art, science and technology of making and using

maps (ICA 2003). As a discipline, cartography deals with the conception, production,

dissemination and study of maps (ICA 2011). Before the 1960s, cartography was

focused on the manufacturing of maps (Kraak and Ormeling 2003). Due to

advancements in technologies, as well as the emergence of social media and

crowdsourcing, the focus in cartography has shifted to conveying spatial information by

means of a map (Kraak and Ormeling 2003; MacEachren 1995). Cartography

encapsulates all the tools and processes involved in the production of all types of maps

(Bolstad 2012; Slocum et al. 2009). Tyner (2010) extends the definition to include the

design, compilation, construction, projection, reproduction, use, and distribution of

maps.

The primary aim of cartography is to communicate geospatial information by

means of a map. In order to achieve this aim, one needs to identify the intended

audience, the information to be communicated, and the area of interest (Bolstad 2012;

Kraak and Ormeling 2003; Slocum et al. 2009; Tyner 2010). These aspects impact on

other cartographic design decisions, such as the cartographic technique, the scale and

symbols. The cartographic technique can contribute to, and aid in, the interpretation of

the map, or it can hinder and obstruct the interpretation thereof. It is thus an important

consideration in cartographic design for big geospatial data (Rita et al. 2010). The

cartographic design process in Figure 1 is adapted from various researchers

4

(MacEachren 1995; Slocum et al. 2009; Tyner 2010). The tree in Figure 2 illustrates

dependencies of design choices in the cartographic design process. Depending on the

selected cartographic technique, certain classifications are appropriate; and depending

on the selected classification method, a different numbers of classes are possible.

Figure 1. The cartographic design process (adopted from MacEachren 1995; Slocum et al. 2009; Tyner

2010)

5

Figure 2. Design choice dependencies

6

The cartographic design process is generally represented in a linear fashion

(even though some parts of the process may happen in parallel) and designed with an

individual cartographer in mind who produces a single map. This can be contributed to

the fact that map making used to be a manual and paper-based process, where any

changes to a hardcopy map implied starting the process anew. With the rapid increase in

the volumes of geospatial data and parallel processing opportunities, the cartographic

design process may need to be adapted. Also, this representation of the cartographic

design process does not identify design choices and dependencies between them; this

information is required for software developers who want to automate (parts of) the

process.

2.2. Software design patterns

In software engineering, a design pattern describes a reusable solution for a problem

that occurs commonly (Shalloway and Trott 2004). Shalloway and Trott (2004) define a

pattern as ‘a solution to a problem in a context’. Design patterns are developed by

examining solutions to common problems in existing software, and in best practices

developed by programmers. A design pattern specifies a solution to a common problem

at a next level of abstraction compared to object-oriented design. Design patterns have

the same advantages as object-orientated programming, including abstraction (to use the

object, a programmer has to only know its interface), reuse (once created, objects can be

reused by programmers in other programs), and encapsulation (hiding implementation

details from users of the objects).

Software design patterns are grouped into the following types: creational,

behavioural and structural patterns. Creational patterns facilitate the work of creating,

initializing and configuring objects and classes. They are useful when multiple instances

7

of an object need to be rendered, stored or duplicated. Behavioural patterns facilitate the

work of algorithmic calculations and communication between classes. Lastly, structural

patterns enable the modification of the structure of the code, such as the structural

associations of classes, class associations and hierarchies of class structures. In the

subsections, we briefly introduce those software design patterns included later in this

article. The descriptions of the design patterns are based on Gamma et al. (1994) and

Shalloway and Trott (2004).

The Object Management Group (OMG) defines Unified Modeling Language

(UML) as a graphical language for visualising, specifying, constructing, and

documenting the artifacts of a software-intensive system (OMG 2015). UML,

specifically class diagrams, is typically used to visually describe the structure of design

patterns. UML class diagrams describe the structure of a software system, i.e. classes

with their attributes and operations, and the relationships between classes. UML

sequence diagrams (also called interaction diagrams) illustrate how objects (instances of

classes) interact with each other.

2.2.1 Factory method

Table 1 provides and overview of the Factory method and the structure is depicted in

Figure 3.

8

Table 1. Overview: Factory method design pattern (based on Gamma et al. 1994; Shalloway and Trott

2004)

Item Description

Intent Define an interface for creating an object, but let subclasses decide which

class to instantiate.

Problem Use the Factory method when it cannot be anticipated which derived class

needs to be instantiated.

Solution The derived class makes the decision on which class to instantiate and how to

instantiate it.

Participants Product, ConcreteProduct, Creator, ConcreteCreator

Collaborations Creator relies on its subclasses to define the factory method so that it returns

an instance of the appropriate ConcreteProduct.

Consequences Clients have to subclass the Creator class to make a particular

ConcreteProduct.

Figure 3. The structure of the Factory method design pattern (redrawn from Gamma et al. 1994)

2.2.2 Strategy

Table 2 provides and overview of the Strategy design pattern and the structure is

depicted in Figure 4.

Table 2. Overview: Strategy design pattern (based on Gamma et al. 1994; Shalloway and Trott 2004)

Item Description

Intent Define a family of algorithms, encapsulate each one, and make them

interchangeable.

Problem Use this pattern if the selection of an algorithm to be applied depends on the

client making the request or the data being acted on.

Solution Separate the selection of the algorithm from the implementation of the

algorithm so that the selection can be made based on the context.

Participants Strategy, ConcreteStrategy, Context

Collaborations Strategy and Context interact to implement the chosen algorithm. A context

forwards requests from its clients to its strategy.

Consequences The pattern defines a family of algorithms; conditional logic is eliminated;

and each algorithm must be invoked in the same way.

9

Figure 4. The structure of the Strategy design pattern (redrawn from Gamma et al. 1994)

2.2.3 Builder

Table 3 provides and overview of the Builder design pattern and the structure is

depicted in Figure 5.

Table 3. Overview: Builder design pattern (based on Gamma et al. 1994)

Item Description

Intent Separate the construction of a complex object from its representation so that

the same construction process can create different representations.

Problem Use this pattern if the algorithm for creating a complex object should be

independent of the parts that make up the object. The construction process

must allow different representations for the object that is constructed.

Solution Defines an abstract operation for the construction of each component that a

director may want to create. By default, the operation does nothing by

default. Each ConcreteBuilder overrides those operations it’s interested in

creating.

Participants Builder, ConcreteBuilder, Director, Product

Collaborations The client creates the Director object and configures it with the desired

Builder object. The Director notifies the builder whenever a part of the

product should be built. The Builder handles requests from the director and

adds parts to the product. The client retrieves the product from the builder.

Consequences With this pattern, one can vary a product’s internal representation; isolate the

code for construction and representation; and one has finer control over the

construction process.

10

Figure 5. The structure of the Builder design pattern (redrawn from Gamma et al. 1994)

2.3 Related work

Manually designing a map can be very time consuming, even if software is used, and

various parts of the map design process have been automated, for example, the

generalisation of features and symbol placement (Foerster et al. 2010; Harrie and Revell

2007; Kumar 2000; Li 2015). However, there has also been the need to find new

approaches to design and generate maps from big geospatial data.

Traditional cartographic tools and processes are designed for small well-defined

datasets that produce a single map. Cartographers and geographic information scientists

have to find new ways of designing and generating maps from big geospatial data.

Researchers have approached this challenge in various ways (Krimbacher 2014;

Moncrieff et al. 2016; Rautenbach et al. 2013). For example, Rautenbach et al. (2013)

present ThematicWS, a web service that produces choropleth and proportional symbol

maps by orchestrating distributed web services: a central controlling process executes

web services in a specified order and manner to produce the maps; it also handles any

interactions between the web services. Similarly, Krimbacher (2014) designed and

developed a service-orientated architecture for thematic map production. To deal with

rapidly increasing volumes of data, Moncrieff et al. (2016) developed a platform for the

11

exploration and analysis of large dynamic geospatial datasets. Mapping functionality

was encapsulated in standard web services. These approaches are typically based on the

cartographic design process and exhibit commonality (e.g. the order of map design

tasks) and variation (e.g. different cartographic techniques).

A design pattern presents a solution to a problem by describing solutions for the

commonalities in problems to be solved. Software design patterns arose, amongst

others, from architects who argued that judging the beauty of a building is not only a

matter of taste; they argued that the quality of the design can also be objectively

assessed. This idea was transferred to software design in the 1990s (Gamma et al. 1994)

and many software design patterns have been described since then (Millet and Tune

2015). It is important to note that even if the pattern is used repeatedly to solve a

common problem, the outcome, the building or software artifact, may be totally

different. Visualisation design patterns have been described (Chen 2004, Heer and

Agrawala 2006, Stolte et al. 2002), some of them for maps, but none of them describe

the map design process.

Among the benefits attributed to studying design patterns are that design

patterns provide a higher perspective on analysis and design, and that design patterns

improve communication and individual learning. On the practical side, design patterns

improve the quality of software by simplifying the code and making it easier to

construct and maintain the code.

Various design pattern approaches for information visualisation and geographic

information science have been proposed. For example, Stolte et al. (2002) described

four patterns that capture the zoom structures in their system, one of them for thematic

maps. Carral et al. (2013) propose a scale ontology design pattern which can be used to

document and publish knowledge about map scaling applications on the web.

12

According to Heer and Agrawala (2006), despite a diversity of software architectures

supporting information visualisation, it is often difficult to identify, evaluate, and re-

apply the design solutions implemented within such frameworks. To overcome this,

they captured successful solutions as design patterns. These abstract descriptions of

interacting software components can be customised by programmers to solve

visualisation design problems within a particular context.

Chen (2004) described visualisation design patterns that summarise common

practices and techniques applied in the process of dynamic, analytical data visualisation,

including maps. They distinguish between visualisation design patterns for users of

visualisation systems to model, design and perform visualisation tasks, and software

design patterns for developers to design and implement a visualisation system. They

point out that visualisation design patterns could impact software development and

become special software design patterns used by developers of visualisation systems.

Gordillo et al. (1999) describe design patterns for the most common design

problems that developers of geographic information system (GIS) applications must

face. Camara et al. (2001) implemented a number of well-known software design

patterns in the open source GIS software library, TerraLib. They argue that design

patterns are well suited to capture the complexity of the components of a GIS. Others

have also followed this approach, e.g. GeoTools
1
.

While others have focussed on GIS software, visualisation tasks and

architectures that support information visualisation, this article expands the cartographic

design process into a design pattern for map design of a set of maps. The structure of

this pattern is described in terms of a number of well-known software design patterns.

1
 http://docs.geotools.org/latest/userguide/tutorial/factory.html

http://docs.geotools.org/latest/userguide/tutorial/factory.html

13

3. A design pattern approach for map design

In this section, we follow the method proposed by Shalloway and Trott (2004) for

describing a design pattern. In 3.1, the concepts (commonalities) and concrete

implementations (variations) in the problem domain (map design) are identified. Then,

after the concept for the required functionality (map design) has been identified, the

interfaces for the abstractions that encapsulate this are specified in terms of a number of

well-known software design patterns.

The first commonality in the cartographic design process is the order of the map

design tasks (or steps). In Figure 6, we fill in details for each step in the process

presented earlier in Figure 1. These sub-steps present commonalities in the map design

process, such as standardising the data and selecting colour schemas for styling. The

details also represent the variation, such as different ways of standardisation or

classification of the data.

14

Figure 6. Commonalities and variations in the cartographic design process

Next, the commonalities and variations for each step are identified with reference to

Figure 6. Opportunities for automation and parallelisation are identified.

1) Consider the real world phenomenon

The real world phenomenon to be mapped is a commonality with an endless list

of variations; theoretically, any real world phenomenon for which big geospatial

data exists can be mapped. This step cannot be automated.

2) Decide on the purpose and intended audience

The cartographer establishes the intent or message of the map that needs to be

15

produced. This is the most important step of the process, as all design and

implementation choices that follow depend on the outcome of this step. The

purpose, target audience and output medium are commonalities. Variations for

the purpose and target audience are open-ended and cannot be automated. Many

variations in the output media are possible, but any specific implementation is

likely to implement a finite number of variations.

3) Collect data

The cartographer reviews data and identifies one or more datasets suitable for the

purpose. The theme (attribute/s) in the dataset(s) and the extent (e.g. geographic

and/or temporal) of interest for the map are specified. The dataset identifier,

theme and extent are commonalities. Variations of these depend on the outcome

of earlier steps in the process, e.g. appropriate extents for the data depends on the

purpose of the map.

4) Design and construct a set of maps

During this step, design choices are specified and then the set of maps is

generated. In some cases, there are dependencies between design choices, e.g. the

cartographic technique determines which classification methods are applicable (if

any). Different implementations (variations) of projection, standardisation and

classification methods are possible. For the other design choices – scale, styling

and layout – a wide range of options are possible. A cartographer typically plays

around with different combinations of design choices until satisfied that a map

meets all the requirements. A map design tool could propose a first set of

combinations of design choices, which the cartographer adjusts and refines. To

16

facilitate automation and parallelisation, it must be possible to generate a map

from a combination of pre-specified design choices. This will also make it

possible to generate a set of maps in parallel. Constructing (rendering) a map

based on a combination of design choices is another commonality.

5) Evaluate the set of maps

The set of maps is evaluated by the cartographer. The final map is selected from

the subset of map that meets the purpose, i.e. successfully communicates the

intended message. The evaluation is subjective, relying on the cartographer’s

experience and preferences. This step cannot be automated. If necessary, the

previous step is repeated with revised combinations of design choices to produce

a revised set of maps.

Final map

The cartographer selects the map, which, according to him/her, fulfils the

purpose by successfully communicating the message to the intended target

audience. The process ends.

Table 4 describes MapDesign, the design pattern for the above process.

17

Table 4. The MapDesign design pattern

Item Description

Pattern name MapDesign

Intent Generate a set of maps from big geospatial data

Problem Maps are generally created by repeating the same steps iteratively until a

desired design solution is obtained. This process can be time consuming and

user interaction intensive. In the case of big geospatial data, executing parts of

the process in parallel increases throughput.

Solution Allows the cartographer to specify a dataset(s), a theme (attributes) and extent

from which a set of maps is generated simultaneously, each with a different

combination of design choices. Maps in this set are evaluated, and if

necessary, design choices are adjusted and a new set of maps is generated

until the cartographer selects the final map.

Participants MapCreator, ConcreteMapCreator, MapDesign, ConcreteMapDesign,

ClassificationMethod, ConcreteClassificationMethod, StandardisationMethod,

ConcreteStandardisationMethod, MapBuilder, ConcreteMapBuilder

Collaborations The MapCreator relies on its subclasses to define the createMap method so

that it returns an instance of the appropriate ConcreteMapDesign.

StandardisationMethod and ClassificationMethod interact with MapDesign to

execute the chosen algorithm

MapDesign configures the map. It notifies MapBuilder whenever an element

of the map should be built. MapBuilder handles these requests and adds

different elements to the map. MapDesign retrieves the rendered map from

the ConcreteMapBuilder.

Consequences Selected steps in the map design process can be automated and generating a

set of maps in parallel reduces the need for user intervention and increases

throughput. This allows the cartographer to focus on selecting and refining

design choices. The implementation can be distributed in a cloud environment

so that different parts of the process, e.g. standardisation, classification and

rendering, can be executed in parallel.

To demonstrate the intent of the design pattern, Figure 7 shows the set of maps for a

specific combination of design choices.

18

Figure 7. Sets of maps generated for a specific combination of design choices.

The diagram in Figure 8 describes the generic structure of the MapDesign pattern in

19

terms of well-known software design patterns.

Figure 8. The generic structure of the MapDesign design pattern

class MapCreator {

 DataSpecification data;

 DesignSpecification design;

 LayoutSpecification layout;

 Stylesheet styling;

 // Fill in data specification

 data.datasetIdentifier =

 data.extent =

 // etc.

 // Fill in design specification

 design.projection =

 design.scale =

 // etc.

 // Fill in layout specification

 layout.border =

 layout.legend =

 // etc.

 // Fill in styling specification

 styling.colourScheme =

 styling.symbology =

 // etc.

20

 MapDesign map = createMap(data, design, layout, styling);

 StandardisedValue standardisedValues = map.standardise(data);

 ThematicClass classification = map.classify(data,

standardisedValues,

design.numberOfClasses);

 map.render(data, classification, standardisedValues,

 layout, styling);

 return;

}

class ChoroplethMapCreator {

 public Map createMap(DataSpecification data,

 DesignSpecification design,

 LayoutSpecification layout,

 Stylesheet styling){

 return new ChoroplethMap(data, design, layout, styling);

 }

}

Figure 9. Pseudo code for the MapCreator and one kind of ConcreteMapCreator

We implemented the MapDesign design pattern in Java to evaluate and verify it. The

implementation was done with NetBeans 8.2
2
 on a personal computer running MacOS

Sierra. All the classes and methods of the MapDesign pattern were implemented for

choropleth and proportional symbol maps with three different standardisation (area-

based, ratio and density) and classification (natural breaks, quantiles and equal

intervals) methods. The pseudo code to create a choropleth map is shown in Figure 9.

The sequence diagram in Figure 10 shows how the classes in the MapDesign pattern

interact with each other to produce the map.

2 https://netbeans.org

https://netbeans.org/

21

Figure 10. Sequence diagram for the MapDesign pattern

4. Discussion

In this article, we presented MapDesign, a design pattern for generating a set of maps,

each with a different combination of design choices. MapDesign is based on

commonalities (e.g. the order of tasks or steps in the design process and a set of design

choices) and variations (e.g. specific design choices, such as a specific cartographic

technique). We pointed out those parts of the design pattern that can be automated. The

structure of MapDesign was illustrated in UML.

The design pattern approach has a number of benefits: 1) it makes it possible to

specify and produce a set of maps from the same input data; 2) a distributed

implementation with parallel processing, e.g. in a cloud environment, is possible and

would reduce throughput time; 3) the design pattern is extendible, i.e. additional design

22

choices, such as cartographic techniques and classification methods, can be added; 4)

using software design patterns that are well known to computer scientists reduces

programmers’ cognitive load when developing or reading code that includes

cartographic concepts novel to them; and finally, 5) producing a set of maps from the

same input data frees up time for the cartographer to evaluate, refine and select a map

design. The results contribute to understanding how tools for the automated design and

generation of maps from big geospatial data can be developed to assist cartographers

and geographic information scientists with map design.

MapDesign can be implemented in a distributed fashion, taking advantage of

parallel processing and/or (elastic) processing resources available in a cloud

environment. These are important considerations when generating maps from big

geospatial data and/or when there is a need to create large volumes of maps. For

example, MapDesign could be implemented as web services that access distributed big

geospatial data sources on the web, similar to the architecture proposed by Moncrieff

(2016) for visual analytics; or by orchestrating a number of web services, an

architecture proposed by Rautenbach et al. (2013).

MapDesign differs from the ‘traditional’ cartographic design process or

cartographic communication model (MacEachren 1995; Slocum et al. 2009; Tyner

2010) because it generates a set of maps (as opposed to a single map). Instead of

iteratively fiddling around with a single map design, a set of maps is generated

simultaneously and the resulting map designs are evaluated and compared by a (human)

cartographer. If necessary, a revised set of maps is generated for further evaluation until

the final map is selected. In this way, time-consuming trial-and-error design refinements

are done in parallel, allowing the cartographer can evaluate more combinations of

23

design choices in a shorter period of time. MapDesign is not aimed at removing the

human from the map design process, but rather to assist the human with map design.

The cartographic technique can contribute to, and aid in, the interpretation of a

map, or it can hinder and obstruct the interpretation thereof. The choice of cartographic

technique is thus an important consideration in cartographic design (MacEachren and

Ganter 1990; Brewer et al. 1997; MacEachren 1995; Slocum et al. 2009). MapDesign

assists the cartographer with choosing an appropriate cartographic technique because it

reduces the time required to explore and compare different cartographic techniques. In

the same way, MapDesign is conducive to education because a student or learner can

readily compare the effects of different combinations of design choices (reference about

challenges of teaching which cartographic technique is best).

Krimbacher (2014) suggests that a map can be automatically generated from a

comprehensive map description, i.e. each map description is a unique combination of

map design choices. Such map descriptions could be stored for future use, e.g. to

generate the same map on a new version of the data. The MapDesign design pattern

allows this use case.

Communication is a significant challenge in software design (Parnas 2009;

Capretz and Ahmed 2010; Ahmed et al. 2012). One has to bridge the semantic gap

between users’ understanding of the business or real world, and the software

developers’ design of a system that will represent the real world. When designing

software for mapping, there is a semantic gap between cartographers (who typically do

not understand code in a programming language) and software developers (who are not

familiar with map design). The visual nature of design patterns presented in UML

facilitates communication between stakeholders from different disciplines (Shalloway

and Trott 2005, Pilone 2005, Petre 2013).

24

The description of MapDesign in this article can aid software developers in

understanding how to build mapping tools for visualising big geospatial data into a set

of maps. By using software design patterns that are well known to software developers,

such as the Factory method, Strategy and Builder, the software developers’ cognitive

load is reduced when developing or reading code that includes cartographic concepts

novel to them (Kolfschoten et al. 2010). Design patterns simplify the code because

abstract classes represent commonalities, e.g. the commonality standardising data is

represented in the abstract class, StandardisationMethod. Similarly, the description of

MapDesign can assist cartographers with understanding the software components

involved, how they are related to each other, and how they interact with each other.

From a software engineering perspective, the MapDesign design pattern has all

the advantages that come with object-oriented design, such as:

 abstraction: to use a specific object (e.g. MapDesign or StandardisationMethod),

a programmer has to only know its interface;

 reuse: once objects, such as the different ConcreteMapBuilders, are created, they

can be reused by programmers in other programs;

 encapsulation: implementation details are hidden from users of the objects (e.g.

the details of the algorithms that implement different standardisation methods);

and

 extendibility: objects, e.g. ClassificationMethod, can be extended by adding

specialisations that inherit the attributes and functionality of the base class.

The MapDesign design pattern can contribute to overcoming the challenge of

analysing and understanding large volumes of data. For example, studying different

visualisations (map) of the same big geospatial data can assist with understanding the

25

data; also, generating a set of maps in parallel can speed up the analysis of big

geospatial data.

5. Conclusions

In this paper, we presented, MapDesign, a design pattern for incorporating automation

and parallelisation into the cartographic design process. This allows increased map

throughput, which is essential in the age of big geospatial data. The pattern is based on

commonalities (e.g. a set of design choices) and variations (e.g. specific design choices,

such as the cartographic technique). MapDesign is conceptualized in terms of a number

of well-known software design patterns, namely Factory method, Strategy and Builder.

 ‘Converting’ the cartographic design process into a design pattern that can be

understood and used by software developers, facilitates communication between

cartographers and software developers. The mapping design pattern helps software

developers to understand what map making entails, so that they are in a position to

develop tools for automating and parallelising map making from big geospatial data.

As a next step, we want to focus on implementing serialization for a

comprehensive set of design choices. Such a serialization could contribute towards map

design interoperability: given the same set of design choices, different applications

should be able to render identical maps. Another interesting direction would be

intelligent map design, i.e. software that proposes an appropriate set of design choices,

based on the characteristics of the input data.

The MapDesign pattern can guide software developers in building the tools that

are required to automate and parallelise map design with big geospatial data, thus

allowing cartographers and others to make sense of big geospatial data.

26

References

Ahmed, F., Capretz, L. F., and Campbell, P. 2012. Evaluating the Demand for Soft

Skills in Software Development. IT Professional, 14(1), pp.44-49.

Bolstad, P. 2012. GIS Fundamentals: A First text on Geographic Information Systems.

4th ed. St. White Bear, United States of America: Eider Press.

Brewer, C. A., MacEachren, A. M., Pickle, L. W., and Herrmann, D. 1997. Mapping

mortality: Evaluating color schemes for choropleth maps. Annals of the

Association of American Geographers, 87(3), pp.411-438.

Camara, G., Souza, R. C. M., Pedrosa, B. M., Vinhas, L., Monteiro, A. M. V., Paiva, J.

A. C., Carvalho, M. T., Raoult, B. 2001. Design patterns in GIS development:

the TerraLib experience. III Simposio Brasileiro de GeoInformatica, Rio de

Janeiro, RJ.

Capretz, L. F., and Ahmed, F. 2010. Making sense of software development and

personality types. IT Professional, 12(1), pp.6-13.

Carral, D., Scheider, S., Janowicz, K., Vardeman, C., Krisnadhi, A. A., and Hitzler, P.

2013. An Ontology Design Pattern for Cartographic Map Scaling. Lecture Notes

in Computer Science, 7882, pp.76-93.

Chen, H. 2004. Towards Design Patterns for Dynamic Analytical Data Visualization.

Proceedings of SPIE Visualization and Data Analysis, 18 January 2004, San

Jose, United States of America.

Foerster, T., Stoter, J., and Kraak, M-J. 2010. Challenges for Automated Generalisation

at European Mapping Agencies: A Qualitative and Quantitative Analysis. The

Cartographic Journal, 47(1), pp.41-54.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1994. Design Patterns: Elements of

Reusable Object-Oriented Software. Indianapolis, United States of America:

Addison-Wesley Professional.

Gordillo, S., Balaguer, F., Mostaccio, C., Das Neves, F. 1999. Developing GIS

Applications with Objects: A Design Patterns Approach. GeoInformatica, 3(1),

pp.7-32.

Harrie, L., and Revell, P. 2007. Automation of Vegetation Symbol Placement on

Ordnance Survey 1:50 000 Scale Maps. The Cartographic Journal, 44(3),

pp.258-267.

27

Heer, J., and Agrawala, M. 2006. Software Design Patterns for Information

Visualization. IEEE Transactions on visualization and computer graphics,

12(5), pp.853–860.

International Cartographic Association (ICA). 2003. A Strategic Plan for the

International Cartographic Association 2003-2011. Available online at

http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2003-

2011.pdf, accessed 4 April 2017.

International Cartographic Association (ICA). 2011. Strategic Plan for the International

Cartographic Association 2011-2019. available online at

http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2011-

2019.pdf, accessed 4 April 2017.

Johnson, S. 2006. The Ghost Map: The Story of London's Most Terrifying Epidemic -

and How It Changed Science, Cities, and the Modern World. London, England:

Penguin Books.

Kolfschoten, G., Lukosch, S., Verbraeck, A., Valentin, E., and de Vreede, G-J. 2010.

Cognitive learning efficiency through the use of design patterns in teaching.

Computers and Education, 54, pp.652-660.

Kraak, M-J., and Ormeling, F. 2003. Cartography: visualization of geospatial data.

Essex, England: Pearson Education.

Krimbacher, A. 2014. Service-oriented Architecture for Thematic Cartography on the

Web. MSc thesis, Eidgenossische Technische Hochschule Zurich, Switzerland.

Kumar, N. 2000. Automation and Democratization of Cartography: An Example of a

Mapping System at CEM, University of Durham. The Cartographic Journal,

37(1), pp.65-77.

Lee, J-G., and Kang, M. 2015. Geospatial Big Data: Challenges and Opportunities. Big

Data Research, 2(2), pp.74-81.

Li, Z. 2015. General Principles for Automated Generation of Schematic Network Maps.

The Cartographic Journal, 52(4), pp.356-360.

MacEachren, A. M. 1982. The role of complexity and symbolization method in

thematic map effectiveness. Annals of the Association of American

Geographers, 72(4), pp.495-513.

MacEachren, A. M., and Ganter, J. H. 1990. A pattern identification approach to

cartographic visualization. Cartographica, 27(2), pp.64-81.

http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2003-2011.pdf
http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2003-2011.pdf
http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2011-2019.pdf
http://icaci.org/files/documents/reference_docs/ICA_Strategic_Plan_2011-2019.pdf

28

MacEachren, A. M. 1995. How Maps Work: Representation, Visualization and Design.

New York, United States of America: The Guilford Press.

Millet, S., and Tune, S. 2015. Patterns, Principles, and Practices of Domain-Driven

Design. Indianapolis, United States of America: John Wiley & Sons.

Moncrieff, S., Turdukulov, U., and Gulland, E. 2016. Integrating geo web services for a

user driven exploratory analysis. ISPRS Journal of Photogrammetry and Remote

Sensing, In Press, http://dx.doi.org/10.1016/j.isprsjprs.2016.01.015.

Object Management Group (OMG). 2015. OMG Unified Modeling Language

Specification, version 2.5. Available online at http://www.omg.org/, accessed 28

April 2017.

Parnas, D. 2006. Agile methods and GSD: The wrong solution to an old but real

problem. Communication of the ACM, 49(10), pp.29.

Petre, M. 2013. UML in practice. In 35th International Conference on Software

Engineering (ICSE 2013), 18-26 May 2013, San Francisco, CA, USA, pp.722–

731.

Pilone, D. 2005. UML 2.0 in a nutshell. Sebastopol, CA, United States of America: O-

Reilly.

Rautenbach, V., Coetzee, S., and Iwaniak, A. 2013. Orchestrating OGC web services to

produce thematic maps in a spatial information infrastructure. Computers,

Environment and Urban Systems, 37(1), pp.107–120.

Rita, E., Borbinha, J., and Martins, B. 2010. Extending SLD and SE for cartograms. In

FOSS4G 2010. 6–9 September 2010, Barcelona, Spain.

 obinson, . ., em ar, ., oore, .B., Buckley, ., iang, B., Field, K., Kraak, M-

J., Camboim, S.P., and Sluter, C.R. 2017. Geospatial big data and cartography:

research challenges and opportunities for making maps that matter, International

Journal of Cartography, DOI: 10.1080/23729333.2016.1278151.

Saha, B., and Srivastava, D. 2014. Data quality: The other face of Big Data.

Proceedings - International Conference on Data Engineering, pp.1294–1297.

Shalloway, A., and Trott, J. 2004. Design Patterns Explained: A New Perspective on

Object-Oriented Design. Boston, United States of America: Addison-Wesley

Professional.

http://dx.doi.org/10.1016/j.isprsjprs.2016.01.015

29

Slocum, T. A., McMaster, R. B., Kessler, F. C., and Howard, H. H. 2009. Thematic

cartography and geovisualization. Upper Saddle River, United States of

America: Prentice Hall.

Stolte, C., Tang, D., and Hanrahan, P. 2002. Multiscale visualization using data cubes.

IEEE Symposium on Information Visualization (InfoVis), 7-14 January 2002,

Boston, United States of America.

Tsou, M-H. 2015. Research challenges and opportunities in mapping social media and

Big Data. Cartography and Geographic Information Science, 42(sup1), pp.70–

74.

Tyner, J. 2010. Principles of Map Design. New York, United States of America: The

Guilford Press.

Ward, J.S., and Barker, A. 2013. Undefined by Data: A Survey of Big Data Definitions.

arXiv:1309.5821; 2013.

	1. Introduction
	2. Background
	2.1. Cartographic design process
	2.2. Software design patterns
	2.2.1 Factory method
	2.2.2 Strategy
	2.2.3 Builder

	2.3 Related work

	3. A design pattern approach for map design
	4. Discussion
	5. Conclusions
	References

