
A gamma-mixture class of distributions with Bayesian
application
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Abstract

In this paper a subjective Bayesian approach is followed to derive estimators for

the parameters of the normal model by assuming a gamma-mixture class of prior

distributions, that includes the gamma and the noncentral gamma as special

cases. An innovative approach is proposed to find the analytical expression of

the posterior density function when a complicated prior structure is ensued.

The simulation studies and a real dataset illustrates the modeling advantages

of this proposed prior and support some of the findings.
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1. Introduction

Bayesian analysis of the normal model has been discussed by many authors

each following a different approach. Objective and conjugate subjective priors

were considered by [1] amongst others. [2] adopted the non-conjugate subjec-

tive normal-gamma prior. This normal-gamma prior has been showed to per-

form well in the multiple linear regression model by [3] when compared with the
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Bayesian lasso estimator. As indicated by [4] and [5] that non-informative priors

can have strong and undesirable implications for inference. Ignoring important

information by assuming priors that cannot elicit that information will lead to

inaccurate analysis and inference, hence it is important to assume a parameter-

rich model that will enable one to model appropriate prior beliefs about the

parameter of interest. Computational limitations within the Bayesian frame-

work also no longer present a problem to analysing any data set with complex

prior assumptions; a generalised prior can therefore be handled with ease in

Bayesian inference. As with this prior it is desirable, as mention by Sebastian

[6], to consider priors that exhibit flexibility regarding the shape of their tails.

The genesis for this paper followed from the performance study done by [7] to

evaluate the subjective normal-gamma and normal-inverse gamma distributions

as possible priors for the parameters of the normal model. It was demonstrated

by comparing different measures for a simulated as well as a real dataset that

the non-conjugate mathematically intractable normal-gamma is a suitable com-

petitor for the conjugate normal-inverse gamma prior. In this paper, a flexible

class that is the univariate counterpart emanating from the generalized matrix

variate Wishart distribution of [8], is proposed as the prior for the variance of

the normal model. An efficient computational approach is outlined in this paper

and demonstrates the relative computational ease in assuming complex priors.

In Section 2, this gamma class is proposed, and a Bayesian analysis of the nor-

mal model is performed, assuming this class as the prior for the variance (see

Section 3), by identifying complex integrals as expected values of functions of

the parameters, simpler analytical expressions are obtained. Section 4 consists

of some illustrations regarding this new prior structure, and the performance

is measured by the bias, mean squared error (MSE) and coverage probabili-

ties including two other subjective priors and the MLE’s. It is illustrated that

with this prior less error and higher frequentist coverage are obtained. The

real dataset illustrates the value of the results emanating from the speculative
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research.

2. The hypergeometric gamma distribution

In this section the prior class will be briefly introduced with some properties.

This rich model is the univariate counterpart of the generalized matrix variate

Wishart distribution of [8].

Definition 1. The hypergeometric gamma distribution (HGD) with parameters

a1, . . . , ap, b1, . . . , bq, c, ϕ and n has density function

f(x) =
ϕ−

n
2

Γ(n2 ) p+1Fq
(
n
2 , a1, . . . , ap; b1, . . . , bq; c

)
×xn

2−1 exp
(
−ϕ−1x

)
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1x
)

(1)

and is denoted by X ∼ HG(a1, . . . , ap, b1, . . . , bq, c, ϕ, n) for x > 0, ϕ > 0 and

the combination of parameters, a1, . . . , ap, b1, . . . , bq, c, ϕ and n, are chosen such

that f(x) is a proper density function, with pFq(.) defined in [9].

Remark 1. Note that the rth moment can be derived as

E[Xr] =
ϕrΓ(n2 + r) p+1Fq

(
n
2 + r, a1, . . . , ap; b1, . . . , bq; c

)
Γ(n2 ) p+1Fq

(
n
2 , a1, . . . , ap; b1, . . . , bq; c

)
by using Eq. 7.522(5), p. 814 of [10].

Remark 2. Gamma distribution (see [11]): For p = q = 0 and |c| < 1 the

density function (1) reduces to

f(x) =

(
(1−c)
ϕ

)n
2

Γ(n2 )
x

n
2−1 exp

(
− (1− c)

ϕ
x

)
where x > 0, ϕ > 0, which is the density of a gamma random variable with

parameters n
2 and (1−c)

ϕ , denoted by Gamma(n2 ,
(1−c)
ϕ ), since 1F0

(
n
2 ; c
)

= (1 −

c)−
n
2 and 0F0

(
cϕ−1σ2

)
= exp

(
cϕ−1σ2

)
.

Remark 3. Noncentral gamma distribution (see [12]): For p = 0 and q = 1

the density function (1) reduces to

f(x) =
ϕ−

n
2

Γ(n2 ) 1F1

(
n
2 ; b1; c

)xn
2−1 exp

(
−ϕ−1x

)
0F1

(
b1; cϕ−1x

)
where x > 0, ϕ > 0.
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Remark 4. Definition 1 can also be rewritten as an infinite mixture of gamma

density functions by using the series expansion of pFq(.) as follows

f(x) =
ϕ−

n
2

Γ(n2 ) p+1Fq
(
n
2 , a1, . . . , ap; b1, . . . , bq; c

)
×
∞∑
k=0

(a1)k . . . (ap)k
k! (b1)k . . . (bq)k

ckϕ−kx
n
2 +k−1 exp

(
−ϕ−1x

)
,

therefore the reference as gamma-mixture class.

Some plots of this density function (1) are given in Figure 1 for various combi-

nations of parameter values.

The influence of the different parameters is clearly illustrated in Figure 1.

The reader will note the following interesting points:

• The density function becomes less positively skewed as the values of a, c

and n increase, or the value of b decreases. For large values of a, c and n

the density can become asymptotically symmetric, although large values

of n might not be practically feasible and |c| < 1.

• The value of ϕ can be used to influence the kurtosis.

In the forthcoming section, we develop a subjective Bayesian analysis for the

normal model by employing the HGD as the prior for the variance.

3. Bayesian analysis

Consider a sample of m observations from the normal model N(µ, σ2), where

both parameters are unknown, with the following likelihood function

L(µ, σ2|xxx) =
(
2πσ2

)−m
2 exp

[
− 1

2σ2

m∑
i=1

(xi − µ)
2

]
(2)

Further assume an objective prior for µ, and independently the HGD (see (1))

as the subjective prior for σ2 such that the joint prior density function is given
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Figure 1: Density function plots for special cases of the hypergeometric gamma distribution

(see (1)) - effect of a, b and c (Left), and n and ϕ (Right)

by

π
(
µ, σ2

)
=

ϕ−
n
2

(
σ2
)n

2−1

Γ(n2 ) p+1Fq
(
n
2 , a1, . . . , ap; b1, . . . , bq; c

) exp
(
−ϕ−1σ2

)
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
)

(3)

where we used π
(
µ, σ2

)
= π (µ)π

(
σ2
)

for π (µ) ≡ 1.

Then, the joint posterior density function is obtained from (2) and (3) as

follows

q
(
µ, σ2|xxx

)
∝
(
σ2
)n

2−
m
2 −1

pFq
(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
)

× exp
(
−ϕ−1σ2

)
exp

[
− 1

2σ2

m∑
i=1

(xi − µ)
2

]
(4)

To obtain the marginal posterior density functions, the mathematical solutions

of the complicated integrals lead to unattractive expressions for the posterior

density functions. We propose another novel approach to obtain the analyti-

cal expressions in situations where the usual mathematical approach leads to

computationally complicated forms. To solve for the marginal posterior density
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function of µ, we will obtain the following integral∫ ∞
0

(
σ2
)n

2−
m
2 −1

pFq
(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
)

× exp
(
−ϕ−1σ2

)
exp

[
− 1

2σ2

m∑
i=1

(xi − µ)
2

]
dσ2

which can be solved mathematically by using the series expansion of pFq(.) and

the definition of the Bessel function of the third kind [10], as

∞∑
k=0

ckKn
2−

m
2 +k

2

√√√√ m∑
i=1

(xi − µ)
2

(1− c)ϕ−1


where Kν(.) is the Bessel function of the third kind defined by Eq.3.478(4),

p.370 of [10]. This leads to a computationally challenging posterior density

function which is not implementable and Gibbs sampling will have to be used

to approximate this posterior density function. However, if the integrand is

viewed as the product of a gamma density function and some function of σ2,

the following theorem follows.

Theorem 1. The marginal posterior density of µ for the normal model with

prior (3) is

q1 (µ|x)

=
Γ
(
n
2 −

m
2

)
(2πm−1ϕ)

1
2 Γ
(
n
2 −

m
2 + 1

2

)
×

Eσ2
1

[
exp

[
− 1

2σ2
1

∑m
i=1 (xi − µ)

2
]
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
1

)]
Eσ2

2

[
exp

[
− 1

2σ2
2

(∑m
i=1 x

2
i −mx2

)]
pFq (a1, . . . , ap; b1, . . . , bq; cϕ−1σ2

2)
]

(5)

where σ2
1 ∼ Gamma

(
n
2 −

m
2 , ϕ

−1
)

and σ2
2 ∼ Gamma(n2 −

m
2 + 1

2 , ϕ
−1), pro-

vided n > m,ϕ > 0 and Eσ2
i

[·] denotes the expected value with respect to the

distribution of σ2
i , i = 1, 2.

Remark 5. This result (5) can easily be implemented for computational use

as is shown in Section 4. This methodology can be used for the derivation of
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any posterior density function if a component of the kernel of the prior is some

known density function from which simulation of random variates is possible.

In general, let h(θθθ|xxx) be the likelihood function of θθθ = (θ1, θ2), θi ∈ Ωi, i = 1, 2

for given xxx. The prior density assumed is π(θθθ). Consider the marginal posterior

density function of θi:

q (θi,xxx) =

∫
Ωj

h(θθθ|xxx)π(θθθ)dθj

=

∫
Ω∗
g(θi, φ|xxx)f(φ)dφ

= Eφ (g(θi, φ|xxx))

with φ a function of θj, φ ∈ Ω∗ and f(φ) a known density function from which

random variates can be simulated. This result can then be computationally cal-

culated using the central limit theorem as

̂Eφ (g(θi, φ|xxx)) =
1

n1

n1∑
k=1

g(θi, φk|xxx)

where φk, k = 1, ..., n1 is a random variate from the distribution with density

function f(φ).

Theorem 2. The marginal posterior density of σ2 for the normal model with

prior (3) is

q2

(
σ2|x

)
=

(
Eσ2

2

[
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
2

)
exp

[
− 1

2σ2
2

(
m∑
i=1

x2
i −mx2

)]])−1

× 1

Γ
(
n
2 −

m
2 + 1

2

)
ϕ

n
2

−m
2

+ 1
2

(
σ2
)n

2−
m
2 + 1

2−1
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
)

× exp
(
−ϕ−1σ2

)
exp

[
− 1

2σ2

(
m∑
i=1

x2
i −mx2

)]
(6)

with σ2
2 ∼ Gamma(n2 −

m
2 + 1

2 , ϕ
−1) provided n > m,ϕ > 0.

The proofs of the aforementioned theorems can be found in Appendix A.
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3.1. Bayes estimators

Under the squared error loss function the Bayes estimator is the posterior mean

value. In what follows, we show that the Bayes estimator of µ is µ̂ = E[µ|x] = x.

The expected value of µ− x is given by

E[µ− x|x] =

∫ ∞
−∞

(µ− x) q1 (µ|x) dµ

=
ϕ

− 1
2
(
2πm−1

)− 1
2 Γ
(
n
2 −

m
2

)
(Γ
(
n
2 −

m
2 + 1

2

)
)−1

Eσ2
2

[
exp

[
− 1

2σ2
2

(∑m
i=1 x

2
i −mx2

)]
pFq (a1, . . . , ap; b1, . . . , bq; cϕ−1σ2

2)
]

×
∫ ∞
−∞

(µ− x)Eσ2
1

[
exp

[
− 1

2σ2
1

m∑
i=1

(xi − µ)
2

]
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
1

)]
dµ

from Theorem 1. It is quite clear that the integrand is an odd function and

therefore

∫ ∞
−∞

(µ− x)Eσ2
1

[
exp

[
− 1

2σ2
1

m∑
i=1

(xi − µ)
2

]
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
1

)]
dµ = 0

We can thus conclude that E[µ− x|x] = 0 and hence

E[µ|x] = µ̂ = x (7)

The Bayes estimator of σ2 from Theorem 2, is given by

σ̂2

= E[σ2|x]

=

(
Eσ2

2

[
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
2

)
exp

[
− 1

2σ2
2

(
m∑
i=1

x2
i −mx2

)]])−1

×
∫ ∞

0

1

Γ
(
n
2 −

m
2 + 1

2

)
ϕ

n
2

−m
2

+ 1
2

(
σ2
)n

2−
m
2 + 3

2−1
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
)

× exp
(
−ϕ−1σ2

)
exp

[
− 1

2σ2

(
m∑
i=1

x2
i −mx2

)]
dσ2

=

(
n
2 −

m
2 + 1

2

)
ϕEσ2

3

[
pFq

(
a1, . . . , ap; b1, . . . , bq; cϕ

−1σ2
3

)
exp

[
− 1

2σ2
3

(∑m
i=1 x

2
i −mx2

)]]
Eσ2

2

[
pFq (a1, . . . , ap; b1, . . . , bq; cϕ−1σ2

2) exp
[
− 1

2σ2
2

(∑m
i=1 x

2
i −mx2

)]]
(8)

with σ2
2 ∼ Gamma(n2 −

m
2 + 1

2 , ϕ
−1) and σ2

3 ∼ Gamma(n2 −
m
2 + 3

2 , ϕ
−1).
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3.2. Special cases

Referring to Remark 2 the posterior distributions for the gamma prior can

then be obtained directly from (5) and (6) as

q1 (µ|x) =

(1− c) 1
4 2

1
4

(∑m
i=1 (xi − µ)

2
)n

4−
m
4

Kn
2−

m
2

(
2
√∑m

i=1 (xi − µ)
2

(1− c)ϕ−1

)
(2πm−1)

1
2
(∑m

i=1 x
2
i −mx2

)n
4−

m
4 + 1

4 Kn
2−

m
2 + 1

2

(
2
√(∑m

i=1 x
2
i −mx2

)
(1− c)ϕ−1

)
and

q2

(
σ2|x

)
=

(
−

∑m
i=1 x

2
i−mx

2

2cϕ−1

)−n
4 + m

4 −
1
4

2Kn
4−

m
4 + 1

4

(
2
√
−
(∑m

i=1 x
2
i −mx2

)
cϕ−1

) (σ2
)n

2−
m
2 + 1

2−1

× exp
(
−(1− c)ϕ−1σ2

)
exp

[
− 1

2σ2

(
m∑
i=1

x2
i −mx2

)]

similar to the results of [7] where Kν(.) is the Bessel function of the third kind

defined by Eq.3.478(4), p.370 of [10]. The Bayes estimators are as follows

µ̂ = x

and

σ̂2 =

(
−
∑m
i=1 x

2
i −mx2

2cϕ−3

) 1
2

×
Kn

4−
m
4 + 3

4

(
2
√
−
(∑m

i=1 x
2
i −mx2

)
cϕ−1

)
Kn

4−
m
4 + 1

4

(
2
√
−
(∑m

i=1 x
2
i −mx2

)
cϕ−1

)
Complete proofs are given in Appendix B.

4. Illustrations

4.1. Evaluation using the proposed methodology (see Remark 5)

In this section we show that the analytical posterior density functions (5)

and (6), as well as the Bayes estimators (7) and (8) (derived using the proposed

methodology) for the hypergeometric gamma prior with p = 1 and q = 1,
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produces at least as good results as Gibbs sampling when approximated from a

sample.

For this purpose, we develop a Gibbs sampling scheme with a Metropolis-

Hastings algorithm to simulate posterior samples of µ and σ2. A sample of 1000

posterior values are simulated with a burn-in of 10%. The empirical histograms

are obtained from these samples and can be observed in Figure 2.

Figure 2: Analytical posterior density functions (5) (Left) and (6) (Right) and histograms

based on Gibbs sampling for µ (Left) and σ2 (Right)

Remark 6. The computational time to construct the histograms is 812.56 sec-

onds, whereas the curves using the proposed analytical expressions is 68.52 sec-

onds.

It is clear that the analytical posterior density functions in (5) and (6) are

supported by results obtained from the Gibbs sampling method. The advan-

tage of the proposed methodology is that no specialized software or advanced

programming abilities are needed. This approach provides an alternative to

approximations such as MCMC-MH sampling and INLA, since the implemen-

tation is computationally efficient, especially for complicated prior structures

such as the case under consideration.
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4.2. Bayesian performance study

The newly developed results for (1) as prior, will be applied in a simulation

context and compared with other results from literature. Note that this is not

an exhaustive simulation study but just an illustration of the proposed results.

4.2.1. The choice of hyperparameter values

The choice of the prior parameters is a crucial aspect of any subjective

Bayesian analyses. We propose an intuitive methodology on the parameter

values with the use of this specific prior structure similar to Duran and Booker

[13]. Assuming the hypergeometric gamma distribution (see Definition 1 with

p = 1 and q = 1) as one of the priors for σ2, with the prior density function

π
(
σ2
)

=
ϕ−

n
2

(
σ2
)n

2−1

Γ(n2 ) 2F1

(
n
2 , a, b; c

) exp
(
−ϕ−1σ2

)
1F1

(
a; b; cϕ−1σ2

)
(9)

where 1F1(.) is the confluent hypergeometric function and 2F1(.) is the Gauss

hypergeometric function with |c| < 1 (see [9]), with first moment

E[σ2] =
ϕΓ(n2 + 1) 2F1

(
n
2 + 1, a; b; c

)
Γ(n2 ) 2F1

(
n
2 , a; b; c

)
Consider the prior is constrained under the following belief

H0 : σ2 = σ2
0

Setting the expected value of σ2 equal to σ2
0 yields

σ2
0 =

ϕΓ(n2 + 1) 2F1

(
n
2 + 1, a; b; c

)
Γ(n2 ) 2F1

(
n
2 , a; b; c

)
=

(n2 )ϕ 2F1

(
n
2 + 1, a; b; c

)
2F1

(
n
2 , a; b; c

) (10)

The ratio
2F1(n

2 +1,a;b;c)
2F1(n

2 ,a;b;c)
is a slow varying function as can be seen in Figure 3.

11



Figure 3: The ratio, 2F1(n
2
+1,a;b;c)

2F1(n
2
,a;b;c)

, for various parameter values

Hence

σ2
0 ≈ (

n

2
)ϕ

with n > m, where m is the sample size. This enables us to choose ϕ in an

informed manner, based on the choice of n.

4.2.2. Simulation study

For our purposes, a normal sample of size 18 was simulated with parameters

µ = 0 and σ2 = 1. The hyperparameters are chosen according to the above

methodology as n = 19, ϕ = 0.105, a = 1, b = 2 and c = 0.01 such that E(σ2) =

0.9. The choice of σ2
0 = 0.9 not being exactly σ2 = 1 illustrates that this prior

performs well even under an incorrect prior belief. The sample estimates which

are the MLE’s are given by

µ̂ = x = −0.0166, σ̂2 = s2 = 0.8397

The Bayes estimates calculated using the sample, from (7) and (8), respectively,

are

12



µ̂ = x = −0.0166, σ̂2 = s2 = 0.9701

It is evident from the comparison of the estimates that the Bayes estimate for

σ2 is closer to the target parameter value than the MLE. The following figure

displays the analytical posterior density functions as in (5) and (6) with p = 1

and q = 1

Figure 4: Analytical posterior density functions of µ and σ2

4.2.3. Comparative simulation study

In this section a normal sample of size m is simulated with known mean

and variance and the priors under consideration are the well-known inverse-

gamma prior (see [11]), as well as the gamma prior (see Remark 1) and the

hypergeometric gamma prior (see Definition 1 with p = 1 and q = 1) as special

cases of this gamma class. The newly proposed estimators ((7) and (8) with

p = 1 and q = 1) for µ and σ2, respectively, are calculated and compared

with the two other Bayes estimators as well as the MLE’s in terms of coverage

probabilities and median credible interval width.
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Remark 7. The hyperparameters of the inverse gamma and gamma priors were

chosen in an analogous way based on the prior belief

H0 : σ2 = σ2
0

For our purposes σ2
0 = 0.9. Four combinations of hyperparameters are investi-

gated and summarized in Table 2.

Note that combination 4 in Table 2 results in a hypergeometric gamma prior

with an approximate prior expected value of 4.75, while the prior belief is 0.9

for the other combinations.

Combination Inverse-Gamma

prior

Gamma prior Hypergeometric

gamma prior

1 0.87(0.9) 0.91(1) 0.99(0.8)

2 0.88(0.9) 0.92(1) 0.97(0.8)

3 0.90(0.9) 0.94(1) 0.98(0.8)

4 0.88(0.9) 0.92(1) 0.89(1.3)

Table 1: Coverage probabilities (median credible interval width) for different combinations

The coverage probabilities calculated under the hypergeometric gamma prior

is the highest with a low median width of the credible interval for combinations

1 to 3, thus the Bayes estimators derived under this structure are good. It is

interesting that even in combination 4, the hypergeometric gamma prior still

performs satisfactorily well. The bias and mean squared error for each prior

and each sample were calculated, for combinations 1 and 4, and are depicted in

Figure 5.
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Figure 5: Bias (Left) and Mean squared error (MSE) (Right) for 100 samples of combination

1 (top row) and combination 4 (bottom row) (Hypergeometric gamma prior (-), gamma prior

(...) and inverse-gamma prior (- -))

The good performance of the hypergeometric gamma prior for combination

1 is evident from Figure 5 since the bias and MSE are smaller for this prior than

for the inverse-gamma prior. More precise, and hence more accurate estimates

are obtained for combination 1, compared to combination 4. This is supported

by Table 1. From Table 1 and Figure 5, the results of [3] and [7] are again

apparent regarding the better performance of the gamma prior when compared
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to the inverse-gamma prior.

Figure 6: Analytical posterior density function of σ2 for 100 samples using combination 1

(Right) and combination 4 (Left)

The marginal posterior density function (6) for the hypergeometric gamma

prior, with p = 1 and q = 1, of σ2 for the 100 different samples can be viewed

in Figure 6. It can be remarked that this density function (6) is quite robust

with respect to sampling in the sense that the shape and scale is not heavily

influenced by a change in the sample, even for a small sample as in this paper.

It is also evident that the posterior is not dominated by the shape of the prior

by comparing Table 2 and Figure 6.

4.3. Real dataset

A forester wishes to estimate the volume of merchantable timber in a pop-

ulation of trees, based on a sample [14, p.28] . To this purpose he selected 31

trees and measured their volume. Since this is a small sample, most probably

not random due to location constraints, we propose a Bayesian approach with

a hypergeometric gamma prior for the estimation of the mean and variance.

Inverse gamma and gamma priors are also considered. The data is found to be

non-normal and a log-transformation corrected this. Let X be the volume of

the tree and Y = log(X) be the log-transformed variable, then Y ∼ N(µ, σ2).

The prior information is specified as E[σ2] = 0.3 based on expert information.
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Five different priors are assumed for σ2 as summarized in Table 3 and illus-

trated in Figure 7. The hyperparameters of the hypergeometric gamma priors

are chosen according to the methodology in Section 4.2.1. The likelihood, priors

Prior Hyperparameters Bayes estimate 95% Credible interval Width

Hypergeometric gamma 1 ∗ ϕ = 0.01875, n = 32 0.2933 (0.21;0.385) 0.175

Hypergeometric gamma 2 ∗ ϕ = 0.1, n = 6 0.2945 (0.195;0.425) 0.23

Hypergeometric gamma 3 ∗ ϕ = 0.5, n = 1.2 0.2976 (0.195;0.445) 0.25

Inverse gamma α1 = 3.5, β1 = 11.5 0.3107 (0.195;0.465) 0.26

Gamma α2 = 3.3, β2 = 10 0.3125 (0.19;0.41) 0.22

Table 3: Hyperparameters and posterior characteristics under the considered priors

∗ a=1,b=1,c=0.01

and posterior density functions of σ2 for this dataset is displayed in Figure 7.

Figure 7: Prior density functions (Left) and analytical posterior density functions (Right) of

σ2

It was illustrated in this section that different prior structures still lead to a

more concentrated posterior which in turn shows that the prior is not in conflict

with the likelihood (see [15]), and more than one prior may be appropriate.

McElreath [16] stated: ”People commonly ask what the correct prior is for a

given analysis. The question sometimes implies that for a given set of data,
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there is a uniquely correct prior that must be used, or else the analysis will be

invalid. This is a mistake. There is no more a uniquely correct prior that there

is a uniquely correct likelihood.”

The advantage of the hypergeometric gamma prior is clearly seen in Figure 7

for the real dataset. The resulting credible intervals are narrower even though

the priors are vaguer than the inverse gamma prior, leading to more precise

estimates. The gamma prior still performs better than the inverse gamma prior.

5. Conclusion

In this paper we proposed a new class, where this hypergeometric gamma

distribution is a prior for the the univariate normal model. The analytical ex-

pressions of the posterior density functions and Bayes estimators were simplified

by identifying complex expressions as expected values. This methodology was

generalized in Remark 5. This approach simplifies computations when infor-

mative priors are used with rich structure and can pave the way for the use

of this in several statistical analyses, amongst others regression analysis. This

new gamma model delivered higher accuracy and higher coverage than the other

priors. The advantages of using the analytical expressions instead of MCMC

sampling were illustrated in terms of computational time. Additionally, no

knowledge of MCMC sampling and Metropolis-Hastings algorithms are needed

for the application of these results. In the simulation studies and the analy-

sis of the real dataset it was shown that this new gamma model optimizes the

modeling of real phenomena.
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