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Abstract: Despite significant effort in modelling and simulating flotation circuits, comprehensive model 

based control and optimisation implementations on industrial circuits remain scarce. In this paper, the 

factors preventing more widespread implementation of model-based control and optimisation applications 

are investigated by focussing on three aspects. Firstly, the critical variables required in a simplified flotation 

model are identified. Models that are currently used in control, optimisation and supervisory applications 

are thereafter analysed to determine to what extent the required variables are modelled. Finally, online 

instrumentation available to support these models are investigated, also including instrumentation that is 

still under development and not commonly available in commercial applications. Although models used in 

control applications tend to focus on subsections of the flotation process, there seem to be a good agreement 

between the required and modelled variables.  Model fitting however often relies on extensive sampling 

campaigns that will need to be repeated regularly to maintain model accuracy. A number of online 

measurements of sufficient accuracy are still not available to support these models, compromising the long 

term reliable use of models in online applications. The fact that flotation processes are in many instances 

not extensively instrumented, constrains online maintenance and adaption of model based solutions further. 

Keywords: Flotation modelling and identification, process control and optimisation, model based control 



1. INTRODUCTION 

The origins of froth flotation can be traced back to the 1880s 

(Gaudin, 1957) while column flotation was patented in the 

early 1960s (Finch & Dobby, 1990). Froth flotation has been 

modelled extensively to include factors such as the chemical 

reactions (King, 1982), how different size classes participate 

in the process (Lynch, et al., 1981) and the physical processes 

such as particle-bubble collision (Finch & Dobby, 1990). 

Collaboration between industry and academia as part of 

programmes such as AMIRA P9 focussed efforts, and 

significant progress has been made during the past 25 years in 

understanding the intricacies of the froth flotation process.  As 

a result, many of the principles described earlier have been 

integrated into a comprehensive simulator (Schwarz, et al., 

2006). 

Despite the rich modelling framework available, the number 

of successful industrial implementations of model based 

control and optimization strategies (other than basic level 

control as described by Schubert et al. (1995) ) remain scarce 

(Shean & Cilliers, 2011). Reasons for this include a lack of 

instrumentation, lack of reliable dynamic models and 

inadequate regulatory control (Bergh & Yianatos, 2011). The 

issues of the lack of suitable dynamic models and insufficient 

instrumentation to interface with these models cannot be 

separated and need to be addressed simultaneously.   

Model based implementations often fall into disuse after some 

time due to the models not being robust over a large range of 

operating conditions (Shean & Cilliers, 2011). The use of 

empirical models fitted over a limited operating range has 

similar limitations, and require frequent recalibration when the 

operating points shift (Bouchard, et al., 2009). In the absence 

of online measurements to recalibrate these models, or at least 

alert the operator of the need for recalibration, these strategies 

are bound to fail.   

The aim of this paper is hence to identify the key variables 

required in flotation control applications, determine if existing 

models take these variables into account, and consider to what 

extent online measurements required by these models are 

commonly available on froth flotation plants, or are being 

developed and can potentially be made available on industrial 

sites in future. The focus is on long term industrial 

implementations rather than short term pilot plant campaigns. 

2. MODEL REQUIREMENTS 

2.1 Structure 

The motivation to develop many of the existing flotation 

models, is to model different circuit configurations and 

operating practices with high accuracy, in order to recommend 

changes that would improve operation. Examples of such 

activities are described by Schwarz et al. (2006). Under these 

circumstances a detailed sampling campaign can often be 

justified to provide the data to fit a comprehensive set of model 

parameters. Where models are to be used online, manual 

sampling campaigns are not viable on an ongoing basis, and 

online measurements would have to be used to maintain model 

integrity. A model for continuous control applications would 
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thus need to be structured in such a way that available online 

measurements provide the stimuli to the process and are also 

used to maintain model integrity by estimating parameters 

where possible. 

Basic froth flotation models are typically extended with the 

aim of characterising some behaviour that cannot be explained 

by existing models. While more detailed modelling is essential 

in improving model accuracy and in advancing knowledge 

about the process, it does result in a significantly larger set of 

parameters to be fitted initially and updated regularly to 

maintain model consistency.  For control purposes, some 

accuracy may be sacrificed in exchange for fewer parameters.  

The direction of change and relative magnitude is generally of 

more importance than the absolute value of a variable, as 

measurement feedback can correct for model inaccuracies. 

While the decision on which interactions to ignore are not 

trivial, a reliable model would have to be based on a 

significantly reduced parameter set, to ensure that model 

accuracy is not degraded by the use of estimates based on 

parameters that cannot be updated dynamically. 

Despite the requirement of minimising the set of parameters, 

the model needs to be able to estimate process dynamics 

required for control with sufficient accuracy.  It must also be 

able to model non-linear phenomena such as peak air recovery 

(Hadler & Cilliers, 2009) and discrepancies between mass-pull 

and recovery (Hadler, et al., 2010) that currently receive 

research interest, with sufficient accuracy.      

While laboratory and pilot-plant scale applications show some 

benefit of deriving empirical models (Bouchard et al., 2009), 

the long-term reliability of these models in the presence of 

changing operating conditions is a concern.  

Phenomenological models should thus take priority.  Bouchard 

et al. (2009) however also commented that empirical models 

should not be dismissed completely, as all models as well as 

sensors require calibration. 

2.2 Variables 

A number of authors listed the key variables required in the 

control of froth flotation processes, for example Finch & 

Dobby (1990), Lynch et al. (1981), Bergh & Yianatos (2011) 

and Laurila et al. (2002).  There is to a large extent agreement 

on the set of variables required, and a summary follows: 

As inputs, or manipulated variables, the following variables 

can be used to drive the process in a desired direction: 

- Reagent additions 

- Pulp level setpoints 

- Air flow rate setpoints 

- Froth wash water rate (particularly in columns) 

Lynch et al. (1981) also included addition points for reagents 

and collection points for concentrate, but these form part of 

circuit design parameters rather than online control 

parameters.   

Depending on the circuit configuration, feed characteristics are 

either considered as disturbances or as manipulated variables, 

as indicated by Lynch et al. (1981).  Bergh & Yianatos (2011) 

considered slurry flow as a manipulated variable rather than a 

disturbance, which would also be the case in integrated 

grinding and flotation control and optimisation applications 

(Conradie et al., 2003). The following feed properties can be 

classified as manipulated variables or disturbances: 

- Pulp density 

- Volumetric flowrate 

- Fineness of grind 

The main outputs of the process relate to its economic 

performance, and are grade and recovery. Lynch, et al. (1981) 

also included concentrate density and flowrate in the outputs 

referred to as “performance variables”, as the total production 

also affects profitability.   

A number of process states has a direct influence on the 

economic outputs of the process, and are typically affected by 

the manipulated variables and disturbances.  The following 

states, also referred to as “intermediate variables” by Lynch, et 

al. (1981) are listed: 

- Froth depth 

- Gas holdup 

- Bias superficial velocity (mostly columns)   

- Air superficial velocity 

- Feed, tailings and concentrate flow rates 

- Mineral concentrations in all intermediate streams (grades) 

- Densities of all streams 

The largest discrepancy between the variables described by the 

authors, is in the variables considered disturbances.  Bergh & 

Yianatos (2011) only included the first 3 disturbances listed 

below, while the full list is described by Laurila et al. (2002).   

- Feed size distribution 

- Feed grade (minerals concentration in feed) 

- Feed density 

- Feed mineralogy (fineness of crystallisation, minerals) 

- Electrochemical potentials (Eh, pH) 

- Particle properties (size distribution, shape, degree of 

liberation) 

- Froth properties (speed, bubble size distribution, stability) 

 

The fact that Bergh & Yianatos (2011) managed to explain 

92% of variance with a reduced parameter set model, using 

only 6 latent variables obtained through principle component 

analysis, indicates that a model with a small parameter set may 

still provide sufficient accuracy for control purposes, but the 

complexity required is likely to be process dependent (Laurila 

et al., 2002).  Shean & Cilliers (2011) confirmed that all these 

variables are not necessarily required to obtain good control 

performance, but that their impact needs to be considered.  

Simplifying assumptions, for example that the feed 

distribution and density would not vary significantly if the 

grinding circuit control is effective have been proposed (Wills 

& Napier-Munn, 2006) and can potentially be used to simplify 

models without degrading controller performance.  
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3. MODELS USED FOR CONTROL 

The flotation process involves complex physical and chemical 

reactions with various contributing factors. Generally, 

flotation modelling approaches can be divided into two 

categories: Kinetic (first-principle) modelling and data-driven 

modelling. The kinetic modelling studies mainly include: 

- Flotation rate modelling: The influence of operational 

parameters, such as pulp density, chemical reagents, aeration 

rate and, froth depth, on the flotation rate; 

- Mass balance modelling: Mass and flow conservation in a 

flotation cell; 

- Probability modelling: The probability of collision / 

adhesion / detachment between particles and bubbles, and 

the merging / bursting of bubbles. 

Data driven modelling mainly involve: 

- Performance evaluation: The relationship between flotation 

performance and froth features; 

- Grade / recovery prediction: Predict the concentrate grade / 

recovery using inlet conditions and operational variables; 

- Soft sensing: Estimate key process variables, e.g. pH, pulp 

level, when the default instrument is not available or out of 

order. 

Bascur (2005) developed a detailed phenomenological 

flotation model. The model linked together the particle / 

bubble and water transport mechanisms, as well as the 

hydrodynamic characteristic of a flotation cell, and is able to 

describe the behaviour of particles with different 

mineralogical composition and particle sizes under a wide 

range of steady state and dynamic operating conditions. This 

model provides detailed understanding of flotation operations 

at the expense of increasing complexity.   

The simplest models used in froth flotation control have been 

derived to stabilise pulp levels in interacting cells in the 

presence of variations in feed rate. Despite their simplicity, 

flotation level control systems, such as Mintek's FloatStar 

(Schubert et al., 1995) can significantly improve the economic 

performance of a flotation plant (Craig and Henning, 2000; 

Craig and Koch, 2003).  

In Jämsä-Jounela (1992), a simplified flotation model based on 

both mass and volume balances was developed for the control 

of a rougher flotation bank. The model parameters were 

obtained through an industrial experimental campaign.  

The level (yi) response of a cell can be calculated from the 

difference between the slurry inflow from an upstream (Qi-1) 

cell and the slurry outflow from the cell (Qi), as shown in (1), 

assuming a constant cross section area (Ai) over the cell height.   

𝜕𝑦𝑖

𝜕𝑡
=

𝑄𝑖−1−𝑄𝑖

𝐴𝑖
   (1) 

Jämsä-Jounela et al. (2003) improved on this model by taking 

the structure of flotation cells and valve sizing into account. 

Various control strategies for pulp level control, including PI 

control, feed-forward control, decoupling control and 

multivariable control, have been tested and compared using 

this model (Kämpjärvi & Jämsä-Jounela, 2003). 

When the froth phase is considered in addition to the slurry 

phase as part of a model, a mass balance forms the core of the 

model to track mass flows between the feed, tailings and 

concentrate streams.  Depending on the complexity of the 

model and data available for fitting, the mass balance may be 

performed on specific components in a stream, for example 

PGMs, chromite and gangue (Du Preez et al. 2013) or further 

divided into floatability classes per component based on 

granulometry (typically size classes) (Putz & Cipriano, 2015).    

Maldonado, et al. (2009) implemented a Model Predictive 

Control (MPC) strategy to control a flotation column pilot 

plant. Gas holdup in the collection zone was measured using a 

conductivity probe, while bias rate was calculated from a 

difference in conductivities between the wash-water and feed 

water streams in a two-phase system.  A 2x2 model was 

implemented in an MPC controller, with the outputs defined 

as gas holdup and bias rate, and the inputs as wash water feed 

rate and aeration rate.  The models were however empirical 

models fitted from operational data.  Upper and lower limits 

for both gas holdup and bias rate were included in the 

controller, based on a desired operating range and expected 

constraints that would ensure such operation.      

Bergh & Yianatos (2013) developed a simulator for rougher 

flotation banks and calibrated it using experimental data.  The 

simulator was initially used in parallel with the existing control 

system to evaluate the effect of changes in operating 

conditions.  It was later redesigned to act as an expert system, 

but this functionality has only been tested in a simulated 

environment.  Other industrial implementations of expert 

systems (Kewe, et al., 2014; Kewe, Moffat and Schaffer, 2014) 

and optimisation strategies (Baas, et al., 2007) are often rule 

based, with limited detail provided on the underlying models. 

Bergh & Yianatos (2013) modelled mass transfer between the 

pulp and froth phase by defining a global cell recovery (RG) 

based on collection zone recovery (RC) and froth recovery 

(RF), as defined in (2).   Yianatos et al. (2008) used a similar 

approach.  Although (2) can be simplified by lumping the 

froth- and collection zone recoveries together, Du Preez et al. 

(2013) noted that a more detailed model is likely to improve 

their results that was based on a single parameter model. 

 𝑅𝐺 =
𝑅𝐶∙𝑅𝐹

1−𝑅𝐶(1−𝑅𝐹)
   (2) 

The complexity of the equations describing collection zone 

and froth recoveries shows some variation between models. 

Bergh & Yianatos (2013) modelled RC as a function of pulp 

residence time, flotation rate constants and maximum 

achievable recovery.  RF was modelled using two equations.  

The first is a function of bubble load, superficial gas rate, 

concentrate mass flow, cell dimensions and concentrate- and 

bubble load grade.  The other is a function of a froth stability 

parameter, froth depth, gas holdup, superficial gas velocity and 

maximum froth recovery.  For both RC and RF empirical 

equations were fitted to model the degradation in flotation rate 

distribution and the reduction of froth stability when moving 

down a bank of flotation cells.  Gangue recovery is modelled 

based on water recovery (a function of superficial gas rate, 

froth depth and froth stability).  The model fit requires an 
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extensive sampling campaign, including grade and mass data 

per size class on all streams, density (per stream), and also air 

holdup, bubble loading and grade, and aeration rates for each 

cell.  

The compartment model described by Savassi (2005) include 

similar elements as described by Bergh & Yianatos (2013), but 

all the factors contributing to overall recovery is included in a 

single equation.  In (3), collection zone recovery is described 

by kcz (flotation rate for the collection zone) and τcz (residence 

time in the collection zone).  Similar to (2), RF refers to froth 

recovery while ENT and Rw refers to degree of entrainment and 

water recovery to the concentrate stream, respectively.  Dos 

Santos et al. (2014) showed how phenomenological models 

can be used as part of (3) to model entrainment, water recovery 

and froth recovery. 

𝑅𝐺 =
𝑘𝑐𝑧∙𝜏𝑐𝑧∙𝑅𝐹∙(1−𝑅𝑤)+𝐸𝑁𝑇∙𝑅𝑤

(1+𝑘𝑐𝑧∙𝜏𝑐𝑧∙𝑅𝐹)∙(1−𝑅𝑤)+𝐸𝑁𝑇∙𝑅𝑤
 (3) 

Putz & Cipriano (2015) used a hybrid Model Predictive 

Control (HMPC) strategy on a simulator to control the final 

tailings grade of a flotation circuit subject to level constraints. 

The hybrid functionality was used to include scenarios where 

pulp overflows and when froth flow is zero, in addition to 

normal operation.  The core of the model is a mass balance 

performed on a number of defined granulometries (size 

classes) for each species considered.  Pulp levels in cells are 

calculated using a similar approach as described in (1), 

including valve dynamics and the effect of relative heights of 

interacting cells. Collection rates (per granulometry class) 

defines mass transfer between the pulp and froth phase, while 

a drainage rates determines mass transfer between the froth 

and pulp phase. Although the model includes parameters such 

as air hold-up (in the level calculation) and reagent addition, 

no attempt was made to manipulate aeration rate or reagent 

addition for control purposes. 

Operating flotation cells at their peak air recoveries have been 

shown to maximise both grade and recovery (Smith, et al., 

2010).  A theoretical model has been developed to calculate air 

recovery, based on froth film characteristics (Neethling & 

Cilliers, 2008).  A controller implemented to operate a pilot 

scale flotation cell at its peak air recovery point however used 

a peak-seeking strategy without including any model (Shean, 

et al., 2017).   

Maldonado, et al. (2007) used phenomological models in a 

dynamic programming application, with the aim of optimising 

the froth level profile for a bank of cells. Seguel, et al. (2015) 

used the same model, but with a different cost function 

(maximising overall Cu recovery compared to minimising the 

sum of squared Cu grades in tailings flows). In both cases the 

model used a single flotation rate constant per species.  The 

flotation rate constant is modelled as a function of froth depth, 

residence time and slurry grade, and was fitted using industrial 

data.  Concentrate flow is calculated as a function of froth 

depth, and the rest of the model is based on mass balances.  

Although the model was not used in an online control 

application, it could potentially be used as a simulator in 

parallel to the plant. 

While this section covers a small portion of the available 

flotation models used in control, it provides an overview of the 

modelling techniques commonly employed and highlights the 

scarcity of model based controllers in flotation circuits. The 

MPC strategy described above was only implemented on a 

pilot plant, and the HMPC strategy on a simulator, highlighting 

the scarcity of model based controllers in industrial 

applications. The key variables listed in 2.2 are mostly 

modelled, with the exception being the large set of disturbance 

variables. 

4. INSTRUMENTATION 

Reliable online measurements are essential in ensuring reliable 

long-term use of model based control strategies (Hodouin, 

2011). Wills & Napier-Munn (2006) stated that the key to 

effective flotation control is online chemical analysis. In all the 

flotation models described above, the mineral compositions of 

process streams form a core part of the models, supporting this 

statement.  On-line X-ray fluorescence (XRF) analysers can 

provide assays on several elements as well as solids content, 

but the sampling delay varies between 15 seconds and one 

minute, and, depending on the number of samples analysed, 

cycle time can vary between 5 and 15 minutes (Laurila, et al., 

2002). Visual and near-infrared reflectance spectroscopic 

analysis can complement XRF devices and provide grade 

analyses at a much higher frequency (Shean & Cilliers, 2011). 

Remes et al. (2005) developed a dynamic flotation model to 

study the influence of measurement accuracy and sampling 

frequency of online XRF analysers on the economical 

performance of the flotation process. It was shown that, in 

order to reduce the error caused by the measurement delay, fast 

basic measurement and control is necessary to complement 

process analysers, and to keep the process stable until the next 

assay arrives. 

Due to the close relationship between visual froth surface 

features and flotation performance, a lot of research has been 

done on the use of flotation cameras, as a soft sensor for 

grades, to provide measurements at a faster rate than what can 

be provided by XRF analysers. Significant progress has been 

made in understanding froth behaviour, and to quantify the 

impact of manipulated and disturbance variables on froth 

characteristics, for example the effect of reagent dosage on 

bubble size (Zhu, et al., 2014). He et al. (2013) utilized a 

probability density function (PDF) of the froth colour texture 

unit number to characterise froths based on colour and texture. 

A nonparametric estimation method based on the fixed normal 

kernel basis was proposed to describe this distribution. Xu et 

al. (2015) proposed a complex network-based texture 

extraction and classification method for froth imaging to 

extract the distinctive froth texture features in different 

production states. 

Liu & MacGregor (2008) developed a control strategy to 

achieve desired froth image properties that are related to froth 

stability, by manipulating reagent addition rates.  In Zhu, et al. 

(2016), a B-spline estimator is used to describe the bubble size 

PDF, in order to classify bubble sizes with non-Gaussian 

features. A multi-output least square support vector machine 

(MLS-SVM) is then applied to establish a dynamical 
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relationship between the weights of the B-spline estimator and 

the reagent dosage. Based on this structure, a reagent addition 

control strategy was implemented to track a desired bubble 

size PDF.  

Aldrich, et al. (2010) however concluded that, despite several 

advances in machine vision on flotation froths, conflicting 

results were obtained on linking image features to froth grade, 

and that no long term fully automated control system based on 

machine vision have been developed to date.   

There may however be scope in using froth image properties 

in combination with a flotation model to calculate grade, rather 

than searching for a direct link. Other soft-sensing applications 

also exist using froth images. Xu et al. (2016) proposed a 

multi-model soft measurement method to estimate the froth 

layer thickness based on the visual features. The froth layer 

thickness was established by the kernel extreme learning 

machine (KELM) models under different working conditions. 

An experimental device to measure froth recovery is described 

by Rahman, et al. (2013).  Although still in an early stage of 

development, it could potentially be used in future to measure 

the froth recovery, which is used in several models. 

Yianatos, et al. (2008) describes a manual gas-holdup sensor 

and bubble-load sensor. Both however require manual 

interaction and cannot be used as online measurements.  The 

bubble load sensor described by Moys, et al. (2010) shows 

good accuracy, but also requires manual interaction.  A gas 

holdup sensor described by Vinnett, et al. (2016) uses a 

combination of images and superficial gas velocity, and has 

the potential to provide an online gas holdup measurement.  

There is also ongoing research on bubble size measurement, as 

detailed in Bhondayi & Moys (2014). 

Laurila, et al. (2002) describes several other measurements 

that may be available on a flotation plant, including their 

limitations.   

- Slurry flow measurements are typically performed using 

magnetic flow meters, but these are generally considered 

problematic due to solid particles and suspended air bubbles 

causing inaccuracies. 

- If other techniques are not viable, concentrate flow rates in 

open channels with known dimensions can be calculated 

using ultrasonic level transmitters, but are not accurate. 

- Density measurements may be provided by some XRF 

devices, or alternatively, nuclear density meters may be 

used.  Installation is critical in preventing inaccuracies 

caused by bubbles. 

- Slurry level measurements using a float with a target plate 

and ultrasonic level transmitter are commonly used, while 

measurements based on hydrostatic pressure or direct 

ultrasonic measurements are often troublesome or sensitive 

to variations in density. 

- A number of airflow measurement techniques are available 

and are generally considered accurate. 

- pH measurements are often problematic due to 

contamination of the electrode. In some cases, conductivity 

probes can however be used as substitute. 

The fact that measurement devices are available however does 

not imply that every process stream would be instrumented. 

Flow rates and on-stream analyses would typically only be 

available on critical streams, and pH measurements only in the 

conditioning tank (Laurila, et al., 2002).  

5. CONCLUSIONS 

Several good dynamic froth flotation models have been 

developed that can potentially be used in control and 

optimisation applications.  The long-term reliability of these 

models however depends on the availability of accurate, fast 

and reliable online measurements, which still seem to be 

lagging.   
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