
1 
 

Development of an Optimal Piezoelectric Transducer to Excite Guided Waves in a 

Rail Web 

Dineo A. Ramatloa*, Daniel N. Wilkeb and Philip W. Lovedayc 

a,bUniversity of Pretoria, a,cCSIR Materials Science and Manufacturing; South Africa 

aDRamatlo@csir.co.za, bnico.wilke@up.ac.za, cPLoveday@csir.co.za 

Abstract 

Ultrasonic transducers have demonstrated the ability to effectively excite guided waves 

that can propagate over long distances and are thus employed in monitoring systems. An 

ultrasonic piezoelectric transducer that strongly excites a mode travelling in the web of 

the rail is required to detect cracks in the rail web. A numerical method referred to as the 

Coupled Semi-Analytical Finite Element - 3 Dimensional Finite Element (Coupled 

SAFE-3DFE) method is employed to model the excitation of guided waves in a rail by a 

transducer. The aim of this study is to demonstrate that the Coupled SAFE-3DFE method 

used in conjunction with mathematical optimization methods, can automate the optimal 

design of a transducer. The optimal transducer was constructed and experimental 

measurements were found to agree with the predicted performance.  
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1. Introduction 

Guided Wave Ultrasound has demonstrated the capability to detect defects in rail tracks 

[1]. One advantage of this method is that it is possible to inspect and monitor structures 

over long ranges. It has been shown that a mode propagating mainly in the head of the 

rail (referred to as the head mode in this paper) can be used to detect defects in the rail 

head at long distances [2]. In order to detect defects in the web of the rail it is necessary 

to use a propagating mode with energy concentrated in the web section of the rail. One 

such mode, referred to as the web mode in this paper was identified by Long and Loveday 

[3]. They demonstrated that the mode is suitable for detecting welds and damage in the 

web of the rail. The dispersion curves and illustrations of the head and web modes of a 

UIC60 rail are shown in Figure 1.  

 

 

Figure 1. (a) Wavenumber and (b) phase velocity dispersion curves of UIC60 Rail and 

mode shapes of the web and head modes at 35kHz. 

As a transducer suitable for exciting the head mode has been developed, there is now a 

requirement to develop an ultrasonic piezoelectric transducer to effectively and optimally 

(a)                                                                     (b) 
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excite the web mode at a specified frequency. Instead of following the conventional trial 

and error approach that requires multiple transducers to be manufactured and tested, a 

numerical modelling based design approach outlined in this paper is followed where only 

the final design is manufactured to validate the performance. The ability of a transducer 

to effectively excite guided waves in a rail track can be influenced by many factors, with 

material and geometrical properties being the most important. To achieve the set design 

goals, these factors need to be carefully selected, which we demonstrate to be possible if 

a systematic design approach is followed. In this paper, the design process is simplified 

as material properties of the transducer and the geometry of the piezoelectric stack are 

kept constant. This decision was made to allow the use of the same piezoelectric stack 

and manufacturing techniques that are used in the transducer for the head mode, which is 

already in production. The design problem in this paper is thus to find the optimal sizes 

of the back and front masses of the web transducer.  

First, an analysis approach is required that can reliably predict the propagating waves 

excited by a transducer attached to a rail track. A number of techniques have been 

demonstrated to be reliable, including the computationally demanding full three-

dimensional (3D) finite element analysis of the rail track and the transducer. The 

computational demand of full 3D analyses of the rail track often prohibits numerous 

analyses to be conducted. An alternative technique and computationally efficient 

approach is the previously developed Coupled SAFE-3DFE method [4,5], which 

combines the Semi-Analytical Finite Element (SAFE) model of the rail and a 3D finite 

element model of the transducer.  

Adopting a technique referred to as the SAFE method, we can perform the numerical 

modelling of ultrasonic guided waves in a rail track. Researchers in [6] and [7] have 
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highlighted the reliability and efficiency of the SAFE method; hence the method has 

recently become widely adopted for studying wave propagation in rails. In the SAFE 

method, only a 2D cross-sectional mesh of a waveguide is employed in the computations, 

while the length of the waveguide is treated analytically. The method is therefore 

attractive due to its improved computational efficiency compared to 3D finite element 

methods. The problem size is not dependent on the length of the waveguide, but rather on 

the discretization of only the cross-section. The computational demand in the SAFE 

method is concentrated in the computation of the eigenvalues and corresponding 

eigenvectors (mode shapes) to describe the different modes of propagation that a 

waveguide supports. This eigenvalue problem is computationally demanding but 

fortunately it only has to be solved once for the rail if the eigenvalues and eigenvectors 

are stored and used during the analysis of numerous transducer designs attached to the 

rail. 

A Coupled SAFE-3DFE method for modelling the excitation of guided waves by a 

piezoelectric transducer was proposed by Loveday [4,5]. The method employs a 3D finite 

element mesh of the transducer and attaches it to a 2D SAFE mesh of the waveguide 

through coincident finite element nodes. An improved version of the method, which 

allows for the attachment of the transducer to the waveguide model through non-

coincident nodes was later proposed by Loveday and colleagues at the CSIR. Ramatlo et 

al. [8] demonstrated that the Coupled SAFE-3DFE method accurately predicts the 

excitation of guided wave modes by a piezoelectric transducer. The modelling of the 

transducer in 3D is necessary as the interest is on designing resonant transducers to 

achieve powerful excitation and long-range propagation of guided waves. An appropriate 

3D transducer model ensures that the dynamics of the transducer are correctly captured.  
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In this study the Coupled SAFE-3DFE method is used to predict the capability of a 

transducer to excite guided waves in the rail. Again, the computational efficiency of the 

Coupled SAFE-3DFE is evident as only the transducer changes, while the rail model 

remains the same allowing us to store the eigenvalues and mode shapes of the waveguide.  

Searching for the optimal transducer design can become inefficient when a trial and error 

approach is followed. However, if Coupled SAFE-3DFE is used in conjunction with 

appropriate optimization methods, the design process can be practical and 

computationally acceptable. Arora [9] outlines the typical steps of a design optimization 

procedure. Firstly, the variables that dictate the design and are allowed to change need to 

be identified and are referred to as design variables. For the problem under consideration 

in this study, the design variables parameterize parts of the geometry of the transducer. 

The performance of each design needs to be quantified by a single scalar value referred 

to as the objective function. The set of designs that are valid is limited by constraints 

imposed on the design variables and reflects the feasible design domain.  

Design optimization is generally an iterative process and primarily requires the evaluation 

of many designs until no improvement to the design can be made. In our problem the 

objective function could be potentially noisy due to re-meshing between transducer 

designs. We therefore opt for a response surface based method as opposed to a direct 

gradient based approach to smooth out the response between designs. In the response 

surface method, we first conduct a Design of Experiments (DOE) where we select a finite 

set of transducer designs randomly scattered within the design space. Their performances 

are then simulated using Coupled SAFE-3DFE. This approach allows us to compute 

multiple designs concurrently (depending on the number of available computers and 

CPUs) whereas a direct gradient-based approach is inherently sequential.  
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Given a finite set of randomly scattered transducer designs and corresponding transducer 

performances (objective function values), we approximate the objective function by a 

response surface that is an accurate representation of the simulated performances from 

the Coupled SAFE-3DFE model over the entire feasible design space. We can then 

interpolate on the response surface to predict the performance of other transducer designs 

which have not been analysed. In this paper, the design space is sampled using a Latin 

Hypercube sampling strategy (to provide a number of designs to be analysed) and the 

response surface is constructed using a Radial Basis Function (RBF) interpolation 

scheme. The response surface is smooth by construction and computationally efficient to 

evaluate.  

The optimal transducer design can then be found by maximizing the response surface 

model using a conventional optimization algorithm (we choose the Nelder-Mead 

algorithm). The process steps to obtain an optimal transducer design using the response 

surface method is summarized in Figure 2. 

 

Figure 2. Process steps to obtain an optimal transducer design using the response 

surface method. 

Given a specific waveguide model, the advantages of using Coupled SAFE-3DFE with 

response surface based optimization methods are as follows: 
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 The computational demand of Coupled SAFE-3DFE is an eigenvalue problem 

that needs to be solved at a set of frequencies. 

 Multiple transducer designs can be evaluated concurrently on different computers 

or different CPUs. 

 Finding the optimal transducer is automated; implying that once the optimization 

problem is set-up, an automated process is followed until the optimal transducer 

is found. 

 The designer’s time is only required to interpret the optimal solution or to modify 

the optimization problem. 

The main objective of this paper is to demonstrate a procedure for designing optimal 

transducers for guided wave excitation in rails by adopting the Coupled SAFE-3DFE 

method, the response surface method and the Nelder-Mead optimization algorithm. The 

Coupled SAFE-3DFE method is outlined in Section 2 of the paper. The response surface 

method and the optimization process are described in Section 3 while the results and 

discussion of results are presented in Section 4. The conclusions are drawn in Section 5 

where the recommendations for future work are stated. 

2. Coupled SAFE-3DFE Model 

The SAFE method has recently become widely adopted by researchers. Only a brief 

description of the SAFE method is included here. A thorough explanation of the method 

can be found in references [6,7]. 

The governing equation of motion for a SAFE model is given by: 
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where 𝐾0, 𝐾1 and 𝐾2 are the system stiffness matrices, 𝑀 is the mass matrix, 𝜔 is the 

natural frequency of the system and 𝜅 is the wavenumber. 𝐹 is the force applied to the 

waveguide and 𝑈 is the displacement defined as in the formulation presented by Gavric 

[7]. 

The response of a waveguide at a distance 𝑧 from the excitation point is given by: 
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where 𝜓𝑟 is the eigenvector of mode 𝑟 (found from equation 1 with 𝐹 = 0), and the term 

𝛼𝑟 is the modal amplitude evaluated as: 

 

zj

r

T

r

T

r
r

re
B

F
jz






 

)(

 (3) 

In the Coupled SAFE-3DFE method, a 3D finite element model of an electrically driven 

transducer is attached to the 2D SAFE model of the rail to excite the mode of interest. A 

schematic representation of the Coupled SAFE-3DFE method is illustrated in Figure 3. 

A 2D cross-section of the infinite rail is extracted and modelled using four node 

quadrilateral elements in SAFE. To excite ultrasonic guided waves in the web of the rail, 

the 3D transducer model is attached to the edge of the web cross-section, at the centre 

where it will excite the waveguide to propagate the web mode. The transducer model is 

driven by a voltage signal generated from a 17.5 cycle hanning-windowed tone burst with 

a centre frequency of 35 kHz. For effective modelling of the problem, model data will 
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need to be accurately mapped between the 2D SAFE model and the 3D transducer model. 

This is explained in Loveday [5] and Ramatlo et al. [8].  

 

 

Figure 3. Schematic representation of the Coupled SAFE-3DFE method. 

Firstly, for the 2D SAFE model, the response of the rail to applied unit loads is computed 

using equations 2 and 3. Following the formulation in Loveday [5] and Ramatlo et al. [8], 

the dynamic stiffness of the rail experienced by the transducer can be estimated from the 

known applied loads (𝐹𝑖𝑛) and the computed responses 𝑈𝑖𝑛, at the interface degrees of 

freedom (DOFs): 

 ininr FUD   (4) 

The 3D finite element model of the transducer includes piezoelectric elements [10] and 

the equations of motion have the form: 

𝑉 

3D infinite  
rail track 

2D SAFE 
 model 

𝑧 = 0 
−𝑧 

+𝑧 SAFE-3DFE 
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+𝑧 
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where q is the electrical charge and 𝜙 is the electric potential. 

When the transducer is excited, voltages are applied to the flat surfaces of each 

piezoelectric ring, via the silver electrodes.  In our model of the transducer each 

piezoelectric ring is modelled by only one linear finite element through the thickness of 

the ring.  Therefore all voltage degrees of freedom in the model are on an electrode.  There 

are no voltage degrees of freedom that are not specified.  Due to this simplification the 

harmonic displacement response may be written from the first equation in equation 5 as: 

   fKuMK suuu   
2

 (6) 

where 𝜙𝑠 is a vector of specified voltages applied at the electrical potential DOFs. From 

equation 6, we see that the electrical voltage excitation multiplied by the piezoelectric 

coupling matrix acts similarly to an externally applied force. We can write this term as an 

electrical force: 

 suv Kf   (7) 

The term on the left hand side of equation 6 is the dynamic stiffness of the transducer. 

The dynamic stiffness of the transducer 𝐷𝑡 = [𝐾𝑢𝑢 − 𝜔2𝑀] can be partitioned into DOFs 

in contact with the rail (𝑖𝑛) and DOFs not in contact (𝑛). The boundary condition imposed 

by the presence of the rail may be included in the transducer model by adding the dynamic 

stiffness of the rail to the dynamic stiffness of the transducer at the interface DOFs.  
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Equation 8 is solved at each frequency to obtain the transducer displacements. The 

displacements at the interface DOFs 𝑢𝑖𝑛, are then used to determine the forces applied to 

the rail using equation 4. Finally, these forces are applied to the SAFE model of the rail 

and the response of the rail is solved at each frequency using equations 2 and 3. 

3. Optimal Design of a Transducer 

The goal is to obtain an optimal transducer design for exciting the web mode. The design 

is of a sandwich type with the structural configuration shown in Figures 4a and 4b. The 

piezoelectric transducer will be driven by a 35𝑘𝐻𝑧 centre frequency hanning-windowed 

tone burst signal with 17.5 cycles. Such a signal contains energy in the frequency range 

we plan to use in our system. The amount of energy that the transducer can transmit to 

the rail web mode must be maximized.  

 

Figure 4. The (a) side and (b) isometric views of the transducer showing its structural 

composition. 

The front and back masses of the transducer are made of steel while the piezoelectric 

material is a Type IV PZT. The aim of the design problem is to determine the front mass 

and back mass dimensions. The geometry and material of the piezoelectric stack is kept 

constant as explained in the introduction. To allow for the use of an available transducer 

(a)                          (b) 
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housing, the diameter of the front mass is kept constant at a size compatible with the 

housing. The design problem therefore contains the three design variables 𝑥1, 𝑥2 and 𝑥3 

shown in Figure 4a.  

Although fixing the diameter of the front mass poses a limitation on the design problem, 

it provides notable advantages, which include reduced problem complexity and improved 

computational cost and time. 

Due to construction requirements, the thickness of both the front and back masses are 

limited to be between 4𝑚𝑚 and 10𝑚𝑚, while the back mass diameter is limited to be 

between 12.05𝑚𝑚 and 15.5 𝑚𝑚. 

3.1. Mathematical Design Optimization Model 

Following the discussion of the design of the rail web transducer above, the standard 

mathematical design optimization problem is stated as follows: 

Find a vector 𝒙 = {𝑥1, 𝑥2, 𝑥3}𝑇 containing the design variables: front mass thickness 𝑥1, 

back mass thickness 𝑥2 and back mass diameter 𝑥3, to maximize the response of the rail 

web mode to piezoelectric transducer excitation given by some relevant objective 

function 𝑓(𝒙), that is continuous and is subject to three inequality constraints: 

4 ≤ 𝑥1 ≤ 10 

4 ≤ 𝑥2 ≤ 10 

12.05 ≤ 𝑥3 ≤ 15.5 

3.2. Objective Function 
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We have defined the excitation of the transducer and we want to obtain the maximum 

response to this excitation signal. The SAFE-3DFE model can predict the modal 

amplitude, frequency response and time history of guided waves excited by a particular 

transducer design. The modal amplitude captures the dynamics of the transducer when 

attached to the rail. Consider the predicted modal amplitudes of the web mode for three 

candidate transducer designs denoted A, B and C, plotted in Figure 5a. It is seen from 

Figure 5a that the modal amplitude can have abrupt changes in amplitude at certain 

frequencies. It is believed that this might be due to the effect of cut-on frequencies of 

other modes. Therefore, although the modal amplitude captures the dynamics of the 

transducer, it is not advised to be used as an optimization criterion directly as it is not a 

smooth function.  

 

Alternatively, consider the response of the web mode when the excitation signal is applied 

to the three candidate transducer designs, plotted in Figure 5b. This function is obtained 

by multiplying the modal amplitude by the spectrum of the excitation signal and the mode 

shape of the web mode. The time history of the web mode can be computed by taking the 

inverse Fast Fourier transform of the response function and is shown in Figure 5c.  
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Figure 5. The (a) modal amplitude, (b) frequency response and (c) time responses of the 

web mode when excited by different transducer models. 
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The objective of the design is to transfer the maximum energy possible into the web mode. 

If the web mode is strongly excited by a transducer, the peak amplitudes of the time 

history and the frequency response function will be large. An optimization criterion must 

be represented by a single value that will indicate whether a design is good or not 

depending on the objective statement. It would be possible to use the value of the response 

at 35kHz as an objective function. However, it is possible that abrupt changes in this 

response could occur and we therefore choose to use the area under the frequency 

response function. In Figure 5b, the objective function value for each transducer design 

would be the area below their specific frequency response curve. The area below each 

curve is computed by taking the integral of the curve between the limits of 0Hz and 

120kHz. The area of the frequency response function provides a smooth and continuous 

function for the optimization criterion.  

3.3. Response Surface Construction 

Recall the process outlined in Figure 2, instead of optimizing the problem directly by 

evaluating the response from the Coupled SAFE-3DFE for each design, we first 

approximate the objective function using a response surface. This is done by first 

evaluating a finite set of designs using Coupled SAFE-3DFE to get their responses. The 

response surface method is then used to interpolate the objective function values of the 

other designs that were not explicitly evaluated. The approximation of the objective 

function is constructed using RBF interpolation. The benefit of this approach is that the 

designs can be evaluated in parallel when approximating a response surface, whereas, 
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directly optimizing the problem requires sequential analyses.  In addition, a model of the 

response is available for further interrogation that is computationally efficient to evaluate.  

The first step in constructing a response surface is to sample the design space. One way 

to select a set of random transducer designs that are evenly distributed over the design 

space is to use the Latin Hypercube sampling (LHS) method [11,12]. The LHS method 

involves a full stratification of the sampled distribution, with a random selection inside 

each stratum. To sample an s-dimensional space with N data points, the sampling space 

is divided into a series of strata by dividing the range of each variable into N equally sized 

intervals. The N sampling points are then randomly distributed over the sampling frame 

such that each stratum contains only one data point, which enforces coverage of the 

domain for the chosen number of points.  

To illustrate the process we first demonstrate it on a simplified 2-parameter problem. An 

example of a 2-dimensional space sampled with 5 data points using LHS is illustrated in 

Figure 6. The variables are treated independently and each row/column is randomly 

sampled with one point only.  
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Figure 6. Illustration of a simplified 2-dimensional space sampled with N=5 LHS 

points. 

The LHS generated designs are then analysed explicitly to compute their function values. 

For this example problem we can assume that we are approximating a planer surface, so 

each LHS design is given a weighting of one as the objective function value. Once this is 

done, we are able to construct a response surface to approximate the actual objective 

function which is a planer surface for this problem. Using RBF interpolation, the objective 

function 𝑓(𝑥) is approximated by a linear combination of non-linear basis functions [13]:  

𝑓(𝑥) = ∑ 𝑐𝑗𝜑(‖𝑥 − 𝑥𝑗‖)𝑁
𝑗=1                                                 (9) 

 where 𝑐𝑗 are the weights by which the basis function is scaled. The basis functions are 

radially symmetric about their respective centre points 𝑥𝑗 which are the sampled LHS 

points. The weights 𝑐𝑗 are solved from a linear system that ensures that the responses at 

the LHS designs are exactly recovered. In this paper, an RBF approach using a Gaussian 

basis function  

𝜑(𝑥) = 𝑒−(𝜖‖𝑥‖)2
,                                                           (10) 

is adopted. Here, 𝜖 is a positive real number called the shape parameter that affects the 

accuracy and numerical stability of the response surface. A good value of the RBF shape 

parameter 𝜖, can be computed by minimizing the leave-one-out cross validation 

(LOOCV) error [14]. Figure 7 illustrates the approximated response surface for the DOE 

data in Figure 6. This is a poor approximation of a planer surface, and to improve it more 

LHS points should be used.  
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Figure 7. Illustration of (a) Basis functions and (b) Response surface construction using 

RBF for the simplified 2-parameter problem. 

In RBF interpolation, the response surface usually has larger errors at and close to the 

edges of the sampled space. Although this is well known, it is seldom reported or 

considered when constructing the DOE. The DOE is usually constructed only within the 

feasible design domain, resulting in poor approximations close to the edges of the design 

domain. In this study we deliberately construct the DOE larger than the feasible design 

domain to avoid inaccuracies close to the boundaries as depicted in Figure 8. To 

demonstrate this we locate the feasible design domain (indicated as “Design Space” in 

Figure 8) within the DOE sampled domain (indicated as “Sampling Space” in Figure 8) 

non-symmetrically for this study only, to avoid difficulties when meshing the transducer 

geometry. If meshing was not a problem, we would have the feasible design domain 

located centrally within the DOE sampled space. The sampling space was sampled with 

125, 250 and 500 data points respectively, to evaluate the effect of sample size.  

(a)                                                                                          (b) 
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Figure 8. The sampling space and design space, with the sampling space chosen 

deliberately larger than the design space. 

Once the response surface had  been approximated, the derivative-free Nelder-Mead 

minimizer [15] was used to find the optimal design. This optimizer is implemented in 

fminsearch in Matlab and is designed to minimize multidimensional unconstrained 

non-linear minimization problems. The constrained optimization problem presented is 

transformed to an unconstrained problem by using the exterior penalty method [9]. The 

exterior penalty penalises a design when a constraint is violated by adding a positive value 

proportional to the violation to the objective function, driving the minimizer back to the 

feasible domain. The constrained maximization problem is formulated as an 

unconstrained minimization problem for the Nelder-Mead minimizer:  

Find a vector 𝑥 =  {𝑥1;  𝑥2;  𝑥3} of design variables that minimizes: 

Φ(𝒙) = −𝑓(𝒙) + 𝑝1 ∑ (𝑥𝑖 − 𝐿𝐵𝑖)
2

𝑥𝑖<𝐿𝐵 + 𝑝2 ∑ (𝑥𝑖 − 𝑈𝐵𝑖)
2

𝑥𝑖>𝑈𝐵                 (11) 

The upper and lower bound penalty parameters 𝑝1 and 𝑝2, were selected as 5 × 107.   
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To avoid confusion and aid the discussions that follow, this unconstrained minimization 

problem is only to aid the Nelder-Mead minimizer, the discussions that follow will always 

refer the original maximization problem and bound constraints. 

4. Results 

4.1. Design Optimization 

The three sets of DOEs and their associated objective function values computed using the 

Coupled SAFE-3DFE method are plotted in Figures 9a-9c. One attractive feature of DOE 

is that it provides the designer with informative output data, in particular when the number 

of design variables is limited to a few. It is clear from Figures 9a-9c that the data gives a 

good indication of where to expect the optimum design. 

The response surface predicted by RBF interpolation using 500 data points is plotted in 

Figure 10. Within the design space, it was found by inspecting the modal amplitude of 

designs that there are three categories of transducer designs; those with the modal 

amplitude peak of the web mode at a frequency of less than 35𝑘𝐻𝑧, greater than 35𝑘𝐻𝑧 

and at or approximately at 35𝑘𝐻𝑧. As expected, designs with the web modal amplitude 

peak closer to 35𝑘𝐻𝑧 are associated with high function values, thereby indicating a good 

performance at 35𝑘𝐻𝑧. 
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Figure 9. Latin hypercube sampled design points for (a) N=125, (b) N = 250 and (c) N 

= 500 points. 
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Figure 10. RBF constructed response surface that approximates the objective function. 

To evaluate the accuracy of the response surface values predicted by RBF interpolation, 

27 design points arranged in the form of a grid over the sampling space were selected for 

error analysis. The RBF predicted function values were compared to the function values 

computed from the Coupled SAFE-3DFE method at these 27 points. The error 

percentages associated with the selected points are plotted in Figures 11a-11c for the three 

data sets. 
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Figure 11. Errors within the sampling space associated with the predicted objective 

function using (a) N=125, (b) N=250 and (c) N=500 sampled designs to construct the 

objective function. 

It is clear from Figures 11a-11c that the errors are high at the boundary of the sampling 

space as compared to the interior. The errors for the three cases decrease as more sampled 

designs are used to approximate the objective function, thus improving the RBF predicted 

function values. 

To demonstrate the significance of using a sampling space that is larger than the feasible 

design space, we evaluate the accuracy of a number of points that are within the feasible 
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design space. Figures 12a-12c shows the errors associated with the actual design space. 

The errors within the design space are significantly smaller compared to those within the 

sampling space. Had the sampling space been the same size as the design space, large 

errors on the boundaries would have been inevitable as depicted in Figures 11a-11c. 

 

Figure 12. Errors within the design space associated with the predicted objective function 

using (a) N=125, (b) N=250 and (c) N=500 sampled designs to construct the objective 

function. 

The maximum error for N=500 in the sampling and design space is 22.34% and 10.88%, 

respectively. The larger errors in the design space could possibly be due to the evaluated 
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points being very far from the sampled designs. The errors within the design space are 

acceptable for the purposes of this study. A response surface of the performance of 

different transducer designs has therefore been successfully constructed.   

In optimum design, it is not always the case that the design will converge to the global 

maximum when more than one local maxima exist. Convergence is usually driven 

towards one of the local maxima, depending on where the starting point of the algorithm 

is situated. To capture all the local maxima in the objective function, the optimization 

procedure was carried out 100 times with the starting points randomly selected within the 

design space. Plotted in Figure 13 is a histogram of the local optimum designs predicted 

from the 100 runs. Each bin in the histogram represents the cost function value of a local 

optimum point, with the height of the bin indicating the number of times that the 

optimization converged to the local optimum. The three sets of data points in RBF 

interpolation are all considered for comparison. 

 

Figure 13. A histogram of the predicted local optimum designs. 

[%
] 
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Figure 14. The location of the predicted local optima in the design space. 

A single bin in the histogram may contain different types of designs, for example, bins 

K1, K8 and B2 respectively contain designs K1a and K1b, K8a and K8b and B2a and 

B2b. A similar characteristic between different designs of the same bin is the value of the 

objective function, implying that they have the same energy. The histogram indicates that 

there exist a global maximum with a function value of 5.6e-8mHz, that was predicted in 

bins B9 and K8. It can be seen in Figure 14 that the designs B9 and K8b are the same, 

and almost on top of each other for the response surfaces constructed using N=250 and 

N=500 points. 

RBF interpolation predicted that the energy associated with the two global optimum 

designs is approximately 5.6e-8mHz. To verify the accuracy of this prediction, the 
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Coupled SAFE-3DFE method was used. The results from RBF interpolation and the 

Coupled SAFE-3DFE method are compared in Table 1. 

Table 1. Comparison of the two optimum designs. 

 Design K8a Design K8b 

FM thickness 4 4 

BM thickness 7.6 9.1 

BM diameter 13.8 12.3 

RBF Objective function 

value 

5.6114 5.6013 

Coupled SAFE-3DFE 

Objective function value 

5.5968 5.5712 

|%𝐸𝑟𝑟𝑜𝑟| 0.261 0.5403 

 

It is evident from the table that the response surface represented by the RBFs is accurate 

at the optimal design points. The finite element models of the two optimum designs are 

plotted in Figures 15a and 15b, respectively.  

Table 1 shows that the optimum designs lie on the boundary of the design space, where 

the front mass thickness is 4mm. This is due to the performance of the transducer being 

greatly influenced by a decrease in the front mass thickness. Therefore, a better design 

would have been obtained if the front mass was not constrained to a lower bound of 4mm. 

A number of designs were perturbed around K8a design by decreasing and increasing the 
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three design variables respectively. It was found that a 5% decrease in the front mass 

thickness leads to a 1.56% increase in the objective function value. An increase in the 

front mass thickness as well as changes to the back mass size results in a decrease in the 

objective function value. This confirms that the design is at least a local maximum.  

 

Figure 15. The finite element models of the two distinct optimum designs that have the 

same optimum objective function value. 

4.2. Guided Wave Analysis of the Optimal Design 

To evaluate the accuracy of the Coupled SAFE-3DFE method when applied to K8a 

design, experimental measurements were carried out in the lab. The K8a transducer was 

bonded to the web of an available 5𝑚 long UIC60 rail segment, located at a distance of 

1.5𝑚 from one end. The experimental measurement was carried out using a 17.5 𝑐𝑦𝑐𝑙𝑒 

hanning-windowed tone-burst at 35𝑘𝐻𝑧 excitation. The unit amplitude voltage signals 

across each of the 4 piezoelectric rings were amplified to a peak amplitude of 20𝑉𝑜𝑙𝑡𝑠. 

The horizontal displacement response at the centre of the rail web was measured at a 

distance of 1.5𝑚 from the transducer location. A Polytec PSV- 400 laser vibrometer was 

(a) Design K8a   (b) Design K8b 



29 
 

used to perform this experimental measurement. The output displacement was then scaled 

by a factor of 1/80 to compare with modelling results from Coupled SAFE-3DFE, where 

a 1𝑉 peak amplitude excitation signal, across the four piezoelectric rings, was used. 

The experimental results are compared to Coupled SAFE-3DFE results in Figure 16. 

 

Figure 16. Comparison of Coupled SAFE-3DFE results to experimental results. 

The results demonstrate an exceptional agreement between the Coupled SAFE-3DFE 

prediction and the experimental measurements.  

The manufactured transducer was also tested on an operational rail line, Figure 17a.  A 

pulse-echo measurement was performed using a 17.5 cycle tone burst with a 35 kHz 

centre frequency as the excitation signal.  The short time Fourier transform was used to 

produce the spectrogram shown in Figure 17b.  The spectrogram clearly shows reflections 

from aluminothermic welds in the rail at different distances from the transducer. There 

are additional reflections which correspond to multiple reflections and these are not 
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labelled in the figure. For example, the reflection arriving slightly before 0.3s (reflection 

D), is produced by a weld at a distance of 420m from the transducer.  The variation of 

arrival time with frequency corresponds to the group velocity of the web mode, computed 

by the SAFE method, thereby confirming that the transducer effectively excites and 

senses this mode of propagation.   

 

Figure 17. (a) A schematic representation of the operational railway line, (b) a 

spectrogram of the web mode reflections from aluminothermic welds at A:60m, B:180m, 

C:300m and D:420m, when the rail web is excited by the K8a transducer and (c) the group 

velocity of the rail with the web mode highlighted. 
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5. Conclusion 

In this study, a computationally efficient design optimization procedure for optimal 

transducer design was developed, demonstrated and validated. The computationally 

efficient procedure relied on the computational benefits of Coupled SAFE-3DFE as well 

as the ability to conduct multiple analyses concurrently that response surface 

methodologies enabled. The importance of ensuring that the sampling domain for the 

response surface is larger than the feasible design domain was highlighted. This ensured 

an accurate response surface close to edges of the feasible design domain. The 

performance of the optimal transducer design had exceptional agreement with the 

measured performance of the manufactured transducer.  
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