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Abstract

Room temperature experimental compression test data
is available for di�erent hardmetals. This data indi-
cates the presence of some spatial inhomogeneity due
to a compression instability, eccentric loading or time
varying equivalent bending moment. To account for
this, an inverse analysis is employed that determines
not only the constitutive material model parameter
values but also the displacement boundary conditions
that best replicate the experimental data. The un-
known boundary displacement history is approached
using a systematically re�ned piecewise linear approx-
imation, determined alongside material parameter val-
ues. The systematic simultaneous estimation of mate-
rial parameter values and boundary approximations is
also investigated using a virtual problem for which the
exact solution is known. This investigation con�rms
that known material parameter values and boundary
conditions can be recovered without using any prior
knowledge of the exact displacement boundary condi-
tions.

1 Introduction

Ideally, experimental material testing is done by sub-
jecting a material sample of basic geometry to a simple,
repeatable and well behaved load case. The parame-
ter values of a constitutive description need to be cho-
sen in such a way that the model best replicates the
experimentally observed response when simulating the
experiment. If the experiment can be modeled using
a closed form analytical expression, the setup of the
material parameter characterization process is simple.
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In the case for soft metals the ideal compressive test
comprises a cylindrical test specimen compressed be-
tween two harder dies or plates. The specimen con-
tact surfaces could be grooved and lubricated to pre-
vent rollover and subsequent inhomogeneous deforma-
tion. The goal is to obtain as uniform a stress state as
possible so that the material characterization may be
done using simple post-processing on an easily obtained
stress - strain curve. Various standards and procedures
are in place for these tests under various conditions
(ASTM E209-00, 2010; ASTM E9-09, 1989). When
using experimental data with a uniform distribution
in stresses, constitutive model parameters may then
be determined following an inverse problem approach.
Bruhns and Anding (1999) e�ectively illustrated this
using a least squares criterion for di�erent model for-
mulations and optimization methods. This is also use-
ful for complex material models where a uniform dis-
tribution in stresses may be assumed as an initial or
�rst order estimate of material properties (Jansen van
Rensburg , 2016; Jansen van Rensburg et al., 2017).

The monolithic compression testing of hard material
samples at room temperature also has its di�erent stan-
dards and procedures (ASTM C1424-04, 2004; Dunlay
et al., 1989; ISO 4506, 1979). An unfortunate reality
of hardmetal testing is due to the high sti�ness of the
specimen compared to the e�ective sti�ness of the test
machine. This may result in a material test that does
not conform to the ideal loading condition. The re-
sulting non-uniform stress state reduces the e�cacy of
closed form post-processing. In this paper, experimen-
tal data (load cell force data and strain gauge readings)
for a number of compression tests are available at room
temperature for di�erent grades of cemented Tungsten
Carbide (WC-Co) or hardmetal samples. The di�erent
material grades have varying particulate sizes, binder
phase chemistry and percentage volume fractions. The
available experimental compression data indicates that
the samples were subjected to non-ideal compression
that resulted in inhomogeneous deformation. The ex-
act displacement conditions that resulted in the inho-
mogeneity are however unknown.

In cases where the experimental material testing were
not ideal, a more detailed inverse modeling approach
to closed form post-processing needs to be considered.
The parameter identi�cation of inelastic material mod-
els based on experimental data for specimens with non-
uniform stresses and strains (Mahnken and Stein, 1996)
are of particular relevance to this paper. Within this
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approach an objective function is constructed as some
measure of agreement between the measured experi-
mental data and Finite Element Analysis (FEA) sim-
ulated equivalent data.

Ghouati and Gelin (1998) characterize their material
model directly from simulations on a deep drawing op-
eration of interest. The simulation parameters are ad-
justed within an inverse analysis so that the calculated
response best match their measured punch load and
displacement of the punch during loading. Wikman
et al. (2006) on the other hand characterized the con-
stitutive parameter values of a rate-independent elasto-
plastic associative cap material model used to simulate
a compacting powder. They performed an inverse anal-
ysis on a compacting experiment using a modi�ed ver-
sion of the downhill simplex method.

Åkerström et al. (2005) characterize Boron steel in
compression. An axisymmetric simulation of their
Gleeble compression experiment is done subjected to
variations of the 8 unknown parameter values in their
rate independent thermo-elastoplastic model. They
performed an inverse analysis using anvil displacement
taken during their three di�erent simultaneous cool-
ing and compression experiments at di�erent rates
as known and applied it as appropriate boundary
conditions. They constructed an objective function
that compares the Finite Element solution and sample
points of experimental data in a least squares sense.
Their unconstrained inverse problem is solved using
a direct search method. Wang et al. (2017) included
the e�ect of barreling during Gleeble compression on
their e�ective stress-strain curve for low carbon steels.
Their inverse problem encompasses a range of temper-
atures and strain rates. They account for the a�ect of
Coulomb friction by considering di�erent friction coef-
�cients to obtain the actual stress-strain curves needed
to replicate their experimental observations.

Schmaltz and Willner (2014) investigate the usabil-
ity of di�erent biaxial test specimen geometries and
loading conditions to identify the plastic material pa-
rameters of sheet metal. They solve an inverse prob-
lem by simulating di�erent biaxial tests performed on
sheet metal to characterize an elastoplastic material
model with Hill-type yield. Their objective function
is again constructed to �t experimental response in a
least squares sense. They investigate the use of three
geometrical designs for biaxial test specimens under
varying levels of heterogeneity in the resulting strain
and stress �elds. They had access to full �eld deforma-
tion measurements as determined from a two camera
system with displacements calculated via digital image
correlation in addition to the measured forces using
four load cells. Starting with the same three initial pa-
rameter value sets they solved the inverse problems to
see if all three runs reach the same optimal parameter
set or global optimum. The four forces measured were
considered to be known as well as the applied bound-
ary conditions while they compare the calculated dis-

placements to the measured full �eld displacements in
a least squares sense. From their study, Schmaltz and
Willner (2014) showed that the identi�cation proce-
dure fails when more e�ects are present than their ma-
terial model can simulate. If all e�ects can be modeled
however, it is more bene�cial to have experiments with
more heterogeneous deformation. Simultaneous geo-
metric e�ects, tension, compression and shear stresses
were shown to enrich the data set for �nite element
based inverse identi�cation in their case.

Material hardness and indentation tests are other ex-
amples illustrating the application of FEA based in-
verse modeling to elastoplastic material parameter
characterization. Gamonpilas and Busso (2007) vali-
dated their proposed elastoplastic characterization us-
ing a virtual indentation experiment. They performed
the inverse characterization using pseudo-experimental
load-displacement data for two indenter designs. They
showed that using only the load-displacement data of a
single indenter could result in an ill-conditioned prob-
lem. This issue was resolved when they used both data
sets simultaneously. Chen et al. (2017) also illustrated
the use of FEA based inverse analysis to characterize
the elastoplastic response of aluminum over di�erent
length scales using indentations of varying size.

Ageno et al. (2009) and Garbowski et al. (2012) per-
formed inverse FEA modeling of foil experiments to
determine the material parameters for chosen mate-
rial models. Speci�cally, Garbowski et al. (2012) con-
sidered orthotropic elastic-plastic constitutive models
characterized by inverse modeling of biaxial cruciform
tests. On the other hand, Ageno et al. (2009) char-
acterized the elastic-plastic response of bulging thin
membranes subjected to an experimentally controlled
�uid pressure. Similarly, Jekel et al. (2016) performed
inverse analyses of their proposed bubble in�ation test
for non-linear orthotropic membrane materials. The
e�ective FEA based inverse characterization of their
experimental setup was illustrated using a virtual prob-
lem or pseudo-experimental data.

In this paper, a detailed FEA based inverse charac-
terization on the hardmetal compression experiments
is performed. With the experimental displacement
boundary conditions unknown, the material parameter
values and displacement history are estimated simulta-
neously. In Section 2 the experimental data and mate-
rial model are discussed. By assuming that the e�ects
of inhomogeneous deformation are negligible, simple
post-processed inverse material characterization is dis-
cussed in Section 3. The simple post-processed mate-
rial parameter values are used for comparison later on.
This is followed by a detailed FEA based inverse char-
acterization on one of the data sets in Section 4. The
�nite element method is used to simulate the non-ideal
compression tests subject to an unknown displacement
boundary condition, modeled using a piecewise linear
approximation. To test the validity and e�cacy of this
approach, the procedure is also performed on a set of
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Figure 1: Dimensions of the 45mm modeled cylindrical
test specimen.

virtual or pseudo-experimental data in Section 5 mod-
eled on the test case presented in Section 4. Section 6
treats the remainder of the experimental data and con-
clusions are provided in Section 7.

2 Experimental Data and Mate-

rial Model

2.1 Experimental Data

The data and work in this chapter is subject to an on-
going memorandum of understanding where the data
is proprietary information and as such may not be pub-
lished as is. The alloy compositions and chemistry are
therefore not reported and in �gures where the data is
presented, the values of the ordinate axis is often re-
moved or scaled to comply with the memorandum of
understanding. The experimental room temperature
compression test data for this paper is obtained from
3 strain gauges around the cylindrical test specimen,
along with hydraulic cylinder displacement and load
cell data at regular time intervals. The strain gauges
are �xed to the center of the cylindrical test specimen,
120◦ apart.

A material test specimen similar to the one described
by Dunlay et al. (1989) is used for the experimental
compression tests. The compression test specimen is
essentially a modi�ed version of a conventional cylin-
drical tensile test specimen. The length of the test
section is reduced in an attempt to avoid buckling and
shear deformation modes during the compression test.
Figure 1 depicts the dimensions of the 45mm cylindri-
cal test specimen.

One of the demanding aspects of compression tests
on these hard materials is the very high compressive
strength and sti�ness of the specimens. The testing
machine sti�ness, which should ideally be orders of
magnitude greater than that of the specimen, is inade-
quate in this case. Experimental data indicates that for
a typical test the hydraulic cylinder displaces 1.4 mm,
while the test specimen only decreases in height by
about 0.4 mm. Consequently, elastic deformation of
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Figure 2: Normalized force and strain data. (a) The
force history of four di�erent hardmetal grades named
Grade A to D. The strain histories extracted at three
locations 120◦ apart around the test specimen center
for Grades (b) A, (c) B, (d) C and (e) D show the
presence of an eccentric load, compressive instability
or time varying equivalent bending moment.

the testing machine frame accounts for the remaining
1.0 mm displacement.

The experimental compression test data histories for
four di�erent hardmetal grades and composition are
given in Figure 2. Because of the proprietary nature
of the materials the di�erent samples tested are sim-
ply distinguished by naming them Grade A to D. Fig-
ure 2(a) depicts the normalized force histories for the
four grades, while Figures 2(b) to (e) show the three
strain gauge histories around each of the four speci-
mens. From the strain gauge data for the di�erent
hardmetal grades and composition there appears to be
some compressive instability, eccentric load condition
or time varying equivalent bending moment present.

The inhomogeneous deformation evident from the
strain histories in Figure 2 suggests that a nonuniform
stress state develops during the compression test, pos-
sibly due to compliance of the test frame. The data
also indicates that the strain rate in the specimen is
not constant, even though the crosshead speed of the
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hydraulic cylinder is.

2.2 Material Model

For numerical modeling purposes, an internal state
variable based formulation for the yield stress

σY = σ0 + σ̂, (1)

is assumed where σ0 is the yield at zero plastic deforma-
tion (εp = 0) and σ̂ is an internal state variable that
represents the evolving yield stress component. The
isothermal evolution of σ̂ follows an empirical modi�-
cation for the Voce law (Kocks et al., 1998; Mourad
et al., 2013) reading

dσ̂

dεp
= θ0

(
1− σ̂

σ̂S

)n
. (2)

Using this material model, there are 4 variables that
have to be estimated so that the modeled response best
represents the experimental data: an initial yield stress
(σ0), initial work hardening rate (θ0), saturation stress
(σS) and hardening exponent (n).

The problem statement and solution illustrated in this
paper now follows from the task to estimate the mate-
rial model parameters as accurately as possible. The
material model parameters are �rst estimated from the
experimental test data by using simple post-processing.
A representative material parameter set and time vary-
ing displacement boundary condition are then used to
construct a virtual experimental data set using Finite
Element Analysis (FEA). Simple post-processing on
the virtual experimental data set then gives an indica-
tion of the expected estimation error when compared
to performing an FEA based estimation.

3 Simple Post-Processing

Strain gauge and load cell data for all four hardmetal
grades are used here for material parameter estimation
using simple post-processing. If simple post-processing
of the data is performed, the average values of the
strain gauges ε̄ at each time step are used to compute
the true strain values from

εtrue = ln (1 + ε̄) , (3)

where negative strains indicate compression. Assuming
the material is volume preserving, the load cell force
value P , initial test specimen area A0 and engineering
strains are used to approximate the true stress value
at each time increment using

σtrue =
P

A0
(1 + ε̄) . (4)

A plot of the stress strain curves of the four di�erent
grades are given in Figure 3(a) along with a straight

Table 1: Material model parameters

Average A B C D

(Normalized) (Scaled parameter values)

σ0 0.374 MPa 1.523 1.249 0.623 0.605

θ0 0.787 GPa 1.298 1.200 0.871 0.631

σS 0.869 MPa 1.227 1.125 0.910 0.738

n 1.625 1.072 1.008 0.957 0.962

line indicating the normalized elastic modulus of 9.692
MPa. Although the di�erent material grades vary in a
number of aspects, the elastic properties seem identi-
cal. The expected range of Poisson's ratio is 0.2�0.22
(2002).

The maximum compressive strength and plastic de-
formation di�er substantially between the material
grades. Removing the elastic strain component from
the total strain values results in the stress versus plas-
tic strain curves in Figure 3(b). The material model
is coded in Python and then calibrated to the simpli-
�ed test data using the Nelder-Mead simplex algorithm
available in SciPy (Jones et al., 2001).

The normalized material parameter values used to
model the normalized stress-strain curve for each hard-
metal grade in Figure 3(b) is listed in Table 1. This
table contains a column for the average material pa-
rameter value considering all four grades as well the
scaled values per grade to show inter-grade variation.

Following the simple post-processing, an investigation
on the material model parameters as a result of detailed
FEA based material parameter estimation is now dis-
cussed.

4 Finite element based inverse

analysis

In FEA based material parameter estimation, the ex-
perimental test specimen can be modeled subject to a
time varying equivalent bending moment and axial dis-
placement. Since the form of the equivalent time vary-
ing displacement boundary condition is unknown, it
may be approximated using a piecewise linear descrip-
tion as demonstrated on a simple test case in earlier
work (Jansen van Rensburg et al., 2012).

In this case, a �nite element model is set up by mesh-
ing the three dimensional geometry based on the test
specimen dimensions in Figure 1. The analysis is per-
formed in CalculiX (Dhondt and Wittig., 1998) using
a model with 13056 degrees of freedom and 3696 re-
duced integration 8 node brick elements. The test spec-

4



Strain

N
or
m
al
iz
ed

St
re
ss

Plastic Strain

N
or
m
al
iz
ed

St
re
ss

(a)

(b)

Figure 3: (a) The stress-strain relationship for the var-
ious grades of WC-Co using the averaged strains per
time increment. The Elastic modulus determined by a
linear regression on the stress-strain data below 0.2%
total strain is indicated by the straight black line. (b)
The data (+) and modeled (lines) normalized yield
stress as a function of plastic strain.

imen response is modeled with a material model that
has elastic properties as well as plastic behavior using
the modi�ed Voce law of Equation (2). This material
model is not available within the standard CalculiX
material library so it was implemented into a Fortran
user material subroutine.

Three elements 120◦ or 2π/3 radians apart on the cir-
cumference of the center of the model are chosen to
represent the three strain gauge locations. The strain
histories at these locations represent the data associ-
ated with the three strain gauges in the actual experi-
ments.

4.1 Boundary Values

Time varying axial compression and equal but opposite
bending moments at the specimen ends are modeled by
prescribing a spatially varied axial displacement �eld.
This is done using a displacement based Multi-Point
Constraint (MPC) at the two sides of the modeled test
section. The MPC restricts all of the (slave) nodes
on either side of the specimen to remain in the same
plane subject to the displacement values prescribed at
three (master) nodal locations per side. The bound-
ary condition at a given time step is de�ned by the
two boundary properties illustrated in Figures 4(a), (b)
and (c) for deviation from the average as well as a time
dependent average axial displacement C(t). The dis-
placement �eld variation A(t) and angle of the neutral
axis B(t) can also change as a function of the time.
If the axial direction is chosen as the y-axis in the �-
nite element analysis, a top face MPC master node i
experiences a y displacement of the form

yi(t) = A(t) [sin(B(t))zi + cos(B(t))xi] + C(t), (5)

where xi and zi are the x and z coordinates of node
i. Similarly, the y displacement �eld at a bottom face
node is determined by

yi (t) = −A(t) [sin(B(t))zi + cos(B(t))xi] . (6)

By modeling the top and bottom displacement �elds
in this way, an equal and opposite equivalent bending
moment is approximated as a function of time.

The main objective of the FEA based inverse param-
eter identi�cation remains the estimation of the four
material parameters as in Table 1 for the simple post-
processing estimation. In this case however piecewise
linear approximations to the boundary functions A(t),
B(t) and C(t) are estimated simultaneously.

At the start of the experiment the average axial dis-
placement function C(t) and also deviation from the
average A(t) is assumed to be zero, therefore A∗(0) = 0
and C∗(0) = 0. The angle of the neutral axis B(t) on
the other hand has a nonzero initial condition. There-
fore approximations using m piecewise linear approxi-
mations leads to m unknowns for both A(t) and C(t),
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(a) (b) (c)

Figure 4: The two variables A and B that are used to describe the boundary displacement at a speci�c time.
(a) The maximal gradient of the displacement variation is associated with the variable A. (b,c) The angle B
de�nes the neutral axis where the e�ective axial displacement is equal to the average over the entire boundary.

and to (m + 1) unknowns in the case for B(t) (to
account for the nonzero initial condition). In total,
(3m + 5) variables need to be recovered for both the
boundary (i.e. 3m + 1 variables) description and the
material model (i.e. 4 variables).

4.2 Inverse problem characterization

and iterative re�nement of the

piecewise linear boundary approx-

imations

In this section, the simultaneous material parameter
and piecewise boundary value function approximations
are solved for the strain gauge and load cell data of
hardmetal Grade D in Figure 2. The elastic constants
are known while the initial yield and plastic hardening
parameters are sought as in the simple post-processing
case. As initial guess for the unknown material pa-
rameters, the values determined from the simple post-
processed data is used. Given that the parameters in
Table 1 resulted in the �t to the processed data in Fig-
ure 3(b), they are expected to be a reasonable initial
guess.

To start, each of the boundary function approximations
A(t), B(t) and B(t) are modeled using one unknown.
This means that A(t) and C(t) are straight lines start-
ing at zero and ending at unknown �nal values, while
B(t) is an unknown constant. Each of these three un-
knowns are given an arbitrary initial value. These three
initial values are selected manually so that the average
and spread of the strains at gauge locations as well as
the reaction force are within the range of the experi-
mental data.

Given each guess for the four material parameters and
three piecewise boundary function values, an analysis
is set up which includes the displacement �eld bound-
ary conditions of Equations (5) and (6) prescribed over
the simulation time at three MPC master nodes per
boundary. Once the problem is solved using CalculiX,
the objective function used in the inverse analysis op-
timization procedure quanti�es the di�erence between

the �nite element simulated curves to the experimental
curves. This is done as the sum of absolute fractional
errors

fobj =
∑
i

∣∣∣∣ Xi FEA

Xi experiment
− 1

∣∣∣∣ , (7)

for each numerically simulated data point Xi FEA of in-
terest compared to the equivalent experimental value
Xi experiment. In each function evaluation the data
points for the total axial component of the reaction
force are compared to the load cell data. The three ex-
perimental strain data sets are similarly compared to
the associated strain histories extracted from the simu-
lation. The total absolute fractional error thus consists
of one force curve error added to three strain curve er-
rors.

All of the data plotted in Figure 2 shows a linear force
over time and linear strain over time for the �rst part
of the experiment. From the resulting linear stress vs.
strain response also visible in Figure 3, at least the �rst
10 seconds of the experiment are assumed to be elastic.
At least the �rst 10 seconds of the experiment are as-
sumed to be elastic when considering the force curve in
Figure 2(a) and the three strain curves in Figure 2(e)
used during this inverse parameter identi�cation. In
this case only data points between the 10 second mark
and the fully simulated time (≈ 84 seconds) are used
to calculate the objective function.

As with the simple post-processed parameter estima-
tion, the optimization is performed using the uncon-
strained optimization algorithm fmin, available via the
optimization module in SciPy (Jones et al., 2001).
fmin is an implementation of the downhill simplex al-
gorithm (Nelder and Mead, 1965). Although there is
access to arguably better numerical optimization al-
gorithms within the SciPy module, fmin is a robust
zero order algorithm that only requires function evalu-
ations.

Once the inverse parameter estimation converges, the
boundary function approximations are re�ned. Now
two unknowns are assigned to each piecewise linear
boundary function approximation before the process
is repeated. This means that in the second attempt
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there are still four material parameter unknowns, but
now six boundary approximation unknowns, i.e. 10 un-
knowns in total. The inverse characterization is con-
tinued from the previously converged result by placing
new unknowns midway between converged piecewise
linear point values. Once the ten variable parameter
estimation converges, the boundary function approxi-
mations are again re�ned by splitting each piecewise
section in two and the process repeats again. The pro-
cess therefore employs repeated inverse analyses using
the same initial setup, where each subsequent stage
approximates boundary value functions with higher �-
delity.

In this case the simultaneous inverse material param-
eter and piecewise linear boundary approximation are
performed and re�ned in six stages, ending with an
optimization problem where a total of 85 variables are
tuned to best �t the data. Of the 85 variables, 81 de-
scribe the piecewise linear boundary functions along
with the 4 material model parameters.

Figure 5(a) presents the convergence of the error func-
tion de�ned in Equation (7), and Figure 5(b) the num-
ber of function evaluations per stage. The initial guess
(X0) results in an objective function value of 1467.66.
The 7 variable inverse characterization requires 460
function evaluations to reach an error of 69.27. The
second stage results in an error of 6.942, requiring 1207
additional function evaluations. The trend in a reduced
error as a result of additional boundary approximation
�exibility in Figure 5(a) continues up to the 25 variable
problem with a function value of 0.2443. Thereafter,
for the 45 and 85 variable problems there is little ad-
ditional improvement in the error. This is despite an
additional 2697 function evaluations needed to reach an
objective function value of 0.1635, and a further 2298
function evaluations to reach an error of 0.1581. Note
that each function evaluation requires a single FEA
simulation. The total computational cost for the six
stage re�nement is therefore 11055 independent FEA
simulations, shown as the black line in Figure 5(b).

In Figure 6 the strains and total axial reaction force
histories for each stage are compared to the Grade D
hardmetal experimental data curves. This provides vi-
sual representation of the response using the initial con-
ditions (X0) and convergence towards the experimental
data over the various stages of boundary function ap-
proximation re�nement and parameter identi�cation.

Figures 7(a) to (e) depict the convergence of the ma-
terial model parameters over the di�erent stages. Here
again there is visually little change from the 25 vari-
able solution onward. All of the parameter values are
scaled using the �nal value determined using 85 vari-
ables as reference. Comparing the initial material pa-
rameter values obtained by �tting the model to simple
post-processed data, the initial yield stress is �nally
characterized 16.78% higher than the value in Table 1.
The initial hardening rate is 11.52% lower, the satura-
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Figure 5: (a) Reduction in best objective function value
as the number of variables (i.e. boundary approxi-
mation and material parameters) increase for the re-
peated inverse analyses, and (b) the required number
of FE analyses per run and the cumulative number of
FE analyses, to estimate the material parameters and
boundary conditions for the Grade D material.
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Figure 6: (a) Strains and (b) normalized force histories
of the experimental and numerical simulations for the
Grade D hardmetal. Better representation of the ex-
perimental data is visible as a result of piecewise linear
boundary function approximation re�nement.
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Figure 7: Material parameter convergence depicted in
(a)-(d) as a result of higher modeling �exibility in the
piecewise linear boundary value approximations.

tion stress is 3.01% higher and the hardening exponent
is 12.79% lower compared to the initial guesses respec-
tively.

Considering the 25 variable stage results, the initial
yield stress is within 0.52% of the �nal 85 variable
value. The initial hardening rate is within 5.35%, the
saturation stress is within 0.094% and the hardening
exponent within 2.32% of the �nal result. In the 45
variable case the largest deviation from the �nal ma-
terial parameter value is the initial hardening rate at
2.21% while all of the other values now vary by less
than 0.1% of the �nal result. Although not imple-
mented here, this relative change in material param-
eter estimates from one to stage to another could be
used as a convergence criterion.

Figure 8 depicts the form of the boundary function ap-
proximations. Here the initial conditions using manu-
ally selected straight lines for A(t) and C(t) along with
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the constant for B(t) are seen along with the values and
convergence of the initially unknown forms through the
various stages of estimation and piecewise linear func-
tion re�nement.

Figure 9 depicts the contours of equivalent axial strains
and normalized Von Mises stresses of the �nal con-
verged result. From these contours, it is evident that
the slightest equivalent bending moment or compres-
sive instability is seen to result in signi�cant variation
of stresses and strains in the test section. The pro-
cess to estimate the �nal material parameters and de-
tailed piecewise linear boundary value approximations
required 11055 FEA simulations. This makes it a com-
putationally expensive exercise.

Another concern of this approach is that a better �t
to the experimental data might not necessarily imply
a better approximation of the material stress-strain
curve. It is conceivable that the complex boundary
conditions allow a better �t to the data, but that
both the true stress-strain curve and the true boundary
condition are approximated with worse accuracy. In
essence, the inverse problem could be ill-posed where
various combinations of stress-strain curves with its as-
sociated boundary condition variation can �t the ex-
perimental data well.

It is important therefore to investigate whether the
proposed procedure is worth the computational cost.
The accuracy with which this approach �nds the re-
quired material parameter values compared to a sim-
ple post-processing characterization is also important.
To address these questions, a study is done using vir-
tual experiment data in the following section. Virtual
data is extracted from an FEA simulation so that the
baseline and true parameter values for comparison are
known. The ability of the procedure to �nd the now
known parameter values should give an indication on
the accuracy of the procedure.

5 Investigation using virtual ex-

periment data

The virtual experiment for this study is based on using
the forms of the boundary functions observed necessary
to replicate the Grade D data in the previous section.
Here, the same basic shape as the boundary function
forms are parametrized to �rst investigate whether the
fully parametrized virtual problem is invertible or ill-
conditioned based on the data available. Thereafter
an iteratively re�ned piecewise linear approach is fol-
lowed. This is done to investigate the extent to which
the material parameter values and boundary function
form can be recovered without information on the ex-
act parameterization.

For the virtual problem, the deviation from the average
axial displacement as a function of the time fraction
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Time [s]
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Figure 8: Form of the piecewise linear approximated
boundary function approximations. (a) Deviation from
the average axial displacement A(t), (b) angle of the
neutral bending axis B(t) and (c) axial displacement
C(t).
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von Mises
stress

Figure 9: Equivalent axial strain contours for the char-
acterized FEA on the grade D data set as seen from (a)
+X and (b) -X. The normalized Von Mises equivalent
stress contours as seen from both sides of the experi-
ment are given in (c) and (d).

τ = t/tend is given by

A(τ) = A0
sinh (A1τ)

sinh (A1)
(8)

with A0 = 0.08mm and A1 = 2. The angle of the
neutral axis changes over the simulated time according
to

B (τ) = B0 −B1
sinh (B2τ)

sinh (B2)
(9)

where B0 = 4.3 radians, B1 = 0.5 radians and B2 = 3.
The average axial displacement applied to the top face
is given by

C (τ) = C0
exp (C1τ)− 1

exp (C1)
(10)

with C0 = 0.5mm and C1 = 1.5. These boundary
functions are used to prescribe the displacement of
three master nodes at the top face using Equation (5)
and three master nodes on the lower face using Equa-
tion (6), over a tend = 100 second total simulation time.
The axial displacement for the rest of the nodes on
either side of the test specimen are again subject to
MPC's forcing all nodes to remain in the same plane.

The elastic response of the test specimen is modeled
using a normalized Young's modulus of E =0.1GPa
and Poisson's ratio of ν =0.2. The virtual hardmetal
sample further has a normalized initial yield stress of
σ0 = 0.167MPa while the hardening model accord-
ing to Equation (2) uses an initial hardening rate of
θ0 = 0.667GPa, saturation stress σS = 0.833 MPa and
hardening exponent n = 1.5. All of the values are nor-
malized using the same scale factor not reported due
to an ongoing memorandum of understanding regard-
ing the proprietary nature of the alloys tested. The
problem is solved using CalculiX and the following vir-
tual data extracted from the results:

• The axial strain history of the central test section
elements closest to the 0, 2

3π and 4
3π radian lo-

cations along the test section circumference. This
virtual data is chosen to represent the three strain
gauges' histories in the original experiments.

• The total axial reaction force for all nodes on the
top face of the material section. This is chosen to
represent the experimental load cell data.

Since the values of the material parameters used in the
virtual experiment are known, an inverse identi�cation
problem can be solved to determine the accuracy with
which these known parameters and boundary condi-
tions can be retrieved. Such an investigation gives im-
portant insight as to whether the data available is suf-
�cient to distinguish between the e�ects attributed to
the work hardening and the boundary conditions re-
spectively. The elastic material parameters are again
not included in the inverse problem.

10



As with the real experimental data, the average axial
strain is computed by simple averaging of the three ax-
ial strain histories. If a volume conserving cylinder is
assumed, it allows the calculation of the true stress.
As done in Figure 3 for the true material samples, the
material parameter values were then estimated using
this equivalent stress-strain curve. This leads to an ini-
tial yield stress σ0 = 0.140MPa (16.17% less than the
true 0.167MPa value), initial hardening θ0 = 0.618GPa
(7.35% less than the true value of 0.667GPa), satura-
tion stress σS = 0.795MPa (4.56% less than 0.833MPa)
and exponent n = 1.473 (1.8% less than 1.5). These
material parameter values are used as the initial guess
to the FEA based parameter estimation as in the grade
D case of the previous section.

Two di�erent inverse parameter characterizations are
performed using the virtual experiment data:

• Fully parametrized. This test is performed to test
the true invertibility of the fully parametrized nu-
merical experiment. The parameters associated
with initial yield (σ0) and plastic hardening (θ0,
σS and n) are determined alongside the boundary
function parameters (A0, A1, B0, B1, B2, C0 and
C1) in Equations (8) to (10). Therefore we have
assumed an identical parameterization to the func-
tional forms used to generate the data, a situation
that is unlikely to ever occur in reality.

• Discrete approximation. This test is performed to
investigate the accuracy with which the material
parameters of interest is characterized despite un-
known boundary function parameterization. The
parameters associated with initial yield (σ0) and
plastic hardening (θ0, σS and n) are again deter-
mined, but now using piecewise linear approxima-
tions to the boundary value functions. The inverse
characterization is started with linear approxima-
tions for A(t) and C(t), and a constant approx-
imation for B(t). Once the estimation stage has
converged, each piecewise linear approximated line
segment is divided in two. The initial conditions
to the next estimation stage is set up by interpo-
lating from a previous stage result and the process
continues. As before, the iterative re�nement and
inverse analysis are done in six stages.

The initial conditions, objective function, �nal objec-
tive function values, material parameter values, bound-
ary conditions and iterations needed for the di�erent
characterizations are given in Table 2. The objective
function value and initial conditions for the fully pa-
rametrized inverse characterization is tabulated in col-
umn three (X0) of Table 2 with the converged values
after 2376 function evaluations in column four (X∗).
From the fully parametrized result, the problem seems
uniquely invertible with the material parameter and
boundary function values converging to the known true
values.

Investigation of the six stage re�nement (Xi for i ∈
0, 1, ..., 6) of the piecewise linear boundary value func-
tion approximation also produce the desired result. In
the �rst stage (X1), using 7 variables (four material
and three boundary values), the converged material
parameter values are a worse approximation of the
true parameter values as compared to the trivial post-
processing guess (X0). For each subsequent piecewise
linear approximation re�nement however the material
parameters of interest and boundary function form gets
closer to their true values. The true boundary func-
tions in Equations (8) to (10), as well as the converged
piecewise linear forms at the start and end of each re-
�nement inverse analysis stage, are presented in Fig-
ures 10(a) to (c).

According to column six of Table 2 and Figure 10, the
use of a single variable per boundary function is not
e�ective. From two piecewise linear segments onward
there is su�cient �exibility to modify the shape of the
functions modeled in such a way that they approach
the true shape. Additional re�nement and �exibility
result in even better capturing of the form of the under-
lying boundary functions despite no prior information
on shape or parametrization provided to the numerical
optimization algorithm. This along with the material
parameter values of interest approaching their known
values indicate that the process of iterative piecewise
linear re�nement and inverse characterization has the
desired e�ect. Even if the parametrization or form of
the actual boundary functions are unknown, the ma-
terial parameter values can be determined accurately
using the proposed iterative inverse estimation pro-
cess, making use of multiple piecewise linear approx-
imations.

Over the six stage re�nement, there is a visible trend in
the converged objective function value and the number
of function evaluations, as a function of the number
of discrete values used to approximate the boundary
function forms. The objective function value and the
number of function evaluations in Table 2 are also plot-
ted in Figures 11(a) and (b). The percentage error of
the material parameter values from their true values, is
illustrated using the black lines in Figure 11(c). The in-
tegral error between the piecewise linear approximated
and true parametrized functions in Equations (8) to
(10) are given as the red lines. Given more bound-
ary modeling �exibility, the material parameters and
boundary function approximation are seen to converge
towards the true result. This is however at a signi�cant
computational cost, considering that the full six stage
characterization process on the virtual data required
26537 FEA simulations.

Despite the high computational demands, this test on
virtual data presents useful insight. The investigation
con�rms that the correct material parameters may still
be obtained despite the non-ideal experimental data
arising from an unknown compressive instability. How-
ever, this was illustrated for the somewhat idealistic
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Table 2: Convergence and solution to the fully parametrized and discrete approximation inverse problem using
virtual data

Variable : Scale [Unit] Actual Parametrized Discrete Approximation - Re�nement Stage

X0 X∗ X0 X1 X2 X3 X4 X5 X6

Objective Value 30.057 0.0031 52.356 11.202 4.6917 1.1998 0.3205 0.0378 0.0104

Number of Variables 11 11 7 7 11 17 29 53 101

Iterations - 2376 - 1103 1445 2088 4202 6601 11098

Material

σ0 : 1e3 [MPa] 0.1667 0.1402 0.1667 0.1402 0.3844 0.1848 0.1676 0.1638 0.1654 0.1659

θ0 : 1e3 [GPa] 0.6667 0.6183 0.6666 0.6183 0.4245 0.6211 0.6263 0.6758 0.6665 0.6679

σS : 1e3 [MPa] 0.8333 0.7950 0.8333 0.7950 0.4313 0.7753 0.8595 0.8295 0.8331 0.8334

n 1.5 1.4730 1.4999 1.4730 1.3521 1.1249 1.5295 1.4781 1.4977 1.5017

Boundary

A0 : 1e-2 8 10 8.0000 - - - - - - -

A1 2 1.5000 2.0003 - - - - - - -

A∗(1) : 1e-2 8 - - 10.000 3.3612 6.6515 8.6012 7.8884 7.9979 8.0069

B0 : [rads] 4.3 4.0000 4.3028 - - - - - - -

B1 : [rads] 0.5 0.1000 0.5027 - - - - - - -

B2 3 2.0000 3.0101 - - - - - - -

B∗(0) : [rads] 4.3 - - 4.0000 3.8320 4.4694 4.7367 4.5729 4.4799 4.3598

B∗(1) : [rads] 3.8 - - 4.0000 3.8320 3.7922 3.7824 3.8008 3.8001 3.7996

C0 : 1e-1 [mm] 5 6.0000 5.0001 - - - - - - -

C1 1.5 1.0000 1.5000 - - - - - - -

C∗(1) : 1e-1 [mm] 3.8843 - - 4.0000 2.2577 3.6319 3.9167 3.8760 3.8845 3.8849

scenario where the chosen material model is a perfect
match to the true stress-strain curve. In a more real-
istic setting where the chosen material model does not
match the true stress-strain curve perfectly, the �tting
error will be spread between the strain curves and the
force curve. Consequently, the boundary function ap-
proximations as well as the material parameter values
will both contain errors as compared to their true val-
ues. If continued re�nement of the boundary does not
eventually result in an acceptably small �tting error,
this provides an indication that the assumed material
model is inadequate.

6 Results on Actual Data

The simultaneous estimation of material parameter
values and boundary function approximations, using
the proposed multiple stage estimation process, is now
applied to all the experimental data. The results in
the previous section instills con�dence that the pro-
cess may be used to characterize the material model
with greater accuracy than the simple post-processed
characterization in Figure 3.

The numerically simulated force and strain histories
for each experiment are compared to the actual data
in Figure 12. The mean absolute fractional error for
the force curves is 1.783e-3, with a maximum error of
1.179 % for the Grade C material at 97.13 seconds. The
strain curves are �tted with similar accuracy, with a
mean absolute fractional error of 2.312e-3. A maximum
error of 2.012 % is observed for the Grade B material

at 102.82 seconds.

The material parameter values, estimated using the
simple post-processed data and the detailed FEA based
inverse identi�cation procedure, are compared in Ta-
ble 3. The closest agreement in the estimated param-
eters is the saturation stress for the Grade D mate-
rial, that is within 3.0% of each other. The parameter
that di�ers the most is the initial hardening rate of the
Grade A material, that di�ers by 48.34%. On average,
the simple post-processed and detailed FEA based pa-
rameter value estimates di�er by 12.09%.

Even though the material parameter values di�er on
average by 12.09%, the true indicator of similarity is
the stress-strain curves produced when using these pa-
rameter values. Figure 13 depicts the resulting stress-
strain curves. For each material parameter set found
by simple post-processing and detailed FEA identi�ca-
tion, the stress is plotted as a function of plastic strain
up to 2%. The average di�erences between the curves
for Grade A to D are 13.94%, 6.84%, 5.27% and 4.06%
respectively. The gradual increase in accuracy is no
coincidence, since the materials are ordered from hard-
est to softest. Note that the Grade A experiment in-
duces less than 0.5% plastic strain on average, while
the Grade D experiment induces about 1.7% plastic
strain (see Figure 3(b)). Therefore more data is avail-
able deeper into the plastic strain regime to calibrate
the material parameters for Grades C and D, as com-
pared to Grades A and B. Nevertheless, the di�erences
observed in the material parameter values in Table 3,
as well as the di�erences observed in the stress-strain
curves in Figure 13, provides a compelling argument in
favor of detailed FEA based material parameter esti-
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Figure 10: Boundary functions associated with (a)
Equation (8), (b) Equation (9) and (c) Equations (10).
The initial conditions using a single value unknown per
function is shown using a dashed yellow line. The con-
verged piecewise linear approximation to each function
is then shown as a result of six incremental re�nement
and inverse analysis stages. NOTE: The objective func-
tion is only evaluated for data points after 10 seconds to
give the elastic data less prevalence. This could explain
the inability to capture B(t) for t ≤ 10.
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Figure 11: Convergence and function evaluations re-
quired during the six stage re�nement and characteri-
zation on virtual experiment data. (a) Objective func-
tion value for the initial and each converged variable
values. (b) Number of function evaluations required
per stage. (c) Material parameter error and integral
boundary function error at the start and end of each
stage.
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Figure 12: (a) Fit between the normalized experimen-
tal load cell data (+) and total axial reaction force sim-
ulated (lines). The modeled and experimental strain
histories are also compared for all three strain gauges
of the hardmetal grade (b) A, (c) B, (d) C and (e) D
non-ideal compression experiment.

Table 3: Material model parameters as a result of sim-
ple post-processing and detailed FEA inverse identi�-
cation

Average A B C D

(Normalized) (Scaled parameter values)

Simple post-processing

σ0 0.374 MPa 1.523 1.249 0.623 0.605

θ0 0.787 GPa 1.298 1.200 0.871 0.631

σS 0.869 MPa 1.227 1.125 0.910 0.738

n 1.625 1.072 1.008 0.957 0.962

FEA based inverse analysis

σ0 0.469 MPa 1.630 1.156 0.635 0.579

θ0 0.562 GPa 1.111 1.039 1.057 0.793

σS 1.034 MPa 1.542 1.041 0.785 0.632

n 1.659 1.529 0.847 0.790 0.834

Di�erences [%] (between original, not scaled)

σ0 29.29 14.94 24.49 18.26

θ0 48.34 47.26 14.38 10.90

σS 40.77 10.73 3.727 2.998

n 37.14 15.30 17.06 12.19

mation.

7 Conclusions

In this paper, the concept of simultaneous estimation of
material parameter values and time varying boundary
values was investigated using �nite element analyses
within the optimization loop. From the investigation
the proposed procedure seems satisfactory in being able
to more accurately determine the material parameter
values than a simple post-processing procedure. The
piecewise linear boundary function approximation and
re�nement illustrated that improved accuracy could be
achieved, even when the correct boundary function pa-
rameterization is unknown. The proposed procedure
does however come at an increased computational cost.

A study on a virtual experiment illustrated that using
too simple an approximation on the boundary condi-
tion could result in an inadequate �t and material pa-
rameters that are far from the desired accuracy. Here
it seems that the material parameters are exploited to
compensate for the inadequate capture of the boundary
condition. As the boundary form is given more �exibil-
ity in later stages of the re�nement and re�t by inverse
analysis, the material parameters of interest converge
to the known true values.

The e�ect of potential measurement errors in the data
also have to be considered when characterizing material
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Figure 13: Comparison between hardening curves as
a result of simple post-processing and detailed FEA
inverse characterization for each of the di�erent hard-
metal grade samples tested. The stress vs. plastic
strain curves using the two di�erent methods are com-
pared, including the percentage di�erence (red lines).
(a) Grade A, (b) Grade B, (c) Grade C and (d) Grade
D curves are shown.

model parameters. In earlier work, Jansen van Rens-
burg et al. (2014) showed the e�ect of a 2% Gaussian
noise on the data using a similar virtual experiment to
the one presented in Section 5. The material parameter
sensitivity to noise is expected to be within the same
order of magnitude when considering the detailed FEA
and simple post-processing inverse material parameter
identi�cation.

Given similar non-ideal compression experiment data
to that used in this paper, the same process as outlined
here should result in material model characterization
with increased accuracy as compared to a simple post-
processing method.
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