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Abstract

A combined Gaussian mixture model and hidden Markov model (HMM) is
developed to distinguish between slow moving animal and human targets
using mel-cepstrum coefficients. This method is compared to the state-of-
the-art in current micro-Doppler classification and an improvement in perfor-
mance is demonstrated. In the proposed method, a Gaussian mixture model
(GMM) provides a mixture of mel-frequency distributions while a hidden
Markov model is used to characterise class specific transitions between the
mel-frequency mixtures over time. A database of slow moving targets in a
cluttered environment is used to evaluate the performance of the model. It is
shown that the combined Gaussian mixture Hidden Markov model (GMM-
HMM) approach can accurately distinguish between different classes of an-
imals and humans walking in these environments. Results show that the
classification accuracy of the model depends on the continuous observation
time on target and ranges from 75% to approximately 90% for times on target
between 250 ms to 1.25 s respectively. A confidence based rejection scheme
is also presented to reduce false classification rates. Possible applications
include border safeguarding and wildlife anti-poaching operations for species
such as rhinos or elephants.
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Highlights

• A Gaussian mixture Hidden Markov model is used to classify ground
moving targets.

• An improvement in performance over popular state-of-the-art method
is demonstrated.

• Targets can be accurately classified at ranges exceeding 1km.

• The model can distinguish between different classes of animals and
humans.

• The accuracy ranges from 75
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1. Introduction

The detection and classification of ground based targets has a number
of useful applications spanning military, security and disaster management
domains. There are many examples of classification studies that make use
of electro-optical systems as a sensor (e.g., video surveillance). However,
radar provides some unique benefits as it is a day-night, all-weather sensor
and its Doppler sensing capability allows easy detection of moving objects.
Accurate radar classification systems could be used to monitor borders for
illegal crossings, detect wildlife poachers within nature reserves, as well as
monitor farmlands for livestock theft. Over the last decade, poaching and
livestock theft specifically have become considerable problems in South Africa
(Mashala, 2013; Duffy, 2016). To this end, research is being conducted into
ways to detect, track and classify potential livestock thieves and poachers
within nature reserves and farmlands.

The terrain is typically savanna and grassland-type regions in which clut-
ter conditions vary, and animals are prevalent. The goal is to develop a classi-
fication system that is capable of accurately distinguishing between animals
and humans based on their micro-Doppler return, making the assumption
that the micro-Doppler returns would be produced for some time period as
the target crosses an open area. Being able to deploy all-weather radar sys-
tems to critical sites could aid conservation and security efforts. Additionally,
the results can help determine the movement patterns of the animals such as
when they enter or depart an area.

A variety of classification methods have been investigated in open radar
literature. The most prominent among them are support vector machines
(SVMs) (Li et al., 2012; Kim & Ling, 2009; Fairchild & Narayanan, 2014),
Bayesian classifiers (Challa & Pulford, 2001), hidden Markov models (HMM)
(Padar et al., 2016) and Gaussian mixture models (GMM) (Bilik et al., 2006;
Molchanov et al., 2011). Artificial neural networks (ANN) have also been
used successfully (Kim & Moon, 2016; Kim & Ling, 2008). Some of these
neural networks have been trained on raw spectrogram data (Jordan, 2016).
In most of the applications mentioned in the aforementioned papers, classi-
fication accuracies of 75% and greater were obtained with a time on target
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(ToT) of greater than 1 second. Notably, Bilik et al. (2006) obtained a
maximum classification accuracy of 96% with a ToT of 4 seconds using mel-
Cepstrum coefficients and a GMM Majority voting approach. In (Molchanov
et al., 2012; Boulic et al., 1990) it is shown that the accuracy of micro-Doppler
based classification systems were directly influenced by the ToT. It was shown
that increased time on target would improve classification accuracy; however,
a time on target of greater than 1 second would not yield a significant im-
provement. Much of the literature does not consider animals and humans in
applicable operational environments.

Many studies only consider humans, and although they show it is possible
to accurately distinguish between a single human and a group of humans,
their targets do not include wild animals. The studies are usually performed
in the open without the presence of trees and other clutter typical of op-
erational environments. The number of animals in a range cell also affects
the classification process and most studies do not address multiple targets.
Distinguishing between vehicles and humans is, in some cases, a trivial mat-
ter as the targets differ significantly in both radar cross section (RCS) and
radial velocity (vehicle observations do not have visible micro-Doppler when
approaching the radar site head on (Nanzer & Rogers, 2009)). Both the tar-
get types and the measurement environments are shortcomings in some of
the studies in the literature (Bilik et al., 2006; Nanzer & Rogers, 2009). It
is important to study classification between humans, vehicles, animals, and
clutter (HVAC) in realistic and operationally applicable environments and
scenarios.

Automatic target recognition (ATR) using radar has been achieved us-
ing various methods. Different statistical parameters of the micro-Doppler
signal have been used to classify humans, wheeled vehicles, tracked vehi-
cles, helicopters and unknown targets (farm animals etc.) while achieving
an accuracy of greater than 90% (Bilik et al., 2006; Nebabin, 1995). Baulic
walking models (Boulic et al., 1990) have been used to model and classify
the human motion (Van Dorp & Groen, 2008). Image processing techniques
such as pseudo-Zernike moments have also been applied in radar target clas-
sification (Clemente et al., 2015). A common theme amongst most ATR
measurements is that targets are in the open and measured at high signal to
noise ratios (SNRs). The focus in this paper is on targets measured in their
natural environment, at realistic operational ranges and whose Doppler spec-
tral profiles occupy similar spectral bands or Doppler returns exhibit similar
spectral content.
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Recent developments include the use of multistatic radar systems for clas-
sification between humans and humans carrying weapons (Fioranelli et al.,
2015, 2017) and the development of transforms to obtain finer grained sig-
natures when using ultra-wide band radar (UWB) (Qi et al., 2016). Most
of this research is however still conducted at low technology readiness levels
(TRLs) in controlled conditions.

In this paper, the radar return is treated in a similar way to an audio
signal, and audio classification techniques are used to extract features from
the data. In a past study (De Witt et al., 2012), it was shown that trained
human operators can distinguish between different classes of targets when
listening to the Doppler frequency characteristics of the down-sampled radar
return from dismounts. Using this knowledge, it should be possible to de-
velop an automatic scheme for classifying targets based on the audio-like
characteristics of their radar micro-Doppler return. Here, a Gaussian Mix-
ture Model (GMM) provides a mixture of mel-frequency distributions while
the hidden Markov Model (HMM) is used to characterise class specific tran-
sitions between the mel-frequency mixtures over time. The GMM model
combined with the HMM model is abbreviated as the GMM-HMM model.
The GMM part of the GMM-HMM model uses mel-frequency cepstrum co-
efficients. They are frequently used as features in audio classification. They
appear to produce an efficient scale that is more representative of human
audio perception of the frequency spectra than other methods such as linear
predictive coding (LPC) (Deng & O’Shaughnessy, 2003). The HMM part of
the GMM-HMM model is also used frequently in speech recognition to model
and recognise transitions between formants in speech, and has been shown to
produce satisfactory performance (Rabiner, 1989). Mel-cepstrum frequency
components have been shown to outperform LPC and other feature spaces
both in terms of number of required dimensions and overall micro-Doppler
classification performance of targets (Bilik et al., 2006).

The results obtained by the GMM-HMM model are compared to Bilik’s
method (Bilik et al., 2006) which combines a GMM with a voting scheme.
No time varying information between consecutive bursts is considered in Bi-
lik’s method, whereas the GMM-HMM method includes information about
transitions between the GMM components, attempting to extract additional
information from the time varying information present in the data. The au-
thors conjecture that this could increase the accuracy of the model, however
steps should be taken to keep the model complexities between the two ap-
proaches close to optimal ranges. To measure model complexity in the case
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Parameter Value
Sweep Repetition Frequency 1.33 kHz
Range Resolution ≈ 5 m
Transmit Frequency 10.2 GHz
Beam Width 0.6◦

Table 1: Radar Measurement Parameters

of the GMM-HMM is non trivial and is reserved for future work; however,
different model complexities (number of model parameters) for the GMM-
HMM model are investigated in this work.

2. Dataset

As far as the authors are aware, no large database of animals (specifically
African animals) and humans in a natural environment is publicly available.
In an effort to develop robust classifiers for ground observation radar sys-
tems, a data collection effort was conducted. The parameters of the X-band
frequency modulated continuous wave (FMCW) radar system that was used
to collect data is given in Table 1, a photograph of the experimental set-up
is shown in Fig. 1. Human and animal targets were recorded in the wild
in a staring mode. In total, approximately 1200 seconds worth of data were
recorded, which included multiple target types. The human targets were
willing participants and their park ranger guides (for safety), whereas the
animals were targets of opportunity that happened to be moving towards or
away from the radar site at the time. The recordings are not controlled in
any manner as the animals do not co-operate with the measuring process nor
are their angle of incidence and speed controlled. Sometimes radar range-
Doppler cells contain a single animal or human, and at other times more
than one of each of the same type. As such this could cause within-class
variability of the micro-Doppler features in the data. Most recordings were
performed on animals between 1 and 3 km from the radar site.

3. Mel-Cepstrum coefficient extraction

Before any processing is performed to extract features, a simple 10 Hz high
pass filter was applied to the recorded data to remove the quasi-stationary
ground clutter.
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Figure 1: Radar experimental set-up used for measurements on a hilltop overlooking the
operational savanna environment that can be seen in the background.

A burst is composed of N sweep repetition intervals (SRIs) which have
been observed consecutively upon which a length-N fast Fourier transform
(FFT) is performed, resulting in FFT energies S(1), . . . , S(N) at frequen-
cies f1, . . . , fN . Bursts lengths are typically chosen so that the signal can be
considered stationary for the burst duration. Bursts can also be allowed to
overlap. In our data, short burst lengths of less than 64 (50 ms) cause con-
secutive bursts to be assigned to the same component in the GMM, implying
stationarity of the signal for such short burst lengths. In speech recognition
20-30 ms is considered stationary (McLoughlin, 2016), however stationarity
intervals for Doppler walking motion differs from this. To determine the
length that the data is stationary, the data were subjected to stationarity
tests. Specifically, the null hypothesis was tested against the alternative hy-
pothesis of a unit root (Kwiatkowski et al., 1992). To determine the average
length that the data is stationary, the burst length was varied and the per-
centage of bursts that passed the stationarity test were recorded. The results
showed that for a burst length of 128 points (100 ms) 71% of samples where
considered stationary. For 64 points (50 ms), 85% of bursts would pass a
stationarity test. At longer burst lengths more bursts are considered to be
non-stationary than stationary. As such, the chosen burst length was 100
ms. This burst length is also used by Bilik (Bilik et al., 2006) with whom
this work is compared. A Hamming window is applied to the burst to reduce
side-lobes. For each burst, a set of mel-frequency cepstrum coefficients are
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calculated and stored. A set of mel-frequency cepstrum coefficients arising
from consecutive bursts is defined as a frame. A spectrogram of a moving
zebra created with these parameters is shown in Fig. 2.
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Figure 2: Each vertical line of the spectrogram corresponds to 1 burst of 128 samples upon
which a length-N=128 FFT has been computed. The rectangle indicates the boundaries
of a frame. Here a frame represents the chosen (simulated) time on target, were the radar
to operate in scanning mode. The frame in turn, consists of a specified number of bursts.
The suspected main body sway, as well as the movement of the animals legs are indicated
in the spectrogram.

In order to compute the mel-frequency cepstrum coefficients the following
steps are performed:

1. The time domain signal s(n) is divided into frames of length L corre-
sponding to the observation time one wishes to consider. The length
of these frames are chosen based on the radar system in use and the
dynamics of the targets being measured.

2. Next the frames are partitioned into B bursts of specific length N .
The time domain signal comprising a frame will be referred to as si(n),
where n is the index of the nth data point in the burst and the subscript
i is the index of the ith burst in the frame of length L.
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3. For each burst in a frame, an FFT operation is performed, thereby
obtaining the frequency domain signal Si(k):

Si(k) =

N∑

n=1

si(n)h(n)e
−j2πkn

N 1 ≤ k ≤ N, (1)

where h(n) is an N -sample-long Hamming window, n is the index over
samples, j is the imaginary number j2 = −1, and k is the Fourier
domain index. The periodogram-based power spectral estimate for the
burst si(n) is given by:

Pi(k) =
1

N
|Si(k)|2. (2)

4. Compute the mel-spaced filterbank Hm(k). This is a set of triangular
filters that are applied to the periodogram power spectrum of step 3.
These cepstral wavelet functions are essentially wavelets spaced accord-
ing to the mel-scale. Each individual mel-cepstrum coefficient covers
a certain range of the spectrum and sums all the data in that region
together to give a single value corresponding to the power in that re-
gion. The filterbank is M vectors of length N where M is equal to
the chosen number of cepstral coefficients. To calculate the filterbank
energies, the coefficients of each filter Hm(k) are multiplied with the
power spectrum Pi(k) of the burst and summed to obtain a single value
Am, m ∈ {1, . . . ,M} for each of the M filters, i.e.

Am =

N∑

k=0

Pi(k)Hm(k). (3)

5. The logarithm of each of the filterbank energies from step 4 is taken,
i.e.

Ym = log10Am. (4)

6. To determine the cepstrum coefficients, a discrete cosine transform
(DCT) is used. The initial K coefficients yn, n ∈ {1, . . . , K} of an in-
verse discrete cosine transform of the first K components of Y1, Y2, . . . YK ,
where K < N is given by

yn =

M∑

k=1

Yk cos

[
n

(
k − 1

2

)
∗ π

20

]
. (5)
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The initial value y0 represents the average power of the signal, which
can vary widely, and is usually discarded. In this paper 10 cepstral
coefficients are used. If a higher degree of resolution is desired, a higher
number of coefficients can be used.

o calculate the coefficients Hm(k) of the mel-filterbanks from step 4, the
ext four steps are followed:

1. Convert the upper and lower frequencies of the relevant frequency in-
terval of the data to the mel scale with the equation:

M(f) = 1125 ln(1 +
f

700
). (6)

where f is the frequency being converted. In this case the lower fre-
quency limit is 15 Hz (23.85 mels) and the upper frequency limit is de-
pendent on the sweep repetition frequency (SRF) and is usually equal
to the Nyquist frequency. If the radar system has a SRF of 1.3 kHz the
upper limit will be around 650 Hz (738.87 mels).

2. Next, points are linearly spaced between the lower limit and upper limit
in the mel-spectrum to obtain M+1 mel-frequency points βm. Convert
these points back to frequency domain (from the mel-domain) with the
equation:

h(m) =M−1(βm) = 700(e
βm
1125 − 1), (7)

where βm indexes a frequency on the mel-scale, to obtain m points
h(m) in Hz.

3. Since the frequency resolution does not allow these points to be placed
anywhere in space where desired, these points can be converted to
frequency bin numbers based on the locations of the discrete frequency
bins of the FFT, where

f(m) = b(Nh(m)/Ts)c, (8)

where Ts is equal to the sample period and bc is the floor of the function.
This results in a sequence of bin numbers f(m).

4. Now the filters Hm(k) are created. Each filter will start increasing at
a point f(m− 1), peak at f(m) and decrease back to zero at f(m+ 1).
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All other points are equal to 0 according to the following equation:

Hm(k) =





0 k < f(m− 1),
k−f(m−1)

f(m)−f(m−1) f(m− 1) ≤ k ≤ f(m),
f(m+1)−k

f(m+1)−f(m)
f(m) ≤ k ≤ f(m+ 1),

0 k > f(m+ 1).

(9)

Only D = M − 1 coefficients y1 to yM are used. The mel-ceptrum coeffi-
cients are chosen to occupy the frequencies where most of the target energy
is concentrated. As such parts of the Doppler spectrum that do not contain
energy from the target were discarded manually. In this application, the
coefficients are placed between 10 Hz and 650 Hz as the data only considers
targets that are moving at relatively slow, speeds typically less than 5 ms−1.
The mel-cepstrum coefficients are then passed to a Gaussian mixture model
(GMM) for further analysis. This choice is supported by previous work from
which it is known that the maximum micro-Doppler of targets typically reach
at least twice this speed (van Eeden et al., 2015).

In the dataset presented here, targets exhibit either negative or positive
Doppler, not both. Since the cepstral coefficients are only defined for positive
spectra, the spectra of targets moving away from the radar (with negative
Doppler spectra), were flipped such that every negative Doppler frequency
presented as a positive Doppler frequency and vice versa. The implicit intu-
itive assumption for the sake of simplicity, although not provably accurate,
is that the Doppler spectrum of a target moving away from the radar with
some aspect angle, would present as the mirror image of the Doppler spec-
trum of a target moving towards the radar with the opposite aspect angle.
As such, the radial direction of the target is not assumed to contain discrimi-
native features for the purpose of classifying between species. Future studies
with more representative data may be employed to test the assumption that
closing and receding targets would exhibit mirror image spectra.

4. Gaussian Mixture Model

Once the mel-cepstrum coefficients have been determined, they are sep-
arately clustered for each class by a GMM using the iterative expectation-
maximization (EM) algorithm (Bishop, 2006). The vector of observed cep-
strum coefficients is given by the column vector y = [y1, ..., yD]T . A set of
these vectors are then modelled as a mixture of Gaussian distributions for
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each class. Consider D×B dimensional matrix Y, where the nth column is
populated element wise with the elements of column vector yn, where D is
equal to the number of cepstrums per burst, and B is equal to the number
of bursts. Similarly the corresponding latent variables will be denoted by an
K × B matrix Z with rows populated with the elements of zn. Assuming
that the data points are drawn independently from the distribution, then the
log likelihood of the Gaussian mixture model for this data set is given by

ln p(Y|κ, µ,Σ) =

B∑

n=1

ln

{
K∑

k=1

κkN (yn|µk,Σk)

}
, (10)

where N (·|µ,Σ) represents a multivariate Gaussian distribution with mean
vector µ and covariance matrix Σ. This likelihood function needs to be
maximised with respect to the parameters {κk, µk,Σk} for k = 1, . . . , N . The
expectation maximization (EM) algorithm of Dempster is used to maximizes
this likelihood (Dempster et al., 1977). The first step of the EM algorithm
is to initialize the means µk, covariances Σk and mixing coefficients κk and
evaluate the initial value of the log likelihood. Then perform the EStep by
evaluating the weights using the current parameter values

γ(znk) =
κkN (yn|µk,Σk)

ΣjκjN (yn|µj,Σj)
. (11)

Next the MStep is performed by re-estimating the parameters using the
current weights.

µnew
k =

1

Bk

B∑

n=1

γ(znk)yn, (12)

Σnew
k =

1

Bk

B∑

n=1

(yn − µnew
l )(yn − µnew

l )T , (13)

κnewk =
Nk

B
, (14)

where

Bk =

N∑

n=1

γ(znk). (15)
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Finally, the log likelihood and parameters are checked for convergence, if
the values have not changed by more than 10−6, the process is terminated.
If the convergence criterion is not satisfied, then return to the EStep and
continue until the algorithm converges.

The number of components of the GMM for each class is automatically
computed using the Akaike’s information criterion (AIC) (Ljung, 1999). The
lowest AIC score determines the GMM distribution weights. For the training
dataset used in this study the GMM typically has between 6 and 10 com-
ponents dependent on the class, (10 for humans and walking animals, 6 for
grazing animals). Finally, the states (GMM components) of the classes are
combined into a single GMM so as to allow the probabilities of the differ-
ent components to be related. The separate GMMs for each of the classes
are merged into a single augmented GMM, in which all the components of
the separate class dependent GMMs are merged in a single “augmented”
space. To determine whether or not any components significantly overlap
and should be merged, the closed form equation for a bi-directional version
of the Kullback-Leibler (KL) divergence between the Gaussian components
is used as a similarity score between components (Hershey & Olsen, 2007).
The equation for the bi-directional KL divergence is give by:

DKL(Na||Nb) = 0.25(tr(Σ−1b Σa) + (µb − µa)
>Σ−1b (µb − µa)− k + ln

det Σb

det Σa

)

+ 0.25(tr(Σ−1a Σb) + (µa − µb)
>Σ−1a (µa − µb)− k + ln

det Σa

det Σb

),

(16)

where Na and Nb are the two components of the Gaussian mixture models
being compared. The terms Σa and Σb are the covariance matrices of the
Gaussian mixture components. The values µa and µb are the means of the
Gaussian mixture components. In this bi-directional version, the value is
not dependent on the order of Na and Nb as is the case with the standard
KL-divergence.

In this application it was found that no components ever overlap when
using the KL divergence criterion, implying that the states of the different
animal/human classes are well separated in the cepstrum feature space. If
any were to overlap a merging strategy would have to be followed. Next a
hidden Markov model is constructed to classify the targets based on their
state transitions.
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5. Hidden Markov Model

The HMM determines the probability of a class C given a sequence of
observed cepstrum coefficients y0:t, where the subscript 0:t represents all
observations from discrete time 0 to t. The corresponding sequence of hidden
states is denoted by x0:t. At any time instant t, xt is a scalar that can take
on an integer value between 1 and Q, where Q is the number of mixture
components of the GMM. The probabilities of these states are inferred by the
expectation maximization algorithm already described. This is the standard
state space description of the hidden Markov model. Using Bayes theorem

P (C, x0:t|y0:t) =
P (y0:t|C, x0:t)P (C, x0:t)

P (y0:t)
. (17)

The prior probability in the numerator can be expanded using the product
rule as follows

P (C, x0:t) = P (C)P (x0:t|C). (18)

The first-order Markov assumption present in the model results in

P (x0:t|C) = P (x0|C)P (x1|x0, C)P (x2|x1, C) . . . P (xt|xt−1, C), (19)

or

P (x0:t|C) = P (x0|C)

t∏

l=1

P (xl|xl−1, C). (20)

Using the conditional independence properties of the model, i.e. that C is
independent of y given x, the first term of (17) can be expanded as

P (y0:t|C, x0:t) = P (y0:t|x0:t) (21)

=

t∏

j=0

P (yj|xj). (22)

Substituting equations (20) and (22) into equation (17) results in

P (C, x0:t|y0:t) =
P (C)

∏t
j=0 P (yj|xj)P (x0|C)

∏t
l=1 P (xl|xl−1, C)

P (y0:t)
. (23)

14



Only the probability of the class given the observations is of interest, as such
a marginalization over the states x0:t can be performed and the denominator
can be ignored due to it only being a normalization constant:

P (C|y0:t) ∝
∑

x0:t

P (C)P (x0|C)

t∏

l=1

P (xl|xl−1, C)

t∏

j=0

P (yj|xj). (24)

The conditional probability in (24) can then either be computed using full
enumeration or the Viterbi sequence can be computed to approximate the
probability of the classes.

max
x0:t

P (C|y0:t) ∝ P (C)P (x0|C) max
xt

(P (xt|xt−1, C) max
x0:t−1

P (y0:t|x0:t) (25)

6. Method

The data were partitioned into three different classes, namely walking
humans, walking animals and grazing animals. Each class consists of roughly
6 minutes worth of recorded data, whilst utilising the radar in the staring
mode.

The classes are defined as follows:

1. Animals that were measured walking approximately radially towards
or from the radar, were grouped together as a class “walking animals”.

2. Animals that were standing still, eating grass, raising their heads and
looking around and then potentially moving slowly to another nearby
location to continue grazing were grouped into the class “grazing ani-
mals”

3. Human participants were observed at a range of around 3 km walking
towards the radar installation and were classed as “human targets”,
where no distinction is made whether 1 or 2 humans are present in a
range cell.

4. A fourth “nondescript” class is added. This class is analogous to a uni-
form distribution over motion types in our model, and is represented
by an equi-probable random walk through the hidden Markov model
states (i.e. all state transitions are equally probable). It serves primar-
ily as a method to normalize the classification results and lower the
model’s confidence in its own answer, owing to the fact that not all
types of target motion are accounted for in the model. In practice, a
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uniform background motion class has almost no effect on the classifi-
cation outcomes, except for reducing confidence in the final answer if
the exhibited motion is close to random walk behaviour.
The background class can significantly reduce the error rate by re-
quiring a higher probability threshold for choosing a particular class,
if a thresholding procedure is employed. The approach of defining
this “nondescript” class is similar to the approach followed in (Bishop,
1994), and is referred to as the “Other” class in the results section.

The measurements of the targets were split into three sets (folds) of
roughly equal size, with approximately the same number of measurements of
each class in each fold. For every test performed, the classifier is trained on
one fold, validated on another, and tested on the remainder.

A custom 3-fold cross validation strategy was then implemented, which
is depicted in Table 2. The data fold partitioning is performed such that in
any sub-fold shown in Table 2, one set is completely held out until testing.
This ensures that test set results are never used to determine model order.

Training Model Validation Testing

a)
Train on 1 Validate on 2 Test on 3
Train on 2 Validate on 1 Test on 3

b)
Train on 2 Validate on 3 Test on 1
Train on 3 Validate on 2 Test on 1

c)
Train on 1 Validate on 3 Test on 2
Train on 3 Validate on 1 Test on 2

Table 2: This table indicates how the data was partitioned for training, validation and
testing over three folds. Consider for example a “sub-partition” a). Fold number 3 is held
out for a test set, and as such no test data is used to in any way determine the models
resulting from the training/validation set combinations 1/2 and 2/1. The same can be said
for sub-partitions b) and c). The validation results are averaged within each sub-partition
(i.e. average of only two results per sub-partition), however the test results are averaged
over all six test results.

Once the mel-cepstrum coefficients have been extracted and clustered ap-
propriately, the transition probabilities for each class between the different
“cepstral-states” are computed and stored through supervised learning. A
frame is observed, divided into appropriately sized bursts and each burst is
assigned a “state” based on its cepstrum coefficients and the GMM cluster it
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is closest to. After cluster selection, the state transitions are calculated. To
avoid errors based on low emission probabilities, transition probabilities that
are zero are set to small non-zero values (10−4). Increasing this value would
result in the “Other” class to become more probable, reducing the confi-
dence in the classification result. The converse is also true. These transition
probabilities can be determined by observing how often such “between class”
transitions take place in the state transitions between mixtures components
of measured data, however in the case of this paper the choice was arbitrary,
but resulted in acceptable performance. Along with this, the class transition
probabilities for each cepstral-state is computed. It should be apparent that
certain cepstral-states are more likely to occur in certain classes than others.
The cepstral information is also useful and collected at the same time as it
forms the basis for GMM based classification employed by Bilik et al. (2006).

In the GMM-HMM classification model, the most probable sequence
through the Markov model is calculated using the Viterbi algorithm in Eq.
25. Once the probability of each class is calculated a maximum a-posteriori
(MAP) approach (using the Viterbi algorithm) is used and the class with the
highest probability is selected as the classification result.

Two different studies have been conducted for this research. The first fo-
cuses on distinguishing between broad classes (human/bipedal motion, walk-
ing animals, grazing animals) for practical purposes and the second focuses
on distinguishing between two specific animals. Giraffe and zebra data from
the walking animal class were selected to determine if the classifiers under
consideration could distinguish between individual species of animals. These
animals where observed in the greatest number and had the most data avail-
able. They also tend to have similar micro-Doppler spectral ranges. However,
their relative body motions and spectrograms differ in terms of periodicity
and the largest Doppler shift achieved by the legs of the animal. This differ-
ence is directly related to the physiology of their movement. To determine
whether or not the classifier is merely using the relative radial velocity com-
ponent produced by the main body of the target we isolate only these two
similar targets to determine if the classifier can in fact distinguish based on
micro-Doppler features. This does not mean that in the human animal clas-
sification it has not classified based on radial velocity. It merely shows that
the classifier is capable of distinguishing based on micro-Doppler features
using this scheme.

For both studies, the burst length was set to 100 ms and the overlap was
set to 0. This corresponds to the approach taken by Bilik, since allowing
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overlaps between bursts would cause the votes to be dependent and would
consequently introduce double counting. This is not a restriction in the case
of the GMM-HMM model; however, to perform a like-for-like comparison,
a zero overlap was chosen for both cases. Exploratory experiments by the
authors have also shown that the introduction of overlap did not seem to
produce a significant improvement. The increase in resolution from a longer
burst length provides a more significant advantage.

7. Results

7.1. Broad Class classification

7.1.1. Model Selection

If the AIC method is used to determine the number of parameters for
the GMM part of the GMM-HMM model, the addition of the HMM state
transition parameters would result on a combined model which is much too
complex for this data set. This would lead to overfitting, since none of
the HMM transition parameters are considered by the AIC method. The
recommended total model order is 27 for the GMM part (10 for human and
walking animal each, 7 for grazing animal). This implies an HMM model
with 729 possible transitions while only approximately 3000 state transitions
are available for each fold to train upon. An equivalent AIC which considers
both the GMM and HMM parameters would need to be developed to better
determine the exact complexity of the model or more data should be obtained
to enable improved parameterisation of the transition probabilities. The
creation of such an AIC measure would certainly be of interest, but would be
beyond the scope of this work. However, the authors optimised the number
of GMM parameters (and by implication the number of HMM transition
probability parameters) which maximised the classification accuracy between
folds using a validation set, resulting in a GMM-HMM model with the right
number of parameters for this dataset. This can be seen in Table 3.

Validation is performed according to the dataset partitioning scheme de-
tailed in Table 2, obtaining results that are shown in Table 3. The model
order that had the highest accuracy (averaged between 2 sub-partition val-
idation results) was chosen to be run on the test set. In the case of Table
3 this corresponds to the model with 14 components (5/5/4). The model
would then be tested on the remaining third fold of the data to obtain the
test results. The process is repeated for every fold of the data rotating the
sets as per Table 2. The tests performed for the rest of this work (i.e., in
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Section 7.1.2) are reported as the mean and standard deviation over six test
results, with the model order for the six tests being chosen based on their
specific validation results.

Model
order

GMM Component
Partition

Training
Accuracy

Validation
Accuracy

6 2/2/2 96.62% ±1.74 92.26% ±1.15
8 3/3/2 96.97% ±1.66 94.13% ±1.64
10 4/4/2 97.68% ±1.48 93.99% ±0.27
12 5/5/2 97.29% ±0.45 93.28% ±0.054
12 4/5/3 97.83% ±1.66 92.96% ±0.1
12 5/4/3 97.90% ±1.66 94.42% ±1.49
13 5/5/3 97.61% ±0.7 93.68% ±2.21
14 5/6/3 97.61% ±0.81 93.41% ±2.36
14 6/5/3 98.38% ±0.73 92.53% ±2.52
14 5/5/4 98.96% ±0.062 94.66% ±0.24
15 6/6/3 97.28% ±1.41 93.22% ±2.72
18 7/7/4 98.74% ±0.5 94.08% ±3.83
21 8/8/5 99.02% ±0.072 93.11% ±4.78
23 9/9/5 99.18% ±0.009 93.93% ±4.96

Table 3: Table of accuracy for model order of a single fold of data (average of two valida-
tion results per sub-patition). Model order is denoted as human/walking animal/grazing
animal model order. There is a broad range close to the best point where model order
does not affect performance significantly, i.e. performance is insensitive to choice of model
order within this range. However, performance does degrade for very high and low model
orders.

The greater than 90% accuracy obtained by all models seems to be a
satisfactory result, however it becomes increasingly difficult to significantly
improve performance for this dataset owing to the law of diminishing returns.

7.1.2. GMM-HMM method and Bilik’s method comparison

The ToT was varied for the broad class datasets (human, walking an-
imal, grazing animals) in order to show the effect of observation time on
classification accuracy. The ToT is an important factor for scanning radar
systems. An increased ToT will also increase the revisit time which will make
accurate tracking more difficult to achieve. Here, the results of the GMM-
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HMM are compared to Bilik’s method (Bilik et al., 2006) for this broad class
classification problem.
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Figure 3: A comparison of human classifier accuracy vs. observed time for Bilik’s method
and HMM-GMM. The dashed-dotted lines indicate ± single standard deviations for the
different folds.

Fig. 3 shows the classification accuracy compared with that of Billik’s
method. In this figure targets classified as the “non-descript” or “Other”
class in the GMM-HMM method are excluded from the accuracy calculations,
since the data classified as “Other” look more like a random walk through
the GMM space than any other class. This indicates poor data quality, and
the advantage of including an “Other” class assists with discarding such poor
data, i.e. data which does not contain significant discriminative information.
This seems to be reflected in the figure in improved accuracy and reduced
variance. Although the GMM-HMM results are not statistically significantly
better than Bilik’s method at any single ToT, the results are consistently
better over almost all ToTs.

Considering the results in Tables 4 and 5 and Fig. 3, it is evident that
the accuracy of the system is a function of the ToT. The longer the target
is observed, the more accurate the classification becomes. However, this
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500 ms ToT

HMM-GMM/Bilik True Class

Classifier Out Human Walking Grazing

Human 85.87/84.58 3.39/3.48 11.09/9.11
Walking animal 4.33/5 93.06/94.06 1.36/0.96
Grazing animal 6.93/10.4 1.49/2.46 86.55/89.93
Other 2.87/- 2.07/- 1.0/-

1 s ToT

HMM-GMM/Bilik True Class

Classifier Out Human Walking Grazing

Human 89.2/87.06 2.31/0.237 8.79/5.62
Walking animal 3.47/3.41 94.39/96.1 3.7/0.37
Grazing animal 4.93/9.54 1.65/1.53 90.48/94.01
Other 2.4/- 1.65/- 0.37/-

1.5 s ToT

HMM-GMM/Bilik True Class

Classifier Out Human Walking Grazing

Human 91.04/88.39 1.49/1.7 7.14/5.5
Walking animal 3.98/3.8 96.29/96 0.55/0.8
Grazing animal 4.18/7.7 0.99/2.2 91.48/93.5
Other 0.8/- 1.24/- 0.82/-

2 s ToT

HMM-GMM/Bilik True Class

Classifier Out Human Walking Grazing

Human 93.09/91.15 1.66/2.3 6.25/3
Walking animal 3.19/2.68 96.69/96.36 0/0.37
Grazing animal 2.66/6.17 0.33/1.32 93.75/96.64
Other 1.06/- 1.32/- 0/-

Table 4: 3-fold cross validation confusion matrices for broad classes using MAP approach,
with no rejection present for these results. Results are reported as percentages for HMM-
GMM method followed by Bilik’s method.
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500 ms ToT

75%/90% True Class

Classifier Out Human Walking Grazing

Human 90.23/93.02 2.79/1.74 7.68/5.4
Walking Animal 3.41/2.73 94.94/96.7 1.01/0.8
Grazing Animal 5.08/3.41 0.96/0.73 90.7/93.22
Other 1.29/0.85 1.31/0.82 0.61/0.57
Rejection Rate 10.25/18.25

1 s ToT

HMM-GMM/Bilik True Class

Classifier Out Human Walking Grazing

Human 92.29/93.69 1.85/1.54 7.78/6.53
Walking Animal 2.86/2.7 95.64/96.76 0.38/0.4
Grazing Animal 3.57/2.7 1.34/0.85 91.46/92.87
Other 1.29/0 1.17/0 0.38/0
Rejection Rate 5.09/8.21

1.5 s ToT

HMM-GMM/Bilik True Class

Classifier Out Human Walking Grazing

Human 92.43/92.95 1.24/1.0 5.78/5.07
Walking Animal 3.68/3.53 96.52/97 0.29/0.3
Grazing Animal 3.27/2.9 1.0/1.0 93.64/94.63
Other 0.61/0.62 1.24/1 0.29/0

Rejection Rate 3.29/4.71

2 s ToT

HMM-GMM/Bilik True Class

Classifier Out Human Walking Grazing
Human 93.28/93.73 1.67/1.68 4.56/3.86
Walking Animal 3.23/3.27 97.33/97.64 0/0
Grazing Animal 2.69/2.45 0.33/0.34 95.44/96.14
Other 0.81/0.54 0.67/0.34 0/0
Rejection Rate 2.06/3.13

Table 5: 3-fold cross validation confusion matrix for broad classes with thresholding.
Results are reported as percentages for GMM-HMM method with 75% required confidence
followed by 90% required confidence
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performance comes with a trade-off in a scanning radar setup. The ToT will
increase classification performance, but detection and tracking of the targets
will be penalised. The penalty could be reduced by increasing the number of
beams on the radar system; however, this increases the power and financial
cost of the radar system. Bilik et al. (2006) showed that approximately
4 seconds of observation was optimal for humans and that after this time
frame, longer staring would not significantly increase the accuracy of the
classification system. This observation is confirmed in this study. However,
significant improvement is rarely seen in this data for ToTs greater than 1
second, with the required ToT also being dependent on the species observed.
A human specifically requires a ToT of around 1 second as this is the period
of their walking gait. Some animals can be observed for shorter periods to
achieve the same maximum in accuracy due to the period of their movement
cycle being shorter.

It should be noted that the micro-Doppler for different targets can be very
similar for short ToTs, especially when considering that the target aspect
angle is not controlled or recorded in our data. The ranger and researcher
would often stop to look around for wild animals and the ranger would look
back to see if the researcher was still following closely. As such for short
periods of time human data and grazing animal data could match. This
emphasizes the need for the classifier to handle multiple incidence angles
and should be investigated in future work. The error could be isolated if the
angle of incidence was known at all times. Likewise, the error causes some
uncertainty in the model and the relatively low accuracy can be ascribed to
the variability in the human behaviour just described. However, a system
that is robust to such ambiguities, as well as the number of same-class targets
in a range-Doppler cell, would be advantageous. Poachers or thieves will not
conveniently stay together or spread out equally at all times, nor will they
walk straight towards the radar presenting with a perfect human walking
micro-Doppler signature.

The spike in misclassification of grazing animals for short observation pe-
riods can be explained by the manner in which animals graze. They typically
stand still when grazing, lift their heads for a time and then move short dis-
tances. This short movement period closely matches other walking animals
and even humans when it occurs, and is frequently misclassified. Some short
portions of human data also match grazing animals. The misclassification
persisting after the use of confidence metrics could indicate overfitting of
the data owing to the AIC score not incorporating the added complexity of
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the additional HMM parameters. However, when reducing the GMM-HMM
model order below that which corresponds to the optimal AIC score these
errors remain, but increases the accuracy and reduces the variance between
folds are observed. Caution is required with high accuracies as that could
indicate that some overfitting has occurred. However, the human/grazing-
animal misclassifications do not seem to be a result of overfitting, since they
are not influenced by model order.

7.1.3. Thresholding for controlling desired resultant remaining accuracy

In this section, a rejection scheme for classifying only targets that achieve
a certain confidence threshold is implemented for the GMM-HMM model.
The selection of a threshold is over and above the inclusion of the “Other”
class already described. A rejection approach is often used in the medical and
quality control industries as the cost of a false classification is much worse
than the cost of simply requiring human intervention (Scheme & Englehart,
2015) which is true in the case of poacher observation as well. It is much
more desirable to have the operator use secondary methods to classify a tar-
get than for the uncertain targets to be misclassified and valuable resources
needlessly deployed. As such accuracies reported when thresholding is em-
ployed, are resultant accuracy after a certain number of uncertain samples
have been rejected based on their confidence score (the required confidence
in the threshold methods was 75%). Hence, the rejection scheme only clas-
sifies targets if their probability is higher than a certain percentage. If a low
false alarm rate and high accuracy is desired, the use of confidence metrics
can significantly reduce the errors obtained by the system at the cost of not
classifying a given observation due to lack of confidence. Targets that do not
pass this threshold are left non-classified and are not included in accuracy
results. These could be seen as “missed classifications”, but could in prac-
tice be left for later classification in anticipation of improved measurement
opportunities.

Figure 4 shows the accuracy of the GMM-HMM classifier with varying
ToTs as well as showing the effects of requiring a confidence threshold. A
confidence threshold of 75% was required for the model. It can be seen that
at the cost of rejecting a certain number of samples, the confidence metric
will increase the accuracy. The false alarm level can be lowered to a desired
or required rate with a high enough specified confidence level.
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Figure 4: A comparison of classifier remaining accuracy and rejection rate vs. ToT for
GMM-HMM method using confidence scores

7.2. Special case: Giraffe-Zebra Classification

In many cases, classifiers that supposedly use micro-Doppler modulation
as the source of information for classification end up actually relying on the
relatively strong radial velocity component produced by the main body of
the target. For example, a car and a human can easily be distinguished
based only on average or maximum radial velocity over time. However, in
animal-human classification, many of the targets have very similar radial ve-
locities. As such, any classification algorithm should be able to discriminate
based on micro-Doppler features alone. The following example was chosen
where Doppler data from two different species (giraffe and zebra) had ap-
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proximately the same main body radial velocity component. In Fig. 5, a
comparison of a typical giraffe spectrogram and a typical zebra spectrogram
is presented. Each burst of the data roughly corresponds to a vertical line
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Figure 5: A comparison of typical zebra and giraffe spectrograms from the recorded
dataset. There are some variations between different examples of a single species, but
some features in the spectrograms are discriminative between species within this particu-
lar dataset.

within the spectrogram and over time the target’s motion repeats itself in a
cyclic manner. The form of the spectrogram is also expected to be dependent
on what type of movement the animal is performing at a particular point in
time and its aspect angle to the radar. That is, the Doppler signature of
a zebra can take multiple different forms. Comparing arbitrary bursts of
giraffe and zebra data, their cepstrum coefficients are often similar at com-
parable phases of their gait, especially when not observing a time at which

24



the legs of the animal are moving. However the way in which they transition
through different GMM components (or “cepstral-states”) is discriminative.
This difference allows the zebra and giraffe to be accurately classified using
the GMM-HMM. Notably the difference between a zebra and giraffe are ex-
pected to occur in the frequency of leg movements as well as the maximum
frequency shift obtained from their legs. The ratio of maximum Doppler
shift obtained by the legs to the Doppler shift obtained by the main body
of the animal is expected to correspond to the length of the animals’ legs
and should be a distinguishing feature for every species. This hypothesis will
have to be confirmed in future research when a more comprehensive dataset
can be obtained that includes aspect angles.
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Figure 6: Comparison of classification accuracy and rejection rate vs. ToT with GMM-
HMM method and Bilik’s method trained for giraffe and zebra data only. The only form of
rejection present in this graph is when Bilik’s method obtains equal votes for both classes
and from the graph it can be seen that this only happens on even intervals. This also
explains the spiky nature of the graph for short ToTs, as observations with equal votes
are more likely to be incorrect
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500 ms ToT

HMM-GMM/Bilik True Class

Classifier Out Zebra Giraffe

Zebra 86.13/78.9 7.79/9.04
Giraffe 13.87/21.1 92.21/90.96

1 s ToT

HMM-GMM/Bilik True Class

Classifier Out Zebra Giraffe

Zebra 90.7/88.08 4.88/2.18
Giraffe 9.3/11.92 95.12/97.82

1.500 s ToT

HMM-GMM/Bilik True Class

Classifier Out Zebra Giraffe

Zebra 93.4/89.58 3.78/3.11
Giraffe 6.6/10.42 96.22/96.89

2 s ToT

HMM-GMM/Bilik True Class

Classifier Out Zebra Giraffe

Zebra 94.44/93.1 2.68/1.79
Giraffe 5.56/6.9 97.32/98.21

Table 6: 3-Fold cross validation results for giraffe and zebra classification
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From Fig. 6 it can be see that both classification methods perform equally
well. Based on the results, the GMM mixtures are capable of distinguishing
between individual species based only on the micro-Doppler features. Specif-
ically the higher Doppler shift in the leg movements of the zebra as well as
the slight increase in the Doppler shift of the main body that is present when
the animals are moving at approximately the same velocity.

The same type of 3-fold cross validation and testing was performed as
described in Table 2, resulting in Table 6. It can be seen that if the classifier
is trained to distinguish between two different species, and as long as the
target was observed for a long enough time-frame, accurate classification
is possible using any method. The longer a target is observed the more
accurate the classifier. A preferable approach would be to jointly fuse the
macro behavioural features (walking/running/grazing) of animals that can
be determined from radar track data, as well as micro-Doppler features. This
could be a topic of future research.

8. Conclusion

This paper shows that accurate human-animal classification of slow mov-
ing land based targets is possible when observed in their natural habitat. The
classification performance is dependent on the ToT. It should be noted that
since the diversity of the dataset on which this study is based is somewhat
limited, further data is required to definitively characterise the performance
of the classifier and identify possible shortcomings. Using the currently avail-
able dataset, the approach used produces promising results. It is shown that
human-animal classification is possible with reasonable accuracies while the
targets are in their natural environments at ranges exceeding 1 km.

The results obtained for the GMM-HMM classifier are not statistically
significantly better than Billik’s method for any specific ToT; however, the
GMM-HMM consistently performs better over all ToTs. As mentioned in
Section 7, if only the AIC score were to be used to determine model order, this
dataset would not contain enough transitions per fold in order to accurately
estimate the HMM transition probabilities between GMM components. This
is a form of over-fitting, since in addition to the GMM parameters determined
by the AIC, HMM transition parameters are added, resulting in an overly
complex model. Hence, by using a validation set, the best model order was
determined in Section 7.1.1. However the performance seems to be insensitive
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to model selection choices over a fairly broad band close to the best model
order.

The GMM-HMM model was designed based on previous work (van Eeden
et al., 2015) where it was shown that the cepstrum for human targets would
repeat in a periodic manner and it was believed that this periodicity would be
present in many other species. Even if individual mel-cepstrum observations
were similar the state transitions over time would serve as a discriminat-
ing feature. Although the HMM-GMM method seems to outperform Billik’s
method, the performance increase is not particularly marked. This can be
better understood when the bi-directional KL-distances between the GMM
components are investigated. The bi-directional KL-distance of less than one
would mean that the specific components could be merged. Upon studying
the KL-distances for the Giraffe Zebra GMM components it was found that
the smallest KL-distance was approximately 2 and the average was approxi-
mately 50. This implies that the cepstral features for different animals do not
overlap within the data set. As such the cepstral information contained in
the GMM provides most of the discriminative power of the features. On the
other hand since there are very few transitions that overlap between different
species (classes) the transitions do not significantly contribute to the classi-
fication results. It is believed that with a more representative data, clusters
would overlap more and the contribution of state transitions in the GMM-
HMM model could contribute to improved performance of the GMM-HMM
classifier.

Regarding future work, Dabrowski & de Villiers (2015a,b) have shown
how movement models from tracking systems could be used to classify tar-
gets. This work could be adapted and included in the classification model for
tracked animals. Furthermore, the effect of adding classification results into
the tracking system for more accurate association and tracking should be in-
vestigated. Having accurate classification could significantly improve model
selection for tracking systems and reduce the prevalence of false tracks. Ac-
curate tracking should also allow repeated classification to take place on a
target, thereby allowing for improved classification results over time. The
classification method suggested in this work improves accuracy of classifica-
tion for short ToTs (between 150 ms and 300 ms). However, if the target is
observed for a very short time (shorter than 50ms) any temporal or spectral
based methods would struggle, owing to the time scales at which human or
animal motion occur. As such an approach such as that suggested in Nanzer
& Rogers (2009) should be investigated.
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