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Abstract

This research report will cover the theory and an application of the two-level multilevel statistical

model where the dependent variable is continuous. The hierarchical structure of educational data

where learners are nested within schools results in correlated data that must be accommodated in

the analysis. The data from TIMSS (Trends in International Mathematics and Science Study) 2015

will be analysed with SAS/PROC MIXED software, using a multilevel model to determine factors

that are signi�cantly related to the mathematics achievement of Grade 9 learners in South Africa.
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1 Introduction

Linear mixed models (LMM) are an extension of linear models, but allow for dependency in the observed

data [1], [11]. This paper will focus on the theory and understanding behind the two-level multilevel

analysis, which is a special case of the LMM. The model, covariance structures, estimation procedures

and model diagnostics will be discussed.

As a simple example of a two-level multilevel model, consider the case where yij is the achievement

of learner j in school i, j = 1, 2, . . . ni and i = 1, 2, . . . m. Also suppose that there is one explanatory

variable, x, on learner level (level-1), and one, z, on school level (level-2).

From [1] and [11], an example of a two-level multilevel model written on the two levels is:

LEVEL-1

yij = β0i + β1ixij + eij

where eij ∼ N(0, σ2), all independent;

LEVEL-2

β0i = γ00 + γ01zi + u0i

β1i = γ10 + γ11zi + u1i

where

 u0i

u1i

 ∼ N2


 0

0

 ,

 τ00 τ01

τ01 τ11


 independent for all i = 1, ...,m, and independent

of eij .

This model allows for randomness in both the intercept and slope of level-1 parameters, as well as a

correlation between the intercept and the slope. The combined model is

yij = γ00 + γ01zi + γ10xij + γ11zixij + u0i + u1ixij + eij

where γ00+γ01zi+γ10xij+γ11zixij is the �xed part of the model and u0i+u1ixij+eij is the random

part. The �xed parameters are γ00, γ01 ,γ10 and γ11 and the random parameters are σ2, τ00, τ01 and τ11.

Assuming that τ01 = 0, then var(yij) = τ00 + x2ijτ11 + σ2 and cov(yij , yi′ j) = τ00 + xijxi′ jτ11. From

the latter expression, one can see that this model allows for the dependence between learners within the

same school.

In the second part of the paper, the theory of multilevel models will be applied to the TIMSS 2015

data set where learners are nested within schools. The �xed e�ects and covariances of the random factors

will be estimated and the results will be discussed.
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2 Literature Review

The essential di�erence between linear mixed models (LMMs) and �xed e�ect models is that LMMs can

be used to model data when there is dependency between the observations [1], [6]. These models (LMMs)

are a more appropriate choice for situations where the data set is of a hierarchical or clustered nature,

due to the model accounting for dependency in the data. Covariance structures can be modeled by using

LMMs, which will provide more appropriate �xed-e�ect estimates and standard errors [1]. As a result,

LMMs are commonly used for research in the social and medical sciences, where dependency between

subjects is observed.

Within the model, there are di�erent parameters associated with the �xed and random factors [11].

Fixed-e�ect parameters are associated with the �xed factors, and cover all the possible levels of the

covariates within the study. Random-e�ect parameters are associated with the random factors - the levels

are considered to be sampled randomly from a population of possible levels. They represent the random

deviations from the relationships with the �xed-e�ects. LMMs involve both �xed-e�ect parameters and

random e�ects [11].

The data set for LMMs can be either clustered, longitudinal or repeated-measure data [11]. West

[11] further de�nes these types of data, where clustered data is where the subjects have been grouped

into clusters, and dependency arises from being in the same cluster. In longitudinal data, the same

subjects are studied repeatedly over a period of time, but under di�erent conditions. Repeated-measure

data occurs when di�erent measurements are made on the same unit. In the case of longitudinal and

repeated-measure data, the dependency is a result of the subjects remaining unchanged.

LMMs are also known as hierarchical linear models (HLMs), a term made popular by Raudenbush

in the 1980s [9]. Di�erent software packages can be used to �t these models. Singer [9] describes the

HLM software which is speci�cally designed for analysis of LMMs in a hierarchical manner, which was

developed by Raudenbush. With the HLM software, each level of the model is speci�ed individually.

Goldstein developed a separate software called MLwiN, with which the user could express the model in

a single equation instead [9]. In this paper, the HLM software, SAS/PROC MIXED and R software will

be used, and the results for the di�erent software will be compared.

Multilevel models (MLM) are a special case of LMMs. In this study, the focus will be on two-level

multilevel models for clustered data. In the case of a two-level model, the model is split into two levels

[11]. The �rst level, level-1, consists of the subjects with a greater level of observation. The next level,

level-2, consists of the clusters that those subjects are nested within. Furthermore, MLMs allow for

randomness in both the intercept and the slope, which is something that was not allowed for in normal

linear models. Where there is randomness in the slope, the model is called a random coe�cients model

[1].
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The Trends in International Mathematics and Science Study (TIMSS) is an international valuation

performed on learners in grades 4 and 8 (Grade 9 in South Africa), with the purpose of evaluating their

knowledge of mathematics and science [7]. This study will focus only on the results for mathematics of

Grade 9 learners. In South Africa, TIMSS is hosted by the Human Sciences Research Council (HSRC).

The sampling design is a three-stage strati�ed cluster design with the following stages:

1. Stratifying and selecting schools from all possible schools in the country;

2. Random selection of a mathematics and science class from each school;

3. Sampling learners within a class if the class size exceeds 40, otherwise including all learners.

The TIMSS 2015 data set consists of 292 schools and 12 514 Grade 9 learners. The achievement score

for South Africa was 372, with a standard error of 4.5, which is well below the international centre point

of 500 [7]. Since learners are nested within each school cluster, the results of the learners within schools

will be correlated, and we can apply the multilevel analysis to account for the dependency [6].

3 Two-level Multilevel Models for Clustered Data

3.1 The model, notation and underlying assumptions

In this section, di�erent two-level multilevel models will be considered to explain the model, notation and

underlying assumptions. The models that will be considered are:

1. Null model - intercept only

2. Random intercept with one level-1 covariate

3. Random intercept with one level-1 covariate and one level-2 covariate

4. Random slope with one level-1 covariate

5. Random slope with one level-1 covariate and one level-2 covariate (no interaction)

6. Random slope with one level-1 covariate and one level-2 covariate (interaction)

In all the models, yij is the response for unit j (level-1) in group i (level-2). The covariates on level-1 and

level-2 are respectively indicated by xij and zi. Independence between the error terms on level-1 (eij)

and level-2 (u0i and u1i) are assumed.

Each model will be written as an expression on both level-1 and level-2, as well as the combined

model. The random parts in the combined model will be indicated in parentheses.
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1. Model 1 - Null model

Level-1 yij = β0i + eij eij ∼ N(0, σ2)

Level-2 β0i = γ00 + u0i u0i ∼ N(0, τ00)

Combined model yij = γ00 + (u0i + eij)

2. Model 2 - Random intercept with one level-1 covariate

Level-1 yij = β0i + γ10xij + eij eij ∼ N(0, σ2)

Level-2 β0i = γ00 + u0i u0i ∼ N(0, τ00)

Combined model yij = γ00 + γ10xij + (u0i + eij)

3. Model 3 - Random intercept with one level-1 and one level-2 covariate

Level-1 yij = β0i + γ10xij + eij eij ∼ N(0, σ2)

Level-2 β0i = γ00 + γ01zi + u0i u0i ∼ N(0, τ00)

Combined model yij = γ00 + γ01zi + γ10xij + (u0i + eij)

4. Model 4 - Random slope with one level-1 covariate

Level-1 yij = β0i + β1ixij + eij eij ∼ N(0, σ2)

Level-2 β0i = γ00 + u0i

β1i = γ10+u1i

 u0i

u1i

 ∼ N2


 0

0

 ,

 τ00 τ01

τ01 τ11




Combined model yij = γ00 + γ10xij + (u0i + u1ixij + eij)

5. Model 5 - Random slope with one level-1 and one level-2 covariate (no interaction)

Level-1 yij = β0i + β1ixij + eij eij ∼ N(0, σ2)

Level-2 β0i = γ00 + γ01zi + u0i

β1i = γ10+u1i

 u0i

u1i

 ∼ N2


 0

0

 ,

 τ00 τ01

τ01 τ11




Combined model yij = γ00 + γ01zi + γ10xij + (u0i + u1ixij + eij)

6. Model 6 - Random slope with one level-1 and one level-2 covariate (interaction)

Level-1 yij = β0i + β1ixij + eij eij ∼ N(0, σ2)

Level-2 β0i = γ00 + γ01zi + u0i

β1i = γ10+γ11zi+u1i

 u0i

u1i

 ∼ N2


 0

0

 ,

 τ00 τ01

τ01 τ11




Combined model yij = γ00 + γ01zi + γ10xij + γ11xijzi + (u0i + u1ixij + eij)

An important measure indicating the need of a multilevel model due to the clustering of the data into a

hierarchical structure is the intraclass correlation coe�cient (ICC) ([1], [11]), also known as the variance

partitioning coe�cient (VPC). The ICC gives the proportion of variation in the model due to clustering,
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and is calculated as the ratio of group-level variation of error divided by the total variation of error, as

follows:

ICC = ρ =
σ2
u

σ2
u + σ2

e

where σ2
u is the variance of the residuals on level-2 and σ2

e is the variance of the residuals on level-1 ([10],

[11]).

The ICC value gives an indication of the level of homogeneity for the dependent variables in level-1

([10], [11]), and its value will approach 0 when units within each group are independent i.e. when σ2
u is

low. If the ICC for the null model is high, it implies that there is signi�cant dependency between units

within each group, which justi�es the use of a multilevel model. The ICC for the di�erent models above

will be discussed in Section 6 where simulated data will be used to explain the e�ects that covariates on

level-1 and level-2 have on this measure.

The next few sections will illustrate the notations in the models in more detail. Due to the similarity

of the random part of models 1 to 3 and models 4 to 6, only models 3 and 5 will be discussed. The rest

of the models follow from these in a similar fashion.

3.1.1 Model 3 - Random intercept with one level-1 and one level-2 covariate

This model has randomness in the intercept only, and has one �xed level-1 covariate and one level-2

covariate.

The combined model is written as

yij = γ00 + γ01zi + γ10xij + (u0i + eij)

where i indicates the school and j indicates learner. Furthermore, eij ∼ N(0, σ2), independent for all

i, j, and u0i ∼ N(0, τ00), independent for all i, with cov(eij , u0i) = 0.

The �xed part of the model is γ00 + γ01zi + γ10xij , with �xed parameters γ00, γ01 and γ10. The

random part of the model is u0i + eij , with random parameters var(eij) = σ2 and var(u0i) = τ00.

To illustrate how the model can be written in matrix notation, consider the case where we have 3

schools, each with 2 learners i.e. i = 1, 2, 3 and j = 1, 2. In terms of each school i = 1, 2, 3:
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yi =

 yi1

yi2



=

 1 zi xi1

1 zi xi2




γ00

γ01

γ10

+

 1

1

u0i +

 ei1

ei2


=Xiβ +Ziu0i + ei

where u0i ∼ N(0, τ00) and ei ∼ N2

(
0, σ2I2

)
.

Since E(yi) =Xiβ and

cov(yi, y
′

i) = cov((Ziu0i + ei), (Ziu0i + ei)
′
)

= Zicov(u0i, u
′

0i)Z
′

i + cov(ei, e
′

i)

= τ00ZiZ
′

i + σ2I2

=

 τ00 + σ2 τ00

τ00 τ00 + σ2


= V i

it follows that

yi ∼ N(Xiβ, V i). (1)

The ICC of the model is ICC = τ00
τ00+σ2 , which is also an indication of the correlation between learners

within the same school, since

corr(yi1, yi2) =
cov(yi1, yi2)√
var(yi1)var(yi2)

=
τ00

τ00 + σ2

= ICC.

The model for all three schools can be rewritten in matrix form as:
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y =


y1

y2

y3

 =



y11

y12

y21

y22

y31

y32



=



1 z1 x11

1 z1 x12

1 z2 x21

1 z2 x22

1 z3 x31

1 z3 x32




γ00

γ01

γ10

+



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1




u01

u02

u03

+



e11

e12

e21

e22

e31

e32



=


X1

X2

X3

β +


Z1 0 0

0 Z2 0

0 0 Z3




u01

u02

u03

+


e1

e2

e3


=Xβ +Zu+ e

where u ∼ N3(0, G) and e ∼ N6 (0, R), where G = τ00I3 and R = σ2I6.

The elements of the vector β give the �xed-e�ect parameters that need to be estimated.

The random e�ect part of the model is Zu+e, and the variance components that must be estimated

are τ00 and σ
2.

Since E(y) =Xβ and

cov(y, y
′
) = cov(Zu+ e, (Zu+ e)

′
)

= Zcov(u, u
′
)Z
′
+ cov(e, e

′
)

= ZGZ
′
+R

it follows that

y ∼ N(Xβ, ZGZ
′
+R)
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where

cov(y, y
′
) =



τ00 + σ2 τ00 0 0 0 0

τ00 τ00 + σ2 0 0 0 0

0 0 τ00 + σ2 τ00 0 0

0 0 τ00 τ00 + σ2 0 0

0 0 0 0 τ00 + σ2 τ00

0 0 0 0 τ00 τ00 + σ2


.

Therefore, the full model has the distribution y ∼ N(Xβ, V ), where V = ZGZ
′
+R =


V 1 0 0

0 V 2 0

0 0 V 3

,
where V i = τ00ZiZ

′

i + σ2I2 for i = 1, 2, 3.

3.1.2 Model 5 - Random slope with one Level-1 and one Level-2 covariate (no interaction)

We now consider the case where both the intercept and the slope are random, also called a random slopes

model. In this speci�c model, the level-2 covariate is only associated with the intercept, and the combined

model, with i indicating the school and j indicating learner, is

yij = γ00 + γ01zi + γ10xij + (u0i + u1ixij + eij)

with eij ∼ N(0, σ2), all independent, ui =

 u0i

u1i

 ∼ N2 (0, D) with D =

 τ00 τ01

τ01 τ11

 independent

for all i = 1, 2, 3, and independent of eij i.e. cov(eij , u0i) = 0.

The �xed part of the model is γ00+γ01zi+γ10xij with �xed parameters γ00, γ01 and γ10. Furthermore,

u0i + u1ixij + eij is the random part of the model, with random parameters σ2, τ00, τ01 and τ11.

Consider again the case where we have 3 schools, each with 2 learners i.e. i = 1, 2, 3 and j = 1, 2.

This model can be written in a matrix form in terms of each school i = 1, 2, 3:

yi =

 yi1

yi2



=

 1 zi xi1

1 zi xi2




γ00

γ01

γ10

+

 1 xi1

1 xi2


 u0i

u1i

+

 ei1

ei2



13



=Xiβ +Ziui + ei

where ui ∼ N2 (0, D) and ei ∼ N2

(
0, σ2I2

)
.

Since E(yi) =Xiβ and

cov(yi, y
′

i) = cov((Ziui + ei), (Ziui + ei)
′
)

= Zivar(ui, u
′

i)Z
′

i + var(ei, e
′

i)

= ZiDZ
′

i + σ2I2

=

 τ00 + 2τ01xi1 + τ11x
2
i1 + σ2 τ00 + τ01(xi1 + xi2) + τ11xi1xi2

τ00 + τ01(xi1 + xi2) + τ11xi1xi2 τ00 + 2τ01xi2 + τ11x
2
i2 + σ2


= V i

it follows that

yi ∼ N(Xiβ, V i). (2)

The matrix form of the full model, with i = 3 schools and j = 2 learners, is written as:

y =



y11

y12

y21

y22

y31

y32



=



1 z1 x11

1 z1 x12

1 z2 x21

1 z2 x22

1 z3 x31

1 z3 x32




γ00

γ01

γ10

+



1 x11 0 0 0 0

1 x12 0 0 0 0

0 0 1 x21 0 0

0 0 1 x22 0 0

0 0 0 0 1 x31

0 0 0 0 1 x32





u01

u11

u02

u12

u03

u13


+



e11

e12

e21

e22

e31

e32



=


X1

X2

X3

β +


Z1 0 0

0 Z2 0

0 0 Z3



u1

u2

u3

+


e1

e2

e3


=Xβ +Zu+ e
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where u ∼ N6(0, G) and e ∼ N6 (0, R), where G = I3 ⊗D and R = σ2I6.

The elements of the vector β give the �xed-e�ect parameters that need to be estimated.

The random e�ect part of the model is Zu+e, and the covariance components that must be estimated

are τ00, τ01, τ11 and σ
2.

Since E(y) =Xβ and

cov(y, y
′
) = cov(Zu+ e, (Zu+ e)

′
)

= Zcov(u, u
′
)Z
′
+ cov(e, e

′
)

it follows that

y ∼ N(Xβ, ZGZ
′
+R)

where G = cov(u, u
′
) and R = cov(e, e

′
).

Therefore, the full model has the distribution y ∼ N(Xβ, V ) where V = ZGZ
′
+R =


V 1 0 0

0 V 2 0

0 0 V 3

,
where V i = ZiDZ

′

i + σ2I2.

3.1.3 The general case

For the general case of i = 1, 2, ..., m schools with j = 1, 2, ..., ni learners in each school, the general

matrix form for each school i, with p �xed e�ects parameters and q random e�ects, could be expressed

as:

yi =Xiβ +Ziui + ei (3)

with design matrices Xi : ni × p and Zi : ni × q. Furthermore, the random e�ects and residual vectors

are ui : q × 1 =



u0i

u1i
...

uq−1, i


∼ N(0, D) and ei : ni × 1 =



ei1

ei2
...

ei,ni


∼ N(0,Ri) with Ri = σ2Ini .

It is assumed that the residuals are all independent of each other, as well as independent of the random

e�ects u1, ..., um.
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In (3), yi is a ni × 1 vector of the achievement for each learner j = 1, ..., ni in school i = 1, ...,m.

yi =



yi1

yi2
...

yi,ni


Since E(yi) =Xiβ and from the independence of the ui's and ei's,

cov(yi, y
′

i) = cov((Ziui + ei), (Ziui + ei)
′
)

= Zivar(ui, u
′

i)Z
′

i + var(ei, e
′

i)

= ZiDZ
′

i +Ri

= V i

it follows that

yi ∼ N(Xiβ, V i). (4)

Alternatively, the model representing all j = 1, 2, ..., ni learners and i = 1, 2, ..., m schools is:

y =Xβ +Zu+ e (5)

y1

y2

...

ym


=



X1

X2

...

Xm


β +



Z1 0 · · · 0

0 Z2
. . .

...

...
. . .

. . . 0

0 · · · 0 Zm





u1

u2

...

um


+



e1

e2
...

em


.

The non-diagonal values in the Z matrix are 0 due to the independence that exists between schools

(level-2).

In the above model, u ∼ N(0, G), where G = cov(u, u
′
) = Im ⊗ D, and e ∼ N(0,R), where

R = σ2In with n =
∑
i

ni. It is assumed that the residuals are all independent of each other, as well as

independent of the random e�ects u1, ..., um.

Note that within each school, we had that ui ∼ N(0, D) and ei ∼ N(0, Ri). In the complete case,

u ∼ N(0, G) and e ∼ N(0, R), where the covariance matrices for the full model G and R consist of

stacking the covariance matrices for each school, D and Ri respectively, along the diagonal.
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Since E(y) =Xβ and from the independence of u and e,

cov(y, y
′
) = cov((Zu+ e), (Zu+ e)

′
)

= Zivar(u, u
′
)Z
′

i + var(e, e
′
)

= ZGZ
′
+R

= Z


D · · · 0

...
. . .

...

0 · · · D

Z ′ +

R1 · · · 0

...
. . .

...

0 · · · Rm



=


Z1DZ

′

1 +R1 · · · 0

...
. . .

...

0 · · · ZmDZ
′

m +Rm



=


V 1 · · · 0

...
. . .

...

0 · · · V m


= V

it follows that

y ∼ N(Xβ, V ). (6)

4 Parameter estimation

Consider the two-level multilevel model given in (3),

yi =Xiβ +Ziui + ei.

The parameters that need to be estimated are the �xed-e�ect parameters given in β, and the covariance

parameters for both the random e�ects and the residuals, that is the elements of D = cov(ui, u
′

i)

and var(eij) = σ2. Two common methods that are used to estimate these parameters are maximum

likelihood (ML) estimation and restricted/residual maximum likelihood (REML) estimation [11]. The

main di�erence between the two methods is that ML estimation results in bias (usually downwards) of

the estimates for the covariance parameters ([1], [11]). The reason for this is that ML estimation does

not take into consideration the loss of degrees of freedom that occurs when estimating the �xed-e�ect

parameters β. As a result, REML is generally preferred, as it takes this the loss of degrees of freedom into

account and hence results in unbiasedness of the covariance estimates. ML estimation will be discussed
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in Section 4.1 and REML estimation will be discussed further in Section 4.2.

Throughout this section, the notation θ will be used to represent the covariance parameters of the

model. In other words, θ consists of a vector of the residual variance parameter σ2, followed by the

covariance parameters for the random e�ects in D, i.e. θ =



σ2

τ00

τ01
...

τq−1, q−1


(see Section 3.1.3 for the

description of the model).

4.1 Maximum likelihood (ML) estimation

The maximum likelihood (ML) method of estimation requires the use of a likelihood function, which is

constructed using the parameters that need to be estimated in the model [11]. The function is also based

on the assumptions regarding the distributions or density functions of those parameters. The parameters

are then estimated by maximising this likelihood function and solving for each parameter. The resulting

values are then called the maximum likelihood estimates (MLEs) of the model.

For a multilevel model, the parameters that need to be estimated are the �xed-e�ect parameters in

β and the covariance parameters given in θ. In Section 3.1.3, it is shown that

yi =Xiβ +Ziui + ei ∼ N(Xiβ, V i).

The marginal linear model is speci�ed by excluding the random e�ect from the model and is expressed

as yi =Xiβ+εi where εi ∼ N(0, V i). As a result, it follows that yi =Xiβ+εi ∼ N(Xiβ, V i). From

the distribution of the vector yi in the marginal model it follows:

f(yi|β, θ) = (2π)−
ni
2 × det(V i)

− 1
2 × exp(−1

2
(yi −Xiβ)

′
V −1i (yi −Xiβ))

and the likelihood function is:

Li(β, θ) = (2π)−
ni
2 × det(V i)

− 1
2 × exp(−1

2
(yi −Xiβ)

′
V −1i (yi −Xiβ))

where yi is now the observed values of the vector yi.

Since the schools in the model are assumed to be independent, the likelihood function will be the

product of of the m independent likelihood functions for each school [1], as follows:
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L(β, θ) =
∏
i

Li(β, θ)

=
∏
i

(2π)−
ni
2 × det(V i)

− 1
2 × exp(−1

2
(yi −Xiβ)

′
V −1i (yi −Xiβ))

= (2π)−
n
2 ×

∑
i

det(V i)
− 1

2 × exp(−1

2

∑
i

(yi −Xiβ)
′
V −1i (yi −Xiβ)) (7)

where n =
m∑
i=1

ni.

The log-likelihood function is taken as the natural logarithm of the likelihood function:

l(β, θ) = −n
2
ln(2π)− 1

2

∑
i

ln[det(V i)]−
1

2

∑
i

(yi −Xiβ)
′
V −1i (yi −Xiβ). (8)

Estimates of β and θ can be found by optimizing the log-likelihood function (8) above, by solv-

ing for each parameter simultaneously using computational algorithms [11]. An alternative method of

optimization by pro�ling out β will be discussed in Sections 4.1.1 and 4.1.2 below.

4.1.1 Special case: covariance parameters known

To solve for the parameters, the special case is considered where all covariance parameters in θ are known.

Since θ is assumed to be known, only the �xed-e�ect parameters β need to be estimated. Furthermore,

the log-likelihood function in (8) can be expressed as a function of β only.

l(β) = −n
2
ln(2π)− 1

2

∑
i

ln[det(V i)]−
1

2

∑
i

(yi −Xiβ)
′
V −1i (yi −Xiβ). (9)

The function above is optimised with respect to the �xed-e�ect parameters β by using the generalised

least squares method. To obtain β for which l(β) is a maximum, the derivative of the log-likelihood

function is taken as follows:

∂l(β)

∂β
=
∑
i

X
′

iV
−1
i (yi −Xiβ)

=
∑
i

X
′

iV
−1
i yi − (

∑
i

X
′

iV
−1
i Xi)β.

Setting this equal to 0 and solving for β gives the �xed-e�ects parameter estimate
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β̂ = (
∑
i

X
′

iV
−1
i Xi)

−1
∑
i

X
′

iV
−1
i yi

= (X
′
V −1X)−1(X

′
V −1y) (10)

The ML estimateβ̂ given in (10) has the properties of being the best linear unbiased estimate (BLUE)

for the �xed-e�ects parameter β ([11]).

4.1.2 General case: covariance parameters unknown

In the ML estimation of the �xed-e�ect parameters β and the covariance parameters θ that follows, the

covariance parameters in θ are now assumed to be unknown. To solve for the covariance parameters in

θ, a pro�le log-likelihood function lML(θ) is constructed by substituting (10) into (8) ([2], [11]). The

log-likelihood simpli�es to a function of θ only:

lML(θ) = −
n

2
ln(2π)− 1

2

∑
i

ln(det(V i))−
1

2

∑
i

(yi −Xiβ̂)
′
V −1i (yi −Xiβ̂)

= −n
2
ln(2π)− 1

2

∑
i

ln(det(V i))−
1

2

∑
i

r
′

iV
−1
i ri (11)

where

ri = yi −Xiβ̂

= yi −Xi((
∑
i

X
′

iV
−1
i Xi)

−1
∑
i

X
′

iV
−1
i yi).

The function lML(θ) does not have an explicit solution for an optimized estimation of θ; therefore, the

covariance parameters θ are estimated using the Newton-Raphson algorithm of computational iteration

to obtain convergence to the estimates. The MLE of θ̂ is used to give estimates for the covariances

of the random e�ects and the residuals, D̂ and R̂i respectively, which are then substituted to give an

estimate for V i; namely V̂ i = ZiD̂Z
′

i + R̂i. Thereafter, this estimate is substituted into (10) to obtain

an estimate for the �xed-e�ects parameters:

β̂ = (X
′
V̂
−1
X)−1X

′
V̂
−1
y. (12)

Since this formula contains the estimated covariance values V̂ i, it is referred to as the empirical best

linear unbiased estimator (EBLUE) for the �xed-e�ects parameter β [11].
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4.2 Restricted/residual maximum likelihood (REML) estimation

To remove the bias of the ML parameter estimates, the likelihood function used in the restricted/residual

maximum likelihood (REML) method of estimation is based on the residual yi −Xiβ̂ ([1], [11]).

Since y ∼ N(Xβ, V ) (see Section 3.1.3) it follows from (12) that for given V , the distribution

forβ̂ = (X
′
V̂
−1
X)−1X

′
V̂
−1
y is derived as follows:

var(β̂) = var((X
′
V −1X)−1X

′
V −1y)

= (X
′
V −1X)−1X

′
V −1var(y)V −1X(X

′
V −1X)−1

= (X
′
V −1X)−1X

′
V −1V V −1X(X

′
V −1X)−1

= (X
′
V −1X)−1X

′
V −1X(X

′
V −1X)−1

= (X
′
V −1X)−1. (13)

Similarly, its expected value is derived as:

E(β̂) = E((X
′
V −1X)−1X

′
V −1y)

= (X
′
V −1X)−1X

′
V −1E(y)

= (X
′
V −1X)−1X

′
V −1Xβ

= β.

Therefore β̂ ∼ N(β, (X
′
V −1X)−1) [1].

Independence between β̂ and the residual yi −Xiβ̂ can be shown as follows:

cov(β̂, (y −Xβ̂)′) = cov
[
(X

′
V̂
−1
X)−1X

′
V̂
−1
y, (y −X(X

′
V̂
−1
X)−1X

′
V̂
−1
y)
′
]

= cov
[
(X

′
V̂
−1
X)−1X

′
V̂
−1
y, y

′
(I −X(X

′
V̂
−1
X)−1X

′
V̂
−1

)
′
]

= (X
′
V̂
−1
X)−1X

′
V̂
−1
var(yi) (I −X(X

′
V̂
−1
X)−1X

′
V̂
−1

)
′

= (X
′
V̂
−1
X)−1X

′
V̂
−1
V (I −X(X

′
V̂
−1
X)−1X

′
V̂
−1

)
′

= (X
′
V̂
−1
X)−1X

′
(I −X(X

′
V̂
−1
X)−1X

′
V̂
−1

)
′
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= (X
′
V̂
−1
X)−1X

′
− (X

′
V̂
−1
X)−1X

′
V̂
−1
X(X

′
V̂
−1
X)−1X

′

= (X
′
V̂
−1
X)−1X

′
− (X

′
V̂
−1
X)−1X

′

= 0.

Therefore, the joint likelihood of the �xed-e�ect parameters β and the covariance parameters θ is the

product of the independent likelihood functions based on β̂ and y −Xβ̂. In other words,

L(β, θ; y) = L(θ; y −Xβ̂)× L(β; β̂,θ).

Therefore it follows that:

L(θ; y −Xβ̂) = L(β, θ; y) /L(β; β̂,θ). (14)

From (7), it can be seen that [1]:

L(β, θ; y) = (2π)−
n
2 × det(V )−

1
2 × exp(−1

2
(y −Xβ)

′
V −1(y −Xβ)). (15)

Since β̂ ∼ Np(β, (X
′
V −1X)−1), it follows from [1] that:

L(β; β̂,θ) = (2π)−
p
2 × det(X

′
V −1X)−

1
2 × exp(−1

2
(β̂ − β)

′
X
′
V −1X(β̂ − β)). (16)

Substituting (15) and (16) into (14) gives

L(θ; y −Xβ̂) = (2π)−
n−p

2 × det(X
′
V −1X)−

1
2 × det(V )−

1
2 × exp(−1

2

∑
i

(y −Xβ̂)
′
V −1(y −Xβ̂))

= (2π)−
n−p

2 × det(X
′
V −1X)−

1
2 × det(V )−

1
2 × exp(−1

2
r
′
V −1r)

with a REML log-likelihood function as follows [11]:

lREML(θ) = −
(n− p)

2
ln(2π)− 1

2
ln(det(X

′
V −1X))− 1

2
ln(det(V ))− 1

2
r
′
V −1r

where

r = y −Xβ̂

= y −X((X
′
V̂
−1
X)−1X

′
V̂
−1
y).

Since the function is an expression of θ only, the covariance parameters can be solved for using an
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algorithm to give the estimate V̂ . This estimate can then be substituted into equations (12) and (13) to

give the estimates for the �xed-e�ect parameters, β̂, and the corresponding variance, var(β̂).

5 Model diagnostics

Model diagnostics are performed to assess whether the assumptions regarding the distribution of the

residuals are met, as well as to detect either outliers or potentially in�uential observations. Model

diagnostics should be integrated into the model-building process. Two of these diagnostic methods will

be discussed, namely: residual diagnostics and in�uence diagnostics.

5.1 Residual diagnostics

Residual diagnostics make use of di�erent types of residuals that can be calculated. Consider the multi-

level model in (3), that is yi =Xiβ +Ziui + ei where ei ∼ N(0, σ2Ini). The residuals can be divided

into two main types, namely marginal and conditional. The raw marginal residuals for unit i on level-2

is given by [11]

êi(m) = rmi = yi −Xiβ̂

and the corresponding raw conditional residuals by

êi(c) = rci = yi −Xiβ̂ −Ziûi.

The residuals are conditional since the conditional mean of yi is E(yi | ui) =Xiβ−Ziui. The conditional

residuals will be considered since we are mainly interested in the di�erence between the observed values

and the level-2 predicted values. The raw conditional residuals have a tendency to be dependent with

di�erent variances, even if the residuals of the true model are independent and have equal variances [11].

A method to overcome this problem is to use the conditional studentized residual, whereby a scaling

factor (i.e. dividing factor) of either the true or estimated standard deviations of the residuals themselves

is applied to the raw conditional residual. This is a more appropriate method because raw residuals

may come from a population with unequal variances. Standardized residuals are obtained using the

true standard deviations, and studentized residuals are obtained using the estimated standard deviations

[11]. Studentized residuals are further classi�ed as internal or external studentization, where internal

studentization refers to when the observation corresponding to the residual is included in the calculation

of the estimated standard deviation, and external studentization when it is excluded.

An alternative method called the Pearson residual can be used when the variability of the estimated

parameters β̂ are assumed to be insigni�cant. For this method, the residuals are scaled using the estimated
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standard deviation of the dependent variable instead [11].

Residual diagnostics test for the existence of a speci�c pattern in the residuals of the model, and are

carried out by plotting a set of known residuals with the predicted residual values [11]. Once the known

and predicted residuals are plotted against each other, they are checked manually to see if a pattern exists

between the two. The plots also test for the existence of a constant variance σ2.

Other tests are also performed on the residuals to test for distributional assumptions, including a box-

plot for the level-2 groups, which tests for equal variances for the di�erent clusters - in this case for the

schools. A box-plot is also useful for detecting populations with large variations, or that contain unusual

observations like outliers or in�uential observations. The normality assumption is tested using QQ-plots

and histogram plots, since the residuals of the population are assumed to follow a normal distribution

[11].

5.2 In�uence diagnostics

Estimation methods relying on the likelihood are susceptible to in�uences of unusual observations and

outliers. Therefore, in�uence diagnostics aim to identify which observations may have a heavy in�uence

on the estimates for both the �xed-e�ect parameters and the variance components, as well as to quantify

the e�ect that removing those values would have on the overall analysis of the full data set.

In�uence statistics can be categorised as either iterative or non-iterative methods [8]. An iterative

diagnostics method involves re�tting the model with a subset of the data, indicated by U , is removed.

Hence, the process is slow as the covariance parameters need to be recalculated with each iteration.

In contrast, noniterative diagnostics methods make use of explicit formulas, which have the advantage

of being more time e�cient. However, they require the assumption that all covariance parameters are

known, with the exception of the residual variance σ2 [8]. Note that multilevel models allow for di�erent

covariance structures for each cluster; however, this will not be discussed in this essay.

When performing in�uence diagnostics, typically a �top-down� method is suggested. This means

checking the overall in�uence diagnostics, thereafter using other diagnostic methods to see the e�ects

that a given set of observations has on other aspects of the model. These aspects include changes in the

values of the parameter estimates and their precision, as well as the in�uence on predicted values. Table

1 and 2 below (extracted from [11]) summarise the methods that are considered in this essay, as well

as the formulae to calculate the diagnostic statistics and the decision criteria to decide if a subset U is

in�uential or not. Note that the decision criteria are just a guideline for determining whether or not the

observations are in�uential, and vary between sources. Furthermore, note that the same notation as [8]

is used whereby a subscript U denotes calculations that have excluded some subset U of the full data set

when the calculations were performed.
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Name Aspect Formula Decision Criteria

Restricted likelihood
distance

/displacement
Predicted value RLDU = 2[lR(β̂)− lR(β̂U )]

RLDU > χ2
0.75(n) where

n =number of �xed &
covariance parameters

Cook's D Estimate D(β) = (β̂−β̂U )′(β̂−β̂U )

rank(X)× ˆvar(β̂)
D(β) > 4

n

Covariance ratio Precision covratio(β) = | ˆvar(β̂U )|
| ˆvar(β̂)|

covratio(β) < 1

Sum of squares
PRESS residuals

Predicted value PRESSU =
∑
iεU

(yi − x
′

iβ̂U ) PRESSU large

Table 1: In�uence on overall and �xed-e�ect diagnostics for LMMs

Name Aspect Formula Decision Criteria

Cook's D Estimate D(θ) = (θ̂−θ̂U )′(θ̂−θ̂U )

ˆvar(θ̂)
D(θ) > 4

n

Multivariate
DFFITS statistic

Estimate MDFFITS(θ) = (θ̂−θ̂U )′(θ̂−θ̂U )

ˆvar(θ̂U )
MDFFITS(θ) >

4
n

Covariance ratio Precision covratio(θ) = | ˆvar(θ̂U )|
| ˆvar(θ̂)|

covratio(θ) < 1

Trace of covariance
matrix

Precision covtrace(θ) = |trace
(

ˆvar(θ̂U )

ˆvar(θ̂)

)
− q| covtrace large

Table 2: In�uence on covariance parameters diagnostics for LMMs

Note that in Table 2 above, the di�erence between the Cook's D and the Multivariate DFFITS

(MDFFITS) statistic is the denominator value. Cook's D statistic used the estimates for the covari-

ance parameters from the full data set, whereas the MDFFITS statistic uses an estimate that has been

recalculated after subset U was removed.

The following example, based on the example on the study of rat pups in Chapter 3 in [11], is given

to illustrate the process and interpretation of in�uence diagnostics. The data, provided by JC Pinheiro

and DM Bates in [5], consisted of 30 female rats who were given di�erent dosages of an experimental

treatment, namely high, low and control dosages. Thereafter the birth weights of the pups that the

females gave birth to was measured to analyse the e�ect that the treatment had on the weights of the

pups at birth. Ten female rats were assigned to each dosage group, however, three rats died during the

experimental process so only the data from 27 litters was collected. Each litter ranged from 2 pups to

18 pups in size. This data represents a two-level clustered data set, where the level-1 observations of

analysis are the rat pups, and the level-2 clusters are the litters that the pups belong to.

The variables used are WEIGHT (dependent variable), SEX (level-1), LITSIZE (level-2) and the

dummy variables TREAT1 and TREAT2 for high and low levels of treatment (level-2) respectively. The

model is:

Level-1 Weightij = β0i + β1iSEXij + eij

Level-2 β0i = γ00 + γ01LITSIZEi + γ02TREAT1i + γ03TREAT2i + u0i

β1i = γ10 + γ11TREAT1i + γ12TREAT2i
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Several hypothesis tests were performed, resulting in a model with the treatment/sex interaction pa-

rameters excluded and di�erent covariances for the control group and the groups that received treatment

i.e. σ2
control 6= σ2

high/low. The �nal model is thus expressed as:

Level-1 Weightij = β0i + β1iSEXij + eij

Level-2 β0i = γ00 + γ01LITSIZEi + γ02TREAT1i + γ03TREAT2i + u0i

β1i = γ10

Combined model Weightij = γ00 + γ01LITSIZEi + γ02TREAT1i + γ03TREAT2i + γ10SEXij+

u0i + eij

Model diagnostics were performed on this �nal model. The values for the various in�uence diagnostics

were calculated using SAS PROC MIXED and graphs were plotted, which are given in Figure 1 and 2

below. Figure 1 gives the graphs obtained for the overall and �xed e�ect diagnostics, and Figure 2 gives

the graphs obtained for covariance parameter diagnostics.

Figure 1: E�ect of removing each litter on summary measures of in�uence for the �xed e�ects of the
model

The �rst graph in Figure 1 above displays the impact on the restricted likelihood distance statistic

when each litter is removed. All points are compared to a reference line equal to the 75th percentile for

the χ2 distribution with degree of freedom equal to the number of �xed-e�ect and covariance parameters

in the model. In this case, the reference is χ2
0.75(8) = 10.22 . It can be seen that removing litter 6 has a

substantial in�uence on the restricted likelihood distance statistic, implying that it has the largest overall

in�uence on the model.

The predicted error sum of squares calculated for each litter is given by the PRESS statistic. Litter 6

has a high value for the PRESS statistic, suggesting that it including this litter may not be appropriate

when predicting values.

26



The Cook's D statistic gives a measure of the overall simultaneous e�ect that removing each litter has

on the �xed-e�ect parameter estimates. Observations are deemed in�uential if the Cook's D statistic is

greater than 4
n , where n is the number of clusters under evaluation [4]. It can be seen that although litter

6 has a large in�uence on the restricted likelihood distance statistic, it only has a minor in�uence on the

estimates of the �xed-e�ect parameters. However, litters 9 and 18 seem to have large values of the Cook's

D statistic, indicating that they have a signi�cant in�uence on the �xed-e�ect parameter estimates.

The Covratio statistic assesses the change that removing each litter has on the precision of the �xed-

e�ect parameters estimates. The decision criteria for the Covratio statistic is 1; that is, if the statistic

value is < 1, it suggests that the variance of that subset is relatively large, thus removing that litter

improves the precision for the estimates of the �xed-e�ect parameters. Litters 9, 18 and 22 give values

lower than 1 for the Covratio statistic, implying that the variances for those litters are quite large.

Figure 2: E�ect of removing each litter on summary measures of in�uence for the covariance parameters
of the model

Figure 2 displays the e�ect of removing each litter on the in�uence diagnostics for the model covariance

parameters. The Cook's D statistic and the MDFFITS statistic in Figure 2 give a measure of the

in�uence that removing a subset has on the estimates of the covariance parameters, which includes the

residual variance σ2. In the �gure above, litter 6 gives very high values for both the Cook's D and

the MDFFITS statistics, implying that removing litter 6 has a large in�uence on the estimates of the

covariance parameters.

The Covratio and Covtrace statistics give a measure of the in�uence that removing a subset has on the

precision of the estimates of the covariance parameters. Subsets that result in a Covratio value less than

1 are deemed in�uential, therefore removing those subsets will improve the precision of the covariance

parameter estimates. In this example, Litters 5, 6, 18, 22 and 23 all gives Covratio values less than 1, and
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therefore can be investigated. Moreover, litter 6 gives a signi�cantly lower value than the rest, therefore

is has a larger in�uence on the precision. Subsets that have a value of 0 for the Covtrace statistic are

considered not in�uential. The larger the Covtrace statistic value is, the more in�uential that subset

is. It can be seen above that litter 6 gives the largest Covtrace statistic value, which agrees with the

deduction from the Covratio statistic that litter 6 in�uences the precision of the covariance parameter

estimates the most.

When performing in�uence diagnostics, it is important that all diagnostic methods are taken into

account when considering the removal of a subset. If the subset is considered in�uential, the e�ects

that the removal has on the estimates for the �xed-e�ects as well as the covariance parameters should

be investigated and compared. Di�erent strategies to deal with in�uential data are available, including

removing the data set and re-evaluating the model [4]. Alternatively, the model speci�cations can be

adapted, data consistencies can be checked, or additional data can be obtained so that the in�uential

observations are taken into account [4]. One way of adapting the model speci�cations is by adding

additional variables to the model, which are used to explain the outliers or in�uential data and result in a

better �tting model. If it is viable to the case, data consistencies must be checked, since errors can occur

during the experimental process, such as during measurement or coding, which can result in seemingly

in�uential or outlying data.

6 Simulation study

In this section, a two-level multilevel random slopes model with one covariate on each level will be

simulated, with known parameter values. The model considered is the same as Model 5 in Section 3.1.2.

For unit j in cluster i, the model on the two levels is

Level-1 yij = β0i + β1ixij + eij eij ∼ N(0, σ2)

Level-2 β0i = γ00 + γ01zi + u0i

β1i = γ10 + u1i

 u0i

u1i

 ∼ N2


 0

0

 ,

 τ00 τ01

τ01 τ11




and the combined model is

yij = γ00 + γ01zi + γ10xij + (u0i + u1ixij + eij)

= (γ00 + γ01zi + u0i) + (γ10 + u1i)xij + eij

where the �xed part of the model is γ00 + γ01zi + γ10xij and the random part is u0i + u1ixij + eij .

Furthermore, γ00 + γ01zi + u0i is the random intercept and γ10 + u1i is the random slope.
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After simulation of the data in SAS, the model parameters will be estimated using the SAS PROC

MIXED function, and the estimates compared to their true values. Various models will be �tted to

the simulated data, and the estimates for the �xed-e�ect and covariance parameters, as well as the �t

statistics will be compared and discussed. A comparison of the REML and the ML estimates of the

model from which the data was simulated will be conducted. Furthermore, the parameters will also be

estimated using a generalised linear model to illustrate the e�ect that can result from not taking the

dependency of the observations into account. The simulation will be based on an example provided in

[3]. See Appendix for the relevant SAS programs.

The simulation will consist of 300 clusters each containing ni number of observations, where ni follows

a POI(20) distribution.

For cluster i, the combined model in vector notation is

yi =Xiβ +Ziui + ei, i = 1, 2, ..., 300

such that ui =

 u0i

u1i

 ∼ N2 (0, D) with D =

 25 15

15 35

, and ei ∼ N (0, σ2Ini

)
with σ2 = 642.

In the matrices Xi =



1 zi xi1

1 zi xi2
...

...
...

1 zi xi, ni


and Zi =



1 xi1

1 xi2
...

...

1 xi, ni


, the zi elements will be simulated

from a N(0, 1) distribution and the xij elements from a UNIF (0, 10) distribution.

The �xed-e�ect parameters are chosen as β =


γ00

γ01

γ10

 =


50

70

20

.
From the selection of the values in the matrix D, corr(u0i, u1i) = 0.507, which means that as the

random variation in the intercept increases, the random variation in the slope also increases.

In the SAS program, data is simulated randomly according to the distributional assumptions above.

Thereafter, di�erent models that omit di�erent �xed and random e�ects are �tted to the simulated data,

and the corresponding parameters are estimated by specifying the REML method in the PROC MIXED

function. The models that will be �tted are given below. Refer to Section 3.1 for more details.

• Null model: yij = γ00 + u0i + eij

• Model 2a: random intercept with level 1 covariate only: yij = γ00 + γ10xij + u0i + eij

• Model 2b: random intercept with level 2 covariate only: yij = γ00 + γ01zi + u0i + eij

• Model 3: random intercept with level 1 & level 2 covariates: yij = γ00 + γ01zi + γ10xij + u0i + eij

29



• Model 5: random slope with level 1 & level 2 covariates (no interaction):

yij = γ00 + γ01zi + γ10xij + u0i + u1ixij + eij

• Generalised linear model (GLM): yij = γ00 + γ01zi + γ10xij + eij

The �xed-e�ect and covariance parameter estimates for the di�erent models are given in Tables 3 and 4.

Their corresponding standard errors are given in brackets.

Parameters
Theoretical

values
Null
model

Model 2a
(xij)

Model 2b
(zi)

Model 3
(xij , zi)

Fixed-e�ect parameters Est. (SE) Est. (SE) Est. (SE)
Est. (SE)

γ00 50
144.96
(4.63)

44.07
(4.82)

149.56
(2.21)

48.82
(2.58)

γ01 70 - -
71.75
(2.24)

71.66
(2.15)

γ10 20 -
20.07
(0.29)

-
20.05
(0.29)

Covariance parameters Est. (SE) Est. (SE) Est. (SE)
Est. (SE)

σ2 4096
7909.19
(145.25)

4437.19
(81.50)

7909.19
(145.25)

4437.19
(81.49)

τ00 25
6037.68
(525.69)

6074.71
(515.12)

1060.42
(119.18)

1111.46
(109.31)

Model �t criteria

-2 Res log likelihood - 74434.5 71000.1 73985.9 70531.7

AIC - 74438.5 71004.1 73989.9 70535.7

Table 3: REML estimates for random intercept models

From the null model, the intraclass correlation coe�cient is calculated as ICC = τ̂00
τ̂00+σ̂2 = 6037.68

6037.68+7909.19 =

0.567. This means that 56.7% of the total variance occurs between clusters. This value is quite large, and

supports the decision to use a multilevel model to take into account the dependency between clusters.

In Models 2a and 2b, covariates are introduced on only level-1 and level-2 respectively. The introduc-

tion of the covariate xij on level-1 has the e�ect of decreasing the within cluster variation by 43.9%, that

is

σ̂2(Nullmodel)− σ̂2(Model 2a)

σ̂2(Model 2a)
=

7909.19− 4437.19

7909.19
= 0.439.

Similarly, entering the covariate zi on level-2 causes a decrease of 82.4% in the between cluster variation,

τ̂00(Nullmodel)

τ̂00(Nullmodel)− τ̂00(Model 2b)
=

6037.68

6037.68− 1060.42
= 0.824.

Introduction of both covariates xij and zi in Model 3 leads to a decrease in both the within and the

between cluster variation of 43.9% and 81.6% respectively.
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When comparing the �t of the models by calculating the deviance, only models that are nested within

each other can be compared. In Table 3, both Models 2a and 2b are nested in Model 3. Comparing

Models 2a and 3 gives

Deviance = 74434.5− 71000.1 = 3434.4 > 2(3− 2) = 2

which means that Model 3 is a signi�cantly better �t than Model 2a. Similarly, when comparing Models 2b

and 3, the deviance is calculated as Deviance = 448.6, which also indicates that Model 3 �ts signi�cantly

better than Model 2b.

The estimates of the �xed-e�ects in Model 3 are quite close to the theoretical values; however, the

estimates for the covariance parameters, especially τ00, are far from the true values. This is due to the

fact that Model 3 does not take the random slope into account.

Parameters Theoretical
values

Model 5
(REML)

Model 5
(ML)

Model 5
(GLM)

Fixed-e�ect parameters Est. (SE) Est. (SE)
Est. (SE)

γ00 50
48.35
(1.67)

48.35
(1.66)

48.95
(1.87)

γ01 70
72.15
(1.49)

72.16
(1.49)

71.22
(0.96)

γ10 20
20.18
(0.44)

20.18
(0.43)

19.94
(0.32)

Covariance parameters Est. (SE) Est. (SE)
Est. (SE)

σ2 4096
4159.25
(78.28)

4159.35
(78.28)

5529.25
(99.09)

τ00 25
25.36
(68.63)

19.92
(67.95)

-

τ01 15
24.21
(13.81)

24.58
(13.72)

-

τ11 35
32.34
(4.60)

32.15
(4.58)

-

Model �t criteria

-2 Res log likelihood - 70196.3 70201.7 71362.9

AIC - 70204.3 70215.7 71364.9

Table 4: Random slopes model (REML and ML estimates) and GLM model

Both REML and ML estimates for Model 5 are given in Table 4. The deviance when comparing

Models 3 and 5 (REML) is calculated as Deviance = 335.4, showing that Model 5 is a signi�cantly

better �t than Model 3.

The main di�erence between the REML and the ML estimates is the estimate for τ00, the covariance

for the intercept variable, which is lower for ML estimation. This downward bias of the ML estimates was
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mentioned in the beginning of Section 4 ([1], [11]). It can be seen that the REML covariance estimates

are very close to the true values.

Comparing the results of the GLM to that of the mixed model, it can be seen that the estimates for

the �xed-e�ects parameters are very similar. However, the estimate for σ2 is much larger in the GLM

model, which will impact the results for hypothesis tests in the model.

7 Application to TIMSS data

In this section, the two-level multilevel model will be applied to the TIMSS 2015 data set, described in

Section 2, to determine which variables have a signi�cant impact on the dependent variable, namely the

mathematics score in South Africa. Note that an index of 40 points represents a di�erence of 1 year in

the level of mathematics. The centre point for South Africa's mathematics score is 372, which is 128

points lower than the international centre point of 500. This means that, on average, South Africa is

approximately three years behind in terms of mathematical education on a global scale.

The model that will be considered is a random intercept model. Altogether, ten independent vari-

ables will be considered as the �xed-e�ect parameters: four on the learner level (level-1) and six on the

school/teacher level (level-2). The independent variables considered for the learner level will be:

• Sex

• Language of learning & teaching (LOLT)

• Digital information devices

• Student con�dence in mathematics

The independent variables considered on the school/teacher level will be:

• Number of years teaching

• Teacher's area of study being mathematics

• Teacher's area of study being educational mathematics

• Poverty index of the school

• Immediate area of the school

• Whether teacher arriving late poses a problem.

The �xed-e�ect parameters, as well as the covariance parameter for the residuals σ2, and the covariance

parameter for the random intercept τ00, will be estimated using REML estimation. The procedure of
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step-wise backward elimination will be applied to exclude independent variables that are not signi�cant

in the model.

From the null model, the ICC is calculated as ICC = τ̂00
τ̂00+σ̂2 = 3090.08

3090.08+3230.89 = 0.489. This value is

quite large, implying that there is a high dependency between learners in each school, i.e. the between

school variation explains 48.9% of the total variation in the model. This supports the importance of the

use of a multilevel model that will take the dependency into account.

7.1 Descriptive statistics

The descriptive statistics for the discrete variables are summarised in Table 5. For each category, the

number of learners n, the mean mathematics scores and the corresponding standard errors are given.

Values were assigned to the categories of ordinal variables for ease of interpretation, with positive values

for the categories that were more favourable in terms of the average mathematics score. The category

with a code of 0 is the reference category for that variable. For Sex, which is not an ordinal variable,

males are the reference variable.

Variable Code n Mean SE

Sex
Girls 1 5732 362.48 76.93
Boys 2 5471 364.52 77.45

Language of learning
and teaching

Always/Almost
always

1 3790 391.34 84.03

Sometimes 0 6767 352.15 68.73
Never -1 554 319.98 67.10

Digital information
devices

None -1 1448 330.41 64.72
1-3 0 4140 350.81 65.84
> 3 1 5447 383.27 82.75

Area of study -
Maths

Yes 1 8256 363.23 77.19
No 2 2521 364.23 77.35

Area of study - Edu.
Maths

Yes 1 4453 373.11 79.34
No 2 6327 356.22 74.85

Poverty Index

Low -2 2788 338.09 65.42
Moderately low -1 2333 340.31 61.71

Moderate 0 2719 354.71 66.84
Moderately high 1 1758 378.58 74.19

High 2 1606 439.53 83.46

Immediate area of
school

Urban 1 1486 378.02 73.88
Suburban 2 1330 394.79 91.28

Medium size city 3 832 387.16 89.28
Small town/village 4 3834 359.55 71.42

Remote rural 5 3563 343.16 67.94

Teacher arriving late
Not a problem 1 3615 388.12 84.00
Minor problem 0 5405 351.23 72.41
Moderate/serious

problem
-1 2184 353.00 66.55

Table 5: Descriptive statistics for discrete variables in TIMSS data set
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Descriptive statistics for the continuous variables, student con�dence in mathematics and number of

years teaching, are given in Table 6. The sample was split according to learners with a score below 372,

the overall average score for Grade 9 learners in South African, and those with a score of 372 and above.

Mean < 372 Mean ≥ 372

Con�dence_1
n 6200 4707

Mean 9.50 10.11
SE 1.51 1.98

Years_teaching
n 6058 4591

Mean 13.55 14.21
SE 9.05 10.30

Table 6: Descriptive statistics for continuous variables in TIMSS data set

From Table 6, it can be seen that the average mathematics score has a positive linear relationship

with both the student's con�dence and the teacher's number of year teaching on the marginal level.

7.2 Fitting the model

A random intercept model was �tted to the data, with four level-1 (learner) variables and six level-2

(school/teacher) variables. The �rst model that is �tted will consider all ten variables, as follows:

Level-1 Averageij = β0i + β1Sexij + β2LOLTij + β3Digitalij + β4Confidenceij + eij

Level-2 β0i = γ00+γ01Y ears_teachingi+γ02Area_study1i+γ03Area_study2i+γ04Povertyi+

γ05Imm_areai + γ06Latei + u0i

Combined model Averageij = γ00+γ01Y ears_teachingi+γ02Area_study1i+γ03Area_study2i+

γ04Povertyi+γ05Imm_areai+γ06Latei+β1Sexij+β2LOLTij+β3Digitalij+β4Confidenceij+u0i+eij

Insigni�cant parameters were excluded from the model using a backwards elimination process, result-

ing in a �nal model that only considered six parameters. The results obtained for the REML estimation

procedure are summarised in Table 7.

When interpreting the results, it should be noted that the �xed-e�ects in the model are partial e�ects.

Variable Level Code/Range Parameter Estimate SE P-value

Fixed-e�ect parameters

Intercept - - γ00 269.77 3.96 <.0001

Sex 1 1 = G, 2 = B β1 -4.41 1.06 <.0001

LOLT 1 -1, 0, 1 β2 12.57 1.20 <.0001

Digital 1 -1, 0, 1 β3 5.24 0.83 <.0001

Con�dence_1 1 [3.196, 15.925] β4 9.87 0.31 <.0001

Poverty 2 -2, -1, 0, 1, 2 γ04 21.82 1.73 <.0001

Late 2 -1, 0, 1 γ06 19.57 3.41 <.0001

Covariance parameters

Between schools - - τ00 1474.94 135.05 <.0001

Within schools - - σ2 2838.98 39.33 <.0001

Table 7: Fixed-e�ect and covariance parameter estimates from �tting Model 5
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Figure 3: Boxplots for poverty index and language of test at home

The e�ects of each variable should only be interpreted while keeping the rest of the variables constant.

From the results in Table 7, on the learner level it can be seen that, when keeping all other variables

constant, girls score on average 4.41 points lower than boys. Since LOLT is an ordinal variable, learners

score 12.57 points higher when they always or almost always speak the language of teaching at home,

compared to only speaking it sometimes, and (12.57×2) = 25.14 points higher compared to learners who

never speak the language of teaching at home. Similarly, there is an increase of 5.24 in the average

mathematics score with each increase in category of the number of digital information devices they use.

Con�dence is a continuous variable. Learners achieve an average that is 9.87 points higher with each

unit increase in the SCM scale, keeping all other variables constant. Keeping in mind that con�dence

ranges from 3.2 to 15.9, there is a di�erence of approximately 120 points from learners with a high level

of con�dence and those with a low level of con�dence.

On the teacher level, only two out of the six variables were signi�cant. The poverty index variable has

an estimate of 21.82, which implies a di�erence of (21.82×4) = 87.28 in scores between the least and most

favourable categories, i.e. there is a two year di�erence in the mathematics level between learners from

the highest and the lowest poverty bracket. Furthermore, learners score 19.57 points higher if the teacher

arriving late does not cause a problem, compared to if it causes a minor problem, and (19.57×2) = 39.14

points higher compared to cases where the teacher arriving late causes a moderate/serious problem.

The interpretations noted above agree with the marginal results given in the descriptive statistics in

Section 7.1, especially for the ordinal variables, which have higher average scores the more favourable the

category. The boxplots given in Figure 3 for the poverty index and LOLT visually illustrate the positive

marginal e�ect that these two variables have, which are in line with the results from their partial e�ects.
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8 Concluding remarks

In summary, the theory of a two-level multilevel statistical model was investigated; in particular, the

theoretical background of the model and the notation were discussed in-depth. Multilevel models take

into account the dependency that occurs between groups in clustered or repeated data, which is why this

model is often used when analysing data from the �elds of education, medicine or the social sciences,

where hierarchical data occurs. The two main methods of estimation, namely maximum likelihood and

residual/restricted maximum likelihood estimation, were discussed and the log-likelihood formulae were

derived for each method of estimation. Thereafter, the types of model diagnostics were explained, and an

example from [11] was used to illustrate the application of in�uence and model diagnostics. A simulation

study was conducted to apply and illustrate the theory in estimating the parameters of a random intercept

model.

A random intercept model was applied to the TIMSS 2015 data set, which considered a total of ten

�xed-e�ect parameters: four on the learner level (level-1) and six on school/teacher level (level-2). Using

a process of backwards elimination, six variables were returned in the �nal model, namely sex, language

of learning and teaching, number of digital information devices and student con�dence in mathematics

on the learner level. On the teacher level, the signi�cant variables are the number of years teaching, the

poverty index of the school and whether or not the teacher arriving late poses a problem. The most

signi�cant �xed-e�ect is the poverty index, inferring that the level of poverty for each school has a large

impact on the average score. This variable should be investigated further to understand the e�ect it has

on education in South Africa.
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Abstract

Clustering is a procedure of partitioning data into meaningful groups or clusters and has important

applications in arti�cial intelligence and pattern recognition. The CLARA algorithm is one of many

clustering methods and is used to clustering large sets of data speci�cally. CLARA does so by

repeatedly sampling a data set and then applying the PAM algorithm, a k−medoids solver, to these

samples and the clusters the remainder of the data according to the medoids given by these sampled

results. This research examined the CLARA algorithm and how it can be used to cluster images,

which are examples of big data. CLARA proved to be an e�cient method of clustering large sets

of data by being superior in speed to other well known methods (such as k−means or PAM) while

having a comparable quality of clustering.
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clusters reapplied to the image and (f) shows the �nal image with the cell nuclei separated

from the �rst cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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1 Introduction

Big data is a much discussed topic at present, and being able to cluster big data is essential. Clustering

is a procedure by which a set of objects (or data) is partitioned into groups (known as clusters). The

objects within each cluster should have some level of similarity to each other according to prede�ned

criteria in order to make the groups meaningful. Clustering procedures have many applications including

image/pattern recognition and arti�cial intelligence [4, 6, 9]. Image clustering, also known as image

segmentation, is when clustering is applied to the data (pixels) that makes up an image. Image clustering

plays an important role in computer vision and can also be used for image modi�cation tasks such as

compression [8]. Images are large data sets by nature, with even small 30× 30 pixel icons constituting a

data set with 900 observations. The colour, intensity, or texture of an image is often used as criteria for

segmentation of an image. Images can be represented in di�erent colour spaces, such as RGB (red, green,

blue), HSV (hue, saturation, value) and several others [12]. RGB will primarily be used here, along with

some testing in the HSV space.

There are many clustering methods available. One of the earliest known partitioning methods used for

image clustering is the k-means algorithm, �rst published by MacQueen [7], which attempts to partition

n objects into k clusters by associating each object with the nearest mean. The k-medoids algorithm

was developed later [6]. It is similar to the k-means algorithm but instead of using means, it assigns

actual objects in the data set as representatives (medoids) to centre the clusters around. The k-medoids

algorithm is more robust than k-means, especially when outliers are taken into account [6]. One method

of applying the k-medoids algorithm is the Partitioning Around Medoids (PAM) procedure, developed

by Kaufman and Rousseeuw [5]. The PAM procedure adjusts the k-medoids algorithm to prevent an

exhaustive search for optimal clusters. However the PAM procedure has exponential computational

complexity O(n2) for n objects in the set, rendering it ine�cient for large data sets [6, 4]. To improve

the PAM procedure, Kaufman and Rousseeuw developed the Clustering LARge Applications program

(CLARA), which combines random sampling and the PAM algorithm to cluster large sets of data. Unlike

PAM, the CLARA algorithm theoretically only has linear complexity O(n) [9, 6].

This document will focus on the CLARA algorithm and how it can be used to cluster images and other

large data sets. The CLARA method was tested against the k-means and PAM algorithms to explore

its advantages and disadvantages in criteria such as computational complexity, robustness and suitability

for image clustering. This report �rst establishes how images and colours are de�ned digitally in section

2. Then it de�nes the dissimilarity and evaluation criteria that can be used to perform clustering and

measure its e�ectiveness in section 3. Details and procedures for the algorithms used are explained in

section 4 and �nally results from testing the algorithms are given in section 5.

8



2 Image Clustering

Before clustering can even begin, it needs to be established what data will be clustered and what is the

criteria that will be used to determine meaningful groups. This section will discuss the data stored inside

a typical digital image and what measure of similarity can be used to partition the data within the image

into clusters.

2.1 Matrix representation of a digital image

An image needs some form of digital representation in order to be viewed and edited on a computer.

Images can be represented in a matrix format because a 2-dimensional photo or picture can be translated

to an m×n matrix (which is itself a 2-dimensional structure). For example the image shown in Figure 1

is a 30× 30 pixel jpeg image of a logo belonging to social media website Twitter. It is 30 pixels wide and

30 pixels high (900 pixels total) and can be represented by a 30×30 square matrix where each element of

the matrix contains information about the corresponding pixel in the same position. The matrix in this

case will have 900 entries (one per pixel). A 30 × 30 pixel image would normally be displayed smaller,

however it has been enlarged for easier viewing in this document.

Figure 1: 30× 30 pixel Twitter bird icon in colour

2.2 Univariate Images

The content in each cell of the matrix will determine what is shown on screen when an image �le is

read. A simple univariate form of an image is a greyscale. In this case each cell of the matrix contains a

single variable, luminous intensity, and the picture will only display as shades of grey. In digital images,

the greyscale variable ranges from 0 (pure black) to 255 (pure white) in integer values. A greyscale

representation of the logo in the previous section is shown in Figure 2.

This image would be represented by a 30× 30 matrix with each element containing a number in the

greyscale range. On the outskirts of the greyscale image, where it appears mostly as white, the equivalent

greyscale matrix elements are near the value 255, or pure white. Near the centre, however, there will be

a range of much lower values indicating where the grey Twitter bird appears in the greyscale. Of note

is that this is a tiny image, of only 30 × 30 pixels (as previously stated, it is in fact enlarged in this
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Figure 2: 30× 30 pixel Twitter bird icon as a greyscale

document). Despite this it has 900 entries in its greyscale matrix, a simple univariate representation of

the image. Thus a large amount of data is required to represent even the smallest and simplest digital

representations of images. This can lead to some extremely large data sets for today's modern high

de�nition images. A greyscale image of 1920 × 1080 pixels will have 2′073′600 entries in it's greyscale

matrix. This is merely for the univariate greyscale case. For the multivariate cases (i.e. colour images) it

becomes even more complex. This means that very e�cient algorithms will be needed to simply traverse

these matrices, let alone group the data within them into meaningful clusters as required. These issues

of clustering large data sets and images are explored in greater detail later in this report.

2.3 Multivariate Images

In order to view and edit images in colour on a computer, more than one variable will be required. Images

on a computer are typically represented by a mix of the colours red, green and blue. These are the additive

primary colours and the model is known as the RGB colour space. This is a very common colour model

and is used to display images on an LCD screen. A picture represented by the RGB model has 3 variables

for each pixel, one for the intensity of each additive primary colour: red, green and blue. Each intensity

variable has a range of 0-255, just like the greyscale variable. If all three RGB variables are set to 0, a

pure black pixel is represented. If all three RGB variables are set to 255, a pure white pixel is represented

[10]. RGB images are usually represented by having 3 matrices, one for each intensity variable. These

3 matrices combined form a 3-dimensional array data structure which represents a 2-dimensional image.

For example an image with 4× 4 pixels could be represented in RGB form by the 4× 4× 3 array shown

in Figure 3 1.

1Abhineet Saxena, 29 June 2016, �Convolutional Neural Networks (CNNs): An Illustrated Explanation�, XRDS,
http://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation, accessed 26 July 2017
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Figure 3: Red, green and blue matrices for an RGB image.

The colour version of the Twitter logo shown in Figure 1 with therefore have a 30× 30× 3 RGB array

and thus be represented by 2700 data points (900 red, green and blue). RGB values can also be displayed

in vector form as a point for a single pixel, for example, a pure red pixel can be denoted by (255,0,0) with

each value on the point corresponding to the value in the red, green and blue matrices for that pixel [10].

There are other colour models to represent images. The CMYK model uses the subtractive primary

colours cyan, magenta and yellow along with �key�, or black, to create the colour spectrum. It is often used

in colour printing. The HSL (hue, saturation and lightness) or HSV (hue, saturation and value) models are

cylindrical coordinate representations of RGB values. These models are used in image editing software.

Lab colour space (or CIELAB) is a more complex system that uses two variables each representing a

colour spectrum and a third variable for lightness 2. Lab colour can represent a larger set of colours than

RGB and can mathematically represent all perceivable colours. Lab space is therefore the most accurate

representation of colour but because computer monitors use RGB or CMYK it is not commonly used and

is often converted to one of these less accurate systems [10].

There is some criticism as to the use of RGB for image clustering, since it does not de�ne the saturation

21994-2017 The MathWorks, Inc., �Representing color with the Lab color space�, MATHWORKS,
https://www.mathworks.com/discovery/lab-color.html, accessed 26 July 2017
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or illumination of a picture in its variables. However it is a very common and simple colour model and

will be the primary one used in this report. HSV space will also be tested on in this report .

2.4 Clustering an Image's Data

Even though an image is represented by a 2-dimensional matrix (or multiple 2-dimensional matrices in

the multivariate case), the values in each matrix are all observations of a single variable. Therefore, as

long as the position of each pixel's values are not lost in the process, these matrices can be unfolded into

vector representations. For an m× n matrix X this can be done by stacking the columns of a matrix on

top of each other into a single column vector as

X : m× n =



x11 x12 . . . x1n

x21 x22 . . . x2n
...

...

xm1 xm2 . . . xmn


.

V ector(X) : (m× n)× 1 =



x11

x21
...

xm1

x12
...

xm2

...

...

x1n
...

xmn



=



y1
...

...

yM


= Y : mn× 1

.

Thus the observations of one of the images variables is now stored in a single column vector (this can

also be done similarly using a row vector). It is now easier to cluster the image as only a single index

needs to be used. This is especially useful for 'loops' in software programming. This will also allow the

clustering algorithm to be used easily for other non-image data, as the observations of a single variable

can be passed as a vector to the program. There will be a column vector for each variable, so a greyscale

image will be represented by a single column vector, while an RGB image will have 3 such vectors. It is

important to note that in general, computers will display or edit images using the matrix format. Once
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the data set has been clustered and a new clustered data set (in column vector format) formed it is

important to unstack the vector back into matrix form with the original dimensions and the pixels back

in their original position in order to display or use the image on a computer. Therefore it is essential to

keep track of the original dimensions as well as the method used to unfold the matrix (so that the reverse

steps can be done once clustering is complete). If this is not done the �nal image can have the wrong

dimensions or the transpose of the original matrix can be displayed, which might not resemble the image

or it's properly clustered form at all.

The next step will be to choose a criterion to be used as a similarity (or dissimilarity) measure for the

clusters of the image. This will be used to choose the cluster centres (which also depend on the algorithm

chosen in the next chapter) as well as for assigning each object in the data set to that cluster centre.

This is explained in greater detail in Section 3.

3 Similarity measures and evaluation criteria for clustering

Before presenting the clustering algorithms, some similarity measures for determining dissimilarity (or

similarity) between points in a data set are discussed as well as evaluation methods to determine how

meaningful the �nal clustering is.

3.1 Euclidean distance

Taking another look at the greyscale version of the Twitter logo shown in Figure 2, the picture can

be intuitively separated into two parts: the grey �bird� in the foreground and the white background.

Therefore, for this greyscale, one way to segment the image would be to partition it into 2 clusters. One

cluster can have it's centre in the 100-200 range and group all the pixels in that range and the other

cluster's centre would be near the value 255 and group all pixels near that value.

This gives a simple criterion for clustering a greyscale image, namely, selecting several cluster centres

(how these are chosen is explain in section 4), say C ′
js, meaningfully according to the greyscale variable

(0-255) of the pixels and then assigning the pixels yi where i = 1, 2...M to the C ′
js in such a manner that

the Cj that is selected has the lowest Euclidean distance from the yi :

dE(yi, Cj) =
√

(yi − Cj)2

The problem now is to determine how to �nd cluster centres mathematically. The cluster centres

themselves have to be meaningful otherwise the group assignment itself will not be useful. For example,

choosing a pure white (255) cluster centre and an almost pure white (say 254) cluster centre as the two

cluster centres for the Twitter bird image would leave the entire image represented by two very close
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shades of bright white, which is not useful.

For the RGB image, there are 3 variables to consider as criterion for clustering similarity. Several

possibilities arise from this multivariate case. One option is to cluster the images according to a single

variable alone, e.g. the image can be segmented entirely according to its red matrix (using Euclidean

distance such as in the greyscale case), thus completely ignoring the green and blue values in the image.

This could be useful if for some reason an analysis of the red intensity of an image is needed. If the

image is to be clustered according to all its colours however , none of the variables can be ignored. One

possibility is to extend the Euclidean distance used in the greyscale case to 3 dimensions. In order to do

this the image �rst needs to be represented with vectors for its red, green and blue values. Let

R =



r1

...

...

rM


; G =



g1

...

...

gM


; B =



b1

...

...

bM


be the vectors representing the red, green and blue values of the image respectively.

Hence the pixel in the �rst column and �rst row of the images matrix form, namely x11 = y1, can be

represented in vector form with RGB values, i.e y1 = (y1r, y1g, y1b).

Then cluster centres will be needed, these will also be represented in vector form:

Cj = (cjr, cjg, cjb)

So that cjr, cjg and cjb represent the red, green and blue values of cluster centre Cj respectively. The

Euclidean distance for multiple dimensions can then be considered:

dE(yi,Cj) =
√
(yir − cjr)2 + (yig − cjg)2 + (yib − cjb)2

This reduces the problem of clustering a multivariate representation of an image to using a single similarity

measure for clustering, namely the 3-dimensional Euclidean distance between an RGB centre and the RGB

values of each observation in the image. This measurement is simple and quick to calculate, only requiring

the RGB values of the two pixels to be compared, however a notable problem arises from this similarity

criterion for RGB. Only the �nal Euclidean distance calculated is used as a similarity measure without

discriminating what values of red, green or blue were used as original input into the formula. To illustrate

this problem, consider pure black as a cluster centre:

LetCB = (0, 0, 0)

14



Then consider pure red and pure green as pixel observations from the image. Let

R = (255, 0, 0) and let G1 = (0, 255, 0)

Thus the Euclidean distance between each of these points and the pure black cluster centre is as follows:

dE(R1,CB) =
√

(255− 0)2 + (0− 0)2 + (0− 0)2 = 255

dE(G1,CB) =
√
(0− 0)2 + (255− 0)2 + (0− 0)2 = 255

Therefore the distance between pure red and pure black is the same as the distance between pure green

and pure black. In this case G1 and R1 could be assigned to the same cluster even though pure red

and pure green might not be considered similar. There are alternative methods to calculate similarity

between colour pixels. One of them is discussed in the next section.

3.2 Mahalanobis distance

Since the data set of an RGB image is multivariate, a similarity measure that accounts for multivariate

statistical distance is preferred. A commonly used option for cluster analysis is the Mahalanobis distance.

The Mahalanobis distance [2] measures the statistical distance between a point and a given distribution.

The Mahalanobis distance between two vectors x and y from a multivariate data set with sample variance-

covariance matrix S is:

dM (x, y) =

√
(x − y)TS−1(x − y)

To apply this dissimilarity metric to an RGB image, consider the matrix of RGB values for each pixel,

where the pixels are stored in column vector form:

Y =



y1

...

...

yM


=



r1

...

...

rM

g1

...

...

gM

b1

...

...

bM


.

From this the sample variance-covariance matrix for the R,G and B variables can be seen as:
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S =


srr srg srb

sgr sgg sgb

sbr sbg sbb


The cluster centres vector is Cj = (cjr, cjg, cjb) and the ith RGB pixel is yi = (ri, gi, bi). To apply this

dissimilarity metric to a cluster, let S be the sample variance-covariance matrix for the elements to be

assigned to cluster j. The Mahalanobis distance from a pixel to a cluster's distribution can be calculated

as:

dM (yi, Cj) =

√
(yi − Cj)

TS−1(yi − Cj)

The Mahalanobis distance accounts for the statistical distance of a point inside the cluster from the

given distribution within a cluster (using the cluster centre as the mean) [2]. This will help, for example,

in di�erentiating pure red from pure green in an image that has a very high red mean. A data set with 2

variables is plotted in Figure 43. Four points on the axis are shown with coloured stars (2 yellow and 2

purple) on the axis. These emphasised points are all equally distant from the mean of the data in terms

of euclidean distance, however it is clear that the points shown in yellow are outside the cluster formed by

the data set, whilst the purple points are within the range of the data (and therefore can be considered

statistically closer in terms of standard deviations). These points therefore have a di�erent Mahalanobis

distance from the mean and they are coloured according to these distances as shown on the right.

3.3 Structural Similarity (SSIM) index

Structural similarity, or SSIM [13] is a measure of the perceived quality of an image. SSIM is not used

during clustering but rather as a �nal measure of the quality of a clustered image. The luminance, l,

contrast, c, and structure, s, of an image are compared between two images. Given a reference image y,

and another image x (usually a processed form of image y), the SSIM is calculated as:

SSIM(x, y) = l(x, y)× c(x, y)× s(x, y)

where

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
, c(x, y) =

2σxσy + c2
σ2
x + σ2

y + c2
, s(x, y) =

σxy + c3
σxσy + c3

and (c1, c2, c3) are stabilising coe�cients [13].

The SSIM index ranges from −1 (poor similarity) to 1 (if and only if identical images are compared).

31994-2017 The MathWorks, Inc., Mahalanobis distance, MATHWORKS, https://www.mathworks.com/help/stats/mahal.html,
accessed 26 July 2017
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Figure 4: Mahalanobis Distance used in a bivariate data set

This is considered an improvement over more traditional measures such as the mean square error (MSE)

for image data [13]. For testing in this research report, SSIM is to be used as the objective function to

maximize. SSIM is fast to calculate and each image clustered for testing was tagged with a corresponding

SSIM for analysis.

3.4 Silhouette

The silhouette is a measurement on each point in the data set after clustering, of how well the point

matches its own cluster vs. the other clusters. The silhouette value ranges from -1 to +1. A high

silhouette value for a point indicates that the point is very similar to other points within it's cluster, very

dissimilar to points outside the cluster. The silhouette for a point yi is calculated as:

S(yi) =
b(yi)− a(yi)

max[a(yi), b(yi)]

where a(yi) is the average distance from yi to other points in its own cluster and b(yi) is the average

distance between yi and points in it's neighbouring cluster (i.e, the cluster with the next best �t for point

yi).

The silhouette for each point can be plotted or an average silhouette can be obtained to determine
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how good the clustering is. A high average silhouette indicates a good clustering solution. A low or

negative average silhouette can be a sign that either the number of clusters chosen is poor (too many or

too few), or the algorithm had poor initialization or convergence [11].

3.5 Image intensity histograms

An image histogram plots the possible pixel values (such as greyscale intensity) a picture consists of

against the number of pixels with that value. A histogram of reference image y, can be compared to

a histogram of clustered image x to compare the similarity of the images, and therefore, how well the

clustering algorithms grouped the pixels.

4 Clustering Algorithms

4.1 k−Means Algorithm

The k−means algorithm partitions a set of objects, X, into a �xed number of clusters, k. [7]. The

algorithm begins by generating k centroids within the space of the data set. This may be done randomly

or via a heuristic which is the case when using the k−means++ initialization algorithm, explained in the

next subsection [1]. Each object in the data set is then assigned to the centroid that will minimize the

dissimilarity between it and the object. These sets of objects each form a cluster. After this, the mean of

the cluster is computed, and then the centroid is replaced with the newly calculated mean. The objects

in the set are then reassigned to these new centroids, again by selecting the centroid that minimises the

distance. The algorithm then alternates between recalculating the means and reassigning the objects

until there are no reassignments, in an expectation�maximization fashion.

Let X = {x1, x2, ..., xn}be the objects in the data set. Perform k−means as follows:

STEP 1 Generate k centroids within the domain of the object space. These centroids will each rep-

resent a cluster. Let yj denote the centroid j = 1, 2, ..., k

STEP 2 Assign each object xi to each centroid yj with the minimum distance d(xi, yj) between the

two. The sets of objects assigned to each centroid form the k clusters, so that cluster Cj =

{xi : i ∈ Sj}where Sj is the set of indices for objects assigned to cluster j.

STEP 3 Calculate the mean of each cluster. These k means will replace each corresponding centroid

in its cluster as the new centroid, namely the yj 's.

STEP 4 Re-assign each xi to the new centroid that minimizes the distance between the two.
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STEP 5 Repeat steps 3 and 4 until no new re-assignments are needed, or until a predetermined stopping

point.

4.2 k−Means++ Initialisation

k−means can be performed upon randomly generated initial centroids, however this can produce poor

results. To improve the initial starting values, the k−Means++ initialisation algorithm is proposed [1].

STEP 1 Select a single centroid at random from the observations.

STEP 2 Calculate the distance between every point in the data set and the nearest centroid that has

already been chosen.

STEP 3 Select a new centroid, with a probability proportional to the distances calculated in step 2,

so that points further away from any current centroids are more likely to be chosen as the

new centroids.

STEP 4 Repeat steps 2 and 3 until k centroids have been chosen.

Once the initialisation algorithm has been complete, k−means can be performed upon these initial

centroids given. These centroids are equivalent to medoids for PAM as actual objects from the data

set are used. Thus k−means++ can also be used to initialise PAM, which is explained in the next section

[1].

4.3 k−Medoids problem and Partitioning Around Medoids (PAM) algorithm

The minimization problem and algorithm given here is based on the k−medoid method as given in

Kaufman and Rousseeuw [6]. The k−medoid problem, like the k−means algorithm, partitions a set

of objects, X, into a �xed number of clusters, k. These k clusters are each represented by a single

representative object, or medoid, that is an element of the original set X. The remaining objects are

then assigned to these medoids according to the similarity measure. This algorithm is repeated until the

total dissimilarity of the entire clustered set,
∑k

i=1

∑Ni

j=1 d(xi, xj), is minimized, where the xi's are the

medoids, xj 's are non-representative objects and Ni is the total number of non-medoid objects currently

within cluster i. The k−medoid problem can be mathematically formulated as follows:

The following minimization problem needs to be solved:

min

n∑
i=1

n∑
j=1

d(xi, xj)zij

subject to the following restrictions:
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n∑
i=1

zij = 1, j = 1, 2, ..., n

zij ≤ yi, i, j = 1, 2, ..., n

n∑
i=1

yi = k, k = number of clusters

zij , yi ∈ {0, 1}, i, j = 1, 2, ..., n

Where yi is a binary variable such that:

yi =


1 if and only if xi is selected as a representative object

0 otherwise

and zij is a binary variable such that:

zij =


1 if and only if xj is assigned to x′is cluster

0 otherwise

so that:

• exactly k representatives are chosen

• each object must be assigned to a representative

• a non-representative object can only be assigned to a representative

The PAM algorithm is one solution to the k−medoids minimization problem. It can be mathematically

formulated as follows:

Let X = {x1, x2, ..., xn}. Perform PAM as follows:

STEP 1 Select k objects from X as representatives either randomly or using k−means++. These

k xi's each represent a cluster.

STEP 2 Assign each object xj that is not a medoid, to the medoid xi with the least dissimilarity,

d(xi, xj), between the two. These are the clusters.

STEP 3 Within each cluster i, calculate the distance between the medoid xi and all other objects

within its cluster,
∑Ni

j=1 d(xi, xj). Then, replace the medoid with each and every other object
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in the cluster, each time recalculating the total distance within the cluster. If another object

besides the original medoid has the lowest total dissimilarity, assign it as the new medoid and

assign the old medoid as a non-representative in the cluster.

STEP 4 Repeat steps 2 and 3 until the total dissimilarity across all clusters,
∑k

i=1

∑Ni

j=1 d(xi, xj), is

minimized.

The key di�erences between the k−means and PAM algorithm is that PAM uses actual objects in the

data as centroids and constantly recalculates the distance within each cluster and the entire data set.

k−means reassigns objects to its own calculated centres and then adjusts these centres accordingly. A

speci�c build step recommended by Kaufman and Rousseeuw can also be used to initialise the medoids

[6]. The PAM algorithm lowers the computational time required to �nd good medoids compared to

an exhaustive k−medoid algorithm, however the PAM algorithm still has exponential computational

complexity, O(n2) [6, 4]. This makes PAM cumbersome for large data sets [6]. For this reason, research

will be conducted into the CLARA algorithm, which uses random sampling in combination with the PAM

algorithm to �nd medoids [9].

4.4 Clustering LARge Applications (CLARA algorithm)

The CLARA algorithm makes use of the PAM algorithm as a subroutine, but randomly samples the data

instead of using the entire data set. T samples (usually 5) are drawn from the entire data set, each with

a sample size of 40 + 2k. CLARA is performed as follows:

STEP 1 Draw a sample from the data set of size 40 + 2k.

STEP 2 Apply the PAM algorithm over this sample.

STEP 3 Use the medoids obtained in step 2 to cluster the entire original data set and calculate the

total distance,
∑k

i=1

∑Ni

j=1 d(xi, xj), over all the clusters.

STEP 4 If the total distance from the last sample is the lowest so far, store the medoids given by PAM

as well as the total distance. Discard previous results.

STEP 5 Repeat steps 1 to 4 a total of T times, then use the best set of medoids to cluster the entire

data set and then save this as the �nal clustering.

This algorithm is of linear computation complexity O(n) and is less complex than the O(n2) PAM

algorithm on its own [6, 9]. CLARA will be the focus of the research and will be replicated and tested

against other algorithms for clustering images.
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5 Application

The algorithms explained in Section 4 are tested on various images in this section. All algorithms

were programmed entirely in MATLAB unless otherwise indicated. The author developed a stand alone

application entitled �Creeping Barrage� to facilitate the processing of images and the creation of the

data sets required for analysis of k−means, PAM and CLARA. This application can run independently

of a full MATLAB package, requiring only the runtime libraries. This allowed the program to be run

simultaneously on several computers, speeding up the process of the analysis, particularly for the intense

computational requirements of PAM. This application was entitled �Creeping Barrage� due to the manner

in which it slowly increments the number of clusters to be formed with each iteration of an algorithm and,

therefore, the computational intensity �creeps up� as the program progressively barrages the computer

with increasing instructions. Comprehensive MATLAB code to produce the Creeping Barrage application

and the algorithms it runs may be found in the appendix.

Of note is that MATLAB's built in k-medoids function does not use PAM by default for data sets

larger than 3000 observations. Even when forced to use PAM, MATLAB was often unable to complete the

clustering, requiring memory (RAM) of over 83 gigabytes for some of the matrices required to calculate

distances. For this reason the author developed a custom-made version of PAM for this research, which

decides whether to iterate commands or build matrices depending on memory available, and was thus able

to cluster larger data sets. This version of PAM gives similar MSE and similarity to the MATLAB PAM on

smaller data sets which the built in MATLAB PAM can successfully process. For fair comparisons between

algorithms, all remaining algorithms were also coded without using the built-in MATLAB clustering

functions. This also allowed for more control during testing.

MATLAB and the child program Creeping Barrage produced images and data sets. These data sets

in turn, were analysed using SAS (Statistical Analysis System) with PROC GLM for ANOVA's. The

SAS code used for analysis may be found in the appendix.

5.1 Brief overview of the Creeping Barrage application

Figure 5 shows the user interface (UI) for Creeping Barrage. The user can input a folder �lled with images,

all of which will be analysed. Other parameters to be chosen are in the options panel on the left of the

UI. The parameter �seed� �xes the seed to be used for random number generation for the initial clusters

(either generated randomly or by k−means++). This is so that a fair analysis can be conducted on the

various algorithms as the performance tested with depend on the e�ciency and randomness included in

the algorithm itself, and vary less due to random number generation of initial clusters. k−means and

PAM are systematic and have no randomness in the algorithm. CLARA samples randomly but is not

given a �xed seed as the randomness of CLARA is part of this research analysis. �Start Clusters� and
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�End Clusters� gives the boundaries on the number of clusters to be formed. The program will run the

number of trials speci�ed for each k. Thus if �Start Clusters� is set to 1, �End Clusters� set to 5, and trials

set to 10, the program will run a total of 50 runs of the given algorithm on every image in the chosen

folder with 10 trials for each k = 1, 2, 3, 4, 5. �CLARA T� refers to the number of samples that CLARA

will perform PAM on. In the instructions and output panel, Creeping Barrage can save, load and execute

sets of instructions with di�erent parameters or sets of images each time. This allows it to be left alone

for extended periods of time to process the data required for analysis. Figure 6 shows an example of

Creeping Barrage loaded with an instruction set. Each line of the instruction set will be run separately

and consecutively. A di�erent data set will be produced with each instruction line. Figure 7 shows the

single picture analysis tab of Creeping Barrage which allows an in depth analysis for clustering a single

image by providing the user with summary statistics and statistical diagrams such as image intensity

histograms and silhouette plots.

Figure 5: User interface for Creeping Barrage mass clustering interface
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Figure 6: Saved instruction set loaded

Figure 7: User interface for Creeping Barrage's single picture analysis tab
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5.2 k−Means Algorithm testing for benchmarks

The algorithm tested here is k−means using k−means++ initialization. Since k−means is commonly

used and is relatively e�cient, it will be used as a reference algorithm to test which colour space (RGB,

HSV) and dissimilarity measure (euclidean, Mahalanobis) will output images clustered with good SSIM

values. k−means was performed on 100 di�erent 240 × 160 pixel images using both colour spaces and

dissimilarity measures. Clusters were �xed at 10. This was repeated 5 times per image, per colour space

and per distance measure for a total data set of 2000 observations. An ANOVA performed on the resulting

data set is show in Figure 8. A signi�cant interaction was found between the colour space used and which

of the two dissimilarity measures were used. From �gure 8, it can be seen that the best distance measure

was euclidean, which performed better in both colour spaces, and the best colour space to work with was

RGB when using the euclidean measure. The mean SSIM for these best measures was 0.915. For the

remaining trials and algorithms, the RGB space and euclidean distance is used for clustering. The output

of various clustered images from the di�erent spaces and dissimilarity measures can be seen in Figure 9.

Figure 8: ANOVA of SSIM for k−means in di�erent colour spaces

(a) (b) (c) (d) (e)

Figure 9: Output images for k−means with 10 clusters using di�erent dissimilarity measures and dif-
ferent colour spaces, (a) the original image, (b) HSV space and Euclidean distance, (c) HSV space and
Mahalanobis distance, (d) RGB space and Euclidean distance, (e) RGB and Mahalanobis distance.
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(a) (b)

Figure 10: PAM algorithm: Box plots of the SSIM against number of clusters is shown in (a) while time
required to cluster against number of clusters is shown in (b)

5.3 PAM analysis

In this section the algorithm PAM is analysed, also using k−means++ initialization. PAM is extremely

slow and computationally intensive, so PAM was only tested with small images. For testing accuracy

against the number of clusters, PAM was run on the same 100 BSDS500 images that k−means clustered

in the previous section, but with the number of clusters increasing from 5 to 10 in each trial, performed

twice on each image. A positive relation was found between the resulting SSIM index and the number of

clusters used which can be seen in �gure 10. This makes sense as the more clusters an algorithm has to

work with, the closer to the original image the clustered version can become. This may not be optimal for

the purposes of segmenting the image however, and may produce a low silhouette. However, only a weak

negative relationship was found between the number of clusters and time to cluster, also shown in �gure

10. This relationship explains very little of the variance in the time it takes to cluster an image, and the

time is more likely related to the composition of the image itself. The lack of a strong relation between

time and number of clusters can be explained by the fact that if there are more clusters, there will be, on

average, less objects per cluster. Thus PAM will spend less computational time rotating medoids inside

each cluster, but more time reassigning objects to clusters.

5.4 Comparison between k−Means, PAM and CLARA

In this section PAM and CLARA are tested, also using k−means++ initialization, and compared with

the k−means algorithm. PAM and CLARA were run on the same 100 BSDS500 images that k−means

clustered in the previous section. The process was repeated 5 times per picture. Clusters were again �xed

at 10. The results were then combined with results from k−means for euclidean dissimilarity and RGB

space. An ANOVA was performed on the �nal data set (with 1500 observations), which can be seen in

�gure 11. Signi�cance was found for di�erences in both time and SSIM. The variance in SSIM explained
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(a) (b) (c)

Figure 11: ANOVA results from combined data set of 1500 clustering trials. Box plots of the SSIM of
the resulting images is shown in (a), the time required (in seconds) to cluster the images in (b) and again
in (c) without PAM due to the massive di�erence in scale of the timings.

by di�erent algorithms was small however, and CLARA, PAM and k−means had average SSIM values of

0.90, 0.92 and 0.91 respectively. A large variance in time can be seen clearly from the di�erent algorithms

in �gure 11. CLARA's time was superior with an average clustering time of 0.17 seconds per image, while

PAM had the worst average time of 12.18 seconds per image and the largest variance in time.

5.5 CLARA analysis

Additional analysis conducted using CLARA are shown here to explore the impact of the number of

clusters used with CLARA as well as the number of samples to be taken. Figure 12 shows SSIM and time

plotted against the number of clusters used. Similarly to PAM, an increasing number of clusters yields an

improved SSIM. However unlike PAM, time to cluster increases with the number of clusters desired. This

is due to the recommendation by Kaufman and Rousseeuw [6] to use samples of size 40+2k (as explained

in section 4). This, in turn, decides on the size of the data set to send to PAM within CLARA's iterative

process, and PAM has exponential complexity. Notably this 40+2k sample size is a recommendation and

can be altered depending on the requirements. Other sample size recommendations have been proposed,

such as sampling 1% of the total data set in M.K Pakhira's modi�ed CLARA algorithm[9]. Figure 13

shows what happens to the output when the number of samples to run PAM on, T , is altered. Increasing

T from the recommended 5 by Kaufman and Rousseeuw[6] does little or nothing to improve the SSIM

output, but as expected the time required to cluster increases linearly with the number of samples chosen.

Thus Kaufman and Rousseeuw's recommendation of 5 samples is con�rmed to be good.

5.6 CLARA stress tests

Stress tests were conducted using the CLARA algorithm to see how e�ectively it could cluster large

images. As a �nal stress test, a large 5458× 2915 image4 was clustered with 30 clusters both by CLARA

and k−means. When compared to the original, CLARA's output image had an SSIM of 0.8697, while

4Image �le obtained from Wikimedia Commons, https://commons.wikimedia.org/wiki/File:WA_-_Dry_Falls_-
_Huge_Channel_v1.png, accessed 20 September 2017.
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(a) (b)

Figure 12: CLARA algorithm: Box plots of the SSIM against number of clusters, k, is shown in (a) while
time required to cluster against number of clusters is shown in (b)

(a) (b)

Figure 13: CLARA algorithm: Box plots of the SSIM against number of samples chosen, T , is shown in
(a) while time required to cluster against number of samples is shown in (b)
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k−means produced an image with a SSIM of 0.9109, thus both have comparable structural similarity

with the original (while the k−means SSIM is slightly higher than CLARA's). However, the CLARA

algorithm took 23 minutes (as timed by MATLAB) to cluster the image while k−means took 4 hours and

55 minutes to cluster the same image on the same computer. Greatly reduced versions of these images

along with histograms of the tonal distribution for comparison are shown in Figure 14.

(a) (b) (c)

Figure 14: Stress test performed on a large 5458 × 2915 image. Image output shown along with corres-
ponding tonal histograms shown below of (a) the original image (heavily reduced in size), (b) k-Means
clustered image with 30 clusters, (c) CLARA clustered image with 30 clusters

To further illustrate CLARA's power in clustering large data sets a massive 15800 × 14700 infrared

photo image of a nebula in the constellation Orion taken by NASA's Wide-�eld Infrared Survey Explorer5

was clustered. This image is therefore a data set with 232.26 million RGB pixels. Several clusterings were

done of this image on a machine with 64GB of RAM. The fastest clustering was completed within 1.9

minutes using 4 clusters, with an SSIM of 0.752. The best clustering in terms of SSIM was 0.876 using

15 clusters, however this took 2 hours and 14 minutes, again demonstrating the exponential complexity

of the PAM algorithm. Notably, there was an observation clustered with an SSIM of 0.821 using 5

clusters that took under 3 minutes, indicating that this may be an example where taking more samples

or performing CLARA multiple times may be preferable than increasing the number of clusters. This is

especially the case when considering the additional 2 hours to cluster for a marginal increase in SSIM.

The original image along with and example of a clustered version is shown in �gure 15.

5Image �le obtained from NASA's Jet Propulsion Laboratory, California Institute of Technology PHOTOJOURNAL,
https://photojournal.jpl.nasa.gov/catalog/PIA14040, accessed 20 September 2017
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(a) (b)

Figure 15: NASA image. (a) Shows the original while (b) shows the image segmented into 5 clusters with
CLARA

5.7 CLARA used on non-image data

Here CLARA is tested on a non-image benchmark data set. The data set is a synthetic 2-d data with

N=5000 vectors and k=15 Gaussian clusters known as the noisy S4 data set [3]. CLARA successfully

clustered the noisy data set into the 15 required clusters with an average silhouette of 0.5895, indicating

the clusters were meaningful. The data set and results are shown in �gure 16.

(a) (b) (c)

Figure 16: CLARA clustering a benchmark data sets into meaningful clusters. A noisy data set (a) is
segmented into 15 clusters (b) with an average silhouette of 0.5895. A silhouette plot is shown in (c).

5.8 Practical application of CLARA on images

For a practical demonstration of the use of CLARA, an experiment was performed to separate the cell

nuclei from an image of a stained tissue sample. In order to do this, the image was �rst segmented into 3

clusters as shown in �gure 17. These clusters are then applied again to the original image to separate the

pixels associated with each cluster into a new image (thus one additional image per cluster). It was then

experimentally determined that the �rst cluster contained the nuclei. Finally the colours of the nuclei

were separated from the rest of this �rst cluster by clustering again. The results are shown in �gure

17. This experiment was originally performed using k−means. This demonstrates that CLARA is also
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capable of performing such tasks.

(a) (b) (c) (d) (e) (f)

Figure 17: Separating the cell nuclei from a tissue sample using CLARA. (a) shows the original image
while (b) shows how CLARA clustered the image into 3 clusters. (c) to (e) shows the clusters reapplied
to the image and (f) shows the �nal image with the cell nuclei separated from the �rst cluster.

6 Conclusion

Big data is a much discussed topic at present. The CLARA clustering algorithm presented here provides

a useful method for this case. The experiments conducted showed that clustering images with CLARA

can achieve similar SSIM to the original image when compared with commonly used methods such as

k−means and PAM with much less computational time needed. For further testing, CLARA is to be

used on a training data set to determine how many clusters or samples are required to produce optimal

or asymptotic SSIM indices. All clustering algorithms presented here can also be applied to non-image

data.
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Appendix

Appendix A: Creeping Barrage Main MATLAB Code

Listing 1: Creeping Barrage Main Entry Point

1 %void Main(Params )

2 f unc t i on Main( i n s t r u c t i o n s )

3 %Make new f o l d e r f o r r e s u l t s :

4 mainfo lder = s t r c a t ( ' Test Set ' , d a t e s t r (now , ' yyyy−mmm−dd−HHMMSS' ) ) ;

5 mkdir ( ' Resu l t s ' , ma in fo lder ) ;

6 %Make new f i l e to output t e s t r e s u l t s :

7 csvMain =s t r c a t ( ' Resu l t s \ ' , mainfo lder , ' \ ' , ' Test Data ' , d a t e s t r (now , '

yyyy−mmm−dd−HHMM' ) , ' . csv ' ) ;

8 c svFa i l ed = s t r c a t ( ' Resu l t s \ ' , mainfo lder , ' \ ' , ' Fa i l ed T r i a l s ' , d a t e s t r

(now , ' yyyy−mmm−dd−HHMM' ) , ' . csv ' ) ;

9

10 %Begin Tr i a l s :

11 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

12 obs = 0 ;

13 f o lder ID = 0 ;

14 f o r i =1: l ength ( i n s t r u c t i o n s )

15 rawstr ing = char ( i n s t r u c t i o n s ( i , : ) ) ;

16 params = s t r s p l i t ( rawstr ing , ' , ' )

17 f o l d e r = char ( params {1}) ;

18 a lgor i thm = char ( params {2}) ;

19 d i s s im i l a r i t y = char ( params {3}) ;

20 i n i t = char ( params {4}) ;

21 seed = str2doub le ( params {5}) ;

22 t r i a l s = st r2doub le ( params {6}) ;

23 k_start = str2doub le ( params {7}) ;

24 k_end = str2doub le ( params {8}) ;

25 no i s e = str2doub le ( params {9}) ;
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26 T = str2doub le ( params {10}) ;

27 HSVorRGB = char ( params {11}) ;

28 HSVorRGB

29

30 PathName = s t r c a t ( ' Test Images\ ' , f o l d e r , ' \ ' ) ;

31 f i l e s = d i r ( s t r c a t (PathName , ' \∗ . jpg ' ) ) ;

32

33 f o lder ID=fo lder ID+1;

34 sub f o ld e r =s t r c a t ( s p r i n t f ( '%s %d ' , ' Subset ' , f o lder ID ) , algorithm , '

' , i n i t , ' ' , d i s s im i l a r i t y , ' ' ,HSVorRGB, ' ' , num2str ( k_start ) , ' to '

, num2str (k_end) , ' Noise_ ' , num2str ( no i s e ) ) ;

35 mkdir ( s t r c a t ( ' Resu l t s \ ' , ma in fo lder ) , sub f o l d e r ) ;

36

37 f o r f i l e = f i l e s '

38 inimg = s t r c a t (PathName , f i l e . name) ;

39 f o r k=k_start : k_end

40 f o r i =1: t r i a l s

41 % try

42 obs = obs+1;

43 [mn, d i s tance , outimg , time , SSIM ,MSE,~ ,~ ] =

Clus t e r ing ( inimg , algorithm , d i s s im i l a r i t y , k , i n i t

, seed ,T, no ise ,HSVorRGB, 0 ) ;

44 d i s t ance = d i s t ance ( end ) ;

45 namestr = s t r i n g ( f i l e . name) ;

46 namestr = era se ( namestr , ' . jpg ' ) ;

47 baseFileName = s p r i n t f ( '%s_%d_%d . jpg ' , namestr , k ,

obs ) ; % e . g . "1 . png"

48 fu l lF i l eName = f u l l f i l e ( ' Resu l t s \ ' , mainfo lder ,

sub fo lder , baseFileName ) ;

49 imwrite ( outimg , fu l lF i l eName ) ;

50 M( obs , : ) = { [ obs ] , a lgorithm , d i s s im i l a r i t y , i n i t ,

HSVorRGB, [ k ] , [ time ] , [ SSIM ] , [MSE] , [mn ] , [ d i s t ance

] , [ no i s e ] , [T ] } ;

51 % catch

52 try
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53 FAILED( obs , : ) = { [ obs ] , a lgorithm ,

d i s s im i l a r i t y , i n i t ,HSVorRGB, [ k ] , [ no i s e ] , [T

] } ;

54 f a i l T a b l e = c e l l 2 t a b l e (FAILED) ;

55 wr i t e t ab l e ( f a i lTab l e , csvMain )%

56 catch

57 cont inue

58 di sp ( ' f a i l e d to wr i te f a i l u r e ' ) ;

59 end

60 % end

61 end ;%for_i

62 subTable = c e l l 2 t a b l e (M) ;

63 subTable . Proper t i e s . VariableNames = { 'Obs ' , ' Algorithm ' , '

D i s s im i l a r i t y ' , ' i n i t ' , 'HSVorRGB ' , ' k ' , ' time ' , 'SSIM ' , 'MSE' , '

mn ' , ' d i s t ance ' , ' no i s e ' , 'T ' } ;

64 wr i t e t ab l e ( subTable , csvMain ) ;

65 end ;%for_k

66 end ;%f o r_ f i l e s

67 di sp ( ' C lu s t e r ing Set Complete ' )

68

69 end ;%f o r i n s t r u c t i o n s

70 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

71 %END TRIALS

Listing 2: Code to split image into dataset and perform iterative clustering commands

1 f unc t i on [mn, d i s tance , outimg , time , SSIM ,MSE, s i l h , f i g s ] = Clus t e r ing (

inimg , algorithm , d i s s im i l a r i t y , k , i n i t , seed ,T, no ise ,HSVorRGB, s i n g l e )

2 %Main Program fo r c l u s t e r i n g without GUI

3 rgb = imread ( inimg ) ;

4 rng ( seed ) ;

5 i f ( no i s e )

6 rgb = imnoise ( rgb , ' s a l t & pepper ' , no i s e ) ;

7 end%i f

8 rng ( ' s h u f f l e ' ) ;

9

10 Y = im2double ( rgb ) ;
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11 switch HSVorRGB

12 case 'HSV '

13 Y = rgb2hsv (Y) ;

14 case 'LAB '

15 Y = rgb2lab (Y) ;

16 otherwise

17 % Y = im2uint8 (Y) ;

18 end%switch

19

20 [m, n , p ] = s i z e (Y) ;

21 i s g r ay = 1 ;

22 i =1;

23 whi le ( i s g r ay&(i<p−1) )

24 f o r i =1:p−1

25 i f Y( : , : , i )==Y( : , : , i +1)

26 i s g r ay = i s g r ay ;

27 e l s e

28 i s g r ay = 0 ;

29 end ;%i f Y

30 end ;%f o r i

31 end ;%whi le ( i s g r ay )

32

33 i f ( i s g r ay )

34 Y = Y( : , : , 1 ) ;

35 p=1;

36 end ;%i f ( i s g r ay )

37

38 mn = m∗n ;

39

40 %Convert to mn∗p matrix as data s e t :

41 f o r i =1:p

42 X( : , i ) = reshape (Y( : , : , i ) ,mn, 1 ) ;

43 end ;%f o r i =1:p

44

45 %perform des i r ed c l u s t e r i n g :

46 t imerVal = t i c ;%Star t Timer

47 switch a lgor i thm
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48 case 'k−Means '

49 [ L ,C, dh i s to ry ] = kmeansMark (X, k , d i s s im i l a r i t y , i n i t , seed ) ;

50 case 'PAM'

51 [ L ,C, dh i s to ry ] = PAM(X, k , d i s s im i l a r i t y , i n i t , seed ) ;

52 di sp ( 'Kmedoids cu r r en t l y only uses kmeans++ i n i t i a l i z a t i o n ' )

53 case 'CLARA'

54 [ L ,C, dh i s to ry ] = CLARA(X, k , d i s s im i l a r i t y , i n i t ,T, seed ) ;

55 case 'MATPAM'

56 [ L ,C, dhi s tory ,~ ,~ ,~ ] = kmedoids (X, k , ' Algorithm ' , 'pam ' , '

Distance ' , d i s s im i l a r i t y ) ;

57 dh i s to ry = cumsum( dh i s to ry ) ;

58 i t e r = 1 ;%Dummy

59 otherwise

60 di sp ( ' Algorithm not found ' ) ;

61 end ;%switch

62 %TIMER:

63 time = toc ( timerVal ) ;

64 %^MUST COME RIGHT AFTER CLUSTERING

65 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

66 %SILH TOOK TO LONG TO CALC: SAVE FOR SINGLE IMAGE ANALYSIS :

67 i f ( s i n g l e )

68 di sp ( ' Ca l cu l a t i ng s i l h oue t t e , p l e a s e wait ' ) ;

69 [ s i l h , f i g s ] = s i l h o u e t t e (X, L) ;

70 e l s e% s i l h = mean( s i l h ) ;

71 s i l h =0;

72 f i g s =0;

73 end ;

74

75 %Convert back to image :

76 Avec = zero s (mn, p) ;

77 % disp ( 'L= ' ) , d i sp (L ' ) ;

78 f o r i = 1 :mn

79 Avec ( i , : ) = C(L( i ) , : ) ;

80 end%fo r i%

81 A = reshape (Avec ,m, n , p) ;
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82 % A = im2double (A) ;

83 MSE = immse (A,Y) ;

84

85 di sp ( ' Ca l cu l a t i ng SSIM , p l e a s e wait . . . ' ) ;

86 switch HSVorRGB

87 case 'HSV '

88 A = im2uint8 ( hsv2rgb ( (A) ) ) ;

89 Y = im2uint8 ( hsv2rgb ( (Y) ) ) ;

90 case 'LAB '

91 A = im2uint8 ( lab2rgb ( (A) ) ) ;

92 Y = im2uint8 ( lab2rgb ( (Y) ) ) ;

93 otherwise

94 end%switch

95 % SSIMtest = rgb2gray ( im2double (A) ) ;

96 SSIMtest = rgb2gray ( (A) ) ;

97 % Y = rgb2gray ( im2double (Y) ) ;

98 Y = rgb2gray ( (Y) ) ;

99

100 SSIM = ssim ( SSIMtest ,Y) ;

101

102

103 di sp ( ' re−convers ion complete ' )

104 d i s t ance = dhistory ' ;

105 % outimg = uint8 ( round (A) ) ;

106 outimg = A;

107 % f i g u r e

108 % imshow( SSIMtest )

109 % f i g u r e

110 % imshow(Y) ;

111

112 end

Listing 3: Code that calculates dissimilarity for a given cluster

1 f unc t i on [ d i s t ance ] = D i s s im i l a r i t y (X,C, d i s s im i l a r i t y )

2 %Returns a vector o f the d i s s im i l a r i t y o f the c l u s t e r centre

3 %CHECK COVARIANCE MATRIX, WITHIN OR OUT CLUSTER??

4 [ n , p ] = s i z e (X) ;

5 L = ones (1 , n) ;
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6 switch d i s s im i l a r i t y

7 case ' Eucl idean '

8 % D = X−C(L , : ) ;

9 % D = sqr t ( dot (D,D, 2 ) ) ;

10 D = pdi s t2 (X,C, ' squaredeuc l idean ' ) ;

11 case ' Mahalanobis '

12 i f n<=p%Returns euc l i dean d i s t ance i f Mahal not v i ab l e

13 D = pdi s t2 (X,C, ' squaredeuc l idean ' ) ;

14 e l s e

15

16 [~ , check ] = cho l ( nancov (X) ) ;

17 i f check==0

18 D = pdi s t2 (X,C, ' mahalanobis ' ) ;

19 e l s e

20 D = pdi s t2 (X,C, ' squaredeuc l idean ' ) ;%USE EUCLIDEAN

??

21

22 end

23 end

24 otherwise

25 D = pdi s t2 (X,C, ' euc l i dean ' ) ;

26 end ;% switch type

27 d i s t ance = D;

28 end

Listing 4: Code to initialise clusters according to k-means++ seeding

1 f unc t i on [DTot , L ,C,Lmed ] = kmeanspp (X, k , d i s s im i l a r i t y , seed )

2 %I n i t i a l i z e s c l u s t e r s us ing kmeans++ fo r data se t . Can be used f o r k−

medoids

3 %too

4 L = 0 ;

5 L1 = 0 ;

6 n = s i z e (X, 1 ) ;%#obse rva t i on s

7 p = s i z e (X, 2 ) ;%#va r i a b l e s (MIGHT NOT BE NEEDED)

8 i f ( seed ==0)

9 rng ( ' s h u f f l e ' ) ;

10 e l s e

11 rng ( seed ) ;%Fix k−means++
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12 end ;%i f seed

13 whi le l ength ( unique (L) ) ~= k

14 Lmed = zeros (1 , n ) ;

15 %Se l e c t an observat ion uni formly random from X as c1 :

16 r = 1+round ( rand ∗(n−1) ) ;

17 C = X( r , : ) ;

18 Lmed(1 , r ) = −1;

19 % DTot = D i s s im i l a r i t y (X,C, d i s s im i l a r i t y ) ;

20 onevec = ones (n , 1 ) ;

21 f o r i = 2 : k

22 %Compute d i s t an c e s from each observat ion to c i ,

cumulat ive ly :

23 try

24 D = X−C( onevec , 1 ) ;

25 D = cumsum( sqr t ( dot (D,D, 2 ) ) ) ;

26 catch

27 di sp ( 'Cant use dot (D) method ' ) ;

28 D = D i s s im i l a r i t y (X,C( i −1 , : ) , d i s s im i l a r i t y ) ;

29 D = cumsum(D) ;

30 end%trycatch

31 i f D( end ) == 0

32 C( i : k , : ) = X( ones (1 , k− i +1) , : ) ;

33 di sp ( ' Returned ' )

34 return ;

35 end%i f D( end )

36 %Se l e c t c2 at random from X with p r obab i l i t y p ropor t i ona l

to

37 %D(x , c ) ^2:

38 r = rand ;

39 r a t i o = D/D( end ) ;

40 C( i , : ) = X( f i nd ( r < ra t i o , 1 ) , : ) ;

41 Lmed(1 , f i nd ( r < ra t i o , 1 ) ) = − i ;

42

43 %Try something new :

44 % weights = D/D( end ) ;

45 % [C( i , : ) , index ] = datasample (X, 1 , ' Weights ' , weights ) ;

46 % Lmed(1 , index ) = − i ;
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47 end

48 try

49 DTot ( : , 1 : k ) = D i s s im i l a r i t y (X,C( 1 : k , : ) , d i s s im i l a r i t y ) ;

50 catch

51 di sp ( ' o ld s choo l loop ' ) ;

52 f o r i =1:k

53 DTot ( : , i ) = D i s s im i l a r i t y (X,C( i , : ) , d i s s im i l a r i t y ) ;

54 end ;%f o r j

55 end%trycatch

56 [~ ,L ] = min (DTot ' ) ;

57 Lmed(1 , f i nd (Lmed==0)) = L(1 , f i nd (Lmed==0)) ;

58 end%whi le unique

59 di sp ( ' kmeans++ complete ' )

60

61 rng ( ' s h u f f l e ' )

62 end
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Appendix B: k-Means, CLARA and PAM MATLAB Code

Listing 5: k-Means Algorithm Code

1 f unc t i on [ L ,C, dh i s to ry ] = kmeansMark (X, k , d i s s im i l a r i t y , i n i t , seed )

2 %KMEANS Cluster p−va r i a t e data us ing the k−means a lgor i thm .

3 % [L ,C] = kmeans (X, k ) produces a 1−by− s i z e (X, 2 ) vector L with one

c l a s s

4 % l ab e l per column in X and a s i z e (X, 1 )−by−k matrix C conta in ing

the

5 % cente r s corresponding to each c l a s s .

6

7 L = [ ] ;

8 L1 = 0 ;

9 n = s i z e (X, 1 ) ;%#obse rva t i on s

10 p = s i z e (X, 2 ) ;%#va r i a b l e s

11 distanceM = [ ] ;

12

13

14 %i n i t i a l i z e c l u s t e r s :

15 i f strcmp ( i n i t , ' k−Means++' )

16 [ DTot , L ,C,~ ] = kmeanspp (X, k , d i s s im i l a r i t y , seed ) ;

17 e l s e

18 %Random i n i t i a l i s a t i o n

19 C = 255∗ rand (n , p) ;

20 %TEST AGAIN:

21 DTot = zero s (n , k ) ;

22 try

23 DTot ( : , 1 : k ) = D i s s im i l a r i t y (X,C( 1 : k , : ) , d i s s im i l a r i t y ) ;

24 catch

25 di sp ( 'Old School Loop ' ) ;

26 f o r i =1:k

27 DTot ( : , i ) = D i s s im i l a r i t y (X,C( i , : ) , d i s s im i l a r i t y ) ;

28 end ;%f o r i

29 end%trycatch

30 %END TEST

31 [~ ,L ] = min (DTot ' ) ;

32 di sp ( 'Random i n i t i a l i s a t i o n complete ' )
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33 end ;%i f i n i t

34

35

36 di sp ( ' i n i t i a l i s a t i o n complete ' )

37 %k−means a lgor i thm .

38 dh i s to ry = zero s (1 , n ) ;

39 i t e r = 0 ;

40 whi le any (L ~= L1)

41 L1 = L ;

42 DTot = zero s (n , k ) ;

43 f o r i = 1 : k

44 l = L==i ;

45 C( i , : ) = sum(X( l , : ) , 1 ) /sum( l ) ;

46 DTot ( : , i ) = D i s s im i l a r i t y (X,C( i , : ) , d i s s im i l a r i t y ) ;

47 end

48 i t e r = i t e r +1;

49 [ distanceM ,L ] = min (DTot ' ) ;

50 dh i s to ry ( i t e r ) = sum( distanceM ) ;

51 end

52 dh i s to ry = dh i s to ry ( 1 , 1 : i t e r ) ;

53 L = L ' ;

54 di sp ( 'K−means complete ' )

55 %end

56

57 end

Listing 6: PAM Algorithm Code

1 f unc t i on [ L ,C, dh i s to ry ] = PAM(X, k , d i s s im i l a r i t y , i n i t , seed )

2 L = [ ] ;

3 Lmedprev = 0 ;

4 n = s i z e (X, 1 ) ;%#obse rva t i on s

5 p = s i z e (X, 2 ) ;%#va r i a b l e s

6 distanceM = [ ] ;

7

8 % Always i n i t i a l i z e s as Kmeans++ (RANDOM TO BE INPUT LATER)

9 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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10 [ DTot , L ,C,Lmed ] = kmeanspp (X, k , d i s s im i l a r i t y , seed ) ;

11 Lmed = Lmed ' ;

12 L = L ' ;

13 Medoids = zero s (k , 1 ) ;

14 f o r i = 1 : k

15 Medoids ( i , 1 ) = f i nd (Lmed==−i , 1 ) ;

16 end%f o r i

17 M = X(Medoids ( : , 1 ) , : ) ;

18 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

19

20

21 [~ ,L ] = min (DTot ' ) ;

22 L = L ' ;

23 Lmed = L ;

24 f o r i = 1 : k

25 Lmed(Medoids ( i , 1 ) , 1 ) = − i ;

26 end ;%f o r

27

28 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

29

30 %k−medoids a lgor i thm

31 [ distanceM ,~ ] = min (DTot ' ) ;

32 Dcheck = sum( distanceM ) ;

33 Dcheckprev = Dcheck + 1 ;

34 dh i s to ry = zero s (1 , n ) ;

35 i t e r = 0 ;

36 Lmedprev = zero s (n , 1 ) ;

37

38 whi le ( not ( i s e qu a l (Lmedprev , Lmed) ) && i t e r < 100)

39 Lmedprev = Lmed ;

40 Lmedprev ;

41

42 % whi le (Dcheck < Dcheckprev )
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43 %any (Lmed ~= Lmedprev )

44 Dcheckprev = Dcheck ;

45 %Within each c l u s t e r , t e s t d i s t an c e s and rea s i gn :

46 f o r i = 1 : k

47 %Muster the c l u s t e r :

48 Cpos = f i nd ( abs (Lmed)==i ) ;

49 Ci = X(Cpos , : ) ;

50 [ c , ~ ] = s i z e ( Ci ) ;

51 %Between each ob j e c t in current c l u s t e r , t e s t d i s t an c e s

and rea s i gn :

52 Di = zero s ( c , 1 ) ;

53 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

54

55 try

56 Di ( 1 : c ) = sum( D i s s im i l a r i t y (Ci , Ci ( 1 : c , : ) ,

d i s s im i l a r i t y ) ) ;

57 % Di

58 catch

59 %Otherwise do i t the o ld f a sh ioned way :

60 di sp ( ' o ld s choo l loop ' ) ;

61 f o r j =1: c

62 Di ( j , : ) = sum( D i s s im i l a r i t y (Ci , Ci ( j , : ) ,

d i s s im i l a r i t y ) ) ;

63 end ;%f o r j

64 end ;%try

65 % Di

66 [~ , pos ] = min (Di ) ;

67 % pos

68 M( i , : ) = Ci ( pos , : ) ;

69 % M

70 Medoids ( i , 1 ) = Cpos ( pos , 1 ) ;

71 Medoids ;

72 % DTot ( : , i ) = D i s s im i l a r i t y (X,M( i , : ) , d i s s im i l a r i t y ) ;

73 end

74

75 DTot = zero s (n , k ) ;

76 try
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77 DTot = D i s s im i l a r i t y (X,M, d i s s im i l a r i t y ) ;

78 catch

79 f o r i =1:k

80 DTot ( : , i ) = D i s s im i l a r i t y (X,M( i , : ) , d i s s im i l a r i t y ) ;

81 end%fo r i

82 end%try

83

84 % DTot

85 %Reasign elements as needed :

86 i t e r = i t e r +1;

87 i t e r ;

88 [ distanceM ,L ] = min (DTot ' ) ;

89 L = L ' ;

90 Lmed = L ;

91 f o r i = 1 : k

92 Lmed(Medoids ( i , 1 ) , 1 ) = − i ;

93 end ;%f o r

94 % Lmed '

95 % distanceM

96 dh i s to ry ( i t e r ) = sum( distanceM ) ;

97 dh i s to ry = dh i s to ry ( 1 , 1 : i t e r ) ;

98 Dcheck = dh i s to ry ( end ) ;

99 Lmed ;

100 end ;%end whi le

101 % DTot ;

102 % L '

103 dh i s to ry = dh i s to ry ( 1 , 1 : i t e r ) ;

104 L = L ' ;

105 di sp ( 'PAM complete ' )

106 C = M;

107 end

Listing 7: CLARA Algorithm Code

1 f unc t i on [ L ,C, dh i s to ry ] = CLARA(X, k , d i s s im i l a r i t y , i n i t ,T, seed )

2 L = [ ] ;

3 L1 = 0 ;

4 [ n , p ] = s i z e (X) ;%#n−observat ions , p−space

5 p = s i z e (X, 2 ) ;%#va r i a b l e s
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6 distanceM = [ ] ;

7 k s i z e = 40 + 2∗k ;

8 Sample = [ ] ;

9

10 dh i s to ry = [ ] ;

11 i t e r = 0 ;

12 C_Best = 0 ;

13 DTot_Best = 0 ;

14 D_Best = n∗p∗255 ;

15 L_Best = [ ] ;

16 f o r i = 1 :T

17 Sample = [ datasample (X, ks i ze , ' Replace ' , f a l s e ) ] ;%Get Sample

18 %Perform PAM on sample :

19 [ L ,C, ~ ] = PAM(Sample , k , d i s s im i l a r i t y , i n i t , seed ) ;

20

21 %Fi r s t i t e r a t i o n out s ide whi le loop :

22

23 try

24 DTot ( : , 1 : k ) = D i s s im i l a r i t y (X,C( 1 : k , : ) , d i s s im i l a r i t y ) ;

25 catch

26 di sp ( ' o ld s choo l loop ' ) ;

27 f o r i = 1 : k

28 DTot ( : , i ) = D i s s im i l a r i t y (X,C( i , : ) , d i s s im i l a r i t y ) ;

29 end%for_i

30 end%trycatch

31 i t e r = i t e r +1;

32 [ distanceM ,L ] = min (DTot ' ) ;

33 dh i s to ry ( i t e r ) = sum( distanceM ) ;

34 %Keep the best c l u s t e r s so f a r :

35 i f C_Best == 0 ;

36 di sp ( ' h i ' ) ;

37 D_Best = dh i s to ry ( i t e r ) ;

38 C_Best = C;

39 DTot_Best = DTot ;

40 L_Best = L ;

41 end

42 i f dh i s to ry ( i t e r ) < D_Best
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43 D_Best = dh i s to ry ( i t e r ) ;

44 C_Best = C;

45 DTot_Best = DTot ;

46 L_Best = L ;

47 end%i f

48 end%For i =1:T

49

50 %Create f i n a l c l u s t e r s from lowest d i s t ance :

51 C = C_Best ;

52 L = L_Best ;

53 dh i s to ry ( i t e r +1) = D_Best ;

54 % try

55 % DTot ( : , 1 : k ) = D i s s im i l a r i t y (X,C( 1 : k , : ) , d i s s im i l a r i t y ) ;

56 % catch

57 % disp ( ' o ld s choo l loop ' ) ;

58 % fo r i = 1 : k

59 % DTot ( : , i ) = D i s s im i l a r i t y (X,C( i , : ) , d i s s im i l a r i t y ) ;

60 % end%for_i

61 % end%trycatch

62 % i t e r = i t e r +1;

63 % [ distanceM ,L ] = min (DTot_Best ' ) ;

64 % dhi s to ry ( i t e r ) = sum( distanceM ) ;

65 di sp ( 'CLARA Complete ' ) ;

66 end%CLARA

Appendix C: SAS Code for analysis of data sets

Listing 8: k-Means Algorithm Code

1 ODS GRAPHICS ON;

2 data sa su s e r .PAM_c l u s t e r s ( drop = MSE mn d i s t ance no i s e T) ;

3 s e t s a su s e r .PAM_CLARA;

4 i f a lgor i thm = 'PAM' ;

5 run ;

6 data sa su s e r .CLARA_c l u s t e r s ( drop = MSE mn d i s t ance no i s e ) ;

7 s e t s a su s e r .PAM_CLARA;

8 i f a lgor i thm = 'CLARA' ;

9 run ;
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10

11 PROC GLM data=SASUSER.COMBINENOPAM;

12 c l a s s Algorithm ;

13 model SSIM = Algorithm ;

14 means Algorithm ;

15 run ;

16

17 PROC GLM data=SASUSER.COMBINENOPAM;

18 c l a s s Algorithm ;

19 model time = Algorithm ;

20 means Algorithm ;

21 run ;

22

23

24 PROC GLM data=SASUSER.CLARA_c l u s t e r s PLOTS(MAXPOINTS= 64000) ;

25 c l a s s T;

26 model SSIM=T;

27 run ;

28

29 PROC GLM data=SASUSER.CLARA_c l u s t e r s PLOTS(MAXPOINTS= 64000) ;

30 model time=T;

31 run ;

32

33

34 PROC GLM data=SASUSER.CLARA_c l u s t e r s PLOTS(MAXPOINTS= 64000) ;

35 c l a s s k ;

36 model SSIM=k ;

37 run ;

38

39 PROC GLM data=SASUSER.CLARA_c l u s t e r s PLOTS(MAXPOINTS= 64000) ;

40 model time=k ;

41 run ;

42

43 PROC GLM data=SASUSER. Pam3000_5 to10 PLOTS(MAXPOINTS= 3000) ;

44 c l a s s k ;

45 model SSIM=di s t ance k d i s t ance ∗k ;

46 run ;
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47

48 PROC GLM data=SASUSER. Kmeansbench10k PLOTS(MAXPOINTS= 64000) ;

49 c l a s s HSVorRGB D i s s im i l a r i t y ;

50 l a b e l HSVorRGB = ' Colour space and d i s t ance measure ' ;

51 l a b e l i n t e r a c t i o n = ' Colour space and d i s t ance measure ' ;

52 t i t l e " I n t e r a c t i on p l o t o f c o l o r space " ;

53 model SSIM = HSVorRGB D i s s im i l a r i t y HSVorRGB∗D i s s im i l a r i t y ;

54 means HSVorRGB∗D i s s im i l a r i t y ;

55

56 run ;

57

58 ODS GRAPHICS OFF;

59 qu i t ;
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Abstract

Evidence is often limited, incomplete and vague, thus uncertainty is an extensive component in

criminal investigations. This phenomenon makes it di�cult to assess and interpret evidence. The aim

of this report is to address probabilistic reasoning with forensic evidence, by making use of graphical

methods and probabilistic calculus, used in Bayesian networks. During any legal investigation where

burned bodies are assessed, the victim's exposure to �re is the main concern. Primary attention is

drawn to evaluate the forensic assessment of burned bodies. More speci�cally, to evaluate whether

tongue protrusion can be used as an indicator of vital burning. Therefore, a Bayesian network is

constructed to investigate this claim. By making use of inference, the Bayesian network con�rms

that tongue protrusion can be used as an indicator of vital burning.

Keywords: Bayesian networks; criminal investigations; forensic evidence; probabilistic reasoning;

tongue protrusion; uncertainty; vital burning.
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1 Glossary

Term Description

Ancestor node A node that is connected to other nodes, with information �ow towards the other

nodes, in such a way that there is at least one child with a parent that is a child

of this node.

Child node A node that has one or more nodes connected by a directed link with information

�ow from another node towards this node.

Descendant node A node that is connected to other nodes, with information �ow from the other

nodes, in such a way that there is at least one parent with a child that is a parent

of this node.

Forensic science The application of scienti�c methods to legal investigations.

Latent variable A variable that is not directly observed but is rather inferred from other observed

variables.

Leaf node A node with no children.

Manifest variable A variable that is directly measured or observed.

Parent node A node that has one or more nodes connected by a directed link with information

�ow from this node towards other nodes.

Root node A node with no parents.

Scienti�c evidence Evidence that supports a particular hypothesis in forensic science investigations.

Tongue protrusion A tongue that is extended beyond the dental arch with separated teeth.

2 Notation

X ⊂ S X is a subset of S.

X ⊆ S X is a subset or equal to S.

X ∪ Y The union of X and Y.

X ∩ Y The intersection of X and Y.

¬X Not X.

P (X) Probability of X.

P (X ∣E) Probability of X given evidence E.

X → Y A directed link.

⊥⊥ Independence.
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3 Introduction

There is a popular concept in the �eld of forensic science, proposed by Dr Edmond Locard (1877-1966),

known as Locard's Exchange Principle. This states that when there is physical contact between two

distinct items, an exchange of some sort will take place. That is, every contact leaves a trace [1]. This

poses a challenge to forensic scientists, who need to produce, process, and present accurate data that will

assist the court of law in reconstructing past events. There are two di�erent approaches to statistical

inference: Frequentism and Bayesianism. The former relates to probabilities calculated by frequencies of

events, while the latter represents probability related to knowledge about the event, advocated by Rev.

Thomas Bayes (1702-1761) [34]. The approach of this paper is based on the use of an arti�cial intelligence

(AI) system known as Bayesian networks (BNs) to visually represent probabilistic reasoning of variables

associated with past events. BNs are frequently used in investigations to aid the forensic scientist in

decision making under conditions of uncertainty. During the course of this paper, data will be referred

to as evidence since the main focus will be on past events associated with a crime under investigation.

It is important to �rst understand uncertainty, the evaluation of evidence and Bayes' theorem before

proceeding to implement BNs in forensic investigations.

Dennis Lindley (2006) states in his book `Understanding Uncertainty' [21], that uncertainty is the

phenomenon in which the outcome can be either true or false, with limited knowledge on whether it is

true or false. Often knowledge about an event is limited, therefore incomplete evidence leads to fallible

conclusions that need to recover from error. There are three basic forms of uncertainty namely ignorance,

physical randomness, and vagueness. Which can be classi�ed as either aleatoric, i.e., when a system

behaves in a stochastic manner, or epistemic, which represents the lack of knowledge of the true system

[13].

During any legal investigation, evidence may be used to support the nature of a criminal act, or

help illustrate the links between elements in a criminal act. Since evidence is often misinterpreted,

special care should be given to how it is analysed. Because there is usually insu�cient scienti�c evidence,

uncertainty is frequently observed in investigations. Raw evidence does not give more information in itself;

its signi�cance needs to be elucidated with propositions and background knowledge [33]. Therefore, the

forensic scientist is required to quantify the prior knowledge and consult about the uncertainties associated

with inference. BNs applies probabilistic reasoning in the �eld of forensic science illustrated as a graphical

model. As a result, theory and probability calculus is fundamental in the evaluation of scienti�c evidence.

This research report addresses Bayesian network theory, how to apply this theory to provide an

e�cient study of the evaluation of evidence in a forensic context, as well as give practical examples. The

report will conclude with a practical application of Bayesian networks in a real-life forensic investigation.
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4 Bayesian networks

A BN is a probabilistic model based on directed acyclic graphs (DAG) in which a set of random vari-

ables, connected by directed links, make up the nodes in the network. Rev. Thomas Bayes (1702-1761)

developed a theory for updating probabilities when new evidence becomes available. Both discrete and

continuous probability distributions can be addressed by making use of this theory [9]. When working

with discrete probability distributions, Bayes' theorem uses the conditional and marginal probabilities of

events C and D, with background information I.

Pr(C ∣D,I) = Pr(C,D∣I)
Pr(D∣I) (1)

Conditional probability tables (CPTs) are constructed for each node in the network to quantify the

e�ect one node has on another. BNs represent the qualitative relationships between variables, in other

words, it illustrates the causal connections between variables [33].

In order to apply and interpret the propagation of uncertainty in a BN, a few important de�nitions

and terminology must be understood - both in the �elds of graph theory and probability calculus.

4.1 Causal graphs

Sewall Wright (1889 - 1988), a geneticist, was the �rst to use causal graphs, however, he referred to these

graphs as `path diagrams' [36]. A causal graph has directed paths that represent causal relationships

between nodes in a diagram. Causal networks consist of interrelated nodes connected by directed links

and are known as a directed graph [7].

4.1.1 Connections in a causal graph

Variables are represented by nodes and the link between two nodes represent the relationship. Directed

graphs that consist of directed cycles represent mutual causation. Causal graphs that contain directed

cycles are known as acyclic causal graphs. Therefore, a graph that is directed and acyclic is known as a

directed graph [28].

De�nition 1. Directed acyclic graph

A directed graph that consist of a topological order with a sequence of nodes connected by directed

links.

Kinship terminology is used to characterise the relationships in a DAG: Consider a set of directed

links between three nodes, A → M → C: A is a parent of M and M is a child of A. C is a descendant

of A and A is an ancestor of C. Tree terminology (e.g., root and leaf) is also used to describe nodes.

Therefore, A is a root node, representing original causes, and C is a leaf node, representing �nal e�ects.
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(a) Serial connection. (b) Diverging connection. (c) Converging connection.

Figure 1: Possible connections in causal graphs.

Every DAG has at least one root and at least one leaf [28]. Causal graphs have three main connections,

namely serial connections, diverging connections and converging connections.

Serial connections

Consider the causal graph between three nodes illustrated in Figure 1a. In this particular connection, A

causes B, and B causes C. Therefore, serial connections represent conditional independence [19]. When

evidence of C is introduced to the network, C will in�uence A through B. If B's state is known, the path

from A to C is blocked, resulting in independence between A and C. If this is the case, A and C is said

to be d-separated given B. A variable is instantiated when the state of the variable is known [27].

Diverging connections

The causal graph illustrated in Figure 1b is known as a diverging connection, often referred to as a

common cause graph. The common cause node is A, shared by B and C. Diverging connections is used

when evidence is transmitted to the children of A when the state A is unknown. The same conditional

independence structure used in the chain rule (Theorem 8) is applicable to common cause:

P (C ∣A ∩B) = P (C ∣B) ≡ A ⊥⊥ C ∣B

Converging connections

Figure 1c illustrates a basic converging connection in causal graphs. Converging connections are repre-

sented in a v-shape, where a particular node (e�ect) has two causes. Therefore, converging connections

are known as common e�ect [19]. The parent nodes, A and B are said to be independent if there is no

prior knowledge known about B, except what is deduced based on knowledge of A and C. Possessing

knowledge of a cause for a particular event does not necessarily indicate knowledge about other possible

causes. However, if the consequences of an event are known, then the knowledge of a particular cause

may in�uence information about another cause. This concept is known as explaining away [27].
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4.1.2 Information �ow in a causal graph

Information in a causal graph �ows along paths between variables. Information processing relates to the

direction of �ow. Depending on the type of connection (as described in Section 4.1) and instantiation of

variables, paths can connect or block variables. Connected variables have a dependence and unconnected

variables are independent. This concept is known as d-separation.

De�nition 2. D-separation

Nodes X and Y is said to be d-separated if for all links between X and Y, there is another node Z such

that either

� Z is instantiated, and the connection in the causal graph is either serial or diverging; or

� Z has not received evidence and the causal graph is converging.

Nodes X and Y are d-connected if they are not d-separated.

Figure 2: D-separation by node A.

Consider the causal graph shown in Figure 2. Notice that nodes B and C are d-separated by A.

Node A blocks paths B −E −C and B −A −C.

Another important property that provides information on information �ow in causal graphs is the

Markov blanket. The Markov blanket for a variable A states that all information about A is contained

within this blanket (set of nodes). In short, every node is only dependent on its parents, children and

children's parents.

De�nition 3. Markov Blanket

A set of parent, children and common causes of a particular node.

When instantiated, the Markov blanket has an interesting property, the node of interest becomes

d-separated from the other nodes present in the network (see Figure 3) [27].

The Markov blanket for node A in Figure 3 is {B,C,D}.
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Figure 3: Markov blanket for node A.

4.2 Probability theory

4.2.1 Probability Rules

There are two distinct approaches to statistics [34]: Frequency type probability, advocated by John Venn

[35] and belief type probability, promoted by Reverend Thomas Bayes [3]. The di�erence between fre-

quency type probability and belief type probability lies in the de�nition of probability used for each

approach. Frequency type probability is the case of repeated measurements [16]. The central limit

theorem is a tool for frequency type probability, as well as laws for large numbers since observed char-

acteristics stabilize with repeated trials. Belief type probability is extended to cover degrees of certainty

about statements. Therefore, probabilities are related to a subjective degree of belief. It is measured

by personal assessment or logical probability. Probability calculus is used to represent the strengths of

belief [19]. Bayes' theorem is used in belief type probability to show how new evidence in�uence prior

probabilities. The frequency principle aids in deciding whether to use frequency type or belief type prob-

ability: When only the frequency is known about an outcome, it is advised to use the frequency type

probability approach. However, in other situations, belief type probability is used to assess the outcome

of an event. Frequency type probabilities are related to risk, whereas belief type probabilities are related

to uncertainties [16]. Note that the formulas in this section are adapted from Modern Business Statistics

with Microsoft Excel (2014) [2] and Probability theory: The logic of science (2003) [18].

The degree of uncertainty can be measured by assigning a probability P (A) to each event A ⊆ S.

Probabilities must adhere to the following three axioms [27] [28]:

Fact 4. S is the event space of all possible events. Therefore, if event X is in S, then: P (X)+P (¬X) =

P (S) = 1

Fact 5. The event X must have a positive probability: P (X) ≥ 0 for all X ⊆ S.

Fact 6. If event X and Y are mutually exclusive, the sum of the individual events equals the probability

of the combined event: If X ⊆ S, Y ⊆ S and X ∩ Y = ∅, then P (X ∪ Y ) = P (X) + P (Y ) [27].

Theorem 7. Total probability [19]
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Assume X ⊆ S, and for any i and j Xi ∪Xj = ∅. Then,

P (S) =∑
i

P (Xi),

This can be adapted for a single event Y instead of the whole event space. Therefore, under the above

conditions, and if ∀iXi ≠ ∅ ,

P (Y ) = ∑
i

P (Y ∣Xi)

The intersection of two events X and Y:

The intersection of two events is the event containing points that belong to both events simultaneously.

Therefore, the probability of intersection between event X and Y is given by [2]:

P (X,Y ) = P (X ∩ Y )

= P (X) + P (Y ) − P (X ∪ Y )

The sum rule

The union of two events is the event containing points belonging to event A or event Y or both. Therefore,

the probability of the union of event X and Y [2]:

P (X ∪ Y ) = P (X) + P (Y ) − P (X ∩ Y )

If the events are mutually exclusive, the union of event X and Y become:

P (X ∪ Y ) = P (X) + P (Y )

Conditional probability

The conditional probability of an event occurring given evidence E, can be calculated as a ratio of a joint

probability to a marginal probability:
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P (X ∣E) = P (X ∩E)
P (E) = P (X,E)

P (E)

The product rule

The multiplication law is used to compute the intersection of two events. Thus, the multiplication law

depends on the conditional probability of event X and Y [18]:

P (X ∩ Y ) = P (X)P (Y ∣X)

Theorem 8. Chain rule

Given three events X, Y, Z. The chain rule divides the probabilistic in�uence of event Z on event A

across the di�erent states of a third event Y [19]:

P (Z ∣X) = P (Z ∣Y )P (Y ∣X) + P (Z ∣¬Y )P (¬Y ∣X),

Bayes' theorem can be derived through the use of the chain rule:

Event Y, posterior probabilities P (X1∣Y ) and P (X2∣Y ). From the de�nition of conditional probability:

P (X1∣Y ) = P (X1, Y )
P (Y ) = P (X1 ∩ Y )

P (Y ) (2)

However,

P (X1 ∩ Y ) = P (X1)P (Y ∣X1) (3)

To �nd P (Y ), note that event Y can occur in two ways: (X1 ∩ Y ) and (X2 ∩ Y ). Therefore,

P (Y ) = P (X1 ∩ Y ) + P (X2 ∩ Y )

= P (X1)P (Y ∣X1) + P (X2)P (Y ∣X2) (4)

Substituting equations 3 and 4 into equation 2, Bayes' theorem for a two event case is obtained:
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P (X1∣Y ) = P (X1)P (Y ∣X1)
P (X1)P (Y ∣X1) + P (X2)P (Y ∣X2)

(5)

where,

P (X1∣Y ) is the posterior probability,P (Y ∣X1) relates to the likelihood, and P (X1) is the prior prob-

ability.

Equation 5 can be written in a general form to accommodate cases with more than two events:

P (Xi∣Y ) = P (Xi)P (Y ∣Xi)
P (X1)P (Y ∣X1) + P (X2)P (Y ∣X2) + . . . + P (Xn)P (Y ∣Xn)

Example on Bayes' rule

Scenario: Meningitis causes sti� necks with probability 0.5. Having meningitis has a prior probability

of 0.00002, and having a sti� neck has a prior probability of 0.05. What is the probability of having

meningitis given that you have a sti� neck?

Let s = patient has meningitis

Let s = patient has sti� neck

P (s∣m) = 0.5

P (m) = 0.00002

P (s) = 0.05

Therefore,

P (m∣s) = P (s∣m)P (m)
P (s) = (0.5)(0.00002)

0.05
= 0.0002

4.2.2 Conditional independence

Probabilistic models allow the use of probabilistic inference to compute a probability distribution. The full

joint probability distribution (FJPD) tabulates probabilistic inference values. However, For N variables,

each with k values, the joint distribution has KN numbers. Therefore, BNs are used to represent joint

distributions using independence and conditional independence.

Independence

Two events are independent when the probability of one event remains unchanged if conditioning is

applied to the other:
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Y ⊥⊥X = P (Y ∣X) = P (Y )

This can be generalized for conditional independence:

Two events are independent given an additional event:

Y ⊥⊥X ∣Z = P (Y ∣X,Z) = P (Y ∣Z)

De�nition 9. Full joint distribution: The full joint distribution of two random variables, M and Y, is

the probability distribution containing the probabilities for every M and Y contained in a speci�c range of

values.

Using a full joint distribution; the product rule, sum rule and Bayes' theorem can be used to create

any combination of joint and conditional probabilities. Obtaining a full joint distribution is di�cult as it

requires a vast amount of data even for few variables. The conditional independence assumptions make

it possible to reduce the required probabilities for the joint distribution of a BN by making use of the

properties of causal graphs.

4.3 Construction of BNs

BNs represent possible connections between attributes in events where uncertainty is present in the

domain. A key feature of a BN is that it allows the user to move from prior to posterior probabilities as

evidence becomes available. The nodes in a BN represent a set of random variables, X = X1, ..Xi, ..Xn.

Directed links connect pairs of nodes, Xi → Xj . These links represent the direct dependencies between

variables. The only constraint on the links in a BN is that there must not be any directed cycles, therefore

a BN is a DAG. This section will focus on how to construct a BN.

De�nition 10. A BN consists of the following:

� A set of nodes connected by links.

� Each node has a �nite set of disjoint states.

� The nodes and the links form a DAG.

� Every node X with parents Y1, . . . , Yn, has a conditional probability table P (X ∣Y1, . . . , Yn).

4.3.1 Variables

The �rst step is to determine the variables of interest. Note that a variable can take on exactly one value

at a time, therefore, the values are mutually exclusive. Three types of discrete nodes exist: Boolean
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Figure 4: Typical Bayesian network.

nodes, ordered nodes, and integral nodes. Values should be chosen such that each value represents the

domain in an e�cient manner.

4.3.2 Topology

The network structure should express qualitative relationships between variables. Thus, two nodes should

be directly connected if one a�ects or causes the other, the link between the two nodes indicates the

direction of �ow. The topology of a BN takes the same form of that of a causal graph, as seen in Section

4.1. Figure 4 illustrates a typical BN, using the family metaphor speci�ed in Section 4.1, A and B are

parent nodes of C, depicting a diverging connection. While C is a parent node of E and D, illustrating

a converging connection. Nodes A and B are root nodes, and G is a leaf node. The descendants of A

are C, D, E, F and G. Node F has the ancestor nodes E, C, A and B. The Markov blanket for D is

{C,E,F,G}.

4.3.3 Conditional probability table

A variable can either be discrete or continuous. A conditional probability distribution for each node

quanti�es the relationship between two or more nodes. Hence, a conditional probability table (CPT)

should be constructed to show the numerical probabilities. The CPT is de�ned for a set of discrete

variables to represent the marginal probability of a variable taking into account the certainty of other

variables in the network. Possible combinations of each node should be speci�ed in order to compute the

CPT, i.e., the parent, child, descendant and ancestor nodes should be identi�ed - this is done in Section

4.3.2. For each instantiation of parent nodes, the probability of the child node taking the values needs

to be speci�ed. The probabilities to specify in Figure 4 are, P (A), P (B), P (C ∣A,B), P (E∣C), P (D∣C),

P (F ∣E), and P (G∣D,E,F ). A node's CPT summarizes the probability of possible values, conditional

upon parent node values. Once the values for all the CPTs are added, the BN is `parameterised'. When

a BN is parameterised, probabilistic inference is used to calculate probabilities of numerous possible
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hypothesis, given prior evidence, as well as predicting the states of evidence nodes not yet detected [20].

Figure 5b represents typical CPTs associated with di�erent nodes.

4.4 Inference with Bayesian networks

The primary task of a probabilistic graphical model is belief updating. That is, the computation of

posterior probability distributions for a set of nodes, given a set of evidence nodes. As evidence with

respect to a speci�c node becomes available, beliefs of the other nodes in the network are updated.

Therefore, inference in BN is �exible [19]. BNs can be conditioned upon any set of nodes, supporting any

direction of reasoning. There exists three main types of reasoning: diagnostic reasoning, concerned with

inference from e�ect to cause; predictive reasoning, which applies to reasoning from cause to e�ect as new

knowledge becomes available; and inter-causal reasoning, which relates to mutual causes of a common

e�ect. BNs can be used to solve `what-if' questions - such as the probability of observing evidence if a

hypothesis is false [20]. Inference in BNs is illustrated by making use of an example discussed in Bayesian

Arti�cial Intelligence (2010) [19]:

Example 1

A doctor treats a patient su�ering of dyspnoea. The patient is worried she has lung cancer. The doctor

has prior knowledge that other diseases, such as bronchitis, show similar symptoms. The doctor knows

that being a smoker can increase the chances of cancer and bronchitis, as well as that the patient has

been exposed to some sort of air pollution. The positive result of an X-ray could indicate lung cancer.

The propositions are: `Patient exposed to pollution' (`Pollution'), `Patient identi�ed as a smoker'

(`Smoker '), `Lung cancer present' (`Cancer '), `Patient su�ering of dyspnoea' (`Dyspnoea'), and `X-Ray

result' (`XRay '). Table 1 contains the preliminary node choices for building the BN. Figure 5 illustrates

the BN for this scenario, where Figure 5a is the BN itself, Figure 5b is the conditional probability table

for this scenario, and Figure 5c is the monitor windows associated with the BN before any belief updating

due to new evidence in network.

Node name Type Value

Pollution Binary {low,high}
Smoker Boolean {T,F}
Cancer Boolean {T,F}

Dyspnoea Boolean {T,F}
X-ray Binary {low,high}

Table 1: Preliminary node choices.
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(a) BN for known variables. (b) CPT for known variables.

(c) Marginal probabilities for variables.

Figure 5: BN, CPT and marginal probabilities for lung cancer patient.

Figure 6 represents the `what-if' analysis by updating beliefs in the network. For simplicity, only one

to two node(s) will receive prior evidence. Figure 6a illustrates the e�ect of adding evidence to the `X-ray'

node. Say the doctor receives con�rmation that the patient is a smoker. Notice how the probabilities

of the `Cancer ' node changes. Before the evidence was added, the `Cancer ' node showed a probability

of 0.0116 to be positive and a probability of 0.9884 to be negative. As soon as the new evidence was

added, the probability of getting a positive result for cancer increased to 0.032 and the probability to

get a negative cancer result decreased to 0.9680. Suppose, now the doctor receives con�rmation that the

X-ray showed positive signs of cancer, as shown in Figure 6b. The new evidence increases the probability

of having cancer to 0.1295 and decreases a false outcome to 0.8705. Therefore, the what-if analysis was

done on the assumption of `what-if the patient is a smoker' and `what-if the patient is a smoker and has a

positive X-ray result'. Belief updating is done using Bayes' theorem (see the example on Bayes' theorem
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in subsection 4.2.1) Note the belief updating is done in Hugin Lite 8.41.

(a) Belief updating due to`Smoker ' node. (b) Belief updating due to `Smoker ' and `Xray'
nodes.

Figure 6: Belief updating given prior knowledge.

5 Bayesian networks applied to forensics

Consider any forensic investigation, during the preliminary investigation evidence is collected. This

evidence relies on forensic sciences to be analyzed, and used to support the nature of a criminal act, or

used to illustrate links between certain evidence elements in a formal investigation. When comparing

elements in a forensic investigation, forensic scientists investigate the links between interrelated evidence

pieces by analyzing various traces transferred during the act [33]. Traces found at the crime scene is

known as trace evidence (see Glossary for formal de�nition). The interpretation of scienti�c evidence

should be done carefully, emphasis should be on questions such as `what do the results mean in this

case?' [17]. Therefore, theory and statistical probability applications form an important foundation for

evaluating scienti�c evidence. Probabilistic reasoning is used to explain scienti�c evidence in a numerically

understandable way. Forensic scientists use probabilities to measure the uncertainty of evidence. Various

methods of reasoning have been proposed to assist in understanding dependencies present in evidence

[12]. As discussed earlier, BNs represent relationships between variables where uncertainty is present

(refer back to Section 4). BNs aid the forensic analyst to describe the problem whilst communicating

information about the topology of the situation, as well as calculating the e�ect of the new evidence on

other nodes within the network [15].

5.1 Evaluation of scienti�c evidence using BN

Evaluation of evidence starts as soon as the forensic investigator is assigned to a case. Ideas relating to

the value of evidence and propositions are made by the forensic scientist, this is known as pre-assessment.

1Hugin 8.4 (x64) Copyright (c) 1995-2017 Hugin Expert A/S. All Rights Reserved
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(a) BN for evidence. (b) CPT for Evidence.

(c) Prior probabilities for evidence. (d) Belief updating for evidence.

Figure 7: Evidence applied to forensic investigation example.

Pre-assessment requires an appreciation of the nature of the criminal act such that a framework can be

developed for examination purposes [10], to facilitate a logical decision. The forensic investigator should

consider probabilities of the evidence gathered during the investigation. Aitken and Gammerman (1989)

proposed the use of a probabilistic graphical model in assessing scienti�c evidence [33]. BNs can be used

to assess human reasoning since it provides a normative model for evidential reasoning [29].

Example 2

A generic scenario described by Lagnado, Fenton and Neil [20] will be used to illustrate the use of BNs

in forensic investigations. Note that the scenario will illustrate BNs applied to evidence and evidence-

reliability. By applying BNs to both evidence and evidence-reliability, probabilistic relations between

hypothesis and evidence will be illustrated. Consider the hypothesis: `Suspect committed crime', and

evidence: `Suspect identi�ed by victim'. Evidence applied to forensic investigations involves the relation-

ship between the stated hypothesis and the evidence given. Typically, the hypothesis is a proposition

made about the case, and the evidence is an observation, such as DNA evidence and witness testimonies.

The causal process is represented by the link between the hypothesis and the evidence presented [20].

To illustrate this, consider the hypothesis that a suspect committed a crime, this can result in either

true or false. If the hypothesis is proven to be true, the probability of the victim identifying the sus-

pect will increase. Now, using Bayes' rule, a positive identi�cation increases the probability that the

suspect did indeed commit the crime. This is illustrated in Figure 7. Where, Figure 7a represents the

BN of cause→e�ect. Where the hypothesis is the cause and the evidence the e�ect. Figure 7b shows the

CPT �lled with hypothetical probabilities since this is a generic example. Figures 7c and 7d shows the

prior probabilities and the updated probabilities as evidence become available, i.e., the suspect positively

identi�ed the victim.
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Suppose another node is now added to the BN, i.e., the reliability of the testimony, denoted by

'Reliability ' (see Figure 8). This illustrates that the addition of an extra node can in�uence the evidence

report. Note that measuring human testimony can be inaccurate, therefore, there is a degree of fallibility

[20]. Assume `Reliability ' is causally independent on the hypothesis. The evidence node has two parent

nodes, i.e., 'Hypothesis' and 'Reliability ', as shown in Figure 8a. Suppose the evidence node has the

following two explanations: the suspect was wrongfully identi�ed and the victim positively identi�ed

the suspect. To calculate the in�uence evidence has on the two states, the prior probabilities and the

conditional probabilities need to be estimated, given the parent nodes. Therefore, four possible states

exist: (i) hypothesis true and reliability true, (ii) hypothesis false and reliability true, (iii) hypothesis

true and reliability false, and (iv) hypothesis false and reliability false.

(a) BN for evidence-reliability (b) CPT for evidence-reliability.

(c) Prior probabilities for evidence-reliability. (d) Belief updating for evidence-reliability.

Figure 8: Evidence-reliability applied to forensic investigation example.
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6 Application

During any legal investigation where burned bodies are assessed, the victim's exposure to �re is the

primary concern [6]. It is important to establish whether exposure to �re was before or after death, as

well as to establish the circumstances surrounding the death as this can indicate suicide, homicide or

accident. Heat exposure can be measured with external and internal methods, however, for this study,

internal exposure is measured. Although di�erent internal exposure methods exist, soot deposits in

the respiratory tract and the percentage of carboxyhaemoglobin (COHb%) are the main focus of the

comparative study.

During the period of January 2007 to December 2009, 107 burned corpses were examined at the

Medico Legal Laboratory in Pretoria, South Africa. The data used in the study is obtained from Prof

Herman Bernitz2. The tongue position was reported as either protruded, not protruded, destroyed or not

known. However, for the purpose of this research report, a destroyed tongue is treated as a missing value

and when no information on the position of the tongue is known, the soot deposit is used to determine the

tongue position to be either a missing value or a non-protruding tongue. If soot deposit returns a positive

result, it is treated as a missing value and if a negative result is returned, tongue position is reported as

non-protruding. Thereafter, the missing values are taken out of the data, resulting in 74 observations to

be used. That is, 33 observations returned missing values and are therefore eliminated from the dataset.

The remaining observations are then converted to binary data (see subsection 6.2 for a full discussion of

variables). Non-parametric statistical analysis and logistic regression will be used to test the relationship

between tongue protrusion and soot deposits as well as the relationship between tongue protrusion and

COHb%. Thereafter, a BN will be constructed to visually represent and examine the case study.

6.1 Comparative study

A comparative study is done to test the relationship between tongue protrusion and the other manifest

variables in the dataset. That is, the association between tongue protrusion and soot presence and between

tongue protrusion and COHb percentage is tested. This section will be divided into two subsections. The

following descriptive statistics relate to the case study: Tongue protrusion is reported in 63 of the 107

victims, 30 out of the 107 victims showed no tongue protrusion, while 14 cases reported the tongues to be

either destroyed or not known, and is therefore treated as missing values. Further investigation reported

that in 96 of the 107 cases, a positive soot deposit result is reported, 8 of the cases resulted in a negative

soot deposit and in three of the cases soot analysis was not possible and is therefore treated as missing

values. Since a COHb threshold of > 10 is considered positive for the inhalation as a result of �re [4], 66

2Department of Oral Pathology and Oral Biology,
School of Dentistry, University of Pretoria,
P.O. Box 1266, Pretoria 0001, South Africa
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out of the 107 cases is reported to be positive, 17 cases returned a negative COHb result and 24 cases

report missing values. Note that these frequencies are computed in SAS 9.43 by making use of the FREQ

procedure.

6.1.1 Tongue protrusion vs. the presence of soot

Internal signs of heat exposure, such as soot deposits in the respiratory tract, oesophagus and stomach

indicate vital burning [4]. It is therefore important to test whether there is a relationship between tongue

position and the presence of soot in the respiratory tract.

H0 ∶ Tongue protrusion not associated with soot presence.

Ha ∶ Tongue protrusion associated with soot presence.

Fisher's exact test is used to test the association between tongue protrusion and soot deposits in the

respiratory tract. The LOGISTIC procedure in SAS 9.4 is used to calculate the associated odds ratio and

Wald Chi-square con�dence interval. The odds ratio is reported to be 6.354 and the Wald Chi-square

con�dence interval is (1.153,35.008) with a Wald Chi-square statistic of 4.5105. The Wald Chi-square

con�dence interval is used to test the hypothesis. Note the p − value is 0.0337. Since 1 ∉ (1.153,35.008),

the null hypothesis is rejected. Therefore, there is a statistically signi�cant relationship between tongue

protrusion and soot deposits.

6.1.2 Tongue protrusion vs. the percentage COHb

High blood level values of carboxyhaemoglobin is also an indication of internal burning, and will be

tested against the tongue position to establish whether there is a relationship between the two variables.

However, unlike the previous comparison (see subsection 6.1.1), where the association between the two

variables was the only hypothesis test done, this subsection will contain four di�erent hypothesis tests.

These tests will include a test for location, variation, distribution of COHb% between tongue protruded

and tongue not protruded and lastly a test for association between COHb% and tongue protrusion.

H0 ∶ No di�erence in median COHb% between tongue protruded and tongue not protruded.

Ha ∶ Signi�cant di�erence in median COHb% between tongue protruded and tongue not protruded.

The �rst test is conducted to test whether there is a signi�cant di�erence in location. A Mann-Whitney

3Copyright (c) 2002-2012 by SAS Institute Inc., Cary, NC, USA. All Rights Reserved
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test is done in SAS 9.4 with the NPAR1WAY procedure. The Mann-Whitney test has a p−value of 0.2449,

which indicates that there is no statistically signi�cant di�erence in location between tongue protruded

and tongue not protruded in victims with COHb% concentration in blood. Figure 9a illustrates the

location of median COHb% for tongue protruded and tongue not protruded.

H0 ∶ No di�erence in spread of COHb% between tongue protruded and tongue not protruded.

Ha ∶ Signi�cant di�erence in spread of COHb% between tongue protruded and tongue not protruded.

A Siegel-Tukey test is done to establish whether there is a signi�cant di�erence in variance COHb%

between tongue protruded and tongue not protruded. The Siegel-Tukey test has a p-value of 0.2578, thus

the null hypothesis is rejected at a 10% level of signi�cance. Therefore, indicating there is no di�erence

in spread of COHb% between tongue protruded and tongue not protruded.

H0 ∶ No di�erence in distribution COHb% between tongue protruded and tongue not protruded..

Ha ∶ Signi�cant di�erence in distribution COHb% between tongue protruded and tongue not protruded.

A Kolmogorov-Smirnov test is used to detect whether there is a signi�cant di�erence in the distri-

bution. The Kolmogorov-Smirnov Two-Sample Test has a p − value of 0.5043, indicating no statistical

signi�cant di�erence in distribution between tongue protruded and tongue not protruded. The empirical

distribution of COHb between tongue protruded and tongue not protruded is shown in Figure 9b.

H0 ∶ Tongue protrusion not associated with COHb%.

Ha ∶ Tongue protrusion associated with COHb%.

Fisher's exact test is done to determine if victims with tongue protrusion are more likely to have COHb%

concentrations more than 10 than victims with no tongue protrusion. Fisher's exact test returned a

two-sided p − value of 0.1242, implying that the null hypothesis is not rejected. Therefore, there is no

signi�cant association between COHb% in blood level values and tongue protrusion.

The above results correspond with the results from the article published by Bernitz et al [4]. On the

grounds that soot deposits and a protruded tongue are often seen in �re-related deaths, the probability

of both occurring simultaneously is very high. Therefore, results in a statistically signi�cant relationship

between these variables. This does not necessarily mean that the two variables are equally valid. In a
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(a) Boxplot of COHb level between tongue protruded
and tongue not protruded.

(b) Empirical distribution of COHb levels between tongue
protruded and tongue not protruded.

Figure 9: Distribution of COHb.

letter to the editor of International Journal of Legal Medicine, Michael Bohnert [5] mentioned that there is

no pathophysiological explanation for tongue protrusion to be an indicator of vital burning. Based on this

feedback, an alternative approach was considered. Rather than using non-parametric statistical analysis,

the focus will be on prediction. In order to do this, vital burning must be included in a predictive model.

By including the latent variable to the analysis, it becomes possible to test the relationship between

tongue protrusion and vital burning.

This poses a challenge as vital burning cannot be observed. A statistical technique capable of handling

latent variables is needed to establish whether there is a relationship between tongue protrusion and vital

burning.

In the next section, a BN will be implemented to test the relationship between tongue protrusion and

vital burning.

6.2 BN applied to case study

In the previous section, statistical analysis was conducted to test if tongue protrusion is a sign of vital

burning. However, since logistic regression and non-parametric tests are limited to observed variables,

the relationship cannot be tested to full extent. BNs provide fundamental advantages for dealing with

missing values, i.e., latent variables [9]. Aside from this, the predictive capabilities of BNs are also of

interest. Therefore, a BN will be constructed to test whether tongue protrusion is a sign of vital burning.

Consider the data obtained. A BN is constructed to support the explanatory inferences supporting

the evidential reasoning in the case study. The methodology discussed in Section 4.3 is used to construct

the BN to represent the data.
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6.2.1 Variables

The �rst step is to identify the variables and relevant propositions. The propositions in question are:

� Soot deposits in the respiratory tract, oesophagus and stomach (SootPresence),

� High blood values of carboxyhaemoglobin (COHb),

� Protrusion of the tongue (TonguePosition),

� Vital burning (VitalBurning)

The following variables are identi�ed as evidence nodes: `SootPresence', `COHb', and `TonguePosition',

since the objective of the study is to determine whether the variable `TonguePosition' indicate vital

burning. Therefore, `VitalBurning' is a query node. As stated previously, `VitalBurning' is a latent

variable, as there is no recorded/observable data related to this node. The preliminary node choices for

the case study is shown in Table 2.

Node name Type Value

SootPresence Binary {0,1}
COHb Binary {0,1}

TonguePosition Binary {0,1}
VitalBurning Binary {0,1}

Table 2: Preliminary node choices for case study .

The data is converted to binary data so that each of the evidence nodes have two states:

SootPresence =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

0

for Positive soot level

for Negative soot level

COHb =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

0

for Percentage COHb ≥10%

for Percantage COHb <10%

TonguePosition =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

0

for Tongue protruded

for Tongue not protruded

6.2.2 BN structure

The next step is to determine the topology of the BN. Since, `SootPresence', `COHb', and `TonguePosition'

are evidence nodes; and `VitalBurning' is a query node, the direction of �ow will be from `VitalBurning'

to `SootPresence', `COHb', and `TonguePosition'. This is illustrated in Figure 10a. In machine learning

terminology, this is referred to as a Naive Bayes graphical structure: `VitalBurning' is the class node and

`SootPresence', `COHb' and `TonguePosition' are the features. The absence of links between the features

is an indication of conditional independence [26].

27



(a) Preliminary topology for BN. (b) CPT for case study.

Figure 10: Preliminary BN with associated CPTs.

6.2.3 Parameterisation

After determining the topology of the BN, the next step is to construct the CPTs associated with each

node. However, since the data contains a latent variable, a structural expectation-maximization (EM)

algorithm is implemented to process the values during network learning. This is executed in BayesiaLab4

to calculate the probabilities associated with each node. The EM algorithm is applied after each new arc

is added, suppressed or inversed. The observations are then used to populate the CPT via the method of

Maximum Likelihood Estimation [9]. The probabilities obtained is then transferred with the BN structure

in Figure 10a to Hugin Lite. The CPTs obtained are illustrated in Figure 10b.

Now suppose another node is added to the BN, i.e., the circumstances surrounding the death of the

victim, denoted by `Circumstances'. The preliminary node choices in Table 2 is now updated to include

`Circumstances'. The `Circumstance' node has the following states:

Circumstances =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AircraftAccident

DestroyingEvidence

Necklacing

ShackFire

Other

for cause of death: Aircraft accident

for homicide cases where the corpses are burned to

destroy evidence

for cause of death: Necklacing

for cause of death: Shack �re

otherwise

The proposition for `Circumstances' constitute a partition of the general class of all the possible

4BayesiaLab details: Copyright © 2001-2017 Bayesia S.A.S. All rights reserved. This software is protected by the
international laws related to copyright
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death causes and Pr(TongueProtrusion∣Circumstancesi) ≠ Pr(TongueProtrusion∣Circumstancesj)

for i ≠ j. The topology of the BN and the associated CPTs related to the updated BN is shown in

Figure 11a and Figure 11b respectively. Note that the `VitalBurning' node CPT is updated to include

the e�ect of the `Circumstances' node. The probabilities in Figure 11b is obtained during a consultation

with Prof Herman Bernitz, who is an expert in the �eld of forensic odontology. Therefore, the BN now

consists of manifest variables and latent variables generated from expert knowledge and machine learning

techniques. Figure 12 shows the monitor windows associated with the BN before any belief updating due

to new evidence in the network.

(a) Updated BN containing `Circumstances' node. (b) CPT for node `Circumstances' and `VitalBurning'.

Figure 11: BN for vital burn victim.

6.2.4 Inference

The next step is testing the BN by computing a `what-if' analysis scenario. New evidence is propagated

through the network. For illustrative purposes, the following scenarios will be considered:

Scenario A

Consider a crime scene investigation where a severely charred body is found in an open �eld in a rural area

near Polokwane, Limpopo. Further investigation yields that exposure to death occurred before death. The

Figure 12: Marginal probabilities of variables.
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cause of death is ruled to be a homicide case where the corpse is burned to destroy evidence. The what-if

analysis is illustrated in Figure 13. Notice how the BN updates the information in the `VitalBurning'

node. Initially, the `VitalBurning ' node returned a probability of 0.6948 for a positive result and a

probability of 0.3052 for a negative result. As soon as evidence becomes available on the circumstances

surrounding the victim's death, the `VitalBurning ' node updates its probabilities, the probability of the

victim sustaining vital burns decreases to 0.0510. However, the probability of the victim not obtaining

vital burning increases to 0.9490 (illustrated in Figure 13a). Indicating that vital burning for homicide

cases where the corpses are burned to destroy evidence is less likely to happen. Suppose the forensic

pathologist determines that the victim does not have a protruded tongue. The e�ect on `VitalBurning '

is illustrated in Figure 13b. Notice how the probability of a positive vital burn result decreases to 0.0113

as the new evidence is added to the BN. This is a possible indication that a non-protruding tongue does

not indicate vital burning. However, further investigation is needed to make a conclusion.

(a) Belief updating when `Circumstances' node receives ev-
idence.

(b) Belief updating when `TonguePosition' receives evi-
dence.

Figure 13: What-if analysis for scenario A.

Scenario B

Consider now a crime scene investigation where a severely charred body is found at an aircraft accident

scene on a private farm in Alldays, Limpopo. The `what-if' analysis is demonstrated in Figure 14. Adding

evidence from the circumstances surrounding the victim's death, the probability of obtaining vital burns

is decreased to 0.5 (from the initial 0.6948) as illustrated in Figure 14a. Suppose the forensic pathologist

reports that the victim's tongue is protruded. From expert knowledge, if an aircraft accident victim has

a protruded tongue, the victim was in the backseat of the aircraft. Since the pilot would die of initial

impact, his tongue would be reported as not protruded. An interesting result is obtained from belief

updating. Once the evidence is added that the victim's tongue is protruded, the `VitalBurning ' node's

probability increases to 1. Indicating that tongue protrusion is a possible indicator of vital burning.
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(a) Belief updating when `Circumstances' node receives
evidence.

(b) Belief updating when `TonguePosition' receives evi-
dence.

Figure 14: What-if analysis for scenario B.

BNs for pedagogical purposes

Consider a scenario where the forensic investigator knows that vital burning is present. Note that this is

a hypothetical scenario for pedagogical purposes. The belief updating is illustrated in Figure 15. Notice

how the variable `TonguePosition' updates. The initial probability for `TonguePosition' Protruded is

0.5475. As soon as the network updates its beliefs, the probability of witnessing a protruded tongue

increases to 0.7879. This indicates that there is a statistical relationship between vital burning and

tongue protrusion.

Figure 15: Belief updating for hypothetical scenario.

A `what-if' analysis is not conducted on the e�ect of `SootPresence' and `COHb' on `VitalBurning ' as

both variables are possible indicators of heat exposure [6, 14].

7 Conclusion

In this report, the forensic assessment of burnt bodies is considered, whereas Taroni et al. considered

the evaluation of evidence in the following three forensic disciplines: Transfer evidence, marks and DNA
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evidence [32]. The research problem: �Is tongue protrusion an indicator of vital burning?� is �rst eval-

uated using non-parametric statistical analysis as a comparative study. In the comparative study, the

association between soot deposits in the respiratory tract and tongue protrusion, and the association

between the percentage of carboxyhaemoglobin in the blood and tongue protrusion is tested. The com-

parative study concluded that there is a statistically signi�cant association between soot deposits in the

respiratory tract and tongue protrusion. However, the comparative study concluded that there is no sta-

tistically signi�cant association between the percentage of carboxyhaemoglobin in the blood and tongue

protrusion. This result leads to the decision to evaluate the research problem using Bayesian networks.

Not only does Bayesian networks provide the user to include latent variables and expert knowledge, it is

capable to predict posterior probabilities from prior probabilities.

Through a `what-if' analysis, the Bayesian network showed that once evidence is added to the network,

the belief on the `VitalBurning ' node updated to a probability of 1. Indicating that there is a statistically

signi�cant relationship between tongue protrusion and vital burning. Therefore, it can be concluded that

tongue protrusion is a possible indicator of vital burning. Thus, tongue protrusion may be considered

with other variables, such as soot deposits and COHb% in blood, when determining the possibility of

vital burning.

Challenges to the case study include the elimination of missing values that resulted in a smaller sample

size, as well as ethical limitations5. In future investigations, the BN can be extended to include more

circumstantial variables which can facilitate autopsy reports. Aside from this, sampling for more data

should be done in the future to con�rm the results obtained. With a larger sample size, it will be possible

to test whether a non-protruding tongue could indicate non-vital burning. Bernitz et al. state that the

exact mechanism involved in tongue protrusion during vital burning should also be investigated [4].

5Inquest Act no. 58 of 1959 of the Republic of South Africa
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Appendix

Logistic regression

Since logistic regression is not the focus of this paper and is only used as a comparative study, this section

will only cover essential theory related to Logistic regression. Logistic regression is a statistical method

for analyzing a regression model that consist of dependent categorical variables. The theory of logistic

regression was developed by David Cox during 1958 [11]. In logistic regression, the response variable may

be dichotomous, nominal or ordinal, and the explanatory variable may come across as ratio, interval or

dummy variables [25]. The logistic regression model is used to estimate the probability of a response

based on one or more explanatory variables. Therefore, the presence of a speci�c risk factor is used to

estimate the percentage increase in probability of a given outcome.

The Wald Chi-square statistic can be used to assess the signi�cance of the coe�cients contribution

within a regression model [24]. The Wald Chi-square statistic can be written as the ratio of the squared

estimate and the squared standard error:

Wi = β2
i

SE2
βi

Note the following limitations of the Wald Chi-square statistic: when βi is signi�cantly large, the

standard error is also large. Therefore, increasing the probability of obtaining a Type-II error. Another

limitation is that when data is sparse, the Wald Chi-square statistic becomes biased [8]. The Wald

con�dence limits is the con�dence interval for the proportional odds ratio given the other explanatory

variables in the model. The con�dence interval is equal to the Wald Chi-square statistic; if it excludes 1,

the null hypothesis for the regression model would be rejected.

Non-parametric tests

Since non-parametric tests is not the main focus of this paper, this section will brie�y cover essential

theory linked to the comparative study.

Fisher's exact test

Sir Ronald A. Fisher developed the Fisher's exact test for a 2 × 2 contingency table [23]. Fisher's exact

test is used when two variables are to be compared to establish an association between these variables.

For the purposes of this paper, only the interpretation of Fisher's exact test is of importance. Since

Fisher's exact test returns a p−value, hypothesis testing will follow the usual rejection criteria. For large

samples, a Chi-square test can be done. However, this will only be an approximation since the sampling
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distribution of the test statistic is is calculated in such a way as to approximate it to the Chi-square

distribution.

Kolmogorov-Smirnov

The Kolmogorov-Smirnov test quanti�es the distance between the cumulative distribution function and

the empirical distribution function [22]. Therefore, it is used to test whether there is a signi�cant di�erence

in the distribution of the samples.

Mann-Whitney test

The Mann-Whitney test is a non-parametric test to test under the null hypothesis if two samples come

from the same population, i.e., test to see if the two samples have the same median. Therefore, the

Mann-Whitney test is used as a test for location [30].

Siegel-Tukey test

The Siegel-Tukey test, tests under the null hypothesis if there is a di�erence in spread between two

samples. Therefore, the Siegel-Tukey test is a test for variability [31].

SAS Code

***************************************************************************

Iena Pe t r one l l a Derks 13075782

Bayesian networks app l i ed to f o r e n s i c s c i e n c e

Year : 2017

***************************************************************************

***************************************************************************

Tongue data in Binary format

Focus po int : COHb10, Tongedit and s o o t e d i t .

AllTongueData : Used to e l im ina t e data not used . Therefore , data such as

when the tongue i s dest royed in such a manner that i t i s

impos s ib l e to determine tongue prot rus ion , as we l l as when no

data regard ing the po s i t i o n o f the tongue was recored i s

e l im inated from the datase t . This datase t conta in s 107

obs e rva t i on s .

MissingTongueData : Used to e l im ina t e the miss ing va lue s pre sent in the

data . This datase t conta in s 74 observat ions , meaning that 33
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obs e rva t i on s returned miss ing va lue s .

BinaryTongue : Used to convert the newly " c leaned " data to binary

code . This datase t conta in s 74 va lue s .

Binary used as f o l l ow :

TongueProtrusion 0 : Tongue not Protruded 1 : Tongue Protruded

SootLeve l 0 : Negative 1 : Po s i t i v e

COHbScore 0 : <10% 1 : >=10%

************************************************************************** ;

Data AllTongueData ;

i n f i l e 'C: \ Users \ Ineke Derks\Desktop\UP 2017\Research Pro j ec t \

Tongue pro t ru s i on \tongue−vs− soot . txt ' ;

input Obsnumber Race Gender Age TonguePosit ion SootLeve l COHb

COHbScore @@;

TongueProtrusion = TonguePosit ion ;

i f TonguePosit ion = 1 then TongueProtrusion = . ;

i f TonguePosit ion = 4 then do ;

i f SootLevel = 1 then TongueProtrusion = . ;

i f SootLevel = 2 then TongueProtrusion = 2 ;

end ;

run ;

Data MissingTongueEliminate ;

s e t AllTongueData ;

keep TongueProtrusion SootLeve l COHbScore ;

i f TongueProtrusion = . then d e l e t e ;

i f SootLevel = . then d e l e t e ;

i f COHbScore = . then d e l e t e ;

run ;

Data BinaryTongue ;

s e t MissingTongueEliminate ;

keep TongueProtrusion SootLeve l COHbScore ;

i f TongueProtrusion = 2 then TongueProtrusion = 0 ;

e l s e TongueProtrusion = 1 ;

i f SootLevel = 2 then SootLeve l = 0 ;

e l s e S o o t l e v e l = 1 ;
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i f COHbScore = 1 then COHbScore = 0 ;

e l s e COHbScore = 1 ;

run ;

***************************************************************************

Nonparametric r e g r e s s i o n −> Al l the data i n c l ud ing miss ing va lue s

Therefore , the datase t "AllTongueData" i s used to perform the

f o l l ow i ng t e s t s :

−> TongueProtrusion vs SootLeve l s

−> TongueProtrusion a s s o c i a t ed with SootLeve l s : Fisher ' s

exact t e s t v ia PROC LOGISTIC .

−> TongueProtrusion vs percentage COHb

−> Di f f e r e n c e in median COHb% l e v e l s between tongue

pro t ru s i on and tongue not protruded : Wilcoxon

s c o r e s v ia PROC NPAR1WAY.

−> Di f f e r e n c e in spread COHb% l e v e l s between tongue

pro t ru s i on and tongue not protruded : S i e g e l −Tukey

s c o r e s v ia PROC NPAR1WAY.

−> Di f f e r e n c e in d i s t r i b u t i o n COHb% l e v e l s between tongue

pro t ru s i on and tongue not protruded :

Kolmogorov−Smirnov t e s t v ia PROC NPAR1WAY.

−> TongueProtrusion a s s o c i a t ed with percentage COHb:

Fisher ' s exact t e s t v ia PROC LOGISTIC .

************************************************************************** ;

gopt ions r e s e t = a l l ;

t i t l e 1 ' De s c r i p t i v e s t a t i s t i c s ' ;

proc f r e q data = AllTongueData ;

t ab l e s Race Gender TongueProtrusion SootLeve l COHbScore ;

run ;

gopt ions r e s e t = a l l ;

t i t l e 1 'Tongue pro t ru s i on vs presence o f soot ' ;

proc f r e q data = AllTongueData ;

t ab l e s TongueProtrusion * SootLeve l / ch i sq expected c e l l c h i 2 ;

t a b l e s TongueProtrusion *COHbScore / ch i sq expected c e l l c h i 2 ;

exact l r c h i ;
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run ;

gopt ions r e s e t = a l l ;

ods g raph i c s on ; t i t l e 1 'Tongue pro t ru s i on vs presence o f COHb% ';

proc npar1way data = AllTongueData wi lcoxon s t conover ed f median

c o r r e c t = no p l o t s = anovaboxplot ;

c l a s s TongueProtrusion ;

var COHb; exact wi lcoxon ;

run ;

gopt ions r e s e t = a l l ;

ods g raph i c s on ; t i t l e 1 'Tongue pro t ru s i on vs presence o f soot ' ;

proc l o g i s t i c data = AllTongueData ;

c l a s s SootLeve l / descending ;

model TongueProtrusion ( event = 'Tongue protruded ' ) = SootLeve l ;

run ;

gopt ions r e s e t = a l l ;

t i t l e 1 'Tongue pro t ru s i on vs presence o f COHb% ';

proc l o g i s t i c data = AllTongueData ;

c l a s s COHbScore / descending ;

model TongueProtrusion ( event = 'Tongue protruded ' ) = COHbScore ;

run ;

ods g raph i c s o f f ;

qu i t ;
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Abstract

Financial markets are extremely volatile and being able to model such markets accurately would

increase our understanding of them. In this study di�erent models will be �tted to observed �nancial

data using the method of maximum likelihood. This is done in an attempt to identify the model, and

its corresponding parameters, that best �ts the time series observed data. The �nancial data used

will be the historical S&P500 stock price.
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1 Introduction

This study is concerned with �tting various models to observed time series data. Each model is �tted

to the historical prices of the Standard & Poor 500 (S&P500) index. The S&P500 is a capitalization

weighted index which is comprised of 500 companies.

There are many methods that one can use to estimate parameters, some of the most popular being

maximum likelihood estimation (MLE), the method of moments estimation, and least-square estimation.

MLE is used in order to obtain parameter estimates throughout this study. When using MLE, the param-

eter set that maximizes the likelihood of observing the given data is chosen as the parameter estimates.

We are using MLE due to the desirable characteristics of the estimates, such as the consistency and

asymptotic normality of the estimates when models are �tted to independent and identically distributed

data. The vast amount of literature available on MLE adds to the desirability of this estimation method.

Furthermore, many software packages include algorithms for maximum likelihood estimation.

Financial models are often of a geometric form, i.e., the stock price at time t is often modelled as:

St = S0exp(Xt)

where S0 is the starting price and Xt is some stochastic process. Xt is known as the log-return process.

In this study we model the log-return process using various models.

The following models will be �tted to observed �nancial time series data using MLE.

• The Black-Scholes model. This model has had a major in�uence in the way traders hedge and

price options and has two parameters that need to be estimated. Under this model Xt follows a

Brownian motion.

• The geometric normal inverse Gaussian (N◦IG) model. This model has four parameters that interact

with each other in such a way that it can model a myriad of distributions and is a popular model

for log-returns, see [3].

• The geometric lognormal-normal model. This is a time changed model; the evolution of time is not

assumed to be constant. Rather time itself is modelled as evolving according to a lognormal process.

This is explained in more detail in section 4.2. This model is often used to accurately model data

with heavy tails. The lognormal-normal model has 4 parameters that require estimation.

• The ARCH (autoregressive conditional heteroscedasticity) model. This model is used to describe

time-varying volatility in �nancial markets.

• The GARCH (generalized autoregressive conditional heteroscedasticity) model. This model, which

is used to describe volatility in �nancial markets, is a generalization of the ARCH model.
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2 Empirical properties of log-returns

Cont [2] presents a set of stylized empirical facts based on the statistical analysis of price variations in

di�erent types of �nancial markets. Stylized empirical facts refer to �ndings in empirical data that are so

consistent that it is accepted as fact. The author discusses some general issues relating to the statistical

studies of �nancial time series and then describes the various statistical properties of asset returns.

The mentioned properties include an absence of signi�cant autocorrelations of asset returns, except in

small intraday time periods of approximately 20 minutes where market microstructure e�ects are taken

into consideration. Market microstructure refers to the processes observed only when considering very

small time scales. Gain/loss asymmetry, where large downward movements in stock prices are observed

but not equally large upward movements, i.e., frequent smaller upward movements are observed along

with the occasional large downward movement. Aggregational Gaussianity is also observed in �nancial

returns. This means that the distribution of returns appears to be more normally distributed at greater

time scales. Therefore the shape of the distribution is dependent on the time scale used. Volatility clus-

tering, where high-volatility events tend to cluster in time, this means that a small(large) price change is

typically proceeded by another small(large) change in price. The returns distribution exhibit heavy tails

even after correcting for volatility clustering by using GARCH models. The absence of autocorrelations

in the asset returns lends support for random walk models of prices where the returns are considered to be

independent random variables. However, the lack of serial correlation does not mean that the increments

of the asset returns are independent. It can be shown that some nonlinear functions of asset returns,

such as the squared returns and absolute returns, actually exhibit signi�cant positive autocorrelation

which implies that there is nonlinear dependence. This serves as a motivation for considering ARCH and

GARCH models.

In [2], the author emphasizes statistical properties common to many of the popular markets and instru-

ments. The author then shows how many of the popular statistical approaches used to study �nancial

data sets are invalidated by the mentioned statistical properties. An example of this is how the absence

of autocorrelations makes creating a simple statistical trading strategy impossible. If price changes did

exhibit signi�cant correlations, this would result in a strategy with positive expected pro�t which would

result in statistical arbitrage.

2.1 Describing the log-return data

The programming language R, see [6], is used throughout this study in order to estimate the parameters

of the models. We input the historical stock prices of the S&P500 into R and calculated the log returns.

8



Figure 1: Plot of the S&P500 prices

Figure 2: Plot of the S&P500 log-returns

The empirical kernel density of the log-return data is given in Figure 3.
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Figure 3: Empirical kernel density plot of the log-returns

The following descriptive statistics were taken from the data:

• Mean = -0.0002023.

• Variance = 0.0001732.

• Skewness = 0.3243.

• Kurtosis = 10.0278.

We use the S&P500 historical stock price data because it is a closely monitored stock index that is

also highly popular with both market traders and statisticians alike due to it being comprised of 500

companies which issue 505 common stocks that cover approximately 80 percent of the American equity

market. The S&P500 is traded on American stock exchanges which make it a highly traded stock. The

data set used has 2519 observations of historical S&P500 daily closing prices which start from 28 March

2007 to 28 March 2017.

In what follows we �t various models to the observed log-returns. Section 3 discusses the Black-Scholes

model while Section 4 is concerned with model advanced �nancial models.

3 The Black-Scholes model

The Black-Scholes model was developed in 1973 by Fischer Black, Myron Scholes and Robert Merton.

Under the Black-Scholes model, stock prices are assumed to follow a geometric Brownian motion. As a

result, the marginal distribution on the log-returns is normal under this model, see [8]. In a Black-Scholes

market, the stock price at time t is given by:
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St = S0 exp(µt+ σWt),

where S0 is the stock price at time 0, µ is the drift parameter, σ is the volatility of the stock and Wt

denotes a standard Brownian motion at time t.

The book �Financial Modelling with Jump Processes� [9] provides a detailed discussion of the Black-

Scholes model is provided in [9]. Thereafter the authors highlight issues where the Black-Scholes model

fails to model real prices over various time-scales of interest. Many of the properties and assumptions

used in the Black-Scholes model con�ict with the stylized empirical facts regarding �nancial data sets

discussed in the previous section. Examples of these include the continuity of the stock price; it is well

known that stock prices contain jump discontinuities, see [7].

The only advantage of this model over the others discussed in this study is its simplicity, see [8]. Based

on stylized facts discussed above, we note that the assumptions of the Black-Scholes models do not hold

in practice due to the following observed facts:

• Log-returns do not follow the normal distribution.

• The volatilities are clustered, meaning that large movements tend to be followed by large movements

and small movements tend to be followed by small movements.

• The volatilities change stochastically over time.

Figure 4: SAS plot of the log-returns
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Table 1: SAS test for normality

Based on the SAS PROC UNIVARIATE test for normality in table 1, the observed log-returns are not

normally distributed and therefore we can estimate that the Black-Scholes model will not �t the estimated

empirical density well.

4 Advanced �nancial models

Below we consider various types of models. We discuss the estimation of the parameters of these models

in each case. Each of the models that follow are generalizations of the Black-Scholes model. Where the

Black-Scholes is modeled by St = S0exp(Xt) where Xt ∼ N(µt, σ
2
t ), the following models assume more

�exible processes for Xt.

4.1 The geometric normal inverse Gaussian model

Under this model the log-returns of a stock price process are assumed to follow a normal inverse Gaussian

(N◦IG) distribution. The N◦IG distribution is a �exible distribution and is a popular choice in the

modeling of heavy-tailed processes. The N◦IG distribution was �rst developed by Barndor�-Nielsen and

is fully described by four real valued parameters. Di�erent parameter values allow for a wide range of

distributional shapes. The N◦IG distribution is desirable because it is able to mimic the heavy tailed

nature of the observed return data as well as the observed skewness, see [4] and [11].

The N◦IG density function is given by:

f(x, α, β, µ, δ) =
αδ

π
exp(δ

√
α2 − β2 + β(x− µ))φ(x)− 1

2K1(αφ(x)
1
2 ),

where φ(x) = δ2 +(x−µ)2, K1(x) denotes the modi�ed Bessel function of the third kind of order 1 with

α > 0, |β| < α and δ > 0, see [4].

Under the geometric N◦IG model, the stock price is modelled as:

St = S0exp(Xt),
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where Xt follows a N◦IG process.

The N◦IG process is de�ned in terms of the increments. Let each daily log-return follow a N◦IG distri-

bution, independent of the other log-returns.

Yj ∼ N ◦ IG(α, β, µ, δ),

then the log-return process is de�ned as

Xt =

t∑
j=1

Yj .

The marginal distribution of the log-return process is

Xt ∼ N ◦ IG(α, β, µt, δt).

Consider the moments of the N◦IG distribution. Using the notation γ =
√
α2 − β2, the �rst four moments

of the N ◦ IG(α, β, µt, δt) distribution are as follows:

• Mean: µ+ δβ
/
γ

• Variance: δα2
/
γ3

• Skewness: 3β
/(
α
√
δγ
)

• Kurtosis: 3(1 + 4β2/α2)
/
(δγ)

The N◦IG distribution is more �exible than the normal distribution and therefore, we expect this model

to �t the observed log-returns better than the case with the normal distribution. The shortfall of this

model is the complications that arise in estimating the parameters due to the Bessel functions that make

calculating the partial derivatives of the density function a complicated procedure.

4.2 The geometric lognormal-normal process model

The lognormal-normal model is obtained by making time evolve at a stochastic rate. I.e., time is modelled

by a lognormal process. This model has an interesting trait which allows for the variance of the distribu-

tion to remain constant while the kurtosis is changed as desired, see [1]. Consider a process X(t), where

the di�erence between X(t) and X(t− 1) (denoted by 4X(t)) are independent and normally distributed

and directed by a process T (t) where the di�erence between T (t) and T (t − 1) (denoted by 4T (t)) are
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also independent but lognormally distributed, see [1]. If 4X(t) is normally distributed with a mean of 0

and a variance of σ2, then 4X(T (t)) is a lognonrmal-normal distribution. The lognormal-normal model

has 4 parameters that require estimation and the density of the distribution is given by:

f(x, α, β, µ, σ) =
1

2πσβ

∞̂

0

y−
3
2 exp(− (x− µy)2

2σ2y
− (log(y)− α)2

2β2
)dy,

where β > 0, σ > 0, µ ∈ R, α ∈ R.

This model is desirable because of its characteristic that allows for the kurtosis, which controls the

intensity of the peakedness of the distribution, to be changed as needed while maintaining a constant

variance.

In Figure 4, we see that a normal approximation to the data does not �t well and that a model with larger

kurtosis would be able to model the underlying process more accurately. We show that the lognormal-

normal distribution, being able to change its shape, will be a more suitable choice for modelling log-return

data.

4.3 Time-varying volatility models

Below we consider the ARCH(1) and GARCH(1,1) model.

4.3.1 The ARCH model

The ARCH (autoregressive conditional heteroscedasticity) model is used to model time-changing volatil-

ity. Such movements were not until recently considered important, see [5]. The ARCH(q) model is a

discrete-time stochastic volatility model and is de�ned as:

Yt = µ+ εt,

where Yt is the log-return on day t, with

εt = zt
√
ht,

where

ht = ω +

q∑
i=1

αiε
2
t−i,

µ, ω, αi are constants for all i∈ 1, 2, ..., q with µ ∈ R, ω > 0, and
∑q

i=1 αi < 1.

In this model µ represents the mean of the process, ht represents the volatility of the process and is

calculated as a function of the previous error terms added to a base volatility. εt represents the error

term added to the mean return and is calculated as the square root of the volatility (ht) multiplied by

an innovation term (zt). A standard normal distribution is the most popular choice for the innovation
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term. ω is a constant term serving as a baseline for the volatility process. The mean of the process is

often modelled using an autoregressive process, see [7] and [10].

In this study only the ARCH(1) model is considered.

4.3.2 The GARCH model

The GARCH (generalized autoregressive conditional heteroscedasticity) model, being autoregressive, uses

historic variance to model the current variance of log-returns. This model often uses the normal distri-

bution as a model for the innovation term. For an account of the use of these models in �nance, see [5].

The GARCH(p, q) model is given by:

Yt = µ+ εt,

εt = zt
√
ht,

where

ht = ω +

p∑
j=1

αjh
2
j−1 +

q∑
i=1

βiε
2
t−i,

µ, ω, αi are constants for all i∈ 1, 2, ..., q and j ∈ 1, 2, ..., p with µ ∈ R, ω > 0,
∑q

i=1 αi < 1 and
∑p

j=1 βj <

1.

In this model µ represents the mean of the process, ht represents the volatility of the process and

is calculated as a function of the previous error terms and previous volatility terms added to a base

volatility. εt represents the error term added to the mean return and is calculated as the square root

of the volatility (ht) multiplied by an innovation term (zt) which is assumed to be standard normal

throughout this study. ω is a constant term serving as a baseline for the volatility process, see [7] and

[10].

In this study only the GARCH(1,1) is considered.

5 Parameter estimation

Below we �t each of the models discussed in the previous section to the observed log-returns of the

S&P500.
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5.1 The Black-Scholes model

Method of estimation

Consider the de�nition of the Black-Scholes model:

St = S0exp(µt+ σWt),

This model contains only two parameters that require estimation, namely µ and σ. Under this model:

St+1

St
=
S0exp(µ(t+ 1) + σWt+1)

S0exp(µt+ σWt)

= exp(µ+ σ(Wt+1 −Wt)).

Since Wt denotes a standard Brownian motion, (Wt+1 −Wt) ∼ Normal(0, 1). And therefore:

Log

(
St+1

St

)
= µ+ σX,

where X ∼ N(0, 1).

This equation can also be written as

Log

(
St+1

St

)
= Y,

where Y ∼ N(µ, σ2).

It is well known that the maximum likelihood estimators for a normal distribution are the sample

mean and sample variance of the data.

µ̂ =
1

n

n∑
i=1

Xi.

σ̂2 =
1

n

n∑
i=1

(Xi −X)2.

Therefore, once the log returns of the data have been calculated, it is a trivial matter to calculate the

sample mean and sample variance using any statistical package or software.

Estimation results

When using the maximum likelihood estimation we obtained the following estimates:
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µ̂ = −0.0002.

σ̂ = 0.0132.

As a means of visually evaluating the �t of the model to the data, we compare the density of the log-

returns under the model (with the estimated parameters) to a kernel density estimate of the observed

log-returns. We use the plot function in R to do this comparison [6].

The following is the graphical representation of the estimated kernel density estimate of the observed

log-returns (black line) and the estimated normal distribution (blue line).

Figure 5: Black-Scholes model

Figure 6 provides some evidence against the assumption that log-returns follow a normal distribution.

5.2 The N◦IG model

The N◦IG model is a generalization of the Black-Scholes model. Under the Black-Scholes model: St =

S0exp(Xt), with Xt ∼ N(µt, σ2t). Under the N◦IG model, Xt ∼ N ◦ IG(α, β, µt, δt).

Method of estimation

In order to obtain starting values for the optimization algorithm, parameter sets are generated randomly

and the log likelihood function of the data is calculated for each parameter set. We used two methods to
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generate the starting parameter sets, the parameter set of each method which minimized the negative of

the log likelihood was then optimized in order to obtain a local minimum at two di�erent locations. The

�rst method of generating parameters used nested loops to generate all possible combinations of whole

numbers in a range. The second method generated one thousand random values for each of α, β, µ and δ

from a with speci�ed ranges uniform distribution. The parameter set that maximizes the log likelihood

is used as the starting values. The optimization is done as follows. A function was created in R that

calculates the N◦IG density at a data point with the parameters of the distribution given as parameters

to the function. This essentially calculated the density at a data point for a speci�c set of parameters.

Another function was then created that made use of the �rst function to calculate the density of the

parameters at all the data points, and then multiplied the evaluated densities together and calculated

the negative log of this value. We use the negative of the log likelihood since the optimization packages

in base R optimize to a local minimum by default. The optimization function used is the optim function,

see [6]. In short, these functions are used to output a single value as the negative log likelihood of a

density with a de�ned set of parameters.

Estimation results

When using the maximum likelihood estimates from the method detailed above, we obtain the following

estimates:

α̂ = 40.8557.

β̂ = 5.8282.

µ̂ = −0.0012.

δ̂ = 0.007.

Figure 7 shows the kernel density estimate of the observed log-returns (black line). The estimated N◦IG

density is superimposed (in blue).
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Figure 6: NoIG model

When the estimated distribution is graphically represented and overlayed with the empirical data, we

can see how well the model �ts. In section 6 we consider a quantitative measure of the closeness of the

densities shown above.

5.3 The geometric lognormal-normal process model

The geometric lognormal-normal process model is also a generalization of the Black-Scholes model. Under

the geometric lognormal-normal model, Xt ∼ LNN(α, β, µt, σt).

Method of estimation

The approach used to estimate the parameters of the geometric lognormal-normal distribution is similar

to the approach used to �t the NoIG distribution. Possible starting values for the optimization algorithm

are generated and the log likelihood of the data using the generated parameters is calculated in order �nd

the parameter set that minimizes the negative log likelihood. We use the negative of the log likelihood

since the optimization packages in base R optimize to a local minimum by default. The optimization

function used is the optim function, see [6]. The method used to generated starting values involved

generating one thousand random values for each of α, β, µ and δ from a with speci�ed ranges uniform

distribution. The parameter set that maximizes the log likelihood is used as the starting values. A

function was created in R that calculates the geometric lognormal-normal density at a data point with

the parameters of the distribution given as parameters to the function. This essentially calculated the

density at a data point for a speci�c set of parameters. Another function was then created, that made

use of the �rst function which calculated the density of the parameters at all the data points, and this

function then multiplied the densities together and calculated the negative log of this value.
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Estimation results

The parameter estimates returned by the program are:

α̂ = 0.743.

β̂ = 1.0761.

µ̂ = −5× 10−5.

σ̂ = 0.0062.

The plot of the kernel smoothed density estimate of the data (black line) as well as the plot of the

lognormal-normal density (blue line) using the estimated parameters are provided in �gure 8 with the

plot of the lognormal-normal density using the estimated parameters is given as:

Figure 7: lognormal-normal model

The lognormal-normal distribution visually appears to model the log-returns quite well.

5.4 The ARCH model

Method of estimation

One thousand random uniform values are generated for each parameter and the log-likelihood of all

these parameters are calculated. The parameter set that generates the lowest log-likelihood, since we

are calculating the negative log-likelihood in our log-likelihood function, will be used as the starting

parameter set. The optimization function built into R optimizes to a local minimum by default which is
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the reason for calculating the negative log-likelihood. Once the optimization function in R has run, we

then have the maximum likelihood estimates for the parameter values.

The stationary distribution of the ARCH(1) model is not known in closed form. In order to estimate this

density we proceed as follows. Using the estimated parameters we generate a time series. Because each

data point is generated using the previous data point there is some dependency between the generated

data points and the randomly generated data points but that dependency is reduced the further away the

data points are from one another. Therefore we assume that the thousandth data point is approximately

independent of the �rst data point. This step is repeated 200 times and the thousandth data point is

recorded each time in order to obtain a sample of 200 independent data points from which to draw a

kernel density estimate. The kernel density estimate created from the simulated data is then compared

to the kernel density estimate of the observed log-returns data.

Estimation results

The parameter estimates returned by the program are:

α̂ = 0.3921.

µ̂ = −0.0007.

δ̂ = 0.0001.

Figure 9 shows the kernel density estimates of the observed log-returns data (black line) and the kernel

density estimate of the simulated log-returns data (blue line).
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Figure 8: ARCH model

As we can see that the ARCH(1) model is not an idea �t to the observed data.

5.5 The GARCH model

Method of estimation

The method used to estimate the parameters for the GARCH model was similar to that used to estimate

parameters for the ARCH model except with an alteration to the likelihood function that incorporates

the added variable that requires estimation. One thousand random uniform values are generated for each

parameter and the log-likelihood of all these parameters are calculated. The parameter set that generates

the lowest log-likelihood, since we are calculating the negative log-likelihood in our log-likelihood function,

will be used as the starting parameter set. The optimization function built into R optimizes to a local

minimum by default which is the reason for calculating the negative log-likelihood. Once the optimization

function in R has run, we then have the maximum likelihood estimates for the parameter values.

The stationary distribution of the GARCH(1,1) model is not known in closed form. In order to estimate

this density we proceed as follows. Using the estimated parameters we generate a time series. Because

each data point is generated using the previous data point there is some dependency between the generated

data points and the randomly generated data points, more dependency than the ARCH(1) model due

to part of the previous variation being used to estimate the current variation, but that dependency is

reduced the further away the data points are from one another. Therefore we assume that the thousandth

data point is approximately independent of the �rst data point. This step is repeated 200 times and the

thousandth data point is recorded each time in order to obtain a sample of 200 independent data points

from which to draw a kernel density estimate. The kernel density estimate created from the simulated
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data is then compared to the kernel density estimate of the observed log-returns data.

Estimation results

The parameter estimates returned by the program were:

α̂ = 0.1771.

β̂ = 0.7675.

µ̂ = −0.0004.

δ̂ = 6× 10−6.

Figure 10 shows the kernel density estimates of the observed log-returns data (black line) and the kernel

density estimate of the simulated log-returns data (blue line):

Figure 9: GARCH model

We see that the GARCH(1,1) is a better �t than the ARCH(1) but this model is still not ideal.

6 Evaluation of the models

For each of the models used we calculate a quantitative measure of how well the model �ts the empirical

data. In this study we use the integrated squared error (ISE) as the mentioned measure of �t. This

function measures the squared distance between the empirical density estimate and the modeled density,
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Model Integrated squared error Computation time (s)

The Black-Scholes model 4.82 0.06
The N◦IG model 0.10 34.7

The Lognormal-normal model 0.50 24.1
The ARCH(1) model 4.81 23.3

The GARCH(1,1) model 1.98 21.6

Table 2: Model accuracy table

Figure 10: Model computation time

and integrates this squared distance over the support of the estimated density. The integrated squared

error is calculated as follows:

ISE =

ˆ
(f(x)− fe(x))2dx,

where f(x) is the density of the �tted model at the point x and fe(x) is the estimated empirical density

at the point x. fe is estimated using kernel estimation and the bandwidth h is selected using Silverman's

rule of thumb.

An ideal �tting model will have f(x) = fe(x) for all x, this will mean that the theoretical model �ts the

empirical data perfectly and that there will be no errors. When evaluating the equation, the closer the

values of f(x) and fe(x) are to each other, the smaller the ISE value will become. Therefore the model

that returns the ISE value closest to 0 will be the model that best �ts the empirical data.

Below we table the integrated squared error and computation time for each model �tted to the observed

log-returns:
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Figure 11: ISE by model

7 Conclusion

In this study we �tted 5 models to the observed log-returns of the S&P500. The Black-Scholes model,

the N◦IG model, the lognormal-normal model, a ARCH(1) model and a GARCH(1,1) model. Based on

the observed relationship between accuracy and program runtime, we can note that the cost of improved

accuracy is an increase in the amount of time it takes to run the program. I.e., we observe that the N◦IG

model is highly accurate with an integrated squared error of 0.101 and a runtime of 37.7 seconds while

the Black-Scholes model takes a mere 0.06 seconds to run but the accuracy, with an integrated squared

error of 4.82, is the worst of all the models �tted.
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Appendix

7.1 Black-Scholes code

#Start monitoring time taken to run the code

time = proc.time()

#Set working directory, import libraries

setwd("C:/Users/Vincent/Documents/2017/Semester 1/Reseach Project - WST 795/Data sets")

#Input my data data = read.table("SP500.csv", sep = ",")

close = data[,2]

close = na.omit(close)

close = close[length(close):1]

#Get the log returns

m = length(close)-1

logr = 1:m*0

for (i in 1:m)

{

logr[i] = log(close[i+1]/close[i])

}

#Plot desity of log returns

plot(density(logr))

#Getting the MLE paramter estimates

m = mean(logr)

s = sqrt(var(logr))

#Getting the plotting points

den = density(logr)

x = den$x

y = (1/sqrt(2*pi*s^2))*exp(-((x-m)^2)/(2*s^2))

plot(density(logr), xlim=c(-0.05, 0.05))

lines(x, y, col = "Blue", type = "l")

#Calculation of the estimation accuracy value

ise = (x[2]-x[1])*sum((y-den$y)^2)

totaltime = proc.time() - time

totaltime = totaltime[3]
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7.2 N◦IG code

#Start monitoring time taken to run the code

time = proc.time()

#Set working directory, import libraries

setwd("C:/Users/Vincent/Documents/2017/Semester 1/Reseach Project - WST 795/Data sets")

library("ghyp", lib.loc="~/R/win-library/3.3")

library("Bessel", lib.loc="~/R/win-library/3.3")

#Input my data

data = read.table("SP500.csv", sep = ",")

close = data[,2]

close = na.omit(close)

close = close[length(close):1]

#Get the log returns

m = length(close)-1 logr = 1:m*0

for (i in 1:m)

{

logr[i] = log(close[i+1]/close[i])

}

#Plot desity of log returns

plot(density(logr), xlim=c(-0.05, 0.05))

#Calculate density function of log returns with certain parameters

NoIGDens = function(al, be, mu, del, data)

{

dens = 0 if (al > 0 && del > 0 && abs(be) < al)

{

phi = sqrt(del^2 + (data-mu)^2)

dens = del*al/pi*exp(del*sqrt(al^2-be^2)+be*(data-mu))/phi*BesselK(al*phi, 1)

}

return(dens)

}

#Calculate the negative log likelihood function

logDens = function(param)

{

logdens = log(NoIGDens(param[1], param[2], param[3], param[4], logr))
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logdens = sum(logdens)

logdens = -1*logdens

return(logdens)

}

#Method 1 for �nding starting values for parameters

bot1 = 9999999999

count = 1

test = 1:1000*bot1

for (a in 1:6)

{

for (b in 1:a-1)

{

for (m in -1:1)

{

for (s in 1:2)

{

par = c(a, b, m, s)

test[count] = logDens(par)

if (test[count] < bot1) #Finding the index value for the lowest log likelihood

{

bot1 = test[count]

indBot1 = par

}

count = count + 1

}

}

}

}

startParam1 = indBot1

#Method 2 for �nding starting values for parameters

n = 1000

alp = runif(n, 1, 150)

bet = runif(n, -120, 120)

muu = runif(n, -5, 5)
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del = runif(n, 1, 100)

test2 = 1:n*0

bot2 = 9999999999

for (i in 1:n)

{

par2 = c(alp[i], bet[i], muu[i], del[i])

test2[i] = logDens(par2)

if (is.�nite(test2[i])) #Finding the index value for the lowest log likelihood

{

if (test2[i] < bot2)

{

bot2 = test2[i]

indBot2 = i

}

}

}

startParam2 = c(alp[indBot2], bet[indBot2], muu[indBot2], del[indBot2])

#Optimizing (�nding the minimum)

optimum1 = optim(startParam1, logDens)

optimum2 = optim(startParam2, logDens)

#Parameter estimates

alpha1 = optimum1$par[1]

beta1 = optimum1$par[2]

mu1 = optimum1$par[3]

delta1 = optimum1$par[4]

alpha2 = optimum2$par[1]

beta2 = optimum2$par[2]

mu2 = optimum2$par[3]

delta2 = optimum2$par[4]

optParam1 = c(alpha1, beta1, mu1, delta1)

optParam2 = c(alpha2, beta2, mu2, delta2)

logL1=logDens(optParam1)

logL2=logDens(optParam2)

optParam = optParam2
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logL = logL2 if (logL1 < logL2)

{

optParam = optParam1

logL = logL1

}

cat("Maximum likelihood estimator: ", optParam) cat("Corresponding likelihood: ", -1*logL)

#Fitting the NoIG using the estimated parameters

den = density(logr)

x = den$x

y1 = NoIGDens(alpha1, beta1, mu1, delta1, x)

y2 = NoIGDens(alpha2, beta2, mu2, delta2, x)

y = NoIGDens(optParam[1], optParam[2], optParam[3], optParam[4], x)

plot(x, y1, col = "Blue", type = "l")

lines(x, y2, col = "Pink", type = "l")

lines(density(logr))

plot(density(logr))

lines(x, y, col = "Blue", type = "l")

#Calculation of the estimation accuracy value

ise = (x[2]-x[1])*sum((y-den$y)^2)

totaltime = proc.time() - time

totaltime = totaltime[3]

7.3 Lognormal-normal code

#Start monitoring time taken to run the code

time = proc.time()

#Set working directory, import libraries

setwd("C:/Users/Vincent/Documents/2017/Semester 1/Reseach Project - WST 795/Data sets")

library("ghyp", lib.loc="~/R/win-library/3.3")

library("Bessel", lib.loc="~/R/win-library/3.3")

#Input my data

data = read.table("SP500.csv", sep = ",")

close = data[,2]

close = na.omit(close)

close = close[length(close):1]
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#Get the log returns

m = length(close)-1 logr = 1:m*0

for (i in 1:m)

{

logr[i] = log(close[i+1]/close[i])

}

#Plot desity of log returns

plot(density(logr), xlim=c(-0.05, 0.05))

#Calculate lognormal-normal density function of log returns given certain parameters

LnnDens = function(al, be, mu, sig, data)

{

dens = 0

y = 0

if (sig > 0 && be > 0)

{

int = 0; for(i in 1:200)

{

y = i*0.25

int = int + (y^(-3/2))*exp(-1*((data-mu*y)^2)/(2*y*sig^2)-((log(y)-al)^2)/(2*be^2))*0.25 }

dens = 1/(2*pi*sig*be)*int

}

return(dens)

}

logDens = function(param)

{

logdens = log(LnnDens(param[1], param[2], param[3], param[4], logr))

logdens = sum(logdens)

logdens = -1*logdens

return(logdens)

}

n = 500

alp = runif(n, -1, 10)

bet = runif(n, 0, 5)

muu = runif(n, -0.5, 0.5)
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sigm = runif(n, -2, 2)

test = 1:n*0

bot = 9999999999

for (i in 1:n)

{

par = c(alp[i], bet[i], muu[i], sigm[i])

test[i] = logDens(par)

if (is.�nite(test2[i])) #Finding the index value for the lowest log likelihood

{

if (test2[i] < bot2)

{

bot2 = test2[i]

indBot2 = i

}

}

}

startParam = c(alp[indBot], bet[indBot], muu[indBot], sigm[indBot])

optimum = optim(startParam, logDens)

optParam = optimum$par

#Parameter estimates

alpha = optParam[1]

beta = optParam[2]

mu = optParam[3]

sig = optParam[4]

#Plotting of the graphs

den = density(logr)

x = den$x

y = LnnDens(alpha2, beta2, mu2, sig2, x)

plot(density(logr))

lines(x, y, col = "Blue", type = "l")

#Calculation of the estimation accuracy value

ise = (x[2]-x[1])*sum((y-den$y)^2)

#End monitoring time taken to run the code

totaltime = proc.time() - time
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totaltime = totaltime[3]

7.4 ARCH code

#Start monitoring time taken to run the code

time = proc.time()

#Set working directory

setwd("C:/Users/Vincent/Documents/2017/Semester 1/Reseach Project - WST 795/Data sets")

#Input my data

data = read.table("SP500.csv", sep = ",")

close = data[,2]

close = na.omit(close)

close = close[length(close):1]

#Get the log returns

m = length(close)-1

logr = 1:m*0

for (i in 1:m)

{

logr[i] = log(close[i+1]/close[i])

}

plot(density(logr))

#Calculation of the likelihood

like = function(par)

{

d = 1:(m-1)*0 h = 1:m*0

if(par[1] > 0 && par[3] > 0 && par[1] < 1)

{

h[1] = par[3]/(1-par[1])

e = logr-par[2]

for (i in 2:m)

{

d[i-1] = dnorm(logr[i-1], mean=par[2], sd=sqrt(h[i-1]))

h[i] = par[3] + par[1]*e[i-1]^2

}

}
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return(d)

} #Calculation of the log-likelihood

loglike = function(par)

{

ll = like(par)

ll = log(ll)

ll = sum(ll)

ll = -1*ll return(ll)

}

#Estimating starting parameters

n = 1000

al = runif(n, 0.0000001, 1)

mu = runif(n, -0.001, 0.001)

del = runif(n, 0.0000001, 1)

test = 1:n*0

bot = 9999999999

for (i in 1:n)

{

par = c(al[i], mu[i], del[i])

test = loglike(par)

if (is.�nite(test)) #Finding the index value for the lowest log likelihood

{

if (test < bot)

{

bot = test

indBot = i

}

}

}

#Optimization of the starting parameter estimates

sPar = c(al[indBot], mu[indBot], del[indBot])

optimum = optim(sPar, loglike)

oPar = optimum$par

#Simulation of the model to obtain independent data points
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m = 200

dist = 500

h = 1:dist*0

err = 1:dist*0

simr = 1:dist*0

use = 1:m*0

h[1] = oPar[3]/(1-oPar[1])

for (j in 1:m)

{

rand = rnorm(dist, mean = 0, sd = 1)

err[1] = rand[1]*sqrt(h[1])

simr[1] = oPar[2] + err[1]

for (i in 2:dist)

{

h[i] = oPar[3] + oPar[1]*err[i-1]^2

err[i] = rand[i]*sqrt(h[i])

simr[i] = oPar[2] + err[i]

}

use[j] = simr[dist]

}

#Finding the graph plotting points

denl = density(logr)

x = denl$x

denu = density(use, from=min(x), to=max(x))

#Plotting the kernel density estimates

plot(denl, xlim=c(-0.05, 0.05))

lines(denu, xlim=c(-0.05, 0.05))

#Calculation of the estimation accuracy value

ise = (x[2]-x[1])*sum((denl$y-denu$y)^2)

#End monitoring time taken to run the code

totaltime = proc.time() - time

totaltime = totaltime[3]
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7.5 GARCH code

#Start monitoring time taken to run the code

time = proc.time()

#Set working directory

setwd("C:/Users/Vincent/Documents/2017/Semester 1/Reseach Project - WST 795/Data sets")

#Input my data

data = read.table("SP500.csv", sep = ",")

close = data[,2]

close = na.omit(close)

close = close[length(close):1]

#Get the log returns

m = length(close)-1

logr = 1:m*0

for (i in 1:m)

{

logr[i] = log(close[i+1]/close[i])

}

plot(density(logr))

#Calculation of the likelihood

like = function(par)

{

d = 1:(m-1)*0

h = 1:m*0

if(par[1] > 0 && par[2] > 0 && par[4] > 0 && (par[1] + par[2]) < 1)

{

h[1] = par[4]/(1-par[1]-par[2])

e = logr-par[3] for (i in 2:m)

{

d[i-1] = dnorm(logr[i-1], mean=par[3], sd=sqrt(h[i-1]))

h[i] = par[4] + par[2]*h[i-1] + par[1]*e[i-1]^2

}

}

return(d)

}
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#Calculation of the log-likelihood

loglike = function(par)

{

ll = like(par)

ll = log(ll)

ll = sum(ll)

ll = -1*ll

return(ll)

}

#Estimating starting parameters

n = 1000

al = runif(n, 0.0000001, 1)

be = runif(n, 0.0000001, 1)

mu = runif(n, -0.001, 0.001)

del = runif(n, 0.0000001, 1)

bot = 9999999999

for (i in 1:n)

{

par = c(al[i], be[i], mu[i], del[i])

test = loglike(par)

if (is.�nite(test)) #Finding the index value for the lowest log likelihood

{

if (test < bot)

{

bot = test

indBot = i

}

}

}

#Optimization of the starting parameter estimates

sPar = c(al[indBot], be[indBot], mu[indBot], del[indBot])

optimum = optim(sPar, loglike)

oPar = optimum$par

#Simulation of the model to obtain independent data points
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it = 200

dist = 1000

h = 1:dist*0

err = 1:dist*0

simr = 1:dist*0

use = 1:it*0

h[1] = oPar[4]/(1-oPar[1]-oPar[2])

for (j in 1:it)

{

rand = rnorm(dist, mean = 0, sd = 1)

err[1] = rand[1]*sqrt(h[1])

simr[1] = oPar[3] + err[1]

for (i in 2:dist)

{

h[i] = oPar[4] + oPar[2]*h[i-1] + oPar[1]*err[i-1]^2

err[i] = rand[i]*sqrt(h[i])

simr[i] = oPar[3] + err[i]

}

use[j] = simr[dist]

}

#Finding the graph plotting points

denl = density(logr)

x = denl$x

denu = density(use, from=min(x), to=max(x))

#Plotting the kernel density estimates

plot(denl, xlim=c(-0.05, 0.05))

lines(denu, xlim=c(-0.05, 0.05))

#Calculation of the estimation accuracy value

ise = (x[2]-x[1])*sum((denl$y-denu$y)^2)

#Calculation of the time taken to run the program

totaltime = proc.time() - time

totaltime = totaltime[3]
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7.6 SAS Code

proc import data�le="C:\Users\Vincent\Documents\2017\Semester 1\Reseach Project - WST 795\Data

sets\Sp500 - logr.csv"

dbms=csv

out=sasuser.SP500

replace;

proc univariate data = sasuser.SP500 normal;

histogram logr /normal;

run;

40



Latent Dirichlet allocation applied to forensic data

Brent Albert Dreyer 12092942

STK795 Research Report

Submitted in partial ful�llment of the degree BCom(Hons) Statistics

Supervisor: Ms J. Mazarura, Co-supervisor: Dr. A. de Waal

Department of Statistics, University of Pretoria

30 October 2017

1



Abstract

In the modern world we have the ability to store vast amounts of digitized data. Data, however,

means nothing if it cannot be utilised. Large amounts of unlabelled data can be very problematic if one

wants to extract relevant information from it. Topic modelling is a tool that has been created to address

this problem by allocating similar documents to a certain topic. This makes extracting information much

easier, since the documents are now clustered according to topics. In this research project we will describe

and make use of latent Dirichlet allocation (LDA) to allocate a large amount of forensic data to topics.

LDA is arguably the most popular topic model and uses sophisticated methods to enable a computer to

identify topics in a manor that humans would. This will enable us to use the data more e�ciently and

extract meaningful information much faster. Inference will be done using the collapsed Gibbs sampler.
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1 Introduction

Wisdom, knowledge, information and data are some of the most valuable assets we possess. We have travelled

into space and achieved incredible things. Luckily the innovators and scientists of today have the privilege

of standing on the shoulders of giants. According to a study done by Buckminster Fuller1, human knowledge

doubled every century up until 1900. With the competitive and urgent environment created by the �rst and

second world wars, knowledge doubled every twenty �ve years. Today knowledge is doubling every twelve

months. The good news is that with this accumulated knowledge we can achieve things beyond our wildest

imaginations. However, it is not always easy to access information, because a lot of it still lies hidden in vast

amounts of data. The world has become a digital domain of data which exists in the form of documents,

social networks, and any form of digital memory. Most of the time the data is unstructured and unlabelled. It

becomes increasingly di�cult to pinpoint what we are looking for when we are faced with massive collections

of unlabelled data. Presently, search engines use key words to �nd relevant information. Topic modelling

algorithms use statistical methods to discover themes and how those themes change over time. They do this

by analysing the words in those texts through complex methods. With this new technology organising and

utilising large amounts of raw data has become a reality.

The main goal of topic modelling is to automatically discover topics in documents by looking at the

distribution of words in each document. There are many topic models that have been developed, but we

will focus on latent Dirichlet allocation (LDA) [2] which is arguably the most popular topic model. In this

research project, the LDA model will be explained in detail. As a practical example, it will be used to extract

topics from forensic data. The collapsed Gibbs sampler will be used to do inference on the LDA model.

Our colleagues at the forensic science department approached us to help organise their Autopsy reports.

Over the years this data have been accumulating and as a result, has become problematic to �lter through

and �nd document with certain traits. We received one thousand six hundred and sixty nine post mortem

examination reports to analyse. We applied LDA to �nd latent topics embedded in the documents. The

popular Python packagegensim was used to preprocess the data and implent the model. The output is a com-

prehensive understanding of semantically similar documents which enables navigation through documents.

2 Background Theory

In this section, concepts relevant to this paper will be explained in order to understand the work more clearly.

1http://www.industrytap.com/knowledge-doubling-every-12-months-soon-to-be-every-12-hours/3950
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2.1 Independent and identically distributed

Random variables are said to be independent and identically distributed (iid), if they follow the same probabil-

ity distribution and are mutually independent. In other words, two events are said to be iid if the occurrence

of one does not give any information as to whether the second event occurred or not. In particular, the

probability we ascribed to the second event is not a�ected by the knowledge that the �rst event has occurred.

The assumption of iid variables is the core of many statistical theorems, such as the central limit theorem,

which states that the probability distribution of the mean of iid variables approaches a normal distribution.

2.2 Conditional independence

Figure 1 is used to explain the concept of conditional independence. The outcome of the stochastic vari-

ables X1 and X2 are dependent on variable A. By de�nition, if X1 and X2 are conditionally independent

P (X1, X2|A) = P (X1|A). In other words, if A is assumed to be known then the outcome of X1 does not

in�uence the outcome of X2, similarly, the outcome of X2 does not in�uence the outcome of X1. For instance

if P (X1|A,X2) = P (X1|A) it can be said that X1 and X2 are conditionally independent given that A is

known.

Figure 1: Illustration of independent and identically distributed variables

2.3 Exchangeability

Exchangeability is an independence relation stronger than conditional independence. The set of random

variables Y1, Y2, ..., Yn is exchangeable if their joint probability, p(y1, ..., yn), is invariant to permutation of

the indices. That is, for any permutation π, p(y1, ..., yn) = p(yπ(1), ..., yπ(n)).

2.4 Su�cient statistics

This de�nition can be explained heuristically as follows. Suppose there are two persons, namely A and B.

Person A knows the entire random sample and person B only knows the value of T . It can be said that T is
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a su�cient statistic if person B can estimate the unknown parameter θ just as good as person A. According

to the mathematical de�nition the statistic T = r(X1, X2, ..., Xn) is a su�cient statistic if, for each t, the

conditional distribution of X1, X2, ..., Xn given T = t and θ, does not depend on θ.2

2.5 The exponential family

The exponential family, as explained in [8], is a range of distributions that can be manipulated into a pdf

p(x|θ), for x = (x1, ..., xm) ∈ Xm and θ ∈Rd that is in the form:

p(x|θ) =
1

Z(θ)
h(x)exp[θTφ(x)] (1)

= h(x)exp[θTφ(x)−A(θ)] (2)

where

Z(θ) =

∫
Xm

h(x)exp[θTφ(x)]dx (3)

A(θ) = logZ(θ) (4)

The
#»

θ are the natural parameters and φ ∈Rd is a vector of su�cient statistics. The partitioning function

and the log partitioning function are denoted by Z(θ) and A(θ) respectively, and h(x) is the scaling constant.

One important property of the exponential family is that all members have a conjugate priors. Given the

data D, a family F of prior distributions p(θ) is conjugate to a likelihood p(D|θ) if the posterior p(θ|D) is

in F . Having a conjugate prior simpli�es the computation of the posterior. This will prove to be helpful in

LDA.

2.6 The Gibbs sampler

The Gibbs sampler uses a method called Markov chain Monte Carlo (MCMC). The idea is that we sample

one variable at a time conditioned on all the other variables. Consider that we want to sample from the

distribution p(z) = p(z1, ..., zM ), and suppose that the initial state for the Markov chain has been chosen. In

each step of the procedure, the value zi will be replaced by a value drawn from the distribution based on all

the remaining values p(zi|Z(i)), where zi is the i
th value of Z and Z(i) denotes z1, ..., zM but with zi omitted.

We will now use a distribution p(z1, z2, z3) over three variables as an example. At step τ in the algorithm

2http://math.arizona.edu/ tgk/466/su�cient.pdf.
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we have selected values z
(τ)
1 , z

(τ)
2 and z

(τ)
3 . First we sample from the conditional distribution

p(z1|z(τ)2 , z
(τ)
3 ). (5)

We have now obtained a new value z
(τ+1)
1 that will replace the old value z

(τ)
1 in future sampling. Next we

will sample a new value for z
(τ)
2 from the conditional distribution

p(z2|z(τ+1)
1 , z

(τ)
3 ). (6)

Now that we have z
(τ+1)
1 and z

(τ+1)
2 , we will use them in the conditional distribution

p(z3|z(τ+1)
1 , z

(τ+1)
2 ) (7)

to obtain a replacement value z
(τ+1)
3 for z

(τ)
3 . This process of cycling through and sampling continues until

a steady state has been reached.

According to [1] the algorithm for Gibbs sampling, in general, can be summarised as follows:

Algorithm 1 The Gibbs sampler

1: Initialise (µi : i = 1, ...,M)

2: For τ = 1, ..., T :

- Sample µ
(τ+1)
1 ∼ p(µ1|µ(τ)

2 , µ
(τ)
3 , ..., µ

(τ)
M ).

- Sample µ
(τ+1)
2 ∼ p(µ2|µ(τ+1)

1 , µ
(τ)
3 , ..., µ

(τ)
M ).

...

- Sample µ
(τ+1)
j ∼ p(µj |µ(τ+1)

1 , ..., µ
(τ+1)
j−1 , µ

(τ)
j+1..., µ

(τ)
M ).

...

- Sample µ
(τ+1)
M ∼ p(zM |µ(τ+1)

1 , µ
(τ+1)
2 , ..., µ

(τ+1)
M−1 ).

Experiment:

Table 1 illustrates the the mean values as estimated by the Gibbs sampler against the true initial mean values.

It is clearly shown that the estimated mean values is very close to the actual mean values. The algorithm

was implemented using SAS version 9.4 and the code can be found in Appendix A.
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i µ̂i µi

1 29.6016 30

2 -9.99691 -10

3 4.97329 5

Table 1: Mean values estimated by the Gibbs sampler against the true mean values as initialised

2.7 The Dirichlet distribution

The Dirichlet distribution is a distribution on probability distributions. Suppose θ ∼ Dir(α), where the

density function of θ is given by:

p(θ) =
1

β(α)

n∏
i=1

θαi−1
i , I(θ ∈ S) (8)

where

• θ = (θ1, ..., θn) and
∑n
i=1 θi = 1

• α = (α1, ..., αn), αi > 0 and α0 =
∑n
i=1 αi.

• The probability simplex is given by S = (X ∈Rn : xi ≥ 0,
∑n
i=1 xi = 1)

We can rewrite the β function as
1

β(α)
=

Γ(α0)∏S
i=1 Γ(αi)

and thus the Dirichlet distribution can be rewritten

as:

p(θ) =
Γ(α0)∏S
i=1 Γ(αi)

n∏
i=1

θαi−1
i , I(θ ∈ S) (9)

The Dirichlet distribution is part of the exponential family. As previously stated, an advantageous feature of

the exponential family is that the distributions always have a conjugate prior. This will be useful, since the

Dirichlet distribution is a conjugate prior to the multinomial distribution. For a detailed proof the reader is

referred to [5].

3 Notation

• The vocabulary is the body of words in the corpus that we will be examining through the LDA process.

It is represented by a V-vector.
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• Words are units of discrete data and are represented in vector form, making up the entire vocabulary.

• N is the total number of words in a document. The words are denoted by W = (w1, w2, ..., wN ), where

wn is the nth word in the document.

• M is the total number of documents in a corpus. The documents are donated by D = (W1,W2, ...WM ),

where Wm is the mth document in the corpus.

• K is the number of topics.

• #»α is the hyperparameter on the mixing proportions (K-vector).

• #»

β is the hyperparameter on the mixing components (V -vector).

• #»

θm is the topic proportion for document m.

• #»

φk is the mixture component for topic k.

4 Literature review

In this section the literature of the development of LDA and and other text analysing models will be explored.

This will serve as a good foundation in order to understand key concepts in text analysis.

We have the ability to store text corpora electronically, but it is useless if we cannot analise and utilise the

massive amount of data stored. The aim is to reduce text corpora (in document form) to short descriptions

of the documents so that e�cient processing of the large collection of documents can be performed without

losing the essential statistical relationships that are useful for relevant judgments[3]. Methods have been

developed to address this problem and it has proven to be a challenging, but rewarding process. At �rst

the term frequency-inverse document frequency (tf-idf ) [11] scheme was introduced. The tf-idf scheme is

a weighting factor for variables. The weight increases as the word frequency in a document increases, but

that is o�set by the number of times the word appears in the entire corpus. The scheme is illustrated in

Table 2. We have to get a vocabulary from all the documents. Thereafter, the number of times each word

appears in a document has to be counted, this is the word count. We then use the word count to calculate

the term frequency for every word by dividing the word count for each individual word by the word total in

that document. Given the total number of documents collected, D, and the number of documents containing

the word, fw,D, an inverse document frequency (idf ) term is calculated using idf = ln

(
D

fw,D

)
[10]. We then

multiply the idf with the term frequency to obtain a tf-idf vector for each document.
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Table 2: An illustration of the tf-idf scheme with two documents containing eight words each

Thus we are left with a term by document matrix, denoted X, where the columns contain the tf-idf values for

each document. The more frequent a word is observed in di�erent documents, the less signi�cant it becomes.

This can be seen in the tf-idf columns, as the words that are observed in both documents have a weight of

zero. The scheme has proven to reduce documents of arbitrary length to a �xed length vector of numbers.

Searching for a relevant document using key words will be much more e�cient after the tf-idf values for

each word in each document has been obtained. The sum of the tf-idf values for each document, relative

to keywords3, will determine how relevant each document is. The document with the highest
∑
tf − idf ,

will be of greatest signi�cance. The scheme was compelling, because it was simple and e�cient for matching

keywords to documents. However, it lacked reduction in description length and did not reveal much statistical

structure between or inside documents. This problem was addressed by latent semantic indexing (LSI) [4]

which achieved signi�cant compression of big data collections. This was accomplished by breaking down the

X matrix to a linear subspace which captures a high percentage of the variance in the data set. In e�ect LSI

does not only look at the frequency of words appearing in the same document, but it also compares how often

those occurrences happen in all of the documents in the corpus. Hofmann [7] improved LSI by introducing

the probabilistic LSI (pLSI) model as an alternative to LSI. Before understanding pLSI, the unigram model

and mixture of unigrams will be explained for clari�cation. As illustrated in Figure 2(a), the unigram model

draws every word independently. The words are all drawn from a single multinomial distribution:

p(w) =

N∏
n=1

p(wn) (10)

3Keywords are words with great signi�cance to the subject.
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Figure 2: A Graphical illustration of the di�erent models explained. The plates (rectangles) represents
replicated structure, observed variables are represented by the shaded nodes and the unshaded nodes represent
latent or hidden variables. The arrows between the nodes represent dependency between variables. In (b) it
can be said that w is dependent on z. [3]

In the unigram model a topic assignment variable is still irrelevant since all the documents are assumed to

have the same topic.

As illustrated in Figure 2(b), the mixture of unigrams model can be obtained by augmenting the unigram

model with a discrete random variable z [9] . Under this model a document is generated using a slight di�erent

approach as the unigram model. We start by choosing a topic z. Thereafter, N words are independently

generated from the conditional multinomial p(w|z). Mathematically we can denote the probability of a

document with the function:

p(w) =
∑
z

p(z)

N∏
n=1

p(wn|z). (11)

This model assumes that each document has only one topic.

The pLSI model relaxes the assumption that each document is generated by only one topic. Figure 2(c)

14



illustrates that a document d and a word wn are conditionally independent given an unobserved topic z:

p(d,wn) = p(d)
∑
z

p(wn|z)p(z|d). (12)

This means that a document can be modeled as a function over topics. Despite this research being a step

forward in probability modeling of text, it has two weaknesses: the bigger the corpus is the more parameters

are present, which leads to over-�tting, and assigning probability to documents outside of the training set is

unclear [3]. This brings us to latent Dirichlet allocation which will be described in detail in section 5.

5 Latent Dirichlet allocation

LDA is traditionally used to detect underlying topics across a corpus of text documents. The basic concept

of LDA is that a document exhibits multiple topics in di�erent proportions. Words carry strong semantic

information, thus documents with similar topics use a similar group of words. It is worth noting that a topic

is de�ned as a distribution over a �xed vocabulary [2]. In other words, every topic contains a probability for

every word from the �xed vocabulary. The latent topics are discovered by identifying groups of words in the

corpus that frequently occur together within documents. It is important to understand that LDA is subject

to the "bag of words" assumption, which assumes that only the identity and not the position of the words

are relevant. This leads to an assumption of exchangeability for the words in a document and documents in

a corpus. However, it does not mean that the random variables are independent and identically distributed

(iid), instead it can be said that they are conditionally iid [3]. Due to the "bag of words" assumption, syntax's

are irrelevant to the model. Only the distribution of words matter. While we would never be able to read

the document, we will be able to identify the most obvious topics embedded in the document.

LDA and other topic models are part of the probabilistic modeling (PM) family. With generative PM, data

is treated as if it is arising from hidden (latent) variables. In other words, each document can be thought of

as a random mixtures over latent topics and the topics can be thought of as distributions over words.

Here follows the generative process that the LDA model assumed for every document Wm in corpus D [3].

1. A number of words N must be decided on, according to a Poisson distribution with parameter (ζ).

2. Choose a topic distribution
#»

θ for the document with Dir( #»α).

3. For each of the N words wn:

(a) First randomly choose a topic zn according to the multinomial distribution with parameters (
#»

θ ).
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(b) Then randomly choose each word ,wn, from a multinomial probability conditioned on the topic

zn: p(wn| #»z n,
#»

φ ).

The generative process can also be expressed graphically as in Figure 3. The only observable features are the

words illustrated by the shaded node. All the other parameters are latent or hidden. The parameter denoted

as z is the topic assignment of each word which makes each document a mixture of topics. φ

Figure 3: Graphical model representation of LDA [6]

The plates (rectangles) represent replicated structure. The outer plate represents the formation of the M

documents and the inner plate represents repeated choice of topics and words in the document. The observed

word is denoted by w and z is the topic for that word. The topic distributions for the documents is given by

#»

θ and the word distribution for the topics is denoted by
#»

φ . The hyper-parameters #»α and
#»

β are parameters

of the Dirichlet distribution. The former is used to control topic distribution for each document and the

latter is used to control the word distribution for each topic. When the α value is high each document is

likely to be compiled out of most of the topics, while a low α means that the documents are more likely to

be represented by just a few topics. When the β value is high each topic is more likely to be compiled out of

most of the words, while a low β value means that the topics are more likely to be represented by just a few

words.

To simplify the following assumtions are made. The number of topics, z, and therefore the dimensionality,

k, of the Dirichlet distribution is decided on and �xed beforehand. The word probabilities are parameterised

by a k × V matrix φ. The Dirichlet distribution is in the exponential family. It is a conjugate prior to

the multinomial distribution and it has �nite dimensional su�cient statistics [3]. The number of topics, k,
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determines the dimensionality of the Dirichlet distribution where
#»

θ can take on values in the (k−1)-simplex.

The k-vector
#»

θ lies in the (k − 1)-simplex if θi ≥ 0,
∑k
i=1 θi = 1. Here follows the probability density

function of the Dirichlet distribution on this simplex: Here follows the probability density function of the

K-dimensional Dirichlet distribution with parameters #»α :

p(θ| #»α) =
Γ(
∑k
i−1 α1)∏k

i=1 Γ(αi)

k∏
i=1

θαi−1
i . (13)

The parameters #»α is a k-vector with αi > 0 and Γ(x) is the Gamma function. The joint distribution of a

topic mixture
#»

θ , a set of N topics , z, and a set of N words , w, given the parameters #»α and
#»

φ is given by:

p(
#»

θ , #»z , #»w| #»α,
#»

φ) = p(
#»

θ | #»α)

N∏
n=1

p(zn|
#»

θ )p(wn|zn,
#»

φ ). (14)

The marginal distribution of a document is obtained by integrating over θ and summing over z, where p(zn|θ)

is simply θ for the unique i such that zin = 1:

p(w| #»α, #»

φ ) =

∫
p(θ| #»α)

(
N∏
n=1

∑
zn

p(zn|θ)p(wn|zn,
#»

φ )

)
dθ. (15)

To obtain the probability of a corpus, we must take the product of the marginal probabilities of single

documents:

p(D| #»α, #»

φ ) =

M∏
d=1

∫
p(θd| #»α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn,
#»

φ )

)
dθd. (16)

Both α and β are only sampled once in the corpus, where the variables θd and φ are sampled once for every

document and topic respectively. The variables zdn and wdn are sampled for every word in a document.

5.1 The Gibbs sampler for latent variable models

As explained in section 2.6, the Gibbs sampler is a special case of MCMC. Therefore, it can be used to

emulate high dimensional probability distributions p( #»x ) by the stationary behavior of a Markov chain. In

Eq. 17 it is clear that all the dimensions, xi, of the distribution are sampled one at a time and that they

are conditioned on all of the other values of all the other dimensions denoted by #»x (i). According to [6] the

algorithm works as follows:
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1. The dimension i should be chosen.

2. Using p(xi.
#»x (i)), xi will be sampled.

The full conditions of a Gibbs sample must be found, it is possible using:

p(xi| #»x (i)) =
p( #»x )

p( #»x (i))
(17)

Using Eq. 17, the general formulation of a Gibbs sampler for models with hidden or latent variables #»z

becomes:

p(zi| #»z (i),
#»x ) =

p( #»z , #»x )

p( #»z (i),
#»x )

(18)

The concept of the Gibbs sampler for latent variable models will now be used to derive a collapsed Gibbs

sampler for LDA. This will minimise uncertainty by "collapsing" away most of the unknown variables.

5.2 Inference via the collapsed Gibbs sampler

The collapsed Gibbs sampler will be described in the context of an LDA model. The idea behind the collapsed

Gibbs sampler is that we can analytically marginalise over all of the uncertainty in our model parameters

and just sample the word assignment variables z. We never have to sample our corpus-wide topic vocabulary

distributions α and β or any of the per-document speci�c topic proportions θ. We just go through iterations,

sampling the topic assignment for word variables z. Inference is done on the distribution p( #»z | #»w), which is

proportional to the joint distribution:

p( #»z | #»w) =
p( #»z , #»w)

p( #»w)
=

∏W
i=1 p(zi, wi)∏W

i=1

∑K
k=1 p(zi = k,wi)

. (19)

This often leads to much better performance, because we are examining uncertainty in a smaller space. In

essence, all of the model parameters can completely "collapse" away. All that is needed is to iteratively

re-sample the word assignment variables for every word in the document and then for every word in the

corpus. It is done by simulating p( #»z | #»w) using the full conditional p(zi| #»z (i),
#»w). The full conditional can be

obtained by using the hidden-variable approach which requires the joint distribution from the Gibbs sampler.

By assessing Eq. 18, the joint distribution in LDA can be factored as follows:

p( #»w, #»z | #»α, #»

β ) = p( #»w| #»z , #»

β )p( #»z | #»α). (20)
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It can by shown that:

p( #»w| #»z , #»

β ) =

K∏
z=1

∆ #»n z +
#»

β

∆(
#»

β )
, #»n z =

{
n(t)z

}V
t=1

. (21)

and

p( #»z | #»α) =

M∏
m=1

∆( #»nm + #»α)

∆( #»α)
, #»nm =

{
n(k)m

}K
k=1

, (22)

where

• #»n z is the vector of word observation counts for topic z.

• #»nm is the vector of topic observation counts for document m.

Thus, the joint distribution now becomes:

p( #»w, #»z | #»α) =

K∏
z=1

∆ #»n z +
#»

β

∆(
#»

β )
·
M∏
m=1

∆( #»nm + #»α)

∆( #»α)
. (23)

Using the full conditional, each of the topics, zi, that have been assigned to words should now sequentially

be re-sampled given all the other topic assignments, #»z (i), and all of the words, w in the corpus:

p(zi = k| #»z (i),
#»w) =

p( #»w, #»z )

p( #»w, #»z (i))
=

p( #»w| #»z )

p( #»w(i)| #»z (i))p(wi)
· p( #»z )

p( #»z (i))
(24)

∝
n
(t)
k,(i) + βt∑V

t=1 n
(t)
k,(i) + βt

·
n
(k)
m,(i) + αk

[
∑K
k=1 n

(k)
m + αk]− 1

, (25)

where n
(.)
.,(i) indicates that the i

th unit in the document is omitted.

The expected value multinomial parameters that correspond to the Markov chain, #»z, can be calculated

with:

φk,t =
n
(t)
k + βt∑V

t=1 n
(t)
k + βk

, (26)

θm,k =
n
(k)
m + αt∑K

k=1 n
(k)
m + αk

(27)

where z = k and #»nk is the number of times words have been assigned to topic k. The reader is refered to [6]

for the details of the proof.
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Example:

Here follows a practical example of how the collapsed Gibbs sampler works. Referring to Table 3, we have a

very simple �ve word document denoted as document 1. The focus of this example will be the re-sampling

of the topic assignment to the word "mouse" in document 1. Every word in the document needs to be

assigned to a topic. This process has to be repeated for every word in all of the documents in the corpus.

As illustrated in Table 3, it is clear that each of the �ve words have been assigned to one of three di�erent

topics. Speci�cally, the word "mouse" has initially been assigned to topic number two.

Table 3: Collapsed Gibbs sampler: Initialisation of random topics to words with local and global statistics

Local counts are then calculated to see how many times a certain topic has been assigned to words the

document. The Global statistics is a corpus-wide count of how many times a speci�c word has been assigned

to a given topic. According to the collapsed Gibbs sampler the re-sampling process begins by removing the

topic assignment of the word and decrement the local and global counts accordingly. This can be seen in

Table 4.Using Eq. 24 the topic assigned to the word "mouse" will be re-sampled. The re-assignment is

based on the probability that "mouse" belongs to a topic given every other topic and all of the words in the

corpus. Intuitively the re-sampling is based on how much the document "likes" each topic based on the other

assignments of topics to words in the document and how much each topic "likes" the word "mouse" based

on assignments in other documents in the corpus.
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Table 4: Collapsed Gibbs sampler: Re-sampling

It is clear from the local counts in Table 4 that document 1 prefers topic 1 and 3 over topic 2. It can also

be seen that "mouse" prefers topic 1 over the rest. These two factors are multiplied to get the conditional

distribution of Eq. 25. Thus a new topic is assigned as seen in Table 5. The local counts and global statistics

should be incremented accordingly.

Table 5: Collapsed Gibbs sampler: Incrementing global and local counts

This process is to be repeated until a steady state occurs.
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6 Evaluation Method

6.1 Coherence

Choosing the optimal number of topics can be very di�cult when applying LDA. One way is to calculate

the coherence for di�erent number of topics, k, and then choose k with the highest average coherence. For

purposes of this article, the UMass measure will be used to compute coherence of topics. This measurement

has proven to be the best when working with LDA [12]. The Umass Coherence measure gives each topic a

score by measuring the degree of semantic similarity between high scoring words in the topic. The higher

the score, the better the topic. The coherence of a topic is computed as the sum of similarity scores over all

the words in the the topic.

coherence(V ) =
∑

(vi,vj)∈V

score(vi, vj ,∈) (28)

Where V is all the words in the topic and ∈ is a smoothing parameter to ensure only real values are produced.

The UMass metric speci�cally base scores on the co-occurrence documents:

score(vi, vj ,∈) = log
D(vi, vj)+ ∈

D(vj)
(29)

Where D(vi, vj) is the number of documents containing the ith and jth word and D(vj) is the total number

of documents with the ith word.

7 Application

In this section the LDA model will be applied to two text corpora. The programming language used is

Python 3.7 and the gensim package is used to implement the LDA model. For illustration prepossess, the

�rst application will be a simple demonstration on a small corpus (corpus 1) where the outcome can be

illustrated clearly. LDA is not a model for short text analysis and works best with large corpora, but in

this example LDA worked well. The second application will be on a large corpus (post mortem examination

reports).

7.1 Datasets

As shown in the corpus 1 below, the documents were fabricated to have obvious topics. The corpus is split

into two topics with document A and document E sharing a similar topic and documents B, C and D sharing
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a similar topic. This fabrication will make it easy to evaluate the accuracy of the LDA model.

Corpus 1:

Document A = "My sister likes racing cars, but not my mother. Racing cars are dangerous."

Document B = "My girlfriend and I love going to the Kruger National Park to see the lions"

Document C = "Lions tend to hunt mostly by night or in the early mornings."

Document D = "My favorite predator is the leopard, but my girlfriend says the lion is the king

of the jungle."

Document E = "My mother said she will never drive a racing car, because it is too dangerous."

The second corpus contains 1669 post mortem examination reports that we received from our colleagues at

medical campus. The average number of words per document is 1305 and the total number of words in

the corpus sums to 2178045. After cleaning the text 18918 words remained, which indicates that a lot of

meaningless words were �ltered out and only the most important ones remained.

7.2 Data preprocessing

The post mortem examination reports were received in pdf format and had to be converted into a suitable

format that is easy to work with in Python. The �rst step is to extract the text from each pdf into text

documents. The text documents are then converted to a single csv folder where each document is in a single

cell. The code for these processes can be found in Appendix B2 and B3 respectively. The next step is to

preprocess all of the text. This step is extremely important and if done correctly it can increase the quality of

the output signi�cantly. There are three main steps namely tokenizng, stopping and lemmatizing (stemming)

of words [13]. Tokenizing is used to convert documents to their atomic level, which in this case are the words.

Stopping is then used to remove meaningless words from the corpus which will add no signi�cant value when

identifying topics. The next step is lemmatization(stemming) which merges words that are equivalent in

meaning. To increase the performance of the model, integers are also removed. Lastly, words that appeared

in more that sixty percent of the documents are removed since they will not assist in indicating di�erent

topics. All of the code for tokenizing, stopping and stemming are shown in Appendix B4.

7.3 LDA applied to small corpus

The LDA model is �rst applied to the small corpus (corpus 1) to evaluate the quality of the outcome. After

applying the model with two topics speci�ed, the following topics with their top four words were generated

and are displayed in Table 6. Words like lion and girlfriend are not normally considered to represent a similar
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topic, but when examining the corpus one can see that the topics make perfect sense in this scenario.

Table 6: Top four words allocated to two topics.

The topics are then allocated to each document with a certain probabilities. It was formerly mentioned in

section 5 that when using the LDA model, documents are distributions over topics. As illustrated in Table

7, each document in corpus 1 is assigned to topics with di�erent probabilities. For example document A is

assigned to topic 1 and topic 2 with a probability of 94.2 and 0.058 percent respectively and document C is

assigned to topic 1 and topic 2 with a probability of 93.4 and 0.066 percent respectively. This is very accurate

since document A is clearly more about a topic containing the words racing, car, sister and mother.

Table 7: Distribution of two topics for �ve documents.

Documents A and E shared similar topics and were allocated with high probabilities accordingly. Documents

B, C and D also shared similar topics and had a similar outcome. From the experiment it can be concluded

that the model accurately assigned topic proportions to documents. The code to get these distributions using

LDA is given in Appendix B1

7.4 LDA applied to post mortem examination reports

Before applying the LDA model, the number of topics, k, and hyperparameters α and β should be decided

on. It was formerly mentioned in section 5 that the β value controls the per topic word distribution and the
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α value controls the per document topic distribution. Determining the optimal number of topics, k, in a large

corpus is very di�cult. We ran the model 30 times, 10 times for 20, 30 and 40 topics each and calculated

the average coherence for each of them. According to the coherence score, 30 topics were optimal. This is

shown in Figure 4 where it can be seen that 30 topics has the highest coherence. Both the α and β values

were kept constant relative to the number of topics at
1

k
, which is the default option in the gensim package

in Python. The model ran for 100 iterations, which is both time e�cient and increases accuracy.

Figure 4: Boxplot grouped by number of topics.

Figure 5: Boxplot grouped by beta value.

Furthermore, to test which the β value is optimal we changed its values to β =
0.5

k
= 0.016667 and then

to β =
2

k
= 0.66667. The number of topics were kept constant at 30. As shown in Figure 5, a β value of
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0.016667 is optimal. The α value was kept constant since changing it did not improve the document topic

distribution signi�cantly. Table 8 illustrates the �rst 5 topics inferred from the optimised topic model. The

rest can be seen in Appendix C. It is clear that topic 1 describes someone killed by a gunshot an topic 4

describes death caused by burning.

Table 8: First 5 topics from post mortem examination reports with top 10 words for each

Furthermore, the prevalence of each topic and how they relate to each other is shown in Figure 6. Topics are

represented as circles and their centers are determined by computing the distance between topics and then by

using multidimensional scaling to project the inter topic distances onto 2 dimensions [3]. After consulting our

colleagues at the forensic science department we concluded that the topic word distributions were very useful

and they could immediately recognize the cause of death from most of the topics. Some topics were a bit

vague and only made sense once the documents containing a probability of those topics were examined. They

found the document topic distributions very useful when allocating documents with a speci�c topic (cause

of death). The only drawback was that some documents had a topic distribution where all the probabilities

of topics were very low. Determining a cause of death where a document is allocated to 20 di�erent topics

with 5 percent probability each seems very counter productive.
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Figure 6: Distance map(via multidimensional scaling)

8 Conclusion

From the experiments above LDA produced positive results for the most part. Topics were given word

distributions as expected, and most documents were given topic distributions correctly. However, some

document topic distribution were di�cult to interpret, since they were given low topic probabilities over a

large range of topics. LDA has proven to be a useful tool to organize large corpora and enables us to extract

information from unorganized data. However, there is room for improvement with regards to the document

topic distributions.
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Appendix A

The SAS program for implementing the Gibbs sampler in estimating a mean value of 30 for a

normal distribution.

data gibbs;

n = 10;

true_mu = 30;

do

i = 0;

mu = 0;

sg2 = 1;

output;

end;

seed1 = 1;

do i = 1 to 2500;

retain seed1;

call rannor(seed1,r1);

mu = true_mu+sqrt(sg2/n)*r1;

output;

end;

run;

data gibbs;

set gibbs;

if i <= 500;

keep i mu;

proc univariate noprint;

var mu ;

output out = AA mean=mean_mu

run;

proc print;

run;
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Appendix B

Python version 3.6 is the only programming language used in this section.

B1. The LDA model applied to a small corpus of �ve documents.

import gensim

from nltk.tokenize import RegexpTokenizer

from stop_words import get_stop_words

from gensim import corpora, models

import numpy as np

from nltk.stem.wordnet import WordNetLemmatizer

from pprint import pprint

from gensim.models import LdaModel

tokenizer = RegexpTokenizer(r'\w+')

en_stop = get_stop_words('en')

lemmatizer = WordNetLemmatizer()

doc_a = "My sister likes racing cars, but not my mother. Racing cars are dangerous."

doc_b = "My girlfriend and I love going to the Kruger national park to see the lions"

doc_c = "Lions tend to hunt mostly by night or in the early mornings."

doc_d = "My favourite predator is the leopard, but my girlfriend says the lion is the king

of the jungle. "

doc_e = "My mother said she will never drive a racing car, because it is too dengerous."

doc_setworking = [doc_a, doc_b, doc_c, doc_d, doc_e]

#print(doc_setworking)

print(len(doc_setworking))

#print (doc_set)

texts = []
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for i in doc_setworking:

raw = i.lower()

print(raw)

tokens = tokenizer.tokenize(raw)

#print (tokens)

stopped_tokens = [i for i in tokens if not i in en_stop]

#print (stopped_tokens)

docs = [lemmatizer.lemmatize(i) for i in stopped_tokens]

#print (docs)

texts.append(docs)

dictionary = corpora.Dictionary(texts)

print (dictionary)

#print (dictionary.token2id)

corpus = [dictionary.doc2bow(text) for text in texts]

num_topics = 2

ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=num_topics,

id2word = dictionary, passes=20)

print (ldamodel.print_topics(num_topics=2, num_words=4))

color = []

for corpus_line in corpus[:5]:

sorted_yopic_line = list(sorted(ldamodel[corpus_line], key=lambda x:x [1], reverse=True))

color.append(sorted_yopic_line[0][0])

lda_output = []

for line in corpus[:5]:

lda_output.append(ldamodel[line])

topics_data = np.zeros(shape=(5,2))

for i, line in enumerate(lda_output):

for topic_line in line:

topics_data[i][topic_line[0]] = topic_line[1]
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print(topics_data[0])

B2: pdf to text

import os

from os import chdir, getcwd, listdir, path

import PyPDF2

from time import strftime

def check_path(prompt) :

abs_path = input(prompt)

while path.exists(abs_path) != True:

print ("\nThe specified path does not exist.\n")

abs_path = input(prompt)

return abs_path

print ("\n")

folder = check_path("Provide absolute path for the folder: ")

list=[]

directory=folder

for root,dirs,files in os.walk(directory):

for filename in files:

if filename.endswith('.pdf'):

t=os.path.join(directory,filename)

list.append(t)

for item in list:

path=item

head,tail=os.path.split(path)

var="\\"

tail=tail.replace(".pdf",".csv")

name=head+var+tail

content = ""

pdf = PyPDF2.PdfFileReader(path, "rb")

for i in range(0, pdf.getNumPages()):

content += pdf.getPage(i).extractText() + "\n"
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print (strftime("%H:%M:%S"), " pdf -> csv ")

with open(name,'a') as out:

out.write(content)

B3: All text �les to single .csv �le.

import glob

import csv

read= glob.glob('f2d\\*.txt')

with open("neg2.csv", "w") as outfile:

w=csv.writer(outfile)

for f in read:

with open(f, "r") as infile:

w.writerow([" ".join([line.strip() for line in infile])])

B4: Lda model on post mortem examination reports.

import gensim

import pandas as pd

from scipy import stats

from gensim import corpora, models

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

from nltk.tokenize import RegexpTokenizer

from nltk.stem.wordnet import WordNetLemmatizer

from stop_words import get_stop_words

import pyLDAvis

import pyLDAvis.gensim

import numpy as np

import csv

import json

import nltk

import re

from pprint import pprint
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from gensim.models import LdaModel

from gensim.models.coherencemodel import CoherenceModel

s = set(stopwords.words('english'))

s.update(['g','cm','e','gw','republic','south','africa','post','mortem','examination'

,'19 cm','also','5cm','2nd','paragraph'])

tokenizer = RegexpTokenizer(r'\w+')

en_stop = get_stop_words ('en')

lemmatizer = WordNetLemmatizer()

#print (s)

#print (en_stop)

data_file = pd.read_csv('Final_data.csv',encoding='cp1252')

#data_file.head

#print (data_file[0:3])

#print (data_file)

print (len(data_file))

doc_set = data_file.reset_index().astype(str).values.tolist()

for x in doc_set:

del x[0]

#print(doc_set)

#print (len(doc_set))

docset = []

for sublist in doc_set:

for val in sublist:

docset.append(val)

#print (docset)

print (len(docset)

print (len(docset))

num_words = [len(sentence.split()) for sentence in docset]

#print (num_words)
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print (sum(num_words))

ave_len = sum(num_words) / float(len(num_words))

print (ave_len))

texts = []

for i in docset:

raw = i.lower()

tokens = tokenizer.tokenize(raw)

#print (tokens)

stopped_tokens_1 = [i for i in tokens if not i in s]

stopped_tokens_2 = [i for i in stopped_tokens_1 if not i in en_stop]

no_integers = [x for x in stopped_tokens_2 if not (x.isdigit()

or x[0] == '-' and x[1:].isdigit())]

docs_1 = [i for i in no_integers if len(i) > 1]

#print (stopped_tokens_1)

#print (stopped_tokens_2)

#print (no_integers)

docs_2 = [lemmatizer.lemmatize(i) for i in docs_1]

texts.append(docs_2)

dictionary = corpora.Dictionary(texts)

dictionary.filter_extremes(no_below=0, no_above=0.6, keep_n=100000, keep_tokens=None)

dictionary.save('dictionary.dict')

print (dictionary)

#print (dictionary.token2id)

corpus = [dictionary.doc2bow(text) for text in texts]

corpora.MmCorpus.serialize('corpus.mm', corpus)

#print (corpus)

print (len(corpus))

num_topics = 30
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chunksize=5000

passes = 20

iterations = 100

eval_every = None

eta = 0.5/30

ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=num_topics,

update_every=1, chunksize=chunksize,

id2word = dictionary, passes=passes, eval_every=eval_every,iterations = iterations,eta =eta)

print (ldamodel.print_topics(num_topics=50, num_words=10))

goodcm = CoherenceModel(model=ldamodel, corpus=corpus, dictionary=dictionary,

coherence='u_mass')

print (goodcm)

print (goodcm.get_coherence())

for i in ldamodel.print_topics():

for j in i: print(j)

ldamodel.save('topic.model')

loading = LdaModel.load('topic.model')

print(loading.print_topics(num_topics=2, num_words=4))

d = gensim.corpora.Dictionary.load('dictionary.dict')

c = gensim.corpora.MmCorpus('corpus.mm')

lda = gensim.models.LdaModel.load('topic.model')

data = pyLDAvis.show(pyLDAvis.gensim.prepare(lda, c, d))

data

duration = 500 # millisecond
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freq = 440 # Hz

winsound.Beep(freq, duration)

color = []

for corpus_line in corpus[:10000]:

sorted_yopic_line = list(sorted(ldamodel[corpus_line], key=lambda x:x [1], reverse=True))

color.append(sorted_yopic_line[0][0])

lda_output = []

for line in corpus[:10000]:

lda_output.append(ldamodel[line])

topics_data = np.zeros(shape=(10000,50))

for i, line in enumerate(lda_output):

for topic_line in line:

topics_data[i][topic_line[0]] = topic_line[1]

print(topics_data[300])

B5: Plotting of a box and whiskers for coherence.

import matplotlib

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

data = pd.read_csv('coherence.csv', sep=',', na_values='.')

data.head()

slice = data.iloc[:,[0, 1]]

bp = slice.boxplot(column='Coherence', by ='Number of topics')

axes = plt.gca()

axes.set_ylim([-4,0])

plt.ylabel('coherence')

plt.show
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Appendix C

Topic word distributions for topic 6 to 30.

LDA Topics

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

congested oedematous ventricle burn involving

abrasion urine measure heat abrasion

white opened aortic pink focal

friction white valve cherry intact

congestion visible aorta coagulation laceration

petechial histology pulmonary charred con�uent

contusion oedema graft charring contusion

ligature o�cial circumference soot side

muscle congestion catheter muscle glistening

thyroid congested sutured degree wound

LDA Topics

Topic 11 Topic 12 Topic 13 Topic 14 Topic 15

well ventricle jaundiced foetus intact

within measure jaundice umbilical upon

side aortic fresh length appears

observed valve buttock female congested

opened aorta surgery placenta autolytic

focal pulmonary exited staining moderately

soul graft quadrant putrefactive appear

uct circumference copper congenital smooth

bathabile catheter umbilicus circumference loot

intervention sutured saddle congested white
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LDA Topics

Topic 16 Topic1 17 Topic 18 Topic 19 Topic 20

autolysis multiple ligature laceration burn

decomposition abrasion congestion contusion heat

disease laceration vascular multiple pink

severe intact around associated cherry

poor upon cartilage haematoma coagulation

keeping rib thyroid side charred

focal irregular abrasion opened charring

chronic region petechial lobe soot

acute extensive dark o�cial muscle

section bilateral brown abrasion degree

LDA Topics

Topic 21 Topic 22 Topic 23 Topic 24 Topic 25

congested remains wound wound length

abrasion natural intact gunshot foetus

white bone region defect natural

friction comment upon projectile product

congestion skeletal situ mentioned conception

petechial mm tube tract o�cer

contusion information catheter entrance viable

ligature molar surgical shaped gestational

muscle length appears exit week

thyroid skin multiple abrasion non
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LDA Topics

Topic 26 Topic 27 Topic 28 Topic 29 Topic 30

wound oedematous ventricle muscle unremarkable

gunshot urine measure heat congested

tract opened aortic sutured skeletal

penetrating white valve cherry seen

described visible aorta coagulation white

defect histology pulmonary charred dissection

entrance oedema graft charring histology

irregular o�cial circumference soot mabotja

exit congestion catheter burn matter

intact congested sutured degree routine
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Abstract

In this study, we investigate the properties of Lévy processes and the ability of these processes to

accurately model the behaviour of stock prices. A discussion of Lévy processes is presented and the

method of maximum likelihood estimation is used to �t geometric Lévy process models to observed

�nancial data. This is accompanied by an analysis of the characteristics of observed �nancial time

series data. The aim of the research is to consider whether or not a geometric Lévy process model

can be used to accurately model the behaviour of stock prices over time.
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1 Introduction

Financial modelling dates back to the 1900s, when a French mathematician named Louis Bacheliers

defended his thesis where he used a Brownian motion with a drift, to model stock prices, see [12]. The

aim of �nancial modelling is to �nd a relatively simple model that captures the most important properties

of observed �nancial data. Our task is to �nd a realistic model for the prices of stocks.

The Black-Scholes model was the �rst widely accepted �nancial model, it provided an explanation of

the time evolution of a stock price under the assumption that log-returns follow a Brownian motion. In

this research, we highlight that the Black-Scholes model fails to capture all the characteristics of observed

log-returns, and we consider more �exible models based on Lévy processes. These processes are named

after Paul Lévy, a French mathematician, who pioneered these processes, see [24].

The remainder of this report is structured as follows; Section 2 describes �nancial markets and empir-

ical properties of log-returns, the so called stylized facts. We also de�ne a stock price process in Section 2.

Section 3 describes �nancial modelling. This section provides the formal de�nition of a Brownian motion.

Then we discuss the Black-Scholes model and its imperfections, chief among these is the assumption that

log-returns are normally distributed, see [24]. This assumption turns out to be unrealistic especially when

we consider the skewness and heavy tails of observed log-returns, see [9]. In Section 4, Lévy processes are

de�ned and a discussion of their most important properties is provided. We focus on three examples of

Lévy process; a Brownian motion, the normal inverse Gaussian process and the Meixner process, see [24].

We then turn our attention to the estimation of parameters of the Lévy processes discussed. In Section

5, we discuss the method of maximum likelihood estimation, which is the method used to estimate the

parameters of the various models considered. We �t the proposed models to observed �nancial data in

Section 6. Then, Section 7 presents the conclusions of the study.

2 Financial markets and the empirical properties of log-returns

The term ��nancial market�, is a broad term de�ning a market place where traders buy and sell �nancial

assets. These assets include stocks, �nancial securities, bonds, and options to only mention a few. In

this research, we focus mainly on the modeling of stock prices. The stock market, dates back to 1531, see

[24]. Stocks, also known as shares, are �nancial instruments that provide partial ownership of a listed

company to the holder. Upon listing on the securities exchange market, companies raise �nancial capital

by selling stocks. A stock represents fractional ownership with limited liability in a company, and its

value �uctuates on a day to day basis in response to market buy and sell dynamics, see [14]. The need

to accurately model the prices of these stocks arise from the large amounts of money invested in these

assets globally. In this section we discuss some statistical properties of log-returns.

7



The discussion contains examples from realized data from the Standard and Poor 500 index, abbrevi-

ated as S&P500. The data used was recorded on a daily basis and dates from 2010/09/06 to 2017/09/01.

The S&P 500 is a stock market index that tracks 500 American companies that represent more than

seventy percent of the total market capitalization. It is a capitalization weighted index that tracks the

average movement of the stock market. The data consists of 365 daily log-returns downloaded from

Yahoo Finance, which can be accessed from https://�nance.yahoo.com and Figure 1 shows the evolution

of the daily stock price of the S&P500 index. The graph shows that stock prices increase exponentially

as time increases, hence the need of an exponential process for modeling them.

Figure 1: Time series of daily stock prices showing an irregular �uctuating pattern

When modeling �nancial markets one typically does not model the stock prices directly, one rather

models the log-returns of the stock prices. That is, one typically models the stock price at time t as

St = S0 exp(Xt), where Xt is a stochastic process referred to as the log-return process of the stock. An

analysis of log-returns is often are preferred to an analysis of actual prices because log-returns provide a

scale free examination of the performance of the asset, see [20]. Figure 2 shows the time series analysis

of daily log-returns of the S&P 500 index. It shows that log-returns are stationary and �uctuate around

a constant average value.
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Figure 2: Log-returns of S&P500 index.

We denote the stock price process by S = {St; t ≥ 0}, where St is the price of the stock at time t ≥ 0.

Our geometric model for the stock price is

St = St−1 exp(Xt),

where Xt is the log-return process. Xt can be written in terms of the stock price as follows:

Xt = log

(
St
St−1

)

We assume that Xt follows some Lévy process throughout. As a result, it is assumed that the increments

of Xt are independent and identically distributed random variables.

In what follows, we present a detailed discussion of the empirical properties of log-returns of the

S&P500 weekly prices. The properties discussed are referred to as stylized facts, see [9]. These properties

are common across all �nancial markets, hence the need to take them into account when developing a

model for �nancial data. The mentioned properties are discussed in turn below.

2.1 Absence of auto-correlation

Auto-correlations of �nancial asset returns are close to zero, except in cases where the process is ob-

served for small time intervals, for instance a minute, see [9]. The time series analysis of log-returns
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in Figure 2 often show no signi�cant auto-correlations. As a result, log-returns are often assumed to

be independent and identically distributed random variables and the proposed geometric Lévy process

model does not violate this assumption, see [4]. This assumption makes our modeling task less complex.

If auto-correlations were present in the market, then traders could take advantage of this and exploit

this property in order to predict returns. As a result, investors could then take advantage of linear auto-

correlations in the returns to construct strategies for making pro�ts based on trends, see [18]. Figure 3

shows the auto-correlation plot of log-returns. From the plot, we see that the auto-correlation quickly

drops to zero as the lag increases.

Figure 3: Auto-correlation plot of log-returns

2.2 Heavy-tailed distribution

The distribution of observed log-returns exhibit heavy tails, that is, there are more observed data points

in the tails or the extremes of the distribution than one would expect under the assumption of normality,

see [9]. These events have a high impact on the stock price, hence the need to capture the behaviour of

extreme events. The heaviness of the tails of a distribution are measure by the kurtosis which is de�ned

as the fourth standardized central moment:

Kur(X) =
E
[
(X − E[X])

4
]

var [X]
2 .

Kur(X) = 3 for a normal distribution. A kurtosis of greater (smaller) than 3 indicates heavier (lighter)

tails than those associated with the normal law.
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Empirical results suggest that log-returns have a kurtosis greater than 3, which implies that log-

returns have a heavy-tailed distribution. The calculated sample kurtosis of log-returns of S&P500 weekly

prices is equal to 5.246 which is in line with the �ndings of [9] and [12].

2.3 Symmetry of the distribution

Empirical evidence suggests that the distribution of log-returns is skewed to the left. This suggest that

positive log-returns are more common than negative log-returns. However, negative log-returns tend to be

larger in magnitude than positive log-returns. The degree of asymmetry of a random variable is measured

by the skewness of the distribution. Skewness is de�ned as the third standardized central moment:

Skew(X) =
E
[
(X − E[X])

3
]

var [X]
3
2

.

For a symmetric distribution Skew(X) = 0. The normal distribution N(µ, σ2), is symmetric.

An analysis of the observed S&P500 data, concludes that log-returns tend to be negatively skewed.

The calculated sample skewness of log-returns of the S&P500 data is 0.395. As a result, the Brownian

motion with its marginal normal distributions, is not ideally suited to model log-returns.

2.4 Aggregational Gaussianity

Aggregational Gaussianity means that long term aggregation of �nancial asset returns, that is considering

the returns over longer periods will lead to approximately normally distributed log-returns while observed

log-returns on a small time scale do not follow a normal distribution, see [5]. As the time scale over which

log-returns are calculated increases, the distribution tends to be closer to normality. This implies that

the shape of the distribution is not identical at di�erent time scales, see [9]. Figure 4 shows a kernel

density estimates of log-returns calculated on di�erent time scales. The normal density is super imposed

on the �gures. The solid line represents the normal density function and the dashed line represents the

kernel density estimator the of log-returns. Figure 4 shows a kernel density estimate of daily log-returns,

a kernel density estimate of weekly log-returns and a kernel density estimate of monthly log-returns. It is

seen in the change in the �t of the imposed normal density that as the time scale over which log-returns

are calculated increases, the distribution tends to be closer to normality.

2.5 Volatility clustering

Volatility measures the spread of the distribution of log-returns. The variance of log-returns is often

taken to be the volatility of the stock, and used as a proxy for the risk attached to investments. There
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Figure 4: Density estimates on varying time scales.

are two types of volatility, namely historical volatility and implied volatility. Historical volatility is a

measure of volatility that calculates price changes over a prede�ned period of time. Implied volatility

is an expectation of volatility over a certain period implied by the prices of �nancial derivatives such

as options. For the purposes of this study historical volatility plays an important role, while implied

volatility is simply mentioned for the sake of completeness.

The volatility clustering property of asset returns implies that large �uctuations in prices are usually

followed by large �uctuations, similarly with small �uctuations, see [10]. For instance, if an event that

increases the price of a company's stock occurs at time t, say the company merged with a bigger company,

then volatility clustering implies that there will likely be a large change in price at time t + 1. High

volatility events tend to cluster together, see [9].

Most measures of volatility of stocks are negatively correlated with log-returns of that stock, leading

to the concept of leverage e�ect. That is, volatility increases when the stock price decreases. The leverage

e�ect refers to the relationship between stock returns and volatility, see [15]. Furthermore, the volume of

trade in the market is also correlated with volatility. Empirical evidence of volatility clustering is shown

in Figure 2 using S&P500 daily returns. Larger absolute log-returns tend to cluster together and smaller

absolute log-returns likewise.

3 Financial modelling

The goal of �nancial modelling is to accurately model, forecast or predict future asset prices. An ideal

�nancial model should capture all of the most prominent features of the relevant �nancial market without

being over complicated. We assume that the log-return processesXt follows three di�erent Lévy processes,

in what follows; a Brownian motion, a normal inverse Gaussian process and a Meixner process. We start

by de�ning the Black-Scholes model and its imperfections and then turn our attention to Lévy processes.
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3.1 The Black-Scholes model

The Black-Scholes model, proposed in, see [12], was the �rst widely accepted model for stock prices.

Under the Black-Scholes model, the log-return process Xt is assumed to follow a Brownian motion.

De�nition 1. The Black-Scholes model for stock prices

Consider the evolution of the stock price S in a small time interval [t, t+ ∆t]. Denote the change in

the stock price St+∆t−St by ∆St. Under the Black-Scholes model the dynamics of the price process are

given by

∆St = µSt∆t+ σSt∆Wt (1)

The stochastic di�erential in (1) contains two parts, a systematic and random part. The systematic part

is given by µSt∆t, where µ∆t represents the mean rate of return, see [24]. It is assumed that the expected

rate of return is proportional to the length of the interval, ∆t. The random part is captured by, σSt∆Wt

where σ ≥ 0 is the volatility parameter and Wt is a standard Brownian motion.

The solution of (1) is given by

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
(2)

The geometric Brownian motion stock price model in (2), is known as the Black-Scholes model.Under this

model, log-returns are modeled by a Brownian motion with a drift of µ− 1
2σ

2. Under the Black-Scholes

model, the log-return process is

Xt = log

(
St
S0

)
=

(
µ− 1

2
σ2

)
t+ σWt (3)

3.2 Imperfections of the Black-Scholes model

Below we provide an account of some of the imperfections of the Black-Scholes model. The arguments

presented below are based on empirical properties of asset returns. We will focus mainly on the assumption

that the distribution of log-returns is inconsistent with the normal law. Since under the Black-Scholes,

log-returns are modeled using a Brownian motion with a drift, but empirical evidence has suggested

otherwise. In [9], a detailed study of the properties of asset returns is provided.

[9] concludes that asset returns do not follow the normal law. Empirical evidence suggests that

the distribution of the log-returns are heavy-tailed and negatively skewed. In this study, we model the

stock price process of the standards and poor 500 (S&P 500) data using the three di�erent Lévy process

mentioned above. Our analysis of the S&P500 data in common with the �ndings of [9], suggest that the

assumption of normality is unrealistic. To test for normality we use SAS. Figure 5 shows the histogram

of log-returns with an imposed normal density. This suggests that the normal density density does not
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�t well.

Figure 5: Normal density imposed on histogram of log-returns

Figure 6 shows output from SAS for testing for normality. The p-values for all the tests are all less

than 0.05 which implies that we would reject the null hypothesis about the normality assumption at a

5% level of signi�cance. The Kolmogorov-Smirnov test has a p-value of 0.02. The Cramer-von Mises test

has a p-valu of 0.005 and the Anderson-Darling test has a p-value of 0.006. It is clear that log-returns

are not normally distributed as we would also reject the null hypothesis even at a 10% signi�cance level.

In the next section we consider the Brownian motion, normal inverse Gaussian and the Meixner

distributions which have properties that are suitable to capture the properties displayed by the log-

returns of stock prices.

4 Lévy processes

Lévy processes were �rst used in �nancial econometrics in [18], when Mandelbort proposed α-stable Lévy

processes for modeling cotton prices. In this section, we start by de�ning two important concepts that

form an integral part of Lévy processes, characteristic functions and in�nitely divisible distributions.
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Figure 6: SAS output

Then a formal de�nition of Lévy processes follows together with a discussion of the properties of these

processes. As speci�c examples of Lévy process, we consider a Brownian motion, the normal inverse

Gaussian process and the Meixner process.

Consider the de�nition of a characteristic function.

De�nition 2. Characteristic function

A characteristic function, ψ of a random variableX, is the Fourier-Stieltjes transform of the cumulative

distribution function F (x) = P (X ≤ x) such that

ψX(u) = E [exp(iuX)] =

∫ ∞
−∞

exp(iux)dF (x)

Note that ψ(0) = 1 ∈ |ψ(u)| ≤ 1 for all u ∈ R. ψ uniquely determines the distribution function F.

Furthermore, the characteristic function uniquely determines the distribution of a random variable and

is always exists and continuous.

Proposition 3. The characteristic function of a Lévy process

Suppose that {Xt; t ≥ 0} is a Lévy process. Then there exists a continuous function ψ : R → R called

the characteristic exponent of such that

E [exp (iz.Xt)] = exp (tψ (z))

where z ∈ R. This de�nes the characteristic function of a Lévy process.

De�nition 4. An in�nitely divisible distribution
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A cumulative distribution function F , is said to be in�nitely divisible if for any n ∈ Z, n ≥

2 there exists n i.i.d random variables Y1, Y2, ..., Yn such that Y1 + ... + Yn has the lawF , see [12].

The marginal distribution of every Lévy process possesses the property of in�nite divisibility.

Now that we have de�ned an in�nitely divisible distribution, we can de�ne a Lévy process. The

de�nition below is taken from, see [12].

De�nition 5. Lévy process

A stochastic process X = {Xt; t ≥ 0} de�ned on a �ltered probability space (Ω,F ,Ft, P ) is called a

Lévy process if it satis�es the following properties:

1. X0 = 0.

2. Xt possesses independent increments; for every 0 ≤ t0 ≤ t1 ≤ ...... ≤ tn, the random variables

0 ≤ Xt0 , Xt1 −Xt0 , ...., Xtn −Xtn−1
are independent.

3. Xt has stationary increments; the distribution of Xt+k − Xt only depends on the length of the

interval, k.

4. Xt is stochastically continuous; limk→0 P (|Xt+k −Xt| ≥ ε) = 0 ∀, ε ≥ 0.

Remark 6. Note that properties (2) and (3) imply that a Lévy process is a Markov process, see [2]. They

are the only Markov processes which are homogeneous in both space and time[12]. Lévy processes are

homogeneous because the distribution of their increments only depend on the length of the interval as

stated by property (2) .

Proposition 7. In�nite divisibility and Lévy processes

If X is a Lévy process, then Xt is in�nitely divisible for each t ≥ 0 , see [2].

Proof. For each n ∈ N, we can write

X(t) = Y n1 (t) + ...+ Y nn (t)

where each

Y nk = X

(
kt

n

)
−X

(
(k − 1) t

n

)
The Y nk (t) are independent and identically distributed, by (2) and (3) in de�nition 6.

De�nition 8. The Lévy measure

The Lévy measure is de�ned as follows, see [9]. Suppose that {Xt; t ≥ 0} is a Lévy process on R. The

measure ν on R , de�ned by:

ν(A) = E [number of jumps {t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ A}] , A ∈ B(R)
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is called a Lévy measure of X and ν(A) is the expected number of jumps per unit time, whose size belong

to A. In Section 4.1 we de�ne the Lévy-Khinchine formula with the Lévy triplet, which has the Lévy

measure as one of its components.

4.1 The Lévy-Khintchine formula and the triplet of Lévy characteristics

The Lévy-Khintchine formula shows the relationship between in�nite divisible distributions and stochastic

processes with independent and stationary increments[6]. This formula provides a way of decomposing a

Lévy process into three parts; a straight line component, a Brownian motion and a pure jump process.

The characteristic exponent of all Lévy processes satis�es the Lévy-Khintchine formula:

log (Ep [exp (iuXt)]) = t

{
iuγ − σ2u2

2
+

∫ ∞
−∞

(
eiux − 1− iuh(x)

)
ν(dx)

}
,

where γ in R, σ2 ≥ 0, h(x) is some truncation function and ν is a measure on R\{0} such that

∫ ∞
−∞
{1, x} ν(dx) <∞.

(
γ, σ2, ν(dx)

)
is called the triplet of Lévy characteristics. In the decomposition of a Lévy process, γ gives

the slope of the straight line, σ2 is the variance of the Brownian motion and ν(dx) governs the jumps

made by the process as de�ned in the previous subsection.

Below we consider speci�c Lévy processes. We consider a Brownian motion, the normal inverse

Gaussian process and the Meixner process.

4.2 Brownian motion

The Brownian motion is the only continuous example of a Lévy process with no jumps.The de�nition of

a standard Brownian motion is given below.

De�nition 9. A stochastic process B = {Bt; t ≥ 0} is referred to as a standard Brownian motion if

i) B0 = 0 with probability 1

ii) B has independent increments

iii) B has stationary increments

iv) Bt+s − Bt ∼ N (0, s) where N
(
µ, σ2

)
denotes a normal distribution with mean σ2 and variance

σ2.

In the remainder of this report we require the following generalization of a Brownian motion, Wt =

µt+ σBt which is called a Brownian motion with a drift of µ and volatility σ2.
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4.3 The Normal inverse Gaussian process(N◦IG)

The normal inverse Gaussian distribution was introduced in [3], it is a normal variance-mean mixture dis-

tribution where the mixing density is the inverse Gaussian distribution. The inverse Gaussian distribution

will not be discussed in this paper, but the interested reader is referred to [24], for further reading.The

marginal distribution of this process is a subclass of the hyperbolic distributions. The normal inverse

Gaussian process is a four parameter Lévy process. This process has been used as a tool for modeling

�nancial asset returns because of the fact that its properties that are similar to those of �nancial asset

returns.

De�nition 10. The normal inverse Gaussian distribution

A random variable X is said to follow a normal inverse Gaussian distribution if its probability density

function given by;

f (x : α, β, µ, δ) =
αδ

π
exp

(
δ
√
α2 − β2 + β(x− µ)2

) K1

(
α
√
δ2 − (x− µ)2

)
√
δ2 − (x− µ)2

,

where α > 0,−α < β < α, δ > 0 and K1 (x) is a modi�ed Bessel function of the third order with

index 1, see [24]. If XN has the density given above, then we use the notation XN ∼ N ◦ IG(α, β, µ, δ)

distribution. Each parameter has a di�erent e�ect on the shape of the distribution; α captures the tail

heaviness, β determines the level of asymmetry, δ is a scale parameter and µ is a location parameter.

The �rst four standardized central moments of the N ◦ IG(α, β, µ, δ) distribution are as follows:

• Mean = αβ√
α2−β2

+ µ

• Variance = α2δ(α2 − β2)−
3
2

• Skewness = 3βα−1δ−1/2(α2 − β2)−
1
4

• Kurtosis = 3(1 + α2+4β2

δα2
√
α2−β2

)

From the above moments we can see that the N◦IG distribution has a kurtosis that is greater than that

of a normal distribution. Note, that if β = 0 , then the N ◦ IG distribution is symmetric. In what follows

we de�ne the N ◦ IG process in terms of the summation of N ◦ IG distributed random variables.

The N ◦ IG process, X = {Xt, t ≥ 0}, is a stochastic process with X0 = 0, independent and

identically distributed stationary increments which follow a N ◦ IG distribution. In particular Xt ∼

N ◦ IG(α, β, µt, δt) distribution, which is in�nitely divisible.

4.4 The Meixner process

The Meixner distribution was named after German theoretical physicist Josef Meixner, who was know

for his work in orthogonal polynomials, see [19]. The Meixner distribution is a special case of generalized
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z-distributions, which were introduced in, see [16].

De�nition 11. The Meixner distribution

A random variable has the Meixner distribution if its probability density function given by:

f(x;α, β, µ, δ) =
(2 cos(β/2))

2απΓ(2d)
exp

(
b(x− µ)

a

) ∣∣∣∣Γ(δ +
i(x− µ)

α

)∣∣∣∣2 ,
where α > 0,−π < β < π, δ > 0. If XM has the density given above, then XM ∼ Meixner(α, β, µ, δ).

Each of the four parameters in�uence the shape of the distribution: α captures the tail heaviness, β

determines the level of asymmetry, δ is a scale parameter and µ is a location parameter.

The �rst four standardized central moments of the distribution are given by:

• Mean = δβ tan(β/2) + µ.

• Variance = 1
2α

2δ(cos−2(β/2)).

• Skewness = sin(β/2)
√

2/δ.

• Kurtosis = 3 + (2− cos(β))/δ.

As was the case with the N ◦ IG distribution, the Meixner distribution is symmetric if β = 0. It has a

kurtosis greater than 3 which means that it has tails that are heavier than those of a normal distribution.

The Meixner process, X = {Xt, t ≥ 0} is a stochastic process, with X0 = 0, stationary and independent

increments. The marginal distribution of Xt folllows a Meixner(α, β, µt, δ) distribution, which is also

in�nitely divisible.

5 Maximum likelihood parameter estimation

The method of maximum likelihood estimation estimates parameters by choosing parameter estimates

that make the data as likely as possible. The method of maximum likelihood estimation (mle) is used

for estimating the parameters of the various models below. Let f(x; θ) denote the probability density

function of a distribution, where θ is a set of unknown parameters. Our task is to estimate these unknown

parameters.

It is assumed that we have n independent observations, x1, x2, ....xn of a random variable X. In our

case these realizations of the random variable will be the observed log-returns of the stock prices. The

mle is the parameter set that maximizes the likelihood function

L(θ) =

n∏
i=1

f(xi; θ).
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Note that maximizing the likelihood function is equivalent to maximizing the log-likelihood function.

logL(θ) =

n∑
i=1

log f(xi; θ).

We use numerical methods to obtain the values of the parameters that maximize the log-likelihood

function.

6 Fitting geometric Lévy process models to S&P 500 data

Below we �t the proposed models to the S&P500 stock prices by �tting the respective Lévy processes to

the log-returns.

6.1 Geometric Lévy process

Consider the stock price process discussed earlier, S = {St; t ≥ 0}. It is an exponential Lévy process

which evolves in the form

St = S0 exp(Xt),

where t ∈ [0, T ]. Xt is an exponential Lévy process. We shall write the stock price process in term of

the natural logarithm as follows;

Xt = log

(
St
S0

)
,

Since we work with the log-returns of the stock prices. Since we proposed three Lévy processes for our

model, in the �rst instance Xt will be considered to be a Brownian motion, thereafter a normal inverse

Gaussian process and lastly a Meixner process. In order to estimate the parameters of each of the models

we use maximum likelihood estimation described in the previous section.

6.2 Procedure

To illustrate the application of the distributions discussed above, we used R for programming and �tting

the distributions in to the S&P500 observed log-returns, see [21]. We start by calculating the log-returns

from which we �t the normal distribution, where Xt is assumed to follow a Brownian motion. We observe

that the normal distribution does not �t well in to the observed log-returns in Figure 6.

We then proceed to �tting the the normal inverse Gaussian distribution. We make use of the Bessel

package installed in R to �t a kernel density estimator, see [17]. We use the method of likelihood

estimation for estimating the four parameters of the model. This is done by �rst generating a large set

of possible starting values from the uniform distribution from which we choose the parameter set that
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has the largest likelihood. Another R package for �tting Hyperbolic distributions is installed to �t the

normal inverse Gaussian density function, see [13].

A similar procedure was used for �tting the Meixner distribution and modeling the Meixner process.

The only deviation in the procedure de�ne above, are the packages necessary to program the Meixner

process in R. We used the pracma package which is necessary for handling the complex gamma function

found in the Meixner density function, see [8], and the optim function is used for the general-purpose

optimization based on Nelder�Mead optimization algorithms.

6.3 Results

Figure 7 shows a kernel density estimate of the log-returns and the normal density super imposed in the

�gure. The red dashed line represents the normal density function and the black solid line represents the

kernel density estyimator of log-returns

Figure 7: Normal distribution �tted to log-returns.

Figure 8 shows the a �t of the normal inverse Gaussian distribution into the log-returns of S&P 500

dataset. The red dashed line represents the normal inverse Gaussian density function and the black

solid line represents the empirical distribution of log-returns. From the graph it is clear that the normal

inverse Gaussian �ts better than the normal distribution as shown earlier in Section 3 and Figure 7.

This suggests that the normal inverse Gaussian distribution can be used to model log-returns of stock

prices as suggested by [24] and [4]. Therefore the normal inverse Gaussian process captures most of the
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characteristics of log-returns and thus improves the accuracy of the model compared to the traditional

Black-Scholes model where the log-returns are driven by a Brownian motion.

Figure 8: Normal inverse Gaussian distribution �tted to log-returns.

Figure 9 shows the �t of the Meixner distribution to the log-returns of the same S&P 500 data set as

used previously for the normal inverse Gaussian distribution. From the graph it is clear that the Meixner

distribution �ts better than the normal distribution as shown earlier in Figure 6. Hence the Meixner

process can also be used to model the log-returns of stock prices. This is in line with the �ndings of [23]

and [24].
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Figure 9: Meixner distribution �tted to log-returns.

7 Conclusion

The research presented has investigated the observed properties of the various distributions assumed

to underlie the log-returns of �nancial time series data. In this research, we discussed properties of

log-returns. The most important properties considered include the following: heavy-tailed distribution,

negatively skewed distribution, aggregational Gaussianity and volatility clustering.

The properties mentioned above led to the conclusion that the normal distribution is not realistic for

modeling log-returns. The need for a more �exible class of distributions arise from these observed proper-

ties. Lévy process are used to this end. Desirable properties of Lévy processes include in�nite divisibility

of the marginal distributions, independent increments and stationary increments. These processes are

able to capture the observed skewness and excess kurtosis. Three models were proposed in this paper

and the �rst model is the Black-Scholes model which uses a Brownian motion. Then we use the normal

inverse Gaussian distribution to model log-returns of S&P 500 stock index data. The empirical results

show that the normal inverse Gaussian distribution �t the log-returns data substantially better than the

normal distribution. The third model uses the Meixner distribution to model the same data and the

results are similar to those of the normal inverse Gaussian process.
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Appendix A

This section gives a description of the code we used for modelling S&P500 data and �tting the normal

inverse Gaussian distribution on the log-returns in R.

###########################################################

#Entering the data

data = read.csv("table.csv")

prices = data[,4]

prices = prices[length(prices):1]

plot(prices,type = "l")

###########################################################

#Calculating log-returns

n = length(prices)-1

logrets = 1:n*0

for (j in 1:n){ logrets[j] = log(prices[j+1]/prices[j]) }

plot(logrets,type = "l") plot(hist(logrets)) lines(density(logrets))

###########################################################

#Fitting a normal distribution

muHat = mean(logrets)

sigmaHat = sd(logrets)*sqrt((n-1)/n)

x_min = min(logrets)

x_max = max(logrets)

l_vec = 100

x = (1:l_vec)/l_vec *(x_max-x_min) +x_min

plot(x,dnorm(x,muHat,sigmaHat),col = "red",ylim = c(-0.1,85),type = "l")

lines(density(logrets))

###########################################################

#NoIG density

alpha = 2

beta = 1

mu = 1

delta = 1

#install.packages("Bessel") library(Bessel)

f_NoIG <- function(x,alpha,beta,mu,delta)
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{ f = alpha*delta/pi*exp(delta*sqrt(alpha^2-beta^2)+beta*(x-mu))*BesselK(alpha*sqrt(delta^2+(x-

mu)^2),1)/sqrt(delta^2+(x-mu)^2); return(f) }

x_min = -1

x_max = 5

l_vec = 100

x = (1:l_vec)/l_vec *(x_max-x_min) +x_min

y = f_NoIG(x,alpha,beta,mu,delta)

plot(x,y,type="l")

###########################################################

# NoIG likelihood

minLL_NoIG <- function(parms)

{ alpha = parms[1]

beta = parms[2]

mu = parms[3]

delta = parms[4]

if (alpha>0 & alpha>abs(beta) & delta>0)

{

LLvec = f_NoIG(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec) }

else { LL = Inf } minLL = -LL return(minLL) }

parms = c(alpha,beta,mu,delta)

mLL = minLL_NoIG(parms)

###########################################################

# Starting values

n_startvals = 1000

alpha_s <- runif(n_startvals,1,100)

beta_s <- runif(n_startvals,-80,80)

mu_s <- runif(n_startvals,-10,10)

delta_s <- runif(n_startvals,1,100)

startevals <- rep(0,n_startvals)

for (k in 1:n_startvals)

{ sparms <- c(alpha_s[k],beta_s[k],mu_s[k],delta_s[k])

startevals[k] <- minLL_NoIG(sparms)
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}

minval <- min(startevals[is.�nite(startevals)])

indx = which.min(abs(startevals-minval))

#startevals[indx]

startvals <- c(alpha_s[indx],beta_s[indx],mu_s[indx],delta_s[indx])

optm <- optim(startvals,minLL_NoIG)

alpha = optm$par[1]

beta = optm$par[2]

mu = optm$par[3]

delta = optm$par[4]

x_min = min(logrets)

x_max = max(logrets)

l_vec = 100

x = (1:l_vec)/l_vec *(x_max-x_min) +x_min

y = f_NoIG(x,alpha,beta,mu,delta)

plot(x,y,col = "red",ylim = c(-0.1,100),type = "l") lines(density(logrets,adjust = 0.7))

###########################################################

Appendix B

This section gives a description of the code we used for modelling S&P500 data and �tting the Meixner

distribution on the log-returns in R.

###########################################################

#Entering the data

data = read.csv("C:/Users/Nqaba/Downloads/^GSPC (1).csv")

prices = data[,5]

prices = prices[length(prices):1]

plot(prices,type = "l")

############################################################

#Calculating log-returns

n = length(prices)-1

logrets = rep(0,n)

for (j in 1:n)

{ logrets[j] = log(prices[j+1]/prices[j]) }

plot(logrets,type = "l")
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plot(hist(logrets))

lines(density(logrets))

###########################################################

#Meixner density

install.packages("pracma")

library(pracma)

f_Meixner <- function(x,alpha,beta,mu,delta)

{

T1 = ((2*cos(beta/2))^(2*delta))

T2 = (2*alpha*pi*gamma(2*delta))

T3 = (beta*(x-mu)/alpha)

T4 = abs(gammaz(delta+1i*((x-mu)/alpha)))

f_Meixner = T1/T2*exp(T3)*T4^2

;

return(f_Meixner) }

alpha = 2

beta = 1

mu = 0

delta = 1

x_min = -3

x_max = 8

x = seq(x_min,x_max,(x_max-x_min)/999)

y = f_Meixner(x,alpha,beta,mu,delta)

plot(x,y,type="l")

###########################################################

# Meixner likelihood

LLvec = f_Meixner(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec)

if (alpha>0 & abs(beta)<pi & delta>0)

{

LLvec = f_Meixner(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec) } e
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lse { LL = -Inf }

parms = c(alpha,beta,mu,delta)

minLL_Meixner <- function(parms)

{

alpha = parms[1]

beta = parms[2]

mu = parms[3]

delta = parms[4]

if (alpha>0 & abs(beta)<pi & delta>0)

{

LLvec = f_Meixner(logrets,alpha,beta,mu,delta)

LLvec = log(LLvec)

LL = sum(LLvec)

}

else { LL = -Inf }

minLL = -LL

return(minLL) }

parms = c(alpha,beta,mu,delta)

mLL = minLL_Meixner(parms)

###########################################################

# Starting values

n_startvals = 10000

alpha_s <- runif(n_startvals,0.01,100)

beta_s <- runif(n_startvals,-pi,pi)

mu_s <- runif(n_startvals,-10,10)

delta_s <- runif(n_startvals,0.01,100)

startvals = rep(0,4)

startevals = rep(0,n_startvals)

besteval = Inf for (k in 1:n_startvals)

{

sparms <- c(alpha_s[k],beta_s[k],mu_s[k],delta_s[k])

startevals[k] <- minLL_Meixner(sparms)

if (is.�nite(startevals[k]) & startevals[k]<besteval)

{
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startvals = sparms

besteval = startevals[k]

}

}

besteval

startvals

minLL_Meixner(startvals)

optm <- optim(startvals,minLL_Meixner)

alphaHat = optm$par[1]

betaHat = optm$par[2]

muHat = optm$par[3]

deltaHat = optm$par[4]

x_min = min(logrets)

x_max = max(logrets)

x = seq(x_min,x_max,(x_max-x_min)/999)

y = f_Meixner(x,alphaHat,betaHat,muHat,deltaHat)

plot(x,y,col="red",ylab = "f(x)",main = "Meixner distribution �tted on logreturns",type="l",ylim=c(0,30))

lines(density(logrets,adjust=2.5))

#####################################################
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Appendix C: SAS Code

SAS code used for normality test:

data a;

input logreturns @@;

cards;

7.302E-13

0.3984877

0.3989423

1.449E-12

2.845E-12

5.532E-12

1.065E-11

2.03E-11

3.83E-11

7.156E-11

1.324E-10

2.424E-10

4.395E-10

7.888E-10

1.4019E-9

2.4665E-9

4.2965E-9

7.4098E-9

1.2652E-8

2.1387E-8

3.5795E-8

5.9312E-8

9.73E-8

1.5803E-7

2.5412E-7

4.0456E-7

6.3766E-7

9.9506E-7

1.5373E-6
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2.3515E-6

3.561E-6

5.3391E-6

7.9252E-6

0.0000116

0.0000169

0.0000244

0.0000348

0.0000492

0.0000687

0.0000951

0.0001303

0.0001768

0.0002375

0.0003158

0.0004157

0.0005419

0.0006993

0.0008934

0.0011301

0.0014152

0.0017547

0.0021539

0.0026177

0.0031497

0.003752

0.0044251

0.005167

0.0059733

0.0068366

0.0077469

0.008691

0.0096532

0.0106153
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0.011557

0.0124571

0.0132937

0.0140454

0.0146919

0.0152152

0.0156003

0.0158361

0.0159155

0.0158361

0.0156003

0.0152152

0.0146919

0.0140454

0.0132937

0.0124571

0.011557

0.0106153

0.0096532

0.008691

0.0077469

0.0068366

0.0059733

0.005167

0.0044251

0.003752

0.0031497

0.0026177

0.0021539

0.0017547

0.0014152

0.0011301

0.0008934

0.0006993
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0.0005419

0.0004157

0.0003158

0.0002375

0.0001768

;

data a;

input logreturns;

; title 'Analysis of Log-returns';

ods select Histogram ParameterEstimates GoodnessOfFit FitQuantiles Bins;

proc univariate data=a;

histogram / normal(percents=20 40 60 80 midpercents)

odstitle = title;

inset n normal(ksdpval) / pos = ne format = 6.3; run;

var logreturns;

run;
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Abstract

In this study classi�cation methods will be used to predict the judicial decisions that are made

in the U.S. Supreme Court by judges of the Roberts Court. The decision made by the Supreme

Court either a�rms or reverses the lower court's ruling. Machine learning techniques will be used to

model the binary categorical variable as a�rmed or reversed and to ascertain in�uential factors and

predictors.
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1 Introduction

Judicial decision-making should ideally be independent of a judge's personal ideology, political a�liation,

and other external factors. This is unfortunately not always true [7]. The Supreme Court of Appeal is

the highest federal court in the United States with eight associate judges and one Chief Justice. In each

of the 88 court cases that are heard in a year, each judge gets one vote in every case and a decision is

based on the majority vote. Records of all decisions made by the Supreme Court since 1946 are available

to the public. The decisions are contained in a database that is coded into 60 variables per case which are

composed of a further 2633 elements [15]. This database will be used in order to develop the classi�cation

models focusing on cases heard since the beginning of the Roberts Court, which is the court since John

G. Roberts became Chief Justice in 2005.

The objective of this study is to build a statistical model using these speci�c Supreme Court cases and

to establish which variables may be determinants in the judicial decision-making process. The outcome

variable that will be modelled is a binary categorical variable, namely whether the Supreme Court a�rms

or reverses the lower court's ruling. A classi�cation tree model has been used to forecast this outcome

variable in the past [14]. Logistic regression is a conventional model for a binary response, as in this

case, but it su�ers from parametric assumptions which might be misspeci�ed. For this reason a random

forest, which is a nonparametric model, will be developed to classify the decisions into either a�rmed or

reversed. Since the data is labelled, an estimated error rate can be obtained to evaluate the prediction

accuracy of the model. Missing data is often a concern in this type of statistical analysis. In this study

missing data is dealt with using an extra logical category.

From a statistical point of view, this study is not necessarily unique in its classi�cation approach to

modelling this dataset, but rather in its focus of what the classi�er can reveal. A recent paper made use

of a random forest classi�er to predict the outcome of Supreme Court cases over an extended period of

time. The study focused on building a predictor that could be applied to a myriad of cases heard by the

Supreme Court, past and future, without paying attention to the interpretability [8]. This study, however,

focuses on understanding the factors that in�uence a judicial decision and whether those decisions are

based on the judge's personal ideology.

From a legal perspective, this study will make a contribution to the discourse around judicial decision-

making and the determinants (legal and political factors) that shape the decision-making process. Al-

though judges write opinions and reasoning for most of their judgments, this does not necessarily capture

all factors that may in�uence the decision-making process. Political factors that are statistically sig-

ni�cant determinants of judicial decisions are of particular importance because of the need for judicial

impartiality. The personal political ideology of a judge should not in�uence a judge's decision. A judge's

political ideology is represented in the Supreme Court Database by the variable justiceName and scIdeol-
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ogy, a judge's Segal-Cover score. Due to the far-reaching consequences of the Supreme Court's decisions,

prediction of the outcome of a case is valuable information for court watchers and could be used as

guidelines for the legislative branch of government in policy making.

In Sections 2, 3 and 4 theory will be discussed. Section 2 deals with decision trees, Section 3 with

bagging and then Section 4 with random forests. This concludes the theoretical section of this study.

Section 5 deals with application on the Supreme Court dataset.

2 Decision trees

2.1 Introduction

There are two broad categories of decision trees: regression and classi�cation trees. The objective of a

classi�cation tree is to predict a categorical response (outcome) variable given certain predictor (input)

variables, as opposed to regression trees where the outcome variable is numerical. The use of decision

trees is a relatively old technique, but it has recently gained popularity since it has been discovered that

higher accuracy can be achieved by an ensemble of di�erent trees when generalising [4].

Prior to the development of this technique, linear discriminant analysis (1930), logistic regression

(1944) and nearest neighbours classi�ers (1951) were used to solve classi�cation problems. Decision trees

were developed in 1963 by Morgan and Sonquist, and this technique was �ne-tuned by other notable

pioneers such as Breiman, Friedman, Olshen, Stone and Quinlan [16]. One of the motives for the devel-

opment of this technique is that is it a nonparametric model with no formal distributional assumptions.

Consequently, it is capable of handling non-linear interactions and classi�cation decision boundaries. This

technique also has several advantages such as being able to deal with mixed data (discrete and continuous)

and missing values, variable selection is automatic and it can be interpreted with ease [12].

2.2 De�nition and structure

A decision tree is a collection of nodes or questions organised in a hierarchical manner [4]. The base of

the tree is a called a root node where the full dataset is inputted and a split function is applied, splitting

the data into daughter nodes. This split can be binary (two nodes) or non-binary (more than two nodes)

[12], however, this study will focus on binary nodes. The subset of incoming data to each daughter node

then gets split recursively at each internal node until the data point reaches a terminal or leaf node that

contains a classi�er (predictor) which associates an output (class label) with the input [4]. It is also to

be noted that an estimated probability of membership of a particular class can also be obtained.

There are two conceptual phases in the development of the classi�cation tree: the growth of the

classi�cation tree and pruning of the classi�cation tree [13].
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2.2.1 Growing the tree

The parameters (the test at each node and the leaf predictors) can be selected by hand if the data

is very simple but the tree structure and its parameters are more generally learnt automatically from

training data, as an algorithm. The test function associated with each split node depends on the subset

of incoming training data at that node. The parameters that best split the training data is learned by

maximising an objective function (splitting criteria) at each node [4].

There are many di�erent splitting criteria, however, most are univariate impurity based criteria favour-

ing the purer split (majority vote). Univariate splitting criteria only consider a single attribute per node

for the split [13].

The incoming training data is best split into the two child nodes, which is formulated as a maximization

of an objective function, Ij , at node j.

θ∗j = argmax Ij
θjεT

where

� Ij = I(Sj , S
L
j , S

R
j , θj) is the objective function (de�ned abstractly)

� Sj is the subset of incoming training data at node j

� SLj = {(v, y)εSj | h(v, θj) = 0} and SRj = {(v, y)εSj | h(v, θj) = 1} are the subsets of the training

data at node j that go to the left and right child node, respectively

� (v, y) is a training point where v is the vector of input features and y is a known label

� θ∗j are the parameters of the test function at node j, obtained from optimising the objective function

Ij in the training phase

� h(v, θj) is the test function at node j with a binary outcome, 0 or 1

Ij , the objective function, was de�ned abstractly as there are many possible objective functions. The

splitting options available in R (rpart), �information� and �gini�, make use of two di�erent objective

functions. These two objective functions are based on measures of node purity/homogeneity, the �rst

being based on the Shannon entropy and the second on the Gini index.

De�nition 1. Shannon entropy is de�ned as

H(S) = −
∑
cεC
p(c)log(p(c))
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where

� p(c) is the probability that a random entry in the leaf belongs to class c

� c is the class label and C is the set of all classes

Entropy is a measure of purity/homogeneity in the split and the leaves of the splits. It is the discrete

empirical distribution obtained from the training points within the set S. The �best split� is a purer split

that will therefore have lower entropy or uncertainty of prediction.

Although entropy is not speci�ed as an objective function by R, it used indirectly through information

gained. Maximising the information gained is equivalent to minimising the entropy [12].Information

gained is a measure of the e�ectiveness of a feature in classifying the training data. It is the di�erence

between the entropy of all the incoming data (the training data) and the expected entropy (the weighted

sum of the child entropies) after the data is split using a certain attribute [11]. If the children distributions

are purer (a lower entropy) and the information content has increased, this is the desired improvement

from a split. The �best split� is chosen on the basis of the attribute that gives themaximum information

gained [4].

De�nition 2. Information gained when using a certain attribute/split, is de�ned as

Iinfo = H(S)−
∑

iε{L,R}

| Si |
| S |

H(Si)

Iinfo = H(S)− | S
L |
| S |

H(SL)− | S
R |
| S |

H(SR)

The Gini index is the alternative measure of node impurity used by R. The �best split� is chosen in the

same manner as above, where the feature or split with themaximum impurity reduction is preferred.

De�nition 3. Gini index is de�ned as

G(S) =
∑
cεC

p(c)(1− p(c))

De�nition 4. Gini measure, the impurity reduction when using a certain attribute/split, is de�ned as

Igini = G(S)−
∑

iε{L,R}

| Si |
| S |

G(Si)

Igini = G(S)− | S
L |
| S |

G(SL)− | S
R |
| S |

G(SR)
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The termination of this phase is dependent on the chosen stopping criteria. Common criteria involve

a certain threshold tree depth, whether all attributes in a training subset belong to a single class or

are su�ciently homogenous (the best splitting criteria is not greater than a certain threshold, this is a

trade-o� between cost and gain) or whether a node contains too few training points [4, 12].

2.2.2 Pruning the tree

The tree structure (the depth of the tree) is determined by the stopping criteria and the pruning of

a tree which together optimise the ability of a tree to generalise. An increase in the depth of the tree

initially increases the generalisation accuracy of the model, however, this accuracy starts to decrease after

a certain optimal tree depth. Beyond this optimal depth, the model tends to over�t the training dataset,

resulting in a poor ability to generalise independent test data [11].

If the stopping criteria is too loose then the model tends to over�t training dataset. The problem of

over�tting could be solved with stricter stopping criteria, however, this method is not favoured as it is

considered myopic and it can result in under-�tting the model. The preferred solution is �rst growing the

�full tree� with looser stopping criteria and then pruning it, in other words, rid the model of unnecessary

branches that do not contribute su�ciently to the generalisation accuracy [12]. There are various pruning

methods, but there is no single method that is said to be the most suitable for every classi�cation tree.

This is known as the no free lunch theorem. Most criteria that are used to decide which branches should

be pruned use a cross-validation error as an indication of generalisation accuracy. The trade-o� between

accuracy and simplicity is also taken into account in many methods, such as the cost-complexity method

[13].

2.3 Titanic example

Rpart is the package used by R to implement recursive partitioning for the development of a classi�cation

tree model as described above, in other words, it grows a classi�cation tree.1 The dataset used in the

execution of this example is data provided by Kaggle for the competition �Titanic: Machine Learning

from Disaster� [9]. This dataset is commonly used in classi�cation analysis and for illustrative purposes.

This dataset will be used throughout the study.

The outcome variable modelled or predicted was whether or not a passenger survived or not given

6 input variables. These 6 variables are: the ticket class (Pclass), the sex of the passenger (Sex ), the

age of the passenger (Age), the number of siblings or spouses on board (SibSp), the number of parents

or children on board (Parch), the passenger's fare (Fare) and the port of embarkation for passengers

(Embarked). The following R code was used to in building a classi�cation tree to model the outcome

1This analysis was performed using R software, Version 3.3.1 for Windows. Copyright © 2016 The R Foundation for
Statistical Computing Platform, Vienna, Austria.
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variable, namely whether a passenger survived or not (Survived).

1 l i b r a r y ( rpar t )

2 l i b r a r y ( rpar t . p l o t )

3 l i b r a r y ( r a t t l e )

4 f i t 1 <− rpar t ( Survived ~ Pc la s s + Sex + Age + SibSp + Fare + Embarked + Parch ,

data = ` Ti tan i c t ra in ` , method = " c l a s s " , parms = l i s t ( s p l i t = ' g in i ' ) )

5 f i t 2 <− rpar t ( Survived ~ Pc la s s + Sex + Age + SibSp + Fare + Embarked + Parch ,

data = ` Ti tan i c t ra in ` , method = " c l a s s " , parms = l i s t ( s p l i t = ' in format ion ' ) )

6 fancyRpartPlot ( f i t 1 , cex =0.58 , s u f f i x ="\n\n" , under . cex =0.58)

7 fancyRpartPlot ( f i t 2 , cex =0.53 , s u f f i x ="\n\n" , under . cex =0.53)

8 p lo tcp ( f i t 1 )

9 p f i t t <−prune ( f i t 1 , cp=f i t 1 $ c p t a b l e [ which . min ( f i t 1 $ c p t a b l e [ , " xe r r o r " ] ) ,"CP" ] )

10 fancyRpartPlot ( p f i t t , cex =0.6 , s u f f i x ="\n\n" , under . cex =0.6)

Line 4 and 5 of the programme make use of the rpart package to �t a decision tree using the Gini

Index and Information Gained, respectively, as the splitting criteria. E�ectively growing the classi�cation

tree.

Figure 1: Classi�cation tree generated using the Gini index as the splitting criteria

Line 8 creates Figure 3, which is a visual representation of the cross validation error of the �tted

model against the size of the tree. Rpart uses a built in cross validation method (k-fold cross validation)

to determine the accuracy of the model, where it splits the data into a training and validation dataset.

The training set is used to build the model and the validation set is used to determine how accurately

the model is able to generalise on the unseen (validation) data. This is repeated k-fold times and then

averaged to give a �nal measure of performance.
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Figure 2: Classi�cation tree generated using information gained as the splitting criteria

Figure 3: Cross validation error against the complexity parameter and tree size

The next phase is the pruning of the tree, which is executed in line 9 and 10. Here the tree size or

complexity parameter (cp) is chosen when the cross-validation error is at its minimum point. This is the

optimal cp value or size to which the tree will be pruned. R recommends that the optimal cp is �often

the leftmost value for which the mean lies below the horizontal line�. In the Titanic example, this is

when the size of the tree is 3. Figure 4 below shows this optimal number of nodes (3) which is a result

of pruning the original tree, Figure 1.
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Figure 4: Pruned classi�cation tree

3 Bagging

Bagging, which was proposed by Breiman in 1996 [1], is a method used to inject randomness into a system

in an attempt to improve the accuracy of machine learning predictors and avoid over�tting [4]. The word

bagging was coined through a combination of �bootstrapping� and �aggregating�. This is where numerous

versions of a predictor are created by sampling di�erent subsets of the training data, after which these

predictors are aggregated to form one predictor. Bootstrapping, which is a simple random sampling

technique with replacement, is used to create the di�erent subsets of training data. These classi�cation

predictors are aggregated by either averaging posterior probabilities or by voting, where each predictor

makes its classi�cation and then the majority decision is used as a �nal classi�cation [1].

4 Random Forests

4.1 Introduction

Attribute bagging is the main modi�cation that distinguishes a random forest from the original bagging

algorithm used in building and aggregating multiple decision trees [1]. This is a process whereby a

multitude of decision trees are grown using independent bootstrap samples to create di�erent subsets of

the training data [3]. The di�erentiating factor of random forests is that at each node of the individual

trees grown, all available input features are not used. Instead, m input features are independently and

randomly selected out of all M possible features [6]. The splitting criteria is then applied to the m input

features to �nd the best split at that particular node. This process continues until the decision trees are

fully grown to their maximum depth. The decision trees are unpruned as pruning is no longer necessary

because over�tting is addressed by the two injections of randomness [2].
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4.2 Structure and methodology

The two injections of randomness in the progression from a single decision tree to a random forest are:

� bootstrap sampling of the training data;

� attribute bagging of the features at each node [4].

As in bagging, these trees are then aggregated in order to develop one �nal classi�cation by either

averaging posterior probabilities of the outcomes produced by each tree or by majority voting of the class

outcome produced by each tree [4]. The rationale behind this development is to reduce the correlation

between trees, thereby improving the accuracy and stability of the ensemble of classi�ers (decision trees)

[2, 4]. This correlation between trees is due to strong predictors being selected as the features in many

of the trees which are created by di�erent ordinary bootstrap samples [3].

Due to the nature of random sampling, about a third of the cases are excluded from the bootstrap

sample used to construct an individual tree. These cases that are left out are called �out of bag� (OOB)

data. This data is valuable as random forests no longer require cross-validation or a separate test set

to obtain an unbiased estimate of the classi�cation error as this is estimated internally with the OOB

data [2]. It is also valuable as it addresses the major disadvantage of a random forest: the loss of

visual representation provided by an individual tree that provides insights into the variable importance

and the point at which they become important. This loss is due to the aggregation process in the

formation of a random forest classi�er that only generates a �nal classi�cation [12]. This issue is addressed

by two measures of variable importance computed using the OOB data. These two measures are the

permutation importance measure and the Gini importance measure. Permutation importance is obtained

by calculating the classi�cation error rate by making use of the OOB data, before and after a single

predictor variable is permuted [10]. The di�erence between these two values is an indication of variable

importance because if the permutation of a certain variable had little impact on the error rate this would

imply that the particular variable is unimportant [6]. This measure is obtained for every variable, across

all decision trees. The �nal measure of variable importance is obtained by averaging and standardising

these di�erences, divided by the standard deviation of the di�erences. The Gini importance measure is

based on the Gini impurity measure, which is the reduction in node impurity achieved when splitting

on a certain variable. The greater the decrease in impurity, the more important a variable is. The �nal

measure is obtained by averaging the Gini impurity measure for each variable across all decision trees

generated by the random forest [10].
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4.3 Titanic example continued

The randomForest package in R is used to implement Leo Breiman's random forest algorithm for classi-

�cation problems [10]. One problem faced when using random forests is how to deal with missing data,

which is not an issue when using a decision tree. There are various ways in which this can be dealt with

and appropriate techniques depend on the speci�c dataset. The summary function in R is very useful in

identifying which variables are problematic in this regard.

1 l i b r a r y ( rpar t )

2 l i b r a r y ( randomForest )

3 l i b r a r y ( party )

4 summary ( ` T i tan i c t ra in ` )

5 Age f i t <− rpar t (Age ~ Pc la s s + Sex + SibSp + Parch + Fare + Embarked , data=`

Ti tan i c t ra in ` [ ! i s . na ( ` T i tan i c t ra in ` $Age ) , ] , method="anova ")

6 ` T i tan i c t ra in ` $Age [ i s . na ( ` T i tan i c t ra in ` $Age ) ] <− p r ed i c t ( Agef i t , ` T i tan i c t ra in

` [ i s . na ( ` T i tan i c t ra in ` $Age ) , ] ) summary ( ` T i tan i c t ra in ` $Embarked )

7 which ( ` T i tan i c t ra in ` $Embarked == ' ' )

8 ` T i tan i c t ra in ` $Embarked [ c (62 ,830) ] = "S"

9 ` T i tan i c t ra in ` $Embarked <− f a c t o r ( ` T i tan i c t ra in ` $Embarked )

10 s e t . seed (12184587)

11 RF <− randomForest ( as . f a c t o r ( Survived ) ~ Pc la s s + Sex + Age + SibSp + Parch + Fare

+ Embarked , data=`Ti tan i c t ra in ` , importance=TRUE, nt ree =2000 , r ep l a c e=TRUE)

12 varImpPlot (RF, main="Inv e s t i g a t i o n o f v a r i ab l e importance ")

13 importance (RF)

14 p r in t (RF)

For the Titanic dataset, the Age variable is particularly problematic as it has 177 missing values. The

programming in lines 5 and 6 uses a decision tree, built using all the data without missing values, to

impute what the age of a passenger would be where there is missing information. The second problematic

variable is Embarked, where two of the passengers' embarkment details are missing. Due to the fact that

there are only two missing values and that Embarked is a categorical variable, the most appropriate

method is arguably to replace the missing values with the mode of the missing variable - which for

Embarked is S for Southampton.

Once the problem of missing data has been dealt with, a random forest can be constructed. This is

executed by line 11. The programme uses the OOB data from the construction of the random forest in

order to obtain a confusion matrix and an unbiased estimate of the classi�cation error. This OOB error

rate estimate is 16.05% and the confusion matrix is given in Table 1.
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0 1 classi�cation error

0 506 43 0.07832423

1 100 242 0.29239766

Table 1: Confusion matrix when predicting Survived and imputing the missing values using the mode
(for Embarked) and a decision tree (for Age)

As mentioned earlier, there are various ways to deal with missing data before the random forest

classi�er can be constructed. The randomForest package has a `na.action' option, which makes it possible

to deal with NA values automatically in many di�erent ways, two examples being `na.omit' or `na.rough�x'.

The �rst options omits observations with missing values and the second option imputes the missing

values by making use of a median or mode value for that variable. There is a third option speci�c to

the randomForest package called rfImpute which imputes missing values by making use of a proximity

measure.

Line 3 in the programme below constructs a random forest and makes use of the `na.action' option to

deal with missing values.

1 TitanicNA<−read . csv ("C: / Users /Nico la /Documents/2017/STK795/JUNE/trainNA . csv ")

2 s e t . seed (12184587)

3 RanF<−randomForest ( as . f a c t o r ( Survived )~Pc la s s + Sex + Age + SibSp + Parch + Fare +

Embarked , data=`TitanicNA ` , importance=TRUE, nt ree =2000 , r ep l a c e=TRUE, na .

ac t i on=na . rough f i x )

4 varImpPlot (RF)

5 importance (RanF)

6 p r in t (RanF)

The OOB error rate estimate using this method is 16.39%. The confusion matrix constructed using

OOB data can be seen in Table 2.

0 1 classi�cation error

0 504 45 0.08196721

1 101 241 0.29532164

Table 2: Confusion matrix when predicting Survived and imputing the missing values using `na.rough�x'

It is interesting to note that the OOB estimate of error rate is lower for the �rst method used to deal

with missing data, using a decision tree to impute the missing Age variable and the mode for the missing

Embarked variable, as opposed to the second `na.rough�x' method, which just made use of a median or

mode to impute the missing variables.

Figure 5 was constructed using line 12 in the �rst programme and line 4 in the second programme.

The randomForest package makes use of two measures of variable importance. As explained earlier, the
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mean decrease in accuracy and the mean decrease in node impurity. Although the visual representation

of a single decision tree is lost, Figure 5 is a good substitute for this visual representation as it makes

variable importance quite comprehensible.

Figure 5: Variable importance in predicting Survived

The MeanDecreaseAccuracy is the permutation based measure of variable importance, where the

bigger the di�erence in the classi�cation error rate due to permutation of the variable is an indication of

higher variable importance in the classi�cation problem [6]. The interpretation of Figure 5 is therefore

that the rank of variable importance when classifying whether a passenger survived or not from most

important to least is: Sex, Pclass, Age, Fare, SibSp, Embarked and Parch. For instance, if the variable

Sex is permuted it would lead to a large decrease in accuracy, which indicates the importance of the

variable. Contrary to this, if the variable Parch is permuted, it is clear from the graph that it would lead

to a small decrease in accuracy, therefore, indicating the unimportance of the variable.

The graph showing MeanDecreaseGini against the variables, on the right in Figure 5, comes to a

slightly di�erent �nding with the rank of variable importance, namely: Sex, Fare, Age, Pclass, SibSp,

Parch and Embarked. The logic behind this interpretation is that the higher the MeanDecreaseGini

measure is, the greater the decrease in node impurity is when splitting on a certain variable, implying a

greater important of a variable in the classi�cation problem at hand [10].

5 Application

5.1 Introduction

The objective of this study is to establish which variables may be determinants in the judicial decision-

making process as judicial decisions made should ideally be independent from a judge's personal ideology,

political a�liation, and other external factors. In e�ect, many of the variables should ideally be insignif-

icant, for example justiceName, in predicting a judicial decision or the outcome of a case. In this study,

the Supreme Court dataset is used to investigate the impartiality of the judges in the decision-making
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process.

5.2 Variable overview

Although there are 60 variables per case in the database, not all of these variables are logical or relevant

to use for the objective of this study. The variables are broadly categorised by the database into six

categories: identi�cation variables, background variables, chronological variables, substantive variables,

outcome variables and voting and opinion variables.

Identi�cation variables

� The identi�cation variables are di�erent for every case and were not used because despite the

supposed variable importance being potentially high, it is not meaningful or logical to conclude

that these have any impact on the outcome of a case. For example the Supreme Court Citation

variable (sctCite) cannot be used to model the outcome of a case in a meaningful way.

Background variables

� The background variables should not, in theory, be determinants in judicial decision-making so it

is important to include these variables.

� Some of these variables have been excluded, however, as the di�erence between the caseOrigin and

the caseOriginState is already captured in the variable jurisdiction.

� The other variables excluded were done so on the basis of being poorly coded variables. To illustrate,

the variable respondent has 310 distinct values with many of these distinctions being super�cial and

overlapping, for example, value 154 is a female employee or job applicant and value 155 is a female.

The three-judge District Court variable (ThreeJudgeFdc) was excluded on the basis that it is almost

`non-existent' in the Roberts Court.

Chronological variables

� Out of the chronological variables, the only 2 variables kept were term and the naturalCourt.

� The term is the year in which the decision was passed down, which is the most telling date, as

deliberation can occur up until this date.

� The naturalCourt is also an interesting variable as there are natural courts that are considered to

be stronger than others. A natural court is a court where no personnel change occurs, in other

words, the same 9 judges are in o�ce for a period of time.
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Substantive variables

� All but 3 of the substantive variables were included, namely the legal provisions considered by the

court (lawType), the supplementary legal provision considered (lawSupp) as well as the minor legal

provisions considered (lawMinor). This is because the broader variable of issue area (issueArea) is

more valuable and to a large extent incorporates these variables.

Outcome variables

� Only the partyWinning variable is modelled as a univariate outcome.

Voting and opinion variables

� The majority of these variables are irrelevant for the purposes of this study and only provide details

about the manner in which the judgment was given, for example, the majority opinion writer

variable (majOpinWriter) speci�es which judge was the author of the court's opinion or judgment.

� The only meaningful variable that could potentially be a determinant in the decision-making process

is the majority variable (majority) which captures whether a judge voted with the majority or not.

This may provide insight into how often certain judges vote with the majority or minority.

5.3 Missing data

There are many di�erent approaches that can be used to handle missing data, the most common of

which is to impute these missing values in some way. In some modelling techniques, missing values are

not problematic, such as with a decision tree. In other instances, however, such as in a random forest,

missing values are problematic [6].

Table 1 summarises the percentage of missing values per variable in the Supreme Court dataset used

in this study. Only the missing values of variables that will be used, as discussed in the variable overview,

are summarised in Table 1. Missing values in this context are of a di�erent nature to the missing values

discussed in the Titanic example. Missing values for many of the variables in this dataset are absent

because of legal procedure. The jurisdiction of the court is of particular importance in this regard because

if the Supreme Court is the court of �rst instance, for example, there will be no Lower Court Disposition

(lcDisposition). This is not true for all variables caseOriginState and caseSourceState is particularly

problematic with 87% of the missing values. These 2 variables will therefore be omitted as they do not

contain any information (if an independent variable has constant x values, here NAs, it cannot be used

to explain the dependent variable).
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Variable Frequency missing Percentage missing

caseOrigin 200 2.05
caseOriginState 8521 87.16
caseSource 115 1.18

caseSourceState 8529 87.24
lcDisagreement 17 0.17
lcDisposition 463 4.74

lcDispositionDirection 88 0.90
issueArea 17 0.17

authorityDecision1 80 0.82
authorityDecision2 7710 78.87

lawType 243 2.49
majority 207 2.12

Table 3: Missing values per variable

The programme below codes the missing values as an extra category with a logical reasoning for why

the data is missing. This coding may be quite e�ective as something like an uncommon issueArea may,

in fact, be a decisive factor in a case.

1 two2$caseOrig in [ i s . na ( two2$caseOrig in ) ] <− "SC o r i g i n a l j u r i s d i c t i o n "

2 two2$caseSource [ i s . na ( two2$caseSource ) ] <− "SC o r i g i n a l j u r i s d i c t i o n "

3 two2$author i tyDec i s ion1 [ i s . na ( two2$author i tyDec i s ion1 ) ] <− "no reason "

4 two2$author i tyDec i s ion2 [ i s . na ( two2$author i tyDec i s ion2 ) ] <− "no second reason "

5 two2$lcDisagreement [ i s . na ( two2$lcDisagreement ) ] <− " j u r i s d i c t i o n a f f e c t s "

6 two2$ l cD i spo s i t i on [ i s . na ( two2$ l cD i spo s i t i on ) ] <− " j u r i s d i c t i o n a f f e c t s "

7 two2$ l cD i spo s i t i onD i r e c t i on [ i s . na ( two2$ l cD i spo s i t i onD i r e c t i on ) ] <− "not s p e c i f i e d /

j u r i s d i c t i o n a f f e c t s "

8 two2$issueArea [ i s . na ( two2$issueArea ) ] <− "uncommon/not c a t e g o r i s e d "

9 two2$lawType [ i s . na ( two2$lawType ) ] <− "uncommon/not c a t e g o r i s e d "

10 two2$majority [ i s . na ( two2$majority ) ] <− "not g iven "

5.4 Prescreening of variables

In this section, prescreening of the data was completed in order to determine which variables are es-

sential in building the �nal model. The large number of predictor variables poses a challenge for the

interpretability in the modelling of the decision, since all predictor variables are categorical in nature.

Logistic regression and a single decision tree were used to screen the variables for initial importance. This

is used to reduce the dimensionality of the dataset. The initial investigation was also done to establish

the extent to which the missing values will in�uence the random forest.
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5.4.1 Decision tree

The coding below was used to construct a decision tree to determine the outcome of a case, using the

Supreme Court Database.

1 f i t t r e e <− rpar t ( partyWinning ~ term + natura lCourt + j u r i s d i c t i o n +

lcDisagreement + l cD i s p o s i t i o n + l cD i s p o s i t i o nD i r e c t i o n + is sueArea +

author i tyDec i s i on1 + author i tyDec i s i on2 + lawType + just iceName + major i ty +

caseOr ig in + caseSource + scQual + sc Ideo logy , data=two2 , method = " c l a s s " ,

parms = l i s t ( s p l i t = ' g in i ' ) )

2 fancyRpartPlot ( f i t t r e e , cex =0.53 , s u f f i x ="\n\n" , under . cex =0.53)

3 summary( f i t t r e e , f i l e )

Figure 6: Classi�cation tree generated using the Gini index as the splitting criteria

The advantage of a decision tree is the ease of interpretation. The interpretation is of which vari-

ables are important in the decision-making process and when these variables become important. From

Figure 6 it can be seen that the signi�cant variables are: caseOrigin, term, caseSource, lcDisposition

and authorityDecision1. This result is promising in showing the impartiality of judges as it is clear that

the justiceName, scIdeology and scQual are not signi�cant variables. The fact that authorityDecision1

is an important variable is signi�cant as the judgment should indeed be based on what a judge claims

the reasoning for a decision was, as captured in this variable. It is logical that the term is a signi�cant

splitting variable as this could be indicative of the development of the law; development of law is nec-

essary in order to meet the ever changing needs and ideals of society, which a country's law should be

representative of.
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5.4.2 Logistic regression

Below is the code used in SAS to �t a logistic regression model to the data.2

1 proc l o g i s t i c data=use ;

2 c l a s s term natura lCourt just iceName ;

3 model partyWinning = caseOr ig in caseSource term natura lCourt j u r i s d i c t i o n

lcDisagreement l cD i s p o s i t i o n l cD i s p o s i t i o nD i r e c t i o n i s sueArea

autho r i tyDec i s i on1 autho r i tyDec i s i on2 lawType just iceName major i ty scQual

s c Ideo l ogy ;

4 run ;

The logistic regression model is given in the equation below.

f̂ = g(XcaseOrigin, XcaseSource, Xterm, XnaturalCourt, Xjurisdiction, XlcDisagreement, XlcDisposition,

XlcDispositionDirection, XissueArea, XauthorityDecision1, XauthorityDecision2, XlawType, XjusticeName, Xmajority)

From the results the following variables were found to be signi�cant (at a 5% level of signi�cance):

caseOrigin, caseSource, term, lcDisposition, issueArea, authorityDecision2 and lawType. It is interest-

ing to note that the conventional approach to the categorisation of a binary outcome variable, logistic

regression, gives an error rate of 23.43%. The variables scIdeology and scQual were set to 0 as they are a

linear combination of an intercept term and various justiceNames. ScQual and scIdeology were therefore

excluded from the �nal model due to the multicollinearity between these variables and justiceName. The

naturalCourt variable was not excluded from the �nal model as only one category was found to be a linear

combination of other variables. From the 60 possible predictors the random forest is then developed using

this subset of the 12 remaining predictors.

5.5 Final model for judicial decision-making

From the results of the prescreening, the following variables were included in the �nal model: term,

naturalCourt, jurisdiction, lcDisagreement, lcDisposition, lcDispositionDirection, issueArea, authority-

Decision1, authorityDecision2, lawType, justiceName and majority. During this process it was found

that the ideology scores (Segal-Cover scores) and quali�cations of the judges are a linear combination

of the justiceName variable. It is because of this result that these two variables, scIdeology and scQual,

were excluded from the model.

The following R code was used to construct a random forest classi�er to model the outcome variable

of whether a judicial decision is favourable or not.

2This analysis was performed using SAS software, Version 9.4 of the SAS System for Windows. Copyright© 2017 SAS
Institute Inc., Cary, NC, USA.
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1 f o r e s t <− randomForest ( partyWinning ~ term + natura lCourt + j u r i s d i c t i o n +

lcDisagreement + l cD i s p o s i t i o n + l cD i s p o s i t i o nD i r e c t i o n + is sueArea +

author i tyDec i s i on1 + author i tyDec i s i on2 + lawType + just iceName + major ity ,

data = two2 , importance=TRUE, nt ree =2000 , r ep l a c e=TRUE)

2 varImpPlot ( f o r e s t )

3 importance ( f o r e s t )

4 p r i n t ( f o r e s t )

Hereafter the �nal model, a random forest classi�er, was constructed which yielded the following

results:

0 1 classi�cation error

0 2929 120 0.03935717

1 114 6613 0.01694663

Table 4: Confusion matrix when predicting partyWinning

The estimated OOB error rate for the dataset using the developed random forest classi�er is 2.39%.

This error rate is very small indicating exceptional performance in predicting the outcome of a U.S.

Supreme Court case. The aim of this study is not only to predict the outcome accurately but to investigate

which factors are most important in this decision. For this purpose, a visual representation of the variable

importance is given in Figure 7. The �gure displays the mean decrease in accuracy based on a speci�c

variable on the left, and the mean decrease in the Gini criterion on the right. It is noted that the higher a

variable is on these plots, the more important it is in predicting the response. It can be seen that the two

most important variables are identical and the top seven di�er only in ordering but comprise of the same

subset of variables. From Figure 7 it is evident that the most important predictors are: term, issueArea,

authorityDecision1, lcDisposition, caseOrigin, caseSource and lawType. While the three least important

predictors are: justiceName, jurisdiction and majority.

Figure 7: Variable importance in predicting partyWinning
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This proves the objective of the study, although not de�nitively, that judges are impartial in the

judicial decision-making process. This is evident from the variable justiceName being one of the least

important variables. The variable majority is often analysed as it could be indicative of certain judges

always voting with the majority, it is also positive to see that this does not appear to be the case.

It is interesting to note that the variable term is the most important variable as this could be indicative

of the legal development over time. The fact that the issueArea is a very important variable is also a good

indication of judicial impartiality, as the type of legal issue dealt with should be a determinant in the

judicial decision-making process. The authorityDecision variables are the reason(s) given for the decision

made. It is therefore expected that this variable should be important, as it would indicate a judge's

accuracy in capturing the reasoning for the judicial decision made. The fact that the lcDisposition is in

the top 5 most important variables is interesting. It is interesting as this could be indicative of the Supreme

Court's lack of willingness to disagree with lower courts, which could be worrisome. This, however, could

also be interpreted as an indication of the quality of the lower courts. This is perhaps a more realistic

interpretation as the lack of willingness to disagree with lower courts does not take into account the fact

that the Supreme Court may not be willing to change the lower courts disposition because the lower

court made a sound conclusion; which is not problematic. The caseSource and caseOrigin variables may

also be indicative of the quality of courts within certain jurisdiction, as well as the di�erences between

ideals in the di�erent circuits. This is expected as the United States that has both Federal and State

laws which enable certain areas to di�er in their legal systems. This is in line with certain jurisprudential

theories that the law should be re�ective of societies ideals which can vary greatly based on geographical

location.

5.6 Other issues encountered

An issue encountered with the data was that the variables caseOrigin and caseSource have 211 distinct

values which the randomForest package was unable to deal with. Consequently the variables were grouped

into new logical categories, according to the various court groupings made in the United States. The 211

distinct values were coded into 11 distinct circuits, the District of Columbia, the Federal Circuit and 5

other courts; this coding can be seen in the Appendix. The missing values, as mentioned earlier, were

replaced by logical reasoning for their absence. For the variables caseOrigin and caseSource the reason

for missing data is that the Supreme Court has original jurisdiction. This makes up the last category of

the variables as seen in Figure 13 and Figure 14 in the Appendix.

There was a problem with the case of Ivan Eberhart vs United States. This case was coded as a

number that did not exist according to the codebook provided by the Supreme Court Database. After

further investigation of the Supreme Court Database website, it was found that this case was heard in
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the Illinois Middle U.S. District Court which forms part of the Eleventh Circuit, so it was coded as such.

Another issue encountered in the application process was that R could not handle the NA values in

the object (the edited Supreme Court dataset), even though these variables were not being made use

of in the �nal model. These missing values were coded (see the Appendix) as an extra category which

solved this issue and randomForest package was able to work.

The coding according to codebook, while useful, was not easily interpreted. The coded variables were

therefore formatted back to worded categories that can be easily interpreted, see the Appendix for this

coding.

6 Conclusion

In an ideal legal system judicial decisions made by judges are independent of judge's personal ideology,

political a�liation, and other external factors; judges should be impartial. This independence is often

called into question to ensure the principle of separation of powers is adhered to. The purpose of this

study was to investigate this independence using cases from the United States Supreme Court, as captured

by the Supreme Court Database. To this end, a random forest classi�cation model was used to predict

the outcome of a court case, and to investigate the most in�uential predictors of the outcome of a case.

The justice's political ideology was represented by the variable justiceName which could also be

interchanged with the Segal-Cover Scores of the judges, denoted in the Supreme Court Database by the

variable scIdeology. The impartiality of judges could be indicated by this variable as it is one of the least

in�uential predictors of the outcome in the judicial decision-making process.

From the developed model it is found that the most important predictors of the outcome are: term,

issueArea, authorityDecision1, lcDisposition, caseOrigin, caseSource and lawType; while the three least

important are: justiceName, jurisdiction and majority. The impartiality of judges is evident from the

variable justiceName being one of the least important variables. The fact the issueArea is an important

variable is also a good indication of judicial impartiality, as the type of legal issue dealt with should be

a determinant in the judicial decision-making process. The authorityDecision variables are the reason

given for the decision made. It is therefore expected that this variable should be important, as it would

indicate a judge's accuracy in capturing the reasoning for the judicial decision made. It is encouraging

that this was found to be the case.

It can therefore be concluded that the determinants of the judicial decision-making process are inde-

pendent of the judge's personal ideology, political a�liation, and other external factors. This study has

found the judges in the Supreme Court of the United States to be impartial in the judicial decision-making

process.
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7 Recommendations

The potential for development of this study is vast. A few ideas for future development are mentioned

below.

Theoretical:

� From a theoretical point of view, a recommendation would be to make use of new developments in

random forests to construct the classi�er.

� There have been several extensions of random forests over the years. One such technique uses

the McNemar nonparametric signi�cance test in an attempt to decrease the number of trees that

contribute to the majority vote, without a decrease in the accuracy of the model. Another devel-

opment is weighted random sampling, in place of simple random sampling, during the selection of

features at each node. Two more recent developments are: the genetic algorithm-based random

forest (GARF) and the hybrid weighted random forest algorithm [5].

Application:

� Future research could be done by testing the random forest built in this study on the cases heard

in 2017. This data will, however, only be published in July 2018.

� Alternatively, the data used to develop the random forest could have excluded the cases heard in

2016. The 2016 cases could have then been used to develop a �toy example�, as an illustration of the

functioning of the model developed on cases from 2005 until the end of 2015. This seems redundant

due to the out of bag data that serves a similar purpose, however, it may be valuable for illustrative

purposes.

Alternative programmes/software packages:

� The debate around which programming language or software is the �best� analytical tool is multi-

faceted. It would be interesting to consider various other programming languages in the construction

and application of random forests. Alternative programming languages and software that could be

used in future studies to develop random forests, are listed below.

� SASr Enterprise Miner has a procedure called PROC HPFOREST that can be used to con-

struct a random forest

� The scikit-learn library in Python has a RandomForestClassi�er function

� Random ForestsTM is a software trade marked by Adele Cutler and Leo Breiman [6]
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Appendix

7.1 Descriptive statistics

Descriptive statistics were done on the raw dataset, however, only a few will be explained in this section.

For a record of the descriptive statistics not included in this section, see Section 7.2 and Section 7.3.

Please refer to the following link to access the Supreme Court database codebook to see details about the

coding of every variable: http://scdb.wustl.edu/_brickFiles/2016_01/SCDB_2016_01_codebook.

pdf.

7.1.1 Winning party

The partyWinning variable captures whether a person appealing a lower court's judgment was successful

in their appeal or not. From the output below, it can be seen that there are more than double the number

of favourable outcomes as opposed to outcomes that are not favourable.

Figure 8: Percent of each category present in the variable winning party
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7.1.2 Law type

This variable captures the legislation, constitutional provisions or court rules that the court takes into

consideration in a case.

Figure 9: Percent of each category present in the variable law type
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7.1.3 Issue area

This variable identi�es which area of law is being considered in a particular case.

Figure 10: Percent of each category present in the variable issue area
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7.1.4 Lower court disposition

This variable speci�es what the lower court's outcome is which is being reviewed in the Supreme Court.

Figure 11: Percent of each category present in the variable lower court disposition

7.1.5 Authority for decisions

This variable identi�es the legal basis on which a reason was taken. Some decisions have more than one

legal basis and this is captured by the second authority decision variable.
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Figure 12: Percent of each category present in the authority decision variable
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The graph on the left of Figure12 summarises the �rst reason given and the graph on the right

summaries the second reason, if given.

7.1.6 Case origin

This variable indicates which lower court the case originated from.

Figure 13: Percent of each category present in the case origin variable

7.1.7 Case source

This variable indicates which lower court's decision the Supreme Court is reviewing.

Figure 14: Percent of each category present in the case source variable

7.2 Descriptive statistics using R

The summary function is used to get a general overview of the data, but more speci�cally to see where

missing values are problematic. Note that there were two unlabelled cases that were removed before this
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investigation. Kansas vs Carr originally had two di�erent dockets at a lower court level but they were

consolidated at the Supreme Court level. The second unlabelled case was U.S. Airways vs McCutchen

that was an �unclear� outcome that could not be coded into a favorable or unfavorable disposition.

two<−subset ( ` 2 . 0 0 ` , c h i e f=='Roberts ' )

two2<−subset ( two , docket !='14−450 '& docket != '11−1285 ')

summary( two2 )
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7.3 Descriptive statistics using SAS

The above dataset modi�cations made in R are also made in SAS before an overview is conducted.

Two-way frequency tables of the most important variables (according to the �nal model) are shown here.

data Rsame ;

s e t s a su s e r . scdb ;

i f c h i e f ^= "Roberts " then d e l e t e ;

i f partyWinning = 2 then d e l e t e ;

i f docket = 11−1285 then d e l e t e ;

i f docket = 14−450 then d e l e t e ;

run ;

data use ;

s e t two ; * s ee Sec t i on 7 .5 used to c r e a t e t h i s data ;

format partyWinning partyWinningfmt . au tho r i tyDec i s i on1 author i tyDec i s i on1 fmt .

au tho r i tyDec i s i on2 author i tyDec i s i on2 fmt . i s sueArea i s sueAreafmt . j u r i s d i c t i o n

j u r i s d i c t i o n fm t . lcDisagreement lcDisagreementfmt . l cD i s p o s i t i o n l cD i spo s i t i on fmt .

l cD i s p o s i t i o nD i r e c t i o n l cD i s p o s i t i o nD i r e c t i o n fmt . major i ty major i tyfmt . ca s eOr ig in

caseOr ig in fmt . caseSource caseOr ig in fmt . ;

run ;

proc f r e q data=use order=f r e q ;

t ab l e s partyWinning* term partyWinning* ca seOr ig in partyWinning* caseSource partyWinning*

i s sueArea partyWinning* l cD i s p o s i t i o n partyWinning* lawType partyWinning*

autho r i tyDec i s i on1 partyWinning* autho r i tyDec i s i on2 / ch i sq p l o t s=f r e q p l o t ( twoway=

stacked o r i e n t=ho r i z on t a l ) ;

run ;
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Winning party by term
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Winning party by case origin
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Winning party by case source
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Winning party by issue area
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Winning party by lower court disposition

43



Winning party by law type

44



Winning party by authority for decisions
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7.4 Conversion of variables

The 'as.factor' and 'as.numeric' functions in R were used to convert variables to character or numerical

values where necessary. Note that even variables that were not used in the �nal model, were converted to

the correct variable type so that the summary function could be an accurate representation of the data.

two2$majority <−as . f a c t o r ( two2$majority )

two2$scQual <−as . numeric ( two2$scQual )

7.4.1 Descriptive statistics post dealing with missing values and conversions

After missing values and conversion of variables were dealt with, a summary of the data was done using

R.

summary( two2 )

46



47



48



7.5 Fixing other data issues encountered

The code below was used to group together categories within the caseSource and caseOrigin variables to

form 21 new categories. This was done to form every new category, however, only the coding to create

the category First Circuit is shown below. The code below was also used to convert missing values in the

data to a new category called Original Jurisdiction.

data two ;

s e t Rsame ;

*CaseOrigin ;

* F i r s t C i r cu i t ;

i f ca s eOr ig in=78 then caseOr ig in =1111; *Maine ;

i f ca s eOr ig in=416 then caseOr ig in =1111;

i f ca s eOr ig in=80 then caseOr ig in =1111; *Massachusetts ;

i f ca s eOr ig in=418 then caseOr ig in =1111;

i f ca s eOr ig in=91 then caseOr ig in =1111; *New Hampshire ;

i f ca s eOr ig in=424 then caseOr ig in =1111;

i f ca s eOr ig in=112 then caseOr ig in =1111; *Puerto Rico ;

i f ca s eOr ig in=113 then caseOr ig in =1111; *Rhode I s l and ;

i f ca s eOr ig in=431 then caseOr ig in =1111;

i f ca s eOr ig in=21 then caseOr ig in =1111; * F i r s t C i r cu i t ;

*CaseSource ;

* F i r s t C i r cu i t ;

i f caseSource=78 then caseSource =1111; *Maine ;

i f caseSource=416 then caseSource =1111;

i f caseSource=80 then caseSource =1111; *Massachusetts ;

i f caseSource=418 then caseSource =1111;

i f caseSource=91 then caseSource =1111; *New Hampshire ;

i f caseSource=424 then caseSource =1111;

i f caseSource=112 then caseSource =1111; *Puerto Rico ;

i f caseSource=113 then caseSource =1111; *Rhode I s l and ;

i f caseSource=431 then caseSource =1111;

i f caseSource=21 then caseSource =1111; * F i r s t C i r cu i t ;

*Miss ing Values ;

i f ca s eOr ig in=. then caseOr ig in =00000; *Or ig ina l J u r i s d i c t i o n ;

i f caseSource=. then caseSource =00000; *Or ig ina l J u r i s d i c t i o n ;

run ;

The following code was used to format the coded variables back to their categorical names, as given by

the Supreme Court Database codebook. This is only shown below for the variable partyWinning.

proc format ;

va lue partyWinningfmt
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0="unfavorab le d i s p o s i t i o n f o r p e t i t i o n e r "

1=" favo rab l e d i s p o s i t i o n f o r p e t i t i o n e r " ;

run ;

data use ;

s e t two ;

format partyWinning partyWinningfmt . ;

run ;
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Abstract

Classi�er accuracy is extremely important and can be improved by increasing the size of the

sample data on which the classi�er is based. However, in experimental/laboratory cases it is not

always possible to obtain enough of the required data to train the classi�er, as even very large

data sets may not contain enough information and access to the information may become extremely

computer intensive.

For this reason a sequential method of training classi�ers can be of use. This method, which is

based on certain stopping criteria and evaluates the classi�cation rule at each step is able to ensure

with a certain level of con�dence that the probability of the classi�er making an error is within a

pre-speci�ed level of the absolute minimum feasible error, the Bayes error, whilst only requiring the

smallest possible number of observations.

Keywords: Bayes error, �xed-width con�dence interval, classi�er training
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1 Introduction

Classi�ers are used to assign various observations to certain classes based on the characteristics or at-

tributes of the particular observation or to predict the classes of new data based on what is currently

available. This is typically done through a training process whereby a certain classi�cation rule is applied

to historical data to train the classi�er. Once this has been done, the classi�er can be used for the

clustering of future observations.

Depending on what the classi�er is used for, it can become and in most cases is extremely important

for the decision made by the classi�er to be correct. In �nance for example, erroneous classi�cation can

lead to defaulting parties which in turn can lead to the loss of incredibly large amounts of money, or in

the medical �eld, incorrect diagnosis of certain diseases/disorders can prove fatal.

The accuracy can be improved by increasing the sample size of the data used to train the classi�er.

In practice however, this can prove di�cult as factors such as time, a�ordability, information availability

and level of computer intensity can come into play. Therefore it is ideal to as accurately as possible train

a classi�er using the least amount of observations.

This study will explore the use of a sequential training procedure in which an algorithm, based on a

derived stopping criteria, is used to update the classi�cation rule following each sequential step until it

can be guaranteed with a prescribed level of con�dence that the probability of an incorrect classi�cation

is within a certain pre-speci�ed level of the absolute minimum feasible error [5].

Fu et al. [2] previously proposed a sequential training approach in which a stopping rule is applied once

an observation has been classi�ed after each sequential step, this process trains a classi�er that ensures

with a predetermined (1 − α)% level of con�dence that future observations will have a misclassi�cation

probability that is less than a chosen upper limit ε > 0. Through a simulation study the general behavior

of the sequential procedure is depicted in Fu et al. [2] and it is observed that the resulting misclassi�cation

rates of the sequentially trained classi�ers are similar to that of the Bayes error. A problem arises however

when the pre-speci�ed misclassi�cation rate, ε, is smaller than the Bayes error since this is the minimum

feasible misclassi�cation rate. This can often occur as the Bayes error is frequently unknown, when this

happens the sequential procedure suggested continues inde�nitely [5].

In order to train a classi�er to estimate the proportion of misclassi�ed observations it is �rst necessary

to determine a �xed-width con�dence interval. Frey [1] suggests a sequential method of obtaining such

intervals for a proportion by proposing four di�erent stopping criteria as well as providing the critical

values necessary in their application. These methods lead to con�dence intervals which ensure a coverage

probability of (1−α) or more while requiring the least number of observations. By applying these methods

in simulation studies the stopping rule based on an adapted version of the Wald con�dence interval for a

proportion is found to yield the best results [2].
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To address the problem of speci�ed misclassi�cation rates being unfeasibly low this idea is used by

Potgieter [5] to propose a sequential method of training a classi�er to estimate the Bayes error and ensure

that the rate of misclassi�cation remains within a pre-speci�ed level of this error. This is done by applying

the Wald con�dence interval [1] and repeatedly sampling, training and classifying observations until the

misclassi�cation rate lies within a �xed range of the optimum feasible error rate i.e the Bayes error [5].

In this essay various simulation studies are conducted, �rst to demonstrate the ideas developed in

Frey [1] and then to imitate the simulation study conducted in Potgieter [5] which compares the observed

rate of misclassi�cation to the Bayes error and shows that the Bayes error is never larger than the

misclassi�cation rate, as such the sequential procedure suggested never continues inde�nitely, it can also

be noted that the classi�er is never over trained and only the smallest possible number of observations is

required to train it [5].

This method of classi�er training is ideal as it gives the researcher more control over the process by

specifying when the sequential procedure should be stopped, it is also not restricted to any single method

of classi�cation due to the constant updating of classi�cation rules at each step, as such this method can

be applied to LDA, QDA and KNN classi�cation [5].

2 A general sequential approach of training a classi�er

2.1 Classi�cation methods

2.1.1 Linear and Quadratic discriminant analyses

To obtain ideal classi�cation results it is necessary to have knowledge of the class posteriors , i.e. to know

P (Class A|X = x) [4].

Let the class-conditional density of X in class A = k be denoted by fk(x) and the prior probability

of class k be denoted by πk where
∑K
k=1 πk = 1, applying the Bayes Theorem gives

P (A = k|X = x) =
fk(x)πk∑K
j=1 fj(x)πj

(1)

Modeling each class density as a multivariate normal distribution gives

fk(x) =
1

(2π)
p
2 |Σk|

1
2

e−
1
2 (x−µ

k
)′Σk(x−µ

k
) (2)

where µ
k

: p× 1 and Σk : p× p are the population mean and covariance of class k respectively [4].

Linear Discriminant Analysis (LDA) considers the case where Σk = Σ∀k. When comparing any two

classes, say class k to class l Hastie et al. [4] concluded that it is satisfactory to use the log ratio of their

posteriors
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log
P (A = k|X = x)

P (A = l|X = x)
= log


fk(x)πk∑K
j=1 fj(x)πj

fl(x)πl∑K
j=1 fj(x)πj

 = log
fk(x)πk
fl(x)πl

= log
πk
πl
−1

2
(µ
k
+µ

l
)′Σ−1(µ

k
−µ

l
)+x′Σ−1(µ

k
−µ

l
)

(3)

which follows from equations 1 and 2. The linear discriminant functions can therefore be written as

δk(x) = log πk − 1
2µ
′
k
Σ−1µ

k
+ x′Σ−1µ

k
which is linear in x [4].

If however the assumption that Σk = Σ∀k is not made the linear equation as given in equation 3 can

not be obtained, thus resulting in Quadratic Discriminant Analysis (QDA) with discriminant functions

de�ned as δk(x) = log πk − 1
2 log |Σk| − 1

2 (x− µ
k
)′Σ−1

k (x− µ
k
).

In both cases an observation will be classi�ed as a member of class l if δl(x) > δk(x) [4].

2.1.2 K-nearest neighbours

K-nearest neighbours (K-NN) uses a measure of distance such as Euclidean distance (shown in equation

4) to determine the k �nearest� observations to that of the observation under consideration.

d(a, b) =
√

(a1 − b1)2 + . . .+ (ap − bp)2 = ‖a− b‖ where a and b are vectors (4)

If Ψ is de�ned as the set of K observations that are nearest to the input observation then the K-NN

classi�er is given by Ŷ = 1
K

∑
yiεΨ

yi [5].

If yiε{0, 1}, implying that 0 ≤ Ŷ ≤ 1, the input observation will be classi�ed as a 1 if Ŷ ≥ 0.5 and as

a 0 if Ŷ < 0.5 [5].

2.2 A general sequential approach of training a classi�er

To address the problem of having a limited number of observations available to train a classi�er due to

various factors such as availability and cost, Fu et al. [2] suggests a sequential training approach, derived

using the Martingale Central Limit theorem, in which a stopping rule is applied once a randomly sampled

observation has been classi�ed after each sequential step.

This process trains a classi�er that ensures with a predetermined (1 − α)% level of con�dence that

the probability of the classi�er making an error when clustering new data is less than a chosen upper

limit ε > 0.

In order to derive the stopping rule let Υi = {Y1, Y2, ..., Yi}, i = 1, 2, .. be a set of independent

uncorrelated observations, Qi =


1 if Yi was misclassified

0 otherwise

and πi = P (Qi = 1|Υi−1) be the conditional

probability of Yi being misclassi�ed given that the previous i− 1 results are known [2].
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Therefore, the goal is to �nd the number of observations, N , needed in order to be able to say with a

certain level of con�dence that the next observation will have a misclassi�cation probability of πN ≤ ε,

0 < ε < 1.

Two assumptions are then made, namely:

1. πn is weakly monotonically decreasing and

2. π∞ > 0.

The implication of the �rst assumption is that the more observations that are used in the training of

the classi�er, the lower the conditional probability of Yi being misclassi�ed becomes, i.e πn will converge

weakly to π∞ ≥ 0.

The second assumption implies that there exists a positive probability of misclassi�cation no matter

which method of classi�cation is used.

If there exists a non-zero Bayes error, πBayes, then π∞ ≥ πBayes > 0 since the Bayes error by de�nition

is the minimum feasible error rate and no classi�er should be able to obtain an error rate lower than this

[5].

The stopping rule on which this sequential procedure is based follows from the above mentioned

assumptions as well as from a theorem based on the Martingale Central Limit theorem.

As stated and proved in Fu et al. [2], Theorem 1 suggests that as N approaches in�nity there will be

a probability tending to 1−α that the probability of the trained classi�er incorrectly classifying the next

randomly sampled observation is below a constant value ε.

Let κ̂N = N−1
∑N
i=1 π̂i(1 − π̂i) and π̂i = 1

i

∑i
j=1Qj [2]. The minimum sample size required for

P (πN < ε) ≥ 1− α can then be determined as follows

Set

ε =
1

N

N∑
i=1

Qi + z1−ακ̂N/N
1/2

⇒ ε− 1

N

N∑
i=1

Qi = z1−ακ̂N/N
1/2

⇒ N1/2 =
z1−ακ̂N

ε− 1
N

∑N
i=1Qi

⇒ N =

(
z1−ακ̂N

ε− 1
N

∑N
i=1Qi

)2

where ε > 1
N

∑N
i=1Qi, κ̂N > 0 and z1−α denotes the (1 − α) quantile of the standard normal

distribution.

In order to save resources and calculation time, Fu et al. [2] suggests a second rule whereby the se-

10



Algorithm 1 General sequential procedure

1. Obtain an initial sample of size S0 and set N0 = 0.

2. At the ith iteration, train the classi�er using all observations obtained thus far.

3. Sample an additional random observation and classify it using the classi�er trained in step 2.

4. Test whether or not the new observation has been correctly classi�ed. If a correct classi�cation is
made set Qi = 0 and N0 = N0 + 1. If the observation is misclassi�ed set Qi = 1 and N0 = 0.

5. Using equation 5 evaluate the stopping rule. If either the stopping rule is met or N0 = M stop the
sequential training procedure, otherwise repeat steps 2 to 5.

quential training procedure is stopped if and when a su�ciently large number, given by N0, of consecutive

correct classi�cations occurs where N0 = log(α)
log(1−ε) [2].

Therefore the number of sequential steps necessary before the sequential procedure is stopped is given

by

N ≥ min


(

z1−ακ̂N

ε− 1
N

∑N
i=1Qi

)2

, N0

 (5)

where 0 < 1
N

∑N
i=1Qi < ε < 1 [2].

Assume that the maximum sample size is M , the sequential training procedure suggested by Fu et al.

[2] is summarised by algorithm 1.

In order to demonstrate the sequential training method a series of simulations is run in Fu et al. [2]

and the observed misclassi�cation rate is compared to that of the theoretical or Bayes error, the results

of which can be found in tables 1 and 2 of Fu et al. [2].

Since the Bayes error is the minimum feasible error rate of any classi�er, an optimal classi�er should

have an error rate which tends towards the Bayes error.

2.3 Bayes error

Consider a data set consisting of two random samples, one generated from a N(µ1, σ
2
1) and one from a

N(µ2, σ
2
2) with probabilities p and 1 − p respectively. The Bayes error in this case is the probability of

misclassifying an observation as being an element from a N(µ1, σ
2
1) distribution when it is actually from

a N(µ2, σ
2
2) or vice versa.

If the classi�er is denoted by λ, then
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Bayes Error = p
{
P
[
X > λ|X ∼ N(µ1, σ

2
1)
]}

+ (1− p)
{
P
[
[X ≤ λ|X ∼ N(µ2, σ

2
2)]
]}

= p

{
P

[
Z >

λ− µ1

σ1

]}
+ (1− p)

{
P

[
Z ≤ λ− µ2

σ2

]}
= p

{
1− P

[
Z ≤ λ− µ1

σ1

]}
+ (1− p)

{
P

[
Z ≤ λ− µ2

σ2

]}
= p

{
1− Φ

(
λ− µ1

σ1

)}
+ (1− p)Φ

(
λ− µ2

σ2

)
(6)

Consider the case where there is equal probability of the observation being generated from each of

the two distributions, i.e. where p = 1
2 and λ = 4

2 then

Bayes Error =
1

2

{
1− Φ

(
λ− µ1

σ1

)}
+ (1− 1

2
)Φ

(
λ− µ2

σ2

)
=

1

2
− 1

2
Φ

(
λ− µ1

σ1

)
+

1

2
Φ

(
λ− µ2

σ2

)
=

1

2

[
1− Φ

(
λ− µ1

σ1

)
+ Φ

(
λ− µ2

σ2

)]
(7)

In �gure 1, the density of two normal distributions are plotted, one a N(0,1) distribution the other a

N(2,1) distribution.

In this case, an observation from a N(2,1) will misclassi�ed as being from a N(0,1) distribution if

the observation is smaller than λ and an observation from a N(0,1) will be misclassi�ed as being from

a N(2,1) distribution if the observation is larger than λ. The Bayes error is represented by the yellow

shaded area of �gure 1.

2.4 Performance of suggested sequential approach

In an e�ort to test the sequential training method previously discussed Potgieter [5] imitated the simu-

lation study conducted in Fu et al. [2] changing only the method with which the resulting classi�er is

tested.

Initially 5 observations are randomly sampled from a N(0, 1) distribution and 5 from a N(4, 1)

distribution with probabilities p̂1 = n1

n1+n2
= 5

10 = 0.5 and p̂2 = 1 − p̂1 = 0.5 respectively, where

4ε {1, 1.3, 1.5, 2, 2.3, 2.5, 3.4}. Using these observations a classi�er is trained using the method outlined

in algorithm 1 with Mε{40, 90} and εε{0.05, 0.1, 0.15, 0.2}.

Once either N0 = M or the stopping rule is met the sequential procedure is stopped and the classi�er is

then used to classify an additional 10000 observations, 5000 each from a N(0, 1) and N(4, 1) distribution

respectively.
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Figure 1: Graphical depiction of Bayes error

This process is repeated for 1000 iterations and the mean and standard deviation of the observed

misclassi�cation rate as well as the minimum, maximum, mean and standard deviation of the number of

sequential steps required to train the classi�er are recorded.

In this case the Bayes error (following from equation 7) is calculated as
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Various methods of classi�cation are tested, the results of which can be found in section 2.3 of Potgieter

[5]. From the results, it is evident that in many cases the maximum sample sizeM is reached at least once

for the combinations of ε and 4 that are tested. It can also be seen that the observed misclassi�cation

rate for various combinations is lower than the Bayes error, this should not be the case as this violates

the de�nition of Bayes error. In addition to this there are numerous occasions where the sequentially

trained classi�er yields a misclassi�cation rate smaller than that of the pre-speci�ed ε, indicating that

the classi�er is over trained. Instead of attempting to obtain a possible unrealistic speci�ed error rate,

the goal should be to pursue the minimum feasible rate of error. [5].
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3 A sequential procedure for estimating the Bayes error

The approach suggested by Fu et al. [2] is unable to account for those situations where the pre-speci�ed

maximum misclassi�cation rate ε is smaller than the Bayes error, causing the sequential procedure to

continue inde�nitely.

In order to address this problem Potgieter [5] suggests a sequential procedure which trains a classi�er

to estimate the Bayes error and ensures that the rate of misclassi�cation of the classi�er remains within

a pre-speci�ed level of this error.

In practice it is often the case that the Bayes error is unable to be calculated since the underlying

distribution of the data is unknown, it is therefore desirable to train a classi�er using a sequential method

which stops only when the misclassi�cation rate falls within a certain range of the Bayes error [5]. Using

the notation previously de�ned in section 2, where Qi = 1 if an observation is misclassi�ed and Qi = 0

otherwise, the ratio p̂ =

∑
Qi
n is thus an estimate of the Bayes error. In order to train a classi�er

to estimate the proportion, p, of misclassi�ed observations within a certain level of accuracy it is �rst

necessary to determine a �xed-width con�dence interval.

3.1 Obtaining a �xed-width con�dence interval for a proportion

When conducting �xed sample size simulation studies or designed experiments it is often the desire of

the researcher to be able to estimate a proportion p as accurately as possible, however depending on the

number of successes observed during the experiment the con�dence intervals for p will di�er. It is also

necessary to conduct an extremely large amount of trials in order to obtain accuracy and this can become

computationally intensive and costly.

Frey [1] suggests four methods of determining a �xed-width sequential con�dence interval for a pro-

portion. These �xed-width con�dence intervals allow the researcher to specify a target half-width for the

interval so that the estimate for p lies within a certain pre-de�ned level of accuracy.

These four methods, although each making use of di�erent stopping criteria, have a common algorithm

based on a number of independent and identically distributed Bernoulli trials with probability of success

p. The �xed-width con�dence intervals for p have the general form

[max(0, p̂− h),min(1, p̂+ h)]

where h is the user-de�ned half-width.

These con�dence intervals ensure a coverage probability of (1 − α) or more while requiring the least

number of observations. Through simulation study it is seen that the method based on an adapted version

of the Wald con�dence interval for a proportion performs the best [1]. An outline of this method will be
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Algorithm 2 Sequential Method of Obtaining a �xed-width con�dence interval for p

1. Select a desired half-width hε{0.1, 0.05, 0.01} and the associated values of a and α.

2. Conduct a Bernoulli trial with probability of success p.

3. Compute the adapted Wald con�dence interval p̂± Zα
2

√
p̃a(1−p̃a)

n .

4. If this con�dence interval falls entirely within the �xed-width interval p̂ ± h then the sequential
process is stopped and the resulting con�dence interval for p is given by

[max(0, p̂− h),min(1, p̂+ h)]

otherwise return to step 2 and continue conducting these independent and identically distributed
Bernoulli trials until the computed Wald con�dence interval falls within p̂± h (this is equivalent to

stopping the process when p̃a(1−p̃a)
n ≤ ( h

Zα
2

)2).

discussed and a simple simulation study will be conducted in order to illustrate this method.

3.1.1 Sequential method

Let X1, X2, ..., Xn be independent and identically distributed Bernoulli random variables with probability

of success p, Xi ∼ BIN(1, p), and de�ne p̂ =

∑
xi
n .

A 100(1− α)% (0 < α ≤ 1) Wald con�dence interval for a proportion is given as

p̂± Zα
2

√
p̂(1− p̂)

n
(8)

where Zα
2
is the upper α

2 quantile of the standard normal distribution.

A complication arises however when x = 0 or when x = n as this causes p̂(1 − p̂) = 0 resulting

in an interval length of zero. Since this will always be the case when n = 1 by replacing p̂(1−p̂)
n in

equation 8 with a non-zero variance estimate by substituting p̂ with p̃a =
∑
xi+a

n+2a , where a is a positive

whole number, p̂ will e�ectively be pulled towards 1
2 and prevents us from ending up with an undesirable

con�dence interval width of zero. This results in the adapted Wald con�dence interval

p̂± Zα
2

√
p̃a(1− p̃a)

n
(9)

Frey used previously developed path counting ideas [6][3] to calculate critical values as well as suitable

values of a in order to obtain the desired 100(1−α)% con�dence intervals. These values can be found in

Table 2 of Frey [1].

The sequential method of obtaining the �xed-width con�dence intervals for the proportion p is sum-

marized in algorithm 2.
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a α Coverage probability E(N)
2 0.0225 0.966 155.939
4 0.0356 0.972 99.368
6 0.0374 0.962 98.277

Table 1: Comparison of coverage probabilities, CP and expected trial numbers, E(N) over the three
choices of a.

3.1.2 Simulation study

To illustrate the convergence of the �xed-width sequential con�dence intervals found when applying the

method outlined in Algorithm 2 a simple experiment is conducted.

Consider the event where a fair dice is rolled and where a success is counted if the resulting number

is either a one or a two, giving Xi ∼ BIN(1, 1
3 ).

Using the various choices of critical value α and the corresponding value of a given in table 2 of Frey

[1] 95% sequential con�dence intervals for p of width h = 0.1 are obtained.

Figure 2 depicts the convergence of the adapted Wald con�dence interval towards the �xed-width inter-

val, displayed for two iterations of the sequential procedure for a = {2, 4, 6} and α = {0.0225, 0.0356, 0.0374}

respectively. The dark solid line represents the true value of p, the dotted lines represent the lower and

upper limits of the adapted Wald con�dence interval and the innermost solid lines represent the �xed-

width lower and upper limits. As is evident in the graphs, the true value of p falls within the resulting

con�dence intervals in all 6 iterations. This is to be expected as the method used ensures a coverage

probability of 95% or more.

The sequential process is stopped when both the upper and the lower limits of the Wald con�dence

interval fall within the �xed-width limits. This experiment is repeated for1000 iterations to verify that

the coverage probability of the obtained con�dence intervals is at least (1− α)100%.

Table 1 compares the coverage probabilities as well as the expected number of trials required for each

of the three choices of a. Both the table and the graphs suggest that the best choice for a is 6 as this

leads to the smallest expected number of trials as well as the coverage probability closest to 95%.

3.2 Sequential wrapping procedure

Using the method proposed by Frey [1] a wrapping algorithm, summarised in algorithm 3 is used to

sequentially train a classi�er to estimate the Bayes error and ensure that the observed rate of misclassi-

�cation remains within a pre-speci�ed level of this error [5].

This method is bene�cial primarily due to the fact that it allows the researcher to decide which

classi�cation method to use and when the sequential procedure should terminate. The process repeatedly

samples, trains and classi�es observations until the misclassi�cation rate lies within h of the Bayes error

with a certain probability, ensuring that the classi�er is always at optimum performance. In addition to
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a = 2 α = 0.0225

a = 4 α = 0.0356

a = 6 α = 0.0374

Figure 2: Convergence of the Wald con�dence interval towards the �xed-width con�dence intervals.
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Algorithm 3

1. Obtain an initial sample of size S0 and select a desired half-width hε{0.1, 0.05, 0.01} and the asso-
ciated values of a and α.

2. At the ith iteration, train the classi�er using all observations obtained thus far.

3. Sample an additional random observation and classify it using the classi�er trained in step 2.

4. Test whether or not the new observation has been correctly classi�ed. If a correct classi�cation is
made set Qi = 0. If the observation is misclassi�ed set Qi = 1.

5. Calculate p̂, the proportion of observations misclassi�ed thus far, and as discussed in algorithm

2 evaluate the stopping rule: p̃a(1−p̃a)
n ≤ ( h

Zα
2

)2. If the stopping rule is met, stop the sequential

training procedure, if not repeat steps 2 to 5.

this the sequential procedure proposed by Potgieter [5] does not result in a classi�er that is over trained

and the sequential procedure never continues inde�nitely.

3.3 Simulation study and analysis of results

To test the performance of the sequential method proposed by Potgieter [5] various simulations are run

using the same simulation design as discussed in section 2.4, the only di�erence being the method used to

train the classi�er i.e algorithm 3. To imitate the results that are obtained in Potgieter [5], simulations

are run using both LDA and KNN classi�cation, the results of which can be found in tables 2, 3 and 4. In

addition, further simulations are run using QDA classi�cation (results given in table 5) and the coverage

probability for all of the tested scenarios is calculated.

When h = 0.1 in table 2 the mean of the observed error rate is slightly higher than the Bayes error

for all four choices of 4, never being lower than it. As 4 is increased from 1 to 4 the standard deviation

of the observed error decreases from 0.0082022 when 4 = 1 to 0.0024705 when 4 = 4 implying that for

greater values of 4 there is less variance in the observed error rate. As expected the average number of

sequential steps needed to train the classi�er decreases from 97.387 when 4 = 1 to 40.946 when 4 = 4

since the observations are easier to classify when 4 is larger.

As h is decreased from 0.1 to 0.05 it can be observed for all choices of 4 that while the mean of the

observed error rate decreases slightly, the standard deviation of the observed error rate, average number of

sequential steps required to train the classi�er as well as the standard deviation in required step number

all increase drastically. In all cases the coverage probability is higher than the desired 1 − α = 0.95

tending towards 1 for larger values of 4.

A maximum average step number of 97.387 when h = 0.1 or 354.9 when h = 0.05 is therefore required

to ensure with a minimum probability of 0.95 that the trained classi�er will have a misclassi�cation error

rate that is within h of the Bayes error.

Comparing the results given in table 3 to those in table 4 it can be seen that using k = 7 in the KNN
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4 Bayes Error Summary Statistics h = 0.1 h = 0.05
1 0.3085 Mean error 0.3127517 0.3098295

Standard deviation error 0.0082022 0.0051270
n̄ 97.387 354.9
Standard deviation step number 6.7448294 14.3321810
Coverage Probability 0.954 0.951

2 0.1587 Mean error 0.161760 0.1594909
Standard deviation error 0.0055238 0.0037932
n̄ 69.799 236.879
Standard deviation step number 10.0067344 23.4117592
Coverage Probability 0.964 0.954

3 0.0668 Mean error 0.0691845 0.067667
Standard deviation error 0.0041446 0.0029772
n̄ 49.787 148.049
Standard deviation step number 7.6118047 19.7018975
Coverage Probability 0.997 0.99

4 0.0228 Mean error 0.0240292 0.0232403
Standard deviation error 0.0024705 0.001717
n̄ 40.946 108.684
Standard deviation step number 4.1291808 11.6744352
Coverage Probability 1 1

Table 2: Summary Statistics of observed misclassi�cation rate (Mean error and Standard deviation error)
and required number of sequential steps (n̄, standard deviation step number) as well as the calculated
coverage probability obtained from the performance test of the sequentially trained LDA classi�er

classi�cation performs better than k = 3. When h = 0.1 in table 4 the mean of the observed error rate

is higher than the Bayes error for all four choices of 4 (more so than is the case with the trained LDA

classi�er discussed above), never being lower than it. As4 is increased from 1 to 4 the standard deviation

of the observed error rate decreases from 0.0243099 when 4 = 1 to 0.0047235 when 4 = 4 implying that

for greater values of 4 there is less variance in the observed error rate. The average number of sequential

steps needed to train the classi�er decreases from 100.809 when 4 = 1 to 41.749 when 4 = 4.

As h is decreased from 0.1 to 0.05 it can be observed for all choices of 4 that while the mean of

the observed error rate decreases slightly, the standard deviation of the observed error rate, average

number of sequential steps required to train the classi�er as well as the standard deviation in required

step number all increase drastically. Only in the case of 4 ≥ 2 for both h = 0.1 and h = 0.05 is the

coverage probability higher than the desired 1 − α = 0.95, this di�ers from the trained LDA classi�er

possibly because of the di�erence in distance from the average observed error rate to the Bayes error

between the two methods of classi�cation and is to be expected as Linear Discriminant Analysis is a

Bayes classi�er and as such should be better able to estimate the Bayes error.

When h = 0.1 in table 5 the mean of the observed error rate is slightly higher than the Bayes error

for all four choices of 4 (less so than is the case with the trained LDA classi�er discussed earlier), never

being lower than it. As 4 is increased from 1 to 4 the standard deviation of the observed error decreases

from 0.0083795 when 4 = 1 to 0.0046626 when 4 = 4 implying that for greater values of 4 there is less
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4 Bayes Error Summary Statistics h = 0.1 h = 0.05
1 0.3085 Mean error 0.3680616 0.3675528

Standard deviation error 0.0222350 0.0124539
n̄ 103.06 380.399
Standard deviation step number 6.0093687 13.3504319
Coverage Probability 0.777 0.371

2 0.1587 Mean error 0.1900856 0.1907666
Standard deviation error 0.0242417 0.0121940
n̄ 75.091 264.525
Standard deviation step number 11.1248587 26.7912887
Coverage Probability 0.913 0.726

3 0.0668 Mean error 0.0796523 0.0795092
Standard deviation error 0.0139642 0.0097851
n̄ 51.96 157.732
Standard deviation step number 8.6015340 24.1168364
Coverage Probability 0.98 0.932

4 0.0228 Mean error 0.0277258 0.0273362
Standard deviation error 0.0079546 0.0060407
n̄ 41.839 110.8
Standard deviation step number 5.1054034 13.6112919
Coverage Probability 0.999 0.994

Table 3: Summary Statistics of observed misclassi�cation rate (Mean error and Standard deviation error)
and required number of sequential steps (n̄, standard deviation step number) as well as the calculated
coverage probability obtained from the performance test of the sequentially trained 3-NN classi�er

4 Bayes Error Summary Statistics h = 0.1 h = 0.05
1 0.3085 Mean error 0.3451829 0.3447459

Standard deviation error 0.0243099 0.0128402
n̄ 100.809 370.561
Standard deviation step number 6.8859230 15.1838344
Coverage Probability 0.855 0.659

2 0.1587 Mean error 0.1747711 0.1752994
Standard deviation error 0.0164576 0.0169783
n̄ 72.389 248.266
Standard deviation step number 10.8214039 10.4079965
Coverage Probability 0.951 0.96

3 0.0668 Mean error 0.0735859 0.078396
Standard deviation error 0.0099096 0.0078396
n̄ 50.505 152.65
Standard deviation step number 8.0437975 22.0495279
Coverage Probability 0.995 0.966

4 0.0228 Mean error 0.0257467 0.0251590
Standard deviation error 0.0047235 0.0036835
n̄ 41.749 110.365
Standard deviation step number 4.5343753 13.1857362
Coverage Probability 1 0.997

Table 4: Summary Statistics of observed misclassi�cation rate (Mean error and Standard deviation error)
and required number of sequential steps (n̄, standard deviation step number) as well as the calculated
coverage probability obtained from the performance test of the sequentially trained 7-NN classi�er
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4 Bayes Error Summary Statistics h = 0.1 h = 0.05
1 0.3085 Mean error 0.3130873 0.3095449

Standard deviation error 0.0083795 0.0048039
n̄ 98.237 355.173
Standard deviation step number 6.6920561 14.3751771
Coverage Probability 0.952 0.95

2 0.1587 Mean error 0.1614599 0.1596404
Standard deviation error 0.0057934 0.0038332
n̄ 70.688 0.1596404
Standard deviation step number 9.6130675 22.3887888
Coverage Probability 0.971 0.968

3 0.0668 Mean error 0.0699172 0.0680353
Standard deviation error 0.0054637 0.003007
n̄ 50.933 148.732
Standard deviation step number 7.2227889 19.8116804
Coverage Probability 0.997 0.992

4 0.0228 Mean error 0.0255584 0.023989
Standard deviation error 0.0046626 0.002291
n̄ 41.445 109.89
Standard deviation step number 4.3870515 12.0526830
Coverage Probability 1 0.994

Table 5: Summary Statistics of observed misclassi�cation rate (Mean error and Standard deviation error)
and required number of sequential steps (n̄, standard deviation step number) as well as the calculated
coverage probability obtained from the performance test of the sequentially trained QDA classi�er

variance in the observed error rate. The average number of sequential steps needed to train the classi�er

decreases from 98.237 when 4 = 1 to 41.445 when 4 = 4.

As h is decreased from 0.1 to 0.05 it can be observed for all choices of 4 that while the mean of the

observed error rate decreases slightly, the standard deviation of the observed error, average number of

sequential steps required to train the classi�er as well as the standard deviation in required step number

all increase drastically. In all cases it can be noted that the coverage probability is at least the desired

1− α = 0.95.

A maximum average of 98.237 when h = 0.1 or 355.173 when h = 0.05 is therefore required to ensure

with a minimum probability of 0.95 that the trained classi�er will have a misclassi�cation error rate that

is within h of the Bayes error.

Overall, the results in table 2, 3, 4 and 5 suggest that using LDA classi�cation yields the best results

and although using h = 0.05 yields lower mean error rates, due to the extreme increase in standard

deviation and required step number for sequential training it is better to use h = 0.1 since the di�erence

in mean error rates is only slight.

To test the sensitivity of the suggested procedure to di�ering sampling probabilities another simulation

study is conducted using LDA classi�cation for h = 0.1 this time with p̂1 = 0.8 and p̂2 = 0.2, the results

of which are given in table 6. For smaller values of 4 the observed average number of sequential steps

necessary to train the classi�er is much smaller than in the case of equal sampling probabilities. When
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4 Bayes Error Summary Statistics h = 0.1
1 0.18616 Mean error 0.4054810

Standard deviation error 0.0403615
n̄ 79.094
Standard deviation step number 9.0153447
Coverage Probability 0.955

2 0.11207 Mean error 0.2027102
Standard deviation error 0.0261420
n̄ 61.48
Standard deviation step number 8.9984761
Coverage Probability 0.985

3 0.04983 Mean error 0.0829697
Standard deviation error 0.0134277
n̄ 47.104
Standard deviation step number 6.5644708
Coverage Probability 1

4 0.0174 Mean error 0.0281888
Standard deviation error 0.0059504
n̄ 40.461
Standard deviation step number 3.9050901
Coverage Probability 1

Table 6: Summary Statistics of observed misclassi�cation rate (Mean error and Standard deviation error)
and required number of sequential steps (n̄, standard deviation step number) as well as the calculated
coverage probability obtained from the performance test of the sequentially trained LDA classi�er with
sampling probabilities p̂1 = 0.8 and p̂2 = 0.2

80% of the data is generated from aN(0, 1) distribution a maximum average of 79.094 is required to ensure

with a minimum probability of 0.95 that the trained classi�er will have a misclassi�cation error rate that

is within h of the Bayes error, this is 18.293 less than when there are equal sampling probabilities. For

all four choices of 4 the standard deviation of the error rate is larger than in the case of equal sampling

probabilities indicating that there is a larger spread in the observed error rates for unequal sampling

probabilities. For all choices of 4 the coverage probability is higher than the desired 1−α = 0.95 tending

towards 1 for larger values of 4 as was the case when there were equal sampling probabilities.

4 Handwritten digit recognition application

The sequential wrapping method of training a classi�er discussed in this paper can be applied to many

real-world data sets, as an example the procedure is applied to a set of handwritten digits from the

ZIP codes on envelopes from the U.S. postal mail [4]. As discussed in Hastie et al.[4] based on the

pixel intensity of 16x16 eight bit greyscale images of single digits the goal is to train a classi�er using

the least amount of observations to classify an image of a handwritten digit into one of the groups

0, 1, 2, 3, 4, 5, 6, 7, 8 or 9 as accurately as possible. For the purpose of this study two data sets are used,

a training data set consisting of a spread of 2000 handwritten digits ranging from 0 to 9 and a testing

data set consisting of 5196 digits. For comparison purposes various classi�ers are trained using the full
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Classi�cation Method Used Average misclassi�cation rate

LDA 0.1383757
5-NN 0.1853349
7-NN 0.202271

Table 7: Comparison of average misclassi�cation rates obtained using LDA and KNN classi�cation meth-
ods

Initial Sample Size Summary Statistics h=0.1 h=0.05
150 Mean error 0.2308494 0.1869669

Standard deviation error 0.0139988 0.0097419
Min step number; Max step number 49; 103 233; 334
n̄ 87.76 286.76
Standard deviation step number 8.1138543 17.6979429

200 Mean error 0.2122646 0.1811650
Standard deviation error 0.0111866 0.0091327
Min step number; Max step number 55; 101 223; 319
n̄ 81.4066667 273.18
Standard deviation step number 8.6599415 20.0043854

Table 8: Summary Statistics of observed misclassi�cation rate (Mean error and Standard deviation error)
and required number of sequential steps (Min step number; Max step number, n̄, standard deviation step
number) obtained from the simulation study of the sequentially trained LDA classi�er on the handwritten
digit data set

2000 observations of the training data set and are then used to classify the remaining 5196 observations.

The average misclassi�cation rate is observed and the results given in table 7. Using algorithm 3 the

procedure is applied to the training data set using both LDA and KNN classi�cation methods, once the

stopping rule is met the sequential procedure is stopped and the resulting classi�er used to classify the

remaining observations in the testing data set. The simulations are run on an initial training sample of

150 hand written digits (15 of each digit) as well as on an initial sample of 200 hand written digits (20

of each digit) the results can be seen in table 8, 9 and 10.

Various values of k were used for the sequentially trained KNN classi�ers and as can be seen when

comparing the results given in table 9 to that of those in table 10, smaller values of k yield better results.

Initial Sample Size Summary Statistics h=0.1 h=0.05
150 Mean error 0.4036977 0.3286855

Standard deviation error 0.0189215 0.0135625
Min step number; Max step number 97; 111 351; 408
n̄ 108.25333 384
Standard deviation step number 3.0809801 10.7853249

200 Mean error 0.3862933 0.3535681
Standard deviation error 0.0159321 0.0128691
Min step number; Max step number 94; 111 369; 409
n̄ 107.1866667 397.32
Standard deviation step number 3.554724 7.4493305

Table 9: Summary Statistics of observed misclassi�cation rate (Mean error and Standard deviation error)
and required number of sequential steps (Min step number; Max step number, n̄, standard deviation step
number) obtained from the simulation study of the sequentially trained 5-NN classi�er on the handwritten
digit data set
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Initial Sample Size Summary Statistics h=0.1 h=0.05
150 Mean error 0.4352874 0.3535681

Standard deviation error 0.0220439 0.0128691
Min step number; Max step number 101; 111 369; 409
n̄ 109.4466667 397.32
Standard deviation step number 2.0774813 7.4493305

200 Mean error 0.4221722 0.3488376
Standard deviation error 0.0189825 0.0149421
Min step number; Max step number 96; 111 363; 407
n̄ 109.0333333 395.43
Standard deviation step number 2.7181139 8.1491835

Table 10: Summary Statistics of observed misclassi�cation rate (Mean error and Standard deviation error)
and required number of sequential steps (Min step number; Max step number, n̄, standard deviation step
number) obtained from the simulation study of the sequentially trained 7-NN classi�er on the handwritten
digit data set

In both the LDA and KNN cases and for both h = 0.1 and h = 0.05 the mean of the observed error rate

and the standard deviation of the error rate are similar for either choice of initial sampling size but the

number of sequential steps needed to train the classi�er decreases as the initial sampling size of each digit

is increased from 15 to 20.

When comparing the minimum error observed during these simulations to that obtained when the

full 2000 observations of the training data set were used (table 7) it can be seen that the sequentially

trained LDA classi�er performs the best. In this case it was possible to obtain, with only a maximum

of 301 training observations when h = 0.1 or 519 training observations when h = 0.05, an observed

misclassi�cation rate that is within h of that given in table 7. This is quite a substantial di�erence to

the 2000 training observations needed to obtain the result in table 7. For all four combinations of factors

(classi�cation method, value of h, and initial sample size) the classi�ers are fully trained, never reaching

the maximum amount of observations available with which to train the classi�er and never resulting in the

sequential procedure continuing inde�nitely. The sequential method allowed the researcher to train the

classi�er using either classi�cation method and to decide on a desired level of accuracy for the classi�er

to estimate the minimum feasible error rate.

In addition, using the LDA classi�cation method, heat maps of each digit were generated using SAS,

these can be seen in �gure 3 where the �rst row of images depict the heat maps of the original observed

digits from the testing data set and the second row depicts the heat maps of the predicted/classi�ed

digits for a simulation case of the procedure if h = 0.1 and an initial sample size of 200. As can be seen

by only using the minimum number of observations (roughly 281) the classi�er was able to predict the

digits relatively accurately.
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Figure 3: Heat maps of original observed digits from testing data set (top row) and predicted digits for
one simulation of the procedure for h = 0.1 and initial sample size of 200 (bottom row)

5 Conclusion

In experimental cases it is often not possible to obtain large amounts of data with which to accurately

train a classi�er. A sequential method of training a classi�er to estimate the Bayes error, as proposed

in Potgieter [5] is discussed. This sequential training method is able to ensure with a certain level of

con�dence that the probability of the classi�er making an error is within a pre-speci�ed level of the

absolute minimum feasible error, the Bayes error, whilst only requiring the smallest possible number of

observations. The method is ideal as it gives the researcher more control over the process by specifying

when the sequential procedure should be stopped, it is also not restricted to any single method of classi-

�cation due to the constant updating of classi�cation rules at each step. This classi�er training method

can prove useful in many real-world situations, saving on required observations and computational time.

Further research may be conducted to investigate why, when using KNN classi�cation, the results are

not as expected.
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Appendix

SAS/IML code used in the simulation study of subsubsection 3.1.2

proc iml;

p = 2/6;

do experiment=1 to 1000;

�ag = 0;

x = {};

CI = {};

do until(�ag);

x1 = int(6*ranuni(0)) + 1; *Outcome of dice roll;

if x1<=2 then x2=1; *It is counted as a success if we obtain a number of 2 or less;

else x2=0; x = x // (x1||x2);

** CHOOSE VALUE FOR a (2, 4 or 6) **;

a = 4;

h = 0.1; *Target half-width;

if a = 2 then gamma = 0.0225; if a = 4 then gamma = 0.0356;

if a = 6 then gamma = 0.0374;

Z = probit(1-(gamma/2));

n = nrow(x);

phat = sum(x[,2])/n; *Number of successes divided by number of observations;

p_a = (sum(x[,2])+a) / (n+(2*a)); *Adapted Wald con�dence interval;

*Upper and lower limits for the adapted Wald con�dence interval;

Wald_lower = max(0,phat - Z*sqrt(p_a*(1-p_a)*(1/n)));

Wald_upper = min(1,phat + Z*sqrt(p_a*(1-p_a)*(1/n)));

*Upper and lower limits for the �xed-width con�dence interval;

Fixed_lower = max(0, phat - h);

Fixed_upper = min(1, phat + h);

CI = CI // (n||Wald_lower||Wald_upper||Fixed_lower||Fixed_upper||p);

w1 = p_a*(1-p_a)*(1/n);

w2 = (h/Z)**2;

*Stopping rule;

if w1<=w2 then �ag=1;

end;
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*Testing if the CI contains the true value of p;

p=2/6;

ind = Fixed_lower <= p & p <= Fixed_upper;

limits = limits//(Fixed_lower || Fixed_upper || phat || n || ind);

end;

nl = nrow(limits);

Coverage_probability = sum(limits[,5])/nl;

Expected_trial_no = sum(limits[,4])/nl;

print nl Coverage_probability Expected_trial_no;

cn = {'n' 'Wald_lower' 'Wald_upper' 'Fixed_lower' 'Fixed_upper' 'p'};

create convergence from CI[colname=cn];

append from CI;

run;

goptions reset=all cback=white border htext=10pt htitle=12pt;

title1 "Convergence process of the Wald interval towards the �xed width interval";

symbol1 interpol=join color=vibg line=2;

symbol2 interpol=join color=vibg line=2;

symbol3 interpol=join width=2 color=black;

symbol4 interpol=join color=depk;

symbol5 interpol=join color=depk;

axis1 value=(font='Arial/bold' height=11pt) width=2 label=('Number of sequential steps');

axis2 value=(font='Arial/bold' height=11pt) width=2 label=none;

legend1 label=none position=top frame;

proc gplot data=convergence;

plot Wald_lower*n Wald_upper*n p*n Fixed_lower*n Fixed_upper*n

/ overlay legend=legend1 haxis=axis1 vaxis=axis2 cframe=greyee;

run;

SAS/IML Studio code used in the simulation study of subsection 3.3

For LDA and QDA Classi�cation:

delta = 1;

BE = 1 - probnorm(delta/2);

h = 0.05; *Chosen target half_width h={0.1, 0.05, 0.01};

if h = 0.1 then gamma = 0.0356; if h = 0.05 then gamma = 0.0433; if h = 0.01 then gamma = 0.0487;

28



if h = 0.1 then a=4; if h = 0.05 then a=6; if h= 0.01 then a=10;

Z = probit(1 - (gamma/2));

do sim=1 to 1000;

S_0 = 5;

x_0 = j(S_0, 2, 0);

x_delta = j(S_0, 2, delta);

do i=1 to S_0;

x_0[i,2] = rannor(0);

x_delta[i,2] = delta + rannor(0);

end;

sample = x_0//x_delta;

�ag = 0;

free misclassi�cation;

free AM;

free x_new;

do until(�ag);

/* TRAINING DATA SET */

sample = sample//x_new;

cn1 = {'Group' 'Value'};

create sampledata from sample[colname=cn1];

append from sample;

close sampledata;

/* NEW OBSERVATION TO BE CLASSIFIED */

phat1 = 0.5; *Probability of new observation being from a N(0,1)distribution;

phat2 = 1-phat1; *Probability of new observation being from a N(delta,1) distribution;

x = rand('Bernoulli', phat1);

if x = 1 then value = rannor(0); else value = delta + rannor(0);

if x = 1 then truegroup = 0; else truegroup = delta;

totest = truegroup||value;

create newobs from totest[colname=cn1];

append from totest;

close newobs;

/* CLASSIFYING THE NEW OBSERVATION */

submit;
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proc discrim data=sampledata outstat=calib method=normal pool=yes noprint;

class group; *IF QDA THEN POOL=NO;

priors prop;

run;

proc discrim data=calib testdata=newobs testout=grouping noprint;

class group;

run;

endsubmit;

/* VERIFYING WHETHER OR NOT A CORRECT CLASSIFICATION WAS MADE */

use grouping;

read all into test;

close grouping;

if test[1,5] = truegroup then Qi = 0; else Qi = 1;

misclassi�cation = misclassi�cation // Qi;

/* EVALUATING THE STOPPING CRITERIA */

phat = misclassi�cation[:]; n = nrow(misclassi�cation);

p_a = (misclassi�cation[+]+a)/(n+2*a);

Fixed_lower = max(0, phat - h); Fixed_upper = min(1, phat + h);

Wald_lower = phat - Z*sqrt(p_a*(1-p_a)/n);

Wald_upper = phat + Z*sqrt(p_a*(1-p_a)/n);

w1 = p_a*(1-p_a)/n; w2 = (h/Z)**2;

if w1<=w2 then �ag=1; else x_new = truegroup||test[1,2];

end;

ind = Fixed_lower <= BE & BE <= Fixed_upper;

limits = limits//(Fixed_lower||Fixed_upper||phat||n||ind);

call randseed(0);

xh0=j(5000,1); xhdelta=j(5000,1);

call randgen(xh0, "Normal", 0, 1); call randgen(xhdelta, "Normal", delta,1);

yh0 = j(5000,1,0); yhdelta = j(5000,1,delta);

�naltest = (yh0||xh0)//(yhdelta||xhdelta);

create FT from �naltest[colname=cn1];

append from �naltest;

close FT;

submit;
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proc discrim data=calib testdata=FT testout=grouping2 noprint;

class group;

run;

endsubmit;

use grouping2;

read all into Ftest;

close grouping2;

nt=nrow(FTEST);

do i=1 to nt;

if Ftest[i,1] = Ftest[i,5] then Fi = 0; else Fi = 1; AM = AM // Fi;

end;

ACTUAL_ERROR = AM[:];

errortest = errortest//actual_error;

end;

nl = nrow(limits);

CP = sum(limits[,5])/nl;

Expected_trial_number = sum(limits[,4])/nl;

print CP;

resSteps = limits[,4];

create steps from resSteps[colname='stepno'];

append from resSteps;

close steps;

submit;

proc means data=steps min max mean std;

var stepno;

title 'steps';

run;

endsubmit;

create results from errortest[colname='error'];

append from errortest;

close results;

submit;

proc means data=results mean std;

var error;
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title 'error';

run;

endsubmit;

For KNN Classi�cation:

delta = 1;

BE = 1 - probnorm(delta/2);

h = 0.05; *Chosen target half_width h={0.1, 0.05, 0.01};

if h = 0.1 then gamma = 0.0356; if h = 0.05 then gamma = 0.0433; if h = 0.01 then gamma = 0.0487;

if h = 0.1 then a=4; if h = 0.05 then a=6; if h= 0.01 then a=10;

Z = probit(1 - (gamma/2));

do sim=1 to 1000;

S_0 = 5;

x_0 = j(S_0, 2, 0);

x_delta = j(S_0, 2, delta);

do i=1 to S_0;

x_0[i,2] = rannor(0);

x_delta[i,2] = delta + rannor(0);

end;

sample = x_0//x_delta;

�ag = 0;

free misclassi�cation;

free AM;

free x_new;

do until(�ag);

/* TRAINING DATA SET */

sample = sample//x_new;

cn1 = {'Group' 'Value'};

create sampledata from sample[colname=cn1];

append from sample;

close sampledata;

/* NEW OBSERVATION TO BE CLASSIFIED */

phat1 = 0.5; *Probability of new observation being from a N(0,1)distribution;

phat2 = 1-phat1; *Probability of new observation being from a N(delta,1) distribution;

32



x = rand('Bernoulli', phat1);

if x = 1 then value = rannor(0); else value = delta + rannor(0);

if x = 1 then truegroup = 0; else truegroup = delta;

totest = truegroup||value;

create newobs from totest[colname=cn1];

append from totest;

close newobs;

/* CLASSIFYING THE NEW OBSERVATION */

submit;

proc discrim data=sampledata method=npar k=3 testdata=newobs testout=grouping noprint;

class group;

run;

endsubmit;

/* VERIFYING WHETHER OR NOT A CORRECT CLASSIFICATION WAS MADE */

use grouping;

read all into test;

close grouping;

if test[1,5] = truegroup then Qi = 0; else Qi = 1;

misclassi�cation = misclassi�cation // Qi;

/* EVALUATING THE STOPPING CRITERIA */

phat = misclassi�cation[:]; n = nrow(misclassi�cation);

p_a = (misclassi�cation[+]+a)/(n+2*a);

Fixed_lower = max(0, phat - h); Fixed_upper = min(1, phat + h);

Wald_lower = phat - Z*sqrt(p_a*(1-p_a)/n);

Wald_upper = phat + Z*sqrt(p_a*(1-p_a)/n);

w1 = p_a*(1-p_a)/n; w2 = (h/Z)**2;

if w1<=w2 then �ag=1; else x_new = truegroup||test[1,2];

end;

ind = Fixed_lower <= BE & BE <= Fixed_upper;

limits = limits//(Fixed_lower||Fixed_upper||phat||n||ind);

call randseed(0);

xh0=j(5000,1); xhdelta=j(5000,1);

call randgen(xh0, "Normal", 0, 1); call randgen(xhdelta, "Normal", delta,1);

yh0 = j(5000,1,0); yhdelta = j(5000,1,delta);
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�naltest = (yh0||xh0)//(yhdelta||xhdelta);

create FT from �naltest[colname=cn1];

append from �naltest;

close FT;

submit;

proc discrim data=sampledata method=npar k=3 testdata=FT testout=grouping2 noprint;

class group;

run;

endsubmit;

use grouping2;

read all into Ftest;

close grouping2;

nt=nrow(FTEST);

do i=1 to nt;

if Ftest[i,1] = Ftest[i,5] then Fi = 0; else Fi = 1; AM = AM // Fi;

end;

ACTUAL_ERROR = AM[:];

errortest = errortest//actual_error;

end;

nl = nrow(limits);

CP = sum(limits[,5])/nl;

Expected_trial_number = sum(limits[,4])/nl;

print CP;

resSteps = limits[,4];

create steps from resSteps[colname='stepno'];

append from resSteps;

close steps;

submit;

proc means data=steps min max mean std;

var stepno;

title 'steps';

run;

endsubmit;

create results from errortest[colname='error'];
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append from errortest;

close results;

submit;

proc means data=results mean std;

var error;

title 'error';

run;

endsubmit;

SAS/IML code used in section 4

* VALUES FOR STOPPING CRITERIA ;

h = 0.05; *Chosen target half_width h={0.1, 0.05, 0.01};

if h = 0.1 then gamma = 0.0356;

if h = 0.05 then gamma = 0.0433;

if h = 0.01 then gamma = 0.0487;

if h = 0.1 then a=4;

if h = 0.05 then a=6;

if h= 0.01 then a=10;

Z = probit(1 - (gamma/2));

*IMPORTING DATA SETs ;

submit;

proc import OUT=WORK.Digit DATAFILE= "C:\Users\Catherine\Desktop\Training.csv" DBMS=CSV

REPLACE; GETNAMES=YES; DATAROW=2;

run;

proc import OUT= WORK.EvTestSample DATAFILE= "C:\Users\Catherine\Desktop\Test.csv"

DBMS=CSV REPLACE; GETNAMES=YES; DATAROW=2;

run;

endsubmit;

* STRAIGHT CLASSIFICATION ;

submit;

proc discrim data=digit outstat=calib method=normal pool=yes noprint;

class y;

priors prop;

run;
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proc discrim data=calib testdata=EvTestSample testout=grouping0 noprint;

class y;

run;

endsubmit;

use grouping0;

read all into tester;

close grouping0;

n=nrow(tester);

nc=ncol(tester);

free T; do i=1 to n;

if tester[i,1] = tester[i,nc] then Ti = 0;

else Ti = 1; T = T // Ti;

end;

TEST_ERROR = T[:];

print TEST_ERROR;

free step_no; free errortest;

* OBTAINING INITIAL SAMPLE DATA ;

submit;

proc sort data=digit;

by y;

run;

proc surveyselect data=digit method=srs n=15 seed=0 out=InitialSample noprint;

strata y;

run;

/*title 'Initial Sample Data';

proc print data=InitialSample;

run;*/ endsubmit;

use InitialSample;

read all into sample_a;

close InitialSample;

del = ncol(sample_a)-2;

sample = sample_a[,1:del];

�ag = 0; free misclassi�cation; free EV; free x_new; do i=1 to 1;

do until(�ag);
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* TRAINING DATA SET ;

sample = sample//x_new;

cn1 = {'y'};

create sampledata from sample[colname=cn1];

append from sample;

close sampledata;

/*submit; title 'Training data set';

proc print data=sampledata;

run;

endsubmit;

* NEW OBSERVATION TO BE CLASSIFIED ;

submit;

proc surveyselect data=digit method=srs seed=0 n=1 out=totest noprint;

run;

endsubmit;

use totest;

read all into x;

close totest;

create totest_ from x[colname=cn1];

append from x;

close totest_;

/*submit; title 'Observation to be classi�ed';

proc print data=totest_;

run;

endsubmit;

* CLASSIFYING THE NEW OBSERVATION ;

submit;

proc discrim data=sampledata outstat=calib method=normal pool=yes noprint;

class y;

priors prop;

run;

proc discrim data=calib testdata=totest_ testout=grouping noprint;

class y;

run;
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/*title 'Classi�cation results';

proc print data=grouping;

run;*/

endsubmit;

*VERIFYING WHETHER OR NOT A CORRECT CLASSIFICATION WAS MADE;

use grouping;

read all into test;

close grouping;

nc2=ncol(test);

if test[1,1] = test[1,nc2] then Qi = 0;

else Qi = 1;

misclassi�cation = misclassi�cation // Qi;

* EVALUATING THE STOPPING CRITERIA ;

phat = misclassi�cation[:];

nm = nrow(misclassi�cation);

p_a = (misclassi�cation[+]+a)/(nm+2*a);

Fixed_lower = max(0, phat - h);

Fixed_upper = min(1, phat + h);

Wald_lower = phat - Z*sqrt(p_a*(1-p_a)/nm);

Wald_upper = phat + Z*sqrt(p_a*(1-p_a)/nm);

w1 = p_a*(1-p_a)/nm;

w2 = (h/Z)**2;

en = nc2-11;

if w1<=w2 then �ag=1; else x_new = test[1,1:en];

/*title 'Stopping Criteria';

print w1 w2;*

*print 'end of loop';

end;

/*title 'Misclassi�cation rate';

print misclassi�cation;*/

Step_no = Step_no // nm;

* Testing accuracy of trained classi�er ;

use EvTestSample;

read all into x0;
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close EvTestSample;

create EvTestSample_ from x0[colname=cn1];

append from x0;

close EvTestSample_;

submit;

proc discrim data=calib testdata=EvTestSample_ testout=grouping2 noprint;

class y;

run;

/*title 'Classi�cation results';

proc print data=grouping2;

run;*/

endsubmit;

use grouping2;

read all into Evtest;

close grouping2;

*print Evtest;

nc3=ncol(Evtest);

graph = Evtest[,nc3];

print graph; nt=nrow(Evtest);

free EV;

do j=1 to nt;

if Evtest[j,1] = Evtest[j,nc3] then Fi = 0; else Fi = 1;

EV = EV // Fi;

end;

ACTUAL_ERROR = EV[:]; errortest = errortest//ACTUAL_ERROR;

res = step_no||errortest;

cn2 = {'Steps' 'Error'};

create results from res[colname=cn2];

append from res;

close results;

submit;

proc means data=results min max mean std;

var error;

title 'error';
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run;

proc means data=results min max mean std;

var steps;

title 'error';

run;

endsubmit;
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Abstract

The density.ppp function in the spatstat package in R uses kernel density estimation to create

a continuous intensity function for a spatial point pattern data set. This report examines how the

function uses kernel density estimation to create these intensity functions, focusing on the main

mathematical theory of kernel density estimation in a spatial context. The function will then be

tested under various conditions and defaults.
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1 Introduction

Spatial statistics is the study of phenomena whose spatial location is either of interest or contributes to a

stochastic model for that particular phenomenon [11]. The first person to study the implications of spatial

dependence was R. A. Fisher [10] in his work on developing inferences for agricultural field experiments

at the Rothamsted Experimental station in Hertforshire, England, where he developed methodologies for

the analysis of data from these experiments [11].

To this day, there have been extensive contributions in the field of spatial statistics and the standard

references include Diggle [9], Ripley [16, 17] and Cressie [6].

Spatial data can be explained as observations from a stochastic process {Z(s) : s ∈ D}, where D is a

random set in Rd [6]. Spatial areas can be classified into the following [14]:

• if D is a fixed subset of Rd and Z(s) is a random vector at s ∈ D, then we have geostatistical data;

• if D is a fixed collection of countably many points of Rd and Z(s) is a random vector at s ∈ D,

then we have lattice data;

• if D is a point process in Rd and Z(s) is a random set, then we have spatial objects;

• if D is a point process in Rd and Z(s) is a random vector at s ∈ D, then we have point patterns.

Diggle [9] defines a spatial point pattern as a set of points that are distributed within a designated region

in space, where the points are presumed to have been generated by a stochastic mechanism. Examples

include locations of seedlings in a section of a forest, houses in a neighbourhood or locations of ant nests

in a specific region. Figure 1 below shows an example of a spatial point pattern in a square region.1

Figure 1: Locations of pine saplings in a Swedish forest [16, 21].

Suppose we want to create a continuous intensity function of the observed discrete point process. This

is done by using kernel density estimation [9]. Kernel density estimation is a method of estimating the
1Acquired from the spatstat package in R
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probability density function of a random variable in a nonparametric way. The first paper to deal with

probability density estimation was by Rosenblatt [18] who also discussed the kernel estimator. Parzen

[15] is also credited to have created density estimation independently.

Silverman [20] and Scott [19] gave detailed explanations of density estimation. Silverman also dis-

cussed many important applications of density estimation while Scott focused on the multivariate aspects

of density estimation.

The spatstat package is a package in R for the statistical analysis of spatial point pattern data

in two dimensions [4]. The package supports several functions including creation, manipulation, plot-

ting, simulation and model-fitting of spatial point patterns. The density.ppp function is a function in

spatstat that computes a kernel smoothed intensity function from a point pattern data set using kernel

density estimation [1]. Figure 2 shows a kernel estimated intensity function for the spatial point pattern

in Figure 1 that was applied using this function.

Figure 2: Kernel estimated intensity graph for the locations of pine saplings in a Swedish forest (Figure
1).

In [3], Baddeley and Turner give us a brief introduction to spatstat, which includes, among other

things, an overview of available data sets, techniques in generating random point patterns as well as

different ways of analyzing them. [1] is a detailed set of notes that Baddeley made for a workshop where

he presented practical techniques in the statistical analysis of spatial point patterns. [2] is a book by

Baddeley et al. that contains techniques for analysing spatial point patterns and is currently the main

reference for the spatstat package.

The purpose of this research report will be to examine the mathematics of kernel density estimation

in a spatial context that the function density.ppp uses, as well as to test the function under diverse

conditions.
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2 Kernel Density Estimation

Density estimation is a method that allows us to make an estimation of the density function of an observed

sample of data. Suppose that we want to fit a probability density function on an observed set of data with

an unknown probability density where we have no assumption of the nature of the distribution. Having

no assumption of the nature of the distribution means that we will have a nonparametric approach to

estimating the density function. Several methods and techniques exist for nonparametric estimation, as

can be read in Silverman [20].

The most common and probably the first nonparametric density estimator is the histogram. Although

the histogram is easily constructed and has an advantage of displaying the distribution of the observed

data in a straightforward manner, it is not a reliable estimator in the sense that it loses a large amount

accuracy due to the lack of smoothness in its shape. In a histogram, its shape is largely dependent on

the width of the sub-intervals in which the whole data interval is divided and the end points of these

sub-intervals. The kernel density estimator, another well known and widely used nonparametric density

estimator, alleviates this problem by centering a kernel function at each data point and then summing

them to create an overall smooth density estimate. It is widely used mainly because of its smoothing

properties (see also [12]). A comparison of a histogram and a kernel density estimate is given in Figure

3, where we can see that the kernel density estimate is a more accurate estimate.

Figure 3: Comparison of a histogram and a kernel density estimate using the same data.

2.1 Kernel Density Estimation in a One-dimensional Space

The kernel density estimator was introduced in 1956 by Rosenblatt [18] and is defined by

f̂(x) = 1
nh(n)

n∑
i=1

K

(
x− xi
h(n)

)
(1)

where x1, x2, ..., xn are independent identically distributed observations, K is a kernel function and h(n)

is the bandwidth for a chosen number of sub-intervals n that tends to 0 as n tends to infinity. The kernel
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function is defined below.

Definition 1. A kernel is a real-valued integrable function K that is non-negative [20]. K should satisfy

the following conditions:

•
ˆ ∞
−∞

K(x)dx = 1.

• K(x) = K(−x) for all x.

These two conditions ensure that our kernel functions are symmetrical probability density functions.

Examples of kernel functions that density.ppp uses are the Gaussian, Epanechnikov and quartic (or

biweight) functions. Table 1 presents each of these kernel functions’ formulas and their graphs. Figures

5, 6 and 7 show density functions fitted with these kernels together with a histogram.2

The kernel estimator f̂(x) is a sum of kernel functions placed at each observed data point. The kernel

function K will determine the shape of the density and the bandwidth h(n) will determine the width

of the kernel at each point [20]. The resulting shape of the kernel density estimate depends more on

the choice of h(n) than it does on K. It is important to choose an appropriate h(n) as a value that

is too small will result in a shape that is undersmoothed, and a value that is too large will result in a

shape that is oversmoothed. Figure 4 below shows a comparison between a kernel density estimate that

is undersmoothed, oversmoothed and one that is optimally smoothed respectively. Take note of how the

size of h(n) differs in each graph.

Figure 4: A comparison between a kernel density estimate that is undersmoothed, oversmoothed and one
that is optimally smoothed.

2The data used to create these graphs was acquired from the PlantGrowth dataset in R.
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Kernel K(x) Graph

Gaussian K(x) = 1√
2π e

(
− x2

2

)

................................................

Epanechnikov K(x) =
{

3
4 (1− x2) for |x| ≤ 1
0 otherwise

...........................................

Biweight K(x) =
{

15
16 (1− x2)2 for |x| ≤ 1
0 otherwise

...........................................

Table 1: Some kernel functions.

Figure 5: Density function fitted with the Gaussian kernel
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Figure 6: Density function fitted with the Epanechnikov kernel

Figure 7: Density function fitted with the biweight kernel

2.1.1 Error functions for f̂(x)

When studying the measure of difference between the density estimator f̂ and the true density f at a

single point, a commonly used measure is the mean square error (MSE), defined by

MSEx(f̂) = E[(f̂(x)− f(x))2]. (2)

By the standard properties of mean and variance,

MSEx(f̂) =
(
E[f̂(x)]− f(x)

)
2 + var(f̂(x)), (3)
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which is the sum of the squared bias and the variance at x.

The first and most widely used method of measuring the global accuracy of f̂ as an estimator of f ,

introduced by Rosenblatt [18], is the mean integrated square error (MISE) and is defined by,

MISE(f̂ ) = E
[ˆ

(f̂ (x)− f (x))2dx
]
. (4)

We can rewrite (4) as:

MISE(f̂ ) = E

[ˆ
(f̂ (x)− f (x))2dx

]
=
ˆ
E[(f̂ (x)− f (x))2]dx

=
ˆ

MSEx(f̂)dx

=
ˆ (

E[f̂(x)]− f(x)2
)
dx+

ˆ
var(f̂(x))dx, (5)

which is equal to the sum of the integrated square bias and the integrated variance at x [20].

Let X1, X2, ..., Xn be independent and identically distributed random variables with common density

f . Then for a kernel function K, we have that the expectation of f̂ is equal to

E[f̂(x)] = 1
nh

n∑
i=1

E

[
K

(
x−Xi

h

)]
= 1
h
E

[
K

(
x−Xi

h

)]
= 1
h

ˆ
K

(
x− y
h

)
f(y)dy (6)

and the variance is given by

var(f̂(x)) = var
(

1
nh

n∑
i=1

K

(
x−Xi

h

))

= 1
n2 var

(
1
h

n∑
i=1

K

(
x−Xi

h

))

= 1
n

var
(

1
h
K

(
x−Xi

h

))
= 1
n

[
E

([
1
h
K

(
x−Xi

h

)]2
)
−
(
E

[
1
h
K

(
x−Xi

h

)])2
]

(7)

Suppose that the kernel K is a symmetric function satisfying

ˆ
K(t)dt = 1,

ˆ
tK(t)dt = 0, and

ˆ
t2K(t)dt = σ2

k > 0. (8)
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Then the bias is given by

biash(x) ≈ 1
2h

2f ′′(x)σ2
k. (9)

(See [20] for the derivation). The integrated square bias is given by

ˆ
biash(x)2dx ≈ 1

4h
4σ4
k

ˆ
f ′′(x)2dx. (10)

A Taylor series approximation shows that the variance is approximately equal to

var(f̂(x)) ≈ 1
nh
f(x)

ˆ
K(t)2dt. (11)

Integrating over x gives the approximation

ˆ
var(f̂(x))dx ≈ 1

nh

ˆ
K(t)2dt. (12)

From (10) and (12), the approximate mean square integrated error is given by

AMISE(f̂) = 1
4h

4σ4
k

ˆ
f ′′(x)2dx+ 1

nh

ˆ
K(t)2dt. (13)

Comparing the two terms in the AMISE, we can see that eliminating the bias by using a small value

for h increases the size of the integrated variance. On the contrary, using a large value for h will decrease

the size of the variance while increasing the overall bias. The choice of h will always imply a trade-off

between random error and bias [20].

One way of acquiring an ideal value for h is by minimizing the AMISE given in (13). Parzen [15] has

shown that the ideal value for h in this context is equal to h∗, where

h∗ =
[ ´

K(t)2dt

σ4
k

´
f ′′(x)2dx

] 1
5

n−
1
5 . (14)

From (14) we see that h∗ will converge to 0 at a very slow rate as the sample size n increases.

If we substitute the value of h∗ back into the AMISE in (13), it can be shown that the ideal approximate

mean square integrated error (AMISE∗) will be

AMISE∗ = 5
4

[
σk

ˆ
K(t)2dt

] 4
5
[ˆ

f ′′(x)2dx

] 1
5

n−
4
5 . (15)

To obtain a small value for the MISE, we should choose a kernel function K with a small value

of σk
´
K(t)2dt. The kernel that minimizes

´
K(t)2dt subject to the constraints

´
K(t)dt = 1 and

´
t2K(t)dt = 1 is the Epanechnikov kernel. The efficiency of any other symmetric kernel K is obtained
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by comparing it to the Epanechnikov kernel [20].

2.2 Kernel Density Estimation in a Two-dimensional Space

The bivariate kernel density estimator with kernel K and bandwidth h is defined by

f̂(x) = 1
nh2

n∑
i=1

K

(
x− xi
h

)
(16)

where x = (x1, x2)T and xi = (xi1, xi2)T, i = 1, 2, ..., n. Here the kernel function K(x) is a bivariate

kernel satisfying ˆ

R2

K(x)dx = 1.

It is also a symmetric unimodal probability density function. Examples of K include the standard

bivariate normal density function

K(x) = 1
2π e

(− 1
2 xTx) (17)

and the bivariate Epanechnikov kernel

K(x) =


2
π (1− xTx) ifxTx < 1

0 otherwise.
(18)

To ensure the kernel placed at each data point is equally scaled in all directions, a single bandwidth

h is used in (16). Sometimes it may be more appropriate to use a vector or matrix of bandwidths, such

as in cases where the spread of the data points is greater in one direction than the others [20].

Figure 8 shows a sample data set in a two-dimensional space, its kernel density estimate and a 3D

perspective of the density estimate. The bivariate Gaussian kernel with bandwidth h = 1 was used.

Figure 8: Kernel density estimate (middle) of a sample data set (left) and a 3D perspective (right).

The theoretical properties of the two-dimensional kernel density estimator can be derived in the same

manner as in Section 2.1.1 [20]. Using the two-dimensional form of Taylor’s theorem, we acquire the
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approximations

biash(x) ≈ 1
2h

2
(ˆ

t21K(t)dt
)
∇2f(x) (19)

and

var(f̂(x)) ≈ f(x)
´
K(t)2dt
nh2 . (20)

We combine (19) and (20) to get the AMISE

AMISE = 1
2h

4
(ˆ

t21K(t)dt
)2 ˆ

(∇2f(x))2dx +
´
K(t)2dt
nh2 . (21)

The ideal value for the bandwidth h that is acquired by minimizing the AMISE is given by h∗, where

h∗ =
[

2
´
K(t)2dt

n
(´
t21K(t)dt

)2 (´ (∇2f(x))2dx
)]

1
6

. (22)

3 The density.ppp function

Intensity is a basic descriptive characteristic of a point process that is described as the average number

of random points per unit area [2]. It is essential that the intensity of a point pattern be examined before

any further data analysis can take place. There are parametric and nonparametric ways of examining

the intensity of a point pattern. The intensity function λ(u) of the point process that generates a point

pattern data set can be estimated nonparametrically by kernel estimation. The density.ppp in spatstat

function calculates this estimate. It is a method for the generic function density, where the result that

density.ppp produces is not a probability density but an estimate of the intensity function. This chapter

will look at the density.ppp in more detail.

Usage

The function is used in the following way:

density.ppp(x, sigma=NULL, ..., weights=NULL, edge=TRUE, varcov=NULL, at="pixels",

leaveoneout=TRUE, adjust=1, diggle=FALSE, se=FALSE, kernel="gaussian",

scalekernel=is.character(kernel), positive=FALSE)

where x is a point pattern object.
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3.1 Kernel estimation

Edge effects

Diggle [9] states that edge-effects occur when an observed region A on which a spatial point pattern is

observed is part of a larger region that contains the same underlying process. This causes the difficulty

to take into account the possibility of unobserved events outside A interacting with the observed events

within A. This creates a strong negative bias close to the boundary when creating an intensity function

over the whole region, since the points outside the boundary do not contribute to the sum in the equation

(23) below. The kernel estimators for the intensity function [2, 7, 8] are given by

λ̂(1)(u) =
n∑
i=1

κ(u− xi) (23)

λ̂(2)(u) = 1
e(u)

n∑
i=1

κ(u− xi) (24)

λ̂(3)(u) =
n∑
i=1

1
e(xi)

κ(u− xi) (25)

for any spatial location u inside the window W , where κ(u) = 1
h2K

(
u
h

)
with K a kernel function and

e(u) =
ˆ

W

κ(u− v)dv (26)

is a correction for the bias caused by edge-effects.

The uniform correction (24) and Diggle’s correction (25) are designed to address the problem of edge-

effects that arise when a point process is observed inside a window [2]. The raw estimate (23) doesn’t

take edge-effects into account and thus should only be used in situations where there are no edge-effects.

The kernel estimators have a slight bias because of the smoothing that takes place in the inten-

sity function [2]. We are going to understand the statistical properties of the kernel estimators using

Campbell’s formula. Let f(u) be a function of a spatial location u, and let T be the random sum

T =
∑
i

f(xi)

of the value of f at each data point xi in a point process X. Campbell’s formula states that

E
[∑

f(xi)
]

=
ˆ

R2

f(u)λ(u)du = 1 (27)

where λ(u) is the intensity function of X.

Applying Campbell’s formula to kernel estimation, let u be a fixed spatial location and let f(v) =
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κ(u− v) if v is in the window W and f(v) = 0 if it’s not. Then

∑
i

f(xi) =
∑
i

κ(u− xi) = λ̂(1)(u).

By Campbell’s formula (27)

E
[
λ̂(1)(u)

]
= E

[∑
f(xi)

]
=
ˆ
f(v)λ(v)dv =

ˆ

W

κ(u− v)λ(v)dv.

The expected value of λ̂(1)(u) is not equal to to the true value of λ(u). Now suppose that the true

intensity value is a constant, say β, we get

E
[
λ̂(1)(u)

]
=
ˆ

W

κ(u− v)βdv = β

ˆ

W

κ(u− v)dv = βe(u)

where e(u) is the same as (26). From this we can see that the uniformly corrected estimator λ̂(2)(u) is

unbiased when the intensity is constant, i.e. if λ(u) ≡ λ, then E
[
λ̂(2)(u)

]
= λ. In general, λ̂(2)(u) is a

biased estimator of λ(v) since

E
[
λ̂(2)(u)

]
= 1
e(u)

ˆ

W

κ(u− v)λ(v)dv,

which is a smoothed version of the true intensity λ(u) .

Passing the argument edge=TRUE to density.ppp will correct for edge-effects in one of the following

ways:

• If diggle=FALSE (default) then the uniform correction is used.

• If diggle=TRUE then Diggle’s correction is used. This method has a better performance but is

slower to compute [2].

kernel

The argument kernel selects the kernel that should be used. The current options are “gaussian”,

“epanechnikov”, “quartic” or “disc”, or a pixel image, or an R function. The default is the convolution

of the isotropic Gaussian kernel with standard deviation sigma. Figure 9 displays the density estimate

of the same data set for different kernel options.
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a) gaussian b) epanechnikov

c) quartic d) disc

Figure 9: Density estimates with different options for kernel.

3.2 Bandwidth selection

sigma

The standard deviation of the kernel is the smoothing bandwidth h [2]. The argument sigma determines

the value of the bandwidth. It can be a single numerical value, a pair of numerical values (one specifying

the standard deviation in the x direction and the other in the y direction), or a function that will

automatically calculate the bandwidth. If sigma is a numerical value, it will be taken as the standard

deviation of the isotropic Gaussian kernel. By default, if not specified, the value of sigma will be equal to

one-eighth of the shortest side of the enclosing rectangle. This rule of thumb may produce unsatisfactory

results in most cases. Figure 10 shows a comparison of density estimates with different bandwidth values.

In Figure 11, we see a comparison of two density estimates where where one has a numerical value

for sigma and the other a pair of numerical values given by vec =

 0.2

0.1

.

a) sigma = 0.1 b) sigma = vec

Figure 11: Density estimates with one and two numerical values for sigma.
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a) Point pattern b) sigma = 0.08

c) sigma = 0.12 d) sigma = 0.16

Figure 10: Density estimates with different bandwidths.

Various functions exist to calculate the value of sigma. These include bw.diggle for Diggle and

Berman’s mean square error cross-validation method and bw.ppl for the likelihood cross-validation

method. Other functions are based on a fast rule of thumb, including bw.scott for Scott’s rule of

thumb and bw.frac for a fast rule of thumb for bandwidth selection based on the window’s geometry.

We look at this four functions in more detail below.

bw.diggle

In this method, the bandwidth h is selected so that it minimises the mean-square error criterion

MSE(h) = λ2(0) + λ (1− 2λK(h)) /
(
πh2)+

(
πh2)−2

ˆ ˆ
λ2 (‖x− y‖) dydx

defined by Diggle [7], on the assumption that the underlying point process is a stationary isotropic Cox

process with intensity λ = µ and second-order intensity λ2(u) = γ(u) − µ2 where µ and γ(u) are the

expectation and covariance of the driving intensity of a Cox process respectively. Also, πh2 is the area

of a circle of radius h, ‖· ‖ is the Euclidean distance and K(· ) in this case is known as the K-function of

a stationary process and can be defined as

K(t) = 2πλ−2
ˆ t

0
λ2(s)sds

and should not be confused with a kernel function.
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The bw.diggle function then uses the method from [5] to calculate the quantity

M(h) = MSE(h)− λ2(0)
λ2 .

The result is the selected bandwidth. It should be noted that the value returned by bw.diggle is equal

to r
2 , where r is the bandwidth described in [5, 9]. This adjustment is required to equate the variances of

the kernels, since the kernel used in those references is a uniform density on a circle with radius r, while

the kernel in density.ppp is the isotropic Gaussian density with standard deviation sigma. Thus sigma

= r
2 . Figure 12 is a density estimate where the bandwidth is computed using bw.diggle.

Figure 12: Density estimate with bandwidth computed using bw.diggle.

bw.ppl

The bandwidth h is selected to maximise the likelihood cross validation criterion, for the point process,

defined by

LCV(h) =
n∑
i

logλ̂−i(xi)−
ˆ

W

λ̂(u)du

where λ̂−i(xi) is the leave-one-out estimate (see Section 3.3) and λ̂(u) is the estimate of the intensity at

u [13].

The value returned by LCV(h) is calculated for a specified number of h values between a specified

range (these specifications are optional). In Figure 13, a density estimate is given where the bandwidth

is computed using bw.ppl where h is searched within the range (0.01, 0.2).

bw.scott

The bandwidth h is calculated using Scott’s rule of thumb [19] given by

ĥi = σ̂in
− 1

6
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Figure 13: Density estimate with bandwidth computed using bw.ppl for the range (0.01, 0.2).

in R2 for i = 1, 2, where σ̂i is an estimate of the standard deviation of a bivariate normal distribution.

Scott’s rule of thumb produces a larger bandwidth than bw.diggle, and it is beneficial for estimating

trends that are gradual. The value returned is a vector of two numerical values, one for the x direction

and one for the y direction. In Figure 14 the bandwidth for the density estimate is computed using

bw.scott. Notice how the bandwidth is large.

Figure 14: Density estimate with bandwidth computed using bw.scott.

bw.frac

The bandwidth h is selected so that it is equal to a quantile of the distance between two independent

points in the window, that are uniformly distributed. The value returned is r such that F (r) = f , where

F (r) is the cumulative distribution of the distance between the two points and f is the probability of the

quantile (that can be specified). In Figure 15 the bandwidth is computed using bw.frac with f = 0.05.

In summary, here is a list of available options for sigma:

• a numerical value

• a pair of numerical values

• a function such as:
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Figure 15: Density estimate with bandwidth computed using bw.frac with f = 0.05.

– bw.diggle

– bw.scott

– bw.ppl

– bw.frac

adjust

The bandwidth calculated by any of the methods above can easily be adjusted using the argument adjust,

which is a numerical value that is multiplied with the bandwidth. For example, adjust=2 will multiply

the value of sigma by 2. In Figure 16, we’ve adjusted the bandwidth for the density estimate in Figure

14 by 0.5.

a) No adjustment b) adjust = 0.5

Figure 16: Density estimate with bandwidth computed using bw.scott with an adjustment of 0.5.

varcov

The kernel can be specified to be any Gaussian kernel by giving a variance-covariance matrix in the

varcov argument. If the argument varcov is used, then sigma cannot be used as well. As can be seen in
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Figure 17, different variance-covariance matrices can give different looking intensity estimates. In Figure

17, the density estimates are created using the following variance-covariance matrices for the varcov ar-

gument: matrix1 =

 0.01 0.005

0.005 0.015

, matrix2 =

 0.01 −0.005

−0.005 0.015

, matrix3 =

 0.01 0

0 0.015

,
and matrix4 =

 0.015 0

0 0.01

.

a) matrix1 b) matrix2

c) matrix3 d) matrix4

Figure 17: Density estimates with different matrices in the varcov argument using the gaussian kernel.

It should be noted that the varcov argument can also be used when kernel is a non-Gaussian kernel.

We can see this in Figure 18, where we used matrix1 as above.

a) epanechnikov b) quartic c) disc

Figure 18: Using the varcov argument for the epanechnikov, quartic and disc kernels respectively.

To test how this works, we are first going to use the argument with the above matrices for a disc

kernel on a single point. This is shown in Figure 19.
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a) matrix1 b) matrix2

c) matrix3 d) matrix4

Figure 19: Using the varcov argument for the disc kernel on a single point.

This result gives us a clearer insight on how varcov works. A Gaussian kernel is placed on top of the

point so that what we see is the base of the kernel (an ellipse) on the window. The variance-covariance

matrix affects the distribution of points surrounded by the ellipse. In matrix1, the covariances are

positive, indicating that the data has a positive linear relationship; matrix2 on the other hand, has

negative covariances and hence a negative linear relationship is observed; in matrix3, the relationship

is neither positive nor negative, and that is why the ellipse is not tilted in any direction; and matrix4

yields a similar result to matrix3 but the only difference is that the ellipse is wide in the x-direction due

to a larger variance in that direction.

If we use the epanechnikov or quartic kernels, we will get the same results, as can be seen in Figures

20 and 21.

a) epanechnikov with matrix1 b) quartic with matrix2

Figure 20: Using the varcov argument for the epanechnikov and quartic kernels on a single point.
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a) epanechnikov with matrix3 b) quartic with matrix4

Figure 21: Using the varcov argument for the epanechnikov and quartic kernels on a single point.

This observation relieves any confusion on how varcov (and even sigma) works. Figures 20 and 21

tell us that varcov works the same way irrespective of the kernel specified and that it is just a variance-

covariance matrix that will create the two-dimensional shape of the base of a Gaussian kernel on the

window, and then any specified kernel’s shape will be placed on top of this base, so to speak.

This result is further confirmed by looking at a 3D perspective of the different kernels using matrix1

in Figure 22.

a) gaussian b) epanechnikov

c) quartic d) disc

Figure 22: A 3D perspective of the four different kernels on a single point.

Notice how the only difference is the shape of the kernel while the base and everything else remains

the same.

Relationship between varcov and sigma

The value of sigma is equivalent to varcov = diag(rep(sigma^2,2)), where rep(x,times) replicates

x for a number of times specified by times, and diag(x) returns a diagonal of x.
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For example, if sigma = 0.14 then varcov =

 0.0196 0

0 0.0196

 or if sigma =

 0.2

0.1

 then varcov

=

 0.04 0

0 0.01

.
scalekernel

Setting scalekernel=TRUE will rescale the kernel with the bandwidth that is given by sigma or varcov.

This will be done automatically when kernel is a character string. When kernel is a function or pixel

image, the default behaviour is scalekernel=FALSE, which will ignore sigma and varcov.

Standard errors (se)

Standard errors and confidence intervals for the intensity function can be calculated by setting se=TRUE.

3.3 Estimation of intensity at the data points

leaveoneout

Sometimes calculating the intensity λ(xi) at each data point xi is required. Passing the argument

at=“points” to density.ppp will compute intensity estimates at the data points. The estimates λ̂(2)(xi)

and λ̂(3)(xi) have large positive biases because of the term κ(u − xi) = κ(xi − xi) = κ(0) that appears

in the sum in (24) and (25) [2]. The leaveoneout argument deals with this problem by estimating λ(xi)

over all the data points except xi:

λ̂
(2)
−i (xi) = 1

e(xi)

n∑
j 6=i

κ(xi − xj) (28)

λ̂
(3)
−i (xi) =

n∑
j 6=i

1
e(xj)

κ(xi − xj). (29)

The default is leaveoneout=TRUE.

4 Application

4.1 Introduction

In Section 2 we had an in-depth look at kernel density estimation and in Section 3 we studied the

density.ppp function in detail and how it uses kernel density estimation to create an intensity function

of a point process. In this section, we are going to create intensity functions of point patterns derived from

actual real-world data. Our data consists of households in 5 different villages from the Mara province in
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Northern Tanzania3,4. The households of these villages will be the points inside the window. In Section

4.2 we are going to apply the density.ppp function on these villages using a standard rectangular

window, and then in Section 4.3 we are going to test the function under window effects, specifically the

convexhull argument with edge effects.

4.2 Intensity for each village with standard window

The villages will be studied are Buchanchari, Kitembere, Magatini, Monuna and Nyiberekera and their

point patterns are given in Figures 23 and 24.

a) Buchanchari

b) Kitembere

Figure 23: Point patterns of the different villages with 3D perspectives.
3http://www.gla.ac.uk/researchinstitutes/bahcm/staff/katiehampson/
4http://www.katiehampson.com/#intro
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c) Magatini

d) Monuna

e) Nyiberekera

Figure 24: Point patterns of the different villages with 3D perspectives.

The density.ppp function will be applied to compute intensity functions of the villages’ point pat-

terns. These can be seen in Figures 25 and 26 where the gaussian kernel is used with Diggle’s correction

for edge effects.
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a) Buchanchari

b) Kitembere

c) Magatini

Figure 25: Point patterns of the different villages and their intensity functions using the gaussian kernel
with the default bandwidth selection.
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d) Monuna

e) Nyiberekera

Figure 26: Point patterns of the different villages and their intensity functions using the gaussian kernel
with the default bandwidth selection.

From the intensity functions we notice how the closeness of the points in a window affects the ap-

pearance of the intensity function. For example, if you look at the intensity of Buchanchari, you will

notice that the points cover the entire window, creating an appropriate intensity function that gives an

almost accurate representation of how the households are spread out across the village. In contrast, if we

compare Buchanchari to Kitembere or Nyiberekera we see distinct results. In the latter point patterns,

we observe clusters of points with little or no space between them and the clusters are surrounded by

points that are more separated. The resulting intensity function shows high intensities in the regions of

the clusters. In fact so high that the surrounding points have been smoothed out and do not have any

significant contribution to the intensity estimate and they don’t even appear in the intensity function.

Thus we see that the intensity functions can be misleading because they are not accurate representa-

tions of how the households are spread out across the villages.

Intensity functions with different kernels

In Figures 27 and 28 it can be seen how the different intensities appear with the different types of kernels

with no correction for edge effects. The intensity functions fitted with the disc kernel look visibly different

from the intensity functions fitted with the other kernels. From this it can seen that these other kernels

produce more favorable (if not superior) results than the disc kernel with regards to how we expect an

intensity function to look like. The gaussian, epanechnikov and quartic kernels look similar to each

other with slight differences, the most obvious one being that the gaussian kernel has the most intensity.
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a) Buchanchari

b) Kitembere

c) Magatini

d) Monuna

Figure 27: Intensity functions of the villages with the gaussian, epanechnikov, quartic, and disc
kernels respectively without edge effects.
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e) Nyiberekera

Figure 28: Intensity functions of Nyiberekera with the gaussian, epanechnikov, quartic, and disc
kernels respectively without edge effects.

Intensity functions with different options for edge effect correction

In Figures 29 and 30 it can be seen how the different intensities appear with and without Diggle’s

correction for edge effects. Notice how the negative bias caused by edge effects is corrected so that the

intensity functions only take into account the points within the window.

a) Buchanchari

b) Kitembere

Figure 29: Intensity functions of the villages with diggle = FALSE and diggle = TRUE respectively.
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c) Magatini

d) Monuna

e) Nyiberekera

Figure 30: Intensity functions of the villages with diggle = FALSE and diggle = TRUE respectively.

4.3 Intensity for each village with convexhull window

In this section the same approach to Section 4.2 is used, but this time changing the window effect to

convexhull to see how this change will affect the fitted intensity functions. We observe this in Figures

31 and 32 where the gaussian kernel was used with Diggle’s correction for edge effects.

a) Buchanchari

Figure 31: Point patterns of the different villages and their intensity functions with a convexhull window.
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b) Kitembere

c) Magatini

d) Monuna

e) Nyiberekera

Figure 32: Point patterns of the different villages and their intensity functions with a convexhull window.

Here we see that changing the window effect to convexhull does not significantly affect the appearance

of the intensity function.
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Intensity functions with different kernels

In Figures 33 and 34 the four different kernels without edge effect corrections are applied. We get similar

looking results to the intensity functions created with a standard window.

a) Buchanchari

b) Kitembere

c) Magatini

d) Monuna

Figure 33: Intensity functions of the villages with the gaussian, epanechnikov, quartic, and disc
kernels respectively without edge effects.
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e) Nyiberekera

Figure 34: Intensity functions of Nyiberekera with the gaussian, epanechnikov, quartic, and disc
kernels respectively without edge effects.

Intensity functions with different options for edge effect correction

In Figures 35 and 36 it can be seen how the intensities appear with and without Diggle’s correction for

edge effects.

a) Buchanchari

b) Kitembere

Figure 35: Intensity functions of the villages with diggle = FALSE and diggle = TRUE respectively with
the gaussian kernel.
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c) Magatini

d) Monuna

e) Nyiberekera

Figure 36: Intensity functions of the villages with diggle = FALSE and diggle = TRUE respectively with
the gaussian kernel.

Changing the window will not change how the edge effects are corrected. What does change as an

effect of changing the window is the appearance of the intensity functions, as seen in Figures 38 and 37

where the intensities have been plotted with equal range of values on the bar scale for each village. Notice

how the intensities in the standard window differ from those in the convexhull window. This shows that

the selection of a window is important and should be taken into account when plotting intensity functions.

a) Nyiberekera

Figure 37: Comparing intensities between the standard window and the convexhull window using the
gaussian kernel with edge effects for Nyiberekera.
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b) Buchanchari c) Kitembere

d) Magatini e) Monuna

Figure 38: Comparing intensities between the standard window and the convexhull window using the
gaussian kernel with edge effects for each village.

4.4 Kernel density estimation in SAS software

SAS software can perform univariate and bivariate kernel density estimation using the KDE procedure.

This procedure only uses the Gaussian kernel with a simple method to adjust the bandwidth accordingly.

It can also give summary statistics, percentiles and levels of kernel density estimation. It does not,

however, have the ability to change the window effect nor does it have the ability to make corrections

for edge effects. What follows is an example of kernel density estimation on a randomised point pattern

done in SAS software5. The code is given below and the output is given in Figures 39 to 42.

SAS Code:

data a;
n = 50;
do i = 1 to n;

x = 50*ranuni(121);
y = 50*ranuni(212);
output;

end;
symbol1 value = dot;
proc gplot;
plot y*x;
run;

5The code and output for this subsection was generated using SAS software, Version 9.4 of the SAS System for Windows.
Copyright © 2002-2012 by SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.
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ods graphics on;
proc kde data = a;
univar x y / plots = (histdensity);
bivar x y / plots = (contour surface);
run;
ods graphics off;

Selected output:

Figure 39: Plot of the x values against the y values.

Figure 40: Histogram and kernel density for the x and y values respectively.

Figure 41: Kernel density estimation for x and y.
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Figure 42: 3D perspective of the kernel density estimation for x and y.

5 Conclusion

In this report, we have looked at kernel density estimation in the one- and two-dimensional space and how

the density.ppp function in the spatstat package in R uses it to create intensity functions of spatial

point patterns. We also looked into the density.ppp function and studied its different parameters and

arguments, including adjusting for the edge effects and the different types of bandwidth selection.

In the application we applied the density.ppp function on five different maps of villages which served

as point patterns with the households being the points. We tested the function under two different

window selections: the standard rectangular window and the convexhull window, with and without

Diggle’s correction for edge effects. We observed that the appearance of an intensity function was greatly

influenced by the distribution of points in the window, and that points were not all well represented by

the intensity function because of that.

Another result was that despite changing the effect of the window, edge effect correction still worked

as it was supposed to work. The appearance of the intensity functions, however, did change as a result

of changing the window (which should be expected due to the nature of edge effect correction). For this

reason, window selection should be a significant step to consider before creating intensity functions. A

recommendation would be to have more research done on the appropriate selection of a window.

We also looked at an example of kernel density estimation done in SAS software using the KDE

procedure.
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Abstract

This study introduces the α − µ fading model within the elliptical class. First the well-known

α − µ distribution will be studied. The latter distribution's characteristics will be revisited and its

feasibility as a fading model in wireless communications systems will be investigated. Secondly the

extension under the elliptical umbrella will be proposed and the contribution as a fading model will

be demonstrated.

Keywords: average bit-error rate, elliptical class, fading model, generalized gamma distribution,

outage probability, signal-to-noise ratio.
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1 Introduction

In the �eld of communication systems, fading channels are characterized as statistical distributions used

to describe the signal degradation from the transmitter to receiver of wireless signals.

To explain how fading of a signal works and how a fading model's performance is evaluated the fun-

damental theory of wireless systems needs to be understood. This includes how modelling is approached

as well as the performance metrics that are used in order to compare the e�ciency of systems, all of

which is described in [17, 18]. In recent times, there have been improvements on many approaches to the

derivation of the fading models and their performance metrics. These advances in the �eld of wireless

communication have resulted in models that are more relevant and expressions for existing models that

have been improved computationally, all of which is summarized by Paris [14]. One such new develop-

ment is the α − µ distribution introduced in 2002 by Yacoub [20] with the purpose of modelling fading

in non-linear environments where surfaces that cause di�usion and scattering are spatially correlated

[21]. The α − µ distribution has been shown to be Stacy's distribution that has been reparameterized.

Expressions to evaluate the performance of a system, together with joint statistics have been derived for

the α−µ distribution [21]. The Stacy distribution is a generalization of the gamma distribution and has

three parameters as opposed to the traditional gamma's two. Stacy formally derived this distribution

as well as some properties such as the distribution of the sum of independent random variables from

the generalized gamma distribution [19], the earliest form as this distribution was seen in 1925 [1]. The

α−µ distribution is also very broad since it includes many distributions as special cases, the Nakagami-m

being one example, and since Yacoub found the expressions in terms of the physical fading parameters,

statistics of the special cases can be found directly from the α−µ distribution's derived expressions [21].

The expression of the Laplace transform as derived by Yacoub is not of a convenient form computa-

tionally, but work has been done to �nd alternative closed form expressions. The �rst method makes use

of Meijer's G-functions [9]. These expressions are expanded to �nd an expression for the bit-error rate

(BER) which is a performance measure traditionally calculated from the Laplace transform. More recent

developments yielded an alternative which may be computationally easier than the G-functions and is

found by approximating the exponential functions in the Laplace transforms [16].

It has been remarked that a more general assumption than the underlying normal may not be far from

reality [12], and so this study will focus on the α−µ distribution and its characteristics and then propose

the distribution within the elliptical class [4]. The elliptical class is used to allow us to consider the α−µ

distribution with a underlying t distribution, this allows us to see how a distribution with heavier tails

will perform when modelling fading. The α− µ distribution with underlying t distribution will be found

by substituting the relevant weighting function, as represented by Chu [4], into the expressions for the

α− µ type.
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The study is compiled as follows, �rst some background theory of some concepts which will be used

and investigated throughout the remainder of this report are given. Section 3 considers the construction

of the α − µ distribution from a physical point of view [21]. The probability density function (PDF),

cumulative distribution function (CDF) and moment generating function (MGF) [9, 16] of the α − µ

model will receive attention. In section 4 the α − µ distribution will be proposed within the elliptical

class and alternative α−µ models will be introduced, resulting in the α−µ type. These alternative α−µ

models are of interest since they may yield better results than existing models. Section 5 will consider

the performance of the α− µ type comparing the underlying normal- and t case.

2 Background

Some necessary elements for this study will be described below.

2.1 The fading model

When a signal is transmitted there is �uctuation in the power due to objects between the transmitter and

the receiver. These �uctuations occur over a short period of time and are known as short-term fading,

or simply, fading. The fading is due to the objects causing the signal to scatter, re�ect and di�ract and

this results in there being more than one way for the signal to go from the transmitter to the receiver

[17], this is shown in Figure 1. The fading envelope, also known as the amplitude or magnitude, is the

smooth curve outlining the extremes of an oscillating signal and will be denoted by the random variable

R. When deciding on a model to describe the fading envelope's behaviour, the environment in which

the propagation occurs must be taken into consideration. The fading distribution will always form part

of the exponential class but the complexity of the distribution may vary [18]. In the event that the

signal encounters multiple objects between the transmitter have long-term fading occurs, also known as

shadowing which might be described by the lognormal distribution [5]. In this study, attention will be

given to short-term fading.

2.2 Signal-to-noise ratio (SNR)

The instantaneous SNR, denoted by γ, is a performance measure taken at the receiver and so is related

to the receiver's ability to detect data. The SNR is a good indication of the system's overall accuracy and

of the performance metrics considered, will be the easiest to compute in most cases. It is expressed as

the ratio between the power of the signal and that of the noise at the receiver's output [18]. Let R be the

random variable representing the envelope of the fading channel with r̂ = α
√
E (Rα) thus r̂α = E (Rα).

Then the instantaneous SNR expressed in terms of the channel envelope is γ = γ̂
(
R
r̂

)2
= γ̂R2 1

E(R2) where
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Figure 1: Illustration of how a signal can have many paths to travel from the transmitter to the receiver.
The Line-Of-Sight (LOS) path is the only one where there is no scattering, re�ecting or di�raction of the
signal as it makes its way to the receiver.

γ̂ = E
(
r̂2
)
Eb
No

, Eb is the energy per bit and N0 the noise spectral density [9].

2.3 Outage probability (OP)

The outage probability is a performance measure for wireless communication channels and is a criterion

with which comparisons between models can be made by considering their capability of maintaining a

speci�c SNR [17]. The outage probability can be de�ned as the probability that the received SNR drops

below a predetermined threshold [18]. In statistical terms the outage probability is the CDF of the SNR,

thus OP =
∫ γOP

0
fγ (γ) dγ where γOP is the threshold and fγ (γ) is the PDF of the SNR. It is worth

noting that a MGF based approach does exits, [18], but will not be considered in this study.

2.4 Average bit-error rate (ABER)

Of the performance metrics considered in this study this is the most challenging but gives the most

insight into the system's attributes. When data travels through wireless systems the digitized form at the

transmitter is transformed into 0's and 1's known as bits. These bits form a sequence when combined,

when a sequence consists of a single bit one will detect binary signals [17]. Noise enters the system

between the transmitter and receiver. The noise in the system a�ects the system by corrupting the signal

resulting in errors between what was received and what was transmitted. ABER quanti�es this error

caused by the noise. When binary shift-phase-keying (BPSK), as coherent detection method, is used the

ABER can be written as a Gaussian Q-function:
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Pb (E) = Q

(√
2Eb
N0

)
,

where Eb is the energy per bit and N0 the noise spectral density [18]. The ABER can also be found by

evaluating the �nite integral [6, 18]:

Pb (E) =
am
π

∫ π
2

0

Lγ

(
b2m

2 sin2 (θ)

)
dθ, (1)

when coherent detection of BPSK is used. In this case am = 1 and b2m = 2EbN0
.

2.5 Elliptical class

A random variable X is said to be a member of the elliptical class, denoted as X ∼ E(µ, σ2, h) h(·)

being a generator function, with mean µ > 0 and variance σ2 > 0 only when its PDF is a function of a

quadratic form, hence

fX(x) = h(− 1

2σ2
(x− µ)2). (2)

It is worth noting that the PDF of a random variable with an elliptical distribution can be written as the

integral of a set of normal densities. Thus (2) can be expanded as:

fX(x) =

∫ ∞
0

W (t)fN(µ,t−1σ2)(x)dt

where W (t) is known as the weighting function, dependent only upon t ∈ (0,∞), and fN(µ,t−1σ2)(x) is

the PDF of a normally distributed random variable with mean µ and variance t−1σ2 [4]. The di�erent

choices of the weighting function results in a large variety of functions, making the elliptical class very

�exible . This �exibility makes it possible to implement distributions with di�erent characteristics than

the normal distribution, such as heavier or lighter tails [2, 13].

3 α− µ model

The commonly used fading models such as the Rayleigh distribution assume that the received signal

can be found by the addition of vector sums representing scattering, di�raction and re�ection from
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di�erent objects. These models have a drawback in that they can only model the fading accurately

when the scattering is homogeneous and require a large number of scatters to apply the central limit

theorem (CLT). The α−µ model is a uni�ed model (also known as a general fading model), these models

work under the assumption that the received signal is found through modelling the objects as clusters,

rather than individually, Figure 2 illustrates this clustering. Uni�ed models are statistically complex

in their explanation of fading while also being diverse. Signal in wireless channels is more likely to be

heterogeneous in nature with the number of obstacles between the transmitter and receiver �nite. This

heterogeneity leads to the signal conducting itself in a non-linear manner [17]. The number of scatters

required to implement the CLT will likely be larger than the number of clusters, which adds to uni�ed

model's relevance.

The α − µ distribution was introduced by Yacoub [21] with the purpose of modelling fading in non-

linear environments where there exists a spatial correlation between the surfaces that are causing the

di�usion and scattering. In the model the non-linearity of the propagation medium is represented by α

while µ represents the number of multipath clusters [8].

First to be considered is the PDF of R's derivation after which the moments of the fading signal's

envelope. These results are then used to �nd the instantaneous SNR, γ, which is a performance metric

but will also be used to �nd both the outage probability and the ABER. The α−µ distribution is a very

�exible distribution and its relation with other distributions will also be considered.

Figure 2: Generalized fading considers clusters of objects as displayed.

3.1 Construction of the model

The derivation will be done as approached by Yacoub [21] by describing the envelope as

Rα =

µ∑
i=1

(
X2
i + Y 2

i

)
, (3)
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α > 0 and µ a positive integer. This description of the envelope is under the assumption that there is

a su�cient number of scatters, or objects, within each cluster. When the number of scatters within the

cluster is su�cient it may be assumed that X and Y are independent normal random variables [17].

Theorem 1. Consider two mutually independent normal random variables Xi and Yi with E (Xi) =

E (Yi) = 0 and E
(
X2
i

)
= E

(
Y 2
i

)
= r̂α

2µ where r̂ = α
√
E (Rα) and for i = 1, ..., µ. r̂ is the α-root mean

value of the envelope random variable R. The PDF of R, the envelope of the fading signal, is given by

fR (r) =
αrαµ−1µµ

Γ (µ) r̂αµ
exp

[
−µ
(r
r̂

)α]
, r > 0 (4)

where Γ (·) is the gamma function (see Appendix R3).

Proof. Suppose Yi ∼ N
(

0, r̂
α

2µ

)
and Xi ∼ N

(
0, r̂

α

2µ

)
where i = 1, ..., µ . Then

(
Yi

√
2µ
r̂α

)2

∼ χ2 (1) and

similarly

(
Xi

√
2µ
r̂α

)2

∼ χ2 (1) (see Appendix R1). From (3) it follows that

Rα
2µ

r̂α
=

µ∑
i=1

(
Xi

√
2µ

r̂α

)
2 +

µ∑
i=1

(
Yi

√
2µ

r̂α

)
2.

Resulting in

Rα
2µ

r̂α
∼ χ2 (2µ) (5)

since
∑µ
i=1

(
Yi

√
2µ
r̂α

)2

∼ χ2 (µ) and
∑µ
i=1

(
Xi

√
2µ
r̂α

)2

∼ χ2 (µ) (see Appendix R2). Let A = Rα 2µ
r̂α ,

then R = α

√
r̂α

2µA and dA
dR = αRα−1 2µ

r̂α . The PDF of A is is given by:

f (A) =
1

2µΓ (µ)
aµ−1exp

(
−a

2

)
, a > 0, (6)

this is a Gamma(µ, 2) distribution (see Appendix R4). Using (6) the PDF of R can be determined as

fR (r) = fA (r)
dA

dR

=

(
rα 2µ

r̂α

)
µ−1 exp

(
− 1

2 (rα 2µ
r̂α )
)

2µΓ (µ)

2µα
(
α
√
rα
)
α−1

r̂α

=
αrαµ−α2µ−1µµ−1r̂α(1−µ) exp

(
−µ r

α

r̂α

)
2µrα−1

2µΓ (µ) r̂α

=
αrαµ−1µµ

Γ (µ) r̂αµ
exp

[
−µ
(r
r̂

)α]
, r > 0

which leaves the �nal result.
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Figure 3: PDFs of the α− µ distribution.

Figures 3a - 3c illustrate the e�ect of a change in parameter values on (4).

Remark 2. Consider the following reparameterization of (4):

r̂ = a p

√
d

p

µ =
d

p

α = p

The resulting PDF is:

fR (r) =
p

ad
rd−1 exp

[
−
( r
a

)p] 1

Γ
(
d
p

) a, d, p, r > 0. (7)

Equation (7) is the generalized gamma as derived by Stacy [19] and thus the α − µ distribution is a

reparameterization of the Stacy distribution.

Cumulative distribution function (CDF)

The CDF of R using (4) can be determined as:

13



FR (r) =

∫ r

0

fR (s) ds

=

∫ r

0

αsαµ−1

Γ (µ) r̂αµ
µµ exp

(
−µs

α

r̂α

)
ds

=
αµµ

Γ (µ) r̂αµ

∫ r

0

sαµ−1 exp

(
−µs

α

r̂α

)
ds

=
αµµ

Γ (µ) r̂αµ
γ
(
µ, µ

(
u
r̂

)α)
α
(
µ
r̂α

)
µ

, u > 0

=
γ
(
µ, µ

(
u
r̂

)α)
Γ (µ)

, u > 0 (8)

where γ (·, ·) is the lower incomplete gamma function (see Appendix R5).

Figures 4a - 4c illustrate the e�ect a change of parameter values has on the CDF (8).

3.2 Moments

The MGF and the vth moment of the α−µ distribution will be considered, while the expected value and

variance of the fading signal's envelope R will be revisited [21].

3.2.1 Moment generating function

The MGF of the α− µ distribution is derived as follows:

MR (c) = E [exp (cr)]

=

∫ ∞
0

fR (r) exp (cr) dr

=

∫ ∞
0

αrαµ−1

Γ (µ)
(
r̂α

µ

)µ exp

(
−r

αµ

r̂α

)
exp (cr) dr

= µµα
r̂−αµ

Γ (µ)

∫ ∞
0

exp

(
−r

αµ

r̂α

)
rαµ−1

∞∑
k=0

(cr) k

k!
dr

= µµα
r̂−αµ

Γ (µ)

∞∑
k=0

ck

k!

∫ ∞
0

exp

(
−r

αµ

r̂α

)
rαµ+k−1dr

= µµα
r̂−αµ

Γ (µ)

∞∑
k=0

ck

k!

Γ
(
µ+ k

α

)
α (r̂−αµ) µ+ k

α

=
1

Γ (µ)

∞∑
k=0

ckΓ
(
µ+ k

α

)
k! (r̂−αµ)

k
α

, (9)

where α > 0, αµ+ k − 1 > 0 and r̂−αµ > 0 (see Appendix R6).
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Figure 4: CDFs of α− µ distribution.

3.2.2 jth moment

The jth moment of the α− µ distribution, which is given by E
(
Rj
)
, will now be revisited [20, 21].

mj = E
(
Rj
)

=

∫ ∞
0

rjfR (r) dr

=

∫ ∞
0

rjµµαr̂−α
jµ

Γ (µ)
exp

(
−r

αµ

r̂α

)
rαµ−1dr

= µµα
r̂−αµ

Γ (µ)

∫ ∞
0

rj+αµ−1 exp

(
−r

αµ

r̂α

)
dr

=
µµα

Γ (µ) r̂αµ
Γ
(
αµ+j
α

)
α (µr̂−α)

αµ+j
α

=
µµ

Γ (µ) r̂αµ
Γ
(
µ+ j

α

)
r̂αµr̂j

µµµ
j
α

=
r̂jΓ

(
µ+ j

α

)
µ
j
αΓ (µ)

, (10)

where α > 0, r̂α > 0 and αµ+ j > 1 (see Appendix R6).
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3.2.3 First and second moment

A general form for the �rst two moments of the envelope Rα can not be obtained easily from the MGF or

the vth moment of the α−µ distribution as derived above. This is due to both (9) and (10) not being in

a form that is easily computable. However the distribution of Rα 2µ
r̂α is known and is given by (5) hence

E

(
Rα

2µ

r̂α

)
= 2µ

E (Rα) = 2µ
r̂α

2µ

E (Rα) = r̂α. (11)

Solving for r̂ in equation (11), r̂ = α
√
E (Rα).

E
(

(Rα)
2
)

= var (Rα) + (E (Rα))
2
.

For the second moment start by considering the variance of (5):

var

(
Rα

2µ

r̂α

)
= 4µ

var (Rα) = 4µ
r̂2α

4µ2

=
r̂2α

µ
,

subsequently

E
(
(Rα) 2

)
=
r̂2α

µ
+ r̂2α

=
r̂2α (µ+ 1)

µ
.

These are the same results obtained in [21].

3.3 SNR

3.3.1 PDF and Outage probability

To �nd the instantaneous SNR, indicated by γ, the PDF of γ needs to be found, this can be done by

performing a transformation on the α− µ density function (4), as was done in [9].
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Probability density function (PDF)

Suppose γ is the instantaneous SNR (see Section 2.2) and that γ = γ̂
(
R
r̂

)
2 then r = r̂

√
γ
γ̂ and dr

dγ =

r̂
2

(√
γ
γ̂

)
−1 1

γ̂ thus the PDF of γ can be found as

fγ (γ) = fγ (r)
dr

dγ

=
αrαµ−1

Γ (µ)
(
r̂α

µ

)µ exp

(
−r

αµ

r̂α

)
r̂

2

(√
γ

γ̂

)
−1 1

γ̂

=
αµµ

(
r̂
√

γ
γ̂

)−1

Γ (µ)

(√
γ

γ̂

)αµ
exp

[
−µ
(√

γ

γ̂

)α]
r̂

2

(√
γ

γ̂

)−1
1

γ̂

=
αµµγ

αµ
2 −1

2Γ (µ) γ̂
αµ
2

exp

[
−µ
(
γ

γ̂

)α
2

]
(12)

where γ > 0.

Outage Probability

Let γOP be the threshold being considered then using (12):

Fγ (γOP ) =

∫ γOP

0

fγ (γ) dγ

=

∫ γOP

0

αµµγ
αµ
2 −1

2Γ (µ) γ̂
αµ
2

exp

[
−µ
(
γ

γ̂

)α
2

]
dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ γOP

0

γ
αµ
2 −1 exp

[
−µ
(
γ

γ̂

)α
2

]
dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

2γ
(
αµ
2

2
α , µγ̂

−α2 γ
α
2

OP

)
α
(
µγ̂−

α
2

)µ
=

γ

(
µ, µ

(
γOP
γ̂

)α
2

)
Γ (µ)

, (13)

where γOP > 0 (see Appendix R6).

3.3.2 Laplace transform

The Laplace transform forms part of the calculation of the ABER, the Laplace transform of γ is given

by:
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L (c) = E [exp (−cγ)]

=

∫ ∞
0

fγ(γ) exp (−cγ) dγ

=

∫ ∞
0

αµµγ
αµ
2 −1

2Γ (µ) γ̂
αµ
2

exp

[
−µ
(
γ

γ̂

)α
2

]
exp (−cγ) dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

γ
αµ
2 −1 exp

[
−µ
(
γ

γ̂

)α
2

]
exp (−cγ) dγ (14)

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

γ
αµ
2 −1 exp

[
−µ
(
γ

γ̂

)α
2

] ∞∑
k=0

(−cγ)
k

k!
dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∞∑
k=0

(−c)k

k!

∫ ∞
0

γ
αµ
2 +k−1 exp

[
−µ
(
γ

γ̂

)α
2

]
dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∞∑
k=0

(−c)k

k!

Γ
(
µ+ 2k

α

)
α
2

(
µγ̂−

α
2

)µ+ 2k
α

=
1

Γ (µ)

∞∑
k=0

(−c)k

k!

Γ
(
µ+ 2k

α

)
µ

2k
α

γ̂k. (15)

Two approaches will be considered for �nding a more convenient form of (15). The �rst approach will

make use of Meijer's G-function [9]. The second method to be considered was introduced in 2015, and

the desired expression for the Laplace transform is found through the approximation of the exponential

function, − exp (−xr), removing the need for G-functions [16]. The lack of G-functions in the expression

leads to a result that is can be manipulated easily and e�ciently. Both approaches will result in alternative

closed form expressions of the SNR's Laplace transform.

Approach 1

Using (12) an alternative expression for the Laplace transform is derived below.

L (c) = E [exp (−cγ)]

=

∫ ∞
0

fγ (γ) exp (−cγ) dγ

=

∫ ∞
0

αµµγ
αµ
2 −1

2Γ (µ) γ̂
αµ
2

exp

(
−µ
(
γ

γ̂

)α
2

)
exp (−cγ) dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

γ
αµ
2 −1 exp

(
−µ
(
γ

γ̂

)α
2

)
exp (−cγ) dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

×
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∫ ∞
0

γ
αµ
2 −1

(
µ

(
γ

γ̂

)α
2

)−1
(µ(γ

γ̂

)α
2

)1

exp

(
−µ
(
γ

γ̂

)α
2

) (cγ)
−1
[
(cγ)

1
exp (−cγ)

]
dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

×

∫ ∞
0

γ
αµ
2 −1

(
µ

(
γ

γ̂

)α
2

)−1
(µ(γ

γ̂

)α
2

)1

G1,0
0,1

 µ

γ̂
α
2
γ
α
2

∣∣∣∣∣∣∣
−

0


 (cγ)

−1

(cγ)
1
G1,0

0,1

cγ
∣∣∣∣∣∣∣
−

0


 dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

γ
αµ
2 −1G1,0

0,1

 µ

γ̂
α
2
γ
α
2

∣∣∣∣∣∣∣
−

0

G1,0
0,1

cγ
∣∣∣∣∣∣∣
−

0

 dγ (16)

=
αµµ

2Γ(µ)γ̂
αµ
2

k
1
2 l

αµ−1
2

(2π)
l+k−2

2 c
αµ
2

Gk,ll,k

( µ

γ̂
α
2

)k
ll

clkk

∣∣∣∣∣∣∣
I
(
l, 1− αµ

2

)
I (k, 0)

 , (17)

with I(n, ε) = ε
n ,

ε+1
n , ..., ε+n−1

n and α
2 was de�ned such that α

2 = l
k and to include values for which α is

not an integer the greatest common divisor for l and k is one, the G-function for the integral considered

can be found in [15, p346] (see Appendix R8).

Approach 2

Using (12) as a departure point the following approximation of the exponential function will be applied

[16]:

exp
(
−z 1

α̃

)
≈

4∑
i=1

ai exp (−biz)

is extended to the case

exp
(
−cz 1

α̃

)
≈

4∑
i=1

ai exp (−bicz)

with ai and bi �tting parameters and α̃ = α
2 . Rewritten in terms of α, where α still represents the

non-linearity of the propagation medium

exp
(
−cz 2

α

)
≈

4∑
i=1

ai exp (−bicz) . (18)

This approximation's value will change only when considering di�erent cases of non-linearity in propaga-

tion medium, α [16]. Consider the Laplace transform:

L (c) = E (exp (−cγ))
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=

∫ ∞
0

fγ (γ) exp (−cγ) dγ

=

∫ ∞
0

αµµγ
αµ
2 −1

2Γ (µ) γ̂
αµ
2

exp

[
−µ
(
γ

γ̂

)α
2

]
exp (−cγ) dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

γ
αµ
2 −1 exp

[
−µ
(
γ

γ̂

)α
2

]
exp (−cγ) dγ.

Consider the transformation γ
α
2 = z thus γ = z

2
α and with dγ

dz = 2
αz

2
α−1.

L (c) =
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

(
z

2
α

)αµ
2 −1

exp

[
−µz 1

γ̂
α
2

]
exp

(
−cz 2

α

) 2

α
z

2
α−1dz

=
µµ

Γ (µ) γ̂
αµ
2

∫ ∞
0

zµ−
2
α exp

(
−µz 1

γ̂
α
2

)
exp

(
−cz 2

α

)
z

2
α−1dz

=
µµ

Γ (µ) γ̂
αµ
2

∫ ∞
0

zµ−1 exp

(
−µz 1

γ̂
α
2

)
exp

(
−cz 2

α

)
dz.

Substituting (18) in

L (c) ≈ µµ

Γ (µ) γ̂
αµ
2

∫ ∞
0

zµ−1 exp

(
−µz 1

γ̂
α
2

) 4∑
i=1

ai exp (−bicz) dz

=
µµ

Γ (µ) γ̂
αµ
2

4∑
i=1

ai

∫ ∞
0

zµ−1 exp

(
−z
(
µ

γ̂
α
2

+ bic

))
dz

=
µµ

Γ (µ) γ̂
αµ
2

4∑
i=1

ai
Γ (µ)(

µγ̂−
α
2 + bic

)µ
=

µµ

γ̂
αµ
2

4∑
i=1

ai
(
µγ̂−

α
2 + bic

)−µ
, (19)

where µ > 0 and µ

γ̂
α
2

+bic > 0 (see Appendix R6). The values of ai and bi are to be �tted. The motivation

for this method is that it may be easier to �t these parameters than it is to calculate the G-functions,

which can be very complex.

3.4 α− µ's relationship with other distributions

The α − µ distribution is a �exible distribution and includes a number of distributions as special cases

[21]. These special cases are given in Table 1.

4 α− µ type model

Suppose that the number of clusters is not su�cient for the assumption of normality between theX's

and Y 's to hold. The derivation of the α − µ distribution from the elliptical class is a possible solution,
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Distribution µ α

Gamma - 1
Nakagami-m - 2
Exponential 1 1
Weibull 1 -

One-sided Gaussian 1
2 2

Rayleigh 1 1

Table 1: α−µ distribution's relationship with other distributions with � - � indicating that the parameter
may assume any value.

resulting in the α−µ type model. The α−µ type's PDF, moments and SNR will be derived with special

cases being considered.

4.1 Derivation

Theorem 3. Let Xi and Yi be mutually independent elliptical processes with E (Xi) = E (Yi) = 0 and

var (Xi) = var (Yi) = r̂α

2µ , hence Xi, Yi ∼ E
(

0, r̂
α

2µ , h
)
where h(·) is a generator function. The α−power

envelope emanating from the elliptical assumption is de�ned by:

Rα =

µ∑
i=1

(
X2
i + Y 2

i

)
,

where α, µ > 0. The PDF of the envelope R is given by:

fR (r) =
αrαµ−1µµ

Γ (µ) r̂αµ

∫ ∞
0

tµ exp
[
−µt

(r
r̂

)α]
W (t) dt, r > 0 (20)

where r̂ = α
√
E (Rα). This is referred to as the α− µ type fading model.

Proof. Note that Xi
v(t) |t ∼ N (0, 1) and Yi

v(t) |t ∼ N (0, 1), therefore
∑µ
i=1

X2
i +Y 2

i

v(t)2
|t = Rα

v(t)2
|t ∼ χ2 (2µ) since∑µ

i=1
X2
i

v(t)2
|t ∼ χ2 (µ) and

∑µ
i=1

Y 2
i

v(t)2
|t ∼ χ2 (µ), where v (t)

2
= r̂α

2µ (see Appendix R1 and R2).

Let K (t) = Rα

v(t)2
|t then

fK(t)|t (k) =
1

2µΓ (µ)
kµ−1 exp

(
−k

2

)
, k > 0

with dK(t)
dRα = 1

v(t)2
, thus

fRα|t (rα) = fK(t)|t(k)
dK (t)

dRα

= fK(t)|t

(
rα

v (t)
2

)
1

v (t)
2
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=
1

2µΓ (µ) v (t)
2

(
rα

v (t)
2

)µ−1

exp

(
− rα

2v (t)
2

)
.

To �nd fR|t (r), note that dRα

dR = αRα−1, subsequently

fR|t (r) = fRα|t (rα)
dRα

dR

=
1

2µΓ (µ) v (t)
2

(
rα

v (t)
2

)µ−1

exp

(
− rα

2v (t)
2

)
αrα−1

=

(
α

2µΓ (µ) v(t)2µ

)
rαµ−1 exp

(
− rα

2v (t)
2

)
.

The unconditional distribution, fR (r), follows:

fR (r) =

∫ ∞
0

fR|t (r)W (t) dt

=

∫ ∞
0

α

2µΓ (µ) v (t)
2µ r

αµ−1 exp

(
− rα

2v (t)
2

)
W (t) dt

=

∫ ∞
0

α

2µΓ(µ)
(
r̂α

2µt

)µ rαµ−1 exp

− rα

2
(
r̂α

2µt

)
W (t) dt

=

∫ ∞
0

αrαµ−1µµtµ

Γ (µ) r̂αµ
exp

[
−µt

(r
r̂

)α]
W (t) dt

=
αrαµ−1µµ

Γ (µ) r̂αµ

∫ ∞
0

tµ exp
[
−µt

(r
r̂

)α]
W (t) dt, r > 0.

4.2 Special cases

The α−µ type denotes a class with �exibility regarding the underlying distribution which is determined

byW (t). Considered in this paper are the special cases where the weighting function is either normal, the

dirac delta function (referred to as normal weighting), or the gamma weighting function for a student's

t distribution (referred to as t weighting). These two will be compared since the t distribution makes

provision for cases where the data has heavier tails and allows us to consider the case where the number

of clusters were not su�cient for the assumption of normality. The weighting functions are given in Table

2 (see [4]).
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Function name Weighting function W (t)

dirac delta δ (t− 1)

gamma, ν > 0
ν( νt2 )

ν
2
−1

2Γ( ν2 ) exp( νt2 )

Table 2: Weighting functions

4.2.1 Normal weighting

Consider W (t) = δ (t− 1), the dirac delta function. Then

fR (r) =
αrαµ−1µµ

Γ (µ) r̂αµ

∫ ∞
0

tµ exp
[
−µt

(r
r̂

)α]
δ (t− 1) dt.

Now let x = t− 1 , hence t = x+ 1 and dt
dx = 1 then

fR(r) =
αrαµ−1µµ

Γ (µ) r̂αµ

∫ ∞
0

(x+ 1)
µ

exp
[
−µ(x+ 1)

(r
r̂

)α]
δ (x) dx

=
αrαµ−1µµ

Γ (µ) r̂αµ
exp

[
−µ
(r
r̂

)α]
, r > 0.

This is the same result obtained earlier, (4) and the PDF is illustrated in Figures 3a - 3c.

4.2.2 t weighting

Consider W (t) =
ν( νt2 )

ν
2
−1

2Γ( ν2 ) exp( νt2 )
where ν is the degrees of freedom of the t distribution. Then

fR(r) =
αrαµ−1µµ

Γ (µ) r̂αµ

∫ ∞
0

tµ exp
[
−µt

(r
r̂

)α] ν
(
νt
2

) ν
2−1

2Γ
(
ν
2

)
exp

(
νt
2

)dt
=
αrαµ−1µµ

Γ (µ) r̂αµ

(
1
2

) ν
2 ν

ν
2

Γ
(
ν
2

) ∫ ∞
0

t(µ+ ν
2 )−1 exp

[
−t
(
µ
(r
r̂

)α
+
ν

2

)]
dt

=
αrαµ−1µµν

ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

Γ
(
µ+ ν

2

)
(
µ
(
r
r̂

)α
+ ν

2

)(µ+ ν
2 )
. (21)

This is true for µ+ ν
2 > 0 and µ

(
r
r̂

)α
+ ν

2 > 0 (see Appendix R6).

The PDF is illustrated in Figures 5a - 5d, a comparison with the case where the weighting function is

the dirac delta function is made in Figure 6.
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(a) (21) with µ = 3, r̂ = 2, ν = 3 with α varying.
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(b) (21) with α = 4, r̂ = 2, ν = 3 with µ varying.
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(c) (21) with α = 4, µ = 3, ν = 3 with r̂ varying.
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(d) (21) with α = 4, µ = 3, r̂ = 2 with ν varying.

Figure 5: PDF of α− µ type with t weighting.
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Figure 6: Comparison of (4) and (21) with α = 4, µ = 3, r̂ = 2 with ν varying.

4.3 Statistical characteristics

Some characteristics of the α−µ type with PDF (20) will now be derived. These characteristics will �rst

be derived in a general form and then special cases will be investigated.

4.3.1 CDF

The general form of the α− µ type's CDF is

FR (r) =

∫ r

0

fR (y) dy
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=

∫ r

0

αyαµ−1µµ

Γ (µ) r̂αµ

∫ ∞
0

tµ exp
[
−µt

(y
r̂

)α]
W (t) dtdy

=
αµµ

Γ (µ) r̂αµ

∫ r

0

yαµ−1

∫ ∞
0

tµ exp
[
−µt

(y
r̂

)α]
W (t) dtdy. (22)

Now consider (22) with the normal- and t distribution weighting functions.

Normal weighting

Substituting the dirac delta function, δ (t− 1) into (22)

FR(r) =
αµµ

Γ (µ) r̂αµ

∫ r

0

yαµ−1

∫ ∞
0

tµ exp
[
−µt

(y
r̂

)α]
δ (t− 1) dtdy.

Consider the transformation x = t− 1 , hence t = x+ 1 and dt
dx = 1.

FR(r) =
αµµ

Γ (µ) r̂αµ

∫ r

0

yαµ−1

∫ ∞
0

(x+ 1)µ exp
[
−µ(x+ 1)

(y
r̂

)α]
δ (x) dxdy

=
αµµ

Γ (µ) r̂αµ

∫ r

0

yαµ−1 exp
[
−µ
(y
r̂

)α]
dy

=
αµµ

Γ (µ) r̂αµ
γ
(
µ, µ

(
u
r̂

)α)
α
(
µ
r̂α

)µ
=
γ
(
µ, µ

(
u
r̂

)α)
Γ (µ)

≡ (8).

This is true for u > 0, µ > 0, α > 0, r̂α > 0 (see Appendix R5 and R6). Graphic illustrations of this CDF

is given by Figures 4a to 4c.

t weighting

After substituting the relevant weighting function into (22):

FR(r) =
αµµ

Γ (µ) r̂αµ

∫ r

0

yαµ−1

∫ ∞
0

tµ exp
[
−µt

(y
r̂

)α] ν
(
νt
2

) ν
2−1

2Γ
(
ν
2

)
exp(νt2 )

dtdy.

=
αµµνν

ν
2−1

Γ (µ) r̂αµ2Γ
(
ν
2

)
2
ν
2
−1

∫ r

0

yαµ−1

∫ ∞
0

tµ+ ν
2−1 exp

(
−t
(
µ
(y
r̂

)α
+
ν

2

))
dtdy

=
αµµν

ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

∫ r

0

yαµ−1 Γ
(
µ+ ν

2

)
(
µ
(
y
r̂

)α
+ ν

2

)(µ+ ν
2 )
dy (23)

=
αµµν

ν
2 Γ
(
µ+ ν

2

)
Γ (µ) r̂αµΓ

(
ν
2

)
2
ν
2

∫ r

0

yαµ−1 1(
µ
(
y
r̂

)α
+ ν

2

)(µ+ ν
2 )
dy
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(a) (23) with µ = 3, r̂ = 2, ν = 3 and α varying.
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(b) (23) with α = 4, r̂ = 2, ν = 3 and µ varying.
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(c) (23) with α = 4, µ = 3, ν = 3 and r̂ varying.
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(d) (23) with α = 4, µ = 3, r̂ = 2 and ν varying.

Figure 7: CDF of α− µ type with t weighting.

=
αµµν

ν
2 Γ
(
µ+ ν

2

)
r̂αµ2

ν
2 Γ (µ) Γ

(
ν
2

) ∫ r

0

yαµ−1
(ν

2

)−(µ+ ν
2 )
(

2µ

ν
r̂−αyα + 1

)−(µ+ ν
2 )
dy

=
αµµ2µΓ

(
µ+ ν

2

)
r̂αµνµΓ (µ) Γ

(
ν
2

) ∫ r

0

yαµ−1

(
2µ

ν
r̂−αyα + 1

)−(µ+ ν
2 )
dy,

where µ + ν
2 > 0 and

(
µ
(
y
r̂

)α
+ ν

2

)
> 0 (see Appendix R6). Consider the transformation z = yα then

y = z
1
α and dy = 1

αz
1
α−1dz. Subsequently:

FR (r) =
αµµ2µΓ

(
µ+ ν

2

)
r̂αµνµΓ (µ) Γ

(
ν
2

) ∫ rα

0

(
z

1
α

)αµ−1
(

2µ

ν
r̂−αz + 1

)−(µ+ ν
2 ) 1

α
z

1
α−1dz

=
µµ2µΓ

(
µ+ ν

2

)
r̂αµνµΓ (µ) Γ

(
ν
2

) ∫ rα

0

zµ−1

(
2µ

ν
r̂−αz + 1

)−(µ+ ν
2 )
dz

=
µµ2µΓ

(
µ+ ν

2

)
r̂αµνµΓ (µ) Γ

(
ν
2

) rαµ
µ

2F1

(
µ+

ν

2
, µ; 1 + µ,−2

ν
µr̂−αrα

)
=2 F1

(
µ+

ν

2
, µ; 1 + µ,−2

ν
µr̂−αrα

)
µµ−12µrαµΓ

(
µ+ ν

2

)
r̂αµνµΓ (µ) Γ

(
ν
2

) ,

where µ > 0 and 2F1 (·) denotes the Gauss hypergeometric function (see Appendix R6 and R7). This

expression of the CDF is plotted and can be seen in Figures 7a, 7b, 7c and 7d with a comparison to the

CDF of the α− µ distribution in Figure 8.
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Figure 8: Comparison of CDFs (8) and (23) with α = 4, µ = 3, r̂ = 2 and ν varying.

4.3.2 MGF

To obtain the α− µ type's MGF in the general case (20) is used:

MR (c) = E [exp (cr)]

=

∫ ∞
0

exp (cr) fR (r) dr

=

∫ ∞
0

αrαµ−1µµ

Γ (µ) r̂αµ

∫ ∞
0

tµ exp
[
−µt

(r
r̂

)α]
W (t) dt exp (cr) dr

=
αµµ

Γ (µ) r̂αµ

∫ ∞
0

rαµ−1 exp (cr)

∫ ∞
0

tµ exp
[
−µt

(r
r̂

)α]
W (t) dtdr.

Normal weighting

Substituting the solution for the PDF of R when considering normal weighting in, (4):

MR (c) =

∫ ∞
0

exp (cr) fR (r) dr

=

∫ ∞
0

exp (cr)
αµµrαµ−1

Γ (µ) r̂αµ
exp

[
−µ
(r
r̂

)α]
dr

=
αµµ

Γ (µ) r̂αµ

∫ ∞
0

rαµ−1
∞∑
k=0

(cr)
k

k!
exp

[
−µ
(r
r̂

)α]
dr

=
αµµ

Γ (µ) r̂αµ

∞∑
k=0

ck

k!

∫ ∞
0

rαµ+k−1 exp
[
−µ
(r
r̂

)α]
dr

=
αµµ

Γ (µ) r̂αµ

∞∑
k=0

ck

k!

Γ
(
αµ+k
α

)
α (µr̂−α)

αµ+k
α

=
1

Γ (µ)

∞∑
k=0

ck

k!

Γ
(
µ+ k

α

)
(µr̂−α)

k
α

≡ (9).
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This will hold when α > 0, r̂α > 0 and αµ+ k > 1 (see Appendix R6).

t weighting

Substituting the solution for R's density found previously as (21) into the de�nition of a MGF:

MR (c) =

∫ ∞
0

exp (cr)
αrαµ−1µµν

ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

Γ
(
µ+ ν

2

)
(
µ
(
r
r̂

)α
+ ν

2

)(µ+ ν
2 )
dr

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

∫ ∞
0

exp (cr) rαµ−1 1(
µ
(
r
r̂

)α
+ ν

2

)(µ+ ν
2 )
dr

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

∫ ∞
0

∞∑
k=0

(cr)
k

k!
rαµ−1 1(

µ
(
r
r̂

)α
+ ν

2

)(µ+ ν
2 )
dr

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

∞∑
k=0

ck

k!

∫ ∞
0

r(αµ+k)−1 1(
µ
(
r
r̂

)α
+ ν

2

)(µ+ ν
2 )
dr

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

∞∑
k=0

ck

k!

∫ ∞
0

r(αµ+k)−1 1(
µr̂−αrα + ν

2

)(µ+ ν
2−1)+1

dr

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
r̂αµ2

ν
2

∞∑
k=0

ck

k!

1

α
(
ν
2

)(µ+ ν
2 )

(
νr̂α

2µ

)(µ+ k
α ) Γ

(
µ+ k

α

)
Γ
(
µ+ ν

2 −
(
µ+ k

α

))
Γ
(
µ+ ν

2

)
=
αµµΓ

(
µ+ ν

2

) (
ν
2

) ν
2

Γ (µ) Γ
(
ν
2

)
r̂αµ

1

α
(
ν
2

)µ (ν
2

) ν
2 Γ
(
µ+ ν

2

) νµr̂αµ
2µµµ

∞∑
k=0

ck

k!

(
νr̂α

2µ

) k
α

Γ

(
µ+

k

α

)
Γ

(
ν

2
− k

α

)

=
1

Γ (µ) Γ
(
ν
2

) ∞∑
k=0

ck

k!

(
νr̂α

2µ

) k
α

Γ

(
µ+

k

α

)
Γ

(
ν

2
− k

α

)
,

where 0 < µ+ k
α < µ+ ν

2 ,
ν
2 6= 0 and µr̂−α 6= 0 (see Appendix R6).

4.3.3 jth moment

In a general form the jth moment of the α− µ type model is given by:

mj = E
(
Rj
)

=

∫ ∞
0

rjfR(r)dr (24)

=

∫ ∞
0

αrαµ−1µµ

Γ (µ) r̂αµ

∫ ∞
0

tµ exp
[
−µt

(r
r̂

)α]
W (t) dtrjdr

=
αµµ

Γ (µ) r̂αµ

∫ ∞
0

rαµ+j−1

∫ ∞
0

tµ exp
[
−µt

(r
r̂

)α]
W (t) dtdr.

Normal weighting

Substituting (4) into (24)
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mj =

∫ ∞
0

rj
αrαµ−1µµ

Γ (µ) r̂αµ
exp

[
−µ
(r
r̂

)α]
dr

=
αµµ

Γ (µ) r̂αµ

∫ ∞
0

rj+αµ−1 exp
[
−µ
(r
r̂

)α]
dr

=
αµµ

Γ (µ) r̂αµ
Γ
(
αµ+j
α

)
α (µr̂−α)

αµ+j
α

=
µµ

Γ (µ) r̂αµ
Γ
(
µ+ j

α

)
r̂αµr̂j

µµµ
j
α

=
r̂jΓ

(
µ+ j

α

)
µ
j
αΓ (µ)

≡ (10).

This will hold for α > 0, r̂α > 0 and αµ+ j > 1 (see Appendix R6).

t weighting

Substituting (21) into (24)

mj =

∫ ∞
0

rj
αrαµ−1µµν

ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

Γ
(
µ+ ν

2

)
(
µ
(
r
r̂

)α
+ ν

2

)(µ+ ν
2 )
dr

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

∫ ∞
0

rαµ+j−1 1(
µ
(
r
r̂

)α
+ ν

2

)(µ+ ν
2 )
dr

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) r̂αµΓ
(
ν
2

)
2
ν
2

∫ ∞
0

r(αµ+j)−1 1(
µr̂−αrα + ν

2

)(µ+ ν
2−1)+1

dr

=
αµµΓ

(
µ+ ν

2

) (
ν
2

) ν
2

Γ (µ) r̂αµΓ
(
ν
2

) 1

α
(
ν
2

)(µ+ ν
2 )

(
νr̂α

2µ

)(µ+ j
α ) Γ

(
µ+ j

α

)
Γ
(
µ+ ν

2 −
(
µ+ j

α

))
Γ
(
µ+ ν

2

)
=

µµ
(
ν
2

) ν
2

Γ (µ) r̂αµΓ
(
ν
2

) 1(
ν
2

)µ (ν
2

) ν
2

(ν
2

)µ (ν
2

) j
α r̂αµ

µµ
r̂j

µ
j
α

Γ

(
µ+

j

α

)
Γ

(
ν

2
− j

α

)

=
Γ
(
µ+ j

α

)
Γ
(
ν
2 −

j
α

)
Γ (µ) Γ

(
ν
2

) (
νr̂α

2µ

) j
α

,

where 0 < µ+ j
α < µ+ ν

2 ,
ν
2 6= 0 and µr̂−α 6= 0 (see Appendix R6).

4.4 SNR

To measure the performance of the α − µ type the instantaneous SNR (see Section 2.2) and outage

probability will be derived for the general- and relevant special cases [17, 18].
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4.4.1 PDF and Outage probability

The general SNR of the α− µ type model will be investigated �rst.

fγ(γ) = fR(r)
dr

dγ
(25)

=
αrαµ−1µµ

Γ (µ) r̂αµ

∫ ∞
0

tµ exp
[
−µt

(r
r̂

)α]
W (t) dt

r̂

2

(√
γ

γ̂

)−1
1

γ̂

=
αµµrαµr̂

2Γ (µ) r̂αµ

(
r̂

√
γ

γ̂

)−1(√
γ

γ̂

)−1
1

γ̂

∫ ∞
0

tµ exp

[
−µt

(√
γ

γ̂

)α]
W (t) dt

=
αµµ

2Γ (µ)

(√
γ

γ̂

)αµ
γ−1

∫ ∞
0

tµ exp

[
−µt

(√
γ

γ̂

)α]
W (t) dt (26)

Making use of (26) the outage probability for general α− µ type model is derived.

Fγ (γOP ) =

∫ γOP

0

fγ (γ) dγ

=

∫ γOP

0

αµµ

2Γ (µ)

(√
γ

γ̂

)αµ
γ−1

∫ ∞
0

tµ exp

[
−µt

(√
γ

γ̂

)α]
W (t) dtdγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ γOP

0

γ
αµ
2 −1

∫ ∞
0

tµ exp

[
−µt

(√
γ

γ̂

)α]
W (t) dtdγ

The special cases for the normal- and t distribution weighting functions will now be considered.

Normal weighting

Considering (25) and substitute in (4) and �nd the instantaneous SNR.

fγ(γ) =
αrαµ−1µµ

Γ (µ) r̂αµ
exp

[
−µ
(r
r̂

)α] r̂
2

(√
γ

γ̂

)−1
1

γ̂

=
αµµrαµ−1

2Γ (µ) r̂αµ−1
exp

[
−µ
(√

γ

γ̂

)α](√
γ

γ̂

)−1
1

γ̂

=
αµµ

2Γ (µ)

(√
γ

γ̂

)αµ−1

exp

[
−µ
(√

γ

γ̂

)α](√
γ

γ̂

)−1
1

γ̂

=
αµµ

2Γ (µ)
γ
αµ
2 −1γ̂−

αµ
2 exp

[
−µ
(√

γ

γ̂

)α]
≡ (12).

Using (12) as a starting point to �nd the outage probability:

Fγ (γOP ) =

∫ γOP

0

αµµγ
αµ
2 −1

2Γ (µ) γ̂
αµ
2

exp

[
−µ
(
γ

γ̂

)α
2

]
dγ
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=
αµµ

2Γ (µ) γ̂
αµ
2

∫ γOP

0

γ
αµ
2 −1 exp

[
−µ
(
γ

γ̂

)α
2

]
dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

γ

(
µ, µ

(
γOP
γ̂

)α
2

)
α
2

(
µγ̂−

α
2

)µ
=

γ

(
µ, µ

(
γOP
γ̂

)α
2

)
Γ (µ)

≡ (13),

when µ > 0, γ̂−
α
2 > 0, γOP > 0 and α > 0 (see Appendix R5 and R6).

t weighting

Substituting (21) into (25) to �nd the instantaneous SNR:

fγ (γ) =
αrαµ−1µµ

Γ (µ) r̂αµ
ν
ν
2

Γ
(
ν
2

)
2
ν
2

Γ
(
µ+ ν

2

)(
µ
(
γ
γ̂

)α
+ ν

2

)µ+ ν
2

r̂

2

(√
γ

γ̂

)−1
1

γ̂

=
αµµν

ν
2 Γ
(
µ+ ν

2

)
Γ (µ) Γ

(
ν
2

)
2
ν
2 +1

(r
r̂

)αµ−1 1(
µ
(
r
r̂

)α
+ ν

2

)(µ+ ν
2 )

(√
γ

γ̂

)−1
1

γ̂

=
αµµν

ν
2 Γ
(
µ+ ν

2

)
Γ (µ) Γ

(
ν
2

)
2
ν
2 +1

(√
γ

γ̂

)αµ−1
1(

µ
(√

γ
γ̂

)α
+ ν

2

)(µ+ ν
2 )

(√
γ

γ̂

)−1
1

γ̂

=
αµµν

ν
2 Γ
(
µ+ ν

2

)
Γ (µ) Γ

(
ν
2

)
2
ν
2 +1

γ
αµ
2 −1γ̂−

αµ
2

1(
µ
(√

γ
γ̂

)α
+ ν

2

)(µ+ ν
2 )
. (27)

To derive the outage probability (27) is our departure point.

Fγ (γOP ) =

∫ γOP

0

αµµΓ
(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1

(
µ
(√

γ
γ̂

)α
+ ν

2

)(µ+ ν
2 )
γ−1

(√
γ

γ̂

)αµ
dγ

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1γ̂

αµ
2

∫ γOP

0

(
µγ

α
2 γ̂

α
2 +

ν

2

)−(µ+ ν
2 )
γ
αµ
2 −1dγ

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1γ̂

αµ
2

∫ γOP

0

(ν
2

)−(µ+α
2 )
(
µγ

α
2 γ̂−

α
2

2

ν
+ 1

)−(µ+ ν
2 )
γ
αµ
2 −1dγ.

(28)

Consider the transformation z = γ
α
2 thus γ = z

2
α and dγ = dz 2

αz
2
α−1. Subsequently:
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Fγ (γOP ) =
αµµ2µ−1Γ

(
µ+ ν

2

)
νµγ̂

αµ
2 Γ (µ) Γ

(
ν
2

) ∫ γ
α
2
OP

0

(
µγ̂−

α
2

2

ν
z + 1

)−(µ+ ν
2 ) (

z
2
α

)αµ
2 −1 2

α
z

2
α−1dz

=
µµ2µΓ

(
µ+ ν

2

)
νµγ̂

αµ
2 Γ (µ) Γ

(
ν
2

) ∫ γ
α
2
OP

0

(
µγ̂−

α
2

2

ν
z + 1

)−(µ+ ν
2 )
zµ−1dz

=
µµ2µΓ

(
µ+ ν

2

)
νµγ̂

αµ
2 Γ (µ) Γ

(
ν
2

) γ αµ2OP
µ

2F1

(
µ+

ν

2
, µ; 1 + µ,−2

ν
µγ̂−

α
2 γ

α
2

OP

)

=2 F1

(
µ+

ν

2
, µ; 1 + µ,−2

ν
µγ̂−

α
2 γ

α
2

OP

)
Γ
(
µ+ ν

2

)
2µµµ−1γ

αµ
2

OP

Γ (µ) Γ
(
ν
2

)
νµγ̂

αµ
2

,

where µ > 0 (see Appendix R6 and R7).

4.4.2 Laplace transform

Using the general expression for the PDF of the SNR (26) the Laplace transform of the SNR can be

found in a general form. The methods contained in [9, 16] will again be employed to obtain alternative

closed form expressions.

The general expression's derivation follows.

L (c) = E [exp (−cγ)]

=

∫ ∞
0

fγ (γ) exp (−cγ) dγ

=

∫ ∞
0

αµµ

2Γ (µ)

(√
γ

γ̂

)αµ
γ−1

∫ ∞
0

tµ exp

[
−µt

(√
γ

γ̂

)α]
W (t) dt exp (−cγ) dγ

=
αµµ

2Γ (µ)

∫ ∞
0

exp (−cγ) γ
αµ
2 γ̂−

αµ
2 γ−1

∫ ∞
0

tµ exp
[
−µtγ α2 γ̂−α2

]
W (t) dtdγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

∞∑
k=0

(−cγ)
k

k!
γ
αµ
2 −1

∫ ∞
0

tµ
∞∑
u=0

(
−µtγ α2 γ̂−α2

)u
u!

W (t) dtdγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∞∑
k=0

∞∑
u=0

(−c)k

k!

(−µ)
u

u!γ̂
αu
2

∫ ∞
0

γ
α(µ+u)

2 +k−1

∫ ∞
0

tµ+uW (t) dtdγ.

Approach 1 - General Case

This approach is similar to that of Magableh [9] (see Appendix R8).

L (c) = E [exp (−cγ)]

=

∫ ∞
0

fγ (γ) exp (−cγ) dγ

=

∫ ∞
0

αµµ

2Γ (µ)

(√
γ

γ̂

)αµ
γ−1

∫ ∞
0

tµ exp

[
−µt

(√
γ

γ̂

)α]
W (t) dt exp (−cγ) dγ
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=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

exp (−cγ) γ
αµ
2 −1

∫ ∞
0

tµ exp
(
−µtγ α2 γ̂−α2

)
W (t) dtdγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

(cγ)
−1
[
(cγ)

1
exp (−cγ)

]
γ
αµ
2 −1×∫ ∞

0

(
µtγ

α
2 γ̂−

α
2

)−1
[(
µtγ

α
2 γ̂−

α
2

)1
exp

(
−µtγ α2 γ̂−α2

)]
W (t) tµdtdγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

(cγ)
−1

(cγ)
1
G1,0

0,1

cγ
∣∣∣∣∣∣∣
−

0


 γ αµ2 −1×

∫ ∞
0

(
µtγ

α
µ γ̂−

α
2

)−µ (µtγ αµ γ̂−α2 )µG1,0
0,1

µtγ αµ γ̂−α2
∣∣∣∣∣∣∣
−

0


W (t) tµdtdγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

G1,0
0,1

cγ
∣∣∣∣∣∣∣
−

0

 γ
αµ
2 −1

∫ ∞
0

G1,0
0,1

µtγ αµ γ̂−α2
∣∣∣∣∣∣∣
−

µ

W (t) tµdtdγ.

Approach 2 - General Case

The Laplace transform will again be considered and rewritten in a form such that the approximation (18)

can be implemented.

L (c) = E [exp (−cγ)]

=

∫ ∞
0

fγ (γ) exp (−cγ) dγ

=

∫ ∞
0

αµµ

2Γ (µ)

(√
γ

γ̂

)αµ
γ−1

∫ ∞
0

tµ exp

[
−µt

(√
γ

γ̂

)α]
W (t) dt exp (−cγ) dγ

=
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

exp (−cγ) γ
αµ
2 −1

∫ ∞
0

tµ exp
[
−µtγ α2 γ̂−α2

]
W (t) dtdγ.

Consider the transformation γ
α
2 = z thus γ = z

2
α and dγ

dz = 2
αz

2
α−1.

L (c) =
αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

exp
(
−cz 2

α

)
zµ−

2
α

∫ ∞
0

tµ exp
[
−µtzγ̂−α2

]
W (t) dtdz

Substituting the approximation (18) in:

L (c) ≈ αµµ

2Γ (µ) γ̂
αµ
2

∫ ∞
0

4∑
i=1

ai exp (−bicz) zµ−
2
α

∫ ∞
0

tµ exp
[
−µtzγ̂−α2

]
W (t) dtdz

=
αµµ

2Γ (µ) γ̂
αµ
2

4∑
i=1

ai

∫ ∞
0

exp (−bicz) zµ−
2
α

∫ ∞
0

tµ exp
[
−µtzγ̂−α2

]
W (t) dtdz
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Normal weighting

The PDF of the SNR in the case of the α−µ type when the normal weighting function is used is the same

as the SNR PDF found for the α−µ distribution, consequently the expression for the Laplace transform

is given by (15). Due to the PDF being the same the alternative closed form expressions are given by

(17) and (19) respectively.

t weighting

Using (27) the SNR's Laplace transform will now be derived.

L (c) = E [exp (−cγ)]

=

∫ ∞
0

fγ (γ) exp (−cγ) dγ

=

∫ ∞
0

αµµΓ
(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1

(
µ
(√

γ
γ̂

)α
+ ν

2

)(µ+ ν
2 )
γ−1

(√
γ

γ̂

)αµ
exp (−cγ) dγ

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1γ̂

αµ
2

∫ ∞
0

(
µγ

α
2 γ̂−

α
2 +

ν

2

)−(µ+ ν
2 )
γ
αµ
2 −1 exp (−cγ) dγ (29)

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1γ̂

αµ
2

∫ ∞
0

(ν
2

)−(µ+ ν
2 )
(
µ

2

ν
γ
α
2 γ̂−

α
2 + 1

)−(µ+ ν
2 )
γ
αµ
2 −1 exp (−cγ) dγ

=
αµµΓ

(
µ+ ν

2

)
2µ−1

Γ (µ) Γ
(
ν
2

)
νµγ̂

αµ
2

∫ ∞
0

∞∑
k=0

(
µ+ ν

2

)
k

k!

(
−µ2

ν
γ
α
2 γ̂−

α
2

)k
γ
αµ
2 −1 exp (−cγ) dγ

=
αµµΓ

(
µ+ ν

2

)
2µ−1

Γ (µ) Γ
(
ν
2

)
νµγ̂

αµ
2

∞∑
k=0

(
µ+ ν

2

)
k

k!
(−1)

k

(
2

ν
µγ̂−

α
2

)k ∫ ∞
0

γ
αk
2 γ

αµ
2 −1 exp (−cγ) dγ

=
αµµΓ

(
µ+ ν

2

)
2µ−1

Γ (µ) Γ
(
ν
2

)
νµγ̂

αµ
2

∞∑
k=0

1

k!

Γ
(
µ+ ν

2 + k
)

Γ
(
µ+ ν

2

) (−1)
k

(
2

ν
µγ̂−

α
2

)k ∫ ∞
0

γ
αk
2 +αµ

2 −1 exp (−cγ) dγ

=
αµµ2µ−1

Γ (µ) Γ
(
ν
2

)
γ̂
αµ
2 νµ

∞∑
k=0

(−1)
k

c
α(µ+k)

2

Γ
(
µ+ ν

2 + k
)

Γ
(
α(µ+k)

2

)
k!

(
2µ

γ̂
α
2 ν

)k
, (30)

where c > 0 and α(µ+k)
2 > 0 (see Appendix R6).

Approach 1

Working with the Laplace transform and substituting (27) in:

L (c) = E [exp (−cγ)]

=

∫ ∞
0

fγ (γ) exp (−cγ) dγ
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=

∫ ∞
0

αµµΓ
(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1

(
µ
(√

γ
γ̂

)α
+ ν

2

)(µ+ ν
2 )
γ−1

(√
γ

γ̂

)αµ
exp (−cγ) dγ

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1γ̂

αµ
2

∫ ∞
0

γ
αµ
2 −1

(
µγ

α
2 γ̂−

α
2 +

ν

2

)−(µ+ ν
2 )

exp (−cγ) dγ

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1γ̂

αµ
2

∫ ∞
0

γ
αµ
2 −1

(ν
2

)−(µ+ ν
2 ) (

µγ
α
2 γ̂−

α
2
ν

2
+ 1
)−(µ+ ν

2 )
(cγ)

−1

(cγ)G1,0
0,1

cγ
∣∣∣∣∣∣∣
−

0


 dγ

=
αµµΓ

(
µ+ ν

2

)
2µ−1

Γ (µ) Γ
(
ν
2

)
νµγ̂

αµ
2

∫ ∞
0

γ
αµ
2 −1 1

Γ
(
µ+ ν

2

)G1,1
1,1

µγ α2 γ̂−α2 ν
2

∣∣∣∣∣∣∣
1− µ− ν

2

0

G1,0
0,1

cγ
∣∣∣∣∣∣∣
−

0

 dγ

=
αµµ2µ−1

Γ (µ) Γ
(
ν
2

)
νµγ̂

αµ
2

∫ ∞
0

γ
αµ
2 −1G1,0

0,1

cγ
∣∣∣∣∣∣∣
−

0

G1,1
1,1

µγ α2 γ̂−α2 ν
2

∣∣∣∣∣∣∣
1− µ− ν

2

0

 dγ

=
αµµ2µ−1

Γ (µ) Γ
(
ν
2

)
νµγ̂

αµ
2

c−
αµ
2 (2π)

1
2 (1−α)−1

α−
1
2 +αµ

2 2µ+ ν
2×

G2,2+α
2+α,2

( 2µ

γ̂
α
2 ν

)2 (α
c

)α ∣∣∣∣∣∣∣
∆
(
2, 1− µ− ν

2

)
,∆
(
α, 1− αµ

2

)
∆ (2, 0)

 ,

(see Appendix R8) where ∆ (x, y) is a sequence with x parameters given by:

y

x
,
y + 1

x
, . . . ,

y + x− 1

x
.

Thus ∆
(
2, 1− µ− ν

2

)
=

1−µ− ν2
2 ,

2−µ− ν2
2 , ∆

(
α, 1− αµ

2

)
=

1−αµ2
α ,

2−αµ2
α , . . . ,

α−αµ2
α and ∆ (2, 0) = 0, 1

2

consequently:

L (c) =
α

1
2 (αµ+1)µµ22µ+ ν

2−
1
2α−

3
2

Γ (µ) Γ
(
ν
2

)
νµγ̂

αµ
2

c−
αµ
2 (π)

− 1
2 (1+α)× (31)

G2,2+α
2+α,2

( 2µ

γ̂
α
2 ν

)2 (α
c

)α ∣∣∣∣∣∣∣
1−µ− ν2

2 ,
2−µ− ν2

2 ,
1−αµ2
α ,

2−αµ2
α , . . . ,

α−αµ2
α

0, 1
2

 .

Approach 2

Working with the Laplace transform once more and as with the previous approach substituting (27) in

an approximate expression will be obtained.

L (c) = E [exp (−cγ)]

=

∫ ∞
0

fγ (γ) exp (−cγ) dγ
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=

∫ ∞
0

αµµΓ
(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1

(
µ
(√

γ
γ̂

)α
+ ν

2

)(µ+ ν
2 )
γ−1

(√
γ

γ̂

)αµ
exp (−cγ) dγ

=
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1γ̂

αµ
2

∫ ∞
0

γ
αµ
2 −1

(
µγ

α
2 γ̂−

α
2 +

ν

2

)−(µ+ ν
2 )

exp (−cγ) dγ

Consider the transformation γ
α
2 = z thus γ = z

2
α and, dγdz = 2

αz
2
α−1.

L (c) =
αµµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 +1γ̂

αµ
2

∫ ∞
0

zµ−
2
α

(
µzγ̂−

α
2 +

ν

2

)−(µ+ ν
2 )

exp
(
−cz 2

α

) 2

α
z

2
α−1dz

=
µµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 γ̂

αµ
2

∫ ∞
0

zµ−1
(
µzγ̂−

α
2 +

ν

2

)−(µ+ ν
2 )

exp
(
−cz 2

α

)
dz.

Substituting in the approximation (18):

L (c) ≈
µµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 γ̂

αµ
2

∫ ∞
0

zµ−1
(
µzγ̂−

α
2 +

ν

2

)−(µ+ ν
2 ) 4∑

i=1

ai exp (−bicz) dz

=
µµΓ

(
µ+ ν

2

)
ν
ν
2

Γ (µ) Γ
(
ν
2

)
2
ν
2 γ̂

αµ
2

4∑
i=1

ai

∫ ∞
0

zµ−1
(
µzγ̂−

α
2 +

ν

2

)−(µ+ ν
2 )

exp (−bicz) dz. (32)

Fitted values of the ai's and bi's for equations (19) and (32) for a speci�c case are given in Table 3.

a1 a2 a3 a4 b1 b2 b3 b4
Normal −0.181812 0.790359 −0.274838 1.463507 1.563427 1.647754 1.694966 1.741016

t 1.147886 1.018561 0.674093 −0.725686 2.018094 1.900272 1.327419 1.313918

Table 3: Fitted values for ai and bi when α = 1, µ = 3, γ̂ = 2, c = 0.1 and in t case ν = 3.

Comparison of Laplace transforms

Speci�c values are evaluated for the Laplace transform for the normal- and t cases using the derived

expressions, see Table 4.

Normal
Equation (14) (15) (16) (19)
L (0.1) 0.797194 0.812525 0.797194 1.42148

t
Equation (29) (30) (31) (32)
L (0.1) 0.624743 1.87485 ∗ 1021 0.624743 1.37588

Table 4: Values of Laplace transforms based on Table 3's results.

In�nite sums were truncated to 16 for computational ease, when larger sums are considered the value

L (0.1) for equation (15) diverges similar to what is seen with (30). This together with (30)'s outcome

(see Table 4) indicates that the series expansions for L (c) does not yield satisfactory results, with the

approximation of the exponential function proposed by [16] also not performing well.
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5 Performance analysis

The performance of the α− µ type and distribution will be compared by considering their outage prob-

abilities and ABER.

5.1 Outage Probability

The outage of the two special cases, the substitution of the normal and t distribution weighting functions,

of the α − µ type model will be evaluated by �rst considering the e�ect that the parameter values will

have on each of the outages and then by direct comparison.

The e�ect of the parameters on the outage probability of the α − µ distribution, which is also the

α − µ type model with the dirac delta function as weighting, can be seen in Figures 9a, 9b and 9c. .

From the �gures it is clear that a smaller α becomes preferable as the threshold value increases, while a

larger number of multipath clusters, µ, will result in a lower outage probability. Similarly larger values

of γ̂ lead to a lower probability of an outage occurring.
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(a) (13) with µ = 2, γ̂ = 1 and α varying.
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Outage Probability

μ=0.5

μ=4

μ=9
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(b) (13) with α = 3, γ̂ = 1 and µ varying.
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γ=7

γ=12

γ=20

(c) (13) with α = 3, µ = 2 and γ̂ varying.

Figure 9: Outage probabilities of the α− µ type model with normal weighting.

Similarly the e�ect of a change in parameters on the α−µ type with the t distribution case is considered

in Figures 10a through 10d. Two plots are included in cases where the outage probability's behaviour

changes as the threshold increases. The behaviour of the outage probability under the α − µ type

is similar when parameters α and γ̂ are being considered, the di�erence comes when considering the

multipath clusters. When the threshold values are small a large µ performs better but as the threshold

increases a small number of multipath clusters becomes preferred. The last parameter to consider is ν,

which is the degrees of freedom of the t distribution, the outage probability is lower when a small degree
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of freedom is considered. Thus the heavier the tails of the t distribution the lower the outage probability.
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(a) (28) with µ = 1, γ̂ = 3, ν = 3 and α varying.
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(b) (28) with α = 2, µ = 1, ν = 3 and γ̂ varying.
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(c) (28) with α = 2, γ̂ = 3, ν = 3 and µ varying.
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(d) (28) with α = 2, µ = 1, γ̂ = 3 and ν varying.

Figure 10: Outage probabilities of the α− µ type model with t weighting.

Comparing the outage probability of the α − µ type with the normal and t distribution weighting

on the same graph as is done in Figure 11, it can be seen that the t distribution's weighting function

results in a lower outage probability than the α − µ distribution even for large degrees of freedom. As

expected the α−µ type approaches the α−µ distribution as the degrees of freedom of the t distribution

increases, since a larger degree of freedom results in the tails being lighter and closer to what is seen with

the normal distribution.
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t weighting, ν=10

t weighting, ν=30

Figure 11: (13) and (28) with α = 2, µ = 1, γ̂ = 3 and ν varying.

Remark 4. Figures 9a-11 are plotted on log scale resulting in the outage probability, which statistically is

a cumulative distribution function (CDF), being greater than 1 for large threshold values. It can however
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be shown that the power's CDFs does integrate to 1.

5.2 ABER

Similar to what was done for the outage probability, the special cases will �rst be considered separately to

determine the e�ect of the parameters after which there will be a direct comparison. These comparisons

are made using (1) with coherent detection of BPSK as derived by Ermolova [6] (see Section 2.4) and the

integral expressions of the Laplace transforms (14) and (29) respectively.

Figures 12a, 12b and 12c illustrate the parameter's e�ects on the ABER in the case of the weighting

function being the dirac delta function, while the t distribution's weighting is considered in Figures 13a

to 13d. A lower ABER will be preferred and so in the case of the α−µ distribution a large µ,γ̂ will result

in a better ABER.
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(a) µ = 2, γ̂ = 4 and α varying.
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(b) α = 3, γ̂ = 4 and µ varying.
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(c) α = 3, µ = 2 and γ̂ varying.

Figure 12: ABER of α− µ type model with normal weighting.

The �gures for the α − µ type model are not as revealing as those from the α − µ distribution seeing

as the ABER is very similar for all the parameter variations that were plotted here. Thus it is unclear

which parameter values perform better when large ranges are considered for the ABER. Due to this a

second plot over a small range, e�ectively magnifying the plot, is considered here and it can be seen that

a smaller parameter value performs better regardless of the parameter being considered, see Figure 13.
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(a) µ = 2, γ̂ = 4, ν = 3 and α varying.
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(b) α = 3, γ̂ = 4, ν = 3 and µ varying.
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(c) α = 3, µ = 2, ν = 3 and γ̂ varying.
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(d) α = 3, µ = 2,γ̂ = 4 and ν varying.

Figure 13: ABER of α− µ type model with t weighting.
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Figure 14: ABER comparison of α− µ type with normal- and t weighting.

Comparing the ABER of the α−µ type model with the normal and t distribution weighting on the same

graph as is done in Figure 14, it becomes clear that there are cases when the α − µ distribution will

be preferred. When considering small values of x, which is the c in the Laplace transforms, the normal

weighting outperforms the α−µ type while large values result in the performance being reversed making

the underlying t more e�ective. As x becomes larger the di�erence in the performance becomes more

prominent.
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6 Conclusion

6.1 Summary

Based on the performance evaluation for the two cases of the elliptical assumption, it is clear that there

are many cases in which the ABER and outage probability of the α − µ distribution can be improved

through the use of the newly derived α− µ type with underlying t distribution.

6.2 Future work

The poor performance of the exponential approximation as proposed in [16] could be investigated and an

optimal �tting method found. This would be especially valuable for the α−µ type model with underlying

t distribution when considering the ABER since the Meijer's G function approach (31) will require a large

number of input parameters when α becomes large.
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Appendix

Results

R1. Standard normal to χ2 [3, page 271]

If Z ∼ N (0, 1) then Z2 ∼ χ2 (1).

R2. Sum of χ2 random variables [3, page 270]

If Ci ∼ χ2 (νi) are independent chi-squared random variables for i = 1, . . . , n, then
∑n
i=1 C

2
i ∼ χ2 (

∑n
i=1 νi)

.

R3. Gamma Function [3, page 111]

The gamma function denoted by Γ (µ) for all µ > 0 is given by Γ (µ) =
∫∞

0
tµ−1e−tdt.

R4. PDF of a gamma random variable [3, page 111] For a random variable X ∼ GAM (θ, κ)

where θ > 0 and κ > 0, X has PDF :

fX (x) =
1

Γ (κ) θκ
xκ−1 exp

(
−x
θ

)
x > 0,

where Γ (·) is the gamma function as de�ned above.

R5. Incomplete gamma function

The incomplete gamma function has two cases:

1. γ (·, ·) is the lower incomplete gamma function and is de�ned as γ (α, x) =
∫ x

0
exp (−t) tα−1dt for

α > 0 [7, eq 8.350-1].

2. Γ (·, ·) is the upper incomplete gamma function and is de�ned as Γ (α, x) =
∫∞
x

exp (−t) tα−1dt [7,

eq 8.350-2].

R6. Integral results

1.
∫ u

0
xµ−1

(1+βx)ν dx = uµ

µ 2F1 (ν, µ; 1 + µ;−βu) when µ > 0 and 2F1 (·) denotes the Gauss hypergeometric

function [7, eq 3.194-1].

2.
∫∞

0
xµ−1 (p+ qxν)

−(n+1)
dx = 1

νpn+1

(
p
q

)µ
ν Γ(µν )Γ(n+1−µν )

Γ(n+1) when 0 < µ
ν < n+ 1, p 6= 0 and q 6= 0 [7,

eq 3.241-4].
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3.
∫∞

0
xm exp (−βxn) dx = Γ(γ)

nβγ where γ = m+1
n when the requirements β > 0, m > 0 and n > 0 are

met [7, eq 3.326-2].

4.
∫∞

0
xν−1 exp (−µx) dx = Γ(ν)

µν when requirements µ > 0 and ν > 0 are met [7, eq 3.381-4].

5.
∫ u

0
xm exp (−βxn) dx = γ(ν,βun)

nβν where ν = m+1
n when the requirements ν > 0, β > 0 and n > 0 are

met and u > 0 [7, eq 3.381-8].

R7.Generalized hypergeometric series

pFq (α1, α2, . . . , αp; β1, β2, . . . , βq; z) =
∑∞
k=0

(α1)k(α2)k...(αp)k
(β1)k(β2)k...(βp)k

zk

k! where (a)k = Γ(a+k)
Γ(a) [7, eq 9.14-1].

R8. Meijer's G function

1. (1− z)−a = 1
Γ(a)G

1,1
1,1

−z
∣∣∣∣∣∣∣

1− a

0

 [11, p54].

2. zα exp (−z) = zαG1,0
0,1

z
∣∣∣∣∣∣∣
−

0

 [10, p69].

Code

SAS:

/*Underlying Normal fitting parameters*/

proc iml; start Func_Diff(x) global (i);

alpha = 1;

mu = 3;

ghat = 2;

c = 0.1;

*Theoretical constant;

tconst = (alpha*(mu**mu))/(2*(ghat**(alpha*mu/2))*Gamma(mu));

dt = 0.001;

do g = 0 to 50 by dt;

* Calculating function values for theoretical MGF;

ITpoint=(g**(alpha*mu/2-1))*exp(-mu*(g**(alpha/2))*(ghat**(-alpha/2))+c*g);

/*Function values at all gamma values included in loop*/

IT = IT//ITpoint;

end;

sum = sum(IT)*dt;
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*Riemann sum;

MGF = tconst*sum;

*Theoretical;

print MGF;

asum = x[1]*(mu*ghat##(-alpha/2)+x[5]*c)##(-mu)+

x[2]*(mu*ghat##(-alpha/2)+x[6]*c)##(-mu)+

x[3]*(mu*ghat##(-alpha/2)+x[7]*c)##(-mu)+

x[4]*(mu*ghat##(-alpha/2)+x[8]*c)##(-mu);

aMGF = ((mu##mu)/(ghat##(alpha*mu/2)))*asum;

print aMGF;

Diff = abs(MGF - aMGF);

print diff;

return(Diff);

finish Func_Diff;

start Cons(x) global(i);

*mu >0 and:;

con = J(4, 1,.);

c = 0.1;

*points of c where we are fitting;

con[1] = (mu*ghat**(-alpha/2)+x[5]*c);*[i]);

con[2] = (mu*ghat**(-alpha/2)+x[6]*c);*[i]);

con[3] = (mu*ghat**(-alpha/2)+x[7]*c);*[i]);

con[4] = (mu*ghat**(-alpha/2)+x[8]*c);*[i]);

return(con);

finish Cons;

x = J(1,8,1);

opt = {0,2};

do i = 1 to 3;

call nlpnms(rc, xres, "Func_Diff", x, opt,,,,,"Cons");

end;

quit;

/*Underlying t fit of parameters*/

proc iml;
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start Min_func(x) global(j);

alpha = 1;

mu = 3;

ghat = 2;

c = 0.1;

nu = 3;

dt=0.001;

/*Step size for numerical integration*/

tconst = (alpha*(mu**mu)*(nu**(nu/2))*

Gamma(mu+nu/2))/((2**(nu/2+1))*

(ghat**(alpha*mu/2))*Gamma(mu)*Gamma(nu/2));

*theoretical constant;

do g = 0 to 50 by dt;

* Calculating function values for theoretical MGF;

ITpoint=((mu*(g**(alpha/2))*(ghat**(-alpha/2))+nu/2)**(-mu-nu/2))

*(g**(alpha*mu/2))*exp(-c*g);

/*Function values at all gamma values included in loop*/

IT = IT//ITpoint;

end;

sum = sum(IT)*dt;

*Riemann sum;

MGF = tconst*sum;

*Theoretical;

print MGF;

aconst = (1/Gamma(mu))*(1/Gamma(nu/2))*

(((mu**mu)*(nu**(nu/2))*Gamma(mu+nu/2))/((2**(nu/2))*

(ghat**(alpha*mu/2))));

*approximation constant;

asum =0;

do j = 1 to 4;

d=0.001;

/*Step size for numerical integration*/

do z = 0 to 50 by d;

Ipoint=(z**(mu-1))*
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((mu*z*ghat**(-alpha/2)+nu/2)**(-mu-nu/2))

*exp(-c*z*x[j+4]);

/*Function values at all z values*/

I = I//Ipoint;

end;

Int=sum(I)*d;

/*Estimated integral value*/

asum = asum + Int*x[j];

end;

aMGF = asum*aconst;

print aMGF;

diff = abs(MGF-aMGF);

return (diff);

finish Min_func;

x=J(1,8,1);

*x1 to x4 will be a1 to a4 and x5 to x8 b1 to b4 respectively;

opt = {0,2};

call nlpnms(rc, xest, "Min_func",x,opt);

quit;

Mathematica:

(*Define the PDF of the alpha mu distribution*)

FunctionAMPDF[alpha_, mu_, rhat_] :=

( alpha*(mu^mu)*(r^(alpha*mu - 1)))/((rhat^(alpha*mu))*Gamma[mu])*

Exp[-mu*(r/rhat)^alpha]

(*Plotting the PDF of the alpha mu distribution with varying values \ of alpha.*)

Plot[{FunctionAMPDF[1, 3, 2], FunctionAMPDF[4, 3, 2], FunctionAMPDF[9, 3, 2],

FunctionAMPDF[12, 3, 2]},{r, 0, 3.5}, AxesLabel -> {"r", "\[Alpha]-\[Mu] PDF"},

PlotRange -> All, PlotStyle -> Thick, PlotLegends -> {"\[Alpha]=1", "\[Alpha]=4",

"\[Alpha]=9", "\[Alpha]=12" }, LabelStyle -> {FontSize -> 13}]

(*Plotting the PDF of the alpha mu distribution with varying values \ of mu.*)

Plot[{FunctionAMPDF[4, 0.75, 2], FunctionAMPDF[4, 1, 2], FunctionAMPDF[4, 4, 2],
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FunctionAMPDF[4, 9, 2]}, {r, 0, 4}, AxesLabel -> {"r", "\[Alpha]-\[Mu] PDF"},

PlotRange -> All, PlotStyle -> Thick, PlotLegends -> {"\[Mu]=0.75", "\[Mu]=1",

"\[Mu]=4", "\[Mu]=9" }, LabelStyle -> {FontSize -> 13}]

(*Plotting the PDF of the alpha mu distribution with varying values \ of r_hat.*)

Plot[{FunctionAMPDF[4, 3, 1], FunctionAMPDF[4, 3, 3], FunctionAMPDF[4, 3, 6],

FunctionAMPDF[4, 3, 8]}, {r, 0, 12}, AxesLabel -> {"r", "\[Alpha]-\[Mu] PDF"},

PlotRange -> All, PlotStyle -> Thick, PlotLegends -> {"\!\(\*OverscriptBox[\(r\),

\(^\)]\)=1", "\!\(\*OverscriptBox[\(r\), \(^\)]\)=3", "\!\(\*OverscriptBox[\(r\), \(^\)]\)=6",

"\!\(\*OverscriptBox[\(r\), \(^\)]\)=8" }, LabelStyle -> {FontSize -> 13}]

(*Define the CDF of the alpha mu distribution*)

FunctionAMCDF[alpha_, mu_, rhat_] :=

alpha*((mu^mu)/(Gamma[mu]*rhat^(alpha*mu)))*

NIntegrate[Exp[-(y^alpha*mu)/rhat^alpha]*y^(alpha*mu - 1), {y, 0, r}]

(*Plotting the CDF of the alpha mu distribution with varying values \ of alpha.*)

Plot[{FunctionAMCDF[1, 3, 2], FunctionAMCDF[4, 3, 2], FunctionAMCDF[9, 3, 2],

FunctionAMCDF[12, 3, 2]}, {r, 0, 4}, AxesLabel -> {"r", "\[Alpha]-\[Mu] CDF"},

PlotRange -> All, PlotStyle -> Thick, PlotLegends -> {"\[Alpha]=1", "\[Alpha]=4",

"\[Alpha]=9", "\[Alpha]=12"}, LabelStyle -> {FontSize -> 13}]

(*Plotting the CDF of the alpha mu distribution with varying values \ of mu.*)

Plot[{FunctionAMCDF[4, 0.75, 2], FunctionAMCDF[4, 1, 2], FunctionAMCDF[4, 4, 2],

FunctionAMCDF[4, 9, 2]}, {r, 0, 3.5}, AxesLabel -> {"r", "\[Alpha]-\[Mu] CDF"},

PlotRange -> All, PlotStyle -> Thick, PlotLegends -> {"\[Mu]=0.75", "\[Mu]=1", "\[Mu]=4",

"\[Mu]=9" }, LabelStyle -> {FontSize -> 13}]

(*Plotting the CDF of the alpha mu distribution with varying values \ of r_hat.*)

Plot[{FunctionAMCDF[4, 3, 1], FunctionAMCDF[4, 3, 3], FunctionAMCDF[4, 3, 6],

FunctionAMCDF[4, 3, 8]}, {r, 0, 12}, AxesLabel -> {"r", "\[Alpha]-\[Mu] CDF"},

PlotRange -> All, PlotStyle -> Thick, PlotLegends -> {"\!\(\*OverscriptBox[\(r\),

\(^\)]\)=1", "\!\(\*OverscriptBox[\(r\), \(^\)]\)=3", "\!\

(\*OverscriptBox[\(r\), \(^\)]\)=6","\!\(\*OverscriptBox[\(r\), \(^\)]\)=8" },
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LabelStyle -> {FontSize -> 13}]

(*Define the PDF of the alpha mu type with t distribution weighting*)

FunctionTPDF[alpha_, mu_, rhat_, nu_] :=

(alpha*(mu^mu)*(r^(alpha*mu - 1))*(nu^(nu/2))*Gamma[mu + nu/2])/

((rhat^(alpha*mu))*(2^(nu/ 2))*(mu*((r/rhat)^alpha) + nu/2)^(mu + nu/2)

*Gamma[mu]*Gamma[nu/2])

(*Plot the PDF with varying values of alpha*)

Plot[{FunctionTPDF[1, 3, 2, 3], FunctionTPDF[4, 3, 2, 3], FunctionTPDF[9, 3, 2, 3],

FunctionTPDF[12, 3, 2, 3]}, {r, 0, 5}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"\[Alpha]=1", "\[Alpha]=4", "\[Alpha]=9", "\[Alpha]=12"},

AxesLabel -> {"r", "PDF"}]

(*Plot the PDF with varying values of mu*)

Plot[{FunctionTPDF[4, 0.75, 2, 3], FunctionTPDF[4, 1, 2, 3], FunctionTPDF[4, 4, 2, 3],

FunctionTPDF[4, 9, 2, 3]}, {r, 0, 5}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"\[Mu]=0.75", "\[Mu]=1", "\[Mu]=4", "\[Mu]=9"},

AxesLabel -> {"r", "PDF"}]

(*Plot the PDF with varying values of r hat*)

Plot[{FunctionTPDF[4, 3, 1, 3], FunctionTPDF[4, 3, 3, 3], FunctionTPDF[4, 3, 6, 3],

FunctionTPDF[4, 3, 8, 3]}, {r, 0, 14}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"\!\(\*OverscriptBox[\(r\), \(^\)]\)=1", "\!\

(\*OverscriptBox[\(r\), \(^\)]\)=3", "\!\(\*OverscriptBox[\(r\), \(^\)]\)=6",

"\!\(\*OverscriptBox[\(r\), \(^\)]\)=8"}, AxesLabel -> {"r", "PDF"}]

(*Plot the PDF with varying values of nu*)

Plot[{FunctionTPDF[4, 3, 2, 1], FunctionTPDF[4, 3, 2, 3], FunctionTPDF[4, 2, 2, 8],

FunctionTPDF[4, 3, 2, 11]}, {r, 0, 10}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"\[Nu]=1", "\[Nu]=3", "\[Nu]=8", "\[Nu]=11"}, AxesLabel -> {"r", "PDF"}]

(*Define the alpha mu PDF (Normal weighting) again for comaprison*)

FunctionAMPDF[alpha_, mu_, rhat_] :=
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( alpha*(mu^mu)*(r^(alpha*mu - 1)))/((rhat^(alpha*mu))*Gamma[mu])*

Exp[-mu*(r/rhat)^alpha]

(*Plot for comparison of PDF's with normal weighting and t \

distribution weighting and varying values of nu*)

Plot[{FunctionAMPDF[4, 3, 2], FunctionTPDF[4, 3, 2, 3], FunctionTPDF[4, 3, 2, 11],

FunctionTPDF[4, 3, 2, 25]}, {r, 0, 4}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"Normal weighting", "t weighting, \[Nu]=3", "t weighting,

\[Nu]=11", "t weighting, \[Nu]=25"}, AxesLabel -> {"r", "PDF"}]

(*Define the CDF of the alpha mu type with t distribution weighting*)

FunctionTCDF[alpha_, mu_, rhat_, nu_] :=

((alpha*(mu^mu)*(nu^(nu/2)))*Gamma[mu + nu/2])/

( rhat^(alpha*mu)*2^(nu/2)*Gamma[mu]*Gamma[nu/2])*

NIntegrate[(y^(alpha*mu - 1))/((mu*(y/rhat)^alpha) + nu/2)^( mu + nu/2), {y, 0, r}]

(*Plot the CDF with varying values of alpha*)

Plot[{FunctionTCDF[1, 3, 2, 3], FunctionTCDF[4, 3, 2, 3], FunctionTCDF[9, 3, 2, 3],

FunctionTCDF[12, 3, 2, 3]}, {r, 0, 5}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"\[Alpha]=1", "\[Alpha]=4", "\[Alpha]=9", "\[Alpha]=12"},

AxesLabel -> {"r", "CDF"}]

(*Plot the CDF with varying values of mu*)

Plot[{FunctionTCDF[4, 0.75, 2, 3], FunctionTCDF[4, 1, 2, 3], FunctionTCDF[4, 4, 2, 3],

FunctionTCDF[4, 9, 2, 3]}, {r, 0, 4}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"\[Mu]=0.75", "\[Mu]=1", "\[Mu]=4", "\[Mu]=9"},

AxesLabel -> {"r", "CDF"}]

(*Plot the CDF with varying values of rhat*)

Plot[{FunctionTCDF[4, 3, 1, 3], FunctionTCDF[4, 3, 3, 3], FunctionTCDF[4, 3, 6, 3],

FunctionTCDF[4, 3, 8, 3]}, {r, 0, 14}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"\!\(\*OverscriptBox[\(r\), \(^\)]\)=1", "\!\(\*OverscriptBox[\(r\),

\(^\)]\)=3", "\!\(\*OverscriptBox[\(r\), \(^\)]\)=6", "\!\(\*OverscriptBox[\(r\),

\(^\)]\)=8"}, AxesLabel -> {"r", "CDF"}]
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(*Plot the CDF with varying values of nu*)

Plot[{FunctionTCDF[4, 3, 2, 1], FunctionTCDF[4, 3, 2, 3], FunctionTCDF[4, 3, 2, 8],

FunctionTCDF[4, 3, 2, 11]}, {r, 0, 5}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"\[Nu]=1", "\[Nu]=3", "\[Nu]=8", "\[Nu]=11"},

AxesLabel -> {"r", "CDF"}]

(*Define the alpha mu CDF (Normal weighting) again for comaprison*)

FunctionAMCDF[alpha_, mu_, rhat_] :=

alpha*((mu^mu)/(Gamma[mu]*rhat^(alpha*mu)))*

NIntegrate[Exp[-(y^alpha*mu)/rhat^alpha]*y^(alpha*mu - 1), {y, 0, r}]

(*Plotting the CDF of the alpha mu distribution and the alpha mu type

\ with t distribution weighting function with varying values of nu.*)

Plot[{FunctionAMCDF[4, 3, 2], FunctionTCDF[4, 3, 2, 3], FunctionTCDF[4, 3, 2, 11],

FunctionTCDF[4, 3, 2, 25]}, {r, 0, 4.5}, PlotRange -> All, PlotStyle -> Thick,

PlotLegends -> {"Normal weighting", "t weighting, \[Nu]=3", "t weighting, \[Nu]=11",

"t weighting, \[Nu]=25"}, AxesLabel -> {"r", "CDF"}]

(*Define the outage probability of the alpha mu distribution*)

FunctionAMOut[alpha_, mu_, ghat_] :=

((alpha*(mu^mu))/(2*Gamma[mu]*(ghat^(alpha*mu/2))))*

NIntegrate[((10^(g/10))^(alpha*mu/2 - 1))* Exp[-mu*(((10^(g/10))/ghat)^(alpha/2))],

{g, 0, out}]

(*Plot the outage for varying alpha with other parameters constant*)

LogPlot[{FunctionAMOut[0.5, 2, 3], FunctionAMOut[3, 2, 3], FunctionAMOut[7, 2, 3],

FunctionAMOut[10, 2, 3]}, {out, 0, 5}, PlotStyle -> Thick,

AxesLabel -> {"Threshold", "Outage Probability"}, PlotRange -> All,

PlotLegends -> {"\[Alpha]=0.5", "\[Alpha]=3", "\[Alpha]=7", "\[Alpha]=10"}]

(*Plot the outage for varying mu with other parameters constant*)

LogPlot[{FunctionAMOut[3, 0.5, 3], FunctionAMOut[3, 4, 3], FunctionAMOut[3, 9, 3],

FunctionAMOut[3, 15, 3]}, {out, 0, 3}, PlotStyle -> Thick,
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AxesLabel -> {"Threshold", "Outage Probability"}, PlotRange -> All,

PlotLegends -> {"\[Mu]=0.5", "\[Mu]=4", "\[Mu]=9", "\[Mu]=15"}]

(*Plot the outage for varying gamma hat with other parameters \ constant*)

LogPlot[{FunctionAMOut[3, 2, 1], FunctionAMOut[3, 2, 7], FunctionAMOut[3, 2, 12],

FunctionAMOut[3, 2, 20]}, {out, 0, 7}, PlotStyle -> Thick,

AxesLabel -> {"Threshold", "Outage Probability"}, PlotRange -> All,

PlotLegends -> {"\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=1", "\!\

(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=7", "\!\(\*OverscriptBox[\(\[Gamma]\),

\(^\)]\)=12", "\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=20"}]

(*Define the outage probability of the alpha mu type with the t

\ distribution weighting function*)

FunctionAMTOut[alpha_, mu_, ghat_, nu_] :=

(alpha*(mu^mu)*Gamma[mu + nu/2]*(nu^(nu/2)))/

(Gamma[mu]* Gamma[nu/2]*(2^(nu/2 + 1))*(ghat^(alpha*mu/2)))*

NIntegrate[(10^(g/ 10))^(alpha*mu/2 - 1)/((mu*((Sqrt[10^(g/10)/ghat])^alpha)

+ nu/2)^(mu + nu/2)), {g, 0, out}]

(*Plot the outage for alpha varying and all other parameters constant*)

LogPlot[{FunctionAMTOut[0.5, 2, 3, 3], FunctionAMTOut[3, 2, 3, 3],

FunctionAMTOut[7, 2, 3, 3], FunctionAMTOut[10, 2, 3, 3]}, {out, 0, 6}, PlotStyle -> Thick,

PlotRange -> All, AxesLabel -> {"Threshold", "Outage Probability"},

PlotLegends -> {"\[Alpha]=0.5", "\[Alpha]=3", "\[Alpha]=7", "\[Alpha]=10"}]

(*Plot the outage for mu varying and all other parameters constant*)

LogPlot[{FunctionAMTOut[3, 0.5, 3, 3], FunctionAMTOut[3, 4, 3, 3],

FunctionAMTOut[3, 9, 3, 3], FunctionAMTOut[3, 15, 3, 3]}, {out, 0, 3}, PlotStyle -> Thick,

PlotRange -> All, AxesLabel -> {"Threshold", "Outage Probability"},

PlotLegends -> {"\[Mu]=0.5", "\[Mu]=4", "\[Mu]=9", "\[Mu]=15"}]

LogPlot[{FunctionAMTOut[3, 0.5, 3, 3], FunctionAMTOut[3, 4, 3, 3],

FunctionAMTOut[3, 9, 3, 3], FunctionAMTOut[3, 15, 3, 3]}, {out, 8, 12}, PlotStyle -> Thick,

PlotRange -> All, AxesLabel -> {"Threshold", "Outage Probability"},

PlotLegends -> {"\[Mu]=0.5", "\[Mu]=4", "\[Mu]=9", "\[Mu]=15"}]
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(*Plot the outage for gamma hat varying and all other parameters \ constant*)

LogPlot[{FunctionAMTOut[3, 2, 1, 3], FunctionAMTOut[3, 2, 7, 3], FunctionAMTOut[3, 2, 12, 3],

FunctionAMTOut[3, 2, 20, 3]}, {out, -12, 4}, PlotStyle -> Thick,

PlotRange -> All, AxesLabel -> {"Threshold", "Outage Probability"},

PlotLegends -> {"\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=1", "\!\

(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=7", "\!\(\*OverscriptBox

[\(\[Gamma]\), \(^\)]\)=12","\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=20"}]

(*Plot the outage for nu varying and all other parameters constant*)

LogPlot[{FunctionAMTOut[3, 2, 3, 1], FunctionAMTOut[3, 2, 3, 5], FunctionAMTOut[3, 2, 3, 10],

FunctionAMTOut[3, 2, 3, 25]}, {out, 0, 4}, PlotStyle -> Thick,

PlotRange -> All, AxesLabel -> {"Threshold", "Outage Probability"},

PlotLegends -> {"\[Nu]=1", "\[Nu]=5", "\[Nu]=10", "\[Nu]=25"}]

LogPlot[{FunctionAMTOut[3, 2, 3, 1], FunctionAMTOut[3, 2, 3, 5], FunctionAMTOut[3, 2, 3, 10],

FunctionAMTOut[3, 2, 3, 25]}, {out, 4, 8}, PlotStyle -> Thick,

PlotRange -> All, AxesLabel -> {"Threshold", "Outage Probability"},

PlotLegends -> {"\[Nu]=1", "\[Nu]=5", "\[Nu]=10", "\[Nu]=25"}]

(*Plot the normal and t outage on one set of axes with varying nu \ values*)

LogPlot[{FunctionAMOut[3, 2, 3], FunctionAMTOut[3, 2, 3, 2], FunctionAMTOut[3, 2, 3, 10],

FunctionAMTOut[3, 2, 3, 30]}, {out, 0, 5}, PlotStyle -> Thick,

AxesLabel -> {"Threshold", "Outage Probability"}, PlotRange -> All,

PlotLegends -> {"Normal weighting", "t weighting, \[Nu]=2", "t weighting,

\[Nu]=10", "t weighting, \[Nu]=30"}]

LogPlot[{FunctionAMOut[3, 2, 3], FunctionAMTOut[3, 2, 3, 2], FunctionAMTOut[3, 2, 3, 10],

FunctionAMTOut[3, 2, 3, 30]}, {out, 7, 12}, PlotStyle -> Thick,

AxesLabel -> {"Threshold", "Outage Probability"}, PlotRange -> All,

PlotLegends -> {"Normal weighting", "t weighting, \[Nu]=2", "t weighting,

\[Nu]=10", "t weighting, \[Nu]=30"}]

(*Define the Laplace transform of alpha mu distribution in 3 parts,

\ part one is the constant, part two the inner integral and the last

\ part is the combination of the previous two with the definition of the ABER*)
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FunctionConst[a_, m_, ghat_] :=

(a*m^m)/(2*ghat^((a*m)/2)*Gamma[m])

FunctionA[a_, m_, ghat_] :=

NIntegrate[ g^((a*m)/2 - 1)*

Exp[-10^((x/10))/(Sin[theta])^2*g - m*g^(a/2)*ghat^(-a/2)], {g, 0.01, 100}]

FunctionAB[a_, m_, ghat_] :=

1/Pi*FunctionConst[a, m, ghat]* NIntegrate[FunctionA[a, m, ghat], {theta, 0.01, Pi/2}]

(*Plotting the alpha mu distribtion with parameter alpha varying*)

LogPlot[{FunctionAB[1, 2, 4], FunctionAB[3, 2, 4], FunctionAB[7, 2, 4],

FunctionAB[15, 2, 4]}, {x, -15, 20}, PlotStyle -> Thick,

PlotRange -> All, PlotLegends -> {"\[Alpha]=1", "\[Alpha]=3", "\[Alpha]=7",

"\[Alpha]=15"}, AxesLabel -> {"x", "ABER"}]

(*Plotting the alpha mu distribtion with parameter mu varying*)

LogPlot[{FunctionAB[3, 0.8, 4], FunctionAB[3, 4, 4], FunctionAB[3, 9, 4],

FunctionAB[3, 15, 4]}, {x, -15, 20}, PlotStyle -> Thick, PlotRange -> All,

PlotLegends -> {"\[Mu]=0.8", "\[Mu]=4", "\[Mu]=9", "\[Mu]=15"},

AxesLabel -> {"x", "ABER"}]

(*Plotting the alpha mu distribtion with parameter gamma hat varying*)

LogPlot[{FunctionAB[3, 2, 0.8], FunctionAB[3, 2, 3], FunctionAB[3, 2, 7], FunctionAB[3, 2, 10]},

{x, -15, 20}, PlotStyle -> Thick, PlotRange -> All,

PlotLegends -> {"\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=0.8", "\!\

(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=3", "\!\(\*OverscriptBox[\(\[Gamma]\),

\(^\)]\)=7", "\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=10"}, AxesLabel -> {"x", "ABER"}]

(*Define the ABER of the alpha-mu type in 3 parts, the constant term, \ the inner integral,

and the outer integral over theta*)

FunctionConstant[a_, m_, ghat_, v_] :=

(a*m^m*v^(v/2)*Gamma[m + v/2])/( 2^(v/2 + 1)*ghat^((a*m)/2)*Gamma[m]*Gamma[v/2])

FunctionInnerInt[a_, m_, ghat_, v_] :=

NIntegrate[(m*g^(a/2)*ghat^(-a/2) + v/2)^-(m + v/2)*g^((a*m)/2 - 1)*

Exp[-10^((x/10))/(Sin[theta])^2], {g, 0.01, 10000}]
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FunctionOuterInt[a_, m_, ghat_, v_] :=

FunctionConstant[a, m, ghat, v]*1/Pi*

NIntegrate[FunctionInnerInt[a, m, ghat, v], {theta, 0.001, Pi/2}]

(*Plot the ABER for alpha varying and other parameters constant*)

LogPlot[{FunctionOuterInt[1, 2, 4, 3], FunctionOuterInt[3, 2, 4, 3],

FunctionOuterInt[7, 2, 4, 3], FunctionOuterInt[15, 2, 4, 3]},

{x, -10, 15}, PlotStyle -> Thick, PlotRange -> All, AxesLabel ->

{"x", "ABER"}, PlotLegends -> {"\[Alpha]=1", "\[Alpha]=3", "\[Alpha]=7",

"\[Alpha]=15"}]

LogPlot[{FunctionOuterInt[1, 2, 4, 3], FunctionOuterInt[3, 2, 4, 3],

FunctionOuterInt[7, 2, 4, 3], FunctionOuterInt[15, 2, 4, 3]}, {x, 0, 0.5},

PlotStyle -> Thick, PlotRange -> All, AxesLabel -> {"x", "ABER"},

PlotLegends -> {"\[Alpha]=1", "\[Alpha]=3", "\[Alpha]=7", "\[Alpha]=15"}]

(*Plot the ABER for mu varying and other parameters constant*)

LogPlot[{FunctionOuterInt[3, 0.8, 4, 3], FunctionOuterInt[3, 4, 4, 3],

FunctionOuterInt[3, 9, 4, 3], FunctionOuterInt[3, 15, 4, 3]}, {x, -15, 20},

PlotStyle -> Thick, PlotRange -> All, AxesLabel -> {"x", "ABER"},

PlotLegends -> {"\[Mu]=0.8", "\[Mu]=3", "\[Mu]=7", "\[Mu]=10"}]

LogPlot[{FunctionOuterInt[3, 0.8, 4, 3], FunctionOuterInt[3, 4, 4, 3],

FunctionOuterInt[3, 9, 4, 3], FunctionOuterInt[3, 15, 4, 3]}, {x, 0, 0.05},

PlotStyle -> Thick, PlotRange -> All, AxesLabel -> {"x", "ABER"},

PlotLegends -> {"\[Mu]=0.8", "\[Mu]=3", "\[Mu]=7", "\[Mu]=10"}]

(*Plot the ABER for gamma hat varying and other parameters constant*)

LogPlot[{FunctionOuterInt[3, 2, 0.8, 3], FunctionOuterInt[3, 2, 3, 3],

FunctionOuterInt[3, 2, 7, 3], FunctionOuterInt[3, 2, 10, 3]}, {x, -15, 20},

PlotStyle -> Thick, PlotRange -> All, AxesLabel -> {"x", "ABER"},

PlotLegends -> {"\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=0.8",

"\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=3", "\!\(\*OverscriptBox[\(\[Gamma]\),

\(^\)]\)=7", "\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=10"}]

LogPlot[{FunctionOuterInt[3, 2, 0.8, 3], FunctionOuterInt[3, 2, 3, 3],

FunctionOuterInt[3, 2, 7, 3], FunctionOuterInt[3, 2, 10, 3]}, {x, 0, 0.001},
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PlotStyle -> Thick, PlotRange -> All, AxesLabel -> {"x", "ABER"},

PlotLegends -> {"\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=0.8",

"\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=3", "\!\(\*OverscriptBox[\(\[Gamma]\),

\(^\)]\)=7", "\!\(\*OverscriptBox[\(\[Gamma]\), \(^\)]\)=10"}]

(*Plot the ABER for nu varying and other parameters constant*)

LogPlot[{FunctionOuterInt[3, 2, 4, 1], FunctionOuterInt[3, 2, 4, 2],

FunctionOuterInt[3, 2, 4, 8], FunctionOuterInt[3, 2, 4, 20]}, {x, -15, 20},

PlotStyle -> Thick, PlotRange -> All, AxesLabel -> {"x", "ABER"},

PlotLegends -> {"\[Nu]=1", "\[Nu]=2", "\[Nu]=8", "\[Nu]=20"}]

LogPlot[{FunctionOuterInt[3, 2, 4, 1], FunctionOuterInt[3, 2, 4, 2],

FunctionOuterInt[3, 2, 4, 8], FunctionOuterInt[3, 2, 4, 20]}, {x, 0, 0.05},

PlotStyle -> Thick, PlotRange -> All, AxesLabel -> {"x", "ABER"},

PlotLegends -> {"\[Nu]=1", "\[Nu]=2", "\[Nu]=8", "\[Nu]=20"}]

(*Comparison plot between alpha mu type with normal and gamma \

weighting functions with varying nu values*)

LogPlot[{FunctionAB[1, 3, 2], FunctionOuterInt[1, 3, 2, 2],

FunctionOuterInt[1, 3, 2, 10], FunctionOuterInt[1, 3, 2, 30]}, {x, -20, -10},

PlotStyle -> Thick, AxesLabel -> {"x", "ABER"}, PlotRange -> All,

PlotLegends -> {"Normal weighting", "t weighting, \[Nu]=2", "t weighting,

\[Nu]=10", "t weighting, \[Nu]=30"}]

LogPlot[{FunctionAB[1, 3, 2], FunctionOuterInt[1, 3, 2, 2],

FunctionOuterInt[1, 3, 2, 10], FunctionOuterInt[1, 3, 2, 30]}, {x, -5, 15},

PlotStyle -> Thick, AxesLabel -> {"x", "ABER"}, PlotRange -> All,

PlotLegends -> {"Normal weighting", "t weighting, \[Nu]=2", "t weighting,

\[Nu]=10", "t weighting, \[Nu]=30"}]

(*Give Parameter values underlying normal*)

a = 1

m = 3

gh = 2

c = 0.1

v = 3
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a1 = -0.181812

a2 = 0.790359

a3 = -0.274838

a4 = 1.463507

b1 = 1.563427

b2 = 1.647754

b3 = 1.694966

b4 = 1.741016

(*Laplace for theoretical*)

(a*m^m)/(2*Gamma[m]*gh^((a*m)/2))* NIntegrate[ g^((a*m)/2 - 1)*Exp[-c*g]

*Exp[-m*g^(a/2)*gh^(-(a/2))], {g, 0, 2000}]

(*Sum*)

1/Gamma[m]*\!\( \*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(16\)]\

( \*FractionBox[ SuperscriptBox[\((\(-c\))\), \(k\)], \(Factorial[k]\)]*

\*FractionBox[\(Gamma[m + \*FractionBox[\(2*k\), \(a\)]]\),

SuperscriptBox[\(m\), FractionBox[\(2*k\), \(a\)]]]

\*SuperscriptBox[\(gh\), \(k\)]\)\)

(*Expression with G*)

(a*m^m)/(2*Gamma[m]*gh^((a*m)/2)) NIntegrate[ g^((a*m)/2 - 1)*

MeijerG[{{}, {}}, {{0}, {}}, m/gh^(a/2) g^(a/2)]*

MeijerG[{{}, {}}, {{0}, {}}, c*g],{g, 0, 2000}]

(*Expression with approximation*)

(m^m*gh^(-((a*m)/2)))*(a1*(m*gh^(-a/2) + b1*c)^-m +

a2*(m*gh^(-a/2) + b2*c)^-m +

a3*(m*gh^(-a/2) + b3*c)^-m +

a4*(m*gh^(-a/2) + b4*c)^-m)

(*Set parameter values underlying t*)

a11 = 1.147886

a12 = 1.018561
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a13 = 0.674093

a14 = -0.725686

b11 = 2.018094

b12 = 1.900272

b13 = 1.327419

b14 = 1.313918

(*Integral*)

(a*m^m*Gamma[m + v/2]*v^(v/2))/( Gamma[m]*Gamma[v/2]*2^(v/2 + 1)*gh^((a*m)/2))*

NIntegrate[(m*g^(a/2)*gh^(-a/2) + v/2)^-(m + v/2)*g^((a*m)/2 - 1)* Exp[-c*g], {g, 0, 2000}]

(*Sum*)

(a*m^m*2^(m - 1))/(Gamma[m]*Gamma[v/2]*gh^((a*m)/2)*v^m)*(\!\( \*UnderoverscriptBox[\(\[Sum]\),

\(k = 0\), \(16\)]\( \*FractionBox[ SuperscriptBox[\((\(-1\))\), \(k\)], SuperscriptBox[\(c\),

FractionBox[\(a*\((m + k)\)\), \(2\)]]]* \*FractionBox[\(Gamma[m + \*FractionBox[\(v\), \(2\)]

+ k]*Gamma[ \*FractionBox[\(a*\((m + k)\)\), \(2\)]]\), \(Factorial[k]\)]*

\*SuperscriptBox[\(( \*FractionBox[\(2*m\), \( \*SuperscriptBox[\(gh\),

FractionBox[\(a\), \(2\)]]*v\)])\), \(k\)]\)\))

(*Expression with G*)

(a^(1/2*(a*m + 1))*m^m*2^(2*m + v/2 - 3/2 - a/2))/( Gamma[m]*Gamma[v/2]*v^m*(c*gh)^((a*m)/2))

*Pi^(-1/2 (a + 1))* MeijerG[{{(1 - m - v/2)/2, (2 - m - v/2)/2, (1 - (a*m)/2)/ a}, {}},

{{0, 1/2}, {}}, ((2*m)/(gh^(a/2)*v))^2*(a/c)^a]

(*Expression with approximation*)

(m^m*Gamma[m + v/2]*v^(v/2))/( Gamma[m]*Gamma[v/2]*2^(v/2)*gh^((a*m)/ 2))*

(a11* NIntegrate[ z^(m - 1)*(m*z*gh^(-a/2) + v/2)^-(m + v/2)*Exp[-b11*c*z], {z, 0, 2000}] +

a12*NIntegrate[ z^(m - 1)*(m*z*gh^(-a/2) + v/2)^-(m + v/2)*Exp[-b12*c*z], {z, 0, 2000}]

+ a13*NIntegrate[ z^(m - 1)*(m*z*gh^(-a/2) + v/2)^-(m + v/2)*Exp[-b13*c*z], {z, 0, 2000}]

+ a14*NIntegrate[ z^(m - 1)*(m*z*gh^(-a/2) + v/2)^-(m + v/2)*Exp[-b14*c*z], {z, 0, 2000}])
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Abstract

Models for ordinal categorical data will be investigated. Loglinear models and logit models

for two-way tables are considered, specically. It is important to investigate how the models are

adjusted to take account of the orderings. Scores are assigned to quantify the order of the ordinal

variable. These models for ordinal data has the advantage of fewer parameters which makes

the interpretation and calculations easier. An ordinal approach will detect a positive association

between variables X and Y, more successfully.
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1 Introduction

If data is measured by sets of categories, it is referred to as a categorical variable. A categorical
variable with no natural ordering is a nominal variable, such as gender, race or nationality. Ordinal
variables are classi�ed as categorical variables with ordered levels [1]. The possible values of an
ordinal variable has a natural ordering, but the distances between the values are unde�ned [12]. An
example of an ordinal variable is social class with ordered levels of �lower�, �middle� and �upper�.

In this research report, models for ordinal categorical data are investigated. Loglinear models
and logit models are speci�cally considered. These models for categorical data do not always take
into account the orderings of ordinal categorical data. When the orderings of ordinal variables are
considered, it results in di�erent and in some cases more accurate results, which may be easier to
interpret. Therefore it is important to investigate how the models are adjusted to take account of the
orderings [1].

Scores are being used to quantify the order of the ordinal variable. The most common scores used
are integer scores where, for example, r levels are scored i = 1, 2, ...r. It is noticed that the distance
between the levels of the ordinal variable, are assumed then to be of unit length.

Ordinal data are of particular interest since ordinal data models have fewer parameters to estimate.
Stronger inferences and better tests for goodness of �t can then be made [1]. When an ordinal approach
is used, it will detect a positive association between variables X and Y, more successfully. If ordered
categories are inspected, the odds for adjacent response categories and how these odds depend on one
or more of the explanatory variables can be quanti�ed more accurately [6].

Karl Pearson and Yule wrote many articles about the association between categorical variables,
which are described by the loglinear model [1, 3]. The response (dependent) and explanatory (inde-
pendent) variables are not di�erentiated in loglinear models. Loglinear models also describe the cell
expected frequencies through interaction parameters. The loglinear models can be useful where the
response categories are ordered and the explanatory variable's are ordered or unordered [6]. If the
explanatory variable are not ordinal, the parameterization of the additive e�ects, as in the two-way
ANOVA, can be used. If the explanatory variable is ordinal, a set of parameters that take the ordering
of the variables into consideration will be used [6].

Haberman [8] and Goodman [5] developed more complex loglinear models for situations where there
is some association and at least one of the variables are ordinal.

If there are too many cell frequencies equal to zero, it may be impossible to �t certain models.
A structural zero is when a zero value occurs in a cell where it is theoretically possible to have no
observations. A sampling zero is when a zero value occurs in a cell for which the expected frequency is
greater than zero but the observed value is equal to zero due to the sample size being small. Sampling
zeros give rise to di�culties which can be eliminated by adding a small constant in each cell of the
table [1].

Logit models describe the e�ect of the explanatory variables on the response variables. Logit models
such as the cumulative logit model (proportional odds model), as well as the adjacent-categories logit
model and the continuation ratio logit model will be discussed in this report [2]. Logit models are
special cases of loglinear models, since both models contain the same structure for association between
the response and explanatory variables.

In the case of ordinal data, the loglinear and logit models can be categorized into the so called
uniform association model and the row e�ects model which will be discussed further in Section 3.2
and 3.3. The uniform association model is considered when an ordinal-ordinal table is used. The row
e�ects model �xes the column scores and treat the row scores as the parameters [2]. The uniform
association model and the row e�ects model are special cases of the linear-by-linear association model
[2]. For example, a uniform association model in terms of local odds is a linear-by-linear association
model with equally spaced scores.

In Section 2, an overview is given of the basic theory which underlies loglinear and logit models.
Concepts are illustrated using a practical application. The theory of the loglinear and logit models for
ordinal data are then discussed and are also illustrated with the same application, in Section 3.
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Marginal formulas for X Marginal formulas for Y

ni+ =
∑
j nij n+j =

∑
i nij

pi+ =
∑
j pij = ni+

n p+j =
∑
i pij =

n+j

n

Table 1: Marginal formulas

2 Background Theory

2.1 Cross-classi�cation tables

A cross-classi�cation table (contingency table) gives count of the number of observations with a certain
combination of characteristics [1]. The term contingency were formulated by Karl Pearson as any
measure of the total deviation from independent probabilities [11]. Yule then viewed the categories as
�xed and considered the relationship structure between or among variables by using various functions
of the cross-product ratio, which is discussed in more detail in Section 2.2 [13]. Bartlett used Yule's
cross-product ratio to de�ne and develop a test for the presence of an interaction term in a 2x2x2 table
[4].

Suppose that X is the row variable with r categories and Y is the column variable with c categories.
Let nij be the number of observations in the cell located in the ith row and jth column of the table.
Then the total sample size will be de�ned as n =

∑
i

∑
jnij . Let pij =

nij

n be the probability of an

observation being in the ith row and jth column of the table. The probabilities in the joint distribution
for a sample, will be denoted as {pij} where

∑
i

∑
jpij = 1.

∑
i

pi+ =
∑
j

p+j = 1

The estimated expected frequency is then de�ned as m̂ij =
n+jni+

n .
The population joint probabilities is de�ned as {πij}. The joint distribution function is Fij =∑
a≤i
∑
b≤j(πab) where i = 1, ...r and j = 1, ...c and gives the probability that a response is classi�ed

into the �rst i rows and the �rst j columns.
The conditional distribution is a collection of response proportions at a certain level of the ex-

planatory variable. Given row i, the proportion of observations in the jth category of Y is the sample
conditional distribution denoted as {pj(i)}. The population conditional probabilities is de�ned as
{πj(i)}. The conditional distribution function is Fj(i) =

∑
b≤j(πb(i)), thus it yields the probability that

a response is classi�ed into one of �rst j columns given that it is classi�ed into row i.
pj(i) =

nij

ni+

∑
j pj(i) = 1

The marginal distribution function of X is FXi = Fic =
∑
a≤i(πa+) and the marginal distribution

function of Y is FYj = Frj =
∑
b≤j(π+b).

General notation for a two way contingency table, are illustrated in the next example.

Dumping Severity Example

In Table 2, notation is illustrated for a contingency table with ordinal variables. The data of four
di�erent operations of treating duodenal ulcer patients are given. The operations corresponds to the
removal of various amounts of the stomach. Operation A represents drainage and vagotomy, while
operation B is 25% resection and vagotomy. A 50% resection and vagotomy is operation C and
operation D is a 75% resection. The levels of operations are naturally ordered, with A being the
least severe operation. The extent of undesirable side e�ects of the operation is described by dumping
severity and also have a natural ordering form none to moderate. The dumping severity example will
be used to illustrate all the concepts researched.
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Dumping Severity
Operation None Slight Moderate Total

A n11 = 61 n12 = 28 n13 = 7 n1+ = 96
B n21 = 68 n22 = 23 n23 = 13 n2+ = 104
C n31 = 58 n32 = 40 n33 = 12 n3+ = 110
D n41 = 53 n42 = 38 n43 = 16 n4+ = 107

Total n+1 = 240 n+2 = 129 n+3 = 48 n = 417

Table 2: Frequency of Dumping Severity Data

Dumping Severity

Operation None Slight Moderate Total

Probability p11 = 0, 1463 p12 = 0, 0671 p13 = 0, 0168 p1+ = 0, 2302
Conditional Probability p1(1) = 0, 6354 p2(1) = 0, 2917 p3(1) = 0, 0729

Probability p21 = 0, 1631 p22 = 0, 0552 p23 = 0, 0312 p2+ = 0, 2494
Conditional Probability p1(2) = 0, 6538 p2(2) = 0, 2212 p3(2) = 0, 1250

Probability p31 = 0, 1391 p32 = 0, 0959 p33 = 0, 0288 p3+ = 0, 2638
Conditional Probability p1(3) = 0, 5273 p2(3) = 0, 3636 p3(3) = 0, 1091

Probability p41 = 0, 1271 p42 = 0, 0911 p43 = 0, 0384 p4+ = 0, 2566
Conditional Probability p1(4) = 0, 4953 p2(4) = 0, 3551 p3(4) = 0, 1495

Total p+1 = 0, 5755 p+2 = 0, 3094 p+3 = 0, 1151 1

Table 3: Probability Table of Dumping Severity Data

In Table 3 the probabilities (pij) and the conditional probabilities
(
p(i)j

)
are given for the data.

2.2 Odds ratios for 2 x 2 tables

Odds ratios are a measure used to describe the degree of association in a 2x2 table. The odds that the
response is in column 1 instead of in column 2, for row i are de�ned as Ωi = πi2

πi1
with each Ωi > 0. If

Ωi > 1 it implies that the odds of the response being in column 1 is less likely than the odds of being
in column 2. The odds ratio (cross product ratio) is then de�ned as

θ =
Ω2

Ω1
=
π11π22
π12π21

The log odds ratio is log(θ) = log(π11) − log(π12) − log(π21) + log(π22). The log odds ratio is
symmetric about 0 such that if rows and columns are switched, it would result in a change of sign.
Hence a degree of association can be represented by values of log(θ) that have the same absolute value
but di�er due to their sign [1].

Variables are independent if and only if Ω1 = Ω2 which implies that θ = 1. If θ > 1 it implies that
π2(2) > π2(1), which means that individuals in row 2 are more likely to make a second response than
individuals in row 1. If 0 ≤ θ < 1 it implies that π2(2) < π2(1).

For sample frequencies {nij}, an estimate of θ is θ̂ = n11n22

n12n21
which is equal to 0 or∞ if any nij = 0.

This is not a desirable estimator and therefore Gart and Zweifull [9] showed that θ̃ = (n11+0,5)(n22+0,5)
(n12+0,5)(n21+0,5)

is a better estimator since it has smaller bias and a smaller mean square error.
Under standard random sampling, θ̂ and log(θ̂) are asymptotically (n→∞) normally distributed

around population values. The θ̂ distribution is highly skewed for small n. An important note is that
log(θ̂) converges quicker to its asymptotic distribution than θ̂ does [1]. The calculation of odds ratios
are illustrated with the next example.
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None to Moderate Slight to Moderate
A 8,71 4
B 5,23 1,77
C 4,83 3,33
D 3,31 2,38

Total 5 2,69

Table 4: Odds Ratios for Dumping Severity Variable

None Slight Moderate Total
A to D 1,15 0,74 0,41 0,90
B to D 1,28 0,61 0,81 0,97
C to D 1,09 1,05 0,75 1,02

Table 5: Odds Ratios for Operation Variable

Dumping Severity Example

In Section 3.1, the adjacent odds ratios are calculated for the dumping severity example. For now,
odds ratios with respect to a speci�ed reference category is considered. Firstly, the odds ratios for the
dumping severity variable is calculated with the reference level 'moderate'. The columns of Table 4
represents the odds of dumping being none or slight to moderate. For example, the odds of dumping
being none for operation B is 5,23 times higher than the odds of dumping being moderate for operation
B. The odds of dumping being none for all the operations is 5 times higher than the odds of dumping
being moderate for all the operations.

Odds ratios for the operation variable is calculated with the reference level operation D. The rows of
Table 5 represents the odds of operation A,B and C to operation D. For example, the odds of operation
D for no dumping is 1,15 times higher than the odds of operation A for no dumping. The odds of
operation D for all types of dumping is 1,02 times higher for operation C for all types of dumping.

2.3 Measures of goodness of �t

2.3.1 Chi-square statistic

Pearson developed his χ2 test for comparing the expected frequencies, under the hypothesis of inde-
pendence, and the observed frequencies [10]. The null hypothesis state that the expected frequencies
do not di�er signi�cantly from the observed frequencies. The test statistic used is calculated as

χ2 =
∑
i

∑
j

(nij − m̂ij)
2

m̂ij

and has a χ2 distribution with (r− 1)(c− 1) degrees of freedom. The cell χ2 value which is calculated

as
(nij−m̂ij)

2

m̂ij
represent the di�erence between the estimated frequency and the observed frequency in

each cell of the table. If the cell χ2 value exceeds the value of 3,84, it indicates a signi�cant di�erence
between the observed and the expected frequency on a 5% level of signi�cance. Hence if the null
hypothesis is rejected to conclude that the expected frequency and the observed frequency do di�er
signi�cantly, the cell χ2 values can be used to see in exactly which cell of the table, the signi�cant
di�erence occur.
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2.3.2 Likelihood Ratio Test

To test the hypothesis of independence, the Pearson statistic or the likelihood ratio statistic are being
used. The likelihood ratio statistic is de�ned as

G2 = 2
∑
i

∑
j

nij log(
nij
m̂ij

)

Under the alternative hypothesis the constraint
∑
i

∑
j(πij) = 1 yields rc − 1 linearly independent

parameters.

2.4 Measures of Association

Goodman and Kruskal [7] formed con�dence intervals for the association measures by obtaining ap-
proximate standard errors. Goodman and Kruskal [7] also showed that most measures of association
have an asymptotic normal distribution for multinomial sampling. These statistics will therefore detect
associations, as n→∞, where the true value of the measures are not zero. Measure of association esti-
mates or parameter estimates of the model, can be used to test hypotheses of independence, conditional
independence or higher-order interactions [1].

2.4.1 Conditional independence test

To test the statistical signi�cance of the association between X and Y, the hypothesis considered is
H0 : β = 0 or H0 : τ1 = ... = τr = 0 , based on the speci�ed model[1]. Hence the test is the conditional
independence test under the assumption that the speci�ed model (M) holds. The test statistic that will
be considered is G2(I|M) = G2(I)−G2(M) with df = 1. It is very important to note that an ordinal
test based on G2(I|M) is asymptotically more powerful for detecting changes from the independence
model, than the test based on G2(I), when the speci�ed model holds and for small degrees of freedom.
The statistic G2(I) is however better than G2(I|M) when detecting non-monotonic dependencies for
which β is zero or close to zero.

2.5 Loglinear models

A saturated model is one with no degrees of freedom and therefore �ts the data perfectly. The number
of parameters for the model is the same as the number of cells in the table. A saturated model has
the form

log(mij) = µ+ λXi + λYj + λXYij (1)

where mij is the expected frequencies, µ is the overall e�ect, λXi and λYj are the e�ects of category

i of variable X and the e�ects of category j of variable Y and λXYij is the interaction e�ect between
category i of variable X and category j of variable Y [1].

The independence model has the form

log(mij) = µ+ λXi + λYj (2)

If the variable X and Y are independent, it implies that the interaction e�ect is absent.

Dumping Severity Example

Let D denote dumping severity variable and O the operation variable. If the levels of D is denoted
by i, then i = N,S,M represent the levels �none�, �slight� and �moderate�. The levels of O is denoted
by j therefore A, B, C and D represent the level of operation. The saturated model for the dumping
severity data is given by:

log(mij) = µ+ λDi + λOj + λDOij (3)
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Dumping Severity
Estimates

Operation Estimates Interaction Estimates

λD1 = 0, 7633 λO1 = −0, 1973 λOD11 = 0, 2179 λOD12 = 0, 0810 λOD13 = −0, 2989
λD2 = 0, 1216 λO2 = −0, 0203 λOD21 = 0, 1495 λOD22 =

−0, 2927
λOD23 = 0, 1432

λD3 = −(λD1 + λD2 ) =
−0, 8849

λO3 = 0, 0844 λOD31 =
−0, 1143

λOD32 = 0, 1231 λOD33 = −0, 0416

λO4 = −(λO1 +λO2 +λO3 ) =
0, 1332

λOD41 =
−0, 2531

λOD42 = 0, 0886 λOD43 = 0, 1973

Table 6: Parameter Estimates for Saturated Loglinear Model Applied to Dumping Severity Data

Dumping Severity Estimates Operation Estimates

λD1 = 0, 7434 λO1 = −0, 0812
λD2 = 0, 1226 λO2 = −0, 00112

λD3 = −(λD1 + λD2 ) = −0, 866 λO3 = 0, 055
λO4 = −(λO1 + λO2 + λO3 ) = 0, 02732

Table 7: Parameter Estimates for Independence Loglinear Model Applied to Dumping Severity Data

where λDi and λOj are the e�ects of category i of dumping severity and the e�ects of category j of

the operations, λDOij is the interaction e�ect between dumping severity and the operations. The overall
e�ect µ is equal to 3,3269. The estimated e�ect parameters are given in Table 6.

The independence model for the dumping severity data is given by:

log(mij) = µ+ λDi + λOj (4)

The overall e�ect µ for the independence model is equal to 3,35. The estimated e�ect parameters
are given in Table 7.

The χ2-statistic is 10,5419 based on 6 degrees of freedom. The p-value is 0,1036 which implies that
the null hypothesis is not rejected. Therefore the conclusion reached, is that overall the estimated
frequencies do not di�er signi�cantly from the observed frequencies. In Table 8, the cell chi-square
values are given. It is observed that none of the values exceed the critical value of 3,84, hence the
estimated frequency values do not signi�cantly di�er from the observed values, in each cell.

The likelihood ratio for testing the independence of the variables areG2 = 10, 878 based on 6 degrees
of freedom. The p-value is calculated as 0,0922 which means that the dumping severity variable and
the operation variable are independent at a 5% signi�cance level.

Dumping Severity

Operation None Slight Moderate
A 0,598 0,0971 1,68
B 1,108 2,6152 0,0884
C 0,4453 1,0478 0,0346
D 1,1962 0,7251 1,1016

Table 8: Cell Chi-Square Values for Dumping Severity Data
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Dumping Severity
None Some

Operation

A 61 35
B 68 36
C 58 52
D 53 54

Table 9: Dumping Severity Adjusted Frequency Table

Operation Estimates

τO1 = 0, 235
τO2 = 0, 316
τO3 = −0, 211

τO4 = −(τO1 + τO2 + τO3 ) = 0, 02732

Table 10: Parameter Estimates for Logit Model Applied to Adjusted Dumping Severity Data

2.6 Logit models

Suppose variables X and Y are categorical and that the Y variable is a dichotomous response variable.
The conditional probability of a response j for variable Y, at level i of X, is πj(i) =

πij

πi+
.

The logit for Y at i is log
[

π2(i)

1−π2(i)

]
= log

(
mi2

mi1

)
, hence it is the log of the odds of level 1 of variable

Y relative to level 2 of variable Y.
Logit models for the cross-classi�cation can be �tted by using weighted least squares or by using

maximum likelihood estimation if the explanatory variables are continuous.
Consider X as a nominal variable [1]. A model that includes the e�ect of X is

log

(
mi2

mi1

)
= α+ τXi (5)

where
∑
τXi = 0.

Dumping Severity Example

To illustrate the logit model, the dumping severity data are adjusted so that dumping severity is a
dichotomous variable. Collapsing the second and third column of Table 2, yields the adjusted data in
Table 9. The logit model for the dumping severity data is given by:

log(mij) = α+ τOi (6)

The α for the model is equal to 0,3205. The estimated e�ect parameters are given in Table 10.
The χ2-statistic is 7,8865 based on 3 degrees of freedom. The p-value is 0,0484 which implies

that the null hypothesis is rejected. Therefore the conclusion reached, is that overall the estimated
frequencies do di�er signi�cantly from the observed frequencies. In Table 11, the cell chi-square values
are given. It is observed that none of the values exceed the critical value of 3,84, hence the estimated
frequency values do not signi�cantly di�er from the observed values, in each cell.

The likelihood ratio for testing the independence of the variables areG2 = 7, 9204 based on 3 degrees
of freedom. The p-value is calculated as 0,0477 which means that the dumping severity variable and
the operation variable are dependent at a 5% signi�cance level.
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Dumping Severity

Operation None Some
A 0,598 0,8109
B 1,108 1,5024
C 0,4453 0,6037
D 1,1962 1,6219

Table 11: Cell Chi-Square Values for Dumping Severity Data

2.7 Estimation

Loglinear and logit models can be �tted by using weighted least squares or maximum likelihood meth-
ods [1]. In this report, only the maximum likelihood method is considered. The maximum likelihood
estimates {m̂ij} are used to test the hypothesis that the population cell proportions satisfy an assumed
model.

The maximum likelihood estimates {m̂ij} depend on the cell counts through su�cient statistics
[3]. Suppose that variables X and Y are assumed to be independent Poisson random variables. Then
the joint Poisson probability mass function of {nij} is∏

i

∏
j

exp (−mij)m
nij

ij

nij !

where
∏
i

∏
j gives the product over all the cells in the table. The log likelihood can then be

expressed as L (m) =
∑
i

∑
j nij log (mij)−

∑
i

∑
jmij . Now consider the loglinear model log(mij) =

µ+ λXi + λYj + λXYij . Then the log likelihood becomes

L (m) = nµ+
∑
i

ni+λ
X
i +

∑
j

n+jλ
Y
j +

∑
i

∑
j

nijλ
XY
ij −

∑
i

∑
j

exp
(
µ+ λXi + λYj + λXYij

)
(7)

It is known that the Poisson distribution is in the exponential family, and therefore the coe�cients of
parameters in equation (7) are su�cient statistics. This implies that ni+and n+j are su�cient statistics.
The likelihood equations are then obtained by di�erentiating L (m) with respect to a parameter and
setting the result equal to zero [3]. The likelihood equations obtained for this example, will then be
m̂++ = n, m̂i+ = ni+, m̂+j = n+j and m̂ij = nij .

Birch showed that there is a unique solution {m̂ij} that satisfy the model and match the sample
data in their minimal su�cient statistics. Therefore, if a solution is found, the solution must be the
ML solution. The �tted values

{
m̂ij =

ni+n+j

n

}
satis�es the model, as well as the likelihood equations.

Hence it implies that they are the ML estimates.
For the two-way loglinear model, there are an explicit formula for m̂ij and the estimates are called

direct. Unfortunately, many loglinear models do not have direct estimates and an iterative method,
such as the Newton Rhapson approach, is required to get the ML estimates. These iterative methods
can also be used for models with direct estimates, but are redundant [3].

3 Categorical Analysis of Ordinal Data

3.1 Odds ratios for ordinal variables

Literature [1] di�erentiates between basic sets of odds ratios namely: a local set, a local-global set and
a global set.

A local set of (r − 1)(c− 1) odds ratios, also called the adjacent odds ratios, is de�ned as

θij =
πijπi+1,j+1

πi,j+1πi+1,j+1
(8)
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Cross Products
None to Slight Slight to Moderate

A to B 0,7369 2,2609
B to C 2,0390 0,5308
C to D 1,0396 1,4035

Table 12: Cross Product Ratios of Dumping Severity Data

This is a more natural method for cross-classi�cations of ordinal variables. Each θij describe sample
association in a certain part of the table. The local odds treat the row and column variables the same
and is formed by using cells in adjacent rows and adjacent columns. Goodman suggested loglinear
models to analyze {θij} [5].

The local-global set of odds ratios does make a distinction between rows and column variables.
The value of the local-global odds ratios indicate if rows are stochastically ordered on the response
variable. The response (row) variable is regarded as local and the column variable as global, since all
the categories of the column variable will be considered [1].

θ
′

ij =
(
∑
b≤j πib)(

∑
b>j πi+1,b)

(
∑
b>j πib)(

∑
b≤j πi+1,b)

=
Fj(i)(1− Fj(i+1))

Fj(i+1)(1− Fj(i))
(9)

For rows i and i+ 1, log(θ
′

ij) ≥ 0 for j = 1, ...(c− 1), is equivalent to Fj(i) ≥ Fj(i+1) for j = 1, ...c.
If the equivalence holds, the probability in row i+ 1 is greater for higher ordered variables. Hence the
distribution in row i+ 1 is stochastically higher than the distribution in row i.

The global set is similar to regular odds ratios for 2x2 tables with (r−1)(c−1) ways of collapsing
the category levels of the variables into dichotomies. It treats the response and explanatory variables
the same and describe the global association in the variables.

θ
′′

ij =
(
∑
a≤i
∑
b≤j πab)(

∑
a>i

∑
b>j πab)

(
∑
a≤i
∑
b>j πab)(

∑
a>i

∑
b≤j πab)

=
Fij(1 + Fij − Fi+ − F+j)

(Fi+ − Fij)(F+j − Fij)
(10)

If all log(θij) ≥ 0 then all log(θ
′

ij) ≥ 0 and if all log(θ
′

ij) ≥ 0 then all log(θ
′′

ij) ≥ 0. The converse of
these rules are not true.

Dumping Severity Example

For the given data, the cross product ratios (adjacent odds ratios) are calculated by equation (8) and
tabulated in Table 12. The estimated odds that dumping is slight instead of none is 2,0390 times
higher for operation C than for operation B.

In Table 13 the odds ratios are given where θ̂
′

ij is calculated using equation (9) and θ̂
′′

ij is calculated
using equation (10). From Table 13, it is observed that the estimated odds that dumping is moderate
instead of none or slight is 1,82 times higher for operation B than for operation A. The estimated odds
that dumping is moderate instead of none or slight is 1,86 times higher than for operation B, C, D
than for operation A. Operation D is stochastically higher than operations A, B and C. Operation C
is stochastically higher than operation A.

3.2 Loglinear models for ordinal variables

Standard loglinear models have the limitation that it treat variables as nominal which are invariant
to the orderings of ordered categorical data. Hence loglinear models must be adjusted to be useful
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i \ j N : S, M M : N, S

θ̂
′

ij

A : B 0,92 1,82
B : C 1,69 0,86
C : D 1,14 1,44

θ̂
′′

ij

A : B, C, D 1,38 1,86
A, B : C, D 1,74 1,33
A, B, C : D 1,55 1,53

Table 13: Values of Ordinal Odds Ratios for Dumping Severity Data.

when analyzing ordinal data. These models give a more structured form of association and interaction
terms. The adjusted model association parameters describe certain types of trends and have greater
power to detect important types of alternatives to the null hypothesis.

To obtain the maximum likelihood estimates of the parameters, iterative methods are needed [5].
Estimates of the loglinear models may therefore be obtained by using the iterative Newton-Rhapson
method. When the Newton-Rhapson method is used, it produces a covariance matrix of the parameter
estimates.

For large samples, the estimate of β has an asymptotically normal distribution.

3.2.1 Loglinear models for ordinal-ordinal tables

Suppose a two dimensional table with ordinal variables, X and Y. Variable X has r levels and variable
Y has c levels. Scores {ui} and {vj} are assigned to the ordinal variables, where u1 < ... < ur and
v1 < ... < vc. The scores assigned are usually chosen as a measure of the distances between categories.
If scores are equally spread then it will simplify the interpretation of the model. In practice, integer
scores where scores assigned are {ui = i} and {vj = j} are most common.

The uniform association model is de�ned as:

log(mij) = µ+ λXi + λYj + β(ui − ū)(vj − v̄) (11)

where
∑
λXi =

∑
λYj = 0 and take the orderings into account explicitly through the scores assigned.

In equation (11) the β parameter describe the association between variables X and Y. Hence if
β = 0 the model simpli�es to the independence model (2). The association term re�ects the deviation
of the model (11) from the independence model (2).

The model given by (11) has degrees of freedom equal to rc− r − c. This model does not need to
add association parameters as the number of categories increase [1].

A model in which all local odds ratios (8) are equal is a uniform association model. If integer scores
{ui = i} and {vj = j} are used then it implies that all θij = exp(β).

For a speci�c row i in the uniform association model (11), the deviation is a linear function of Y
through scores {vj} with a slope of β(ui − ū). Therefore it is known as a linear-by-linear association
model.

The relative size of expected frequencies in rows a and b is measured by log(
mbj

maj
) = (λXb − λXa ) +

β(ub − ua)(vj − v̄). If β > 0 for any rows a < b, then there are relatively more large observations on
Y in row b than in row a. Hence the conditional distribution of Y in row b is stochastically higher
than conditional distribution of Y in row a [1]. For any pair of rows a < b and columns c < d,
log(macmbd

madmbc
) = β(ub−ua)(vd−vc). This shows that the log odds ratio formed by a rectangular pattern

of cells is proportional directly to the product of the distance between the rows and the distance
between the columns. The log odds ratio equals β when the rows and the columns are one unit apart
[1].

There is no closed form expression for the MLE of mij in the uniform association model (11).
Under the sampling assumptions, the estimates satisfy the following likelihood equations:
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m̂i+ = ni+ m̂+j = n+j
∑
i

∑
j uivjm̂ij =∑

i

∑
j uivjnij

Let pij =
nij

n and π̂ij =
m̂ij

n denote the estimates of the probability πij for the observed data.
Then the third equation implies

∑
i

∑
j uivj π̂ij =

∑
i

∑
j uivjpij .

The conditional independence test under the assumption that the uniform association model holds,
consider the test statistic G2(I|U) = G2(I)−G2(U) with df = 1.

3.2.2 Loglinear models for ordinal-nominal tables

Suppose that the categories of X are nominal and the categories of Y are ordinal. Then scores v1 <
... < vc are used to re�ect the orderings of the columns.

The row e�ects model is de�ned as a loglinear model that use the ordinal nature of Y through
scores {vj} and has the form:

log(mij) = µ+ λXi + λYj + τi(vj − v̄) (12)

where
∑
λXi =

∑
λYj = 0, {vj} are known constants and {τi} are the row e�ect parameters. The

row e�ects model (12) has degrees of freedom (r − 1)(c− 2). If all τi = 0 it implies the independence
model. The uniform association model is obtained when τi = β(ui − ū). The deviation from the
independence model (2) is re�ected by τi(vj − v̄). The deviation of the row e�ects model (12) from
the independence model in a speci�c row, is a linear function of Y with slope τi. Hence the row e�ects
model is a linear-by-linear model. If τi > 0 it implies that in row i the probability of classi�cation
above v̄ on Y is higher than expected if the variables are independent. The row e�ect parameters
are a measure used to compare rows in terms of how the responses on the ordinal variable tend to be
distributed [1].

For �xed rows a and b, the relative size of expected frequencies is log(
mbj

maj
) = (λXb − λXa ) + (τb −

τa)(vj − v̄). If τb > τa then the conditional distribution of Y at level b of X is stochastically higher
than the conditional distribution of Y at level a of X.

For any pair of rows a < b and columns c < d, the log odds ratio is de�ned as log(macmbd

madmbc
) =

(τb− τa)(vd−vc) for the row e�ects model. This log odds ratio is proportional to the distance between
the columns. If τb > τa the log odds ratio is positive. When integer scores {vj = j} are applied, the
log odds ratio will be a constant [1].

The row e�ects model (12) can also be applied to the ordinal-ordinal tables in cases where the
departure from the independence model is not linear across rows or when the study is mainly concerned
with comparing levels of the row variable with respect to the conditional distribution on the column
variable.

Suppose the column variable Y is nominal and that scores {ui} are assigned to the ordinal row
variable X. Then the loglinear column e�ects model is de�ned as

log(mij) = µ+ λXi + λYj + ρj(ui − ū) (13)

where
∑
λXi =

∑
λYj = 0, {ui} are known constants and {ρi} are the column e�ect parameters.

There is no closed form expression for the MLE of mij in the row e�ects model (12). The estimates
can be obtained by using the Newton-Rhapson method. Under the sampling assumptions, the estimates
satisfy the following likelihood equations:

m̂i+ = ni+ m̂+j = n+j
∑
i

∑
j vjm̂ij =∑

i

∑
j vjnij

Equation 3 implies that the mean of the conditional distribution across the columns, are the same
as when the conditional distribution is based on the observed data or the estimated expected frequency.

17



Parameter Estimate

µ̂ 3,3319

λ̂O1 -0,2010

λ̂O2 -0,0330

λ̂O3 0,0993

λ̂O4 0,1347

λ̂D1 0,7605

λ̂D2 0,1332

λ̂D3 -0,8937

β̂ 0,0407

Table 14: Parameter estimates of uniform association model for dumping severity data

The conditional independence test hypothesis is H0 : τ1 = ... = τr = 0. The test is based on
G2(I|R) = G2(I)−G2(R) with df = 1. The statistic G2(I|R) focus on where the ordinal scale is used
through the linear departure of logmij from the independence model. The statistic G2(I) ignores the
ordinal nature of Y, if the speci�ed model is the row e�ects model.

3.2.3 Dumping Severity Example

The independence model for the dumping severity data is given by:

log(mij) = µ+ λOi + λDj (14)

The scores assigned for the following examples is ui = 3, 1, −1, −3 and vj = 2, 0, −2.
The uniform association model for the dumping severity data is given by:

log(mij) = µ+ λOi + λDj + β(ui − ū)(vj − v̄)

where i = A,B,C,D and j = N,S,M . The parameter estimates are calculated and tabulated in
table 14.

The row e�ects model for the dumping severity data is given by:

log(mij) = µ+ λOi + λDj + τi(vj − v̄)

where {τi} are the row e�ect parameters. The parameter estimates are calculated and tabulated
in table 15.

The column e�ects model for the dumping severity data is given by:

log(mij) = µ+ λOi + λDj + ρj(ui − ū))

where {ρj} are the column e�ect parameters. The parameter estimates are calculated and tabulated
in table 16.
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Parameter Estimate

µ̂ 3,3317

λ̂O1 -0,1838

λ̂O2 -0,0598

λ̂O3 0,1090

λ̂O4 0,1346

λ̂D1 0,8644

λ̂D2 0,1335

λ̂D3 -0,9979
τ̂1 0,0549
τ̂2 0,0147
τ̂3 0,1040
τ̂4 -0,1736

Table 15: Parameter estimates of uniform association model for dumping severity data

Parameter Estimate

µ̂ 3,3348

λ̂O1 -0,1894

λ̂O2 -0,0285

λ̂O3 0,0956

λ̂O4 0,1223

λ̂D1 0,7569

λ̂D2 0,1244

λ̂D3 -0,8813
ρ̂1 0,0822
ρ̂2 -0,0223
ρ̂3 0,0599

Table 16: Parameter estimates of uniform association model for dumping severity data
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G2 df

Independence model 10,878 6

Uniform association model 4,4773 5
Row e�ects model 4,3991 3
Col e�ects model 4,1205 4

Table 17: Goodness of �t for di�erent loglinear models for Dumping Severity Example

G2 df

Independence | Uniform 6,4007 1
Independence | Row 6,4789 3
Independence | Col 6,7575 2

Table 18: Measure of association for di�erent loglinear models for Dumping Severity Example

Goodness of �t

It is observed from the table, that the independence model is an inadequate �t for this data. The
uniform association model, �ts the data the best. It is observed that the row e�ects model as well as
the column e�ects model also �ts the data well.

When the conditional test of independence is done, it is observed that there is strong evidence of
an association between the di�erent types of operations and the dumping severity, for all the models.

3.3 Logits for ordinal variables

Suppose there is c ≥ 2 response categories. For a variable with response probabilities (π1, ...πc) at
certain combinations of levels of the explanatory variable, the conditional logit is de�ned as

log(
πj
πk

) = log(
πj/(πj+πk)

πk/(πj+πk)
)

This gives the value of the log odds that a response is classi�ed into category j instead of category
k, given that the observation falls in one of the categories. Suppose Lj = log(

πj

πc
) for j = 1, ...(c − 1)

then log(
πj

πk
) = Lj − Lk for 1 ≤ j ≤ k ≤ c− 1.

Special cases that will be considered is cumulative logit (proportional odds logit), continuation logit
and adjacent-category logit [1].

3.3.1 Cumulative logit model

The cumulative logits are de�ned as follows for j = 1, ...(c− 1)

Lj = log

[
πj+1 + ...+ πc
π1 + ...+ πj

]

When calculating the cumulative logit all c categories are used.
Suppose the response variable is an ordinal variable and that j is a �xed cut point selected. Then

the jth cumulative logit in row i where i = 1...r is:

Lj(i) = log

[
mi,j+1 + ...+mic

mi1 + ...+mij

]
(15)
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If the row variable is ordinal then scores {ui} can be assigned to its levels. The cumulative logit
model for the jth cumulative logit values is Lj(i) = αj + βj(ui − ū) where Lj(i) is given in equation
(15). This model has df = r − 2. If the cumulative logit model holds and βj = 0, then it implies that
the two variables are independent. The di�erence between logits in adjacent rows is Lj(i+1) − Lj(i) =
βj(ui+1 − ui) which simpli�es to Lj(i+1) − Lj(i) = βj when integer scores {ui = i} is used.

Dumping Severity Example

Then, for example, the cumulative log odds, for i = 1, with cut point j = 1, is L1(1) = log
(
28+7
61

)
=

−0, 2413 and cumulative log odds with cut point j = 2, is L2(1) = log
(

7
61+28

)
= −1, 1043.

3.3.2 Continuation logit model

The continuation logits is de�ned as following for j = 1, ...(c− 1)

Lj(i) = log

[
πi,j+1

πi,1 + ...+ πi,j

]

Dumping Severity Example

Then, for example, the continuation log odds of dumping severity is L1(1) = log
(
28
61

)
= −0, 3382 for

j = 1 and L2(1) = log
(

7
61+28

)
= −1, 1043 for j = 2.

3.3.3 Adjacent-category logit model

The adjacent-cumulative logits is de�ned as following for j = 1, ...(c− 1)

Lj(i) = log

[
πi,j+1

πi,j

]

Dumping Severity Example

Then, for example, the adjacent log odds of dumping severity slight relative to dumping severity
moderate, is L2(1) = log

(
7
28

)
= −0, 6021 and the adjacent log odds of dumping severity none relative

to dumping severity slight, is L1(1) = log
(
28
61

)
= −0, 3382.

3.4 Logit models for ordinal data

Goodman [6] presented models using the logits discussed in Subsection 3.3.

3.4.1 Logit model for ordinal-ordinal tables

Consider two ordinal variables X and Y in a two-way table. Suppose Y is the response (column)
variable and that {ui} scores are assigned to X, the ordinal row variable. Although the response
variable is ordinal, it is not necessary to assign scores to it.

For a two-way table with �xed j, the ordinal logit regression model is de�ned as

Lj(i) = αj + βj(ui − ū) (16)

for i = 1...r. If it is assumed that β1 = ... = βr−1 then (16) simpli�es to the cumulative logit model

Lj(i) = αj + β(ui − ū) (17)
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where Lj(i) is given in equation 15) with 1 ≤ i ≤ r and 1 ≤ j ≤ c − 1. In (17) there is a single
association parameter β and c − 1 {αj} parameters. The cumulative logit model has df = rc − r − c
and a simple interpretation of parameters. For each i, L1(i) ≥ ... ≥ Lc−1(i) such that {αj}are monotone

decreasing. If the model holds and β = 0, then for every j, the jth logit is the same in each row. This
implies independence between X and Y. If β > 0, the logit increases as X increases. Thus conditional
Y distributions are stochastically higher at high values of X [1].

For (17) it can be showed that Lj(b) − Lj(a) = β (ub − ua) which implies that the log odds ratio
is proportional to the distance between the rows a and b. If integer scores are applied to (17), then
Lj(b) − Lj(a) = β.

Given that the uniform association model (11) holds, the test of independence (H0 : β = 0) is based
on the statistic G2(I|U) = G2(I)−G2(U).

3.4.2 Logit model for ordinal-nominal tables

Consider the explanatory variable X, with nominal levels. For each of the c − 1 ways of forming the
cumulative logits, the model is considered having row e�ects [1].

The row e�ects indicate the nature of the association. If the row e�ects are added for the levels of
the nominal variable X, the model becomes

Lj(i) = αj + τXi (18)

where
∑
τi = 0 for 1 ≤ i ≤ r and 1 ≤ j ≤ c− 1. The αj parameter represents the average over the r

rows of the jth cumulative logit. The model (18) has df = (r−1)(c−2). If rows a and b are considered,
the di�erence in the logits are Lj(b) − Lj(a) = τb − τa. If τa < τb it implies that the conditional Y
distribution is stochastically higher in row b than in row a [1].

The deviation from the mean caused by the location of the cell in row i, is given by τXi . If the
explanatory variable is ordinal and it has a linear e�ect, then β has a slope interpretation. Hence β
then represents the change in the logit and eβ represents the multiplicative change in the odds as the
ordinal variable change with one unit.

The independence model in terms of cumulative logits are de�ned as Lj(i) = αj for 1 ≤ i ≤ r and
1 ≤ j ≤ c − 1. This implies that all the row e�ects must be equal to zero to get the independence
model.

The results of �tting models for separate logits are independent. Hence the G2 statistics and the
degrees of freedom values can be added together to obtain an over-all goodness-of-�t test.

If model (18) holds, the conditional test of independence is based on G2(I|R) = G2(I) − G2(R),
where the G2 statistic has an asymptotically chi-squared distribution under the null hypothesis with
df = r − 1 [1].

3.4.3 Dumping Severity Example

The cumulative model for the dumping severity example is given as

Lj(i) = αj + β(ui − ū)

where i = A,B,C,D and {ui} are the scores assigned to the operation variable. The estimate of the

linear e�ect of operations on the logit of dumping severity is β̂ = 0, 225. Since β̂ is positive, it implies
that the logit increase as the operation increases. The estimates for the logit model is α̂1 = −0, 320
and α̂2 = −2, 074. The goodness of �t for this model is G2 = 4, 27 based on df = 5. Hence the model
is a very good �t.

Goodness of �t

It is observed from Table 19, that the basic logit model, which does not take the orderings into account,
is an inadequate �t. The logit uniform model, which take account of the orderings, �ts very well.
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G2 df

Logit model (cumulative) 7,9204 3

Logit uniform model 4,27 5

Table 19: Goodness of �t for di�erent logit models for Dumping Severity Example

4 Conclusion

It was concluded that when working with ordinal data, the loglinear and logit models, adjusted to take
orderings into account, �tted the data much better.
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Appendix

Dumping Severity Example

Dataset

opt ions nodate l i n e s i z e = 64 page s i z e = 250 ;
t i t l e 1 'Dumping Sever i ty ' ;
proc format ;
va lue aa 1 = 'A'

2 = 'B'
3 = 'C'
4 = 'D' ;

va lue bb 1 = 'NONE'
2 = 'SLIGHT'
3 = 'MODERATE' ;

data DSE;
input op ds num @@;
l a b e l op = ' Operation ' ;
l a b e l ds = 'Dumping Sever i ty ' ;
cards ;
1 1 61 1 2 28 1 3 7
2 1 68 2 2 23 2 3 13
3 1 58 3 2 40 3 3 12
4 1 53 4 2 38 4 3 16
;

Frequency procedure

Output used in Section 2.1 and 2.5.

proc f r e q data = DSE;
weight num;
t ab l e s op∗ds/ ch i sq expected c e l l c h i s q ;
format op aa . ds bb . ;
t i t l e 3 ' Chisquare t e s t f o r independence ' ;
run ;
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Dumping Severity 1

Chisquare test for independence

The FREQ Procedure

Dumping Severity 1

Chisquare test for independence

The FREQ Procedure

Frequency
Expected
Cell Chi-Square
Percent
Row Pct
Col Pct

Table of op by ds

op(Operation)

ds(Dumping Severity)

NONE SLIGHT MODERATE Total

A 61
55.252
0.598
14.63
63.54
25.42

28
29.698
0.0971

6.71
29.17
21.71

7
11.05

1.4846
1.68
7.29

14.58

96

23.02

B 68
59.856
1.108
16.31
65.38
28.33

23
32.173
2.6152

5.52
22.12
17.83

13
11.971
0.0884

3.12
12.50
27.08

104

24.94

C 58
63.309
0.4453
13.91
52.73
24.17

40
34.029
1.0478

9.59
36.36
31.01

12
12.662
0.0346

2.88
10.91
25.00

110

26.38

D 53
61.583
1.1962
12.71
49.53
22.08

38
33.101
0.7251

9.11
35.51
29.46

16
12.317
1.1016

3.84
14.95
33.33

107

25.66

Total 240
57.55

129
30.94

48
11.51

417
100.00

Statistics for Table of op by ds

Statistic DF Value Prob

Chi-Square 6 10.5419 0.1036

Likelihood Ratio Chi-Square 6 10.8782 0.0922

Mantel-Haenszel Chi-Square 1 6.2170 0.0127

Phi Coefficient 0.1590

Contingency Coefficient 0.1570

Cramer's V 0.1124

Sample Size = 417



Odds ratios

Output used in Section 2.2.

proc iml ;
X = {61 28 7 , 68 23 13 , 58 40 12 , 53 38 16} ;
p r i n t X;
t i t l e 1 'Odds r a t i o s f o r dumping s e v e r i t y example ' ;
n = nrow (X) ;
m = n−1;
k = nco l (X) ;
p = k−1;

/∗ Tota ls added∗/
X1 = X[ ,+ ] ;
X2 = X| | X1 ;
X3 = X2 [+ , ] ;
Y = X2//X3 ;
p r i n t Y;
w = nrow (Y) ;
z = nco l (Y) ;

/∗ Fix moderate∗/
/∗ Odds r a t i o s f o r dumping s e v e r i t y ∗/
p r in t 'Odds r a t i o s f o r dumping s ev e r i t y ' ;
A = J (w, p , 0 ) ;
/∗ A i s a 2∗5 matrix

Column one i s r a t i o o f none to moderate
Column two i s r a t i o o f s l i g h t to moderate∗/

do i = 1 to w;
do j = 1 to p ;

A[ i , 1 ] = Y[ i , 1 ] /Y[ i , j +1] ;
A[ i , 2 ] = Y[ i , j ] /Y[ i , j +1] ;

end ;
end ;
p r i n t A;

/∗ Fix Operation D∗/
/∗ Odds r a t i o s f o r operat i on ∗/
p r in t 'Odds r a t i o s f o r operat ion ' ;
B = J (m, z , 0 ) ;
/∗ B i s a 3∗4 matrix

Row 1 i s r a t i o o f A to D
Row 2 i s r a t i o o f B to D
Row 3 i s r a t i o o f C to D∗/

do i = 1 to m;
do j = 1 to z ;

B[ 1 , j ] = Y[ 1 , j ] /Y[ i +1, j ] ;
B[ 2 , j ] = Y[ 2 , j ] /Y[ i +1, j ] ;
B[ 3 , j ] = Y[ i , j ] /Y[ i +1, j ] ;

end ;
end ;
p r i n t B;
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Odds ratios for dumping severity example 1Odds ratios for dumping severity example 1

X

61 28 7

68 23 13

58 40 12

53 38 16

Odds ratios for dumping severity

A

8.7142857 4

5.2307692 1.7692308

4.8333333 3.3333333

3.3125 2.375

5 2.6875

Odds ratios for operation

B

1.1509434 0.7368421 0.4375 0.8971963

1.2830189 0.6052632 0.8125 0.9719626

1.0943396 1.0526316 0.75 1.0280374



Loglinear model �tted

Output used in Section 2.5.

proc catmod data = DSE;
weight num;
model op∗ds = _response_ / ml nog l s pred = f r e q n op r o f i l e ;
l o g l i n op | ds ;
format op aa . ds bb . ;
t i t l e 3 ' Log l inea r model : Saturated model ' ;
run ;

proc catmod data = DSE;
weight num;
model op∗ds = _response_ / ml nog l s pred = f r e q n op r o f i l e ;
l o g l i n op ds ;
format op aa . ds bb . ;
t i t l e 3 ' Log l inea r model : Independence ' ;
run ;
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Dumping Severity 1

Loglinear model: Saturated model

The CATMOD Procedure

Dumping Severity 1

Loglinear model: Saturated model

The CATMOD Procedure

Data Summary

Response op*ds Response Levels 12

Weight Variable num Populations 1

Data Set DSE Total Frequency 417

Frequency Missing 0 Observations 12

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

op 3 3.65 0.3019

ds 2 113.14 <.0001

op*ds 6 10.37 0.1099

Likelihood Ratio 0 . .

Analysis of Maximum Likelihood Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

op A -0.1973 0.1214 2.64 0.1042

B -0.0203 0.1069 0.04 0.8492

C 0.0844 0.1043 0.65 0.4184

ds NONE 0.7633 0.0729 109.68 <.0001

SLIGHT 0.1216 0.0814 2.23 0.1354

op*ds A NONE 0.2179 0.1374 2.52 0.1127

A SLIGHT 0.0810 0.1530 0.28 0.5967

B NONE 0.1495 0.1236 1.46 0.2262

B SLIGHT -0.2927 0.1462 4.01 0.0453

C NONE -0.1143 0.1231 0.86 0.3534

C SLIGHT 0.1559 0.1333 1.37 0.2423



Dumping Severity 2

Loglinear model: Saturated model

The CATMOD Procedure

Maximum Likelihood Predicted Values for Response Functions

Observed Predicted

Function
Number Function

Standard
Error Function

Standard
Error Residual

1 1.338285 0.28088 1.338285 0.28088 0

2 0.559616 0.313392 0.559616 0.313392 0

3 -0.82668 0.453163 -0.82668 0.453154 -1.76E-9

4 1.446919 0.277859 1.446919 0.27786 0

5 0.362905 0.325543 0.362905 0.325543 0

6 -0.20764 0.373394 -0.20764 0.373394 0

7 1.287854 0.282385 1.287854 0.282385 0

8 0.916291 0.295804 0.916291 0.295804 0

9 -0.28768 0.381881 -0.28768 0.381882 0

10 1.197703 0.285251 1.197703 0.285251 0

11 0.864997 0.29802 0.864997 0.29802 0

Maximum Likelihood Predicted Values for Frequencies

Observed Predicted

op ds Frequency
Standard

Error Frequency
Standard

Error Residual

A NONE 61 7.216421 61 7.216424 1.806E-9

A SLIGHT 28 5.110764 28 5.110766 8.29E-10

A MODERATE 7 2.623451 7 2.623374 -1.21E-8

B NONE 68 7.543956 68 7.543959 2.014E-9

B SLIGHT 23 4.661697 23 4.661699 6.81E-10

B MODERATE 13 3.548905 13 3.548906 3.85E-10

C NONE 58 7.066318 58 7.066321 1.717E-9

C SLIGHT 40 6.013574 40 6.013576 1.184E-9

C MODERATE 12 3.413895 12 3.413896 3.55E-10

D NONE 53 6.801749 53 6.801752 1.569E-9

D SLIGHT 38 5.876833 38 5.876836 1.125E-9

D MODERATE 16 3.922511 16 3.922513 4.74E-10



Dumping Severity 3

Loglinear model: Independence

The CATMOD Procedure

Dumping Severity 3

Loglinear model: Independence

The CATMOD Procedure

Data Summary

Response op*ds Response Levels 12

Weight Variable num Populations 1

Data Set DSE Total Frequency 417

Frequency Missing 0 Observations 12

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

op 3 1.04 0.7911

ds 2 114.70 <.0001

Likelihood Ratio 6 10.88 0.0922

Analysis of Maximum Likelihood Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

op A -0.0812 0.0873 0.87 0.3522

B -0.00112 0.0849 0.00 0.9895

C 0.0550 0.0834 0.43 0.5097

ds NONE 0.7434 0.0709 109.93 <.0001

SLIGHT 0.1226 0.0789 2.42 0.1202

Maximum Likelihood Predicted Values for Response Functions

Observed Predicted

Function
Number Function

Standard
Error Function

Standard
Error Residual

1 1.338285 0.28088 1.500957 0.211563 -0.16267

2 0.559616 0.313392 0.880131 0.219873 -0.32051

3 -0.82668 0.453163 -0.10848 0.140579 -0.7182

4 1.446919 0.277859 1.581 0.209661 -0.13408

5 0.362905 0.325543 0.960173 0.218044 -0.59727

6 -0.20764 0.373394 -0.02844 0.1377 -0.1792

7 1.287854 0.282385 1.637089 0.208406 -0.34924

8 0.916291 0.295804 1.016263 0.216838 -0.09997

9 -0.28768 0.381881 0.027652 0.135782 -0.31533



Dumping Severity 4

Loglinear model: Independence

The CATMOD Procedure

Maximum Likelihood Predicted Values for Response Functions

Observed Predicted

Function
Number Function

Standard
Error Function

Standard
Error Residual

10 1.197703 0.285251 1.609438 0.158102 -0.41173

11 0.864997 0.29802 0.988611 0.169062 -0.12361

Maximum Likelihood Predicted Values for Frequencies

Observed Predicted

op ds Frequency
Standard

Error Frequency
Standard

Error Residual

A NONE 61 7.216421 55.2518 5.466064 5.748202

A SLIGHT 28 5.110764 29.69784 3.434248 -1.69784

A MODERATE 7 2.623451 11.05036 1.797204 -4.05036

B NONE 68 7.543956 59.85611 5.673992 8.143885

B SLIGHT 23 4.661697 32.17266 3.60725 -9.17266

B MODERATE 13 3.548905 11.97122 1.917255 1.028777

C NONE 58 7.066318 63.30935 5.823566 -5.30935

C SLIGHT 40 6.013574 34.02878 3.734924 5.971223

C MODERATE 12 3.413895 12.66187 2.007026 -0.66187

D NONE 53 6.801749 61.58273 5.749429 -8.58273

D SLIGHT 38 5.876833 33.10072 3.671295 4.899281

D MODERATE 16 3.922511 12.31655 1.962166 3.683453



Dataset For Cumulative Logit

proc format ;
va lue aa 1 = 'A'

2 = 'B'
3 = 'C'
4 = 'D' ;

va lue bb 1 = 'NONE'
2 = 'SOME' ;

data DSEadj ;
input op ds num @@;
l a b e l op = ' Operation ' ;
l a b e l ds = 'Dumping Sever i ty ' ;
cards ;
1 1 61 1 2 35
2 1 68 2 2 36
3 1 58 3 2 52
4 1 53 4 2 54
;

Logit model �tted

Output used in Section 2.6.

proc f r e q data = DSEadj ;
weight num;
t ab l e s op∗ds/ ch i sq expected c e l l c h i s q ;
format op aa . ds bb . ;
t i t l e 3 ' Chisquare t e s t f o r independence ' ;
run ;

proc catmod data = DSEadj ;
weight num;
model ds = op /ml ;
format op aa . ds bb . ;
t i t l e 3 ' Log i t model ' ;
run ;
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Dumping Severity 1

Chisquare test for independence

The FREQ Procedure

Dumping Severity 1

Chisquare test for independence

The FREQ Procedure

Frequency
Expected
Cell Chi-Square
Percent
Row Pct
Col Pct

Table of op by ds

op(Operation)

ds(Dumping Severity)

NONE SOME Total

A 61
55.252

0.598
14.63
63.54
25.42

35
40.748
0.8109

8.39
36.46
19.77

96

23.02

B 68
59.856

1.108
16.31
65.38
28.33

36
44.144
1.5024

8.63
34.62
20.34

104

24.94

C 58
63.309
0.4453

13.91
52.73
24.17

52
46.691
0.6037

12.47
47.27
29.38

110

26.38

D 53
61.583
1.1962

12.71
49.53
22.08

54
45.417
1.6219

12.95
50.47
30.51

107

25.66

Total 240
57.55

177
42.45

417
100.00

Statistics for Table of op by ds

Statistic DF Value Prob

Chi-Square 3 7.8865 0.0484

Likelihood Ratio Chi-Square 3 7.9204 0.0477

Mantel-Haenszel Chi-Square 1 6.3862 0.0115

Phi Coefficient 0.1375

Contingency Coefficient 0.1362

Cramer's V 0.1375

Sample Size = 417



Dumping Severity 2

Logit model

The CATMOD Procedure

Dumping Severity 2

Logit model

The CATMOD Procedure

Data Summary

Response ds Response Levels 2

Weight Variable num Populations 4

Data Set DSE Total Frequency 417

Frequency Missing 0 Observations 8

Population Profiles

Sample op Sample Size

1 A 96

2 B 104

3 C 110

4 D 107

Response Profiles

Response ds

1 NONE

2 SOME

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 10.19 0.0014

op 3 7.82 0.0498

Likelihood Ratio 0 . .

Analysis of Maximum Likelihood Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 0.3205 0.1004 10.19 0.0014

op A 0.2350 0.1805 1.70 0.1928

B 0.3155 0.1770 3.18 0.0747

C -0.2113 0.1683 1.58 0.2092



Ordinal odds ratios

Output used in Section 3.1.

proc iml ;
X = {61 28 7 , 68 23 13 , 58 40 12 , 53 38 16} ;
p r i n t X;
t i t l e 1 'Odds r a t i o s f o r dumping s e v e r i t y example ' ;
/∗ Getting c r o s s product r a t i o ∗/
n = nrow (X) ;
m = n−1;
k = nco l (X) ;
p = k−1;
Cross_Product_Ratio = J (m, p , 0 ) ;
do i = 1 to m;

do j = 1 to p ;
Cross_Product_Ratio [ i , j ] = (X[ i , j ]∗X[ i +1, j +1])/(X[ i +1, j ]∗X[ i , j +1 ] ) ;
end ;

end ;
p r i n t Cross_Product_Ratio ;
/∗ Tota ls added∗/
X1 = X[ ,+ ] ;
X2 = X| | X1 ;
X3 = X2 [+ , ] ;
Y = X2//X3 ;
p r i n t Y;
w = nrow (Y) ;
z = nco l (Y) ;

T1 = J (m, p , 0 ) ;
do i = 1 to m;

T1 [ i , 1 ]=(X[ i , 1 ] ∗ (X[ i +1 ,2]+X[ i +1 ,3 ] ) )/ (X[ i +1 ,1]∗(X[ i ,2 ]+X[ i , 3 ] ) ) ;
T1 [ i , 2 ]=(X[ i +1 ,3]∗(X[ i ,1 ]+X[ i , 2 ] ) ) / (X[ i , 3 ] ∗ (X[ i +1 ,1]+X[ i +1 , 2 ] ) ) ;

end ;
p r i n t T1 ;

T2 = J (m, p , 0 ) ;
do i = 1 to m;

do j = 1 to p ;
C = Y[ 1 : i , 1 : j ] ;
D = Y[ i +1:m+1 ,1: j ] ;
E = Y[ 1 : i , j +1 : 3 ] ;
F = Y[ i +1:m+1, j +1 : 3 ] ;
T2 [ i , j ]=(C[+]∗F[+ ] ) / (E[+]∗D[+ ] ) ;

end ;
end ;
p r i n t T2 ;
qu i t ;
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Odds ratios for dumping severity example 1Odds ratios for dumping severity example 1

X

61 28 7

68 23 13

58 40 12

53 38 16

Cross_Product_Ratio

0.7368697 2.2608696

2.0389805 0.5307692

1.0396226 1.4035088

T1

0.9226891 1.8163265

1.6934866 0.8571429

1.1364296 1.4358974

T2

1.3826018 1.8617347

1.735059 1.3333333

1.5490106 1.5274725



Ordinal Loglinear models �tted

data DSEO;
input op1 op2 op3 ds1 ds2 num x ;
cards ;
1 0 0 1 0 61 6
1 0 0 0 1 28 0
1 0 0 −1 −1 7 −6
0 1 0 1 0 68 2
0 1 0 0 1 23 0
0 1 0 −1 −1 13 −2
0 0 1 1 0 58 −2
0 0 1 0 1 40 0
0 0 1 −1 −1 12 2
−1 −1 −1 1 0 53 −6
−1 −1 −1 0 1 38 0
−1 −1 −1 −1 −1 16 6
;
proc genmod data=DSEO order=data ;
model num = op1 op2 op3 ds1 ds2 x / l i n k=log d i s t=po i s son l r c i type3 obs ta t s ;
t i t l e ' Uniform a s s o c i a t i o n model ' ;
run ;

data DSEOR;
input op1 op2 op3 ds1 ds2 num tau1 tau2 tau3 ;
cards ;
1 0 0 1 0 61 2 0 0
1 0 0 0 1 28 0 0 0
1 0 0 −1 −1 7 −2 0 0
0 1 0 1 0 68 0 2 0
0 1 0 0 1 23 0 0 0
0 1 0 −1 −1 13 0 −2 0
0 0 1 1 0 58 0 0 −2
0 0 1 0 1 40 0 0 0
0 0 1 −1 −1 12 0 0 2
−1 −1 −1 1 0 53 −2 −2 −2
−1 −1 −1 0 1 38 0 0 0
−1 −1 −1 −1 −1 16 2 2 2
;
proc genmod data=DSEOR order=data ;
model num = op1 op2 op3 ds1 ds2 tau1 tau2 tau3 / l i n k=log d i s t=po i s son l r c i type3 obs ta t s ;
t i t l e 'Row e f f e c t s model ' ;
run ;
data DSEOC;
input op1 op2 op3 ds1 ds2 num tau1 tau2 ;
cards ;
1 0 0 1 0 61 3 0
1 0 0 0 1 28 0 3
1 0 0 −1 −1 7 −3 −3
0 1 0 1 0 68 1 0
0 1 0 0 1 23 0 1
0 1 0 −1 −1 13 −1 −1
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0 0 1 1 0 58 −1 0
0 0 1 0 1 40 0 −1
0 0 1 −1 −1 12 1 1
−1 −1 −1 1 0 53 −3 0
−1 −1 −1 0 1 38 0 −3
−1 −1 −1 −1 −1 16 3 3
;
proc genmod data=DSEOC order=data ;
model num = op1 op2 op3 ds1 ds2 tau1 tau2 / l i n k=log d i s t=po i s son l r c i type3 obs ta t s ;
t i t l e ' Col e f f e c t s model ' ;
run ;
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Uniform association model 1

The GENMOD Procedure

Uniform association model 1

The GENMOD Procedure

Model Information

Data Set WORK.DSEO

Distribution Poisson

Link Function Log

Dependent Variable num

Number of Observations Read 12

Number of Observations Used 12

Parameter
Information

Parameter Effect

Prm1 Intercept

Prm2 op1

Prm3 op2

Prm4 op3

Prm5 ds1

Prm6 ds2

Prm7 x

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 5 4.5898 0.9180

Scaled Deviance 5 4.5898 0.9180

Pearson Chi-Square 5 4.4773 0.8955

Scaled Pearson X2 5 4.4773 0.8955

Log Likelihood 1136.6737

Full Log Likelihood -33.3309

AIC (smaller is better) 80.6618

AICC (smaller is better) 108.6618

BIC (smaller is better) 84.0562

Algorithm converged.



Uniform association model 2

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Likelihood Ratio
95%

Confidence
Limits

Wald
Chi-Square Pr > ChiSq

Intercept 1 3.3319 0.0620 3.2065 3.4498 2889.43 <.0001

op1 1 -0.2010 0.1016 -0.4050 -0.0062 3.91 0.0479

op2 1 -0.0330 0.0857 -0.2041 0.1321 0.15 0.7001

op3 1 0.0993 0.0859 -0.0717 0.2656 1.33 0.2480

ds1 1 0.7605 0.0722 0.6207 0.9042 110.84 <.0001

ds2 1 0.1332 0.0793 -0.0226 0.2889 2.82 0.0932

x 1 0.0407 0.0164 0.0088 0.0732 6.15 0.0132

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

op1 1 4.10 0.0430

op2 1 0.15 0.6991

op3 1 1.31 0.2520

ds1 1 119.81 <.0001

ds2 1 2.81 0.0937

x 1 6.29 0.0122



Row effects model 5

The GENMOD Procedure

Row effects model 5

The GENMOD Procedure

Model Information

Data Set WORK.DSEOR

Distribution Poisson

Link Function Log

Dependent Variable num

Number of Observations Read 12

Number of Observations Used 12

Parameter
Information

Parameter Effect

Prm1 Intercept

Prm2 op1

Prm3 op2

Prm4 op3

Prm5 ds1

Prm6 ds2

Prm7 tau1

Prm8 tau2

Prm9 tau3

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 3 4.4034 1.4678

Scaled Deviance 3 4.4034 1.4678

Pearson Chi-Square 3 4.3991 1.4664

Scaled Pearson X2 3 4.3991 1.4664

Log Likelihood 1136.7669

Full Log Likelihood -33.2377

AIC (smaller is better) 84.4754

AICC (smaller is better) 174.4754

BIC (smaller is better) 88.8396

Algorithm converged.



Row effects model 6

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Likelihood Ratio
95%

Confidence
Limits

Wald
Chi-Square Pr > ChiSq

Intercept 1 3.3317 0.0620 3.2063 3.4497 2887.16 <.0001

op1 1 -0.1838 0.1136 -0.4164 0.0308 2.62 0.1058

op2 1 -0.0598 0.1075 -0.2783 0.1447 0.31 0.5780

op3 1 0.1090 0.0988 -0.0893 0.2991 1.22 0.2700

ds1 1 0.8644 0.1445 0.5839 1.1512 35.80 <.0001

ds2 1 0.1335 0.0794 -0.0223 0.2893 2.83 0.0925

tau1 1 0.0549 0.0723 -0.0865 0.1974 0.58 0.4474

tau2 1 0.0147 0.0722 -0.1273 0.1564 0.04 0.8388

tau3 1 0.1040 0.1196 -0.1336 0.3366 0.76 0.3846

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

op1 1 2.79 0.0949

op2 1 0.32 0.5745

op3 1 1.19 0.2760

ds1 1 37.03 <.0001

ds2 1 2.82 0.0930

tau1 1 0.58 0.4469

tau2 1 0.04 0.8388

tau3 1 0.75 0.3871



Col effects model 10

The GENMOD Procedure

Col effects model 10

The GENMOD Procedure

Model Information

Data Set WORK.DSEOC

Distribution Poisson

Link Function Log

Dependent Variable num

Number of Observations Read 12

Number of Observations Used 12

Parameter
Information

Parameter Effect

Prm1 Intercept

Prm2 op1

Prm3 op2

Prm4 op3

Prm5 ds1

Prm6 ds2

Prm7 tau1

Prm8 tau2

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 4 4.2107 1.0527

Scaled Deviance 4 4.2107 1.0527

Pearson Chi-Square 4 4.1205 1.0301

Scaled Pearson X2 4 4.1205 1.0301

Log Likelihood 1136.8632

Full Log Likelihood -33.1413

AIC (smaller is better) 82.2827

AICC (smaller is better) 130.2827

BIC (smaller is better) 86.1619

Algorithm converged.



Col effects model 11

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Likelihood Ratio
95%

Confidence
Limits

Wald
Chi-Square Pr > ChiSq

Intercept 1 3.3348 0.0618 3.2098 3.4523 2914.46 <.0001

op1 1 -0.1894 0.1030 -0.3963 0.0080 3.38 0.0658

op2 1 -0.0285 0.0860 -0.2002 0.1372 0.11 0.7401

op3 1 0.0956 0.0860 -0.0756 0.2621 1.23 0.2667

ds1 1 0.7569 0.0721 0.6173 0.9006 110.06 <.0001

ds2 1 0.1244 0.0804 -0.0335 0.2824 2.39 0.1220

tau1 1 0.0822 0.0327 0.0186 0.1470 6.32 0.0120

tau2 1 -0.0223 0.0362 -0.0935 0.0489 0.38 0.5380

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

op1 1 3.53 0.0602

op2 1 0.11 0.7394

op3 1 1.21 0.2706

ds1 1 118.83 <.0001

ds2 1 2.39 0.1223

tau1 1 6.44 0.0112

tau2 1 0.38 0.5381



Ordinal Logit model �tted

data d1 ;
input opera t i on s e v e r i t y f ;
cards ;
−1.5 1 61
−1.5 0 28
−1.5 −1 7
−0.5 1 68
−0.5 0 23
−0.5 −1 13
0 .5 1 58
0 .5 0 40
0 .5 −1 12
1 .5 1 53
1 .5 0 38
1 .5 −1 16

;
ods g raph i c s on ;
proc l o g i s t i c data=d1 ;
f r e q f ;
model s e v e r i t y=operat ion / covb ; t i t l e ' Agrest iOrdinalp120 ' ;
run ;
ods g raph i c s o f f ;

48



AgrestiOrdinalp120 1

The LOGISTIC Procedure

AgrestiOrdinalp120 1

The LOGISTIC Procedure

Model Information

Data Set WORK.D1

Response Variable severity

Number of Response Levels 3

Frequency Variable f

Model cumulative logit

Optimization Technique Fisher's scoring

Number of Observations Read 12

Number of Observations Used 12

Sum of Frequencies Read 417

Sum of Frequencies Used 417

Response Profile

Ordered
Value severity

Total
Frequency

1 -1 48

2 0 129

3 1 240

Probabilities modeled are cumulated over the lower Ordered Values.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional
Odds Assumption

Chi-Square DF Pr > ChiSq

0.0211 1 0.8846

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 779.420 774.812

SC 787.487 786.912

-2 Log L 775.420 768.812



AgrestiOrdinalp120 2

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6.6081 1 0.0102

Score 6.6042 1 0.0102

Wald 6.4872 1 0.0109

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept -1 1 -2.0742 0.1549 179.2222 <.0001

Intercept 0 1 -0.3202 0.1001 10.2272 0.0014

operation 1 0.2247 0.0882 6.4872 0.0109

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

operation 1.252 1.053 1.488

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 44.0 Somers' D 0.128

Percent Discordant 31.2 Gamma 0.170

Percent Tied 24.7 Tau-a 0.072

Pairs 48672 c 0.564

Estimated Covariance Matrix

Parameter Intercept__1 Intercept_0 operation

Intercept__1 0.024005 0.006526 -0.00162

Intercept_0 0.006526 0.010028 -0.00077

operation -0.00162 -0.00077 0.007781
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Abstract

According to the National Plan for Higher Education assembled in 2001 by the Department of

Education, South Africa is one of the countries in the world with the lowest graduation rate of 15%

[7]. This is a concern since changes have taken place in the employment distribution and there is

huge amount of shortage of high-level skills in the labour market [7]. Although this is a national

problem, this study will only focus on graduation of undergraduates in the Department of Statistics

at the University of Pretoria. The aim of the research is to master the theory on survival analysis,

give a clear understanding on Kaplan-Meier methods and Cox regression and implement it to study

and analyze graduation rates of undergraduate students.
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1 Introduction

Graduation rate is the percentage of a university's students who complete the degree in a prescribed

period. There is a minimum number of years in which a student is supposed to graduate but they may

exceed the recommended time limit [4]. Therefore, study duration may last longer than anticipated and

this results in long tails for the corresponding distributions. The study of graduation rates is important

since it is essential to estimate the likelihood and duration of graduation of students enrolled in a program

[4]. The estimation indicates the potential performance for the university, the longer the duration, the

more funding is required for education and lastly, also because the results are used to predict future

occurrences [4].

In South Africa, a degree is a requirement to enter a rewarding profession and the monthly earnings of

an individual with matric and individual increased from 182% in 2000 and 241% in 2007 [14]. Furthermore,

deferred degree or a failure to obtain one is an opportunity cost because the time spent at university

could be used for more productive purposes [14]. The research topic involves application of Kaplan-

Meier method and Cox regression to thoroughly investigate the duration of graduation of undergraduate

students in the Department of Statistics.

Survival Analysis, also known as duration or event history analysis in various �elds, is de�ned as the

set of statistical methods for analyzing data which focus on the occurrence and duration of events of

interest. Kaplan-Meier and Cox regression will both be used in this research to study the survival data

of undergraduates.

Kaplan-Meir method was introduced by Edward L. Kaplan and Paul Meier back in 1958. They both

published a paper explaining how to work with censored data/observations. Eventually Kaplan-Meier

curves and estimates became a popular approach to deal with survival times. It is an estimator mainly

used to analize censored data. Its curve is easy to calculate and few assumptions are required. This

method is a good choice since our data is censored.

Kalamatianou from Greece researched the duration of undergraduates in a Greek university. 10 313

students were used as a sample. He proposed the general distribution of the duration of studies. He

uses two survival models: parametric and non-parametric. For non-parametric estimation, he uses the

Kaplan-Meier Method and under parametric, maximum likelihood function, con�dence intervals for the

parameters and goodness of �t are used to estimate graduation rate of Social and Political Science degree

at Greek university.[4]

The results show that the parametric model proposed describes the distribution provided by the
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non-parametric estimation [4]. It was observed that there is a small percentage of students graduating

just after the minimum time whereas a high percentage of them never graduate [4]. Genders where

also compared, the test shows that there is a signi�cant di�erence between duration of studies of male

and female students. It is therefore concluded that female students graduated at faster rate and earlier

than most men.[4] The method in his paper provides a useful methodology for estimating the duration of

studies. Similarly to Kalamatianou's paper, this paper uses the Kaplan-Meier Method and Cox regression

to carry out the same objective.

Mike Murray from the university of KwaZulu-Natal released a paper that introduced a methodology

that can be used to assist in identifying student and/or institutional factors in�uencing the consequences

a student faces when they dropout [11]. This new methodology was applied to the student registered

at the University of KwaZulu-Natal from year 2004 to 2012 [11]. The results are that white females

are more likely to graduate, which implies that, on average, they will need fewer extra credit points to

graduate [11]. Also, being an African with some form of �nancial aid and leaving in residence increases

the duration of a student lingering in the system before an academic exclusion. [11]

R.Christopher from the University of Cape Town uses a survival analysis approach to examine the

determinants of graduation and exclusion at the University of Cape Town. In his samples, he selected

South African students in Commerce, EBE and Science faculties registered from 2006 to 2013 [14]. A

person-period longitudinal data set was created to track the student's progress every year until they

graduated, excluded or were censored.[14]

General conclusions drawn from the results were that females from the Commerce and Science faculties

are more likely to graduate than be academically excluded as compared to males [14]. Age is not a major

factor in building university's success. Students on �nancial aid are more likely to be excluded than

graduate and those who had a higher high school GPAs are more likely to graduate.[14]

Xu in 2012 expanded an adjusted Kaplan-Meier estimator to decrease impacts by utilizing inverse

probability of treatment weight (IPTW) [18]. The article proposes a weighted log-rank looking at survival

functions among treatment groups and compares both the adjusted Kaplan-Meier estimates and modi�ed

log-rank and Wilcoxon tests.[17][18]

Pourhoseingholi et al compares two survival regression methods in his paper, namely Cox regression

and parametric models,[12]. For parametric models he performed Exponential, Weibull and Lognormal

regression to compare the e�ciency of the model. [12]. In multivariate analysis, Cox and exponential

are almost identical. And in univariate analysis, the data supports log normal regression more that it

does with parametric models and parametric models provide more precise estimates as compared to Cox

8



regression. [12]

2 Methodology

This section outlines the statistical methods used in the study.

2.1 Basic functions in Survival Analysis

Let T be a non-zero random variable denoting the time to event of interest, graduation. The waiting

time to graduation is referred to as survival time.

2.1.1 Survival Function

Assume that T is continuous random variable which has the density function f(t) , the probability

density function of t which explains the likelihood of observing at time t and F (t) is the cumulative

density function which explains the probability of observing T less than or equal to some time t [15].

The survival function denotes the probability that graduation has not taken place yet by time t. These

functions and their relationships are mathematically expressed below.

In general, the probability of observing the survival time in the interval [a,b] is

P (a ≤ T ≤ b) =
b∫
a

f(t)dt = F (b)− F (a) (1)

The cumulative density function is de�ned as:

F (t) =

t∫
0

f(t)dt (2)

This relationship above also implies that

f(t) =
dF (t)

dt
(3)

This density function must satisfy two properties, namely:

i) f(x) ≥ 0 for all x and

ii)
∞∫
−∞

f(x)dx = 1

The survival function S(t) is

S(t) = 1− F (t) = P {T > t} (4)
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which has the following properties:

i) It is non-increasing

ii) t = 0, S(t) = 1, that is the probability for surviving after time 0 is 1

iii) At t =∞, S(t) = S(∞) = 0, that is, as time goes to in�nity, the survival curve goes to 0

Theoretically, the survival function is smooth.

2.1.2 Hazard Function

This function describes the likelihood of graduation occurring at time t conditional on the student's

graduating at that time t [15]. It is the probability that an individual dies between t and t+4 divided by

the probability that the individual survived to t [16]. This survival function is the probability to graduate

at or beyond time t. [15]

Mathematically, the hazard function is de�ned as,

h(t) = P {t < T < (t+4) | T > t}

=P {expiring ∈ (t, t+4) | survived past time t}

=f(t)/(1− F (t))

=f(t)/S(t) (5)

In words, the rate of graduating at time t is the density of events at t, divided by the probability of

studying until t without experiencing the event.

Cumulative hazard function is de�ned as follow

H(t) =

t∫
0

h(t)S(t)

=

∫ t

0

−dln [S(t)]
dt

dt

=− ln[S(t)] (6)

This can be thought of as the sum of risks a student faces from time 0 to time t. The following

relations exist between these functions:

i)

h(t) = −S
′(t)

S(t)

=− d

dt
logS(t)
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ii)

S(t) = exp (−H(t)) since S(0) = 1

iii)

f(t) = h(t)S(t)

2.2 Types of censoring in Survival Analysis

Censoring is an important feature in survival analysis. It is most likely possible that in this study, some

students may not experience graduation therefore the data may be incomplete [14]. Some of the student

will not have graduated by the end of this study but will eventually do so in the future [14]. Also some

will never experience graduation even though they are still attending at the end of the programs. [14] [3]

Let T1, T2, T3, ..., Tn be independently, identically distributed with distribution F (t), where Ti denotes

the survival time of the ith student. [9]

2.2.1 Type 1 Censoring

The most common type of censoring in survival analysis is right-censoring. This type of censoring occurs

when student do not graduate during the observation period of the study [14]. This is considered as

non-informative since the fact that a student is censored is does not mean that he/she will not graduate

[14]

Let tc be some �xed pre-assigned censoring time. Y1, Y2, Y3, ..., Yn observed where [9]

Yi =

 Ti if Ti ≤ tc

tc if Ti > tc

 (7)

2.2.2 Type 2 Censoring

It occurs when it is known in advance, when the event of interest will occur. This is advantageous since

the number of failures are already known in advance.

Let r < n be a �xed number and T(1) < T(2) < T(3) < ... < T(n) be ordered statistics of T1, T2, T3, ..., Tn.

Observations stops after the r − th failure therefore T(1), T(2), T(3), ..., T(r) are observed [9]. Full ordered

sample observed is Y(1) = T(1) · · ·Y(r) = T(r)Y(r+1) = T(r) · · ·Y(n) = T(r).

2.2.3 Random Censoring

This type occurs when the number of censored observations and censoring levels are random. When a

student leaves the university during the study period before graduating he/she has a random censored
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value.This type is common in clinical trials.

Let C1, C2, C3, ..., Cn be independent identically distributed variables with distribution function G(f)

[9]. Ci the censoring time corresponding with Ti. (Y1, δ1), (Y2, δ2), ..., (Yn, δn) are observed where [9]

Yi = max(Ti, Ci) (8)

δi =

 1 if Ti ≤ Ci, that is , Ti is not censored

0 if Ti > Ci, that is , Tiis censored

 (9)

2.2.4 Other types of censoring

The other 2 types of censoring are left and interval censoring. Left censoring occurs when the student have

already graduated but it is not known when exactly the graduation took place [14]. Interval censoring,

which is less common, occurs when it is known that graduation took place between two point in time but

not sure of the exact time [14][3]. In this study, a year in which a student experience graduation is known

therefore only right censoring is involved [14][3]. Truncation is another feature common to censoring.

They are both mostly confused because the form of their non-parametric maximum likelihood estimates

are similar [8]. Truncation is a model for selection bias[8] which means that, when estimating truncated

data, it uses methods for selection bias models.[8]

2.3 Survival Methods

2.3.1 Non-parametric method

These type of methods assume that the data distribution cannot be de�ned in terms of a �nite set of

parameters.

Kaplan-Meier

Kaplan-Meier estimate, also called the product limit estimate involves computations of probabilities of an

event occurring at a certain point in time. These successive probabilities are multiplied by probabilities

computed earlier to get the �nal estimates [2]. It is widely used to estimate and graph the survival

probabilities as a function of time.

Consider the following model:

S(t) =

 1 t < β

α+ (γ − α)S0(t− β) t > β

 (10)
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where β is the minimum time required to graduate, α accounts for students that will never graduate and

represent the students that complete later than the minimum period [4]. S0 is the distribution of students

that did not experience graduation immediately. Let t1 < t2 < ... < tk be the observed k graduation

times of n students. Let d1, ..., dk be the number of observed events at t1, ..., tk respectively. The number

of individuals at risk, that is graduating before tj is nj . R(tj) denotes set of individuals graduating just

before tj , j = 1, . . . , k.[4][13]

Let

hj = P (T = tj |T ≥ tj) (11)

be the hazard function for the discrete distribution. [5][4] It follows that the survival function is

S(t) =
∏

jεR(t)′

(1− hj) , t ≥ 0 (12)

, where R(t)′ is the complement of the risk at t. The likelihood function of the above survival function is

Ŝ(t) =
∏

jεR(t)′

(1− ĥj) (13)

hj is the conditional probability of graduation taking place, nj − hj is the number of student who will

not graduate. And 1 − hj is the probability of graduating after time tj given that students will still be

active on the programme until hj . Therefore the likelihood function is

logL [h1, h2, . . . , hk] =

k∑
j=1

[dj loghj + (nj − dj)log {1− hj}] (14)

The maximum likelihood estimator of hj is

ĥi =
di
ni

(15)

where i = 1, 2, . . . , k, therefore the estimator for the survivor function is

Ŝ(t) =
∏

jεR(t)′

(
1− di

ni

)
(16)

which is known as the Kaplan-Meier estimator, and its variance is given as

V̂ (Ŝ(t)) =
[
Ŝ(t)

]2 ∑
jεR(t)′

dj
nj(nj − dj)

(17)

The justi�cation of the estimate is that,
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P (survive to t1) = P (survive from t0 to t1) (18)

and

P (survive from t1 to t2) = P (survived from t1 to t2 | an indvidual survived from t0 to t1) (19)

and so on. Since there are no graduation between ti−1 and ti, the probability between these corresponding

times is zero[13] . The conditional probability of graduating at ti given that an individual did not graduate

before is estimated by di
ni

and the conditional probability of not graduating is
(
1− di

ni

)
. In statistical

terms,

P (graduating at ti | student did not graduate before) =
di
ni

(20)

[13]

The asymptotic con�dence intervals for S(t) is

Ŝ(t)± zα/2
√
V̂ (Ŝ(t)) (21)

where zα/2 is the α100% percentile of the normal distribution at α signi�cance level. The maximum

likelihood estimators for the parameters are as follows:

The estimator for β is :

β̂ = min{ti : i = 1, 2, ..., k} (22)

α = S(tmaxuε), tmax denotes the maximum observed duration of studies, is the estimated probability

that an individual will never graduate. Gribbin and McClean (1990) states that the maximum likelihood

estimator(MLE) of tmax is tk, so applying the invariance property of likelihood estimators stated below.

Theorem 1. Invariance property of MLE: Suppose X1, X2, X3.., Xn is a random sample from a popula-

tion with distribution function f (x; θ). Let θ̂ is the MLE of θ. If τ = u (θ) is one to one function of θ,

then for any function τ , the MLE of τ is τ̂ = u
(
θ̂
)

Proof. Let L(θ) be the likelihood function in terms of θ, that is

L(θ) =

n∏
i=1

f(xi; θ) (23)

Let L ∗ (τ) be the likelihood function in terms of τ . To �nd L ∗ (τ) , write the distribution of X in

terms of τ . Assume that u : R → R is a one-to-one function, that is, if τ = u (θ), then θ = u−1 (τ) .
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Therefore f(x; θ) = f(x;u−1 (τ)). Hence

L(θ) =

n∏
i=1

f(xi; θ)

=

n∏
i=1

f(xi;u
−1 (τ))

=L(u−1 (τ)) = L ∗ (τ) (24)

The maximum value of L is obtained when θ = θ̂ and in terms of τ when τ = τ̂ .Because of the

relationship in (24) the maximums, which must be the same on both sides of (24), it is concluded that

θ̂ = u−1 (τ̂) or τ̂ = u
(
θ̂
)

, the maximum likelihood estimator for α is

α̂ = Ŝ(tk) (25)

Using the above estimators, the estimator of the survival function in (12) reduces to [4][5]:

Ŝ(t) =


1 t < β

Ŝ(tk) +
{
Ŝ(β̂)− Ŝ(tk)

} ∏
jεR(t)′

(
1− di

ni

)
t > β

 (26)

2.3.2 Semi-parametric method

The model is based on a parametric regression model, it does not specify an assumptions regarding the

probability distribution on a parametric regression model. [1]

Cox Regression

Cox regression is a method used to investigate the e�ect of several variables upon the time a speci�c event

happened. It builds a model that predicts time-to-event data which results in a survival function that

estimates the probability of an event occurring at any time t. It is regarded as a semi-parametric because

it does not assume any probability distribution even though it is based on a parametric regression model

[14].

Cox writes : Suppose then that h0 (t) is arbitrary. No information can be contributed about β

by time intervals in which no failures occur because the components h0 (t)might be conceivably

be identically zero in such intervals. We therefore argue conditionally on the sets of instants

at which failures occur; in discrete time we shall condition also on the observed multiplicities.
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Once we require a method of analysis holding for all h0 (t), consideration of this conditional

distribution seems inevitable. [6][9]

This suggests that Cox's partial likelihood should be regarded as an ordinary likelihood function, with

which to �nd the maximum likelihood estimate, the score statistic and sample information matrix must

be used. [6]

Let T1, T2, T3, ..., Tn and C1, C2, C3, ..., Cn be independent variables. As mentioned above, Ci is the

censoring time corresponding with the survival time Ti. (Y1, δ1), (Y2, δ2), ..., (Yn, δn) are observed where

[9]

Yi = max(Ti, Ci) (27)

δi = I(Ti ≤ Ci) (28)

as well as x1, x2, ..., xn. [9] Note the following vector notation of independent variable, also known

as covariates associated with the dependent variable Ti :

x˜i = (xi1, xi2, ..., xip)
′ (29)

Recall the following hazard function:

h(t;x) =
f(t;x)

1− F (t;x)
(30)

which clearly shows dependence of the distribution of T on the vector x˜. The proportional hazards

model assume that

h(t;x) = h0 (t) e
β′x˜ (31)

where β˜ = (β1, β2, ..., βn)
′ is the vector of regression coe�cients and h0 (t)is the baseline hazard

function [9] . Hazard rate is de�ned as the multiplication of constants with the function, h0 (t). Note

that this scalar depends on regression coe�cients and the covariates, x′is. The assumption in (33) is

known as the baseline function since all covariates are the same [16][9], that is, x1 = x2 = ... = xn.

Consider the ordered observation times below,

Y(1), Y(2), Y(3), ..., Y(n) (32)

and let δi be an indicator for censoring, and xi is the covariate corresponding with y(i). Also, let
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R(i) = R(y(i)−) (33)

For all uncensored time yi,

P
(
graduating ∈ (y(i), y(i) +4) | R(i)

)
=
∑
jεR(i)

eβ
′
xjh0

(
y(i)
)
4y (34)

P (i graduating at time y(i) | one graduation ∈ R(i) at time y(i)) =
e
β˜′
x˜(i)∑

jεR(i)

e
β˜′x˜j (35)

Taking the product of these conditional probabilities result in the conditional likelihood below:

LC(β˜) =
∏
u

e
β˜′
x˜(i)∑

jεR(i)

e
β˜′x˜j (36)

From the quote above, Cox suggests his conditional likelihood as an ordinary likelihood, below is the

score vector and the sample information matrix:

∂

∂β˜ log Lc(β˜) =
(

∂

∂β1
log Lc(β˜), . . . , ∂

∂βp
log Lc(β˜)

)′

(37)

i˜(β˜) = −
∂2

∂β˜2
log Lc(β˜)

=


∂2

∂β1∂β1
log Lc(β˜) · · · ∂2

∂β1∂βp
log Lc(β˜)...
...

∂2

∂βp∂β1
log Lc(β˜) · · · ∂2

∂βp∂βp
log Lc(β˜)

 (38)

required to solve

∂

∂β˜ log Lc(β˜) = 0

which uses iterative methods.

This modeling method is recommended by most researchers mainly because of its powerful semi-

parametric method of calculating survival probabilities and adjusting for any other dominant variables

simultaneously [16]. Other interesting characteristics of the model include, creation of survival function

estimates, the use of the partial likelihood function, no parametric assumptions and relative risk type

measure of association [16].
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2.3.3 Parametric method

Parametric models assume that the distribution of the hazard rate is given [14][10]. In this case, the

hazard rate follows the speci�ed function over time. Since estimating is based on the duration and the

information of graduation, it makes the use of the data more e�cient [10]. The common parametric

models are, exponential, Weibull and log-normal models. This method will not be used in this research.

Weibull distribution

This type of distribution is a general form of the exponential distribution [10].

Assume T ∼Weibull(λ, p), its probability density function is given as

f(t) = λptp−1e−λt
p

(39)

, where p > 0 and λ > 0.

The hazard function is given by

h(t) = λptp−1 (40)

Property of Weibull Model:

i)

S(t) = e−λt
p

−logS(t) = λtp

log(−logS(t)) = log(λ) + plog(t)

that is, log(−logS(t)) is linear with log of time.

3 Application

In this section, Kaplan-Meier and Cox regression methods are applied using SAS and output is interpreted

accordingly.

3.1 Procedures

The SAS survival analysis procedures include ICLIFETEST, ICPHREG, LIFEREG, LIFETEST , PHREG,

SURVEYPHREG. However for the purpose of this paper, only LIFETEST and PHREG will be used since

they provide non-parametric estimates function by Kaplan-Meier method and regression analysis of sur-
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vival data based on the Cox proportional hazards model respectively. The SAS codes used to illustrate

the application of both methods, as well as some of the output is included in the appendix.

3.2 Data

Due to limited access of the University Of Pretoria's graduation data, a sample data below will be used

to illustrate the methods discussed above. The data is discrete since a student can only graduate at the

end of a semester. [14]

In this study, data of 50 students will be examined. It examines several factors, that is, gender,

Student GPA and total �nancial aid per semester. Follow up time for student begins at the time a

student started is enrolled for �rst semester. The variables used are:

• Duration: How many semester a student is registered for

• Semester: the semester a student is registered for

• Student

• Event: indicator variable, which is 1 if graduation took place and 0 if it didn't

• Graduate: The censoring variable, graduation took place=1, otherwise=0

• Gender: female, male

• Semester GPA

• Semester Total Aid

The dependent variable is time to an event which is the time at which the student got registered until

graduation takes place or the study ended.

The data used is structured in the following way.
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Student Semester Duration Event Graduate Gender Semester GPA Semester Total Aid

1 1 2 0 0 Female 3.47 5500.00
1 2 2 0 0 Female 3.25 500.00
2 1 10 1 0 Female 2.54 3681.00
2 2 10 1 0 Female 2.95 1981.00
2 3 10 1 0 Female 3.22 2620.00
2 4 10 1 0 Female 2.00 2781.00
2 5 10 1 0 Female 1.97 500.00
2 6 10 1 0 Female 2.50 500.00
2 7 10 1 0 Female 1.44 0.00
2 8 10 1 0 Female 0.93 0.00
2 9 10 1 0 Female 2.50 0.00
2 10 10 1 0 Female 2.58 2500.00
3 1 8 0 0 Male 3.10 2500.00
3 2 8 0 0 Male 3.23 1200.00
3 3 8 0 0 Male 3.40 5697.00
3 4 8 0 0 Male 3.29 5698.00
3 5 8 0 0 Male 3.15 5697.00
3 6 8 0 0 Male 3.33 5698.00
3 7 8 0 0 Male 3.84 6642.00
3 8 8 0 0 Male 3.65 3128.00

Table 1: An extract of the data used for the research report

Below is the data exploration of this report. This is important in data analysis because the researcher

familiarizes himself or herself with the distributions and typical values of each variable individually, as

well as relationship between pairs or sets of variables. In SAS, proc univariate provides an easy look into

distributions of variable separately while proc corr examines bivariate relationships.

Table 2: Data exploration: Simple Statistics for data variables described above
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Figure 1: Data explorations of variables

The distribution generating the observed survival times is not known but proc univariate in SAS can

be used to see how it looks like using non-parametric methods. In the table above, the mean of time to

event data is 7.5 semesters, with graduation of 0.047 and GPA is 2.98. There is no correlation between

the variables, therefore the variable vary in these data.

Figure 3 below shows the histogram for the graduation data set in Table 1.
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Figure 2: Probability density function and Histogram of duration

In the above �gure, the correspondence between probability density functions(line graph) and his-

tograms is visible. The graph is �tted and it is clear that our data is not normally distributed. This

makes since in non-parametric modeling, the data is not required to �t a normal distribution. The graph

is skewed to the left.

Table 3: One way frequency tables for the variables, gender

Table 4: Summary statistics for the numerical variable, duration, GPA and grad

The average for the GPA is 2.98154 and the average duration a student is enrolled for is 7.57564
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Figure 3: Extensive descriptive statistics for the variable duration

Test for normality:

H0 : Data have a normal distribution

H1 :Data does not have normal distribution

Since the p-value for the Shapiro-Wilk statistic is equal less than 0.0001, we reject the null hypothesis

at 5% signi�cance level. Therefore the distribution of the data does di�er from the normal distribution.

These results correspond to those of Figure 2.

3.3 Application using the Kaplan-Meier method

The Kaplan-Meier estimator, or product limit estimator, is the estimator used by most software packages

in light of its simple applicable approaches. [16]. The Kaplan-Meier estimator infuses data from all of the

observations available, both censored and uncensored, by considering any point in time as a sequence of

steps characterized by observed time[16]. In absence of censoring, the estimator is basically the sample
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proportion of observations with event times greater than t [16].

Tables of Kaplan-Meier Estimates are obtained and interpreted below from the proc lifetest.

For the lifetest procedure, failure time variables is speci�ed, in our case grad.rate.

SAS assumes that all times are censored.

The graph of the cumulative distribution function estimate is obtained below using proc univariate.

Figure 4: Cumulative distribution function of graduation data in Table 1

In Figure 3 above, the probability of completing half of the required years is way less than 50%.

During time intervals where graduation is likely to take place, the c.d.f increases at a faster rate.

The survival function estimate of S(t) is plotted below using the proc lifetest. This denotes the

probability that graduation has not yet taken place by time t. In the �gure below, at the beginning,

where t = 0, the survival probability is 1, showing that it is certain that no one will graduation when

they just started studies. As time goes by, for example, at t = 4, this probability is just below 0.8

that students have not graduated yet. At risk in the graph denotes set of student who are capable of

experiencing graduation before t.
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Figure 5: Survival function estimate of graduation data in Table 1

The hazard function can also be estimated using proc lifetest in SAS.

Figure 6: Hazard function of graduation data in Table 1

This is estimated using proc lifetest and then the results are sent to proc sgplot for plotting. The rate

of graduation at any time t is shown in the �gure above. It is see that this rate decreases gradually after

the 8− th semester, that is, t = 8.

The cumulative hazard function is demonstrated below.
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Figure 7: Cumulative hazard function of graduation data in Table 1

On the table below, the Kaplan-Meier estimates of the survival function are displayed.

Table 5: The Kaplan-Meier survival estimates of graduation data in Table 1
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Every row corresponds to a time interval in the �duration� column of that row.For the time interval

in the �rst row is from 0 semesters to just before �rst semester. During this interval there is 271 students

at risk, meaning who can graduate and none of the graduate as �Observed Events� equals 0 and the

�survival� function estimate is 1. In the next interval, from semester 1 to just before the second semester

8 students graduated, this is shown in 8 rows of �duration�=1.00 and by �Observed Events�=8 in the last

row when �duration�=1.00. Note that the probabilities in the Survival column are unconditional and are

interpreted as the probability of graduating from the interval, follow up time until the semester number

in the �duration� column.

Looking at later survival times in the table below:

Table 6: Last survival estimates

From above, it is evident that there are a number of records where no graduation took place during

�duration� = 10. The �*� indicates censored observations.

The graph of the Kaplan-Meier estimate is shown below.
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Figure 8: Kaplan-Meier curve for graduation data in Table 1

The step graph is the Kaplan-Meier graph and the shading around it is the 95% con�dence bands.

When a student graduate at a point in time, the step functions drops and in between these times the

graphs stays constant. The survival function drop is constant over time. The survival function will never

reach zero, instead it will remain at the survival probability estimated at the previous interval, which is

10 in this case. The 95% con�dence interval is calculated for the whole survival function.

Suppose that there may be di�erence in the survival functions among some of the groups in the study.

The test for equality in of these survival functions can be performed using the non-parametric method in

the following manner:

Table 7: Testing equality over the strata, gender
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Figure 9: Non-parametric tests among the gender group

In the Kaplan-Meier estimator graph above, which is strati�ed by gender, it appears that, in general,

males have the worst experience is survival. This means that females in the graduation data provided in

Table 1, are more likely to graduate as compared to males and this is true since looking in the data in

the table, females graduate more over the study period.

This is reinforced in the test of equality. Using Figure 13 to test the equality among the gender strata:

H0 : There is equality among the gender group or Sfemale(t) = Smale(t)

H1 : There is no equality among the gender group or Sfemale(t) 6= Smale(t)

All the p-values are less than 5% hence the null hypothesis that there is equality among the gender

group is rejected.

3.4 Application using Cox regression

A simple model in proc phreg is demonstrated below. The e�ects of categorical variable, gender, and a

continuous variable gate on the hazard rate. Specifying gender as categorical, it is entered on the class

statement, on the model statement, left hand side of the equation is the time variable, duration and on

the right side is grad, the censoring variable with the censoring value in brackets.
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Table 8: A simple Cox regression model

Model �t statistics: Displays �t statistics which are used to compare and select models. This is the

�rst model so there is no other model to compare it with.

Testing Global Hypothesis: BETA=0: The hypothesis that all coe�cients in the model are equal

to 0 is displayed here. This tests whether the model can predict the changes in the hazard rate. the

likelihood ratio test is preferred for small samples. The p-value is 0.6911 > 5% therefore we do not reject

the hypothesis. It appears that all regression coe�cients are zero.

Analysis of Maximum Likelihood Estimates: Model coe�cients, tests of signi�cance, and exponential

coe�cient as hazard ration are displayed. It seems that females have 13, 45% increase in the hazard rate

compared to males while the GPA, the hazard rate increase by 43% . There is no intercept since in Cox

regression, it is held into the baseline hazard function, which is not speci�ed.

The survival and baseline hazard function after Cox regression looks like this:
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Figure 10: Survival function after �tting Cox regression model

In this model, the curve is for males with GPA of 2.98155 The survival function does not di�er from

the one above in any way.

4 Conclusion

The main purpose of this paper was to use two survival methods,namely, Kaplan-Meier and Cox regression

to study the university rates of undergraduates in Department of Statistics, University of Pretoria. Due

to limited access of the university's student database, graduation sample of 50 students were used in

order to show the application of the two survival methods. According to the data and after �tting the

model, the probability of graduation decreases with time. Female students are more likely to graduate

as compared to male students.

This study's limitation is the fact that data was not accessible, which would have made it relatable and

the sample size would have been reasonably more to work with. The Cox regression partial likelihood could

be investigated further so that the exact estimators of the parameter is explicitly stated theoretically. The

study can also be enhanced by getting the exact estimates of parameters using a more realistic dataset.
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Appendix

data d2;

input student sem duration event grad gender $ gpa total @@;

cards ;

1 1 2 0 0 Female 3.47 5500

1 2 2 0 0 Female 3.25 500

2 1 10 1 0 Female 2.54 3681

2 2 10 1 0 Female 2.95 1981

2 3 10 1 0 Female 3.22 2620

2 4 10 1 0 Female 2.00 2781

2 5 10 1 0 Female 1.97 500

2 6 10 1 0 Female 2.50 500

2 7 10 1 0 Female 1.44 0

2 8 10 1 0 Female 0.93 0

2 9 10 1 0 Female 2.50 0

2 10 10 1 1 Female 2.58 2500

3 1 8 0 0 Male 3.10 2500

3 2 8 0 0 Male 3.23 1200

3 3 8 0 0 Male 3.40 ....

2 4 0 0 Male 3.65 3128 50 3 4 0 0 Male 2.54 3681 50 4 4 0 0 Male 2.55 3681 ;

/*The probability density function*/

proc univariate data = d2 /*(where=(grad=0))*/;

var duration;

histogram duration / kernel;

run;

proc freq data=d2;

tables gender;

run;

proc means data=d2;

var duration grad gpa;

run;

proc univariate normal plot data=d2;

var duration ;

run;
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/*The cumulative function*/

proc univariate data = d2 /*(where=(grad=0))*/;

var duration;

cdfplot duration;

run;

/*the survival function*/ proc lifetest data=d2/*(where=(grad=0))*/ plots=survival(atrisk);

time duration*grad(1);

run;

/*The hazard function*/

proc lifetest data=d2 /*(where=(grad=1))*/ plots=hazard(bw=15); time duration*grad(0);

run;

/*The cumulative hazard function*/ ods output ProductLimitEstimates = ple;

proc lifetest data=d2(where=(grad=0)) nelson outs=outd2;

time duration*grad(1);

run;

proc sgplot data = ple;

series x = duration y = CumHaz;

run;

/*Exploring Data*/

proc corr data = d2 plots(maxpoints=none)=matrix(histogram);

var duration sem grad gpa total;

run;

/*Obtaining and interpreting tables of KM*/

proc lifetest data=d2 atrisk outs=outd2;

time duration*grad(1);

run;

/*Graphing the KM estimates*/

proc lifetest data=d2 atrisk plots=survival(cb) outs=outd2;

time duration*grad(1);

run;

/*Comparing survival functions using nonparametric tests*/

proc lifetest data=d2 atrisk plots=survival(atrisk cb) outs=outd2; strata gender;

time duration*grad(1);

run;
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/*Fitting a simple Cox regression model*/

proc phreg data = d2;

class gender;

model duration*grad(0) = gender gpa;;

run;

/*Producing graphs of the survival and baseline hazard function after Cox regression*/

proc phreg data=d2 plots=survival;

class gender;

model duration*grad(1) = gender gpa;;

run;
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Abstract

In this essay we will consider simultaneous equation estimation. In the context of single-equation

models the dependent variable (Y), is dependent on X variables known as explanatory variables. In

practice there are situations where such unidirectional relation between X and Y variables cannot be

maintained, as it may be possible that the explanatory variable not only a�ect the dependent but the

dependent variable can also be an explanatory variable in a system of equations and this is the reason

why it is better to have the variables estimated simultaneously. The estimation of such variables is done

in simultaneous equation methods.

The goal of this essay is to understand what simultaneous equation methods are and this will be done

by considering the identi�cation problem: underidenti�cation, just or exact identi�cation and overidenti-

�cation. The di�erences between estimation of a just identi�ed equation with indirect least square (ILS)

and method of two stage least squares (2SLS) which is used to estimate parameters of an overidenti�ed

equation will be illustrated. Practical applications will the used to illustrate the di�erent estimation

techniques using the available SAS procedures.
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1 Introduction

Simultaneous equation models are statistical models that are in form of a set of simultaneous equation

systems.

Consider the following M equations model:

Y1t= β12Y2t + β13Y3t + ... + β1MYMt + γ11X1t+ γ12X2t+ ... + γ1kXkt + µ1t

Y2t= β21Y1t + + β23Y3t + ... + β1MYMt + γ21X1t+ γ22X2t+ ... + γ2kXkt + µ2t

Y3t= β31Y1t + β32Y2t + + ... + β3MYMt + γ31X1t+ γ32X2t+ ... + γ3kXkt + µ3t

.

.

.

YMT= βM1Y1t + βM2Y2t+ ... + βM,M−1YM−1,t + γM1X1t+ γM2X2t+ ... + γMkXkt + µMt

where Y1, Y2, ..., YM = M endogenous variables

X1, X2, ..., Xk = K predetermined variables

µ1, µ2, ..µM = M stochastic disturbances

t = 1, 2, ...T = total number of observations

β,s = coe�cients of the endogenous variables

α,s = coe�cients of the predetermined variables

This report will make references to the above model as speci�ed in [6] to facilitate the discussion around

simultaneous equation methods.

A simultaneous equation system is a system of two or more equations where a variable explained in one

equation can be written as an explanatory variable in another equation of the same model. In simultaneous

equation models, the term endogenous variables denotes jointly dependent variables. The endogenous value

is determined within the model whereas the variables which are truly non stochastic are called exogenous or

predetermined variables since their variables are determined outside the model [6].

In a simultaneous system of equations certain equations are estimable while others are not, therefore iden-

ti�cation problem should be considered. The identi�cation problem looks at whether estimates of parameters

from a structural equation can be obtained and if the estimates can be obtained, then that particular equation

is identi�ed; however, if the estimates of the parameters cannot be obtained then that particular equation is

underidenti�ed [6]. This essay will illustrate the di�erent ways to determine whether a certain simultaneous
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equation model consists of identi�ed equations or not through a thorough discussion on the di�erent methods

of identi�cation as well as the use of identi�cation rules. The essay will also look at methods that can be

used to estimate the parameters of simultaneous equation models and consider their merits as well as their

limitations.

As mentioned before the endogenous variables in simultaneous equation models may appear as an ex-

planatory equation in other equation of the same system, hence ordinary least squares (OLS) method of

estimating variables may not used to estimate variables and for this reason alternative methods have been

developed and can be used for estimating such simultaneous equations.

The relationship between variables in econometrics is often a single-type, hence a single-type equations

exists between variables in economic relations [11]. A model representing such relationships is one where

the dependent variable (Y) is expressed as a linear function of the explanatory variables (X's). The key

assumption in such a model is that a cause-and-e�ect relationship exists between the variables where the

explanatory variable is the cause and the dependent variable is the e�ect. Although, in practice there often

exist a two-way relationship among economic variables; where one economic variable a�ects other economic

variables. Simultaneous equation models will be considered, models where one dependent variable can also

be a explanatory variable in a system of equations[10].

Today's econometrics is mainly in�uenced by the Cowles Commission, the commission consists of a team of

econometricians and economists, the team did most of their work at the University of Chicago [1]. Haavelmo's

work discusses how one can use probability approach when formulating models that are econometric in nature

[1]. Koopmans, Mesharck and Hood provided the appropriate statistical ways of dealing with simultaneous

equation models, their work was highly in�uential in the Cowles Commission [1].

In simultaneous equation models, the full information maximum likelihood (FIML) method, a

system method, can be used to estimated parameters of equations within that particular model. However,

in practice this type of method is not commonly used [11]. There are several reasons why this method is

not used, one is that the computational burden for such a method is too high. Another reason why system

methods such as FIML is not widely used in practice is that this method leads to solutions that are nonlinear

and therefore making it very di�cult to determine those solutions and also if there is a speci�cation error in

one or more equation then that error will be carried through to the entire system [9]. Since, system methods

are easily a�ected by speci�cation errors, for this reason simultaneous equation methods are popularly used .

To assess whether a structural equation is identi�ed, the structural equation should be written as a re-
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duced form equation, where the endogenous variable is expressed as a function of the exogenous variables.

The process of writing structural equations as reduced form equations is time consuming but it is avoidable

by applying rules of identi�cation as discussed in Gujarati [6] namely; The order condition of identi-

�ability and the rank condition of identi�ability. If an equation in a simultaneous equation model

is identi�ed either exactly identi�ed or overidenti�ed, then di�erent methods of estimating the parameters

of such equations are considered. The methods of estimation fall under two categories namely; the system

method as well as single-type methods [5]. Shreya et al [16] discusses single-equation methods these are

methods which are usually used in practice, in other words; OLS, ILS and 2SLS. The OLS method is usually

not the best method to use in practice when estimating parameters of simultaneous equations. The ILS

method is usually the best method to use to estimate parameters of just or exactly identi�ed equations, in

ILS method OLS procedures are applied to the reduced-form equation and one can estimate the original

structural coe�cients from the reduced form coe�cients. The 2SLS method is speci�cally used to estimate

the parameters of overidenti�ed equations.

The two-stage least square method of linear estimation of coe�cients was developed by Theil. Basmann

independently developed a similar solution under the name of the generalized classical method of linear

estimation which leads to equivalent estimators [10]. Several studies have been conducted more recently on

the e�ectiveness of the method and its limitations. The two-stage least square method was developed to

replace existing methods (indirect least squares, least variance ratio, or limited-information single equation)

by providing a method of more general applicability while being less expensive to apply. In the �rst stage

of a two-stage least squares solution ordinary least squares methodology is applied to the entire system of

predetermined variables to obtain estimates for the endogenous variables [14]. In the second stage, these

estimates are substituted in the system and ordinary least squares is applied again to a particular equation

or a set of equations of the system to estimate the required parameters. The method is not only relatively

fast in terms of time required for calculations but the estimates derived can be shown to be asymptotically

unbiased, consistent, and have minimum variance [11].

2 Background Theory

The previous section introduced the topic of simultaneous equation methods and its features, now in order

to carry out the analysis of di�erent estimation methods used to estimate simultaneous equation models one

has to �rst understand the identi�cation problem. This section will deal with an extensive discussion of the

identi�cation problem as well as the two methods used to estimate simultaneous equation models, namely;
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ILS and 2SLS.

2.1 Notation and Terminology

Some notation and terminology that will be used in this report is listed as follows:

• Endogenous variable: jointly dependent variable determined within a model (stochastic), typically

denoted by Yit in the general-M model.

• Exogenous or predetermined variable: a non stochastic variable whose value is determined outside

a model, typically denoted by Xit in the general-M model.

• Stochastic disturbance: random variable, typically denoted by µit the general-M model.

• Reduced form equation: a mathematical equation where an endogenous variable is expressed as a

function of the exogenous variables and its random (stochastic) variables.

2.2 The Identi�cation Problem

The identi�cation problem in econometrics and statistics context is the inability to obtain estimates of the

parameters of the reduced form equation, in other words the identi�cation problem addresses the problem of

whether the parameters of a particular reduced form equation can be estimated or not [6]. If the parameters

of the reduced form equation can be estimated, then that equation is said to be identi�ed; however, if it can

not be estimated then the equation is said to be underidenti�ed or unidenti�ed.

Two types of identi�ed equation exist; namely, exactly (just or fully) and overidenti�ed. An exactly identi�ed

equation is one where numerical estimates of the reduced form equation can be obtained and an overidenti�ed

equation is one where more than one numerical estimate can be obtained for the structural parameters.

Underidenti�cation

To facilitate our discussion of underidenti�cation, consider the following demand-and-supply model as

speci�ed in Gujarati [6].

Demand function:

Qdt = α0 + α1Pt + µ1t α1 < 0 (1)

Supply function:

Qst = β0 + β1Pt + µ2t β1 < 0 (2)
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using the equilibrium condition:

Qdt = Qst (3)

where Qd = quantity demanded

Qs= quantity supplied

t = time

P= price

the equilibrium condition gives the following

α0 + α1Pt + µ1t = β0 + β1Pt + µ2t (4)

solving equation (4)

(α1 − β1)Pt = (β0 − α0) + (µ2t − µ1t)

Pt =
β0 − α0

α1 − β1
+
µ2t − µ1t

α1 − β1

So we get

Pt = Π0 + vt (5)

where

Π0 =
β0 − α0

α1 − β1
(6)

vt =
µ2t − µ1t

α1 − β1
(7)

Now substituting (5) into (1) or (2)
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Qt = α0 + α1(Π0 + vt) + µ1t

= α0 + α1(
β0 − α0

α1 − β1
+
µ2t − µ1t

α1 − β1
) + µ1t

= α0 +
α1β0 − α1α0

α1 − β1
+
α1µ2t − α1µ1t

α1 − β1
+ µ1t

=
α0(α1 − β1) + α1β0 − α1α0 + α1µ2t − α1µ1t + µ1t(α1 − β1)

α1 − β1

=
α0α1 − α0β1 + α1β0 − α1α0 + α1µ2t − α1µ1t + µ1tα1 − µ1tβ1

α1 − β1

=
−α0β1 + α1β0 + α1µ2t − µ1tβ1

α1 − β1

=
α1β0 − α0β1
α1 − β1

+
α1µ2t − β1µ1t

α1 − β1

the following equilibrium quantity is obtained:

Qt = Π1 + wt (8)

where

Π1 =
α1β0 − α0β1
α1 − β1

(9)

wt =
α1µ2t − β1µ1t

α1 − β1
(10)

Note that equations (5) and (8) are reduced form equations, the demand-and-supply model has the

following structural coe�cients (α0, α1,β0, β1) that need to be estimated, however, these structural coe�cients

can not be estimated uniquely. This is due to the fact that the equations (5) and (8) contains all four

structural coe�cients and mathematically it is not possible to estimate four structural unknowns from two

known reduced form equations. This implies that given P (price) and Q(quantity) one cannot guarantee that

the estimated parameters are for the demand or supply function as it is not possible to estimate the four

structural coe�cients.

Just or Exact Identi�cation

The demand or supply function could not be identi�ed in the previous section as similar variables P and

Q are present in both the functions and no additional information is given, hence underidenti�ed. Consider

the following demand-and-supply model where an additional variable is added as speci�ed in Gujarati [6]:
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Demand function:

Qt = α0 + α1Pt + α2It + µ1t α1 < 0, α2 > 0 (11)

Supply function:

Qt = β0 + β1Pt + µ2t β1 < 0 (12)

Where I is the consumer income, which is a predetermined (or exogenous variable) and all the other

variables are de�ned the same way as before.

Notice that the only di�erence in the models is that an additional variable I is added to the demand

function, it is known from economic theory that consumer income plays a vital role when it comes to the

demand of goods and services. Thus, including consumer income in the demand function gives additional

and important information about consumer behaviour.

Again the using the equilibrium equation:

α0 + α1Pt + α2It + µ1t = β0 + β1Pt + µ2t (13)

Now solving equation (13) we get the following equilibrium point for P
t
(refer to the appendix for calculations)

Pt = Π0 + Π1It + vt (14)

where

Π0 =
β0 − α0

α1 − β1
(15)

Π1 = − α2

α1 − β1
(16)

vt =
µ2t − µ1t

α1 − β1
(17)

Now substituting (14) into (11) or (12) , we obtain the following equilibrium quantity (refer to the

appendix for calculations):

Qt = Π2 + Π3It + wt (18)
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where

Π2 =
α1β0 − α0β1
α1 − β1

(19)

Π3 = − α2β1
α1 − β1

(20)

wt =
α1µ2t − β1µ1t

α1 − β1
(21)

Notice that both equations (14) and (18) are reduced form equations and so the OLS method can be used

to estimate their parameters. Since the demand-and-supply model has the following structural coe�cients

(α0, α1, α2, β0, β1) that need to be estimated and there are only four reduced form coe�cients (Π0,Π1,Π2,Π3)

to estimate them. It is not mathematically possible to have unique estimates for all structural coe�cients.

However, the parameters of the supply function are identi�able. Parameters of the demand function cannot

be estimated as there is no unique way of estimating them and hence the demand function is unidenti�ed.

As mentioned parameters of the supply function are identi�able or estimable since

β0 = Π2 − β1Π0

β1 =
Π3

Π1

Overidenti�cation

In order to illustrate overidenti�cation consider the following, since income and consumer wealth are very big

in�uencers of demand, suppose that the demand function (11) is modi�ed as follows and supply function is

the same as before:

Demand function:

Qt = α0 + α1Pt + α2It + α3Rt + µ1t (22)

Supply function:

Qt = β0 + β1Pt + β2Pt−1 + µ2t (23)
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The variable R represent wealth and the other variables are de�ned as before, now setting the demand

function equal to the supply function, the following equilibrium price and quantity are obtained:

Pt = Π0 + Π1It + Π2Rt + Π3Pt−1 + vt (24)

Qt = Π4 + Π5It + Π6Rt + Π7Pt−1 + wt (25)

where

Π0 =
β0 − α0

α1 − β1
Π1 = − α2

α1 − β1
(26)

Π2 =
α3

α1 − β1
Π3 =

β2
α1 − β1

(27)

Π4 =
α1β0 − α0β1
α1 − β1

Π5 = − α2β1
α1 − β1

(28)

Π6 =
α3β1
α1 − β1

Π7 = − α1β2
α1 − β1

(29)

wt =
α1µ2t − β1µ1t

α1 − β1
vt =

µ2t − µ1t

α1 − β1
(30)

Notice that the demand and supply model has seven structural coe�cients and only eight equations are

available to estimate them (equations 26-30). Note that unique estimation of all parameters for the model is

impossible as there more equations than the unknowns to be estimated. This implies that there is an over-

su�ciency of information to identify the supply curve, which is the opposite of underidenti�cation where

there is too little information as discussed above. Hence the supply curve is overidenti�ed.

2.3 Identi�cation Rules

In the previous section it was shown how one can determine whether a system of simultaneous equation

is identi�ed by examining its reduced form equation. This process is time consuming, and so this section

will look at two methods that can be applied to see whether a system of simultaneous equation is identi�ed

or not, namely; the order condition of identi�ability and the rank condition of identi�ability. Both these
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methods are a less time consuming way of determining whether equations in a simultaneous equation model

are identi�ed or not.

Consider the following notation which will be used in facilitating the discussion around the rule of iden-

ti�cation, M denotes the number of end variables in the system of equations, m denotes the number of end

variables in a speci�c equation, K denotes the number of exogenous variables in the system of equations and

lastly k denotes the number of exogenous variables in a speci�c equation.

The Order Condition of Identi�ability

The following necessary but not su�cient identi�cation condition is known as the order condition and it is

de�ned in two di�erent ways:

• De�nition 1 In a simultaneous equation model with M simultaneous equations, for a particular equa-

tion to be identi�ed, that equation needs to omit exactly M-1 variables (both endogenous and prede-

termined). If the equation omits exactly M-1 variables, then that equation is said to be just identi�ed;

however, if that particular equation omits more than M-1 then the equation is overidenti�ed.

• De�nition 2 In a simultaneous equation model with M simultaneous equations, for a particular equa-

tion to be identi�ed, the number of predetermined variables should always be more than the number

of endogenous variables contained in that equation minus 1, i.e,

K − k ≥ m− 1

An equation is identi�ed if K−k ≥ m−1 but if K−k > m−1 then that particular equation is overidenti�ed.

This method of determining whether an equation is identi�ed will be illustrated with an example in section

3.

The Rank Condition of Identi�ability

As discussed above the order condition is a necessary but not su�cient condition for identi�cation, this

implies that even if the condition holds it can happen that the equation is not identi�ed. Thus a condition

that will be su�cient and necessary is needed to check if an equation is identi�ed or not. The rank condition

of identi�ability is necessary and su�cient, and it is stated as follows:

• In a simultaneous equation model with M simultaneous equations, where there are M endogenous
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variables, an equation from such a model is identi�ed if it possible to obtain one or more determinant

of order (M-1)*(M-1) which is not zero, which is obtained from coe�cient of variables excluded from

a speci�c equation, but still included in other equations of the model. This method of will also be

illustrated with an example in section 3.

2.4 Estimation Methods

The previous section looked at the nature of simultaneous equation models, their features and rules that can

be used to identify equations. This section discusses the estimation of the parameters of such models by

applying some of the rules outlined in the previous sections. This will be done by looking at indirect least

squares (ILS) method, which is a method used to estimate the parameters of a just identi�ed equation and

method of two stage least squares (2SLS), this is a method used to estimate an overidenti�ed equation.

Estimation of a Just Identi�ed Equation: Indirect Least Square (ILS)

The estimation of just identi�ed equation using ILS method involves the following three steps:

• Step 1 Derive the reduced form equations from the structural equation where the dependent variable

in each equation is expressed as a function of only independent (exogenous) variables and random

(stochastic) error term.

• Step 2 Now the OLS method can be used in the reduced form equations individually, as the explanatory

variables in these equations are determined outside the model and therefore not corresponding with

random variables or stochastic disturbances. Therefore the estimates attained here will be consistent.

• Step 3 Finally get original structural coe�cient estimates of a reduced form coe�cients in previous step.

It is pointed out in section 2.2, if a particular equation is fully identi�ed then a one-to-one relationship

among the structural and reduced form coe�cients exists, hence unique estimates are derived.

The steps outlined above illustrate the fact that the name ILS is indeed derived from structural coe�cients

which are indirectly obtained from the OLS estimates of the reduced form equations. An example of this

estimation method will illustrated in section 3.

Estimation of an Overidenti�ed Equation: Two-Stage Least Squares (2SLS)

In this section 2SLS will be discussed as an estimation method for overidenti�ed equations. Unlike ILS, 2SLS
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can be used to obtain one estimates for each parameter in an overidenti�ed equation; however, 2SLS can

also be used to get estimates of a just identi�ed equation and these estimates will be identical to the ones

obtained using ILS.

To illustrate the 2SLS, consider the following model as speci�ed in Gujarati [6]:

Income function:

Y1t = β10 + +β11Y2t + γ11X1t + γ12X2t + µt (31)

Money supply function:

Y2t = β20 + β21Y1t (32)

where

Y1 = income

Y2 =stock of money

X1 =investment expenditure

X2 =government expenditure on goods and services

Note that X1 and X2 are predetermined variables. The income function (31) shows that the income is a

function of Y2, X1 and X2, while money supply function (32) is a function of (31), this clearly shows that a

simultaneous-equation problem between these two functions exist. Such a problem can also be tested using

the simultaneity test discussed below.

Simultaneity Test

A simultaneity test is used to test whether a simultaneous-equation problem exists, this is done by applying

OLS since OLS estimators will be consistent and e�cient if no simultaneity problem exists. However, if

simultaneity exists then 2SLS method will also produce estimates that are e�cient as well as consistent. This

implies that a simultaneity test, determines whether the dependent variable which will be the regressor and

error term have any correlation.

If the order condition of identi�cation is used to determine whether the equations in this model are identi�ed,

it is observed that the income equation is underidenti�ed whereas the money supply function is overidenti�ed.

This implies that the ILS method cannot be used to identify the money supply function as there exists two
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estimates for β21, therefore 2SLS should be used to estimate the money supply function.

The 2SLS process of estimating the parameters of the money supply function is explained in the following

two stages:

Stage 1: Firstly one needs to remove any correlation that may exist between Y1 and µ2, this is done by �rst

regressing Y1 upon all exogenous variables that are in the entire model. i.e, regress Y1 on both X1 as well as

X2 :

Y1t = Π̂0 + Π̂1X1t + Π̂2X2t + µ̂t (33)

where µ̂t is the usual OLS residuals, from equation (33) the following estimates are obtained:

Ŷ1t = Π̂0 + Π̂1X1t + Π̂2X2t (34)

Note that Ŷ1t is an estimate of the average of Y that is obtained from the X's. It is observed that (33)

is written as a reduced form regression since Y1t is written as a function of only the predetermined variables.

Therefore equation (33) is expressed as

Y1t = Ŷ1t + µ̂t (35)

this shows that a random Y1 is expressed in two segments, with Ŷ1t that is a expressed as a function of

the X's and stochastic term µ̂t. Now by OLS, it is seen that no correlation between Ŷ1t and µ̂t exists.

Stage 2: The overidenti�ed money supply function is expressed as:

Y2t = β20 + β21(Ŷ1t + µ̂t) + µ2t (36)

= β20 + β21Ŷ1t + (µ2t + β21µ̂t)

= β20 + β21Ŷ1t + (µ∗
t )

where µ∗
t = µ2t + β21µ̂t

Now comparing equation (36) with equation (32), it is observed that the equations are similar, the only

di�erence is that Y1 is now written as Ŷ1t. Equation (33) is advantageous as it is uncorrelated with µ∗
t

asymptotically, this implies that as the sample size increases the correlation between Ŷ1t and µ
∗
t decreases.

Therefore, OLS method is now appropriate to use in equation (32), this will result in having consistent and

e�cient estimates of parameters of the money supply function.
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The 2SLS process deals with removing e�ects of the stochastic disturbance from the explanatory variable Y1

in the money supply function. Hence, the �rst stage started with regressing Y1 upon all exogenous variables

that exist in the entire model, which then enables one to get estimates of Ŷ1t and the estimates are consistent

and e�cient; meaning that the estimates converge to their true values as the sample size increases.

Estimation of Standard Errors of 2SLS Estimators

The standard errors of the estimates in stage 2 of the 2SLS procedure are considered in this section.

When using the OLS method it can be shown that they are not always good estimates for true standard

error estimates. This implies the estimates need to be corrected using the method illustrated below.

As stated previously the standard error estimates obtained in stage 2 are not always good estimates for

the actual standard errors. Now to illustrate this consider the money-supply model given in equations (32)

and (33).

Y2t = β20 + β21Ŷ1t + µ∗
t (37)

where

µ∗
t = µ2t + β21µ̂t (38)

Running regression on equation (37), the standard error of β̂21 can be derived as follows:

var(β̂21) =
σ̂2
µ∗∑
ŷ1t

(39)

where

σ̂2
µ∗ =

∑
(µ̂∗
t )

2

n− 2
=

∑
(Y2t − β̂20 + β̂21Ŷ1t)

2

n− 2
(40)

Note that σ̂2
µ2 and σ2

µ∗
are no the same, the �rst one is an unbiased estimate real value of the variance

of µ2. The true variance of σ̂2
µ2

can be obtained by �rst considering the following

µ̂2t = Y2t − β̂20 + β̂21Ŷ1t

Note that β̂20 and β̂21 are estimates that obtained from the �rst regression, there the true variance of

σ̂2
µ2

is:
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σ̂2
µ =

∑
(µ̂∗
t )

2

n− 2
=

∑
(Y2t − β̂20 + β̂21Y1t)

2

n− 2
(41)

The di�erence between equations (40) and (41) is that in equation (41) is that the true value Y1 is used

instead of the estimation from the regression performed in stage 1.

A practical example which gives a step-by-step approach of obtaining estimates using 2SLS will be discussed

in section 3.

3 Application

3.1 The Order Condition of Identi�ability Examples

The order condition of identi�ability is illustrated based on the following three examples.

Example 1

To show the order condition, suppose the following demand-and-supply model de�ned as it was de�ned

in section 2.2 equations (1) and (2):

Demand function:

Qdt = α0 + α1Pt + µ1t α1 < 0

Supply function:

Qst = β0 + β1Pt + µ2t β1 < 0

Notice how this model has no predetermined variables and two endogenous variables P and Q . To be

identi�ed both these equations must exclude at least M-1 = 1 b variables, but because this condition does

not hold here, none of these equations are identi�ed.

Example 2

Secondly consider the model used in section 2.2 equations (11) and (12):

Demand function:

Qt = α0 + α1Pt + α2It + µ1t α1 < 0, α2 > 0
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Supply function:

Qt = β0 + β1Pt + µ2t β1 < 0

It can be observed from the above-mentioned model that I is a predetermined variable and P and Q

are endogenous variables. Using the second de�nition of the order condition of identi�ability, it is observed

that the demand function is unidenti�ed. However, the supply function is just identi�ed as exactly M-1=1

variable It is excluded from the function.

Example 3

Lastly consider the following demand-and- supply model:

Demand function:

Qt = α0 + α1Pt + α2It + α3Rt + µ1t (42)

Supply function:

Qt = β0 + β1Pt + β2Pt−1 + µ2t (43)

Again in the two models Pt and Qt are endogenous variables and It,Rt and Pt−1 are exogenous variables.

It is seen that the demand function excludes exactly one variable Pt−1 and so it is exactly identi�ed. Now

It and Rt are both excluded and so the supply function is said to be overidenti�ed. This also illustrate the

fact that the order condition of identi�ability is necessary but not always su�cient.

The previous examples showed that an equation is identi�able if that particular equation excludes one or

more equations that are appear in other equations of the same model. This is known as the exclusion criterion

[11].

3.2 The Rank Condition of Identi�ability Example

In this section the rank condition of identi�ability is discussed based on the following hypothetical model as

stated in [6].
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Y1t −β10 - β12Y2t - β13Y3t + γ11X1t= µ1t

Y2t−β20 - β23Y3t −γ21X1t − γ22X2t= µ2t

Y3t−β30 − β31Y1t −γ31X1t − γ32X2t= µ3t

Y4t−β40 − β41Y1t − β42Y2t −γ43X3t= µ4t

Figure 1: Hypothetical Model

Now to determine whether the equations are identi�ed, the hypothetical model (�gure 1) can rewritten

in table form as shown in table 1.

Equations 1 Y1 Y2 Y3 Y4 X1 X2 X3

1st −β10 1 −β12 −β13 0 −γ11 0 0
2nd −β20 0 1 −β23 0 −γ21 −γ22 0
3rd −β30 −β31 0 1 0 −γ31 −γ32 0
4th −β40 −β41 −β42 0 1 0 0 −γ43

Table 1: Coe�cients of Variables

For the following section note that (K-k) is the number of exogenous variables excluded and (m-1) is the

number of endogenous variables in the model minus one.

Equations (K-k) (m-1) Identi�ed?

1st 2 2 Exactly
2nd 1 1 Exactly
3rd 1 1 Exactly
4th 2 2 Exactly

Table 2: Order Of Identi�cation

Previous discussions show that the rank condition indicates whether a particular equation considered is

identi�ed or not, while order condition indicates whether that particular equation is exactly identi�ed or

overidenti�ed.

3.3 Estimation Methods Illustrative Examples

3.3.1 Indirect Least Squares

To illustrate the ILS method,consider the following demand and supply model as stated in Gujarati [6].

Demand function:

Qt = α0 + α1Pt + α2Xt + µ1t α1 < 0 (44)

Supply function:

Qt = β0 + β1Pt + µ2t β1 < 0 (45)
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where

Q = quantity

P = price

X = income or expenditure

Note that X is exogenous, as seen before the supply function is exactly identi�ed but the demand function

is not identi�ed.

Since the demand function is identi�ed, then its parameters are estimated using ILS. The reduced form

equations of the preceding structural equations are given by:

Pt = Π0 + Π1Xt + wt (46)

Qt = Π2 + Π3Xt + vt (47)

Note that the reduced form coe�cients are given by the Π's and are obtained by getting linear combina-

tions of the structural coe�cients, also note that ω and ν are linear combinations of µ1 and µ2.

Note that Pt and Qt are dependent variables and are written in terms of only one the predetermined

variable X (income) and random disturbances. Therefore, parameters of Pt and Qt may be estimated using

OLS. The estimates are given as

Π̂1 =

∑
ptxt∑
x2t

(48)

Π̂0 = P̄ − Π̂1X̄ (49)

Π̂3 =

∑
qtxt∑
x2t

(50)

Π̂2 = Q̄− Π̂3X̄ (51)

where the lowercase letters show the observed values from sample means and also note that Q̄ and P̄ are

the sample observations of Q and P. The Π̂i's are consistent and asymptotically e�cient, this implies that

the estimates converge to their true values as the sample size increases.
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Since the primary objective is to determine the structural coe�cients, as shown previously the supply

function is exactly identi�ed with the following reduced form coe�cients

β0 = Π2 − β1Π0

and

β1 =
Π3

Π1

Therefore, the estimates are

β̂0 = Π̂2 − β̂1Π̂0 (52)

β̂1 =
Π̂3

Π̂1

(53)

These are ILS estimators remember that the demand function is not estimable as it not identi�ed.

Now to give numeric results, consider data in table 3 given in the appendix as well as the obtained

SAS regression results, the the results were obtained by regressing price (P) on per capita real consumption

expenditure (X) and regressing quantity (Q) on per capita real consumption expenditure (X). The following

results were obtained:

P̂t = 90.9601 + 0.0007X1 (54)

se = (4.0517) (0.0002)

t = (22.4499) (3.0060)

R2 = 0.2440
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Q̂t = 59.7618 + 0.0020X1 (55)

se = (1.5600) (0.00009)

t = (38.3080) (20.9273)

R2 = 0.9399

Now using equations (52) and (53), the following ILS estimates are obtained:

β̂0 = −183.7043 (56)

β̂1 = 2.6766 (57)

The estimated ILS regression is given by:

Qt = −183.7043 + 2.6766Pt (58)

3.3.2 Two-Staged Least Squares

This section gives the practical illustration of the discussion of the 2SLS method as discussed in section 2.

The same money-supply model is considered. OLS method can be used to estimate the parameters of the

money supply function, however, the obtained estimates will be inconsistent as a high correlation between

the random variable Y1 and µ
2
. Assume that a proxy for Y1 can be obtained where it is uncorrelated with

µ2 . So now, a way of obtaining such an instrumental variable is needed. The instrumental variable can be

obtained by using the 2SLS, which was developed independently.

Stage 1 Regression Regress the stochastic explanatory variable income Y1, on the exogenous variables

X1 and X2, then the results are obtained as follows:
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Ŷ1t = 2689.848 + 1.8700X1t + 2.0343X2t (59)

se = (67.9874) (0.1717) (0.1075)

t = (39.5639) (10.8938) (18.9295)

R2 = 0.9964

From the regression coe�cient it is observed that 99.64% of the variation of Y1 is explained by the

regression model.

Stage 2 Regression This stage discusses estimating parameters of the money-supply function equation

(32), replacing Y1 with the estimated Y1 obtained in stage 1. The obtained variables are as follows:

Ŷ2t = −2240.18 + 0.702Ŷ1t (60)

se = (127.372) (0.0178)

t = (−19.1579) (44.5246)

R2 = 0.9831

The estimated standard errors given in equation (60) should be corrected using the method that is

discussed in section 2.4. E�ecting this correction gives the following estimates:

Ŷ2t = −2240.18 + 0.702Ŷ1t (61)

se = (126.9598) (0.0212)

t = (−17.3354) (37.3812)

R2 = 0.9803

It is observed that the estimated standard errors given in equation (61) do not di�er much from the

estimates given in equation (55), this is due to the fact that correlation coe�cient in stage 1 regression is

very high. This implies the estimates obtained from classic OLS and stage 2 of 2SLS will be the similar;
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however, this may not always be the case in practice. Hence, the second stage of 2SLS needs to be performed

always.

4 Conclusion

This research project looked at simultaneous equation models, discussing their features, their estimation and

some of the statistical problems associated with them. This was done by considering the identi�cation prob-

lem: underidenti�ed, just or exact identi�cation and overidenti�cation by looking at the di�erence between

estimation of a just identi�ed equation with indirect least square (ILS) and estimation of an overidenti�ed

equation with method of two stage least squares (2SLS).

Shortfall of this research is that only two methods of identi�cation were considered; therefore, as an

improvement one can also consider other methods of identi�cation as introduced in the section 1 and can

also have the system of equation represented in matrix form. System of equations in matrix form will make

it easy to use SAS IML to estimate structural equations.
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Appendix

Just or Exact Identi�cation Calculation:

Demand function:

Qt = α0 + α1Pt + α2It + µ1t α1 < 0, α2 > 0

Supply function:

Qt = β0 + β1Pt + µ2t β1 < 0

Now Solving for Pt from the following equilibrium condition:

α0 + α1Pt + α2It + µ1t = β0 + β1Pt + µ2t

(α1 − β1)Pt = (β0 − α0) − α2It + (µ2t − µ1t)

Pt =
β0 − α0

α1 − β1
+

−α2

α1 − β1
It +

µ2t − µ1t

α1 − β1

Now substituting the value of Pt into the demand or supply function to get Qt:

Qt = α0 + α1(
β0 − α0

α1 − β1
+

−α2

α1 − β1
It +

µ2t − µ1t

α1 − β1
) + α2It + µ1t

=
α0α1 − α0β1
α1 − β1

+
α1β0 − α0α1

α1 − β1
+

−α1α2

α1 − β1
It +

α1µ2t − α1µ1t

α1 − β1
+
α1α2It − α2β1It

α1 − β1
+
α1µ1t − β1µ1t

α1 − β1

=
α1β0 − α0β1
α1 − β1

+
−α2β1It
α1 − β1

+
α1µ2t − β1µ1t

α1 − β1

Overidenti�cation Calculations:

Demand function:

Qt = α0 + α1Pt + α2It + α3Rt + µ1t

Supply function:
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Qt = β0 + β1Pt + β2Pt−1 + µ2t

Solving for Pt from the equilibrium condition:

α0 + α1Pt + α2It + α3Rt + µ1t = β0 + β1Pt + β2Pt−1 + µ2t

(α1 − β1)Pt = (β0 − α0) − α2It − α3Rt + β2Pt−1 + (µ2t − µ1t)

Pt =
β0 − α0

α1 − β1
+

−α2It
α1 − β1

+
−α3Rt
α1 − β1

+
β2

α1 − β1
+
µ2t − µ1t

α1 − β1

Now substituting the value of Pt into the demand or supply function to get Qt:

Qt = α0 + α1(
β0 − α0

α1 − β1
+

−α2It
α1 − β1

+
−α3Rt
α1 − β1

+
β2

α1 − β1
+
µ2t − µ1t

α1 − β1
) + α2It + α3Rt + µ1t

=
α0

α1 − β1
+
α1β0 − α0α1

α1 − β1
+

−α1α2It
α1 − β1

+
−α1α3Rt
α1 − β1

+
α1β2
α1 − β1

+
α1µ2t − α1µ1t

α1 − β1
+

α2It
α1 − β1

+
α3Rt
α1 − β1

+
µ1t

α1 − β1

=
α0

α1 − β1
+
α1β0 − α0α1

α1 − β1
+

−α1α2It
α1 − β1

+
−α1α3Rt
α1 − β1

+
α1β2
α1 − β1

+
α1µ2t − α1µ1t

α1 − β1
+
α2It(α1 − β1)

α1 − β1

+
α3Rt(α1 − β1)

α1 − β1
+
µ1t(α1 − β1)

α1 − β1

Therefore,

Qt = Π4 + Π5It + Π6Rt + Π7Pt−1 + wt

where

Π4 =
α1β0 − α0β1
α1 − β1

Π5 = − α2β1
α1 − β1

Π6 =
α3β1
α1 − β1

Π7 = − α1β2
α1 − β1

wt =
α1µ2t − β1µ1t

α1 − β1
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Data Sets

The following table gives data on crop production, crop prices and per capita personal consumption expen-

diture, 2007, Dollars, United States, 1975-2004. This is the data that is used in section 3 to facilitate the

discussion around estimation methods discussed in section 2.

Table 3: Crops Data Set
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Y1 =GDP, gross domestic product (billions of chained 2000 dollars)
Y2 =M2, money supply (billions of dollars)
X1 =GPDI, gross private domestic investment (billions of chained 2000 dollars)
X2 =FEDEXP, Federal government expenditure (billions of dollars)
X3 =TB6, 6-month Treasury bill rate (%)

Table 4: Economic Report

Indirect Least Squares

SAS Code Used:

data crop;

input obs Q P X;

cards;

1975 66 88 4789

1976 67 87 5282

1977 71 83 5804

1978 73 89 6417

1979 78 98 7073
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1980 75 107 7716

1981 81 111 8439

1982 82 98 8945

1983 71 108 9775

1984 81 111 10589

1985 85 98 11406

1986 82 87 12048

1987 84 86 12766

1988 80 104 13685

1989 86 109 14546

1990 90 103 15349

1991 90 101 15772

1992 96 101 16485

1993 91 102 17204

1994 101 105 18004

1995 96 112 18665

1996 100 127 19490

1997 104 115 20323

1998 105 107 21291

1999 108 97 22491

2000 108 96 23862

2001 108 99 24722

2002 107 105 25501

2003 108 111 26463

2004 112 117 27937

;

run;

/*regression of price on per capita real consumption expenditure*/

proc reg data = crop;

model P = X ;

run;
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/*regression of quantity on per capita real consumption expenditure*/

proc reg data = crop;

model Q = X ;

run;

Relevent SAS Output:
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Two-Staged Least Squares

SAS Code Used:

options nocenter ;

data table_4;

input Y1 Y2 X1 X2 X3;

cards;
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3771.9 626.5 427.1 201.1 6.562

3898.6 710.3 475.7 220.0 4.511

4105.0 802.3 532.1 244.4 4.466

4341.5 855.5 594.4 261.7 7.178

4319.6 902.1 550.6 293.3 7.926

4311.2 1016.2 453.1 346.2 6.122

4540.9 1152.0 544.7 374.3 5.266

4750.5 1270.3 627.0 407.5 5.510

5015.0 1366.0 702.6 450.0 7.572

5173.4 1473.7 725.0 497.5 10.017

5161.7 1599.8 645.3 585.7 11.374

5291.7 1755.4 704.9 672.7 13.776

5189.3 1910.3 606.0 748.5 11.084

5423.8 2126.5 662.5 815.4 8.75

5813.6 2310.0 857.7 877.1 9.80

6053.7 2495.7 849.7 948.2 7.66

6263.6 2732.4 843.9 1006.0 6.03

6475.1 2831.4 870.0 1041.6 6.05

6742.7 2994.5 890.5 1092.7 6.92

6981.4 3158.5 926.2 1167.5 8.04

7112.5 3278.6 895.1 1253.5 7.47

7100.5 3379.1 822.2 1315.0 5.49

7336.6 3432.5 889.0 1444.6 3.57

7532.7 3484.0 968.3 1496.0 3.14

7835.5 3497.5 1099.6 1533.1 4.66

8031.7 3640.4 1134.0 1603.5 5.59

8328.9 3815.1 1234.2 1665.8 5.09

8703.5 4031.6 1387.7 1708.9 5.18

9066.9 4379.0 1524.1 1734.9 4.85

9470.3 4641.1 1642.6 1787.6 4.76

9817.0 4920.9 1735.5 1864.4 5.92

9890.7 5430.3 1598.4 1969.5 3.39
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10048.8 5774.1 1557.1 2101.1 1.69

10301.0 6062.0 1613.1 2252.1 1.06

10703.5 6411.7 1770.6 2383.0 1.58

11048.6 6669.4 1866.3 2555.9 3.40

;

run;

proc Iml;

use table_4;

read all var _ALL_ into Matrix[colname=varNames];

close d1;

show names;

*print Matrix;

n = nrow(Matrix);

y1 = Matrix[,1];

ones = j(n,1,1);

X = ones||matrix[,3]||Matrix[,4];

*print x;

BetaHat=inv(X`*X)*X`*y1;

res=y1-X*BetaHat ;

yhat1=x*betahat;

*print yhat1;

*print BetaHat;

y2=matrix[,2];

x2=ones||yhat1;

*print x2;
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betahat2=inv(x2`*x2)*x2`*y2;

print BetaHat betahat2;

Relevent SAS Output:

Relevent SAS Output: Fit Plots for Price and Quantity
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Abstract

Kernel density estimation is a data smoothing technique that can be applied in a spatial context.

The analysis of spatial point patterns can be promoted by the implementation of the R software. This

research will give particular focus to the spatstat package within R and the function that computes

a kernel smoothed intensity function from spatial point data, namely density.ppp.The function and

each of its parameters will be investigated and their effect on the kernel density estimate inspected.

To this end we will analyze the effects of adjusting kernel options, allowing for edge effects and

bandwidth selection for spatial point patterns for the standard rectangular window and the convex

hull window.
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1 Introduction

Spatial point patterns are characterized by the arrangement of objects or entities that are distributed

in space or a region. A point pattern may be defined by a set B whose elements are a set of locations

for observed values of data in a region R. The region over which data points are collected is termed a

window. The window in which objects are studied may be various geometric shapes, such as a square, a

complex polygon and could include non-convex shapes.

Figure 1 is an illustration that shows an example of a point pattern in which the points of two types are

plotted on a plane1. Different symbols are used to distinguish markers that relay additional information.

A subset of all the points can be viewed in an irregular window, also illustrated in Figure 1.

The aim of a statistical analysis may be to estimate parameters of a population distribution. When

data is collected, meticulous attention needs to be paid to the selection of the sample window, the region

of observation, as they indicate where data has not been collected. The choice of window may have

implicit effects on the results of parameter estimates and may give erroneous output if not selected

correctly. Figure 2 is an example of the spatial distribution of data2. The colors indicate wind speed,

arrows indicate wind direction, April, July, October and January are the months of spring, summer,

autumn and winter.

Figure 1: A point pattern plot

The patterns formed by the points are analyzed in many scientific disciplines, as a result, a vast range

of applications may be considered. This includes but is not limited to biological cells, animals, plants

or star constellations, amongst others [15]. Information derived from point pattern data may aid in the

statistical inquiry and evaluation of the distribution of a collection of points on a plane or two dimensional

surface.
1https://i0.wp.com/bio7.org/Spatstat_Introduction_files/figure-markdown_strict+
autolink_bare_uris/unnamed-chunk-21-1.png?w=456. Date accessed 24 February 2017
2http://article.sciencepublishinggroup.com/html/10.11648.j.ijema.20160403.15.html. Date Accessed: 03 March 2017
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Many statistical-based packages are available for such analysis. Baddeley and Turner are some of

several statisticians that are involved with statistical computing, working mainly with spatial point

patterns. They have authored and co-authored in literature such as [1, 3] . These are the main references

that will be consulted for the research to gain mastery of the research topic.

spatstat[3, 2] is a package in R that equips researchers with practical techniques for the statistical

analysis of spatial point patterns. Initially, the spatstat package could only be used for two dimensional

point patterns. It can now support multi-dimensional patterns such as temporal data, that is spatial

point patterns over time. In spatstat, a point pattern is denoted by an object class “ppp” and “owin”

is an object class assigned to the window, the area of study. In this research we are going to examine

the mathematics behind the density.ppp function, the available window options in spatstat, and edge

effects.

Figure 2: Seasonal spatial distribution of the wind vector data in 2003-2013
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2 Literature review

Several techniques exist for analyzing spatial data and more specifically spatial densities. Some of the

earlier methods for spatial point pattern analysis was developed by Peter J. Diggle in a monograph

published in 1983 and other works such as [8], which paid particular attention to areas in biology and plant

ecology. The methods developed had other applications in fields such as geography and environmental

sciences. A revised edition of these works was later published which refined the methods utilized to

analyze spatial data [7]. This included nonparametric methods for spatial intensity estimation. In the

same publication, Diggle lent more emphasis to the mathematical concepts behind the statistical analysis

of spatial density estimation [7]. Other statisticians such as Ripley [12] and Upton and Fingleton [15]

have surveyed tailored methods for the application of spatial data analysis. In their joint works, Upton

and Fingleton [15] consider methods for spatial intensity estimation. With innovations in technology over

the past decade, computer based methods have facilitated the exploration of spatial data and has spurred

the development of spatial computing software by authors such Baddeley and Turner [1, 2, 3] for spatial

intensity estimates for point pattern data. There are a number of spatial analysis software tools available

that aid in the analysis of spatial point data and the estimation of kernel smoothed intensities. Among

them are software packages such as spatstat, clusterpy and LuciadLightspeed .

3 Kernel density estimation in one dimension

3.1 Histograms

A histogram is one of several graphical methods that is used to show basic information about a data set.

This may include, but is not limited to, measures of location such as the median data value, the mean

value of the sample data, and the spread of the data over a domain. A histogram can give information

about the shape of a probability distribution, namely the presence of symmetry or skewness, and unimodal

or multimodal classes of data. Figure 3 illustrates some examples of the shape that a histogram created

from data may have. The bell shape of (a) is characteristic of a symmetric data set, (b) illustrates a

typical multimodal data set, and skew data will exhibit traits illustrated by (c) and (d).

The histogram is the oldest and most widely used density estimator that equips researchers with

practical techniques for the statistical analysis of data. An interval covered by the data set is segmented

into sub-intervals [x0 +mh, x0 + (m + 1)h}, that are termed bins, where h denotes the bin width, x0 a

point of origin and m an integer. The height of a bar on a histogram is a positive integer x∗ that denotes

the number of Xi data points that are in the that bin. If we have that x1, x2, ..., xk are the sample values

observed for the random variable X with unknown density f(x), where n denotes the sample size, the
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(a) Symmetric, unimodal (b) Multimodal

(c) Skewed right (d) Skewed left

Figure 3: Illustration of histograms created from simulated data sets.

histogram is then defined by

f̂(x) =
(number of Xi in the same bin as x)

nh
. (1)

There are features of a histogram that can be observed from its construction. The height of a bar is

determined by the number of values observed in a bin and, depending on the bin width, an observation can

be closer to an observation in the neighboring bin than it is to points in its own bin. Some disadvantages

of using a histogram as a graphical method to display data are:

• A histogram is not smooth

• A histogram depends on the end points and the width of the bins.

3.1.1 Example

Suppose that a data set with n = 10 observations illustrated in Table adjust=11 is sampled.

i 1 2 3 4 5 6 7 8 9 10
xi 4 8 35 25 73 68 91 5.4 36 55

Table 1: A data set
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Consider two bin widths h1 = 10 and h2 = 20. Using Equation 1 and the data set in Table 1, it

follows that

f̂1(x) =
(number of Xi in the same bin as x)

nh1
. =



0.03 if 0 < x ≤ 10

0.01 if 20 < x ≤ 30 and 50 < x ≤ 80

0.02 if 30 < x ≤ 40

0 otherwise

and

f̂2(x) =
(number of Xi in the same bin as x)

nh2
. =



0.015 if 0 < x ≤ 40

0.005 if 40 < x ≤ 60 and 80 < x ≤ 100

0.01 if 60 < x ≤ 80

0 otherwise

.

If we let x = 25 then

f̂1(25) =
(number of Xi in the same bin as 25)

(10)(10)
= 0.01

and

f̂2(25) =
(number of Xi in the same bin as 25)

(10)(20)
= 0.015.

3.2 Weighted functions

Consider the continuous random variable, X, from a distribution f(x). To determine the probability that

the random variable falls with in a specific interval (x− h, x+ h) we would use the expression

P (x− h < X < x+ h) =

ˆ x+h

x−h
f(t)dt :: 2hf(x).

Thus

f(x) ::
1

2h
P (x− h < X < x+ h).

If we have x1, x2, ..., xn are the sample values observed for the random variable X, this probability can

be estimated by

f̂(x) =
(number of observations in the interval (x− h, x+ h))

2nh
. (2)
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The density estimate f̂(x) can then be expressed as

f̂(x) =
1

n

n∑
i=1

w(x− xi, h) (3)

where

w(t, h) =

{
1
2h for |t| < h

0 otherwise

is a weighting function based on rectangles. Other weighting functions can be based on triangles or of a

Gaussian form. Using a weighting function to find an estimate for the density of a population gives an

estimate f̂ that still retains its property of discontinuity.

3.3 Kernels

The weighting function, w(t, h), in Equation 3 can be expressed more generally as

w(t, h) =
1

h
K

(
t

h

)
where K denotes a function of a single variable termed the kernel, which is essentially a standardized

weighting function i.e. h = 1, determining the shape.

[9] For our purposes, the kernel is a function that exhibits the following properties:

1.
´
K(t)dt = 1

2.
´
tK(t)dt = 0

3. K(−t) = K(t)

4.
´
t2K(t)dt <∞

Consequently, the kernel is any non-negative function that is integrable over its whole domain with a

value equal to one, centered at zero, symmetric about its center, and has first and second moments that

exist. Table 2 gives several examples of kernel functions with the properties describe above.

3.3.1 Example

Consider the cosine kernel K(t) = π
4 cos(

π
2 t) for |t| ≤ 1 and zero otherwise. We note that K(t) ≥ 0 for all

|t| ≤ 1. It follows that

ˆ ∞
−∞

K(t)dt =

ˆ 1

−1

π

4
cos
(
π

2
t

)
dt =

1

2
sin
(
π

2
t

)∣∣∣∣∣
1

−1

=
1

2
(1− (−1)) = 1.
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Kernel K(t)

Epanechnikov 3
4
√
5
(1− 1

5 t
2) for |t| <

√
5, 0 otherwise

Gaussian 1√
2π
e−

1
2 t

2

for all t

Uniform 1
2a for −a ≤ t ≤ a, 0 otherwise

Triangular 1− |t| for |t| < 1, 0 otherwise

Cosine π
4 cos(

π
2 t) for |t| ≤ 1

Logistic 1
et+2+e−t

Sigmoid function 2
π(et+e−t)

Silverman kernel(insert citation) 1
2e
− |t|√

2 sin( 4|t|+
√
2π√

36
)

Table 2: Examples of kernel functions commonly utilized

If we also consider

ˆ ∞
−∞

tK(t)dt =

ˆ 1

−1
t
π

4
cos
(
π

2
t

)
dt.

Using integration by parts, we get that

ˆ 1

−1
t
π

4
cos
(
π

2
t

)
dt =

ˆ
R2

tK(t)dt = 0t
1

2
sin
(
π

2
t

)∣∣∣∣∣
1

−1

−
ˆ 1

−1

1

2
sin
(
π

2
t

)
dt =

1

2
(1− 1) +

1

π
(1− 1) = 0.

Furthermore

K(−t) = π

4
cos
(
π

2
(−t)

)
=
π

4
cos
(
π

2
t

)
= K(t),

and the last property, ˆ ∞
−∞

t2K(t)dt =

ˆ 1

−1
t2
π

4
cos
(
π

2
t

)
dt.

Using Integration by parts, we get that

ˆ 1

−1
t2
π

4
cos
(
π

2
t

)
dt =

1

2
t2sin

(
π

2
t

)∣∣∣∣∣
1

−1

−

[
2

π
tcos

(
π

2
t

)∣∣∣∣∣
1

−1

+

ˆ 1

−1

2

π
cos
(
π

2
t

)
dt

]
= 1− 8

π2
<∞.

Thus K(t) satisfies all the requirements for a kernel function.
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3.4 Univariate kernel density estimation

In Section 2.1, the use of a histogram as a density estimator was discussed. Some disadvantages of using

a histogram as a density estimate were that a histogram is not smooth. To resolve this problem, the

kernel density estimator defined by

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(4)

may be used, where K denotes the kernel function with the properties listed in Section 2.3, which will

determine the shape of the weighting function (i.e. rectangular, triangular, Gaussian, etc.), x1, x2, ..., xn

are the sample values observed for the random variable X, and h, the bandwidth or smoothing parameter,

which determines the width of the weighting function. The choice of h, the bandwidth, is crucial in

estimating the kernel smoothed intensity for a population. A large choice for h will mask the structure

of the data and over-smooth the density estimate, whereas, a small h will under-smooth the density

estimate. The effects of the choice of bandwidth are illustrated in Figure 43.

Figure 4: Density estimation of output power (MW) for unit 1 at hour 11 with different bandwidths.

When the choice of bandwidth is relatively small (i.e. h = 0.5), the kernel density estimate will fit

the data adeptly, but the density function would be jagged and spiked. If we choose a large bandwidth,

say h = 10, we get a smooth function for the density estimate. Even though the kernel density estimate,

for a bandwidth of size h = 10, gives a smooth estimate for the probability density function, the estimate

deviates considerably from the distribution of the data. A good choice for h would be a value that gives
3https://www.google.co.za/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjJ1sWV-

6vTAhUF0RQKHUUJBj8QjRwIBw&url=http%3A%2F%2Fcontent.iospress.com%2Farticles%2Fjournal-of-intelligent-and-
fuzzy-systems%2Fifs2149&psig=AFQjCNEstJnJgM2g8b1udrn19JxWmDb1Zg&ust=1492534672751762. Date accessed: 17
April 2017.
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a smooth estimate for the density function and that emulates the distribution of the data.

4 Kernel density estimation in two dimensions

The expression for the kernel density estimate in Equation 4 can be extended to the multivariate case.

That is, instead of estimating the density function for a random variable X by using sample data,

x1, x2, ..., xn, we can estimate the density function for a k-dimensional random vector, X, by using a

random sample x1, x2, ..., xn, where

X =



X1

X2

...

Xk


and xi =



xi1

xi2

...

xik


, i = 1, 2, ..., n.

[9] In general, the form of the k-dimensional multivariate kernel density estimator for a random sample

x1, x2, ..., xn is

f̂H(x) = n−1
n∑
i=1

KH

(
x− xi

)
, (5)

where

• KH(x) = |H|−1/2K(H−1/2x), and K : Rk → R, is a kernel function that takes k arguments.

• n is the number of k-dimensional vectors observed.

• H is a k×k bandwidth matrix, which is fixed, symmetric and positive definite. As in the univariate

case, the level of smoothing of the kernel density function is vastly determined by the bandwidth

matrix. Depending on the choice of bandwidth matrix, the kernel density function can either be

too smooth and inaccurately represent the data, under-smoothed and representative of the data, or

smooth and a good fit for the data set. There are two main cases of the forms that the bandwidth

matrix can assume:

1. The bandwidth matrix is symmetric and positive definite with the form

H =



h21 h12 · · · h1k

h12 h22 · · · h2k

· · · · · ·
. . . · · ·

h1k h2k · · · h2k


.
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2. The bandwidth matrix is diagonal, and positive definite with the form

diagH =



h21 0 · · · 0

0 h22 · · · 0

· · · · · ·
. . . · · ·

0 0 · · · h2k


.

If we let h1 = h2 = . . . = hk, the bandwidth reduces to

H = h2Ik =



h2 0 · · · 0

0 h2 · · · 0

· · · · · ·
. . . · · ·

0 0 · · · h2


,

where Ik denotes a k×k identity matrix. For this case of the bandwidth matrix, Equation 5

reduces to

f̂H(x) =
1

nhk

n∑
i=1

K

(
x− xi
h

)
=

1

nhk

n∑
i=1

K

(
x1 − xi1

h
,
x2 − xi2

h
, ...,

xk −Xik

h

)
.

If we let k = 1, the we get the form of the univariate kernel density estimate shown in Equation

4.

In the rest of the report we will only consider the bivariate case, where k = 2, and the case where

H = h2I2, of the bandwidth matrix. Equation 5 thus simplifies to

f̂H(x) =
1

nh2

n∑
i=1

K

(
x− xi
h

)
=

1

nh2

n∑
i=1

K

(
x1 − xi1

h
,
x2 − xi2

h

)
.

Example

This example was adapted from [10]. We consider the bivariate case with bandwidth matrix H = h21 h12

h12 h22

, where h1 = h2. We have a sample data set x1 = (7, 3), x2 = (2, 4), x3 = (4, 4), x4 = (5, 2)

and x5 = (5.5, 6.5) with a bandwidth matrix H =

 1 0.7

0.7 1

 . Figure 5 taken from [10] depicts a plot

of the points on a Cartesian plane with kernel functions fitted over each point, shown on the left and the

kernel density estimate for the data set which is shown on the right.
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(a) (b)

Figure 5: Bivariate kernel density estimate. (a), individual kernels. (b), kernel density estimate

The kernel function K still retains most of its properties when applied to kernel density estimation for

the bivariate case, namely that it is a non-negative function, K(t) ≥ 0, such that

•
´
R2 K(t)dt = 1

•
´
R2 tK(t)dt = 0

where t′ = [t1 t2], a 2× 1 vector and 0, the zero vector.

5 Density.ppp

In the introduction of this report, a point pattern was defined as an arrangement of objects that are

distributed in a region. A point may be represented as coordinates, (x, y), over a specified geographical

region R, that can assume the form of any complex polygon or nonconvex shape. The method of kernel

density estimation can be deployed to compute a kenel density estimate from the point pattern data.

To this end, the spatstat[3, 2] package in R may be used, namely the density.ppp function. The

density.ppp is a function in the spatstat package in R that computes a kernel smoothed intensity from

spatial point data. It is a method for the generic command density. The density.ppp function can take

a considerable number of parameters with some set defaults. The parameters may include additional

non-compulsory arguments that can be excluded depending on validity and applicability to the data.
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The density.ppp takes arguments and defaults shown in Equation 6.

density.ppp(x, sigma = NULL, ..., weights = NULL, edge = TRUE, varcov = NULL, at = ”pixels”,

leaveoneout = TRUE, adjust = 1, diggle = FALSE, se = FALSE, kernel = ”gaussian”, (6)

scalekernel = is.character(kernel), positive = FALSE)

In spatstat a point pattern is denoted by the object class “ppp” (planar point pattern). This is the first

argument, x, that should be read into the density.ppp function. The function will use these collection

of data points to calculate the estimate for the population intensity. Figure 6 is a plot of point pattern

data simulated in R. This data will be used in the rest of the section to illustrate how the density.ppp

can be used to find kernel estimates.

Figure 6: Point pattern plotted using simulated data in R

5.1 edge and diggle

The intensity estimates at the data points are computed using the following formulas,

λ̂(1)(x) =

n∑
i=1

K(x− xi), (7)

λ̂(2)(x) =
1

e(x)

n∑
i=1

K(x− xi), (8)

λ̂(3)(x) =

n∑
i=1

1

e(xi)
K(x− xi) (9)
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where K(t) is the kernel function,

e(x) =

ˆ
R

K(x− v)dv (10)

is the correction for the bias due to edge effects. Equations 7, 8 and 9 denote the kernel density estimates

for the uncorrected, uniformly corrected and Diggle corrected kernel estimates respectively. When select-

ing a window R, the region of study, we create a boundary in which points in a pattern are observed. The

observed points in the region R may be a subset of a larger region of points in a population. Points that

fall outside this boundary should have no or minimal interdependence with observations in the window.

Edge effects arise when there is some interaction between points inside the window of study and points

that fall outside the region [7]. When calculating the smoothed kernel intensity, we account for edge

effects by normalizing the density estimate with the function denoted in Equation 10. Points outside the

boundary of the region of observation do not contribute to the sum of kernel intensity estimates. In the

presence of edge effects, the uncorrected estimate in Equation 7 will decrease close to the boundary of

the region of observation since the kernels over points close to the boundary have fewer contributions in

the sum of the intensity estimate [2].

In the expressions above, Equation 7 is an instance of the kernel estimate that is not corrected for

edge effects whereas Equations 8 and 9 correct for this. Equations 9 and 8, the Diggles and uniformly

corrected estimates respectively, differ in that the Diggles correction attaches variable weights determined

by Equation 10, where the function parameter is adjusted for each point, to each kernel fitted over a point

and the sum of these weighted kernels are then used to compute the smoothed intensity estimate. The

uniformly corrected estimate weights each kernel fitted over a point by a constant value also determined

by the expression in Equation 10. The contribution to the sum of each point kernel is uniformly weighted.

Whether the kernel smoothed intensity is corrected for edge effects can be controlled by adjusting the

edge parameter of the density.ppp function. If edge = FALSE the form of the expression in Equation

7 will be used to compute a kernel density estimate. If edge = TRUE, either one of the expression in

Equations 8 and 9 will be utilized.

Which formula is used for the edge correction is determined by the argument in diggle parameter

of the density.ppp function which can take on the Boolean values TRUE or FALSE. When the diggle

parameter is set to its default value, FALSE, Equation 8 will be applied to compute a kernel smoothed

intensity. Alternatively, if the parameter value is set to TRUE, Equation 9 will be used.

Figure 7 illustrates the different plots for the kernel density estimate when the edge and diggle

options are adjusted. If edge = FALSE , we get the output in (a) which corresponds to the kernel density

estimate calculated using the expression in Equation 7. When the logical value TRUE is assigned to the

edge argument and the diggle parameter is not specified, the output in (b) corresponding to the function
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for the kernel density estimate in Equation 8 will be given. Since the default for diggle is FALSE, when

the logical value FALSE is assigned to diggle and edge = TRUE we would still get the same output given

in (b). The output given in (c), is the case for diggle = TRUE, which corresponds to a smoothed kernel

estimate that takes the form of the expression given in Equation 9.

(a) edge = FALSE (b) edge = TRUE (c) edge = TRUE, diggle = TRUE

Figure 7: Kernel smoothed estimates for the density.ppp function of simulated data in R with variable
options for edge and diggle for the Guassian kernel.

5.2 kernel

By default, the density.ppp function uses the isotropic Gaussian kernel to compute smoothed intensity

estimates. The available kernel functions present in the spatstat package are epanechnikov, quartic,

gaussian and disc. The choice of kernel function can be changed by specifying either one of the available

kernel options (i.e. ”epanechnikov”, ”quartic”, ”gaussian”, ”disc”) as a character string in the kernel

argument of the density.ppp function.

Figure 23 shows different plots for density estimates when the available kernel options are changed.

Depicted in Figure 8, is the graphical images of the shape of different kernel options.

(a) Disc Kernel (b) Quartic Kernel

(c) Epanechnikov Kernel (d) Gaussian Kernel

Figure 8: Graphical images of the shape of the different kernels
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5.3 varcov

The varcov option is used to specify the covariance matrix of any Gaussian kernel. That is, a matrix of

the form [
σ2
1 σ12

σ12 σ2
2

]

can be assigned to the varcov parameter of the density.ppp function, where the diagonal entries

denote the variance of the random variable and the off diagonal entries the covariances between random

variables.

To illustrate the functionality of this parameter we examine several forms of covariance matrix. To this

end, we plot a single point in a standard rectangular window and fit various kernel functions with different

options for the varcov argument. We will only consider the plots for the gaussian,epanechnikov and

the disc kernels. The results will follow similarly for other available kernels.

5.3.1 Diagonal positive definite matrix

Suppose we have a positive definite matrix that assumes the form

[
σ2
1 0

0 σ2
2

]
.

There are three main forms that this matrix can take.

Case:

• σ1 = σ2

We use a matrix H1 =

[
0.25 0

0 0.25

]
that has this property. Figure 9 illustrates the shape that the

guassian, epanechnikov and disc kernels will assume for this matrix when it is specified in the varcov

argument. For all the listed kernels, any diagonal matrix with equal diagonal elements will produce

isotropic shaped kernels.

(a) Gaussian Kernel (b) Epanechnikov Kernel (c) Disc Kernel

Figure 9: Density plot for different kernels fitted over a point for matrix H1
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• σ1 < σ2

In the following example a matrix H2 =

[
0.25 0

0 0.625

]
was defined in the varcov parameter of the

density.ppp function. Figure 10 depicts the shape of the kernels when the matrix assumes this form.

For this instance of the matrix, the kernel functions have a vertical width larger than their horizontal

counterpart.

(a) Gaussian Kernel (b) Epanechnikov Kernel (c) Disc Kernel

Figure 10: Density plot for different kernels fitted over a point for matrix H2

• σ1 > σ2

Similarly, as in the previous case, we specify a matrix that has one diagonal entry larger than the other for

σ1 and σ2 respectively, namely H3 =

[
0.625 0

0 0.25

]
, in the varcov argument and produce the output

illustrated in Figure 11. We again observe a larger width in the direction of the largest diagonal element

specified, the horizontal direction.

(a) Gaussian Kernel (b) Epanechnikov Kernel (c) Disc Kernel

Figure 11: Density plot for different kernels fitted over a point for bandwidth matrix H3

5.3.2 Symmetric, positive definite matrix

To depict the kernel shape for a symmetric positive definite matrix which has either negative or positive

off diagonal elements, we assign a matrix H4 =

[
0.25 0.125

0.125 0.625

]
and H5 =

[
0.25 −0.125

−0.125 0.625

]
for the

cases σ12 > 0 and σ <12 0 respectively to the varcov argument and plot a density for different kernel

options illustrated in Figure 12 and Figure 13.
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(a) Guassian Kernel (b) Epanechnikov Kernel (c) Disc Kernel

Figure 12: Density plot for different kernels fitted over a point for matrix H4

Figure 13: Density plot for different kernels fitted over a point for matrix H5

5.3.3 Nonsymmetric covariance matrices

We chose several non-symmetric matrices with positive diagonal entries, H6 =

[
0.25 −0.125

0.1 0.625

]
, H7 =

[
0.25 0.1

−0.125 0.625

]
, and H8 =

[
0.25 0.3

0.1 0.625

]
and create a density plot for different kernel options

portrayed in Figure 14.

5.4 sigma

The bandwidth for the kernel can be specified in the sigma parameter option of the function and can be

determined in one of several ways.

• A value can be directly assigned to the parameter by stating, sigma = value. The numerical value

assigned to this parameter will be taken as the standard deviation of the Gaussian kernel. That is,

the value will be used as both the bandwidth and the standard deviation of the Gaussian kernel. In

general, the Gaussian kernel depends on two parameters namely the mean and variance. The value

assigned to sigma accounts for the variance parameter for the Gaussian kernel. Since the kernel

has the property of symmetry about zero, the mean parameter for the Gaussian kernel is given as

zero. For the other available kernels (i.e. epanechnikov, quartic, disc), sigma is taken only as

the bandwidth since no other function parameters need to be specified for these kernel functions.
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Kernel Option
Gaussian Epanechnikov Disc

H6

H7

H8

Figure 14: Density plot for different kernels fitted over a point for a non-symmetric matrix with positive
diagonal entries

• For the default kernel, the Gaussian isotropic kernel, sigma(x) can be called in the parameter as

a function and used to calculate a suitable bandwidth from the point pattern data described in

the first function parameter, x, of the density.ppp function. The value of sigma can be calculated

using various functions. These include bw.diggle, bw.scott, bw.ppl and bw.frac for Diggle and

Berman’s mean square error cross-validation method, likelihood cross validation method, Scott’s

rule of thumb and a fast rule of thumb based on the shape of the window respectively. Generally,

the sigma(x) function calculates the standard deviation of an R object x , stated in the function

parameter when it is called.

• Another available option for the sigma parameter would be to use a vector of length 2 that gives

that standard deviation of two independent Gaussian coordinates.

• When sigma is not specified, it is calculated as one eighth of the shortest side length of the enclosing

rectangle for the point pattern. sigma and varcov are not compatible since either one of these

options has to be used to specify the variance or covariance matrix of the Gaussian kernel.

Figure 15 illustrates the different plots for the kernel smoothed intensity when the value of sigma is

adjusted.
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(a) sigma = 0.5 (b) sigma = 1 (c) sigma = 5

Figure 15: Plot of kernel smoothed intensity estimates for the density.ppp function for simulated data
in R with different values for sigma for the default Gaussian kernel

5.5 adjust

The adjust argument is used in conjunction with the sigma option to control for the change in bandwidth.

The value assigned to sigma will be multiplied by the factor adjust. The default for the adjust argument

is the numeric value one.

5.6 leaveoneout

The leaveoneout argument in the function parameter of density.ppp takes on the logical values TRUE

or FALSE. If leaveoneout is set to TRUE, the sum in the equation of the kernel intensity is taken over all

points not equal to a coordinate in the window of observation, that is for Equations 7, 8 and 9 the sum

is calculated over all points xi not equal to x, thus the intensity value at a point is the sum of kernel

contributions from other data points. When leaveoneout = FALSE, the sum is taken over all xi including

those equal to x.

6 Application

6.1 Introduction

The data used to illustrate the functionality of the density.ppp function was collected in Mara province,

situated in Northern Tanzania4,5. The census data comprises of data for 34253 households spread across

78 villages. A subset of the data available for a total of 8343 households and 18 villages was extracted

from the original census. For the purposes of this report a total of 5 villages, namely Bokore, Gantamome,

Iseresere, Itununu and Kemgesi with households that number 269, 265, 295, 534 and 519 respectively will

be utilized. Figure 16 depicts a point pattern plot of the geographic location of households for each of

the villages listed with variable rectangular windows.
4http://www.gla.ac.uk/researchinstitutes/bahcm/staff/katiehampson/
5http://www.katiehampson.com/#intro
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(a) Bokore (b) Iseresere

(c) Itununu (d) Kemgesi (e) Gantamome

Figure 16: A point pattern plot of the geographic locations of households for five villages in Mara province,
Northern Tanzania.

6.2 Illustration

In Section 4 the form of the density.ppp function in R that computes a kernel smoothed intensity from

spatial point data was given as

density.ppp(x, sigma = NULL, ..., weights = NULL, edge = TRUE, varcov = NULL, at = ”pixels”,

leaveoneout = TRUE, adjust = 1, diggle = FALSE, se = FALSE, kernel = ”gaussian”,

scalekernel = is.character(kernel), positive = FALSE)

,

(i.e. Equation 6). Only objects of type “ppp” can be passed in the argument of this function. The

intensity of points is estimated for each village. The latitudinal and longitudinal coordinates with standard

rectangular windows denote the point pattern that are passed into the first argument of the density.ppp

function. The bandwidth is calculated as one eighth of the shortest side length of the enclosing rectangle

for the point pattern since no other argument is passed to the function. The default Gaussian kernel is

used to compute intensities and the numerical value assigned to the bandwidth is taken as the standard

deviation of the Gaussian kernel. Figure 24 in the Appendix shows estimated smoothed intensities and

the perspective plots (for the defaults of the density.ppp function) of a point pattern of the geographic

locations of households for the five villages.
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6.3 Standard rectangular window

6.3.1 Kernel

In isolated regions with a low concentration of points, the kernel smoothed estimates barely register any

intensity for the defaults of the density.ppp function. This is observable in the kernel smoothed estimate

plots for the Bokore, Iseresere and the Kemgesi villages listed in the appendix. To alleviate this problem,

we adjust the different options in the density.ppp function beginning first with the kernel option. In

Section 4.1 we noted that the available kernel functions present in the spatstat package are the default

gaussian kernel, and the epanechnikov, quartic and disc kernel functions. Each one is distinct in

shape and appearance as illustrated in Figure 8. Figure 25 and 26 in the appendix depict the kernel

smoothed intensity estimates of the point pattern of the geographic locations of households for each of

the five villages in Mara province, Northern Tanzania for variable kernel options. Figure 17 is an excerpt

taken from these figures for Bokore village. For the disc kernel option, the kernel smoothed intensity

estimate is less smooth. There are noticeable disparities between the kernel smoothed intensity estimates

fitted with the disc kernel function and that of other kernel options. Intensity estimates fitted with the

quartic and epanechnikov kernels are insignificantly distinguishable from one another.

(a) Gaussian (b) Epanechnikov

(c) Quartic (d) Disc

Figure 17: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for Bokore village for variable kernel options

6.3.2 Edge Effects

The density.ppp function is adjusted for edge effects in the edge parameter. To control for the type of

edge correction, either Diggle’s correction or the uniform edge correction, we specify TRUE or FALSE in the

diggle argument of the density.ppp function for the respective correction options. Figure 18 depicts

the plots for the kernel density estimates adjusted for edge effects for the Bokore village. The plots for

the other villages are given in the appendix in Figures 29 and 30.There are no visible contrasts between
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the estimated intensity plot of the the uniformly corrected density and that of the densities without the

calibration for edge effects. A perceivable difference in the estimated smoothed intensity plot for the

Diggle edge correction is the decrease of intensity on the boundary created by the window. At points

near the window, the intensity plots seem to curve away from the boundary.

(a) No Edge (b) Uniformly Corrected

(c) Diggle’s correction

Figure 18: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for Bokore village in Mara province, Northern Tanzania for different edge corrections

6.4 Convex hull

For a set B whose elements comprise of points, the convex hull is defined as the smallest convex shape

that contains all the points in the set [6]. For a point pattern process, this would be the smallest convex

window that envelopes all the points. To create a convex window as an object of type owin in R one

could call the function convexhull. In Figures 31 and 32 the five villages are fitted with a convex hull

and the kernel smoothed intensity estimates computed for each via the density.ppp function for the

default Gaussian kernel. The kernel smoothed intensity estimates for the convex hull registers a higher

intensity for regions near the boundary of the window that have a low concentration of points than that

initially registered by the standard rectangular window. This can be observed in the estimated density

plots illustrated in Figure 19 and additional output in Figures 31 and 32 of the appendix.

6.4.1 Kernel

Using the available kernel options, a kernel intensity estimate is computed via the density.ppp function

for the point patterns contained in a convex window for each village. As in the case of the standard

rectangular window, dissimilarities exist in the estimate plots for kernel smoothed intensities fitted with

the disc kernel function and that of other kernel options as illustrated in Figures 20. Kernel estimate
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(a) Point Pattern (b) Kernel Density Estimate

Figure 19: Kernel smoothed intensity estimate of a point pattern of the geographic locations of households
for Bokore village in Mara province, Northern Tanzania with convex window for the Gaussian kernel

intensities fitted with a disc kernel tend to be less smooth and register lower intensity values when

compared to other kernel options. For kernel smoothed intensity estimates fitted with the gaussian

kernel option, the density estimates register higher intensity values.

(a) Gaussian (b) Epanechnikov

(b) Quartic (d) Disc

Figure 20: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for Bokore village in Mara province, Northern Tanzania for variable kernel options for a convex
hull window

6.4.2 Edge Effects

Figure 21 below and Figures 35 and 36 in the appendix are plots of the kernel smoothed intensity estimates

for a convex window adjusted for edge effects for the five villages in the Mara province. There are no

visibly significant differences between the estimated intensity plot of the the uniformly corrected density

and that of the densities without the correction for edge effects, which was also observable in the case

of a standard rectangular window. A perceivable difference in the estimated smoothed intensity plot for

the Diggle edge correction is the decrease of intensity on the boundary created by the window. At points

near the window, the intensity plots seem to curve away from the boundary.

31



(a) No correction (b) Uniformly Corrected (c) Diggle’s Correction

Figure 21: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for Bokore village in Mara province, Northern Tanzania for different edge corrections for a convex
hull window

6.5 Using SAS for kernel density estimation

The method of kernel density estimation can be performed in SAS by initializing the KDE procedure in

the PROC statement of a SAS program. The PROC KDE procedure can be applied to univariate and

bivariate kernel density estimation. Several statistics which include estimates of the percentiles of the

hypothesized probability density function can be enumerated by the procedure. A Gaussian density is

implemented as the kernel for the process of kernel density estimation and the variance used as a

smoothing parameter. The syntax for the procedure is as follows,

PROC KDE < options >;

BIVAR variable− list < /options >;

UNIVAR variable− list < /options >;

BY variables;

FREQ variable;

WEIGHT variable;

To illustrate the basic features of PROC KDE, we use the Bokore village to get a kernel density

estimate. The longitudinal and corresponding latitudinal values are entered into the DATA step of a

SAS program with the name Bokore and the PROC KDE procedure initialized. Illustrated in Figure 22

is the output given for the following lines of code6,

ods graphics on;

proc kde data = Bokore;

bivar latitude longitude/plots = (contour surface);

6The code and output for this section was generated using SAS software, Version 9.4 of the SAS System for Windows.
Copyright c, 2002-2012 by SAS Institute Inc. SAS and all other SAS Institute Inc, product or service names are registered
trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.
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run;

ods graphics off;

In the table titled “Inputs”, information about the data set used is listed. This includes the working

data set, the number of observations used, the variables contained in the data set and the bandwidth

method used to determine the level of smoothing. Contour and surface plots of the density estimates

are also displayed. Although a suitable estimation is provided for the kernel density, there is a

restriction on the options available in SAS (i.e. the option of adjusting a spatial window or choosing a

kernel is not available).

7 Conclusion

In this research report, the method of kernel density estimation for univariate and bivariate data was

explored. In the case of bivariate data, the kernel smoothed intesity estimates for a spatial point pattern

process were computed via the density.ppp function in the spatstat package in R. The density.ppp

function and each of its parameters were inspected and their effect on the kernel density estimate analyzed.

This ranged from adjusting the kernel options, edge effects and bandwidth selection. We investigated

the effect that the window in which objects were studied had on the smoothed intensity estimates and

gave particular focus to standard rectangular windows and convex shapes. Using data collected in Mara

province, situated in Northern Tanzania, we tested the effect of calibrating the density.ppp function for

different kernel choices and edge effects for both the standard rectangular window and the convex hull

window. There were significant differences observed in the plots of intensity estimates fitted with a disc

kernel and those of other kernel options which was allotted to the shape of the disc kernel function,

with plots being less smooth. It was observed that the choice of window also had an influence on the the

kernel density estimate and that the convex hull window had intensity plots more representative of the

point pattern data. In both instances of the standard rectangular window and the convex hull window

the function performance was the same when adjusted for edge effects.

Further study on the improvement on methods for spatial data analysis are being done. Even though

it was not covered in its entirety in this report, the selection of the bandwidth is integral to the process

of estimating the kernel density estimate. Cronie and van Lieshout [5] have proposed a new method

for bandwidth selection that is based on the Campbell formula applied to the reciprocal of the intensity

function. The proposed method is unrestricted in that it does not require a specific class of point process

models, it is non-parametric and does not require prior knowledge of the densities.
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Figure 22: SAS output for the PROC KDE procedure using the Bokore village data set.
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Appendix

(a) kernel = ”gaussian”

(b) kernel = ”quartic”

(c) kernel = ”epanechnikov”

(d) kernel = ”disc”

Figure 23: Kernel smoothed estimates for the density.ppp function of simulated data in R with variable
options for kernel.
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(a) Bokore

(b) Iseresere

(c) Itununu

(d) Kemgesi

(e) Gantamome

Figure 24: Kernel smoothed intensity and perspective plots of a point pattern of the geographic locations
of households for five villages in Mara province, Northern Tanzania.
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Figure 25: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for five villages in Mara province, Northern Tanzania for variable kernel options

39



E
pa

ne
ch
ni
ko
v

Q
ua

rt
ic

D
is
c

(a
)
K
em

ge
si

(b
)
G
an

ta
m
om

e

Figure 26: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for five villages in Mara province, Northern Tanzania for variable kernel options
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Figure 27: Perspective plot of kernel smoothed intensity estimates of a point pattern of the geographic
locations of households for five villages in Mara province, Northern Tanzania for variable kernel options
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Figure 28: Perspective plot of kernel smoothed intensity estimates of a point pattern of the geographic
locations of households for five villages in Mara province, Northern Tanzania for variable kernel options
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Figure 29: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for five villages in Mara province, Northern Tanzania for different edge corrections
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Figure 30: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for five villages in Mara province, Northern Tanzania for different edge corrections
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Figure 31: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for villages in Mara province, Northern Tanzania with convex window for the Gaussian kernel
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Figure 32: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for villages in Mara province, Northern Tanzania with convex window and Gaussian kernel
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Figure 33: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for five villages in Mara province, Northern Tanzania for variable kernel options for a convex hull
window
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Figure 34: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for five villages in Mara province, Northern Tanzania for variable kernel options for a convex hull
window
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Figure 35: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for five villages in Mara province, Northern Tanzania for different edge corrections for a convex hull
window
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Figure 36: Kernel smoothed intensity estimates of a point pattern of the geographic locations of house-
holds for five villages in Mara province, Northern Tanzania for different edge corrections for a convex hull
window
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Abstract

This paper will be discussing the estimation of the panel data regression models using the fixed

effects (FE) approach. Under the approach, the intercept is treated as a constant across both space

and time. The regression models are developed on the bases of the assumptions made with regard to

the intercept, the slope coefficients and the error term. Thus the discussion of the four models formed

under the following assumptions: In the first model all the coefficients remain constant across space

and time. The second model assumes that the intercept varies across space but remains unchanged

over time and the slope coefficients remain unchanged across both time and individuals. This model

is also known as the Least squares dummy variable (LSDV) regression model. In the third model,

the slope coefficients remain constant over space and time while the intercept varies across space and

time. In the last model discussed, all coefficients vary across space while staying constant through

time. In each of the models it is assumed that the error term captures differences over space and

time where it follows a normal distribution with zero mean and a constant variance. The last three

models assume the “individuality” of coefficients across space and time through the use of dummy

variables, this is called the least squares dummy variable (LSDV) method. Hence the dummy variable

models discussed are used to detect individuality or rather differences among cross-sectional units.

A practical example is considered for the illustration of the LSDV method which uses ordinary least

squares (OLS) estimation method.
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1 Introduction

Cheng [3], defines a panel or longitudinal data set as having a typical structure of N time-series data

observations obtained from the same individuals over a period of time. This is different from pooled

cross-sectional data, discussed in [12], where cross-sectional data on N random objects within a popula-

tion are observed with no restriction of observing the same set of objects over the period of time. Pooled

cross-sectional data sets are mostly as a result of censoring due to security purposes; individuals may

not want to be identified when completing surveys. Thus the nature of panel data has the advantage of

allowing for efficient study of characteristic traits (heterogeneity) of specific objects within a population

through multiple data observations on those same objects. [1] mentions the popularity of Panel data

in economic research, say for example conducting a study of profitability among companies operating

in the same sector or across different sectors. An assumption, that could be tested, in the former case

would be assuming homoscedasticity and the latter heteroscedasticity as it is more appropriate to assume

that within a sector the variation remains constant and different sectors will exhibit different variation.

Panel data is also useful in medical research, for example: in a study of gene defects a selected group

of affected individuals may be observed through out time and the effects of the defect on the individ-

uals may be studied. Panel data is rich in fields of application, it is commonly used in economic research.

A pure time series data set is an observation of a single object in a population of interest (say an

industry) throughout a period of time. Conversely a cross-section data set observes many objects in

the population at a single point in time. [5] mentions the inherent advantages of panel data over pure

cross-sectional data sets and pure time series data sets. Panel data sets allow the capturing of the omit-

ted variables called unobserved heterogeneity which may pass unobserved in pure time series or pure

cross-sectional data analysis. [5] argues that this is the case since panel data observes the same objects

over time, hence the individuality of each object (heterogeneity) may be captured through allowing for

object specific variables. [9] and [10] mention that the consequence of failure to observe heterogeneity

by pure cross-section and pure time series data leads to the risk of obtaining biased estimators for the

parameters. [5] further emphasises the difficulties encountered in estimating unbiased estimators of the

parameters from pure cross sectional analysis as well as estimating the parameters from pure time series

analysis through a discussion. Biased estimators may result in erroneous predictions which might have

economic consequences.

Baltagi [2], further remarks that, due to the combination of both time-series and cross-sectional data,

panel data tends to provide “more informative data, more variability, less collinearity among the vari-
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ables, more degrees of freedom and more efficiency”. It is further seen that most of these are desired

qualities for elementary analysis of regression models according to [11]. It is worth noting that the object

specific variables used in panel data come at a cost. This is because for every object specific variable

added, a corresponding parameter is included in the model. This has a consequence of decreased degrees

of freedom, since one loses a degree of freedom for every parameter added, this has the implication of

having less data available for meaningful statistical analysis this is more detrimental in panels having few

observations for the cross-sectional units.

Gujarati [5], observes the fact that due to panel data following the same cross sectional units through

time, panel data is better suited for the study of dynamics of change. Say that one is interested in

investigating the spells of unemployment. By having observations of the same objects both before and

after unemployment one is able to detect the effect that unemployment had on the affected objects. The

same principle may be used to study level of skills, job turnover and labour mobility.

More complicated behavioural models such as economies of scale and technological advancement may

be better handled through panel data rather than pure cross-sectional or time series data. Moreover [5]

mentions that panel data can handle the bias that may emerge as a consequence of grouping of the data

into broad aggregates.

Some of the well known panel data sets used in economic research are the Panel study of income

dynamics (PSID) where, each year, 5000 families are observed and data is collected under the supervision

of the Institute of Social Research at the University of Michigan. The data collected is on various socioe-

conomic issues as well as demographic variables. Another panel data set called the Survey of Income and

Program Participation (SIPP) is one conducted by the Bureau of the Census Department of Commerce.

Four times a year data is gathered from respondents about their economic contribution. Other panel

data is the German Socio-Economic Panel (GESOEP) and the National Longitudinal Survey of Youth

(NLSY). Several other such surveys are conducted by government and non-government agencies in a

number of countries.

As is the case that some participants in the surveys may default from the surveys through death

and/or other reasons, [7] mentions that panel data sets can be classified according to the number of

observations, on each cross-sectional unit, as either balanced or unbalanced. A panel data set is defined

as balanced if all N cross-sectional units have T observations, i.e. every object has an observation at
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each point t = 1, . . . , T of sampling. When the cross-sectional units have varying observations, say Ti

where i = 1, . . . , N , the panel data set is termed unbalanced. Unbalanced panel data sets may arise as

a result of “missing” data also known as censored data which may be due to the unavailability of some

cross-sectional units during the time of sampling or the discontinuation of observations made on some

cross-sectional units in the particular study. This paper will specifically study a balanced panel data set.

The very first panel data conference was held in the year 1977 in Paris at a seminal conference hosted

at INSEE. the organization of the conference is attributed to Pascal Mazodier, Jacques Mairesse and

Alain Trognon. The conference led to the publication of two volumes of Annales de l’INSEE edited

by Trognon and Mazodier (1978). The increased use of panel data in research studies has since evolved

with innovative solutions developed to accommodate non-traditional approaches. However this paper will

discuss, in particular, the linear fixed effects model. Other topics include non-linear fixed effects models,

discreet data fixed effects models, truncated and censored fixed effects models as well as incomplete fixed

panel data models as outlined in [3].

Gujarati [5], introduces the basic panel data regression model with the following equation:

Yit = β0 + β1X1it + β2X2it + εit

where i = 1, 2, . . . , N are representative of N cross-sectional units observed over t = 1, 2, . . . T time

periods and β0 is the intercept, with β1 and β2 the slope coefficients of the object specific variables or

rather the exogenous random variables X1it and X2it. The error term εit captures differences over space

and time while Yit is the response variable. It is worth noting that the number of exogenous variables

need not be two, the variables may be as small as one or as large as 20 and more. It all depends on the

researchers discretion on the basis of necessity of number of input variables deemed significant and most

of all independent. [5] warns that the researcher must take precaution of the number of variables used

in the model; too many variables may lead to multicollinearity among variables. For instance, the object

specific variables may overlap. For example suppose that among many variables in a model, education,

skill level and poverty are included. since all 3 variables are related because people in poverty usually

have little or no education not to mention the quality of the education they have access to which directly

affects their skills level. Therefore precise estimation for each distinct variable may be difficult in this

case. Too many variables may also result in low degrees of freedom especially in the case of a small

number of observations for each cross-sectional unit.
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Arrelano [1] observes that the interest in panel data has two core motives. The first motive pertains

to the desire to exploit panel data with the aim to control the unobserved time-invariant heterogene-

ity in each cross-sectional unit which may be undetected by pure time series data. The second motive

is attributed to using panel data as a means to disentangle components of variance and estimate the

transition probabilities among states with the aim to study the dynamics of cross-sectional units. [1]

further mentions that the two motives can be associated with two strands of panel data analysis namely:

fixed effects and random effects, the two respective approaches are useful when the researcher wishes to

estimate the panel data regression model. The theory and practical sections of the paper will mostly

cover the fixed effects approach to panel data regression analysis.

Gujarati [5], distinguishes between the two approaches on the basis of the assumptions made about

the intercepts. In the random effects approach, the intercepts are given by βi = β0 +µi for i = 1, 2, . . . N

where error term µi captures differences over the individual cross-sectional units. On the other hand,

the intercept is given by β0 which is non-stochastic over all cross-sectional units, this is known as the

fixed effects approach. The focus of this paper will be on the fixed effects approach. [5] suggests that

the approach to use relies upon the assumption made with regards to correlation between the exogenous

variables and the error term. The fixed effects approach is chosen if there is an assumption of correlation

between the X’s and the ε. Alternatively the random effects approach is chosen if there is an assumption

of no correlation.

Gujarati [5], examines three estimation methods which may be used under the fixed effects method.

Suppose that the basic model is given by:

Yit = βi + β1X1it + β2X2it + εit.

Since it is assumed that the error term and the exogenous variables are correlated under this method, i.e

cov(Xit, εit) 6= 0, OLS estimation may not be used. A simple solution to the predicament, as collaborated

by [8], is the first difference estimator where the coefficient slope parameters are estimated through the

resultant regression model:

4Yi = β1 4X1i + β2 4X2i + νi

where 4Yi = Yit − Yi(t−1), 4X1i = X1it −X1i(t−1), 4X2i = X2it −X2i(t−1) and νi = εit − εi(t−1) i.e. [5]

derives this model through taking the difference of two successive basic models on the same cross-sectional

unit taking into account successive time periods. Note that in the basic model, the βi values are not
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observed thus the first difference method enables unbiased estimation of the coefficient slope parameters

by getting rid of the unobservable effect. [5] argues that OLS estimation may then be employed since

even though the X’s and the error terms are correlated, there is no priori reason that their differences are

also correlated. Another alternative identified in [5] for dealing with the unobserved effect βi is called

the within group estimator. The regression model under this method is given by:

Yit − Y i = β1(X1it −X1i) + β2(X2it −X2i) + εi.

The model is extensively illustrated in [6] with collaboration done in [10] where the equation follows

by considering the distances of each observation from its group mean. Similarly OLS estimation is used

because there is no reason why the distances of each observation from its mean should be correlated. And

finally, [5] introduces the least squares dummy variable (LSDV) estimator which will be the estimation

technique that will be discussed in this paper.

Gujarati [5], introduces Some of the models that result as a consequence of the assumptions of ho-

mogeneity or heterogeneity of the parameters to be estimated in the model. Although the assumptions

considered in this paper yield four models to be studied. Suppose that it is assumed that all the coefficients

are constant, then the model is given by:

Yj = β1 + β2X2j + β3X3j + εj for j = 1, 2, . . . , 80 (1)

This is known as the pooled regression model and is defined as model 1. Suppose that it is assumed

that the slope coefficient is different across all individuals but the slope coefficients remain constant then

model 2 follows as:

Yit = β1i + β2X2it + β3X3it + εit for i = 1, 2, 3, 4 and t = 1, 2, . . . , 20. (2)

This model is known as the least square dummy variable model. It also follows that if it is assumed

that the slope coefficient changes over both time and the individual cross-sectional units but the slope

coefficients remain constant then model 3 is given by:

Yit = β1it + β2X2it + β3X3it + εit for i = 1, 2, 3, 4 and t = 1, 2, . . . , 20. (3)

Finally suppose that the assumption is that all coefficients vary across individuals then model 4 follows
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as:

Yit = β1i + β2iX2it + β3iX3it + εit for i = 1, 2, 3, 4 and t = 1, 2, . . . , 20. (4)

The theoretical and illustrative use of the LSDV method on the last 3 models mentioned above will be

considered in sections 2 and 3 respectively and finally section 4 contains the conclusion, the limitations

of the technique and possible solutions which can be considered to rectify the problems detected in this

modeling approach.

Moreover, the theory will have a specific focus on the testing procedures with respect to the as-

sumptions of heterogeneity and/or homogeneity in the intercept coefficients, i.e. aim to show how the

differential intercept coefficients are used to detect differences between different cross sections as well as

showing how the differential slope coefficients are used to detect the differences between different slopes.

As such, the significance of the coefficients used in the models will also be considered in the applications

section. The estimation equations are then produced based on the statistical inferences made on the

coefficients.

Furthermore, [5] remarks that it is worth noting that in using the LSDV model, caution must be

taken when including too many dummy variables (as is done in model 4). The introduction of many

dummy variables, as in the case of subject specific variables, could also lead to multicollinearity being

present among the dummy variables, the consequence of multicollinearity is that precise estimation of

one or more parameters may be difficult due to the overlap of the explanatory variables, thus leading

to increased estimator variance. [5] further mentions that the implication is wider confidence intervals

which may lead to more readily failing to reject the hypothesis of insignificance.

Given that multicollinearity is to be considered, the natural question that follows is how can one

test for multicollinearity? [5] introduces the variance-inflating factor (VIF), which is defined as a

measure that shows how the variance of an estimator is inflated by the presence of multicollinearity. [4]

further collaborates that in the cases of high collinearity, one may find that one or more of the partial

coefficients are individually statistically insignificant on the basis of the t-test. [5] further mentions that

in such cases, the R2 value which is the overall measure of goodnes fit is very high. Hence one may reject

the null hypothesis of insignificance under the F -test. Since one may assume that the model with a high

coefficient of determination is a better fit for data being analysed. More-over [5] mentions the argument

by Kmenta that multicollinearity is a question of degree and not of kind, as such one can measure its

degree in any particular sample. V IF is the measure that will be used in this paper.
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What is of interest is that as the R2 value increases towards unity i.e. as the collinearity of the

regressors increases, the VIF increases as well. A rule of thumb to be used is that if the VIF of a variable

exceeds 10, which is the case if R2 is in excess of 90%, then the conclusion is that the variable in question

is highly collinear and thus its parameter estimate may be questionable due to the large variance of the

OLS estimator. The following is a graphical explanation of multicollinearity illustrated in [5]:

Figure 1: Collinearity levels

Another aspect considered by [5] is the issue of autocorrelation in the data. Since the LSDV model uses

OLS estimation it is worthwhile to note the consequences of estimation in the presence of autocorrelation.

[5] states that the OLS estimators are still linear unbiased and consistent but they are no longer efficient

i.e. they no longer have minimum variance. [5] further remarks that in this case the confidence intervals

for the inefficient parameters may be wider than those derived from the generalised least squares procedure

(GLS). Which means that it is very likely to fail to reject the hypothesis of insignificance i.e. declare a

parameter estimate as not statistically different from zero while in fact it may be statistically different

under the GLS estimation method. [5] produces the following to illustrate the confidence intervals under

the two methods given the presence of autocorrelation:
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Figure 2: Confidence intervals under GLS and OLS

[5] further mentions that a way to detect autocorrelation is through the Durbin-Watson d test. The

decision is based on the following image produced by [5]:

Figure 3: Durbin-Watson Criteria

where dL and dU are the critical d-values. It is seen that a d-value very close to 2 implies no

autocorrelation . The d-statistic is also used to detect possible model miss-specification.

2 Theory

In this section the basic theory will be discussed in the context of the practical example to be considered

in section 3. For illustrative purposes, data obtained from [5] is used which was reproduced from Vinod

[1981]. The data is from a famous study by Y. Grunfeld. Grundfeld had his interests in investigating the

dependency of a company’s real gross investment (Y ) on the basis of the real capital stock (X3) as well

as the real value of the company (X2). The initial investigation was based on several firms, but for the

purpose of illustration of the FE approach only the following firms are considered: the first firm being

General Electric (GE), the second firm considered is General Motors (GM), the third firm is the U.S.

Steel (US) and finally the last firm considered is Westinghouse (WH). The following tables show the

data captured for the three variables for the years 1935 to 1954 for each company Comp.
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Time Year Comp Y X2 X3
1 1935 1 33,1 1170,6 97,8
2 1936 1 45 2015,8 104,4
3 1937 1 44,6 2803,3 118
4 1938 1 48,1 2039,7 156,2
5 1939 1 74,4 2256,2 172,6
6 1940 1 113 2132,2 186,6
7 1941 1 91,9 1834,1 220,9
8 1942 1 61,3 1588 287,8
9 1943 1 56,8 1749,4 319,9
10 1944 1 93,6 1687,2 321,3
11 1945 1 159,9 2007.7 319,6
12 1946 1 147,2 2208,3 346
13 1947 1 146,3 1656,7 456,4
14 1948 1 98,3 1604,4 543,4
15 1949 1 93,5 1431,8 618,3
16 1950 1 135,2 1610,5 647,4
17 1951 1 157,3 1819,4 671,3
18 1952 1 179,5 2079,7 726,1
19 1953 1 189,6 2371,6 800,3
20 1954 1 317,6 2759,9 888,9

Table 1: Data for General Electric

Time Year Company Y X2 X3
1 1935 2 317,6 3078,5 2,8
2 1936 2 391,8 4661,7 52,6
3 1937 2 410,6 5387,1 156,9
4 1938 2 257,7 2792,2 209,2
5 1939 2 330,8 4313,2 203,4
6 1940 2 461,2 4643,9 207,2
7 1941 2 512 4551,2 255,2
8 1942 2 448 3244,1 303,7
9 1943 2 499,6 4053,7 264,1
10 1944 2 547,5 4379,3 201,6
11 1945 2 561,2 4840,9 265
12 1946 2 688,1 4900 402,2
13 1947 2 568,9 3526,5 761,5
14 1948 2 529,2 3245,7 922,4
15 1949 2 555,1 3700,2 1020,1
16 1950 2 642,9 3755,6 1099
17 1951 2 755,9 4833 1207,7
18 1952 2 891,2 4924,9 1430,5
19 1953 2 1304,4 6241,7 1777,3
20 1954 2 1486,7 5593,6 2226,3

Table 2: Data for General Motors
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Time Year Company Y X2 X3
1 1935 3 209.9 1362.4 53.8
2 1936 3 355.3 1807.1 50.5
3 1937 3 469.9 2673.3 118.1
4 1938 3 262.3 1801.9 260.2
5 1939 3 230.4 1957.3 312.7
6 1940 3 361.6 2202.9 254.2
7 1941 3 472.8 2380.5 261.4
8 1942 3 445.6 2168.6 298.7
9 1943 3 361.6 1985.1 301.8
10 1944 3 288.2 1813.9 279.1
11 1945 3 258.7 1850.2 213.8
12 1946 3 420.3 2067.7 232.6
13 1947 3 420.5 1796.7 264.8
14 1948 3 494.5 1625.8 306.9
15 1949 3 405.1 1667 351.1
16 1950 3 418.8 1677.4 357.8
17 1951 3 588.8 2289.5 341.1
18 1952 3 645.2 2159.4 444.2
19 1953 3 641 2031.3 623.6
20 1954 3 459.3 2115.5 669.7

Table 3: Data for U.S. Steel

Time Year Company Y X2 X3
1 1935 4 12.93 191.5 1.8
2 1936 4 25.9 516 0.8
3 1937 4 35.05 729 7.4
4 1938 4 22.89 560.4 18.1
5 1939 4 18.84 519.9 23.5
6 1940 4 28.57 628.5 26.5
7 1941 4 48.51 537.1 36.2
8 1942 4 43.34 561.2 60.8
9 1943 4 37.02 617.2 84.4
10 1944 4 37.81 626.7 91.2
11 1945 4 39.27 727.2 92.4
12 1946 4 53.46 760.5 86
13 1947 4 55.56 581.4 111.1
14 1948 4 49.59 662.3 130.6
15 1949 4 32.04 583.8 141.8
16 1950 4 32.24 635.2 136.7
17 1951 4 54.38 732.8 129.7
18 1952 4 71.78 864.2 145.5
19 1953 4 90.08 1193.5 174.8
20 1954 4 68.6 1188.9 213.5

Table 4: Data for Westinghouse
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The basic model (also known as the pooled model) studied in panel data regression has the form:

Yit = β1 + β2X2it + β3X3it + εit for i = 1, 2, . . . , N, and t = 1, 2, . . . , T, (5)

where i and t are the space and time dimensions respectively, i.e there are N cross-sectional units observed

over T time periods. The observations from the response variable, Yit, as well as the exogenous variables,

X2it and X3it, are used for statistical inference on the parameters (β1, β2, and β3) , with the ultimate

goal of determining the estimate model:

Ŷit = β̂1 + β̂2X2it + β̂3X3it, for i = 1, 2, . . . , N, and t = 1, 2, . . . , T,

[5] mentions that the variable εit is the error term i.e. the difference over space and time, where:

E(εit) = 0 and V ar(εit) = σ2
ε , for i = 1, 2, . . . , N, and t = 1, 2, . . . , T,

[5] further states that the study of fixed effects approach assumes that the intercept is a non-stochastic

variable. Furthermore an advantage of panel data over cross-sectional and time series data is the fact that

the least squares dummy variable method, considered in the fixed effects approach, takes into considera-

tion the heterogeneity of the cross-sectional units through the use of individual specific dummy variables.

The models to be considered are a result of the assumptions made with regards to the heterogeneity

and/or homogeneity of the coefficients corresponding to the individual specific variables.

In this literature it is the assumption that i = 1 refers to GE, i = 2 refers to GM , i = 3 refers to US

and finally i = 4 refers to WH. A way in which the heterogeneity is taken into account, using the fixed

effects approach is by making assumptions about the variation of the coefficients over space and time.

2.1 Model 1: all coefficients constant

Consider the assumption that all coefficients remain constant. With consideration to the data above,

there are 4 companies with 20 observations each, therefore there is a total of 80 observations. The basic

model (1) may be transformed through stacking the columns of the 4 company observations thus pooling

the data to obtain the linear model:

Yj = β1 + β2X2j + β3X3j + εj for j = 1, 2, . . . , 80

17



This is the ordinary least squares (OLS) model. It then follows that the ordinary least squares model is

given by the equation:

Ŷj = β̂1 + β̂2X2j + β̂3X3j

for j = 1, 2, . . . 80 using the unbiased OLS estimators of parameters β1, β2, and β3, [5]. This model

is highly restrictive due to the assumption that all the companies have the same coefficients, it is also

unrealistic since different companies could have unique individual characteristics that distinguish one

company from the other for example experience, size of assets, management style, expertise, technological

advancement, level of investment etc. That is, there is heterogeneity among the companies.

2.2 Model 2: Intercept coefficient varies over companies

Gujarati [5] states that one way to take such heterogeneity into account, is by assuming that each company

has a unique intercept. It then follows that (1) takes the form:

Yit = β1i + β2X2it + β3X3it + εit (6)

for i = 1, 2, . . . , 4 and t = 1, 2, . . . , 20. The subscript i in the intercept coefficient implies that the intercept

varies over each cross-sectional unit i = 1, 2, 3, 4 i.e over each of the companies: GE, GM , US and WH

respectively. This is indicative of the “individuality” of each company. Gujarati [5] states that how the

intercept is actually allowed to vary across the 4 companies is by the use of the differential intercept

dummies hence model 2 is written as:

Yit = α1 + α2D2i + α3D3i + α4D4i + β2X2it + β3X3it + εit (7)

for i = 1, 2, . . ., and t = 1, 2, . . . , 20 where α1 is the comparison intercept, D2i, D3i and D4i are defined as

the dummy variables and α2, α3 and α4 are defined as the differential intercept coefficients for GM , US

and WH respectively. This is known as the least squares dummy variable (LSDV) model. It is assumed

that:

if i = 1, which implies that GE is considered. Then D21 = 0, D31 = 0 and D41 = 0

if i = 2, which implies that GM is considered. Then D22 = 1, D32 = 0 and D42 = 0

if i = 3, which implies that US is considered. Then D23 = 0, D33 = 1 and D43 = 0

if i = 4, which implies that WH is considered. Then D24 = 0, D34 = 0 and D44 = 1
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One may have an inquisition as to why there are only three dummy variables even though there are four

companies. [5] states that the reason why there are only 3 dummy variables rather than 4 is to avoid

the dummy variable trap. This is because the dummy variable trap implies perfect collinearity which re-

sults from introducing 4 dummy variables for the 4 companies. This is expected since perfect collinearity

contradicts the assumptions for unbiased least squares estimation of the classical linear regression model.

From the assumptions, it follows that for GE, i.e. i = 1, then the following linear model is obtained:

E(Y1t|D21 = 0, D31 = 0, D41 = 0, X21t, X31t) = α1 + β2X21t + β3X31t

for all t = 1, 2, . . . , 20. Hence the intercept for GE is given by the comparison intercept, α1. [5] observes

that it then naturally follows that GE is the comparison cross-sectional unit.

Now suppose that the intercept for GM is of interest, then i = 2, hence it follows by the dummy

variable assumptions that for all t = 1, 2, . . . , 20, the linear model for GM is given by:

E(Y2t|D22 = 1, D32 = 0, D42 = 0, X22t, X32t) = (α1 + α2) + β2X22t + β3X32t

Consequently the intercept is given by (α1 + α2). If the coefficient α2 is statistically significant, then the

intercept for GM differ significantly from that of GE.

If i = 3, then US is considered. It follows from the assumptions that, for US, the linear model

obtained is then given by:

E(Y3t|D23 = 0, D33 = 1, D43 = 0, X23t, X33t) = (α1 + α3) + β2X23t + β3X33t

for all t = 1, 2, . . . , 20. It then follows that the intercept coefficient for US is given by (α1 + α3). Simi-

larly, should α3 be statistically significant, it follows that the intercept for US differs significantly from

that of GE.

Finally, considering WH, i is set equal to 4. Hence by assumptions it follows that the linear model

obtained for WH, for all t = 1, 2, . . . , 20, is then given by:

E(Y4t|D24 = 0, D34 = 0, D44 = 1, X24t, X34t) = (α1 + α4) + β2X24t + β3X34t
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Consequently the intercept coefficient for WH is given by (α1 + α4). Similarly, if α4 is statistically sig-

nificant, it follows that the intercept for WH differs significantly from that of GE.

A formal test may be conducted to verify which model is valid or rather optimal by comparing two

opposing models. [5] observes that in relation to model 2, model 1 is restrictive in that it imposes an

assumption that all companies have the same intercept thus restricting the individuality of each cross-

sectional unit. Hence [5] suggests that the restricted F test may be used, wheremodel 1 is the restricted

model and model 2 is the unrestricted model. The null hypothesis to check the validity of the unrestricted

model versus the validity of the restricted model is given by:

H0 : α2 = α3 = α4 = 0

which is the restricted model and the alternative hypothesis, which gives the unrestricted model, is given

by:

H1 : atleast one of the parameters is different from 0

with the test statistic given by:

F =
(R2

UR −R2
R)/m

(1−R2
UR)/(n− k)

∼ F (m, n− k)

Which is F distributed with m numerator degrees of freedom and n− k denominator degrees of freedom.

Where m is the number of linear restrictions in the restricted model, n− k is the degrees of freedom for

the unrestricted model where n = 80 is the number of total observations and k = 6 is the number of

parameters in the unrestricted model. R2
UR and R2

R are the coefficients of determination for the unre-

stricted and restricted models respectively.

[5] mentions that, given a α-level of significance, the null hypothesis is rejected if the computed F

value exceeds the critical value Fα(m,n − k) at the α-level of significance otherwise it is not rejected.

Note that if the null is not rejected this implies that the intercept for all the companies is the same, i.e

the restricted model is preferred over the unrestricted model.

From model 1 it is clear that the differential intercept coefficients i.e. α2, α3 and α4 tell by how

much the individual intercepts of each cross-sectional unit differ from the comparison intercept α1. In

other words, the differential intercept coefficients are used to detect differences between different cross-
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sectional units. Note that the comparison company may be any one of the 4 companies. Furthermore

in this case, the intercept is time invariant, i.e. the intercept of each company is assumed to remain

unchanged through time.

[5] mentions the argument made by Kmenta with regards to the LSDV method. Kmenta notes that it

is obvious that in the specification of the regression model is the failure to include relevant explanatory

variables that are time invariant (and possibly other variables that are time variant but have the same

value for all cross-sectional units) moreover the introduction of dummy variables is to cover this ignorance.

[5] further argues that if the dummy variables do in fact portray a lack of knowledge about the true model,

then it is more appropriate to express this ignorance through the disturbance term. This is the precise

rational underlying the random effects approach.

The idea is to start off with the regression equation of model 2

Yit = β1i + β2X2it + β3X3it + εit

for i = 1, ..., 4 and t = 1, ..., 20. Instead of using dummy variables to express β1i, it is defined as

β1i = β1 + µi

for i = 1, ..., 4. What this means is that the four companies are drawn from a larger pool of such companies

all having a common mean value for the intercept (given by β1), then the error term µi captures the

individual differences in the intercept values of each company. By substitution of β1i into model 2 the

regression equation is given by

Yit = β1 + β2X2it + β3X3it + εit + µi

which reduces to the equation

Yit = β1 + β2X2it + β3X3it + wit

where wit is the composite error term consisting of the individual specific error component µi as well

as the combined time series and cross-sectional error component εit. Thus the individual differences are

captured through the error term.

The assumptions underlying the random effects approach are:

εi ∼ N
(
0, σ2

ε

)
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µit ∼ N
(
0, σ2

µ

)
E(εiµit) = 0 and E(εiεj) = 0 (i 6= j)

E(µitµis) = E(µitµjt) = E(µitµjs) = 0 (i 6= j; t 6= s) .

It then follows that

E(wit) = 0

and

V ar(wit) = σ2
ε + σ2

µ = σ2
w

Moreover if σ2
ε = 0 then the model is exactly the same as model 1 or rather the pooled model. It then

follows that the OLS technique may be applied and estimates may be found as before.

As can be seen, the variance of wit is homoscedastic. However, [5] argues that it can be shown that

the error terms for any specific individual taken at two points in time are correlated i.e. wit and wis

(s 6= t) are correlated . Thus the correlation coefficient follows as:

corr(wit, wis) =
σ2
ε

σ2
ε + σ2

µ

It is clearly seen that the correlation coefficient is constant, irregardless of how far apart the observations

for the particular cross-sectional unit are. [5] points out that this is a strong contrast to the AR(1)

scheme where it is found that the correlation coefficient between two points decreases as the distance

between the points increases. Furthermore the correlation coefficient is identical for all cross-sectional

units. Therefore if this structure is to be considered, the OLS estimators would be inefficient. Hence the

most appropriate method to use is the method of generalised least squares.

Since adding dummy variables decreases degrees of freedom and if dummy variables show ignorance

as argued by Kmenta it is compelling that the random effects approach is the more optimal approach

as it costs less with regards to the degrees of freedom and it reduces the consequences of ignorance of

relevant variables.

2.3 Model 3: Intercept coefficient varies over companies and time

In this section an alternative model is considered for taking the heterogeneity of the companies, through-

out the years into account. This is achieved by assuming that the intercepts are also time variant.

Suppose that profit (Yit) for different companies (cross-sectional units) was measured, then time would
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indicate experience which might add onto expertise, and with increased expertise it is expected that a

company’s profitability is affected perhaps through reduced expenses due to less incompetence or rather

increased expertise. Moreover, since technology advances year by year, the extent of new technological

advancements adopted by a company may also influence profitability through cutting down expenses due

to obsolete/inferior processes. Therefore, the intercept for each company may then be representative of

the varying initial expenses that each company may have per time period due to the above mentioned

factors, i.e. expertise and technological advancement. It therefore follows that model 3 takes the time

factor into consideration resulting in the following equation:

Yit = β1it + β2X2it + β3X3it + εit for i = 1, 2, . . . , 4 and t = 1, 2, . . . , 20. (8)

Here the subscripts i and t indicate that the intercept to the basic model is allowed to vary across both

space and time. Similarly, through the use of the dummy variable technique, it follows that model 3

may be written as:

Yit = βo +

4∑
j=2

αjDji +

20∑
k=2

λkD
′

kt + β2X2it + β3X3it + µit for i = 1, 2, . . . , 4 and t = 1, 2, . . . , 20. (9)

It is clear that model 3 is an extension of the LSDV model, where the extension accounts for the time

effect. Similarly, β0 is the comparison intercept, αj ’s and λk’s are the differential intercept coefficients

taking account of the space and time dimensions respectively. The cross-section dummy variables Dji’s

still function in exactly the same way as in the case for model 2, i.e. the assumptions hold as previously

stated. [5] states that the time dummy variables D
′

kt have similar assumptions, i.e. in the year 1935

(t = 1)

D
′

k1 = 0 for k = 2, 3, . . . , 20.

In the year 1936 (t = 2)

D
′

22 = 1 andD
′

k2 = 0 for k = 3, 4, . . . , 20.

In the year 1937 (t = 3)

D
′

33 = 1 andD
′

k3 = 0 for k = 2, 4, 5, 6, , . . . , 20.

As in model 2, perfect collinearity is avoided through the introduction of only 19 differential intercept

dummies for the 20 time periods.

Consider GE in the year 1935. Then by the assumptions the linear model for GE at the 1st time
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period, for k = 2, 3, . . . , 20, is given by:

E(Y11|D21 = 0, D31 = 0, D41 = 0, D
′

k1 = 0, X211, X311) = β0 + β2X211 + β3X311

Consequently the intercept is given by β0. Now suppose that the intercept of GE in the year 1936 is of

interest, then it follows from the assumptions that the linear model for GE in the second time period is

then given by:

E(Y12|D21 = 0, D31 = 0, D41 = 0, D
′

22D
′

k2 = 0, X211, X311) = β0 + λ2 + β2X212 + β3X312

for all k = 1, . . . , 20. The intercept is then given by β0+λ2. If λ2 is statistically significant it then follows

that the intercept for GE in 1935 is significantly different to that of the year 1936.

The restricted F test may also be used to test which model is valid between model 2 and model 3, i.e

the restricted and unrestricted models. The null hypothesis and alternative hypothesis in this case are

given by:

H0 : α2 = α3 = α4 = λ2 = λ3 = . . . = λ20 = 0

H1 : atleast one of the parameters is not equal to 0

The test statistic remains similar, the only difference is that rather than model 2, the unrestricted model

is now model 3 and the restricted model remains model 1, the rejection criteria remains the same given

the desired level of significance. Furthermore, the differential intercept coefficients tell by how much the

individual intercepts for GM , US and WH, at each time period, differ from the intercept of GE at each

point in time. In other words differential intercept coefficients are used to detect differences between the

intercept of different cross-sectional units at specific points in time. It is of interest to note that this

model is also restricted to some extent, in that it imposes the restriction of common slopes. Therefore

the extent of the heterogeneity present in the four companies might still be restricted.

2.4 Model 4: All coefficients vary over companies

[5] observes that another alternative (perhaps even more realistic) of taking the heterogeneity into account

is by allowing each company to have varying intercepts and slope coefficients that remain constant across

time. This might be due to the unique managerial style each company employs, quality of employees,

rules and code of conduct of each company etc. These “quality” factors may have an influence in the

24



individual slopes of each company. Then equation (1), i.e. the basic model, may be represented as:

Yit = β1i + β2iX2it + β3iX3it + εit for i = 1, 2, 3, 4 and t = 1, 2, . . . , 20, (10)

Similarly the subscript i in the coefficients indicate that the coefficients vary across each company. As

before, differential dummy variables are used resulting in model 4 taking the form:

Yit = α0 +

4∑
j=2

αjDji + γ1W1 + γ2W2 + γ3W3 + γ4W4 + γ5W5 + γ6W6 + β2X2it + β3X3it + µit (11)

for all i = 1, 2, 3, 4 and t = 1, 2, . . . , 20 where W1 = D2iX2it, W2 = D2iX3it, W3 = D3iX2it, W4 =

D3iX3it, W5 = D4iX2it and W6 = D4iX3it.

Since it is known that multiple collinearity could be a problem, in this modeling approach, the V IF

measure will also be considered in all the linear models for each individual company. This is done in order

to determine the degree of multicollinearity that is present. As stated by [5], multicollinearity poses little

problem if the VIF for each company is less than 10.

As in the previous models, α0 is termed the comparison intercept, αj ’s are the differential intercepts.

What characterizes model 4 is the γ’s, these are the differential slopes and they have the same interpre-

tation as the differential intercepts, i.e they tell by how much the slopes for GM , US andWH differ from

the slopes of the comparison company GE, [5]. The assumptions for the dummies, with respect to the

differential intercepts, are the same as those discussed in the models above (specifically the LSDV method

which is model 2). The assumptions with regards to the slope dummies follow in a similar manner as for

the intercept dummies discussed in model 2, that is:

if i = 1, which implies that GE is considered. Then D21 = 0, D31 = 0 and D41 = 0

if i = 2, which implies that GM is considered. Then D22 = 1, D32 = 0 and D42 = 0

if i = 3, which implies that US is considered. Then D23 = 0, D33 = 1 and D43 = 0

if i = 4, which implies that WH is considered. Then D24 = 0, D34 = 0 and D44 = 1.

Now consider GE, then by assumptions it follows that for all t = 1, 2, . . . , 20, the following linear

model is obtained:

E(Y1t|D21 = 0, D31 = 0, D41 = 0, X21t, X31t) = α0 + β2X21t + β3X31t.
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Consequently the intercept coefficient for GE is given by α0. The slope coefficient for X21t is given by β2

and the slope coefficient for X31t is given by β3. Similarly forGM , it follows from the assumptions that

for all t = 1, 2, . . . , 20, the linear model follows as:

E(Y2t|D22 = 1, D32 = 0, D42 = 0, X22t, X32t) = α0 + α2 + (γ1 + β2)X22t + (γ2 + β3)X32t

It then follows that the intercept coefficient for GM is given by α0 + α2. If α2 is statistically significant,

it follows that the intercept of GM is significantly different from that of GE. Furthermore the slope

coefficient for X2,2,t is given by (γ1+β2) and the slope coefficient of X3,2,t is given by (γ2+β3). Similarly

if γ1 and γ2 are statistically significant it follows that the slopes for X22t and X32t are significantly

different from the slopes of X21t and X31t, (exogenous variables for GE). For US, it follows from the

assumptions that for all t = 1, 2, . . . , 20, the following model is obtained:

E(Y3t|D23 = 0, D33 = 1, D43 = 0, X23t, X33t) = α0 + α3 + (γ3 + β2)X23t + (γ4 + β3)X33t

It then follows that the intercept coefficient for US is given by α0+α3. If α3 is statistically significant, it

follows that the intercept of US is significantly different from that of GE. The slope coefficient for X23t

is given by (γ3 + β2) and the slope coefficient of X3,3,t is given by (γ4 + β3), similarly if γ3 and γ4 are

statistically significant it follows that the slopes forX23t andX33t are significantly different from the slopes

of X21t and X31t. Finally, considering WH, by the assumptions it follows that for all t = 1, 2, . . . , 20, the

following model is obtained:

E(Y4t|D24 = 0, D34 = 0, D44 = 1, X24t, X34t) = α0 + α4 + (γ5 + β2)X24t + (γ6 + β3)X33t

It then follows that the intercept coefficient for WH is given by α0 + α4. Similarly, if α4 is statistically

significant, it follows that the intercept for WH is significantly different from that of GE. The slope

coefficient for X24t is given by (γ5+β2) and the slope coefficient of X34t is given by (γ6+β3). Similarly if

γ5 and γ6 are statistically significant it follows that the slopes for X24t and X34t are significantly different

from the slopes of X21t and X31t.

It is important to note that the estimates of the parameters discussed above are only valid if the

degree of multicollinearity among the variables is small, i.e. the VIF of every estimator is less than 10.

Moreover, the restricted F test, as before, may be used to check validity of model 3 against model 4 i.e.

restricted model against the unrestricted model respectively. The null hypothesis to be tested in this case
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is given by:

H0 : α2 = α3 = α4 = γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = 0

with the alternative hypothesis:

H1 : atleast one of the parameters is not equal to 0

The rejection criteria remains similar to the discussion under model 2 given the desired level of signif-

icance. Furthermore, similar to the cases for the differential intercept coefficients, the differential slope

coefficients: γ1, γ2,γ3,γ4,γ5 and γ6, tell by how much the individual slope coefficients of X2 and X3 for

GM , US and WH differ from those of the comparison company GE, [5]. In other words differential

slope coefficients are used to detect differences between different companies. In the next section models

are estimated and the results are then discussed in detail.

3 Application and data interpretation

In this section, the coefficients as determined in the theory section are analysed with the aim to check for

statistical significance and thus producing the estimation models. The differences in the coefficients of the

four companies are then identified. Moreover the models are analysed to check if they are optimal, this

is done through the interpretation of the Durbin-Watson statistic as well as checking how well the model

fits the data through the interpretation of the coefficient of determination, i.e. R2. Since multicollinearity

might be a problem when estimating the parameters, V IF values are also considered. The inference done

is based on SAS output, of which the code is available in the appendix.

3.1 Comparison of different companies

3.1.1 Model 1: all coefficients constant

As discussed earlier the regression equation is given by

Yj = β1 + β2X2j + β3X3j + εj for all j = 1, 2, . . . , 80. (12)

Ordinary least squares regression produces the following output.
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Variable DF Parameter estimate Standard Error t-value Pr > |t| Variance inflation
Intercept 1 -63.27 29.61 -2.14 0.0358 0

X2 1 0.11 0.01 8.02 <0.0001 1.50
X3 1 0.30 0.05 6.15 <0.0001 1.50

R-square 0.7565
Durbin Watson d 0.310
Degrees of freedom 77

Table 5: Model 1 proc reg results

From the output results it follows that analysis may continue seeing that the vif values are all less

than 10. (applying the usual criteria) it follows that under a 5% level of significance, the OLS estimators

of the parameters β1, β2, and β3 are all statistically significant since the p-value associated with each

t-statistic for the OLS estimators is less than 5%. The coefficient of determination R2 has a value equal

to 0.7565 (this is reasonably high), i.e. approximately 75% of the variation in the dependent variable is

explained by the explanatory variables under model 1. This signifies a measure of how well the model

fits the data. Furthermore the Durbin-Watson statistic is given by d = 0.310. The low d-value implies

that there may be autocorrelation in the data, this poses a problem with regards to the unbiased OLS

estimation. However given that only about 75% of the data is represented by the model, the low value

might also imply model miss-specification [5]. Bearing the possibility of miss-specification in mind, it

follows that the model may not be optimal, which is expected since it is reasonable to assume heterogeneity

of the companies, i.e. each company may have different coefficients due to initial capital in the business,

different managerial styles, expertise in field, experience etc.

None-the-less the null hypothesis that the parameters are statistically insignificant is rejected, given

the 5% level of significance. It is also evident from the VIF values that the estimations are sound due

to insignificant collinearity between the random variables. It then follows that the OLS estimation gives

the following estimated model:

Ŷit = −63.27 + 0.1101X2j + 0.3034X3j

(29.61) (0.01) (0.05)

3.1.2 Model 2: Intercept coefficient varies over companies

Consider model 2 given by the regression equation

Yit = α1 + α2D2i + α3D3i + α4D4i + β2X2it + β3X3it + εit (13)

for i = 1, 2, . . . , 4 and t = 1, 2, . . . , 20. Then running the OLS yields the following output
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Variable DF Parameter estimate Standard Error t-value Pr > |t| Variance inflation
Intercept 1 -245.81 35.81 -6.86 <0.0001 0

D2 1 161.55 46.46 3.48 0.0009 5.71
D3 1 339.63 23.99 14.16 <0.0001 1.52
D4 1 186.63 31.51 5.92 <0.0001 2.63
X2 1 0.11 0.02 6.17 <0.0001 8.74
X3 1 0.35 0.03 12.98 <0.0001 1.57

R-square 0.9346
Durbin Watson d 1.108
Degrees of freedom 74

Table 6: Model 2 proc reg results

The F -statistic from the restricted F test is given by:

F =
(R2

UR −R2
R)/m

(1−R2
UR)/(n− k)

=
(0.9346− 0.7565)/3

(1− 0.9346)/(80− 6)
= 67.19

Suppose, a 5% level of significance is used, clearly the F value is significant. It follows that the null

hypothesis is rejected, i.e. model 2 is optimal. Furthermore it is observed from the output that param-

eters α2, α3 and α4 are statistically significant given the 5% level of significance. This is observed from

the significant t values conversely this is also observed from the small p-values which are all less than

the level of significance chosen . Hence this leads to the conclusion that all companies have significantly

different intercepts i.e. the null hypothesis for each individual t-test is rejected. The coefficient of deter-

mination R2
UR, has increased substantially to a value of 0.9346 signifying that approximately 93% of the

variability in the observations is explained by model 2 . This is a substantial improvement to model 1 .

Furthermore the Durbin-Watson statistic is given by d = 1.108, this value is much closer to 2 than that

of model 1 , signifying that this model has less collinearity, hence less bias in estimation of parameters.

Furthermore this may imply that the model is more correctly specified than the pooled model. This is

expected due to the rejection of the null hypothesis in the restricted F test. The V IF value for each

parameter estimate is under 10, hence unbiased estimation is possible due to the low level of variable

collinearity. Thus the OLS estimates gives the following estimated model:

Ŷit = −245.81 + 161.55D2i + 339.63D3i + 186.63D4i + 0.11X2it + 0.35X3it

(35.81) (46.46) (23.99) (31.51) (0.02) (0.03)

It then follows that the linear model for GE is given by:

E(Y1t|D21 = 0, D31 = 0, D41 = 0, X21t, X31t) = −245.81 + 0.11X21t + 0.35X31t
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for GM is given by:

E(Y2t|D22 = 1, D32 = 0, D42 = 0, X22t, X32t) = −84.26 + 0.11X22t + 0.35X32t

for US is given by:

E(Y3t|D23 = 0, D33 = 1, D43 = 0, X23t, X33t) = 93.82 + 0.11X23t + 0.35X33t

and finally for WH is given by:

E(Y4t|D24 = 0, D34 = 0, D44 = 1, X2,4,t, X3,4,t) = −59.18 + 0.11X + 0.35X34t.

The following intercept planes graphically represent the heterogeneity inherent in the intercepts for

each company:

Figure 4: Model 2 intercept planes graphical representation

where the four planes are representative of the intercepts of the four companies with the highest plane

belonging to the U.S. Steal, the second highest belongs to Westinghouse the third highest belongs to

General Motors and the lowest belonging to General Electric. It is thus evident from the graphical rep-

resentation that assuming different intercepts for each of the companies is more appropriate, this reflects

the fact that restriction on the parameters does not allow for optimal regression model estimation, espe-
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cially because each individual company has its own uniqueness that distinguishes it from the rest of the

other cross-sectional units or rather companies.

If the random effects approach is considered, then the intercept is a stochastic random variable with

expected value β1. The following regression equation is of interest:

Yit = β1it + β2X2it + β3X3it + eit

=(β1 + uit) + β2X2it + β3X3it + eit

= β1 + β2X2it + β3X3it + wit

for all i = 1, ..., 4 and t = 1, ..., 20. with E(wit) = E(eit + uit) = E(eit) + E(uit) = 0 + 0 = 0. The

following SAS output shows the estimated parameters using the GLS estimation method:

Variable DF Parameter estimate Standard Error t-value Pr > |t|
Intercept 1 -73.0353 83.95 -0.8699 0.3870

X2 1 0.1076 0.0168 6.4016 <0.0001
X3 1 0.3457 0.0168 13.0235 <0.0001

Random effect:

GE -169.93
GM -9.51
US 165.56
WH 13.87

R2 0.9323
Degrees of freedom 77

Table 7: Model 2 GLS procedure results

Upon comparison of the results, it is seen that the parameter estimates for the exogenous variables

remain essentially the same. It then follows that the intercept for GE is given by −169.93 − 73.0353 =

−242.9653. Similarly the intercept for GM is −82.5453, for US is 92.5247 and finally the intercept of

WH is −59.1653. This is also further evidence that the intercepts for each company are significantly

different. It is also worth noting that the intercepts are very close to those obtained using the fixed

effects The highest intercept is again given by that of U.S. Steel, the second highest is again given by

Westinghouse and the 3rd largest is also again given by General Motors and the lowest is again given

by General Electric. It is also seen that the coefficient of determination is approximately equal to that

of the fixed effects model. But it follows that the degrees of freedom for the random effects model are

more. Thus random effects proves to be the more efficient approach since estimation takes place with

more degrees of freedom and hence with more efficiency.
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3.1.3 Model 3: Intercept coefficient varies over companies and time

Yit = βo +

4∑
j=2

αjDji +

20∑
k=2

λkDkt + β2X2it + β3X3it + µit for i = 1, 2, . . . , N and t = 1, 2, . . . , T (14)

Variable DF Parameter estimate Standard Error t-value Pr > |t| Variance inflation
Intercept 1 -359.59 82.64 -4.35 <0.0001 0

D2 1 105.30 67.68 1.56 0.1255 11.54
D3 1 341.11 24.81 13.75 <0.0001 1.55
D4 1 220.37 41.18 5.35 <0.0001 4.27
D35 1 134.38 72.01 1.87 0.0674 3.31
D36 1 87.37 66.46 1.31 0.1941 2.82
D37 1 29.64 66.11 0.45 0.6556 2.79
D38 1 48.14 66.83 0.72 0.4743 2.85
D39 1 -7.85 63.92 -0.12 0.9027 2.61
D40 1 51.89 63.79 0.81 0.4195 2.60
D41 1 107.76 63.45 1.70 0.0951 2.57
D42 1 118.38 64.93 1.82 0.0737 2.69
D43 1 72.02 63.48 1.13 0.2614 2.57
D44 1 68.50 63.66 1.08 0.2866 2.59
D45 1 44.64 62.84 0.71 0.4805 2.52
D46 1 104.23 61.83 1.69 0.0975 2.44
D47 1 100.20 62.87 1.59 0.1167 2.52
D48 1 92.30 63.17 1.46 0.1497 2.55
D49 1 31.21 62.11 0.50 0.6174 2.46
D50 1 35.80 61.19 0.59 0.5608 2.39
D51 1 47.85 57.53 0.83 0.4092 2.11
D52 1 57.97 56.39 1.03 0.3085 2.03
D53 1 54.02 55 0.98 0.3303 1.93
X2 1 0.13 0.02742 4.71 <0.0001 20.41
X3 1 0.37 0.04 8.82 <0.0001 3.65

R-square 0.9489
Durbin Watson d 1.110
degrees of freedom 55

Table 8: Model 3 proc reg results

The F -statistic from the restricted F test is given by:

F =
(R2

UR −R2
R)/m

(1−R2
UR)/(n− k)

=
(0.9489− 0.7565)/22

(1− 0.9489)/(80− 25)
= 9.41

Suppose a 10% level of significance, it is clear that F > F0.10(22, 55) = 1.53. It follows that the null

hypothesis is rejected, i.e. model 3 is optimal. From the output, under a 10% level of significance it is

seen that only 4 of the time differential intercept coefficients statistically significant. Hence the intercept

also varies over time for only 4 of the years considered.

Furthermore since α3 and α4 are statistically significant given the 5% level of significance, it then
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Variable DF Parameter estimate Standard Error t-value Pr > |t| Variance inflation
Intercept 1 -9.96 76.35 -0.13 0.8966 0

D2 1 -139.51 109.28 -1.28 0.2061 38.91
D3 1 -40.12 129.23 -0.31 0.7572 54.41
D4 1 9.29 93.12 0.10 0.9208 28.25

D2X2 1 0.09 0.04 2.18 0.0324 116.14
D2X3 1 0.22 0.06 2.24 0.0283 54.49
D3X2 1 0.14 0.06 2.24 0.0283 54.49
D3X3 1 0.26 0.12 2.13 0.0365 5.65
D4X2 1 0.03 0.11 0.24 0.8108 20.67
D4X3 1 -0.06 0.38 -0.16 0.8734 5.72
X2 1 0.03 0.04 0.70 0.4857 50.36
X3 1 0.15 0.06 2.43 0.02 10.65

R-square 0.9512
Durbin Watson d 1.090
Degrees of freedom 68

Table 9: Example

follows that the intercepts for US and WH are significantly different from the intercept of GE. More-

over, since α2 is statistically insignificant given the 5% level of significance the intercept of GM is not

significantly different from that of GE. Again, the significance is evident p-values being smaller or larger

than 5% as discussed under model 2 above. It is also interesting to note that the differential coefficient

for GM is now insignificant in this model. The R2 value has also improved from that of the restricted

model, i.e. model 3 is a better fit for the data accounting for approximately 94.89% of the variation

within the data. The Durbin-Watson statistic is given by d = 1.110 this is also closer to 2 than that for

the restricted model. Implying that the model is more optimal which is expected due to the rejection of

the null hypothesis in the restricted F test.

Upon analysis of the VIF values it is evident that the model is appropriate i.e. the model produced

from the statistically significant parameters has insignificant autocorrelation to affect unbiased estimation.

The OLS estimation equation is obtained in exactly the same way as was done in the previous subsections.

3.1.4 Model 4: All coefficients vary over companies

Yit = α0 +

4∑
j=2

αjDji + γ1W1 + γ2W2 + γ3W3 + γ4W4 + γ5W5 + γ6W6 + β2X2it + β3X3it + µit (15)

The following table shows the regression procedure results as per SAS output.
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The F -statistic from the restricted F test is given by:

F =
(R2

UR −R2
R)/m

(1−R2
UR)/(n− k)

=
(0.9512− 0.7565)/9

(1− 0.9512)/(80− 12)
= 30.14

Suppose, a 5% level of significance is used. It is also clear that the F value is significant. It follows that

the null hypothesis is rejected, i.e. model 4 is optimal. From the output, it is evident that α2, α3 and

α4 are all statistically insignificant, this is similarly deduced from the p-values of which are all above

20%. Hence it follows that the intercepts of the four companies are not significantly different from one

another, in fact they are all equal to 0. Moreover γ1, γ2, γ3 and γ4 are statistically significant which

means that the slope coefficients associated with GM and US are significantly different from the slopes

associated with GE. Since γ5 and γ6 are statistically insignificant due to their p-values being more than

the 5% which is the level of significance of choice. It follows that the slopes associated with WH are

not significantly different from the slopes of GE. Model 4 has the highest coefficient of determination

value which suggests that approximately 95% of the variation in the data is explained by the model.

The Durbin-Watson statistic is given by d = 1.090 this is also closer to 2 than that of the restricted

model. This shows that the model is a better fit than the restricted model. Again, this is expected

since the null hypothesis of the restricted F test was rejected, indicating that the unrestricted model is

optimal. But by the analysis of the V IF values, it is found that most of the values are above 10. This

implicates that there is significant a collinearity in the model to bring forth difficult precision of unbiased

estimators. Therefore, even though the model is a better fit, it is rejected. The high R2 value is as a

result of multicollinearity.

4 Limitations of the LSDV method and Conclusion

Gujarati [5] mentions that although the preceding models are easily implemented as is demonstrated in

section 3, they do however have limitations: The degrees of freedom problem i.e. loss of a degrees of

freedom per unit parameter added to the model. Consider model 3, for each dummy variable added to the

equation a degree of freedom is lost. Gujarati [5] observes that this is particularly a problem when there

are too few observations left for meaningful statistical analysis. The solution to the degrees of freedom

predicament in estimating panel data regression models is to consider the use of the random effects (RE)

approach as an alternative method to the fixed effects approach as discussed in section 3. It is very much

important that caution must be taken when using the alternative method of RE, [5] mentions that if the

error term and one of the exogenous variables are correlated, then the estimators under the RE are biased.
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Furthermore, taking model 4 into account it is seen that the model has many multiplicative and ad-

ditive dummies. As such, there is a high possibility of multicollinearity. In fact it is clear that the model

does exhibit a lot of multicollinearity among its parameters as observed from the VIF values associated

with the estimated multiplicative parameters. Not only does multicollinearity contradict the assumptions

under the ordinary least squares estimation theory, but it has the consequence that the precise estimation

of collinear parameters is difficult. This leads biased estimates.

On the contrary model 2 is used to detect whether there are inherent differences in the intercepts

of General Electric, General Motors, U.S. Steel and Westinghouse. It is observed from the output that

parameters α2, α3 and α4 are statistically significant, furthermore the V IF values associated with each

parameter is below 10. Hence the estimators are unique minimum variance unbiased estimators i.e. they

are efficient. Hence one may conclude with significant confidence that all companies have significantly

different intercepts.

Model 3 further seeks to detect the differences in the intercepts for each company in each year, but as is

seen, the differential time dummy coefficients are all statistically insignificant if a 5% level of significance

is considered. This is evidence that the intercepts for each company remain constant over time. This

essentially translates back to model 2 but the intercept for GE and GM are not significantly different

in this model. This is because dummy variable D2 is not significant according to the criteria, i.e. the

hypothesis of insignificance is not rejected. This seems to be in direct contradiction to the findings in

model 2. Closer analysis shows that the V IF value is above 10 with a value of 11.54 i.e. D2 is deemed

significantly collinear. This has the consequence that one is more readily inclined to conclude statistical

insignificance when in fact the parameter may be statistically significant under the correct generalised

least squares estimation method. [5] makes this remark in his discussion of the consequences of collinear-

ity.

Gujarati [5] further mentions that careful attention must also be on the error term. The assumption

made is that the stochastic disturbance εit follows a normal distribution with a mean equal to zero and

a constant variance σ2 i.e. the error term is homoscedastic. It therefore follows, that since the error

term has both space and time dimensions denoted by i and t respectively a few alterations or rather

assumptions may be made e.g. the assumptions of homoscedasticity (as is the case in this discussion)

or heteroscedasticity and the assumptions of autocorrelation or non-autocorrelation of the error terms

for each individual through time and finally the assumptions of autocorrelation between the error terms
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of the different cross-sectional units. [9] further makes the remark that some of the problems that arise

from the LSDV can be alleviated by considering the alternative method of FE within group estimator

i.e. removing the unobservable effect, as discussed in section 1.

Gujarati [5] discusses the inherent problems that arise when estimation is done in the presence of

autocorrelation and collinearity, what is of most importance is that regression assumptions are not violated

since unbiased and consistent estimators occur the only fly in the ointment is that the estimators are

no longer efficient meaning that they no longer have minimum variance. Because the variance is larger,

there is an increased risk of a parameter having a questionable value or more specifically the confidence

interval will be wider and thus increasing the chances of failing to reject a parameter estimate that is too

far from the actual parameter value. Hence this spells out a degree of less confidence in the estimated

parameters.
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Appendix

Data tables

Time Year Comp Y X2 X3
1 1935 1 33,1 1170,6 97,8
2 1936 1 45 2015,8 104,4
3 1937 1 44,6 2803,3 118
4 1938 1 48,1 2039,7 156,2
5 1939 1 74,4 2256,2 172,6
6 1940 1 113 2132,2 186,6
7 1941 1 91,9 1834,1 220,9
8 1942 1 61,3 1588 287,8
9 1943 1 56,8 1749,4 319,9
10 1944 1 93,6 1687,2 321,3
11 1945 1 159,9 2007.7 319,6
12 1946 1 147,2 2208,3 346
13 1947 1 146,3 1656,7 456,4
14 1948 1 98,3 1604,4 543,4
15 1949 1 93,5 1431,8 618,3
16 1950 1 135,2 1610,5 647,4
17 1951 1 157,3 1819,4 671,3
18 1952 1 179,5 2079,7 726,1
19 1953 1 189,6 2371,6 800,3
20 1954 1 317,6 2759,9 888,9

Table 10: Data for General Electric

Time Year Company Y X2 X3
1 1935 2 317,6 3078,5 2,8
2 1936 2 391,8 4661,7 52,6
3 1937 2 410,6 5387,1 156,9
4 1938 2 257,7 2792,2 209,2
5 1939 2 330,8 4313,2 203,4
6 1940 2 461,2 4643,9 207,2
7 1941 2 512 4551,2 255,2
8 1942 2 448 3244,1 303,7
9 1943 2 499,6 4053,7 264,1
10 1944 2 547,5 4379,3 201,6
11 1945 2 561,2 4840,9 265
12 1946 2 688,1 4900 402,2
13 1947 2 568,9 3526,5 761,5
14 1948 2 529,2 3245,7 922,4
15 1949 2 555,1 3700,2 1020,1
16 1950 2 642,9 3755,6 1099
17 1951 2 755,9 4833 1207,7
18 1952 2 891,2 4924,9 1430,5
19 1953 2 1304,4 6241,7 1777,3
20 1954 2 1486,7 5593,6 2226,3

Table 11: Data for General Motors
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Time Year Company Y X2 X3
1 1935 3 209.9 1362.4 53.8
2 1936 3 355.3 1807.1 50.5
3 1937 3 469.9 2673.3 118.1
4 1938 3 262.3 1801.9 260.2
5 1939 3 230.4 1957.3 312.7
6 1940 3 361.6 2202.9 254.2
7 1941 3 472.8 2380.5 261.4
8 1942 3 445.6 2168.6 298.7
9 1943 3 361.6 1985.1 301.8
10 1944 3 288.2 1813.9 279.1
11 1945 3 258.7 1850.2 213.8
12 1946 3 420.3 2067.7 232.6
13 1947 3 420.5 1796.7 264.8
14 1948 3 494.5 1625.8 306.9
15 1949 3 405.1 1667 351.1
16 1950 3 418.8 1677.4 357.8
17 1951 3 588.8 2289.5 341.1
18 1952 3 645.2 2159.4 444.2
19 1953 3 641 2031.3 623.6
20 1954 3 459.3 2115.5 669.7

Table 12: Data for U.S. Steel

Time Year Company Y X2 X3
1 1935 4 12.93 191.5 1.8
2 1936 4 25.9 516 0.8
3 1937 4 35.05 729 7.4
4 1938 4 22.89 560.4 18.1
5 1939 4 18.84 519.9 23.5
6 1940 4 28.57 628.5 26.5
7 1941 4 48.51 537.1 36.2
8 1942 4 43.34 561.2 60.8
9 1943 4 37.02 617.2 84.4
10 1944 4 37.81 626.7 91.2
11 1945 4 39.27 727.2 92.4
12 1946 4 53.46 760.5 86
13 1947 4 55.56 581.4 111.1
14 1948 4 49.59 662.3 130.6
15 1949 4 32.04 583.8 141.8
16 1950 4 32.24 635.2 136.7
17 1951 4 54.38 732.8 129.7
18 1952 4 71.78 864.2 145.5
19 1953 4 90.08 1193.5 174.8
20 1954 4 68.6 1188.9 213.5

Table 13: Data for Westinghouse
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SAS code

proc import

datafile = "C:\Users\user\Desktop\honours 2nd semester\WST 795\Final year research project\Book1"

dbms = xlsx

out = work.gujarati;

run;

proc reg

data = gujarati;

id company time;

model Y = X2 X3/dw vif;

run;

proc reg

data = gujarati;

id company time;

model Y = D2 D3 D4 X2 X3/dw vif;

run;

proc reg

data = gujarati;

id company time;

model Y = D2 D3 D4 D35 D36 D37 D38 D39 D40 D41 D42 D43 D44 D45 D46 D47

D48 D49 D50 D51 D52 D53 X2 X3/dw vif;

run;

proc import

datafile = "C:\Users\user\Desktop\honours 2nd semester\WST 795\Final year research project\industry"

dbms = xlsx

out = work.industry;

run;

proc reg

data = industry; /*all constant*/
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id industry time;

model W = Z2 Z3/dw vif;

run;

proc reg

data = industry;/*vary over industry*/

id industry time;

model W = D2 D3 D4 Z2 Z3/dw vif;

run;

proc reg data = industry;/*vary over time*/

id industry time;

model W = D86 D87 D88 D89 D90 D91 D92 D93 D94 D95 D96 D97 D98 D99 D2000 D2001 D2002

D2003 D2004 D2005 D2006 D2007 D2008 D2009 D2010 D2011 D2012 D2013 Z2 Z3/dw vif;

run;

proc reg data = industry;/*all coefficients vary over individuals*/

id industry time;

model W = D2 D3 D4 D86 D87 D88 D89 D90 D91 D92 D93

D94 D95 D96 D97 D98 D99 D2000 D2001 D2002 D2003 D2004

D2005 D2006 D2007 D2008 D2009 D2010 D2011 D2012 D2013 Z2 Z3/dw vif;

run;

SAS output

Variable DF Parameter estimate Standard Error t-value Pr > |t| Variance inflation
Intercept 1 -63.27 29.61 -2.14 0.0358 0

X2 1 0.11 0.01 8.02 <0.0001 1.50
X3 1 0.30 0.05 6.15 <0.0001 1.50

R-square 0.7565
Durbin Watson d 0.310
Degrees of freedom 77

Table 14: Model 1 proc reg results
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Variable DF Parameter estimate Standard Error t-value Pr > |t| Variance inflation
Intercept 1 -245.81 35.81 -6.86 <0.0001 0

D2 1 161.55 46.46 3.48 0.0009 5.71
D3 1 339.63 23.99 14.16 <0.0001 1.52
D4 1 186.63 31.51 5.92 <0.0001 2.63
X2 1 0.11 0.02 6.17 <0.0001 8.74
X3 1 0.35 0.03 12.98 <0.0001 1.57

R-square 0.9346
Durbin Watson d 1.108
Degrees of freedom 74

Table 15: Model 2 proc reg results

Variable DF Parameter estimate Standard Error t-value Pr > |t| Variance inflation
Intercept 1 -359.59 82.64 -4.35 <0.0001 0

D2 1 105.30 67.68 1.56 0.1255 11.54
D3 1 341.11 24.81 13.75 <0.0001 1.55
D4 1 220.37 41.18 5.35 <0.0001 4.27
D35 1 134.38 72.01 1.87 0.0674 3.31
D36 1 87.37 66.46 1.31 0.1941 2.82
D37 1 29.64 66.11 0.45 0.6556 2.79
D38 1 48.14 66.83 0.72 0.4743 2.85
D39 1 -7.85 63.92 -0.12 0.9027 2.61
D40 1 51.89 63.79 0.81 0.4195 2.60
D41 1 107.76 63.45 1.70 0.0951 2.57
D42 1 118.38 64.93 1.82 0.0737 2.69
D43 1 72.02 63.48 1.13 0.2614 2.57
D44 1 68.50 63.66 1.08 0.2866 2.59
D45 1 44.64 62.84 0.71 0.4805 2.52
D46 1 104.23 61.83 1.69 0.0975 2.44
D47 1 100.20 62.87 1.59 0.1167 2.52
D48 1 92.30 63.17 1.46 0.1497 2.55
D49 1 31.21 62.11 0.50 0.6174 2.46
D50 1 35.80 61.19 0.59 0.5608 2.39
D51 1 47.85 57.53 0.83 0.4092 2.11
D52 1 57.97 56.39 1.03 0.3085 2.03
D53 1 54.02 55 0.98 0.3303 1.93
X2 1 0.13 0.02742 4.71 <0.0001 20.41
X3 1 0.37 0.04 8.82 <0.0001 3.65

R-square 0.9489
Durbin Watson d 1.110
degrees of freedom 55

Table 16: Model 3 proc reg results
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Variable DF Parameter estimate Standard Error t-value Pr > |t|
Intercept 1 -73.0353 83.95 -0.8699 0.3870

X2 1 0.1076 0.0168 6.4016 <0.0001
X3 1 0.3457 0.0168 13.0235 <0.0001

Random effect:

GE -169.93
GM -9.51
US 165.56
WH 13.87

R2 0.9323
Degrees of freedom 77

Table 17: Model 2 GLS procedure results

Variable DF Parameter estimate Standard Error t-value Pr > |t| Variance inflation
Intercept 1 -359.59 82.64 -4.35 <0.0001 0

D2 1 105.30 67.68 1.56 0.1255 11.54
D3 1 341.11 24.81 13.75 <0.0001 1.55
D4 1 220.37 41.18 5.35 <0.0001 4.27
D35 1 134.38 72.01 1.87 0.0674 3.31
D36 1 87.37 66.46 1.31 0.1941 2.82
D37 1 29.64 66.11 0.45 0.6556 2.79
D38 1 48.14 66.83 0.72 0.4743 2.85
D39 1 -7.85 63.92 -0.12 0.9027 2.61
D40 1 51.89 63.79 0.81 0.4195 2.60
D41 1 107.76 63.45 1.70 0.0951 2.57
D42 1 118.38 64.93 1.82 0.0737 2.69
D43 1 72.02 63.48 1.13 0.2614 2.57
D44 1 68.50 63.66 1.08 0.2866 2.59
D45 1 44.64 62.84 0.71 0.4805 2.52
D46 1 104.23 61.83 1.69 0.0975 2.44
D47 1 100.20 62.87 1.59 0.1167 2.52
D48 1 92.30 63.17 1.46 0.1497 2.55
D49 1 31.21 62.11 0.50 0.6174 2.46
D50 1 35.80 61.19 0.59 0.5608 2.39
D51 1 47.85 57.53 0.83 0.4092 2.11
D52 1 57.97 56.39 1.03 0.3085 2.03
D53 1 54.02 55 0.98 0.3303 1.93
X2 1 0.13 0.02742 4.71 <0.0001 20.41
X3 1 0.37 0.04 8.82 <0.0001 3.65

R-square 0.9489
Durbin Watson d 1.110
degrees of freedom 55

Table 18: Model 3 proc reg results
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Variable DF Parameter estimate Standard Error t-value Pr > |t| Variance inflation
Intercept 1 -9.96 76.35 -0.13 0.8966 0

D2 1 -139.51 109.28 -1.28 0.2061 38.91
D3 1 -40.12 129.23 -0.31 0.7572 54.41
D4 1 9.29 93.12 0.10 0.9208 28.25

D2X2 1 0.09 0.04 2.18 0.0324 116.14
D2X3 1 0.22 0.06 2.24 0.0283 54.49
D3X2 1 0.14 0.06 2.24 0.0283 54.49
D3X3 1 0.26 0.12 2.13 0.0365 5.65
D4X2 1 0.03 0.11 0.24 0.8108 20.67
D4X3 1 -0.06 0.38 -0.16 0.8734 5.72
X2 1 0.03 0.04 0.70 0.4857 50.36
X3 1 0.15 0.06 2.43 0.02 10.65

R-square 0.9512
Durbin Watson d 1.090
Degrees of freedom 68

Table 19: Model 4 proc reg results
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Abstract

The hyperbolic secant distribution (HSD) is a continuous distribution, bell shaped like the Gaus-

sian distribution with a mean of 0 and variance 1. It can be used as the parent distribution in

obtaining other generalized distributions which display varying levels of skewness and kurtosis. Vari-

ous transformation methods for the HSD are explored, focusing mainly on the beta-hyperbolic secant

(BHS) distribution and the transformation method.

The BHS distribution is first introduced to be a weighted function of the hyperbolic secant dis-

tribution [6]. It has distribution parameters, β1 > 0 and β2 > 0 which control the shape of the

probability density function and converges to a normal distribution for β1, β2 → ∞. It is more flex-

ible over a range of combinations of skewness and of kurtosis values. This property is useful when

considering the model under financial application.
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1 Introduction

The hyperbolic secant distribution (HSD) is a continuous statistical distribution. It is bell shaped with

a mean of 0 and variance 1. It has tails which are heavier than the standard normal distribution. The

earliest recognition of the HSD is by [16], where the family of Perk’s distributions was initially introduced.

The HSD falls under the exponential family of distributions, but more specifically the univariate natural

exponential families (NEF) with quadratic variance function (QVF). This means that the variances are

at most quadratic functions of their means for each of the distributions [14]. This family includes dis-

tributions such as the binomial, gamma, negative binomial, normal and Poisson. The hyperbolic secant

distribution is not as familiar as compared to these statistical models, since there is not a sufficient enough

association between them and it.

The cumulative distribution function of the standard HSD, defined by [5] as F (x) = 2
π · arctan(ex),

can be evaluated as a finite number of expressions. This implies its use in the financial sector to compute

credit risk neutral probabilities of option prices resulting in quick and accurate solutions. In addition,

this distribution is capable of generating other distributions i.e. the class is preserved under convolution.

It has finite moments and is infinitely divisible with an existing moment-generating function.

A relation between the HSD and the half Cauchy distribution is known to exist. Let Z be a random

variable that has the standard Cauchy distribution, defined by the following probability density function,

fz(z) =
1

π(z2 + 1)
, for z ∈ R.

Secondly, let V = |Z| be the half Cauchy distribution with density function

fV (υ) =
2

π(υ2 + 1)
, for υ ≥ 0.

The HSD random variable, X = ln(V ), which is documented by [5], therefore has a probability density

function attained as:

f(x) ≡ fX(x)

= fV (ex) · ex

=
1

2 cosh(πx2 )
, for −∞ < x <∞. (1)
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A generalization of a distribution through the inclusion of one or more shape parameters, aims to increase

its flexibility in terms of its distributional shape. These systems of generalized distributions can then be

obtained using various transformation methods. These methods have led to the development of general-

ized families of distributions that include the Perk’s distribution family and the NEF-GHS or Meixner

distribution family, where the HSD is generalised by considering the ρth convolution, for ρ ∈ N. A study

of the generalisations of HSD will be reviewed, focusing on the beta-hyperbolic secant (BHS) distribution

and the transformation imposed. The book by [5] will be used as the primary source of reference. Other

articles and books such as [11] and [3] are adapted into this report .

The density of the BHS distribution is defined by [5] as:

f(x;β1, β2) =
B(β1, β2)−1

π cosh(x)

[
2
π arctan(ex)

]β1−1[
1− 2

π arctan(ex)
]1−β2

, for −∞ < x <∞,

where β1 > 0 and β2 > 0 determine the shape of the density curve and B(a, b) denoting the beta function.

The BHS density function is always unimodal and all its moments exist. This distribution is more flexible

in comparison to the HSD over a range of combinations of skewness and kurtosis values.

The purpose of this report is to show that the BHS distribution is a better distribution to use to fit

over financial data rather than the HSD. Different transformation methods for generating skewed hy-

perbolic secant distributions are explored, with emphasis on the beta hyperbolic secant distribution and

the transformation imposed. An application using the BHS distribution into time series analysis will be

illustrated [7].

A literature review is provided in Section 2 to give the reader a theoretical framework of the topic

discussed. Key terms are explained along with an understanding of how the HSD and the BHS dis-

tribution have been previously studied. The different transformations imposed to generalise the HSD

will be reviewed. The HSD and its properties are studied in Section 3. Here the reader will receive a

better understanding of this distribution and see the similarities and differences it has with its related

distributions such as the normal, logistic and Cauchy distribution.

Section 4 will be a discussion on the beta-hyperbolic secant distribution. The transformation tech-

nique used to develop the BHS distribution by [6] includes using the HSD as the symmetric or parent

distribution and the beta distribution as the weighted function to provide the newly skewed distribution.

Interesting properties of the BHS distribution are briefly discussed. The transformation which results in
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the BHS is then applied in finance to a dataset which will then be shown in Section 5. Lastly, a conclusion

is drawn up in Section 6, revealing the findings of the report.

2 Literature Review

Despite the extensive research done on the hyperbolic secant distribution, many still do not know of it

and its immense application in statistical practice, the financial sector, as well as the relation it has with

other statistical models. It had its earliest recognition in [15], where Perks discusses the use of generalised

hyperbolic distributions in the graduation of mortality statistics, presenting a brief relevance in finance as

an instrument of graduation. This generalised formula enabled observed data of mortalities under differ-

ent experiences to be represented by a single curve instead of multiple curves as it was previously required.

Talacko, [16] expands on Perk’s system of distribution functions, by establishing a connection between

the hyperbolic secant distribution and Brownian motion. Focus was laid on the HSD and logistic distri-

bution. It was shown that they belonged to Perk’s family by setting the parameter c = e−1, with the

original formula for Perk’s distribution given as:

f(x) =

∑m
i=0 aic

ix∑n
i=0 bic

ix
,

for real values ai, bi and c. This original distribution function was studied in depth with emphasis on the

symmetric case which is where the hyperbolic distribution was properly introduced. Its properties are

discussed in more detail but individuals were unable to distinguish an association between it and other

statistical models even though it was shown to have a wide application in statistical practice.

Generalisation from [8] of the HSD is incorporated into the two parameter family of probability dis-

tributions with characteristic function

C (t) = C (t;α, ρ) = sechρ(αt), for α, ρ > 0.

Functions with characteristic functions of this form are known as the generalised HSD. It was shown that

if Y1 and Y2 are independent random variables coming from the N (0, 1) distribution, then

X = ln

∣∣∣∣Y1

Y2

∣∣∣∣
follows the hyperbolic secant distribution. This generalised distribution, does not however allow for skew-

ness.
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An attempt by [3] was made in order to fill the gap relating to the lack of association between the

HSD and other statistical models. The HSD is then shown to be the sixth generator in the univariate

natural exponential family (NEF) with quadratic variance function (QVF). Examples are provided, in-

cluding the Jeffreys’ prior for contingency tables and Fischer’s analysis of similarity between twins. These

distributions, naturally generate the HSD.

Jeffrey’s prior for contingency tables uses a multinomial distribution which has a link to the Dirich-

let distribution. This can be represented by [3] as

(p11, p10, p01, p00) ∼ (X11, X10, X01, X00)

X11 +X10,+X01 +X00
,

whereXij are identically and independentlyGamma
(

1
2 ,

1
2

)
/2 distributed. The chi-squared distribution is

known to be a special form of the gamma distribution. From this, the following distribution is obtainable:

Xij ∼ Z2
ij/2, where Zij ∼ N(0, 1). With this information in mind, the HSD is generated as

Y = 2 log
|Ci|
π
,

where C1 = Z11

Z10
and C2 = Z00

Z01
are identically and independently distributed (iid) standard Cauchy distri-

butions. Fischer’s analysis applies a z -transformation to R where R is the intraclass correlation coefficient

of a 2× 1 matrix normal distribution, where X1 and X2 are symmetric with correlation coefficient ρ. It

is then shown that arctan (R) is a location and scale transformation of the HSD.

The hyperbolic secant distribution is explored in further detail by [5]. It is shown to be comparable

to the N
(
0, 1

4

)
distribution and having a close link to the logistic distribution which has been used to

describe growth of populations. [13] briefly discusses this. Derivation of the density function of the HSD

comes from the standard Cauchy distribution. The basic properties of the standard hyperbolic secant

distribution are also discussed.

Moreover, in order to show leptokurtic nature, it is easier to compare the HSD with other continu-

ous distributions but in particular to compare it to the standard normal distribution. This is because of

the direct comparability it has with the normal distribution. They both possess a similar shape and have

the same mean and variance skewness moment ratio while other continuous distributions may exhibit

some differences.
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Various transformations are imposed in order to generate skewed HSD with varying leptokurtosis and

tail behaviour. [5] briefly summarises some of these transformations which include manipulating the scale

parameters and the Esscher transformation. The form of the density function of the Esscher transformed

random variable is denoted as

f(x;h) ≡ ehxf(x)

M (h)
,

where h is a shape parameter with f(x) and MX(t) as the density function and the moment generating

function respectively.

For a Gaussian distribution, this transformation generates a new symmetric Gaussian distribution with

different location and scale parameter. If the random variable does not come from a Gaussian distribu-

tion, for example, the HSD, the Esscher transformation will then produce a skew distribution for h 6= 0.

The parameter h controls the level of skewness of the distribution and thus if h = 0, the resulting distri-

bution is once again symmetric. Such transformations result in generalised families of distributions.

The NEF-GHS or Meixner distribution family, is obtained when the HSD is generalised by consider-

ing the ρth convolution, for ρ ∈ N, i.e. the integral which expresses where the new function is derived

from the overlap of two functions. The NEF-GHS distribution, initially introduced by [14], allows for

skewness and high excess kurtosis. Its properties make it easier to calculate risk measures.

A general perspective of skewed distributions arising from symmetric parent distributions is provided

by [4] along with the effects it may cause on modality and tail behaviour. A set expression is applied

to the HSD to generate what is known as the BHS distribution, explored by [12] and [6]. It arises by

selecting the beta cumulative distribution as a weighting function and the HSD as the parent distribution.

For simplicity, the location parameter, µ ∈ R and scale parameter, σ > 0, without loss of generality, are

set to their standard values, µ = 0 and σ = 1, so that the effect of the shape parameters β1, β2 > 0 on

the kurtosis, symmetry and modality of the distribution can be determined.

3 Hyperbolic Secant Distribution

Definition 1. Let X be a real-valued random variable from the HSD, defined by X ∼ HSD(µ, σ). The

following functions can be used to characterise the distribution of X:
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• The cumulative distribution function:

F (x) =
2

π
arctan

{
exp

[
π

2

(
x− µ
σ

)]}
, where x ∈ (−∞,∞).

• The probability density function:

f(x) =
1

2σ

1

cosh
[
π
2

(
x−µ
σ

)] , with x ∈ (−∞,∞).

This is derived from the standard Cauchy distribution, fz(z) = 1
π(z2+1) , z ∈ R.

• The quantile function is derived as:

F−1(p) = µ+
2σ

π
ln(tan(

πp

2
)), for p ∈ (0, 1)

and the corresponding quantile density function is given as:

f−1(p) =
2

π
· σ

tan(πp2 )
· sec2

(πp
2

)
· π

2

=
σ

sin(πp2 ) cos
(
πp
2

) .
This is simply the first derivative of F−1(p) with respect to p for p ∈ (0, 1).

The HSD is known to have a higher peak and heavier tails than the normal distribution. Us-

ing a SAS program, a comparison of the HSD and the normal distribution will be illustrated in the

following example. The skewness and excess kurtosis will also be given in the figures below. The

quantile function is used to construct the HSD.

Example 2. Let X be a real-valued random variable from the standard HSD. A SAS program is used to

generate 5000 values using the HSD quantile function, F−1 (p) = 2
π ln(tan(πp2 )). The values for p ∈ (0, 1)

are generated using the uniform distribution. The corresponding code can be obtained in the Appendix.

The following figures give a visual representation of the general shape of the standard HSD compared to

the standard normal distribution. A QQ-plot is a scatter plot of the quantiles used to determine whether

two populations come from the same distribution. It is also considered as it helps illustrate the kurtosis

of the standard HSD against the standard normal distribution.

Figure 1 displays a histogram of the standard HSD with an overlay of the density curve of the stan-
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dard normal distribution. The shape of the distribution is displayed by the histogram, while the blue line

indicates the density curve of standard normal distribution. The HSD has a higher peak and longer tails

than that of the normal distribution. Figure 1 also displays the mean, standard deviation, skewness and

excess kurtosis of the HSD.

Figure 1: Histogram of the HSD

Figure 2: QQ-plot for the HSD

Another comparison of the standard HSD and standard normal is produced in Figure 2 using the

QQ-plot of the HSD. A normal distribution would lie on a perfectly straight line. Notice how this graph

lies in straight line except for the end points. This confirms that the HSD has heavier tails than the
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normal distribution.

3.1 Properties

The standard hyperbolic secant distribution with a given density function, f(x) = 1
2sech

(
πx
2

)
, x ∈ R has

the following basic properties:

1. The characteristic function, moment-generating function, moments and L-moments:

• The characteristic function of the HSD is defined as

C (t) = sech (t) , for t ∈ R.

It can be used to generate the moment generating function.

• The moment generating function is given as:

M (t) = E(etX)

= C (−it)

= sec(t)

=
1

cos (t)
, for |t| < π

2
.

The mean, variance and kurtosis coefficient are derived from the moment generating function in the

theorem below:

Theorem 3. Let X be a real-valued random variable from the standard HSD defined as X ∼ HSD(0, 1)

with a MGF defined as M (t) = sec(t). Then the mean, variance, skewness and kurtosis coefficient are

given as follows: E(X) = 0, V ar(X) = 1, Skew(X) = 0 and kurt(X) = 5.

Proof. The moment generating function is given as M (t) = sec(t). This is used to calculate the first raw

moment which is the first derivative of the MGF with respect to t = 0:

m′(t) = sec ′(t)

= tan(t) · sec(t).
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Now:

E(X) = m′(0)

= tan(0) · sec(0)

= 0.

The variance is:

var(X) = E(X2)− (E(X))
2

= m′′(0)

= sec3(0) + sec(0) · tan2(0)

= 1.

The third moment is derived as:

E
(
X3
)

= m(3)(0)

= 3 sec3(0) · tan(0) + 2 sec3(0) · tan(0) + tan3(0) · sec(0)

= 0.

The fourth moment is obtained as:

E(X4) = m(4)(0)

= sec(0) · tan4(0) + 18 sec3(0) tan2(0) + 5 sec5(0)

= 5.

The third and fourth raw moments will be used to calculate skewness and kurtosis moment ratios of the

HSD. Skewness moment ratio of X is:

skew(X) = E

[(
X − µ
σ

)3
]

=
E
(
X3
)
− 3µE

(
X2
)

+ 2µ3

σ3

=
m(3)(0)− 3 ·m(1)(0) ·m(2)(0) + 2

[
m(1)(0)

]3
1

= 0,
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which verifies symmetry of the HSD.

Lastly, the kurtosis moment ratio is calculated as:

kurt(X) = E

[(
X − µ
σ

)4
]

=
E
(
X4
)
− 4µE

(
X3
)

+ 6µ2σ2 + 3µ4

σ4

= 5.

Remark 4. Due to the fact that f(x) is symmetric around the mean 0, all the moments and mean coex-

ist. Also, all moments exist and are finite. The raw moments are obtained as E(Xk) = M (k)(0), where

M (k)(t) defines the kth raw moment of the random variable. The odd-order raw moments are 0.

Recall that the kurtosis coefficient of the standard normal distribution is 3. The kurtosis coefficient

of the standard HSD is 5, so the excess kurtosis of the standard HSD is kurt(X) − 3 = 2. This reveals

that this distribution has heavier tails and a sharper peak than the normal distribution.

• L-moments:

L-moments were first derived by [9]. Just like the moment generating function, they are used to charac-

terise the probability distribution. They are the expected value of linear combinations of order statistics.

[9] derives the rth order L-moments as

λr = r−1
r−1∑
k=0

(−1)
k

(
r − 1

k

)
E (Xr−k;r) for r = 1, 2, . . . ,

where E (Xr−k;r) denotes the expected value of an order statistic which can be written as

E (Xj;r) =
r!

(j − 1)! (r − j)!

∫
x {F (x)}j−1 {1− F (x)}r−j dF (x) .

Adapting this formula into the HSD, the first four L-moments are:

λ1 = E (X1:1)

= 0,

λ2 =
1

2
E (X2:2 −X1:2) ,
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λ3 =
1

3
E (X3:3 − 2X2:3 +X1:3)

and

λ4 =
1

4
E (X4:4 − 3X3:4 + 3X2:4 −X1:4) ,

where λ1 is the L-location which measure location while λ2 is the L-scale which measures spread. It

is often convenient to standardise the higher moments; λr, r ≥ 3, due to increased variabilities. This

is done to generate location or scale invariant measures of shape. [9] then defines L-moment ratios as:

τr = λr

λ2
for r ≥ 3, where τ3 the L-skewness ratio and τ4, the L-kurtosis ratio are measures of shape.

2. Tail behaviour and ψ-function:

• The tail behaviour of the hyperbolic secant distribution is equivalent to that of the logistic distri-

bution since they both have heavier tails than that of the normal distribution. The HSD has the

following tail function:

1− F (x) =
e−x

1 + e−x

while that of the logistic distribution is:

1− ex

1 + ex
=

1

1 + ex
.

To verify the similarity of the tail functions, a SAS program is used. This is explained by the

following example.

Example 5. Let X be a real-valued random variable from the standard HSD, f(x) = 1
2sech

(
πx
2

)
and

Y a real valued random variable from the standard logistic distribution, f(x) = ex

(1+ex)2
. The tail func-

tions which describe the tail behaviour of both the probability density functions are used into the SAS,

IML procedure. IML is a matrix language which helps calculate statistical procedures which may be too

complex to code in SAS.

The same values of x are plugged into the tail functions of the HSD and logistic distribution from a

range of −5 to 5. The tail behaviour of the HSD and the logistic distribution are displayed in figure

3. It is clear to see now that the tail behaviour of the HSD is extremely close to that of the logistic

distribution. They intersect at the point where x = 0 and both have exponentially decaying tails which

implies the existence of all moments. The corresponding code can be obtained in the Appendix.
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Figure 3: Tail Behaviours of both the HSD and Logistic distribution

• The ψ−function is a piecewise continuous function in R that is used in robust statistics, more

particularly robust regression to help remove the influence of outliers and other observations in

order to roughly calculate parameters of different models. The hyperbolic secant ψ-function is a

partial derivative of the hyperbolic secant distribution which is documented by [5] as:

ψ(x) = −f ′(x)

f(x)

=
e2x − 1

e2x + 1
.

3. Self-reciprocality:

The property of self-reciprocality means that the characteristic function, C and density function, f

of a distribution are proportional as defined by [1]. For a constant
√

2π, the proportionality of the

HSD is shown as follows:

f
(
x; 0,

π

2

)
·
√

2π =

√
2π

2 cosh
(
π x2
)

=
1

cosh
(√

π x√
2

)
= C

(
x; 0,

√
π

2

)
.

4. Entropy:
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Entropy, (in the context of information theory) is the logarithmic measure of the rate of trans-

fer of information in a particular message or language. Now, the concept of information entropy is

completely probabilistic and is considered as a measure of an uncertain random variable related to

a random variable X. For a continuous random variable X with density fX(x), the corresponding

differential or Boltzmann-Gibbs-Shannon (BGS) entropy is shown by [5] as:

H(X) = Hf (X)

≡ −
∫ ∞
−∞

f(x) ln(fX(x))dx.

X following a Gaussian distribution gives the BGS entropy as, H(X) = 0.5 ln(2πe). Consid-

ering the case for the standard density function of the HSD, the BGS entropy then reduces to

H(X) = ln(π) + ln(2).

The maximum entropy (MaxEnt) approach is also considered. It is demonstrated by [10] depending

on finding the best probability distribution having a maximum entropy conditional on whatever

information is available. In a more mathematical sense, it is assumed that g denotes some other

density with Eg (·) denoting the expected value of the density g. Furthermore, it is further assumed

that the k × 1 moment function for finite number k be represented as κ = κ(ε). The MaxEnt ap-

proach will compute a least biased density function f by maximizing H(X) subject to some given

data with moment restriction

Ef (κ) = Eg(κ). (2)

The general solution to the problem is known as the MaxEnt density, denoted as

f(ε;λ) =
1

C(λ)
exp(−λ′κ(ε)), (3)

with ε ∈ R, κ(ε) as the k×1 parameter, and the normalizing constant C(λ) with vector λ, assessed at

λ = λ0. This correlates with the Lagrange multiplier vector which results in the solution presented

in (3) to meet the requirements of the moment restriction in (2). [5] provides a solution for the

hyperbolic secant distribution which solves the problem when both mean and variance are given:

maximize H(X) subject to the restriction in (2) above with κ(ε) = ln {cosh(ε)}, C = π and λ = 1.

Hence this results in a MaxEnt distribution under various moment condition.

5. Relations to other distributions:
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The hyperbolic secant distribution is a derivation of the Cauchy distribution or the ratio of two

independent random variables coming from N (0, 1) distributions. The relation to the half Cauchy

is previously shown by taking X = ln (V ), where V is the random variable from the half Cauchy

distribution with density

fV (υ) =
2

π(υ2 + 1)
, for υ ≥ 0,

resulting in the probability density function of the HSD:

f(x) =
1

2 cosh(πx2 )
.

The second property indicated that the HSD possesses similar tail behaviour to that of the logistic

distribution. This association is further explained by [13].

The standard hyperbolic secant density given in Equation 1, which can be rearranged as f(x) =

C1 ·sech(x), with C1 = 1
π . Once the probability density function is squared, the logistic distribution

falls into place: g(x) = C2 · sech2(x) with

C2 =

[∫ ∞
−∞

sech2(x)dx

]−1

=
1

2
.

In more traditional terms, this can be introduced as the more commonly known normal distribution

with a density function given as h(x) = Cn · sechn(x), where Cn =
[
2n−1B

(
n
2 ·

n
2

)]−1.

4 Beta-hyperbolic secant distribution

4.1 Introduction

Numerous techniques are commonly applied to symmetric distributions in order to obtain new distribu-

tions with varying levels of skewness and kurtosis. The hyperbolic secant distribution is known to be a

base distribution where numerous techniques can be applied to it in order to obtain skewed distributions

with modified kurtosis levels. Incorporating [5, 4, 12], describes a skewed distribution G of an original

symmetric kernel with a pdf and cdf and cumulative function f and F , respectively to obtain a pdf of

the form

g(x; θ) = w · f(x) · (F (x); θ) , (4)

provided it exists, where w is a weight function not linked to F on the interval (0, 1) with the parameter

vector θ. The following lemma is constructed:
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Lemma 6. Let F, w and G have the same form as (4). Then the following holds true:

i) When w is from a uniform distribution on (0,1) then G will be equal to F.

ii) Let w be fixed and differ from F. It is possible to obtain a symmetric G for any F which is similar

to symmetry of w around 1
2 .

Part i) directly follows as. G would have to be equal to F provided that w does not transform mass

allocation of F into G. In ii) however, we have a more interesting case where G can be obtained even if

w is not symmetric. In particular, non-uniform densities on (0, 1) can be used to present skewness and

altered kurtosis to the original distribution.

Non-uniform densities are required for this and thus from lemma 6 above, the pdf of the (standard)

beta distribution is chosen, ie.

w(x;β1, β2) =
1

B(β1, β2)
xβ1−1(1− x)β2−1, (5)

for β1, β2 > 0 and 0 < x < 1. The beta function B (·, ·), is denoted as: B(a, b) =
∫ 1

0
va−1 − (1− v)b−1dv

with B (a, b) > 0 for parameters a, b > 0. The beta-hyperbolic secant (BHS) distribution is introduced

as a weighted hyperbolic distribution with weights originating from (4).

4.2 Definition

Definition 7. Assume X to be a random variable in R from the standard hyperbolic secant distribution,

defined by X ∼ HSD(0, 1). Recall that the density function of the HSD is represented as:

f(x) =
2

π (ex + e−x)
, for x ∈ (−∞,∞) (6)

with a coinciding cumulative distribution function:

F (x) = 1− 2

π
arctan

{
exp

(
2

π
x

)}
, for x ∈ (−∞,∞) (7)

Now, combining Equations (5), (6) and (7) into (4), yields in what is known as the density function of

the beta-hyperbolic secant (BHS) distribution. This is defined by [5] as:

g(x;β1, β2) =
f(x) · F (x)β1−1 · (1− F (x))β2−1

B(β1, β2)

=
1

B(β1, β2)

1

π cosh(x)

[
2

π
arctan(exp(x))

]β1−1

·
[
1− 2

π
arctan(exp(x))

]β2−1

,
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where β1 > 0 and β2 > 0 are the parameters which determine the shape of the density. The cumulative

distribution function corresponding with the density function is defined as:

G(x;β1, β2) =
BF−1(x)(β1, β2)

B(β1, β2)

with Bu(a, b) =
∫ u

0
va−1 − (1− v)b−1dv denoting the beta function.

The BHS distribution is a combination of the HSD density function and its corresponding cumulative

function along with a the beta distribution as a weighted function. It then holds a similar shape to that of

the HSD. Using a SAS program, the density curve of the BHS is generated. For a symmetric density curve,

the shape parameters β1 and β2 are then set to be equal in value as there is no influence on the skew-

ness of the distribution. It is also seen that the BHS distribution is unimodal for both β1 > 0 and β2 > 0 .

Figure 4 gives a visual representation of the standard shape of the standard BHS when β1 = β2 = β. In

this case, β is chosen to equal 3. The density function is plugged in directly using the IML procedure,

just as it was done in the previous example. The quantile function is not used as in the previous example

since it is not as easily identifiable due to the nature of the BHS density function.

Figure 4: Density curve of the BHS for β1 = β2 = 3
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4.3 Properties

The BHS distribution has the following properties:

1. Moment generating function and moments:

The kth non-central moment of the BHS density is given as:

M k(0) =
1

B(β1, β2)

∫ 1

0

logk
(

tan
(π

2
u
))

uβ1−1 (1− u)
β2−1

du,

for k > 0, 0 < u < 1 and β1, β2 > 0. From the first four moments, the expected value, variance,

skewness and kurtosis coefficients can then be calculated.

Remark 8. Since the BHS distribution has exponential tail behaviour, this implies that all moments exist

which can be calculated as E(Xk) = M (k)(0), where M (k)(t) defines the kth moment of the random

variable X.

2. Asymmetry and kurtosis:

Consider the general BHS distribution with location parameter µ ∈ R, scale parameter σ > 0

and shape parameters β1, β2 > 0. It has the following density function which is given as:

g(x;β1, β2) =
B(β1, β2)−1

σπ cosh
(
x−µ
σ

) [
2
π arctan(exp

(
x−µ
σ

)
)
]β1−1[

1− 2
π arctan(exp

(
x−µ
σ

)
)
]1−β2

.

The shape parameters β1 and β2 influence the symmetry and kurtosis of the BHS distribution.

The location parameter and scale parameters are then set to equal 0 and 1 respectively in order

to obtain the standard shape of the density curves. Figures (5) to (7) demonstrate the effects of

the the shape parameters. An inverse relationship is held with the kurtosis level and the shape

parameters. It is known that the kurtosis increases as β1 or β2 decrease and vice versa. These

density functions are constructed for β ∈ {0.1, 0.5, 1, 1.5, 2, 2.5, 3} from a range of -6 to 6.

If β1 = β2 ≡ β, then this distribution will be symmetric around the mean, µ = 0, where a

higher kurtosis is obtained as β increases and vice versa. This is demonstrated in Figure 5. The

standard HSD density is recovered when β = 1. This is seen in the curve labelled BHS1. Thus as

the value β varies, a generalised family of symmetric distributions of the HSD is achieved. BHS5

represents the density curve where β = 3 and BHS7 represents the density curve where β = 0.1.
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Figure 5: BHS Densities: β1 = β2 = β: β = {0.1, 0.5, 1, 1.5, 2, 2.5}

Figure 6 and 7 reveal the shape of the distribution when the shape parameters are not equal. Just

as earlier it is mentioned that a generalised family of symmetric distributions of the HSD is achieved

for varying values of β, a generalised family of asymmetric distributions of the HSD is now obtained

for varying combination of values of β1 or β2. It is also noted that the skew hyperbolic distribution

is achieved when either β1 = 1 or β2 = 1.

Figure 6: BHS Densities: β1 > β2: β1 = {1, 1.5, 2, 2.5, 3} and β2 = 1

It can be seen that the BHS distribution is positively skewed for β1 > β2 which is demonstrated
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in Figure 6. Here, the skewness and kurtosis variation are easily observable, where a higher peak

is obtained in the density curve labelled BHS2 where β1 = 1.5 and β2 = 1. BHS5 represents the

density curve which lies furthest away from the mean and has the lowest peak with shape parameters

valuing at β1 = 1 and β2 = 3. The density curve labelled BHS1, again represents the HSD case

where β1 = β2 = 1.

Figure 7: BHS Densities: β2 > β1: β1 = 1 and β2 = {1, 1.5, 2, 2.5, 3}

Figure 7 represents density curves which are negatively skewed for β1 < β2. The density curve for

the symmetric case is again simulated for values β1 = β2 = 1. As the value of β2 increases (while

β1 remains the same at 1), the density curves then shift further to the left, away from the mean

value along with the corresponding kurtosis values decreasing.

Remark 9. Figures 6 and 7 substantiates the property earlier stated that kurtosis value is higher when

the value of β decreases and vice versa. The same property does not necessarily hold in figure 5, where

β1 = β2 = β. When β increases, the kurtosis level of the BHS density increases too. This then reveals

that β1 and β2 can not be isolated in order to determine whether any one of these shape parameters

affect the kurtosis level. The following result obtained from this is that the kurtosis measures will not be

skewness invariant.

3. Tail behaviour and ψ-function:

The beta-hyperbolic secant distribution has tails which decrease exponentially, similar to that of

the hyperbolic secant distribution. The BHS ψ-function plays an important role in the theory of
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rank test. It is a partial derivative of the BHS distribution and documented by [6] as:

ψ(x;β1, β2) = −g′(x;β1, β2)

g(x;β1, β2)

=
tanh(x) arctan(ex)(e2x + 1)(2 arctan(ex)− π) + (ex)β1(π − 2 arctan(ex))

(1 + e2x) arctan(ex)(2 arctan(ex)− π)

− (ex)π − 2(ex) arctan(ex)(2− β2)

(1 + (e2x) arctan(ex)(2 arctan(ex)− π)
.

This is used to test the sensitivity of the likelihood function to its parameter. If both shape

parameters are set to equal 1 then the BHS ψ-function would reduce to tanh(x).

4. Modality

The BHS distribution is known to have only one mode for both β1 > 0 and β2 > 0. This is

further demonstrated in Figures 4, 5, 6, and 7. For varying combinations of β1 and β2, the BHS

distribution remains unimodal for varying levels of skewness and kurtosis.

5 Application

Crude oil, otherwise known as unrefined petroleum, is still one of the most commonly traded products

in the world. It continues to be the predominant energy source for manufacturing and transportation

industries. Hence, the oil price movements possess a significant influence on the economic situation in

different countries. The volatility in price changes are high due to the correlation between the supply and

demand forces on the international commodity markets. WTI (West Texas Intermediate), Dubai and

Brent crude oil are a few of the notable markers of crude oil, which are commonly traded on commodities

exchange .

Combinations of the hyperbolic secant distributions have been paid little attention to in their use in

financial literature. The purpose of this section is to reveal how well the BHS distribution, as one of

the generalisations fits financial data as compared to other symmetric models, such as HSD, normal and

SGHS distribution. It has two shape parameters namely, β1 and β2 which allows for a more flexible

density curve. It is then able to incorporate different levels of skewness and leptokurtosis which then

allows for it to fit data better than other symmetric distributions. This application will compare the fit

for the HSD and BHS distribution.

Statistics below depicts up-to-date figures on current oil price averages in US Dollars per barrel for

451 months from January 1980 to July 2017. This is adapted from the South African data portal,
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http://southafrica.opendataforafrica.org/iaeapfb/monthly-crude-oil-prices. The corresponding code is

presented in the Appendix below.

Figure 8: Average monthly crude oil prices

Figure 8 displays the corresponding time series of the raw data along with the corresponding price

changes. There is a significant increase in oil price between 2004 and 2008 due to the high demand of oil

when the OPEC (Organisation of the Petroleum Exporting Countries) lowered the supply of oil in the

years prior to 2004. The drop in oil prices that started in 2008 took place due to The Great Recession,

where the demand for oil then dropped drastically.

Figure 9: Average monthly crude oil log returns
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Figure 9 gives a visual representation of the corresponding log returns of the oil prices which will be

incorporated later. These log return values are normalised to reduce variation in the original time series

data. This makes it easier to measure values which are comparable and to fit the relevant model. The

high peak in 2008 greatly affects the values of the log returns.

Consider the financial dataset related to the average crude oil. The extent to which the observed data

matches the theoretical values, otherwise known as, constructing a goodness-of -fit test, will be mea-

sured. The criteria placed under consideration are the log-likelihood value, lN which is obtained from

the maximum likelihood estimation, the Akaike criterion and the Bayesian Information Criterion which

are defined as:

AIC = −2 · lN +
2N(k + 1)

N − k − 2

and

BIC = −2 · lN + k · ln(N),

respectively. Under the AIC and BIC, lN represents the log-likelihood value, k represents the number of

parameters used in the model and N as the number of observations under consideration. Both are based

on the log-likelihood function.

Assume that the underlying log-returns modelled in Figure 9 are independent and identically distributed,

defined by [5] as

Rt = µ+ Ut with Ut ∼ D
(
0, σ2, η

)
for t = 1, . . . , T .

The corresponding theoretical log-likelihood function is defined as LL (θ) =
∑N
i=1 ln (fD (r1, . . . , rN ; Θ)),

where Θ = (µ, σ, η) is a vector defined for the unknown parameters µ ∈ R, σ > 0 and shape parameter η.

The maximum likelihood estimator of Θ, denoted as l̂ML is then the solution of the following optimiza-

tion problem: l̂ML = argmaxΘLL (Θ). This optimization problem is what will be used to calculate the

log-likelihood value lN with the optimization function nmlinb in R software. Rather than maximizing

the likelihood function, it is more convenient to work with the negative of the likelihood function which

would then need to be minimized. The smallest value of the log-likelihood function will give an indication

of which model gives a better fit.

The R-code which is then adapted from [5] is incorporated into both the HSD and BHS distribution.

Further calculations are used to calculate the AIC and the BIC for each. The value determined for the

AIC can be used to compare various models under the same data set to test which fits best. The model

with the smallest AIC value is then preferred. The BIC is similar to the AIC as it also assesses model
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fit. It is also sometimes preferred over the AIC as it attempts to lessen the risk of over-fitting by adding

the penalty term k · ln(N), which increases as the number of parameters also increase. This then allows to

filter out unnecessarily complicated models, which have too many parameters to be estimated accurately

on a given data set of size N [2].

Tables 1 and 2 display the results from the initial optimisation used to calculate the log-likelihood value.

Parameters µ, σ, β1 and β2 are the values which optimize the objective function lN . The vales of β1 and

β2 are fixed to equal 1 in Table 1 since the BHS is stated earlier to be equal to the HSD when β1 = β2 = 1.

The values of µ and σ are estimated in this case. In Table 2, all 4 parameters are then estimated. It is

seen that the parameter values for µ and σ are quite close to one another. The corresponding code is

provided for the BHS distribution.

Distribution µ σ β1 β2 Iterations
HSD 0.4064352 5.0957180 1.0000000 1.0000000 13

Table 1: Optimisation results: The HSD

Distribution µ σ β1 β2 Iterations
BHS 0.000000 6.000000 3.749994 5.000000 11

Table 2: Optimisation results: The BHS distribution

Table 3 displays the resulting values from the code. From the log-likelihood, AIC and BIC values, it

is clear to see that the BHS distribution outperforms the HSD since it has a lower log-likelihood value

and corresponding AIC and BIC values which are also lower than those of the HSD. This indicates that

the BHS displays a better fit for the crude oil dataset. On thing to also bear in mind, is the similarity in

values of the AIC and BIC. One could then have the option of choosing either one or the other formula

to test model performance.

Distribution k lN AIC BIC
HSD 2 1562.958 3131.97 3138.14
BHS 4 285.5134 581.1616 595.473

Table 3: Goodness-of-fit test for the HSD and BHS distribution

Using a program in R, the density curves of both the hyperbolic secant distribution and that of the

beta-hyperbolic secant distribution are simulated and fitted over the histogram of the log returns. Figure

10 gives a visual representation of this. The x -axis represents the log returns and y-axis is represented

in terms of percentages. Both density curves are simulated according to scale and use the parameters

generated from the optimisation function. The corresponding code for the BHS case can be obtained in

the Appendix below.
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The graph is slightly negatively skewed. This is confirmed from Table 2 where β1 = 3.74 < β2 = 5.

From Figure 10, the BHS density curve is represented by the solid green line while that of the HSD is

represented by the dotted line. It is then clear to see that the density curve of the HSD has a slight

overfit over the given dataset. The BHS density curve is then preferred.

Figure 10: Histogram of the log returns

6 Conclusion

The hyperbolic secant distribution (HSD) is a statistical distribution, possessing a bell-shape, similar to

that of the normal distribution. It is not frequently used due to the lack of association between it and

other statistical models but then later on shown to fall under the natural and exponential family (NEF)

and quadratic variance function (QVF) family through different properties which then come to light. It

also revealed that it contains strong use in the financial sector to compute credit risk neutral probabilities

of option prices, which results in quick and accurate solutions.

A generalization of a distribution through the inclusion of one or more shape parameters, aims to increase

its flexibility in terms of its distributional shape. The beta-hyperbolic secant (BHS) distribution is shown

to be a generalisation of the hyperbolic secant distribution, with the HSD as the parent distribution

and the beta function as the weighting function of the distribution. It is then observed that an inverse
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relationship holds for these shape parameters as the level of kurtosis is seen to decrease as the value of

one shape parameter is fixed as the other increases. This is not the case for the symmetric case where

β1 = β2 = β, thus revealing that the kurtosis measures are not skewness invariant.

This transformation allows for more flexibility in terms of shape since the two shape parameters β1

and β2 are added to influence the kurtosis and shape of the BHS distribution. Due to the flexibility

of the BHS, it can be seen to be a distribution which fits financial data better than other symmetric

distributions. The application in Section 5 shows a comparison of the BHS against the HSD and further

confirms this result. It is not the most common distribution known in financial literature but results have

proven that it holds beneficial use in finance and thus should be taken into a lot more consideration in

the future.
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20:323–328, 1958.

32



Appendix

SAS Code for the HSD density curve and QQ-plot:

data WST;

call streaminit(13161556); /* set random number seed */

pi=constant(’pi’);

do i = 1 to 5000;

u = rand("Uniform"); /* u ~ U(0,1) */

x=(2/pi)*log(tan((pi/2)*u)); *quantile function;

output;

end;

run;

proc univariate data=wst;

var u x;

qqplot/normal(mu=est sigma=est) odstitle=none;

histogram x/normal endpoints=-6 to 6 by 0.5 odstitle=none ;

inset n mean stddev kurtosis;

run;

SAS Code for the BHS density curve :

proc iml ;

be1 = 3 ;

be2 = 3 ;

pp=constant("pi") ;

print be1 be2 pp ;

do x = -6 to 6 by 0.1 ;

fx=2/(pp* (exp(x) + exp(-x))) ;

ffx = 2/pp * atan(exp(2*x/pp)) ;

bf = beta(be1,be2) ;

print x fx ffx bf;

t1=bf**(-1);

t2=fx; t3=ffx**(be1-1);

t4=(1-ffx)**(be2-1);

print t1 t2 t3 t4 ;
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gx = t1*t2*t3*t4 ;

gxd = gxd // (x || gx) ;

print gx ;

end ;

print gxd ;

nm={"x" "pdf"} ;

create gxd from gxd[colname=nm] ;

append from gxd ;

close gxd ;

quit ;

ods graphics / reset width=19cm height=12cm imagemap;

proc sgplot data=gxd ;

title "BHS Density Curve";

vline x/response=pdf lineattrs=(color=red) lineattrs=(thickness=1) legendlabel=’BHS’ ;

XAXIS TYPE=TIME LABEL = " " FITPOLICY= THIN ;

yaxis grid;

run;

ods graphics / reset;

SAS Code for tail behaviour of HSD and logistic distribution:

*Tail behaviour of HSD;

proc iml;

pi=constant(’pi’);

do x = -5 to 5 by 0.2 ;

tffx =1- 2/pi * atan(exp(2*x/pi)) ;

print x tffx;

tffxd=tffxd // (x || tffx);

end ;

print tffxd;

nm2={"x" "pdf"} ;

create tffxd from tffxd[colname=nm2] ;

append from tffxd ;

close tffxd ;

34



*Logistic tail behaviour;

proc iml;

pi=constant(’pi’);

do y = -5 to 5 by 0.2 ;

lffx=1-exp(y)/((1+exp(y)));

print y lffx;

lffxd=lffxd // (y || lffx);

end ;

print lffxd;

nm3={"y" "pdf2"} ;

create lffxd from lffxd[colname=nm3] ;

append from lffxd ;

close lffxd ;

quit;

data plot;

set tffxd lffxd;

run;

proc sgplot data=plot;

vline x/response=pdf lineattrs=(pattern=solid)legendlabel=’HSD tail behaviour’;

vline x/response=pdf2 lineattrs=(pattern=solid)legendlabel=’Logistic tail behaviour’;

xaxis type=time label=" " fitpolicy=thin;

yaxis grid;

run;

ods graphics / reset;

SAS Code for Average Monthly Crude Oil:

options ls=72 nocenter;

*import data;

%let ROOT = /folders/myshortcuts/SAS_Studio/My Folders/WST 795/;

proc import out = oil datafile = "&Root.Average monthly crude oil.xlsx" replace dbms = XLSX;

run;

ods graphics / reset imagemap; proc sgplot data=oil;

;
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/*--Fit plot settings--*/

/*--Scatter plot settings--*/ series x=Title y=Crude_oil_average / linerattrs=(color=CX99006e) trans-

parency=0.0;

/*--X Axis--*/

xaxis label=’Years’;

/*--Y Axis--*/

yaxis label=’Crude oil price $/bbl’;;

title "Average Monthly Crude Oil";

run;

ods graphics / reset; data oil;

set oil;

oillag = lag( Crude_oil_average );

oildif = dif( Crude_oil_average );

run;

ods graphics / reset imagemap;

proc sgplot data=oil;

;

/*--Fit plot settings--*/

/*--Scatter plot settings--*/ series x=Title y=oildif / linerattrs=(color=CX879900) transparency=0.0;

/*--X Axis--*/

xaxis label=’Years’;

/*--Y Axis--*/

yaxis;

title "Lag average Monthly Crude Oil";

run;

ods graphics / reset;

proc print data=oil;

run;

SAS Code for symmetry of BHS:

*BHS Distribution;

proc iml ;

be1 = 1 ;

be2 = 1 ;

36



pp=constant("pi") ;

print be1 be2 pp ;

do x = -6 to 6 by 0.1 ;

fx=2/(pp* (exp(x) + exp(-x))) ;

ffx = 2/pp * atan(exp(2*x/pp)) ;

bf = beta(be1,be2) ;

print x fx ffx bf;

t1=bf**(-1);

t2=fx;

t3=ffx**(be1-1);

t4=(1-ffx)**(be2-1);

print t1 t2 t3 t4 ;

gx = t1*t2*t3*t4 ;

gxd = gxd // (x || gx) ;

print gx ;

end ;

print gxd ;

nm={"x" "pdf"} ;

create gxd from gxd[colname=nm] ;

append from gxd ;

close gxd ;

quit ;

*BHS Distribution2;

proc iml ;

be3 = 1.5 ;

be4 = 1.5 ;

pp=constant("pi") ;

print be3 be4 pp ;

do x = -6 to 6 by 0.1 ;

fx=2/(pp* (exp(x) + exp(-x))) ;

ffx = 2/pp * atan(exp(2*x/pp)) ;

bf = beta(be3,be4) ;

print x fx ffx bf;
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t1=bf**(-1); t2=fx; t3=ffx**(be3-1);

t4=(1-ffx)**(be4-1);

print t1 t2 t3 t4 ;

gx2 = t1*t2*t3*t4 ;

gxd2 = gxd2 // (x || gx2) ;

print gx2 ;

end ;

print gxd2 ;

nm={"x" "pdf2"} ;

create gxd2 from gxd2[colname=nm] ;

append from gxd2 ;

close gxd2 ;

quit ;

....

data Symmetric_graph;

set gxd gxd2 gxd3 gxd4 gxd5 gxd6 gxd7;

run;

proc print data=Symmetric_graph;

run;

proc sgplot data=Symmetric_graph;

vline x/response=pdf lineattrs=(pattern=solid)legendlabel=’BHS1’;

vline x/response=pdf2 lineattrs=(pattern=dot)legendlabel=’BHS2’;

vline x/response=pdf3 lineattrs=(pattern=dot)legendlabel=’BHS3’;

vline x/response=pdf4 lineattrs=(pattern=dot)legendlabel=’BHS4’;

vline x/response=pdf5 lineattrs=(pattern=dot)legendlabel=’BHS5’;

vline x/response=pdf6 lineattrs=(pattern=dot)legendlabel=’BHS6’;

vline x/response=pdf7 lineattrs=(pattern=dot)legendlabel=’BHS7’;

xaxis type=time label=" " fitpolicy=thin;

yaxis grid;

run;

ods graphics / reset;

R Code for BHS optimization:
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temp<-scan("/Users/resego/Desktop/WST 795/Coal.txt")

temp data<-100*diff(log(temp2)) #Returns suitably lagged and iterated differences.

data

# define density function

BHS.density=function(x,SHAPE){

#b1=SHAPE[1];b2=SHAPE[2] return(1/beta(b1,b2)/(pi*cosh(x))*((2/pi)*atan(exp(x)))^(b1-1))*(1-

(2/pi)*atan(exp(x)))^(b2-1)

}

BHS.density

# define log-likelihood function

LOGLIKE=function(PARA,DATA){

mu=PARA[1]; sigma=PARA[2]; shape=PARA[3:4] ll=-sum(log(1/sigma*BHS.density((DATA-

mu)/sigma,shape))) return(ll)

}

LOGLIKE

# start optimisation

result<-nlminb(start=c(3,1,1,1), obj=LOGLIKE, lower=c(0,0,1,1), upper=c(4,6,4,5), DATA=data,

control=list(trace=1))

result

#AIC value

AIC<-(2)*(285.5134)+(2*451*(4+1)/(451-4-2)) #use objective value

AIC

BIC<-(2)*(285.5134)+4*log(451)

BIC

R code to fit BHS density curve over crude oil dataset:

temp<-scan("/Users/resego/Desktop/WST 795/Coal.txt")

temp

data<-100*diff(log(temp)) #Returns suitably lagged and iterated differences.

data
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BHS.density=function(x,SHAPE){

b1=SHAPE[1];b2=SHAPE[2] return(1/beta(b1,b2)/(pi*cosh(x))*((2/pi)*atan(exp(x)))^(b1-1))*(1-

(2/pi)*atan(exp(x)))^(b2-1)

}

LOGLIKE=function(PARA,DATA){

mu=PARA[1]; sigma=PARA[2]; shape=PARA[3:4] ll=-sum(log(1/sigma*BHS.density((DATA-

mu)/sigma,shape))) return(ll)

}

hist(data, xlim= c(-40,40), ylim= c(0,.1), breaks=seq(min(data),

max(data), length=140), xlab = "x", ylab= "Density: f(x)",

main = "Histogram of log returns of average crude oil",

prob= TRUE, col= "lightgray")

par(oma=c(0,0,0,2))

par(new=T)

plot(BHS.density, xlim= c(-6,6), ylim= c(0,0.35), xlab= "", ylab="", type = "b", col = "red",

axes=FALSE)
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Abstract

The objective of this paper is to investigate Gaussian processes (GPs) as an alternative approach

for solving non-parametric regression problems. We compare the results of the Gaussian process

regression with a local polynomial non-parametric regression. To achieve the comparison of both

we use the con�dence intervals and SSE as metrics. Both techniques are applied to a very simple

non-linear data set.
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1 Introduction

If we want to get the most out of data in the information age, we need to consider the analysis of data from

a mathematical approach of modern probability theory which gives us an opportunity to take advantage

of a framework in which it readily de�nes the uncertainty, risk of events and outcomes. Bayesian inference

o�ers reasoning in the presences of uncertainty and minimal information provided [9]. We discuss the

framework of Bayesian modelling and its concepts in approaching the problem of regression data under

uncertainty. The main focus of this research will be the theory and application of Gaussian processes [6].

In many circumstances, little or no prior information exist regarding a suitable model to use when

trying to model data. We then �nd ourselves having to rely on domain knowledge, for example, by

observing data we might see some common underlying process which probability distributions are over

this kind of function space is evaluated by re�ning the distributions focusing on its region . Functions

like these are not characterised by prede�ned parameters. This approach is known as non-parametric

modelling and serves a key component of the Gaussian process (GP) [9].

Gaussian processes (GPs) can be thought of as an alternative approach in solving regression problems

[3], than linear regression. We start with a simple linear regression function y = f(x) + ε where y is the

dependent variable, f(x) is the function of independent variables and ε is the error term. Assume that

the function f(x) has a linear relationship which can be written as y = θ0 + θ1x+ ε. Now we can try to

�nd the parameters θ0 and θ1 [6]. A Bayesian linear regression gives probabilistic approach in trying to

solve a distribution over the parameters. The parameters are updated as new datapoints are observed.

The GP is known as a non-parametric model in the sense that it �nds a distribution over a function that

is consistent with observed data. Like with all Bayesian methods it starts with a prior distribution over

a function then it updates it as it observed new data points, which will lead it to producing the posterior

distribution over the functions [10].

2 Literature review

The main focus of this research is the application of GP as an alternative to solving regression problems

to the local polynomial nonparametric regression model by comparing the �t to data of the two models.

The book by Murphy [6] will give us the majority of our background theory on Gaussian processes and

the study of kernels that will be very useful in understanding the Gaussian application. The multivariate

Gaussian process theory is made simple by Chuong B Do. [2]. We will use Rasmussen and Christopher

KI Williams [8] as a guideline in the approach of further understanding how Gaussian process works in
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Machine learning.

In order to understand the GP for regression, Mark Ebden [3] will give us a brief introduction in

GP for regression. Christopher KI Williams and Carl Edward Rasmussen [10] will take us through how

the process can be applied to regression analysis. We will consult John Fox [4] and John Hughes [5] in

understanding nonparametric regression, most importantly the local polynomial regression as our main

model of comparison in the standard theory of nonparametric regression models.

Our application is the most important contributor to our conclusion, the work required will be made

simple for us with the help provided by the scikit-learn project team [1][7] with the coding work done by

their team on Gaussian process for machine learning.

2.1 Bayesian time series analysis

Much work have been done on the application of GP on time series data. In this section, we focus on

this specialised application.

The time series form y(x) = f(x) + η, will be our starting point as a format of a regression problem,

where f(x) is an unknown function and η is the white noise. We want to get the probability distribution

of y(x) such that p(y|x), to do this we must get the inference by assuming that the is a database of

existing observations. Bayesian modeling allows for the inclusion of all considerable data in a set taking

all information even past information.

To introduce the ideas or methods of Bayesian modelling we look a simple example at a small set of

data samples, placed at x = 0, 1, 2 and the targeted observed values. Least-squares regression on this

sample data using a simple model gives form to the curve that appearance as a line in the left panel of

Figure 5. We observe that normally this curve �ts observed data well. But the question remains what

about the region of no-observed values x � 2.

Working with a distribution over curves in which each o�ers a description of the data observed is of

most importance when modelling with Bayesian. In our example you will �nd a close relationship between

curvature, complexity and Bayesian inference, giving rise to a posterior beliefs over models being an set

of how good the data observed is explained. The panel on the rights illustrates curves with similar �t to

the data as the least-squares spline. The curves are quite similarly close to the data yet high variability

in areas where the data is not observed [9].
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Figure 1: Bayesian modelling simple examples output [9].

3 Background Theory

3.1 Gaussian process

For this section we look at Murphy [6] and Mark Ebden [3].

In a supervised learning environment xi and yi are observed as input and output respectively. We

assume a unknown function yi = f(xi) with a white noise variable. Our goal is to infer a distribution

over this function on a speci�c, p(f |X, y). We do this so as to make predictions given new data, and this

is formulated as

p(y∗|x∗, X, y) =

∫
p(y∗|f, x∗)p(f |X, y)df (1)

where x∗ is new data observed and y∗ is the prediction of new data observed, but this is based on

a parametric function. For this section we want to apply Bayesian inference over the function. This

approach is found in Gaussian processes (GPs) [3].

A GP can be de�ned as a prior over a function, that forms into a posterior over a function when we

observe some data. It has been found to be quite di�cult to present a distribution over a function. To
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simplify it we need to use a distribution over function's �nite values, say a set of points x1, ..., xN . The

GP contents p(f(x1), ..., f(xN )) is jointly Gaussian, where µ(x) is the mean and
∑

(x) is the covariance

de�ned by
∑
ij = k(xi, xj), and k is a positive kernel function [6].

Before continuing on GP theory, we �rst need to understand the multivariate Gaussian distribution.

3.2 Multivariate Gaussian distribution

In this section, we take our Gaussian multivariate theory from Chuong B Do [2].

A multivariate normal (or Gaussian) distribution is said to be a vector-value of a random variable

X = [X1...Xn]T

with mean µ ∈ Rn and matrix

Σ ∈ Sn++ = {A ∈ Rn×n : A = AT }

and xTAx � 0 for all x ∈ Rn such that x 6= 0, as the covariance due to having the probability density

function as

p(x;µ,Σ) =
1

(2µ)
n
2 |Σ| 12

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2)

We can also write this in short as X ∼ N(µ,Σ).

This de�nition is an expansion from the density function of the univariate normal (or Gaussian)

distribution write as

p(x;µ, σ2) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
(3)

Where − 1
2σ2 (x − µ)2 is the quadratic function of x as our variable with downwards parabola points

and 1√
2πσ

as an independent constant of variable x.

In Figure 1, the diagram of the left illustrates a univariate Gaussian density for the variable X , and

the diagram of the right hand side illustrates the multivariate Gaussian density function over the X1 and

X2 variables [2].
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Figure 2: Univariate vs. multivariate Gaussian density functions [2].

3.3 GPs for regression

In this section, we look from Murphy [6] .

Let GP be a prior over the regression function:

f(x) v GP (m(x), k(x, x′))

where the mean function is denoted by m(x) and covariance or kernel function is denoted by k(x, x′).

These functions can be computed as

m(x) = E[f(x)]

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))T ]

and k(x, x′) ≥ 0. For a given �nite set of points the process is said to be a joint Gaussian:

p(f |X) = N(f |µ,K) (4)

where Kij = k(xi, xj) and µ = (m(x1), ...,m(xN )) [6]. We will present this model again in the

application section later.

3.4 Prediction with GP

For this section, we take from Christopher KI Williams and Carl Edward Rasmussen [10].

A stochastic process is a gathering of random variables {Y (x)|x ∈ X} indexed by a set X. A GP is a
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stochastic process that can be fully explained by

µ(x) = E[Y (x)],

the mean function and

C(x, x′) = E[(Y (x)− µ(x))(Y (x′)− µ(x′))]

which is the covariance function. Any set �nite set of points will give a joint multivariate Gaussian

distribution [10].

Consider a GP that has µ(x) = 0 for simplicity sake. The predictive distribution for x cases is obtained

from n+1 dimensional joint Gaussian distribution for n training cases and one test cases. This process is

illustrated in Figure 2 below where we �nd one training case point and one test case point. The general

Gaussian predictive distribution with mean and variance is given as

ŷ(x) = kT (x)K−1t

σ2
ŷ(x) = C(x, x)− kT (x)K−1k(x),

where

k(x) =
(
C(x, x(1)), ..., C(x, x(n))

)T
,

K is de�ned as the covariance matrix for training cases Kij = C(x(i), x(j)), and t = (t(1), ..., t(n))T [10]

[8].

3.4.1 Predictions using noise-free observations

Lets assume we observe a training set as D = {(xi, fi), i = 1 : N}, with fi = f(xi) as the noise-free

observation of the function calculated at xi. We desire to predict the function outcomes f∗ which will be

our predicted function, with a given test set X∗of the size N∗ ×D.

In the case of noise-free observations, the GP must predict f(x) for any x that it has already observed,

with no uncertainty.

Now coming back to the prediction problem. By de�nition the joint Gaussian distribution has the

following form:
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Figure 3: Prediction using GP for one training case point and one test case point. [10].

 f

f∗

 ∼ N

 µ

µ∗

 ,

 K K∗

KT
∗ K∗∗


 (5)

where

K = k(X,X)

is N ×N ,

K∗ = k(X,X∗)

is N ×N∗, and

K∗∗ = k(X∗,X∗)

is N∗ ×N∗. With f∗, µ∗and K∗ being our predictive parameters for the new data observed .

By the standard rule for conditioning Gaussian, the posterior has the form

p(f∗|X∗,X, f) = N(f∗|µ∗,Σ∗) (6)

where

µ∗ = µ(X∗) + KT
∗K−1(f − µ(X))

Σ∗ = K∗∗ −KT
∗K−1K∗
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As a example to illustrate this. Let say x = (x1, x2) is a joint Gaussian with the parameters de�ned as:

µ =

 µ1

µ2


, ∑

=

 ∑
11

∑
12∑

21

∑
22


,

Λ =

−1∑
=

 Λ11 Λ12

Λ21 Λ22


.

And the marginals are presented:

p(x1) = N(x1|µ1,
∑
11

)

,

p(x2) = N(x2|µ2,
∑
22

)

The posterior conditional will be written as:

p(x1|x2) = N(x1|µ1|2,
∑
1|2

)

µ1|2 = µ1 +
∑
12

−1∑
22

(x2 − µ2)

= µ1 − Λ−111 Λ12(x2-µ2)

=
∑
1|2

(Λ11µ1 − Λ12(x2 − µ2))

∑
1|2

=
∑
11

−
∑
12

−1∑
22

∑
21

= Λ−111 (7)

This gives us three di�erent ways to show the posterior mean and two ways of expressing the posterior

covariances, where each will be useful depending on speci�cations.
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3.4.2 Predictions using noisy observations

Now we look at a case where noisy observations are found in the function, y = f(x)+ε with ε ∼ N(0, σ2
y).

A model like this does not have to interpolate the training data, although we must still get as close as

possible to the observed data. We de�ne the covariance of the noisy responses observed as

cov[yp, yq] = k(xp,xq) + σ2
yδpq

where δpq = I(p = q). This can also be simply written as

cov[y|X] = K + σ2
yIN , Ky

We assume that the noise value is independently added to individually observed values, which make

the second matrix diagonal [6].

The joint density of data observed and the latent, noise-less function on the test points is given by

 y

f∗

 ∼ N
0,

 Ky K∗

KT
∗ K∗∗


 (8)

Here we assume the mean of zero, to simplify our notation. Then have the posterior predictive density

as

p(f∗|X∗,X,y) = N(f∗|µ∗,Σ∗) (9)

where

µ∗ = KT
∗K−1y y

Σ∗ = K∗∗ −KT
∗K−1y K∗

if we have a single test input case, then it can simply be written as follows

p(f∗|x∗,X,y) = N(f∗|kT∗K−1y y, k∗∗ − kT∗K−1y k∗) (10)

where

k∗ = [k(x∗,x1), ..., k(x∗,xN )]

and

k∗∗ = k(x∗,x∗).
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The posterior mean can be written as:

f∗ = kT∗K−1y y =

N∑
i=1

αik(xi,x∗)

where α = K−1y y.

3.5 Covariance matrix

Assuming that we can measure similarities between objects is an approach that doesn't require pre-

processing objects into �xed-size vector format. The measure of similarity of two objects x, x′∈X, can

be de�ned as k(x, x′) ≥ 0, where X is an abstract space and k is a kernel function [6].

3.5.1 Kernel function

A covariance matrix (which can as be refer to as kernel function) is de�ned as a real-valued function of

two objects written as k(x, x′) ∈ R, for x, x′ ∈ X. We earlier interpreted the function as a measure of

similarity between objects x, x′ ∈ X, this function is said to be symmetric meaning k(x, x′) = k(x′, x)

and non-negative therefore k(x, x′) ≥ 0.

The Squared Exponential Kernel (SE kernel) or also known as Gaussian kernel is written as

k(x, x′) = exp

(
−1

2
(x− x′)T

−1∑
(x− x′)

)

and we can rewrite the kernel if
∑

is diagonal as

k(x, x′) = exp

−1

2

D∑
j=1

1

σ2
j

(x− x′)2


whereσj is the characteristics length scale of j dimensions [6].

3.5.2 Covariance matrix (Kernel function) for building generative models

There is a special kind of kernel known as a smoothing kernel which if is very useful for creating non-

parametric density estimates. We are going to use it to create generative model for regression by making

a model of the format p(y, x).

The smoothing kernel satis�es the following properties:

∫
k(x)dx = 1,

∫
xk(x)dx = 0,

∫
x2k(x)dx � 0

A Gaussian kernel serves as a simple example,
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k(x) ,
1

(2π)
1
2

e−
X2

2

The width of the kernel is controlled by introducing a parameter h (know as the bandwidth).

kh(x) ,
1

h
k(
x

h
)

We can then generalize this function to a vector by de�ning an radial basis function or RBF kernel :

kh(X) = kh(‖ X ‖)

When take Gaussian kernel into consideration this will become

kh(X) =
1

hD(2π)D/2

D∏
j=1

exp

(
− 1

2h2
x2j

)

Now we have what we call a parametric density estimator for data in RD. But we still need to specify

the number K and µk as location of the clusters. We can also allocate one cluster center per data point

to estimate µk, so that µi = xi. Therefore the model will become

p(x|D) =
1

N

N∑
i=1

N(x|xi, σ2I)

The we generalize to

p̂(x) =
1

N

N∑
i=1

kh(x− xi)

This is called the kernel density estimator (KDE), and is considered to be a non-parametric density

model. The advantage of this model over a parametric model is that we are not required to �t the model,

but the disadvantage is that its takes a lot of memory to store and time when evaluating [6]. Figure 3

shows KDE in 1d for two kinds of kernels.

3.5.3 E�ect of the kernel parameters

The predictive performance of GPs is exclusively dependent on a chosen kernel suitability. Let us now

say we choose the SE kernel below for noisy observations

ky(xp, xq) = σ2
fexp

(
− 1

2l2
(xp − xq)2

)
+ σ2

yσpq
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Figure 4: A non-parametric (kernel) density estimated from 6 data points, denoted by x. Top row:
uniform kernel. Bottom row: Gaussian kernel [6].

where l is the horizontal scale over which the function changes, σ2
f controls the vertical scale of the func-

tion, and σ2
f is the noise variance.

Figure 4 shows the e�ects of changes made by these speci�c parameters. It shows 20 noisy data points

sampled from SE kernel with (l, σf , σy) = (1, 1, 0.1) for the �rst one, conditionally on the data it makes

prediction various parameters. Again looking at �gure 4, we apply the hyper-parameters represented

as (l, σf , σy) are produces as follows: (a)(1,1,0.1) where we see a good �t. In (b)(0.3,1.08,0.0005) we

decrease the distance making l=0.3, this makes the function more �wiggly� shaped [8]. This is because

the uncertainty increases, as the is also a rapid increase in the e�ective distance from training data points.

Lastly in (c)(3,1.16,0.89) we increase the length to a l=3.0 and the function looks more smoother [6].
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Figure 5: GPs with SE kernels. The hyper-parameters represented as(l, σf , σy) [6].

3.6 Computational and numerical issues with the GP regression

The function f∗ = kT∗K−1y y gives us the predictive mean. But to directly invert Ky is not a wise idea,

since it brings about numerical instability. We would then rather use a more robust option by computing

a Cholesky decomposition , Ky = LLT [6].

It then makes the predictive mean and log marginal likelihood less complex to compute using the pseudo-

code in Algorithm 1 shown below.

Another option to follow is to solve Kyα = y as a linear system using conjugate gradients rather than

Cholesky decomposition [6].
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Algorithm 1 GP regression [6].

1 L = cholesky(K+σ2
yI);

2 α = LT \(K\y);
3 E[f∗] = kT∗ α;
4 v = L\k∗;
5 var[f∗] = k(x∗,x∗)− vTv;
6 logp(y|X) = − 1

2yTα−
∑
i logLii −

N
2 log(2π)

3.7 Illustration of GP

The objective is to �t parameters a continuous dataset. We consider a domain of say values between

-5 and 5. Before we have seen any data we need a prior. The prior must ensure that values are close

together in input space will produce values that are close together in output space. We going make use

of a covariance matrix.

In this section we compute a simple single-dimensional Gaussian processes regression for the noise-less

and noisy cases. We estimate the kernel parameters using the maximum likelihood principles. We will

use 95 % con�dence interval.

We are simulating data from the kernels to run GP regression model that was introduced in our

theory. Further using a simple xy data for applying the local polynomial regression for simplicity in our

reasoning or comparisons.

We are going to run a simulated GP regression model for sci-kit learn for three samples checking

di�erence between the prior and posterior.

Before going into the detail about the models being studied, under this illlustration we are going to

run a function simulated by python in order to explain properties of the Gaussian process. By showing

the noisy case and noise-less case.
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Figure 6: Three samples simulated from the GP prior

In Figure 6 we have a prior, p(f |X), where we use SE kernel also known as Gaussian kernel or RBF

kernel in 1-dimension, and it is written as

k(x, x′) = σ2
fexp

(
− 1

2l2
(x− x′)2

)
where l controls the horizontal variation length scale over the function, σ2

f controls the vertical vari-

ations.

In Figure 7 we observe samples from the posterior, p(f |X∗,X, f). The model perfectly interpolates

the training data, and the uncertainty of our predictions increases as we gain distance away from our

observed data.

The application of the noise-free GP regression can be found in weather forecasting programs because

it often o�ers a computationally cheaper proxy for the behavior of a complex simulator [6].

There are two di�erent ways of computing a simple 1-d regression, one is the noise-free case illustrated

in Figure 8 and the other is the noisy case illustrated in Figure 9. For both a maximum likelihood principle

is used in estimating the kernel parameters. In the Figures 8 and 9 we see interpolated properties of the

Gaussian process model [7][7].
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Figure 7: Three samples simulated from the GP posterior

Figure 8: The noiseless case.

22



Figure 9: the noisy case

4 Non-parametric regression

In this section we introduce non-parametric regression. The reason for this being that we will compare

the results of the GPs with the non-parametric regression.

4.1 Objective

The Nonparametric regression looks at how dependent the response variable (y) is to more than one

predictor variable(s) (x) without de�ning in a function that relates the response to the predictors. The

objective of the nonparametric regression is to then estimate the function that �ts on the data directly

without the need of estimating speci�ed parameters which are estimated through the standard OLS

estimation [4].

4.2 The underlying statistical model(s)

The underlying statistical model �ts a simple linear regression e.g. y = f(x) + e with an unspeci�ed

f() function. Nonparametric regression aims to estimate that f() function is a continuous and smooth

function. The error term, e, has an independent normal distribution with zero mean and variance is σ2.

Using that regression line you estimate what your dependent variable should be at that focal point. One
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of the assumptions made is that the dependent variables (y) are indeed independent from each other [4].

4.3 Two methods of nonparametric regression

4.3.1 Kernel estimation

Kernel estimation �ts values by using locally weighted averaging, with the aid of some weight function

where more weight is placed on data closer to the focal point, x0. Doing this for several points you obtain

a series of f(x0)′s. The further away from the focal point, the less weight placed on that data point.

The estimation is achieved by creating a neighborhood around the focal point and weighting using that

window [4].

4.3.2 Local polynomial regression

Local polynomial regression is like kernel estimation. Instead of f(x0) being estimated by locally weighted

averaging it will now be estimated by locally weighted regression. The main di�erence is that it uses

locally weighted regression by minimizing the weighted sum of squares. It tends to be less bias that kernel

estimation [5].

5 Application

5.1 Data

Table 1, from the appendix is the created xy simple data that is being used for our paper with the

purpose of comparing the two models. We are going to �rstly �t the local polynomial regression to the

data using iml program in SAS, there after �t the Gaussian process regressor on the data using python

as our programming language is it works best with Gaussian application.

5.2 Model

The focus model is the Gaussian regressor for the dataset xy which will use python to �t the Gaussian

process regression to it and see how well of a �ts it is to the data. That will give us an idea of also how

well the Gaussian can be used to estimating.

We will then also use a method for the nonparametric regression using called the local polynomial

regression to �t the same data and see how well it will �t the data or describe it.

Both these models focus on the nonparametric methods.
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5.3 Results

Figure 10 is a plot of the data in Table 1 from the appendix , this simple data is plotted using SAS.

Figure 10: plot of xy in SAS

Figure 11, show the �tted local polynomial regression to the data plotted in Figure 10 using SAS [5].

We observed a very smooth �tting but not well �tted to every observation in the data.
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Figure 11: Local polynomial �tting in SAS [4].

Again in Figure 11, model does �t to the most of the observations and sees to able to well estimate

the observation but with wider con�dence intervals.

Figure 12: Gaussian regression �tting in Python [1].

In Figure 12, we �tted the Gaussian process regression to the same plot in Figure 10 using Python
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[7]. This �gure shows a perfect �t to every observation in the data, and has accurate estimates. This

shows that the Gaussian �tted the data well and it out performs the local polynomial.

The results show that the sse(error) of the Gaussian regression is 2294.20176077 compare to the local

polynomial regression which is 56952.1742 con�rms that the Gaussian regression is a better estimator.

6 Conclusion

In studying the models we have found them to be complex to apply and demanding more time in under-

standing the programming skills required to transfer the theory into pseudo-codes. The Gaussian process

for regression shows to be a better �t to than the local polynomial regression to the xy data set. This

might insinuate the Gaussian being a better estimator than the local polynomial but we also observe a

smaller sse in the Gaussian regression as compare to the local polynomial regression this con�rms our

believe of the Gaussian being a better estimator.

In as much as the Gaussian process shows a better �t, further studies could be looked into when com-

paring these two models. There seems to be a need to expand the scope of comparing these models using

more than just con�dence intervals and estimates.This creates the need to introduce r-squares and sum of

squares in to picture even though there will be di�culties in being found in comparing the two using two

di�erent programming languages, that also brings the need to study how to apply the Gaussian process

regression in SAS. This complexity of comparing could be taken further by using di�erent datasets and

seeing how each model responses.

The study has been valuable in understanding di�erent ways of of solving nonparametric regression

problems, it has opened our minds in thinking beyond tradition ways of solving regression problems.

Hence, further studies on this topic will be of great value in investing time to �nding better and conve-

nient ways of solving complex regression problems.
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Appendix

Data used in the paper .

x y

1 44
2 34
3 19
4 14
5 24
6 29
7 26
8 22
9 16
10 18
11 19
12 23
13 31
14 31
15 38
16 39
17 41
18 42
19 36
20 28
21 24
22 18
23 80
24 25
25 29
26 30
27 30
28 34
29 32
30 36

Table 1: Manually created xy dataset

Python code for application Figure 6.
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Python code for application Figure 7.
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Python code for Figures 8.
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Python code for Figure 9.
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SAS code and data import for Figures 10.
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SAS code continuing below for Figure 11.
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Python code for Figure 12.
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Abstract

This research report will provide a theoretical overview of procedures used to compare a screening

test against a ‘gold standard’ test. The ability of a screening test to discriminate between individuals

with or without disease is described in terms of sensitivity, specificity, positive predictive values and

negative predictive values.

Sensitivity and specificity are the core measures of the accuracy of a screening test but unfortu-

nately are not useful when calculating the probability of a disease in an individual. It is the predictive

values (positive and negative) that are used to estimate the probability of a disease in an individ-

ual. Likelihood ratios, which combine sensitivity and specificity, are used to give a synopsis of how

many more times likely or less prone individuals with a disease are to have a certain test result than

individuals that do not have the disease.

The optimal decision for the presence or absence of disease is determined by the chosen cut-off

point for sensitivity and (1 - specificity). Different cut-off points will yield a receiver operating curve

(ROC) that is used to select the optimal cut-off values to assess the screening accuracy of a test.

It will be shown how to calculate and interpret the above measures by using a contingency table

with two rows and two columns (2× 2 contingency table). A practical example using a SAS software

procedure will be used as an illustration.
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1 Introduction

In the medical field, diagnostic or screening tests are constantly being evaluated against a well established

gold standard test. The most used statistical measures to describe the validity of these tests are sensitivity

and specificity [13]. The gold standard is a test that is currently preferred for diagnosing a particular

disease. All the other methods of diagnosing a disease, including any new screening tests, are compared

to the gold standard test [15]. In this research report, the evaluation of screening test measures will be

investigated and illustrated by means of a practical example where SAS software procedures will be used

to perform calculations of these measures.

A gold standard test is usually expensive to perform, thus, clinicians normally use a screening test as

a substitute of the gold standard. This screening test would have been evaluated and tested for validity.

Hence the purpose of this research report is to effectively show the steps required to validate a screening

test. Screening tests provide various kinds of information, for example, medical tests (e.g X-rays), medical

signs (e.g high blood pressure) and or medical symptoms (e.g weight loss). The accuracy of screening

tests is essential in medical care since a doctor’s decision of medical treatment relies on the results of the

screening test [16]. The core statistical measures that are used to evaluate a screening test are known as

sensitivity and specificity. The numerical measures: positive and negative predictive values, likelihood

ratios and accuracy are all dependent on the sensitivity and specificity of a screening test [12].

Studies of screening test accuracy often report sensitivity and specificity simultaneously [9]. One way

of simultaneously analyzing sensitivity and specificity is by using receiver operator characteristics curves

(ROC). The relationship between sensitivity and specificity can be graphically represented by ROC curves

which are derived from plotting false positives against true positives for all cut-off values [4]. The ROC

curve assists in choosing the ideal model through deciding the best limit for the screening test [16]. This

method uses the diagnostic odds ratio as the main outcome measure. Although the ROC method removes

the effect of a possible threshold, it loses relevant clinical information about the test performance [14].

The research report will concentrate on the concepts of sensitivity, specificity, predictive values and

accuracy of a screening test in the context of disease diagnosis. Firstly, definitions of basic concepts will

be given, followed by a theoretical overview of the research topic. An outlay of the contingency table will

be provided, followed by equations on how to calculate screening test measures, likelihood ratios, ROC

analysis and associated 95% confidence intervals. Lastly, a practical example of disease screening and

related SAS software procedures will be discussed with the calculations and interpretations of the above

mentioned statistical measures.
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2 Background Theory

2.1 Theoretical Overview

2.1.1 Gold standard and screening test

Gold standard This is a well-established diagnostic test that is assumed to be able to predict the true

disease state of an individual, regardless of other diagnostic tests used [16].

Screening test A screening test is a laboratory or medical test that aims to detect a disease in its

earliest and most treatable phases [5]. Through out the research report, the terms diagnostic test and

screening test will be used interchangeably. The validity of a screening test is based on its accuracy

in determining whether an individual is diseased or not. This, however, can only be determined if the

accuracy of the screening test is compared to a gold standard test [16].

2.1.2 Terms used to define screening test measures

False negative False negative refers to when the individual has the disease but the screening test is

negative [9]. False negative will be abbreviated as FN.

False positive False positive refers to when an individual does not have the disease but the screening

test is positive [9]. False positive will be abbreviated as FP.

True negative True negative refers to when the individual is not infected by the disease and the

absence of the disease is also reflected by the screening test [9]. The abbreviation TN will be used for

true negative.

True positive True positive refers to when the individual has the disease and the screening test is

positive [9]. The abbreviation TP will be used for to true positive value.

2.1.3 Outlay of a general 2 x 2 contingency table

When evaluating a screening test, a 2 x 2 contingency table lists the current disease status, as determined

by the gold standard test, in the columns and the observed screening test results in the rows [16]. It is

advised to always put the ‘GOLD STANDARD’ test as the column variable at the top of the contingency

table, and the SCREENING test as the row variable on the left-hand side of the table. The category

‘positive test’ should be in the first row with the category ‘negative test’ in the second row. The category

‘person with disease’ should be in the first column, with the category ‘person without disease’ in the
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second column [16].

GOLD STANDARD

Person with
disease

Person without
disease

Total

SCREENING Positive TP FP TP + FP
TEST Negative FN TN TN + FN

Total TP + FN TN + FP TP + TN +FP +
FN

Table 1: Contingency table with abbreviations used to define screening test measures

The total of the entries in the first column (TP + FN) are all the people with the disease while

the total entries in the second column (TN+FP) are all the disease-free individuals[16]. According to

the screening test, TP + FP (total entries in the first row) are the individuals who tested positive and

TN+FN (total of the entries in the second row) are the individuals who tested negative on the disease

[16].

According to [16], both true positive and true negative show that the outcome given by the screening

test is consistent with the gold standard test. False positive and false negative suggest that the test

results are contradicting the gold standard test.

Henceforth, the ideas discussed are summarized in Table 1. The concepts of sensitivity and specificity

will be discussed first since these are important measures that form the basis of the accuracy of a screening

test.

2.1.4 Sensitivity and specificity

Sensitivity

Sensitivity refers to the ability of a test to correctly identify an individual as diseased [15]. Sensitivity

is the probability that a test will yield a positive result amongst people that are already diseased. When

calculating sensitivity it is only the number of all positive assessments that are of interest [10]. Thus,

sensitivity does not give any information about whether or not some individuals without the disease

would have a positive result [1]. A formula for sensitivity is expressed as

Sensitivity =
TP

TP+FN
(1)

A screening test is less likely to return false negative results if the numerical value of sensitivity is

high, thus a test with a high sensitivity is usually desirable for screening test purposes. A screening test

with high sensitivity is useful when the test result is negative. A sensitivity of 100% for a screening test

means that the test will capture all possible positive assessments without missing any [16], but a person
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who tests positive might or might not have the disease. However, it is highly likely that a person who

tests negative indeed does not have the disease [1].

Specificity

Specificity refers to the ability of a test to correctly identify an individual as disease-free [15]. This is

the percentage of the healthy individuals who test negative [10].This measure suggests how good a test

is at correctly identifying a negative disease status [16]. Since specificity is only be calculated from the

individuals that have been identified to have a negative assessment by the gold standard test, it is only

the number of negative assessments that are of interest . It is then clear that specificity does not give

any information about whether or not the individuals with the disease would also test negative, and if

they do, what their proportion would be [1]. Following is a formula for specificity:

Specificity =
TN

TN+FP
(2)

A screening test is less likely to return false positive results if the numerical values of specificity are

high [16]. Thus, a screening test with high specificity is desirable. A screening test with high specificity

is useful when the test result is positive. A test with a specificity of 100% means that many individuals

without the disease test negative, but it does not necessarily mean that an individual who tests negative

does not have the disease. However, it is highly likely that an individual, who returns a positive result,

has the disease [1].

Usefulness of sensitivity and specificity

A test can be very sensitive without being specific and vice versa, but a test that has both high

sensitivity and high specificity is preferred [16]. As seen above, a high sensitivity is useful since one

can almost surely conclude that an individual, who tests negative, indeed is disease free. Also a high

specificity is useful since it can be concluded that an individual, who tests positive, indeed has the disease.

Limitations of sensitivity and specificity

As can be deduced from the above paragraphs, sensitivity and specificity are of no use when it comes

to estimating the probability of a disease in a single individual. If an individual tests positive, clinicians

would be most interested in the probability of the disease given the test is positive [14]. In this case,

neither sensitivity nor specificity is useful since these two measures are defined on the basis of people

with or without the disease [1]. The presence of the disease in individuals with a negative or a positive

result is measured by predictive values [14]. The following section will discuss both positive and negative

predictive values.
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2.1.5 Predictive values

Positive predictive value

This is the percentage that a positive test correctly identifies a diseased individual [10]. Positive

predictive value will be abbreviated as PPV and can be expressed as

PPV=
TP

TP+FP
(3)

From Equation 3, it is evident that the PPV of a screening test is the proportion of all individuals who

tested positive by both the screening test and gold standard to individuals who have a positive screening

test [1]. PPV can also be referred to as the ‘post-test probability of the disease given a test is positive’.

PPV varies with change in the prevalence of the disease.

Negative predictive value

This is the percentage that disease-free individuals test negative [15]. Negative predictive value will be

abbreviated as NPV. This percentage aims to answer the question of how likely it is that an individual

does not have the disease given that the test result is negative [13]. The equation for NPV is expressed

as

NPV=
TN

TN+FN
(4)

From Equation 4, it is clear that NPV is the proportion of the individuals that have a negative result

who do not have the disease. NPV also varies with the change in prevalence of the disease.

2.1.6 Prevalence

Prevalence is the probability of the actual presence of the disease in the population at a given time [12].

The equation for prevalence is expressed as

Prevalence =
TP+FN

TP+FN+TN+FP
(5)

The predictive value of a screening test is determined from sensitivity and specificity where the prevalence

of the condition is known. Equation 3 can be rewritten in terms of sensitivity, specificity and prevalence

as

PPV=
sensitivity×prevalence

sensitivity×prevalence+(1-specificity)×(1-prevalence)
(6)

Since PPV vary with the change in prevalence of disease, it will be wrong to directly apply a PPV,
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calculated from Equation 3, to a new population, where the prevalence of the disease is different from

the prevalence of the previous population [1].

The higher the prevalence, the higher the PPV and thus the higher the chance that a positive result

is able to predict the presence of the disease. The lower the prevalence, the lower the PPV, even when

using a test with high sensitivity and a high specificity [1]. When prevalence is low, an individual, who

tests positive, might not necessarily have the disease.

Like PPV, NPV can also be computed from sensitivity, specificity and prevalence of disease as shown

below [1]:

NPV=
specificity×(1-prevalence)

(1-sensitivity)×prevalence+specificity×(1-prevalence)
(7)

The higher the prevalence, the higher the NPV and thus the higher the chance that a negative result is

able to predict an absence of the disease. When the prevalence is low an individual who tests negative

might not necessarily be disease free [1].

2.1.7 Accuracy

Any assessment of a screening test requires a comparison with the gold standard test. The simplest

measure of this comparison is a percentage of the case where the screening test is correct and this

percentage is called accuracy [12]. The numerical value of accuracy is given by the proportion of the

number of correct assessments in the selected population as shown below [16]:

Accuracy =
TP+TN

TP+TN+FP+FN
(8)

Equation 8 is a very simple index and must be interpreted cautiously [16]. The effect of prevalence of the

disease must be incorporated, and also right and wrong screening test decisions must be separated [12].

Thus, accuracy will be computed as:

Accuracy = sensitivity×prevalence+specificity×(1-prevalence) (9)

Equation 9 suggests that, even though the numerical values of both sensitivity and specificity are high,

it does not imply that the accuracy of the test is similarly high since accuracy is controlled by prevalence

[16]. Therefore, it is possible to have both a high specificity and a high sensitivity, and a low value of

accuracy.
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2.2 Probability indices

The relationship among sensitivity, specificity, PPV, NPV, accuracy and prevalence can be derived using

probabilities.

2.2.1 Decision fractions

Some additional terminology for decision fractions will be introduced [12, 16]:

� True positive rate (TPR) which is the same as sensitivity

� True negative rate (TNR) which is the same as specificity

� False positive rate (FPR) which is (1-specificity) or (1-TNR)

� False negative rate (FNR) which is (1-sensitivity) or (1-TPR)

Recall that the mathematical formulaes for TPR and TNR were given in Equation 1 and Equation 2 .

Now the mathematical formulaes for FPR and FNR will be derived:

FPR = 1− TNR

= 1− TN

TN+FP

=
FP

TN+FP

∴ FPR =
FP

TN+FP
(10)

FNR = 1-TPR

= 1− TP

TP+FN

=
FN

TP+FN

∴ FNR =
FN

TP+FN
(11)

It can easily shown from Equations 1 and 11 that

TPR+FNR = 1
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and from Equations 2 and 10 that

TNR+FPR = 1

Now let D represent the disease and T represent the result of the screening test, such that the symbols

� T+ represents a positive test,

� T- represents a negative test,

� D+ represents the presence of the disease and

� D- represents the absence of the disease.

TPR, TNR, FPR and FNR will now be redefined in terms of conditional probabilities:

TPR = P (T + |D+) (12)

Equation 12 will be read as the probability of a positive test given the presence of the disease [12].

TNR = P (T − |D−) (13)

Equation 13 will be read as the probability of a negative test given the absence of the disease [12].

FPR = P (T + |D−) (14)

Equation 14 will be read as the probability of a positive test given the absence of the disease [12].

FNR = P (T − |D+) (15)

Equation 15 will be read as the probability of a negative test given the presence of the disease [12].

The above use of conditional probabilities emphasizes that the decision fractions are conditional on the

actual disease status. The prevalence of the disease is denoted as P (D+). The probability of the absence

of the disease in the population at a given time is given as 1− P (D+) = P (D−) [12].
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2.2.2 Predictive values

Equations 6 and 7, which represent the PPV and NPV respectively will be written in terms of probability

functions. Equation 6 can be written as

PPV = PPV=
TPR×prevalence

TPR×prevalence+FPR×(1-prevalence)

=
P (T + |D+)× P (D+)

[P (T + |D+)× P (D+)] + [P (T + |D−)× P (D−)]

Thus PPV, in terms of conditional probabilities is expressed as

PPV =
P (T + |D+)× P (D+)

[P (T + |D+)× P (D+)] + [P (T + |D−)× P (D−)]
(16)

Now, applying Bayes theorem to Equation 16, results in

PPV =
P (T + |D+)× P (D+)

[P (T + |D+)× P (D+)] + [P (T + |D−)× P (D−)]

=
P (T + |D+)× P (D+)

P (T+)

= P (D + |T+)

∴ PPV = P (D + |T+) (17)

In a similar way, Equation 7 can be expressed

NPV =
TNR×(1-prevalence)

FNR×prevalence+TNR×(1-prevalence)

=
P (T − |D−)× P (D−)

[P (T − |D+)× P (D+)]× P (T − |D−)× P (D−)

Thus NPV, in terms of conditional probabilities is expressed as

NPV =
P (T − |D−)× P (D−)

[P (T − |D+)× P (D+)]× P (T − |D−)× P (D−)
(18)

Applying Bayes theorem to Equation 18, results in
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NPV =
P (T − |D−)× P (D−)

[P (T − |D+)× P (D+)]× P (T − |D−)× P (D−)

=
P (T − |D−)× P (D−)

P (T−)

= P (D − |T−)

∴ NPV = P (D − |T−) (19)

2.2.3 Likelihood ratio

For the purpose of estimating an individual’s probability of disease status, the likelihood ratio is used

[2]. The likelihood ratio is a combination of sensitivity and specificity and is a more useful measure. The

likelihood ratio provides a synopsis of how many times more likely individuals with a disease are to have

a specific result than individuals without the disease [8]. The likelihood ratio for a positive test is denoted

as LR+ and the likelihood ratio for a negative test is denoted as LR-.

Likelihood ratio for a positive test (LR+)

The definition of LR+ is given as [2]:

LR+ =
probability of a positive test in an individual with disease

probability of a positive test in an individual who is disease free

It can be seen from the above definition that the numerator is the definition of the sensitivity of the test

and the denominator essentially is the opposite of specificity (1-specificity)[2]. Thus LR+ can therefore

be written as:

LR+=
TPR

FPR
(20)

Using Equation 20, as well as the probability definitions of TPR and FPR, LR+ can be expressed as

LR+ =
P (T + |D+)

P (T + |D−)
(21)
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LR+ value Interpretation

LR+ > 10 increases the probability to rule-in a disease for a person who
tests positive

LR+ > 1 a positive test is most likely to occur in people who are diseased
than people who are not diseased

LR+ < 0.1 rule-out the probability that a person who has the disease tests
positive

LR+ < 1 a positive test is less likely to occur in people who are diseased
than people who are not diseased

Table 2: Interpretation of LR+

Table 2 provides a summary of the different interpretations of LR+ values [2, 6].

Likelihood ratio for a negative test (LR-)

The definition of LR- is given as

LR- =
probability of a negative test in an individual with the disease

probability of a negative test in an individual who is disease free

It can be seen from the above definition that the numerator is the opposite of sensitivity (1-sensitivity)

and the denominator is the definition of specificity [2]. Hence, LR- can be written as

LR-=
TNR

FNR
(22)

Using the probability definitions of TNR and FNR, Equation 22 will be represented as follows

LR− =
P (T − |D+)

P (T − |D−)
(23)

LR- value Interpretation

LR- > 10 increases the probability to rule-in a disease for a person who
tests negative

LR- > 1 a negative test is most likely to occur in people who are diseased
than people who are not diseased

LR- < 0.1 rule-out the probability that a person who has the disease tests
negative

LR- <1 a negative test is less likely to occur in people who are diseased
than people who are not diseased

Table 3: Interpretation of LR-

Table 3 provides a summary of the different interpretations of LR- values [2, 6].
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2.2.4 Pre-test probability

Prior to knowing the test result, clinicians usually estimate an individual’s disease status based on their

personal knowledge and experience and also on the prevalence of the disease. This estimated probability

is known as the pre-test probability.

2.2.5 Post-test probability

The probability of an individual being diseased, after the test result is known, is called the post-test

probability. Post-test probability is important since it provides further information useful for diagnosis

[7]. The post-test probability can either be estimated by using Bayes theorem or by using the Fagan’s

nomogram [2].

Bayes theorem

post-test odds=pre-test odds× likelihood ratio (24)

In Equation 24, odds were used instead of probabilities. Pre-test probabilities need to be converted into

pre-test odds first before the calculation can take place [2]. First it will be shown how to convert to

pre-test odds:

pre-test odds=
pre-test probability

1− pre-test probability

Let P(D+) denote the pre-test probability, thus substituting with P(D+) in the above definition and

using Equation 21, Equation 24 can be mathematically represented as

post-test odds =
P (D+)

1− P (D+)
× P (T + |D+)

P (T + |D−)

=
P (D+)P (T + |D+)

P (D−)P (T + |D−)

Hence;

post-test odds=
P (D+)P (T + |D+)

P (D−)P (T + |D−)
(25)

Clinicians are interested in post-test probabilities and not post-test odds, therefore Equation 25 has to

be converted back to post-test probabilities. The conversion is shown below:

Since, post-test probability = post-test odds
1+post-test odds it follows that

19



post-test probability =

P (D+)P (T+|D+)
P (D−)P (T+|D−)

1 + P (D+)P (T+|D+)
P (D−)P (T+|D−)

=

P (D+)P (T+|D+)
P (D−)P (T+|D−)

P (D−)P (DT+|D+)+P (D+)P (T+|D+)
P (D−)P (T+|D−)

=
P (T + |D+)× P (D+)

[P (T + |D+)× P (D+)] + [P (T + |D−)× P (D−)]

By Bayes theorem post-test

probability can be expressed as

=
P (D+)P (T + |D+)

P (T+)

= P (D + |T+)

∴ post-test probability = P (D + |T+) (26)

Equation 26 is the same as the equation for PPV. This indeed supports the statement that was mentioned

in section 2.1.5 that PPV is also referred to as the post-test probability of disease, given that the test is

positive.

The Fagan’s nomogram Another way of calculating post-test probabilities is by using the Fagan’s

nomogram graphical tool. With the aid of a diagram in Figure 1, it will be explained how the Fagan’s

nomogram works [11].

A straight line is drawn from an individual’s pre-test probability of illness through the likelihood ratio of

the test and this line will meet the correct post-test probability at the post-test probability of the test[2].

A practical illustration will be shown in section 2.3.

2.2.6 Accuracy

At this point, the concept of accuracy will also be represented in terms of conditional probability functions.

Equation 9 will be rewritten as:

Accuracy = TPR×prevalence+TNR×(1-prevalence)

= [P (T + |D+)× P (D+)] + [P (T − |D−)× P (D−)]

∴Accuracy = [P (T + |D+)× P (D+)] + [P (T − |D−)× P (D−)] (27)
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Figure 1: The Fagan’s nomogram
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Figure 2: A ROC space

2.2.7 Receiver operating characteristics (ROC) analysis

Most clinical test results are provided on a continuous scale since their results are quantitative, thus

a cut-off point for positive and negative test results needs to be chosen. This cut-off point is used to

decide the presence and the absence of the disease. A positive test result is considered as abnormal and a

negative test result is considered as normal. As a result, the sensitivity and the specificity vary, depending

on the chosen cut-off point for normal or abnormal results [3]. The receiver operator curve (ROC) is a

graph that represents the relationship between sensitivity and specificity [16]. The ROC curve is useful

for determining and comparing the accuracy of a screening test [3]. The ROC curve also assists in the

optimal model decision (i.e. a cut-off value such that the optimal values of sensitivity and specificity are

achieved) through deciding the best limit for the screening test [16].

Figure 2 shows a ROC space which is a figure that is formed by all the possible combinations of TPR

and FPR. The ROC curve is a graphical technique that is plotted inside the ROC space. The ROC curve

is obtained by plotting TPR (sensitivity) on the y-axis against FPR (1-specificity) on the x-axis [16].

The diagonal line in Figure 2 goes from the coordinates (0,0) through (1,1) and serves as a reference

line. These coordinates represent a screening test with a sensitivity of 50% and a specificity of 50%. The

reference line actually represents the characteristics of a test which is useless at discriminating between

those with disease and those without the disease, since the screening test detects an equal number of

true and false positives [3, 16]. Thus the closer the points on the ROC curve are to the diagonal, the

22



less accurate the screening test results are. A diagnostic test that perfectly discriminates between those

with and those without disease will yield a curve. An ideal medical test will yield a sensitivity of 100%

and a specificity of 100%, corresponding to the coordinates (0,1) on the ROC graph. Such a test will

perfectly identify individuals that are diseased and those that are disease free [16]. A test that is better at

discriminating between those are diseased and those that are disease free has a ROC curve that is closer

to the ideal coordinate (0,1). The faster a curve approaches (0,1) the more accurate the test outcomes

are [3].

Purposes of a ROC curve

� to assess the usefulness of the screening test,

� to determine the cut-off point where optimal sensitivity and specificity can be achieved and

� to compare the usefulness of two or more screening tests.

Diagnostic accuracy The area under the ROC curve (AUC) is important because it measures the

accuracy of a screening test [16]. The following equation is used to measure the AUC of a ROC curve:

AUC =

1�

0

ROC(t)dt (28)

where t=(1-specificity)

Table 4 gives a summary of the different interpretations of AUC ranges to classify accuracy [16].

AUC range Classification

0.9 < AUC < 1.0 Excellent
0.8 < AUC < 0.9 Good
0.7 < AUC < 0.8 Not good
0.6 < AUC < 0.7 Useless

Table 4: Grouping of accuracy by AUC of a ROC curve

Lastly, LR+ can be determined by the tangent line to a cut-off point and if [3]:

LR+ value Interpretation

LR+ < 1 the selected cut-off point decreases the disease likelihood

LR+ =1
the chosen cut-off point will not give any extra useful
information to identify a true positive outcome

LR+ > 1
the selected cut-off point will be useful in identifying the true
positive value

Table 5: Determining the value of LR+ from the tangent line to a cut-off point
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2.2.8 Asymptotic and exact 95% confidence intervals

Sensitivity, specificity, predictive values, accuracy and AUC are statistical estimates of the population

screening test measures and therefore should be reported as confidence intervals with a confidence coef-

ficient that is usually 95%. The importance of the 95% confidence interval is that it informs the reader

about the interval in which 95% of a certain screening test measure will fall if the study was done re-

peatedly. The corresponding confidence intervals can be calculated by using standard techniques for

proportions [16, 3]. The binomial distribution is used to construct the exact confidence interval and the

asymptotic confidence interval is constructed by using a normal approximation to the binomial distribu-

tion. The exact confidence interval is preferred since it can reach the exact estimate. The asymptotic

confidence interval is dependent on whether the sample proportion is a good approximation of the bino-

mial distribution [16].

2.3 Hypothetical example to illustrate concepts

2.3.1 Formulation of the problem

For illustration purposes, a hypothetical example will be discussed. Table 6, containing data for a disease

will be used for evaluating a screening test against a gold standard test. This evaluation will be achieved

by calculating the screening test measures. The population exists of 1172 people. According to the

screening test, 532 of these individuals are diseased and 640 disease-free. However, according to the gold

standard test, 469 out of the 1172 individuals are actually diseased and 703 are disease-free.

GOLD STANDARD

Person with
disease

Person without
disease

Total

SCREENING Positive TP=401 FP=131 TP + FP=532
TEST Negative FN=68 TN=572 TN + FN=640

Total TP + FN=469 TN + FP=703 1172

Table 6: Table containing decision functions from a hypothetical population

2.3.2 Sensitivity and specificity

Sensitivity The numerical value for sensitivity will be calculated using Equation 1:

Sensitivity =
TP

TP+FN
=

401

469
= 0.855

The sensitivity of this test is 86% which means that the test has correctly identified about 86% of the

individuals to be diseased. The above numerical value for sensitivity is high enough to suggest that an

individual with a negative result is indeed disease free.
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Specificity Using Equation 2, the numerical value of specificity is calculated as:

Specificity =
TN

TN+FP
=

572

703
= 0.814

The specificity of this test is 81% which means that the test has correctly excluded about 81% of the

individuals to be diseased. i.e they are disease free. The above numerical value for specificity is high

enough to suggest that an individual, tested positive, indeed has the disease.

2.3.3 Predictive values

Positive predictive value

Method 1

Using Equation 3, the numerical value for PPV is calculated as follows:

PPV =
TP

TP+FP
=

401

532
= 0.754

Method 2

Recall that the prevalence of the disease is given by the proportion of all positive assessments divided

the total number of assessments;

prevalence =
469

1172
= 0.40

Now, using Equation 6, the numerical value for PPV can also be calculated as follows:

PPV =
sensitivity×prevalence

sensitivity×prevalence+(1-specificity)×(1-prevalence)

= (0.855× 0.40) + (1− 0.814)× (1− 0.40)

= 0.754

The PPV means that the screening test has correctly identified about 75% of the individuals with the

disease.

Negative predictive value

Method 1

Using Equation 4, NPV is calculated as:

NPV=
TN

TN+FN
=

572

640
= 0.891

Method 2
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Using Equation 7 and the above calculated value for prevalence:

NPV =
specificity×(1-prevalence)

(1-sensitivity)×prevalence+specificity×(1-prevalence)

=
0.814× 0.40

(1− 0.855)× (0.40) + (0.814)× (1− 0.40)

= 0.891

The above NPV means that the screening test has correctly identified 89% of the individuals to be disease

-free.

REMARK: Predictive value and disease prevalence Consider a second population of 1000 people

that has the disease, but with a different prevalence value as the one mentioned above. A prevalence of

the disease in the second population of 24% means that 240 people have the disease and 760 are disease

free. The sensitivity and specificity values of the screening test are already known to be 86% and 81%

respectively. A sensitivity of 86% means that 86% of the 240 individuals will test positive (i.e. 206.4 ≈

206 people have a true positive test). A specificity of 81% means that 81% of the people without the

disease will test negative (i.e TN) or that 19% of the 760 individuals that are disease free will test positive

(i.e FP). The value for FP is 144.4. Using Equation 3, PPV is calculated as follows:

PPV =
TP

TP+FP
=

206.4

206.4 + 144.4
= 0.59

However, it is much simpler to calculate the PPV value of the new population where the sensitivity and

specificity of the screening test and prevalence are known, by using Equation 6:

PPV =
sensitivity×prevalence

sensitivity×prevalence+(1-specificity)×(1-prevalence)

=
0.855× 0.24

(0.855× 0.24) + (1− 0.814)× (1− 0.24)

= 0.59

The above procedure can also be used to calculate the NPV of the second population.

2.3.4 Likelihood ratios

The likelihood ratios for this screening test are calculated as follows:

Likelihood ratio for a positive test (LR+)

From Equation 21, using the above numerical values of sensitivity and specificity, the value for LR+
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is calculated as

LR+ =
P (T + |D+)

P (T + |D−)
=

0.855

0.186
= 4.597

A numerical value of 4.597 for LR+ means that a person with this disease is about 5 times more likely

to test positive than a person who does not have this disease.

Likelihood ratio for a negative test (LR-)

Using Equation 23, the numerical value for LR- is calculated as

LR− =
P (T − |D+)

P (T − |D−)
=

0.145

0.814
= 0.178

Thus, there is an 18% chance of to test negative for an individual who is diseased. Hence, a person

without the disease is about 5 (= 1
0.2 ) times more likely to test negative than a person with the disease.

2.3.5 Post-test probability

� Bayes theorem: using Bayes theorem, the post-test probabilities will be calculated the same way as

PPV and NPV were calculated.

� Fagan’s nomogram: in Figure 3, a straight line was drawn through the pretest probability (P (D+))

of 40% and the LR+ of 5. This yields a post-test probability of about 76%.
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Figure 3: The utilization of the Fagan’s nomogram

3 Application

The data analysis for this research report will be generated using SAS software. Copyright © 2017 SAS

Institute Inc. SAS/ACCESS® 9.4 Interface to ADABAS: Reference. Cary, NC: SAS Institute Inc.

3.1 Formulation of the screening and gold standard test

A clinical trial is conducted to evaluate a diagnostic test designed to detect the presence of atherosclerosis.

Atherosclerosis is usually tested for using coronary angiography, the gold standard test. The diagnostic

test is performed on a random sample of 653 individuals that were divided according to their body mass

index (BMI) as shown in Table 7.

The data provided in Table 7 will be divided into two categories according to the BMI. The categories

are as follows:

� overweight with a BMI between 25 and 29.9 and
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BMI DISEASED DISEASE FREE TOTAL

25 1 50 51
26 2 46 48
27 4 45 49
28 6 44 50
29 7 35 42
30 30 27 57
31 38 27 65
32 55 11 66
33 67 11 78
34 73 7 80
35 20 5 25
36 10 0 10
37 8 0 8
38 12 0 12
39 12 0 12

TOTAL 345 308 653

Table 7: Sample of individuals to be diagnosed for atherosclerosis

� obese with a BMI greater than 29.9

Table 8 summarizes the data for individuals in the two weight groups.

WEIGHT DISEASED DISEASE FREE TOTAL

Overweight 20 220 240
Obese 325 88 413

TOTAL 345 308 653

Table 8: Categorized data for the two weights

It is clear from Table 8 that weight is an important factor in diagnosing a patient for atherosclerosis since

most of the diseased individuals are obese.

Below are 2× 2 cross-tabulation tables that summarize the data for individuals who are overweight and

obese.

Overweight CORONARY ANGIOGRAPHY

Person with disease Person without disease Total
SCREENING Positive 19 41 60

TEST Negative 1 179 180
Total 20 220 240

Table 9: 2× 2 contingency table to summarize data for individuals who are overweight

Obese CORONARY ANGIOGRAPHY

Person with disease Person without disease Total
SCREENING Positive 305 26 331

TEST Negative 20 62 82
Total 325 88 413

Table 10: 2× 2 contingency tables to summarize data for individuals who are obese
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Below is the SAS software output of the decision functions in Tables 9 and 10. The SAS software code

is given in the appendix.

Table 11: 2× 2 Contingency table to summarize data for individuals who are overweight

Table 12: 2× 2 Contingency table to summarize data for individuals who are obese

In the following sections the SAS software codes and outputs will be provided for the numerical measures

used to evaluate the screening test measures for the two weight groups.

3.2 Sensitivity and specificity

SAS software Code
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*sensitivity and specificity*;

sensitivity = TP/(TP+FN);

specificity = TN/(TN+FP);

print sensitivity specificity;

SAS software Output

Table 13: Measures for sensitivity and specificity

� The sensitivity of the screening test for individuals who are overweight is 95%, which means that

the test has correctly identified 95% of the individuals to have atherosclerosis . The specificity is

81% which means that the test has correctly excluded 81% of the overweight individuals to have

atherosclerosis.

� The sensitivity of the screening test for individuals who are obese is 94%, which means that the test

has correctly identified 95% of the individuals to have atherosclerosis . The specificity is 71% which

means that the test has correctly excluded 81% of the obese individuals to have atherosclerosis.

3.3 Prevalence

SAS software Code

*prevalence*;

prevalence = (TP+FN)/(TP+TN+FN+FP);

print prevalence;

SAS software Output

Table 14: Measures for prevalence
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Using the definition of prevalence, it is correct to say that in the overweight category only 8% of the

individuals have atherosclerosis and 79% of the individuals that are obese have atherosclerosis. There

is a higher prevalence of the disease in individuals that are obese because individuals who are obese are

more likely to have atherosclerosis.

3.4 Predictive values

Predictive values will be calculated using both methods that were mentioned in sections 2.1.5 and 2.1.6.

SAS software Code

*PPV*

**method1**;

PPV1 = TP/(TP+FP);

**method2**;

A = sensitivity*prevalence;

B = (1-specificity)*(1-prevalence);

PPV2 = A/(A+B);

print PPV1 PPV2;

*NPV*

**method1**;

NPV1 = tn/(tn+fn);

**method2**;

C = specificity*(1-prevalence);

D = (1-sensitivity)*prevalence;

NPV2 = C/(C+D);

print NPV1 NPV2;

quit;

SAS software Output

Table 15: Measures for predictive values
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� The PPV for people who are overweight means that the positive test has correctly identified 31%

of the individuals that have atherosclerosis. The NPV on the other hand, means that the screening

test has correctly identified 99% of the overweight individuals that do not have atherosclerosis.

� The PPV for people who are obese means that the positive test has correctly identified 92% of the

individuals that have atherosclerosis. The NPV on the other hand, means that the screening test

has correctly identified 75% of the obese individuals that do not have atherosclerosis.

3.5 Accuracy

SAS software Code

*accuracy*;

proc sql;

create table acc as select (TP+TN)/(TN+TP+FN+FP) as Accuracy from cont1;

proc print;

quit;

SAS software Output

Table 16: Measures for accuracy

� The screening test is 83% accurate in correctly identifying and excluding atherosclerosis in individ-

uals who are overweight.

� The screening test is 89% accurate in correctly identifying and excluding atherosclerosis in individ-

uals who are obese.

3.6 Asymptotic and exact 95% confidence intervals for sensitivity, specificity

and accuracy

A data set for calculating both the asymptotic and exact confidence intervals of sensitivity, specificity

and accuracy will be created from the values of the decision functions. The SAS software code for this

procedure will be given in the appendix.

SAS software Code to calculate the confidence intervals;
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proc sort data=confint;

by group;

proc freq data=confint;

weight count;

by group;

tables response/alpha=0.05 binomial (p=0.5);

exact binomial;

run;

SAS software output

Table 17: The 95% confidence intervals from the SAS software procedure output for individuals who are
overweight

Table 18: The 95% confidence intervals from the SAS software procedure output for individuals who are
obese

The results from Figures 17 and 18 are summarized in Table 19.
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Proportion Asymptotic 95% CI Exact 95% CI
ACCURACY

Overweight 0.8250 (0.7769,0.8731) (0.7709,0.8709)
Obese 0.8886 (0.8583,0.9190) (0.8542,0.9173)

SENSITIVITY
Overweight 0.9500 (0.8545,1.0000) (0.7513,0.9987)

Obese 0.9385 (0.9123,0.9646) (0.9066,0.9620)
SPECIFICITY

Overweight 0.8136 (0.7622,0.8651) (0.7758,0.8628)
Obese 0.7045 (0.6092,0.7999) (0.5978,0.7971)

Table 19: The 95% confidence intervals results for the overweight and obese groups

If the study was to be done repeatedly, 95% of the values for accuracy, sensitivity and specificity would

respectively fall in the confidence intervals given in Table 19.

3.7 Receiver operating characteristics (ROC) curve and AUC analysis

To compute the ROC curve, the data for the individual BMIs in Table 7 was used. The SAS software

code that generated the data that was used to compute the ROC curve will be given in the appendix.

Below is the code that was used to construct the ROC curve.

ods graphics on;

proc logistic data=dataroc plots(only)=roc(id=obs);

model diseased/n=bmi / scale=none

clparm=wald

clodds=pl

rsquare;

units bmi=1;

effectplot;

run;

ods graphics off;

SAS software output
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Figure 4: ROC curve for combined groups

The ROC curve helps in deciding where to draw the line between ’diseased’ and ’disease-free’. The

accuracy of the screening test is represented by the area under the ROC curve, where the curve is

determined by multiple cut-off points of the trial test. The AUC obtained from the ROC curve in Figure

4 is 0.9361. According to Table 4, the screening test has an excellent accuracy.
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Figure 5: ROC curve for the obese group

Figure 5 shows the ROC curve that was constructed only from the obese group. The AUC is 0.8124 and

according to Table 4 the trial test has a good accuracy.

4 Conclusion

The usefulness of sensitivity and specificity is limited since these two measures cannot be used to estimate

the probability of the disease in an individual. In order to estimate this probability predictive values may

be used. Both the positive and negative predictive values vary according to the prevalence of the disease.

More information about a screening test is given by the likelihood ratios. When the likelihood ratio of

a screening test is known, the post-test probability of the disease can be computed. The most convenient

tool, that is used to estimate this probability, is the Fagan’s nomogram. Bayes theorem can also be used,

but the calculations can be very tedious.

In this research report, the focus was on evaluating the accuracy of a screening test to discriminate

between the individuals with or without disease. The accuracy of the screening test in the practical

example was 0.9361. It can be concluded that the screening test can be used as a proper substitute to
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the coronary angiography test.
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Appendix

The SAS software code that generated the data that was used to compute the 2× 2 contingency table

proc format;

value ExpFmt 1=’Positive’

0=’Negative’;

value RspFmt 1=’Positive’

0=’Negative’;

run;

data coronary;

input Exposure Response Count;

label Response=’CORONARY ANGIOGRAPHY’;

label Exposure=’SCREENING TEST’;

datalines;

0 0 179

0 1 1 //here different values for different categories were used//

1 0 41

1 1 19

;

proc sort data=coronary;

by descending Exposure descending Response;

run;

Below is the SAS software code used when inputting the decision functions in Tables , 9 and 10.

*create the contingency table*;

proc freq data=coronary order=data;

format Exposure ExpFmt. Response RspFmt.;

tables Exposure*Response;

weight Count;

title ’Contingency table to summarize data for BMI category’;

run;

Create the data set used for calculating 95% confidence interval. The SAS software output was shown in

Figure 17.

data1;
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tp = 19;

fn = 1; //here different values for different categories were used//

tn = 179;

fp = 41;

proc sql;

create table cont1 as select tp as TP, fp as FP, fn as FN, tn as TN, tn+tp as TNTP, fn+fp as FNFP

from data1;

proc print;

quit;

proc transpose data=cont1 out=t data;

var TP FN TN FP TNTP FNFP;

proc print;

run;

data confint (drop = name col1);

length group $20;

set t data;

count=col1;

if name = "TNTP" then do;

group="Accuracy";

response = 0;

output;

end;

else if name = "FNFP" then do;

group="Accuracy";

response = 1;

output;

end;

else if name = "TP" then do;

group="Sensitivity";

response = 0;

output;

end;

else if name = "FN" then do;

group="Sensitivity";
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response = 1;

output;

end;

else if name = "TN" then do;

group="Specificity";

response = 0;

output;

end;

else if name = "FP" then do;

group="Specificity";

response = 1;

output;

end;

proc print;

run;

The SAS software code that generated the data that was used to compute the ROC curve

data dataroc;

input bmi diseased n;

cards;

25 1 51

26 2 48

27 4 49

28 6 50

29 7 42

30 33 57

31 45 65

32 55 66

33 74 78

34 77 80

35 25 25

36 10 10

37 8 8

38 12 12

39 12 12
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Abstract

In this study the main focus is initialization strategies in parameter estimation of the Gaussian mix-

ture. TheIn this study the focus is on initialization strategies in parameter estimation of the Gaussian

mixture model. The Expectation Maximization (EM) algorithm is used to estimate parameters of

the mixture model. Two initialization strategies for the EM algorithm will be considered and reports

on the absolute bias of the means, mixing proportions and number of iterations until convergence

will be made.

2



Declaration

I, Quintine Mkhondo, declare that this essay, submitted in partial ful�llment of the degree BSc(Hons)

Mathematical Statistics, at the University of Pretoria, is my own work and has not been previously

submitted at this or any other tertiary institution.

_____________________________

Quintine Mkhondo

_____________________________

Sollie M. Millard

_____________________________

Date

3



Acknowledgements

I acknowledge the �nacial support from the Centre for Arti�cial Intelligence Research, Meraka Institute,

CSIR and Investec for the �nancial support in the form of a postgraduate bursary. I would also like to

extend special thank you to his parents Stanley and Angel Mkhondo for the continued love and support

for my academics and Sollie Millard for his time, patience and assistance as a supervisor for this report,

he has ignited my interest in data science and machine learning.

4



Contents

1 Introduction 6

2 Background Theory/Literature Review 7

3 Gaussian mixtures 7

3.1 Gaussian mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Application 23

4.1 Hastie's method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Alternative method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Comparison of two strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion 34

References 34

Appendix 36

List of Figures

1 Bias of means for the two components under di�erent means as sample size increases . . . 25

2 Bias of mixing proportions as sample size increases . . . . . . . . . . . . . . . . . . . . . . 26

3 Number of iterations di�erent deltas as sample size increases . . . . . . . . . . . . . . . . 26

4 Bias of means for the two components under di�erent means as sample size increases . . . 27

5 Bias of mixing proportions as sample size increases . . . . . . . . . . . . . . . . . . . . . . 28

6 Number of iterations di�erent deltas as sample size increases . . . . . . . . . . . . . . . . 29

7 Bias of means for the two components under di�erent means as sample size increases . . . 30

8 Bias of mixing proportions as sample size increases . . . . . . . . . . . . . . . . . . . . . . 31

9 Number of iterations di�erent deltas as sample size increases . . . . . . . . . . . . . . . . 31

10 Bias of means for the two components under di�erent means as sample size increases . . . 32

11 Bias of mixing proportions as sample size increases . . . . . . . . . . . . . . . . . . . . . . 33

12 Number of iterations di�erent deltas as sample size increases . . . . . . . . . . . . . . . . 34

5



1 Introduction

A mixture of distribution is a probabilistic model used in latent class modelling. A model of this nature

is useful in instances where only a data sample is available and no other information about the data set

is given; the model can then be used to give a general structure about the given data set. The model

uses the data sample and groups the observations into di�erent clusters with di�erent parametric form.

Mixtures of distributions are semiparametric since the of groups and observations are unknown, they

compromise a �nite or in�nite number of components of di�erent distributional types that can describe

di�erent features of data [8]. The model works where the observations in the sample are assumed to be

independent and identically distributed and belong to a probability density function thereby providing a

�exible, parametric framework for statistical modeling and analysis [8]. It is called mixtures of distribu-

tions because the probability density function consists of di�erent density functions which represent the

di�erent clusters. The clusters are weighted, therefore they can be assigned using probabilities. Mixtures

of distributions can be homogeneous or inhomogenous, however for in this study the will focus on homo-

geneous models [12].

Mixture distributions arises when unobserved heterogeneity is present in a population for which a partic-

ular random characteristic is observed [5]. In this research report the homogeneous mixture distribution

that will be focused on is the Gaussian mixture model. A multivariate Gaussian mixture model with K

components has the following probability density function:

p(x|Θ) =

K∑
k=1

p(x|θk)πk =

K∑
k=1

p(x|µk,Σk)πk (1)

where πk represents the weight probability of the kthcomponent (with the constraints 0 ≤ πk ≤ 1 and∑K
k=1 πk = 1, p(x|µk,Σk) represents the k

thcomponent-conditional Gaussian density function, µk and

Σk represent the mean and covariance of the kth Gaussian density function such that θk = {µk,Σk}

and Θ = (θ1,θ2, ..., θK , π1,π2, ..., πK) represents the complete set of parameters of the model.

In this study the EM algorithm will be used to approximate the likelihood estimates of parameters

of Gaussian mixture model [10]. Point of convergence of the EM algorithm is known to be dependent

on where the process start, therefore two initialization techniques will be explored; the convergence rate

of the two strategies will also be considered. The �rst strategy is by [2] which selects a starting point

randomly. The other strategy separates the given sample in to three quatiles and uses the average of Q1

and Q3 as the initial parameters.
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2 Background Theory/Literature Review

In papers focused on mixture models there is always a discussion of how the log of the maximum likelihood

function can be maximized to obtain components of the mixture model; the same method extends to

mixtures of Gaussians.

Frank Picard's paper gives fundamentals of the mixture models. This source outlines the importance of

mixture models in cluster analysis. Explicit formulas that can be used to estimate the parameters of the

Gaussian mixture model are provided; these formulas can be used in direct application to successfully

�t the Gaussian mixture via the EM algorithm. The basic idea behind the EM algorithm is discussed

like how the method requires iterative procedures that lead us to straight forward estimates (through

convergence), its general properties and limitations. The source also provides detailed examples of how

the EM algorithm can be applied to obtain the Gaussian mixture model .

N.E Day's paper provides comprehensive writing on the components that make up the Gaussian mixture

model. The source discusses the impact of adding more components to the maximum likelihood and

how the performance of the mixture model will be a�ected. The source also discusses how the Bayesian

approach appears to be greatly inferior to maximum likelihood which is used by the EM algorithm in the

multivariate case expect for univariate case[4] .

Bishop's book provides a comprehensive study on how to perform the EM algorithm for two components

[2]. Practical examples are provided to demonstrate how the procedure will be performed to obtain the

means and variances of the mixture of Gaussian.

3 Gaussian mixtures

Machine learning is a �eld in Statistics that solves problems by either a supervised learning technique or

an unsupervised one. Supervised learning uses classi�cation and regression models to replicate the results

of the input independently. Therefore the system is then able to work on its own and perform tasks that

the operation has 'taught' the machine; unsupervised learning uses clustering and association models in

order to �nd a general structure of the data set. Supervised learning in machine learning approximates

the output of the data of the input data set, while unsupervised learning provides output that gives a

general description the input data set. Tools to solve problems in unsupervised learning are the Gaussian

mixture model, Hidden Markov Model, Hierarchical models and Neural Networks. However the focus of

this study is the Gaussian mixture.
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3.1 Gaussian mixture models

The Gaussian mixture model is semiparametric model meaning i.e it is a statistical model made of

both parametric and non parametric components. The focus of this study is a homogeneous mixture,

the Gaussian mixture. In this report homogeneous mixture model will be investigated. Homogeneous

mixture models are models where all its components have the same density function which is Gaussian.

The model uses a probabilistic approach to cluster input data set from the normal distribution.

The Gaussian model falls under unsupervised learning as it provides a general structure of data set

input. The Gaussian mixture model is useful in providing a general structure of the data set using

di�erent groups that represent di�erent clusters of the data set. This clustering approach gives each

group its own parametric form, observations found are found in each of the structures and are assumed

to have su�cient characteristics to be put in the same group. Each group will be characterized by the

di�erent parametric forms of the Gaussian mixture model [12].

In Gaussian mixture models it is assumed that the sample data set to be used represent a sample

with observations that are independent and identically distributed. The sample data originates from a

population that is normally distributed, and can be described using a probability density function [6].

The probability function is made up the di�erent clusters, all clusters can be identi�ed with a probability

density function. The joint probability function that make up the Gaussian mixture model consists of

probability density functions of each of the clusters. The density functions that form the joint probability

functions are weighted, the di�erent density functions represents the clusters, the di�erent weights can

then be used as descriptive statistics for the input data set [12]. In order to obtain descriptive statistics

from the Gaussian mixture model a strategy is used to derive the component densities of the data set.

The Gaussian mixture model is then an e�ective tool that can be used to �nd descriptive analysis when

the sample originates from the Gaussian distribution.

The Gaussian mixture model clusters the data set into K groups and the number of groups is assumed

to be �xed. In this report we will assume that there are two groups (k = 2). The k groups are assumed

to have large variance between then and the variance of the the observations within the groups is small.

Suppose that our random variable of interest X in the data set is de�ned in the sample space <p.

The random variable can be de�ned to be any quantitative data the model can be applied in both the

univariate or multivariate dimension [12]. Consider a vector x = (x1, x2, ..., xn), this vector represents

a random sample of size n. The Gaussian mixture model the clusters the n observations. Consider the

realization of xt and its probability density function p(xt), the probability density function is de�ned on

8



its appropriate measure on the sample space <p and the measure is chosen according to the context of

the nature of the sample, which is Lesbesgue measure, counting measure or both measures [12].

Consider X our variable of interest from a sample size of n observations. The Gaussian mixture model

is assumed to be derived from K di�erent groups, the components of the k groups each have the same

probability density function which is Gaussian. The K groups arise from the same parametric family

p(xt, ψ), in other words ψ is the same for each group since the sample is assumed to originate from an

i.i.d population and are all Gaussian distributed. The Gaussian mixture density of of xt can be expressed

as:

p(xt; θ) =

k∑
i=1

πip(xi; θi) (2)

where πi represents the weight of the k
th component of the probability density function andπ = (π1, π2..., πk)

is a vector that represents the weights of the K clusters of the data set and
k∑
i=1

πi = 1. The K mixture

models will be characterized by θi. Then each p(xi; θi) belongs can be characterized into the θi with

probability πi. Let ψ = (π1, π2, ..., πk, θ1, θ2, ..., θk) represent the complete set of parameters that make

up the Gaussian model.

The Gaussian mixture model is used as a clustering technique in unsupervised learning. It's objective is to

�nd homogeneous groups in a data set. The Gaussian mixture model �nds the K di�erent clusters which

are initially hidden, this is done by �tting a K component Gaussian mixture density. Observations that

belong to the same cluster as expected to have small variance, and the K di�erent groups are expected to

have high variance between them, in this way the groups are balanced. This optimizes the process and im-

proves the chances of the model obtaining estimates that correspond to the true mean of the hidden group.

Multivariate Gaussian mixture

A multivariate Gaussian mixture model with K di�erent components has the following form:

p(x|ψ) =
K∑
i=1

πip(x;θi) =

K∑
i=1

πip(xi|µi,Σi) (3)

πi - represents the weight of each component in the entire Gaussian mixture model
K∑
i=1

πi = 1, p(xi|µi,Σi)

represents the Gaussian probability that calculates the probability the kth component belongs to a par-

ticular cluster

µk - the mean of the kthGaussian density component

Σk - the covariance matrix of the kth Gaussian density component. Both µk and Σk belong to the same
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characteristic group (i.e θk = {µk,Σk})

ψ−a vector that represents the complete set of parameters of the Gaussian mixture model, ψ = (π1, π2..., πK,θ1, θ2, ..., θK)

Consider the observation x from an input set of p-dimensions, then the conditional Gaussian density

of the kth component can be obtained using the following expression:

p(x|µk,Σk) =
1

(2π)
p
2 |Σk|

1
2

exp{−1

2
(x− µk)TΣ

− 1
2

k (x− µk)} (4)

The number of components that make up the Gaussian mixture model can be estimated by using so-

phisticated selection models like the number of components of mixture models can be estimated using

model selection methods like the Alkaike Information Criterion, Bayesian Information Criterion, cross

validation and Bayesian methods. However for the purpose of this study the number of components in a

Gaussian mixture model is assumed to be known.

Consider xi to be the i
th observation from our given sample of size N , i = {1, 2, ..., N}. Then the proba-

bility that of the xthi observation belonging to component θk can be obtained using the Bayes' theorem:

γ(θk) = p(θk = 1|x) = p(θk = 1)p(x|θk = 1)∑K
j=1 p(θj = 1)p(x|θk = 1)

=
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

(5)

The quantity γ(θk) is the corresponding posterior probability once we have observed x.

An unbiased estimate of γ(θk) is given by:

θ̂ik = P (θi = k|xi, γ̂) =
π̂kp(xi|µ̂k, Σ̂k)∑K
j=1 π̂jp(xi|µ̂j , Σ̂j)

(6)

the equation above is called the responsibility and it will be used to estimate the probability that the

ith observation belongs to component k. θ = {θ1, ..., θk} represent of the di�erent characteristics the K

components are allocated. The Gaussian components that make up the Gaussian mixture model will be

allocated into a group according to the corresponding responsibility. Components with highest responsi-

bility matching a component will be allocated in the same cluster. This gives an indication of where the

input data set is most likely been generated. The observations that are clustered using probabilities is

an example of �soft-clustering�.
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3.2 Maximum likelihood

Finding the maximum likelihood estimates for the Gaussian mixture is an essential step to help obtain

the components of the Gaussian mixture model. The EM algorithm is an iterative procedure used in this

study to obtain parameter estimates of the Gaussian mixture model.

Consider the following data set of observations {x1, x2, ..., xN} from a sample of size N . It is required

to �t a Gaussian mixture model for this sample. The assumption that the observations were drawn

independently from the Gaussian distribution holds, then the Gaussian mixture model can be obtained.

The mixture of the likelihood function can be obtained in the following way:

p(X|ψ) =
N∏
i=1

p(xi|ψ)

=

N∏
i=1

(

K∑
k=1

p(xi|θk)πk)

The log of the likelihood function can be obtained in the following way:

logp(x|ψ) = log

N∏
i=1

p(xi|ψ)

=

N∑
i=1

log(

K∑
k=1

p(xi|θk)πk)

Singularities are a problem when maximizing this function. Singularities occur when a Gaussian com-

ponent 'run into' a data point, this brings rise to multiplicative factors when computing the likelihood

function, the multiplicative factors belong to the other data points. This then causes the likelihood func-

tion of the overall Gaussian mixture model to go to zero. This problem is solved by seeking local maxima

of the log-likelihood function that make sense. There are other ways in which singularities can be solved,

for instance whenever a Gaussian component 'runs into' a data point it's mean can be re-de�ned to a

randomly available value in the sample and the covariance matrix to a large variance.

Another worthwhile issue to consider when dealing with maximum likelihood estimators is the issue of

identi�ability. This occurs when component means are very close to each other. It is an important issue

to consider when interpreting parameters that have been discovered by a model. This issue arises because

the maximum likelihood solution provides solutions K! and K−1! di�erent ways in which the components

can be arranged. This means that in a space of a parameter value there are K!− 1 data points that may

give rise to exactly the same distribution. However this issue is not a problem since one solution is as

good as the other.
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3.3 EM algorithm

Expectation-maximization or EM is an iterative method that is elegant and powerful for �nding solutions

for models with latent variables. The algorithm performs iterations with the aim of obtaining parameter

estimates. The estimates are obtained by approximating the maximum-likelihood estimates for the data

with latent variables. In this report the EM algorithm will be used to �nd estimates of the Gaussian

model.

Let x = (x1,x2, ...,xN ) ∈ < represent an independent and identically distributed sample with N un-

labeled observations that originates from a Gaussian mixture model with K components. Therefore a

Gaussian mixture density for an observed point xi can be expressed as follows:

p(xi|ψ) =
K∑
k=1

p(xi|θk)πk

ψ = (π1, π2, ..., πK , θ1, θ2..., θK) represents the complete set of parameters for the Gaussian mixture

model.

θ1, θ2, ..., θK represents the K di�erent characterized clusters.

π1, π2, ..., πK represents the weights of the k clusters, πk ≥ 0 for k = 1, 2, ...,K and the weights all up to

1.

The EM algorithm uses the maximum likelihood to estimate ψ which is the complete set of parameters.

The following expression of the maximum likelihood estimator will be used to obtain the estimates:

p(x|Θ) =

N∏
i=1

p(xi|Θ)

=

K∏
k=1

(

K∑
k=1

p(xi|θk)πk)

However the expression above is very di�cult to compute and the log likelihood function will be used to

solve the issue. The log-likelihood estimator is an easier expression to compute; it can be expressed in

the following way:

logp(x|Θ) = log

K∏
k=1

p(xi|Θ)

=

K∑
k=1

logp(xi|Θ)
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=

K∑
k=1

log(

K∑
k=1

p(xi|θk)ηk)

In order to obtain estimates from the log-likelihood function requires to be maximized with respect

to ψ. The equation used to �nd the maximum likelihood estimates is as follows:

∂

∂ψ
logp(x|ψ) = 0

Obtaining an explicit expression of the parameters is di�cult since the logarithm contains the sum of the

terms [12].

The Gaussian mixture model can be viewed can be viewed as incomplete data problem in unsupervised

learning. The data set x = (x1, ...,xN ) is considered incomplete data, the each observation in the data

set can be Z = {Z1, Z2, ..., ZN}. The objective is to �nd the K di�erent components that are unknown,

the K components make up the Gaussian mixture model.

The EM algorithm can be used as a special tool to obtain estimates from incomplete data by using

the log-likelihood function. The labels of the data set (i.e Z ′s) are used to �nd out origin of the kth

component of the Gaussian mixture model. Zi = (Zi1, Zi2, ..., Zim) is a vector of binary variables used to

indicate whether the ith observation belongs to the kthcomponent. Zi takes the value 1 if the observation

xi belongs to the kth observation and zero if otherwise. Zi follows a multinomial distribution with

parameters 1 and π where π = (π1, π2, ..., πK). The observed data vector x and the label Z form the

complete data vector (x,Z).

A likelihood function for complete data is given by:

p(x,Z|ψ) =
N∏
i=1

K∏
k=1

(p(xi|θk)πk)I{Zi=k}

I{Zi = k} represents an indicator function that is used to �nd where the latent variable belongs.I{Zi =

k} = 1 if an observation belongs to the kthcomponent and I{Zi = k} = 0 if otherwise.

The log-likelihood function since it is easier to compute and can be expressed in the following equation:

logp(x,Z|ψ) =
N∑
i=1

K∑
k=1

Ziklog(p(xi|θk)πk)

=

N∑
i=1

K∑
k=1

Zik(logp(xi|θk) + logπk)

How the EM algorithm works

The EM algorithm performs iterations through the sample of X random variables and obtains the max-
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imum likelihood estimates of ψ̂. The iteration is performed through two steps namely the Expectation

step and the Maximization step. The procedure produces a sequence of maximum likelihood estimates

starting from t = 0 and it is repreated until the sequence reaches a point of convergence. A convergence

criteria is decided by the investigator, the criteria is set to a value such that the di�erence between the

maximum likelihood estimate at t and t − 1 is very small. The algorithm uses all its observation in the

data set in each iteration.

The �rst step is to choose initial values for the complete set of parameters namely the means, co-variances,

and mixing coe�cients represented by ψ̂(0). After initial values have been established, the E-step follows.

The E-step uses conditional expectation of the complete log-likelihood function. This is computed using

the observed data and recent estimates. The name of the expectation function is called the objective

function. The objective function uses recently set or computed estimates to evaluate the posterior prob-

abilities of the Gaussian mixture model.

The M-step follows after the E-step. Re-estimation the parameters of ψ(t) is computed in this step,

namely the means, co-variances and mixing probabilities. This step involves the maximization of the ob-

jective function introduced in the E-step, provided that the constraints that all the weights are positive

and that the weights sum to 1 is met.

The EM algorithm increases the maximum likelihood monotonically with each iteration. The objective

function increases as the log-likelihood increases, the likelihood increases until a point of convergence.

However, convergence to a global maxima is not guaranteed. The convergence rate depends on the type

of initialization strategy employed.

The general EM algorithm

Below are the steps of how the EM algorithm is performed:

1. Initialize values for the parameters at t = 0 i.e ψ̂(0)

2. E-step:

Compute the objective function for t ≥ 0 using the following objective function Q(ψ, ψ̂(t)) =

E[logp(x,Z|Θ)|x, ψ̂(t))

3. M-step:

Obtain the maximum likelihood estimates of the parameters by maximizing the objective function

such that ψ̂(t+ 1) = argmaxQ
Θ

(ψ, ψ̂(t)) for t ≥ 0

4. Repeat the E-step and M-step until the convergence to the global maxima.

E-step

Initial values for the parameters are set at t = 0. The initial values are used in the E-step to compute

the conditional expectation of the log-likelihood logp(x,Z|Θ)) for t ≥ 0. The objective or Q-function
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can be expressed as follows for t ≥ 0:

Q(ψ, ψ̂(t)) = E[logp(x,Z|ψ)|x, ψ̂(t))

where ψ̂(t) represents the complete set of parameters provided by the maximum likelihood estimates

at time t. The formula used to obtain the conditional expectation can be simpli�ed since the log-likelihood

fucntion of the complete set of parameters is a linear function of Zik, this simpli�cation allows the user

to make the computation easier and can be represented as follows:

E[Zik|x, ψ̂(t)] = 1× P (Zik = 1|x, ψ̂(t)) + 0× P (Zik = 0|x, ψ̂(t))

= P (Zik = 1|x, ψ̂(t))

= P (Zik = k|xi, ψ̂(t))

since Zik = 1 ⇐⇒ Zi = k.

With Zik, i = 1, 2, ..., N and k = 1, 2, ...,K .

Equation ?? represents the posterior probability of the ith observation is the probability that the obser-

vation i was generated by the kth component of the density model. The E-step is used to estimate Zik

i.e the labels of the observations for t ≥ 0. An unbiased estimator posterior probability can be derived

using Bayes' Theorem in the following way:

Ẑik(t) = P (Zi = k|xi, ψ̂(t))

=
π̂kp(Zik = 1|x, θ̂t(t))
K∑
j=1

π̂j(t)p(xi|θ̂j(t))

Equation ?? is called the responsibility which determines where component k for observation i belongs.

From above it can be deduced that the E step performs soft assignment of observations to their respective

component of the mixture model [12]. The E-step uses the latest estimates to compute the relative

densities of observations for each component model [12].

The objective function can be derived in the following way:

Q(ψ, ψ̂(t)) = E[log(x,Z|ψ)|x, ψ̂(t)]

=

K∑
k=1

N∑
i=1

Ẑik(t)(logp(xi|θ̂k(t)) + logπ̂k(t))
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=

K∑
k=1

N∑
i=1

P (Zi = k|xi, ψ̂(t))(logp(xi|θ̂(t)) + logπ̂k(t))

=

K∑
k=1

N∑
i=1

logπ̂k(t)P (Zi = k|xi, ψ̂(t))+
K∑
k=1

N∑
i=1

(logp(xi|θ̂(t))P (Zi = k|xi, ψ̂(t))

M-step

In this step estimates obtained from the E-step will now be used as estimates. Maximization of

the objective function will provide new estimates for the unknown parameters. This step re-estimates

new parameters for ψ̂ at time t + 1. The expression that will be used to perform maximization of the

parameters at time t+ 1 is the following:

ψ̂(t+ 1) = argmaxQ
ψ

(ψ, ψ̂(t)) (7)

The weights and component densities of the Gaussian mixture model are independent. Maximiza-

tion of equation 7 with respect to the weights and densities provide independent new estimates for the

Gaussian mixture model. The new estimates π̂k(t + 1) and θ̂(t + 1) are independent because they were

maximized independently[1]. This step computes the weights and the component densities of the Gaus-

sian mixture model, and computation involves for k components that make up the Gaussian mixture

model.

If the Zik label for the components are known then the weights of the components can be calculated

in the following way:

π̂k =

N∑
i=1

Zik
N

for all k components in the Gaussian mixture model Zik is an indicator variable that is 1 if Zi = k and

0 if otherwise. π̂k can then be interpreted as the proportion of observations that developed from the

kthcomponent density of the mixture.

However, the components of the mixture models are unknown meaning that the formula above can not

be applied. The estimate of the mixing proportions will then have to be approximated by an iterative

process. π̂k(t + 1) can be obtained by solving the following equation given that the constrains that
K∑
k=1

π̂k = 1 hold:

∂Q(Θ, Θ̂(t))

∂π̂k(t)
= 0
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Lagrange multiplier λ is used in order to take the constrains into account, consider the following equations

[1]:

∂

∂π̂k(t)

[
K∑
k=1

N∑
i=1

Ẑik(t)(logp(xi|θ̂k(t)) + logπ̂k(t)) + λ

(
K∑
k=1

π̂k(t)− 1

)]
= 0

∴
N∑
i=1

1

π̂k(t)
Ẑik(t) + λ = 0

Adding both sides by k representing the number on components, λ = −N , the following equation is

obtained:

π̂k(t) =

N∑
i=1

Ẑik(t)

N
(8)

all k components.

8 will be computed iteratively, and the weights of the k components in the data set will be determined.

The updated weights of the components will be obtained by using the following expression :

π̂k(t+ 1) =

N∑
i=1

Ẑik(t)

N

=

N∑
i=1

P (Zi = k|xi, ψ̂(t))
N

for all k components of the Gaussian mixture model.

The expression above represent the posterior probabilities that can be used obtain the K estimates of

the mixing probabilities at time t+ 1 that has been calculated over all the N observations [12].

Since a maximized expression of π̂k has been obtained, an expression for ψ = (θ1, θ2, ..., θK) that repre-

sents the component densities need to be determined. The objective function ∂Q(Θ, Θ̂(t)) need to be

maximized with respect to ψ̂(t). The expression for the maximized objective function can obtained by

�nding the solution of the equation:

∂Q(ψ, ψ̂(t))

∂ε̂(t)
=

∂

∂ε̂(t)

[
K∑
k=1

N∑
i=1

Ẑik(t)
(
logp(xi|θ̂k(t)) + logπ̂k(t)

)]

=

K∑
k=1

N∑
i=1

Ẑik(t)
∂logp

(
xi|θ̂k(t)

)
∂θ̂(t)

.

= 0
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The solution of the maximized objective function of the Gaussian mixture model exists in a closed

form. This makes it easier for the M-step to use the responsibilities obtained from the E-step to obtain

new and updated estimates. The iteration of the E and the M-step is performed iteratively until the

sequence of the log-likelihood converge, this happens when there is an insigni�cant change in the log-

likelihood function from time t and t + 1. This change is represented by a stopping criterion and the

iteration will then stop when the criteria is satis�ed.

Univariate Gaussian mixture models

The general principle of EM algorithm will be used to obtain k components that make up a univariate

Gausssian mixture model. The multivariate expression of the Gaussian mixture model will be presented

in the next section (as demonstrated in [12] and [13] ).

Consider the data set x = (x1, x2, ..., xN ) represents of independent and identically distributed unlabled

observations of sample size N . The observed variable x originates from a univariate Gaussian mixture

model that consists of K components. xi can be obtained using the following conditional probability

function:

p(xi|ψ) =
K∑
k=1

p(xi|θk)πk (9)

Equation 9 can be used to �nd ψ, which is the complete set of parameters which make up the univariate

Gaussian mixture model. The complete set consists the means and variances of the k di�erent components

that make up the Guassian mixture model. In addition the weights the k component densities are

all positive add up to 1. The components in the data set x are univariate Gaussian distributed i.e

Xi ∼ N(µk, σ̂k) for i = 1, 2, ..., N and k = 1, 2, ...,K. The component-conditional densities for all the k

components of the univariate Gaussian mixture model can be obtained in the following way:

p(xi|θk) = p(xi|µk, σ2
k) =

1√
2πσ2

k

exp

(
− 1

2πσ2
k

(xi − µk)2
)

E-step

The E-step calculates the responsibilites of each of the N observations. This is done for all k components

that make up the Gaussian mixture model.

Ẑik(t) = P (Zi = k|xi, Θ̂(t))
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=
π̂k(t)p

(
xi, Θ̂(t)

)
K∑
j=1

π̂j(t)p
(
xi|θ̂j(t)

)

=

π̂k

[
1√

2πσ̂2
k

exp
(
− 1

2σ2
k
(xi − µ̂k)2

)]
K∑
j=1

π̂j(t)

[
1√

2πσ̂2
j

exp
(
− 1

2σ2
j
(xi − µ̂j)2

)]
Equation ?? holds for i = 1, 2, ..., N and k = 1, 2, ...,K and t ≥ 0.

M-step

The M-step maximizes the objective function. Partial derivatives of the objective function with respect to

the parameters is computed in this step i.e partial derivatives ofψ = ((µ1, σ
2
1), (µ2, σ

2
2), ..., (µK , σ

2
K), π1, π2, ..., πK)

. The equations will be set to zero so that the roots of the equations are found. This stage is at time

t+ 1 of the iteration, and the estimates of the mixing probabilities can be computed using the following

equation:

π̂k(t+ 1) =

N∑
i=1

Ẑik
N

=

N∑
i=1

P (Zi = k|xi, ψ̂(t))
N

This is valid for i = 1, 2, ..., N and k = 1, 2, ...,K and t ≥ 0.

The M-step uses results obtained from the E-steps to obtain new or updated estimates. In order to �nd the

parameters for the speci�c component densities at time t+1 of the iteration. The component parameters

for each the component densities can be represent with θ = (θ1, θ2, ..., θK) = ((µ1, σ
2
1), (µ2, σ

2
2), ..., (µK , σ

2
K)),

in order to obtain the parameter estimates, the objective function needs to be di�erentiated partially with

respect to the µi or σ
2
i for i = 1, 2, ..., k. The partial derivatives of the objective function can be obtained

by �nding the roots of the following function:

∂Q(ψ, ψ̂(t))

∂θ̂(t)
=

K∑
k=1

N∑
i=1

Ẑik(t)
∂logp

(
xi|θ̂k(t)

)
∂θ̂(t)

= 0 (10)

An expression of the component-conditional density function is as follows:

logp
(
xi|θ̂k(t)

)
= logp

(
xi|µ̂k(t), σ̂2

k(t)
)

= log

[
1√

2πσ̂2
k(t)

exp

(
− 1

2σ2
k(t)

(xi − µ̂k(t))2
)]
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= log

(
1√
2π

)
+ log

(
1

σ̂2
k(t)

)
− (xi − µ̂k(t))2

2σ̂2
k(t)

(11)

The partial derivative of 11 with respect to µ̂k(t) and σ
2
k(t) yield the following equations respectively:

∂logp
(
x|θ̂k(t)

)
∂µ̂k(t)

=
(xi − µ̂k(t))2

σ̂2
k(t)

and

∂logp
(
xi|θ̂k(t)

)
∂σ̂2

k(t)
= − 1

2σ̂2
k(t)

+
(xi − µ̂k(t))2

2σ̂4
k(t)

Using 11 i.e the component-conditional density function for partial derivative of ∂θ̂(t) can re-written

in the following way:

∂Q(ψ, ψ̂(t))

∂θ̂(t)
=

K∑
k=1

N∑
i=1

Ẑik(t)
∂logp

(
xi|θ̂k(t)

)
∂θ̂(t)

=

K∑
k=1

N∑
i=1

Ẑik(t)
∂

∂θ̂(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂2
k(t)

)
− (xi − µ̂k(t))2

2σ̂2
k(t)

]
(12)

12 Can be used to solve the partial derivatives of µ̂k(t) and σ̂
2
k(t) are given below respectively:

N∑
i=1

Ẑik(t)
∂

∂µ̂k(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂2
k(t)

)
− (xi − µ̂k(t))2

2σ̂2
k(t)

]
= 0

and

N∑
i=1

Ẑik(t)
∂

∂σ̂2
k(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂2
k(t)

)
− (xi − µ̂k(t))2

2σ̂2
k(t)

]
= 0

The partial derivative for µ̂k(t) can be obtained in the following way:

N∑
i=1

Ẑik(t)
∂

∂µ̂k(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂2
k(t)

)
− (xi − µ̂k(t))2

2σ̂2
k(t)

]
= 0

.

N∑
i=1

Ẑik(t)
(xi − µ̂k(t))2

2σ̂2
k(t)

= 0

N∑
i=1

Ẑik(t)xi−
N∑
i=1

Ẑik(t)µ̂k(t) = 0
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N∑
i=1

Ẑik(t)xi =

N∑
i=1

Ẑik(t)µ̂k(t)

µ̂k(t) =

N∑
i=1

Ẑik(t)xi

N∑
i=1

Ẑik(t)

(13)

The partial derivative for σ̂k(t) can be obtained in the following way:

N∑
i=1

Ẑik(t)
∂

∂σ̂2
k(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂2
k(t)

)
− (xi − µ̂k(t))2

2σ̂2
k(t)

]
= 0

N∑
i=1

Ẑik(t)

[
− 1

2σ̂2
k(t)

+
(xi − µ̂k(t))2

2σ̂4
k(t)

]
= 0

−

N∑
i=1

Ẑik(t)

2σ̂2
k(t)

+

N∑
i=1

Ẑik(t)(xi − µ̂k(t))2

2σ̂4
k(t)

= 0

N∑
i=1

Ẑik(t)

2σ̂2
k(t)

=

N∑
i=1

Ẑik(t)(xi − µ̂k(t))2

2σ̂4
k(t)

σ̂2
k(t) =

N∑
i=1

Ẑik(t)(xi − µ̂k(t))2

N∑
i=1

Ẑik(t)

(14)

The expressions in 13 and 14 are used at the M-step of the iteration i.e time t + 1, therefore the

following expressions of the mean and variance are realized respectively:

µ̂k(t+ 1) =

N∑
i=1

Ẑik(t)xi

N∑
i=1

Ẑik(t)

for all k components of the univariate Guassian mixture model and t ≥ 0.

σ̂2
k(t+ 1) =

N∑
i=1

Ẑik(t)(xi − µ̂k(t))2

N∑
i=1

Ẑik(t)

for all k components of the univariate Guassian mixture model and t ≥ 0.

Four steps of EM algorithm for Univariate Gaussian mixture models

1. Initialize values of the unknown parameters at t = 0 i.e initialize µ̂k(0) and σ̂
2
k(0) and π̂k(0), for
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all k components

2. E-step:

Responsibilities that will be used to estimate the posterior probabilities at time step t with t ≥ 0 are

computed in this step using

Ẑik(t) =
π̂k(t)p

(
xi, ψ̂(t)

)
K∑
j=1

π̂j(t)p
(
xi|θ̂j(t)

) =
π̂k

[
1√

2πσ̂2
k

exp
(
− 1

2σ2
k
(xi − µ̂k)2

)]
K∑
j=1

π̂j(t)

[
1√

2πσ̂2
j

exp
(
− 1

2σ2
j
(xi − µ̂j)2

)]
for all N observations and k components in the sample.

3. M-step:

Obtain the maximum likelihood estimates by maximizing the objective function at time step t + 1

with t ≥ 0 using

π̂k(t+ 1) =

N∑
i=1

Ẑik
N

for all k components

µ̂k(t+ 1) =

N∑
i=1

Ẑik(t)xi

N∑
i=1

Ẑik(t)

for all k components

and

σ̂2
k(t+ 1) =

N∑
i=1

Ẑik(t)(xi − µ̂k(t))2

N∑
i=1

Ẑik(t)

for all k components

4. Repeat the E-step and M-step until convergence to the global maxima.

Multivariate Gaussian mixture model

Let x = (x1,x2, ...,xN ) ∈ < represent an independent and identically distributed observations that

are unlabeled of sample size N . The xi's originates from a multivariate Gaussian mixture model that

consists of K components.

The model's conditional density function is expressed as follows

p(x|µk,Σk) =
1

(2π)
p
2 |Σk|

1
2

exp

{
−1

2
(x− µk)

T
(x− µk)

}
Four steps of EM algorithm for Multivariate Gaussian mixture models
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1. Initialize values of the unknown parameters at t = 0 i.e initialize µ̂k(0) and σ̂
2
k(0) and π̂k(0), for

all k components

2. E-step:

Responsibilities that will be used to estimate the posterior probabilities at time step t with t ≥ 0 are

computed in this step using

Ẑik(t) =
π̂k(t)p

(
xi, ψ̂(t)

)
K∑
j=1

π̂j(t)p
(
xi|θ̂j(t)

) =
π̂k

[
1√

2πσ̂2
k

exp
(
− 1

2σ2
k
(xi − µ̂k)2

)]
K∑
j=1

π̂j(t)

[
1√

2πσ̂2
j

exp
(
− 1

2σ2
j
(xi − µ̂j)2

)]
for all N observations and k components in the sample.

3. M-step:

Obtain the maximum likelihood estimates by maximizing the objective function at time step t + 1

with t ≥ 0 using

π̂k(t+ 1) =

N∑
i=1

Ẑik
N

for all k components

µ̂k(t+ 1) =

N∑
i=1

Ẑik(t)xi

N∑
i=1

Ẑik(t)

for all k components

and

Σ̂k(t)(t+ 1) =

N∑
i=1

Ẑik(t)(xi − µ̂k(t))2

N∑
i=1

Ẑik(t)

for all k components

4. Repeat the E-step and M-step until convergence to the global maxima.

4 Application

In this section the parameters of the Gaussian mixture model will be estimated using two di�erent initial-

ization strategies namely: Hastie's method and the alternative method. The two distinct initialization

strategies will be performed on a sample randomly generated by the rannor function in SAS. The gener-

ated samples consist of two clusters and the number of clusters are �xed i.e k = 2. The groups 4 apart,

thus 4 represents the distance between the mean components of the two Gaussian components.
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The �rst Gaussian component has been generated from the Gaussian distribution with parameters µ1 = 50

with known population variance σ2 = 16, the second Gaussian component is 4 away with parameters

µ2 = µ1 +4 and the population variance known i.e σ2 = 16. Two initialization strategies will be used

to �nd parameters of a Gaussian mixture model with two components. The two initialization strategies

will be employed. An investigation of the techniques will be undertaken. And inference will made based

on the absolute bias of means and mixing proportions of the Gaussian mixture model.

4.1 Hastie's method

The number of components of the mixture of Gaussian model will be �xed at two (k = 2). Hastie's

method chooses an initial starting values µ̂1 and µ̂2 at random from the sample. The sample variances

σ2
1 and σ2

2 are set to the overall sample variance
N∑
i=1

(xi−x̄)2

N . The Hastie strategy will be evaluated under

equal mixing proportions (π̂1 = π̂2 = 0.5 ) and unequal proportions mixing proportions (π̂1 = 0.3 and

π̂2 = 0.7). In both instances where the mixing proportions are equal and unequal. The method by

Hastie under di�erent deltas, the deltas indicate how far or close the two components are. Once the EM

algorithm is performed under di�erent delta values absolute bias of the means, pies and

number of iterations it takes for the algorithm to reach convergence will be reported on.

4.1.1 Equal Pies (π̂1 = π̂2 = 0.5 )

1000 simulations are performed under di�erent delta values (4 = 15, 4 = 20 and 4 = 25), the

simulations are performed under seven di�erent sample sizes (n =20, 50, 100, 200, 300, 400, 500). The

following results are observed.

Absolute bias of the two mean components for di�erent delta values
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Figure 1: Bias of means for the two components under di�erent means as sample size increases

The absolute bias of the two mean components are observed in Figure 1 for a Gaussian mixture

model with two components. The absolute bias for both mean components are relatively the same under

di�erent 4values. Components with small 4 between them have the least absolute bias of the means

while Gaussian components with high 4 are more bias, which is peculiar, because components closer to

each other are expected to give more absolute bias means than objects much further from each other. It

is not easy to separate components that are close to each other compared to components that are far from

each other. An absolute bias of less about 5.3% is observed for both mean components of the Gaussian

mixture model, and this value becomes smaller as the sample size increases.

Absolute bias of the two mixing proportions components for di�erent delta values
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Figure 2: Bias of mixing proportions as sample size increases

Equal mixing proportions imply that the components of the Gaussian mixture model have the same

responsibility in explaining observations in the sample. The absolute bias results in Figure 2 shows the

observed results for di�erent delta values. Components much further from each other give the least

absolute bias estimates of the mixing proportion than components that are close to each other. The

initialization strategy provides an absolute bias of the pies value is ≤ 0.6% across all 4. The absolute

bias of the pies gets smaller as the sample size increases.

Number of iterations for di�erent delta values

Figure 3: Number of iterations di�erent deltas as sample size increases

The algorithm takes longer to converge to a solution when the two components are close. However

the number of iterations before convergence increases as the sample size increase, implying that it the
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algorithm takes longer to �nd estimates of a Gaussian mixture model with a large sample. This makes

sense because more observations in a sample means that the EM algorithm has to go through more

elements in each iteration.

4.1.2. Unequal Pies (π̂1 = 0.3 and π̂2 = 0.7)

The mixing probabilities of the Gaussian mixture model are di�erent, meaning that each take di�erent

responsibilities in explaining the data set. In this case the second component has a higher responsibil-

ity than the �rst pie. Hastie's initialization technique is employed and the absolute bias of the mean

components and mixing proportions is investigated.

Absolute bias of the two mean components for di�erent delta values

Figure 4: Bias of means for the two components under di�erent means as sample size increases

The responsibilities that make up the Gaussian mixture model represent the proportion of the Gaus-

sian mixture model each component that a Gaussian component explains in the sample. A high responsi-
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bility associated with a component suggest that the Gaussian mixture component has a higher weight in

the data set. From Figure 4 it is noted that the absolute bias of the mean components for the component

with a smaller mixing proportion π̂ = 0.3 is more compared to the absolute bias of mean components

with higher mixing proportions π̂ = 0.7. With π̂ = 0.3. The initilization strategy scores an absolute bias

of less 2% while π̂ = 0.7 is 0.0051%. The absolute bias of the means decreases as the sample size increase.

Absolute bias of the two mixing proportions components for di�erent delta values

Figure 5: Bias of mixing proportions as sample size increases

The absolute bias of the pies aim to evaluate Hastie's initialization strategy to give correct estimates

for mixing proportions of the Gaussian mixture model. Hastie's method give an absolute bias of the

component with a smaller mixing proportion is 5.3% while the component with a higher mixing probability

is 2.28%. Mixing proportions of components much further from each other give smaller absolute bias

implying that the strategy gives bias values when the components are closer to each other. However, the
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absolute bias of means decreases as the sample size increases.

Number of iterations for di�erent delta values

Figure 6: Number of iterations di�erent deltas as sample size increases

Figure 6 shows the number of iterations for the algorithm to reach convergence for the di�erent delta

values. Gaussian mixture models with small delta values take longer to reach convergence. In addition,

the convergence rate increase as the sample size increases.

4.2 Alternative method

The alternative method takes a randomly generated sample from a normal distribution, sorts the obser-

vations in ascending order. Then divides the data set into two halves with the median Q2 separating

the upper quartile Q3 and the lower quartile Q1. The initial are calculated in the following manner : µ̂1

is set to be the average of values found in the �rst half and µ̂2 is initialized to be values in the other

half. The sample variances s2
1 and s

2
2 are set to the overall sample variance

N∑
i=1

(xi−x̄)2

N . The initialization

strategies will be evaluated under equal mixing proportions (π̂1 = π̂2 = 0.5 ) and unequal proportions

mixing proportions (π̂1 = 0.3 and π̂2 = 0.7) . In both instances where the mixing proportions are equal

and unequal, under di�erent deltas, the deltas indicate how far or close the two components are. Once

the EM algorithm is performed, the absolute bias of the means, pies and number of iterations it takes for

the algorithm to reach convergence will be reported on.

4.2.1 Equal Pies (π̂1 = π̂2 = 0.5 )

Bias of the two mean components for di�erent delta values

The absolute bias of the mean components of the Gaussian mixture model for the alternative method is

depicted in Figure 7. This strategy gives an absolute bias value of less than 1% for both mean components;
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Figure 7: Bias of means for the two components under di�erent means as sample size increases

it provides less absolute bias values for components that are far from each other. The absolute bias of

the mean components decreases as the sample size decreases.

Bias of the two mixing proportions components for di�erent delta values
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Figure 8: Bias of mixing proportions as sample size increases

The absolute bias of the mixing proportions under equal pies is 0.16%. The alternative method

performs better for components of higher delta values. The absolute bias of the mixing proportions

decrease as the sample increases.

Number of iterations for di�erent delta values

Figure 9: Number of iterations di�erent deltas as sample size increases

Figure 9 shows the number of iterations for the algorithm to reach convergence for the di�erent delta

values. Convergence takes longer for components closer to each other and increases with an increase in

the sample size.

4.2.2 Unequal Pies (π̂1 = 0.3 and π̂2 = 0.7)

Absolute bias of the two mean components for di�erent delta values
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Figure 10: Bias of means for the two components under di�erent means as sample size increases

The absolute bias of the mean of components with smaller mixing proportion is higher (0.43%) than the

absolute bias of mean component belonging to larger mixing proportion (0.2%). This strategy performs

better when mixture components are much further than each other. However the absolute bias of the

mean components gets smaller as the sample size increases.

Absolute bias of the two mixing proportions components for di�erent delta values
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Figure 11: Bias of mixing proportions as sample size increases

The absolute bias of the smaller mixing proportion (5%) is smaller than the absolute bias of than the

absolute bias of the bigger mixing proportion (21%). The alternative strategy gives less bias estimates

when the two mixture components are much further from each other. However the absolute bias decreases

for all values of delta as the sample size increases.

Number of iterations for di�erent delta values

Figure 12 shows the number of iterations for the algorithm to reach convergence for the di�erent

delta values. The closer the components are, the more iterations the algorithm takes before reaching

convergence, while components further from each other takes less to converge. It is also observed that

the bigger the sample size, the longer the iteration will take before it reaches convergence.
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Figure 12: Number of iterations di�erent deltas as sample size increases

4.3 Comparison of two strategies

Case 1: Equal Pies

The alternative strategy gives signi�cantly smaller absolute bias results for both the mean and mixing

proportions. Components means that are much further away from each other give smaller absolute bias

results under the alternative method. For this reason the alternative initialization strategy is useful in

estimating parameters of the Gaussian mixture model for larger delta values. Hastie's strategy might

give bias parameter estimates it performs better in �nding parameter estimates of mean components that

have smaller delta values between them.

The alternative method reaches convergence faster than Hastie's method.

Case 2: Unequal Pies

In the case of unequal pies the alternative method and Hastie's initialization strategy give relatively the

same performance for the absolute bias of the mean and mixing proportions. Both strategies perform

better with mean components with larger delta values between them.

The alternative method converges at a faster rate than Hastie's method.

5 Conclusion

The alternative initialization strategy produces smaller absolute bias values for both the mean components

and mixing proportions when the mixing proportions are equal and converges at a faster rate. However

the initialization strategies perform relatively in the same way when the Pies are not equal, even though

the alternative method converges at a faster rate than Hastie's method the performance of the two

strategies produce satisfactory results.
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Appendix

Equal Pies: Hastie's method

SAS Code Used:

options ls=132 nodate pageno=1 ;

proc iml ;

pars = {1000 50 15 20 16 16 0.5 0.5 ,

1000 50 15 50 16 16 0.5 0.5 ,

1000 50 15 100 16 16 0.5 0.5 ,

1000 50 15 200 16 16 0.5 0.5 ,

1000 50 15 300 16 16 0.5 0.5 ,

1000 50 15 400 16 16 0.5 0.5 ,

1000 50 15 500 16 16 0.5 0.5 };

do kk = 1 to nrow(pars) ;

sim_size = pars[kk,1] ;

do jj= 1 to sim_size ;

pi1=pars[kk,7] ;

pi2=pars[kk,8] ;

delta=pars[kk,3] ;

m1=pars[kk,2] ;

m2=m1+delta ;

v1=pars[kk,5] ;

v2=pars[kk,6] ;

n=pars[kk,4] ;

n1=round(n*pi1) ;

n2=n-n1 ;

sd1 = J(n1,1,0) ;

sd2 = J(n2,1,0) ;

x1=rannor(sd1)*sqrt(v1)+m1 ;

x2=rannor(sd2)*sqrt(v2)+m2 ;

x = x1 // x2 ;
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k=2 ;

call sort(x,{1}) ;

mm = x[sample(1:n,2,"NoReplace")] ;

m1=min(mm) ;

m2=max(mm) ;

if m1=m2 then print "Equal mean values" ;

v1=var(x) ;

v2=v1 ;

stopc = 0.001 ;

lli=-100000000000000000000 ;

diff=stopc+1 ;

do i = 1 to 50 while (diff>stopc);

s1=sqrt(v1) ;

s2=sqrt(v2) ;

n1 = pdf("Normal",x,m1,s1) ;

n2 = pdf("Normal",x,m2,s2) ;

gm = pi1*n1 || pi2*n2 ;

gm = gm / gm[,+];

m1 = sum(gm[,1]#x) / sum(gm[,1]) ;

m2 = sum(gm[,2]#x) / sum(gm[,2]) ;

v1 = sum(gm[,1] # (x-m1)##2) / sum(gm[,1]) ;

v2 = sum(gm[,2] # (x-m2)##2) / sum(gm[,2]) ;

pi1 = (gm[,1])[:];

pi2 = (gm[,2])[:];

ll = sum(log(pi1*n1+pi2*n2)) ;

results = results // (i || m1 || m2 || v1 || v2 || pi1 || pi2 || ll) ;

diff = abs(lli-ll) ;

lli=ll ;

end ;

varest = var(results[,2]) || var(results[,3]) ||

var(results[,4]) || var(results[,5]) ||

var(results[,6]) || var(results[,7]) ;
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res_it = res_it // (jj || i-1 || m1 || m2 || v1 || v2 || pi1 || pi2 || ll || varest) ;

free results ;

end ;

nm={"ss" "nr" "it" "m1" "m2" "v1" "v2" "pi1" "pi2" "ll"

"varm1" "varm2" "varv1" "varv2" "varpi1" "varpi2"

"sim_size" "tm1" "delta" "n" "tv1" "tv2"

"tpi1" "tpi2" } ;

ares_it = ares_it // (kk || res_it[:,] || pars[kk,] );

end ;

print ares_it[colname=nm] ;

create simResDelta15 from ares_it[colname=nm] ;

append from ares_it ;

close simResDelta15 ;

quit ;

data simRes15Delta ;

set simResDelta15 ;

bm1 = abs(m1-tm1) ;

bm2 = abs(m2-(tm1+delta)) ;

*bv1 = abs(v1-tv1);

*bv2 = abs(v2-tv2) ;

bpi1= abs(pi1-tpi1) ;

bpi2= abs(pi2-tpi2) ;

run ;

symbol1 interpol=join width=2
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color=blue

value=dot

height=.5;

symbol2 interpol=join width=2

color=green

value=dot

height=.5;

symbol3 interpol=join width=2

color=red

value=dot

height=.5;

%macro plt(v1,v2,v3) ;

proc gplot data=simRes15Delta ;

plot &v1*n=delta ;

title " Absolute bias - &v3 component &v2" ;

run ;

%mend ;

*%plt(bm1,1,mean) ;

*%plt(bm2,2,mean) ;

*%plt(bv1,1,variance) ;

*%plt(bv2,2,variance) ;

*%plt(bpi1,1,pi) ;

*%plt(bpi2,2,pi) ;

*%macro plt1(v1,v2,v3) ;

*proc gplot data=simRes15Delta;

*plot &v1*n=delta ;

*title" Variance - &v3 component &v2" ;

*run ;
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*%mend ;

*%plt1(varm1,1,mean) ;

*%plt1(varm2,2,mean) ;

*%plt1(varpi1,1,pi) ;

*proc gplot data=simRes15Delta ;

*plot it*n=delta ;

*title" Average number of iterations to solution" ;

*run;

*quit ;

/*Code to plot the graphs for different delta values*/

data Diffdeltas ;

set Simres15delta Simres20delta Simres25delta;

run;

%macro plt5(v1,v2,v3);

proc gplot data = Diffdeltas;

plot &v1*n=delta;

title " Absolute bias of &v3 component &v2 of the Gaussian mixture model for different delta values ";

run;

%mend ;

%plt5(bm1,1,mean) ;

%plt5(bm2,2,mean) ;

%plt5(bpi1,1,pi) ;

%plt5(bpi2,2,pi) ;

%macro plt6(v1) ;

proc gplot data = Diffdeltas ;

plot &v1*n=delta ;
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title "Number of iterations for the different Deltas" ;

run ;

%mend ;

%plt6(it) ;

/*data ab;

set Simres10delta Simres15delta;

run;

%macro plt5(v1,v2,v3) ;

proc gplot data=ab ;

plot &v1*n=delta ;

title" Absolute bias - &v3 component &v2" ;

run ;

%mend ;

%plt5(bm1,1,mean) ;

*/
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Equal Pies: Alternative method

options ls=132 nodate pageno=1 ;

proc iml ;

pars = {1000 50 15 20 16 16 0.5 0.5 ,

1000 50 15 50 16 16 0.5 0.5 ,

1000 50 15 100 16 16 0.5 0.5 ,

1000 50 15 200 16 16 0.5 0.5 ,

1000 50 15 300 16 16 0.5 0.5 ,

1000 50 15 400 16 16 0.5 0.5 ,

1000 50 15 500 16 16 0.5 0.5 } ;

do kk = 1 to nrow(pars) ;

sim_size = pars[kk,1] ;

do jj= 1 to sim_size ;

pi1=pars[kk,7] ;

pi2=pars[kk,8] ;

delta=pars[kk,3] ;

m1=pars[kk,2] ;

m2=m1+delta ;

v1=pars[kk,5] ;

v2=pars[kk,6] ;

n=pars[kk,4] ;

n1=round(n*pi1) ;

n2=n-n1 ;

sd1 = J(n1,1,0) ;

sd2 = J(n2,1,0) ;

x1=rannor(sd1)*sqrt(v1)+m1 ;

x2=rannor(sd2)*sqrt(v2)+m2 ;

x = x1 // x2 ;

k=2 ;

pi1=0.5 ;

pi2=1-pi1 ;

call sort(x,{1}) ;
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call qntl(q,x) ;

qpi = q[2] ;

mx = x#(x<=qpi) || x#(x>qpi) ;

m1 = loc(mx[,1]^=0) ;

m1 = (mx[,1])[m1] ;

m1 = m1[:] ;

m2 = loc(mx[,2]^=0) ;

m2 = (mx[,2])[m2] ;

m2 = m2[:] ;

v1 = var(x) ;

v2=v1 ;

stopc = 0.001 ;

lli=-100000000000000000000 ;

diff=stopc+1 ;

do i = 1 to 50 while (diff>stopc);

s1=sqrt(v1) ;

s2=sqrt(v2) ;

n1 = pdf("Normal",x,m1,s1) ;

n2 = pdf("Normal",x,m2,s2) ;

gm = pi1*n1 || pi2*n2 ;

gm = gm / gm[,+];

m1 = sum(gm[,1]#x) / sum(gm[,1]) ;

m2 = sum(gm[,2]#x) / sum(gm[,2]) ;

v1 = sum(gm[,1] # (x-m1)##2) / sum(gm[,1]) ;

v2 = sum(gm[,2] # (x-m2)##2) / sum(gm[,2]) ;

pi1 = (gm[,1])[:];

pi2 = (gm[,2])[:];

ll = sum(log(pi1*n1+pi2*n2)) ;

results = results // (i || m1 || m2 || v1 || v2 || pi1 || pi2 || ll) ;

diff = abs(lli-ll) ;

lli=ll ;

end ;

varest = var(results[,2]) || var(results[,3]) ||
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var(results[,4]) || var(results[,5]) ||

var(results[,6]) || var(results[,7]) ;

res_it = res_it // (jj || i-1 || m1 || m2 || v1 || v2 || pi1 || pi2 || ll || varest) ;

free results ;

end ;

nm={"ss" "nr" "it" "m1" "m2" "v1" "v2" "pi1" "pi2" "ll"

"varm1" "varm2" "varv1" "varv2" "varpi1" "varpi2"

"sim_size" "tm1" "delta" "n" "tv1" "tv2"

"tpi1" "tpi2" } ;

ares_it = ares_it // (kk || res_it[:,] || pars[kk,] );

end ;

print ares_it[colname=nm] ;

create simResDelta15 from ares_it[colname=nm] ;

append from ares_it ;

close simResDelta15 ;

quit ;

data simRes15Delta ;

set simResDelta15 ;

bm1 = abs(m1-tm1) ;

bm2 = abs(m2-(tm1+delta)) ;

bv1 = abs(v1-tv1);

bv2 = abs(v2-tv2) ;

bpi1= abs(pi1-tpi1) ;

bpi2= abs(pi2-tpi2) ;
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run ;

symbol1 interpol=join width=2

color=blue

value=dot

height=.5;

symbol2 interpol=join width=2

color=green

value=dot

height=.5;

symbol3 interpol=join width=2

color=red

value=dot

height=.5;

%macro plt(v1,v2,v3) ;

proc gplot data=simRes15Delta ;

plot &v1*n=delta ;

title" Absolute bias - &v3 component &v2" ;

run ;

%mend ;

*%plt(bm1,1,mean) ;

*%plt(bm2,2,mean) ;

*%plt(bv1,1,variance) ;

*%plt(bv2,2,variance) ;

*%plt(bpi1,1,pi) ;

*%plt(bpi2,2,pi) ;

/*Code to plot the graphs for different delta values*/

data Diffdeltas ;
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set Simres25delta Simres15delta Simres20delta;

run;

%macro plt5(v1,v2,v3);

proc gplot data = Diffdeltas;

plot &v1*n=delta;

title "Absolute bias - &v3 component &v2 of the Gaussian mixture model for different delta values";

run;

%mend ;

%plt5(bm1,1,mean);

%plt5(bm2,2,mean) ;

%plt5(bpi1,1,pi) ;

%plt5(bpi2,2,pi) ;

%macro plt6(v1);

proc gplot data = Diffdeltas;

plot &v1*n=delta;

title "Number of iterations for the different Deltas";

run;

%mend ;

%plt6(it) ;

Unequal Pies: Hastie's method

options ls=132 nodate pageno=1 ;
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proc iml ;

pars = {1000 50 15 20 16 16 0.3 0.7 ,

1000 50 15 50 16 16 0.3 0.7 ,

1000 50 15 100 16 16 0.3 0.7 ,

1000 50 15 200 16 16 0.3 0.7 ,

1000 50 15 300 16 16 0.3 0.7 ,

1000 50 15 400 16 16 0.3 0.7 ,

1000 50 15 500 16 16 0.3 0.7 } ;

do kk = 1 to nrow(pars) ;

sim_size = pars[kk,1] ;

do jj= 1 to sim_size ;

pi1=pars[kk,7] ;

pi2=pars[kk,8] ;

delta=pars[kk,3] ;

m1=pars[kk,2] ;

m2=m1+delta ;

v1=pars[kk,5] ;

v2=pars[kk,6] ;

n=pars[kk,4] ;

n1=round(n*pi1) ;

n2=n-n1 ;

sd1 = J(n1,1,0) ;

sd2 = J(n2,1,0) ;

x1=rannor(sd1)*sqrt(v1)+m1 ;

x2=rannor(sd2)*sqrt(v2)+m2 ;

x = x1 // x2 ;

k=2 ;

pi1=0.3 ;

pi2=1-pi1 ;

call sort(x,{1}) ;

mm = x[sample(1:n,2,"NoReplace")] ;

m1=min(mm) ;

m2=max(mm) ;
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if m1=m2 then print "Equal mean values" ;

v1=var(x) ;

v2=v1 ;

stopc = 0.001 ;

lli=-100000000000000000000 ;

diff=stopc+1 ;

do i = 1 to 50 while (diff>stopc);

s1=sqrt(v1) ;

s2=sqrt(v2) ;

n1 = pdf("Normal",x,m1,s1) ;

n2 = pdf("Normal",x,m2,s2) ;

gm = pi1*n1 || pi2*n2 ;

gm = gm / gm[,+];

m1 = sum(gm[,1]#x) / sum(gm[,1]) ;

m2 = sum(gm[,2]#x) / sum(gm[,2]) ;

v1 = sum(gm[,1] # (x-m1)##2) / sum(gm[,1]) ;

v2 = sum(gm[,2] # (x-m2)##2) / sum(gm[,2]) ;

pi1 = (gm[,1])[:];

pi2 = (gm[,2])[:];

ll = sum(log(pi1*n1+pi2*n2)) ;

results = results // (i || m1 || m2 || v1 || v2 || pi1 || pi2 || ll) ;

diff = abs(lli-ll) ;

lli=ll ;

end ;

varest = var(results[,2]) || var(results[,3]) ||

var(results[,4]) || var(results[,5]) ||

var(results[,6]) || var(results[,7]) ;

res_it = res_it // (jj || i-1 || m1 || m2 || v1 || v2 || pi1 || pi2 || ll || varest) ;

free results ;

end ;
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nm={"ss" "nr" "it" "m1" "m2" "v1" "v2" "pi1" "pi2" "ll"

"varm1" "varm2" "varv1" "varv2" "varpi1" "varpi2"

"sim_size" "tm1" "delta" "n" "tv1" "tv2"

"tpi1" "tpi2" } ;

ares_it = ares_it // (kk || res_it[:,] || pars[kk,] );

end ;

print ares_it[colname=nm] ;

create simResDelta15 from ares_it[colname=nm] ;

append from ares_it ;

close simResDelta15 ;

quit ;

data simRes15Delta ;

set simResDelta15 ;

bm1 = abs(m1-tm1) ;

bm2 = abs(m2-(tm1+delta)) ;

bv1 = abs(v1-tv1);

bv2 = abs(v2-tv2) ;

bpi1= abs(pi1-tpi1) ;

bpi2= abs(pi2-tpi2) ;

run ;

symbol1 interpol=join width=2

color=blue

value=dot

height=.5;

symbol2 interpol=join width=2

color=green

49



value=dot

height=.5;

symbol3 interpol=join width=2

color=red

value=dot

height=.5;

%macro plt(v1,v2,v3) ;

proc gplot data=simRes15Delta ;

plot &v1*n=delta ;

title" Absolute bias - &v3 component &v2 of the Gaussian mixture model for different delta values" ;

run ;

%mend ;

*%plt(bm1,1,mean) ;

*%plt(bm2,2,mean) ;

*%plt(bv1,1,variance) ;

*%plt(bv2,2,variance) ;

*%plt(bpi1,1,pi) ;

*%plt(bpi2,2,pi) ;

%macro plt1(v1,v2,v3) ;

proc gplot data=simRes15Delta;

plot &v1*n=delta ;

title" Variance - &v3 component &v2" ;

run ;

%mend ;

*%plt1(varm1,1,mean) ;

*%plt1(varm2,2,mean) ;

*%plt1(varpi1,1,pi) ;
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*proc gplot data=simRes15Delta ;

*plot it*n=delta ;

*title" Average number of iterations to solution" ;

*run;

*quit ;

/*data ab;

set Simres10delta Simres15delta;

run;

%macro plt5(v1,v2,v3) ;

proc gplot data=ab ;

plot &v1*n=delta ;

title" Absolute bias - &v3 component &v2" ;

run ;

%mend ;

%plt5(bm1,1,mean) ;

*/

/*Code to plot the graphs for different delta values*/

data Diffdeltas ;

set Simres25delta Simres15delta Simres20delta;

run;

%macro plt5(v1,v2,v3);

proc gplot data = Diffdeltas;

plot &v1*n=delta;

title "Absolute bias - &v3 component &v2 of the Gaussian mixture model for different delta values";

run;

%mend ;

%plt5(bm1,1,mean);

%plt5(bm2,2,mean) ;
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%plt5(bpi1,1,pi) ;

%plt5(bpi2,2,pi) ;

%macro plt6(v1);

proc gplot data = Diffdeltas;

plot &v1*n=delta;

title "Number of iterations for the different Deltas";

run;

%mend ;

%plt6(it) ;

Unequal Pies: Alternative method

options ls=132 nodate pageno=1 ;

proc iml ;

pars = {1000 50 15 20 16 16 0.3 0.7 ,

1000 50 15 50 16 16 0.3 0.7 ,

1000 50 15 100 16 16 0.3 0.7 ,

1000 50 15 200 16 16 0.3 0.7 ,

1000 50 15 300 16 16 0.3 0.7 ,

1000 50 15 400 16 16 0.3 0.7 ,

1000 50 15 500 16 16 0.3 0.7 } ;

do kk = 1 to nrow(pars) ;

sim_size = pars[kk,1] ;

do jj= 1 to sim_size ;

pi1=pars[kk,7] ;

pi2=pars[kk,8] ;

delta=pars[kk,3] ;

m1=pars[kk,2] ;
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m2=m1+delta ;

v1=pars[kk,5] ;

v2=pars[kk,6] ;

n=pars[kk,4] ;

n1=round(n*pi1) ;

n2=n-n1 ;

sd1 = J(n1,1,0) ;

sd2 = J(n2,1,0) ;

x1=rannor(sd1)*sqrt(v1)+m1 ;

x2=rannor(sd2)*sqrt(v2)+m2 ;

x = x1 // x2 ;

k=2 ;

pi1=0.3 ;

pi2=1-pi1 ;

call sort(x,{1}) ;

call qntl(q,x) ;

qpi = q[2] ;

mx = x#(x<=qpi) || x#(x>qpi) ;

m1 = loc(mx[,1]^=0) ;

m1 = (mx[,1])[m1] ;

m1 = m1[:] ;

m2 = loc(mx[,2]^=0) ;

m2 = (mx[,2])[m2] ;

m2 = m2[:] ;

v1 = var(x) ;

v2=v1 ;

stopc = 0.001 ;

lli=-100000000000000000000 ;

diff=stopc+1 ;

do i = 1 to 50 while (diff>stopc);

s1=sqrt(v1) ;

s2=sqrt(v2) ;

n1 = pdf("Normal",x,m1,s1) ;

n2 = pdf("Normal",x,m2,s2) ;
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gm = pi1*n1 || pi2*n2 ;

gm = gm / gm[,+];

m1 = sum(gm[,1]#x) / sum(gm[,1]) ;

m2 = sum(gm[,2]#x) / sum(gm[,2]) ;

v1 = sum(gm[,1] # (x-m1)##2) / sum(gm[,1]) ;

v2 = sum(gm[,2] # (x-m2)##2) / sum(gm[,2]) ;

pi1 = (gm[,1])[:];

pi2 = (gm[,2])[:];

ll = sum(log(pi1*n1+pi2*n2)) ;

results = results // (i || m1 || m2 || v1 || v2 || pi1 || pi2 || ll) ;

diff = abs(lli-ll) ;

lli=ll ;

end ;

varest = var(results[,2]) || var(results[,3]) ||

var(results[,4]) || var(results[,5]) ||

var(results[,6]) || var(results[,7]) ;

res_it = res_it // (jj || i-1 || m1 || m2 || v1 || v2 || pi1 || pi2 || ll || varest) ;

free results ;

end ;

nm={"ss" "nr" "it" "m1" "m2" "v1" "v2" "pi1" "pi2" "ll"

"varm1" "varm2" "varv1" "varv2" "varpi1" "varpi2"

"sim_size" "tm1" "delta" "n" "tv1" "tv2"

"tpi1" "tpi2" } ;

ares_it = ares_it // (kk || res_it[:,] || pars[kk,] );

end ;

print ares_it[colname=nm] ;

create simResDelta15 from ares_it[colname=nm] ;

append from ares_it ;
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close simResDelta15 ;

quit ;

data simRes15Delta ;

set simResDelta15 ;

bm1 = abs(m1-tm1) ;

bm2 = abs(m2-(tm1+delta)) ;

bv1 = abs(v1-tv1);

bv2 = abs(v2-tv2) ;

bpi1= abs(pi1-tpi1) ;

bpi2= abs(pi2-tpi2) ;

run ;

symbol1 interpol=join width=2

color=blue

value=dot

height=.5;

symbol2 interpol=join width=2

color=green

value=dot

height=.5;

symbol3 interpol=join width=2

color=red

value=dot

height=.5;

%macro plt(v1,v2,v3) ;

proc gplot data=simRes15Delta ;

55



plot &v1*n=delta ;

title" Absolute bias - &v3 component &v2" ;

run ;

%mend ;

*%plt(bm1,1,mean) ;

*%plt(bm2,2,mean) ;

*%plt(bv1,1,variance) ;

*%plt(bv2,2,variance) ;

*%plt(bpi1,1,pi) ;

*%plt(bpi2,2,pi) ;

%macro plt1(v1,v2,v3) ;

proc gplot data=simRes15Delta;

plot &v1*n=delta ;

title" Variance - &v3 component &v2" ;

run ;

%mend ;

*%plt1(varm1,1,mean) ;

*%plt1(varm2,2,mean) ;

*%plt1(varpi1,1,pi) ;

*proc gplot data=simRes15Delta ;

*plot it*n=delta ;

*title" Average number of iterations to solution" ;

*run;

*quit ;

/*Code to plot the graphs for different delta values*/

data Diffdeltas ;

set Simres25delta Simres15delta Simres20delta;

run;

%macro plt5(v1,v2,v3);

56



proc gplot data = Diffdeltas;

plot &v1*n=delta;

title "Absolute bias - &v3 component &v2 of the Gaussian mixture model for different delta values";

run;

%mend ;

%plt5(bm1,1,mean);

%plt5(bm2,2,mean) ;

%plt5(bpi1,1,pi) ;

%plt5(bpi2,2,pi) ;

%macro plt6(v1);

proc gplot data = Diffdeltas;

plot &v1*n=delta;

title "Number of iterations for the different Deltas";

run;

%mend ;

%plt6(it) ;
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Abstract

This study investigates different algorithms to estimate parameters of the inverse gamma distribution.

Computational challenges of the estimation will be briefly addressed. The parameters will be tested by

comparing the cumulative distribution function of each of the estimated parameters from the algorithms

with the empirical distribution function of real data as well as the empirical distribution function of

simulated data, using goodness-of-fit measures.
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1 Introduction

The gamma distribution is a skewed distribution (non-symmetrical) and has only positive parameters. It has

two parameters, i.e. α and β where one is known as the scale parameter and the other known as the shape

parameter, respectively. The probability density function (pdf) of a gamma distribution is as given by:

f(y) =
βα

Γ(α)
yα−1e−βy (1)

where α, β > 0; y > 0, where the distribution is denoted by Y ∼Gamma(α, β), Γ (.).

In this study, the results given and the methodology included in the estimation of parameters will be for

the inverse gamma distribution. Thus if a random variable Y has pdf in equation (1), the random variable

X = 1
Y has the inverse gamma distribution. Since this is a transformation of random variables, the first

step to take is to determine the Jacobian of the transformation from Y to X before obtaining the pdf of the

random variable X. The Jacobian can be determined as

J(Y → X) =| ∂
∂x

(x−1) |= x−2.

The pdf of X, it is given by:

f(x) = f(y = x−1)· J(Y → X). (2)

Thus

f(x) =
βα

Γ(α)
(x−1)α−1e−βx

−1

·x−2

=
βα

Γ(α)
x−α+1−2e−

β
x

=
βα

Γ(α)
x−α−1e−

β
x (3)
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for x > 0. The cumulative distribution function (cdf) of X can be obtained using (3) as:

F (x) =

xˆ

0

f(t)dt

=

xˆ

0

βα

Γ(α)
t−(α+1)e−

β
t dt

=
βα

Γ(α)

xˆ

0

t−(α+1)e−
β
t dt

=
1

Γ(α)

xˆ

0

βαt−(α+1)e−
β
t dt

=
Γ
(
α, βx

)
Γ (α)

where Γ(α, βx ) =
´ x
0
βαt−(α+1)e−

β
t dt, and where the numerator in the last expression is the incomplete

gamma function, and the denominator is a gamma function [3]. Note that the gamma and inverse gamma

distributions have identical shape parameters and the scale parameter of the inverse gamma distribution is

just the reciprocal of the gamma distribution’s scale parameter. Thus the inverse gamma distribution is also

a skewed distribution.

In the case of the random variable Y mentioned above, α is the scale parameter and β is the shape

parameter; so the skewness of the gamma distribution is determined by the shape parameter and the scale

parameter determines the statistical dispersion of the distribution. The larger the value of the scale parameter

is, the more spread out the distribution will be, and the smaller the scale parameter is, the more concentrated

the distribution will be. In this report, the focus is on estimation procedures used to estimate the parameters

of the gamma distribution as well as the parameters of the inverse gamma distribution. This will be done

using the algorithms proposed by [11] for the different estimation methods. Subsequently, the next step is to

then move onto fitting these estimated inverse gamma distribution parameters to a given data set.

The following set of graphs indicate how the pdf (3) changes as the shape parameter increases (with a

constant scale parameter α = 1):
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Figure 1: Increase in shape parameter PDF

To determine the effect of the scale parameter, the next set of graphs is used, with a constant shape

parameter (β = 1.5) :

Figure 2: Increase in scale parameter PDF

Another important part of this theory is to realise what type of effect that an increase in either of the

parameters has on the cdf of the inverse gamma distribution.

The following set of graphs indicate how the cdf curve changes as the scale parameter increases (for a
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constant value β = 0.1):

Figure 3: Increase in scale parameter for CDF

The next thing to be aware of is the effect of an increase in the shape parameter, which is what the

following set of graphs indicate (for a constant value α = 1.4):

Figure 4: Increase in shape parameter for CDF

The first algorithm is derived using method of moments estimation, and the derivation of the two param-

10



eters under this estimation procedure are determined directly without the necessity of convergence. However,

the second algorithm is derived using maximum likelihood estimation, and in this case the derivation of the

rst parameter requires convergence and a special inequality. Once that process is completed, it is then used

to obtain the other parameters for this distribution.

• Method of Moments Estimation(MME) : Derivations of equations that relate the population

moments to the parameters that are being estimated

• Maximum Likelihood Estimation(MLE) : Stemming from the analytical difficulties in obtaining

estimators under maximum likelihood estimation for the inverse gamma distribution.

In particular, [11] proposed algorithms for fitting the inverse gamma distribution to a data set. This study

investigates two algorithms and considers the sensitivity of the estimated parameters between the above-

mentioned estimation methods (MME and MLE).

2 Background Theory

2.1 Literature review

In 1969,[2] aimed at estimating the parameters of the gamma distribution, and in order to solve this

problem,[2] used Maximum Likelihood Estimation to estimate both the parameters of the gamma distri-

bution and their bias. [2] also investigated the bias of the parameters numerically, and to improve accuracy,

they obtained a convenient table for the purpose of assessing the Maximum Likelihood Estimation method of

the gamma distribution parameters. Thus the conclusion drawn from this task was only based on the MLE

method results, and they concluded that the bias of both the parameter estimates of the gamma distribu-

tion using Maximum Likelihood are positive. In 2009, [6] focused on the quality of the MLEs for both the

parameters of the gamma distribution; and the aim was to obtain analytical approximations for the bias of

the maximum likelihood estimates for the parameters of the gamma distribution. But in doing this, [6] only

used small samples. They introduced two methods that can be used in order to bias-adjust the estimators

obtained from MLE, these two methods being the bootstrap and another method suggested by Cox and Snell

in 1968. [6] needed to find out which of the two methods is more effective, and thus a better method to

use. In discovering this, a simulation study was conducted, and it revealed that the methodology presented

by [5] in 1968 was more effective than the bootstrap method; this simulation experiment was done through

Monte Carlo. According to [6], the chosen method was then used to derive simpler expressions for bias of the

MLEs for the gamma distribution parameters. It was therefore concluded that the methodology suggested
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by [5] is the better method to use when we use maximum likelihood to estimate the parameters of the gamma

distribution. Now the article written by [4] on the inverse gamma distribution in 2008 also confirms this,

in this paper [4] derives the distribution of the inverse gamma distribution, calculates the moments of the

distribution and proved that the inverse gamma distribution is a conjugate prior for an exponential likelihood

function.

In 2002, [13] had the task of deriving an efficient algorithm that can be used to estimate both parameters

of the gamma distribution for maximum likelihood estimation. In doing so, a log-likelihood function was

used for the purpose of working with a simplified expression of maximum likelihood estimation. Also, [13]

only sampled 100 points for this experiment; and only two algorithms are illustrated for maximising the

log-likelihood function. The first one described iteratively maximizes the lower bound of the log-likelihood

function, and the second one, which is considered to be faster, is obtained through generalized Newton.

In accordance to the above-mentioned lower bound, [13] then concludes that this approximation is very

close to the true log-likelihood, verifying it’s good performance. The gamma distribution was used by [7] to

represent Africa’s monthly rainfall in order to monitor drought within that region, [7] also developed models

that they used as a tool to manage necessary resources such as water and food, and these models were gener-

ated by the gamma distribution. These models were useful in the sense that they helped with the evaluation

of the likelihood of rainfalL occurences. In this study conducted by [7] ,the Kolmogorov-Smirnof (KS) test

was used to compare the results obtained from using the gamma distribution with another distribution that

is regularly used in rainfal occurences, and in this case, it was the Weibull distribution. However, in 1994

[9] discussed studies that utilized more statistical distributions with the goal of accurately fitting the precip-

itation data. But [9] specifically chose to use the gamma distribution to represent precipitation repeatedly

because it equivalently produces a representation of different distributions all-together but only using two

parameters, that being the shape and the scale parameters. Another interesting discovery that [8] brought

to light is that the parameters of the gamma distribution could describe rainfall occurences for different

timescales, regardless of the date. Now in order to fully utilize the gamma distribution for rainfal events, it

is required to estimate it’s parameters, and [14] used both the MLE method as well as the MME method to

estimate these parameters. However the MME proved to be an inefficient method since it’s estimates were

inaccurate for small shape values, and it was thus concluded that it is a poor estimation procedure. Hence

as a result of this, the MLE was used instead, in order to accommodate regions with small-scale parameters.

Once the parameter estimation procedure is completed, these parameters have to be evaluated to ensure

that they are accurate in accordance to the historical data before they are used to represent the modeled

probability distribution of rainfall for a specified location.
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From here, the next step taken by [7] was to use the KS test in order to carefully assess the relationship

between the empirical distribution and the theoretical (gamma) distribution. To establish this, a hypothesis

test took place, where the null hypothesis was the theoretical distribution giving satisfactory performance

when modeling historical data, in other words, whether the gamma distribution is suitable or not and the

level of rejection that was used is 0.1. This now implies that the null hypothesis will be rejected for locations

with p-values that are less than 0.1. As was expected at the time, [7] found that 98.5% of the data had a p-

value that is higher than 0.1, which implies that the null hypothesis is not rejected, leading to the conclusion

that the gamma distribution is very suitable with regards to the approximation of the historical rainfall

distribtuions.

In 2016 [10] introduced two Bayesian estimators for the purpose of having more information on the

parameters of the gamma distribution. One of the algorithms uses an unnormalized conjugate prior for the

shape of the gamma, and the second one uses a non-linear approximation to the likelihood and a prior on the

shape that is conjugate to the approximated likelihood. In order to approximate the required expectations,

Laplace is used for both algorithms. In concluding the experiment, [10] evaluated that the Bayesian algorithms

have the same bias properties as the Maximum Likelihood bias properties.

Another good application of the inverse gamma distribution was performed by [1], and in this scenario it

is used to model sea reflections. The very first procedure required in order to perform experiments such as

this one in statistics is to estimate the parameters of the appropriate distribution that is to be used for the

application, and the distribution used is the inverse gamma distribution. The reason behind the choice of this

distribution is that modelling sea fluctuations is an example of of modelling Compound-Gaussian Clutter,

which are much often used for heavy-tailed clutter distributions.

Therefore [1] used the Maximum Likelihood estimation procedure as well as the Method of Fractional

Moments to estimate the parameters of the inverse gamma distributions.

The Kolmogorov-Smirnov test is a popular goodness-of-fit test that was thoroughly explained by [12]

by means of tabled percentage points, the power function, the cumulative distribution’s confidence intervals

and examples thereof. It is essentially a test based on the maximum difference between the hypothesized

cumulative distribution and the empirical distribution. This test is referred to as a goodness-of-fit test if the

focus of the test is whether there is an agreement between the theoretical distribution and the distribution

that follows from a set of values. If the sampling distribution is independent of the distribution of the

population and/or independent of certain parameters, it is called a distribution-free (non-parametric) test.

So [12] then discusses an alternative non-parametric goodness-of-fit test.
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2.2 Methodology

2.2.1 Method of Moments

Suppose X follows the inverse gamma distribution with the pdf derived in equation (3), with x > 0; α > 0,

β > 0 where α is the shape parameter, and β the scale parameter, and where the function Γ (.) is the gamma

function. The expected value and variance of this distribution is given by,

E(X) =
β

α− 1
≡ µ (4)

and

V AR(X) =
β2

(α− 1)2 (α− 2)
≡ ν (5)

(see [11]) respectively. In order to estimate the parameters α and β using the method of moments estimation

method, explicit expressions of α and β in terms of the expected value and the variance are required.

From equation (4), it follows that α can be expressed as

α =
β + µ

µ
(6)

where µ denotes the expected value of X. Substituting equation (6) into equation (5) gives the result

ν =
β2(

β+µ
µ − 1

)2 (
β+µ
µ − 2

)
=

β2(
β

µ

)2(
β − µ
µ

)
=

β2

β2(β − µ)

µ3

=
µ3

β − µ
(7)

where ν denotes the variance of X. Now the expression obtained is in terms of only one parameter, β. The
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next step now is to manipulate equation (7) to explicitly express β in terms of µand ν. So,

ν
(
β̂ − µ

)
= µ3

β̂ =
µ3 + 2ν

ν

= µ

(
µ2

ν
+ 2

)
(8)

Substituting equation (8) in (6) gives

α̂ =
µ2 + 2ν

ν

=
µ2

ν
+ 2 (9)

for ν > 0. Therefore equation (8) and (9) represent the estimators of α and β under method of moments

estimation.

2.2.2 Maximum Likelihood

Similarly, expressions for the parameters α and β under maximum likelihood estimation must be obtained.

The first step is to write the pdf of the inverse gamma distribution given in equation (4) as a log-likelihood

function of the vector x with observations x = {x1, x2, ..., xn}, i.e.

f(x) =
βα

Γ (α)
x−(α+1)e−(

β
x )

n∏
i=1

f(xi) =
βnα

Γ(α)n

n∏
i=1

(xi)e
− β∑n

i=1 xi

log

n∏
i=1

f(xi) = log(
βnα

Γ(α)n
) + log(

n∏
i=1

xi
−(α+1))− β

n∑
i=1

x−1i

log

n∏
i=1

f(xi) = nαlog(β)− nlog(Γ(α))− n(α+ 1)log(x)− β
n∑
i=1

x−1i (10)

What is now required is to maximize equation (10) by differentiation with respect to β, and equate that to

zero in order to find the maximum likelihood estimator, i.e.

∂log (
∏n
i=1 f(x))

∂β
= 0,

15



thus

nα

β
−

n∑
i=1

x−1i = 0

β̂ =
nα∑n
i=1 x

−1
i

(11)

To get the ML estimator of α, a different approach must be taken because the maximization of equation

(10) directly with respect to α is not possible mathematically. Thus the first step taken is by substituting

equation (11) into equation (10), which yields:

log

n∏
i=1

f(x) = nαlog
(

nα∑n
i=1 x

−1
i

)
− nlog (Γ(α))− n(α+ 1)log(x)− nα∑n

i=1 x
−1
i

(
n∑
i=1

x−1i

)

= nα

[
log(nα)− log

(
n∑
i=1

x−1i

)]
− nlog (Γ(α))− nαlog(x)− nlog(x)− nα

= nαlog(nα)− nαlog

(
n∑
i=1

x−1i

)
− nlog (Γ(α))− nαlog(x)− nlog(x)− nα (12)

Even after the previous substitution of equations it is not possible to directly maximize equation (12) with

respect to α. Therefore, the alternative approach in maximizing equation (12) is by using the linear constrain

αlog(α) ≥ (1 + log(α0))(α− α0) + α0log(α0) (13)

[11] and substituting equation (13) into (12), which yields

log

(
log

n∏
i=1

f(x)

)
≥ −nαlog(x)− nlog(x)− nlog (Γ(α)) + nαlog(n)− nα0 + nαlog(α0)− nαlog

(
n∑
i=1

x−1i

)

= α

[
−nlog(x) + nlog(n) + nlog(α0)− nlog

(
n∑
i=1

x−1i

)]
− nlog(x)− nlog (Γ(α))− nα0

(14)

Maximizing equation (14) (differentiate with respect to α), results in
∂log(log

∏n
i=1 f(x))

∂α = 0 :

0 = −nlog(x) + nlog(n) + nlog(α0)− nlog

(
n∑
i=1

x−1i

)
− n

(
1

Ψ(α)

)
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∂log(log
∏n
i=1 f(x))

∂α = 0 :− nlog(x) + nlog(n) + nlog(α0)− nlog

(
n∑
i=1

x−1i

)
− n

(
1

Ψ(α)

)
= 0

⇐⇒

Ψ−1(α) = log(n) + log(α0)− log(x)− log

(
n∑
i=1

x−1i

)

α = Ψ

(
log(n) + log (α0)− log(x)− log

(
n∑
i=1

x−1i

))

and therefore

α = Ψ

(
log (nα0)− log(x)− log

(
n∑
i=1

x−1i

))
(15)

where Ψ(.) denotes the digamma function. So no explicit expressions can be obtained for α and β using both

MM estimation and ML estimation.

The next step from here is to find the best estimates for the parameters {α, β} using both estimation

procedures (MM and ML). To find the estimators of the parameters using MM estimation is straight forward

because there is no necessity to iterate any value. Hence equation (8) and (9) respresent the estimators for

β and α respectively.

However, to find the estimators for the parameters under ML estimation is a bit more complicated. In

this case, order is important since it is required to estimate α first in order to directly substitute that value

into equation (11) to obtain the respective ML estimator for β. First α0 is taken as the initial value, and

then start an iterative process by continuously updating α0 with α until it converges to the α in equation

(9).

Once α has converged, that value can then be substituted into equation (11) to find the corresponding

estimator for β.

2.3 Kolmogorov-Smirnov Goodness-of-fit test

The goodness-of-fit for any statistical model is simply a representation of how well the model itself fits a

certain dataset. It can also be seen as the measured distance between the observed values and the values

obtained theoretically from the particular model that is used. Measures of this nature are typically used for
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testing statistical hypotheses.

The different hypothesis tests include testing for normailty, that is, testing if a set of observations are

normally distributed, or testing whether a given number of samples follow a similar distribution.

For each type of hypothesis that is tested, there are specific statistical goodness-of-fit tests that are

eligible to be used. For example, if an investigator decides to investigate whether a dataset follows a certain

distribution then the following tests can be used:

• Kolmogorov-Smirnov test

• Cramer-von Mises criterion

• Anderson-Darling test

• Shapiro-Wilk test

• Chi-Squared test

In this investigation however, the Kolmogorov-Smirnov goodness-of-fit test is used, because it is most com-

monly used and relatively much more intuitive as compared to the other goodness-of-fit tests. The basis

of this test is essentially upon the vertical maximum difference between the hypothetical distribution and

the empirical distribution. The distribution of the Kolmogorov-Smirnov test statistic is independent of the

underlying cumulative distribution function that is being tested.

The limitations of the Kolmogorov-Smirnov test include:

• Only applicable to continuous distributions

• Tends to be more sensitive closer to the center of the distribution than at the tails

• The distribution must be fully specified

Once the parameter pairs for each of the two algorithms are obtained, these parameter pairs will then be

used to plot the CDF curves that follow from the inverse gamma distribution, and thus compare each of

them to the empirical curve.

The reason for this is to determine which algorithm best fits the empirical distribution. But since it

is not enough to conclude by a mere graphical observation, the Kolmogorov-Smirnov goodness-of-fit test is

introduced as a measure to carefully assess which algorithm best fits the dataset.
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3 Application

3.1 Description of Data sets

3.1.1 Real Data

This data set comprises of one variable and 1100 observations. Below is a table that shows the descriptive

statistics for this data set:

N Mean Standard Deviation Minumum Maximum Sum Median
1100 0.3222379 0.2565929 0.0432783 2.2008115 354.4616449 0.2439673

Table 1: Descriptive Statistics-Real Data

3.1.2 Simulated Data

This data set also comprises of one variable, but has 1000 observations. The following displays the descriptive

statsistics for the data set:

N Mean Standard Deviation Minumum Maximum Sum Median
1000 0.5310748 0.2668844 0.3297800 5.2945300 531.0748400 0.4665200

Table 2: Descriptive Statistics-Simulated Data

3.2 Algorithms

In this section, all the above-mentioned theory together with the relevant methodology will be represented

in a more practical format. The estimation procedures (MME and MLE) that were discussed earlier will

be interpreted as computational algorithms in order to obtain the estimators corresponding to each of the

algorithms. Now these two algorithms will be expressed explicitly in order to fully explain how the estimators

are obtained and to adequately put emphasis on the methodology behind every calculation.

3.2.1 Algorithm 1 - Method of Moments

This first algorithm demonstrates the computational procedure taken to obtain the estimators that were

derived in equations (8) and (9). Suppose that the observations are given by:
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x = {x1, x2, ..., xn}, xi > 0, then

µ =
1

n

n∑
i=1

xi

ν =
1

n− 1

n∑
i=1

(xi − µ)2

α̂ =
µ2

ν
+ 2

β̂ = µ

((
µ2

ν

)
+ 1

)

return α̂, β̂, where µ represents the mean of the observed values and ν represents the variance of the

observations. The MM estimators are given by α̂ and β̂.

Algorithm 1 provides us with the estimators for both parameters α and β using Method of Moments

Estimation and is the easiest algorithm compared to algorithm 2, because it requires no extra calculations

when determining the estimates for α and β, nor does it require any iterations for any of the parameters.

Thus by performing a basic direct substitution of the mean and the variance into the expressions for the

estimators, we can obtain the values of α̂ and β̂ explicitly.

3.2.2 Algorithm 2 - Maximum Likelihood

This algorithm demonstrates the computational derivation of the ML estimators. Also, if the observations

are:
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x = {x1, x2, ...xn},xi > 0 , then

µ =
1

n

n∑
i=1

xi

ν =
1

n− 1

n∑
i=1

(xi − µ)2

α =
µ2

ν
+ 2

C = −log

(
n∑
i=1

x−1i

)
− 1

n

n∑
i=1

log(xi)

repeat

1

α
=

1

α
+
C − ψ (α) + lognα

α2
(
1
α − ψ′(α)

)
until convergence

α̂ = α

β̂ =
nα̂∑n
i=1 x

−1
i

[11]return α̂ and β̂, where µ is the mean of the observations, and ν represents the variance of this same

set of observations. The α is also an initial value in this second algorithm, and the part in the algorithm that

says ’repeat’ refers to the continuous generation of a new reciprocal of α until α itself converges to a certain

value. The estimator of α is then used to obtain the estimator of β.

Algorithm 2 also has the same mean and variance as that of the first algorithm. It also requires convergence

in order to determine the estimators of the parameters, and since one of the parameters to be estimated is

a function of the other parameter that also needs to be estimated, this implies that the order on which

parameter should be estimated first matters.

3.3 Quantile Plots

The quantile plot is a graphical method for determining if data sets come from populations with a common

distribution.

For this report, quantile plots are used for determining which of the algorithms are closest to the empirical

distribution. The following quantile plots display each algorithm with the empirical distribution from real

data.
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Figure 5: First Algorithm - Real data

Figure 6: Second Algorithm - Real data

The quantile plots that follow here display each algorithm with the empirical distribution from the sim-

ulated data set:
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Figure 7: First Algorithm-Simulated Data

Figure 8: Second Algorithm-Simulated Data

3.4 SAS Coding for Algorithms

A specific dataset is used in order to obtain the estimates of the parameters for each of the two algorithms.

This is done by first importing the data into SAS, and then run the two algorithms referring to the imported

dataset. In this section, the exact same SAS code that is used to obtain the estimates for the parameters
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will be shown explicitly, as well as the estimates obtained for the algorithms. The coding is included in the

appendix.

3.5 CDF Comparisons for Real Data

In this section, the CDFs relating to each of the algorithms together with their estimates will be compared.

The purpose of this comparison is to observe and determine which of the algortihms fits the data best, i.e.

which of the CDF curves of the algorithms is closest to the empirical CDF, or has a stronger relationship

with the empirical distribution. After which, an informed decision from the results will be made as to which

algorithm performs the best in the estimation the parameters of the inverse gamma distribution, where the

empirical distribution is the distribution that is to be used with the data observed for this investigation, and

it requires no derivations, unlike what was done for the two algorithms. The manner in which this section is

constructed is such that the CDFs for the two different pairs of estimates obtained from the two algorithms

will be displayed on a different set of axes for adequate individual assessment, as well as the resulting CDF

curve from the empirical distribution. After that, all three of the curves will be displayed on the same set of

axes to therefore carefully assess which one of the two algorithms can be used to best estimate the inverse

gamma parameters.

3.5.1 Relationship between the 1st algorithm and empirical distribution

Figure 9: First Algorithm and Empirical Distribution
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3.5.2 Relationship between the 2nd algorithm and empirical distribution

Figure 10: Second Algorithm and Empirical Distribution

3.5.3 Relationship between the 1st and 2nd algorithms with empirical distribution

Figure 11: First and Second Algorithm with Empirical Distribution
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3.6 CDF Comparisons for Simulated Data

In this section, a similar investigation as above will be inducted with a different dataset. The exact same

algorithms that have been used thus far will be used to estimate the two pairs of the inverse gamma parameters

using this new dataset.

This part of the investigation also involves determining the relationship between the CDF curves that

result from the algorithms using this new dataset, and the CDF curve that results from the new emprical

distribution.

The first graphical representation will display the relationship between the first algorithm and the empir-

ical distribution, the one after that will display that of the second algorithm and the empirical distribution.

3.6.1 Relationship between the 1st algorithm and empirical distribution

Figure 12: First Algorithm and Empirical Distribution
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3.6.2 Relationship between the 2nd algorithm and empirical distribution

Figure 13: Second Algorithm and Empirical Distribution

3.6.3 Relationship between the 1st and 2nd algorithms with empirical distribution

Figure 14: First and Second Algorithm with Empirical Distribution
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3.7 Kolmogorov Smirnov Test

3.7.1 Real Data

As mentioned earlier, the Kolmogorov Smirnov test is the Goodness-of-fit test that will be used to determine

which of the algorithms best fits the empirical distribution. The procedure that will be followed is one of

which the comparison between each algorithm and the empirical distribution will be made, by calculating

the maximum difference the CDF obtained from the algorithms and the empirical distribution. Once this

has been completed for the two algorithms, the smallest maximum difference amongst the two algorithms

is considered to be the closest to the empirical distribution. The maximum difference in this case is the

Kolmogorov Smirnov test statistic. Which implies that two values will be compared before drawing up the

conclusion.

Therefore from the programming that was performed, the results were as follows:

ALGORITHM KOLMOGOROV SMIRNOV TEST STATISTIC
Algorithm 1 0.0405563
Algorithm 2 0.0214205

Table 3: Kolmogorv-Smirnov Test Results for the Real Data

from the results obtained, the correct conclusion is that the second algorithm fits the empirical distribution

best since it has the smallest maximum difference. This implies that the MLE is more accurate than the

MME for the real data.

3.7.2 Simulated Data

The exact same procedure as the one in section 3.7.1 will be followed, but for the simulated data.

Therefore for this data, the results that were obtained from the programming are given by:

ALGORITHM KOLMOGOROV SMIRNOV TEST STATISTIC
Algorithm 1 0.507532
Algorithm 2 0.266674

Table 4: Kolmogorv-Smirnov Test Results for the Simulated Data

it therefore follows that the SECOND algorithm fits the empirical distribution best since it has the smallest

maximum difference. Therefore similarly, the MME is more accurate than the MLE for the simulated data.
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4 Conclusion

The methodology followed in this inverse gamma investigation comes from well-known statistical and math-

ematical principles, i.e. the derivation of the method of moments estimators as well as the derivation of the

maximum likelihood estimation. The definitions used to proceed with this investigation also arise from the

gamma and inverse gamma properties. The accuracy of each of the algorithms differ strictly depending on

the structure of the empirical distribution, on the basis of the aim of the investigation. This also follows from

the comparisons conducted between the CDF curves belonging to each individual algorithm together with

the CDF curve that results from the empirical distribution. But just a mere observation of the algorithms’

CDF curves with the empirical curve is not sufficient to make a decision on the accuracy of the algorithms,

even though it might look convincing graphically.

After constructing the curves, there is a possibility that some of the curves representing the algorithms

may be very far off as compared to the others, in comparison to the empirical curve. However, in both

the scenarios (real data and simulated data), this is not the case. Which is the reason for introducing

the kolmogorov smirnov goodness-of-fit test. After the computational procedures have been completed, an

appropriate inference can then be made based on the results obtained. These computational methods include

SAS and Mathematica.

For the real; data, both the parameters offer good fits, but judging by the ks test statistics it is therefore

concluded that the MLE is a more accurate estimation method as compared to the MME simply because

the algorithm that follows from the MLE has a smaller maximum difference when compared to the empirical

distribution as was observed after conducting the Kolmorogorov-Smirnov goodness-of-fit test.

For the simulated data, the MLE is a more accurate estimation method as compared to the MME since

the algorithm following the MLE produces a smaller maximum difference when compared to the empirical

distribution as was also observed after conducting the Kolmogorov-Smirnov goodness-of-fit test.
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Appendix

Results

Gamma Function

For all complex and non-negative numbers, the gamma function can be defined as:

Γ (x) =

ˆ ∞
0

yx−1e−ydy

If n is a postivive integer:

Γ (n) = (n− 1)!

Incomplete Gamma Function

The incomplete gamma function is given by

Γ (x, b) =
1

Γ(b)

ˆ x

0

tb−1e−tdt

where Γ (b) is the gamma function.

Digamma Function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function, and

is given by:

ψ(x) =
d

dx
ln
(
Γ (x)

)
=
Γ ′(x)

Γ (x)

SAS Coding for Algorithms

A specific dataset is used in order to obtain the estimates of the parameters for each of the two algorithms.

This is done by first importing the data into SAS, and then run the two algorithms referring to the imported

dataset. In this section, the exact same SAS code that is used to obtain the estimates for the parameters

will be shown explicitly, as well as the estimates obtained for the algorithms. Thus in the following section,

the SAS codes for the two algorithms is displayed.
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Algorithm 1-MME

proc iml ;

use WORK.INVERSEGAMMA;

read a l l var {x } ;

n=nrow (x ) ;

mu=mean(x ) ;

v=var (x ) ;

alphaH=((mu∗∗2)/v)+2;

betaH=mu∗ ( ( (mu∗∗2)/v )+1);

p r i n t alphaH betaH ;

qu i t ;

Algorithm 2-MLE

proc iml ;

use WORK.INVERSEGAMMA;

read a l l var {x } ;

a = 1/x ;

b = log (x ) ;

n=nrow (x ) ;

mu=mean(x ) ;

v=var (x ) ;

a lpha_start=((mu∗∗2)/v ) + 2 ; ∗ f i r s t bes t guess o f what alpha i s ;

C=−l og (sum( a))−mean(b ) ;

d=1/alpha_start ;

f l a g = 0 ;

do un t i l ( f l a g =0);

alpha_update=d+((C−digamma( alpha_start )+ log (n∗ alpha_start ) ) / ( ( ( a lpha_start )∗∗2)∗

(d−trigamma ( alpha_start ) ) ) ) ; ∗new update alpha ;

d i f f e r e n c e = abs ( alpha_update−alpha_start ) ;

i f d i f f e r e n c e < 1e−6

then f l a g = 1 ; ∗has i t converged yet ? ;
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alpha_start = 1/d ; ∗ r ep l a c e alpha with new alpha ;

end ;

∗ s e t f i n a l converged parameters ;

alpha=1/alpha_update ;

beta=(n∗ alpha )/ ( sum( a ) ) ;

p r i n t a lpha_start alpha beta ;

qu i t ;

Mathematica Coding for graphs

All the graphs that appear in this research were constructed using mathematica.

Introduction Graphs

This section contains the Mathematica code that was used to obtain the graphs that appear in the introduction

part of this investigation.

Figure 1

Shape ( pdf ) = Plot [ { (0 . 4^1∗ x^−2∗Exp[−0.4/x ] ) /Gamma[ 1 ] ,

(0 .5^1∗x^−2∗Exp[−0.5/x ] ) /Gamma[ 1 ] ,

(0 .6^1∗x^−2∗Exp[−0.6/x ] ) /Gamma[ 1 ] ,

(0 .7^1∗x^−2∗Exp[−0.7/x ] ) /Gamma[ 1 ] } ,

{x , 0 , 1} , PlotLegends −> {"(1 , 0 . 4 ) " , " ( 1 , 0 . 5 ) " , " ( 1 , 0 . 6 ) " , " ( 1 , 0 . 7 ) "} ,

AxesLabel−>{x , f [ x ] } ]

Figure 2

Sca l e ( pdf ) = Plot [ { (1 . 5^1∗ x^−2∗Exp[−1.5/x ] ) /Gamma[ 1 ] ,

(1 .5^2∗x^−3∗Exp[−1.5/x ] ) /Gamma[ 2 ] ,

(1 .5^3∗x^−4∗Exp[−1.5/x ] ) /Gamma[ 3 ] ,

(1 .5^4∗x^−5∗Exp[−1.5/x ] ) /Gamma[ 4 ] } ,

{x , 0 , 1} , PlotLegends −> {"(1 , 1 . 5 ) " , " ( 2 , 1 . 5 ) " , " ( 3 , 1 . 5 ) " , " ( 4 , 1 . 5 ) "}

, AxesLabel−>{x , f [ x ] } ]

Figure 3
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Shape ( cd f ) = Plot [ {Gamma[ 1 . 4 , 0 .1/ x ] /Gamma[ 1 . 4 ] ,

Gamma[ 1 . 4 , 0 . 2 / x ] /Gamma[ 1 . 4 ] ,

Gamma[ 1 . 4 , 0 .3/ x ] /Gamma[ 1 . 4 ] ,

Gamma[ 1 . 4 , 0 .4/ x ] /Gamma[ 1 . 4 ] } ,

{x , 0 , 1} , PlotLegends −> {" ( 1 . 4 , 0 . 1 ) " , " ( 1 . 4 , 0 . 2 ) " , " ( 1 . 4 , 0 . 3 ) " , " ( 1 . 4 , 0 . 4 ) " } ,

AxesLabel−>{x , F [ x ] } ]

Figure 4

Sca l e ( cd f ) = Plot [ {Gamma[ 2 , 0 . 1 / x ] /Gamma[ 2 ] ,

Gamma[ 3 , 0 . 1 / x ] /Gamma[ 3 ] ,

Gamma[ 4 , 0 .1/ x ] /Gamma[ 4 ] ,

Gamma[ 5 , 0 .1/ x ] /Gamma[ 5 ] } ,

{x , 0 , 1} , PlotLegends −> {"(2 , 0 . 1 ) " , " ( 3 , 0 . 1 ) " , " ( 4 , 0 . 1 ) " , " ( 5 , 0 . 1 ) "} ,

AxesLabel−>{x , F [ x ] } ]

Code for Quantile Plots

Figure 5

Data = Import [ "C:\\ Users \\Tmotswiri \\Downloads\\ School \\INVERSEGAMMA. csv " ] ;

Emp = Empi r i c a lD i s t r i bu t i on [ Data ] ;

quant i l e 1 = Quant i l ePlot [Emp, InverseGammaDistribution [ 3 . 5 762314 , 0 . 8 30287 ] ,

PlotLegends −> {"Empir ica l " ," Inve r s e Gamma with Method o f Moments"} ,

PlotLabe l −> "Quant i le p l o t " ,

FrameLabel −> {" Theo r e t i c a l Quant i l e s " , "Empir ica l quan t i l e s "} ,

P l o tS ty l e −> Thick ] ;

Figure 6

Data = Import [ "C:\\ Users \\Tmotswiri \\Downloads\\ School \\INVERSEGAMMA. csv " ] ;

Emp = Empi r i c a lD i s t r i bu t i on [ Data ] ;

quant i l e 1 = Quant i l ePlot [Emp, InverseGammaDistribution [ 3 . 4 840248 , 0 . 7 957536 ] ,

PlotLegends −> {"Empir ica l " ," Inve r s e Gamma with Method o f Moments"} ,

PlotLabe l −> "Quant i le p l o t " ,

FrameLabel −> {" Theo r e t i c a l Quant i l e s " , "Empir ica l quan t i l e s "} ,
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Plo tS ty l e −> Thick ] ;

Figure 7

Data=Import [ "C:\\ Users \\Tmotswiri \\Desktop\\ sim . csv " ] ;

Emp = Empi r i c a lD i s t r i bu t i on [ Data ] ;

quant i l e 1 = Quant i l ePlot [Emp, InverseGammaDistribution [ 5 . 9597258 , 2 . 6339856 ] ,

PlotLegends −> {"Empir ica l " ," Inve r s e Gamma with Method o f Moments"} ,

PlotLabe l −> "Quant i le p l o t " ,

FrameLabel −> {" Theo r e t i c a l Quant i l e s " , "Empir ica l quan t i l e s "} ,

P l o tS ty l e −> Thick ]

Figure 8

Data=Import [ "C:\\ Users \\Tmotswiri \\Desktop\\ sim . csv " ] ;

Emp = Empi r i c a lD i s t r i bu t i on [ Data ] ;

quant i l e 1 = Quant i l ePlot [Emp, InverseGammaDistribution [ 13 . 000567 , 6 . 264397 ] ,

PlotLegends −> {"Empir ica l " ," Inve r s e Gamma with Method o f Moments"} ,

PlotLabe l −> "Quant i le p l o t " ,

FrameLabel −> {" Theo r e t i c a l Quant i l e s " , "Empir ica l quan t i l e s "} ,

P l o tS ty l e −> Thick ]

Section 3.5 & 3.6 Graphs

This part includes the coding that was used in mathematica to obtain all the graphs that appear in section 3.3

of this research, which contains the comparison of the three different curves that result from the algorithms

with the curve resulting from the empirical distribution.

The first step that was crucial for this part was to use the dataset that determines the empirical distribution

when making the comparisons, and in doing that, the dataset used has to be imported.

Importing The Dataset for Real Data

Data = Import [ "C:\\ Users \\Tmotswiri \\Downloads\\ School \\INVERSEGAMMA. csv " ]

Figure 9

D = Empi r i c a lD i s t r i bu t i on [ Data ] ;
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Empir ica l = Plot [CDF[D, x ] , {x , 0 , 3 } ] ;

Algorithm 1 = Plot [Gamma[3 .5762314 ,0 . 830287/ x ] /Gamma[ 3 . 5 7 6 2 314 ] , {x , 0 , 3} ,

AxesLabel−>{x , F [ x ] } ] ] ;

Plot [ {Gamma[3 .5762314 ,0 . 830287/ x ] /Gamma[ 3 . 5 7 6 2 3 14 ] , CDF[D, x ] } ,

{x , 0 , 3} , AxesLabel−>{x , F [ x ] } ] , PlotLegends −> {"(3 .5762314 ,0 . 830287)" ,

"Empir ica l "} ]

Figure 10

D = Empi r i c a lD i s t r i bu t i on [ Data ] ;

Empir ica l = Plot [CDF[D, x ] , {x , 0 , 3} , AxesLabel−>{x , F [ x ] } ] ] ;

Algorithm 2 = Plot [Gamma[3 .4840248 ,0 . 7957536/ x ] /Gamma[ 3 . 4 8 4 0 248 ] ,

{x , 0 , 3} , AxesLabel−>{x , F [ x ] } ] ] ;

Plot [ {Gamma[3 .4840248 ,0 . 7957536/ x ] /Gamma[ 3 . 4 8 4 0 2 48 ] , CDF[D, x ] } ,

{x , 0 , 3} , AxesLabel−>{x , F [ x ] } ] , PlotLegends −> {"(3 .4840248 ,0 .7957536)" ,

"Empir ica l "} ]

Figure 11

Data = Import [ "C:\\ Users \\Tmotswiri \\Downloads\\ School \\INVERSEGAMMA. csv " ] ;

D = Empi r i c a lD i s t r i bu t i on [ Data ] ;

Empir ica l = Plot [CDF[ Emp i r i c a lD i s t r i bu t i on [ Data ] , x ] , {x , 0 , 3 } ] ;

Algorithm1=Plot [Gamma[3 . 5762314 , 0 .830287/x ] /Gamma[ 3 . 5 7 62314 ] , { x , 0 , 5 } ,

AxesLabel−>{x , F [ x ] } ] ;

Algorithm2=Plot [Gamma[3 .4840248 ,0 . 7957536/ x ] /Gamma[ 3 . 4 8 4 0 248 ] , {x , 0 , 5} ,

AxesLabel−>{x ,F [ x ] } ] ;

Show [ Plot [ {Gamma[3 .5762314 ,0 . 830287/ x ] /Gamma[ 3 . 5 7 6 2 314 ] ,

Gamma[3 .4840248 ,0 . 7957536/ x ] /Gamma[ 3 . 4 8 4 0 2 48 ] ,

CDF[ Emp i r i c a lD i s t r i bu t i on [ Data ] , x ] } , { x , 0 , 5 } ,

PlotLegends − >{"(3 .5762314 ,0 .830287)" ,"(3 .4840248 ,0 .7957536)" ," Empir ica l "} ,

AxesLabel −> {x , F [ x ] } ] ]

Kolmogorov Smirnov Test Code

This section displays the code that was used to obtain the Kolmogorov Smirnov test statistics for both the

real data and as well as the simulated data.
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The results are also displayed in tabel 1 and 2 respectively under sections 3.5.1 and 3.5.2.

Real Data

• First Algorithm

Data = Import [ "C:\\ Users \\Tmotswiri \\Downloads\\ School \\INVERSEGAMMA. csv " ] ;

D = Empi r i c a lD i s t r i bu t i on [ Data ] ;

Empir ica l = CDF[D, x ] ;

KSTest = MaxValue [ Abs [ Empir ica l − CDF[ InverseGammaDistribution [ 3 . 5 7 62314 , 0 . 8 3 028 ] ,

x ] ] , x ] ;

• Second Algorithm

Data = Import [ "C:\\ Users \\Tmotswiri \\Downloads\\ School \\INVERSEGAMMA. csv " ] ;

D = Empi r i c a lD i s t r i bu t i on [ Data ] ;

Empir ica l = CDF[D, x ] ;

KSTest = MaxValue [ Abs [ Empir ica l − CDF[ InverseGammaDistribution [ 3 . 4840248 , 0 . 7957536 ] ,

x ] ] , x ] ;

Simulated Data

• First Algorithm

Data = Import [ "C:\\ Users \\Tmotswiri \\Desktop\\ sim . csv " ] ;

D = Empi r i c a lD i s t r i bu t i on [ Data ] ;

Empir ica l = CDF[D, x ] ;

KSTest = MaxValue [ Abs [ Empir ica l − CDF[ InverseGammaDistribution [ 5 . 9597258 , 2 . 6339856 ] ,

x ] ] , x ] ;

• Second Algorithm

Data = Import [ "C:\\ Users \\Tmotswiri \\Desktop\\ sim . csv " ] ;

D = Empi r i c a lD i s t r i bu t i on [ Data ] ;

Empir ica l = CDF[D, x ] ;

KSTest = MaxValue [ Abs [ Empir ica l − CDF[ InverseGammaDistribution [ 2 . 5097794 , 1 . 2093515 ] ,

x ] ] , x ] ;
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Coding for the Simulated data

Obtaining Parameters for Algorithm 1

proc iml ;

use WORK.SIM ;

read a l l var {x } ;

n=nrow (x ) ;

mu=mean(x ) ;

v=var (x ) ;

alphaH=((mu∗∗2)/v)+2;

betaH=mu∗ ( ( (mu∗∗2)/v )+1);

p r i n t n alphaH betaH ;

qu i t ;

Obtaining Parameters for Algorithm 2

proc iml ;

use WORK.SIM ; read a l l i n to x ;

a = 1/x ;

b = log (x ) ;

n=nrow (x ) ;

mu=mean(x ) ;

v=var (x ) ;

a lpha_start=(mu∗∗2)/v + 2 ; ∗ f i r s t bes t guess o f what alpha i s − i n i t i a l va lue ;

C=−l og (sum( a))−mean(b ) ;

f l a g = 0 ;

do un t i l ( f l a g =1);

alpha_up_inv=1/alpha_start+((C−digamma( alpha_start )+ log (n∗ alpha_start ) ) / ( a lpha_start ∗∗2∗

(1/ alpha_start−trigamma ( alpha_start ) ) ) ) ; ∗ take out abs − new update alpha ;

d i f f e r e n c e = abs ( alpha_up_inv−alpha_start ) ;

i f d i f f e r e n c e < 1e−6 then f l a g = 1 ; ∗has i t converged yet ? ;

a lpha_start = alpha_up_inv ; ∗ r ep l a c e alpha with new alpha ;

end ;

39



∗ s e t f i n a l converged parameters ;

alpha = 1/alpha_up_inv ;

beta = n∗ alpha / sum(1/x ) ;

p r i n t alpha beta ;

qu i t ;

Figure 12

Data = Import [ "C:\\ Users \\Tmotswiri \\Desktop\\ sim . csv " ] ;

D = Empi r i c a lD i s t r i bu t i on [ Data ] ;

Empir ica l = Plot [CDF[D, x ] , { x , 0 , 3 } ] ;

Algorithm 1 = Plot [Gamma[5 . 9597258 , 2 .6339856/x ] /Gamma[ 5 . 9 5 9 7 258 ] , {x , 0 , 3} ,

AxesLabel−>{x , F [ x ] } ] ] ;

Plot [ {Gamma[5 . 9597258 , 2 .6339856/x ] /Gamma[ 5 . 9 5 9 7 25 8 ] ,CDF[D, x ] } , {x , 0 , 3} ,

AxesLabel−>{x , F [ x ] } ] , PlotLegends −> {"(5 .9597258 , 2 .6339856)" ," Empir ica l "} ]

Figure 13

Data=Import [ "C:\\ Users \\Tmotswiri \\Desktop\\ sim . csv " ] ;

D=Empi r i c a lD i s t r i bu t i on [ Data ] ;

Empir ica l = Plot [CDF[ Emp i r i c a lD i s t r i bu t i on [ Data ] , x ] , {x , 0 , 3 } ] ,

AxesLabel−>{x , F [ x ] } ] ;

Algorithm2=Plot [ {Gamma[2 . 5097794 , 1 .2093515/x ] /Gamma[ 2 . 5 0 97794 ] } , {x , 0 , 3} ,

AxesLabel −> {x , F [ x ] } ] ;

Show [ Plot [ {Gamma[2 . 5097794 , 1 .2093515/x ] /Gamma[ 2 . 5 0 9 7 7 94 ] ,

CDF[ Emp i r i c a lD i s t r i bu t i on [ Data ] , x ] } , { x , 0 , 4 } ,

PlotLegends−> {"(2 .5097794 , 1 .2093515)" , "Empir ica l "} ,

AxesLabel −> {x , F [ x ] } ] ]

Figure 14

Data = Import [ "C:\\ Users \\Tmotswiri \\Desktop\\ sim . csv " ] ;

D = Empi r i c a lD i s t r i bu t i on [ Data ] ;

Empir ica l = Plot [CDF[D, x ] , {x , 0 , 3 } ] ;

Algorithm 1 = Plot [Gamma[5 .9597258 ,2 . 6339856/ x ] /Gamma[ 5 . 9 5 9 7 258 ] , {x , 0 , 3} ,
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AxesLabel−>{x , F [ x ] } ] ] ;

A lgor i th 2 = Plot [Gamma[2 . 5097794 , 1 .2093515/x ] /Gamma[ 2 . 5 0 9 7 794 ] , {x , 0 , 3}

, AxesLabel−>{x , F [ x ] } ] ] ;

Plot [ {Gamma[5 . 9597258 , 2 .6339856/x ] /Gamma[ 5 . 9 5 9 7 25 8 ] ,

Gamma[2 . 5097794 , 1 .2093515/x ] /Gamma[ 2 . 5 0 9 7 79 4 ] , CDF[D, x ] } ,

{x , 0 , 3} , AxesLabel−>{x , F [ x ] } ] ,

PlotLegends −> {"(5 .9597258 ,2 .6339856)" , " (2 .5097794 , 1 .2093515)" , "Empir ica l "} ]
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Abstract

In this study, the perceptions and awareness of Statistics as a discipline amongst high school Math-

ematics teachers are investigated. A case study is used to determine the perceptions of Mathematics

teachers about the role of Statistics in society and the career opportunities within this field. This case

study is based on convenient and purposeful sampling from six research sites (the target population)

consisting of the teachers invited to the Teachers’ Awareness Event as organized by the Department of

Statistics and teachers from five of the Kutlwanong Centers in Gauteng. A questionnaire, completed by

Mathematics teachers is used as a data collection tool. Teachers who attended the awareness event also

completed a follow-up questionnaire on the online platform Qualtrics. The data analysis of the collected

information from the sites will be done by means of Excel and SAS software. Conclusions, identifying

possible areas for future research and possible recommendations, based on the analyzed results, will flow

from this study.
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1 Introduction

South Africa has faced many challenges with the education system from early childhood development,

basic education to further education [7]. The National Development Plan (NDP), states that the bulk of these

challenges is the result of South Africa’s history and socio-economic struggles [7]. Due to these challenges,

a new education curriculum was developed after the democratic government had been elected in 1994 [29].

Since then, the curriculum has been continuously assessed and adjusted with the intentions of raising the

standard of education and increasing the outcomes of the education system. In South Africa, one of the key

functions of education reforms is to redress the racial inequalities of the past and to address shortages in

subject areas such as science, mathematics and technology [1].

”Being the single most important element of the education system, the quality of a country’s teachers is inti-

mately related with the quality of its education system” [26]. The role of teachers in the success of curriculum

reform is of key importance. The effectiveness of teachers is affected by a number of factors, including their

understanding of the content, their ability to apply the knowledge of the subject, their qualifications and

their beliefs around teaching as a profession and Mathematics as a discipline [24]. Teachers’ skills, attitudes

and understanding of the content, all play a fundamental role in their acceptance of adjustments in a new

curriculum. Furthermore, Gal et al. [12] believe that the attitudes and belief issues in statistics will become

increasingly relevant as more students, at all educational levels, experience statistical education. Gal et al.

[12] investigated the beliefs and attitudes of students towards statistics as a subject of learning, and though

they acknowledge that attitudes and beliefs are influenced by personal ideas about challenges related to the

subject matter, they conclude that various factors influence those ideas, of which, classroom interaction and

teachers’ beliefs and attitudes about statistics play an important role. Society’s beliefs and attitudes about

statistics as discipline and profession vary in accuracy and understanding. Hunter [14] describes a professional

in statistics as, ”A person whose everyday work consists of making sense of data and, equally as important,

in the planning for information laden data”.

Statistics is a very vibrant and valuable field of study and giving learners an introduction of it at school has

been seen as a positive aspect. This research project aims to investigate and establish teachers’ perceptions

of statistics as a discipline and the possibilities of statistics as a profession. The following section states the

primary and secondary research questions.

1.1 Research questions

The main research question is:
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• What are teachers’ perceptions of statistics as a discipline?

The secondary research questions are:

• How aware are teachers about statistics as a profession?

• How do teachers perceive the included statistical content within the mathematics curriculum?

1.2 Research Objectives

It would then follow from the above questions that the research objectives of this study would be to:

• Determine teachers’ perceptions of statistics as a discipline;

• determine teachers’ awareness of statistics as a profession;

• determine teachers’ awareness of employment and career opportunities in the statistical field, and lastly,

• determine teachers’ perception towards the inclusion of statistical content in the mathematics curricu-

lum;

The Statistics discipline is broad and it offers career opportunities in various fields. Improving teachers’

awareness and perceptions about statistics as a discipline and career choice could yield great benefits for

both the learners and the South African economy. We need learners to pursue careers in statistics so as to

interpret the large volumes of data, referred to as Big Data, that is now being collected by so many companies.

South Africa faces various challenges with regards to unemployment [7], and an increased awareness about

statistics as a profession and career choice could help to alleviate some of these challenges.

2 Literature Review

The role of Statistics in society has been the topic of many studies. Statistics offers various career

choices in various fields of study. However, this does not translate positively to society’s appreciation of
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statisticians. To the community at large, a statistician can be someone who captures data, a sports number

librarian, or someone running a survey [14]. Hunter [14] describes professional statisticians as persons who

advance statistics through research, communicates its arts through journals and meetings, educates and

defines statistics to society, serves society and serves its members. Statisticians spend their careers using

mathematical and graphical tools to analyze and structure data. They employ processes of inferences to

solve problems. Statisticians often work in service of other professionals and government offices, however,

the contribution of statisticians to society is not one that is appreciated by society nor one that improves

society’s attitudes towards statistics as a discipline [14]. Hunter [14] suggests that a professional statistics

accreditation could serve as a means to further increase the society’s appreciation and perceptions of statistics

as a profession.

2.1 Statistics as a Profession

A broad definition of statisticians includes statisticians in education and academia. These are the ed-

ucators and the researchers who not only transfer the knowledge of statistics to society, but also work to

improve the theory and science of modern statistics [14]. The American Bureau of Labor Statistics 1 in 2016,

listed Scientific Research and Development Services as the industry with the highest levels of employment

of statisticians. Statisticians who choose a career in research are not limited to the field of academics. The

World of Statistics Organization describes researchers as providers of insight by means of surveys, case stud-

ies and technological advancements in areas of government, social sciences, education and medicine, just to

name a few. These researchers are known as survey statisticians 2. Hunter [14] describes statisticians in

Research and Academics as the builders of statistical tools and theory. Statisticians form an integral part

of varying industries. The American Bureau of Labor Statistics further listed the top industries with the

highest concentration of employed statisticians as Monetary Authorities (Central Banks), Scientific Research

and Development Services, Pharmaceutical and Medicine Manufacturing and Management, Scientific and

Technical Consulting Services. These statisticians are collectively known as applied statisticians.

This emphasizes the diverse nature of a profession in statistics and the importance of statistics in society.

2.2 Statistics in the Mathematics Curriculum

Statistics education has faced various challenges at most levels of learning [12]. Both students and teach-

ers have experienced challenges in awareness and understanding of statistics. A study conducted by Gal et

al. [12] focusing on students’ attitudes and beliefs of Statistics, found that most students were unaware of

the benefits of statistics education and the opportunities associated with a statistics qualification. Further-

1https://www.bls.gov/oes/current/oes152041.htm
2http://www.worldofstatistics.org/statistics-as-a-career/statisticians-at-work/
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more, students believed that statistics is a challenging subject. Similarly, there have been several studies

investigating the teaching of mathematics. These studies focus on the abilities of teachers to effectively teach

mathematics and whether enough is done to equip teachers with the necessary skills required to understand

and teach content of a changing mathematics curriculum [12]. Course curriculum needs to be revised and

adjusted to suit the needs of learners and teachers, however the implementation of a new curriculum and/or

adjustments to subject content is a challenge [20]. There have been very few studies have focused on teachers’

attitudes and beliefs of statistics. South Africa has seen many challenges with its educational reform pro-

grams due to factors such as the number of teachers in the fields of mathematics and science, the skill sets of

teachers, performance of learners and limited resources. Outcomes based education (OBE) forms the basis of

the new curriculum introduced in post-apartheid South Africa. The re-engineering of the education system in

South Africa, according to Carnoy and Chisholm [3], was in three waves whose main focus in the curriculum

was on the assessment of outcomes. The latest curriculum change, namely the National Curriculum and

Assessment Policy Statements (CAPS) [7], was introduced in 2012.

To highlight the importance of statistics education in South Africa, Statistics South Africa (Stats SA), to-

gether with the South African Statistical Association (SASA) and the Association for Mathematics Education

of South Africa (AMESA), co-hosted the 6th International Conference on the Teaching of Statistics (ICOTS-

6) held in Cape Town in 2002 3. According to Statistics SA, the project “recognized the cross curricula need

for data handling as an anticipated outcome, resulting in vast amounts of statistical material being included

throughout the various phases of the new school curriculum”. The conference led to the development of

the maths4stats project which seeks to address the need for statistical development in South Africa. The

primary goal of the maths4stats project is to assist towards Stats SA’s objectives of developing national

statistical capacity and promoting statistical literacy. The project has faced challenges in realizing its goals,

most of which, Stats SA, attributes to the history of the South African education system. Furthermore, the

Department of Science of Technology together with the Department of Education implemented programs to

help teachers understand curriculum changes and new teaching practices [7], however limited results have

been observed [1]. This raises the question “Why?” Why are there difficulties and challenges that arise with

the introduction of new content outside of the training of development?

Quality teachers are the single most important variable which influences on pupil learning [26]. Teachers’

perceptions of statistics could influence statistics education thus the implementation of curriculum reform

must take into consideration the perceptions and attitudes of teachers. Mohammed and Jones [21] caution

against thinking that teachers are without will of their own and can be manipulated. Thus, it is important to

3http://www.statssa.gov.za/?page id=3500
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find out what perceptions are constructed around curriculum reform and content implementation. Bantwini

[1] found that teachers find curriculum reform to be high paperwork overload and the reform is viewed as a

burden. The perception is born from the fact that teachers already feel overloaded by the learner to teacher

ratio thus additional content changes are met with a lot of friction from the teachers [1]. Each teacher

attached to curriculum reform, acts in his or her way to understand curriculum. Research conducted by

Prescott and Cavanagha [23], revealed that teachers attitudes towards mathematics influence teaching prac-

ticing. An investigation conducted by Levpuscek and Zupancic [18] showed that teachers’ beliefs contribute

to developing attitudes about mathematics. Ayres and McCormick [16] found that teachers are generally

unhappy with various content in mathematics which may result in the inability to cope with the demands of

the mathematics curriculum. Garfield [13] found that teachers lack reasoning in statistics and are of the belief

that statistics is not valuable in society. This again raises the question “why”? Why do teachers struggle

with statistical concepts? Why do they struggle to teach statistical concepts and why do they view statistics

as a subject of low importance in society?

2.3 The importance of Statistics

“Statistical thinking will one day be necessary for efficient citizenship as the ability to read and write” -

H. G Wells

The claim by H.G Wells, towards the end of the nineteenth century, may have seemed erroneous at the time,

but in recent times, what once appeared to be a false claim, can now be labeled a prophecy in the field of

statistics. The evidence of which, lies in the increasing emphasis on statistics in the mathematics curriculum,

the increasing demand for professional statisticians in various fields of employments and the increase in

society’s need to understand, interpret and implement solutions deduced from statistical information [27].

The trend of increased interest in statistical education was evident, first, in more developed societies such as

the United States of America and Australia, whose curricula statements are largely based on the requirement

for students to understand the social uses of statistics and the impact statistics has on society [27]. Similarly

to H.G Wells, Gal [11], states that statistical literacy is an expected ability in all citizens in information-laden

societies. Gal [11] further defines statistical literacy as people’s ability to understand and express relevant

opinions obtained from statistical information. As societies evolve, the need for statistical reasoning expresses

itself in different forms. Jane M. Watson [27] states that everyday news media, which presents report on a wide

range of subjects, from health to politics, further supports the growing necessity for statistical understanding

in society. Statistics is a subject of importance, not only to those who choose it as a profession, but even

more so, to regular citizens who are consumers of statistics.
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3 Methodology

3.1 Research Design

This study adopted a mixed method design that entails both quantitative and qualitative research ap-

proaches. This research followed an exploratory case study design in the form of a questionnaire that was

used to profile teachers. The exploratory case study design method refers to a type of case study that is best

used in research that is aimed at exploring situations in which the phenomenon in question has no clear,

single set of outcomes [30].

Quantitative approach

Creswell [9] defines a quantitative as an approach that tests objective theories by examining the relation-

ship among variables. These variables can be measured numerically so that the data can be analyzed using

statistical procedures [9]. In simple terms, quantitative research attempts to establish the measurements of

something [8].

Qualitative approach

Qualitative research is often aimed at investigating research questions that seek to examine the meaning and

existence of social phenomena. This research will be administered using a questionnaire to detect teachers’

attitudes towards statistics, their understanding of the content, prior skills relating to basic statistics and

current support available to them in the form of training and skills development.

3.2 Data Collection Method

The data collection method is in the form of a semi structured questionnaire. The questionnaire was

piloted at the Teachers’ Awareness Event that was hosted by the University of Pretoria on the 15th of March

2017. The questionnaires took an average of fifteen minutes to complete and were completely anonymous.

The responses to the questionnaire revealed that some of the questions were ambiguous and required to be

rephrased in order to avoid confusing the participants and to establish more accurate results. A follow up

digital questionnaire on Qualtrics, an online survey software, was later forwarded to the participants of the

awareness event to establish any changes in awareness and perception within the sample. Lastly, a revised

version of the Statistics Awareness Event questionnaire, was drafted and sent to be filled out by teachers at

the Kutlwanong Centers in Gauteng.

3.3 Research Participants

The Statistics Awareness Event consisted of twenty-four high school mathematics teachers from various

schools of diverse socio-economic schools within the Gauteng region. The teachers were profiled in terms of

13



their ages and number of years teaching mathematics. This sample of teachers consisted of teachers between

the ages of 31 and 60 years old. Two of the teachers were within the 31-35 years age group, three within

the 41-45 group, five within the 46-50 group, ten within 51-55 group, three within 56-60 age group and only

one questionnaire in which a respondent did not specify their age bracket. The questionnaire also profiled

teachers according to the quintile their schools are ranked. Within the South African education system,

schools are divided into five categories. These categories are known as quintiles and are ranked from poorest

(quintile 1) to wealthiest (quintile 5) [2].

The second population consisted of high school mathematics teachers from the five Kutlwanong Centers in

Gauteng. The sample from the Kutlwanong Centers consisted on thirty-one teachers. Thirteen of the teachers

were within the 31-35 age group, six within the 41-45 group, two within the 51-55 group, three within 56-60

group and seven in the older than sixty age group. The overall population consisted of fifty-five mathematics

teacher from the Gauteng region.

3.4 Research Instrument

Jane M. Watson [28] developed a teacher profiling tool with the aim of addressing issues of teacher com-

petencies and curriculum changes, particularly for in mathematics education. The profiling tool exhibits

flexibility that previous tools did not provide and for this reason, it has been adapted for many studies

regarding Mathematics education [29]. Similarly, this study adopted and adapted the tool, in the form of a

questionnaire, in order to profile Grade 10 - Grade 12 mathematics teachers.

The first research instrument used is a case study questionnaire divided into three sections, namely, biograph-

ical information, perceptions about statistics (from the teachers’ point of view) and learner perceptions (as

inferred by the teachers).

The second research instrument is a follow-up online questionnaire on the Qualtrics package. Similarly, the

questionnaire is divided into the 3 sections as mentioned above.

3.5 Statistical Theory

3.5.1 The Chi-Squared (χ2) Distribution

The Chi-Squared (χ2) distribution (see Figure 1) dates as far back is the mid 1800’s [15]. It is believed

that is was derived by Bienaynme in 1838. Sheynin [25] theorized that it was first formulated by Ernst Karl

Abbe in 1863 and that a general expression for the distribution was derived by Boltzman in 1881 but it was

not until Karl Pearson published a seminal paper in 1900 which introduced the χ2 not only as a distribution

but also as a statistic and a statistical test, did the discovery of the χ2 be impactful [15]. It is now, one of

the most important and most widely used distributions in statistical theory and inference.
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Figure 1: The χ2distribution where v represents the degrees of freedom
Source:

http://www.boost.org/doc/libs/1 38 0/libs/math/doc/sf and dist/html/math toolkit/dist/dist ref/dists/chi squared dist.html

A random variable X is said to have a χ2 distribution with n degree of freedom if it is absolutely continuous

with density:

f(x) =

 0 x ≤ 0

Γ
(
n
2

)−1
2−

n
2 x

n
2 −1e−

x
2 x > 0

(1)

where n≥1, for cases where Γ (.) represents the Gamma function and random variable X ∼ χ2(·).

The χ2 is closely related to both the Gamma distribution and the Normal Distribution. The Gamma dis-

tribution, with a mean of n and variance of 2n, is equal to the χ2 distribution with n degrees of freedom.

Furthermore, the χ2 distribution exhibits properties of a normal distribution. The sample variance, S2, of

a random sample from a normally distributed population has the χ2 sample distribution. This means that

if X1, . . . , Xn are independent and identically distributed normal variables with the population variance σ2,

then

Remark 1.

n− 1

σ2
.S2 =

1

σ2
((X1 − X̄)2 + . . .+ (Xn − X̄)2) =

1

σ2
(X2

1 +X2
2 + . . .+X2

n − ¯nX2)

has χ2 distributed random variables with n− 1 degrees of freedom. This result follows from general property

of normality which is illustrated below.

Remark: Let X = (X1,. . . ,Xn) be a normal vector with dimension n, such thatX1,. . . ,Xn are normally

distributed independent random variable with a mean of 0 and a variance of 1, then
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|X|2 = X2
1+ . . .+ X2

n

has a χ2 distribution with n degrees of freedom. From this result, if the mean values of the components of X

are non-zero, then|X|2 has a non-central χ2 distribution with n degrees of freedom and parameter,
√

X̄, that

is also non-central. Thus the χ2 distribution with a non-centrality parameter that is equal to 0 is known as

the central χ2 distribution.

Many tests have a χ2distribution or an asymptotic χ2 distribution. For example, the goodness of fit χ2 tests

are based on Pearson’s χ2 statistic which, under an appropriate null hypothesis, has a χ2 distribution. The

Friedman test statistic and likelihood ratio tests are also based on a test statistic that is asymptotically χ2

distributed [15].

Non-Central χ2 distributions are used for calculating the power function of tests based on the quadratic

forms of the normal or asymptotic normal statistics.

3.5.2 Pearson’s χ2 Goodness of Fit Test: Improvements

The Goodness of fit test was first discovered in 1900 by Karl Pearson. Based on Pearson’s publication,

the limit distribution of the χ2 statistic would be the same if the null hypothesis were replaced by estimates

based on a sample. Pearson’s Sum, also known as, Pearson’s χ2 Tests Statistic is written as follows:

χ2 = χ2
n(θ) =

r∑
i=1

(vi − npi(θ))2

npi(θ)
(2)

where vi is the observed frequency, npi(θ) represents the expected frequency and r is the number of rows,

such that Pearson’s Sum (2) can be simplified as follows:

χ2 =
∑ (Oi − Ei)

2

Ei

For the number of observations, n→∞, Pearson’s Sum (2), for the simple null hypothesis specifying the true

value of θ, will follow χ2 distribution with r − 1 degrees of freedom. Pearson believed that the limit of the

distribution of his χ2 statistic would be the same if unknown parameters of the null hypothesis were replaced

by estimates based on a sample [15]. This, of course, was an error, which inspired further development in

the theory of the χ2 test statistic. An article by Chernoff and Lehmann [5] published in The Annals of

Mathematical Statistics Journal in 1954, investigated Pearson’s test statistic. Their findings showed that the
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test statistic does not have a limiting χ2 distribution but that, it is in actual fact, statistically larger than

it would be expected to be under the χ2 theory. They showed that replacing the parameters in Pearson’s

sum (1), with maximum likelihood estimates based on non-grouped data would significantly alter the limit

distribution [15]. This means that, the limit distribution will follow a distribution that generally depends on

the unknown parameters and thus cannot be used for testing [15]. In a paper published by the Biometrika

Journal 1977, Molinari [22] investigated the χ2 test under the null hypothesis when parameters are estimated

by the method of moments. He derived a limit derived the distribution of the limit of Pearson’s Sum for

moment type estimates that are based on raw data. Similarly to the case of maximum likelihood estimators,

Molinari’s limit distribution depends on unknown parameters [15]. Dahiya and Gurland [15] derived a

modified version of Pearson’s χ2 test statistic so that the limit distribution does not depend on unknown

parameters but instead on the null hypothesis. The modifications to Pearson’s sum utilized estimators that

are based on ungrouped data in deriving the test statistic as well as determining the class intervals [10].

Dahiya and Gurland [10] illustrate that, for continuous distributions with locator and scale parameters, the

distribution under the null hypothesis of the modified test statistic does not depend on unknown parameters

when estimated by the sample mean and the variance. They further developed a table of certain percentage

points for the modified statistic in order to facilitate its use for normality testing [10].

Cochran [6], stated that χ2 tests often do not indicate significant results when the null hypothesis is false. He

further suggested that using a single degree of freedom, or a group of degrees of freedom from the total test

statistic, will yield a more accurate and appropriate test [6]. However, it was Ronald Fisher, in 1925, who

first showed that the number of degrees of freedom of the Pearson’s χ2 test must be decreased by the number

of parameters estimated by the sample [15]. Fisher’s result is only true if and only if the parameters are

estimated by grouped data or by any asymptotically equivalent procedure. This resulted in what is known

as the Pearson-Fisher χ2 test. The Pearson-Fisher test is a Pearson test where the unknown parameters

replaced by grouped data estimates are as follows:

χ2
n(θ̂n) =

r∑
i=1

(vi − npi(θ̂n))2

npi(θ̂n)
(3)

where θ̂n represents the grouped data estimates.

3.5.3 Chi-Squared (χ2) Test

The χ2 test is the most widely used of all the non-parametric test of significance and is particularly of

use for tests involving nominal data [8]. The χ2 test, tests for significant differences between the observed

distribution of data and the expected distribution as derived from the null hypothesis. The null hypothesis
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is established from the expected frequency of data within a category. The deviations of the hypothesized

frequencies from the actual frequencies are compared.

The null hypothesis states that there are no differences in expected and observed frequencies:

H0 : Oij = Eij , where Oij represents the number of cases categorized in the ij th cell and, Eij is expected

frequency of cases under the null hypothesis to be categorized in the ij th cell.

The null hypothesis is investigated by means of the following test statistic:

χ2 =

k∑
i

k∑
j

(Oij − Eij)
2

Eij
(4)

where k represents the number of categories.

The statistic expresses the extent of difference between the observed and expected frequencies and is thus

calculated by means of a count or frequency as opposed to a percentage of cases in a categorized cell [8]. The

greater the differences, that is, a large χ2 value, the less the differences can be explained by “chance” [8].

The degrees of freedom associated with the test statistic determine the distribution of the χ2. The degrees

of freedom are calculated as follows:

df = (r − 1)(c− 1)

where r and c represent the number of rows and columns, respectively. The χ2 has restrictions [8]. For

df = 1, the expected frequency in each cell should be at least five, and for a case where df > 1, the χ2 test

should only be used if and only if, at most twenty percent of the expected frequencies are smaller than five.

Thus, the χ2 test is not suited for small sample sizes.

3.5.4 Fisher’s Exact

Fisher’s Exact is an augmented version of the χ2 test that is more accurate for small sample sizes. Like

the χ2 test, Fisher’s exact is used when two or more nominal variables are to be investigated for statistically

significant differences. As the name suggests, Fisher’s exact calculates an exact p-value the exact probability

of the table of observed cell frequencies based on two main assumptions:

1. The null hypothesis of independence is true,

2. The number of rows and columns are fixed by the experiment.

The p-value is calculated using the exact probability of observed cell frequencies as follows:
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p q row total

x a b a+b
y c d c+d

Col Total a+c b+d a+b+c+d=n

Table 1: Two by two contingency table

p− value =

(
a+b
a

)(
c+d
c

)(
n

a+c

) (5)

Equation 5 calculates an exact hypergeometric probability for contingency Table 1. The hypergeometric

formula is a conditional probability due to the requirement that the row and column totals remain constant.

Fisher’s exact test is exact for as long as the row and column totals are fixed. For this reason, the test can be

used regardless of the characteristics of the sample. Ludbrook [19] concluded that Fisher’s exact test is the

best method for analyzing conditional experimental designs. However, Fisher’s exact does pose the problem

of giving the exact answer to the wrong question4. Ludbrook [19] claimed that Fisher designed his exact test

for a specific experiment, thus the conditional experimental design must be followed in order to effectively

use Fisher’s exact.

3.5.5 Chernoff Faces

Chernoff Faces were developed in response to a cluster analysis problem [15]. Cluster analysis includes

a variety of methods of which the appropriate analysis method depends on the nature of the data. The

method called “Chernoff faces” involves a computer program that draws a caricature of a face when given 18

numbers between 0 and 1. The grouping of faces serves as a preliminary method of clustering and recognizing

which features are important in the clustering [4]. The numbers used in this method represent features of

the face. Faces were used in this method as a way to comprehend data where roles of various factors are

understood. Originally, Faces were designed in order to simplify and to further represent which variables are

important and which variables interact with one another. The method of Faces is suited for high dimensions;

however, it does not always handle a great number of faces well except in the case of a time series analysis

in which the faces will appear in succession. The method of Faces can be further augmented to handle more

than 18 variables by means of using a pair of faces to represent data. One of the main benefits of Chernoff

Faces is the human brain’s repose to caricatures and cartoon faces. It is apparent that the human brain

recognizes faces in a different part of the brain than that which handles other forms of geometric data thus,

small changes in facial features are easily recognized, understood and remembered, which is not the case with

4https://www.graphpad.com/guides/prism/7/statistics/stat chi-square or fishers test.htm?toc=0&printWindow
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other conventional methods of graphical data analysis and representation. However, the method of faces is

somewhat limited to data summarizing and representation and is not likely to be of much use for calculations

[4].

4 Data Analysis

Qualitative research methodologies have been used in various fields and disciplines since as early as the

19th century [8]. The problem most researchers face is that results obtained from qualitative data cannot be

generalized for a larger population. However, there are analysis methods and techniques that can be applied

to qualitative data to yield conclusive and trustworthy results. Qualitative data analysis generally follows

two distinct approaches, namely, grounded theory analysis and framework analysis.

Grounded theory analysis includes an inductive method that allows for social theories to be generated from

data [17]. This means that concepts and relationships are developed directly from the data analysis providing

a set of testable hypotheses that will form theories that provide further understanding of social phenomena.

On the other hand, framework analysis was developed for the purposes of applied research which is research

that is aimed at understanding and interpreting information to provide outcomes and suitable recommenda-

tions within a relatively short period of time [17].

Framework analysis identifies themes in data and further compares and contrasts the themes in search of

patterns, associations and explanations as a means of interpreting the data. Framework analysis can other-

wise be referred to as exploratory data analysis (EDA) which gives allowance to the researcher to respond to

patterns that are revealed during the analysis process [8]. EDA emphasizes the use of visual representations

and graphical techniques as a means to summarize and display data. There are various techniques that can

be used to display data such as frequency tables, histograms and Chernoff faces. Cross tabulation, which is a

technique that is useful for comparing two or more qualitative variables, is another means of examining data.

Generally, it is applied in order to represent demographical variables against the study’s target variables [8].

Furthermore, descriptive and inferential analysis methods can be effective in examining qualitative data (see

Figure 2). Data is used to answer the following questions:

1. Are teachers aware of statistics as a profession?

2. How do teachers perceive the inclusion of statistical content in the Mathematics curriculum?

3. Does the number of years of teaching Mathematics affect the perception of statistics?
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Figure 2: Graphical breakdown of the data analysis process

Descriptive Statistics

Cooper and Schindler [8] describe Exploratory Data Analysis (EDA) as a set of analysis techniques and

as a perspective. EDA does not follow a rigid structure in terms of data analysis methods and can be

further described as a flexible analysis technique. Flexibility is one of the most important attributes of

Exploratory Data Analysis. In the context of EDA, Cooper and Schindler [8] emphasize the importance of

visual representations and graphical techniques over summary statistics. For this reason, graphical methods

are used to summarize and further analyzing patterns that emerged from the data.

Inferential Statistics

Under the topic of inferential statistical analysis, the method of hypothesis testing will be applied to address

some of the research questions. According to Cooper and Schindler [8], hypothesis testing is used to determine

the accuracy of a hypothesis that is linked to a sample of the data. The accuracy of a hypothesis test is

evaluated by means determining the probability that the data will have true statistical differences and not

just random sampling errors [8]. Classical Statistics techniques approach hypothesis testing as follows:

1. A claim about the data is established. This is known as the null hypothesis.

2. A contradictory claim to the null hypothesis is established. This is known as the alternative hypothesis.

3. The null Hypothesis is rejected or not rejected and a conclusion is drawn about the data.

The hypothesis tests will be performed at a 5% level of significance such that α = 0.05.

Different hypothesis tests will be used to shed light and attempt to answer the research questions.
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4.1 Question 1: Are teachers aware of statistics as a profession?

Question 1 is evaluated by means of three graphs which provide data that illustrates teachers’ percep-

tions of statistics professionally. The graphs are generated from data provided by teachers with respect to

awareness of different statistics and mathematics qualifications, types of employers that may employ statis-

ticians, actuaries and mathematicians and lastly, the types of activities the different qualifications may have

to perform in their careers. The data is provided graphically in Figure 3.

Figure 3: Teachers’ awareness of BCom Stats, BSc Mathematical Stats, BSc Actuarial and Financial Math-
ematics and BSc Mathematics for teachers at the Awareness Event

Figure 3 summarizes responses from twenty-four of the teachers who attended the Teachers’ Awareness

Event. BSc in Mathematics and BSc in Actuarial and Financial Mathematics emerged as the two qualifica-

tions of which the teachers were most aware. The two Statistics qualifications, namely, BCom in Statistics

and BSc in Mathematical Statistics, though at 87.5% and 83.33% awareness respectively, proved to be the

qualifications that the teachers are least aware of especially in comparison to Actuarial and pure Mathe-

matics qualifications. Table 2 illustrates what knowledge the teachers have regarding the type of employers

that would typically hire statisticians, mathematicians and actuaries. The purpose is to establish whether

teachers are aware of the differences and/or similarities in the careers and their roles in the professional

market. Based on the displayed results, it is apparent that the teachers have a keen understanding as to
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Teachers Knowledge of possible employers of statisticians, actuaries and mathematicians

Edgars/Foschini
statisticians actuaries mathematicians N/A

% 91.67 25 33.33 0
Facebook

statisticians actuaries mathematicians N/A
% 91.67 16.67 33.33 4.17

Sasol
statisticians actuaries mathematicians N/A

% 83.33 54.17 62.50 0
MTN

statisticians actuaries mathematicians N/A
% 91.67 37.50 50 0

OUTsurance
statisticians actuaries mathematicians N/A

% 66.67 83.33 29.17 0
Capitec/ABSA

statisticians actuaries mathematicians N/A
% 62.50 87.50 45.83 0

Table 2: Teachers Knowledge of possible employers of statisticians, actuaries and mathematicians

the role of statisticians professionally. The results show that there is knowledge of the type of employment

that a statistician can pursue within the job market. 62.5% of the teachers at the Awareness Event revealed

knowledge that banks and financial services are the biggest employers of statisticians whereas 91.67% of the

teachers indicated that statisticians are employed by social media and retail industries. The information is

summarized graphically in the form of Chernoff Faces in Figure 4.

There were thirty-one teachers who provided feedback at the Kutlwanong Centers. Their awareness of

the different possible employers of statisticians, actuaries and mathematicians is summarized in Figure 5.

Much like the teachers at the awareness event, the teachers at the Kutlwanong Centers indicated some

understanding of the possible employers of statisticians with the insurance and banking industries getting

the highest percentages of votes. Based on the style of hairstyles in Figure 4 anf Figure 5 , the teachers do

not believe the automotive industry to be potential employers of statisticians, though this is also not true.

Question 1 was further investigated by assessing the teachers’ awareness of the different activities per-

formed by statisticians, actuaries and mathematicians. The teachers’ ability to identify similarities within the

qualifications was also used as a means of assessing the teachers’ knowledge about statistics as a profession.

Table 3 illustrates teachers’ knowledge of the different types of activities that statisticians, actuaries and

mathematicians may perform in their careers. When asked about the different activities that are performed

by statisticians, mathematicians and actuarial scientists in the work place, it can be deduced from Table 3,

that on average, the teachers are aware of the day to day activities that the different careers offer, however, the
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Figure 4: Chernoff Faces of possible employers of statisticians, actuaries and mathematicians as presented
by teachers at the Awareness Event
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Figure 5: Chernoff Faces of possible employers of statisticians, actuaries and mathematicians as presented
by teachers at the Kutlwanong Centers
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Teachers’ Knowledge of the professional activities of statisticians, actuaries and mathematicians

Identifying Sales Trends
statisticians actuaries mathematicians N/A

% 79.17 54.17 25 4.17
Model Rhino Poachers’ Movements

statisticians actuaries mathematicians N/A
% 83.33 4.17 33.33 4.17

Develop Products for Insurance Companies
statisticians actuaries mathematicians N/A

% 29.17 83.33 29.17 0
Using Deterministic Models

statisticians actuaries mathematicians N/A
% 75 37.5 54.17 4.17

Working with Census Data
statisticians actuaries mathematicians N/A

% 87.5 25 37.5 0

Table 3: Teachers’ knowledge of the different activities that may be performed by statisticians, actuaries and
mathematicians

responses also revealed that teachers are not aware of the differences and similarities between three different

qualifications, particularly in the work place. The perceptions of the activities seem moderately split between

the three different professions in question.

Figure 6 and 7 graphically illustrate the teachers’ knowledge of the types of activities that are performed

by statisticians, actuaries and mathematicians. Most of the teachers believed that modeling of life insurance

packages is a task that is performed by statisticians. This can be seen from the very small size of the ears of

most of the faces.

The teachers at the Kutlwanong Centers were also asked to rank statistics, actuarial Sciences and mathematics

professions in terms of difficulty to obtain employment. The rank was done a scale of 1 - 5 with 1 = very

difficult to employ and 5 = easily employed. Table 4 summarizes the percentage of teachers who ranked

the highest and lowest levels of difficulty of employment for each profession. The results of which portray

conflicting opinions. 29.03% of teachers believe that statisticians find employment with ease. The teachers

believe that finding employment as an actuarial scientist and as a mathematician is easier than it is a

statistician. More than 50% of the teachers indicated that an actuarial science qualification will be most

easily employed. On the contrary however, the teachers ranked a qualification in actuarial science as the most

difficult to obtain employment with nearly 20%. Similarly, statisticians, which were ranked lowest in terms

of ease of securing employment, were again ranked the lowest in terms of difficulty obtaining employment.

This revealed that there is a relative amount of confusion about the impact of a qualification in statistics

and perhaps, an overall confusion regarding an actuarial sciences qualification and a statistics qualification.
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Figure 6: Chernoff Faces of Teachers’ knowledge of the different activities that may be performed by statis-
ticians, actuaries and mathematicians presented by teachers at the Statistics Awareness Event
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Figure 7: Chernoff Faces of Teachers’ knowledge of the different activities that may be performed by statis-
ticians, actuaries and mathematicians presented by teachers at the Kutlwanong Centers
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Actuary (%) Statistician (%) Mathematician (%)

5 = Easily Employed 54.84 29.03 38.71
1 = Very Difficult to get employed 19.35 6.45 9.68

Table 4: Teachers’ opinions on difficulty of employment for actuaries, statisticians and actuaries

The responses also contradict current literature regarding statistics as a profession. As mentioned before,

statisticians have a diverse employment opportunity profile and the with the banking industry being one of

the top employers of statisticians.

There is a positive theme with regards to teachers’ awareness of statistics as profession. The teachers

are aware of the different statistics related qualifications but are not aware of what sets statistics apart from

a career in actuarial sciences and/or pure mathematics. There is a clear mismatch in the understanding of

the role and importance of statistics as a career, especially in comparison with actuarial sciences and pure

mathematics.

4.2 Question 2: How do teachers perceive the inclusion of statistical content in

the mathematics curriculum?

Question 2 was evaluated by a series of questions that attempt to establish teachers’ attitudes towards the

inclusion of statistics in the high school mathematics curriculum. This was done by means of perceptive

questions with the purposes of viewing whether or not teachers understand the importance of statistics

education at a high school level and the need for statistics education foundations. The data is provided

graphically in Figure 8. Figure 8 illustrates the teachers’ attitudes about the inclusion of statistics within the

high school mathematics curriculum. All of the teachers agreed that the inclusion of statistics is important,

of which, more than 66% felt strongly about the importance of the statistics content in the mathematics

curriculum. Similarly, all the teachers agreed that statistics deserves to be included in the curriculum, with

slightly more than 70% strongly agreeing that statistics education deserves to be included in the curriculum.

Over 54% of all the teachers disagreed that the current statistics content in the curriculum is sufficient, while,

roughly over 45% of the teachers felt that the statistics content is sufficient. These results illustrate that

teachers are generally receptive and accepting of the inclusion of statistics and on average, would like to see

more statistical content in the mathematics curriculum.
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Figure 8: Teachers’ perceptions on the inclusion of statistics within the high school mathematics curriculum

The inclusion of statistical concepts in mathematics syllabus is relevant
Table Probability 5.14E-04

Pr <= P 0.4795

Statistics deserves to be included in the mathematics curriculum
Table Probability 4.98E-04

Pr <= P 0.8441

The Statistical concepts in the curriculum are sufficient
Table Probability 3.59E-07

Pr <= P 0.7869

Table 5: Fisher’s Exact Test for teachers’ perceptions on the inclusion of statistics within the high school
mathematics curriculum

For the purposes of Fisher’s Exact test, the teachers were grouped in terms of the number of years teaching

Grade 12. This was selected as the group differentiator in the hopes of analyzing whether there is a difference

in perception between teachers because of the number of years teaching.

Null Hypothesis for the inclusion of Statistical concepts in the mathematics syllabus:

Ho : The proportion of teachers’ perceptions about the inclusion of statistical concepts in the Mathematics

curriculum is the same for all groups

Alternative Hypothesis:

Ha : The proportion of teachers’ perception per group differs significantly

p-value: 0.4795 > 0.05 (see Table 5)

Thus, the null hypothesis is not rejected meaning that there is not a significant difference in proportion size of
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The inclusion of statistical concepts in mathematics syllabus is relevant
Years of teaching Gr12 I agree I strongly agree Total

Frequency

Group A : (0-5)

11 7 18
Percent 20 12.73 32.73

Row Product 61.11 38.89
Column Product 42.31 24.14

Group B: (6-10)

5 4 9
9.09 7.27 16.36
55.56 44.44
19.23 13.79

Group C: (11-15)

1 4 5
1.82 7.27 9.09
20 80

3.85 13.79

Group D: (16-20)

3 9 12
5.45 16.36 21.82
25 75

11.54 31.03

Group E: (21-25)

2 2 4
3.64 3.64 7.27
50 50

7.69 6.9

Group F: (26-30)

4 3 7
7.27 5.45 12.73
57.14 42.86
15.38 10.34

Total
26 29 55

47.27 52.73 100

Table 6: Frequency table for the teachers’ perceptions on the relevance of statistical concepts in the mathe-
matics syllabus

teachers in each age group with regards to their perceptions of the inclusion of statistics in the mathematics

curriculum. To further investigate the perceptions of teachers with regards to the inclusion of statistics in

the mathematics curriculum, a frequency table is analyses. Table 6 shows all the teachers, in all the different

groups agree that statistics is relevant in the high school mathematics curriculum. Group A emerged with

the highest percentage (32.73%) of teachers who agree to the relevance of statistics in the curriculum. In

total, more than 50% of the teachers strongly feel that statistics is a relevant concept within high school

mathematics.

Null Hypothesis to assess teachers’ perceptions regarding whether or not statistics should

be included in the mathematics curriculum:

Ho : The proportion of teachers’ perceptions regarding whether statistics deserves to be included in the

mathematics curriculum is the same for all groups

Alternative Hypothesis:
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Statistics deserves to be included in the school curriculum
Years of teaching Gr12 I disagree I agree I strongly agree Total

Frequency

Group A : (0-5)

1 4 12 17
Percent 1.96 7.84 23.53 33.33

Row Product 5.88 23.53 70.59
Column Product 100 25 35.29

Group B: (6-10)

0 3 4 7
0 5.88 7.84 13.73
0 42.86 57.14
0 18.75 11.76

Group C: (11-15)

0 1 4 5
0 1.96 7.84 9.8
0 20 80
0 6.25 11.76

Group D: (16-20)

0 3 8 11
0 5.88 15.69 21.57
0 27.27 72.73
0 18.75 23.53

Group E: (21-25)

0 1 3 4
0 1.96 5.88 7.84
0 25 75
0 6.25 8.82

Group F: (26-30)

0 4 3 7
0 7.84 5.88 13.73
0 57.14 42.86
0 25 8.82

Total
1 16 34 51

1.96 31.37 66.67 100

Table 7: Frequency table for teachers’ perceptions of whether or not statistics deserves to be included in the
school curriculum

Ha : The proportion of teachers’ perception per group differs significantly

p-value: 0.8442 > 0.05 (see Table 5)

Thus, the null hypothesis is not rejected. The different groups in terms of years of teaching grade 12 have

similar believes about whether statistics deserves to be included in the mathematics curriculum. To further

investigate the perceptions of the teachers, the responses per group of years of teaching are analyzed in a

frequency table. Table 7 illustrates that less than 2% of all the teachers indicated that they believe that

statistics should not be included on the high school mathematics curriculum.

Null Hypothesis to assess teachers’ perceptions regarding their beliefs about the statistical

concepts in the high school mathematics curriculum is as follows:

Ho : The proportion of teachers’ perceptions regarding statistical concepts in the mathematics curriculum

is the same for all groups

Alternative Hypothesis:

Ha : The proportion of teachers’ perception per group differs significantly
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The statistical concepts in the curriculum are sufficient
Years teaching I strongly

I disagree I agree
I strongly

Total
Gr12 disagree agree

Frequency

Group A : (0-5)

3 5 8 1 17
Percent 5.88 9.8 15.69 1.96 33.3

Row Product 17.65 29.41 47.06 5.88
Column Product 42.86 26.32 36.36 33.3

Group B: (6-10)

2 4 1 0 7
3.92 7.84 1.96 0 13.7
28.57 57.14 14.29 0
28.57 21.05 4.55 0

Group C: (11-15)

1 1 2 1 5
1.96 1.96 3.92 1.96 9.8
20 20 40 20

14.29 5.26 9.09 33.33

Group D: (16-20)

1 5 4 1 11
1.96 9.8 7.84 1.96 21.6
9.09 45.45 36.36 9.09
14.29 26.32 18.18 33.33

Group E: (21-25)

0 2 2 0 4
0 3.92 3.92 0 7.84
0 50 50 0
0 10.53 9.09 0

Group F: (26-30)

0 2 5 0 7
0 3.92 9.8 0 13.7
0 28.57 71.43 0
0 10.53 22.73 0

Total
7 19 22 3 51

13.73 37.25 43.14 5.88 100

Table 8: Frequency table of teachers’ perceptions of whether or not the statistical concepts in the curriculum
are sufficient

p-value: 0.7869 > 0.05 (see Table 5)

Thus, the null hypothesis is not rejected. The different groups in terms of years of teaching grade 12 have

similar believes about the statistical concepts in the mathematics curriculum. To further investigate the

perceptions of the teachers, the responses per group of years of teaching are analyses in a frequency table.

Table 8 illustrates that overall, there is an even split with 50.98% objecting to the fact that the statistics

curriculum is sufficient. Even within the different groups of years if teaching, the split between disagreeing

and agreeing with the statistics content is even with the exception of group B, which are teachers who have

been teaching for 6-10 years. Within group B six out of the seven teachers do not agree with that the

statistical content is sufficient. The rest of the groups A, C, D and E, seem to be satisfied with the statistical

content in the mathematics curriculum.

The teachers at the Kutlwanong Centers were asked to rank different topics in mathematics curriculum

according to importance (see Figure 9).
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The teachers are positively receptive and accepting of the inclusion of statistics however there are split opinions

on the importance of statistics relative to other concepts within the high school mathematics curriculum.

Figure 9: Teachers’ perceptions of which topics are most important in the mathematics syllabus

Figure 9 illustrates teachers’ beliefs about which topics in the mathematics curriculum are most important.

The teachers were asked to rank eight topics, including statistics, on a scale of 1 to 8, with 1 being the

most important and 8 being the least important. The results revealed that more than 60% of the teachers

believe algebra to be the most important topic within the curriculum. Just under 50% of the teachers

ranked statistical concepts within the top three positions. Under 40% of the teacher ranked statistics to be

within the bottom three. Statistics also appeared in the lowest rank at just over 12%. There is evidence

that teachers perceive the inclusion of statistics in the mathematics curriculum to be a positive change but

there are conflicting view on the importance of statistics relative to other concepts within the mathematics

curriculum
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4.3 Question 3: Does the number of years of teaching mathematics affect the

perception of statistics?

The Fisher’s exact tests performed in section 4.2 where performed using the years of teaching grade 12

as a differentiator for the different groups of teachers. From Table 5 in section 4.2, it is evident that teachers

of different groups have similar perceptions about the inclusion of statistics in the high school mathematics

curriculum.

Further investigations were done using Fisher’s Exact to analyze whether teachers of the different groups

had different opinions about the definition of statistics and the difficulty of statistics as a topic of teaching.

Similarly, to section 4.2, the teachers are split into groups of years of teaching grade 12.

Null Hypothesis to assess teachers’ opinions on the definition of statistics:

Ho : The proportion of teachers’ perceptions regarding definition of statistics is the same for all groups

Alternative Hypothesis:

Ha : The proportion of teachers’ perceptions per group differs significantly

p-value: 1 > 0.05 (see Table 9)

Thus, the null hypothesis is not rejected. The perceptions of the teachers do not differ significantly is the

same for all groups.

Null Hypothesis to assess teachers’ perceptions regarding the level of difficulty of statistics

as a topic of teaching:

Ho : The proportion of teachers’ perceptions regarding the difficulty of statistics as a topic of teaching is

the same for all groups

Alternative Hypothesis:

Ha : The proportion of teachers’ perception per group differs significantly

p-value: 0.746 > 0.05 (see Table 9)

Thus, the null hypothesis is not rejected. The perception of the teachers is not significantly different for all

groups.

Both tests further support the fact that there are no significant differences in the perceptions of teachers

due to years of teaching. The years of teaching do not significantly affect the teachers’ perceptions of statistics.
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Fisher’s Exact Test

Which one of the phrases best describes your understanding of what statistics is
Table probability 0.1243

Pr <= P 1

Rate teaching of statistics as a topic in terms of difficulty
Table Probability 3.88E-04

Pr <= P 0.746

Table 9: Fisher’s Exact Test for Teachers’ perceptions the definition of statistics and level of difficulty of
statistics as a teaching topic

5 Conclusion

The purpose of this research was to evaluate the perceptions and awareness of Statistics as a discipline

amongst high school mathematics teachers. This was done by means of a questionnaire that was given to

mathematics teachers that attended an awareness event at that was hosted by the University of Pretoria, and

mathematics teachers at the Kutlwanong Centers in Gauteng. The method of Chernoff faces, graphs and

tables were used for a descriptive analysis of the data. Fisher’s Exact Test was used to establish relationships

between the different groups of teachers.

The research revealed that teachers are aware of statistics qualifications. However, they are more aware of

the importance of pure mathematics and actuarial sciences qualifications. The teachers also showed a keen

understanding of statistics as a profession but struggled to identify the daily activities of statisticians and

the career opportunities available to a professional statistician. The teachers further struggled to identify

the main differences and similarities between statisticians, mathematicians and actuarial Scientist. Overall,

the teachers showed similar perceptions about statistics within the high school mathematics curriculum

though there is a clear conflict in terms of the importance of statistics relative to the other concepts in the

mathematics curriculum.

6 Recommendations

The study faced various challenges, the main challenge being the limited data size of only fifty-five teachers.

This restricted the types of analysis methods that could be applied to the data. Furthermore, the teachers

were not as active in answering the online follow-up questionnaires which were meant to provide insight

about the impact of the Statistics Awareness Event that was hosted at the University of Pretoria. Further

studies of this nature need a more extensive sample sizes so as to obtain more accurate data. Comparisons

regarding the effects of the quintiles of the schools and the number of learners per teacher per class could
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provide further insight on teachers’ perceptions and awareness of statistics in the mathematics curriculum

and perhaps bring to light the challenges that high school teachers of schools of varying backgrounds face in

the teaching of statistics.
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SAS CODE: 

 

data Resp;  

input Group Age $ YoT10 $ YoT11 $ YoT12 $ relevant should sufficient BcomS 

BscMS BscAFM BscM Q14S Q14A Q14M Q161 Q162 Q163 ;  

datalines;  

1 g f f f 4 4 2 1 1 1 1 1 1 1 2 2 2 

1 e e e d 3 3 2 0 0 0 1 0 1 0 1 2 2  

1 d d d d 4 4 2 0 1 1 1 1 1 1 3 3 3  

1 f f f f 3 3 3 1 1 1 1 1 1 1 2 2 2  

1 f d d d 3 3 3 1 1 1 1 1 1 1 2 2 2 

1 f f f e 4 4 2 1 1 1 1 1 1 1 2 2 2  

1 f d f f 4 4 3 1 0 1 1 0 1 1 1 1 1  

1 f e e e 4 4 2 1 1 1 1 1 1 1 2 2 2 

1 e b d d 4 4 1 1 1 1 1 1 1 1 2 2 3 

1 f d d d 4 4 2 1 1 1 1 1 1 1 2 2 2  

1 e d d d 4 4 4 1 1 1 1 1 1 1 2 3 3  

1 f a a a 4 4 1 0 0 1 1 0 1 1 2 3 3 

1 f e e e 3 4 3 1 1 1 1 1 1 1 2 2 2 

1 g c b c 3 3 3 1 1 1 1 0 1 1 1 2 2 

1 f e f f 4 4 3 1 1 1 1 1 1 1 2 2 3 

1 e c c b 4 4 3 1 1 1 1 1 1 1 2 2 2 

1 f a c c 4 4 1 1 1 1 1 1 1 1 1 2 3  

1 f f f f 3 3 3 1 1 1 1 0 1 1 2 2 2  

1 a b a a 3 3 3 1 1 1 1 0 1 1 3 3 3  

1 f b e f 3 3 2 1 1 2 1 0 1 1 2 3 3  

1 d a a a 4 4 4 1 1 1 1 1 1 1 2 3 3  

1 d d d d 4 4 2 1 1 1 1 1 1 1 3 3 3  

1 d b c a 4 4 2 0 0 1 1 0 1 1 3 3 3  

1 b b b b 3 3 2 1 1 1 1 1 1 1 2 2 2  

2 e e d d 3 3 3 0 1 1 1 1 1 1 2 2 2  

2 c b b b 3 4 2 0 1 1 1 0 1 1 3 3 3  

2 f a c a 4 4 2 0 0 1 1 1 1 1 2 2 2  

2 f e e d 4 4 3 0 0 1 1 1 1 1 3 3 3 

2 b a a a 4 4 2 1 1 1 1 1 1 1 2 2 2  

2 d b b b 4 4 2 1 1 1 1 1 1 1 3 3 3  

2 d c d d 4 4 2 0 1 1 1 1 1 1 2 2 2  

2 d d d d 4 4 3 0 1 1 1 1 0 1 2 2 2  

2 e e e e 3 3 3 1 1 1 1 1 1 1 3 3 3 

2 f b b b 3 3 1 1 1 1 1 1 1 1 2 3 3  

2 a a a a 3 4 1 1 1 1 1 1 1 1 2 2 2  

2 c c b c 4 4 4 1 1 1 1 1 0 1 3 3 3  

2 c c c c 4 4 2 1 1 1 1 1 1 0 3 3 3  

2 b b a a 4 4 2 1 1 1 1 1 1 1 2 3 3  

2 d 0 b c 4 4 3 0 1 1 1 0 1 0 2 2 2  

2 a 0 0 a 3 3 3 0 1 1 1 0 0 1 3 3 3  

2 f a a b 3 3 0 1 1 1 1 1 1 1 3 3 3  

2 b 0 0 a 3 3 3 1 1 1 1 0 0 1 2 2 2  

2 a a 0 a 3 4 3 1 1 1 1 1 1 1 3 2 3 

2 f b b a 4 4 0 1 1 1 1 1 1 1 3 2 2 

2 d b b b 4 4 3 1 1 1 1 1 1 1 2 3 3  

2 a b b a 3 2 3 1 1 1 1 2 2 2 3 3 3 

2 c b b b 3 4 1 1 1 1 1 1 1 1 3 3 3 

2 a a a a 3 4 2 1 1 1 1 0 1 1 2 3 2  

2 b b a a 3 4 3 1 0 1 1 0 0 1 3 3 3  

2 f e f f 3 3 3 0 1 0 1 1 1 0 2 1 3  

2 d d d b 4 4 2 1 1 1 1 1 1 1 2 2 2 

2 b a b a 3 3 3 1 1 0 1 0 0 1 3 3 3 

2 a a a a 3 3 3 1 1 1 1 1 1 1 1 2 2 

2 a a a a 3 4 3 2 1 0 1 1 1 1 2 2 3 

2 e 0 d d 4 4 3 1 1 1 1 1 1 1 2 2 2  

7 Appendix
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;  

proc print data = resp; run; 

ods html body = 'D:\Analysisfinal.xls';  

proc freq data = resp;  

tables group*age / fisher;  

run;  

proc freq data = resp;  

tables YoT12*relevant/fisher; 

run;  

proc freq data = resp; 

tables YoT12*should/fisher; 

run;  

proc freq data = resp;  

tables YoT12*sufficient/fisher;  

run;  

proc freq data = resp;  

tables YoT12*BcomS/fisher;  

run;  

proc freq data = resp;  

tables YoT12*BscMS/Fisher;  

run;  

proc freq data = resp;  

tables YoT12*BscAFM/Fisher;  

run; 

 

proc freq data = resp;  

tables Yot12*BscM/Fisher;  

run; 

 

proc freq data = resp; 

tables YoT12*Q14S/Fisher; 

run;  

proc freq data = resp;  

Tables YoT12*Q14A/Fisher; 

run; 

proc freq data = resp; 

Tables YoT12*Q14M /Fisher; 

run;  

proc freq data = resp; 

tables Yot12*Q161/fisher; 

run;  

proc freq data = resp;  

tables YoT12*Q162/fisher; 

run;  

proc freq data = resp; 

tables YoT12*Q163/fisher; 

run;  

ods html close; 

R CODE: 

#Luwela Nodada 14433852  

#23 September 2017  

#Group 2  

#Code for Faces for Daily Work Routines of statisticians, actuaries and mathematicians 

install.packages("aplpack")  

Group2 <- read.csv("D://Book1.csv") 



library(aplpack)  

faces(Group2[,2:19]) 

##################################################################################  

#Luwela Nodada 14433852  

#23 September 2017  

#Group 1  

#Code for Faces for Daily Work Routines of statisticians, actuaries and mathematicians 

install.packages("aplpack")  

Group <- read.csv("C://Users/Luwela' maza/Desktop/Research/ResearchPaper/Data 

analysis/ChernoffAFaces/facesG1.csv")  

Group[1:55,]  

library(aplpack)  

faces(Group[,2:18]) 



Department of Statistics  
Awareness project 
 
The aim of the questionnaire is to: 

• establish awareness about statistics as a profession; and 

• explore perceptions about the role of statistics in real life. 
 

Take Note:  
This questionnaire is opinion based and therefore there are no incorrect answers. At 
each question, indicate the most appropriate answer(s) or fill in where applicable. 
 

0 Respondent number 

 
BIOGRAPHICAL INFORMATION 
 

1 <30  31-34  35-40 40-44 45-50 51-54 55-60 61-65 >65   

Your age in years is 1 2 3 4 5 6 7 8 9   

 

2 NQ1 NQ2 NQ3 NQ4 NQ5  

The quintile of your 
school is 

1 2 3 4 5  

 

3     

Complete the table to reflect your 
qualifications 

Year 
obtained 

Major subjects   

Diploma     

B-degree     

Postgraduate diploma     

Hons     

Masters     

 

4 Gr 10 Gr 11 Gr 12   

How many years have you been teaching MATHEMATICS in 
the different grades 

     

How many years have you been teaching MATHEMATICS 
LITERACY in the different grades 

     

How many learners do you have currently in each grade in 
MATHEMATICS 

     

How many learners do you have currently in each grade in 
MATHEMATICS LIETERACY 

     

 
 
 
 
 
 
 



PERCEPTIONS ABOUT STATISTICS  
 
5  Indicate your level of agreement with the following 

statements. 
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a) The inclusion of Statistics in the Mathematics 

 syllabus is relevant. 

1 2 3 4 

b) Statistics deserve to be included in the school 

 curriculum. 

1 2 3 4 

c) The statistics content in the curriculum is sufficient. 1 2 3 4 

 

6   

Are you aware of the following degree qualifications? Mark all. Yes  No 

BCom Statistics 1 2 

BSc Mathematical Statistics 1 2 

BSc Actuarial and Financial Mathematics 1 2 

BSc Mathematics 1 2 

 
7 Which of the following activities might form part of the typical daily work routine of 

the different professionals. Indicate your opinion by marking the appropriate 
block(s) with an X. You may choose more than one professional per activity.   

 

Activities Statisticians Actuaries Mathematicians 

Working within the big data space 1 2 3 

Identify sales trends  1 2 3 

Determine the price of an 
insurance product 

1 2 3 

Forecast an election winner 1 2 3 

Model rhino poachers’ 
movements 

1 2 3 

Recommend fashion items online 1 2 3 

Detect fraudulent transactions 1 2 3 

Develop products for insurance 
companies 

1 2 3 

Analyze images to predict maze 
crop size 

1 2 3 

Monitor corporate governance 1 2 3 

Monitoring building quality of 
motor vehicles 

1 2 3 

Design experiments to assess the 
effect of drugs 

1 2 3 



Activities Statisticians Actuaries Mathematicians 

Forecast disease outbreaks 1 2 3 

Deterministic modeling 1 2 3 

Modeling of life insurance 
reserves 

1 2 3 

Making financial projections 1 2 3 

Work with census data 1 2 3 

Mathematical models for Malaria 1 2 3 

 
8 Which of the following employers might typical employ the different professionals. 

Indicate your opinion by marking the appropriate block(s) with an X. You may 
choose more than one professional per employer.   

 

Employers Statisticians Actuaries Mathematicians 

Capitec or ABSA 1 2 3 

Edgars or Foschini 1 2 3 

GEMS or Discovery Health 1 2 3 

Facebook 1 2 3 

Takealot 1 2 3 

Sasol 1 2 3 

Pfizer 1 2 3 

MTN 1 2 3 

News 24 1 2 3 

OUTsurance 1 2 3 

BMW 1 2 3 

 

9   

Share your experience for each question Yes  No 

Have you ever advised a learner to follow statistics as a career? 1 2 

Have you ever advised a learner to follow actuarial science as a 
career? 

1 2 

Have you ever advised a learner to follow mathematics as a 
career? 

1 2 

 
10 The table shows a list of topics in the Mathematics curriculum. Rank these topics 

(according to your perception) into the order of importance. Write a 1 next to the 
most important topic, a 2 next to the second most important and continue in this 
fashion. You may only write one no 1 and one no 2up to 8. 
 

Mathematics topics  Rank (1-8) 

Functions  

Number patterns, Sequences and Series  

Finance, growth and decay  

Algebra  

Differential calculus  

Geometry (Euclidian and Analytical)  

Trigonometry  

Statistics and Probability  



 
11   What do you think the mark allocation for statistics in the curriculum should 

ideally be? 
 

Grades Option 1 X Option 2 X Option 3 X 

Grade 10 Less than 
10 marks 

 15 ± 5  More than 20  

Grade 11 Less than 
15 

 20 ± 5  More than 25  

Grade 12 Less than 
15 

 20 ± 5  More than 25  

 
LEARNER PERCEPTION 
 
12  What do you believe is your learners’ perception 

about statistics?  

I d
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They understand it 1 2 3 4 

They are afraid of it 1 2 3 4 

They see the relevance 1 2 3 4 

They are not excited about it 1 2 3 4 

They are enthusiastic to learn about it 1 2 3 4 

 
 
 

Thank you ☺ 



Department of Statistics 
Statistics awareness project 

 
The aim of the questionnaire is to: 

 establish awareness about statistics as a profession; and 

 explore perceptions about the role of statistics in real life. 
 

Take Note:  
This questionnaire is opinion based and therefore there are no incorrect answers. At 
each question, indicate the most appropriate answer(s) by making an X in the 
appropriate shaded block(s) or fill in an answer where applicable in the shaded area. 
 

0 Respondent number 

 
BIOGRAPHICAL INFORMATION  
 

1 <31  31-35  36-40 41-45 46-50 51-55 56-60 61-65 >65   

Your age in years is            

 

2 NQ1 NQ2 NQ3 NQ4 NQ5  

The quintile of your 
school is 

      

 

3     

Complete the table to reflect your 
qualifications 

Year 
obtained 

Major subjects   

Diploma     

B-degree     

Postgraduate diploma     

Hons     

Masters     

 

4 Gr 10 Gr 11 Gr 12   

How many years have YOU been teaching MATHEMATICS 
in the different grades 

     

How many years have YOU been teaching MATHEMATICS 
LITERACY in the different grades 

     

How many learners do YOU have currently in each grade in 
MATHEMATICS 

     

How many learners do YOU have currently in each grade in 
MATHEMATICS LITERACY 

     

 
 
 
 
 
 



 
PERCEPTIONS ABOUT STATISTICS 
 
5 When were you initially introduced to statistics? 

As a subject of learning  

As a subject of teaching  

 
 
6 In your opinion, which ONE of these phrases best describes your understanding of  
 what statistics is? 

A science of data collection and capturing  

Methods and techniques used to collect, summarize and 
interpret data 

 

Tabular and graphical illustrations used to summarise data  

 
 
 
7 Rate the teaching of statistics as a topic in terms of difficulty  

Easy  

Moderate  

Difficult  

 
 
8 Indicate your level of agreement with the following statements. 
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a) The inclusion of Statistical concepts in the 

Mathematics  syllabus is relevant. 

    

b) Statistics deserves to be included in the school 

 curriculum. 

    

c) The statistical concepts in the curriculum is sufficient.     

 

9 Are you aware of the following degree qualifications? Mark all.   

 Yes  No 

BCom Statistics   

BSc Mathematical Statistics   

BSc Actuarial and Financial Mathematics   

BSc Mathematics   

 



10 Do you understand the difference between a pure statistical degree, a pure 
mathematics degree and an actuarial degree? 
 

Yes   

No  

I am Uncertain  

 
11 Based on your opinion, give a rating of the following careers in terms of 
difficulty of obtaining employment on a scale of 1 to 5 
(1 = Very difficult to get employed, 5 = Easily employed): 

Actuary     

Statistician     

Mathematician     

 
12 Which of the following activities might form part of the typical daily work routine 
of the different professionals. Indicate your opinion by marking the appropriate 
block(s) with an X. You may choose more than one professional per activity.   

 

Activities Statisticians Actuaries Mathematicians 

Working within the big data space    

Identify sales trends     

Determine the price of an 
insurance product 

   

Forecast an election winner    

Model rhino poachers’ 
movements 

   

Recommend fashion items online    

Detect fraudulent transactions    

Develop products for insurance 
companies 

   

Analyze images to predict maize 
crop size 

   

Monitor corporate governance    

Monitoring building quality of 
motor vehicles 

   

Design experiments to assess the 
effect of drugs 

   

Forecast disease outbreaks    

Building deterministic models    

Modeling of life insurance 
reserves 

   

Making financial projections    

Work with census data    

Models for malaria predictions    

 
 
 



13 Which of the following employers might typical employ the different professionals. 
Indicate your opinion by marking the appropriate block(s) with an X. You may 
choose more than one professional per employer.   
 

Employers Statisticians Actuaries Mathematicians 

Capitec or ABSA    

Edgars or Foschini     

GEMS or Discovery Health    

Facebook    

Takealot    

Sasol    

Pfizer    

MTN    

News 24    

OUTsurance    

BMW    

 
 

14 Share your experience for each question   

 Yes  No 

Have you ever advised a learner to follow statistics as a career?   

Have you ever advised a learner to follow actuarial science as a 
career? 

  

Have you ever advised a learner to follow mathematics as a 
career? 

  

 
15 The table shows a list of topics in the Mathematics curriculum. Rank these topics 
(according to your perception) into the order of importance. Write a 1 next to the 
most important topic, a 2 next to the second most important and continue in this 
fashion. The ranks must be unique (used only once) and thus no duplicates are 
allowed.  

 Rank (1-4) 

Geometry  

Algebra  

Statistics  

Finance, growth and Decay  

 
16 What do you think the mark allocation for statistics in the curriculum should ideally 
be? 
 

Grades Option 1 X Option 2 X Option 3 X 

Grade 10 Less than 
10 marks 

 15 ± 5  More than 20  

Grade 11 Less than 
15 

 20 ± 5  More than 25  

Grade 12 Less than 
15 

 20 ± 5  More than 25  

 
 



LEARNER PERCEPTION 
17 What do you believe is your learners’ perception about statistics? 
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They understand it     

They find it challenging     

They see the relevance     

They are not excited about it     

They are enthusiastic to learn about it     

 
 
 

Thank you  
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Abstract

Often, when analysing data, a starting point is to determine if the data are normally distributed.

In this study, we will compare various tests for normality based on di�erent characteristics of the

normal distribution. In each case the idea is to test the hypothesis of normality by comparing the

empirical properties of the data to the corresponding theoretical properties of the normal distribution.

Under normality the property upon which the test statistic is based on should hold approximately

for the data, especially for large samples. The hypothesis of normality is rejected for large empirical

deviations from the property in question. The �rst property of the data considered is the empirical

distribution function. The tests considered that are based on this property are the Kolmogorov-

Smirnov test, the Cramér-von Mises test and the Anderson-Darling test. Thereafter we discuss

two tests based on the empirical moment generating function. The �rst of these are based on a

weighted distance between the moment generating function of a normal distribution and its empirical

counterpart, while the second is based on a di�erential equation characterising the normal distribution.

We compare the power of the tests against various alternative distributions. The powers of the tests

are estimated using Monte Carlo simulation.
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1 Introduction

The assumption of normality is essential for many statistical procedures. This distribution is used fre-

quently both in practice and in theoretical work and the assumption of normality forms the basis of

various inferential techniques; see [20]. Statistical procedures that rely on the assumption of normality,

are called parametric methods. Non-parametric methods are used when the distribution of the data is

unknown, meaning we do not assume that the data follow a speci�c distribution; see [17]. Consider,

for example, the case where we would like to test for independence between two variables. In this case,

non-parametric tests have often been found to be less e�ective than parametric tests in detecting a weak

dependence between the variables. If, however, the data are normally distributed, parametric tests can

be used, which will lead to the increase in the accuracy of the �ndings.

A random variable X is said to be normally distributed with X ∼ N(µ, σ2) if its probability density

function is;

fx(x) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]
, −∞ < x <∞,

see [15]. Some variations of the probability density function is illustrated in Figure 1.

Figure 1: Normal density for various parameter combinations.

A normal or Gaussian density is bell-shaped and symmetric around its mean µ and has a variance

σ2; see [15]. The skewness and the kurtosis of the normal distribution are zero and three respectively.

Several authors have written review papers describing and comparing the di�erent normality tests,

see for example [6], [16], [19], [10], [20], [14], [5] and [12]. The di�erent tests for normality are based

on various properties of the normal distribution. In each case the idea is to compare the empirical

properties of the data to the corresponding theoretical properties of the normal distribution. In each test

we calculate a test statistic. This test statistics quanti�es the discrepancy between the speci�ed empirical

property of the data and the corresponding theoretical property of the normal distribution. If this test

statistic associated with a speci�c test indicates a large discrepancy, then we will reject the hypothesis
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of normality. In this study, we are interested in testing whether or not observed data are realised from a

normal distribution with some unknown µ ∈ R and σ2 > 0. In this research we will investigate various

goodness-of-�t techniques based on two characteristics of the normal distribution; its distribution and

moment generating functions.

Goodness-of-�t techniques are used in order to test the hypothesis that observed data are realised

from a speci�c distribution or class of distributions. Let X1,X2,...,Xn be independent and identically

distributed (i.i.d.) realisations from an unknown distribution F . If we want to test whether or not this

sample is realised from a certain hypothesized distribution F0, the following hypothesis is to be tested:

H0 : F = F0,

HA : F 6= F0.

The above hypothesis is known as a simple goodness-of-�t problem. If we want to test whether or not

the sample is realised from a speci�c class of distributions, we would test a composite goodness-of-�t

hypothesis. Under a simple hypothesis H0 is fully speci�ed, while a composite hypothesis only partially

speci�es the null hypothesis. In this research we will focus on the class of normal distributions. Let N

be the class of normal distributions with some expected value µ ∈ R and variance σ2 > 0, the hypothesis

that we are interested in testing is then:

H0 : F∈ N ,

HA : F /∈ N .
(1)

There are a variety of tests for normality available, in this research we will consider �ve of these tests.

These tests include the Kolmogorov-Smirnov test, the Cramér-von Mises test and the Anderson-Darling

test which are based on the empirical distribution function (EDF); see [20]. We look at two tests based

on the moment generating function test, see [9]. The �rst of these tests compares the theoretical moment

generating function to the empirical moment generating function (EMGF). The second test compares

the �rst derivative of the empirical moment generating function to a function of the empirical moment

generating function.

Each of the test statistics considered are based on the studentised values Yj =
(Xj−X̄n)

s , where

X̄n = 1
n

n∑
j=1

Xj and s
2 = 1

n

n∑
j=1

(
Xj − X̄

)2
.We denote the ordered studentised values by Y(1) ≤ ... ≤ Y(n).

When using studentised values the hypothesis speci�ed in (1) can be reduced to the hypothesis that the

data are realised from a standard normal distribution.

The remainder of this research is organised as follows: In Section 2 we discuss various goodness-of-�t

tests for normality as well as, the characteristics upon which these tests are based. We consider the

di�erent tests based on the empirical distribution function, these include the Kolmogorov-Smirnov test,

the Cramér-von Mises test and the Anderson-Darling test. Next we will consider the tests based on the
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moment generating function test. Section 3 shows Monte Carlo results obtained by generating samples

from several non-normal distributions and testing the hypothesis of normality for each goodness-of-�t

test discussed. The powers of the tests are estimated based on the rejection rate of the hypothesis test.

In this research we use Monte Carlo simulation to estimate the critical values of the test statistics under

the null hypothesis. We discuss the Monte Carlo simulation results, as well as compare the power of

the tests against various alternatives and then some conclusions relating to the most powerful tests are

drawn. In Section 4 we discuss a practical example for testing the normality of the observed data.

2 Literature review

We consider three di�erent tests based on the empirical distribution function; the Kolmogorov-Smirnov

test, the Cramér-von Mises test and the Anderson-Darling test. Next we discuss two tests based on the

empirical moment generating function.

2.1 Tests based on the empirical distribution function

Let x1, x2, ...., xn denote an observed sample of size n from a random variable X. The goodness-of-�t

tests considered below are based on a measure of distance between the empirical distribution function

and the distribution function. The idea is to compare the empirical distribution function test, with the

distribution function of the normal distribution to see if there is a close correspondence between them;

see [20] and [14].

The empirical distribution function is a step function used as a proxy for the underlying distribution

function. The empirical distribution function evaluated in some point x ∈ R , Fn (x), is the fraction of

observations that are less than or equal to x. The empirical distribution function is de�ned as;

Fn(x) =
1

n

n∑
i=1

I (Xi ≤ x) ,

where I(·) denotes the indicator function.

Denote the ordered sample by X(1) ≤ X(2) ≤ . . . ≤ X(n). The empirical distribution function can be

rewritten in the following form;

Fn(x) =


0 for x < X(1),

i
n for X(i) ≤ x ≤ X(i+1), i = 1, 2, . . . , n− 1,

1 for x ≥ X(n),

see [16]. As a result, the empirical distribution function forms a step function with n jumps of size 1
n at
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each of the observed sample values.

Let F denote the distribution function of X. Figure 2 shows an example of an empirical distribution

function obtained from a sample of size 20 of studentised values, drawn from a normal distribution. The

standard normal distribution function is superimposed in the �gure. The tests for normality based on

the empirical distribution function typically measure some distance between the empirical distribution

function and the distribution function of the standard normal distribution.

Figure 2: EDF of a sample from a standard normal distribution with superimposed distribution function.

The test based on the empirical distribution function can be divided into two classes, one being the

supremum class which is based on the largest di�erence between Fn(x) and F (x), and the other being

the quadratic class which is based on the square di�erence (Fn(x)− F (x))
2
; see [4]. The Kolmogorov-

Smirnov test falls under the supremum class and the Cramér-von Mises test and the Anderson-Darling

test falls under the quadratic class of the EDF tests.

2.1.1 The Kolmogorov-Smirnov test

In 1933 Andrey Nikolaevich Kolmogorov proposed the �rst test for standard normality based on observed

samples. In 1939 Valdimir Ivanovich Smirnov used a test statistic similar to that proposed by Kolmogorov,

but based on the maximal distance between the EDF's of two samples; see [11]. The one sample test is for

testing whether or not a set of observations is from a speci�ed continuous distribution. In [1], Lilliefors

extended this test to testing the more general hypothesis of normality without specifying the values of

µ and σ2. The resulting test is also known as the Lilliefors test, which was developed independently

by Lilliefors (1967) in [11] and by Van Soest (1967) in [18]. The Lilliefors test is based on studentised

data. The original Kolmogorov-Smirnov (KS) test assumes speci�ed parameters of the hypothesized

distribution which are known in advance. The Lilliefors test, on the other hand, is based on studentised

10



sample values. As a result, this test can be used to test the general hypothesis speci�ed in (1) .

The test statistic of the Kolmogorov-Smirnov test is de�ned as:

KSn = sup {|Fn (x)− F (x) |} , for x ∈ R.

For computational purposes, the Kolmogorov-Smirnov test can be decomposed into the three parts

as follows:

KSn = max
(
KS+

n ,KS
−
n

)
,

where KS+
n is the greatest vertical di�erence when F (x) is greater than Fn (x);

KS+
n = sup {F (x)− Fn(x)} ,

and KS−n measures the greatest vertical di�erence when Fn(x) exceeds F (x);

KS−n = sup {Fn(x)− F (x)} .

The Kolmogorov-Smirnov test rejects for large values of KSn.

2.1.2 The Cramér-von Mises test

The Cramér-von Mises (CvM) test statistic falls within the quadratic class of statistics, since it is based

on the squared vertical di�erence between Fn(x) and the hypothesized distribution F (x); see [14]. The

Cramér-von Mises test is an omnibus test, meaning that this test has substantial power against all

non-normal alternatives for large samples. In 1928 Cramér [7] introduced the following test statistic;

ω2 =

� ∞
−∞

(Fn(x)− F (x))
2
dK(x),

where K(x) is some kernel function. H0, given in (1), is to be rejected if the test statistic de�ned in ω2

is too large. Von Mises [7] then made a few suggestions and developed a new test statistic;

W 2
n = n

∞�

−∞

[
(Fn(x)− F (x))

2
]
ψ(x)dF (x), (2)
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where ψ(x) is a weight function. Setting ψ(x) = 1 de�nes the Cramér-von Mises test. The test statistic

in (2) can be written as;

CVMn =
1

12n
+

n∑
i=1

(
Zi −

2i− 1

2n

)2

,

where Zi = φ
(Xi−X̄)

S , with

φ (x) =
1√
2π
exp

(
−1

2
x2

)
.

Large values of the Cramér-von Mises will lead to rejection of the null hypothesis. Stephens sug-

gested that the Cramér-von Mises and the Anderson-Darling tests are some of the best pairs of empirical

distribution function tests for the testing of normality in terms of powers; see [4] and [19].

2.1.3 The Anderson-Darling test

In 1952 and 1954 Theodore W. Anderson and D.A Darling developed the Anderson-Darling (AD) test

for speci�c values of the parameters µ and σ2; see [10]. In the 1970's Stephens adapted the test statistic

proposed by Anderson and Darling for parameters that may be unknown; see [10].

The Anderson-Darling test proposed in [2], is a modi�cation of the Cramér-von Mises test, in which

the weight function ψ(x) is chosen such that more weight is given to the tails of the distribution than is

the case in the Cramér-von Mises test. The Anderson-Darling test has been shown to exhibit relatively

high powers; see [3]. For each �xed sample size the critical values of the Anderson-Darling test needs to

be estimated using Monte Carlo simulations.

The Anderson-Darling test statistic is similar to the Cramér-von Mises test statistic, the modi�cation

lies in the form of the weight function. The test statistic for the Anderson-Darling test is:

W 2
n = n

∞�

−∞

[
(Fn(x)− F ∗(x))

2
] (

[F (x)(1− (F (x))]
−1
)
dF (x). (3)

Note that the Anderson-Darling test is obtained by replacing ψ(x) = 1 with ψ(x) =
(

[F (x)(1− (F (x))]
−1
)

in (2).

The test statistic in (3) can be written as;

A2 = −
n∑
i=1

[
(2i− 1) (logPi + log (1− Pn+1−i))

n

]
− n,

where

Pi = Φ(Yi) =

� Yi

−∞

e−
1
2 t

2

√
2π

dt,

12



see [4].

2.2 Tests based on the empirical moment generating function

The moment generating function of a random variable X characterises its probability distribution. The

moment generating function is:

M (t) = E
(
etX
)
.

We consider two di�erent tests based on the empirical moment generating function. The powers of these

two tests based on this function are compared to the tests discussed previously.

Both test statistics considered below are similar in form to the Cramér-von Mises test. The �rst

is based on a weighted L2-distance between the moment generating function of the standard normal

distribution and the empirical moment generating function of the studentised values of the sample. The

second test is based on a di�erential equation characterising the standard normal distribution.

2.2.1 A test based on the empirical moment generating function

In [5], Epps proposed a test statistic based on the weighted squared di�erence between the moment

generating function and its empirical counterpart. The proposed test statistic is demonstrated as follow:

T
(1)
n,β = n

∞�

−∞

[Mn (t)−MX (t)]
2
e−βt

2

dt, (4)

where MX (t) is the moment generating function of the standard normal distribution and Mn (t) is the

empirical moment generating function of Y1, . . . , Yn. The weight function e
−βt2 , with β > 0, is required

in order to ensure that the above integral is �nite. The empirical moment generating function is given

by:

Mn (t) =
1

n

n∑
j=1

etYn,j , t ∈ R.

In (4), MX (t) is the moment generating function of a standard normal distribution. Below we derive

the moment generating function for the normal distribution with mean µ and variance σ2,

MX (t) = E
[
etX
]

=

∞�

−∞

etx
1√
2πσ

e−
1
2 ( x−µσ )

2

dx

13



=

∞�

−∞

1√
2πσ

e−
1

2σ2
(−2txσ2+(x−µ)2)dx

= eµt+
1
2 t

2σ2

 ∞�
−∞

1√
2πσ

e
− 1

2

(
x−(µ+tσ2)

σ

)2

dx


= exp

(
µt+

1

2
σ2t2

)
, t ∈ R. (5)

Using (5), we see that the moment generating function for the standard normal distribution is given

by:

MX (t) = exp(
1

2
t2), t ∈ R. (6)

If the data are realised from a normal distribution then the studentised residuals Y1, Y2..., Yn should be

approximately standard normally distributed, especially for large samples. Therefore, for large samples,

Mn(t) should be approximately equal to MX(t); see [9].

The test statistic in (4) can be rewritten as:

T
(1)
n,β =

√
π

 1

n
√
β

n∑
j,k=1

exp

(
(Yj + Yk)

2

4β

)
− 2√

β − 1
2

n∑
j=1

exp

(
Y 2
j

4β − 2

)
+

n√
β − 1

 ; (7)

see [9]. For a derivation of equation (7), see Appendix 1. This test rejects normality for large values of

T
(1)
n,β .

2.2.2 A test based on a di�erential equation of the empirical moment generating function

The moment generating functionMX (t) of a standard normal distribution is given in (6). The derivative

of MX (t) is given by:

M
′

X (t) = te
1
2 t

2

= tMX (t) , t ∈ R.

Under normality, the above relation should approximately hold for the empirical moment generating

function and its derivative. The derivative of the empirical moment generating function is

M
′

n (t) =
d

dt

1

n

n∑
j=1

etXj =
1

n

n∑
j=1

etXjXj.

The test statistic is based on the squared di�erence between the derivative of the empirical moment

generating function, M
′

n (t), and the empirical moment generating function multiplied by t, tMn (t).

14



The test statistic is

T
(2)
n,β =

∞�

−∞

(
M
′

n (t)− tMn (t)
)2

e−βt
2

dt

= n

∞�

−∞

 1

n

n∑
j=1

etXjXj. − t
1

n

n∑
j=1

etXj

2

e−βt
2

dt, (8)

where e−βt
2

is a weight function with β > 0. This weight function is required in order to ensure that the

test statistic is �nite. The test statistic in (8) can be rewritten as;

T
(2)
n,β =

√
π

β

1

n

n∑
i,j=1

exp

(
Z2
n,i,j

4β

){
YiYj +

1− 2YiZi,j
2β

+
Z2
n,i,j

4β2

}
, (9)

where Zn,i,j = Yn,i + Yn,j . For a derivation of the equation (9), see Appendix 2. Normality is rejected

for large values of T
(2)
n,β .

3 Simulation study

In this research we use Monte Carlo simulation to estimate critical values for the various tests discussed

in Section 2 using 100 000 Monte Carlo replications. We estimate the powers of the tests against various

alternative distributions. These powers are estimated by the proportion of 10 000 samples, for which the

null hypothesis of normality is rejected. The statistical software package R is used in order to obtain the

numerical results reported below; see [13]. The sample sizes used are, n = 20, 50, 100, and a nominal level

of signi�cance of α = 5% is used throughout. We include two tests from each of the classes of the tests

based on the empirical moment generating function, in each case the tuning parameter are chosen to be

β = 5 and β = 10 respectively.

In R we use the nortest package; see [8], in order to calculate the power estimate of the Kolmogorov-

Smirnov test, the Cramér-von Mises test and the Anderson-Darling test. The powers of the empirical

moment generating function tests are estimated using the code provided in Appendix 3.

The 95th percentile of the realised values of the test statistic based on simulation from a N (0, 1)

distribution is used in order to estimate the critical values of the tests in question. We use two versions

of T
(1)
n,β and T

(2)
n,β that is obtained by setting β = 5 and β = 10. The powers of the seven di�erent tests

are calculated for the given distributions. We consider distributions from each of the following classes

of distributions, the symmetric short-tailed class, the symmetric long-tailed class and the asymmetric

class. The three symmetric short-tailed distributions considered are the uniform distribution, Uni(0, 1),

the triangular distribution, and the truncated normal distribution, Trunc (−2, 2). The three symmetric

long-tailed distribution are the Cauchy, t (3) and t (5) distributions. For the asymmetric distribution we
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considered four di�erent distributions including the log-normal, Weibull(5), Weibull(10) and the skew-

normal distribution. The density function of the skew-normal distribution is:

f
(
x;µ, σ2, α

)
=

1

σπ
exp

(
− (x− µ)

2

2σ2

) α( x−µσ )�

−∞

exp

(
− t

2

2

)
dt, x ∈ R.

A standard skew-normal distribution with skewness parameter 5, SN(0, 1, 5) is used below.

Table 1: Realised power of the tests for normality in percentage for a sample size of n=20

Distribution KS20 CvM20 AD20 T (1)
20,5 T (1)

20,10 T (2)
20,5 T (2)

20,10

N(0, 1) 5 5 5 5 5 5 5
Uni(0, 1) 10 15 18 0 0 1 0
Triangular 4 4 4 1 1 1 1
Trunc(−2, 2) 4 4 4 1 1 1 1
Cauchy 85 88 88 82 83 80 81
t(3) 27 32 34 36 37 36 36
t(5) 14 17 18 22 23 22 22
Log − normal 79 88 91 83 82 85 84
Sn(n, 0, 1, 5, 0) 18 22 25 22 21 23 23
Weibull(5) 6 6 6 5 5 5 5
Weibull(10) 11 12 14 15 15 15 15

Table 1 reports the estimated powers of the various tests for normality, for a sample size of n = 20.

First, we consider the symmetric short-tailed class. The Anderson-Darling test achieves a higher power for

testing whether or not data are normally distributed, and the moment generating function test performs

the poorest. The empirical distribution function tests outperform the empirical moment generating

function tests. When considering the symmetric long-tailed class, the empirical distribution function tests

have better powers for the Cauchy distribution. For the t (3) and the t (5) distributions, the empirical

moment generating function tests have higher powers. The Anderson-Darling test performs best against

members of the symmetric long-tailed class. For the asymmetric class, the empirical distribution function

tests performs slightly better for the log-normal, the skewed-normal and the Weibull(5) distributions. For

the Weibull(10) distribution the empirical moment generating function tests have higher powers.

In the symmetric long-tailed class and asymmetric class, we have quite comparable powers between

the empirical distribution function tests and the empirical moment generating function tests. For the

symmetric short-tailed class the empirical moment generating function tests exhibit low powers. The

Anderson-Darling test performs best overall. The observed powers of all four tests based on the empirical

moment generating function are quite similar.

Table 2 and 3 report the estimated powers of the various tests for normality for a sample size of n = 50

and n = 100 respectively. The results shown in Tables 2 and 3 are similar to those reported in Table 1.

We note that as the sample size n increases, the powers of the di�erent tests also increase.

16



Table 2: Realised power of the tests for normality in percentage for a sample size of n=50

Distribution KS50 CvM50 AD50 T (1)
50,5 T (1)

50,10 T (2)
50,5 T (2)

50,10

N(0, 1) 5 5 5 5 5 5 5
Uni(0, 1) 26 44 58 0 0 0 0
Triangular 4 5 5 0 0 0 0
Trunc(−2, 2) 5 5 6 0 0 0 0
Cauchy 99 100 100 98 99 98 98
t(3) 49 57 61 62 63 59 60
t(5) 21 28 31 38 39 36 36
Log − normal 100 100 100 100 100 100 100
Sn(n, 0, 1, 5, 0) 41 53 58 49 47 56 54
Weibull(5) 8 8 8 6 6 7 7
Weibull(10) 20 25 28 32 31 35 35

Table 3: Realised power of the tests for normality in percentage for a sample size of n=100

Distribution KS100 CvM100 AD100 T (1)
100,5 T (1)

100,10 T (2)
100,5 T (2)

100,10

N(0, 1) 5 5 5 5 5 5 5
Uni(0, 1) 59 84 95 0 0 0 0
Triangular 5 6 8 0 0 0 0
Trunc(−2, 2) 6 8 9 0 0 0 0
Cauchy 100 100 100 100 100 100 100
t(3) 75 84 86 84 85 79 81
t(5) 33 43 48 56 57 51 52
Log − normal 100 100 100 100 100 100 100
Sn(n, 0, 1, 5, 0) 73 85 90 84 82 89 88
Weibull(5) 11 12 14 9 8 12 11
Weibull(10) 38 47 53 58 57 64 63

The graph representing the EDF tests, in Figure 3 and 4, has di�erent colors, each representing a

normality test. The black line represents the Anderson-Darling test, the blue line the Cramér-von Mises

test, and the red line the Kolmogorov-Smirnov test. The graph representing the EMGF test colors are

as follows, the blue line represents the T
(1)
n,10 test, the black line the T

(2)
n,10 test, the red line the T

(1)
n,5 test

and the green line the T
(2)
n,5 test. Figure 3 below illustrates the powers that the various tests achieve

against the skewed normal distribution as a function of a sample size. We see that among the empirical

distribution function tests, the Anderson-Darling test has the highest powers, followed by the Cramér-von

Mises test and the Kolmogorov-Smirnov test. Figure 3 shows that for the empirical moment generating

function the T
(1)
n,10 test exhibits the highest powers, followed by the T

(2)
n,10, the T

(1)
n,5 and then the T

(2)
n,5 test.

Figure 4 shows the powers for the t (3) distribution. We see that for the empirical distribution function

the Anderson-Darling test has the highest powers, followed by the Cramér-von Mises test and then the

Kolmogorov-Smirnov test. For the empirical moment generating function, Figure 4 shows that the T
(2)
n,5

test exhibits the highest powers followed by the T
(1)
n,5, the T

(2)
n,10 and then the T

(1)
n,10 test.
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Figure 3: Powers of various tests against the skewed normal distribution, for the EDF test (left) and the
EMGF test (right).

Figure 4: Powers of various tests against the t (3) distribution, for the EDF test (left) and the EMGF
test (right).

4 Testing the normality of observed data

A practical application of these seven tests listed above was implemented in SAS1. We use a data set

of 20 observations of the average fruit weight (grams) of apples per tree for 20 trees in an agricultural

experiment2. Using Proc iml we calculate the test statistics of the di�erent empirical moment generating

function tests. Using Proc Univariate in SAS we calculated the test statistic for the empirical distribution

1Copyright (c) 2002-2012 by SAS Institute Inc., Cary, NC, USA. All Rights Reserved
2http://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/svls/frames/frame.html
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function tests. Table 4 reports these test statistics along with the critical values obtained in R.

Test statistic Critical values n = 20

Kolmogorov-Smirnov 0.1795 0.1911
Cramér-von Mises 0.1481 0.1220
Anderson-Darling 0.7992 0.7173

T
(1)
n,5 0.0080 0.0112

T
(1)
n,10 0.0004 0.0007

T
(2)
n,5 0.1174 0.1576

T
(2)
n,10 0.0145 0.0226

Table 4: Goodness-of-�t tests for normal distribution

In each case we reject the normality if the test statistic is greater than the critical value. We can

conclude that the Anderson-Darling test and the Cramér-von Mises test reject the hypothesis of normality.

The remaining �ve normality tests have test statistics smaller than the critical values, indicating that we

do not reject for normality.

Figure 5 illustrates the empirical distribution of the data together with the estimated normal density.

Figure 5: Average fruit weight (grams) of apples per tree for 20 trees in an agricultural experiment.

5 Conclusion

In this research, we compare several di�erent normality tests in terms of the power achieved against

various alternative distributions. From the results obtained we can conclude that the Anderson-Darling

test has higher powers compared to the remaining normality tests. Comparing the empirical distribution

function and the empirical moment generating function tests we conclude that the empirical distribution

function tests have higher powers than the empirical moment generating function tests, except in the

case of the symmetric long-tailed class of distributions. Here the empirical moment generating function
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tests outperform the other tests. In general, we can see that the Kolmogorov-Smirnov test achieved the

lowest power among the other empirical distribution function tests for normality.
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Appendix 1: Derivation of equation (7).

The equation (7) of the empirical moment generating function is derived below. Note that one of the

terms in the derivation can be simpli�ed as follow:

exp (t (Yj + Yk)) exp
(
−βt2

)
= exp

[
−
(
βt2 − t (Yj + Yk)

)]
= exp

[
−

((√
βt− Yj + Yk

2
√
β

)2

− (Yj + Yk)
2

4β

)]

= exp

(
(Yj + Yk)

2

4β

)
exp

(
−
(√

βt− Yj + Yk

2
√
β

)2
)

= exp

(
(Yj + Yk)

2

4β

)
exp

−1

2

 t− Yj+Yk
2
√
β

1
2

1√
β

2


= exp

(
(Yj + Yk)

2

4β

)
exp

−1

2

 t− Yj+Yk
2
√
β

1√
2β

2
 1√

2π 1√
2β

√
2π

1√
2β

= exp

(
(Yj + Yk)

2

4β

)√
π

β

1√
2π 1√

2β

exp

−1

2

 t− Yj+Yk
2
√
β

1√
2β

2


=

√
π

β
exp

(
(Yj + Yk)

2

4β

)
φT (t) ,

where T ∼ N
(

(Yj + Yk)

2β
,

1

2β

)
. (10)

Equation 7 can be rewritten as:

T
(1)
nβ = n

∞�

−∞

(
Mn (t)−Mx (t)

2
)
exp

(
−βt2

)
dt

= n

∞�

−∞

((
Mn (t)

2 − 2Mn (t)Mx (t) +Mx (t)
2
)
exp

(
−βt2

))
dt

= n

∞�

−∞

Mn (t)
2
exp

(
−βt2

)
dt− 2n

∞�

−∞

Mn (t)Mx (t) exp
(
−βt2

)
dt+ n

∞�

−∞

Mx (t)
2
exp

(
−βt2

)
dt

= nI1 − 2nI2 + nI3. (11)
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Below we consider I1, I2 and I3 respectively.

I1 =

∞�

−∞

[
Mn (t)

2
]
exp

(
−βt2

)
dt

=
1

n2

∞�

−∞

 n∑
j=1

exp (tYj)

2

exp
(
−βt2

)
dt

=
1

n2

n∑
j=1

n∑
k=1

∞�

−∞

√
π

β
exp

(
(Yj + Yk)

2

4β

)
φT (t) dt

=
1

n2

√
π

β

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

) ∞�

−∞

φT (t) dt

=
1

n2

√
π

β

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

)
, (12)

see equation 10.

I2 =

∞�

−∞

Mn (t)Mx (t) exp
(
−βt2

)
dt

=

∞�

−∞

1

n

n∑
j=1

exp (tYj) exp

(
−1

2
t2βt2

)
dt

=
1

n

n∑
j=1

∞�

−∞

exp

(
tYj +

1

2
t2 − βt2

)
dt

=
1

n

n∑
j=1

∞�

−∞

exp

(
−
(
βt2 − 1

2
t2 − tYj

))
dt

=
1

n

n∑
j=1

∞�

−∞

exp

(
−
[(
β − 1

2

)
t2 − tYj

])
dt

=
1

n

n∑
j=1

∞�

−∞

exp

(
−

[(
β − 1

2

)
t2 − Yjt+

Y 2
j

4
(
β − 1

2

)]+
Y 2
j

4
(
β − 1

2

)) dt
=

1

n

n∑
j=1

exp
Y 2
j

4
(
β − 1

2

) ∞�
−∞

exp

(
−

[(
β − 1

2

)
t2 − Yjt+

Y 2
j

4
(
β − 1

2

)]+
Y 2
j

4
(
β − 1

2

)) dt
=

1

n

n∑
j=1

exp
Y 2
j

4
(
β − 1

2

) ∞�
−∞

exp

−
√β − 1

2
t− Yj

2
√
β − 1

2

2
 dt
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=
1

n

n∑
j=1

exp
Y 2
j

4
(
β − 1

2

) ∞�
−∞

exp

−
 t− Yj

2(β− 1
2 )

1√
β− 1

2

2
 dt

=
1

n

n∑
j=1

exp

(
Y 2
j

4β − 2

) ∞�

−∞

exp

− 1
2

(
t− Yj

2β−1

)2

1
2β− 1

2

 1√
2π
(

1
2β − 1

)dt√ π

β − 1
2

=
1

n

√
π

β − 1
2

n∑
j=1

exp

(
Y 2
j

4β − 2

)
. (13)

I3 =

∞�

−∞

(Mx (t))
2
exp

(
−βt2

)
dt

=

∞�

−∞

exp

(
1

2
t2
)2

exp
(
−βt2

)
dt

=

∞�

−∞

exp
(
t2 − βt2

)
dt

=

∞�

−∞

exp
(
− (β − 1) t2

)
dt

=

∞�

−∞

exp

(
−t2
n
β−1

)
dt

=

∞�

−∞

exp

(
−1

2

(
t2

1
2(β−1)

))
1√

2π 1
2(β−1)

dt

=

√
π

β − 1
. (14)

Substituting (12), (13) and (14) into (11), we obtain

T
(1)
n,β = nI1 − 2nI2 + nI3

= n
1

n2

√
π

β

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

)
− 2n

1

n

√
π

β − 1
2

n∑
j=1

exp

(
Y 2
j

4β − 2

)
+ n

√
π

β − 1

=
√
π

 1

n
√
β

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

)
− 2√

β − 1
2

n∑
j=1

exp

(
Y 2
j

4β − 2

)
+

n√
β − 1



T
(1)
n,β =

√
π

 1

n
√
β

n∑
j,k=1

exp

(
(Yj + Yk)

2

4β

)
− 2√

β − 1
2

n∑
j=1

exp

(
Y 2
j

4β − 2

)
+

n√
β − 1

 . (15)
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Appendix 2: Derivation of equation (9).

The equation (9) of the empirical moment generating function is derived below.

T
(2)
n,β = n

∞�

−∞

(
M
′

n (t)− tMn (t)
)2

exp
(
−βt2

)
dt.

Mn (t) =
1

n

n∑
j=1

exp (tYj) .

M
′

n (t) =
1

n

n∑
j=1

Yjexp (tY j) .

Equation 9 can be rewritten as:

T
(2)
n,β = n

∞�

−∞

(
M
′

n (t)− tMn (t)
)2

exp
(
−βt2

)
dt

= n

∞�

−∞

([
M
′

n (t)
]2
− 2tM

′

n (t)Mn (t) + t2 [Mn (t)]
2

)
exp

(
−βt2

)
dt

= n

∞�

−∞

[
M
′

n (t)
]2
exp

(
−βt2

)
dt− 2n

∞�

−∞

tM
′

n (t)Mn (t) exp
(
−βt2

)
dt+ n

∞�

−∞

t2 [Mn (t)]
2
exp

(
−βt2

)
dt

= nI1 − 2nI2 + nI3. (16)

Below we consider I1, I2 and I3 respectively.

I1 =

∞�

−∞

[
M
′

n (t)
]2
exp

(
−βt2

)
dt

=
1

n2

∞�

−∞

 n∑
j=1

Yjexp (tYj)

2

exp
(
−βt2

)
dt

=
1

n2

∞�

−∞

n∑
j=1

n∑
k=1

YjYkexp (t (Yj + Yk)) exp
(
−βt2

)
dt

=
1

n2

n∑
j=1

n∑
k=1

YjYk

∞�

−∞

exp (t (Yj + Yk)) exp
(
−βt2

)
dt

=
1

n2

n∑
j=1

n∑
k=1

YjYk

∞�

−∞

√
π

β
exp

(
(Yj + Yk)

2

4β

)
φT (t) dt

=
1

n2

√
π

β

n∑
j=1

n∑
k=1

YjYkexp

(
(Yj + Yk)

2

4β

)
, (17)

see equation 10.
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I2 =

∞�

−∞

tM
′

n (t)Mn (t) exp
(
−βt2

)
dt

=
1

n2

∞�

−∞

t

 n∑
j=1

Yjexp (tYj)

( n∑
k=1

exp (tYk)

)
exp

(
−βt2

)
dt

=
1

n2

∞�

−∞

t

n∑
j=1

n∑
k=1

Yjexp (t (Yj + Yk)) exp
(
−βt2

)
dt

=
1

n2

n∑
j=1

n∑
k=1

Yj

∞�

−∞

t exp (t (Yj + Yk)) exp
(
−βt2

)
dt

=
1

n2

n∑
j=1

n∑
k=1

Yj

∞�

−∞

t

√
π

β
exp

(
(Yj + Yk)

2

4β

)
φT (t) dt

=
1

n2

n∑
j=1

n∑
k=1

Yj

√
π

β
exp

(
(Yj + Yk)

2

4β

) ∞�

−∞

tφT (t) dt

=
1

n2

√
π

β

n∑
j=1

n∑
k=1

Yjexp

(
(Yj + Yk)

2

4β

)
E [T ]

=
1

n2

√
π

β

n∑
j=1

n∑
k=1

Yjexp

(
(Yj + Yk)

2

4β

)
Yj + Yk

2β

=
1

n2

√
π

β

n∑
j=1

n∑
k=1

Yj
Yj + Yk

2β
exp

(
(Yj + Yk)

2

4β

)
, (18)

see equation 10.

I3 =

∞�

−∞

t2 [Mn (t)]
2
exp

(
−βt2

)
dt

=
1

n2

∞�

−∞

t2

 n∑
j=1

exp (tYj)

2

exp
(
−βt2

)
dt

=
1

n2

∞�

−∞

t2
n∑
j=1

n∑
k=1

exp (t (Yj + Yk)) exp
(
−βt2

)
dt

=
1

n2

n∑
j=1

n∑
k=1

∞�

−∞

t2exp (t (Yj + Yk)) exp
(
−βt2

)
dt

=
1

n2

n∑
j=1

n∑
k=1

∞�

−∞

t2
√
π

β
exp

(
(Yj + Yk)

2

4β

)
φT (t) dt

27



=
1

n2

√
π

β

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

) ∞�

−∞

t2φT (t) dt

=
1

n2

√
π

β

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

)
E
[
T 2
]

=
1

n2

√
π

β

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

)(
V ar [T ] + (E [T ])

2
)

=
1

n2

√
π

β

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

)(
(Yj + Yk)

2

4β2
+

1

2β

)
, (19)

see equation 10.

Substituting (17), (18) and (19) into (16), we obtain

T
(2)
n,β = nI1 − 2nI2 + nI3

=
1

n

√
π

β

n∑
j=1

n∑
k=1

YjYkexp

(
(Yj + Yk)

2

4β

)
− 2

n

√
π

β

n∑
j=1

n∑
k=1

Yj

(
Yj + Yk

2β

)
exp

(
(Yj + Yk)

2

4β

)

+
1

n

√
π

β

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

)(
(Yj + Yk)

2

4β2
+

1

2β

)

=

√
π

β

1

n

n∑
j=1

n∑
k=1

{
YjYkexp

(
(Yj + Yk)

2

4β

)
− Yj

(
Yj + Yk

β

)
exp

(
(Yj + Yk)

2

4β

)

+exp

(
(Yj + Yk)

2

4β

)(
(Yj + Yk)

2

4β2
+

1

2β

)}

=

√
π

β

1

n

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

){
YjYk −

Yj (Yj + Yk)

β
+

(Yj + Yk)
2

4β2
+

1

2β

}

=

√
π

β

1

n

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

){
YjYk −

2Yj (Yj + Yk)− 1

2β
+

(Yj + Yk)
2

4β2

}

=

√
π

β

1

n

n∑
j=1

n∑
k=1

exp

(
(Yj + Yk)

2

4β

){
YjYk +

1− 2Yj (Yj + Yk)

2β
+

(Yj + Yk)
2

4β2

}

=

√
π

β

1

n

n∑
i=1

n∑
j=1

exp

(
(Yi + Yj)

2

4β

){
YiYj +

1− 2Yi (Yi + Yj)

2β
+

(Yi + Yj)
2

4β2

}

=

√
π

β

1

n

n∑
j=1

n∑
k=1

exp

(
Z2
i,j

4β

){
YiYj +

1− 2YiZi,j
2β

+
Z2
i,j

4β2

}
.

T
(2)
n,β =

√
π

β

1

n

n∑
i,j=1

exp

(
Z2
i,j

4β

){
YiYj +

1− 2YiZi,j
2β

+
Z2
i,j

4β2

}
.

Appendix 3: R-code used in simulation study

The R-code used to calculate powers.
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##################################################################################

MCcv = 100000 #s e t t i n g the number o f MCs f o r c r i t i c a l va lue s

MCpo = 100000 #s e t t i n g the number o f MCs f o r power

n = 50 #s e t t i n g the sample s i z e

##################################################################################

#load ing the r e l e van t l i b r a r y

l i b r a r y ( no r t e s t )

l i b r a r y ( t r i a n g l e )

l i b r a r y ( truncnorm )

l i b r a r y ( sn )

l i b r a r y ( s t a r ga z e r )

#de f i n i n g the f i r s t mgf t e s t s t a t i s t i c

MGFT1_5. t e s t <− f unc t i on (X, beta1 ){

n = length (X)

Xbar = mean(X)

Sn = sq r t (sum( (X−Xbar )^2)/n)

Y = (X−Xbar )/Sn

Tmat1 = matrix (NA, n , n)

f o r ( j in 1 : n){

f o r ( k in 1 : n){

z jk = Y[ j ]+Y[ k ]

Tmat1 [ j , k ] = exp ( z jk ^2/(4∗ beta1 ) )

}

}

Tmat2 = matrix (NA, n , 1 )

f o r ( j in 1 : n){

Tmat2 [ j ] = exp ( (Y[ j ]^2)/(4∗ beta1 −2))

}

T1 = sum(Tmat1 )/ ( n∗ s q r t ( beta1 ) )

T2 = 2/ sq r t ( beta1 −0.5)∗sum(Tmat2)

29



T3 = n/ sq r t ( beta1−1)

T. n . beta1_5 = sq r t ( p i )∗ (T1−T2+T3)

return (T. n . beta1_5 )

}

MGFT1_10. t e s t <− f unc t i on (X, beta2 ){

n = length (X)

Xbar = mean(X)

Sn = sq r t (sum( (X−Xbar )^2)/n)

Y = (X−Xbar )/Sn

Tmat1 = matrix (NA, n , n)

f o r ( j in 1 : n){

f o r ( k in 1 : n){

z jk = Y[ j ]+Y[ k ]

Tmat1 [ j , k ] = exp ( z jk ^2/(4∗ beta2 ) )

}

}

Tmat2 = matrix (NA, n , 1 )

f o r ( j in 1 : n){

Tmat2 [ j ] = exp ( (Y[ j ]^2)/(4∗ beta2 −2))

}

T1 = sum(Tmat1 )/ ( n∗ s q r t ( beta2 ) )

T2 = 2/ sq r t ( beta2 −0.5)∗sum(Tmat2)

T3 = n/ sq r t ( beta2−1)

T. n . beta1_10 = sq r t ( p i )∗ (T1−T2+T3)

return (T. n . beta1_10 )

}

#de f i n i n g the second mgf t e s t s t a t i s t i c

MGFT2_5. t e s t <− f unc t i on (X, beta1 ){

n = length (X) Xbar = mean(X)

Sn = sq r t (sum( (X−Xbar )^2)/n)
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Y = (X−Xbar )/Sn

Tmat = matrix (NA, n , n)

f o r ( j in 1 : n){

f o r ( k in 1 : n){

Zjk = Y[ j ]+Y[ k ]

T1 = exp ( Zjk ^2/(4∗ beta1 ) )

T2 = Y[ j ]∗Y[ k ] + Zjk ^2/(4∗ beta1 ^2)∗(1−2∗ beta1)+ 1/(2∗ beta1 )

Tmat [ j , k ] = T1∗T2

}

}

T. n . beta2_5 = sq r t ( p i / beta1 )/n∗sum(Tmat)

re turn (T. n . beta2_5 )

}

MGFT2_10. t e s t <− f unc t i on (X, beta2 ){

n = length (X)

Xbar = mean(X)

Sn = sq r t (sum( (X−Xbar )^2)/n)

Y = (X−Xbar )/Sn

Tmat = matrix (NA, n , n)

f o r ( j in 1 : n){

f o r ( k in 1 : n){

Zjk = Y[ j ]+Y[ k ]

T1 = exp ( Zjk ^2/(4∗ beta2 ) )

T2 = Y[ j ]∗Y[ k ] + Zjk ^2/(4∗ beta2 ^2)∗(1−2∗ beta2 ) + 1/(2∗ beta2 )

Tmat [ j , k ] = T1∗T2

}

}

T. n . beta2_10 = sq r t ( p i / beta2 )/n∗sum(Tmat)

re turn (T. n . beta2_10 )

}

SimFromDist <− f unc t i on (n , DistNum){

i f (DistNum==0){
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X = rnorm (n)

}

i f (DistNum==1){

X = run i f (n)

}

i f (DistNum==2){

X = r t r i a n g l e (n)

}

i f (DistNum==3){

X = rtruncnorm (n ,−2 ,2)

}

i f (DistNum==4){

X = rcauchy (n)

}

i f (DistNum==5){

X = rt (n , 3 )

}

i f (DistNum==6){

X = rt (n , 5 )

}

i f (DistNum==7){

X = rlnorm (n)

}

i f (DistNum==8){

X = rsn (n , x i =0, omega=1, alpha=5, tau =0) [1 : n ]

}

i f (DistNum==9){

X = rwe ibu l l (n , 5 , 1 )

}

i f (DistNum==10){

X = rwe ibu l l (n , 1 0 , 1 )

}

re turn (X)

}
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#de f i n i n g MC setup

s e t . seed (1234) #s e t t i n g random seed

MC=MCcv #s e t t i n g the number o f MC r e p l i c a t i o n s

alpha=0.05 #s e t t i n g the nominal s i g n i f i c a n c e l e v e l

beta1=5 #s e t t i n g the tuning parameter f o r the mgf t e s t s

beta2=10

#i n i t i a l i s i n g t e s t s t a t i t s i c s

ks . t = numeric (MC)

cm. t = numeric (MC)

ad . t = numeric (MC)

m1_5. t = numeric (MC)

m2_5. t = numeric (MC)

m1_10 . t = numeric (MC)

m2_10 . t = numeric (MC)

ptm<−proc . time ( ) ##########

#ca l c u l a t i n g t e s t s t a t i s t i c s

pb=winProgressBar ( t i t l e ="C r i t i c a l values , n=50" , l a b e l="0% done ")

f o r ( j in 1 :MC)

{

data<−rnorm (n)

data<−(data−mean( data ) )/ sq r t ( var ( data ) )

ks<−ks . t e s t ( data , " pnorm")

ks . t [ j ]<− k s $ s t a t i s t i c

cm<−cvm . t e s t ( data )

cm. t [ j ]<− cm$ s t a t i s t i c

ad<−ad . t e s t ( data )

ad . t [ j ]<− a d $ s t a t i s t i c

m1_5. t [ j ]<−MGFT1_5. t e s t ( data , beta1 )

m2_5. t [ j ]<−MGFT2_5. t e s t ( data , beta1 )

m1_10 . t [ j ]<−MGFT1_10. t e s t ( data , beta2 )
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m2_10 . t [ j ]<−MGFT2_10. t e s t ( data , beta2 )

i n f o=s p r i n t f ("%d%% done " , f l o o r ( ( j /MC∗100) ) )

setWinProgressBar (pb , j /MC, l a b e l=i n f o )

}

c l o s e (pb)

tmrcv<−(proc . time ()−ptm ) [ 3 ] ##########

#so r t i n g t e s t s t a t i s t i c s

ks . t = so r t ( ks . t )

cm. t = so r t (cm . t )

ad . t = so r t ( ad . t )

m1_5. t = so r t (m1_5. t )

m2_5. t = so r t (m2_5. t )

m1_10 . t = so r t (m1_10 . t )

m2_10 . t = so r t (m2_10 . t )

#c a l c u l a t i n g c r i t i c a l va lue s

indx = f l o o r (MC∗(1−alpha ) )

ks . cv = ks . t [ indx ]

cm. cv = cm. t [ indx ]

ad . cv = ad . t [ indx ]

m1_5. cv = m1_5. t [ indx ]

m2_5. cv = m2_5. t [ indx ]

m1_10 . cv = m1_10 . t [ indx ]

m2_10 . cv = m2_10 . t [ indx ]

ks . power = numeric (11)

cm. power = numeric (11)

ad . power = numeric (11)

m1_5. power = numeric (11)

m2_5. power = numeric (11)

m1_10 . power = numeric (11)

m2_10 . power = numeric (11)
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MC=MCpo

ptm<−proc . time ( ) ##########

pb=winProgressBar ( t i t l e ="Powers , n=50" , l a b e l="0% done ")

f o r ( k in 1 : 11 ){

DistNum = k−1

#i n i t i a l i s i n g t e s t s t a t i s t i c s

ks . t = numeric (MC)

cm. t = numeric (MC)

ad . t = numeric (MC)

m1_5. t = numeric (MC)

m2_5. t = numeric (MC)

m1_10 . t = numeric (MC)

m2_10 . t = numeric (MC)

#ca l c u l a t i n g t e s t s t a t i s t i c s

f o r ( j in 1 :MC)

{

data<−SimFromDist (n , DistNum)

data<−(data−mean( data ) )/ sq r t ( var ( data ) )

ks<−ks . t e s t ( data , " pnorm")

ks . t [ j ]<−( k s $ s t a t i s t i c >ks . cv )

cm<−cvm . t e s t ( data )

cm. t [ j ]<−( cm$s ta t i s t i c >cm. cv )

ad<−ad . t e s t ( data )

ad . t [ j ]<−( a d $ s t a t i s t i c >ad . cv )

m1_5<−MGFT1_5. t e s t ( data , beta1 )

m1_5. t [ j ]<−(m1_5>m1_5. cv )

m2_5<−MGFT2_5. t e s t ( data , beta1 )
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m2_5. t [ j ]<−(m2_5>m2_5. cv )

m1_10<−MGFT1_10. t e s t ( data , beta2 )

m1_10 . t [ j ]<−(m1_10>m1_10 . cv )

m2_10<−MGFT2_10. t e s t ( data , beta2 )

m2_10 . t [ j ]<−(m2_10>m2_10 . cv )

}

#ca l c u l a t i n g powers

ks . power [ k ] = round (mean( ks . t )∗100 ,0)

cm. power [ k ] = round (mean(cm. t )∗100 ,0)

ad . power [ k ] = round (mean( ad . t )∗100 ,0)

m1_5. power [ k ] = round (mean(m1_5. t )∗100 ,0)

m2_5. power [ k ] = round (mean(m2_5. t )∗100 ,0)

m1_10 . power [ k ] = round (mean(m1_10 . t )∗100 ,0)

m2_10 . power [ k ] = round (mean(m2_10 . t )∗100 ,0)

i n f o=s p r i n t f ("%d%% done " , f l o o r ( ( k /11∗100)) )

setWinProgressBar (pb , k/11 , l a b e l=i n f o )

}

c l o s e (pb)

tmrpo<−(proc . time ()−ptm [ 3 ] ##########

#di sp l ay i ng powers

ks . power

cm. power

ad . power

m1_5. power

m1_10 . power

m2_5. power

m2_10 . power

#tab l e

Resu l t s = matrix (NA,11 , 7 )

Resu l t s [ , 1 ] = ks . power
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Resu l t s [ , 2 ] = cm. power

Resu l t s [ , 3 ] = ad . power

Resu l t s [ , 4 ] = m1_5. power

Resu l t s [ , 5 ] = m1_10 . power

Resu l t s [ , 6 ] = m2_5. power

Resu l t s [ , 7 ] = m2_10 . power

s t a r ga z e r ( Resu l t s )

save . image (" n50Results . RData")

The R-code used to calculate graphs for skewed normal distribution.

DistNum = 8

#########################################################################

MCcv = 100000 #s e t t i n g the number o f MCs f o r c r i t i c a l va lue s

MCpo = 10000 #s e t t i n g the number o f MCs f o r powers

n_grid = seq (10 ,100 ,10) #s e t t i n g the sample s i z e

s e t . seed (1234)

#########################################################################

#load ing the r e l e van t l i b r a r y

l i b r a r y ( no r t e s t )

l i b r a r y ( t r i a n g l e )

l i b r a r y ( truncnorm )

l i b r a r y ( sn )

l i b r a r y ( s t a r ga z e r )

#de f i n i n g the f i r s t mgf t e s t s t a t i s t i c

MGFT1. t e s t <− f unc t i on (X, beta ){

n = length (X)

Xbar = mean(X)

Sn = sq r t (sum( (X−Xbar )^2)/n)

Y = (X−Xbar )/Sn

Tmat1 = matrix (NA, n , n)

f o r ( j in 1 : n){

f o r ( k in 1 : n){

z jk = Y[ j ]+Y[ k ]
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Tmat1 [ j , k ] = exp ( z jk ^2/(4∗ beta ) )

}

}

Tmat2 = matrix (NA, n , 1 )

f o r ( j in 1 : n){

Tmat2 [ j ] = exp ( (Y[ j ]^2)/(4∗ beta −2))

}

T1 = sum(Tmat1 )/ ( n∗ s q r t ( beta ) )

T2 = 2/ sq r t ( beta −0.5)∗sum(Tmat2)

T3 = n/ sq r t ( beta−1)

T. n . beta = sq r t ( p i )∗ (T1−T2+T3)

return (T. n . beta )

}

#de f i n i n g the second mgf t e s t s t a t i s t i c

MGFT2. t e s t <− f unc t i on (X, beta ){

n = length (X)

Xbar = mean(X)

Sn = sq r t (sum( (X−Xbar )^2)/n)

Y = (X−Xbar )/Sn

Tmat = matrix (NA, n , n)

f o r ( j in 1 : n){

f o r ( k in 1 : n){

Zjk = Y[ j ]+Y[ k ]

T1 = exp ( Zjk ^2/(4∗ beta ) )

T2 = Y[ j ]∗Y[ k ] + (1−2∗Y[ j ]∗ Zjk )/(2∗ beta)+ Zjk ^2/(4∗ beta ^2)

Tmat [ j , k ] = T1∗T2

}

}

T. n . beta = sq r t ( p i / beta )/n∗sum(Tmat)

re turn (T. n . beta )

}

SimFromDist <− f unc t i on (n , DistNum){
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i f (DistNum==0){

X = rnorm (n)

}

i f (DistNum==1){

X = run i f (n)

}

i f (DistNum==2){

X = r t r i a n g l e (n)

}

i f (DistNum==3){

X = rtruncnorm (n ,−2 ,2)

}

i f (DistNum==4){

X = rcauchy (n)

}

i f (DistNum==5){

X = rt (n , 3 )

}

i f (DistNum==6){

X = rt (n , 5 )

}

i f (DistNum==7){

X = rlnorm (n)

}

i f (DistNum==8){

X = rsn (n , x i =0, omega=1, alpha=5, tau =0) [1 : n ]

}

i f (DistNum==9){

X = rwe ibu l l (n , 5 , 1 )

}

i f (DistNum==10){

X = rwe ibu l l (n , 1 0 , 1 )

}

re turn (X)
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}

#de f i n i n g MC setup

s e t . seed (1234) #s e t t i n g random seed

MC = MCcv #s e t t i n g the number o f MC r e p l i c a t i o n s

alpha = 0.05 #s e t t i n g the nonminal s i g n i f i c a n c e l e v e l

beta1 = 5 #s e t t i n g the tuning parameter f o r the mgf t e s t s

beta2 = 10

ptm <− proc . time ( ) ##########

pb = winProgressBar ( t i t l e ="Power graph " , l a b e l="0% done ")

ks . power = numeric ( l ength ( n_grid ) )

cm. power = numeric ( l ength ( n_grid ) )

ad . power = numeric ( l ength ( n_grid ) )

m1_5. power = numeric ( l ength ( n_grid ) )

m1_10 . power = numeric ( l ength ( n_grid ) )

m2_5. power = numeric ( l ength ( n_grid ) )

m2_10 . power = numeric ( l ength ( n_grid ) )

f o r ( k in 1 : l ength ( n_grid ) ){

n = n_grid [ k ]

#i n i t i a l i s i n g t e s t s t a t i t s i c s

ks . t = numeric (MC)

cm. t = numeric (MC)

ad . t = numeric (MC)

m1_5. t = numeric (MC)

m1_10 . t = numeric (MC)

m2_5. t = numeric (MC)

m2_10 . t = numeric (MC)

#ca l c u l a t i n g t e s t s t a t i s t i c s
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f o r ( j in 1 :MC) {

data <− rnorm (n)

data <− ( data−mean( data ) )/ sq r t ( var ( data ) )

ks <− ks . t e s t ( data , " pnorm")

ks . t [ j ] <− k s $ s t a t i s t i c

cm <− cvm . t e s t ( data )

cm. t [ j ] <− cm$ s t a t i s t i c

ad <− ad . t e s t ( data )

ad . t [ j ] <− a d $ s t a t i s t i c

m1_5. t [ j ] <− MGFT1. t e s t ( data , beta1 )

m1_10 . t [ j ] <− MGFT1. t e s t ( data , beta2 )

m2_5. t [ j ] <− MGFT2. t e s t ( data , beta1 )

m2_10 . t [ j ] <− MGFT2. t e s t ( data , beta2 )

}

#so r t i n g t e s t s t a t i s t i c s

ks . t = so r t ( ks . t )

cm. t = so r t (cm. t )

ad . t = so r t ( ad . t )

m1_5. t = so r t (m1_5. t )

m1_10 . t = so r t (m1_10 . t )

m2_5. t = so r t (m2_5. t )

m2_10 . t = so r t (m2_10 . t )

#c a l c u l a t i n g c r i t i c a l va lue s

indx = f l o o r (MC∗(1−alpha ) )

ks . cv = ks . t [ indx ]

cm. cv = cm. t [ indx ]

ad . cv = ad . t [ indx ]

m1_5. cv = m1_5. t [ indx ]

m1_10 . cv = m1_10 . t [ indx ]

m2_5. cv = m2_5. t [ indx ]

m2_10 . cv = m2_10 . t [ indx ]

MC = MCpo
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#i n i t i a l i s i n g t e s t s t a t i s t i c s

ks . t = numeric (MC)

cm. t = numeric (MC)

ad . t = numeric (MC)

m1_5. t = numeric (MC)

m2_5. t = numeric (MC)

m1_10 . t = numeric (MC)

m2_10 . t = numeric (MC)

#ca l c u l a t i n g t e s t s t a t i s t i c s

f o r ( j in 1 :MC){

data <− SimFromDist (n , DistNum)

data <− ( data−mean( data ) )/ sq r t ( var ( data ) )

ks <− ks . t e s t ( data , " pnorm")

ks . t [ j ] <− ( k s $ s t a t i s t i c >ks . cv )

cm <− cvm . t e s t ( data )

cm. t [ j ] <− ( cm$s ta t i s t i c >cm. cv )

ad <− ad . t e s t ( data )

ad . t [ j ] <− ( a d $ s t a t i s t i c >ad . cv )

m1_5 <− MGFT1. t e s t ( data , beta1 )

m1_5. t [ j ] <− (m1_5>m1_5. cv )

m1_10 <− MGFT1. t e s t ( data , beta2 )

m1_10 . t [ j ] <− (m1_10>m1_10 . cv )

m2_5 <− MGFT2. t e s t ( data , beta1 )

m2_5. t [ j ] <− (m2_5>m2_5. cv )

m2_10 <− MGFT2. t e s t ( data , beta2 )

m2_10 . t [ j ] <− (m2_10>m2_10 . cv )

}

#ca l c u l a t i n g powers

ks . power [ k ] = round (mean( ks . t )∗100 ,0)

cm. power [ k ] = round (mean(cm. t )∗100 ,0)

ad . power [ k ] = round (mean( ad . t )∗100 ,0)
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m1_5. power [ k ] = round (mean(m1_5. t )∗100 ,0)

m1_10 . power [ k ] = round (mean(m1_10 . t )∗100 ,0)

m2_5. power [ k ] = round (mean(m2_5. t )∗100 ,0)

m2_10 . power [ k ] = round (mean(m2_10 . t )∗100 ,0)

i n f o <− s p r i n t f ("%d%% done " , f l o o r ( ( k/ l ength ( n_grid )∗100 ) ) )

setWinProgressBar (pb , k/ l ength ( n_grid ) , l a b e l=i n f o ) }

c l o s e (pb)

tmr <− ( proc . time ()−ptm ) [ 3 ] ##########

jpeg ( ' EDFplotSN . jpg ' )

p l o t ( n_grid , ks . power , type=" l " , yl im=c (0 , 100 ) , c o l="red " , xlab="Sample

s i z e " , ylab="Power in percentage " ,main="Powers o f EDF t e s t s ")

l i n e s ( n_grid , cm . power , type=" l " , c o l="blue ")

l i n e s ( n_grid , ad . power , type=" l ")

dev . o f f ( )

jpeg ( 'EMGFplotSN . jpg ' )

p l o t ( n_grid ,m1_5. power , type=" l " , yl im=c (0 , 100 ) , c o l="red " , xlab="Sample

s i z e " , ylab="Power in percentage " ,main="Powers o f EMGF t e s t s ")

l i n e s ( n_grid ,m1_10 . power , type=" l " , c o l="blue ")

l i n e s ( n_grid ,m2_5. power , type=" l " , c o l="green ")

l i n e s ( n_grid ,m2_10 . power , type=" l ")

dev . o f f ( )

The R-code used to calculate graphs for t(3) distribution.

DistNum = 5

#########################################################################

MCcv = 100000 #s e t t i n g the number o f MCs f o r c r i t i c a l va lue s

MCpo = 10000 #s e t t i n g the number o f MCs f o r powers

n_grid = seq (10 ,100 ,10) #s e t t i n g the sample s i z e

s e t . seed (1234)

#########################################################################

43



#load ing the r e l e van t l i b r a r y

l i b r a r y ( no r t e s t )

l i b r a r y ( t r i a n g l e )

l i b r a r y ( truncnorm )

l i b r a r y ( sn )

l i b r a r y ( s t a r ga z e r )

#de f i n i n g the f i r s t mgf t e s t s t a t i s t i c

MGFT1. t e s t <− f unc t i on (X, beta ){

n = length (X)

Xbar = mean(X)

Sn = sq r t (sum( (X−Xbar )^2)/n)

Y = (X−Xbar )/Sn

Tmat1 = matrix (NA, n , n)

f o r ( j in 1 : n){

f o r ( k in 1 : n){

z jk = Y[ j ]+Y[ k ]

Tmat1 [ j , k ] = exp ( z jk ^2/(4∗ beta ) )

}

}

Tmat2 = matrix (NA, n , 1 )

f o r ( j in 1 : n){

Tmat2 [ j ] = exp ( (Y[ j ]^2)/(4∗ beta −2))

}

T1 = sum(Tmat1 )/ ( n∗ s q r t ( beta ) )

T2 = 2/ sq r t ( beta −0.5)∗sum(Tmat2)

T3 = n/ sq r t ( beta−1)

T. n . beta = sq r t ( p i )∗ (T1−T2+T3)

return (T. n . beta )

}

#de f i n i n g the second mgf t e s t s t a t i s t i c

MGFT2. t e s t <− f unc t i on (X, beta ){

n = length (X)
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Xbar = mean(X)

Sn = sq r t (sum( (X−Xbar )^2)/n)

Y = (X−Xbar )/Sn

Tmat = matrix (NA, n , n)

f o r ( j in 1 : n){

f o r ( k in 1 : n){

Zjk = Y[ j ]+Y[ k ]

T1 = exp ( Zjk ^2/(4∗ beta ) )

T2 = Y[ j ]∗Y[ k ] + (1−2∗Y[ j ]∗ Zjk )/(2∗ beta)+ Zjk ^2/(4∗ beta ^2)

Tmat [ j , k ] = T1∗T2

}

}

T. n . beta = sq r t ( p i / beta )/n∗sum(Tmat)

re turn (T. n . beta )

}

SimFromDist <− f unc t i on (n , DistNum){

i f (DistNum==0){

X = rnorm (n)

}

i f (DistNum==1){

X = run i f (n)

}

i f (DistNum==2){

X = r t r i a n g l e (n)

}

i f (DistNum==3){

X = rtruncnorm (n ,−2 ,2)

}

i f (DistNum==4){

X = rcauchy (n)

}

i f (DistNum==5){

X = rt (n , 3 )
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}

i f (DistNum==6){

X = rt (n , 5 )

}

i f (DistNum==7){

X = rlnorm (n)

}

i f (DistNum==8){

X = rsn (n , x i =0, omega=1, alpha=5, tau =0) [1 : n ]

}

i f (DistNum==9){

X = rwe ibu l l (n , 5 , 1 )

}

i f (DistNum==10){

X = rwe ibu l l (n , 1 0 , 1 )

}

re turn (X)

}

#de f i n i n g MC setup

s e t . seed (1234) #s e t t i n g random seed

MC = MCcv #s e t t i n g the number o f MC r e p l i c a t i o n s

alpha = 0.05 #s e t t i n g the nonminal s i g n i f i c a n c e l e v e l

beta1 = 5 #s e t t i n g the tuning parameter f o r the mgf t e s t s

beta2 = 10

ptm <− proc . time ( ) ##########

pb = winProgressBar ( t i t l e ="Power graph " , l a b e l="0% done ")

ks . power = numeric ( l ength ( n_grid ) )

cm. power = numeric ( l ength ( n_grid ) )

ad . power = numeric ( l ength ( n_grid ) )

m1_5. power = numeric ( l ength ( n_grid ) )
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m1_10 . power = numeric ( l ength ( n_grid ) )

m2_5. power = numeric ( l ength ( n_grid ) )

m2_10 . power = numeric ( l ength ( n_grid ) )

f o r ( k in 1 : l ength ( n_grid ) ){

n = n_grid [ k ]

#i n i t i a l i s i n g t e s t s t a t i t s i c s

ks . t = numeric (MC)

cm. t = numeric (MC)

ad . t = numeric (MC)

m1_5. t = numeric (MC)

m1_10 . t = numeric (MC)

m2_5. t = numeric (MC)

m2_10 . t = numeric (MC)

#ca l c u l a t i n g t e s t s t a t i s t i c s

f o r ( j in 1 :MC) {

data <− rnorm (n)

data <− ( data−mean( data ) )/ sq r t ( var ( data ) )

ks <− ks . t e s t ( data , " pnorm")

ks . t [ j ] <− k s $ s t a t i s t i c

cm <− cvm . t e s t ( data )

cm. t [ j ] <− cm$ s t a t i s t i c

ad <− ad . t e s t ( data )

ad . t [ j ] <− a d $ s t a t i s t i c

m1_5. t [ j ] <− MGFT1. t e s t ( data , beta1 )

m1_10 . t [ j ] <− MGFT1. t e s t ( data , beta2 )

m2_5. t [ j ] <− MGFT2. t e s t ( data , beta1 )

m2_10 . t [ j ] <− MGFT2. t e s t ( data , beta2 )

}

#so r t i n g t e s t s t a t i s t i c s

ks . t = so r t ( ks . t )
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cm. t = so r t (cm. t )

ad . t = so r t ( ad . t )

m1_5. t = so r t (m1_5. t )

m1_10 . t = so r t (m1_10 . t )

m2_5. t = so r t (m2_5. t )

m2_10 . t = so r t (m2_10 . t )

#c a l c u l a t i n g c r i t i c a l va lue s

indx = f l o o r (MC∗(1−alpha ) )

ks . cv = ks . t [ indx ]

cm. cv = cm. t [ indx ]

ad . cv = ad . t [ indx ]

m1_5. cv = m1_5. t [ indx ]

m1_10 . cv = m1_10 . t [ indx ]

m2_5. cv = m2_5. t [ indx ]

m2_10 . cv = m2_10 . t [ indx ]

MC = MCpo

#i n i t i a l i s i n g t e s t s t a t i s t i c s

ks . t = numeric (MC)

cm. t = numeric (MC)

ad . t = numeric (MC)

m1_5. t = numeric (MC)

m2_5. t = numeric (MC)

m1_10 . t = numeric (MC)

m2_10 . t = numeric (MC)

#ca l c u l a t i n g t e s t s t a t i s t i c s

f o r ( j in 1 :MC){

data <− SimFromDist (n , DistNum)

data <− ( data−mean( data ) )/ sq r t ( var ( data ) )

ks <− ks . t e s t ( data , " pnorm")

ks . t [ j ] <− ( k s $ s t a t i s t i c >ks . cv )

cm <− cvm . t e s t ( data )
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cm. t [ j ] <− ( cm$s ta t i s t i c >cm. cv )

ad <− ad . t e s t ( data )

ad . t [ j ] <− ( a d $ s t a t i s t i c >ad . cv )

m1_5 <− MGFT1. t e s t ( data , beta1 )

m1_5. t [ j ] <− (m1_5>m1_5. cv )

m1_10 <− MGFT1. t e s t ( data , beta2 )

m1_10 . t [ j ] <− (m1_10>m1_10 . cv )

m2_5 <− MGFT2. t e s t ( data , beta1 )

m2_5. t [ j ] <− (m2_5>m2_5. cv )

m2_10 <− MGFT2. t e s t ( data , beta2 )

m2_10 . t [ j ] <− (m2_10>m2_10 . cv )

}

#ca l c u l a t i n g powers

ks . power [ k ] = round (mean( ks . t )∗100 ,0)

cm. power [ k ] = round (mean(cm. t )∗100 ,0)

ad . power [ k ] = round (mean( ad . t )∗100 ,0)

m1_5. power [ k ] = round (mean(m1_5. t )∗100 ,0)

m1_10 . power [ k ] = round (mean(m1_10 . t )∗100 ,0)

m2_5. power [ k ] = round (mean(m2_5. t )∗100 ,0)

m2_10 . power [ k ] = round (mean(m2_10 . t )∗100 ,0)

i n f o <− s p r i n t f ("%d%% done " , f l o o r ( ( k/ l ength ( n_grid )∗100 ) ) )

setWinProgressBar (pb , k/ l ength ( n_grid ) , l a b e l=i n f o ) }

c l o s e (pb)

tmr <− ( proc . time ()−ptm ) [ 3 ] ##########

jpeg ( ' EDFplotT3 . jpg ' )

p l o t ( n_grid , ks . power , type=" l " , yl im=c (0 , 100 ) , c o l="red " , xlab="Sample

s i z e " , ylab="Power in percentage " ,main="Powers o f EDF t e s t s ")

l i n e s ( n_grid , cm . power , type=" l " , c o l="blue ")

l i n e s ( n_grid , ad . power , type=" l ")

dev . o f f ( )
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jpeg ( 'EMGFplotT3 . jpg ' )

p l o t ( n_grid ,m1_5. power , type=" l " , yl im=c (0 , 100 ) , c o l="red " , xlab="Sample

s i z e " , ylab="Power in percentage " ,main="Powers o f EMGF t e s t s ")

l i n e s ( n_grid ,m1_10 . power , type=" l " , c o l="blue ")

l i n e s ( n_grid ,m2_5. power , type=" l " , c o l="green ")

l i n e s ( n_grid ,m2_10 . power , type=" l ")

dev . o f f ( )

Appendix 4: SAS-code used in practical application

data Appels ;

input Amount @@;

l a b e l Amount='Average f r u i t weight ( grams ) o f app le s per t r e e . ' ;

d a t a l i n e s ;

85 .3 86 .9 96 .8 108 .5 113 .8 87 .7 94 .5 99 .9 92 .9 67 .3

90 .6 129 .8 48 .9 117 .5 100 .8 94 .5 94 .4 98 .9 96 99 .4

;

t i t l e ' Average f r u i t weight ( grams ) o f app le s

per t r e e f o r 20 t r e e s in an a g r i c u l t u r a l experiment . ' ;

∗MGF1 t e s t ;

proc iml ;

p r i n t "MGF t e s t s " ;

use Appels ;

read a l l i n to x ;

n = nrow (x ) ;

p i = constant (" p i " ) ;

beta = 10 ;

xbar = x [ : ] ;

Sn = sq r t ( s sq (x − xbar )/n ) ;

Y = (x−xbar )/Sn ;

Tmat1 = J (n , n , . ) ;
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do j=1 to n ;

do k=1 to n ;

Zjk=Y[ k]+Y[ j ] ;

Tmat1 [ j , k]=exp ( Zjk∗∗2/(4#beta ) ) ;

end ;

end ;

Tmat2 = J (n , 1 , . ) ;

do j=1 to n ;

Tmat2 [ j ] = exp ( (Y[ j ]∗∗2 )/ (4∗ beta −2)) ;

end ;

T1 = sum(Tmat1 )/ ( n∗ s q r t ( beta ) ) ;

T2 = 2/ sq r t ( beta −0.5)∗sum(Tmat2 ) ;

T3 = n/ sq r t ( beta −1);

Tn_beta = sq r t ( p i )∗ (T1−T2+T3 ) ;

p r i n t Tn_beta ;

qu i t ;

∗MGF2 t e s t ;

proc iml ;

p r i n t "MGF t e s t s " ;

use Appels ;

read a l l i n to x ;

n = nrow (x ) ;

p i = constant (" p i " ) ;

beta = 10 ;

xbar = x [ : ] ;

Sn = sq r t ( s sq (x − xbar )/n ) ;

Y = (x−xbar )/Sn ;

newtmat = J (n , 1 , 0 ) ;

do i i =1 to n ;

Tmatij2 = J (n , 1 , 0 ) ;

do j j =1 to n ;

Z i j 2=Y[ i i ]+Y[ j j ] ;
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T1_1=exp ( ( Z i j 2##2)/(4#beta ) ) ;

T2_2=(Y[ i i ]#Y[ j j ] )+( ( Z i j 2##2)/(4#(beta##2)))+ ((1 − 2#Y[ i i ]#Z i j 2 )/(2#beta ) ) ;

Tmatij2 [ j j ]=T1_1#T2_2 ;

end ;

newtmat [ i i ]=Tmatij2 [+ ] ;

end ;

Tn_beta2=sq r t ( ( p i )/ beta )#(1/n)#sum(newtmat ) ;

p r i n t Tn_beta2 ;

qu i t ;

proc un i va r i a t e data=Appels ;

var Amount ;

histogram / normal

vax i s = ax i s1

name = 'MyHist ' ;

i n s e t n mean ( 5 . 3 ) std='Std Dev ' ( 5 . 3 ) skewness ( 5 . 3 )

/ pos = ne header = 'Summary S t a t i s t i c s ' ;

ax i s 1 l a b e l=(a=90 r =0);

run ;
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Abstract

Modelling class-imbalanced data is problematic. On such data, classifiers tend to misclassify

minority class observations. Considering the potential practical use of a classifier that is especially

robust to class imbalance, the performance of a Gaussian process classifier is evaluated to determ-

ine the degree to which it addresses the problem. GP classification is compared to support-vector

machine, random forest and logistic regression classification on three synthetic datasets. The results

show that under class imbalance, Gaussian process classification does indeed perform well relative to

the other techniques.

At the time of writing, a short version of this paper with the same title is in revision for the

Annual Proceedings of the South African Statistical Association Conference 2017.
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1 Introduction

1.1 Overview

In binary classification, class imbalance presents itself in datasets where there is a disproportionate

number of observations belonging to one class relative to the other class. A model trained on such data

tends to misinterpret the behaviour of minority class observations, causing them to be misclassified [3].

An example of this is in credit scoring, where a certain loan applicant’s creditworthiness is assessed

on whether applicants with similar attributes defaulted in the past. A lender would historically have

favoured those who are less likely to default, and so only a tiny proportion of the corresponding dataset

would comprise defaulters. Of course, erroneously classifying defaulters as non-defaulters would prove

disastrous for any lending institution. Thus, investigating methods to create robust predictive models in

the presence of class imbalance is entirely applicable.

Comparisons are made between the classification performance of Gaussian processes (GPs), logistic

regression (LR), support-vector machines (SVMs), and random forests (RFs) on three synthetic datasets in

which class imbalance is present (and upon which the imbalance is compounded by removing observations

of the minority class).

The theoretical understanding and application of GPs is the focus of this research report.

1.2 Related work

In order to investigate the class imbalance problem, de Waal et al. [3] evaluate the performance of two-

class non-parametric kernel density estimation classifiers using either class imbalance or the Bernoulli

distribution as a prior. Their findings show that using class imbalance as a prior decreases classification

performance, whereas the use of the Bernoulli prior increases classification performance.

Seidu [13] compares the performance of LR to a Gaussian classifier in creating a model which predicts

whether a company will go bankrupt based on its financial ratios. GP covariance functions are also

compared to one another in classification. It is concluded that GP classification is superior to LR (partly

because it is non-parametric) and that the squared-exponential is the most suitable covariance function

for classification in this application.

Then, Brown and Mues [2] compare the classifying ability of RFs, SVMs and gradient boosting to

neural networks, decision trees and LR. This is done in the context of credit scoring. They conclude that

gradient boosting and RFs are the best classification techniques in this class imbalance setting.

Finally, alternative data-orientated sampling techniques are investigated by Drummond and Holte [4].

They use cost curves to compare the extent to which under-sampling the majority class and over-sampling

the minority class solves the class imbalance problem. They conclude that the under-sampling is most
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effective, whereas the over-sampling yields almost no improvement.

2 Theory of Gaussian processes

2.1 Introduction

GPs are used to perform classification and regression [10], such as in speech or handwriting recognition.

In this machine learning context, they form a supervised learning technique. GPs are also used more

generally for spatial analysis (then referred to as kriging) in geostatistics [12]. Such applications include

modelling geological and meteorological patterns [12]. Although GPs may be applied to both regression

and classification, the focus of this paper is on classification.

2.2 Definition

A GP is a set of random variables {X
t

: t ✏S} such that any finite subset of which {X
t1 , . . . , Xtn} are

jointly multivariate Gaussian distributed [12].

The elements of the random vector {X
t1 , . . . , Xtn} introduced above are referred to as the Gaussian

process’ finite dimensional distributions. They are a collection of multivariate Gaussian random variables,

which will be elaborated upon in this section.

The Gaussian distribution best describes the unknown frequency of residual errors [7], and so its

use is entirely appropriate in probabilistic modelling. This follows from the central limit theorem, which

states that the sums of independent and identically distributed random variables follow an approximately

Gaussian distribution [10].

The probability density function (PDF) of the univariate Gaussian distribution is given by

N (x|µ,�2
) , 1p

2⇡�2
e�

1
2�2 (x�µ)2 (1)

where µ = E[X] is the mean and �2
= var[X] is the variance [10].

Figure 1 indicates a univariate Gaussian distribution with µ = 0 and �2
= 1 .

Extending the univariate Gaussian to D dimensions, the PDF of the multivariate Gaussian distribution

is given by

N (x|µ,⌃) , 1

(2⇡)D/2|⌃|1/2
exp [�1

2

(x� µ)T⌃�1
(x� µ)] (2)

where µ = E[x]✏RD is the mean vector and ⌃ = cov[x] is the D x D covariance matrix [10].

A bivariate Gaussian distribution with µ
x

= 0, µ
y

= 0, �2
x

= 5 and �2
y

= 20 is illustrated in Figure 2.

10



Figure 1: Univariate Gaussian distribution

Figure 2: Bivariate Gaussian distribution

11



2.3 Bayesian preliminaries

Bayesian inference forms the basis of predictive modelling in GP regression and classification, and so the

basic concepts underlying the Bayesian approach are discussed in this subsection. Lee [8] is used as a

guide.

For two events A and B, Bayes’ theorem states that

P(A|B) =

P (B|A) P (A)

P(B)

.

It follows from this that

P(A|B) / P (B|A) · P (A), (3)

and so the conditional probability of A given B is proportional to the conditional probability of B

given A multiplied by the probability of A.

Now, in the context of statistical learning, let � be some parameter or attribute of a predictive model

and let Y be observed data. Then, from (3), we can write

p(�|Y ) / f(Y |�) · ⇡(�). (4)

In this expression, (4):

• ⇡(�) is the prior distribution. This represents all that is known about � before any data has been

observed.

• f(Y |�) is the likelihood function. This describes how likely the data points Y are given that � is

true.

• p(�|Y ) is the posterior distribution. This represents all that is known about � once the model has

been trained on the data Y .

Therefore,

posterior / likelihood · prior.

As more data is observed, the posterior distribution is updated and a truer distribution of � emerges.

Finally, there is the posterior predictive distribution. This distribution is formed by integrating the

unknown variable (� as above) out of the posterior distribution. The result is a distribution which can

be directly used to predict new data points based on the already observed data.

12



2.4 Regression

Before introducing GPs for classification, GPs for regression is presented here only for the sake of ex-

plaining the theory leading up to the classification case. The classification problem is an extension of the

regression problem, just as LR is an extension of OLS regression.

2.4.1 Overview

This section is based on Murphy [10] Section 15.1 and 15.2, and Rasmussen and Williams [12] Section

2.2.

Suppose we have some continuous space, in which there are an infinite number of points. Each of

these points is linked to a Gaussian random variable. Then, any finite subset of this infinite set of points

is called a GP. Furthermore, the degree to which each point depends on every other point is defined by

the covariance function1. In other words, the covariance function specifies how similar two points, say x

and x0, are in this space.

Now, to reiterate, let x and x0 be two arbitrary points in some space. Every point in this space—and

there are an infinite number of points—is linked to a Gaussian random variable. Any finite subset of these

random variables is jointly multivariate Gaussian distributed. And so, the assumption made throughout

is that the distribution of the GP is the joint distribution of p(f(x1), . . . , f(xN

)) where x1 . . . xN

is an

arbitrary finite selection of infinitely many points. Each one of these individual points is linked to its

own Gaussian random variable. Thus p(f(x1), . . . , f(xN

)) is multivariate Gaussian distributed.

GP regression is especially versatile in that it is able to learn patterns of data which do not necessarily

conform to a particular shape. This stems from the fact that GP regression is non-parametric. Each

f(x) above is in fact a parameter, but the model is able to implement as many parameters as it likes to

best describe the observed data—still considering model generality, of course. Furthermore, the choice of

available parameters is infinite. This is confirmed when we consider that the parameters f(x1), . . . , f(xN

)

are a finite selection of an infinite number of points in the space, as stated above.

2.4.2 GP regression contrasted with Bayesian linear regression

Now, let us contrast the non-parametric feature of GP regression with the parametric feature of Bayesian

linear regression. Using the latter technique, the number of parameters used would have to suit the nature

of the data to be modelled. So, the model Y = ✓0 + ✓1x is only appropriate for describing approximately

linear data. GP regression, however, is free of this restriction as the number of possible parameters to be

used is infinite.
1
Covariance function and kernel are equivalent terms, although covariance function is generally used in the context of

GPs.
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Also, in Bayesian linear regression, a primary objective is to determine a distribution that may

describe each parameter ✓. GP regression differs from this totally in that a distribution is instead created

to describe the various functions which suit the observed data.

2.4.3 Model formulation

Now, consider the process

f(x) s GP(m(x),(x, x0
)) (5)

in which m(x) is the mean function and (x, x0
) is a positive semidefinite covariance function (which

defines how similar x and x0 are). This is the prior on the regression function. Then,

m(x) = E[f(x)] (6)

and

(x, x0
) = E[(f(x)�m(x))(f(x0

)�m(x0
))

T

]. (7)

For the sake of simplicity, it is assumed that m(x) = 0.

Ten samples from a GP prior distribution using the Matérn covariance function (see Section 2.5) are

illustrated in Figure 3. Being a prior, no data has yet been observed and so each sampled process is

unique.

Figures 3 and 4 are generated by an adaptation of Scikit-learn’s [11] program Illustration of prior and

posterior Gaussian process for different kernels2.

2.4.4 Posterior conditional distribution for the multivariate normal distribution

Assume that p(x1, x2) is a joint Gaussian distribution with its parameters given by

µ =

0

B@
µ1

µ2

1

CA ,

⌃ =

0

B@
⌃11 ⌃12

⌃21 ⌃22

1

CA ,

⇤ = ⌃

�1
=

0

B@
⇤11 ⇤12

⇤21 ⇤22

1

CA .

2
http: // scikit-learn. org/ stable/ auto_ examples/ gaussian_ process/ plot_ gpr_ prior_ posterior. html
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Figure 3: Ten samples from a GP prior distribution using the Matérn covariance function

From this, the marginal probabilities can be calculated as

p(x1) = N (x1|µ1,⌃11)

p(x2) = N (x2|µ2,⌃22).

Therefore, the posterior conditional distribution can be formulated by

p(x1|x2) = N (x1|µ1|2,⌃1|2)

µ1|2 = µ1 + ⌃12⌃
�1
22 (x2 � µ2)

= µ1 � ⇤12⇤
�1
11 (x2 � µ2)

= ⌃1|2(⇤11µ1 � ⇤12(x2 � µ2))

⌃1|2 = ⌃11 � ⌃

�1
22 ⌃12⌃21 = ⇤�1

11 . (8)

2.4.5 Learning using noise-free data

Noise-free data is appropriate to consider as it can be encountered in computer simulations [12].
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Consider a training set A = {(x
i

, f
i

), i = 1 : N} where f
i

= f(x
i

) (thus observations in A are noise-

free). X denotes a possible training input and X⇤ denotes the corresponding testing input. f is a training

output and f⇤ is a testing output.

As per the prior, the distribution which links the training and testing outputs is given as

2

64
f

f⇤

3

75 ⇠ N

0

B@0,

2

64
K(X,X) K(X,X⇤)

K(X⇤, X) K(X⇤, X⇤)

3

75

1

CA (9)

where K(X,X⇤), for example, expresses the covariances of all training and testing points X and X⇤

within an N x N⇤ matrix, as there are N training points and N⇤ testing points.

Once data has been observed, the prior distribution may be conditioned on the data to form the

posterior distribution. This is done by restricting the joint distribution (9) such that it includes only

functions that coincide with the observed data. The posterior distribution is given by

p (f⇤|X⇤, X, f) = N (f⇤|µ⇤,⌃⇤) (10)

where

µ⇤ = µ(X⇤) + [K(X⇤, X)][K(X,X)]

�1
(f � µ(X)) (11)

and

⌃⇤ = K(X⇤, X⇤)� [K(X⇤, X)][K(X,X)]

�1K(X,X⇤). (12)

This follows from the derived definitions for the marginal and conditional probabilities of a multivariate

normal distribution in Section 2.4.4.

Figure 4 illustrates ten functions sampled from the posterior distribution of a GP using the Matérn

covariance function. The red dots represent data on which the prior has been conditioned to form the

posterior. Comparing this to Figure 3, observe that all of the functions in Figure 4 pass through the

data. Thus it is evident that the posterior distribution is a distribution that has been conditioned on the

data, so that any function sampled from the posterior would necessarily always be compatible with every

data point.

Note that, because the training data is noise-free, a GP regression model trained on such data will be

able to predict with absolute certainty the outcome f(x) given that x is a data point that has already

been observed [10].
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Figure 4: Ten samples from a GP posterior distribution using the Matérn covariance function

2.4.6 Learning using noisy data

Consider now the function y = f(x)+ ", which generates noisy data. Randomness (noise) occurs through

the term ✏.

With the added noise, the covariance of the data becomes

cov(y) = K(X,X) + �2
n

I

where �2
n

is assumed to be the variance of the Gaussian noise ". �2
n

I is a diagonal matrix because it

is assumed that each noise term " is independent.

Thus, the distribution which now links the training and testing outputs is given as

2

64
y

f⇤

3

75 ⇠ N

0

B@0,

2

64
K(X,X) + �2

n

I K(X,X⇤)

K(X⇤, X) K(X⇤, X⇤)

3

75

1

CA . (13)

Then, given a zero mean, the posterior distribution becomes

p (f⇤|X⇤, X, y) = N (f⇤|µ⇤,⌃⇤) (14)

where
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Figure 5: GP regression on noise-free data using the RBF covariance function

µ⇤ = [K(X⇤, X)][K(X,X) + �2
n

I]�1y (15)

and

⌃⇤ = K(X⇤, X⇤)� [K(X⇤, X)][K(X,X) + �2
n

I]�1K(X,X⇤). (16)

Finally, for a single test point, the posterior mean can be written as

¯f⇤ = kT⇤ (K + �2I)�1y,

where k⇤ is the vector of covariance values between the single test point and the training points.

Figures 5 and 6 demonstrate the difference between modelling noisy data versus noise-free data. Both

figures are generated by an adaptation of Scikit-learn’s [11] program Gaussian Processes regression: basic

introductory example3.

The underlying functions which generate the data are f(x) = xcos(x) and f(x) = xcos(x)+" respect-

ively. The GP regression model is then created, using the radial-basis function (RBF4) as the covariance

function. The noise level of the function shown in Figure 6 is indicated by vertical lines. The shaded

area represents a 95% confidence interval for predictions. Notice how, in the noise-free case, predictions

at each observation are made with absolute certainty. This is not so in the noisy case.

Sections 2.4.5 and 2.4.6 provide the formulation of GP regression model parameters. The following

section addresses the estimation of these parameters.
3
http: // scikit-learn. org/ stable/ auto_ examples/ gaussian_ process/ plot_ gpr_ noisy_ targets. html

4
The Radial-basis function covariance function is often referred to as the Squared Exponential (SE) covariance function.
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Figure 6: GP regression on noisy data using the RBF covariance function

2.4.7 Covariance function parameter estimation

Simply put, a final regression function is estimated (given some data) by tuning the parameters of the

covariance function.

As explained in Murphy [10] Section 15.2.4, the parameters of the covariance function being used

are estimated such that the marginal likelihood is maximised. This is done by using Bayes’ theorem to

marginalise out the Gaussian vector f

p(y|X) =

Z
p(y|f,X)p(f |X)df.

Then, since

p(f |X) = N(f |0,K)

and

p(y|f) =
Y

i

N(y
i

|f
i

�2
y

),

the log marginal likelihood is

log p(y|X) = logN(y|0,K
y

)

= �1

2

yK�1
y

y � 1

2

log|K
y

|� N

2

log(2⇡), (17)

where � 1
2yK

�1
y

y represents the extent to which the model fits the data, � 1
2 log|Ky

| is the complexity
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of the model and �N

2 log(2⇡) is a constant.

Model fit refers to the difference between predicted and observed data points; a better fitting model

will have smaller residual values. Model complexity refers to the model’s loss of generality. A model that

is too complex would describe the observed data very well, but its implied loss of generality means that

its performance on unseen data is compromised. This principle is broadly referred to as Occam’s razor.

In a more general sense, it postulates that the simplest (or most parsimonious) explanation for an event

should be favoured. In the context of statistics, given a sufficient model fit, the most parsimonious model

should always be used.

Therefore, in parameter estimation, the optimisation problem is essentially balancing model fit and

model complexity. The aim here is to find the optimal parameters to achieve this balance. In general, as

model fit is increased, model complexity is decreased and vice versa.

A compromise is achieved by maximising the marginal likelihood

@

@✓
q

log p(y|x) =

1

2

yTK�1
y

@K
y

@✓
q

K�1
y

y � 1

2

tr

✓
K�1

y
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y

@✓
q

◆

=

1
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tr

✓
(↵↵T �K�1

y

)

@K
y

@✓
q

◆
,

where ✓ represents the respective covariance function’s parameters and ↵ = K�1
y

y. Note that the

form of @Ky

@✓q
depends on the form of the covariance function.

In order to compute the actual parameter estimates, the Cholesky decomposition5 (which is said by

Murphy [10] to be relatively robust) may be used.6 This was investigated by Rasmussen and Williams

[12]; their work is used as a guide here and their pseudocode is shown in Algorithm 1.

To start, the computation that is being performed is given by

K
y

= LLT

and the predictive mean is

f⇤ = kT⇤ K
�1
y

y.

Inputted into the algorithm are the training inputs (X), the training outputs (y), the test inputs x⇤,

the covariance function  and the noise level �2
n

. Note that the �2
y

I in Line 1 is for noisy observations.

5
See Cholesky factorisation. Encyclopedia of Mathematics. URL: http: // www. encyclopediaofmath. org/ index. php?

title= Cholesky_ factorization& oldid= 37467

6
A full Bayesian solution may also be used to compute the posterior of the parameters. See Murphy [10] Section 5.2.4.2,

page 523.
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Algorithm 1 Cholesky decomposition for GP Regression
Inputs: training inputs (X), training outputs (y), test inputs (x⇤), covariance function (), noise level (�2

n

)

1 L = cholesky(K + �2
y

I)
2 ↵ = LT \ (L \ y)
3 E(f⇤) = kT⇤ ↵
4 v = L \ k⇤
5 var(f⇤) = (x⇤, x⇤)� vT v
6 log p(y|X) = � 1

2y
T↵�

P
i

logL
ii

� N

2 log(2⇡)

Outputs: log marginal likelihood log p(y|X) , predictive mean f⇤, predicted variance var(f⇤)

2.5 Covariance functions

This subsection uses Chapter 4 of Rasmussen and Williams [12] as a theoretical guide, and an adapted

version of the Python program provided in Scikit-learn’s [11] Illustration of prior and posterior Gaussian

process for different kernels7. Then, Scikit-learn’s corresponding GPs documentation8 is closely followed

for the description of each covariance function’s parameters.

The covariance function defines how similar any given data point is to its neighbours, and by this it

makes assumptions about the characteristics of the data to be modelled [12]. Therefore, the choice of a

suitable covariance function is fundamental in creating a meaningful model.

A covariance function may be described as stationary or isotropic (or both). An isotropic covariance

function is necessarily stationary; a stationary function is not necessarily isotropic. A stationary cov-

ariance function (which is unaffected by translations in the training data) is merely a function of the

difference between x and x0

(x, x0
) = f(x� x0

), (18)

whereas an isotropic covariance function (which is unaffected by all rigid motions in the training data)

is a function of the Euclidean distance between x and x0

(x, x0
) = f(|x� x0|). (19)

A dot-product covariance function (which is unaffected by rotations of the training data about the

origin) has neither of these properties. Rather, it is a function of x · x0. One such example would be

(x, x0
) = �2

0 + x · x0,

where �2
0 is the known variance of the GP. A dot-product covariance function is necessarily non-

7
http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html

8
http://scikit-learn.org/stable/modules/gaussian_process.html#gaussian-process-kernel-api

21



Figure 7: GP using the dot-product covariance function

stationary.

In Figures 7 to 10, the black line indicates the predictive mean and the shaded area indicates one

standard deviation from this mean (interpretable as predictive confidence). Ten samples from the prior

distribution are shown on the left; ten samples from the posterior distribution are shown on the right.

2.5.1 Dot-product covariance function

(x, x0
) = �2

0 + x · x0

This is a non-stationary covariance function with one parameter, �0. It is said to be homogenous if

�0 = 0; inhomogeneous otherwise. Also, the parameter may be raised to an appropriate exponent.

In Figure 7, �0 = 1 in the prior and �0 is squared.

2.5.2 Radial-basis function (RBF) covariance function

(x, x0
) = �2

f

exp

✓
1� (x� x0

)

2

2l2

◆

This stationary covariance function has the parameters l and �2
f

. The former is the length scale

parameter, which determines the degree to which the function varies over the horizontal plane. The

latter determines the variation on the vertical plane. A greater l translates to a smoother, less erratic

function.

The RBF covariance function is isotropic if l is a scalar, and anisotropic (meaning not isotropic) if l

is a vector (whose number of dimensions must match the number of data points inputted).

The RBF covariance function with l = 1 and �2
f

= 1 in the prior is illustrated in Figure 8.

22



Figure 8: GP using the radial-basis function covariance function

Figure 9: GP using the rational quadratic covariance function

2.5.3 Rational quadratic covariance function

(x, x0
) =

✓
1 +

(x� x0
)

2

2↵l2

◆�↵

Following from the RBF, the length-scale parameter l is still present and has the same effect. The RBF

is now extended though, to include a scale mixture parameter ↵. This is included as the rational quadratic

expresses an infinite number of RBF covariance functions all having different length-scale parameters,

summed together. As above, the rational quadratic function is stationary and may be either isotropic or

anisotropic.

The rational quadratic converges to the RBF as ↵ tends towards infinity.

In Figure 9, the rational quadratic is used with l = 1 and ↵ = 0.1 in the prior.
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Figure 10: GP using the Matérn covariance function

2.5.4 Matérn covariance function

(x, x0
) =

2

1�⌫

� (⌫)

 p
2⌫(x� x0

)

l

!
⌫

K
⌫

 p
2⌫(x� x0

)

l

!

The Matérn covariance function is an even more elaborate extension of the RBF. l works as before,

but now the new parameter ⌫ directly controls the smoothness of the function. As ⌫ approaches infinity,

so the Matérn covariance function becomes identical to the RBF. A modified Bessel function is expressed

by K
⌫

.

Like the RBF, the Matérn is stationary and may be either isotropic or anisotropic.

A Matérn covariance function is shown in Figure 10 with l = 1 and ↵ = 1.5 used for the prior.

2.5.5 Exponential-sine-squared covariance function

(x, x0
) = exp

✓
�2sin2

(⇡|x� x0|/p)
l2

◆

The exponential-sine-squared covariance function, derived by Mackay [9], is a periodic function. It may

be used to model periodic data such as atmospheric carbon dioxide concentration or cyclical stock prices.

l is again the length-scale parameter, which determines the function’s smoothness. The new periodicity

parameter p, controls the length of each period. This covariance function may be either isotropic or

anisotropic.

In Figure 11, an exponential-sine-squared covariance function is used with l = 1 and p = 3 in the

prior.
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Figure 11: GP using the exponential-sine-squared covariance function

2.6 Classification

2.6.1 Introduction

This section is based on Murphy [10] Section 15.3.1, and Rasmussen and Williams Section 3.3 and 3.4.

In classification, the objective is to classify data into one of a number of classes. Training data is

observed to form a predictive model, and then testing data is used to evaluate its predictive ability. Only

two-class GP classification is investigated in this section.

The aim here is to, for every input point, compute the probability that the given input point belongs

to a certain class. If the probability that an input point belongs to a certain class is greater than or equal

to a certain value (called the decision threshold or boundary, which is usually set at 0.5), it is classified

as belonging to the class. This is called probabilistic classification.

We wish to model the probability that a given input point belongs to a certain class, as opposed to

just modelling a real-valued output for every input.

An example of two-class classification could be in determining whether a given fruit is either a litchi

or a mango. This assessment could be based on attributes such as the weight and colour of each fruit:

a lighter fruit whose skin is red or brown would more likely be classified as a litchi; a heavier green or

yellow fruit would probably be classified as a mango.

The following mathematical discourse is based on Murphy [10] Section 15.3.1 and Rasmussen and

Williams [12] Sections 3.3 and 3.4.

2.6.2 Model formulation

The obvious way to develop a GP classifier would be to formulate a posterior distribution using the

Gaussian prior (5) and likelihood function (17); however, the Gaussian prior is incompatible with the
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Bernoulli likelihood function. Thus, the logistic function is incorporated, and the classification model is

formulated in the following way:

Firstly, our aim is to model p(y
i

|x
i

). That is, to create a model which returns the probability that an

input data point x
i

belongs to the class y
i

. Since there are only two classes, y
i

is either �1 or 1. Now,

we take a sample function f(x) from a GP with mean 0 and covariance function , so f(x) ⇠ GP(0,).

Here, f is a latent function as we do not directly use any of its values. This can also be referred to as

a nuisance function, since the output of the function is irrelevant to us; only the output of ⇡ is of interest

for each test input x⇤. The use of the nuisance function f is only for the sake of developing the model

and will eventually be integrated out when the posterior predictive distribution is computed.

Lastly, we define a logistic function �(z) = sigm(z) through which we observe the output of f . This

is so that, as it is done in LR, we can model the probability of the response variable being a 1 or a 0 as

opposed to modelling the response variable itself. This output is taken from the function we define as ⇡,

on which we wish to derive a prior distribution. The resulting model is given by

⇡(x) , p(y = +1|x) = �(f(x)). (20)

For each test input x⇤ we wish to obtain a distribution of the the corresponding f , which we call f⇤.

So, the likelihood is given by

p(f⇤|X, y, x⇤) =

Z
p(f⇤|X,x⇤, f)p(f |X, y)df. (21)

Then for predictions, we use

⇡̄⇤ , p(y⇤ = +1|X, y, x⇤) =

Z
�(f⇤)p(f⇤|X, y, x⇤)df⇤, (22)

where �(f⇤) is the prior and p(f⇤|X, y, x⇤) is the likelihood.

2.6.3 Posterior computation

Since the likelihood function is sigmoidal, it is non-normal and therefore intractable. This means that

the integral cannot be solved. In order to overcome this problem, we use Gaussian approximation to

determine a normalised version of the likelihood function so that it may become tractable. We then use

the Laplace approximation on this function to analytically approximate the integral.

Following Murphy [10], the log of the unnormalised posterior is given by
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l(f) = log p(y|f) + log p(f |X)

= log p(y|f)� 1

2

fTK�1f � 1

2

log |K|� N

2

log 2⇡. (23)

In order to minimise the above function l(f), the gradient used is

g = �rlogp(y|f) +K�1f,

and the Hessian matrix used is

H = W +K�1.

Ultimately, by using Gaussian approximation, the posterior distribution is computed as

p(f |X, y) ⇡ N (f, (K�1
+W )

�1
). (24)

This expression is now normalised, and so it may be analytically approximated using Laplace approx-

imation.

2.6.4 Posterior predictive computation

The posterior predictive distribution is formed by all possible unobserved data points, given the already

observed data.

For the purpose of this computation, we define x⇤ to be a test point which will be inputted into the

latent function f introduced in Section 2.6.2. We define f⇤ as a latent function used in the context of

posterior predictive computation.

The posterior predictive distribution is finally given by

p(f⇤|x⇤, X, y) = N (E[f⇤], var[f⇤]). (25)

(For more detail on how this is derived, see Murphy [10] pages 526 and 527)

Translating (25) into a predictive distribution that is able to handle binary responses, we require the

use of the following function:
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Algorithm 2 Cholesky decomposition for binary GP classification using Gaussian approximation
1 [The MAP estimate is computed in lines 2 to 9 by using IRLS.]
2 f = 0

3 repeat
4 W = �rrlogp(y|f)
5 B = I

N

+W
1
2KW

1
2

6 L = cholesky(B)

7 b = Wf +rlogp(y|f)
8 a = b�W

1
2LT \ (L \ (W

1
2Kb))

9 f = Ka
10 until converged
11 logp(y|X) = logp(y|f)� 1

2a
T f �

P
i

logL
ii

12 [Prediction is performed in lines 13 to 16.]
13 E[f⇤] = kT⇤ rlogp(y|f)
14 v = L \ (W

1
2 k⇤)

15 var[f⇤] = k⇤⇤ � vT v
16 p(y⇤ = 1) =

R
sigm(z)N (z|E[f⇤], var[f⇤])dz

⇡⇤ = p(y⇤ = 1|x⇤, X, y)

⇡
Z

�(f⇤)p(f⇤|x⇤, X, y)df⇤ (26)

Monte Carlo or probit approximation may be used to estimate (26).

2.6.5 Marginal likelihood computation

As in the regression case, the parameters of the covariance function being used are estimated such that

the marginal likelihood is maximised given the data. The Laplace approximation yields

log p(y|X) ⇡ l( ˆf)� 1

2

log |H|+ constant, (27)

and so the marginal likelihood is finally given as

log p(y|X) ⇡ log p(y| ˆf)� 1

2

ˆfTK�1
ˆf � 1

2

log |K|� 1

2

log |K�1
+W |. (28)

2.6.6 Final parameter estimation

The equations in Sections 2.6.2, 2.6.3, 2.6.4 and 2.6.5 all culminate in Algorithm 2, which estimates the

parameters of a given covariance function to fit the training data. Once again, the Cholesky decomposition

is used. The algorithm was created by Rasmussen and Williams [12] and adapted by Murphy [10].
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Figure 12: Initial RBF covariance function (blue) and optimised RBF covariance function (red)

2.6.7 Illustrations

The following illustrations are generated by adaptations of example programmes used in Scikit-learn’s

documentation on GPs 9 [11]. The accompanying descriptions in the documentation are also used as a

guide in writing this section.

Figures 12 and 13 show how the parameters of the covariance function are tuned to suit the given

data. The blue function is the RBF covariance function before any data has been considered; the red

function represents the same same covariance function now optimised for the given data.

Observe the sigmoid shape of the curves, which results from the use of the logistic function.

There is a slight quirk in this example: the log-loss (0.173 for the initial and 0.313 for the optimised

covariance function) indicates that the initial covariance function performs better on the test data than

the tuned covariance function. This is because of the more dramatic change in probability that the

optimised covariance function displays. This steep part of the curve implies that more data points that

are on the boundary of each class will be assigned probabilities closer to 0.5, implying greater uncertainty

for their associated predictions. This phenomenon can be attributed to the classifier’s use of the Laplace

approximation.

Figures 12 and 13 are generated by an adaptation of Scikit-learn’s [11] program Probabilistic predic-

tions with Gaussian process classification (GPC)10.

The corresponding Figure 13 shows the relationship between the RBF’s length scale parameter (l) and

the log-marginal-likelihood. As explained, the log-marginal-likelihood must be maximised by choosing
9
http://scikit-learn.org/stable/modules/gaussian_process.html#basic-kernels

10
http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc.html
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Figure 13: Relationship between log-marginal-likelihood and the length-scale parameter of the RBF

the optimal covariance function parameters. This process is illustrated in Figure 13. The black dot at 100

is the initial length-scale parameter, and the other black dot is the length-scale parameter value such that

the log-marginal-likelihood is maximised. This parameter value dictates the shape of the blue covariance

function in Figure 12.

Figure 14 is generated by an adaptation of Scikit-learn’s [11] program A two-dimensional classification

example showing iso-probability lines for the predicted probabilities11. It demonstrates how probabilities

are used to make the classification decision for each input point. Here, the dot-product kernel is used

and the probabilities are transformed into iso-probability lines. We are predicting whether a given data

point (x1, x2) used in the function G(x) will yield  0 or > 0. The value computed (indicated by the

colour map white to black) is the probability that, given the input data point, the outcome of G(x) will

be smaller than or equal to zero. The data points which are on or below the iso-probability line of 0.5

are classified as belonging to this class (blue), and those that are above the 0.5 iso-probability are not

classified as belonging to the class (red). Of course, there are an infinite number of iso-probability lines.

Figure 15 is generated by an adaptation of Scikit-learn’s [11] program Illustration of Gaussian process

classification (GPC) on the XOR dataset12. It shows classification done on XOR data using the RBF

covariance function (left) and the dot-product covariance function (right). The RBF covariance function

is stationary and isotropic, and the dot-product covariance function is non-stationary. The log-marginal-

likelihood values indicate that the dot-product kernel yields the best performance in this case. However,

as indicated in the program’s description, stationary covariance functions do perform better in general.

The program description attributes this exception to the fact that the class boundaries in the XOR data
11
http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_isoprobability.html

12
http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_xor.html
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Figure 14: Iso-probability lines showing how data points are classified

are linear.

3 Application

3.1 Experimental design

Our research question is, Does GP classification perform better than SVM, RF and LR classification when

class imbalance is present?

The performance of each technique is tested using 500 observations on three different datasets with

the class proportion set to 0.5, 0.4, 0.3, 0.2, 0.1 and then 0.05.

3.2 Datasets

Data is simulated from Scikit-learn’s [11] ‘toy’ data generators13. These are ‘Make moons’, ‘Make circles’

and ‘Make classification’. ‘Make moons’ generates data points which resemble two interleaving semicircles

and ‘Make circles’ generates data points which resemble two concentric circles. Both of these data

formations are considered difficult to model, hence their inclusion in the experiments. Lastly, ‘Make

classification’ is configured to generate linearly separable data. For each observation, two X points are

generated together with their corresponding binary Y point. Refer to the ‘Input data’ panes of Figures

22 and 23 in Section A of the appendix for illustrations of the datasets.
13
http://scikit-learn.org/stable/datasets/index.html
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Figure 15: Comparison of RBF and dot-product covariance functions on XOR data in GP classification

Predicted response: 0 Predicted response:1
Actual response: 0 True negative (TN) False positive (FP) Total number of times

actual response is 0
Actual response: 1 False negative (FN) True positive (TP) Total number of times

actual response is 1
Total number of times a 0

is predicted
Total number of times a 1
is predicted

Table 1: Confusion matrix format

3.3 Evaluation metrics

3.3.1 Confusion matrix

The confusion matrix provides a simple breakdown of whether predictions turn out to be correct. We

use elements from this matrix, shown in Table 1, to compute the metrics in 3.3.2 and 3.3.3.

The TN value is the number of times the response is correctly predicted as a 0; the FN value is the

number of times the response is incorrectly predicted as a 0 (type II error).

Similarly, the TP value is the number of times the response is correctly predicted as a 1; the FP value

is the number of times the response is incorrectly predicted as a 1 (type I error).

3.3.2 True negative rate

=

Number of times an observation is correctly predicted as class 0
Total number of actual class 0 observations

=

TN

TN + FP

The true negative rate (TNR) indicates the proportion of class 0 observations correctly classified

as being class 0 observations. This measure is completely relevant in evaluating a classifier that has

processed imbalanced data, as it gives us a measure of how well the classifier is able to correctly classify

minority class observations. In our experiments, class 0 is the minority class.
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The TNR is crucial in practical applications where class imbalance is present. One such situation is

credit scoring. The TNR in this context would be the proportion of defaulters who are correctly classified

as defaulters. Classifying defaulters as non-defaulters would potentially be damaging to the company

granting credit to entities that are not creditworthy. It would be far less damaging to misclassify non-

defaulters as defaulters: the bank would merely lose out on a money-making client rather than bear the

financial consequences of unrecoverable credit. Therefore, we focus on a classifier’s ability to identify

defaulters, with the potential cost of misclassifying some non-defaulters. This is shown by the TNR.

3.3.3 The Matthews correlation coefficient

The Matthews correlation coefficient (MCC) [1] measures the performance of binary classifiers. It simply

describes the correlation between the predicted values and the actual values. This measure is particularly

well-suited to imbalanced data as it is critical of all components of the confusion matrix. It is calculated

as

TP · TN � FP · FNp
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

.

The coefficient ranges from -1 to +1. A measure of -1 indicates complete discord between predicted

values and actual values; 0 indicates that the correlation between predicted and actual values is not

necessarily any better than a prediction made by a classifier that makes decisions randomly; and 1

indicates perfect agreement between predicted and actual values. It is an elegant measure that gives an

indication of overall classifier performance yet is also sensitive to the classifier potentially misclassifying

observations of the minority class, and so in this paper we use it as the primary measure upon which to

compare models.

3.3.4 Classification accuracy is misleading

It should be noted that the classification accuracy metric does not feature in this paper as it can be

highly misleading, especially in the case of class imbalance. Consider a hypothetical dataset with class

1 representing 90% of the observations and class 0 representing the other 10%. If a classifier were to

classify all observations in this dataset as belonging to class 1, it would yield an accuracy of 90%. This

is a high score, yet the classifier would completely have failed in its task of discriminating between the

two classes.

Therefore, only the MCC and TNR are used.
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3.4 Summary of other techniques

The other three classification techniques that are compared are vastly different in how they work: SVMs

create classification regions by constructing hyperplanes such that the distance from each hyperplane to

the nearest set of training points belonging to different classes is maximised [10]; LR applies a regression

model to the log-odds observed through the logistic function [5]; and RFs take bootstrap samples of data

from which they create decision trees that are eventually aggregated to calculate a majority vote for

classification decisions [6].

3.5 Experiment

The experiments are carried out using the Python programming language and the Scikit-learn machine

learning library [11]. The program used to conduct the experiments is an adaptation of Scikit-learn’s

program ‘Classifier Comparison’ 14.

Each model is trained on 60% of the dataset and testing is done on the other 40%. Stratification is

used in splitting the data into training and testing sets, and so the proportion of each class present in

the sets stays the same.

Imbalance between the two classes is created by dropping random observations of the one class while

keeping the total number of observations at 500.

The RBF covariance function is used for both GP and SVM classification, with parameters �2
f

= 1

and l = 1 for the GP and � = 2 for the SVM.

We model each of the three datasets 30 times, with the dataset simulation and training

set selection randomised on every iteration. The results are then averaged. This is called

cross-validation.

4 Results

4.1 Results on the ‘Make moons’ dataset

On this dataset, Figure 16 indicates that according to the MCC, GP classification is the best overall

classifier initially and when class imbalance is introduced—except where the minority class proportion is

0.3 (where it is marginally outperformed by SVM classification) and 0.05 (where it is outperformed by

RF classification). The corresponding data can be found in Table 2.

In terms of the TNR, Figure 17 and Table 3 show that the GP classifier correctly classifies a greater

number of minority class observations than the other classifiers where the minority class proportion is

0.5, 0.4, 0.3 and 0.2. For 0.1 and 0.05, RF classification yields the highest TNR.
14
http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
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Figure 16: MCC with varying minority class proportion on the ‘Make moons’ dataset for SVM, GP, RF
and LR classifiers

Figure 17: TNR with varying minority class proportion on the ‘Make moons’ dataset for SVM, GP, RF
and LR classifiers

GP classification attains the highest Matthews correlation coefficient in three out of the five imbalanced

tests. However, GP and SVM classification perform very similarly in this experiment, and so with their

ability to accurately classify observations of both classes, either of them may be considered the best

classifier in this case. RF classification is possibly the most suitable classifier for extremely imbalanced

data.

4.2 Results on the ‘Make circles’ dataset

As shown in Figure 18 and Table 4, the MCC indicates that GP classification outperforms all techniques

at every level of class imbalance.

Figure 19 and Table 5 indicate that the GP and SVM classifiers accurately classify a similar number

of minority class observations compared to the other techniques where the minority class proportion is
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Minority class proportion SVM GP RF LR
0.5 0.822 0.828 0.796 0.701
0.4 0.792 0.797 0.766 0.678
0.3 0.799 0.798 0.767 0.668
0.2 0.774 0.779 0.730 0.641
0.1 0.643 0.650 0.650 0.565
0.05 0.477 0.527 0.588 0.444

Table 2: MCC on the ‘Make moons’ dataset for SVM, GP, RF and LR classifiers with varying minority
class proportion

Minority class proportion SVM GP RF LR
0.5 0.900 0.906 0.891 0.853
0.4 0.864 0.875 0.847 0.798
0.3 0.838 0.845 0.809 0.733
0.2 0.774 0.799 0.727 0.662
0.1 0.548 0.587 0.592 0.475
0.05 0.357 0.427 0.517 0.303

Table 3: TNR on the ‘Make moons’ dataset for SVM, GP, RF and LR classifiers with varying minority
class proportion

0.5 and 0.4, but for all other levels of minority class proportion GP classification is the top performer in

this regard.

Considering the classification performance reflected by the MCC, GP classification may be considered

the best overall classifier on this dataset when class imbalance is present. When the data is balanced,

SVM and GP classification perform similarly.

4.3 Results on the ‘Linearly separable’ dataset

On the linearly separable data, Figure 20 and Table 6 illustrate that GP classification is the best overall

when the data is imbalanced. When the classes are equally represented, SVM classification attains the

highest MCC. All of the classifiers perform similarly on this dataset though, except at the 0.05 minority

class proportion, where the performance of the GP classifier surpasses the performance of the other

techniques significantly.

Observing Figure 21 and Table 7, the GP classifier correctly classifies the greatest number of minority

class observations at all levels of class imbalance except 0.5, where SVM classification is marginally better.

Minority class proportion SVM GP RF LR
0.5 0.777 0.791 0.744 -0.050
0.4 0.769 0.772 0.739 0.029
0.3 0.744 0.758 0.698 0.000
0.2 0.685 0.719 0.638 0.000
0.1 0.522 0.631 0.534 0.000
0.05 0.173 0.487 0.413 0.010

Table 4: MCC on the ‘Make circles’ dataset for SVM, GP , RF and LR classifiers with varying minority
class proportion
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Figure 18: MCC with varying minority class proportion on the ‘Make circles’ dataset for SVM, GP, RF
and LR classifiers

Figure 19: TNR with varying minority class proportion on the ‘Make circles’ dataset for SVM, GP, RF
and LR classifiers

Minority class proportion SVM GP RF LR
0.5 0.893 0.892 0.849 0.458
0.4 0.847 0.846 0.809 0.008
0.3 0.787 0.806 0.736 0.000
0.2 0.675 0.728 0.643 0.000
0.1 0.407 0.593 0.477 0.000
0.05 0.077 0.367 0.343 0.003

Table 5: TNR on the ‘Make circles’ dataset for SVM, GP, RF and LR classifiers with varying minority
class proportion
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Figure 20: MCC with varying minority class proportion on the ‘Linearly separable’ dataset for SVM, GP,
RF and LR classifiers

Figure 21: TNR with varying minority class proportion on the ‘Linearly separable’ dataset for SVM, GP,
RF and LR classifiers

Considering the above, GP classification may be considered the best classifier for class-imbalanced

linearly separable data.

4.4 Results summary

The results show that on three different synthetic datasets of 500 observations each, the MCC indicates

that compared to SVM, RF and LR classifiers, the GP classifier handles class-imbalanced data particularly

well.

GP classification is consistently the best-performing classifier on all three of the datasets when the

minority class proportion is 0.4, 0.2 and 0.115.
15

The RF classifier attains the same MCC as the GP classifier on the ’Make moons’ data at 0.1 minority class proportion.

38



Minority class proportion SVM GP RF LR
0.5 0.792 0.788 0.774 0.775
0.4 0.779 0.785 0.763 0.783
0.3 0.769 0.789 0.761 0.783
0.2 0.749 0.762 0.743 0.754
0.1 0.648 0.695 0.628 0.659
0.05 0.408 0.570 0.523 0.498

Table 6: MCC on the ‘Linearly separable’ dataset for SVM, GP, RF and LR classifiers with varying
minority class proportion

Minority class proportion SVM GP RF LR
0.5 0.897 0.891 0.891 0.887
0.4 0.848 0.854 0.846 0.848
0.3 0.807 0.830 0.804 0.818
0.2 0.718 0.746 0.739 0.724
0.1 0.551 0.635 0.578 0.571
0.05 0.271 0.435 0.433 0.335

Table 7: TNR on the ‘Linearly separable’ dataset for SVM, GP, RF and LR classifiers with varying
minority class proportion

At the most extreme minority class proportion of 0.05, GP classification performs best on the ‘Make

circles’ and ‘Linearly separable’ datasets.

Considering only the non-linear datasets (‘Make moons’ and ‘Make circles’), GP classification yields

the highest MCC when the classes are equally represented and for when the minority class proportion is

0.4, 0.2 and 0.1.

On the ‘Make circles’ dataset—whose data points are particularly difficult to classify—GP classifica-

tion attains the highest MCC for every one of the tests.

See Section A in the appendix for illustrations of the behaviour of each classifier on the three datasets

with and without the presence of class imbalance.

5 Conclusion

5.1 Concluding remarks

This paper investigates the extent to which a GP classifier is able to classify binary class-imbalanced data.

Particular emphasis is placed on the classification accuracy of minority class observations, although the

overall classification performance is considered.

The findings indicate that under class imbalance, GP classification does indeed perform well relative

to the other techniques.

This has implications for a number of practical applications in which binary classification is used to

make decisions and where class imbalance is unavoidable. These applications include credit scoring and

fraud detection. The results strongly suggest that in this kind of setting, the use of a GP classifier may

39



imply fewer misclassifications of minority class observations and increased overall classification accuracy.

This translates to fewer defaulters being classified as non-defaulters and fewer fraudulent transactions

being classified as genuine. It follows from this that the total cost related to misclassifications is reduced.

This is done while defaulters are still correctly classified as defaulters and genuine transactions are still

correctly classified as genuine transactions.

Explicit probability values can be obtained from a GP classification model, and so one may determine,

say, the probability that a certain transaction is fraudulent or the probability that a certain entity is not

creditworthy. This is a great advantage.

The predictive power and versatility of GP classification comes with one limitation, however: GPs do

not scale well to datasets in which there are a large number of dimensions or observations, and so their

computational cost is particularly high. With the advent of quantum computing, though, this may soon

no longer be a limitation.

With its robustness to class imbalance, GP classification should be considered in practice for creating

models from class-imbalanced datasets.

5.2 Limitations and future work

This paper is limited in that the datasets used in the experiments are artificial, and there are only two

features associated with each data point. Although this allows for us to visualise how the classifiers

behave, the conclusions reached in this paper would not necessarily hold true if there were a greater

number of attributes for each data point. Therefore, in future work, classifier performance should be

evaluated on real-world datasets whose observations exist in higher dimensional feature space.

Over-sampling minority class observations and under-sampling majority class observations could also

be investigated to determine whether resulting models are better able to distinguish observations of each

class.

Then, the performance of unary and binary classification could be compared, to establish whether

either is better suited to class imbalance.

Finally, the computational issues of GPs could be investigated. Alternative (possibly faster) approx-

imation algorithms could be tested in order to resolve this problem to some extent.
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Appendix

A Visualisation of classifier behaviour

To compare the unique behaviour of each classifier when class imbalance is present compared to when

it is not, Figures 22 and 23 are shown together. In Figure 22, the classes are equally represented and

in Figure 23, the minority class proportion is 0.05. In each pane, the MCC is indicated in the bottom

right-hand corner and the TNR is indicated in the top left-hand corner.

Class 1 is represented by blue dots and class 0 (which becomes the minority class) is indicated by red

dots. The training and testing points are represented by transparent and opaque dots respectively which

together comprise the full dataset as they are shown in each ’Input data’ pane. Also illustrated are the

decision boundaries for each case which indicate the predicted probability of a point belonging to one of

the classes if it falls into that region. In the SVM case, explicit probability values are not calculated and

so the decision boundaries actually represent distances from the hyperplanes which separate classification

regions. The darker the shading in the SVM case, the further away a point is from the hyperplanes16.

However, the intuition stays the same. Blue shading indicates the decision boundary for class 1, and red

for class 0. The darker the colour, the higher the probability.

In these illustrations, the models are fitted only once to one generation of each dataset, and so the

performance of the classifiers here cannot be compared to the performance of the classifiers in the ‘Results’

section; they are shown here purely for interest’s sake.

The figures are generated by an adaptation of Scikit-learn’s program ‘Classifier Comparison’ 17 [11].

B SAS logistic regression code and results

The SAS code in Listing 1 is used to perform logistic regression on exactly the same ‘Linearly separable’

dataset used in the test illustrated in Figure 23.

Figure 24 (generated using the same SAS program) uses a contour plot to show the probability of a

point being classified as belonging to class 0. The red shading indicates a probability closer to 1 and the

blue shading indicates a probability closer to 0. The red dots are actual class 0 points and the blue dots

are actual class 1 points. Only the training data is shown in this figure.

The model is then used to make predictions for the test data, and the resulting confusion matrix is

given in Figure 25. The MCC according to this confusion matrix can be calculated as
16

SVMs work by creating hyperplanes from training data such that the distance from each hyperplane to the nearest

set of training points belonging to different classes is maximised. Predictions are then made based on the classification

outcomes associated with the various areas enclosed by the hyperplanes.

17
http: // scikit-learn. org/ stable/ auto_ examples/ classification/ plot_ classifier_ comparison. html
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Figure 22: GP, SVM, RF and LR classification on 500 observations with classes equally represented

Figure 23: GP, SVM, RF and LR classification on 500 observations with a 5:95 class split
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190 · 6� 4 · 0p
(190 + 4)(190 + 0)(6 + 4)(6 + 0)

= 0.77,

which is exactly the same as in Figure 23. Therefore, as expected, the LR classification function in

Python and in SAS yield the same MCC result on the ’Linearly separable’ dataset.

Listing 1: SAS code for logistic regression on the ‘linearly separable’ dataset

f i l ename r e f f i l e ’/ f o l d e r s /myfo lders/ r e s ea r ch/ t e s t_data_f o r_sa s . csv ’ ;

proc import d a t a f i l e=r e f f i l e r ep l a c e dbms=csv out=t e s t_data ;

getnames=yes ;

run ;

f i l ename r e f f i l e ’/ f o l d e r s /myfo lders/ r e s ea r ch/ t r a i n_data_f o r_sa s . csv ’ ;

proc import d a t a f i l e=r e f f i l e r ep l a c e dbms=csv out=t r a i n_data ;

getnames=yes ;

run ;

proc l o g i s t i c data=t r a i n_data outmodel=the_model ;

model y=x1 x2 ;

e f f e c t p l o t contour (x=x1 y=x2 ) ;

run ;

proc l o g i s t i c inmodel=the_model ;

s c o r e data=t e s t_data out=r e s u l t s f i t s t a t ;

run ;

proc f r e q data=r e s u l t s ;

t ab l e f_y⇤ i_y / nocum noco l nopercent ;

run ;
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Figure 24: SAS LR classification probability contour plot on ‘Linearly separable’ dataset with 0.05
minority class proportion

Figure 25: Confusion matrix from SAS LR classification on ‘Linearly separable’ dataset with 0.05 minority
class using PROC FREQ
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Abstract

This is a report on repeated measures analysis of variance, using parametric and non-parametric

tests. Repeated measures designs are commonly used in longitudinal studies as opposed to comparing

independent groups. Two practical examples, comparing two groups, at three different time periods, will

be presented to show a repeated measures experiment as well as a discussion and calculation of effect

sizes.
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1 Introduction

When data is collected in an experiment, a choice can be made between two methods: an independent design

or a repeated measures design. In an independent design, also known as between-subjects or between-groups,

the independent (qualitative) variable is manipulated by means of different subjects, i.e. various subject

groups participate in each experimental condition. In a repeated measures design, also known as within-

subjects or within-groups, the independent (qualitative) variable is manipulated using the same participants

i.e. the same subject group takes part in each experimental condition. This report is focused on repeated

measures design experiments.

In experimental work, including agricultural trials, the accuracy was always increased by repetition and

this in turn suggested some form of reliability of results. Numerous layouts for repeated trials, some of which

did increase accuracy reasonably well, had been developed from good judgement. Some agronomists who were

statistically-minded, had been studying consistency trial data to learn the nature and size of the errors in field

trials. There was, however, an absence in articulate theory on the approximation of errors from the results,

except in the case of a comparison of only two conditions. Agronomists understood the size of the errors to

which the plots of the trials were subjected but the need for repetition was not always recognised. In 1919,

the Director of Rothamsted Experimental Station, Sir John Russell, decided to employ a mathematician.

He employed Sir Ronald Fisher, an English statistician and biologist, to assist at the Rothamsted Farm in

England. [2]

Sir Ronald Fisher directly encountered the problems faced by the other agricultural and biological research

employees. The necessity of thorough and suitable methods for estimating the errors became evident to him.

In 1922 Fisher first introduced analysis of variance in agricultural trials and it instantly cleared up the problem

of estimation of experimental error. The difference between Fisher’s experimental designs and existing designs

was that Fisher’s designs considered validity and efficiency. The first experiment was run at Rothamsted

Farm by Thomas Eden, a soil scientist. Repeated measures ANOVA was first used in agricultural trials and

now it is being used in a wide variety of fields including the medical field and the engineering field [2].

Repeated measures analysis of variance (ANOVA) is a technique used in statistics to analyse within-

subjects or repeated measures designs using parametric tests under certain assumptions. When these as-

sumptions are violated, a non-parametric test i.e. Friedman’s test should be used. A parametric test requires

the data to originate from one of the probability distributions, usually the normal distribution. For a re-

peated measures ANOVA to be valid, the assumptions are that the dependent variable is measured on an

interval scale and is normally distributed, as well as sphericity (this is the situation where there is equality
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of variances between all possible pairs of differences). Non-parametric tests are also called distribution-free

tests because fewer or no assumptions are made about the distribution of the type of data on which they can

be used. These tests work by ranking the data i.e. getting the lowest score and assigning a rank of 1 to it,

then getting the next highest score and assigning it a rank of 2, etc. The ranks are then analysed instead of

the actual measurements.

Repeated measures ANOVA, with only one group, is equivalent to a one-way ANOVA, with related obser-

vations instead of independent groups, and is an extension of the dependent samples t-test. The categorical

independent variable is the repeated measure factor i.e. within-subjects and the quantitative variable, on

which each subject is measured, is the dependent variable. Other factors, e.g. treatment vs. control, can also

be introduced. It is a test to identify any overall differences between related means. Repeated measures is a

cornerstone of scientific research as it proposes a less cumbersome way of assessing the effects of treatments

upon subjects [11]. This method lessens the effects of natural variation between individuals upon results and

requires less subjects and less resources.

The role of statistics is to uncover the variation in performance, then work out how much is systematic

and how much is unsystematic [4]. Field [4] explains that systematic variation is variation caused by the

experimenter having influenced all the subjects in one condition but not in another and unsystematic variation

is variation caused by unexplained factors that exist between the treatment levels (such as the time of day).

In an independent design, two things may cause the differences between two conditions: the experimental

manipulation done on the subjects and/or differences between characteristics of people in the various groups.

The differences between characteristics of people are likely to cause significant variation, both within and

between each condition.

In a repeated measures design, two things give rise to the differences between two conditions: the influence

of the treatment on the subjects and any other factor affecting the way in which a subject performs from

one time to the next. The influence of the experimental manipulation is likely to cause significant variation

whereas the latter factor’s influence should be insignificant.

Therefore, in a repeated measures design, the experimental manipulation effect is more likely to be evident

than in an independent design. This is because in a repeated measures design, the unsystematic variation

can only be caused by the differences in someone’s behaviour at different times. In independent designs,

there are differences in natural ability contributing to the unsystematic variation, thus this variation is likely

to be much greater each time than if the same subjects had been used. When considering the effect of the

experimental manipulation, there will always be other random variation caused by uncontrollable differences

between the conditions [4]. In a repeated measures design, this kind of variation is minimised so that the
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effect of the experiment is more likely to be brought to light. Thus, repeated measures designs have more

capacity to identify effects than independent designs, other things being equal [4].

In this essay, two practical examples will be presented to demonstrate the use of a repeated measures

experiment, using real life data from projects from the Department of Statistics’ Internal Statistical Con-

sultation Service. The first project is a repeated measures ANOVA with measurements taken over three

time periods. The second project is a repeated measures ANOVA with measurements taken over three time

periods for two different groups. The statistical software package to be used is SAS.

2 Background Theory

2.1 Model

Following [3] and [8], a response variable is determined for each of the n experimental units at each of the t

conditions or time points. Suppose that this is a continuous and normally distributed variable. The general

repeated measures ANOVA model is

yij = µij + πij + eij (1)

where

• yij is the response at condition or time j from ith subject for i = 1, . . . , n , j = 1, . . . , t,

• the mean µij (fixed effects since it has a constant value, regardless of the specific individual) for

randomly selected individuals from the same population as individual i at condition or time j,

• πij (random effects since it randomly changes over the population of individuals), the deviation of yij

from µij for the ith subject at condition or time j,

• eij (error terms) is the deviation from µij+ πij for individual i at condition or time j.

The response yij has mean µij+ πij under assumed recurrences from the same individual.

2.2 One-factor repeated measures ANOVA

For repeated measures obtained from one sample, the model can be written as

yij = µ+ πi + τj + eij (2)

for i = 1, . . . , n and j = 1, . . . , t where
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• yij is the response from the ith subject at condition or time j,

• the overall mean is µ,

• πi is the random effect for the ith subject which is the same over all condition or time occurrences,

• τj is the fixed effect of condition or time j,

• eij the random error element at condition or time j specific to the ith subject.

The random effects, πi, are independent and πi ∼ n(0, σ2
π), while the random errors eij are also independently

normally distributed with mean equal to zero and standard deviation equal to σe. The random effects and

errors are independent. It is also assumed that the fixed effects τj are constrained to add up to zero.

In relation to the parameters in the model in (1),

• µij = µ+ τj ,

• πij = πi i.e. it is constant across time.

The observations’ variances and the covariances are

• var(yij) = σ2
π + σ2

e ,

• cov(yij′yi′j) = 0 for i 6= i′,

• cov(yij , yij′) = σ2
π for j 6= j′.

The covariance matrix of the vector yi = (yi1, . . . , yit)
′ is therefore

∑
=


σ2
π + σ2

e σ2
π

. . .

σ2
π σ2

π + σ2
e

 = (σ2
π + σ2

e)


1 ρ

. . .

ρ 1

 (3)

where ρ =
σ2
π

σ2
π+σ

2
e

= Corr(yij , yij′).

The reasoning behind a repeated measures ANOVA is analogous to that of an independent ANOVA. For

independent ANOVA, total variation, which is the sum of squares of the deviations of all the observations

from their mean (SSTotal), is subdivided into variability between groups (SSB), and variability within groups

(SSW ). The variance within participants is the residual (error) variance (SSR) and results from individual

differences in performance. The experimental effect does not contaminate this variance, since whatever

manipulation has been carried out has been done on different people. Dividing these sums of squares by
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the suitable degrees of freedom yields a mean sum of squares for between groups (MSB) and within groups

(MSW ).

In a repeated measures ANOVA, the total variability SSTotal is also partitioned into conditions variability

SSC and within-groups variability SSW as shown in Figure 1. The experimental effect in a repeated mea-

sures ANOVA appears in the within-participant variance rather than in the between-group variance. When

manipulation is carried out on the same people, two things make up the within-participant variance: effect

of the manipulation and the individual differences in performance at the different conditions or time periods.

Therefore, some of the within-participant variation comes from the effects of the experimental manipulation.

Any variation that cannot be explained by the manipulation must be due to random factors, not linked to

the experimental manipulations, since the same manipulation is carried out on every participant within a

particular condition. Furthermore, each subject is treated as a block, in other words each subject becomes a

level of a factor called subjects. Therefore, the advantage of a repeated measures ANOVA is that it further

divides this variability within groups into subject variability (SSS) and error variability (SSR). The ability

to subtract SSS will lead to a reduced SSR i.e.

SSR = SSW − SSS .

Figure 1: Total Sum of Squares partition
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Table 1 is the ANOVA table for the repeated measures model.

Source Sum of Squares (SS) degrees of freedom (d.o.f) Mean Squares (MS)
Conditions(Time) SSC t− 1 MSC = SST

t−1
Subjects SSS n− 1 MSS = SSS

n−1
Residual SSR (n− 1)(t− 1) MSR = SSR

(n−1)(t−1)
Total SSTotal nt− 1

Table 1: One sample repeated measures ANOVA

The sum of squares (SS) in Table 1 are calculated using the observations yij , the overall mean

ȳ.. =

∑n
i=1

∑t
j=1 yij

nt
,

the means for each subject over time

ȳi. =

∑t
j=1 yij

t
,

and the means at each time point over all subjects

ȳ.j =

∑n
i=1 yij
n

.

The different sum of squares are defined as follows:

• SSC =
∑n
i=1

∑t
j=1(ȳ.j − ȳ..)2 = n

∑t
j=1(ȳ.j − ȳ..)2,

• SSS =
∑n
i=1

∑t
j=1(ȳi. − ȳ..)2 = t

∑n
i=1(ȳi. − ȳ..)2,

• SSR =
∑n
i=1

∑t
j=1(yij − ȳi. − ȳ.j + ȳ..)

2.

2.2.1 Repeated measures ANOVA hypothesis

The repeated measures ANOVA investigates if any differences exist between related population means. The

null hypothesis

H0 : µ1 = µ2 = . . . = µt (4)

where µ is the population mean and t the number of related groups, is tested against the alternative hypothesis

stating that at least one of the population means is different from the other. A repeated measures ANOVA

is an omnibus statistical test and therefore will not tell where the differences between groups lie. In other

words, it determines whether the explained variance in a data set is significantly larger than the unexplained

14



variance, overall. Should the repeated measures ANOVA be larger, then post hoc tests can be carried out to

show exactly where the differences arise [8].

2.2.2 F-statistic

As in independent ANOVA, an F -ratio that compares the variation size brought about by the experimental

manipulations to the variation size brought about by random factors is used. The only difference between

the F -ratio of the independent ANOVA and repeated measures ANOVA is how we calculate the variances.

It has been argued, in 1970 by [9], that two F -ratios can be used to gauge comparisons of treatment i.e. F ′

and F ′′. F ′ is the ratio obtained from the mean squares depending on the comparison being investigated

and the specific error term for the comparison of interest. F ′′ is obtained from the total mean squares for all

comparisons of repeated measures [4]. F ′ is usually used and is calculated as

F ′ =
MSC
MSR

. (5)

The reduction in the size of the residual variability due to the division of the within-participants variability

leads to an increase in the value of F ′ since

SSR =SSW − SSS .

Because the between participants’ variability has been removed, the new SSR reflects only individual variabil-

ity for each condition or time period. The power of the test to detect significant differences between means

is thus increased. This is the major advantage of running a repeated measures ANOVA. If the assumptions

of the model are met, then F ′ has a Ft−1,(n−1)(t−1) distribution if H0 is true. If the variance caused by the

experimental manipulations is large relative to the variation caused by random factors, then a large F -value

is obtained, and we can thus conclude that the observed results are unlikely to have occurred if there was no

effect in the sample [4].

2.3 Multiple factor repeated measures ANOVA

For repeated measures obtained from multiple samples, suppose that from s groups of subjects, measurements

are acquired at t time points [3] . Let nh represent the number of subjects in the hth group , and let

n =
∑s
h=1 nh. There are several possible models for this case, which all result in the same ANOVA table and
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the simplest is

yhij = µ+ γh + τj + (γτ)hj + πi(h) + ehij . (6)

In the model,

• yhij is the response at condition or time j from the ith subject in the hth group for h = 1, . . . , s,

i = 1, . . . , nh and j = 1, . . . , t,

• the overall mean is µ,

• γh is the fixed effect of the hth group and the fixed effects γh are constrained to add up to zero,

• τj is the fixed effect of condition or time period j and the fixed effects τj are constrained to add up to

zero,

• (γτ)hj is the fixed effect for the interaction of the jth time with the hth group and the fixed effects of

the interaction are constrained to add up to zero,

• πi(h) are random effects for the ith subject in the hth group,

• ehij are the random error terms.

According to [3], assume the random effects, πi(h), are independent and πi(h) ∼ N(0, σ2
π). The random errors

terms, ehij , are independent and normally distributed with mean zero and variance σ2
e . In relation to the

parameters in the model in (1),

• µij = µ+ γh + τj + (γτ)hj ,

• πij = πi(h),

• eij = ehij .

Table 2 is the multiple sample repeated measures ANOVA table.

Source Sum of Squares degrees of freedom Mean Squares
Group SSG s− 1 MSG = SSG

s−1
Subjects(Group) SSS(G) n− s MSS(G) =

SSS(G)

n−s
Time SST t− 1 MST = SST

t−1
Group×Time SSGT (s− 1)(t− 1) MSGT = SSGT

(s−1)(t−1)
Residual SSR (n− s)(t− 1) MSR = SSR

(n−s)(t−1)
Total SSTotal nt− 1

Table 2: Multiple sample repeated measures ANOVA
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The following decomposition of the deviations of each observation about the overall mean is the basis of

the sums of squares:

yhij − ȳ... = (ȳh.. − ȳ...) + (ȳhi. − ȳh..) + (ȳ..j − ȳ...) + (ȳh.j − ȳh.. − ȳ..j + ȳ...) + (ȳhij − ȳh.j − ȳhi. + ȳh..), (7)

where the overall mean is

ȳ... =

∑s
h=1

∑nh
i=1

∑t
j=1 yhij

nt
,

the mean for the hth group is

ȳh.. =

∑nh
i=1

∑t
j=1 yhij

nht
,

the mean at time j is

ȳ..j =

∑s
h=1

∑nh
i=1 yhij
n

,

the mean for the hth group at time j is

ȳh.j =

∑nh
i=1 yhij
nh

,

and the mean for the ith subject in the hth group is

ȳhi. =

∑t
j=1 yhij

t
.

The sums of squares are then defined as:

• SSG =

s∑
h=1

nh∑
i=1

t∑
j=1

(ȳh.. − ȳ...)2 = t

s∑
h=1

nh(ȳh.. − ȳ..)2,

• SSS(G) =

s∑
h=1

nh∑
i=1

t∑
j=1

(ȳhi. − ȳh..)2 = t

s∑
h=1

nh∑
i=1

(ȳhi. − ȳh..)2,

• SST =

s∑
h=1

nh∑
i=1

t∑
j=1

(ȳ..j − ȳ...)2 = n

t∑
j=1

(ȳ..j − ȳ...)2,

• SSGT =

s∑
h=1

nh∑
i=1

t∑
j=1

(ȳh.j − ȳh.. − ȳ..j + ȳ...)
2,

• SSR =

s∑
h=1

nh∑
i=1

t∑
j=1

(yhij − ȳh.j − ȳhi. + ȳh..)
2.
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2.3.1 F-statistic

When testing for variation among groups, the F -statistic is

F =
MSG
MSS(G)

. (8)

The assumption that there is equality in the within-group covariance matrices is required. Generally, this

is a requirement for all tests of between-subjects effects. When testing for variation among time points, the

F -statistic is

F =
MST
MSR

. (9)

Similarly, when testing for the significance of the interaction of group×time , the F -statistic is

F =
MSGT
MSR

. (10)

The assumption of equality in the within-group covariance matrices is required for both tests, and that the

condition of sphericity is met. Generally, this is a requirement for all tests of within-subjects effects [3].

Another repeated measures model for this case includes an extra random effect for the subject×time

interaction. The assumption is that this effect is uncorrelated with the random subject effect. The sum of

squares and test statistics are identical though the expected mean squares for this model are different from

those displayed in Table 2.

2.4 Sphericity condition

For a repeated measures ANOVA, the sphericity assumption, also referred to as circularity, is analogous to

the homogeneity of variance assumption in between-groups ANOVA i.e. it is assumed that the variation

within treatment levels is reasonably alike and no two conditions are any more dependent than the others.

To determine sphericity, the differences between pairs of scores is calculated in all combinations of the

experimental conditions, then the differences of these variances are calculated. If the variances are equal or

nearly equal, then the sphericity condition is satisfied.

Mauchly’s test, which tests the null hypothesis that there is equality of variances of the differences between

conditions, can be obtained in SAS, as well as in most other statistical packages [3]. If the test statistic is

significant, then the conclusion is that the differences between the variances of differences are significant and

so there is reason to be suspicious of the F -ratios. However, in the case of small samples, Mauchly’s test has

a low power [3]. It has been proved to be susceptible to deviations from normality and outliers [3].
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The condition for compound symmetry is sufficient for F ′, but it is unnecessary. It is a special case

of sphericity, a more general case, under which the F -test is valid [3]. The F -statistic has an approximate

Fε(t−1),ε(t−1)(n−1) distribution when the sphericity condition is not met, where ε is a function of the covariance

matrix. If the sphericity assumption is violated, several corrections on the F -ratio can be carried out. One of

the corrections is adjusting the degrees of freedom of the F -statistic by means of the lower bound for ε. When

ε = 1
t−1 , then the Fε(t−1),ε(t−1)(n−1) distribution becomes the F1,(n−1) distribution. However, this correction

is too conservative [3]. There are two other corrections which are commonly used, namely the Greenhouse-

Geisser correction and the Huynh-Feldt correction. These two estimates produce a correction factor that is

related to the degrees of freedom which are used to evaluate the observed F -ratio. The Greenhouse-Geisser

correction, ε̂, alters between 1
t−1 (where t is the number of time periods or conditions) and 1. As ε̂ gets

closer to 1, the variances of differences become more homogeneous and hence the closer the data are to

being spherical. Huynh-Feldt reported that when the Greenhouse-Geisser estimate is larger than 0.75 and

n < 2t, too many false null hypotheses fail to be rejected [4]. Therefore, Huynh and Feldt suggested a less

conservative correction

ε̃ = min

(
n(t− 1)ε̂− 2

(t− 1)(n− 1− (t− 1)ε̂)

)
. (11)

ε̃ is derived from the unbiased estimators of ε and has less bias than ε̂. It can be proved that ε̃ ≥ ε̂ [3]. The

estimate ε̂ works better for ε ≤ 0.5 and ε̃ works better when ε ≥ 0.75. ε is unknown in practice. However,

[7] reported that the Huynh-Feldt estimate overestimates sphericity. Therefore, [10] proposed adjusting the

degrees of freedom of the two estimates by average of the two. Girden [5] suggested that ε̃ should be used

when the estimates of sphericity are greater than 0.75, and ε̂ should be used when sphericity estimates are

less than 0.75 or there is completely no knowledge about sphericity. Greenhouse and Geisser proposed the

following method be used for repeated measures ANOVA.

1. Assume that the repeated measures ANOVA assumptions are met and perform the univariate F -test.

2. Do not reject H0 if the test is not significant.

3. Perform the conservative test using ε = 1
t−1 , if the test is significant. This will lead to the F -distribution

with 1 and n− 1 degrees of freedom.

• Reject the H0 if the conservative test is significant,

• Then estimate ε and conduct an approximate test if the conservative test is not significant.

Another alternative option when the data violates the sphericity condition is the use of multivariate analysis

of variance (MANOVA) test statistics, since they do not depend on the sphericity assumption. These multi-
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variate test statistics can be produced automatically by the repeated measures procedures in many statistical

packages [3].

2.5 Non-parametric test: Friedman’s test

When there is only one independent variable and the normality assumption is violated or when measurements

are made on an ordinal scale, a non-parametric test such as Friedman’s ANOVA should be used, which is

based on ranks. For factorial repeated measures designs, there is no non-parametric alternative test to use.

When there are more than two conditions or time periods and the same subjects are used in all conditions,

Friedman’s ANOVA is used to test for differences between these conditions. If some assumption of the

parametric tests have been violated, then Friedman’s ANOVA can be a useful way around the problem. The

ranks are analysed instead of the actual measurements. Once all the data has be ranked, the total of the

ranks is computed for each condition. Ri represents the total of the ranks, where i represents the specific

condition or time period. When the sum of ranks for each condition or time period has been determined,

then the statistic, Fr, is computed as

Fr = [
12

nt(t+ 1)

t∑
i=1

R2
i ]− 3n(t+ 1) (12)

where

• Ri is the total of the ranks for each condition or time period,

• n is the sample size,

• t is the number of time periods or conditions.

When the number of subjects tested is relatively large, i.e. bigger than ten, this test statistic has a χ2

distribution with t− 1 degrees of freedom [11].

2.6 Effect size

In a repeated measures ANOVA, as in most statistical tests, there is a need to measure the effect size, i.e.

the magnitude or size of a treatment. According to [1], investigators should be encouraged to determine,

produce and report effect size statistics regularly in an empirical report. Many effect size statistics have been

established for repeated measures ANOVA. These include omega squared (ω2), eta squared (η2), partial eta

squared (η2P ) and generalized eta squared (η2G). The statistic commonly used in the ANOVA literature is η2,
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which is the ratio of the conditions variation to total variation. Therefore,

η2 =
SSC

SSTotal
. (13)

The statistic η2 is adequate with a one-way ANOVA, but when there is more than one source of variation

in an ANOVA, it may become problematic. Usually η2P is given as a solution to this problem. In factorial

designs, η2P takes away some of the factorial effects from the denominator. With a simple A × B factorial

design, the total variation SSTotal is divided into four elements: SSA, SSB , SSAB and the error term SSR.

Thus

η2P =
SSC

SSC + SSR
(14)

where SSC denotes the conditions i.e. either SSA, SSB , or SSAB .[1]

For a repeated measures design which only has one within-subjects variable and no between-subjects

variables, the total variability is divided into three elements: SSS (the subjects variation), SSP and SSPs.

SSS shows the portion of total variation that can be explained by knowledge of the specific subject. This

fraction will be greater if the repeated scores correlate more within subjects. Each of the subjects signify a

level of the factor. The error term will be smaller if scores correlate more within subjects. This is where the

reputation for increased power of repeated measures designs emanates from. η2P will generally be larger than

η2 since the subject effect would be eliminated from the denominator of η2P . [1]

The difference between η2G and, η2P and η2 is in the denominator. η2 includes all component sum of

squares while η2G and η2P include only some of them, although η2G includes more than η2P . η2G assumes a

traditional univariate ANOVA method, and not multivariate or multilevel methods to designs which involve

repeated measures. η2G is estimated as

η2G =
SSC

δ × SSC +
∑

measured

SSmeasured
(15)

where SSmeasured is the sum of squares due to individual differences.

The statistic η2 and other measures are usually omnibus tests which are regarded as not specific enough

to address the real concerns of researchers [1]. Bakeman [1] suggests that the generalized eta squared (η2G)

is a generally more useful statistic for effect sizes as it allows comparability across between-subjects and

within-subjects designs. He also argues that it can easily be determined from information given by standard

statistical packages.

Field [4] suggests that the best measure for effect sizes for repeated measures design is omega squared
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(ω2) which is similar to the independent ANOVA. However, the equations for an independent design cannot

be used with repeated measures data. The effect size will be slightly overestimated if the same equations are

used on repeated measures data. The equation for omega squared for repeated measures ANOVA is

ω2 =
[ t−1nt (MSS −MSR)]

MSR + MSC−MSR
t + [ t−1nt (MSS −MSR)]

(16)

where

• t is the number of conditions in the experiment,

• n is the number of participants,

• MSR is the mean square for residuals.

3 Applications

3.1 Single and multiple factor repeated measures ANOVA: SANDF data

3.1.1 Problem Statement

The number of female soldiers participating in the armed forces worldwide has increased dramatically. Ap-

proximately 10% to 20% of most armed forces around the world are made up by women. In the South African

military, women’s roles have evolved from the 1970s, when women could volunteer to serve in support func-

tions of the South African military, to allowing women access to the full spectrum of career opportunities,

including combat mustering. Women are more representative than men in the medical mustering of the South

African National Defence Force (SANDF), as well as in the armour corps, artillery, infantry, combat navy,

and as aircrew. A sharp increase in the number of women attending training and management courses at the

SANDF’s training institutions has been reported. Additionally, approximately 10% of the SANDF personnel

deployed in peacekeeping operations are women, the highest percentage of women armed forces of all the

African countries that contribute peacekeeping troops.

Many militaries still believe that women may compromise combat effectiveness based on physiological

and psychological grounds and so they still do not allow them in direct frontline combat. In most militaries,

including the SANDF, women are held to lower physical standards than men, meaning they must complete

fewer exercise sets and are allowed longer run times during fitness tests. The physical limitations imposed

by the female soldiers’ lower muscle mass, higher percentage fat, lower aerobic and anaerobic capacity, and

higher incidence of training injuries have been used to justify this practice. [12]
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However, the argument still stands that if men and women are subject to the same absolute workloads,

it may not be reasonable to lower one group’s fitness standard. To aid in the integration of women into the

SANDF, gender-mixed training has been adopted. Gender-integrated training has also been implemented

by other militaries and supported by some. This in despite of growing evidence that mixed basic military

training (BMT) is a greater risk factor for overuse injury in women. Considering a large amount of human

and financial capital being invested into integrating women into militaries around the world, the purpose of

this study was to determine gender differences before, during (12 weeks) and after a 20-week mixed BMT

course and to determine if the course assisted in significantly reducing these differences. [12]

3.1.2 Study design

A total of 191 soldiers (115 male: mean age = 21.0 ± 1.1 year; 76 female: mean age = 20.5 ± 1.2 year)

completed the BMT course and all anthropometric, physical fitness, explosive power, and hand grip strength

measurements were taken. In this report only physical fitness was evaluated using the score of the standardised

SANDF_PT test. The test comprised of five components namely a 2.4km run(time), maximum number of

sit ups and push ups completed in 2 minutes, a shuttle run test and a 4km walk(time). Repeated measures

analysis of variance was used to model BMT data with main effects for gender comparison between males

and females, and time repeated measures effect for evaluation of differences between weeks 1, 12, and 20 of

BMT, as well as an interaction effect for differences in changes over time for males and females.

The physical fitness measurements were taken at baseline (week 1=W1PT), after week 12 (W12PT) and

after week 20 (W20PT). Alpha was set at α ≤0.05.

3.1.3 Results over the three time periods

Table 3 illustrates the descriptive statistics for the SANDF-PT test across the three time periods.

n=191 Week 1 Week 12 Week 20
Mean 54.005 84.346 83.718
Median 56.900 85.700 85.300

Standard deviation 17.260 8.505 10.582

Table 3: Descriptive statistics for SANDF-PT

Females(76) Males(115)
Week 1 Week 12 Week 20 Week 1 Week 12 Week 20

Mean 45.562 81.989 81.459 59.584 85.903 85.201
Median 44.900 84.000 83.550 61.100 86.400 86.300

Standard deviation 17.606 10.410 11.501 14.617 6.567 9.693

Table 4: Descriptive statistics for males and females
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Table 4 shows the descriptive statistics for the SANDF-PT test by gender

Friedman test

From the SAS output, it follows that the data violate the assumption of normality since all the normality test

statistics were significant (less than 0.05). This led to the use of the non-parametric test mentioned in Section

2.5. Friedman’s test was obtained in SAS using the PROC FREQ procedure. The PROC FREQ procedure

produces the test statistic for the Cochran-Mantel-Haenszel test. This is equivalent to the χ2 statistic from

the Friedman’s test which is used to evaluate the null hypothesis that there are no differences with respect

to SANDF-PT across the three time periods. The row lablelled RowMeansScoresDiffer is the important

row and the column labelled χ2 value gives the value equivalent to Friedman’s test statistic which is 270.105

with 2 degrees of freedom (cf. Fig. 11). This leads to the rejection of H0 at the 5% level of significance

(p<0.0001). We therefore conclude that there was a significant difference between the SANDF-PT levels.

Since the result is significant, it is necessary to investigate further which time periods differ from each

other by performing post hoc analyses. The mean ranks are shown in Table 5 (cf. Appendix Fig 11).

Variable Number of observations Mean
time1 (W1PT) 191 115.450
time2 (W12PT) 191 374.770
time3 (W20PT) 191 370.780

Table 5: Mean ranks of Friedman’s test

There are several ways to perform multiple non-parametric post hoc tests. We decided to use Wilcoxon

signed rank tests and correcting for the number of tests done. One way to correct for the number of tests

performed is using the Bonferroni correction where the significance level is adjusted by dividing by the number

of tests. So instead of using 0.05 to compare the p-values, 0.05/3=0.0167 was used as the level of significance.

median t-statistic p-value
W1PT-W12PT -29.400 -28.243 <0.0001
W1PT-W20PT -28.600 -27.164 <0.0001
W12PT-W20PT 0.300 0.893 0.379

Table 6: Post hoc tests

Table 6 shows the results from the Wilcoxon sign-rank test. The null hypothesis being tested is that the

difference score between two time points is zero. There is a significant difference between measurements taken

at baseline and week 12 since the p-value<0.0001 which is less than the adjusted level of significance 0.0167
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(Bonferroni correction). Therefore the null hypothesis is rejected. The measurements taken at baseline and

week 20 are also significantly different and so the null hypothesis is rejected. The measurements taken during

week 12 and after week 20 are not significantly different since p-value=0.379. This means that the study

done over 20 weeks would be similar to that done over 12 weeks and so it could have been shortened.

Repeated measures ANOVA

Since the data set is large, it can be argued that the central limit theorem can be used which states that

the means follow an approximate normal distribution, even though the data used violate the assumption of

normality. In Section 2.4, it was mentioned that SAS produces Mauchly’s test which checks for the violation

of the assumption of sphericity. This test should not be significant for the sphericity assumption to hold.

Table 7 displays the results for Mauchly’s test for the SANDF-PT test (cf. Appendix Fig. 13).

Variables d.o.f Mauchly’s Criterion Value p-value
Orthogonal Components 2 0.739 57.114 <0.0001

Table 7: Sphericity test

The p-value for this data is less than 0.0001, which is less than the level of significance of 0.05. Therefore,

the assumption that the variances of the differences between levels are equal is rejected i.e. the sphericity

assumption has been violated.

It was also mentioned in Section 2.4 that SAS produces two corrections based on the estimates of sphericity

supported by Greenhouse and Geisser, and Huynh and Feldt. If the Greenhouse-Geisser correction is closer

to 1, the more homogenous the variances of difference and hence the more spherical the data becomes. Table

8 on the next page shows the estimates for the corrections. Since the Greenhouse-Geisser estimate is 0.813

and is close to 1, it can be assumed that the variances of differences are homogenous. Therefore the data is

close to being spherical.

Correction Estimate
Greenhouse-Geisser 0.813

Huynh-Feldt 0.819
Lower Bound 0.500

Table 8: Sphericity Corrections

The results of the ANOVA for the within-subjects are given in Table 9 (cf. Appendix Fig. 13). There

is a sum of squares (SST ) for the repeated-measures effect of time which tells us how much of the total

variation is explained by the effect of the experiment. There is a residual term (SSR), which is the amount

of unexplained variation across the conditions of the repeated measures variable, which is time in this case.
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Source d.o.f SS MS F -value p-value adj p-value adj p-value
Greenhouse-Geisser Huynh-Feldt

Time 2 114842.757 57421.378 634.12 <0.0001 <0.0001 <0.0001
Residual(time) 380 34410.255 90.553

Table 9: Repeated measures ANOVA for within-subjects

The degrees of freedom for the effect of time is 2 i.e. (t− 1), where t is the number of repeated measures

effects, and the degrees of freedom for the residuals is 380 i.e. ((n − 1)(t − 1)) where n is the number of

participants. The F -ratio is determined by dividing the mean squares for the experimental effect (SSTt−1 ) by

the mean squares of error ( SSR
(n−1)(t−1) ). SAS gives the exact significance level for the F -ratio. Since the

p-value is less than 0.0001 which is less than 0.05, the F -ratio is significant. Therefore, the null hypothesis

that there are no differences with respect to SANDF-PT across the three time periods is rejected and the

conclusion is that there is a significant difference between the times.

Since initially, before the sphericity corrections, the assumption of sphericity had been violated, the

F -ratio may be inaccurate. SAS produces adjusted p-values for the Greenhouse-Geisser and Huynh-Feldt

corrections as illustrated in Table 9 above. They both show that the F -ratios for the corrections are significant.

Therefore, the conclusion remains the same.

In Section 2.4 it was mentioned that another option to use when there is violation of sphericity is the

multivariate analysis of variance (MANOVA) test statistics as they do not depend on the data being spher-

ical. The column displaying the significance values (p-values) in Table 10 on the next page shows that the

multivariate tests are significant since the p-values are less than 0.0001 (all < 0.05). Therefore, it supports

the conclusion that there are significant differences between the three different periods.

Effect Statistic Value F -value Hypothesis d.o.f Residual d.o.f p-value
Wilks’ Lambda 0.181 427.910 2 189 <0.0001

time Pillai’s Trace 0.819 427.910 2 189 <0.0001
Hotelling-Lawley Trace 4.528 427.910 2 189 <0.0001
Roy’s Greatest Root 4.528 427.910 2 189 <0.0001

Table 10: MANOVA statistics

The post hoc comparisons of the the three different time levels are shown in Table 11.
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Source time(level) SS d.o.f MS F -value p-value
1 vs 2 175 828.189 1 175828.189 797.680 <0.0001

time 1 vs 3 168 624.751 1 168624.751 737.900 <0.0001
2 vs 3 75.330 1 75.330 0.800 0.3728
1 vs 2 41880.881 190 41880.881

residual 1 vs 3 43418.571 190 43418.571
2 vs 3 17931.313 190 17931.313

Table 11: Contrasts for the three different time periods

The first contrast is the comparison of the baseline measurement, time 1 and measurements taken after

12 weeks, time 2. The F -statistic is significant (p-value<0.0001) which means that time 1 and time 2 differ

significantly. The second contrast is the comparison of time 1 and time 3, measurements taken after 20

weeks. The F -statistic is significant (p-value<0.0001), indicating a significant difference in the baseline and

time 3 values. The third contrast is the comparison of time 2 and time 3. The F -statistic is not significant

(p-value<0.0001) i.e. there are no significant differences between the values of time 2 and time 3.

3.1.4 Effect sizes

The effect size that is going to be calculated is ω2.

ω2 =
[ t−1nt (MSS −MSR)]

MSR + MSC−MSR
t + [ t−1nt (MSS −MSR)]

=
[ 3−1
191×3 (57421.378− 90.553)]

90.553 + 301.124−90.553
3 + [ 3−1

191×3 (57421.378− 90.553)]

= 0.5545

The difference between the three time periods had a medium effect since 0 ≤ ω2 ≤ 1.

3.1.5 Repeated measures ANOVA taking gender into account

d.o.f Mauchly’s Criterion χ2-value p-value
Orthogonal component 2 0.818 37.816 <0.0001

Table 12: Sphericity test

Table 12 shows that Mauchly’s test is significant (p-value<0.0001). Therefore, the assumption that the

variances of the differences between levels are equal is rejected i.e. the sphericity assumption has been

violated.

The two corrections based on the estimates of sphericity advocated by Greenhouse and Geisser, and

Huynh and Feldt are used again. Table 13 shows the estimates for the corrections. Since the Greenhouse-
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Geisser estimate is 0.846 and is close to 1, it can be assumed that the variances of differences are homogenous.

Therefore the data is close to being spherical.

Correction Estimate
Greenhouse-Geisser 0.846

Huynh-Feldt 0.853

Table 13: Sphericity corrections

Table 22 shows that the F -statistic for gender is significant (p-value<0.0001). The null hypothesis that

there are no differences between males and females is rejected and so we conclude that that there is a

significant difference between the males and females.

Source d.o.f SS MS F -value p-value
W1SEX(gender) 1 7174.253 7174.253 27.100 <0.0001

Residual 189 50039.245 264.758

Table 14: Repeated measures ANOVA for between-subjects

The results of the ANOVA for the within-subjects is illustrated in Table 15. In this table, there is an extra

term, an interaction term, which is variation caused by the interaction between time and gender (SSGT ).

Source d.o.f SS MS F -value p-value adj p-value adj p-value
Greenhouse-Giesser Huynh-Feldt

time 2 117808.452 58904.226 712.690 <0.0001 <0.0001 <0.0001
time×W1SEX 2 3168.228 1584.114 19.170 <0.0001 <0.0001 <0.0001
residual(time) 378 31242.027 82.6509

Table 15: Repeated measures ANOVA for within-subjects

The degrees of freedom for the effect of time is 2 i.e. (t− 1), where t is the number of repeated measures

effects, the degrees of freedom for the interaction is 2 i.e. ((s−1)(t−1)) where s is the number of groups and

the degrees of freedom for the residuals is 380 i.e. ((n−1)(t−1)) where n is the number of participants. Since

the p-values for time and the interaction between time and gender are less than 0.0001, then the F -ratios are

significant. Therefore, the conclusion is that there is a significant difference between the times and there is

a significant difference in the interactions.

The adjusted p-values for the Greenhouse-Geisser and Huynh-Feldt corrections as illustrated in Table 15

on the previous page show that the F -ratios for the corrections are significant. Therefore, the conclusion

remains the same.

The MANOVA results displayed in Table 16 below confirm the conclusion that there are significant

differences between the times and there are significant differences between the interactions.
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Effect Statistic Value F -value Hypothesis d.o.f Residual d.o.f p-value
Wilks’ Lambda 0.159 498.480 2 188 <0.0001

time Pillai’s Trace 0.841 498.480 2 188 <0.0001
Hotelling-Lawley Trace 5.303 498.480 2 188 <0.0001
Roy’s Greatest Root 5.303 498.480 2 188 <0.0001

Wilks’ Lambda 0.876 13.370 2 188 <0.0001
time×W1SEX Pillai’s Trace 0.124 13.370 2 188 <0.0001

Hotelling-Lawley Trace 0.142 13.370 2 188 <0.0001
Roy’s Greatest Root 0.142 13.370 2 188 <0.0001

Table 16: MANOVA statistics

The comparisons of the the three different time levels as well as that for gender are shown in Table 17.

Source time(level) SS d.o.f MS F -value p-value
1 vs 2 180155.974 1 180155.974 915.200 <0.0001

time 1 vs 2 173200.928 1 173200.928 23.760 <0.0001
2 vs 3 68.454 1 68.454 0.720 0.397
1 vs 2 4676.558 1 4676.558 848.240 <0.0001

W1SEX(gender) 1 vs 3 4826.980 1 4826.980 23.640 <0.0001
2 vs 3 1.190 1 1.190 0.100 0.911
1 vs 2 37204.324 189 196.848

residual 1 vs 3 38591.633 189 204.186
2 vs 3 17930.000 189 94.868

Table 17: Contrasts for the three different time periods with gender taken into account

The value of F -statistic for the comparison between week 1 and week 12 is significant showing that there is

a significant difference between the values of week 1 and week 12. The value of F -statistic for the comparison

between week 1 and week 20 is significant showing that there is a significant difference between the values

of week 1 and week 20. The value of F -statistic for the comparison between week 12 and week 20 is not

significant (p-value=0.397) meaning that there is no significant difference between the values of week 12 and

week 20.

The comparisons that follow have the gender incorporated. The value of the F -statistic for the comparison

between week 1 and week 12 is significant showing that there is a significant difference between the values of

week 1 and week 12. The value of theF -statistic for the comparison between week 1 and week 20 is significant

showing that there is a significant difference between the values of week 1 and week 20. The value of the

F -statistic for the comparison between week 12 and week 20 is not significant (p-value=0.911) indicating

that there is no significant difference between the values of week 12 and week 20.
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3.2 Multiple factor repeated measures ANOVA: cricketers

3.2.1 Problem Statement

To maximise performance in competitive sport, full recovery is important for athletes. Those who recover

more rapidly and more efficiently are able to train harder and more intensely. Without proper recovery after

training sessions or competitions, athletes are prone to risk of poorer performance and overuse injury. Studies

have shown that there is an improvement in heart rate and blood pressure responses of athletes observed with

the application of lower negative body pressure (LNBP) after 15 days of bed rest. Athletes often experience

symptoms of discomfort, muscular soreness and stiffness within 12 − 24 hours following excessive training.

Imitating sports massages by stimulating the circulatory system and lymphatic vessels, LBNP is claimed to

play an important role in the recovery of the athlete in order to maximise athletic performance in competitive

sport. Different athletes have different endurance capacities, with vastly trained athletes performing at the

most oxygen uptake presenting with least lactate accumulation. During exercise of increasing intensity, an

increase in blood lactate concentration indicates a rise in glycogen metabolism within the muscle. However,

the initial rise in the concentration of the lactate in the blood shows the net result of the production of lactate

in the muscle and shows that the rate at which lactate in the blood appears is higher than the rate at which

it disappears. This is the lactate threshold and is considered to be a good predictor of endurance exercise

performance. [6]

3.2.2 Study design

A randomised cross-over study design with repeated measures was done to determine the effect LBNP treat-

ment has on the recovery of cricketers. Twenty-two healthy male cricket players, aged 19.5± 0.09 years,

weighing 79.63±8.17 kg with a height of 180±0.07 cm were invited to participate voluntarily. These crick-

eters are based at the TUKS Cricket Academy, at the High Performance Centre (HPC) of the University of

Pretoria. The cricketers were randomly assigned to two groups with eleven volunteers each and evaluated.

After the second week, the cricketers were crossed over and the study repeated over the following two weeks.

Each player took part in the cross-over design during the four-week study period: once in the treatment

group i.e. receiving LBNP treatment and once in the control group i.e. not receiving LBNP treatment.

Participants were instructed to refrain from drinking alcohol and consuming caffeine products 24 hours prior

to each study session. The two applications were separated by a washout period of 14 days. The cricketers

continued to follow their regular training program consisting of 7 hours conditioning and 10 hours cricket

specific skills with one competitive match on weekends throughout the study period. A small blood sample
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of 0.3 µl was collected by means of lancet prick of the earlobe to determine the blood lactate concentration

(mmol/l) of all athletes. Lactate was sampled at rest on day 1 (Lactate 1), immediately after the 1 hr exercise

session (Lactate 2) and directly after the first 30 minutes LBNP treatment session (Lactate 3).

3.2.3 Results

The descriptive statistics of the three measurements for the two groups are presented in tables 18 and 19.

Lactate 1 Lactate 2 Lactate 3
Mean 0.973 2.177 1.064
Median 0.950 1.900 1.000

Standard Deviation 0.249 1.107 0.192

Table 18: Control group descriptive statistics

Lactate 1 Lactate 2 Lactate 3
Mean 0.973 2.218 1.519
Median 0.900 2.050 1.600

Standard Deviation 0.249 1.020 0.437

Table 19: Treatment group descriptive statistics

Table 20 displays results of the sphericity test for the cricketers. The data used violates the assumption of

normality. Nonetheless, it was decided to proceed with the analyses since there is no non-parametric method

available to compare the two groups in this repeated measures experiment.

Variables d.o.f Mauchly’s criterion Chi-square p-value
Orthogonal components 2 0.446 33.077 <0.0001

Table 20: Sphericty test

Mauchly’s test is significant (p-value<0.0001) as shown in table 20. Therefore, the assumption that

the variances of the differences between levels are equal is rejected i.e. the sphericity assumption has been

violated. Table 21 displays the options for sphericity corrections and their estimates. Since the Greenhouse-

Geisser estimate is 0.644 and is close to 1, it can be assumed that the variances of differences are homogenous.

Therefore the data is close to being spherical.

Correction Estimate
Greenhouse-Geisser (ε̂) 0.644

Huynh-Feldt (ε̃) 0.655
Lower bound 0.500

Table 21: Sphericity Corrections
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Table 22 below shows that the F -statistic for gender is significant (p-value<0.0001). The null hypothesis

that there are no differences between the control and treatment groups is rejected and so we conclude that

that there is a significant difference between the two groups.

Source d.o.f SS MS F -value p-value
Group 1 0.669 0.669 1.190 0.282
Residual 42 23.693 0.564

Table 22: Repeated measures ANOVA for between-subjects

Table 23 displays results of the repeated measures ANOVA tests of the hypotheses for within-subject

effects. There is a sum of squares for the repeated-measures effect of lactate which tells us how much of the

total variability is explained by the experimental effect. There is also an interaction term, which is variation

caused by the interaction between lactate and group. There is also a residual term, which is the amount of

unexplained variation across the conditions of the repeated measures variable, which is lactate in this case.

Source d.o.f SS MS F -value p-value adj p-value adj p-value
Greenhouse-Geisser Huynh-Feldt

lactate 2 36.177 18.089 45.640 <0.0001 <0.0001 <0.0001
lactate×group 2 0.991 0.496 1.250 0.292 0.280 0.281

residual 84 33.292 0.396

Table 23: Repeated measures ANOVA for within-subjects

Since the p-value for lactate is less than 0.0001 which is less than 0.05, then the F -ratio is significant.

Therefore, the conclusion is that there was a significant difference between the times. For the interactions,

the F -statistic is not significant (p-value=0.292). This means that there was no significant difference between

the interactions. But since the data is not spherical and violates the assumption of normality, the F ratios

may be inaccurate.

Table 24displays the contrasts between the different levels of the lactate.

Source (lactate level) SS d.o.f MS F -value p-value
1 vs 2 66.028 1 66.028 57.150 <0.0001

lactate 1 vs 3 3.551 1 3.551 17.032 <0.0001
2 vs 3 38.954 1 38.954 38.411 <0.0001
1 vs 2 0.018 1 0.018 0.016 0.900

lactate×group 1 vs 3 1.642 1 1.642 7.876 0.008
2 vs 3 1.313 1 1.313 1.294 0.262
1 vs 2 48.524 42 1.155

residual 1 vs 3 8.757 42 0.208
2 vs 3 42.594 42 1.014

Table 24: Contrasts for the different levels of lactate

The value of F -statistic for the comparison between lactate1 and lactate2 is significant. This shows that
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there is a significant difference between the values of lactate1 and lactate2. The value of F -statistic for the

comparison between lactate1 and lactate3 is significant showing that there is a significant difference between

the values of lactate1 and lactate3. The value of F -statistic for the comparison between lactate2 and lactate3

is significant showing that there is a significant difference between the values of lactate2 and lactate3.

The comparisons that follow have the control group and treatment group incorporated. The value of

the F -statistic for the comparison between lactate1 and lactate2 is not significant indicating that there

is no significant difference between the values of lactate1 and lactate2. The value of theF -statistic for the

comparison between lactate1 and lactate3 is significant indicating that there is a significant difference between

the values of lactate1 and lactate3. The value of the F -statistic for the comparison between lactate2 and

lactate3 is not significant indicating that there is no significant difference between the values of lactate2 and

lactate3.

The MANOVA results displayed in Table 25 confirm the conclusion that there are significant differences

between the time periods and bu does not support the conclusion there are no significant differences between

the interactions.

Effect Statistic Value F -value Hypothesis d.o.f Residual d.o.f p-value
Wilks’ Lambda 0.414 29.04 2 41 <0.0001

lactate Pillai’s Trace 0.586 29.04 2 41 <0.0001
Hotelling-Lawley Trace 1.417 29.04 2 41 <0.0001
Roy’s Greatest Root 1.417 29.04 2 41 <0.0001

Wilks’ Lambda 0.828 4.27 2 41 0.0207
lactate×group Pillai’s Trace 0.172 4.27 2 41 0.0207

Hotelling-Lawley Trace 0.208 4.27 2 41 0.0207
Roy’s Greatest Root 0.208 4.27 2 41 0.0207

Table 25: MANOVA statistics

4 Conclusion

The data that is used in practice often violates the assumption of normality and/or other assumptions for a

parametric test. The SANDF data that was used in the first application of this report violated the normality

assumption. This led to the use of the non-parametric test, Friedman’s test. Since the data set was large,

the central limit theorem was used to approximate the normal distribution. Repeated measures ANOVA

was then used. Comparing the two methods, we found that the same results were obtained. This means

that repeated measures ANOVA is robust to the normality assumption hence it is a better option to use as

compared to an independent ANOVA since it requires data to be normal.

Since repeated measures ANOVA is robust, we could the proceed to investigate if there were gender
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differences. We found that the males differ significantly from the females meaning that physical abilities in

the military are affected by gender. The level of physical training done by men and that done by females is

significantly different. In the second application, there was no non-parametric test to test between groups

and since repeated measures ANOVA is robust, it was used since.

After doing some contrasts we found that the measurements taken at during week 12 and those taken

after 20 weeks are not significantly different. This means there is no significant difference between a study

done over 12 weeks and that done over 20 weeks. This implies that the study could have been done over 12

weeks and time could have been saved.

A few problems were encountered with the data used. The two groups in the SANDF data had unequal

participants i.e. there were more males than females and this could have influenced the results obtained.

There were also missing observations in the data set and SAS default setting is to not include that particular

subject in the analysis. However, the data set was large and so these problems could be overlooked.

34



References

[1] Roger Bakeman. Recommended effect size statistics for repeated measures designs. Behavior Research

Methods, 37(3):379–384, 2005.

[2] Joan Fisher Box. RA Fisher and the design of experiments, 1922-1926. The American Statistician,

34(1):1–7, 1980.

[3] Charles S Davis. Statistical Methods for the Analysis of Repeated Measurements. Springer Science &

Business Media, 2002.

[4] Andy Field. Discovering Statistics using SAS. Sage publications, 2009.

[5] Ellen R Girden. ANOVA: Repeated Measures. Number 84. Sage, 1992.

[6] A Jansen van Rensburg, DC Janse van Rensburg, HE van Buuren, CC Grant, and L Fletcher. The

use of negative pressure wave treatment in athlete recovery. South African Journal of Sports Medicine,

29:1–7, 2017.

[7] Scott E Maxwell and Harold D Delaney. Designing Experiments and Analyzing Data: A Model Com-

parison Perspective, volume 1. Psychology Press, 2004.

[8] Douglas C Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2008.

[9] H Rouanet and D Lepine. Comparison between treatments in a repeated-measurement design: Anova

and multivariate methods. British Journal of Mathematical and Statistical Psychology, 23(2):147–163,

1970.

[10] James P Stevens. Applied Multivariate Statistics for the Social Sciences. Routledge, 2002.

[11] AGW Steyn, CFT Smit, SHC Du Toit, and C Strashem. Modern Statistics In Practice. Van Schaik,

1994.

[12] Paola S Wood, Catharina C Grant, Peet J du Toit, and Lizelle Fletcher. Effect of mixed basic military

training on the physical fitness of male and female soldiers. Military Medicine, 182(7), 2017.

35



Appendix

Code

Repeated measures ANOVA: SANDF

Descriptive statistics

proc univariate data=sandf normal plot;

var w1PT w12PT w20PT;

by W1SEX;

qqplot w1PT w12PT w20PT/normal(mu=est sigma=est color=green L=1);

inset mean std/cfill=blank format=5.2;

run;

Friedman test

proc transpose data=sandf out=sandf1;

var w1PT w12PT w20PT;

by ID;

run;

proc freq data=sandf1;

tables ID*_NAME_*COL1/

cmh2 scores=rank noprint;

run;

proc rank data=sandf1 out=sandf1rank;

var COL1;

run;
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proc means data=sandf1rank mean;

class _NAME_;

var COL1;

run;

Repeated measures ANOVA

proc glm data=sandf;

model w1PT w12PT w20PT=/nouni;

repeated time 3 contrast(1)/summary printe;

repeated time 3 contrast(2)/summary printe;

repeated time 3 contrast(3)/summary printe;

run;

Repeated measures with factor

proc glm data=sandf;

class W1SEX;

model w1PT w12PT w20PT=W1SEX/nouni;

repeated time 3 contrast(1)/summary printe;

repeated time 3 contrast(2)/summary printe;

repeated time 3 contrast(3)/summary printe;

run;
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Multiple factor repeated measures ANOVA : cricketers

Descriptive statistics

/*control*/

proc univariate data=report normal plot;

var lactate1 lactate2 lactate3;

qqplot lactate1 lactate2 lactate3/normal(mu=est sigma=est color=green L=1);

inset mean std/cfill=blank format=5.2;

run;

/*treatment*/

proc univariate data=report normal plot;

var lactate1 lactate2 lactate3;

qqplot lactate1 lactate2 lactate3/normal(mu=est sigma=est color=green L=1);

inset mean std/cfill=blank format=5.2;

run;

Repeated measures ANOVA

proc glm data=report;

class group;

model lactate1 lactate2 lactate3=group/nouni;

repeated lactate 3 contrast(1)/summary printe;

repeated lactate 3 contrast(2)/summary printe;

repeated lactate 3 contrast(3)/summary printe;

run;
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Output

Repeated measures ANOVA

Descriptive statistics

Figure 2: Basic statistical measures and normality tests for week 1
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Figure 3: Basic statistical measures and normality tests during week 12
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Figure 4: Basic statistical measures and normality tests after week 20
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Figure 5: Basic statistical measures and normality tests for males during the first week
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Figure 6: Basic statistical measures and normality tests for males during week 12
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Figure 7: Basic statistical measures and normality tests for males after week 20
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Figure 8: Basic statistical measures and normality tests for females during week 1
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Figure 9: Basic statistical measures and normality tests for females during week 12

46



Figure 10: Basic statistical measures and normality tests for females after week 20
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Friedman’s test

Figure 11: Friedman’s Test
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Figure 12: Partial Correlations

Figure 13: Sphericity tests and corrections

Figure 14: MANOVA statistics
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Figure 15: Repeated measures ANOVA for within-subjects

Figure 16: Contrast with time 1
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Figure 17: Contrast with time 2
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Figure 18: Contrasts with time 3

Repeated Measures with factor

Figure 19: Partial Correlations
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Figure 20: Sphericity tests and corrections

Figure 21: MANOVA statistics
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Figure 22: Repeated measures ANOVA for between-subjects

Figure 23: Repeated measures ANOVA for within-subjects
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Figure 24: Contrast with time 1 with gender taken into account
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Figure 25: Contrast with time 2 with gender taken into account
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Figure 26: Contrasts with time 3 with gender taken into account
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Multiple factor repeated measures ANOVA

Figure 27: Basic statistical measures and normality tests for control 1
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Figure 28: Basic statistical measures and normality tests for control 2
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Figure 29: Basic statistical measures and normality tests for control 3
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Figure 30: Basic statistical measures and normality tests for treatment 1
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Figure 31: Basic statistical measures and normality tests for treatment 2
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Figure 32: Basic statistical measures and normality tests for treatment 3
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Figure 33: Partial Correlations

Figure 34: Sphericity tests and corrections
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Figure 35: MANOVA statistics

Figure 36: repeated measures ANOVA for between-subjects
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Figure 37: repeated measures ANOVA for within-subjects

Figure 38: Contrasts with first level of lactate
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Figure 39: Contrasts with second level of lactate
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Figure 40: Contrasts with third level of lactate

68



Nested vs non-nested models: Model selection

Ruth Seema 12097901

STK795 Research Report

Submitted in partial fulfillment of the degree BCom(Hons) Statistics

Supervisor: Dr. J. Kleyn

Department of Statistics, University of Pretoria

29 September 2017 (draft 2)

1



Abstract

This report distinguishes between nested and non-nested models. A model is nested within another

models if it can be derived as a special case of the other. Two models are non-nested if it is not possible

to transform one into the other by way of parametric restriction or a limiting process. We do so by

means of hypothesis testing theory. Moreover we discuss the issue of model selection. There are many

different explanatory variables that can be identified when investigating a theory. Consequently this may

give rise to multiple competing models. We look at two approaches for selecting the best model, namely

the discrimination approach and the discerning approach. One major function is to test the validity of

a model (goodness-of-fit), which is commonly neglected. A few methods to measure goodness of fit are

discussed. Furthermore practical example will be used to illustrate the different approaches.
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1 Introduction

Statistical modelling is a rigorous process of working to achieve a correct model to explain a given phe-

nomenon. The topic of model specification and evaluation is vast, however some of the essential issues

involved are model specification errors or models specification bias, the detection thereof and testing as well

as the evaluation of competing models [9].

In order to carry out specification testing, we first need to distinguish between nested and non-nested models.

Nested models are models that can be reduced to other models by placing one or more restrictions onto their

parameters, i.e . Whereas with non-nested models, given (say) two models, one cannot be derived from the

other.

“Statisticians are often faced with the problem of choosing the appropriate dimentionality of a

model that will fit a given set of observations [21].”

Very often in econometric literature, model selection criteria and model specification tests are treated as very

closely related or even as rival procedures. This is particularly misleading as these procedures serve different

purposes. On the on hand model selection criteria are suitable for picking a model among several competing

models. Non-nested hypothesis tests, on the other hand model are tests for model specification, just like

tests for serial correlation or missing variables. The only difference with these tests from more classical tests

is that they are conducted given the existence of alternative non-nested models [14].

The full reality of a phenomenon cannot be captured in a model [18]. In multiple regression, the objective of

the analysis is (a) to explain the variation in a response variable and (b) to predict future performance on a

response variable.

According to Olejnik and Keselman [19], when researchers investigate a particular phenomenon they identify a

set of explanatory and predictor variables based on some combination of theory, experience and convenience.

The number of the identified variables may exceed the number of individuals available to evaluate them.

While there may not be enough time and resources to identify all the variables, an extensive list of identified

variables can complicate the analysis and the researcher desires simplification. In any of these events a

researcher will seek to reduce the number of the identified variables. Model selection is the task of choosing

the best subset of these variables. In other words if we have competing models each made up of a subset of

the listed variables, the best model will provide the best explanation of variation in the response variable or
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it will have a high predictive power of future performance of the response variable, or both.

A good model is parsimonious (simple), with the least assumptions and variables, not under fitted and not

overfitted [9]. However in real life, problems are much more complex and they require a little more than a

simple model. Therefore there is always a trade-off between simple models and complex models. At times

model selection could mean deselecting false models and only retaining a subset of the models that are close

to the truth [11]. To obtain a model that is correct there are several criteria and methods developed to carry

out the task.

Olejnik and Keselman [19] suggest that the stepwise procedures could be the most popular procedures to

select the best subset of variables, to explain the response variable. There are there are two types of stepwise

procedures. The backward elimination and the foreward selection method.

The forward selection porcedure adds predictors successively. The terms that enhance the fit of the model are

selected at each stage. This selection is based on the p-value, i.e terms with a smaller p-value are prefered. The

process stops when additional terms do not add significantly to the fit of the model. Backwards elimination

starts with an elaborate model and deletes predictors subsequently. Terms that does not harm the fit of the

model are removed to a point where deletion leads to a significantly poorer fit [1].

Other model selection methods include the exhaustive search, cross validations as well as Bayes factors of

various flavours (partial, intrinsic, pseudo, fractional, posterior), Bayesian model averaging to name a few

popular methods [18].

This report will focus on the following two approaches for model selectiom: the discrimination approach and

the discerning approach.

Firstly within the context of the discrimination approach, two competing models with the same dependent

variable will be compared to with other based on the following criteria namely, the Akaike’s information

criterion, Schwarz’s information criterion (SIC), as well as the Mallows’s C
p

criterion. The criteria rank

models according to a score. The score is calculated by introducing a penalty term which is harsher on

models that have more parameters. This is in attempt to mitigate the risk of over-fitting. In comparing two

models, the information criteria prefer the model which scores a lower value [9].

The Akaike information criterion was introduced by a Japanese Statistician, Hirotugu Akaike in 1973 and

formally published in 1974 [2]. Akaike’s original work for IID (identical independent distributed) data,

however it is also extended to regression type setting. According to Kubokawa and Srivastave [13] the AIC is
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developed for selecting the variables of nested error regression models where an unobservable random effect

is present. In regression analysis, models could be over-fitted or under-fitted. The AIC is a way to balance

the drawbacks of these circumstances. Akaike developed the AIC score for choosing the best model for both

in-sampling and out-of sampling forecasting.

The Schwarz’s information criterion, also known as the Bayes Information Criterion (BIC), prefers simpler

models compared to the AIC, i.e the penalty imposed on models with more regressands is higher. The model

selection tool was named after the Israeli professor Gideon Ernst Schwarz, who developed it. His work on

criterion was published in 1978 [21]. The criterion has been widely used for model identification in time series

and linear regression. Just like the AIC, It has a wide application to any set of maximum likelihood-based

models [21].

Another model selection technique we will discuss, is Mallows’s C
p

criterion. The model selection tool is

named after Collin Lingwood Mallows and it was introduced in 1973 [15]. The C
p

criterion is used to

assess the fit of a regression model that has beem estimated using ordinary least squares. When a model is

underfitted, or missing important predictors, it yields biased regression coefficients and biased predictions of

the response. The C
p

criterion estimates the magnitude of the bias that is present in the predicted responses,

as a result of underfitting the model. A high C
p

value indicates a large bias. A Model with less bias, hence

a lower C
p

, is preffered [9].

Secondly within the context of the discerning approach evaluates models taking into account information

provided by other contestant models. We need two estimated models, A and B. We then add the dependent

variable from Model A as a regressand to Model B. The idea is to evaluate whether the variables unique to

Model A, offer more explanatory power to Model B. If we reject the hypothesis that the additional regressand

adds explanatory power to Model B, we will prefer the Model B over Model A. The hypothesis tests can be

done using the non-nested F-test. There are problems encountered with using only the F-test to test the

model. The Davidson and Mackinnon J-test will be discussed as an alternative to the F-test.

The J-test , was developed by Russel Davidson and James MacKinnon on 1981 [4]. The test was developed

to test non-nested model specification, however it is widely used to choose between model specifications.

Bremmer [3] states that in application, the F-test is prefered over the J-test because it requires estimation of

only two regressions while the J-test requires the estimation of four different regressions. However the J-test

is commonly used in the literature, it has been cited in just under 500 seperate articles between 1984 and
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2004. Another indicator of its increased acceptance in econometric practice is the number of textbooks that

discuss this test [3].

Lastly, model validation is possibly the most important step in model building. An important issue is

whether the results obtained from a sample can be extrapolated to the population from which the sample

was drawn [16]. R2, is the most common measure of goodness-of-fit with respect to linear regression models.

It is routinely given by software packages such as R and SAS. Unfortunately a high R2 does not necessarily

signify that the model fits well. Incidently, there is no one perfect measure of goodness of fit for statistical

models, hence we will look at a variety of concepts that fall into the category of goodness of fit, including

the adjusted R2, residual analysis, and the ROC curve.

Furthermore in setion 2, a discussion of the tests for nested and non-nested models will be presented. This

section will also include a discussion of model selection criteria as well a few tools for model validation. In

section 3, we will use practical examples to illustrate the tests and criteria discussed in the previous section.

2 Background Theory

2.1 Nested vs non-nested models

In this section the difference between nested and non-nested models will be discussed. We will use the t-test

as well as the non-nested F-test to test whether a model is nested or non-nested.

2.1.1 Nested models

To test that a model whether a model is nested or non-nested consider the following models:

Yi = �1X1i + �2X2i + �3X3i + �4X4i + �5X5i + ui (1)

Y
i

= �X1i + �2X2i + �3X3i + ui (2)

In Model A, if we test that

H0 : �4 = �5 = 0

H1 : �4 6= 0 or �5 6= 0
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According to Gujarati and Porter [9] we employ the restricted F-test to test whether the parameters are

significant. We compare the value of the test statistics to the critical value. If the F test statictic is smaller

than the critical value, we do not reject the null hypothesis. We can therefore conclude that the model (1)

can reduce to model (2). In other words, model (2) is nested in Model (1). If we add another variable, X4,

to model (2), model (1) reduces to model (2) if �5 is equal to zero. This we conclude on the basis of a t-test

that the coefficient of X5 is equal to zero. In regression analysis that may be linear or not, specification error

tests, more generally used are the likelihood test ratio, or the Wald test, or the LaGrange multiplier. Because

reseachers often work with small and finite samples , the F-test suffices [9].

Now consider the following models:

Yi = ↵1 + ↵2X2i + ↵3X3i + u
i

(3)

Y
i

= �1 + �2Z2i + �3Z3i + v
i

(4)

where the X’s and Z’s are different variables. Neither model is the subset of the other. Therefore the models

are non-nested, since one cannot be derived from the other. The models may have some regressors in common,

for example, X3 may be included to model (3). Still the models are non-nested because model (4) doesn’t

have Z2, Z3 and model (4) does not have X2.

2.1.2 Non-nested Models

The non-nested tests of hypotheses arise in situations when the alternative hypothesis cannot be derived

as a special case of the null hypothesis. This may happen as a result of either completely different sets of

regressors in competing models or different distributions in the stochastic term [20]. Non-nested hypothesis

tests provide a way to test model specifications against the evidence made available by one or more of the

alternative hypotheses.

To do model selection using the non-nested F-test, suppose we estimate the following nested model:

Y
i

= �1 + �2X2i + �3X3i + �4Z2i + �5Z3i + u
i

(5)

Consider model (3) and model (4) in section (2.2.1), model (5) encompases model(3) and (4). It is important

to note that model (3) and (4) are non-nested. If model (3) is correct then �4 = �5 = 0, otherwise if model(4)

is correct �2 = �3 = 0. This testing can be done using the F-test. The F test proceeds as Gujarati and

Porter [9] indicate that there are problems encountered using this test procedure .
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Firstly, it is the case where multicollinearity is present between the X’s and the Z’s. If the X’s and the Z’s are

highly correlated then there is great possibility that one or more �0s are individually statistically insignificant.

However, on the basis of the F-test one could conclude that the coefficients are all statistically insignificant.

Secondly, there is another problem. Suppose we choose model (3) as a reference model and establish that all

the coefficients are significant. Then we add Z2 or Z3 or both and conclude, on the basis of the F-test, that

their additional contribution to the explained sum of squares (SSE) is statistically insignifcant. As a result we

choose model(3) to be the correct model. Likewise, if we take model(4) as the reference hypothesis and find

that all its coefficents are significant and similarly add X2 or X3 or both. If we conclude that the incremental

contribution of the additional coefficients, to the ESS is statistictally insignificant, we will therefore decide

to choose model(4).

Gujarati and Porter [9] further illustrate that the choice of the reference model may determine the chosen

model especially if severe multicollinearity is present in the competing regressors, rendering the F-test mean-

ingless. Because of the problems presented using the non-nested F-test, alternatives have been suggested.

One is the Davidson-Mackinnon J-test.

2.2 Model Selection

According to Gilmour [6], if there are k explanatory/ predictor variables there is a possibility of 2k � 1

regression models. Computing all the regression models today is possible but selecting a model is still an

issue.

In model selection there are m models M1, ...,Mm

where usually m > 2. Instead of testing multiple hypotheses

with two models at a time, to see if we reject one or the other, it is more convenient to have a criterion to

select one of the models. There are two approaches in which model selection is done. Here we will discuss the

criteria as well as the tests used to choose between competing models with respect to the two approaches.

2.2.1 The Discrimiantion approach

When we have more than one competing model, several criteria may be used to select the right model.

Since the models have the same dependent variable, we can choose between models by using some criteria.

The criteria include the Akaike’s Information Criteria, Schwarz’s Information Criteria and the Mallow’s C
p

criterion.

Akaike’s Information Criterion (AIC)

According to Dziak et al. [10] the AIC estimates the relative Kulberg-Leibler (KL) distance (non-parametric
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distance measure) between the likelihood function estimated by a candidate model and the unknown true

likelihood function that generated the data. The model that is closest to the truth in terms of the KL would

not necesarrily be the best fit to an observed sample, as samples may be arbitrarily well fitted to the data

by adding more parameters to the model. A model with the best KL distance will however, describe the

population distribution accurately, and hence the future samples.

The KL distance can be written as

E
t

(l
t

(y))� E (l
t

(y)) (6)

where E
t

is the expected value under the unknown true distribution function, l is the log likelihood of the

data under the fitted model being considered, and l
t

is the log-likelihood of the data under the unknown

true distribution. E
t

(l
t

(y)) will be the same for all the candidate models, so KL is minimised by choosing a

model with the highest E
t

(l (y)).

The AIC criteria introduces the idea of imposing a penalty . It is defined as

AIC = e
2k
n

P
û2

n
= e

2k
n
SSR

n
(7)

where k is the number of parameters and n is the number of observations. For mathematical convenience

ln AIC =
2k

n
+ ln

✓
SSR

n

◆
(8)

where ln AIC is the natural log of AIC and 2k
n

is the penalty factor. The AIC is smaller for bigger models

because of the penalty imposed for overparameterization. This model selection criterion maximizes the

predictive accuracy of the chosen probability distribution [12]. There is the familiar discourse that the AIC

is not a consistent estimator of the number of parameters of the smallest model containing the true value.

Kiessepa [12] validates this claim and adds that this feature of the AIC is compatible with the purpose for

which it is used. Models that have a lower AIC are preferred.

Schwarz’s Information Criterion (SIC)

In Bayesian model selection, a prior probability is set for each model M
i

, and the prior distributions are

set for the nonzero coefficients in each model. If we assume that one and only one model, together with its

associated priors, is true, we can use Bayes’ Theorem to find the posterior probability of each model given

the data. Let Pr (M
i

) be the set prior probability, and Pr (y|M
i

) be the probability of the density of the

data under M
i

, calculated as the expected valued of the likelihood function of y given the model and the

parameters, over the prior distribution of parameters. According to Bayes Theorem the posterior probability

is proportional to Pr (M
i

)Pr (y|M
i

). The degree to which the data support M
i

over another model M
j

is
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given by the ratio of the posterior odds to the prior odds:

Pr (M
i

|y) /Pr (M
j

|y)
Pr (M

i

) /Pr (M
j

)
.

If we assume equal prior probabilities for each model then this simplifies to the “Bayes factor”

B
ij

= Pr (M
i

|y) /Pr (M
j

|y) = Pr (y|M
i

) /Pr (y|M
j

)

so that the the model with the higher Bayes factor also has the higher posterior probability. Schwarts showed

that in different types of models B
ij

can be roughly approximated by exp
�
� 1

2BIC
i

+ 1
2BIC

j

�
, where BIC (

also called SIC) is 1, especially if a certain “unit information is used for the coefficients”. The model with the

highest posterior probability is likely the one with the lowest BIC (SIC).

The SIC is given by:

SIC = n
k
n

P
û2

n
= n

k
n
SSR

n
(9)

or in log form:

ln SIC =
k

n
ln n+ ln

SSR

n
(10)

where
⇥
k

n

ln (n)
⇤

is the penalty factor. Comparing eq(6) to eq(4), it is obvious that SIC imposes a harsher

penalty than the AIC, it replaces 2 by log (n) as a multiple of the number of parameters. Hence the selected

model has to be less complex than the one selected under the AIC [1]. As noted by Agresti [1] the SIC

is derived based on the Bayesian argument for determining the model that will have the highest posterior

probability, out of a set of contestant models. When comparing two models based on a SIC score, any

difference between the values relates to a Bayes factor. It has a property of selecting the “correct model ”

with probability converges to 1 as n ! 1. The Bayesian structure provides justification for this approach.

Schwarz [21] indicates that the SIC is consistent, meaning that if one of the contestant models has the

true value, the SIC will maximize the probability of selecting the correct model, namely the smallest model

containing the true value. The AIC is not consistent in this sense. As it may seem that the SIC is preferable,

however, in the case that none of the competing models are correct, it is unclear which criteria to use [12].

Mallows’s C
p

Criterion (C
p

)

A good model should have a small mean square error of prediction. The C
p

as a measure of bias, is used to

compare models that have been estimated using the least square estimator method [9]. Suppose we have a

model with k regressors including the intercept. Let b�2 be the estimator of the true �2. Suppose we only

14



choose p regressors (i.e p  k) . The criterion is given as:

C
p

=
SSR

p

�̂2
� (n� 2p) (11)

Where SSR
p

denotes the regression sum of squares obtained from the regression using p regressors. The

definition of the C
p

-statistic was intended to ensure that C
p

had the expected value p for a model including

all possible regressors [6]. If the model does not suffer a lack of fit , such a model will have

E (SSR
p

) = (n� p)�2 (12)

consequently it is true that

E (C
p

) =
(n� p)�2

�2
� n+ 2p t p (13)

Gujarati and Porter [9] state that in choosing a model with respect of the C
p

criterion, we would choose one

that has a low C
p

value just about equal to p. So, following the principle of parsimony we select a model with

p (p < k) regressors that gives a good fit to the data. In practice one would construct a plot of C
p

computed

using Eq (7) against p. An adequate model will appear as a point near the C
p

= p line, as can be seen in the

figure (2).

2.2.2 Discerning Approach

Instead of trying to find the best model from a set of competing models, based on some criteria, one can

use the approach of gathering information from other models to see if it can improve a given model and vice

versa. Suppose that model (3) and model (4) are theoretically plausible for explaining a phenomenon, and

both models have the same dependent variable, Y. The J-test proceeds as follows:

1. The model (3) is estimated and the variable and the predicted values of the depended variable , ŷC
i

,

i = 1, ..., N , are obtained.

2. Similar to Step 1, model (4) is is estimated and the predicted values from this model, ŷD
i

, i = 1, ..., N ,

are obtained.

3. The predicted values from model (3) are included as an additional regressor in model (4). Likewise the

values of model(4) are added as an explanatory variable to model(3), as shown in equation (14) and
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equation (15), respectively.

Yi = �1 + �2Z2i + �3Z3i + �4 Ŷ
C

i

+ v
i

(14)

Y
i

= ↵1 + ↵2X2i + ↵3X3i + ↵4 Ŷ
D

i

+ u
i

(15)

4. The idea is to test whether the predicted values from one model add predictive power to the other

model. Using the t-test we test whether each of the coefficient ↵4 = 0 and ↵5 = 0.

Consider equation (14). If we can accept the model (3) as the true value, that is, if we do not reject the

hypothesis that ↵4 = 0, it would mean that Ŷ D

i

included in eq (15), which represents the effect of the

predictor variables in model (4), does not offer additional explanatory power beyond that offered by model

(3). In other terms model (3) encompasses model (4), in the sense that model(4) does not contain information

that will improve the performance of model (3). If we reject the null hypothesis, it would mean that model

(3) is not the true model.

On the other hand, if we reject the hypothesis that �4 = 0, we therefore conclude that model(3) does not

improve the explanatory power of model (4) and thus choose model (4) over model (3). By the same token,

if we do not reject the null hypothesis we then prefer the model (3) over model (4).

The J-test may fail to discriminate between the true and false models specification when the alternative

hypothesis fits the given data well. Either both specifications will be rejected or neither will be rejected. In

this case testing a model agaisnt the evidence provided by the other will not allow the investigator to choose

between the two models. It could however indicate that either one or both models have been misspecified.

“When both models are rejected we must conclude that neither model is satisfactory, a result that will not be

welcome but will perhaps spur us to develop better models” [5]. Godfrey and Pesaran [7] state the following

situations where the J test will over reject the true hypothesis: (i) when the true model is poorly fitted (ii)

low or moderate correlation of the regressors of the two models; and (iii) when the false model includes more

regressors than the true model. Davidson and Mackinnon [14] agree that if (i) and (ii) are obtained as well

as in small, finite samples the J test will “over-reject”.

Rao, Gali and Krieg [20] provide some theoretical reasons why the J test may lack power in testing model

specifications that fits a given data set well. Firstly, when the sample size is small the difference in regressors

in the contestant models will influence the size of the test statistic. This is in agreement with the simulation-
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based findings of Godfey and Pesaran [7] and also with the conclusion drawn by Gourieroux and Monford

that the test is “very sensitive to the relative number of regressors in the two hypothesis; in particular the

power of the J test is poor when the number of regressors in the null hypothesis is smaller than the number of

regressors in the alternative one” [8]. However the effect of the difference in regressors will become insignificant

as sample sizes increase.

When classical procedures lead to inconsistent results there are many non-standard testing of hypotheses

used as alternatives. Rao, Gali and Krieg [20] suggest the Bayesian approach which is more consistent and

provides meaningful results however there are very few applications of it that have been found.

2.3 Model fit

After selecting a model, model validation should be done to evaluate if the model fits the data well. This is

possibly the most important step in model building. Goodness of fit measures are used to assess how well a

model fits a given set of data. Pregibon [17] indicates that in practice however, this step is usually neglected

and rarely carried out. The basic reasons are

(i) The lack of routine methods.

(ii) The high costs of an analyst and computer time.

A model that is well fitted is one that when it is applied to different data samples it consistently produces

reliable estimates and predictions. There are numerical and graphical tools which can be used to assess how

well a model fits a given data set. Graphical methods have an advantage over numerical methods as they

readily illustrate a broad range of relationships between the model and the data. Numerical methods tend to

be narrowly focused on a particular aspect of the relationship between the model and the data and often try

to compress that information into a single descriptive number or test result. Nevertheless numerical methods

do play an important role as confirmatory methods for graphical techniques. There are also a few modelling

situations in which graphical methods cannot be used. Logistic regression with binary data is another area

in which graphical methods can be difficult. In these cases numerical methods provide a fallback position for

model validation [16].

The R2 Criterion

The R2 criterion is a global measure of variance, which is routinely given in some software output such as R

and SAS.

We estimate a regression function E {Y
i

} = �0 + �1Xi

with Ŷ = b0 + b1X1 i = 1, 2, ...n where
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Y
i

=response

E {Y
i

} =mean response

Ŷ
i

=fitted value

The measure of total variation, the total sum of squares is

SSTO =
nX

i=1

�
Y
i

� Y
�2

The total sum of squares can be decomposed into two components:

SSTO = ESS +RSS

where

ESS =
nX

i=1

⇣
Y
i

� Ŷ
i

⌘2

the variation of Y around the fitted regresson line, the error sum of squares and

RSS =
nX

i=1

⇣
Ŷ
i

� Ȳ
⌘2

the regression sum of squares.

R2 also known as the coefficient of determination, measures the goodness of fit of a model. The criterion

works for in-sample forecasting, that is, how close the dependent variable of the given data estimates the

true value, but does not perform well for out-of-sample forecasting. R2 is defined as

R2 =
ESS

SSTO
= 1� RSS

SSTO
(16)

where 0 < R2 < 1. As per definition, R2 is a ratio of the error sum of squares over the total sum of squares.

The problem with this measure, especially for comparing models of different sizes, is that the sum of squares

of the regression, and hence R2, increase the more variables there are in the model . In addition there is a

temptation to add more variables just to increase the score. The result will be a higher R2 but also a larger

variance of the forecast error [9]. For this reason the adjusted R2 is used instead, as it takes into account the

number of parameters in the model, including the intercept term.

Adjusted R2

The adjusted R2 is a measure of variation explained which takes into account the effect of the number of

parameters in a model. It features a penalty term for adding more regressors to increase the R2 value, defined

as

R
2
= 1� RSS/(n� k)

SSTO/(n� 1)
= 1� (1�R2)

n� 1

n� k
(17)
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where n is the sample size and k is the number of regressors

As in the formula, R̄2 < R2 as a result of penalizing the addition of more regressors.

Residual analysis

Some diagnostic tests for linear regression models, such as the t-test, F-test and R2 are based on the as-

sumptions that the relationship between the outcomes of the dependent variable and the predictor variables

is (approximately) linear and that the error term is normally distributed. If any of these underlying assump-

tions are violated the fitted model may depart from true value. This departure may not be detected by the

R2 measure of goodness of fit. Residual analysis plots the statistic

e
i

= y
i

� ŷ (18)

against ŷ; where y
i

is the observed value and ŷ is the fitted value. The pattern of the resulting graphical

representation is of interest. If the points on the graph form a random pattern the model fits the data well.

Any other resulting pattern indicates that the model is a poor fit to the data.

The residual analysis diagnostic test also applies to logistic regression models. Binary logistic regression

models how response variable Y depends on a set of k explanatory variables, X = (X1, X2, ...Xk

). For a binary

dependent variable Y and explanatory variable X, let ⇡ (x) = P (Y = 1 | X = x) = 1 � P (Y = 0 | X = x).

The logistic regression model is

⇡ (x) =
e(↵+�x)

1 + e(↵+�x)
(19)

the logit (log of odds) has a linear relationship

logit [⇡ (x)] = log
⇡ (x)

1� ⇡ (x)
= ↵� �x (20)

Let Y
i

denote the binomial outcome for n
i

where i = 1, 2..., N . Let ⇡̂
i

denote the model estimate P (Y = 1).

Then µ̂
i

= n
i

⇡̂
i

. For a general linear model with a binomial linear component, the Pearson residual is

e
i

=
y
i

� n
i

⇡̂
ip

ˆvar (Y
i

)
=

y
i

� n
i

⇡̂
ip

[n
i

⇡̂
i

(1� ⇡̂
i

)]
(21)

divides the residual y
i

� n
i

⇡̂
i

by the estimated binomial standard deviation of y
i

.

The Pearson statistic for testing model fit is defined as

�2 =
NX

i�1

e2
i

(22)

One of the functions of this Pearson �2 statistic is to test whether the distibution of events observed in a

sample is consistent with a particular theoretical distribution i .e. may detect a lack of fit. This is done
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through hypothesis testing, where the null hypothesis will state that there is no difference between the

distributions. The null hypothesis is rejected if the test statistic exceeds the critical value.

Although the �2 is very useful it does have limitations:

(i) The test does not give information about the strength of the relationshiop between the variables, it only

indicates if there is an association.

(ii) The size of the �2 is directly proportional to the sample size, and therefore it is sensitive to sample size.

This means that strong associations may not be detected as significant when a small sample size is used.

Larger sample sizes, on the other hand may yield statistical significance when in actual fact the findings are

small and uninteresting.

ROC curve

Another way of assessing the validity of a model, with respect of logistic regresson models, is by splitting the

available data into a training and testing samples. The samples are taken from the same population but are

distinct and independent of each other. Firstly the training set is used to fit the model. The fitted model

is then applied to the testing sample to evaluate the model’s performance on it. If the testing data is too

small, this might result in an unsatisfactory testing data set. According to Giancristofaro and Salmaso [18]

we should expect a lower performance of the model on the testing set.

The ROC (Receiver Operating Characteristics) curve and the area below the ROC curve are commonly

used to assess binary response models . The testing set is used to estimate the area below the ROC curve.

The ROC curve is created by plotting the probability of correctly classifying a positive subject against the

probability of incorrectly classifying a negative subject. These probabilitites can be computed using the

model’s regression equation. The area below the ROC curve ranges between 0 and 1. A curve will be judged

according to its ability to measure the predictive error. That is the ability of the model to distinguish between

subjects with different responses.

3 Application

This section has three parts. Firstly, we do hypothesis testing for nested hypotheses. The second part deals

with model selection of non-nested hypotheses, with respect to the discerning approach and the discrimnation

approach. Lastly, we will look at model fit tests.

3.1 Tests of nested models

The models given by (23) and (24) explain major league baseball players’ salaries. The data was obtained

from the sas.help database.
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In this example

Y = salary of major league baseball players

X1 = years in major league

X2 = times at bat in 1986

X3 = hits in 1986

X5 = home runs

X6 = runs in 1986

X7 = RBIs in 1986

X8 = walks in 1986

Y = �0 + �1X1 + �2X2 + �3X3 + �5x5 + �6X6 + �7X7 + �8X8 + " (23)

is the unrestricted original model.

Y = �0 + �1X1 + �2X2 + �5x5 + �7X7 + ✏ (24)

A restriction is placed on (23) to produce (24), a restricted model because we had to control for �3, �6, �7.

The hypothesis test proceed as follows:

H0 : �3 = �6 = �8 = 0

H1 : �3 6= 0 or �6 6= 0 or �8 6= 0

From output (i) in table 1, it can be seen that the F statistic= 3.39 corresponds to a p-value= 0.0212 < 0.05.

At a 5% level of significance we do not reject the null hypothesis. There is enough evidence to conclude that

the model (24) is nested within model (23).

If we add X7 to model (24), then model (23) will reduce to model (24) if �8 = 0. Using the t-test we test

that

H0 : �8 = 0

H1 : �8 6= 0

On the basis of the t-test with a p� value = 0.0012, shown in the output in table 1(ii), we do not reject the

null hypothesis at a level of significance ↵ = 0.05. It can be concluded that if X7 is added to model (18) ,

model (18) reduces to model (17) given that �8 = 0.
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Table 1: Nested hypothesis output: Unrestricted F-test

Table 2: Nested hypotheses output : Parameter estimates

3.2 Tests of non-nested hypotheses

Consider the following two models:

y = ↵0 + ↵1x1 + ↵2x2 + ↵3x3 + 5x5 + " (25)

y = �0 + �6x6 + �7x7 + �8x8 + � (26)

Note that model (25) and (26) are subsets of model (23). These models are non-nested. Each model has

predictor variables that uniquely discribe the dependent variable, i.e. both models involve the same dependent

variable.
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3.2.1 Information criteria

To test these two models we compare the following criteria, namely, the AIC, BIC as well as Mallows’s C
p

criterion. A model is chosen on the basis of one or more these criteria. Table(2) and table(3) shows the

summaries of the fit diagnostics of model (25) and model (26) respectively. Model (25) has lower AIC and

BIC scores compared to model (26). The C
p

criteria however, had different results. model (25)’s C
P

= 5,

turned out to be higher than that of model (21), C
p

= 4. Two out of the three criteria are in favour of

model (25). In this case. model (25) is prefered over model (26). Therefore we choose model (25) to be the

right model.

Table 3: Non-nested model selection diagnostics output: Model (25)

Table 4: Non-nested model selection diagnostics output : Model (26)

3.2.2 Davidson MacKinnon J-test

For the J-test we use models (25) and (26) to do the following hypothesis test
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Table 5: Model selection, non-nested Mackinnon J-test : Model (25) parameter estimates output

H0 : Y = �0 + �1X1 + �2X2 + �3X3 + �5X5 + �6ŷ
(25)

H0 : Y = �0 + �6X6 + �7X7 + �8X8 + �9ŷ
(26)

where ŷ(25) and ŷ(25) are fitted values of model (25) and model (26) respectively.

The output in table (6) shows the estimator for ↵6 = 0.55472, with a p-value of 0.0009. Thus we do not

reject H0 in favor of H1. In table (5), the output from the of model (26) gives the parameter estimate for

�9 = 0.95867

with a p-value of 0.0001. Thus we do not reject the alternative hypothesis either. model (25) improves the

explanatory power model (26) and vice versa.

Table 6: Model selection, non- nested Mackinnon J-test : Model (26) parameter estimates output
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3.3 Model fit

First we look at the R2 and the Adj R2 obtained from the output in table (2), generated from the 1986

Baseball data. In addition the Titanic dataset will be used to illustrate the ROC curve method of model

validation. A logistic regression model is fitted to the data to predict the the number of survivors of the

shipwreck.

3.3.1 R2 and R̄2

Consider the outputs of model (23) and model (24) in table (3) and table (4) respectively. The R2 of model

(23) is calculated to 0.569; that is to say that only 57 percent of the variation in the dependent variable can

be explained by the predictor variable. R̄2 = 0.5591, which penalises for additional parameters. The R2

as well as R̄2 for model (24), a competing model, are 0.2928 and 0.2846 respectively. Usually an R2 of 70

percent is considered to be good. In this case neither of the models are an excellent fit to the data, however

it can be seen that model (23) is a better fit than model (24), because it has a higher R̄2 value.

3.3.2 The ROC curve

The Titanic data set is split into a training set and a testing set using a 80 : 20 ratio. The fitted model

has a binary dependent variable i.e. survived vs did not survive. The predictor variables: class, age, gender,

parch, sibs are used to observe how they affect the outcome.

To test the performance of the model, first it is applied to the training set and then after, to the testing set.

The objective of the test is to determine how well the model will correctly classify the dependent variable on

the “unseen” data i.e the training set. The following are models used to classify whether a passenger survived

or did not survive:

Y = Survive

X1 = Class

X2 = Age

X3 = Gender

X4 = Parch

X5 = Sibs

where “parch” stands for a passenger who is a parent who had children aboard the ship and “sibs” is the

number of siblings a passenger has aboard the Titanic.
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Y = �0 + �1X1 + �2X2 + �3X3 + ✏ (27)

Y = �0 + �2X2 + �4X4 + �5X5 + ✏ (28)

Table 7: Logistic regression output, ROC curve: Model (27)
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Figure 1: Logistic regression output, ROC curve:Model (28)

The output in figures (1) and (2) a show ROC curves that were used to test the ability of the model to

distinguish between different responses. The testing set was used to estimate the area below the curves. The

area between 0 and 1. The ROC curves are outputs of models that were estimated using different sets of

variables. It can be seen that model (27), with are under the curve = 0.8940, performs better than model 28

in classifying the outcomes. Therefore we conclude that model (27) has a higher predictive accuracy, and
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thus a better fit.

3.3.3 Residual Analysis

With reference to model (27) and model (28), suppose we want to further investigate whether the models fit

the distribution from which the data was generated. The hypothesis is formulated as follows:

H0 :The model fits

H1 :The model lacks fit

This test is done on the basis of �2
0.05 . Table (8) and table (9), below show output statistics for the test.

Using the Pearson statistic in table (8), on a 5% level of significance, and p-value 0.8379 >0.05 , the decision

is to not reject the H0 . There was enough evidence to conclude that model (27) is a good fit.

Consider the output in table (9). At a 5% level of significance we conclude that model (28) lacks fits . This

is based on the evidence provided by p-value = 0.0214 < 0.0 5.

Table 8: Goodness of fit statistics: Model (27)

Table 9: Goodness of fit statistics: Model (28)
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4 Conclusion

This essay set out to distinguish between nested and non-nested models. A restricted F-test was used to test

the hypothesis that one model is nested within another. By examining the 1986 Baseball data we concluded

that the two modules that were fitted to the data were nested, as the restriction placed on the one model,

reduced the model to the other specified model. Models are non-nested if it is not possible to derive one model

from another. According to the discrimination approach, model selection criteria are used to discriminate

among non-nested competing models. A model is selected if it scores lower than other contestant models with

respect of a given criteria. In the practical example we considered two models to illustrate this approach. Two

out of three criteria scores ( the AIC and the BIC) were in favour of model(24), while the results observed

with the Cp score would have led one to choose different. Model(24) is chosen based on the popular vote. In

this essay’s illustration of the discerning approach we had a case where we could not reject neither the H0

nor the H1. Both Models had additional information which improved the other models explanatory power.

These results may be improved by developing better models since the sample used was very large.

Models can be built for forecasting and/ or predicting certain outcomes. Depending on the purpose to which

the model is to be used, after selecting a model, its important to validate the model’s predictive power and/or

accuracy.

Several model fit tests were used to assess how well the selected models fit the data. It was apparent that

the selected models fit the data better the contestant models. The observed R̄ and R2 of model (24) is far

below 70%, but it is the higher of the two models and therefore a better fit. We looked at the ROC curve

technique as well . The area below the curve is used to assess the predictive power of the model. In the

example model(27) shows that it will classify the data correctly 89% of the time. And finally residuals analysis

technique of testing goodness of fit yielded resuslts that were consistent with the previous technique’s results.

Althought it may not be practical or feasible for researchers to do more that one out-of sample goodness-of-fit

test, to maximise a chosen model’s performance at least one test should be conducted.
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Appendix

A Data sets

Sashelp.Baseball
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Titanic

34



B SAS code

Model selection

data a;

set sashelp.baseball;

y=logsalary;

x1=yrmajor;

x2=natbat;

x3=nhits; x5=nhome;

x6=nruns;

x7=nrbi;

x8=nbb;

run;

/*nested models hypothesis testing, restricted f-test*/

proc reg data=a;

modlsel: model y=x1 x2 x3 x5 x6 x7 x8;

test x3=0, x5=0, x7=0;

run;

/*non-nested model selection*/

proc reg plots=diagnostics (stats=(default aic bic cp));

model1: model y= x1 x2 x3 x5;

run;

proc reg plots=diagnostics (stats=(default aic bic cp));

model2: model y= x6 x7 x8; run;
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MacKinnon Jtest

/* Mackinnon Jtest*/

/*model1*/

ods graphics off;

proc reg data=a;

model1:model y= x1 x2 x3 x5;

output out=b pred=yhat; run;

/*model2*/

ods graphics off;

proc reg data=a;

model2:model logsalary=x6 x7 x8 ;

output out=c pred=yhat1;

run; quit;

data jtest;

set b;

run;

proc reg data=jtest;

jtest: model logsalary=x1 x2 x3 x5 yhat1 ;

run;

data jtest1;

set c;

run;

proc reg data=jtest1;

jtest1: model logsalary= x6 x7 x8 yhat;

run;
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Logistic regression

data train; set titan (obs=718);

run;

data test;

set titan(firstobs=719);

run;

proc logistic data=train desc plots=roc;

class class gender embark;

model survive=class age gender;

run;

proc logistic data=test desc plots=roc;

class class gender embark;

model survive=class age gender/ influence;

run;

proc logistic data=train c;

class class gender embark;

model survive=age parch sibs;

run;

proc logistic data=test desc plots=roc;

class class gender embark;

model survive= age parch sibs/influence;

run;
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Logistic regression (residual analysis)

/*Residual analysis*/

proc logistic data=train desc plots=roc;

class class gender embark;

model survive=class age gender;

run;

proc logistic data=test desc plots=roc;

class class gender embark;

model survive(desc)=class age gender/ scale=none;

run;

proc logistic data=train c;

class class gender embark;

model survive=age parch sibs;

run;

proc logistic data=test desc plots=roc;

class class gender embark;

model survive(desc)= age parch sibs/scale=none;

run;
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Abstract

Goodness-of-�t tests are conventional statistical tests that are typically used for collating a random

sample with a theoretical probability distribution. This report will speci�cally study how goodness-of-

�t tests are used to compare random samples to the normal distribution. Commonly used goodness-

of-�t tests such as the Kolmogorov-Smirnov test, the Cramér-von Mises test, the Anderson-Darling

test, the Shapiro-Wilk test and the Jarque-Bera test will be investigated. A comprehensive power

comparison on goodness-of-�t tests will be discussed in this report. This study will particularly

focus on distributions that are not symmetric mesokurtic distributions to assess the aforementioned

goodness-of-�t tests.
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1 Introduction

Inferential statistics, unlike descriptive statistics, is classi�ed into two main sections, namely parametric

and non-parametric statistics. Furthermore, Thas (2010), [21], reiterates that parametric tests tend to

be more reliable than non-parametric tests, because parametric tests are based on a known distribution

with it's own assumptions. A fundamental statistical assumption in parametric statistics is the normal

distribution, especially in parameter estimation and hypothesis testing [6]. When data does comply with

a normal distribution, parametric tests will have more power and e�ciency than non-parametric tests

[6]. To determine whether a speci�c data set follows a normal distribution, graphical methods such as

histograms, box plots, PP plots and QQ plots can be utilized to get a graphical representation of the

shape of the distribution sample observations. These methods are visually e�ective in summarising a data

set, however they are not objective tools. Statisticians have proposed several tests, called goodness-of-�t

tests, that can be used to check the form of a distribution. These hypothesis tests determine whether a

set of data conforms with a distribution under the null hypothesis against the alternative hypothesis that

the data set does not conform with the distribution. This study will focus on goodness-of-�t tests for

normality and will examine the power of these tests via a simulation study conducted in Mathematica

and SAS.

The goodness-of-�t tests that are to be discussed in this report are the Kolmogorov-Smirnov test,

the Cramér-von Mises test, the Anderson-Darling test, the Shapiro-Wilk test and the Jarque-Bera test.

The Kolmogorov-Smirnov, the Cramér-von Mises and the Anderson-Darling tests can be applied to any

probability distribution, whereas the Shapiro-Wilk and Jarque Bera tests have been speci�cally developed

to test for normality. Thas (2010), [21], describes the Kolmogorov-Smirnov test, which originates from

the work of Kolmogorov [11] and Smirnov [19]. This test uses the divergence function between the

hypothesised distribution function and the empirical distribution function to assess how well a data �ts a

distribution [21]. The Anderson-Darling test, introduced by Anderson and Darling [1], is also based on the

empirical distribution function. It calculates a test statistic that uses an integral with a weight function

[2]. A special case of the Anderson Darling test arises when the weight function equals 1, simplifying the

Anderson-Darling test statistic to a statistic that is now recognised and referred to as the Cramér-von

Mises statistic. The resulting test originates from the work of Cramér [23] and von Mises[22]. Shapiro

(1965), [15], proposed an analysis of variance test for normality. Jarque and Bera (1987), [8], developed

a test for normality, which is based on the shape, speci�cally the skewness and kurtosis, of the data set.

In SAS, the UNIVARIATE procedure is a Base SAS procedure that provides descriptive statistic

measures and properties of the distribution of the data set. The UNIVARIATE procedure examines

and calculates the respective test statistic and p-values of the Kolmogorov-Smirnov test, the Cramér-von

Mises test, the Anderson-Darling test and the Shapiro-Wilk test. The AUTOREG procedure in SAS/ETS
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gives the Jarque-Bera test statistic value and p-value. In Mathematica, the Kolmogorov-Smirnov test,

the Anderson-Darling test, the Cramér-von Mises test, the Shapiro-Wilk test and the Jarque-Bera test

are available for univariate data under distribution �t tests. The tests return the p-value by default and

Mathematica allows the tests to be modi�ed so that they return test statistic values and descriptions of

the test conclusions.

2 Background Theory

2.1 Moments and L-moments

Moments and L-moments are typically used to describe the location and the spread of a probability

distribution. For a random variable X , two categories of moments exist, namely the raw moments and

the central moments. The de�nitions of the raw moments and central moments are given in De�nition 1

and De�nition 2 respectively.

De�nition 1. The raw moments (commonly referred to as moments about 0) of a distribution are de�ned

as u
′

i = E(Xi). Hence, the raw moments are computed as follows

u
′

i =

∫ ∞
−∞

x′f(x)dx

for a continuous distribution with a probability denstity function f(x) and

u
′

i =

n∑
k=0

x
′

kpk

for a discrete distribution with a probability mass function pi [3].

De�nition 2. The central moments (commonly referred to as moments about the mean) of a distribution

are de�ned as ui = E([X − u]
i
). Hence, the central moments are computed as follows

ui =

∫ ∞
−∞

(x− u)if(x)dx (i ≥ 2)

for a continuous distribution with a probability denstity function f(x) and

ui =

n∑
k=0

(xk − u)ipk (i≥2)

for a discrete distribution with a probability mass function pi [3].
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The �rst raw moment is conventionally known as the mean of X. The second central moment is the

variance of X hence it is an indication of the spread of the distribution of X. Note that the lower central

moments are directly related to the variance, skewness and kurtosis of the random variable X. It can be

noted that the second, third and fourth central moments can be expressed in terms of the raw moments

as follows:

u2 = u
′

2 − u2 = σ2

u3 = u
′

3 − 3uu
′

2 + 2u3

u4 = u
′

4 − 4uu
′

3 + 6u2u
′

2 − 3u4

Other popular measures that are used to describe the shape of a distribution are the Pearson coe�cient

of skewness and the Pearson coe�cient of kurtosis. De�nition 3 provides a de�nition of the two measures.

De�nition 3. The Pearson coe�cient of skewness is de�ned as

α3 =
µ3

µ1.5
2

=
µ3

σ3

while the Pearson coe�cient of kurtosis is de�ned as

α4 =
µ4

µ2
2

=
µ4

σ4

The Pearson coe�cient of skewness gives an indication of the skewness of a distribution. Skewness

gives a measure of how symmetric the observations are about the mean [4]. The Pearson coe�cient

of kurtosis gives an indication of the peakedness and tail-weight of a distribution. Kurtosis gives a

measure of the thickness in the tails of a probability density function. Literary work compiled by Hosking

(1990),[7], describes L-moments and the work encapsulates theoretical results and techniques described

by Sillito (1951,1964,1969). The de�nition of L-moments is widely accepted as the expectation of a linear

combination of order statistics. A formal de�nition of L-moments is given in De�nition 4.

De�nition 4. Given that X1:n ≤ X2:n ≤ ... ≤ Xn:n denotes order statistics for a random sample of size

n from the distribution of X, the rth order L-moment of X is de�ned as

Lr = r−1
r−1∑
k=0

(−1)k

 r − 1

k

E(Xr−k:r) r = 1, 2, 3, ..
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Expressions for the �rst four L-moments are given in Table 1.

Table 1: First four L-moments
Moment Expression

L1 E [X]
L2

1
2E [X2:2 −X1:2]

L3
1
3E [X3:3 − 2X2:3 +X1:3]

L4
1
4E [X4:4 − 3X3:4 + 3X2:4 −X1:4]

The �rst two L-moments are mostly used and by convention, L-moments of order 3 or more are usually

standardised and then used in the de�nitions of L-moment ratios. The �rst two L-moment ratios of a

distribution are of particular interest because they are also used to describe the shape of a distribution.

A formal de�nition of the L-moment ratios is outlined in De�nition 5.

De�nition 5. L-moment ratios are denoted by τr and are de�ned as

τr =
Lr
L2

, r = 3, 4, 5, .....

The �rst two L-moment ratios, which are utilised the most, are referred to as L-skewness (τ3) and

L-kurtosis (τ4). Expressions of the L-skewness and L−kurtosis are given as

τ3 =
1
3E [X3:3 − 2X2:3 +X1:3]

1
2E [X2:2 −X1:2]

and

τ4 =
1
4E [X4:4 − 3X3:4 + 3X2:4 −X1:4]

1
2E [X2:2 −X1:2]

respectively.

Beyond their simplicity, L-moments are preferred over the traditional moments because L-moment

ratios are bounded. This property gets rid of the complex interpretation element when working with

the L-moment ratios of a distribution. Work done by Hosking (1990) and Jones (2004) proves that the

L-skewness ratio is bounded as follows

−1 ≤ τ3 ≤ 1

while the L-kurtosis ratio is bounded as follows

1

4

(
5τ2

3 − 1
)
≤ τ4 ≤ 1
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2.2 The normal distribution

The normal distribution, or sometimes referred to as the gaussian distribution, is one of the most im-

portant and useful continuous probability distribution in probability theory. The central limit theorem

makes the normal distribution very useful because it allows the distribution to be used to describe natural

and social random variables with unknown distributions. The central limit basically states that for an

adequately large sample size n, the sample average of independently drawn observations will converge in

distribution to the gaussian distribution[3]. Using customary notation, if X is a real-value random vari-

able, the normal distribution is a continuous distribution that is de�ned for all x values, it is symmetrical

about the mean and it is bell shaped. A random variable X that is normally distributed, denoted as

X ∼ N(u, σ2), has the probability density function

f(x;u, σ2) =
1√

2Πσ2
e−(x−u)2/2σ2

where

E(X) = u

and

var(X) = σ2

are the location parameter and scale parameter respectively [9]. It is known that the location and scale

parameters su�ciently specify the normal distribution. When the location parameter and scale parameter

are 0 and 1 respectively, X is said to have a standard normal distribution, denoted as X ∼ N(0, 1). The

probability density function of the standard normal distribution is

f(x; 0, 1) =
1√
2Π

e−x
2/2

for a random variable X [9]. The location parameter of the normal distribution indicates where the

distribution is centered and a change in the location parameter shifts the probability density function

left or right on the horizontal axis. The scale parameter describes the spread of the distribution hence a

larger σ2 value produces a probability density function that is very wide as compared to a smaller value of

σ2 which produces a probability density function that is more narrow. Graphical representations of how

the location parameter and scale parameter a�ect the shape and symmetry of the normal distribution

are given on the next page.

11



Mathematica Code

Plot[Table[PDF [NormalDistribution[[u, 1.5]], x], {u,−2, 0, 2}}]//Evaluate, {x,−6, 6},

F illing− > Axis, P lotLegends− > ”µ = −2”, ”µ = 0”, ”µ = 2”},

P lotstyle− > {”Dashed”, ”BGrey”, ”Dotted”}]]

Figure 1: Graphical representation of how the location parameter a�ects the normal distribution

Mathematica Code

Plot[Table[PDF [NormalDistribution[0, σ], {σ, {.75, 1, 2}}]//Evaluate, {x,−6, 6},

F illing− > Axis, P lotLegends− > ”σ = 0.75”, ”σ = 1”, ”σ = 2”

Plotstyle− > {”Dashed”, ”BGrey”, ”Dotted”}]]

Figure 2: Graphical representation of how the scale parameter a�ects the normal distribution
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A normal distribution has a Pearson coe�cient of kurtosis of 3 and a Pearson coe�cient of skewness

of 0. Excess kurtosis of a distribution is de�ned in terms of the Pearson coe�cient of kurtosis and it is

given by Equation (1),

Excess kurtosis=3− Pearson coe�ecient of kurtosis (1)

Thus the normal distribution has an excess kurtosis of 0. The distribution with a Pearson coe�cient

of kurtosis of 3 is called mesokurtic hence the normal distribution is called a mesokurtic distribution.

A platykurtic distribution is a distribution with an excess kurtosis < 0. In comparison to a normal

distribution, a platykurtic distribution will generally have shorter and thinner tails [4]. On the contrary,

a distribution with excess kurtosis > 0 is called leptokurtic. In comparison to a normal distribution, a

platykurtic distribution will generally have longer and fatter tails [4].

Considered the most important statistical distribution because of it's extensive usage, the normal

distribution is computationally easy to use. Standard normal tables exist to aid in the computation

of probabilities. Standard normal tables tabulate di�erent φ values where φ are cumulative distribution

function values of a standard normal distribution. Since there exists in�nitely many normal distributions,

any probability calculation requires a normal distribution (a normal distribution that is not standard)

to be transformed to the standard normal distribution �rst so that the probability calculation can be

computed. The normal distribution is widely used in statistical inference and social, physical and biolog-

ical measurement situations because normality arises naturally in those situations. As a result, di�erent

statistical tests called goodness-of-�t tests for normality have been developed over the years to be able

to test for the normality assumption.

2.3 The empirical distribution function

The empirical distribution function (EDF) is a pivotal component that is utilised in many goodness-of-�t

techniques. Thas (2010), [21], describes the EDF (denoted asF̂n(x)) as an estimator of a distribution

function F of a random variable, say X. Since the EDF estimates a cumulative distribution, it also

exhibits the basic properties that characterize distribution functions. The fundamental properties are

that the EDF is a right-continuous and a non-decreasing function.

Furthermore

limx→−∞F̂n(x) = 0

and

limx→∞F̂n(x) = 1

are properties that are exhibited by the EDF. The EDF is a function that is directly constructed from the
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probability interpretation of F . Hence, for all x and for a random sample of size n, the EDF is de�ned as

F̂n(x) =
number of observations ≤ x

n
=

1

n

n∑
i=1

I(Xi ≤ x) (2)

From the construction of the empirical function, it is imperative to see that it is a non-decreasing step

function where each step is a multiple of 1
n . To indicate this property of the EDF, a graphical illustration

of the EDF of a random sample of size 5 with observations 1, 2 , 3, 4 and 8 is depicted in Figure 3.

Mathematica code:

data = 1, 2, 3, 4, 8;

D = EmpiricalDistribution[data];

DiscreteP lot[CDF [D,x], x, 0, 9, .01, AxesLabel− > ”x”, ”Fn(x)”]

Figure 3: An EDF graphical representation of a random sample

An alternative de�nition of the empirical distribution function considers the use of order statistics.

Assuming a random sample of size n is given and all the observations of the random sample are di�erent,

the n observations can be ordered such that X1 < X2 < ... < Xn. An alternative de�nition of the EDF

using the order statistics is given by:

F̂n(x) = 0 for x ≤ X1

F̂n(x) = i
n for Xi ≤ x ≤ Xi+1 ,i = 1, ..., n− 1

F̂n(x) = 1 for Xn ≤ x

Comparison between the EDF and the binomial distribution yields results that suggest that the EDF

and the binomial distribution have a relation. Thas (2010), [21], shows that using Equation (2), nF̂n(x)

has a binomial distribution with parameters n and F (x) and as a result, the following 3 properties hold
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for the EDF.

Property 1

F̂n(x) is an unbiased estimator of F (x). That is, ˆE[Fn(x)] = F (x) for all x and for all n.

Property 2

Using the central limit theorem,
√
n[F̂n(x) − F (x)] converges pointwise to a normal distribution with

mean 0 and variance F (x)[1− F (x)] for all x.

Property 3

F̂n(x)
a.s.→ F (x) for every x. This can be rewritten as sup

x

∣∣∣F̂n(x)− F (x)
∣∣∣ a.s.
→ 0 and the result is formally

known as the Glivenko-Cantelli theorem [21]. Thas (2010), [21], further describes the error of the EDF

as being regulated by the Dvoretzky-Kiefer-Wolfowitz inequality, which a�rms that for all ε > 0,

Pr

{
sup
x

∣∣∣F̂n(x)− F (x)
∣∣∣ > ε

}
≤ 2exp(−2nε2)

From the aforementioned properties of the EDF, it can be deduced that F̂n(x) and F (x) are homogeneous

for large sample sizes [21]. Consequently, considering a goodness-of-�t test with null hypothesis

H0 : F (x) = G(x)

is equivalent to determining if there exists a di�erence between the EDF and the hypothesised distribution

G. EDF test statistics use this idea as they measure the di�erence between the hypothesised distribution

function G and the sample-based EDF. EDF test statistics usually take the form

Tn = c(n)d(F̂n, G) (3)

where d(, ) indicates a distance and c(n) denotes a scaling factor that utilises the sample size to ensure

the asymptotic null distribution of Tn is non-degenerate [21]. d( ˆFn, G) is a consistent estimator of

d(F,G) and d(F,G) = 0⇐⇒ H0 is true [21].

2.4 The van Staden-Loots distribution

The van Staden-Loots distribution is a special type of the generalized linear distribution (GLD) with

four parameters, namely, a location parameter α, a scale parameter β > 0 and two shape parameters

0 ≤ δ ≤ 1 and λ. A formal de�nition of the van Staden-Loots distribution is outlined in Lemma 6.
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Lemma 6. A real-valued random variable X is said to have the van Staden-Loots type of the GLD,

denoted X ∼ GLDvSL(α, β, δ, λ), if it's quantile function is given by

Q(p) =


α+ β

(
(1− δ)

(
pλ−1
λ

)
− δ

(
(1−p)λ−1

λ

))
α+ β ((1− δ) log [p]− δlog [1− p])

λ 6= 0

λ = 0

(4)

where α is the location parameter, β > 0 is the scale parameter and 0 ≤ δ ≤ 1 and λ are the shape

parameters.

Special cases of the van Staden-Loots distribution are incorporated in the distribution and they are

obtainable via a special combination of shape parameter values of the van Staden-Loots distribution.

Table 2 gives the combination of these shape parameter values and the corresponding special distribution

that is obtained.

Table 2: Table with the GLDGPD special distributions
Distribution Shape parameter Values

Exponential λ = 0 , δ = 1
Generalized pareto −∞ < λ <∞ , δ = 1

Logistic λ = 0 , δ = 1
2

Skew logistic λ = 0 , 0 ≤ δ ≤ 1
Tukey's λ −∞ < λ <∞, δ = 1

2

Uniform λ = 1,0 ≤ δ ≤ 1 and λ = 2,δ = 1
2

The L-moments and L-moment ratios of theGLDvSL have simple expressions hence are conventionally

preferred over other moments. The GLDvSL expressions for the L-location and L-scale are given by

L1 = α+
β(2δ − 1)

λ+ 1

and

L2 =
β

(λ+ 1)(λ+ 2)

respectively.

The expressions of the �rst two L-moment ratios, the L-skewness ratio (τ3) and theL-kurtosis ratio

(τ4), of the GLDvSL are given by

τ3 =
(2δ − 1)(1− λ)

λ+ 3

and
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τ4 =
(λ− 1)(λ− 2)

(λ+ 3)(λ+ 4)

respectively. Note that a distribution that has a L-skewness ratio of 0 is symmetric.

The van Staden-Loots distribution is exceptional at approximating the normal distribution. Using the

estimated parameter values α̂ = 0, β̂ = 2.4449, δ̂ = 0.5 and λ̂ = 0.1416 for the parameters of the quantile

function in Lemma 6, the van Staden-Loots distribution yields a density curve that approximates the

normal distribution very well. By specifying a speci�c combination of L-moments and L-moment ratios,

the aforementioned estimated parameters can be obtained. The aforementioned estimated parameter

values of the parameters α, β, δ and λ , that result in an approximation of the normal distribution, are

obtained given that the L-moments and L-moment ratios are speci�ed as follows

• TheL-location

L1 = 0

• TheL-scale

L2 = 1

• The L-skewness ratio

τ3 = 0

• The L-kurtosis ratio

τ4 =
30

Π
arctan

(√
2
)
− 9

This GLDvSL approximation will approximate a normal approximation with mean 0 and variance 1.7725.

Figure 4 depicts the density curve of both the normal distribution and it's respective GLDvSL approxi-

mation using the aforementioned combination of parameter values. Since the GLDvSL approximation is

very good, the density curve of the normal distribution and the GLDvSL approximation plot very close

to each other. Hence, to di�erentiate between the two curves, the normal distribution is plotted using a

dotted line while the GLDvSL approximation is plotted in red on Figure 4.
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Mathematica code:

L1 = 0;

L2 = 1;

τ3 = 0;

τ4 = N
[

30
Π arctan

(√
2
)
− 9
]

λ = If
(
τ4 == N

[
1
6

]
, 0, 3+7τ4−

√
τ4+98τ4−1

2(1−τ4)

)
;

δ = If
(
λ == 1, 0.5, 0.5

(
1− τ3(λ+3)

λ−1

))
;

β = L2(λ+ 1)(λ+ 2);

α = L1 + β(1−2δ)
λ+1 ;

ParametricP lot
[
If
[
λ == 0,

{
α+ β ((1− δ) log [p]− δlog [1− p]) , p(1−p)

β(δp+(1−δ)(1−p))

}]]
α+ β

(
(1− δ)

(
pλ−1
λ

)
− δ

(
(1−p)λ−1

λ

))
, 1

β((1−δ)pλ−1+δ(1−p)λ−1)
, p, 0.0000001, 0.9999999

AspectRatio− > 0.75, P lotRange− > MaxRecursion− > 15, F rame− > True,

P lotStyle− > Red, Thickness[0.005]]

Epilog− > Black,Dashed, Thickness[0.5], F irst@Plot[PDF [NormalDistribution[0, 1], x], x,−7, 7]];

Figure 4: Density curve of a normal distribution and a GLDvSL approximation of the normal distribution

From Figure 4, it is vividly clear that there exists no di�erence between the approximation of the

normal distribution and the normal distribution. A tiny drawback of using the GLDvSL approximation

approach to approximate the normal distribution is that the GLDvSL approximation has a bounded

support whereas the support of a normal distribution is unbounded. For the GLDvSL approximation,

setting L1 = 0 and L2 = 1, results in a support of [−8.6323, 8, 6223] .
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3 Goodness-of-�t tests

3.1 The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is among the oldest non-parametric goodness-of-�t techniques that is used

to test for normality. Thas (2010), [21], describes the Kolmogorov-Smirnov test as a test that is based on

the empirical distribution function and is consequently referred to as an EDF test. Empirical distribution

functions are often utilized to test for a variety of non-normal distributions. The Kolmogorov-Smirnov

test, which originates from the work of Kolmogorov [11] and Smirnov[19], belongs to the supremum class

of EDF statistics and it is a test that utilizes divergence between the hypothesised distribution function

and the EDF to evaluate the quality of the �t [21].

To test the the null hypothesis H0 : F = G against the alternative hypothesis H1 : F 6= G, the

Kolmogorov-Smirnov test statistic is given and calculated by

Dn =
√
nsupxεS

∣∣∣F̂n(x)−G(x)
∣∣∣

which is in the form of Equation (3) with d as the supremum of the function. The formula for Dn indicates

that the Kolomogorov-Smirnov test statistic is the largest absolute deviation between the hypothesised

distribution G and the EDF. In 1939, Nikolai Smirnov extended the study of the Kolmogorov Smirnov

test statistic by considering two statistics that are equivalent to the Kolmogorov Smirnov test statistic.

The two test statistics are formally formulated as:

D+
n =

√
nsupxεS(F̂n(x)−G(x))

and

D−n =
√
nsupxεS(G(x)− F̂n(x))

(D+
n ) calculates the largest positive deviation between the hypothesised distribution G and the EDF

F̂n(x), while (D−n ) calculates the largest negative deviation between the hypothesised distribution G and

F̂n(x). (D+
n ) and (D−n ) are primarily used in directional tests because (D+

n ) is only considered to be large

when F (x) > G(x). Hence, it is used to test H0 : F = G against H1 : F > G. Likewise (D−n ) is only

considered to be small when F (x) < G(x), thus it is used to test H0 : F = G against H1 : F < G.

A graphical representation of the Kolmogorov-smirnov test statistic and the test statistics studied by

Smirnov for a random sample generated from a normal distribution is depicted below in Figure 5.
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Mathematica code:

Clear["Global`*"];

data = RandomVariate[NormalDistribution[], 50];

D = EmpiricalDistribution[data];

DiscretePlot[CDF[D, x], {x,-3,3,.01},

Epilog->{First@Plot[CDF[NormalDistribution[], x]//Evaluate,{x,-3,3}]}]

Figure 5: Comparison of empirical and theoretical distributions for a random sample from a normal
distribution

The statistics Dn, D
−
n and D+

n are distribution free; hence, the null distribution of the di�erent

test statistics is the same irrespective of the underlying hypothesised distribution G. Although a closed

distribution of the statistics exist, many studies use the asymptotic distribution of the statistics

To test the the null hypothesis H0 : F = G against the alternative that H1 : F 6= G , H1 : F < G

or H1 : F < G a p-value is usually calculated using the test statistics Dn, D
+
n and D−n respectively. The

null hypotheses will be rejected if the p-value is less than α for the aforementioned tests, where α is the

speci�ed signi�cance level.

3.2 The Anderson-Darling Test

In 1952, another important class of EDF statistics called the quadratic class of EDF statistics was

invented. Both the Anderson-Darling statistic and the Cramér-von Mises statistic belong to this class of

EDF statistics [2]. This class of the EDF statistics is also used for testing distributional assumptions and
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the quadratic loss class primarily utilizes the quantity

[Fn(x)−G(x)]
2

The general form of the quadratic statistics is given by:

Q = n

∫ ∞
−∞

w(G(x)){F̂n(x)−G(x)}2dG(x) (5)

where w(.) denotes a weight function [23]. The Anderson-Darling statistic named after Theodore Wilbur

Anderson and Donald A Darling is given by

A2 = n

∫ ∞
−∞

{F̂n(x)−G(x)}2

G(x) {1−G(x)}
dG(x) (6)

which is identical to the general form outlined in Equation (5) with the weight function being equal to

[G(x) {1−G(x)}]−1
[21]. The hypotheses for the Anderson-Darling test are:

H0: The data comes from a speci�ed distribution.

H1: The data does not come from the speci�ed distribution.

The simplest form of an Anderson-Darling test does not require the estimation of distribution param-

eters although cases do exist when distribution parameters are required to be estimated. Considering an

Anderson-Darling test for normality, four di�erent cases can exist based on the given normal distribution

assumptions.

Table 3: Table with the four cases for the Anderson-Darling test
Case u σ2

1 Known Known
2 Known Unknown
3 Unknown Known
4 Unknown Unknown

Cases 2 , 3 and 4 require estimation of parameters for the hypothesised normal distribution. Classical

statistical techniques used for the estimation process typically order the n observations of the sample

data as x1 < x2 < ... < xn and estimate the unknown parameters using the following formulas:

û =


u

X̄ = 1
n

∑n
i=1 xi

ifmean known

otherwise
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σ̂2 =


σ2

1
n

∑n
i=1(xi − u)2

1
n−1

∑n
i=1(xi − x̄)2

if variance is known

if variance is unknownbut themean is known

otherwise

The speci�ed distribution is used to calculate critical values and the test statistic for the Anderson-

Darling test. Tables of critical values are available for many distributions such as the normal, uniform,

lognormal, exponential and many more distributions. These tables have been discussed comprehensively

in the literature by Stephens [20]. Stephens (1974), [20], used a simulation study to compute the table

of critical values below:

Table 4: Stephen's Table of critical values used for the Anderson-Darling test
Case n 15% 10% 5% 2.5% 1%

1 > 5 1.610 1.933 2.492 3.070 3.5857
2 0.908 1.106 1.304 1.573
3 > 5 1.760 2.323 2.904 3.690
4 10 0.514 0.578 0.683 0.779 0.926

20 0.528 0.591 0.704 0.815 0.969
50 0.546 0.616 0.735 0.861 1.021
100 0.559 0.631 0.754 0.884 1.047
∞ 0.576 0.656 0.787 0.918 1.092

The calculation of the test statistic can be quite cumbersome due to the presence of the integral.

However, by using the properties of order statistics and a suitable transformation, the calculation of the

Anderson-Darling test statistic becomes easier. Given sample data of size n (i.e. x1, x2, ..., xn), each

observation is standardized by

yi =
xi − u
σ

and then ordered such that y1 < y2 < ... < yn. Then, using the standard normal cumulative distribution

function, Φ, A2 is calculated using

A2 = −n− 1

n

n∑
i=1

(2i− 1) [ln(Φ(yi)) + ln(1− Φ(yn+i−1))] (7)

where n is the sample size and i represents the ithsample of the order statistics. Equation (7) is a

closed formula that can be utilized to compute the test statistic when no estimation of parameters of

the underlying distribution is required. In contrast, Equation (6) cannot be used to compute the test

statistic if estimation of parameters of the underling distribution is required. Through the simulation

study, Stephens concluded that the estimation of parameters for the underlying hypothesized distribution

from the given sample improves the test even if they are known [20]. He further computed a modi�ed
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Anderson-Darling statistic typically used for case 4. The formula for the modi�ed statistic is given by :

A∗2 =


A2(1 + 0.75

n −
2.25
n2 )

A2

if u andσ2 is unknown

otherwise

If A2 or A∗2 exceed the corresponding critical values, the null hypothesis is rejected at the corresponding

signi�cance level. The critical values in Table 1 are used for the A2 statistic while A∗2 is rejected whenA∗2

is greater than 0.631, 0.752 and 1.035 for the 10% , 5%, and 1% level of signi�cance respectively [20]. The

inference used in the latter statistic, A∗2, only holds for a sample size of n ≥ 8 based on simulations studies

conducted by Lewis [12]. Lewis tabulated the results of the simulation conducted at the IBM Research

Center and was able to conclude that the aforementioned critical values are good approximations to use

for inference when working with the Anderson-Darling test. See tables by Lewis (1961), [12], for more

details.

The Anderson-Daring is considered to have excellent theoretical properties, however the test performs

poorly when applied to some data sets. The data may contain ties (repeating sample data observations)

and this adversely a�ects the Anderson-Darling test due to poor precision[13]. Hence, as the number

of ties increase in sample data, the Anderson-Darling test will yield incorrect results that indicate that

the data sample is not normal regardless of how good the sample data mimics normally distributed

data. When the Anderson-Darling test is used for normality testing, results have shown that it is a good

statistical tool for detecting most departures from normality [20]. Using a weight function that equals

one in Equation (6) reduces the the Anderson-Darling statistic to a statistic that is commonly referred

to as the Cramér-von Mises statistic that is discussed in the next section.

3.3 The Cramér-von Mises test

The Cramér-von Mises statistic also belongs to the quadratic class of EDF statistics and as a result the

statistic is also in the form of

Q = n

∫ ∞
−∞

w(G(x)){F̂n(x)−G(x)}2dG(x)

Given that the weight function

w(G(x)) = 1

the Anderson-Darling statistic described in the previous simpli�es to the statistic called the Cramér-von

Mises statistic. The Cramér-von Mises statistic is de�ned as:
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W 2 = n

∫ ∞
−∞
{F̂n(x)−G(x)}2dG(x) (8)

which originated from the works of [23] and [5]. Since the Cramér-von Mises statistic and the Anderson-

Darling statistic have di�erent weight functions, the statistics exhibit di�erent properties. For instance,

unlike the Cramér-von Mises statistic, the Anderson-Darling statistic places more emphasis on sample

data points in the tails of the distribution [21].

The calculation for the Cramér-von Mises statistic, as with the Anderson-Darling statistic, has been

simpli�ed to make computations more elementary. Cramér (1928), [5], and von Mises (1931), [22],

developed the equation that utilizes order statistics. Given sample data of sizen (i.e. x1, x2, ..., xn)

ordered in ascending order such that x1 < x2 < ... < xn , an alternative formula for the Cramér-von

Mises statistic is given by:

W 2 =

n∑
i=1

(
G(xi)−

2i− 1

n

)2

+
1

12n
(9)

where n is the sample size, i represents the ith sample of the order statistics and G(xi) is the hypothesised

distribution value of the ith sample of the order statistics. The formula given by Equation (9) is known

as the Cramér-von Mises statistic for one sample. The hypotheses for the test are

H0 : The sample data comes from a normal population

and

H1 : The sample data does not come from a normal population

The critical values for the Cramér-von Mises test are tabulated in the same tables that tabulate the

critical values for the Anderson-Darling test [2]. Stephens (1974), [20], used the same simulation study to

compute the critical values with the one distinction being the weight function for the Cramér-von Mises

statistic. If the value computed using Equation (9) is larger than the tabulated critical value, then the

null hypothesis that the data comes from the distribution is rejected.

3.4 The Shapiro-Wilk test

Analysis of variance (ANOVA) is a parametric statistical tool typically used to test to which extent

two or more groups di�er in an experiment. Like many other parametric methods, ANOVA requires

extensive testing of the underlying assumptions such as independence and normality [3]. Shapiro and

Wilk (1965),[15], describes a test that was proposed in 1965 called the Shapiro-Wilk test which is primarily
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used for testing for normality in the analysis of variance. The Shapiro-Wilk test is a hypothesis test that

tests whether a sample comes from a normal population or not. The Shapiro-Wilk statistic is de�ned as:

W =

(
n∑
i=1

aix(i)

)2

n∑
i=1

(xi − x̄)
2

where

• x̄ = 1
n

∑n
i=1 xi is the sample mean

• x(i) is the i
th order statistic

• ai are constants de�ned as follows:

(a1, a2, ..., an) =
mTV −1

(mTV −1V −1m)1/2

where

• m = (m1,m2, ...,mn)T .

• m1,m2, ...,mn are the expected values of the x′(i)s.

• V is the covariance matrix of the x′(i)s[15].

The Shapiro-Wilk test is computationally demanding and therefore is typically utilized when the sample

size is relatively small. For instance, in SAS the Shapiro-Wilk test is only performed in the UNIVARIATE

procedure for n ≤ 2000. Note however that Shapiro and Wilk (1965), [15], showed that the test is likely

to yield statistically signi�cant results if a larger sample size is used.

3.5 The Jarque-Bera test

The Jarque-Bera test examines the skewness and kurtosis of sample data and compares the two properties

to the corresponding properties of the normal distribution to determine whether the sample data is normal

or not [8]. As mentioned in Section 2.2, the skewness of a distribution indicates to what extent the

observations of the data set are symmetric about the mean and the kurtosis of the distribution measures

the thickness in the tails or the �atness/steepness of the probability density function. The kurtosis and

skewness of the distribution are related to the moments of the distribution thus moments are an integral

component of the Jarque-Bera test [8].

Jarque & Bera (1978), [8], considered using a Lagrange multiplier method to test the assumption of

normality for sample data. The test statistic proposed for the test is:
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LM = N [(
√
b1)2/6 + (b2 − 3)2/24] (10)

where

√
b1 = û3/û

3/2
2

and

b2 = û4/û
2
2

Note that b1 in equation Equation (10) is the Pearson coe�cient of skewness while b2 represents the

Pearson coe�cient of kurtosis. û2, û3 and û4 are estimates of the 2nd, 3rd and 4th central moments

respectively. Note from Lemma 2 the second central moment is σ2.

The Jarque-Bera test uses the test statistic in Equation (10) to test the hypotheses:

H0 : The observations of the sample data are normal

H1 : The observations of the sample data are not normal

Since excess kurtosis was de�ned as

excess kurtosis = 3− Pearson coe�ecient of kurtosis

from Section 2.2, an alternative formulation of the hypotheses of the Jarque-Bera test are given as:

H0 : The skewness and excess kurtosis of the sample data are both 0

and

H1 : Either the skewness or the excess kurtosis is not 0

Under H0, the test statistic in Equation (10) is asymptotically χ2
(2) distributed [8]. Hence, the chi-

square tables are used for inference for the Jarque-Bera test.
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4 Simulation Study

4.1 The distributions utilised for the simulations

The simulation study will focus on 8 di�erent distributions that are obtained by carefully selecting a

combination of parameters for the van Staden-Loots distribution. The parameter values are calculated

by specifying the L-location L1, L-scale L2 , L-skewness ratio τ3 and the L-kurtosis ratio τ4. L1 and L2

will always be set to 0 and 1 respectively for all the distributions while τ3 and τ4 will vary between the

distributions. The 8 distributions being considered are given in the Table 5.

Table 5: The 8 distributions with their respective L-moment ratios
Distribution L-moment ratios

1. Uniform, symmetric τ3 = 0 and τ4 = 0
2. Platykurtic, symmetric τ3 = 0 and τ4 = 1

12

3. Platykurtic, asymmetric τ3 = 1
6 and τ4 = 1

12

4. Normal, mesokurtic, symmetric τ3 = 0 and τ4 = 30
Π arctan

(√
2
)
− 9

5. Mesokurtic, asymmetric τ3 = 1
6 and τ4 = 30

Π arctan
(√

2
)
− 9

6. Logistic, leptokurtic, symmetric τ3 = 0 and τ4 = 1
6

7. Skew-logistic, leptokurtic, asymmetric τ3 = 1
6 and τ4 = 1

6

8. Exponential, leptokurtic, asymmetric τ3 = 1
3 and τ4 = 1

6

A graphical illustration of the density curves of the 8 distributions is given on the next page in

Figure 6.

Mathematica code:

Clear["Global`*"];

L1= 0;

L2=1;

τ3=...;

τ4=...; (**τ3 and τ4 values change for each di�erent distribution**)

λ = If
(
τ4 == N

[
1
6

]
, 0, 3+7τ4−

√
τ4+98τ4−1

2(1−τ4)

)
;

δ = If
(
λ == 1, 0.5, 0.5

(
1− τ3(λ+3)

λ−1

))
;

β = L2(λ+ 1)(λ+ 2);

α = L1 + β(1−2δ)
λ+1 ;

ParametricP lot
[
If
[
λ == 0,

{
α+ β ((1− δ) log [p]− δlog [1− p]) , p(1−p)

β(δp+(1−δ)(1−p))

}]]
α+ β

(
(1− δ)

(
pλ−1
λ

)
− δ

(
(1−p)λ−1

λ

))
, 1

β((1−δ)pλ−1+δ(1−p)λ−1)
, p, 0.0000001, 0.9999999

AspectRatio− > 0.75, P lotRange− > MaxRecursion− > 15, F rame− > True,

P lotStyle− > Black, Thickness[0.005]];
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1) Uniform, symmetric 2) Platykurtic, symmetric

3) Platykurtic, asymmetric 4) Normal, mesokurtic, symmetric

5) Mesokurtic, asymmetric 6) Logistic, leptokurtic, symmetric

7) Skew-logistic, leptokurtic, asymmetric 8) Exponential, leptokurtic, asymmetric

Figure 6: Graphical representations of the 8 distributions used for the simulation
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4.2 The empirical α′s

To calculate the empirical α′s, the GLDvSL was used to get the normal approximation (Distribution 4).

Then 10 000 Monte Carlo simulated samples of di�erent sizes n (n = 10 (small), n = 50 (medium) andn =

100 (large) ) were simulated from the normal approximation for the simulation study. Applying the

Kolmogorov-Smirnov test, the Cramér-von Mises test, the Anderson-Darling test, the Shapiro-Wilk test

and the Jarque-Bera test to the simulated samples, di�erent empirical α values for α = 0.01, α = 0.05

and α = 0.1 were calculated and tabulated. Table 6 tabulates the calculated α values for the di�erent

tests for n = 20, 50 and 100.

Table 6: Empirical alpha of tests for normality
Test n 0.01 0.05 0.1

Kolmogorov Smirnov 20 0.0090 0.0450 0.0953
50 0.0095 0.0483 0.0983
100 0.0099 0.0517 0.1042

Anderson-Darling 20 0.0086 0.0473 0.0934
50 0.0079 0.0476 0.0974
100 0.0093 0.0478 0.0980

Cramér-von Mises 20 0.0083 0.0474 0.0968
50 0.0084 0.0494 0.0984
100 0.0100 0.0481 0.1008

Shapiro-Wilk 20 0.0085 0.0441 0.0949
50 0.0078 0.0449 0.0946
100 0.007 0.0402 0.0876

Jarque-Bera 20 0.0079 0.0469 0.0992
50 0.0058 0.0421 0.0925
100 0.0045 0.0376 0.0845

Since Table 6 tabulates empirical α values using the normal approximation by the GLDvSL, the

actual signi�cance level used for hypothesis testing using the tests is not based on theory rather on the

observations or the simulated Monte Carlo samples. For instance, a Kolmogorov-Smirnov test applied to

a 10 000 samples of size 20, is actually conducted at a signi�cance level of 0.009 instead of the theoretical

signi�cance level of 0.01. Also, a Cramér-von Mises test applied to a 10 000 samples of size 50, is actually

conducted at a signi�cance level of 0.0084 instead of the theoretical signi�cance level of 0.01. And so on.

Hence, the actual signi�cance level will di�er from the empirical signi�cance level. The Jarque-Bera test

consistently has the bigger di�erence between the actual signi�cance level and the empirical signi�cance

level among the 5 tests. The Kolmogorov Smirnov, Anderson-Darling, Cramér-von Mises and Shapiro-

Wilk tests generally give empirical powers similar to the theoretical powers however it can be noted that

the Shapiro-Wilk is adversely a�ected by a larger sample size. This is validated by the empirical powers

that are way smaller than theoretical powers when the sample size is n = 100.
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4.3 Mathematica simulation

In Mathematica, data from the 8 distributions was simulated using the quantile function from the def-

inition of the van Staden-Loots distribution in Section 2.4. Then the goodness-of-�t tests described in

Section 3 were applied to the data to �nd the empirical power of the di�erent goodness-of-�t tests.

Table 7, 8 and 9 gives the summary of the empirical powers of the di�erent tests at the di�erent

signi�cance levels. These empirical powers are calculated based on the 10 000 simulated Monte Carlo

samples of size n = 20, n = 50 and n = 100 for data that comes from all the 8 distributions detailed in

Section 4.1. Table 7 tabulates the empirical powers of the di�erent tests based on the 10 000 simulated

Monte Carlo samples at α = 0.01. Tables 8 and 9 tabulate the same information at α = 0.05 and α = 0.1

respectively. Note that the empirical powers for the normal approximation (Distribution 4) will be the

same as the empirical powers calculated in Section 4.2. The distribution was included in the tables for

comparison purposes.

Table 7: Power of the tests for the di�erent distributions at α = 0.01
Distribution n KS AD CvM SW JB

1. Uniform, symmetric 20 0.0237 0.0502 0.0397 0.0308 0.0001
50 0.0827 0.3073 0.2025 0.3602 0
100 0.2843 0.8129 0.6193 0.9459 0

2. Platykurtic, symmetric 20 0.0079 0.0080 0.0081 0.0039 0.0011
50 0.0107 0.0123 0.0109 0.0070 0
100 0.0162 0.0257 0.0213 0.0166 0

3. Platykurtic, asymmetric 20 0.0620 0.1004 0.0898 0.1062 0.0299
50 0.2382 0.4639 0.3784 0.5464 0.0589
100 0.5733 0.8975 0.8011 0.9688 0.2005

4. Normal, mesokurtic, symmetric 20 0.0090 0.0086 0.0083 0.0085 0.0079
50 0.0095 0.0079 0.0084 0.0078 0.0058
100 0.0093 0.0093 0.0100 0.0070 0.0045

5. Mesokurtic, asymmetric 20 0.0612 0.1001 0.0880 0.1209 0.0690
50 0.2116 0.3851 0.3283 0.4674 0.1939
100 0.5030 0.7849 0.7010 0.8747 0.4793

6. Logistic, leptokurtic, symmetric 20 0.0169 0.0270 0.0244 0.0408 0.0564
50 0.0303 0.0555 0.0444 0.0986 0.1228
100 0.0460 0.0968 0.0768 0.1732 0.2170

7. Skew-logistic, leptokurtic, asymmetric 20 0.0805 0.1348 0.1202 0.1658 0.1344
50 0.2490 0.4105 0.3656 0.4897 0.3631
100 0.5390 0.7572 0.7039 0.8168 0.6760

8. Exponential, leptokurtic, asymmetric 20 0.3156 0.5593 0.5028 0.6261 0.3148
50 0.8527 0.9834 0.9607 0.9948 0.7579
100 0.9987 1 0.9998 1 0.9893
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Table 8: Power of the tests for the di�erent distributions at α = 0.05
Distribution n KS AD CvM SW JB

1. Uniform, symmetric 20 0.1045 0.191819 0.1620 0.1998 0.0019
50 0.2928 0.6172 0.4812 0.7520 0.0001
100 0.6260 0.9598 0.8625 0.9967 0.5570

2. Platykurtic, symmetric 20 0.0468 0.0469 0.0504 0.0400 0.0094
50 0.0589 0.0698 0.0681 0.0551 0.0011
100 0.0802 0.1186 0.1070 0.1127 0.0014

3. Platykurtic, asymmetric 20 0.1913 0.2732 0.2435 0.3217 0.1317
50 0.4910 0.7211 0.6383 0.8233 0.3279
100 0.8237 0.9797 0.9367 0.9967 0.8474

4. Normal, mesokurtic, symmetric 20 0.0450 0.0473 0.0474 0.0441 0.0469
50 0.0483 0.0476 0.0494 0.0449 0.0421
100 0.0517 0.0478 0.0481 0.0402 0.0376

5. Mesokurtic, asymmetric 20 0.1837 0.2513 0.2271 0.2989 0.2050
50 0.4422 0.6258 0.5641 0.7141 0.4893
100 0.7508 0.9198 0.8750 0.9624 0.8638

6. Logistic, leptokurtic, symmetric 20 0.0731 0.0970 0.0864 0.1178 0.1511
50 0.1057 0.1475 0.1332 0.1969 0.2677
100 0.1500 0.2265 0.1974 0.3033 0.4053

7. Skew-logistic, leptokurtic, asymmetric 20 0.2080 0.2732 0.2518 0.3196 0.2868
50 0.4644 0.6081 0.5685 0.6658 0.6048
100 0.7493 0.8835 0.8551 0.9125 0.8808

8. Exponential, leptokurtic, asymmetric 20 0.5670 0.7691 0.7193 0.8307 0.5641
50 0.9608 0.9965 0.9913 0.9998 0.9583
100 1 1 1 1 1

Table 9: Power of the tests for the di�erent distributions at α = 0.10
Distribution n KS AD CvM SW JB

1. Uniform, symmetric 20 0.2031 0.3178 0.2808 0.3571 0.0101
50 0.4542 0.7641 0.6395 0.8813 0.2992
100 0.7886 0.9841 0.9352 0.9997 0.9647

2. Platykurtic, symmetric 20 0.0934 0.0975 0.1005 0.0864 0.0281
50 0.1192 0.1409 0.1336 0.1253 0.0127
100 0.1606 0.2106 0.1922 0.2158 0.0563

3. Platykurtic, asymmetric 20 0.3086 0.4029 0.3644 0.4660 0.2462
50 0.6326 0.8276 0.7567 0.9107 0.6549
100 0.9082 0.9921 0.9742 0.9996 0.9842

4. Normal, mesokurtic, symmetric 20 0.0953 0.0934 0.0968 0.0949 0.0992
50 0.0983 0.0974 0.0984 0.0946 0.0925
100 0.1042 0.0980 0.1008 0.0876 0.0845

5. Mesokurtic, asymmetric 20 0.2894 0.3643 0.3348 0.4154 0.3254
50 0.5795 0.7366 0.6828 0.8092 0.6931
100 0.8490 0.9578 0.9289 0.9835 0.9612

6. Logistic, leptokurtic, symmetric 20 0.1383 0.160632 0.1513 0.1841 0.2349
50 0.1809 0.2284 0.2073 0.2757 0.3689
100 0.2435 0.3269 0.2952 0.3947 0.5061

7. Skew-logistic, leptokurtic, asymmetric 20 0.3066 0.3745 0.3496 0.4205 0.4031
50 0.5880 0.7035 0.6727 0.7491 0.7292
100 0.8389 0.9247 0.9058 0.9409 0.9371

8. Exponential, leptokurtic, asymmetric 20 0.6964 0.8538 0.8118 0.9043 0.7198
50 0.9841 0.9991 0.9969 1 0.9941
100 1 1 1 1 1
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4.4 SAS simulation

In SAS, the the Kolmogorov-Smirnov test, the Cramér-von Mises test, the Anderson-Darling test, the

Shapiro-Wilk test and the Jarque-Bera test were computed using the same methodology used for the

simulation in Mathematica as described in Section 4.3. To perform the Shapiro-Wilk test power study,

a comparison of the test between the two softwares was investigated. Hence, after using the same

methodology to perform the Shapiro-Wilk test in SAS as was done in Mathematica, the data was exported

from SAS and imported into Mathematica for comparisons to be made using graphical tools such as p-

value graphs. The SAS code used for the simulation is included in the appendix. In Table 10, the power

of the Shapiro-Wilk test is tabulated for the di�erent distributions for the simulation conducted in SAS.

Table 10: Power of the Shapiro-Wilk test
Distribution n 0.01 0.05 0.10
1. Uniform, symmetric 20 0.0303 0.1966 0.3561

50 0.0303 0.1966 0.3561
100 0.0303 0.1966 0.3561

2. Platykurtic, symmetric 20 0.0043 0.0395 0.0909
50 0.0050 0.0516 0.1214
100 0.0157 0.1055 0.2149

3. Platykurtic, asymmetric 20 0.0583 0.2117 0.3403
50 0.5399 0.8243 0.9144
100 0.9622 0.9956 0.9988

4. Normal, mesokurtic, symmetric 20 0.00831 0.0438 0.09492
50 0.0083 0.0439 0.0940
100 0.0097 0.0401 0.0869

5. Mesokurtic, asymmetric 20 0.0867 0.2978 0.4149
50 0.3256 0.7132 0.8087
100 0.7007 0.9619 0.9829

6. Logistic, leptokurtic, symmetric 20 0.0476 0.1221 0.1877
50 0.0953 0.1962 0.2693
100 0.1673 0.3096 0.3964

7. Skew-logistic, leptokurtic, asymmetric 20 0.1648 0.3174 0.4122
50 0.4905 0.6682 0.7463
100 0.8160 0.9109 0.9431

8. Exponential, leptokurtic, asymmetric 20 0.6261 0.8315 0.9033
50 0.9949 0.9993 1
100 1 1 1

4.5 SAS and Mathematica comparison of the Shapiro-Wilk test

The Shapiro-Wilk test has more power for simulations conducted in Mathematica than simulations con-

ducted in SAS. Although the Mathematica simulation study indicates more power, the di�erence between

the power of both softwares is very small. A graphical representation of the p-value histograms for the

uniform symmetric and skew-logistic leptokurtic asymmetric distributions between the two softwares is

given in Figure 7. To further validate this, Table 11 tabulates and compares the power ( for n = 100 and

α = 0.05) of both softwares for four distributions.
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SAS Mathematica

Uniform symmetric distribution

SAS Mathematica

Skew-logistic leptokurtic asymmetric distribution

Figure 7: Graphical comparison between the SAS and Mathematica histograms of the Shapiro-Wilk test

Table 11: Shapiro-Wilk test power comparison between SAS and Mathematica
Distribution SAS Mathematica

Uniform symmetric 0.1966 0.1998
Platykurtic asymmetric distributions 0.9956 0.9967

Logistic leptokurtic symmetric 0.9109 0.9125
Exponential leptokurtic asymmetric 1 1

Although both softwares produced di�erent empirical powers, the di�erence is insigni�cant. This is

expected as both softwares use similar processes to conduct the Shapiro-Wilk hypothesis test.

4.6 Power of the Shapiro-Wilk test

The Shapiro-Wilk test has very good power when it is compared to the other four tests. It performs as well

as the Anderson-Darling test which is the best EDF test. The Shapiro-Wilk test performs particularly

well for skewed alternative distribution. Another noticeable element of the Shapiro-Wilk test is that it

is adversely a�ected by the sample size n. This is indicated by the drastic increase in the power of the

test for n = 100. Figure 8 graphically illustrates how the power of the Shapiro-Wilk test is a�ected by

the skewness by considering how the test performs for symmetric and asymmetric distributions. Then in
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Table 12, the e�ect of the sample size on the Shapiro-Wilk test is shown by considering 4 distributions

at α = 0.05.

Symmetric Alternatives

Platykurtic symmetric Logistic leptokurtic symmetric

Asymmetric Alternatives

Platykurtic, asymmetric Skew-logistic, leptokurtic, asymmetric

Figure 8: Shapiro-Wilk test power comparison between symmetric and asymmetric alternatives

Table 12: E�ect of the sample size on the Shapiro-Wilk test
Distribution n = 20 n = 50 n = 100

Uniform, symmetric 0.1998 0.752 0.9967
Mesokurtic, asymmetric 0.2989 0.7141 0.9624

Skew-logistic, leptokurtic, asymmetric 0.3196 0.6658 0.9125
Platykurtic, asymmetric 0.3217 0.8233 0.9967

4.7 Power of the Jarque-Bera test

Table 7, 8 and 9 clearly show that the Jarque-Bera test has the lowest power among all 5 tests for

symmetric alternatives. Using p-value graphs for the uniform symmetric distribution highlights this

property very well in Figure 9. This is attributed to the fact that the Jarque-Bera test statistic is based

on the skewness and kurtosis of a distribution. Hence, when applied to a uniform symmetric distribution,

only the skewness component of the distribution is similar to the normal distribution whereas the tails

on the uniform symmetric distribution di�ers from the tails the normal distribution.
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Kolmogorov-Smirnov Anderson-Darling

Cramér-von Mises Shapiro-Wilk

Jarque-Bera

Figure 9: Histograms comparing power of the tests for all the goodness-of-�t tests against the uniform
symmetric alternative at α = 0.05

Figure 9 illustrates how the Jarque-Bera test performs when the alternative distribution is symmetric,

hence when the skewness of the alternative distribution matches that of the normal distribution. The

Jarque-Bera test performs better when the alternative distribution is asymmetric leptokurtic as compared

to symmetric platykurtic distribution. And in comparison to the normal mesokurtic distribution which

is symmetrical, the Jarque-Bera test has more power for asymmetric leptokurtic than normal mesokurtic

distribution while the test has more power for the normal mesokurtic distribution than the symmetric

platykurtic distribution. In Figure 10, for samples of size n = 50 and α = 0.05, the Jarque-Bera test

was applied to the platykurtic symmetric, normal mesokurtic symmetric and the skew-logistic leptokurtic

35



asymmetric distributions for comparisons of the p-value graphs.

Platykurtic, asymmetric Normal, mesokurtic, symmetric

Skew-logistic,leptokurtic, asymmetric

Figure 10: Histograms comparing power of the Jarque-Bera test applied to di�erent distributions atα =
0.05

4.8 Power of the EDF tests

For the Kolmogorov-Smirnov, Anderson-Darling and Cramér-von Mises tests, the Anderson-Darling test

consistently has the higher power between the three EDF tests. However, comparison between the three

tests is a bit �awed because of distribution assumptions required for the hypothesis testing. In Section

3.2, it was shown that 4 di�erent cases for the Anderson-Darling test exist. And using the assumption

of normality under the null hypothesis, the report assumes the mean and variance of the underlying null

hypothesis is known. This is rarely the case in theory and an estimation method for the normal parameters

such as ordinary least squares is typically used to get estimates for the hypothesised normal distribution.

Another discrepancy that exists in the comparison of the EDF tests is that the Kolmogorov-Smirnov test

statistic requires a sample size of n ≥ 2000 and the simulation study used sample sizes n = 20(small),

n = 50(moderate) and n = 100(large). However, a comparison of the three EDF tests between the four

distributions given in Table 8 at a large sample size and α = 0.05 indicates that the Anderson-Darling

test generally has the better power between the tests.
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Uniform symmetric distribution

Kolmogorov-Smirnov Anderson-Darling Cramér-von Mises

Platykurtic symmetric distribution

Kolmogorov-Smirnov Anderson-Darling Cramér-von Mises

Skew-logistic leptokurtic asymmetric distribution

Kolmogorov-Smirnov Anderson-Darling Cramér-von Mises

Exponential leptokurtic asymmetric distribution

Kolmogorov-Smirnov Anderson-Darling Cramér-von Mises

Figure 11: Histograms of the powers for the Kolomogorov-Smirnov, Anderson-Darling and Cramér-von
Mises tests atα = 0.05
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5 Conclusion

The report investigated how the Kolmogorov-Smirnov test, the Cramér-von Mises test, the Anderson-

Darling test, the Shapiro-Wilk test and the Jarque-Bera test perform when testing for normality. By

using a simulation study, the �ve tests were compared and contrasted to see how they perform against

di�erent alternative distributions. The simulation study mainly consisted of using Monte Carlo samples

and applying the di�erent tests to get the power of the tests. The power of these tests was used to critic

and analyse the performance of the �ve di�erent goodness-of-�t tests. The Anderson-Darling test was

generally the best performing EDF test while the Jarque-Bera test generally performed the worst. The

Shapiro-Wilk test generally performed the best from all the �ve goodness-of-�t tests. Tables 7, 8 and 9

were used to compare and rank the tests. However, beyond just the power of the tests, other aspects

such as the sample size, assumptions of the underlying hypothesised distribution and the complexity of

the test statistic calculation should be considered when comparing goodness-of-�t tests.

Shortfalls of the report include software limitations that restricted the comparison of the tests between

di�erent statistical software packages. In SAS, the Jarque-Bera test is not incorporated into the system

however the test forms part of the hypothesis tests provided in Mathematica. Comprehensive power

comparisons on goodness-of-�t tests have appeared in literature. However none of the studies considered

symmetric mesokurtic distributions which are non-normal and that could be a recommendation for any

future works that are done on goodness-of-�t tests.

38



References

[1] T. W. Anderson and D. A. Darling. Asymptotic theory of certain "goodness of �t" criteria based

on stochastic processes. The Annals of Mathematical Statistics, 23(2):193�212, 1952.

[2] T. W. Anderson and D. A. Darling. A test of goodness of �t. Journal of the American Statistical

Association, 49(268):765�769, 1954.

[3] L.J. Bain and M. Engelhardt. Introduction to Probability and Mathematical Statistics. Classic Series.

Brooks/Cole, 2nd edition, 2000.

[4] N. Balakrishnan and V. B Nevzorov. A Primer on Statistical Distributions. Wiley., 2003.

[5] H. Cramér. On the composition of elementary errors. Scandinavian Actuarial Journal, 11:13�74,

1928.

[6] P Driscoll and F Lecky. An introduction to hypothesis testing. parametric comparison of two groups.

Emergency Medicine Journal, 18(2):124�130, 2001.

[7] J. R. M. Hosking. L-moments: Analysis and estimation of distributions using linear combinations of

order statistics. Journal of the Royal Statistical Society. Series B (Methodological), 52(1):105�124,

1990.

[8] C.M. Jarque and A. K. Bera. A test for normality of observations and regression residuals. Interna-

tional Statistical Review/Revue Internationale de Statistique, 55(2):163�172, 1987.

[9] S. Johnson, N. L. Kotz and N Balakrishnan. Continuous Univariate Distributions. Wiley, 2nd

edition, 1994.

[10] MC Jones. On some expressions for variance, covariance, skewness and l-moments. Journal of

Statistical Planning and Inference, 126(1):97�106, 2004.

[11] A.N. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto

Italiano degli Attuari, 4:83�91, 1933.

[12] Peter AW Lewis. Distribution of the anderson-darling statistic. The Annals of Mathematical Statis-

tics, pages 1118�1124, 1961.

[13] George Marsaglia and John Marsaglia. Evaluating the anderson-darling distribution. Journal of

Statistical Software, 9(2):1�5, 2004.

[14] N Unnikrishnan Nair, PG Sankaran, and N Balakrishnan. Quantile-based reliability analysis.

Springer, 2013.

39



[15] S.S. Shapiro and B. M. Wilk. An analysis of variance test for normality (complete samples).

Biometrika, 52(3-4):591�611, 1965.

[16] G. P. Sillito. Derivation of approximants to the inverse distribution function of a continuous uni-

variate population from the order statistics of a sample. Biometrika, 56(3):641�650, 1969.

[17] G. P. Sillitto. Interrelations between certain linear systematic statistics of samples from any contin-

uous population. Biometrika, 38(3/4):377�382, 1951.

[18] G. P. Sillitto. Some relations between expectations of order statistics in samples of di�erent sizes.

Biometrika, 51(1/2):259�262, 1964.

[19] N. Smirnov. Sur les escarts de la courbe empirique. Recueil Mathématique, 6(1):3�26, 1939.

[20] M.A. Stephens. Edf statistics for goodness of �t and some comparisons. Journal of the American

Statistical Association, 69(10):730�737, 1974.

[21] O. Thas. Comparing Distributions. Springer, 2010.

[22] R. v. Mises. Vorlesungen aus dem Gebiete der angewandten Mathematik. 1. Wahrscheinlichkeitsrech-

nung und ihre Anwendung in der Statistik und Theoretischen Physik. F. Deuticke, 1931.

[23] R. v. Mises. On the asymptotic distribution of di�erentiable statistical functions. The Annals of

Mathematical Statistics, 18(3):309�348, 1947.

[24] Paul J van Staden and MT Theodor Loots. Method of l-moment estimation for the generalized

lambda distribution. In Proceedings of the Third Annual ASEARC Conference, 2009.

[25] Paul Jacobus Van Staden et al. Modeling of generalized families of probability distribution in the

quantile statistical universe. PhD thesis, University of Pretoria, 2014.

40



Appendix

Main Mathematica code

Clear[”Global‘ ∗ ”];

Print[Style[”For all distributions theL− location and theL− scalewill be set to 0 and 1”, Bold]]

L1 = 0;

L2 = 1;

Print[Style[”L− skewness andL− kurtosis ratioswith corresponding

distributions to be considered : ”, Bold]]

Print[Style[”Distribution1(uniform, symmetric) : ”, Bold]]

τ3 = 0;

τ4 = 0;

Print[”L− locationL1 = ”, L1];

Print[”L− scaleL2 = ”, L2];

Print[”L− skewness ratio τ3 = ”, ];

Print[”L− kurtosis ratio τ4 = ”, τ4];

λ = If
(
τ4 == N

[
1
6

]
, 0, 3+7τ4−

√
τ4+98τ4−1

2(1−τ4)

)
;

δ = If
(
λ == 1, 0.5, 0.5

(
1− τ3(λ+3)

λ−1

))
;

β = L2(λ+ 1)(λ+ 2);

α = L1 + β(1−2δ)
λ+1 ;

Print[”Location parameter = ”, α];

Print[”Scale parameter = ”, β];

Print[”Shape parameter = ”, δ];

Print[”Shape parameter = ”, λ];

∗ ∗ The code above is replicated for all 8 distributionswhile changing τ3 and τ4 ∗ ∗i

p = Table[RandomV ariate[UniformDistribution[{0, 1}], n], {i, 1,m}]]

Data
[
If
[
λ == 0,

{
α+ β ((1− δ) log [p]− δlog [1− p]) , p(1−p)

β(δp+(1−δ)(1−p))

}]]
α+ β

(
(1− δ)

(
pλ−1
λ

)
− δ

(
(1−p)λ−1

λ

))
**Kolmogorov-Smirnov Test**

Print[”Test statistic values for theKolmogorov − Smirnov test applied to”,m, ”randomsamples : ”]

KStestvalue = Table[KolmogorovSmirnovTest[data(i), NormalDistribution[0, 1],

”TestStatistic”], {i, 1,m}];
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Histogram[KStestvalue]

Print[”p− values for theKolmogorov − Smirnov test applied to”,m, ”randomsamples : ”]

KSpvalue = Table[KolmogorovSmirnovTest[data(i)], {i, 1,m}];

Histogram[KSpvalue]

**Anderson-Darling Test**

Print[”Test statistic values for theAnderson−Darling test applied to”,m, ”randomsamples : ”]

ADtestvalue = Table[AndersonDarlingTest[data(i), NormalDistribution[0, 1],

”TestStatistic”], {i, 1,m}];

Histogram[ADtestvalue]

Print[”p− values for theAnderson−Darlingv test applied to”,m, ”randomsamples : ”]

ADpvalue = Table[AndersonDarlingTest[data(i)], {i, 1,m}];

Histogram[ADpvalue]

**Cramer von-Mises Test**

Print[”Test statistic values for theCramer − vonMises test applied to”,m, ”randomsamples : ”]

CvMtestvalue = Table[AndersonDarlingTest[data(i), NormalDistribution[0, 1],

”TestStatistic”], {i, 1,m}];

Histogram[CvMtestvalue]

Print[”p− values for theCramer − vonMises test applied to”,m, ”randomsamples : ”]

CvMpvalue = Table[CramerV onMisesTest[data(i)], {i, 1,m}];

Histogram[CvMpvalue]

**Shapiro-Wilk Test**

Print[”Test statistic values for the Shapiro−Wilk test applied to”,m, ”randomsamples : ”]

SWtestvalue = Table[ShapiroWilkTest[data(i), ”TestStatistic”], {i, 1,m}];

Histogram[SWtestvalue]

Print[”p− values for the Shapiro−Wilk test applied to”,m, ”randomsamples : ”]

SWpvalue = Table[ShapiroWilkTest[data(i)], {i, 1,m}];

Histogram[SWpvalue]

**Jarque-Bera Test**

Print[”Test statistic values for the Jarque−Bera test applied to”,m, ”randomsamples : ”]

JBtestvalue = Table[JarqueBeraTest[data(i), ”TestStatistic”], {i, 1,m}];

Histogram[JBtestvalue]

Print[”p− values for the Jarque−Bera test applied to”,m, ”randomsamples : ”]

JBpvalue = Table[JarqueBeraTest[data(i)], {i, 1,m}];

Histogram[JBpvalue]

42



Main SAS code

options ps = 5000no date page no = 1;

proc iml;

n = 50;

m = 10000;

seed = 13;

L1 = 0;

L2 = 1;

tau3 = 0;

tau4 = 0;

if tau4 = 0 then lamda = 1/6;

if tau4 ∧ = 0 then lamda = (3 + 7#tau4− sqrt(tau##2 + 98#tau4 + 1))/(2#(1− tau4));

if lambda = 1 then delta = 0.5;

if lambda=1 then delta = 0.#(1− tau3#(lambda+ 3)/(lambda− 1));

beta = l2#(lambda+ 1)#(lambda+ 2);

alpha = l1 + beta#(1− 2#delta)/(lambda+ 1);

p = ranuni(j(m,n, seed));

if lambda = 0 then x = alpha+ beta(1− delta)#log(p)− delta#log(1− p));

if lambda=0 then x = alpha+beta#((1−delta)#(p##lambda−1)/lambda−delta#((1−p)##lambda−

1)/lambda);

x = shape(x, n#m, 1);

id = j(m,n, .);

do i = 1 tom;

do j = 1 to n;

id[i, j] = i;

end;

end;

id = shape(id, n#m, 1);

xid = x||id;

varlist = ′x′,′ id′;

create simulateddata fromxid[colname = varlist];

append fromxid;

quit;

43



proc univariate data = simulateddata normal noprint;

var x;

by id;

output out = shapirowilk normaltest = swtestvalue probn = swpvalue;

run;

proc print data = shapirowilk noobs;

var id swpvalue;

run;
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Abstract

Conventional normal linear mixed e�ects regression models have widely been used for the analysis

of clinical trial endpoints without taking into account outliers seen in the data. The objective of this

report is to �t a robust Bayesian linear mixed e�ects regression model for colony forming unit (CFU)

count of early bactericidal activity (EBA) tuberculosis (TB) trials. Statistical regression models of

log(CFU) count over time usually assume normally distributed random e�ects and residuals for the

analysis of EBA of TB drugs. These regression models therefore do not necessarily accommodate

outliers seen in the data. Outliers are occasionally present in CFU count due to erroneous sputum

sampling. Such outliers can in�uence estimates of the rate of change in CFU count.

A Bayesian linear mixed e�ects regression model was introduced to o�er a robust approach to

accommodate outliers in the data. The proposed regression model �ts the Student t distribution to

residuals, and the normal distribution to random coe�cients. A Bayesian framework is adopted for

estimation of and inferences on model parameters. A Bayesian approach is an alternative to classical

methods which is relatively easy to implement.
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1 Introduction

Mixed e�ects regression models are those that include both �xed and random e�ects, and are �exible in

the modeling of longitudinal data and other correlated data. In clinical trials, random e�ects generally

represent patient-speci�c e�ects, whereas �xed e�ects represent the population-level e�ects of the model.

With the study of longitudinal data of clinical trials, study participants are evaluated over a period of

time and, for each individual, data are collected at multiple time points. Mixed e�ects models may be

viewed as extensions of classical regression models for multi-level (or hierarchical) data by introducing

random e�ects in the model. The feature that distinguishes mixed models from �xed e�ects models is

that mixed models can model data for which the observations are not independent. In other words, mixed

models can model the covariance structure of the data [3]. Treating longitudinal measurements, collected

from the same patient, as uncorrelated data is inappropriate when making inferences on clinical endpoints

of interest. Mixed e�ects regression models take into account correlation among measurements made on

the same patient, either by incorporating random e�ects or, (random coe�cients) by the speci�cation

of relevant covariance patterns. Mixed e�ects regression models allow one to �t longitudinal data of all

patients of a clinical trial in a single model, such that the model parameters can vary between patients

(hence, the applicable regression can be tailored for each patient) [18]. These models are also appealing

in the sense that random e�ects estimates are generally shrunken towards their corresponding �xed

e�ects counterparts, and therefore may improve the precision of parameter estimates that are of interest

[5]. Furthermore, mixed e�ects regression models appropriately accommodate missing (when missing at

random) and unbalanced data which are regularly encountered in longitudinal applications.

Most linear mixed e�ects regression models used in practice assume that both the residuals and ran-

dom e�ects are normally distributed. However, in the presence of outliers (heavy tails), such models

lack robustness to deviations from certain model assumptions which can lead to invalid inference and

unreasonable parameter estimates [17]. Robust regression models are appealing alternatives to conven-

tional regression models in the sense that they accommodate outliers in the data, and are less sensitive

to other departures from the applicable model assumptions [15]. Outliers are occasionally present in

CFU count due to erroneous sputum sampling, and hence, the reasonability to adopt robust methods to

accommodate such outliers [6].

The focus of this report is to �t a robust Bayesian linear mixed e�ects regression model to CFU count

of tuberculosis (TB) treatments of bactericidal activity (EBA) trials. The adopted regression model

�tted to the data assumes that random e�ects follow normal distributions, and incorporates Student t

distributed residuals (hence, the model is potentially robust to outliers present in the data). The Student

t distribution with small degrees of freedom has heavier tails than the corresponding normal distribution.

A robust regression model should maintain the validity of inferences made with a minimal e�ect of outliers
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on statistical inference.

A Bayesian framework is adopted for estimation and inferences of model parameters using Gibbs

sampling available in OpenBUGS. A Bayesian approach is an alternative to classical methods which is

in many cases relatively easy to implement. Bayesian inferences are also advantageous in the sense that

they do not depend on asymptotic approximations as classical inference methods do for complex models

[1].

2 Background Theory

2.1 Need for robust models in tuberculosis research

In EBA trials, the primary goal is to obtain accurate measurements for CFU count collected from sputum

samples. However, outliers are occasionally present in the data due to erroneous sputum sampling or

reporting of data. Factors such as dilution of samples, contamination, slow culture growth, temperature,

and other conditions attribute to erroneous sputum sampling, which result in the presence of outliers in

the data. These outliers can in�uence estimates of the rate of change in CFU count [6].

In most EBA trials, only a small number of patients are allocated per treatment group [8]. The

presence of outliers in such a small number of dataset has an in�uence on the statistical analysis of the

associated �ndings [9]. Previous research suggested that, implausible data points (such as outliers) should

be exclude when �tting a regression model to CFU count [13]. However, the criteria used for identifying

and excluding outliers are not only di�cult to implement, but also in some cases impossible to carry out.

The primary e�cacy analysis of TB trials should rather include all observations in the study (instead of

excluding them). Therefore, given the aspects listed above, it seems reasonable to �t robust regression

methods to accommodate outliers.

2.2 Early bactericidal activity

The EBA of TB drugs is measured as the rate of decrease in CFU count in sputum of patients with

microscopy-positive pulmonary TB that are collected during the �rst days to weeks of treatment [9]. The

EBA of TB drugs assesses the relative potency in the early stages of treatment.

The EBA(t1 − t2) is de�ned as the rate of change in log(CFU) count over a given time interval, say

Day t1 and Day t2 [16], and is expressed as follows:

EBA (t1 − t2) = − f̂ (t2)− f̂ (t1)

t2 − t1
(1)

where f (t) is the appropriate regression function for the CFU count against time, and f̂ (t1) and

f̂ (t2) are the �tted log(CFU) counts at Day t1 and Day t2, respectively [16]. The calculation of the EBA
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from Equation (1) is thus model based (that is, not being based on the observed data). The regression

functions f (t1) and f (t2) can therefore be estimated using all of observed CFU counts available over

time. From Equation (1) , it can be seen that as the rate of change over a given time interval, (i.e.

EBA(t1 − t2)) increases, the e�ectiveness of a given drug against TB bacteria also increases. In other

words, the potency of a given drug against TB bacteria is proportional to the EBA of a TB drug.

2.3 Linear regression function

In this section the linear regression model of CFU count over time is described by the rate of decrease in

CFU count (that is held constant over time). Assuming that the rate of change (decrease) in the expected

CFU count at time t, µ (t) , is proportional to the expected value at time t, then µ (t) , can be expressed

as follows:

dµ (t)

dt
= −λµ (t) (2)

where λ > 0 is a constant that describes the rate of change over time.

From Equation (2) it follows that:

dµ (t)

µ (t)
= −λdt (3)

Integrating both sides of Equation (3) gives:

∫
1

µ (t)
dµ (t) =

∫
−λdt (4)

The solution to Equation (4) is given as:

log (µ [t]) = C − λt (5)

where C is the constant term.

Let α characterise a single intercept parameter (incorporated in the regression function in the Equation

(5)), assume the initial condition to be log (µ [t]) = α , then C can be solved as:

C = α (6)

Replacing C in Equation (5) with Equation (6) results in the following regression function:

log (µ [t]) = α− λt (7)
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Figure 1 shows an example of the plot of the expected CFU count and corresponding time from a

linear regression function, i.e. the plot of Equation (7) for a given patient from a conventional 14-day

EBA study [4].

Figure 1: Plot of the expected CFU count (log([t])) over time

2.4 Bayesian linear mixed e�ects regression model

Longitudinal data, speci�cally in this instance, CFU count over time can be modelled by a linear mixed

e�ects regression model that best explains how the outcome measurements in CFU count are related to

time. The �time� e�ect is incorporated in the regression model as the covariate, resulting in the so called

random coe�cients model. The adopted Bayesian linear mixed e�ects regression model for CFU count

versus time is expressed as follows:

yijk = αij − λijtijk + εijk (8)

where yijk is the CFU count for patient i = 1, ..., Nj in treatment group j = 1, ..., J at time point

k = 1, ...,Kij , and tijk is time measurement, and εijk are the residuals terms. In this case, Nj represents

the number of patients assigned to treatment group j, and Tj represents the total number of time points

across all patients allocated to treatment group j. Let
J∑
j=1

Nj = N represents the total number of patients

in a given trial.
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The model includes the following random coe�cients: (αij) are the intercepts, and (λij) are the

slopes characterising the rate of change over time. The terms αij and λij are the sums of �xed e�ects

and associated random coe�cients, namely:

µij =

 αij

λij

 =

 αj

λj

+

 µ0ij

µ1ij

 (9)

Ωµj =

 σ2
αj σαjλj

σαjλj σ2
λj

 (10)

where µij = (αij , λij)
′
and µj = (αj , λj) (or [µ0ij , µ1ij ]

′
) are respectively the vectors of random and mean

intercepts and slopes. Ωµj are the covariance matrices of the random intercepts and slopes. Here, the

�xed e�ects represent the average e�ect for each treatment group similarly, the �xed e�ects represent the

average e�ect of each treatment group. Random e�ects are speci�ed so that separate regression lines can

be �tted for each patient (here, model parameters are allowed to vary between patients). The speci�cation

of a random coe�cients model generally shrinks the estimates of the random e�ects (hence, regression

estimates per patient) towards the average estimates (or estimates of the �xed e�ects), thus avoiding

outlier estimates of the random e�ects which might arise from incomplete data [3]. The distributions of

εijk are assumed to be independent of the distributions of µij .

2.5 Model speci�cations for Bayesian mixed e�ects regression models

From Equation (8) , the residuals are assumed to follow i.i.d. Student t distributions and random coe�-

cients are assumed to be normally distributed as follows:

εijk|σ2
εj , νj ∼ T

(
0, σ2

εj , νj
)

(11)

where σ2
εj are the scale parameters, and νj are degrees of freedom of the corresponding Student t distri-

bution. The covariance matrices are assumed to follow Wishart distributions.

The density function of εijk|σ2
εj , νj can be written as:

P
(
εijk|σ2

εj , νj
)
∝ 1
√
vj · σεj

Γ
(
νj+1
2

)
Γ
(νj

2

) ×(1 +
1

νj

(
εijk
σεj

)2
)− νj+1

2

(12)

where Γ (.) denotes the gamma function. The scale parameters follow gamma prior distributions,

namely σ−2εj ∼ G
(
10−4, 10−4

)
, and the degrees of freedom follow uniform prior distributions, namely:

νj ∼ U (2, 100) (13)
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The density function of νj is written as:

P (νj) ∝ I (2 ≤ νj ≤ 100) (14)

where I(x) is an indicator function taking the value 1 if x is true, and 0 otherwise.

The speci�cation of the Student t distribution o�ers a robust approach which accommodates outliers

and heavily tailed residuals (depending on its degrees of freedom νj) in the CFU count [13].

Theorem 1. The Student t distribution can be speci�ed as a mixture of a normal distribution with mean

and unknown variance, and an inverse gamma distribution assumed for the unknown variance.

yijk|αij , λij , σ2
ξj , σ

2
εj ∼ N

(
αij − λij · tijk, σ2

ξj · σ2
εj

)
. (15)

σ−2ξj |νj ∼ G
(νj

2
,
νj
2

)
. (16)

Proof. Let yijk|αij − λij , σ2
ξj , σ

2
εj ∼ N

(
αij − λij · tijk, σ2

ξj · σ2
εj

)
.

The probability density function of the normal distribution is given by:

P
(
yijk|σ2

ξj , σ
2
εj

)
= 1√

2πσξjσεj
exp

[
− 1

2
(yijk−(αij−λijtijk))2

σ2
ξjσ

2
εj

]
Let σ−2ξj |νj ∼ G

(νj
2 ,

νj
2

)
.

The probability density function of the gamma distribution is given by:

P
(
σ−2ξj |νj

)
=

(
νj
2 )

νj
2

Γ(
νj
2 )

(
σ−2ξj

) νj
2 −1

exp
(
− νj

2σ2
ξj

)
The marginal probability of yijk|νj is given by:

P (yijk|αij − λij · tijk, νj) =

∫ ∞
0

P
(
yijk|αij − λij · tijk, σ2

ξj , σ
2
εj

)
P
(
σ−2ξj |νj

)
dσ−2ξj

=

∫ ∞
0

1√
2πσξjσεj

exp

[
−1

2

(yijk − (αij − λij · tijk))
2

σ2
ξj · σ2

εj

] (νj
2

) νj
2

Γ
(νj

2

) (σ−2ξj ) νj2 −1 exp

(
− νj

2σ2
ξj

)
dσ−2ξj

=
1√

2πσεj

(νj
2

) νj
2

Γ
(νj

2

) ∫ ∞
0

(
σ−2ξj

) νj
2 + 1

2−1
exp

{
−

[
(yijk − (αij − λijtijk))

2

2σ2
εj

+
νj
2

]
σ−2ξj

}
dσ−2ξj

Since the density function of gamma integrates to 1, it follows that:

=
1√

2πσεj

(νj
2

) νj
2

Γ
(νj

2

) × Γ

(
νj + 1

2

)
×

(
(yijk − (αij − λijtijk))

2

2σ2
εj

+
νj
2

)− νj2 − 1
2
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=
1√

2πσεj

(νj
2

) νj
2

Γ
(νj

2

) × Γ

(
νj + 1

2

)
×
(νj

2

)− νj2 − 1
2 ×

(
1 +

(yijk − (αij − λijtijk))
2

νjσ2
εj

)− νj2 − 1
2

=
1

√
πvjσεj

Γ
(
νj+1
2

)
Γ
(νj

2

) ×(1 +
(yijk − (αij − λijtijk))

2

νjσ2
εj

)− νj2 − 1
2

=
1

√
πvjσεj

Γ
(
νj+1
2

)
Γ
(νj

2

) ×(1 +
1

νj

(
yijk − (αij − λijtijk)

σεj

)2
)− νj+1

2

The above density function is that of a Student t distribution with degrees of freedom νj and scale

parameter σ2
εj .

Accordingly, the unknown variance of the speci�ed mixture distribution integrated out results in the

Student t distribution [21]. In that sense, the Gibbs sampling algorithm with Student t distributed

residuals can be implemented in a straightforward manner as its conjugacy of model parameters (condi-

tional posterior distributions versus prior distributions) is similar to the model with residuals that are

normally distributed. The speci�cation of the Student t distribution as a mixture of random variables is

implemented automatically in OpenBUGS [22].

2.6 Bayesian estimation and inference

A Bayesian method for the estimation of and inferences on model parameters is based on the use of

information contained in the joint posterior distribution of the model parameters. The Bayesian approach

is an alternative to classical methods. The di�erence between Bayesian and classical maximum likelihood

(ML) estimation, is that in Bayesian estimation the unknown parameter is treated as a random variable.

In Bayesian estimation parameter values are fully evaluated in the posterior distribution, whereas with

classical ML estimation parameter values, and their corresponding standard errors are reported which

maximise the corresponding likelihood [10]. Bayesian inferences are also advantageous in the sense that

they do not depend on asymptotic approximations as classical inference methods do for complex models

[1].

Let y be the data assumed to follow a parameter distribution with a probability density function

L (y,Θ) (which is the likelihood of the model parameters), where Θ = (Θ1,Θ2, ...,Θp)
′
is set of p

unknown model parameters with probability density function P (Θ) , called the prior distribution which

expresses information available before any data collection. The Bayesian inference on the unknown model

parameters Θ involves the derivation of the posterior distribution P (Θ | y) of the model parameters,

given the data y, based on the speci�ed prior distribution.

The posterior distribution P (Θ | y) of the model parameters in the Equation (8) can be obtained via

the Bayes theorem, as follows:
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P (Θ | y) =
L (y | Θ) · P (Θ)∫
L (y | Θ) · P (Θ) dΘ

(17)

In Bayesian inference, computation of posterior distributions is often a main challenge due to high

dimension intractable integrals. The Bayesian methods are often implemented by the Markov Chain

Monte Carlo (MCMC) Gibbs sampling algorithm [11]. The Gibbs sampler is a method which draws sam-

ples from the full conditional posterior distribution of the full set of model parameters in question. The

full conditional distribution for each of the parameters in Equation (17) should be derived to enable the

implementation of the Gibbs sampler. The Gibbs sampling algorithm can be implemented in a straight-

forward manner when conjugacy of model parameters exist (that is conditional posterior distributions

are similar to the corresponding prior distributions). In practice, various software such as OpenBUGS,

which is based on the BUGS (Bayesian inference Using Gibbs Sampling) project, are used to carry out

the Gibbs sampling procedure [19]. The main condition before implementation is that the full posterior

densities should be tractable.

Prior distributions for µj ,Ωµj , σ
2
εj and σ2

ξj

Firstly, the prior distribution for µj and Ωµj are speci�ed to respectively follow bivariate normal and

Wishart prior distributions as follows:

µj ∼ N2

(
0, 104 × I2

)
(18)

Ω−1µj ∼W (2, 2×Rj) (19)

where 0 = (0, 0) and I2 denotes a 2× 2 identity matrix and Rj represent 2× 2 inverse scale matrices

from the corresponding Wishart distribution. The posterior distributions of µj and Ωµj are provided in

the appendix of this research report.

Lastly, the prior distributions for both the variances σ2
εj and σ2

ξj are speci�ed to follow gamma

distributions:

σ2
εj ∼ G

(
10−4, 10−4

)
(20)

σ2
ξj ∼ G

(
10−4, 10−4

)
(21)

The posterior distributions of σ2
εj and σ

2
ξj are provided in the appendix of this research report.
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Posterior distributions

The joint posterior distribution of the complete set of regression model parameters is obtained by multiply-

ing the associated likelihood functions and prior distributions (see appendix). The conditional posterior

distributions of the model parameters are derived from the joint posterior distribution by ignoring terms

that do not include the relevant model parameters (see appendix).

3 Application

This section presents applications of the robust linear mixed e�ects models that was �tted to CFU count

data of EBA TB trials. This study was based on data of three TB trials. The corresponding results of

the datasets analysed are discussed here in detail. The CFU data were collected over a period of 14 days

in each of the EBA trials [7].

3.1 NC001 trial

3.1.1 Objectives

This was a Phase II, partially double-blind, randomised clinical trial that assessed the 14-day EBA, safety,

tolerability, and PK of various combinations of TMC207, pyrazinamide, moxi�oxacin, and Rifafour, in a

total of 85 previously untreated drug susceptible TB patients [8]. EBA was described by the evaluation

of CFU count.

3.1.2 Study design

Patients were randomised to receive either monotherapy of TMC207, combination therapy of TMC207

and pyrazinamide, combination therapy of TMC207 and PA-824, combination therapy of PA-824 and

pyrazinamide, combination therapy of PA-824, moxi�oxacin and pyrazinamide, or Rifafour. Overnight

sputum samples were collected daily from Day 0 up to Day 14. The randomisation/treatment and sputum

sampling schedule of the NC001 study are outlined in Table 1 below.

Scheduled Sample Days Treatment Group N
Daily from Day 0 to 14 J 15

J-Z 15
J-Pa 15
Pa-Z 15

Pa-Z-M 15
Rifafour 10
Total 85

Table 1: Treatment and sputum sampling schedule of NC001 trial
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Note: Treatment group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824,

Pa-Z = PA-824 + Pyrazinamide, Pa-Z-M or M-PA-Z = PA-824 + Pyrazinamide + Moxi�oxacin. N =

Total number of randomised patients.

3.1.3 Results

Table 2 shows the results of posterior estimates of EBA(0-14) and corresponding 95% Bayesian credibility

interval (BCIs) for NC001 trial [4].

Normal Student t

Parameter
Treatment

N
Posterior

95% BCI
Posterior

95% BCI
Group Estimate Estimate

EBA(0-14) J 15 0.076 [0.016, 0.143] 0.074 [0.010, 0.145]
J-Z 15 0.135 [0.067, 0.206] 0.133 [0.065, 0.204]
J-Pa 15 0.101 [0.057, 0.146] 0.101 [0.056, 0.146]
Pa-Z 15 0.152 [0.098, 0.204] 0.154 [0.100, 0.207]

Pa-Z-M 15 0.248 [0.085, 0.428] 0.248 [0.087, 0.430]
Rifafour 10 0.142 [0.047, 0.238] 0.146 [0.055, 0.238]

Table 2: Posterior estimates of EBA(0-14) and corresponding 95% BCIs for NC001 trial

Note: BCI: Bayesian credibility interval. N = Total number of randomised patients. Posterior estimate:

Represents the mean of the associated posterior distribution.

Table 2 above shows the posterior estimates and corresponding 95% BCIs of the normal and Student t

models by treatment groups. For example, in treatment group J the posterior estimates and corresponding

95% BCIs for normal and Student t models are given as 0.076 (95% BCI: [0.016, 0.143]) and 0.074

(95% BCI: [0.010, 0.145]) respectively. The posterior estimates and corresponding 95% BCIs of the

Student t model seem to be similar to those of normal model. The di�erences in posterior estimates and

corresponding 95% BCI between the two models is negligible.
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Table 3 shows the results of posterior estimates of νj (degrees of freedom) and corresponding 95%

BCIs for NC001 trial.

Parameter Treatment Group N Posterior Estimate 95% BCI
νj J 15 4.599 [2.115, 12.170]

J-Z 15 3.607 [2.157, 6.437]
J-Pa 15 44.480 [4.053, 96.890]
Pa-Z 15 18.060 [3.133, 86.110]

Pa-Z-M 15 47.630 [5.766, 97.180]
Rifafour 10 10.210 [2.238, 61.090]

Table 3: Posterior estimates of νj and corresponding 95% BCIs for NC001 trial

Note: BCI: Bayesian credibility interval. N = Total number of randomised patients. Posterior

estimate: Represents the mean of the associated posterior distribution.

Table 3 above shows results of posterior estimates and corresponding 95% BCIs for the degrees of

freedom (of residuals) by treatment group. The estimates for νj (the degrees of freedom parameter) are

below 30 in 4 out of 6 cases, thus providing some evidence that the distribution of residuals in CFU

counts is heavy tailed.

For further illustration purposes, Figure 2 graphically illustrates the nested plots of the observed CFU

counts by treatment group [4]. Outliers in CFU count seem to be present in some treatment groups.
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Figure 2: Observed log(CFU) counts over time of NC001 trial
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3.2 NC003 trial

3.2.1 Objectives

This was a TB trial whose objectives included the evaluation of the safety, tolerability, PK and EBA

of 14-day combination therapy of pyrazinamide, clofazimine, PA-824 and TMC207 in 105 previously

untreated TB patients [8]. EBA was described by the evaluation of CFU count.

3.2.2 Study design

Patients were randomised to receive either daily doses of combination therapy of TMC207, PA-824, pyraz-

inamide and clofazimine, TMC207, PA-824 and pyrazinamide, TMC207, pyrazinamide and clofazimine,

TMC207, pyrazinamide and clofazimine, monotherapy of clofazimine, and pyrazinamide, or Rifafour

(control group) for 14 days. Overnight sputum samples were collected daily from Day 0 up to Day 14.

The randomisation/treatment and sputum sampling of the NC003 study are outlined in Table 4 below.

Scheduled Sample Days Treatment Group N
Daily from Day 0 to 14 J-Pa-Z-C 14

J-Pa-Z 14
J-Z-C 15
Z 14
C 15

Rifafour 15
Total 87

Table 4: Treatment and sputum sampling schedule of NC003 trial

J-Pa-Z-C = TMC207 + PA-824 + Pyrazinamide + Clofazimine, J-Pa-Z = TMC207 + PA-824 +

Pyrazinamide, J-Pa-C = TMC207 + PA-824 + Clofazimine, J-Z-C = TMC207 + Pyrazinamide + Clo-

fazimine, Z = Pyrazinamide, C = Clofazimine.

3.2.3 Results

Table 5 shows the results of posterior estimates of EBA(0-14) and corresponding 95% BCIs for NC003

trial.
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Normal Student t

Parameter
Treatment

N
Posterior

95% BCI
Posterior

95% BCI
Group Estimate Estimate

EBA(0-14) J-Pa-Z-C 14 0.116 [0.050, 0.183] 0.115 [0.053, 0.178]
J-Pa-Z 12 0.172 [0.063, 0.276] 0.164 [0.075, 0.272]
J-Pa-C 15 0.083 [0.018, 0.149] 0.087 [0.024, 0.151]
J-Z-C 14 0.101 [0.022, 0.183] 0.073 [0.004, 0.142]
Z 15 0.036 [-0.019, 0.088] 0.038 [-0.012, 0.087]
C 14 -0.022 [-0.077, 0.034] -0.023 [-0.070, 0.023]

Rifafour 15 0.152 [0.067, 0.241] 0.134 [0.066, 0.206]

Table 5: Posterior estimates of EBA(0-14) and corresponding 95% BCIs for NC003 trial

Note: BCI: Bayesian credibility interval. N = Total number of randomised patients. Posterior

estimate: Represents the mean of the associated posterior distribution.

Table 5 above shows the posterior estimates and corresponding 95% BCIs of the normal and Student

t models by treatment groups. For example, in treatment group J-Pa-Z posterior estimates and corre-

sponding 95% BCIs of the normal and Student t models are given as 0.172 (95% BCI: [0.063, 0.276]) and

0.164 (95% BCI: [0.075, 0.272]) respectively. The posterior estimates of the Student t model are smaller

with narrower 95% BCIs than those of the normal model.

Table 6 shows the results of posterior estimates of νj (degrees of freedom) and corresponding 95%

BCIs for NC003 trial.

Parameter Treatment Group N Posterior Estimate 95% BCI
νj J-Pa-Z-C 14 6.123 [2.188, 22.220]

J-Pa-Z 12 2.540 [2.019, 3.759]
J-Pa-C 15 3.051 [2.064, 4.980]
J-Z-C 14 2.408 [2.012, 3.414]
Z 15 2.570 [2.023, 3.762]
C 14 2.955 [2.063, 4.688]

Rifafour 15 2.237 [2.007, 2.831]

Table 6: Posterior estimates of νj and corresponding 95% BCIs for NC003 trial

Note: BCI: Bayesian credibility interval. N = Total number of randomised patients. Posterior

estimate: represents the mean of the associated posterior distribution. Table 6 above shows the posterior

estimates and corresponding 95% BCIs for the degrees of freedom (of residuals) of the Student t model

by treatment group. The estimates for νj (the degrees of freedom parameter) are below 30, providing

evidence that the distribution of residuals in CFU counts is heavy tailed.

For further illustration purposes, Figure 3 graphically illustrates the nested plots of the observed CFU

counts by treatment group [4].
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Figure 3: Observed log(CFU) counts over time of NC003 trial
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Figure 3 above depict the observed CFU counts over time for di�erent treatment groups. As can

be seen for the case of treatment group J-Pa-Z-C that most of the CFU count at Day 6, 8, and 10 in

individual pro�les appear to be contaminated and implausible. The contamination and implausibility of

CFU count indicating the presence of outliers in the data.

3.3 CL001 trial

3.3.1 Objectives

The CL001 study was based on a 14 day dose �nding clinical trials for which the objectives are evaluation

of the safety, tolerability, pharmacokinetics (PK) and EBA of various doses of TMC207 in 68 previously

untreated TB patients [9]. The EBA was described by the evaluation of CFU count.

3.3.2 Study design

Patients were randomised to receive either daily doses of 100 mg TMC207, 200 mg TMC207, 300 mg

TMC207, 400 mg TMC207 or Rifafour (control group) for 14 days. Overnight sputum samples were col-

lected daily from Day 0 up to Day 8, and every second day from Day 10 up to Day 14. The randomisation/

treatment and sputum sampling of the CL001 study are outlined in Table 7 below.

Scheduled Sample Days Treatment Group N
Daily from Day 2 to 8; TMC207 100 mg 15
Day 10, Day 12, Day 14 TMC207 200 mg 15

TMC207 200 mg 15
TMC207 400 mg 15

Rifafour 8
Total 68

Table 7: Treatment and sputum sampling schedule of CL001 trial

3.3.3 Results

Table 8 shows the results of posterior estimates of EBA(0-14) and corresponding 95% BCIs for CL001

trial.

Normal Student t

Parameter
Treatment

N
Posterior

95% BCI
Posterior

95% BCI
Group Estimate Estimate

EBA(0-14) TMC207 100 mg 15 0.042 [0.001, 0.083] 0.041 [0.001, 0.082]
TMC207 200 mg 15 0.059 [0.023, 0.097] 0.057 [0.022, 0.092]
TMC207 200 mg 15 0.077 [0.028, 0.126] 0.078 [0.027, 0.128]
TMC207 400 mg 15 0.098 [0.049, 0.146] 0.101 [0.052, 0.149]

Rifafour 15 0.117 [0.042, 0.196] 0.111 [0.066, 0.206]

Table 8: Posterior estimates of EBA(0-14) and corresponding 95% BCIs for CL001 trial
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Note: BCI: Bayesian credibility interval. N = Total number of randomised patients. Posterior

estimate: Represents the mean of the associated posterior distribution.

Table 8 above shows the posterior estimates and corresponding 95% BCIs of the normal and Student

t models by treatment groups. For example, in treatment group TMC207 100 mg the posterior estimates

and corresponding 95% BCIs of the normal and Student t models are given as 0.042 (95% BCI: [0.001,

0.083]) and 0.041 (95% BCI: [0.001, 0.082]) respectively. Posterior estimates and corresponding 95% BCIs

of the Student t model seem to be similar to those of the normal model. In other words, the di�erence

in posterior estimates and corresponding 95% BCIs between the two models is negligible.

Table 9 shows results of posterior estimates of νj (degrees of freedom) and corresponding 95% BCIs

of CL001 trial by treatment group.

Parameter Treatment Group N Posterior Estimate 95% BCI
νj TMC207 100 mg 15 42.39 [6.16, 96.32]

TMC207 200 mg 15 6.58 [2.47, 21.48]
TMC207 200 mg 15 38.84 [3.94, 96.01]
TMC207 400 mg 15 3.15 [2.07, 5.52]

Rifafour 15 14.44 [2.12, 86.77]

Table 9: Posterior estimates of νj and corresponding 95% BCIs for NC003 trial

Note: BCI: Bayesian credibility interval. N = Total number of randomised patients. Posterior

estimate: represents the mean of the associated posterior distribution.

The posterior estimates for νj (the degrees of freedom parameter) are below 30 in 3 out of 5 cases,

providing some evidence that the distribution of residuals in CFU counts is heavy tailed.

For further illustration purposes, Figure 4 graphically illustrates the nested plots of the observed CFU

counts by treatment group [4]. Outliers in CFU count seem to be present in some treatment groups.
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Figure 4: Observed log(CFU) counts over time of CL001 trial

3.4 Robust regression modeling

The EBA estimates computed from the joint Bayesian linear mixed e�ects regression models analysis

are shrunken towards their corresponding mean estimates. Therefore, mixed e�ects regression modeling

is preferred to analyse CFU count instead of regressing CFU count on a by-patient basis. However,

extreme outliers in CFU count have previously shown to have a signi�cant impact on the estimation of

and inferences on EBA, despite the shrinkage e�ect. The heavy tailed Student t distribution is speci�ed

24



for the residuals, and the associated estimates of degrees of freedom provide strong evidence that outliers

in CFU count are present in the data. The speci�cation of heavy tailed distribution clearly provides an

even greater shrinkage e�ect compared to normal mixed e�ects regression modeling.

4 Conclusion

The EBA of TB drugs is conventionally assessed using statistical regression modeling of CFU count over

time. It has been previously assumed that the residuals of the regression model are normally distributed

which do not accommodate outliers in the distribution of data. In this report the normality assumption

is relaxed by �tting a robust regression model which speci�es the Student t distribution for the residuals.

Outliers are occasionally present in CFU count due to erroneous sputum sampling. Such outliers can

in�uence estimates of the rate of change in CFU count. A robust linear mixed e�ects regression model

was �tted to CFU count of EBA TB trials to o�er a robust approach that accommodates outliers.

A Bayesian framework was adopted for estimation of and inferences on model parameters using the

Gibbs sampler in OpenBUGS. A Bayesian approach is an alternative to classical methods which in many

cases is relatively easy to implement.

According to the study results of the three EBA TB trials, the adopted model provides accurate

results of parameter estimates compared to the normal model when outliers are present in the data. On

the other hand, the Student t model provides results that are similar to the normal model when few or

no outliers are present in the data.

The research �ndings support the recommendation of the �t of robust linear mixed e�ects regression

models to accommodate outliers in CFU count.
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Appendix

In this section the conditional posterior distributions of the model parameters are derived from the joint

posterior distribution by ignoring terms that do not include the relevant model parameter.

µij = (αij , λij)
′

µj = (αj , λj)
′

Ωµj =

 σ2
αj σαjλj

σαjλj σ2
λj


Full likelihood

L
(
µij ,µj ,Ωµj , σ

2
εj , σ

2
ξj , i = 1, ..., N, j = 1, ..., J, k = 1, ...,Kij |y

)
(22)

=

 N∏
i=1

J∏
j=1

i∈{j}

L
(
µij , σ

2
εj , σ

2
ξj , k = 1, ...,Kij |yij

) · N∏
i=1

J∏
j=1

i∈{j}

P (µij |µj ,Ωµj)

where:

L
(
µij , σ

2
εj , σ

2
ξj , k = 1, ...,Kij |yij

)

∝
Kij∏
k=1

1√
2πσξjσεj

exp

[
−1

2

(yijk − (αij − λij · tijk))
2

σ2
ξj · σ2

εj

]
·
(νj

2

) νj
2

Γ
(νj

2

) (σ−2ξj ) νj2 −1 exp

(
− νj

2σ2
ξj

)

Therefore:

L
(
µij ,µj ,Ωµj , σ

2
εj , σ

2
ξj , i = 1, ..., N, j = 1, ..., J, k = 1, ...,Kij |y

)

∝

 J∏
j=1

(
σ2
ξj · σ2

εj

)− 1
2Tj ·

(νj2 ) νj2
Γ
(νj

2

) (σ−2ξj ) νj2 −1
Tj

·exp

−1

2
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i∈{j}

Kij∑
k=1

{[
(yijk − (αij − λij · tijk))

2

σ2
ξj · σ2

εj

]} ·
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i=1

J∏
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i∈{j}

(
| Ωµj |−

1
2 exp

[
−1

2
(µij − µj)

′
· Ω−1µj · (µij − µj)

])
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where Tj is the total number of time points across all patients allocated to treatment group j.

Joint prior distribution

P
(
µj ,Ωµj , σ

2
εj , σ

2
ξj , νj , j = 1, ..., J

)
(23)

J∏
i=1

(
P [µj ] · P

[
Ω−1µj

]
· P
[
σ2
εj

]
.P
[
σ2
ξj

]
· P [νj ]

)

∝
J∏
j=1

(
exp

[
−1

2
· µ

′

j ·
1

10
· µj

]
· | Ω−1µj | ·etr

[
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]
·
(
σ−2εj

)(10−4−1) · exp
(
−10−4 · σ−2εj

))
·

(
σ−2ξj

)(10−4−1)
· exp

(
−10−4 · σ−2ξj

)
· I (2 ≤ νj ≤ 100)

Joint posterior distribution

P
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εj , σ

2
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(24)
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Conditional postrior distribution

P
(
µij |µj ,Ωµj , σ2

εj , σ
2
ξj ,y

)
(25)

∝ exp

−1

2

Kij∑
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(yijk − (αij − λij · tijk))
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σ2
ξj · σ2

εj

] · exp
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−1

2
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L
(
µij , σ

2
εj , σ

2
ξj , k = 1, ...,Kij |yij

)
(26)

∝ exp

−1

2

Kij∑
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[
(yijk − (αij − λij · tijk))
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σ2
ξj · σ2

εj

]

∝ 1

σ2
ξj · σ2

εj

(yij −Xij · µij)
′
(yij −Xij · µij)

where Xij is a Kij × 2 matrix as follows:

Xij =



1 −tij1

· ·

· ·

· ·

1 −tijk

· ·

· ·

· ·

1 −tijKij


De�ne Bij and sij as follows:

Bij =
(
X
′

ij ·Xij

)−1
·X

′

ij · yij (27)

sij = (yij −Xij ·Bij)
′
· (yij −Xij ·Bij) (28)

Making use of the following algebraic identity for Equation (26) :

(yij −Xij · µij)
′
· (yij −Xij · µij) (29)
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= (yij −Xij ·Bij −Xij · [µij −Bij ])
′
· (yij −Xij ·Bij −Xij · [µij −Bij ])

= (yij −Xij ·Bij)
′
· (yij −Xij ·Bij) + (µij −Bij)

′
·X

′

ij ·Xij · (µij −Bij)
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since the corresponding terms equals:
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·
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Finally, from Equation (29) , Equation (26) can be written as follows:
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∝ exp
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From Equation (33) , the posterior distribution of µij |µj ,Ω−1µj , σ2
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εj ,y is therefore as follows:

µij |µj ,Ω−1µj , σ
2
ξj , σ

2
εj ,y ∼ N (Oij , Vij) (34)
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From Equation (36) , the posterior distribution of µj |µij ,Ωµj ,y, i [i ∈ {j}] = 1, ..., N is therefore as

follows:
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From Equation (38) , the posterior distribution of Ω−1µj |µij ,y, i [i ∈ {j}] = 1, ..., N is therefore as

follows:
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From Equation (40) , the posterior distribution of σ−2εj |µij , σ
−2
ξj ,y, i [i ∈ {j}] = 1, ..., N is therefore as

follows:
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From Equation (42) , the posterior distribution of σ−2ξj |µij , σ
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εj ,y, i [i ∈ {j}] = 1, ..., N is therefore as

follows:
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Abstract

In South Africa, students have been found to differ in their knowledge of science [21]. Using the

TIMSS (Trends In International Mathematics and Science study) 2015 data, in this paper a multilevel

model is fitted for the two-level case involving students nested in schools in the investigation of factors

associated with the science performance of South African 9th-graders. Multilevel analysis shows that

school factors contribute more to the differences. About 54% of the variation in science achievement

occurs between schools.
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1 Introduction

According to the human science research council (HSRC), South Africa is among the bottom five countries

in their performance in science [21]. Science achievement is a key indicator in assessing a country’s

schooling system [22]. A country’s economy is strongly associated with scientific literacy [9], this might

be important for developing countries such as South Africa. For this reason, the quality of the teaching and

learning of of science has to be monitored. Towards this end, factors associated with science performance

must be identified. This is achieved by making use of the 2015 data from the Trends in international

mathematics and science study (TIMSS) at the 9th grade level.

Because students are taught in schools they might share the same class, be taught by the same teacher

and even come from the same neighborhood as such, their academic achievements are not independent.

To account for these dependencies a two-level multilevel analysis is conducted with students as level-1

units and schools as level-2 units [19].

Nationally and internationally, two-level multilevel studies have been conducted with the aim of

identifying factors associated with science achievement. Nationally: at the student-level, Cho et al. [1],

using the TIMSS 2003 data at the secondary school level, student’s socio-economic status (SES) and

attitude towards science were among the most significant factors associated with science achievement in

South Africa. At the school-level, Frempong et al. [3] proved that, in South Africa, the school’s SES is

over and above that of the individual student. Internationally: at the student-level, using the TIMSS 2007

data, Mohammadpour[15] identified the student’s value of science and the time spent working at home as

being strongly related to science achievement in Malaysia. At the school-level, Mohammadpour [15] found

that school location and teacher emphasis on educational success highly influenced science achievement in

Malaysia. The analysis can be extended to more than two levels, in a three-level analysis, Mohammadpour

[16], using the TIMSS 2007 data, investigated the factors associated with science achievement as a

function of student-, classroom-, and school-level factors in Singapore. In this extended analysis, teaching

limitations was found to be highly associated with science achievement at the classroom-level.

This paper will make use of Raudenbush and Bryk [18] for the theoretical aspects and Singer [23] for the

practical specification of multilevel modeling in the investigation of factors affecting science performance

in South Africa.

2 Background Theory

Hierarchical data structures, in which level-1 units are nested within level-2 units, are a commonly

encountered phenomenon [17]. For example, in educational research students’ performance is assessed

at the classroom, school, district and provincial level. Similarly in developmental studies, a hierarchical
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structure occurs when multiple data is collected repeatedly on an individual person because the repeated

measures are nested within an individual [20, 12]. These data structures cannot be analyzed using ordinary

regression techniques because these techniques pool or aggregate the data for estimation purposes and thus

ignores the group effects which might lead to wrong conclusions. The growing popularity of hierarchical

data structures in the social science saw an evolution in the development of methods that take into

account the structure of the data. The first attempt occurred in the early 1980s with the development

of an algorithm for covariance component estimation [27]. This development led to what is now, in the

statistical literature, known as covariance components modeling [20] or simply multilevel modeling. A

multilevel modeling technique is a complex form of ordinary least squares regression [27], instead of fitting

a single-level model as with ordinary regression, multiple models at different levels within the structure

are fitted. The fitted models express the relationships within a given level and specify how an occurrence

at one level influence the variation occurring at other levels [20]. These methods are effective in modeling

data with a natural hierarchy (clustered or nested units of a given lower level in another higher level’s

units). The following subsequent sections provide the building blocks of multilevel modeling by describing

the theoretical consideration of multilevel models focusing on three important modeling aspects: model

specification, estimation and diagnostics. To explain the fundamental statistical features the discussion

here is constrained to the basic two-level model. The standard form of presenting statistical models is

employed to introduce key concepts and then the paper reverts to the official notation using matrices.

2.1 Theory of model specification

2.1.1 The basic two-level model

Suppose that data is collected from N level-2 units each of the units containing nj (for j = 1, 2, ..., N)

level-1 units, the data is thus hierarchical because the level-1 units are clustered or nested within the

level-2 units.

Let

yij = the response variable of the ith level-1 unit from the jth level-2 unit.

xij =the predictor (explanatory) variable of the ith level-1 unit from the jth level-2 unit.

zj =the predictor of the jth level-2 unit.

The resulting Level-1 model can be written as follows

yij =b0j + b1jxij + rij , rij ∼ N(0, σ2) (1)

for j = 1, 2, ..., N and i = 1, 2, ..., nj

The random error term, rij , associated with the ith level-1 unit from the jth level-2 unit, is normally
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distributed with mean zero and constant variance, σ2. The subscripts on the intercept, b0j , and slope,

b1j , implies that each level-2 unit will have its own unique set of coefficients. This implies that the level-2

model’s response variables (level-1 coefficients) will be a linear combination of the means, γ00 or γ01 (

see Equation 2), and the behavior of the level-2 predictor, zj , and the random error term for the effect

of the jth level-2 unit. The level-2 model is thus specified as follows

b0j =γ00 + γ01zj + u0j

b1j =γ10 + γ11zj + u1j (2)

for j = 1, 2, ..., N

E

 u0j

u1j

 =

 0

0

 and var

 u0j

u1j

 =

 τ00 τ01

τ10 τ11


Assuming that u0j and u1j have a bivariate normal distribution with mean zero and variance τ00 and

τ11, respectively, with covariance τ01. These variance-covariance components measure the variability in

b0j and b1j not explained by zj . To get the multilevel model, (2) is substituted into (1) leading to

yij =[γ00 + γ01zj + γ10xij + γ11zjxij ] + [u0j + u1jxij + rij ] (3)

for j =1, 2, ..., N and i = 1, 2, ..., nj

Equation (3) has two components: the fixed part (the first bracket) and the random component (the

second term bracket). Since the model coefficients in (3) are the effects from both levels of the hierarchy,

they might jointly be referred to as multilevel coefficients. Because the error structure, the random part,

includes both the within- and between-group error terms, the estimation of the fixed effects will require

iterative procedures. In later sections it will be demonstrated how to estimate the multilevel parameters

and the random effects. In general, models in (1) and (2) can be expressed as follows

Matrix notation

Level-1 Model

Yj =Xjβj + rj , rj ∼ N(0, σ2Inj
) (4)
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=

(
1 x1j · · · xQj

)


β0j

β1j
...

βQj


+ rj (5)

Where Q is the number of level-1 predictors.Yj : (nj × 1) is a vector of outcomes for the jth level-

2 unit, Xj : nj × (Q + 1) is a matrix of predictors or explanatory variables including the intercept,

βj : (Q× 1) is a vector of level-1 regression coefficients and rj : (nj × 1) vector of random terms for

the jth level-2 unit . The error-vector rj is normally distributed with mean 0 and a variance-covariance

matrix σ2Inj
, with constant variability for each level-1 unit from the jth level-2 unit, where Inj

: (nj×nj)

is an identity matrix. The variance σ2 is also known as the within-group variance.

Level-2 Model

βj =



β0j

β1j
...

βQj


=



γ00 + γ01z1j + · · ·+ γ0P zPj + u0j

γ10 + γ11z1j + · · ·+ γ1P zPj + u1j

. . .

γQ0 + γQ1z1j + · · ·+ γQP zPj + uQj


(6)

=I(Q+1)×(Q+1) ⊗ ( 1 z1j · · · zPj )γ +



u0j

u1j
...

uQj


(7)

=Zjγ + uj , uj ∼ N(0,Φ) (8)

where Φ =



τ00 τ01 · · · τ0P

τ10 τ11 · · · τ1P
...

. . .
...

τQ0 τQ1 · · · τQP


and Zj = I(Q+1)×(Q+1) ⊗

(
1 z1j · · · zPj

)

Where P is the number of level-2 predictors. From (8), Zj : (Q + 1) × (P + 1) is a block diagonal

matrix of the stacked Q+ 1 row vectors of the level-2 predictors including the overall effect represented

by 1 (see (7)), γ : (QP × 1) is a vector of fixed effects anduj : (Q+ 1)× 1 is a vector of random effects.

uj is a multivariate normally distributed variable with mean 0 and variance-covariance matrix Φ. Φis

a square matrix. The elements on the diagonal τ00, τ11 · · · τQP measure the variability between level-2
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intercept coefficients, β0j , and the partial slopes, β1j ,β2j , · · · ,βQj ,respectively. The elements off-diagonal

elements are covariance measures between the regression coefficients in the vector βj .

Combined or multilevel model

Substituting (8) into (4) will yield the combined model

Yj =Xj(Zjγ + uj) + rj

=XjZjγ + Xjuj + rj

=X∗jγ + Xjuj + rj (9)

In (9), X∗j : nj × (P + 1) is a matrix of predictors from both levels including their interactions and

the intercept, it can be referred to as a matrix of multilevel variables.. The equation can be split into

two parts, the fixed part X∗jγ, and the random part Xjuj + rj .

2.1.2 Simpler sub-models

The discussion that follows focuses on how to specify a variety of models with a hierarchical data structure.

These models are derived from the basic two-level model and they can be used to answer a variety of

questions concerning occurrences at various levels within the hierarchy.

One way ANOVA with random effects

The first and most important hierarchical linear model in that it gives preliminary auxiliary information

as to how the outcome variability is apportioned between the two levels.

By setting the variables x1j , x2j , · · · , xQj and the coefficients β1j , β2j , · · · , βQj in (5) to zero, the

level-1 model is specified as follows

Yj =β0j1 + rj , rj ∼ N(0, σ2Inj ) (10)

The level-1 random-effect, rj , is the effect of the randomness occurring within the jth level-2 unit. It

is assumed to be normally distributed with mean 0 and variance-covariance matrix σ2Inj
with constant

variance σ2 on the diagonal and cov(rj , rk) = 0, for k 6= j as the off diagonal elements.

With β1j , β2j and zj in (6) set to zero, the level-2 model for the one-way ANOVA with random effects

is given as
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β0j =γ00 + u0j , u0j ∼ N(0, τ00) (11)

In (11), u0j is the effect of the randomness (random effect) between the level-2 units and it is assumed

to be normally distributed with mean 0 and variance τ00.

Substitution of (11) into (10) yields the combined model

Yj =(γ00 + u0j)1 + rj

=γ001 + u0j1 + rj (12)

The model in (12) is the model that is estimated under the one way ANOVA with random effects. In

the following section it is shown how a multilevel model is estimated. For now a variety of specifications

are considered and their purpose is explained. For example, for the one way ANOVA with random effects

it was mentioned above that the model gives a preliminary auxiliary information. It is determined by

taking the ratio of the outcome variability between level-2 units, τ00, and the total outcome variability,

τ00 + σ2, given in (13). This statistic is referred to as the intra-class correlation (ICC) denoted by ρ, and

it gives the proportion of the variability in the outcome variable that occurs between level-2 units.

ρ =
τ00

τ00 + σ2
(13)

One-way ANCOVA model with random effects

This model is considered an alternative to the multilevel model whenever there is only one level-1 pre-

dictor. From (5), by setting the variables x2j , x3j , · · · , xQj and the coefficients β2j , β3j , · · · , βQj equal

to zero, the level-1 model is obtained. The level-2 model is specified as given by

βj =

 β0j

β1j

 =

 γ00 + u0j

γ10 + 0

 = γ + uj (14)

The combined model is given in (15), it is obtained by substituting the level-2 model into the level-1

model.
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Yj =

(
1 xj

)
γ +

(
1 xj

)
u0j + rj

=Xjγ + u0j1 + rj (15)

The ANCOVA model can be extended to include level-2 predictors and even more than one level-1

predictor in which case it will be a multiple-way ANCOVA model (or simply MANCOVA).

Means as outcomes regression

A frequently encountered analysis problem is to predict the outcome of level-2 units given the factors at

that level. This model answers the question of how influential the group factors are on the outcome.

The level-1 model is the same as the one in (10). The level-2 model is obtained by setting the

coefficients β1j , β2j , · · · , βQj in (6) equal to zero:

β0j =γ00 + γ01zj + u0j

=( 1 zj)

 γ00

γ01

+ u0j

=Zjγ + u0j (16)

where u0j ∼N(0, τ00)

Substituting (16) into (10) yields the combined model:

Yj =(Zjγ + u0j)1 + rj

=Zjγ + u0j1 + rj (17)

The random effects in (17) have the same distributional implications as those in (12).

Random coefficients model

Until now, the models considered had varying intercepts that were allowed to vary across level-2 units, in

this model both regression coefficients are allowed to vary across level-2 units. This specification helps to

aid in an answer to the question of whether strong relationships between level-1 factors and the outcome

have a positive or negative effect on the outcome of level-2 units. The level-1 model is specified by setting
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variables x2j , x3j , · · · , xQj and the coefficients β2j , β3j , · · · , βQj in (5) equal to zero:

Yj =Xjβj + rj , rj ∼ N(0, σ2Inj )

=

(
1 x1j

) β0j

β1j

+ rj (18)

The random effect rj in (18) has the same distributional implications as the one in (4).

The level-2 model is obtained by setting β2j in (6) equal to zero and excluding the level-2 predictor

zj :

βj =

 β0j

β1j


=

 γ00 + u0j

γ10 + u1j


=

 1 0

0 1


 γ00

γ10

+

 u0j

u1j


=Zjγ + uj , uj ∼ BV N(0,Φ) (19)

where Φ =

 τ00 τ01

τ10 τ11


Where BV N is bivariate normal distribution. The effect of the randomness, uj , between the level-2

units is assumed to be bivariate normally distributed with mean 0 =

 0

0

 and a symmetric variance-

covariance matrix Φ with elements τ00 as an unconditional measure of the variability between level-1

intercepts, β0j , for j = 1, 2, ..., N ; τ11 as a measure of the variability between the level-1 slopes, β1j , for

j = 1, 2, ..., N ; and τ01 or τ10 is a measure of the unconditional covariance between the level-1 intercepts

and slopes. The τ ’s described above are referred to as unconditional because the level-2 model in (19)

has no predictors.

Substituting (19) into (18) yields the combined model:

Yj =Xj(Zjγ + uj) + rj
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=XjZjγ + Xjuj + rj

=Xj

 1 0

0 1

γ +

(
1 xj

) u0j

u1j

+ rj

=Xjγ + u0j1 + u1jxj + rj (20)

This model has two useful variants: one is an extension and the other is a limitation. The first sub-sub

model models the variability in the level-1 coefficients by controlling for a level-2 predictor, from (20) it

follows that the level-2 model is specified as

βj =

 γ00 + γ01zj + u0j

γ10 + γ11zj + u1j

 =

 1 zj 0 0

0 0 1 zj

γ + uj = Z∗jγ + uj (21)

The combined model is given by

Yj =Xj

 1 zj 0 0

0 0 1 zj

γ +

(
1 xj

) u0j

u1j

+ rj

=Xjγ + zjγ + zjxjγ + u0j1 + u1jxj + rj (22)

The variable zj is the level-2 predictor and u0j and u1j are as those specified in (19). The model

specified in this manner is referred to as the random intercept and slopes as outcomes model.

The second sub-sub model controls for a level-2 predictor but only allows the intercept to randomly

vary across level-2 units, whilst the variability in the group slopes is not random but purely due to the

differences in the value of the level-2 predictor of each group, the level-2 model follows from (21) by

setting u1j equal to zero

βj =

 γ00 + γ01zj + u0j

γ10 + γ11zj + 0

 =

 1 zj 0 0

0 0 1 zj

γ +

 u0j

0

 = Z∗jγ + uj (23)

The combined model is given by (24). This model is referred to as a non-randomly varying slope
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model.

Yj =Xj

 1 zj 0 0

0 0 1 zj

γ +

(
1 xj

) u0j

0

+ rj

=Xjγ + zjγ + zjxjγ + u0j1 + rj (24)

2.1.3 Centering

In quantitative research, the interpretation of regression coefficients is important as their meaning is often

used for decision making. In a two-level analysis, the coefficients coefficients of the level-1 model become

outcomes variable (s) for the level-2 model as in (2). The regression coefficient β0j is interpreted as the

expected outcome for a level-1 unit in the jth level-2 unit with a value of xij equal to zero, but a value of

zero might not be within the domain of xij as result β0j is meaningless. In order to render the regression

coefficients interpretable with valid meaning, the location of the level-1 predictors must be altered to

reach a meaningful interpretation. Similarly, for the interpretation of the fixed effects (i.e γ00 and γ10),

the location of zj must be changed.

The location of a predictor can be altered by either centering the predictor about its group mean or

grand mean. The former produces a centered variable of the form (xij − x̄•j), where x̄•j is the group

mean, the intercept is interpreted as the expected outcome for a level-1 unit in the jth level-2 unit with

a value of xij equal to the group mean. The latter produces a variable of the form (xij − x̄••), where

x̄•• is the grand mean, the intercept is now interpreted as the expected outcome for a level-1 unit in the

jth level-2 unit with a value of xij equal to the grand mean. The method of centering has been found

to improve the parameter estimation performance of iterative procedures [13]. Another option is to take

the predictor in its natural form, in which case the domain of xij contains a zero.

As with classical linear regression, multilevel linear modeling requires some distributional assumptions

to hold ([2]):

1. Xj and β are non-random, i.e they are not randomly generated

2. rj has expected value zero and variance-covariance matrix σ2Inj

3. uj has mean zero and variance-covariance matrix Φ, and

4. Cov(rj ,u′j)=0.
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2.2 Theory of model estimation

Two level hierarchical modeling involves the estimation of three types of parameters: the fixed effects

(e.g γ00), random level-1 coefficients (e.g β0j), and the variance-covariance components (e.g τ00). The

estimation of each requires knowledge of others. In the following discussion, the theoretical considerations

underlying estimation of each, in the order provided above, are given.

2.2.1 Fixed effects

These parameters do not vary across level-2 units, recall that the level-1 model in (4) was given by

Yj =Xjβj + rj

where rj ∼ N(0, σ2Inj )

Assuming that Xj is of full column rank, (k × 1) , the ordinary least squares (OLS) estimator of βj is

β̂j = (X′jXj)
−1XjYj

the variance of this estimator, also known as the dispersion matrix, is given by

var(β̂j) = σ2(X′jXj)
−1 (25)

= Vj

The variance in (25) can be referred to as the error-variance matrix, it can be seen by premultiplying (4)

by (X′jXj)
−1X′j , the following is obtained for β̂j :

β̂j =βj + ej (26)

where ej ∼ N(0, σ2Ij)

Recall from (8) that the level-2 model was specified as

βj =Zjγ + uj (27)

where uj ∼ N(0,Φ)

And when (27) is substituted into (26) the following results:
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β̂j =Zjγ + uj + ej (28)

The dispersion matrix given in (25) is redefined to account for the effect of Wj , the block-diagonal

matrix with level- predictors, in (28) :

var(β̂j) =var(uj + ej)

=var(uj) + var(ej)

=Φ + σ2Inj , Cov(uj , ej) = 0 (29)

=∆j

In Equation (29), ∆j is the total dispersion and it is partitioned into a sum of ,Φ, the parameter

dispersion (i.e the variance-covariance matrix for the variability between level-2 units) and, σ2Inj
, the

error dispersion (i.e the variance-covariance matrix for the variability within each level-2 unit between

the level-1 units), the former is constant across level-2 units whereas the latter varies depending on the

level-2 group sample sizes, the subscript nj . If the number of observations were the same between level-2

units then (29) would be written as

var(β̂j) =Φ + σ2I (30)

=∆

Equation (30) shows that the total dispersion is constant across level-2 units. In this instance the

OLS regression estimate for γ would have been

γ̂OLS =(ΣN
j=1W

′
jWj)

−1ΣN
j=1W

′
jβ̂j

But for different group (level-2 units) sample sizes with the total dispersion matrix, ∆j , varying

between level-2 units, the unique, minimum-variance and unbiased estimator of γ will be the generalized

least squares (GLS) estimator:

γ̂GLS =(ΣN
j=1Wj∆

−1
j Wj)

−1ΣN
j=1W

′
j∆
−1
j β̂j (31)
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The inverse of the total dispersion matrix, ∆−1j , is called the precision matrix. In Equation (31) the

weights are represented by each level-2 unit’s precision matrix. Note from the discussion above that in

estimating the fixed effects, it is assumed that the random level-1 coefficients, β̂j , are known. In practice

however these are not known prior to the analysis and in such situations to obtain efficient estimates for

the fixed effects iterative estimation procedures are employed (see subsection 2.2.3 ).

2.2.2 Random level-1 coefficients

Multilevel modeling allows a variety of approaches to obtain the level-1 coefficients, one approach is to

determine the best estimator for a set of regression coefficients for each level-2 unit by combining two

potential estimators of βj and computing an optimal weighted estimator, referred to as an empirical

Bayes estimator (EB).

The two estimators are the OLS estimator β̂
OLS

j = (X′jXj)
−1X′jYj and borrowing information from

an estimate based on the level-2 fixed effects, ˆ̂
βj = Wj γ̂. The weights are given by the reliability of

the OLS estimate, that is the ratio between the parameter dispersion and the total dispersion (Φ +

σ2Inj or ∆j).

Mathematically,

Λj = Φ(Φ + σ2Inj
)−1

where ∆j is the reliability matrix having, for each Level-2 unit, the reliability of the OLS estimator

associated with that group. Therefore the optimal or EB estimator is given by

β∗j =Λjβ̂j

OLS
+ (I−Λj)

ˆ̂
βj (32)

In Equation (32), β∗j is referred to as an EB estimator. Notice that if β̂j is a less reliable estimate

of βj , that is for small Λj , the EB estimator β∗j will pull β̂j towards
ˆ̂
βj in estimation, consequently the

EB estimator is also called the shrinkage estimator. Note that the EB estimator in (32) assumes that the

fixed effects, γ̂, are known.

Alternatively, the random level-1 coefficients can be estimated separately for each level-2 unit using

the method of OLS, that is only β̂
OLS

j can be used as an estimator of the level-1 coefficients. Unfortu-

nately this estimator lacks precision because of small group sample sizes [25]. Another approach is the

pooled regression estimation, in this case single Level-1 coefficients are estimated from the whole data set

disregarding the hierarchy. The downside of this approach is that a level-1 coefficient for any level-2 unit

might be biased because the coefficient of that group might differ significantly from the pooled estimate
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[25].

2.2.3 Variance-covariance components

In the discussion of the estimation of fixed effects and random level-1 coefficients it was assumed for

convenience that the variance-covariance components were known but in practice these are often not given

and have to be estimated. When the group sample sizes are the same and the groups (i.e level-2 units)

have predictors that are distributed identically (i.eXj = X) formulas for estimating these components are

available, but for unbalanced designs (i.e unequal group sample sizes), iterative procedures are employed

to achieve efficiency (i.e greater precision), the following are the commonly used iterative procedures

found in most statistical packages (e.g SAS):

1. Full maximum likelihood (MLF)

In this procedure consistent and asymptotically efficient estimates of γ, Φ and σ2 are obtained for

which the likelihood of observing the values of the response Y:(ΣN
j=1nj × 1) is a maximum.

2. Restricted maximum likelihood (REML)

The drawback of the MLF estimation procedure is that it does not take into account the loss in

degrees of freedom resulting from the estimation of the fixed effects (i.e the γ’s), in other words

the difference between the MLF and REML estimators is that the former is biased downwards (but

asymptotically unbiased) [25], whereas the former is unbiased.

3. Other iterative procedures

Goldstein [5, 4] developed an iterative generalized least squares (IGLS) procedure and showed that

it can provide unbiased estimates of the variance components. And Longford [14] proposed a Fisher

scoring algorithm, Goldstein [6] later proved that under normality the Fisher scoring algorithm and

the iterative generalized least squares procedure are equivalent.

Note that for the estimation of the fixed effects and random level-1 coefficients the only methods of

estimation considered were OLS and GLS, these apply only when the group (level-2 units) sample sizes

are equal and sufficiently large in order to achieve the highest precision [11]. In practice however this is a

rare situation, for example, in repeated measures studies responses nested within an individual collected

overtime are often different for different individuals as there can be non response. Thus in general to

account for the loss in the precision of estimation of the random level-1 coefficients due to small group

sample sizes the iterative procedures are used in the estimation of the multilevel parameters [2].
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3 Simulation study

To get an idea of how the multilevel analysis approach is applied in practice, in this section a series of

simulated two-level analysis are conducted in the form of an illustration. The dataset for each model fitted

model has 10000 level-1 units nested in 400 level-2 units each of size 25. A comprehensive description

of the simulated dataset is provided for each model. The analysis proceeds similar to that of Singer

[23]. That is, the variation in the response variable (Yj) between level-2 units is examined first, followed

by a separate examination of the effect of the level-1 predictor (Xj) and a level-2 predictor (zj) on the

response variable. Lastly, a combined effect of both the level-1 and level-2 predictors is examined. Both

level predictors are scaled: level-1 predictors are group-mean centered and level-2 predictors are grand-

mean centered. The models are estimated using the SAS/STATr software’s PROC MIXED1, its default

estimation method is REML. The SAS code is provided in Appendix 7.1.1.

3.1 Unconditional Model

To ascertain the extent of the homogeneity or heterogeneity in the response, Yj , between the level-2

units, the one-way ANOVA model is fitted. The level-1 and level-2 models are as specified in equations

(10) and (11), respectively. A description of the simulated data is provided in Table 1.

Two-level data structure
Variable Generated by Number of Level-1 units 10000
Response (Outcome) Yj = Xjβj + rj Number of Level-2 units 400
Level-1 predictor No predictors at

both levels.
Size of each level-2 unit 25

Level-2 predictor
Parameters chosen

Random effects Level-1 rj ∼ N(0, 52I)
Level-2 u0j ∼ N (0, 100)

Fixed effects γ00 = 250
Level-1 coefficients β0j = γ00 + u0j , for j=1,2,...,400

Table 1: Description of the simulated data-Unconditional model

Output-and-results

The results obtained from fitting the model are given in Table 2, the interpretation follows.
1SAS Institute Inc. 2009. SAS/STAT ® 9.2 User’s Guide, Second Edition. Cary, NC: SAS Institute Inc.
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Fixed effects
Parameter Parameter

estimates
Standard error

(s.e)
P-value Significance test

Overall
response mean

,γ00

250.39 0.5008 <.0001 The estimate is
significant at a 5% level

of significance.
Variance components

Between-Level-2
variation, τ00

99.3241 7.1035 <.0001 Both estimates are
significant at a 5% level
of significance.Within level-2

variation, σ2
25.2024 0.3638

Table 2: Unconditional Model-simulation results

Fixed-effects

The fitted model has one fixed effect, γ00, that is the mean (average) of the response variable, and it is

estimated as 250.39. The estimate is statistically significant (see Table 2).

Variance-components

The fitted model has two unconditional random effects, u0j and rij , that is, the deviation of any level-2

unit’s response from the overall mean of the response (i.e γ00) and the deviation of any level-1 unit’s

response from the overall response where the unit belongs (i.e the level-2 unit). The random effects are

measured by the variance components τ00 and σ2, respectively. The former is estimated as 99.3241 and

the latter is estimated as 25.2024. Both estimates are statistically significant (see Table2). These are

unconditional because there is no predictor explaining the variation in the response variable in either

level.

As mentioned, this model is important for preliminary analysis because it gives the between and

within level-2 units distribution of the variation in the response, to quantify this distribution, the ICC is

computed for the proportional variation between level-2 units using (13)

ρ =
τ̂00(unconditional)

τ̂00(unconditional) + σ̂2(unconditional)

=
99.3241

99.3241 + 25.2024

=0.797 or 79.7%

Thus, it can be said that about 80% of the variability in the response is attributable to the level-2

units. This measure is useful since it tells us that disaggregation (alternative to multilevel modeling, see

Section 5) will likely yield misleading results.
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3.2 Level-1 predictor only model

To investigate the variation in the response explained by the level-1 predictor Xj , the one-way AN-

COVA model is fitted. In this model, the intercepts (i.e the β′0js) are allowed to vary while keeping the

slopes constant across groups. The level-1 and level-2 models are specified in Equations (33) and (34),

respectively. A description of the simulated data is provided in Table 3.

The simulated data was generated by the following level-1 and level-2 model

Level-1: Model

Yj =Xjβj + rj ,where rj ∼ N(0, σ2Ij)

=



1 (X1j −X•j)

1 (X2j −X•j)
...

...

1 (Xnjj −X•j)


 β0j

β1j

+ rj (33)

where X•j = the group mean of Xij

Level-2: Model

βj =Zjγ + uj

=

 1 x•j 0

0 0 1




γ00

γ01

γ10

+ uj (34)

uj ∼ N

 0

0
,

 τ00 0

0 0




By substituting (34) into (33), the multilevel model is obtained

Yj =XjZjγ + Xjuj (35)

Because of group mean centering τ00 is now the variance of Yj excluding the effect of the level-1

predictor (i.e having not accounted for the effect of Xij) [10], β0j in (34) is the unadjusted mean of the

Yj for the jth level-2 unit [26]. This implies that the level-1 predictor, X, does not explain the variability

in Yj . To account for the variation explained by this variable an aggregated variable, zj , of the level-1

predictor between groups (i.e the between-group mean of Xij) is included as a level-2 predictor. The
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inclusion of this aggregate variable controls for the level-1 predictor[10].

Two-level data structure
Variable Generated by Number of Level-1 units 10000
Response (Outcome) Yj = Xjβj + rj Number of Level-2 units 400
Level-1 predictor Xj ∼ N(20, 36) Size of each level-2 unit 25
Level-2 predictor(aggregate of
Xj)

X̄j

Parameters chosen

Random effects Level-1 rj ∼ N(0, 52I)

Level-2 uj ∼ N
[(

0
0

)
,

(
120 0
0 0

)]
Fixed effects γ =

(
130 100 240

)′
Level-1 coefficients βj = γ + uj , for j=1,2,...,400

Table 3: Description of the simulated data One-way ANCOVA model

Output-and-results

The results from fitting the combined model in (20) are provided in Table (4) followed by the interpretation

of the results.

Fixed effects
Parameter Parameter

estimates
Standard error

(s.e)
P value Significance test

Overall response mean,
γ00

131.50 9.9613
<.0001

Both estimates are
significant at a 5% level
of significance.Aggregated Xij , γ01 339.96 0.4974

Overall slope, γ10 240.00 0.008633
Variance components

Between level-2 units
variation,τ00

104.78 11.2114 <.0001 Significant at a 5% level
of significance.

Within level-2 units
variation, σ2

25.2222 0.3641

Table 4: One-way ANCOVA model-simulation results

Fixed-effects

The model has two fixed effects: γ00 and γ10, that is, the overall mean of Y and the average increase or

decrease in the response for a unit increase in X across the level-2 units (i.e average slope), respectively.

The estimate for the former is 131.74 and for the latter is 240. The coefficient of the aggregated level-

1 predictor is unbiased, 339.95, because it is not equal to the one used in the simulation, 200. The

unbiasedness is introduced by group-mean centering (see below). All estimates are statistically significant

(see Table 4).

Variance-components

The model has three random effects: u0j and rij , that is, the deviation of each level-2 unit’s response

from the overall average (i.e γ00), the deviation of each level-2 unit’s slope (i.e Y-X relationship) from
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the overall average slope (i.e γ11) and the deviation of each level-2 unit’s slope (i.e β1j) from the overall

average (i.e γ10) and the randomness in Y between level-1 units (or within level-2 units). These are,

respectively, measured by their associated variance terms, τ̂00 = 106.82 and σ̂2 = 260.93. All the variance

components estimates are statistically significant.

3.3 Level-2 predictor only model

To investigate the effect of the level-2 predictor, Zj , on the mean response across level-2 units, the means-

as-outcomes model is fitted. The level-1 and level-2 models are specified in (36) and (37), respectively.

A description of the simulated data is provided in Table 5.

The simulated data is generated by the following level-1 and level-2 models

Level-1 Model

Yj =Xjβj + rj , where r ∼ N(0, σ2Inj
) (36)

=

(
1 0

) β0

0

+ rj

Level-2 Model

βj =Zjγ + uj

=



1 (z1 − z••)

1 (z2 − z••)
...

...

1 (zj − z••)


γ + uj (37)

where uj ∼ N


 0

0

 ,

 τ00 0

0 0


 and z•• = Overall mean

By substituting (37) into (36), the multilevel model is obtained

Yj =XjZjγ + Xjuj + rj (38)

Unlike group-mean centering, grand-mean centering takes into account the effect of the level-2 pre-

dictors included in the model and thus for this model it is not necessary to make adjustments [10].
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Two-level data structure
Variable Generated by Number of Level-1 units 10000
Response (Outcome) Yj = Xjβj + rj Number of Level-2 units 400
Level-2 predictor zj ∼ N(15, 25) Size of each level-2 unit 25

Parameters chosen

Random effects Level-1 rj ∼ N(0, 52I)
Level-2 u0j ∼ N (0, 400)

Fixed effects γ =
(

150 75
)′

Level-1 coefficients β0j =
(

1 zj
)
γ + u0j , for j=1,2,...,400

Table 5: Description of the simulated data-Means as outcomes model

Output-and-results

Table (6) gives the results from fitting the multilevel model in (17). The interpretation of the results

follows.

Fixed effects
Parameter Parameter

estimates
Standard error

(s.e)
P value Significance test

Overall mean
response, γ00

152.93638 0.9878 <.0001 Both estimates are
significant at a 5%
level of significanceZ, γ01 74.6426 0.1875 <.0001

Variance components
Between level-2
units variation,

τ00

388.16 27.5870 <.0001 Both estimates are
significant at a 5%
level of
significance.Within level-2

units
variation,σ2

25.0711 0.3619

Table 6: Means as outcomes model-simulation results

Fixed-effects

The fitted model has two fixed effects, γ00, the overall mean response, and γ01, the increase in a level-2

unit’s y-response for a unit increase in the the z-predictor value. The estimated fixed effects are 152.93638

and 74.6426, respectively. Both estimates are statistically significant (see Table 6).

Variance-components

The fitted model has two random effects, u0j and rij . The former is a random term indicating differences

in Y between level-2 units, after controlling for the level-2 variable Z, whereas the latter is a random term

indicating the deviation of any level-1 unit’s value of Y from the group average. They are measured by

the covariance components, τ00 and σ2, respectively. The covariance components are estimated as 388.33

and 49.1393. Both estimates are statistically significant (see Table 6).
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3.4 Level-1 and Level-2 predictors only model

To investigate what the combined effect of both X and Z has on Y, the non-varying slope model is fitted,

so that only the intercepts vary across level-2 units. The level-1 and level-2 models are specified in (39)

and (40). A description of the simulated data is provided in Table 7.

The simulated data is generated by the following model.

Level-1 Model

Yj =Xjβj + rj , rj ∼ N(0, σ2Inj
)

=



1 (X1j −X•j)

1 (X2j −X•j)
...

...

1 (Xnjj −X•j)


 β0j

β1j

+ rj (39)

Level-2 Model

βj =Zjγ + uj

=

 1 [zj − z••] x•j 0

0 0 0 1

γ +

 u0j

0

 (40)

uj ∼N


 0

0

 ,

 τ00 0

0 0




Combined-Model

Yj =XjZjγ + Xjuj + rj

x•j and z•• are as specified in the previous models.

Two-level data structure
Variable Generated by Number of Level-1 units 10000
Response (Outcome) Yj = Xjβj + rj Number of Level-2 units 400
Level-1 predictor Xj ∼ N(20, 36) Size of each level-2 unit 25
Level-2 predictor Zj ∼ N(15, 25)

Parameters chosen

Random effects Level-1 rj ∼ N(0, 52I)

Level-2 uj ∼ N
[(

0
0

)
,

(
100 0
0 0

)]
Fixed effects γ =

(
200 400 200 100

)′
Level-1 coefficients βj = I2x2 �

(
1 zj

)
γ + uj , for j=1,2,...,400

Table 7: Description of the simulated data- Non-varying slope model
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Output-and-results

Table 8 gives the results from fitting the model, the interpretation follows.

Fixed effects
Parameter Parameter

estimates
Standard error

(s.e)
P value Significance test

For response variable: β0j
Overall mean
response,γ00

176.62 16.4924 <.0001 All parameter estimates
are significant at a 5%
level of significance.Z, γ01 397.87 0.7385 <.0001

X., γ02 301.43 1.6375 <.0001
For response variable: β1j

Overall mean
slope, γ10

99.9979 0.01649 <.0001

Variance components
Between Level-2

units variation, τ00
93.3706 9.4571 <.0001 All variance-covariance

estimates significant at a
5% level of significance.Within Level-2

units variation, σ2
24.4364 0.3491

Table 8: Non-varying slope model-simulation results

Fixed-effects

The fitted model has four fixed effects: the overall mean response, γ00, estimated to be 176.62; the

pooled within-group regression coefficient of Y on X, γ10, estimated to be 99.9979 and the increase in

any level-2 unit’s response for a unit increase in its Z value, γ01, estimated to be 398.87. Lastly the

coefficient of the aggregated level-1 predictor is estimated as 301.43. The simulation was conducted with

γ02 = 200, because of group-mean centering the overall within-group slope, γ10, is added to γ02. This

shows that caution has to be applied to the use of group-mean centering. All the regression coefficients

are statistically significant (see Table 8).

Variance-components

The fitted model has three random effects: u0j , the unexplained variation in the within-group Y after

controlling for the level-2 predictor Z and rj , the unexplained variation in a level-1 unit’s Y value after

controlling for the unit’s X value. Their corresponding variability measures are τ00 and σ2, respectively.

They are estimated as 93.3706 and 24.4364, respectively. All the variance components are statistically

significant (see Table 8).

In summary, from the simulation study it can be seen that in multilevel analysis care must be exercised

when drawing conclusions especially when the predictors are group-mean centered, under group-mean

centering the models get more complex when there are more levels in the hierarchy. For practical purposes

the recommended method of scaling is grand-mean centering.
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4 Application

The TIMSS 2015 science data featured 12514 South African grade 9 students (The highest international

assessment level is grade 8) from 292 schools, a summary of the results is provided in the Table 9.

Assessment TIMSS (Trends In International Mathematics and Science Study)
Subject Science
Country South Africa
Level Grade 9
Year 2015

Summary Assessment Results
Number
of schools

Number
of

students

Average
Score

Minimum
Score

Maximum
Score

Range
Score

292 12514 355.6606 22.56688 795.7567 773.189

Table 9: The South African TIMSS 2015 assessment results (Author’s own calculations)

Note that the TIMSS uses five plausible values to measure achievement in science, the result above

are based on the first plausible value as the measure of the outcome variable (science achievement). An

investigation is undertaken to determine the factors that gave rise to the above performance, significance

studies are conducted in identifying influential factors and to better understand the variation in science

achievement multilevel modeling techniques are employed to fit models at different levels of education,

this is extremely essential in order to be able to design interventions at any level of the hierarchy [7].

4.1 Multilevel variables

4.1.1 Response (Outcome) variable

TIMSS obtained a science achievement measure by making use of, among others, plausible values, five

plausible values, based on a sample of the items (questions), are used as a multiple estimate of how a

student might have performed if the student attempted all the items [15], because the unit of analysis in

this study is the student the response variable forms part of the student-level variables. In this analysis

the first plausible value is used as a measure of science achievement.

4.1.2 Level-1: student-level variables

According to Mohammadpour [15] factors contributing to the variation in science achievement can be

categorized as either attitude (e.g student’s confidence in science), personal (e.g. language spoken by

student at home) or socioeconomic based (e.g. parent’s level of education) factors. Using the South

African TIMSS 2015 science data, the first plausible value will serve as the outcome variable (science
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achievement) as detailed above, student-level factors, from each category, will be considered and the

highly influential, that is, successful at adequately accounting for the differences in science performance

of the South African 9th graders, will be included in the model. Table 10 gives the description of each of

the student-level variables considered in the study as well the degree of their linear relationship with the

response variable.

Response
variable

Student-
level

variable(s)

Category Degree of
correlation2

Description of variable

SCIACH

SCS Attitudinal 0.20924 Student’s confidence in science, as
measured by student’s response to
how much the agree with eight

statements about their performance
in science. More confidence in
science receives the largest scale
whereas small scaling for less

confidence.
SATS 0.20486 Student’s attitude towards science,

as measured by the student’s level
of agreement to nine statements

about their feeling towards science.
More positive feeling receives large
scaling whereas less scaling for

more negative feelings.
STUB Personal 0.24458 Student bullying, as measured by

the student’s response to how often
they were bullied (e.g

weekly,monthly). More frequent
experience of bullying receives the
lowest scale whereas large scaling

for less frequent bullying.
HER Socioeconomic 0.27517 Student’s home educational

resources as measured by the
student’s response to two questions

on the number of educational
resources available at home and one
on the highest level of education of
either of the student’s parents.
More resources and highest

education level receives the largest
scale and smaller scale otherwise.

Table 10: Defining the student-level predictors and their correlation with the response variable science
achievement

4.1.3 Level 2: school-level variables

Students are clustered in schools and the students within these schools share many characteristics of

instruction (i.e. teaching) and learning (e.g. same desk), Mohammadpour [15] categorizes the school-

level factors that impact on academic (e.g. science) achievement under school climate (e.g. school

discipline problems, learning environment) and school contextual factors (e.g school science resources,
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school location). Table 11 gives a description of the school-level variables and their relationship with

science achievement.

Response
variable

School-level
variables

Category Degree of
correlation

Description

SCIACH

SCHSLAB Contextual
factors

0.24479 School has a science
laboratory, a categorical
variable with 1=Yes and

2=No.
SCHSRS 0.20237 School’s resources used in

the learning and teaching of
science.

SCHDP School
climate

0.19547 School’s discipline problems
as perceived by the school

principal.
SCHEAS 0.25880 School’s emphasis on the

student’s academic success
as perceived by the school

teachers.

Table 11: Defining school-level predictors and their correlation with the science achievement

4.2 Multilevel models

The models are fitted in connection with questions concerning the science achievement of students in

South African schools, provided in Table 12.

Questions Model
1. Is the science achievement of South African students largely
influenced by student- or school-level factors?

Unconditional
model

2. What is the portion of the variation, in science achievement, that is
accounted for by the student-level factors in Table 10

Student predictors
only model

3. What is the portion of the variation, in science achievement, that is
accounted for by the school-level factors in Table 11

School predictors
only model

4. How much variability is explained by the combined effect of the
student- and school-level factors (only those in Tables 10 and 11)?

Student and school
predictors model

Table 12: Research Questions

The models are fitted using SAS PROC MIXED. Both student- and school-level variables are grand

mean centered. The necessary SAS code for fitting the models is provided in Appendix 7.1.2.

4.2.1 Unconditional means model

The first model to be fit in multilevel analysis is the unconditional means model [24].This model can be

interpreted as a one-way ANOVA with random effects [23], it is recognized by Raudenbush and Bryk

[18] as an essential tool in preliminary multilevel data analysis, because it quantifies the variation in the

outcome variable between and within each level in the hierarchy. Without the inclusion of any student-

or school-level predictors, this model gives the structure of how the variability in science achievement is
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apportioned between the levels in the hierarchy.

SCIACHj =β0j1 + rj (41)

β0j =γ00 + u0j (42)

where rj ∼ N(0, σ2Inj
), u0j ∼ N(0, τ00)

The level-1 model predicts the SCIACH, for each school, using a linear combination of the jth school’s

mean SCIACH, β0j1, with vector 1 for the intercept, and some random deviations, rj , assumed to be

normally distributed with mean 0 and a constant variance, σ2Inj , which gives the within-school variation

in SCIACH. The level-2 model is a function of the overall mean SCIACH, γ00, plus a random term,

u0j , assumed to be normally distributed with mean 0 and variance τ00 which gives the between-school

variation in SCIACH. When substituting (42) into (41) the following combined (multilevel) model is

obtained:

SCIACHj =γ001 + u0j1 + rj (43)

The vector 1 on the level-2 random term shows that the intercept is varied between schools.

Output and results

Table 13 gives the output obtained from fitting the model in (43), the interpretation of the output follows.

Fixed Effects
Parameter Parameter estimate Standard error

(s.e)
P-value Significance test

γ00 361.96 4.5907 < .0001
The estimate is
statistically significant at
a 5% level of significance.

Variance-covariance estimates
Between-school
variation,τ00

6009.20 511.70 < .0001 Both estimates are
statistically significant at
a 5% level of significance.Within

school-variation,σ2
5160.60 66.0201 < .0001

Table 13: One-way ANOVA model results

Fixed-effects: Under this model there is only one fixed effect, γ00, its estimate is 361.96 and it is

statistically significant with p−value < .0001 (thus reject the null hypothesis that H0 : γ00 = 0)(see

Table 13). The estimate gives the mean school-level science achievement of the 292 schools. Note

the caveat by Singer[23] of misinterpreting this value as a student level average.
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Variance-components: Since the fitted model is unconditional (i.e predictor-free) the variances are

unconditional estimates of the random-effects portion of the model, σ2, for the variation in rj , is

estimated by σ̂2 = 5160 and τ00, for the variation in u0j , is estimated by τ̂00 = 6009.2, both of

these estimators are significant with a both their p− value < .0001. These estimates are revealing

what was expected, that is a considerable amount of variability in science achievement between and

within schools, but there is 14% (6009.2−5160
6009.2 ) more variability between schools than within schools,

to quantify this variation the ICC, ρ, is estimated, it answers the first research question

ρ̂ =
τ̂00

τ̂00 + σ̂2
=

6009.2

6009.2 + 5160
≈ .54 or 54% (44)

Indicating that about 54% of the variation in science achievement is between schools. This emphasizes

the need to make use of multilevel models and thus suggesting that a single-level (ordinary regression)

model might yield misleading results.

4.2.2 Level-1 predictor(s) only model

To see how the student-level factors affect the student’s science achievement, the random coefficients

model is fitted. The slope(s) and intercept (i.e. the level-1 coefficients) included in the model will vary

across schools which allows each school to have its own slope and intercept. This is the typical intercepts

and slopes as outcomes model. The student-level model (45) and school-level model (46) are specified as

follows

SCIACHj =Xjβj + rj

=

(
1 SCSj SATSj STUBj HERj

)


β0j

β1j

β2j

β3j

β4j


+ rj (45)

βj =



γ00 + u0j

γ10 + u1j

γ20 + u2j

γ30 + u3j

γ40 + u4j


= γ + uj (46)
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for rj ∼ N(0, σ2Inj
), and uj ∼ N(0,Φ)

where Φ =



τ00 τ01 τ02 τ03 τ04

τ10 τ11 τ12 τ13 τ14

τ20 τ21 τ22 τ23 τ24

τ30 τ31 τ32 τ33 τ34

τ40 τ41 τ42 τ43 τ44


The student-level model in (45) is a conditional model, conditional upon the inclusion of student-level

factors, thus the random error term, rj , is a residual assumed to be normally distributed with mean 0 and

variance σ2Inj , where Inj is an nj x nj identity matrix. The elements of the vector βj , level-1 coefficients,

are allowed to vary across schools in the level-2 model as functions of their school-level averages (e.g γ00),

and a random term (e.g u0j). The random term in (46), uj , is assumed to be multivariate normally

distributed with mean 0 and variance-covariance matrix Φ. Now each diagonal element of the variance-

covariance matrix ( i.e the τkk’s for k = 1,2,...,K) measures the variability of each regression coefficient (i.e

βkj for k = 1,2,...,K and j = 1,2,...,J) across schools and the off-diagonal elements measure the covariance

between regression coefficients.

When substituting (46) into (45), a combined (multilevel) model is obtained and can be written as

follows:

Yj =

(
1 SCSj SATSj STUBj HERj

)


γ00

γ10

γ20

γ30

γ40


+

(
1 SCSj SATSj STUBj HERj

)


u0j

u1j

u2j

u3j

u4j


+ rj

= Xjγ + Xjuj + rj (47)

Output and results

Table 14 gives the results from fitting the model in (47), the interpretation of the output follows.
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Fixed Effects
Parameter Parameter

estimates
Standard error

(s.e)
P value Significance test

γ00 362.78 4.2239

<.0001 All estimates
are statistically
significant at a
5% level of
significance.

γ10 5.8676 0.4642
γ20 7.2540 0.4968
γ30 3.9301 0.4487
γ40 1.9391 0.5094 0.0002

Variance components
Within-
school

variance, σ2

4343.69 59.5699 <.0001

The school-level variance components are given in (48) in matrix form.

Table 14: Random coefficients model results

Fixed-effects: The estimate for γ00, the overall mean SCIACH after controlling for the SCS, SATS,

STUB and HER is 362.78. The estimates for γ10, γ02, γ03 and γ04 are 5.8676, 7.2540, 3.9301 and

1.9391, respectively and they indicate the average slope across schools between science achievement

and student confidence in science, student attitude towards science, frequency of student bullying

per student and the student’s home educational resources, respectively. All the coefficients are

statistically significant as reflected by their p-values as shown in Table 14. The implication is that a

student with a positive attitude and confidence towards science, who experiences less bullying and

has enough educational resources at home with either of his or her parents possessing a diploma

or above will perform better in science. A good attitude towards science followed by confidence

in science are seen to be the most important, whereas the latter two are moderate to less than

important, more especially the effect of home educational resources.

Variance-components: For the random effects, from the output the variance-covariance matrix is spec-

ified in (48).



Intercept SCS SATS STUB HER

Intercept τ̂00 τ̂01 τ̂02 τ̂03 τ̂04

SCS τ̂11 τ̂12 τ̂13 τ̂14

SATS τ̂22 τ̂23 τ̂24

STUB τ̂33 τ̂34

HER τ̂44
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=



5063.89∗ −8.3968 −189.48∗ −167.73∗ 204.61∗

6.8803 −0.7359 −3.1507 −3.7484

15.1794∗ 12.1259∗ −6.4112

14.8358∗ −5.4178

24.3760∗


(48)

∗p-value<0.05, statistically significant, otherwise statistically insignificant

The fitted model has five random effects measured by their corresponding variance-covariance com-

ponents. For the variance in the intercepts, the variability in science achievement between schools has

remained virtually the same (i.e from 6009.2 to 5915.24) after controlling for the student-level factors.

For the covariance between slopes and intercepts, there exists statistically significant correlations between

SATS-, STUB-, and HER-SCIACH slopes and the school science achievement (intercept). But the corre-

lation is not significant for the SCS-SCIACH slope and the intercept (see (48), τ̂01). This can be visually

seen from Figure 1, in which the empirical Bayes (EB) estimates for the slopes (vertical axis) and inter-

cepts (horizontal axis), the β0j ’s, are plotted3. In other words, the effects of SATS, STUB and HER on

science achievement differ depending on school average science achievement, but for the effect of SCS on

science achievement there is no evidence that suggests the above case. For the variances in slopes, all the

slopes except, SCS-SCIACH slope, are each statistically significantly different across schools (see (48)).

For the covariance between the slopes, only the effect of SATS on science achievement is significantly

(statistically) correlated with that of STUB on science achievement. The other slope-slope relationships

across schools are not statistically significant (see (48)). The variance within-schools declined by a con-

siderable amount from that observed in the unconditional model. The decline can be used to answer the

second research question.

=
unconditional model(σ̂2)− conditional model(σ̂2)

unconditional model(σ̂2)

=
5160.60− 4341.94

5160.6

=0.1586 or15.86%

It follows that, about 16% of the explainable variation in science achievement within schools is ex-

plained by SCS, SATS, STUB and HER. Taking into account the caveat provided in Singer [23], that
3Note that these EB estimators are approximates computed by borrowing strength from the SAS PROC MIXED results,

see code in Appendix
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the explainable variation in SCIACH might be small as such the combined contribution of student-level

factors might be negligible.

Schools intercepts and slopes(SCIACH-SCS) Schools intercepts and slopes(SCIACH-SATS)

Schools intercepts and slopes(SCIACH-STUB) Schools intercepts and slopes(SCIACH-HER)

Figure 1: Plot of the empirical Bayes estimates for 291 school for the TIMSS 2015 data

4.2.3 Level 2 predictor(s) only model

To investigate and answer the third question, that is, to determine the effect of school-level factors on

science achievement, the means-as-outcomes model is fitted with all the school-level factors in Table 11.

The student-level model is as specified in (10) and (41) and the school-level model is specified as follows

β0j =γ00 + γ01SCHSLABj + γ02SCHSRSj + γ03SCHDPj + γ04SCHEASj + u0j (49)
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=

(
1 SCHSLABj SCHSRSj SCHDPj SCHEASj

)


γ00

γ01

γ02

γ03

γ04


+ u0j

=Zjγ + u0j

where u0j ∼ N(0, τ00)

Because of the inclusion of school-level predictors u0j represents the residual after controlling for

school-level factors. The residual term is normally distributed with mean 0 and variance τ00. τ00, as in

the previous models, is the variability in science achievement between schools.

To obtain the combined model, substitute (49) into (41):

SCIACHj =Zjγ + u0j1 + rj (50)

The vector 1 is an nj x 1 of ones for the intercept, the second component u0j1 indicates that the

intercept is random thus the model has one fixed-effect and two random effects.

Output and results

Table 15 gives the output from fitting the model in (50) followed by the interpretation of the output.

Fixed effects
Parameter Parameter estimates Standard error

(s.e)
P-value Significance test

γ00 333.35 5.3984 <.0001 All the coefficients are
statistically significant
at a 5% level of
significance.

γ01 53.0392 7.6058 <.0001
γ02 9.4000 2.5311 0.0002
γ03 7.8227 2.8980 0.0070
γ04 9.7992 2.1914 <.0001

Variance covariance components
Parameter Parameter estimate P-value Significance test

Between-school
variation,τ00

3897.25 341.71 <.0001 Both variance
estimates are
significant at a 5%
level of significance

Within-school
variation,σ2

5160.18 66.7388

Table 15: Level-2 predictor(s) only model results

38



Fixed-effects: The fitted model has five fixed effects: γ00, the average school science achievement, γ01,

the differences in average science achievement between schools with science labs (SCHSLAB=1)

and those without science labs (SCHSLAB=0), γ02,γ03 and γ04, the increase in a school’s science

achievement score following a unit increase in either SCHSRS, SCHDP or SCHEAS while keeping

the effect of the other school-level predictors constant, respectively. They are estimated as 333.21,

53.1859, 9.3894, 7.8305 and 9.7942, respectively. All estimates are statistically significant (see Table

15). The implication of this results is that schools with science labs and other resources essential

for teaching and learning science, having zero to no discipline issues and also encouraging their

students to achieve academic success tend to perform well in science. It can be seen from Table 15

that having a science lab is the most important factor to better perform in science followed by the

frequency of emphasis of the school’s emphasis on academic success.

Variance-components:

The model has two random effects, u0j , the difference in science achievement between schools after

controlling for the school-level predictors and rij , the deviations of student science achievement scores

from their school average achievements. The former is measured by τ00 and the obtained estimate of τ00 is

3925.97 and the latter is measured by σ2 and, σ2 is estimated as 5154.47. Both variance components are

significant (see Table 15). There has been a sizeable decline in the between school variability in science

achievement (from 6009.2 to 3925.97) which means that the school-level predictors included contribute to

the explanation of a large portion of the variation in science achievement between schools. The within-

school variability remained virtually the same (5160.60 unconditional compared with 5154.47 conditional).

To answer the third research, the decline in the between schools variation as a results of including

school-level factors is used to compute the portion in the variability as a result of the factors.

=
τ̂00(unconditional model)− τ̂00(level − 2 predictor(s) only model)

τ̂00(unconditional model)

=
6009.2− 3925.97

6009.2

=0.3466 or 34.66%

This value can be interpreted by saying that 34.66% of the explainable variation in school’s science

achievement is explained by school-level factors.

4.2.4 Combined level-1 and level-2 predictor(s) model

So far separate models, in both the student- and school-level, have been fitted and the effect of factors at

those levels have answered some of the questions concerning the variation in science achievement across
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and within South African schools. To determine the combined effect of both the student- and school-

level factors, the intercepts and slopes as outcomes model is fitted. The student-level model in (51) and

school-level model in (52) are as specified below

SCIACHj =Xjβj + rj , rj ∼ N(0, σ2Inj
) (51)

=

(
1j SCSj SATSj STUBj HERj

)


β0j

β1j

β2j

β3j

β4j


+ rj

βj =



γ00 + γ01SCHSLABj + γ02SCHSRSj + γ03SCHDPj + γ04SCHEAS + u0j

γ10 + γ11SCHSLABj + γ12SCHSRSj + γ13SCHDPj + γ14SCHEAS + u1j

γ20 + γ21SCHSLABj + γ22SCHSRSj + γ23SCHDPj + γ24SCHEAS + u2j

γ30 + γ31SCHSLABj + γ32SCHSRSj + γ33SCHDPj + γ34SCHEAS + u3j

γ40 + γ41SCHSLABj + γ42SCHSRSj + γ43SCHDPj + γ44SCHEAS + u4j


=(I5

⊗
Zj)γ + uj , uj ∼ N(0,Φ) (52)

where Zj =

(
1 SCHSLABj SCHSRSj SCHDPj SCHEAS

)

and Φ =



τ00 τ01 τ02 τ03 τ04

τ10 τ11 τ12 τ13 τ14

τ20 τ21 τ22 τ23 τ24

τ30 τ31 τ32 τ33 τ34

τ40 τ41 τ42 τ43 τ44


The student-level model in (51) is the same as the one obtained from the level-1 predictor(s) only

model in (45) and as such it possesses the same properties, that is, the within-school error variance, rj ,

has a mean of 0 and a constant variance of σ2Inj
. The school-level model in (52) is slightly different

from the one obtained in the level-2 predictor(s) only model because of the varying student-level model

coefficients in the school-level model which increases the number of random effects in the school-level

model. Since there are five student-level model coefficients there are five school-level random effects as

captured in the vector uj . Now, uj is distributed as a multivariate normal variable with mean 0 and a
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variance-covariance matrix of Φ.

After substituting (52) into (51), the combined model is obtained:

SCIACHj =Z∗jγ
∗ + Xjuj + rj (53)

Output and results

Table 16 gives the output from fitting the model in (53) , followed by the interpretation of the output.

The interaction terms are omitted because, (1) they are all statistically insignificant (with p-values >

0.05); and (2) when included, some of the main fixed effects are statistically insignificant.

It follows that the fitted model has a school-level model as given in (54). The combined model in

(53), with the school-level model as specified in (54), is referred to as a MANCOVA (Multiple ANCOVA)

model with random effects.

βj =



γ00 + γ01SCHSLABj + γ02SCHSRSj + γ03SCHDPj + γ04SCHEASj + u0j

γ10 + u1j

γ20 + u2j

γ30 + u3j

γ40 + u4j


(54)

Fixed effects
Parameter Parameter estimates Standard error

(s.e)
P-value Significance test

γ00 343.49 4.8028 <.0001

All the coefficients are
statistically significant
at a 5% level of
significance

γ01 36.8431 6.3173 <.0001
γ02 6.2149 2.1459 0.0038
γ03 7.3940 2.4130 0.0022
γ04 8.3593 1.8264

<.0001γ10 5.6515 0.4681
γ20 7.4196 0.4970
γ30 3.9649 0.4505
γ40 1.7556 0.5094 0.0135

Variance covariance components
Parameter Parameter estimates Standard error

(s.e)
P-value

Within-school variation, σ2 4348.92 60.2748 <.0001 The estimate is
statistically significant
at a 5% level of
significance.

The school-level variance components between level-2 units are given in (55).

Table 16: Combined level-1 and level-2 predictors model results
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Fixed-effects: The fitted model has nine fixed effects: The estimated average school science achieve-

ment is about 343, γ00. The average slope between science achievement and student’s confidence

in science, γ10; student’s attitude towards science, γ20; student bullying, γ30 and student’s home

educational resources, γ40, across schools are estimated as 5.6515, 7.4196, 3.9649 and 1.7556, respec-

tively. Schools with science laboratories have average science achievement that is 38.8431 (estimated

γ01) points higher than schools without science laboratories, when keeping the effect of the other

school factors constant. The implication of the rest of the school-level factors is as follows: an

additional school science resource, one less discipline problem and additional emphasis on academic

success for any school will increase the school science achievement by 6.2149 (estimate for γ02),

7.3940 (estimate for γ03), 8.3593 (estimate for γ04), respectively. Each will occur while keeping the

others constant. All the coefficients are statistically significant (See Table 16).

Variance-components: For the random-effects, the following is a variance-covariance matrix of the

fitted model:



SCIACH SCS SATS STUB HER

SCIACH τ̂00 τ̂01 τ̂02 τ̂03 τ̂04

SCS τ̂11 τ̂12 τ̂13 τ̂14

SATS τ̂22 τ̂23 τ̂24

STUB τ̂33 τ̂34

HER τ̂44



=



3495.50∗ −6.4946 −142.63∗ −146.93∗ 121.85∗

6.8253 −0.1534 −3.5809 −3.6904

13.6913∗ 11.6040∗ −5.7266

14.1904∗ −3.7400

22.1796∗


(55)

∗p-value<0.05, statistically significant

The fitted model has six random effects, measured by their corresponding variance-covariance compo-

nents given in (55). For the variance in the school SCIACH, there exists statistical significant variability

between schools in their science achievement, measured by τ̂00. This implies that there is additional vari-

ability that is not explained by the student- and school-level factors currently accounted for in the model.

For the variance in the slopes, only the effect of home educational resources on science achievement varies
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Goodness of fit
Type of model AIC BIC -2LL
Random intercepts and slopes model 131136.1 131194.5 131104.1
Random intercepts only model 131269.3 131276.6 131265.3

Table 17: Model comparison

significantly across schools, measured by τ̂44 (see Equation 55). For the covariance between slopes and

intercepts, the effect of student bullying and home educational resources on science achievement each dif-

fer depending on the school’s science achievement. For the covariance between slopes, the effect of both

the student’s confidence and attitude towards science on science achievement vary significantly (see 55).

That is, there is a correlation between the SCIACH-SATS slopes and SCIACH-SCS across schools. There

are significant differences within schools, the variability declined by about 12% less than that observed

in the level-1 predictor(s) only model. This means that the effect of group (school) factors is over and

above the individual (student) factors. To measure the combined effect of both student- and school-level

factors, the declined in the total variation is obtained,

=
unconditional_model(τ̂00 + σ̂2)− conditional_model(τ̂00 + σ̂2)

unconditional_model(τ̂00 + σ̂2)

=
11169.8− 7844.42

11169.8

=0.297 or30%

Thus about 30% of the explainable variation in science achievement is explained by the student- and

school-level factors accounted for in the model.

The SAS PROC MIXED output provides a window to compare two models based on their goodness of

fit. Under the ’Fit Statistics’ section are measures useful in comparing multiple models with identical fixed

effects but different random effects, AIC (Akiake information criterion) and BIC (Bayesian information

criterion). Low values are evidence of a good fit. These measures can help ascertain whether both the

slopes and intercepts should vary (random coefficients model) across schools or only the intercepts should

vary.

From Table 17, it can be seen that the model that provides a good fit is the one where both the

intercepts and slopes are allowed to vary across schools. This is a further reflection of the heterogeneity

between schools.
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5 Efficiency comparison analysis

In this section a comparative analysis is conducted in the form of an efficiency study in which multilevel

analysis is contrasted and compared with the methods used for the analysis of hierarchical data prior

to its development. These methods are namely, disaggregation and aggregation [27]. The former pools

the data across all higher level units (e.g schools) and then proceeds by fitting a single level-1 model

thereby ignoring the possible presence of the between group differences, whereas the latter deals with

the hierarchy by fitting a single level-2 model using group means and thereby ignoring the within group

individual differences. The TIMSS 2015 data considered in these paper are utilized in this analysis. Model

diagnostics is performed for these two single regression models (i.e. aggregation and disaggregation) and a

guideline to the appropriate use of multilevel modeling is provided. The three methods are demonstrated

using science achievement (SCIACH) as the response variable and predictor from each level: student

confidence in science (SCS) for level-1 and school science resources (SCHSRS) from level-2. Note that

for the purposes of rendering the model coefficients interpretable the two predictor variables used in this

analysis are centered: SCS is group mean centered and SCHSRS is grand mean centered. The SAS

program was used to carry out this analysis, code is provided in Appendix . The results of fitting a

regression model using all three methods are given in Tables 18 (Aggregation and Disaggregation) and

19 (Multilevel modeling). The findings under each method are discussed below.

Disaggregation Aggregation
Parameter Coefficient standard error p-value Coefficient4 standard error p-value
Intercept 358.95011 0.88135 <.0001 360.83890 4.36488 <.0001

SCS 10.71634 0.45224 <.0001 7.95682 6.63663 0.2315
SCHSRS 13.60378 0.59252 <.0001 16.34233 2.81465 <.0001

Assumption/statistic Model diagnostics for aggregation and disaggregation regression.
Multicollinearity:5

VIF statistic
1.0000 1.01968

Normality :
(P-value)

1.6496590
(<.005)**

0.942908
(<.0001)**

**P-value is extremely small reject the assumption of normality at a 5% level of
significance.

Table 18: Aggregation and Disaggregation results: comparative study
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Multilevel modeling
Parameter Coefficient Standard error P-value

Intercept, γ00 362.32 4.3102
<.0001SCS, γ10 11.0389 0.3951

SCHSRS, γ01 16.1647 2.7621
SCS*SCHSRS, γ11 -0.5870 0.2601 0.0369

Variance components$

Within-school variance, σ2 4635.96 61.1182 <.0001
Between-school variance,τ00 5251.01 448.74 <.0001

Covariance between slopes and intercepts, τ01 or τ10 -108.66 30.1188 0.0003
Variance between the slopes, τ11 10.7650 3.5435 0.0012

$All the variance components are statistically significant at a 5% level of significance

Table 19: Multilevel model results: comparative study

Disaggregation

As mentioned above this method ignores the possible between group differences and pools the data from

all groups to fit a single level-1 model, by doing that this method violates the assumption of independence

of the classical linear regression model (CLRM). This is as a result of the fact that students are assigned to

school based on their residences as such they share certain characteristics (e.g same teacher, environment

and classroom) [12][17]. The consequence of modeling hierarchy in this manner is the result of small

standard errors for the model coefficients leading to a high probability of significance (i.e rejecting the

H0 : γ = 0) as can be seen from Table 18, the standard error for the coefficient of SCHSRS (s.e= 0.59252)

is almost three times less than that of the estimated fixed effect associated with SCHSRS (s.e = 2.7621)

obtained from the multilevel model(see fourth column of Table 18). Another violation, as a consequence

of modeling hierarchy using disaggregation, is that of normality. The error term, in a typical two-variable

regression model, is assumed to be normally distributed [8], to test if this is true, from a fitted model

the residuals (i.e estimators of the error term) are tested for normality. Yap and Sim[28] found that the

Shapiro-Wilk test for normality performs better than any test, using this test, the p-value is found to be

< .005 as a result the assumption of normality is rejected (see Table 18 second column last row). And

lastly, multicollinearity is not a threat with a Variance inflation factor (VIF)6 of 1 for both predictors.

Aggregation

This method models the hierarchy by using school means as a result it ignores the within school differences,

this implies that the model is predicting the average science achievement As a consequence, there is a loss

of individual variability in the the response variable[17]. The results for the fitted model are in the third

column of Table 18. All the coefficients are significant except that of average SCS (p-value = 0.2315). The
6If the VIF is at least 9 then it signals multicollinearity but for VIF at most 1 multicollinearity is not a problem, for

more on this statistic see page 351 of Gujarati [8]
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standard errors are larger than those obtained from fitting a multilevel model (see Table 19), especially

that of the coefficient of average SCS (s.e = 6.63663). The normality assumption is severely violated

under this method (with p-value < .0001), evidence enough to reject the assumption of normality (see

figure 2a in Appendix 7.2). Lastly multicollinearity is not a threat with a VIF of 1.01968.

From the analysis above it can be seen that modeling hierarchy using traditional regression methods

(i.e either aggregation or disaggregation) will result in overestimated, small standard errors7, among

others. To avoid drawing false conclusions, guidelines are provided to the appropriate and necessary use

of the multilevel analysis approach:

1. For a two-level data structure, if the level-2 units are randomly sampled and inference is about the

differences between the level-2 units, then multilevel analysis is necessary [12];

2. Whenever group sample sizes are similar across level-2 units, using either aggregation (i.e single

level-1) or disaggregation (single level-2) will yield estimates to the fixed effects similar to those

obtained from multilevel analysis but they will be less efficient (i.e Var(γ̂agg) is large) than the

multilevel model estimates [20].

In summary, it can be seen from the results of aggregation and disaggregation that the use of either

of these methods results in a loss of variability, in essence these methods prevents the researcher from

disentangling the student and school effect on the outcome variable [17]. The failure of these methods

from being able to yield both the effect of the student and school effects on the response necessitates

the use of multilevel modeling. From Table 19, the multilevel analysis results reveal that all the fixed

effects as well as the random effects are significant (with p-value < .0001). The ICC 54% (see Equation

44) obtained from multilevel modeling shows that an OLS analysis of this data will yield considerable

misleading results [23].

6 Conclusion

In this paper, a multilevel modeling technique useful in modeling hierarchical data was employed in

a two-level analysis of students nested in schools. In this analysis student- and school-level factors

are investigated to determine their contribution to the variation in science achievement among South

African 9th-graders. The analysis was conducted using the TIMSS 2015 data. The results reveal that

school factors contribute a large portion to the differences in science achievement across schools and

also that the contextual-effects (i.e the social composition of the student body) are over and above the

individual student effects. This key finding shows that educational policy should be focused towards school
7Although, in general, small standard errors are would be desirable in estimation, in this instance lead to increases in

the Type I error (i.e the probability of falsely rejecting the null hypothesis)
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reformation instead of student reformation. The results further highlight that schools that perform well

in science have science labs, less discipline problems and they motivate their students to achieve academic

success, and also students perform well in science if they have a positive confidence and attitude towards

science, experience less bullying and have enough educational resources with either of their parents

possessing a diploma or any other higher qualification.

Over and above science achievement, the multilevel analysis reveal that academic performance in

South Africa is unstable. This is reflected by the degree of heterogeneity between schools. For the

benefit of a country’s economic development, it is essential that a schooling system provide stable quality

education. This is so that it can produce consistent outcomes. In order to maintain stability there has

to be an improvement in quality, perhaps further research is required to investigate the role of statistical

process control (SPC) in addressing this matter.
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7 Appendix

7.1 SAS code

7.1.1 Simulation study code

***Simulation****;

title ’Unconditional Means Model’;

proc iml;

call randseed(123);

N=10000; ni=25;

Y=J(N,1,.); r=J(N,1,.);

Level1=J(N,1,.);Level2=J(N,1,.);

k=N/ni; uj=J(1,k,.);Bhatj=J(1,k,.);

***Parameters Chosen for the simulation***;

gamma=250; t00=100;

do j=1 to k;

uj[,j]=randnormal(1,0,t00);

r[ni*j-(ni-1):j*ni]=randfun(ni,’normal’,0,5);

Bhatj[,j]=gamma+uj[,j];

Y[ni*j-(ni-1):j*ni]=J(ni,1,1)*Bhatj[,j]+r[ni*j-(ni-1):j*ni];

Level1[ni*j-(ni-1):j*ni]=(1:ni)‘;

Level2[ni*j-(ni-1):j*ni]=J(ni,1,j);

end;

D=Level2||Level1||Y;

create analysis.simulation1 from D[colname={Level2 Level1 Y}];

append from D;

quit;

title ’One-Way ANCOVA model’;

proc iml;

call randseed(123);

N=10000;

ni=25;

Y=J(N,1,.); X=J(N,2,.); r=J(N,1,.);

Level1=J(N,1,.);Level2=J(N,1,.);
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CX=J(N,1,.); k=N/ni; uj=J(2,k,.);Bhatj=J(2,k,.);Z=J(2,3,.);Z1=J(N,1,.);

***Parameters Chosen for the simulation***;

gamma={130,100,240}; t00=100;

do j=1 to k;

uj[1:2,j]=(randnormal(1,0,t00))//0;

r[ni*j-(ni-1):j*ni]=randfun(ni,’normal’,0,16);

X[ni*j-(ni-1):j*ni,1:2]=J(ni,1,1)||randfun(ni,’normal’,20,6);

Z[1,]=1||mean(X[ni*j-(ni-1):ni*j,2])||0;

Z[2,]=0||0||1;

Bhatj[1:2,j]=Z*gamma+uj[1:2,j];

Y[ni*j-(ni-1):j*ni]=X[ni*j-(ni-1):j*ni,1:2]*Bhatj[1:2,j]+r[ni*j-(ni-1):j*ni];

Level1[ni*j-(ni-1):j*ni]=(1:ni)‘;

Level2[ni*j-(ni-1):j*ni]=J(ni,1,j);

Z1[ni*j-(ni-1):ni*j]=J(ni,1,mean(X[ni*j-(ni-1):ni*j,2]));

****Group Mean centering****;

CX[ni*j-(ni-1):ni*j]=X[ni*j-(ni-1):ni*j,2]-Z1[ni*j-(ni-1):ni*j];

end;

D=Level2||Level1||Y||CX||Z1;

create analysis.simulation2 from D[colname={Level2 Level1 Y CX Z}];

append from D;

quit;

title ’Means as Outcomes model’;

proc iml;

call randseed(123);

N=10000;

ni=25;

Y=J(N,1,.);Z=J(N,2,.);r=J(N,1,.);

Level1=J(N,1,.);Level2=J(N,1,.);

k=N/ni; uj=J(1,k,.);Bhatj=J(1,k,.);

***Parameters Chosen for the simulation***;

gamma={150,75}; t00=100;

do j=1 to k;

uj[,j]=randnormal(1,0,t00);
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r[ni*j-(ni-1):j*ni]=randfun(ni,’normal’,0,5);

Z[ni*j-(ni-1):j*ni,1:2]=J(ni,1,1)||J(ni,1,randfun(1,’normal’,15,5));

Bhatj[,j]=Z[ni*j-(ni-1),1:2]*gamma+uj[,j];

Y[ni*j-(ni-1):j*ni]=J(ni,1,1)*Bhatj[,j]+r[ni*j-(ni-1):j*ni];

Level1[ni*j-(ni-1):j*ni]=(1:ni)‘;

Level2[ni*j-(ni-1):j*ni]=J(ni,1,j);

end;

CZ=Z[,2]-J(N,1,mean(Z[,2]));

D=Level2||Level1||CZ||Z[,2]||Y;

create analysis.simulation3 from D[colname={Level2 Level1 CZ Z Y}];

append from D;

quit;

title ’Non-Varying slopes model’;

proc iml;

call randseed(123);

N=10000;

ni=50;

Y=J(N,1,.); X=J(N,2,.); Z=J(N,2,.); r=J(N,1,.);

Level1=J(N,1,.);Level2=J(N,1,.);

CX=J(N,1,.);Z_=J(2,4,.); k=N/ni; uj=J(2,k,.);Bhatj=J(2,k,.);Z1=J(N,1,.);

***Parameters Chosen for the simulation***;

gamma={200,400,200,100}; t00=100;

do j=1 to k;

uj[,j]=(randnormal(1,0,t00))//0;

r[ni*j-(ni-1):j*ni]=randfun(ni,’normal’,0,5);

X[ni*j-(ni-1):j*ni,1:2]=J(ni,1,1)||randfun(ni,’normal’,20,6);

Z[ni*j-(ni-1):j*ni,1:2]=J(ni,1,1)||J(ni,1,randfun(1,’normal’,15,5));

Z_[1,]=1||mean(Z[ni*j-(ni-1):ni*j,2])||mean(X[ni*j-(ni-1):ni*j,2])||0;

Z_[2,]={0 0 0}||1;

Bhatj[1:2,j]=Z_*gamma+uj[,j];

Y[ni*j-(ni-1):j*ni]=X[ni*j-(ni-1):j*ni,1:2]*Bhatj[1:2,j]+r[ni*j-(ni-1):j*ni];

Level1[ni*j-(ni-1):j*ni]=(1:ni)‘;

Level2[ni*j-(ni-1):j*ni]=J(ni,1,j);
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Z1[ni*j-(ni-1):ni*j]=J(ni,1,mean(X[ni*j-(ni-1):ni*j,2]));

****Group mean centering****;

CX[ni*j-(ni-1):ni*j]=X[ni*j-(ni-1):ni*j,2]-Z1[ni*j-(ni-1):ni*j];

end;

****Grand Mean centered Level-1 and Level-2 predictors;

CZ=Z[,2]-J(N,1,mean(Z[,2]));

D=Level2||Level1||Y||CZ||Z1||CX;

create analysis.simulation4 from D[colname={Level2 Level1 Y CZ Z CX}];

append from D;

quit;

***Multilevel modeling***;

title ’Multilevel modeling’;

title1 ’Unconditional Means model’;

proc mixed data=analysis.simulation1 noclprint noitprint covtest;

class level2;

model Y=/solution;

random intercept/sub=level2;

run;

title1 ’One-Way ANCOVA model’;

proc mixed data=analysis.simulation2 noclprint covtest noitprint;

class level2;

model Y=CX Z/solution;

random intercept/sub=level2 type=un;

run;

title1 ’Means as outcomes model’;

proc mixed data=analysis.simulation3 noitprint noclprint covtest;

class level2;

model Y=CZ/solution;

random intercept/sub=level2;

run;

title1 ’Non varying slopes model’;

proc mixed data=analysis.simulation4 noitprint noclprint covtest;

class level2;

model Y=CZ Z CX/solution;
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random intercept/sub=level2 type=un;

run;

7.1.2 TIMSS Analysis code

1. The Unconditional model

proc mixed data=analysis.ensemble noclprint noitprint covtest;

class idschool;

model sciach=/solution;

random intercept/sub=idschool;

run;

2. Grand mean centering level-1 predictors

proc iml;

use analysis.ensemble;

read all var{idschool sciach scs her sats stub schslab schsrs schdp scheas} into xy;

N=nrow(xy);

***Student-level predictors****;

cscs=xy[,3]-mean(xy[,3]);

cher=xy[,4]-mean(xy[,4]);

csats=xy[,5]-mean(xy[,5]);

cstub=xy[,6]-mean(xy[,6]);

schslab=J(N,1,.);

***school-level predictors****;

do i=1 to N;

if xy[i,7]=1 then schslab[i]=1;

else schslab[i]=0;

end;

cschsrs=xy[,8]-mean(xy[,8]);

cschdp=xy[,9]-mean(xy[,9]);

cscheas=xy[,10]-mean(xy[,10]);

g=xy[,1]||xy[,2]||cscs||cher||csats||cstub||schslab||cschsrs||cschdp||cscheas;

var1={idschool sciach cscs cher csats cstub schslab cschsrs cschdp cscheas};

create analysis.levelg1 from g[colname=var1];

append from g;
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quit;

3. Level-1 predictors only model

proc mixed data=analysis.levelg1 covtest noitprint;

class idschool;

model sciach=cscs cher csats cstub/solution;

random intercept cscs csats cstub cher/sub=idschool type=un;

run;

4. Level-2 predictors only model

proc mixed data=analysis.levelg1 covtest noitprint noclprint;

class idschool;

model sciach=schslab cschsrs cschdp cscheas/solution;

random intercept/sub=idschool;

run;

5. Level-1 and Level-2 predictors model

*******Random intercepts and slopes model*****

proc mixed data=analysis.levelg1 noclprint noitprint covtest;

class idschool;

model sciach=cscs csats cstub cher schslab cschsrs cschdp cscheas/solution;

random intercept cscs csats cstub cher/sub=idschool type=un; run;

*******Random intercepts only******

proc mixed data=analysis.levelg1 noclprint noitprint covtest;

class idschool;

model sciach=cscs csats cstub cher schslab cschsrs cschdp cscheas/solution;

random intercept/sub=idschool type=un;

run;

7.1.3 Comparative study

1. Disaggregation

proc reg data=analysis.levelg1;
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model sciach=cscs cschsrs/vif;

output out=analysis.r_disagg r=residual_disaggregation;

run;

****Testing normality for the disaggregated regression***

symbol i=r;

proc univariate data=analysis.r_disagg normal;

qqplot;

var residual_disaggregation;

histogram/normal;

run;

2. Aggregation

proc means data=analysis.levelg1;

class idschool;

var sciach;

output out=analysis.ca mean=msciach;

run;

proc means data=analysis.levelg1;

class idschool;

var cscs;

output out=analysis.cb mean=MSCS_C;

run;

proc means data=analysis.levelg1;

class idschool;

var cschsrs;

output out=analysis.cc mean=MSCHSRS_C;

run;

data analysis.d;

merge analysis.ca analysis.cb analysis.cc;

by idschool;

if idschool=’.’ then delete;

keep idschool msciach mscs_c mschsrs_c;

run;
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proc reg data=analysis.d;

model msciach=mscs_c mschsrs_c/vif;

output out=analysis.r_agg r=residual_aggregation;

run;

***Testing normality for the aggragated regression***;

proc univariate data=analysis.r_agg normal plot;

qqplot;

var residual_aggregation;

run;

3. Multilevel Modelling

proc mixed data=analysis.levelg1 noclprint noitprint covtest plots(maxpoints=None);

class idschool;

model sciach=cscs cschsrs cscs*cschsrs/solution residual;

random intercept cscs/sub=idschool type=un;

run; \newline
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7.2 Test of normality: QQ-plot

(a) Disaggregation (b) Aggregation

(c) Multilevel modeling

Figure 2: QQ-plot for the residuals: Normality test
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Abstract

The presence of possible multimodality in data creates some challenges, in that a unimodal model will

most likely be unable to model the full extent of the data. Mixture models have the ability to model

data that is multimodal, and is therefore prevalent in modeling data of this nature. For simplicity,

in this report the emphasis will be placed on a univariate two component mixture of Gaussian dis-

tributions to model the latent groups within the data. We will make use of two iterative procedures,

namely the Expectation Maximization (EM) algorithm and a classi�cation version of the Expectation

Maximization (CEM) algorithm to estimate the parameters of the mixture model.

The two estimation procedures will be discussed for the univariate case as well as a brief overview of

the multivariate case. Furthermore, an application of both algorithms will be conducted where both

algorithms will be initialized by random selection as well as the K-means algorithm. The performance

of the two methods of estimation will be compared based on a simulation study. Speci�c attention

will be given to a comparison of the absolute bias of the estimated parameters as well as the e�ciency

of estimation.

Keywords: classi�cation EM algorithm; EM algorithm; K-means; Maximum likelihood estimators;

Mixture models; Simulation study.
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1 Introduction

In practice the presentation of data is hardly ever simplistic and may be presented as a high-dimensional

data set [9]. A data set could possibly have multiple clusters of data, with each cluster having its own

parametric distribution with its parameters di�ering from one cluster of data to the next [14]. Thus, the

use of a single model presents a stumbling block due to the possible multimodality in a data set [8]. By

multimodality, we mean that there is more than one region of high probability mass present in the data.

The need for mixture models thus becomes ever more prevalent in the modeling of data, as the mixture

model is able to model the full extent of the data. In this research report, we will focus on a univariate

Gaussian mixture model as well as give a brief overview of the multivariate case.

The use of a mixture of Gaussian distributions necessitates the need for parameter estimation, which

brings about one of the focal points of the research topic, the Expectation Maximization (EM) algorithm

[5]. Over the last two decades many a researcher has employed the EM algorithm but it was Dempster

(1977) [5] who �rst coined the term �EM� as well as proved the convergence of this algorithm. The algo-

rithm is particularly useful for mixture model parameter estimation problems and has been found to have

"reliable global convergence, low cost per iteration, economy of storage and ease of programming as well

as a heuristic appeal" according to Li et al, (2005) [13]. The iterative procedure is used to estimate the

unknown parameters of the mixture model, namely the mean, covariance and mixing coe�cients. The

EM algorithm according to Bishop, (2006) [3] is an "elegant and powerful method for �nding maximum

likelihood solutions for models with latent variables". The EM algorithm comprises of two steps, namely

the Expectation step (E-step) and the Maximization step (M-step) which looks to approximate maximum

likelihood estimates of parameters for incomplete data [1]. Firstly, we have the E-step which calculates

the expectation of the log-likelihood function of the complete data conditional on the unobserved data,

where the observed data and current estimates of the parameters are given. This leads to the next step,

the M-step which maximizes the expected value of the complete data log-likelihood function found in the

E-step to obtain new parameters [13]. The process alternates between the two steps until convergence

has been achieved.

Once the EM algorithm has been thoroughly explained the study will be expanded by exploring a classi�-

cation version of the Expectation Maximization (EM) algorithm, the classi�cation EM (CEM) algorithm.

The extension of the EM algorithm, which includes the so-called unobserved variable in a data set [14],

consists of three steps as a posed to the two steps of the EM. The third step is the Classi�cation step

(C-step), which is added between the Expectation step and Maximization step [7]. This step assigns

each observation to the component with the largest posterior probability [7]. This procedure is seen as
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a K-means-like algorithm and according to Faria (2010) it "converges in a �nite number of iterations"

[7]. An application of the EM and CEM will be conducted, in which both algorithms will be initialized

by random values and values generated by the K-means algorithm and the resulting log-likelihood func-

tions will be compared. Furthermore, a simulation study will be conducted to monitor the performance of

the EM and CEM respectively. This will be conducted by making use of a software program, namely SAS.

This research report is structured as follows: in Chapter 2, we present the formulation of the K-component

Gaussian mixture model as well as the necessary background information and notation. From there, the

maximum likelihood functions are derived and implemented in the EM and CEM algorithms respectively.

The initial values that are needed for the EM and CEM algorithms will be generated by the K-means

clustering algorithm, which will be covered and linked to the above mentioned algorithms. The EM and

CEM algorithms for a univariate Gaussian mixture model will also be divulged in full as well as a brief

overview of the multivariate cases. Chapter 3, an application of the two iterative procedures will be pro-

vided, where the log-likelihood functions of both algorithms with and without the K-means initialization

will be monitored as well as a simulation study to monitor the performance of both algorithms (using

randomly selected initial values) respectively. In chapter 4 conclusions of the study will be drawn and

any further comments on the research report is given.

2 Theoretical Background

2.1 Mixture of normal distributions

Mixture models according to McLachlan and Peel, (2000) [15] "is the use of weighted sums of standard

distributions" thus, it is concerned with the modeling of statistical distributions by a mixture or

weighted sum. These models are also deemed to be semi-parametric, which means they consist of

parametric and nonparametric components [10]. They are also known as �latent class models� or

�unsupervised learning models�.

Data as we know it, is most often than not high-dimensional and possibly presents multimodality, which

means there are several regions of high probability mass [8, 9]. Therefore, we cannot model a cluster of

data points with a single distribution but rather a mixture. The most commonly used distribution in

the EM algorithm would be that of the normal distribution with the t, Poisson and Gamma

distributions being used from time to time. In this report we will focus our attention on the mixture of

univariate K-component Gaussian distributions, with each component having a Gaussian density with

their own mean µj and variance σ2
j [3]. Before we can make use of the mixture, we need to establish

some notation based on Van Wyk, (2016) [23].
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Let y = (y1, y2, ....., yN ) be an unlabeled sample of observations assumed to be independent and identically

distributed, generated from a univariate K-component Gaussian mixture de�ned on <. The mixture

probability density function of a speci�c observation, yi can be denoted as follows

p (yi|Θ) =
∑K

j=1
p (yi|θj)ωj (1)

where ωj are the mixing coe�cients of the distribution (0 < ωj < 1 and
∑K
j=1 ωj = 1),

Θ = (θ1, ..., θK , ω1, ......, ωK) denotes the complete set of parameters that specify the mixture with

θj =
{
µj , σ

2
j

}
and η = (θ1, θ2, ....., θK) representing the parameters of each component density.

Since the individual observations are independent and identically distributed (i.i.d), i.e. Yi ∼ N
(
µj , σ

2
j

)
for i = 1, 2, ....., N and j = 1, 2, .....,K , the Gaussian component-conditional probability density function

has the form:

p (yi|θj) = p
(
yi|µj , σ2

j

)
=

1

σj
√
2π

exp

(
− (yi − µj)2

2σj

)
(2)

We now have the necessary information to start the process of estimating the parameters by means of

the EM algorithm. Before we can start, it is important to note that for simplicity we have speci�ed the

number of components of the mixture model. Therefore, the number of components will not have to be

estimated, but for interest sake, these can be estimated using Bayes Information Criterion (BIC) and

Akaike Information Criterion (AIC) [10].

However, our main focus in this report is the estimation of the unknown parameters and mixing coe�-

cients. This can be achieved by using maximum likelihood as well as corresponding Bayesian approach,

with the former being discussed in detail at a later stage.

2.2 Maximum likelihood estimation

In data analytics and statistical theory, maximum likelihood estimation and likelihood-based inference

is of high importance. Maximum likelihood (ML) estimation can be described as a general estimation

method that is extensively used in areas where statistical techniques are used [16]. ML estimation ac-

cording to Moon, (1996) [18] "is a means of estimating the parameters of a distribution based upon the

observed data drawn according to that distribution". We will now establish some notation and give an

overview of ML estimation.
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Following on from section 2.1, the mixture probability density function of a speci�c observation yi is

denoted by

p (yi|Θ) =
∑K

j=1
p (yi|θj)ωj

Since the parameters are estimated by means of maximum likelihood, we �rst need to denote the likelihood

function

p (y|Θ) =

N∏
i=1

p (yi|Θ)

=

N∏
i=1

 K∑
j=1

p (yi|θj)ωj

 (3)

This function di�ers from that of the probability density function as the sample y is �xed where as with

the probability density function, the parameter Θ is �xed.

Since the main concept of maximum likelihood estimation is to produce a value for the estimator Θ̂ that

ensures the observed data is high as possible. The value of the parameters which maximize the likelihood

function i.e. ML estimate of the parameter, is illustrated as follows

Θ̂ML = argmax
Θ

p (y|Θ) (4)

One needs to note that the log-likelihood function is more convenient to use than the conventional likeli-

hood function [8]. According to Moon, (1996) [18], the logarithm function is "monotonically increasing"

therefore, the maximization of the logarithm function is equivalent to that of the likelihood function.

This can be de�ned as follows

log p (y|Θ) = log

N∏
i=1

p (yi|Θ)

=

N∑
i=1

log p (yi|Θ)

=

N∑
i=1

log

 K∑
j=1

p (yi|θj)ωj

 (5)

The main aim of ML estimation is for the log-likelihood function to be maximized with regards to Θ,

which implies one would need to set the derivatives of the equation 6 mentioned below equal to zero [16].

∂

∂Θ
log p (y|Θ) |Θ=ΘML

= 0 (6)
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However, literature shows that log-likelihood functions are somewhat di�cult to optimize, due to the

sum of terms in the logarithm [8]. Since the component labels of the data are unknown, we can refer to

this problem as a missing-data problem which can be solved by the EM algorithm [4].

Let y = (y1, y2, ...., yN ) ε< be a sample of observed data, which is viewed as �incomplete� since the

component labels of the data, denoted by γ = {γ1, γ2, ....., γN} are unknown [23]. These component labels,

also known as responsibilities, are each equal to one of the values in the set {1, 2, .....,K}, depending on

whether the jth component produced the ith observation.

Therefore, the responsibilities can be seen as a binary vector denoted by

γi = (γi1, γi2, ...., γiK)

where


γij = 1

γim = 0

for j 6= m

if observation yi was produced by the jthcomponent [23, 3].

We therefore can conclude that, γi has a multinomial distribution with parameters 1 and π i.e. γi ∼

Mult (1,π) where π = (π1, π2, ...., πK). Therefore, the observed data and corresponding component

labels of the data form the complete data likelihood function as follows

p (y,γ|Θ) =

N∏
i=1

K∏
j=1

(p (yi|θj)ωj)I{γi=j}

where

I {γi = j} = γij =


1

0

if γi = j

otherwise

which is the binary indicator variable that represents the unobserved data.

The complete data log-likelihood function can further be written as:

log p (y, γ|Θ) =

N∑
i=1

K∑
j=1

γij log (ωjp (yi|θj))

=

N∑
i=1

K∑
j=1

γij (logωj + log p (xi|θj)) (7)
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2.3 The K-means clustering algorithm

2.3.1 Introduction

The initialization of the EM algorithm is of great importance, as it heavily a�ects the speed of convergence

as well as its ability to locate global maxima [12]. In literature, the initial values used in the EM algorithm

are usually �guesses�, which creates the possibility of non-convergence of the algorithm. Therefore, the

natural choice would be to start with estimates obtained by other unsupervised learning methods, such

as the K-means algorithm. In the following section, a brief overview will be given as well as how the

algorithm can be used to initialize the EM algorithm.

2.3.2 The K-means clustering algorithm

The K-means algorithm is a type of partitional clustering which looks to classify data into clusters and

to �nd their corresponding cluster centers [8]. It is often used in initializing Gaussian mixtures and

Learning Vector Quantization (LVQ), that are deemed to be more computationally expensive algorithms.

Suppose that y = (y1, y2, ...., yN ) ∈ < is a sample of N observations, which are assigned to K clusters,

which we will assume to be known for simplicity [23]. The main idea of K-means clustering according to

Melnykov (2012) [17] "is to partition observations so that the within-cluster sum of squares is minimized".

Firstly, we need to calculate the distance between the �new� and �old� centers of the clusters. Note that

in this context the �new� center refers to the newly updated center of the cluster and the �old� center

refers to the initial center before an iteration. This would require a dissimilarity measure, namely the

squared Euclidean distance, also known as a distortion measure. The formula for dissimilarity is given

by [8]

d(yi, yi′) = ||yi − yi′ ||2 (8)

where yi and yi′ denote the �new� and �old� cluster centers respectively.

Suppose that K < N is a �xed number of clusters, where y1, y2, ...., yN is a cluster of points that are

a function of C that assigns each observation yi to a cluster j ∈ {1, 2, ....,K}. These are characterized

by an encoder C(i) = j which indicates that observation yi has been assigned to the jth cluster. The

encoder function can be de�ned as follows

I {C(i) = j} =


1

0

if C(i) = j

otherwise
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The natural loss function, which is referred to as the �within-cluster� scatter is expressed as follows in

terms of the squared Euclidean distance [8]

W (C) =
1

2

K∑
j=1

∑
C(i)=j

∑
C(i′)=j

d(yi, yi′)

=

K∑
j=1

Nj
∑

C(i)=j

||yi − yj ||2

where Nj =
∑N
i=1 I {C(i) = j} is the number of observations and yj = (y1j , y2j , ..., ypj) is the means of

the observations in the jth cluster.

Hence, K-means clustering according to Hastie et al. (2001) "is an iterative descent algorithm" [8] aimed

at minimizing the natural loss function as follows

C∗ = min
C

K∑
j=1

Nj
∑

C(i)=j

||yi − yj ||2

The K-means clustering algorithm is summarized in Algorithm 1 based on Hastie et al. (2001) [8].

Algorithm 1 The K-means clustering algorithm.

1) The total �within-cluster� variance is minimized over a cluster assignment C

min
C,{cj}K1

K∑
j=1

Nj
∑

C(i)=j

‖yi − cj‖2 (9)

with regards to {c1, c2, ...., cK} which produces the average of the data points for the clusters currently
assigned

yJ = argmin
m

∑
iεJ

‖yi − c‖2

where J is any set of observations.
2) Equation (9) is minimized over the current cluster means {c1, c2, ...., cK}, by �nding the current means
closest to each observation. That is

C(i) = argmin
1≤j≤K

‖yi − cj‖2 , i = 1, ....., N

which represents the cluster assignment for ith observation.
3) Alternate between step 1 and 2 until convergence

Once the K-means clustering algorithm has been applied, the cluster centers are used as initial values

for the mean of the univariate Gaussian mixture model. Furthermore, these cluster centers are used to

calculate the initial values for the variance and mixing coe�cients.

The K-means clustering algorithm has the advantage that no matter the choice of the initial cluster

center, the algorithm will converge. However, the algorithm does have its drawbacks in that in certain
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situations it does not produce an initial parameter vector that leads to the correct solutions. According

to Melnykov (2012):

"A major drawback of this method is that by construction it is designed to work well for spherical

well-separated clusters of similar representation. If clusters are elongated, have di�erent sizes, or su�er

considerable overlaps K-means can face challenges."

2.4 The EM algorithm

2.4.1 Introduction

The Expectation Maximization (EM) algorithm, which is known as the likelihood maximizer, is a popular

method to obtain the ML estimators, Θ̂ from incomplete data [5]. This iterative method, which was �rst

introduced by Dempster et al. (1977) [5] in 1977 consists of two steps, namely the Expectation (E-step)

and Maximization steps (M-step). The E-step calculates the expectation of the log-likelihood function of

the complete data conditional on the unobserved data, where the observed data y and current estimates

of the parameters are given. This function is also referred to as the objective function or Q function [23].

The M-step computes the parameter estimates, Θ̂ that maximize the expected log-likelihood function

found in the E-step [18, 7]. The process alternates between the two steps until convergence has been

achieved [23].

In the following sections, the E and M steps for a univariate K-component Gaussian mixture model will

be derived as well as a brief overview of the multivariate case.

2.4.2 The EM algorithm for univariate Gaussian mixture models

We now apply the principles mentioned above as well as the notation that was established in the mix-

ture of normal distributions and maximum likelihood estimation sections for a univariate K-component

Gaussian mixture model to derive expressions for the E-step and the M-step, respectively.

E-step:

For the E-step, at t ≥ 0 we compute the expectation of the log-likelihood function of the complete data

conditional on the unobserved data, assuming that initial values for the parameters are given as well as

the observed data y at t = 0. This function is referred to as the Q function and is expressed as follows:

Q
(
Θ, Θ̂(t)

)
= E

[
log p (y, γ|Θ) |y, Θ̂(t)

]
where Θ̂(t) denotes the maximum likelihood estimates at time step t. Due to the linearity of the log-

likelihood function of the complete data, we can simplify the E-step by calculating the expectation of
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the binary indicator variable γij , i = 1, 2, ....., N ; j = 1, 2, .....,K where the observed data y and current

estimates of the parameters are given, as follows:

E
[
γij |y,Θ̂(t)

]
= 1× P

(
γij = 1|y,Θ̂(t)

)
+ 0× P

(
γij = 0|y,Θ̂(t)

)
= P

(
γij = 1|y,Θ̂(t)

)
= P

(
γi = j|yi, Θ̂(t)

)
since γij = 1 ⇐⇒ γi = j (10)

which is the probability that the yi observation was produced by the jth component. Thus, using Bayes'

Theorem (1) on equation 10, the responsibility of the jth component for the ith observation is

γ̂ij(t) = P
(
γi = j|Θ̂(t)

)
=

p
(
yi|θ̂j(t)

)
ω̂j(t)∑K

k=1 p
(
yi|θ̂k(t)

)
ω̂k(t)

=

[
1√

2πσ̂j(t)
exp

(
− 1

2σ̂2
j (t)

(yi − µ̂j(t))2
)]
ω̂j(t)∑K

k=1

[
1√

2πσ̂2
k(t)

exp
(
− 1

2σ̂2
k(t)

(yi − µ̂k(t))2
)]
ω̂k(t)

(11)

for i = 1, 2, ...., N ; j = 1, 2, ...., J and t ≥ 0

Therefore, in the E-step each observation is assigned to each component, making use of the current

parameter estimates to calculate the relative densities of the observations under each component model

[8]. Therefore, the Q function is as follows:

Q
(
Θ, Θ̂(t)

)
= E

[
log p (y, γ|Θ) |x, Θ̂(t)

]
=

K∑
j=1

N∑
i=1

γ̂ij(t)
(
log p

(
yi|Θ̂j(t)

)
+ logω̂j(t)

)

=

K∑
j=1

N∑
i=1

P
(
γi = j|yi, Θ̂(t)

)(
log p

(
yi|Θ̂j(t)

)
+ log ω̂j(t)

)

=

K∑
j=1

N∑
i=1

log ω̂j(t)P
(
γi = j|yi, Θ̂(t)

)
+

K∑
j=1

N∑
i=1

log p
(
yi|Θ̂j(t)

)
P
(
γi = j|yi, Θ̂(t)

)
(12)

M-step:

For this step we maximize the Q function found in the E-step in terms of the unknown parameters Θ to

15



obtain the new estimates Θ̂(t+ 1) . These new estimates which maximize the Q function are expressed

as follows:

Θ̂ (t+ 1) = argmax
Θ

Q
(
Θ, Θ̂(t)

)
For the Q function, equation 12, we see that since the terms containing ωj and θj are independent,

these terms can be independently maximized with respect to the parameters of each component den-

sity and the mixing coe�cients [2]. Therefore, the updated estimates will be calculated independently

for the mixing coe�cients ω̂j(t+1) , j = 1, 2, ....,K and the parameters η̂(t+1), with η = (θ1, θ2, ...., θK).

Due to the fact that the component labels of the data are unknown, estimates for the mixing coe�cients

need to be iteratively approximated. Therefore, by adhering to the following constraint
∑K
j=1 ω̂j(t) = 1

and making use of equation 11, an expression for ω̂j(t + 1) can be acquired by setting the following

equation equal to zero [23]:

∂Q
(
Θ, Θ̂(t)

)
∂ω̂j(t)

= 0

This is achieved by making use of the Lagrange multiplier (2) λ with the above mentioned constraint as

follows [2]:

∂

∂ω̂j(t)

 K∑
j=1

N∑
i=1

γ̂ij(t)
(
log p

(
yi|θ̂j(t)

)
+ log ω̂j(t)

)
+ λ

 K∑
j=1

ω̂j(t)− 1

 = 0

∴
N∑
i=1

1

ω̂j(t)
γ̂ij(t) + λ = 0

By summing the whole equation up over j, we therefore get that λ = −N , which results in

ω̂j(t) =

N∑
i=1

γ̂ij(t)

N
, j = 1, 2, ....,K

Therefore, at time step t+ 1 the estimates of the mixing coe�cients are as follows:

ω̂j(t+ 1) =

N∑
i=1

γ̂ij(t)

N

=

N∑
i=1

P
(
γi = j|yi, Θ̂(t)

)
N

, j = 1, 2, ...., J and t ≥ 0 (13)

which is achieved by equation 11 from the E-step.
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By setting the partial derivatives equal to zero, we are able to �nd an expression for η̂(t + 1) where

η = (θ1, θ2, ....., θK) =
((
µ1, σ

2
1

)
,
(
µ2, σ

2
2

)
, .....,

(
µK , σ

2
K

))
as follows:

∂Q
(
Θ, Θ̂(t)

)
∂η̂(t)

=
∂

∂η̂(t)

 K∑
j=1

N∑
i=1

γ̂ij(t)
(
log p

(
yi|θ̂j(t)

)
+ log ω̂j(t)

)
=

J∑
j=1

N∑
i=1

γ̂ij(t)
∂ log p

(
yi|θ̂j(t)

)
∂ε̂(t)

(14)

= 0

However, the Gaussian component-conditional probability density function is required before the roots

can be found, which is de�ned as:

log p
(
yi|θ̂j(t)

)
= log p

(
yi|µ̂j(t), σ̂2

j (t)
)

= log

[
1

σ̂j(t)
√
2π

exp

(
− (yi − µ̂j(t))2

2σ̂2
j (t)

)]

= log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

(15)

Taking the partial derivatives of equation 15, with regards to µ̂j(t) and σ̂
2
j (t), we are given the following

∂ log p
(
yi|θ̂j(t)

)
∂µ̂j(t)

=
(yi − µ̂j(t))

σ̂2
j (t)

(16)

and

∂ log p
(
yi|θ̂j(t)

)
∂σ̂2

j (t)
= − 1

2σ̂2
j (t)

+
(yi − µ̂j(t))2

2σ̂4
j (t)

(17)

Using equation 15, the Q function, equation 14 can be written as:

∂Q
(
Θ, Θ̂(t)

)
∂η̂(t)

=

J∑
j=1

N∑
i=1

γ̂ij(t)
∂ log p

(
yi|θ̂j(t)

)
∂η̂(t)

=

J∑
j=1

N∑
i=1

γ̂ij(t)
∂

∂η̂(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
(18)

= 0

Equation 18 results in the following equations:
N∑
i=1

γ̂ij(t)
∂

∂µ̂j(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
= 0 (19)

and
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N∑
i=1

γ̂ij(t)
∂

∂σ̂2
j (t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
= 0 (20)

The solutions of equations 19 and 20 can be obtained by using the results of equations 17 and 18 as

follows:

Solving equation 19:

N∑
i=1

γ̂ij(t)
∂

∂µ̂j(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
= 0

N∑
i=1

γ̂ij(t)
(yi − µ̂j(t))2

2σ̂2
j (t)

= 0

N∑
i=1

γ̂ij(t)yi −
N∑
i=1

γ̂ij(t)µ̂j(t) = 0

N∑
i=1

γ̂ij(t)yi =

N∑
i=1

γ̂ij(t)µ̂j(t)

µ̂j(t) =

∑N
i=1 γ̂ij(t)yi∑N
i=1 γ̂ij(t)

(21)

Solving equation 20:

N∑
i=1

γ̂ij(t)
∂

∂σ̂2
j (t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
= 0

N∑
i=1

γ̂ij(t)

[
− 1

2σ̂2
j (t)

+
(yi − µ̂j(t))2

2σ̂4
j (t)

]
= 0

−
∑N
i=1 γ̂ij(t)

2σ̂2
j (t)

+

∑N
i=1 γ̂ij(t) (yi − µ̂j(t))

2

2σ̂4
j (t)

= 0

−
∑N
i=1 γ̂ij(t)

2σ̂2
j (t)

= −
∑N
i=1 γ̂ij(t) (yi − µ̂j(t))

2

2σ̂4
j (t)

σ̂2
j (t) =

∑N
i=1 γ̂ij(t) (yi − µ̂j(t))

2∑N
i=1 γ̂ij(t)

(22)

Therefore, at time t+ 1 the component parameter updates which enable equations 21 and 22 to be used

in an iterative procedure are de�ned as follows

µ̂j(t+ 1) =

∑N
i=1 γ̂ij(t)yi∑N
i=1 γ̂ij(t)

, j = 1, 2, ...., J and t ≥ 0 (23)

and

σ̂2
j (t+ 1) =

∑N
i=1 γ̂ij(t) (yi − µ̂j(t))

2∑N
i=1 γ̂ij(t)

, j = 1, 2, ...., J and t ≥ 0 (24)

The EM algorithm for a univariate K-component Gaussian mixture model is summarized in Algorithm 2

based on Hastie et al. (2001) [8].
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Algorithm 2 The EM Algorithm for the univariate case.

1) Algorithm starts by taking initial values generated by the K-means algorithm for the unknown param-
eters µ̂j(0), σ̂

2
j (0) and ω̂j(0) for j = 1, 2, ....,K.

2) Expectation Step: Compute the responsibilities

γ̂ij(t) =
p
(
yi|θ̂j(t)

)
ω̂j(t)∑K

k=1 p
(
yi|θ̂k(t)

)
ω̂k(t)

=

[
1√

2πσ̂j(t)
exp

(
− 1

2σ̂2
j (t)

(yi − µ̂j(t))2
)]
ω̂j(t)∑K

k=1

[
1√

2πσ̂k(t)
exp

(
− 1

2σ̂2
k(t)

(yi − µ̂k(t))2
)]
ω̂k(t)

with θj =
(
µj , σ

2
j

)
for i = 1, 2, ...., N and j = 1, 2, ....,K

3) Maximization Step: Determine the maximum-likelihood estimators of the unknown parameters as
follows

ω̂j(t+ 1) =

N∑
i=1

γ̂ij(t)

N
, j = 1, 2, ....,K

and

µ̂j(t+ 1) =

∑N
i=1 γ̂ij(t)yi∑N
i=1 γ̂ij(t)

, j = 1, 2, ....,K

and

σ̂2
j (t) =

∑N
i=1 γ̂ij(t) (yi − µ̂j(t))

2∑N
i=1 γ̂ij(t)

, j = 1, 2, ....,K

4) Alternate between steps 2 and 3 until convergence

2.4.3 The EM algorithm for multivariate Gaussian mixture models

The multivariate K-component Gaussian mixture model has a similar structure to that of the univariate

case, with a component-conditional probability density function of the form

p (y|µj, Σj) =
1

(2π)p/2|Σj |1/2
exp

(
−1

2
(y − µj)

T
Σ−1

j (y − µj)

)
where y = (y1,y2, ....,yN ) ∈ <p is an unlabeled sample of observations assumed to be i.i.d.

As with the univariate case, the EM algorithm for a multivariate K-component Gaussian mixture model

is summarized in Algorithm 3 based on Hastie et al. (2001) [8].
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Algorithm 3 The EM Algorithm for the multivariate case.

1) Algorithm starts by taking initial values generated by the K-means algorithm for the unknown param-
eters µ̂j(0) ,Σ̂j(0) and ω̂j(0) for j = 1, 2, ....,K.
2) Expectation Step: Compute the responsibilities

γ̂ij(t) =
p
(
yi|θ̂j

)
ω̂j(t)∑K

k=1 p
(
yi|θ̂k

)
ω̂k(t)

=

[
1

(2π)p/2|Σ̂j(t)|
exp

(
− 1

2 (yi − µ̂j(t))
T

Σ−1
j (t) (yi − µ̂j(t))

)]
ω̂j(t)∑K

k=1

[
1

(2π)p/2|Σ̂k(t)
exp

(
− 1

2 (yi − µ̂k(t))
T

Σ−1
k (t) (yi − µ̂k(t))

)]
ω̂k(t)

with θj =
(
µj ,Σj

)
for i = 1, 2, ...., N and j = 1, 2, ....,K

3) Maximization Step: Determine the maximum-likelihood estimators of the unknown parameters as
follows

ω̂j(t+ 1) =

N∑
i=1

γ̂ij(t)

N
, j = 1, 2, ....,K

and

µ̂j(t+ 1) =

∑N
i=1 γ̂ij(t)yi∑N
i=1 γ̂ij(t)

, j = 1, 2, ....,K

and

Σ̂j(t+ 1) =

∑N
i=1 γ̂ij(t) (yi − µ̂j(t)) (yi − µ̂j(t))

T∑N
i=1 γ̂ij(t)

, j = 1, 2, ....,K

4) Alternate between steps 2 and 3 until convergence

2.5 The Classi�cation EM algorithm

2.5.1 Introduction

The Classi�cation Expectation Maximization algorithm (CEM) is a classi�cation version of the EM

algorithm that according to Faria, (2010) "converges in a �nite number of iterations" [7]. The procedure

incorporates a Classi�cation step (or C-step) between the E and M step of the EM algorithm, with

the C-step assigning each observation to the component with the largest γij [7]. The E step of the

CEM algorithm is identical to that of the EM algorithm, with the process iterating until a speci�c

convergence criterion is met. The CEM algorithm, which converges faster than the EM algorithm, is a

�hard� assignment and thus is seen as a K-means-like algorithm [21]. In the following section, the E,

C and M steps for a univariate K-component Gaussian mixture model will be derived as well as a brief

overview of a multivariate case will be given.

2.5.2 The CEM algorithm for univariate Gaussian mixture models

E-step:

For this step we need to calculate the responsibility that the jth component belongs to the ith observation,
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using equation 11 derived in section 2.4.2:

γ̂ij(t) = P
(
γi = j|Θ̂(t)

)
=

p
(
yi|θ̂j(t)

)
ω̂j(t)∑K

k=1 p
(
yi|θ̂k(t)

)
ω̂k(t)

=

[
1√

2πσ̂j(t)
exp

(
− 1

2σ̂2
j (t)

(yi − µ̂j(t))2
)]
ω̂j(t)∑K

k=1

[
1√

2πσ̂k(t)
exp

(
− 1

2σ̂2
k(t)

(yi − µ̂k(t))2
)]
ω̂k(t)

(25)

for i = 1, 2, ...., N ; j = 1, 2, ...., J and t ≥ 0

C-step:

For this step we design a partition P = (P1, P2, ...., Pj) of (y1, y2, ....., yN ) by assigning each observation

to the component which maximizes the responsibility γij [7]. Note that according to Faria, (2010) "if the

maximum responsibility is not unique, the component with the smallest index is chosen"[7]. Thus,

Pj =

{
yi : γij = arg

h
max γih

}
(26)

if γij = γih and j < h then yiεPj for j = 1, 2, ....,K.

Note that if the partition is either empty or only has a single observation, we then consider a mixture

with K − 1 components and start the process with said components instead.

M-step:

For this step the estimates are updated using the sub-samples Pj .

It has been shown in section 2.4.2 that at time step t+1 the mixing coe�cient estimates can be obtained

as follows

ω̂j(t+ 1) =
Nj
N

, j = 1, 2, ....,K

where Nj denotes the total number of observations assigned to the jth component.

By setting the partial derivatives equal to zero,we are able to �nd an expression for η̂(t + 1) where

η = (θ1, θ2, ....., θK) =
((
µ1, σ

2
1

)
,
(
µ2, σ

2
2

)
, .....,

(
µK , σ

2
K

))
as follows:

∂Q
(
Θ, Θ̂(t)

)
∂η̂(t)

=

J∑
j=1

Nj∑
i=1

γ̂ij(t)
∂ log p

(
yi|θ̂j(t)

)
∂ε̂(t)

= 0 (27)

However, the Gaussian component-conditional probability density function, equation 16 is required before
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the roots can be found, which is de�ned as

log p
(
yi|θ̂j(t)

)
= log p

(
yi|µ̂j(t), σ̂2

j (t)
)

= log

[
1

σ̂j(t)
√
2π

exp

(
− (yi − µ̂j(t))2

2σ̂2
j (t)

)]

= log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

(28)

Taking the partial derivatives of equation 28, with regards to µ̂j(t) and σ̂
2
j (t), we are given the following

∂ log p
(
yi|θ̂j(t)

)
∂µ̂j(t)

=
(yi − µ̂j(t))

σ̂2
j (t)

(29)

and

∂ log p
(
yi|θ̂j(t)

)
∂σ̂2

j (t)
= − 1

2σ̂2
j (t)

+
(yi − µ̂j(t))2

2σ̂4
j (t)

(30)

Using equation 28, the Q function 27 can be written as

∂Q
(
Θ, Θ̂(t)

)
∂η̂(t)

=

J∑
j=1

Nj∑
i=1

γ̂ij(t)
∂ log p

(
yi|θ̂j(t)

)
∂η̂(t)

=

J∑
j=1

Nj∑
i=1

γ̂ij(t)
∂

∂η̂(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
(31)

= 0

Equation 31 results in the following equations:
Nj∑
i=1

γ̂ij(t)
∂

∂µ̂j(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
= 0 (32)

and
Nj∑
i=1

γ̂ij(t)
∂

∂σ̂2
j (t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
= 0 (33)

The solutions of equations 29 and 30 can be obtained by using the results of equations 32 and 33 as

follows:

Solving equation 29:
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Nj∑
i=1

γ̂ij(t)
∂

∂µ̂j(t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
= 0

Nj∑
i=1

γ̂ij(t)
(yi − µ̂j(t))2

2σ̂2
j (t)

= 0

Nj∑
i=1

γ̂ij(t)yi −
Nj∑
i=1

γ̂ij(t)µ̂j(t) = 0

Nj∑
i=1

γ̂ij(t)yi =

Nj∑
i=1

γ̂ij(t)µ̂j(t)

µ̂j(t) =

∑Nj

i=1 γ̂ij(t)yi∑Nj

i=1 γ̂ij(t)
(34)

Solving equation 30:

Nj∑
i=1

γ̂ij(t)
∂

∂σ̂2
j (t)

[
log

(
1√
2π

)
+ log

(
1

σ̂j(t)

)
− (yi − µ̂j(t))2

2σ̂2
j (t)

]
= 0

Nj∑
i=1

γ̂ij(t)

[
− 1

2σ̂2
j (t)

+
(yi − µ̂j(t))2

2σ̂4
j (t)

]
= 0

−
∑Nj

i=1 γ̂ij(t)

2σ̂2
j (t)

+

∑Nj

i=1 γ̂ij(t) (yi − µ̂j(t))
2

2σ̂4
j (t)

= 0

−
∑Nj

i=1 γ̂ij(t)

2σ̂2
j (t)

= −
∑Nj

i=1 γ̂ij(t) (yi − µ̂j(t))
2

2σ̂4
j (t)

σ̂2
j (t) =

∑Nj

i=1 γ̂ij(t) (yi − µ̂j(t))
2∑Nj

i=1 γ̂ij(t)
(35)

Therefore, at time t+ 1 the component parameter updates which enable equations 34 and 35 to be used

in an iterative process are de�ned as follows

µ̂j(t+ 1) =

∑Nj

i=1 γ̂ij(t)yi∑Nj

i=1 γ̂ij(t)
, j = 1, 2, ...., J and t ≥ 0 (36)

and

σ̂2
j (t+ 1) =

∑Nj

i=1 γ̂ij(t) (yi − µ̂j(t))
2∑Nj

i=1 γ̂ij(t)
, j = 1, 2, ...., J and t ≥ 0 (37)

The CEM algorithm for a univariate K-component Gaussian mixture model is summarized in Algorithm

4 based on Li, (2005) [14].
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Algorithm 4 The CEM Algorithm for the univariate Gaussian case.

1) Algorithm starts by taking initial values generated by the K-means algorithm for the unknown param-
eters µ̂j(0), σ̂

2
j (0) and ω̂j(0) for j = 1, 2, ....,K.

2) Expectation Step: Compute the responsibilities

γ̂ij(t) =
p
(
yi|θ̂j(t)

)
ω̂j(t)∑K

k=1 p
(
yi|θ̂k(t)

)
ω̂k(t)

=

[
1√

2πσ̂j(t)
exp

(
− 1

2σ̂2
j (t)

(yi − µ̂j(t))2
)]
ω̂j(t)∑K

k=1

[
1√

2πσ̂k(t)
exp

(
− 1

2σ̂2
k(t)

(yi − µ̂k(t))2
)]
ω̂k(t)

where θj = (µj , σ
2
j ) for i = 1, 2, ...., N and j = 1, 2, ....,K

3) Classi�cation Step: Design a partition P = (P1, P2, ....., PK) by assigning each observation to a com-
ponent which maximizes γij :

Pj =

{
yi : γij = arg

h
max γih

}
if γij = γih and j < h then yiεPjfor j = 1, 2, ....,K
4) Maximization Step: Determine the maximum-likelihood estimators of the unknown parameters using
the sub-samples Pj as follows

ω̂j(t+ 1) =
Nj
N

, j = 1, 2, ....,K

with Nj denoting the total number of observations assigned to component j.
and

µ̂j(t+ 1) =

∑Nj

i=1 γ̂ij(t)yi∑Nj

i=1 γ̂ij(t)
, j = 1, 2, ....,K

and

σ̂2
j (t) =

∑Nj

i=1 γ̂ij(t) (yi − µ̂j(t))
2∑Nj

i=1 γ̂ij(t)
, j = 1, 2, ....,K

5) Alternate between steps 2, 3 and 4 until convergence

2.5.3 The CEM algorithm for multivariate Gaussian mixture models

As mentioned in section 2.5.1, the multivariate K-component Gaussian mixture has a similar structure

to that of the univariate case, with a component-conditional probability density function of the form

p
(
y|µj,Σj

)
=

1

(2π)p/2|Σj |1/2
exp

(
−1

2
(y − µj)

T
Σ−1

j (y − µj)

)
where y = (y1,y2, ....,yN ) ∈ <p is an unlabeled sample of observations assumed to be i.i.d.

As with the univariate case, the CEM algorithm for a multivariate K-component Gaussian mixture model

is summarized in Algorithm 5 based on Li, (2005) [14].
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Algorithm 5 The CEM algorithm for the multivariate Gaussian case.

1) Algorithm starts by taking initial values generated by the K-means algorithm for the unknown param-
eters µ̂j(0) ,Σ̂j(0) and ω̂j(0) for j = 1, 2, ....,K.
2) Expectation Step: Compute the responsibilities

γ̂ij(t) =
p
(
yi|θ̂j

)
ω̂j(t)∑K

k=1 p
(
yi|θ̂k

)
ω̂k(t)

=

[
1

(2π)p/2|Σ̂j(t)|
exp

(
− 1

2 (yi − µ̂j(t))
T

Σ−1
j (t) (yi − µ̂j(t))

)]
ω̂j(t)∑K

k=1

[
1

(2π)p/2|Σ̂k(t)
exp

(
− 1

2 (yi − µ̂k(t))
T

Σ−1
k (t) (yi − µ̂k(t))

)]
ω̂k(t)

with θj =
(
µj ,Σj

)
for i = 1, 2, ...., N and j = 1, 2, ....,K

3) Classi�cation Step: Design a partition P = (P1, P2, ....., PK) by assigning each observation to a com-
ponent which maximizes γij :

Pj =

{
yi : γij = arg

h
max γih

}
if γij = γih and j < h then yiεPjfor j = 1, 2, ....,K
4) Maximization Step: Determine the maximum-likelihood estimators of the unknown parameters using
the sub-samples Pj as follows

ω̂j(t+ 1) =
Nj
N

, j = 1, 2, ....,K

with Nj denoting the total number of observations assigned to component j and

µ̂j(t+ 1) =

∑Nj

i=1 γ̂ij(t)yi∑Nj

i=1 γ̂ij(t)
, j = 1, 2, ....,K

and

Σ̂j(t+ 1) =

∑Nj

i=1 γ̂ij(t) (yi − µ̂j(t)) (yi − µ̂j(t))
T∑Nj

i=1 γ̂ij(t)
, j = 1, 2, ....,K

5) Alternate between steps 2, 3 and 4 until convergence

3 Application

3.1 Introduction

The EM and CEM algorithm's ability to estimate the parameters of a Gaussian mixture model is demon-

strated by making use of the Old Faithful data set. The Old Faithful data set measures the waiting time

between each eruption as well as the duration of each eruption of the famous Old Faithful hot water geyser

in Yellowstone National park. Note that due to the fact that we are dealing with the univariate case, only

the duration of each eruption is considered, which consists of 272 data points, y = (y1, y2, ....., y272) ∈ <.

Before the EM and CEM algorithms can be applied to the data set, we �rst look at the distribution

of the data, where �gure 1 illustrates a single Gaussian curve over a histogram of the data, where the
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mean and the variance of data is equivalent to sample statistics, i.e. N
(
µ, σ2

)
= N (3.48778, 1.302726),

�tted to the data. On inspection of the data, it is clear that the data has bi-modality and thus a single

Gaussian density will not su�ce. Therefore, we will �t a two component mixture of univariate Gaussian

distributions to model the data.

Figure 1: Histogram �tted with a single Gaussian curve.

Making use of equation 1 in section 2.1, we want to estimate the parameters of the following two compo-

nent mixture model:

p (yi|Θ) =
∑2

j=1
ωjp (yi|θj)

where ωj are the mixing coe�cients of the distribution (0 < ωj < 1 and
∑2
j=1 ωj = 1),

Θ = (θ1, θ2, ω1, ω2) denotes the complete set of parameters that specify the mixture with θj =
{
µj , σ

2
j

}
for j = 1, 2 and ε = (θ1, θ2) representing the parameters of each component density.

The component-conditional density function, equation 2 from section 2.1 with all components following a

univariate Gaussian distribution, i.e. Yi ∼ N
(
µj , σ

2
j

)
for i = 1, 2, ....., 272 and j = 1, 2 has the following

form:
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p (yi|θj) = p
(
yi|µj , σ2

j

)
=

1

σj
√
2π

exp

(
− (yi − µj)2

2σj

)

Figure 2 illustrates the distribution of the data, with a two component Gaussian curve over a histogram

of the data points.

Figure 2: Histogram �tted with a two component Gaussian curve.

3.2 Application of the EM and CEM algorithms

Due to the fact that the EM algorithm as well as the classi�cation version of the EM has problems with

convergence, the K-means clustering algorithm was proposed to initialize the algorithms. The initial

values for the mean,variance and mixing coe�cients are presented in Table 2 below:

µ̂1 µ̂2

4.29834 2.04863

σ̂2
1 σ̂2

2

0.161061 0.08128

ω̂1 ω̂2

0.639706 0.360294

Table 1: Initial values generated by the K-means clustering algorithm.

The EM and CEM algorithms were applied using the above mentioned initial values, with the MLE's of

the parameters presented in Table 2.
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EM algorithm
Component 1 Component 2

µ̂1 = 4.2733434 µ̂2 = 2.0186078
σ̂2
1 = 0.1910242 σ̂2

2 = 0.0555176
ω̂1 = 0.6515954 ω̂2 = 0.3484046

CEM algorithm
Component 1 Component 2

µ̂1 = 4.2774028 µ̂2 = 2.0160435
σ̂2
1 = 0.1854318 σ̂2

2 = 0.0534328
ω̂1 = 0.6507353 ω̂2 = 0.3492647

Table 2: Maximum likelihood estimates generated by the EM algorithm.

Table 2, shows the di�erence in the estimation results from the two estimation techniques. The two

algorithms should however produce fairly similar parameter estimates. Furthermore, the convergence of

the parameters for both EM and CEM algorithms are illustrated in Figure 3.
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EM algorithm CEM algorithm

Figure 3: Convergence of parameter estimates for EM and CEM.

On closer inspection of Figure 3, it would appear that the CEM algorithm runs through fewer iterations

than that of the EM algorithm. Thus, the computational time needed to reach the parameter estimates
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for the CEM algorithm is far less than that of the EM algorithm. It is also important to note that the

MLE's produced using the randomly selected initial values are the same as the MLE's produced using

the initial values generated by the K-means algorithm for both procedures.

3.3 Simulation study

The purpose of this simulation study is to analyse the performance as well as the e�ciency of estimation

of the two methods by comparing the absolute bias of the estimated parameters. In keeping with the

univariate case, data will be generated from two random Gaussian distributions to create bi-modal data

sets.

3.3.1 Design of the study

Initial values. The initial values that were used for both algorithms were randomly selected from these

data sets.

Convergence criterion. The EM and CEM algorithms were stopped when the log-likelihood di�erence

between two successive iterations were less than 10−2.

Sample sizes. The size of the samples generated from the bi-modal data sets were n = {15, 30, 50, 100, 200, 500}.

True Parameters. The true parameters that were used are as follows:

• µ1 = 40

• µ2 = µ1 + δ

• σ2
1 = 16

• σ2
2 = σ2

1

• π1 = 0.2

• π2 = 1− π1

It is important to note that δ and πi were changed and that the variances were kept constant for simplicity.

Measure of the performance and estimation e�ciency. The performance of the two estimation methods

are examine using the following criteria:

1. the average number of iterations required for convergence (implying less computational time needed),

2. the absolute bias of the parameter estimates

(a) These biases are calculated using the following formula:

BIAS
(
Θ̂
)
=
∣∣∣Θtrue − Θ̂

∣∣∣
30



Steps of the simulation study:

1. Bi-modal data set is created using two random Gaussian distributions using the true parameter

values and di�erent sample sizes, n = {15, 30, 50, 100, 200, 500}.

2. Initial values for the EM and CEM algorithms are randomly selected from these data sets.

3. EM and CEM algorithms iterate until the stopping criterion, < 10−2 is met.

4. 500 simulations are run on each sample size, the averages as well as the absolute biases are calculated.

5. Steps 1 to 4 are repeated with πi and δ being changed.

(a) There are 9 di�erent cases that are observed, namely:

i. Case 1: δ = 15 π1 = 0.2

ii. Case 2: δ = 15 π1 = 0.4

iii. Case 3: δ = 15 π1 = 0.5

iv. Case 4: δ = 30 π1 = 0.2

v. Case 5: δ = 30 π1 = 0.4

vi. Case 6: δ = 30 π1 = 0.5

vii. Case 7: δ = 50 π1 = 0.2

viii. Case 8: δ = 50 π1 = 0.4

ix. Case 9: δ = 50 π1 = 0.5

3.3.2 Results of the simulation study

The results for both estimation methods are tabulated below and are accompanied by the relevant graphs.

The EM algorithm:

Table 3 displays the absolute biases of the parameters for cases 1 to 3 . Tables 5 and 6 illustrating the

results for cases 4 to 9 can be found in the appendix.
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C
a
se

1
True values n Iterations µ1 µ2 σ2

1 σ2
2 π1

µ1 40 15 - - - - - -
µ2 55 30 19.38 2.7611352 0.3081737 16.0150444 3.6678609 0.1000838
σ2
1 16 50 21.649 2.5658782 0.3087611 15.324794 3.23117275 0.0933542
σ2
2 16 100 24.40467 2.4320323 0.2909146 15.0809984 2.9397179 0.0863445
π1 0.2 200 27.7835 2.2149810 0.2720570 13.8603951 2.5902209 0.0767920
π2 0.8 500 31.1296 1.9549456 0.2459505 12.3201656 2.2587106 0.0668272

C
a
se

2

µ1 40 15 - - - - - -
µ2 55 30 13.818 0.42203388 0.2438169 1.3958618 2.2176552 0.0233727
σ2
1 16 50 14.67 0.3445329 0.1981671 1.0999196 1.7859366 0.0189474
σ2
2 16 100 15.764 0.2583457 0.1594106 0.8189817 1.3867957 0.0143083
π1 0.4 200 16.819 0.2045108 0.1228686 0.6009611 1.1221634 0.0113877
π2 0.6 500 17.9532 0.1708918 0.0989171 0.5122214 0.9251890 0.0094935

C
a
se

3

µ1 40 15 - - - - - -
µ2 55 30 11.306 0.0232700 0.0003775 0.8539629 0.5120665 0.0015787
σ2
1 16 50 11.447 0.0098546 0.0381091 0.5344252 0.6062985 0.0012293
σ2
2 16 100 11.482 0.0013686 0.0235777 0.4032293 0.4604883 0.0008819
π1 0.5 200 11.52 0.0040118 0.0090390 0.3347030 0.3346143 0.0003744
π2 0.5 500 11.5376 0.0019445 0.0082852 0.2884526 0.2864216 0.0002824

Table 3: EM : δ = 15

The CEM algorithm:

Table 4 displays the absolute biases of the parameters for cases 1 to 3. Tables 7 and 8 illustrating the

results for cases 4 to 9 can be found in the appendix.

C
a
se

1

True values n Iterations µ1 µ2 σ2
1 σ2

2 π1
µ1 40 15 - - - - - -
µ2 55 30 7.874 2.6512848 1.5501417 5.7260239 5.4303035 0.1706
σ2
1 16 50 9.072 2.3921766 1.5257578 5.8396435 4.6298727 0.15196
σ2
2 16 100 10.944 1.4539991 1.1470505 3.5072542 2.7043497 0.12242
π1 0.2 200 12.516 0.4488333 0.6680815 0.6622261 1.263647 0.06396
π2 0.8 500 14.9 0.2745903 0.5466815 0.1407739 0.9474159 0.05436

C
a
se

2

µ1 40 15 - - - - - -
µ2 55 30 7.37 0.7166438 0.62897 3.6406556 0.9838261 0.054
σ2
1 16 50 8.042 0.2830338 0.5545079 3.162949 0.6685247 0.03512
σ2
2 16 100 9.714 0.1626619 0.4827974 2.0118516 0.3588715 0.02844
π1 0.4 200 11.488 0.0082236 0.4257197 1.8214662 0.0652361 0.02557
π2 0.6 500 13.718 0.081324 0.3185683 0.5872703 0.0610236 0.016544

C
a
se

3

µ1 40 15 - - - - - -
µ2 55 30 7.426 0.0454437 0.0779438 1.7853902 1.5844912 0.0030667
σ2
1 16 50 7.88 0.1958384 0.0382547 1.2918624 1.6414708 0.00648
σ2
2 16 100 9.546 0.2516107 0.214009 1.2039237 1.3864808 0.00328
π1 0.5 200 10.916 0.2037506 0.2654704 1.21108842 0.7467399 0.00283
π2 0.5 500 13.482 0.2275375 0.2172687 0.7881913 0.8810092 0.00088

Table 4: CEM : δ = 15

In tables 3 to 8 the absolute bias of the parameters were calculated for both the EM and CEM algorithms,
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respectively. Note that for both the EM and CEM algorithms, the simulation for sample size n = 15

could not be conducted, as the sample size was too small and thus proper partitioning of the sample

could not occur. The average number of iterations from these tables give a clear indication that the CEM

takes fewer iterations to reach convergence than the EM algorithm (less computational time) over the

speci�ed sample space. This is further strengthened by �gure 4 below, which also shows that the average

number of iterations increase as the sample size increases. Figures 4 to 7 compare the absolute bias of

the parameters for the EM and CEM algorithms.

EM algorithm CEM algorithm

Figure 4: Absolute iteration bias over the sample space for EM and CEM.

Figure 5: Absolute mean bias over the sample space for EM and CEM.
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EM algorithm CEM algorithm

Figure 6: Absolute variance bias over the sample space for EM and CEM.

Figure 7: Absolute mixing coe�cient bias over the sample space for EM and CEM.

Figures 4 to 7 illustrate the tables calculated above for the EM and CEM algorithms. It can be observed

that for a large δ the absolute biases of the average number of iterations for the EM and CEM, in �gure

4 remain relatively constant, with the CEM showing more of an increase than that of the EM. In �gures

5 to 7 it can be seen that on average the EM estimates have a smaller absolute bias than the CEM esti-

mates, with the EM estimates gradually converging over the speci�ed sample space and CEM estimates

converging sharply. It can also be observed that as the sample size increases the absolute bias for the EM

gradually decreases, with the CEM decreasing more sharply. Therefore, the CEM estimates decrease a
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lot faster as the sample size increases, than the EM algorithm.

It should also be noted that the EM algorithm produces better parameter estimates, especially the

variance parameters, in every case that was observed in the simulation study. The CEM algorithm seems

to be more computationally e�cient than the EM algorithm, however, the EM algorithm converges better

to the true parameters than that of the CEM.

4 Conclusion and recommendations

In this research report, the performance as well as the e�ciency of estimation of two estimation algorithms

to produce maximum likelihood estimates were examined, the EM algorithm and CEM algorithm. In the

�rst part of our application the Old Faithful Water Geyser, was used. The results showed that the EM

and CEM algorithms produced slightly di�erent results, which is to be expected. It was also observed

that the CEM algorithm took fewer iterations to reach convergence than that of the EM algorithm, thus

requiring less computational time.

We went a step further and initialized both estimation methods using the K-means clustering algorithm,

since literature would suggest that both algorithms struggle under poor initialization. The initialization

technique showed a considerable improvement in the number of iterations taken by the EM algorithm

however, showed no improvement in the CEM algorithm. This lack of improvement could come down

to the fact that like the K-means clustering algorithm, the CEM algorithm is also a hard classi�cation

technique and thus proper initialization would not improve the algorithm.

In the second part of our application a simulation study was conducted, where random initial values

were used, to examine the performance as well as the e�ciency of estimation for both estimation meth-

ods. The results showed that the CEM algorithm (almost always) takes a fewer number of iterations to

reach convergence than that of the EM algorithm, which implies that less computational time is needed.

The results also showed that the EM algorithm produces better parameter estimates than that of the

CEM algorithm, which leads to smaller absolute biases of the parameter estimates. Therefore, after

carefully inspection of the tables and graphs we can conclude that even though the CEM is deemed to

be more computationally e�cient, the EM performs better than the CEM.

It is important to note that when simulating the CEM algorithm, complications were experienced. This

problem occurred during the classi�cation of the posterior probabilities (responsibilities) in the C-step of

the CEM algorithm. This led to the probabilities being grouped into one of the clusters after a certain
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number of iterations, thus leaving the other cluster empty. This �misclassi�cation� resulted in the pre-

mature ending of the algorithm, which in turn led to the simulation not running its full course. Due to

the fact that the data set used was random for each simulation, the number of simulations run, varied.

Therefore, for the sake of results, we bypassed this issue by creating a macro in SAS, in which we entered

these simulation results into a data set until 500 simulations were achieved. These results were then used

to calculate the relevant averages needed as well as the graphs found in �gures 4 to 7. Therefore, it is

recommended that further research is conducted on this technical issue, to ensure accurate results for the

simulation of the CEM algorithm can be achieved.
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Appendix

Theorems

Theorem 1. Bayes' Theorem [11]:

Let A1, A2, ...., An be a set of mutually exclusive events that together form the sample space of S. Let B

by any event from the same sample space, such that P (B) > 0. Then,

P (Ak|B) =
P (Ak ∩B)

P (A1 ∩B) + P (A2 ∩B) + .....+ P (An ∩B)

=
P (Ak)P (B|Ak)

P (A1)P (B|A1) + P (A2)P (B|A2) + ....+ P (An)P (B|An)

Theorem 2. Lagrange Multipliers [22]:

To �nd the maximum and minimum values of f(x, y, z) subject to constraint g(x, y, z) = k [assuming that

these extreme values exist and ∇g 6= 0 on the surface g(x, y, z) = k]:

1. Find all values of x, y, z and λ such that

∇f(x, y, z) = λ∇g(x, y, z)

and

g(x, y, z) = k

2. Evaluate f at all points (x, y, z) that result from step (1). The largest of these values is the maximum

value of f ; the smallest is the minimum value of f .

Simulation tables:

Tables 5 and 6 display cases 4 to 9 of the EM algorithm.
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C
a
se

4
True values n Iterations µ1 µ2 σ2

1 σ2
2 π1

µ1 40 15 - - - - - -
µ2 70 30 11.072 0.6090965 0.0337769 10.7057568 1.3454859 0.0086334
σ2
1 16 50 11.267 0.5441448 0.0327673 8.6744264 1.0798593 0.0062770
σ2
2 16 100 11.39 0.3667943 0.0135992 5.6630023 0.7924117 0.0042829
π1 0.2 200 11.4735 0.2781510 0.0153096 4.1827910 0.5955176 0.0032280
π2 0.8 500 11.538 0.2202963 0.0094444 3.3093892 0.4935292 0.0025803

C
a
se

5

µ1 40 15 - - - - - -
µ2 70 30 7.41 0.0163755 0.0833134 1.3028678 1.0423603 0.0007257
σ2
1 16 50 7.48 0.0062132 0.0559114 0.9682361 0.8881211 0.0005280
σ2
2 16 100 7.5313 0.0170804 0.0218911 0.8205931 0.6467117 0.0003311
π1 0.4 200 7.573 0.0085298 0.0194505 0.6607740 0.5613446 0.0002454
π2 0.6 500 7.6468 0.0020188 0.0196286 0.5486961 0.4649031 0.0001985

C
a
se

6

µ1 40 15 - - - - - -
µ2 70 30 6.06 0.0341986 0.0257225 0.4024114 0.6802278 0.0001732
σ2
1 16 50 6.049 0.0062969 0.0223910 0.5061523 0.6643709 0.0001047
σ2
2 16 100 6.0487 0.0167182 0.0138383 0.4156676 0.4930508 0.0000534
π1 0.5 200 6.042 0.0138307 0.0133412 0.3056963 0.4193149 0.0000245
π2 0.5 500 6.0344 0.0107383 0.0100313 0.2358657 0.3331663 0.0000215

Table 5: EM : δ = 30

C
a
se

7

True values n Iterations µ1 µ2 σ2
1 σ2

2 π1
µ1 40 15 - - - - - -
µ2 90 30 8.502 0.1310435 0.0136662 3.8800483 0.9137048 0.0009436
σ2
1 16 50 8.523 0.1159066 0.0165066 3.6662457 0.6262966 0.0008331
σ2
2 16 100 8.5587 0.0852495 0.0066785 2.1840906 0.4167444 0.0005554
π1 0.2 200 8.5645 0.0665938 0.0042451 1.5590072 0.3275412 0.0004166
π2 0.8 500 8.6008 0.0482681 0.0013105 1.2355744 0.2741009 0.0003333

C
a
se

8

µ1 40 15 - - - - - -
µ2 70 30 6.742 0.0067116 0.0419181 1.2425817 1.3265644 0.0000000
σ2
1 16 50 6.77 0.0409195 0.0152746 0.8706070 0.8533440 0.0000000
σ2
2 16 100 6.816 0.0412346 0.0187128 0.7076565 0.6644133 0.0000000
π1 0.4 200 6.8575 0.0392615 0.0105273 0.5458495 0.5469673 0.0000000
π2 0.6 500 6.886 0.0324301 0.0055357 0.4409072 0.4416931 0.0000000

C
a
se

9

µ1 40 15 - - - - - -
µ2 70 30 5.31 0.0319570 0.0400893 0.8119555 1.0235545 0.0000000
σ2
1 16 50 5.259 0.0140458 0.0051930 0.6957580 0.8650515 0.0000000
σ2
2 16 100 5.227 0.0084483 0.0103515 0.5430149 0.6408237 0.0000000
π1 0.5 200 5.2185 0.0095728 0.0129235 0.4318209 0.5345352 0.0000000
π2 0.5 500 5.2936 0.0064218 0.0087231 0.3354111 0.4357471 0.0000000

Table 6: EM : δ = 50

Tables 7 and 8 display cases 4 to 9 of the CEM algorithm.
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C
a
se

4
True values n Iterations µ1 µ2 σ2

1 σ2
2 π1

µ1 40 15 - - - - - -
µ2 70 30 6.756 3.438653 0.7874135 27.511768 2.275346 0.0910667
σ2
1 16 50 6.906 2.1723592 0.4593421 16.711194 0.6258108 0.06196
σ2
2 16 100 7.458 1.2581978 0.3058204 8.5508314 0.267037 0.03628
π1 0.2 200 7.116 1.1238826 0.2694495 6.1695381 0.3107791 0.03366
π2 0.8 500 7.992 1.133694 0.2807299 6.6415815 0.8286005 0.0348

C
a
se

5

µ1 40 15 - - - - - -
µ2 70 30 5.866 1.3579329 0.1319289 18.626022 6.2486322 0.0228
σ2
1 16 50 6.118 0.8532396 0.0610227 13.498519 5.3892146 0.02276
σ2
2 16 100 6.362 0.754323 0.135662 10.566996 2.6235998 0.01858
π1 0.4 200 6.294 0.2724568 0.0526412 5.3761597 2.8515421 0.00757
π2 0.6 500 6.398 0.2532378 0.0634764 3.3531704 0.490197 0.007556

C
a
se

6

µ1 40 15 - - - - - -
µ2 70 30 5.656 0.4802072 0.4830281 11.485132 13.442724 0.0024
σ2
1 16 50 5.986 0.2003627 0.4231389 5.9585487 7.9996704 0.00632
σ2
2 16 100 6.18 0.2361816 0.2482891 5.4192875 6.7654543 0.0018
π1 0.5 200 6.296 0.2582274 0.1053672 4.8158174 3.2262851 0.00107
π2 0.5 500 6.59 0.1843988 0.0169273 3.3059486 0.9336984 0.004452

Table 7: CEM : δ = 30

C
a
se

7

True values n Iterations µ1 µ2 σ2
1 σ2

2 π1
µ1 40 15 - - - - - -
µ2 90 30 6.178 3.8496363 0.4627409 55.942163 0.6822243 0.0578
σ2
1 16 50 6.202 2.5546343 0.2790106 35.483875 2.3993644 0.03996
σ2
2 16 100 6.316 1.3033859 0.1849355 15.593832 0.7195469 0.0239
π1 0.2 200 6.276 0.4901582 0.0629255 5.1126492 0.2856098 0.01003
π2 0.8 500 6.632 1.097676 0.1573029 10.968423 0.4577337 0.021844

C
a
se

8

µ1 40 15 - - - - - -
µ2 90 30 5.514 1.4278191 0.361165 34.830142 20.433498 0.019
σ2
1 16 50 5.52 1.1417952 0.1143272 27.39139 11.612193 0.01576
σ2
2 16 100 5.496 0.6955952 0.0000498 17.094184 4.8051579 0.01384
π1 0.4 200 5.63 0.2028099 0.0035006 4.3600026 0.8256249 0.00211
π2 0.6 500 5.582 0.3168199 0.0776246 6.7918049 4.2700591 0.003636

C
a
se

9

µ1 40 15 - - - - - -
µ2 90 30 5.468 0.9087234 0.9426394 30.939667 33.861064 0.0018
σ2
1 16 50 5.558 0.6997064 0.6104903 25.863925 24.28167 0.00084
σ2
2 16 100 5.692 0.1703412 0.5877001 9.0677808 17.136809 0.00718
π1 0.5 200 5.66 0.1776498 0.4389985 8.0182226 13.227567 0.00316
π2 0.5 500 5.578 0.1279685 0.1336987 4.7516041 4.7390195 0.00064

Table 8: CEM : δ = 50
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SAS Code:

EM algorithm with random selection:

/***********************************************************************************/

/*Calculating the sample statistics */

data sasuser.Old2;

set Old2;

Type=1;

run;

proc summary data=Old2;

var x1;

class Type;

output out=mean_var mean(x)=ave_x var(x)=var_x;

run;

/*Graph that plots a single Gaussian curve over a histogram*/

title "Distribution of x with a single Gaussian curve";

proc univariate data=sasuser.Old2;

histogram x1 / normal (color=red mu=3.4877831 sigma=1.1413713)

midpoints = 1.50 1.75 2 2.25 2.50 2.75 3 3.25 3.5 3.75 4 4.25 4.50 4.75 5 5.25;

run;

/*Using randomly selected initial values*/

proc iml;

use sasuser.Old2;

read all into erupt;

print erupt;

/*Number of rows and columns*/

dim=ncol(erupt);

N=nrow(erupt);

/*Number of Components (Assumed to be Known)*/

K=2;
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/*Random selection of initial values for the mean, variance and mixing coefficients*/

/*Mean*/

initmean=J(dim,K,.);

initmean[,1]=2.167;

initmean[,2]=4.933;

/*Variance*/

initvar=J(dim,K,.);

do j = 1 to K;

initvar[,j]=1.75;

end;

/*Mixing Coefficients*/

initweight=J(1,K,.);

do j = 1 to K;

initweight[,j]=0.5;

end;

/*Log-likelihood function*/

log_fun=-28000;

/*PI constant*/

pi=constant("pi");

/*Start the iterations*/

t=0;

do until(diff = 0);

/*E-step:*/

post = J(N,5,.);

logfun = J(N,4,.);

/*Calculating the pdfs for each component*/
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do i = 1 to N;

do j = 1 to K;

post[i,j] = 1/((2#pi#initvar[,j])##(dim/2))*exp((-1/(2#initvar[,j]))#((erupt[i,]-initmean[,j])##2));

end;

end;

/*Calculating the pdfs*weights*/

post[,3]=initweight[,1]#post[,1];

post[,4]=initweight[,2]#post[,2];

/*Sum prior*pdf over K1 and K2*/

post[,5]=post[,3]+post[,4];

/*Calculating of the Responsibilities*/

Zi1=post[,3]/post[,5];

Zi2=post[,4]/post[,5];

newlogfun=log_fun;

/*Save values for the log-likelihood calculation*/

logfun[,1] = Zi1#initweight[,1];

logfun[,2] = Zi2#initweight[,2];

logfun[,3] = logfun[,1]+logfun[,2];

logfun[,4] = log(logfun[,3]);

newlogfun = logfun[+,4];

/*M-step:*/

/*Update the means, variances and mixing coefficients*/

newmean = initmean;

newweight = initweight;

newvar = initvar;

/*Update the mixing coefficients of each of the components*/

newweight[,1] = Zi1[+,]/N;

newweight[,2] = Zi2[+,]/N;
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/*Update the means of each of the components*/

Zi1_x = Zi1#erupt;

newmean[,1] = Zi1_x[+,]/Zi1[+,]; /*mean1*/

Zi2_x = Zi2#erupt;

newmean[,2] = Zi2_x[+,]/Zi2[+,]; /*mean2*/

/*Update the variances of each of the components*/

var1_d = J(N,dim,.);

var2_d = J(N,dim,.);

do j = 1 to N;

var1_d[j,] = Zi1[j,]#((erupt[j,] - initmean[,1])##2);

var2_d[j,] = Zi2[j,]#((erupt[j,] - initmean[,2])##2);

end;

newvar[,1] = var1_d[+,]/Zi1[+,]; /*variance1*/

newvar[,2] = var2_d[+,]/Zi2[+,]; /*variance2*/

/*Stops iterations once the difference between the latest log-likelihood*/

/*and the previous one is equal to zero*/

diff=abs(log_fun-newlogfun);

/*Replace the previous parameters with the adjusted parameters*/

initmean = newmean;

initvar = newvar;

initweight = newweight;

log_fun = newlogfun;

/*Print the new parameters at the end of each Period*/

print "Iterations:" t;

print newmean;

print newvar;

print newweight;

print newlogfun;
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EM = EM//(t||newmean||newvar||newweight||newlogfun);

t=t+1;

end;

/*Printing the final maximum likelihood estimates*/

nm={"Iteration" "Mean 1" "Mean 2" "Variance 1" "Variance 2" "Weight 1" "Weight 2" "logfun"}

print EM[colname=nm];

/*Creating a dataset to plot the graphs*/

nm1={"Iterations" "mean1" "mean2" "var1" "var2" "Weight1" "Weight2" "logfun"}

create plot from EM[colname=nm1];

append from EM;

/*Graphs to plot the convergence of the parameters*/

/*Means*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Means";

proc gplot data=plot;

axis1 label=('Means');

axis2 label=('Iterations');

plot mean1*Iterations mean2*Iterations / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Mean1' 'Mean2')

position=(bottom center outside);

run;

/*Variances*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;
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symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Variances";

proc gplot data=plot;

axis1 label=('Variances');

axis2 label=('Iterations');

plot var1*Iterations var2*Iterations / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Variance1' 'Variance2')

position=(bottom center outside);

run;

/*Mixing Coefficients*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Mixing Coefficients";

proc gplot data=plot;

axis1 label=('Weights');

axis2 label=('Iterations');

plot Weight1*Iterations Weight2*Iterations / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Weight1' 'Weight2')

position=(bottom center outside);

run;

/*Graph to plot the observed data log-likelihood*/

goptions reset=all;

symbol1 interpol=join height=10pt value=circle CV=BLUE LINE=1 width=1;

title;

title1 "Log-likelihood function over 67 Iterations";
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proc gplot data=plot;

plot logfun*Iterations /overlay legend=Legend1;

Legend1 label=('Plot')

value=('Log-likelihood function')

position=(bottom center outside);

run;

/*Check EM Algorithm using Proc FMM*/

proc fmm data=sasuser.Old2 plots=density(bins=17 width=0.25) gconv=0;

model x1= / dist=normal k=2;

run;

The EM algorithm initialized by the K-means algorithm:

/*********************************************************************/

/*K-means algorithm to initialize the EM algorithm*/

proc iml;

use sasuser.Old2;

read all into erupt;

/*Partition the data into two clusters*/

/*Note that for simplicity we choose k=2 to be the initial number of clusters*/

xclus1=erupt[1:136,]||J(136,1,1);

xclus2=erupt[137:272,]||J(136,1,2);

/*Append the groups*/

xclus = xclus1 // xclus2;

n = nrow(xclus);

x = xclus[,1];

class = xclus[,2];

x_class = x||class;

create x from x_class [colname = {'x' 'class'}];

append from x_class;

close x;

48



/*Choose the value of the centres of each of the initial clusters by*/

/*doing a visual inspection of the variables*/

/*Initial cluster values*/

cent1 = {5.1};

cent2 = {1.6};

initial_centres = cent1//cent2;

print initial_centres;

create ini_cent from initial_centres [colname ={'cx'}];

append from initial_centres;

close ini_cent;

/*********************Start the iteration process********************/

centres_old = initial_centres;

k = nrow(initial_centres);

do t = 1 to 10 until (cent_diff = 0);

/*Calculate the squared Euclidean distance of each obs(row) from each centre in "centres_old"*/

/*n is nr of observations (standardized)*/

/*k is nr of centres*/

edij = J(n,k,.);

do i = 1 to n;

do j = 1 to k;

edij[i,j] = ((x[i,]-centres_old[j,])* (x[i,]-centres_old[j,])`);

end;

end;

/*The minimum value of each row indicates to which cluster the observation belongs.*/

/*Loop through each row of edij to identify the minimum value in each row */

/*and put it in a column vector clusmin, in order to classify each observation to a cluster*/

/*Initialize and reset the vectors on which we will append later*/

clusmin = {1};

clusmin = remove(clusmin,1:nrow(clusmin));

cl_class = {1};
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cl_class = remove(cl_class,1:nrow(cl_class));

do h = 1 to nrow(edij);

cc = min(edij[h,]);

clusmin = clusmin // cc;

end;

do g = 1 to ncol(edij);

cl_class = cl_class || g * (edij[,g] = clusmin);

end;

cl_class = cl_class[,+];

/*Now put a column of cluster numbers next to the original observations */

/*and sort them according to the cluster numbers to calculate the new centres of the new clusters*/

x_class = x || cl_class;

call sort(x_class,{2});

/*Initialize and reset the cluster vectors*/

clus1 = {1};

clus1 = remove(clus1,1:nrow(clus1));

clus2 = {1};

clus2 = remove(clus2,1:nrow(clus2));

/*Append the observations of each cluster in separate vectors*/

/*Compile the 2 different classes*/

do i = 1 to nrow(x_class);

if x_class[i,2] = 1 then clus1 = clus1 // x_class[i,];

if x_class[i,2] = 2 then clus2 = clus2 // x_class[i,];

end;

/*Calculate the new centres of each cluster*/

cent1_new = sum(clus1[+,1])/nrow(clus1);

cent2_new= sum(clus2[+,1])/nrow(clus2);

/*Calculate the new variances of each cluster*/

var1_new=J(nrow(clus1),1,.);
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var2_new=J(nrow(clus2),1,.);

do i = 1 to nrow(clus1);

do j = 1 to nrow(clus2);

var1_new[i,]=((clus1[i,1]-centres_old[1,])`*(clus1[i,1]-centres_old[1,]))/(nrow(clus1)-1);

var2_new[j,]=((clus2[j,1]-centres_old[2,])`*(clus2[j,1]-centres_old[2,]))/(nrow(clus2)-1);

end;

end;

var1_new=var1_new[+,];

var2_new=var2_new[+,];

var_new=var1_new//var2_new;

/*Calculate the new weights of each cluster*/

weight1=nrow(clus1)/n;

weight2=nrow(clus2)/n;

weights=weight1//weight2;

/*Fill a vector to indicate the size of each cluster*/

Clussize = J(2,2,.);

Clussize[1,1] = 1;

Clussize[1,2] = nrow(clus1);

Clussize[2,1] = 2;

Clussize[2,2] = nrow(clus2);

print "Loop number:" t;

print Clussize;

centres_new = cent1_new//cent2_new;

print centres_old centres_new;

print var_new; print weights;

/*Calculating the difference between the new and old centres to stop the process*/

/*once the stop criterion has been met*/

cent_diff= abs(centres_old - centres_new);

print cent_diff;

51



/*Rename the new centres to initial centres and start the loop again*/

centres_old = centres_new;

end;

print "Final Loop:" t;

centrefinal = centres_old;

varfinal=var_new;

weightsfinal=weights;

print centrefinal varfinal weights;

/*The Expectation Maximization Algorithm*/

/*Number of columns and rows*/

dim=ncol(erupt);

N=nrow(erupt);

/*Number of Components (Assumed to be Known)*/

K=2;

/*Initial values generated by the K-means algorithm*/

/*Means*/

initmean=J(dim,K,.);

initmean[,1]=centrefinal[2,];

initmean[,2]=centrefinal[1,];

/*Variances*/

initvar=J(dim,K,.);

initvar[,1]=varfinal[2,];

initvar[,2]=varfinal[1,];

/*Mixing Coefficients*/

initweight=J(1,K,.);

initweight[,1]=weights[2,];

initweight[,2]=weights[1,];
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/*Log-likelihood function*/

log_fun=-2800;

/*PI constant*/

pi=constant("pi");

/*Start the iterations*/

t=0;

do until(diff = 0);

/*E-step:*/

post = J(N,5,.);

logfun = J(N,4,.);

/*Calculating the pdfs for each component*/

do i = 1 to N;

do j = 1 to K;

post[i,j] = 1/((2#pi#initvar[,j])##(dim/2))*exp((-1/(2#initvar[,j]))#((erupt[i,]-initmean[,j])##2));

end;

end;

/*Calculating the pdfs*weights*/

post[,3]=initweight[,1]#post[,1];

post[,4]=initweight[,2]#post[,2];

/*Sum prior*pdf over K1 and K2*/

post[,5]=post[,3]+post[,4];

/*Calculating of the Responsibilities*/

Zi1=post[,3]/post[,5];

Zi2=post[,4]/post[,5];

newlogfun=log_fun;

/*Save values for the log-likelihood calculation*/

logfun[,1] = Zi1#initweight[,1];
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logfun[,2] = Zi2#initweight[,2];

logfun[,3] = logfun[,1]+logfun[,2];

logfun[,4] = log(logfun[,3]);

newlogfun = logfun[+,4];

/*M-step:*/

/*Update the means, variances and mixing coefficients*/

newmean = initmean;

newweight = initweight;

newvar = initvar;

/*Update the mixing coefficients of each of the components*/

newweight[,1] = Zi1[+,]/N;

newweight[,2] = Zi2[+,]/N;

/*Update the means of each of the components*/

Zi1_x = Zi1#erupt;

newmean[,1] = Zi1_x[+,]/Zi1[+,]; /*mean1*/

Zi2_x = Zi2#erupt;

newmean[,2] = Zi2_x[+,]/Zi2[+,]; /*mean2*/

/*Update the variances of each of the components*/

var1_d = J(N,dim,.);

var2_d = J(N,dim,.);

do j = 1 to N;

var1_d[j,] = Zi1[j,]#((erupt[j,] - initmean[,1])##2);

var2_d[j,] = Zi2[j,]#((erupt[j,] - initmean[,2])##2);

end;

newvar[,1] = var1_d[+,]/Zi1[+,]; /*variance1*/

newvar[,2] = var2_d[+,]/Zi2[+,]; /*variance2*/

/*Stops iterations once the difference between the latest log-likelihood*/

/*and the previous one is equal to zero*/

diff=abs(log_fun-newlogfun);
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/*Replace the previous parameters with the adjusted parameters*/

initmean = newmean;

initvar = newvar;

initweight = newweight;

log_fun = newlogfun;

/*Print the new parameters at the end of each Period*/

print "Iterations:" t;

print newmean;

print newvar;

print newweight;

print newlogfun;

EM = EM//(t||newmean||newvar||newweight||newlogfun);

t=t+1;

end;

nm={"Iteration" "Mean 1" "Mean 2" "Variance 1" "Variance 2" "Weight 1" "Weight 2" "logfun"}

print EM[colname=nm];

/*Creating a dataset to plot the graphs*/

nm1={"Iteration" "mean1" "mean2" "var1" "var2" "Weight1" "Weight2" "logfun"}

create plot from EM[colname=nm1];

append from EM;

close plot;

/*Graphs to plot the convergence of the parameters*/

/*Means*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Means";
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proc gplot data=plot;

axis1 label=('Means');

axis2 label=('Iterations');

plot mean1*Iteration mean2*Iteration / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Mean1' 'Mean2')

position=(bottom center outside);

run;

/*Variances*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Variances";

proc gplot data=plot;

axis1 label=('Variances');

axis2 label=('Iterations');

plot var1*Iteration var2*Iteration / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Variance1' 'Variance2')

position=(bottom center outside);

run;

/*Mixing coefficients*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Weights";

proc gplot data=plot;

axis1 label=('Weights');
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axis2 label=('Iterations');

plot Weight1*Iteration Weight2*Iteration / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Weight1' 'Weight2')

position=(bottom center outside);

run;

/*Graph to plot the observed data log-likelihood*/

goptions reset=all;

symbol1 interpol=join height=10pt value=circle CV=BLUE LINE=1 width=1;

title;

title1 "Log-likelihood over 58 Iterations";

proc gplot data=plot;

plot logfun*Iteration /overlay legend=Legend1;

Legend1 label=('Plot')

value=('Log-likelihood function')

position=(bottom center outside);

run;

/*Check K-means clustering using Proc Fastclus*/

proc fastclus data=sasuser.Old2 maxclusters=2 maxiter=10 ;

var x1;

run;

The CEM algorithm with random selection:

/*********************************************************************/

proc iml;

use sasuser.Old2;

read all into erupt;

print erupt;

/*Number of rows and columns*/

dim=ncol(erupt);
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N=nrow(erupt);

/*Number of Components (Assumed to be Known)*/

K=2;

/*Random selection of initial values for the mean, variance and mixing coefficients*/

/*Mean*/

initmean=J(dim,K,.);

initmean[,1]=2.2;

initmean[,2]=4.15;

/*Variance*/

initvar=J(dim,K,.);

do j = 1 to K;

initvar[,j]=1.7;

end;

/*Mixing Coefficients*/

initweight=J(1,K,.);

do j = 1 to K;

initweight[,j]=0.5;

end;

/*Log-likelihood function*/

log_fun=-28000;

/*PI constant*/

pi=constant("pi");

/*Start the iterations*/

t=0;

do until(diff = 0);

/*E-step:*/

logfun = J(N,4,.);

58



post=J(N,5,.);

/*Calculating the pdfs for each component*/

do i = 1 to N;

do j = 1 to K;

post[i,j] = 1/((2#pi#initvar[,j])##(dim/2))*exp((-1/(2#initvar[,j]))#((erupt[i,]-initmean[,j])##2));

end;

end;

/*Calculating the pdfs*weights*/

post[,3]=initweight[,1]#post[,1];

post[,4]=initweight[,2]#post[,2];

/*Sum prior*pdf over K1 and K2*/

post[,5]=post[,3]+post[,4];

/*Calculating of the Responsibilities*/

Zi1=post[,3]/post[,5];

Zi2=post[,4]/post[,5];

newlogfun=log_fun;

/*Save values for the log-likelihood calculation*/

logfun[,1] = Zi1#initweight[,1];

logfun[,2] = Zi2#initweight[,2];

logfun[,3] = logfun[,1]+logfun[,2];

logfun[,4] = log(logfun[,3]);

newlogfun = logfun[+,4];

/*C-step:*/

P=Zi1||Zi2;

class = P[,<:>];

pos1 = loc(class=1) ;

pos2 = loc(class=2) ;

x_full = erupt||P||class;
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Xi1 = x_full[pos1,] ;

Xi2 = x_full[pos2,] ;

/*Counting the number of rows of each partition*/

x1=nrow(Xi1);

x2=nrow(Xi2);

/*M-step:*/

/*Update the means, variances and mixing coefficients*/

newmean = initmean;

newweight = initweight;

newvar = initvar;

/*Update the mixing coefficients of each of the components*/

newweight[,1] = x1/N;

newweight[,2] = x2/N;

/*Update the means of each of the components*/

Xi1_x = Xi1[,1]#Xi1[,2];

newmean[,1] = Xi1_x[+,]/Xi1[+,2]; /*mean1*/

Xi2_x = Xi2[,1]#Xi2[,3];

newmean[,2] = Xi2_x[+,]/Xi2[+,3]; /*mean2*/

/*Update the variances of each of the components*/

var1_d = J(x1,dim,.);

var2_d = J(x2,dim,.);

do i = 1 to x1;

do j = 1 to x2;

var1_d[i,] = Xi1[i,2]#((Xi1[i,1] - initmean[,1])##2);

var2_d[j,] = Xi2[j,3]#((Xi2[j,1] - initmean[,2])##2);

end;

end;

newvar[,1] = var1_d[+,]/Xi1[+,2]; /*variance1*/
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newvar[,2] = var2_d[+,]/Xi2[+,3]; /*variance2*/

/*Stops iterations once the difference between the latest log-likelihood*/

/*and the previous one is equal to zero*/

diff=abs(log_fun-newlogfun);

/*Replace the previous parameters with the adjusted parameters*/

initmean = newmean;

initvar = newvar;

initweight = newweight;

log_fun = newlogfun;

/*Print the new parameters at the end of each Period*/

print "Iteration:" t;

print newmean;

print newvar;

print newweight;

print newlogfun;

CEM = CEM//(t||newmean||newvar||newweight||newlogfun);

t=t+1;

end;

nm={"Iteration" "Mean 1" "Mean 2" "Variance 1" "Variance 2" "Weight 1" "Weight 2" "logfun"}

print CEM[colname=nm];

/*Creating a dataset to plot the graphs*/

nm1={"Iteration" "mean1" "mean2" "var1" "var2" "Weight1" "Weight2" "logfun"}

create plot from CEM[colname=nm1];

append from CEM;

close plot;

/*Graphs to plot the convergence of the parameters*/

/*Means*/

61



goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Means";

proc gplot data=plot;

axis1 label=('Means');

axis2 label=('Iterations');

plot mean1*Iteration mean2*Iteration / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Mean1' 'Mean2')

position=(bottom center outside);

run;

/*Variances*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Variances";

proc gplot data=plot;

axis1 label=('Variances');

axis2 label=('Iterations');

plot var1*Iteration var2*Iteration / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Variance1' 'Variance2')

position=(bottom center outside);

run;

/*Mixing Coefficients*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;
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symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Mixing Coefficients";

proc gplot data=plot;

axis1 label=('Weights');

axis2 label=('Iterations');

plot Weight1*Iteration Weight2*Iteration / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Weight1' 'Weight2')

position=(bottom center outside);

run;

/*Graph to plot the observed data log-likelihood*/

goptions reset=all;

symbol1 interpol=join height=10pt value=circle CV=BLUE LINE=1 width=1;

title;

title1 "Log-likelihood over 29 Iterations";

proc gplot data=plot;

plot logfun*Iteration /overlay legend=Legend1;

Legend1 label=('Plot')

value=('Log-likelihood function')

position=(bottom center outside);

run;

The CEM algorithm initialized by the K-means algorithm:

/*********************************************************************/

/*K-means algorithm to initialize the CEM algorithm*/

proc iml;

use sasuser.Old2;

read all into erupt;

/*Partition the data into two clusters*/

/*Note that for simplicity we choose k=2 to be the initial number of clusters*/

63



xclus1=erupt[1:136,]||J(136,1,1);

xclus2=erupt[137:272,]||J(136,1,2);

/*Append the groups*/

xclus = xclus1 // xclus2;

n1 = nrow(xclus);

x = xclus[,1];

class = xclus[,2];

x_class = x||class;

create x from x_class [colname = {'x' 'class'}];

append from x_class;

close x;

/*Choose the value of the centres of each of the initial clusters by*/

/*doing a visual inspection of the variables*/

/*Initial cluster values*/

cent1 = {5.1};

cent2 = {1.6};

initial_centres = cent1//cent2;

print initial_centres;

create ini_cent from initial_centres [colname ={'cx'}];

append from initial_centres;

close ini_cent;

/*********************Start the iteration process********************/

centres_old = initial_centres;

k = nrow(initial_centres);

do t = 1 to 10 until (cent_diff = 0);

/*Calculate the squared Euclidean distance of each obs(row) from each centre in "centres_old"*/

/*n is nr of observations (standardized)*/
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/*k is nr of centres*/

edij = J(n1,k,.);

do i = 1 to n1;

do j = 1 to k;

edij[i,j] = ((x[i,]-centres_old[j,])* (x[i,]-centres_old[j,])`);

end;

end;

/*The minimum value of each row indicates to which cluster the observation belongs.*/

/*Loop through each row of edij to identify the minimum value in each row */

/*and put it in a column vector clusmin, in order to classify each observation to a cluster*/

/*Initialize and reset the vectors on which we will append later*/

clusmin = {1};

clusmin = remove(clusmin,1:nrow(clusmin));

cl_class = {1};

cl_class = remove(cl_class,1:nrow(cl_class));

do h = 1 to nrow(edij);

cc = min(edij[h,]);

clusmin = clusmin // cc;

end;

do g = 1 to ncol(edij);

cl_class = cl_class || g * (edij[,g] = clusmin);

end;

cl_class = cl_class[,+];

/*Now put a column of cluster numbers next to the original observations*/

/*and sort them according to the cluster numbers to calculate the new centres of the new clusters*/

x_class = x || cl_class;

call sort(x_class,{2});

/*Initialize and reset the cluster vectors*/

clus1 = {1};

clus1 = remove(clus1,1:nrow(clus1));
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clus2 = {1};

clus2 = remove(clus2,1:nrow(clus2));

/*Append the observations of each cluster in separate vectors*/

/*Compile the 2 different classes*/

do i = 1 to nrow(x_class);

if x_class[i,2] = 1 then clus1 = clus1 // x_class[i,];

if x_class[i,2] = 2 then clus2 = clus2 // x_class[i,];

end;

/*Calculate the new centres of each cluster*/

cent1_new = sum(clus1[+,1])/nrow(clus1);

cent2_new= sum(clus2[+,1])/nrow(clus2);

/*Calculate the new variances of each cluster*/

var1_new=J(nrow(clus1),1,.);

var2_new=J(nrow(clus2),1,.);

do i = 1 to nrow(clus1);

do j = 1 to nrow(clus2);

var1_new[i,]=((clus1[i,1]-centres_old[1,])`*(clus1[i,1]-centres_old[1,]))/(nrow(clus1)-1);

var2_new[j,]=((clus2[j,1]-centres_old[2,])`*(clus2[j,1]-centres_old[2,]))/(nrow(clus2)-1);

end;

end;

var1_new=var1_new[+,];

var2_new=var2_new[+,];

var_new=var1_new//var2_new;

/*Calculate the new weights of each cluster*/

weight1=nrow(clus1)/n1;

weight2=nrow(clus2)/n1;

weights=weight1//weight2;

/*Fill a vector to indicate the size of each cluster*/

Clussize = J(2,2,.);
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Clussize[1,1] = 1;

Clussize[1,2] = nrow(clus1);

Clussize[2,1] = 2;

Clussize[2,2] = nrow(clus2);

print "Loop number:" t;

print Clussize;

centres_new = cent1_new//cent2_new;

print centres_old centres_new;

print var_new;

print weights;

/*Calculating the difference between the new and old centres to stop*/

/*the process once the stop criterion has been met*/

cent_diff= abs(centres_old - centres_new);

print cent_diff;

/*Rename the new centres to initial centres and start the loop again*/

centres_old = centres_new;

end;

print "Final Loop:" t;

centrefinal = centres_old;

varfinal=var_new;

weightsfinal=weights;

print centrefinal varfinal weights;

/*The Classification Expectation-Maximization (CEM) Algorithm*/

/*Number of rows and columns*/

dim=ncol(erupt);

N=nrow(erupt);

/*Number of Components (Assumed to be Known)*/

K=2;
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/*Initial values generated by the K-means algorithm*/

/*Means*/

initmean=J(dim,K,.);

initmean[,1]=centrefinal[2,];

initmean[,2]=centrefinal[1,];

/*Variances*/

initvar=J(dim,K,.);

initvar[,1]=varfinal[2,];

initvar[,2]=varfinal[1,];

/*Mixing Coefficients*/

initweight=J(1,K,.);

initweight[,1]=weights[2,];

initweight[,2]=weights[1,];

/*Log-likelihood function*/

log_fun=-180000;

/*PI constant*/

pi=constant("pi");

/*Start the iterations*/

t=0;

do until(diff=0);

/*E-step:*/

logfun = J(N,4,.);

post=J(N,5,.);

/*Calculating the pdfs for each component*/

do i = 1 to N;

do j = 1 to K;

post[i,j] = 1/((2#pi#initvar[,j])##(dim/2))*exp((-1/(2#initvar[,j]))#((erupt[i,]-initmean[,j])##2));

end;
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end;

/*Calculating the pdfs*weights*/

post[,3]=initweight[,1]#post[,1];

post[,4]=initweight[,2]#post[,2];

/*Sum prior*pdf over K1 and K2*/

post[,5]=post[,3]+post[,4];

/*Calculating of the Responsibilities*/

Zi1=post[,3]/post[,5];

Zi2=post[,4]/post[,5];

newlogfun=log_fun;

/*Save values for the log-likelihood calculation*/

logfun[,1] = Zi1#initweight[,1];

logfun[,2] = Zi2#initweight[,2];

logfun[,3] = logfun[,1]+logfun[,2];

logfun[,4] = log(logfun[,3]);

newlogfun = logfun[+,4];

/*C-step:*/

P=Zi1||Zi2;

classC = P[,<:>];

pos1 = loc(classC=1);

pos2 = loc(classC=2);

x_full = erupt||P||classC;

Xi1 = x_full[pos1,];

Xi2 = x_full[pos2,];

/*Counting the number of rows of each partition*/

x1=nrow(Xi1);

x2=nrow(Xi2);
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/*M-step:*/

/*Update the means, variances and mixing coefficients*/

newmean = initmean;

newweight = initweight;

newvar = initvar;

/*Update the mixing coefficients of each of the components*/

newweight[,1] = x1/N;

newweight[,2] = x2/N;

/*Update the means of each of the components*/

Xi1_x = Xi1[,1]#Xi1[,2];

newmean[,1] = Xi1_x[+,]/Xi1[+,2]; /*mean1*/

Xi2_x = Xi2[,1]#Xi2[,3];

newmean[,2] = Xi2_x[+,]/Xi2[+,3]; /*mean2*/

/*Update the variances of each of the components*/

var1_d = J(x1,dim,.);

var2_d = J(x2,dim,.);

do i = 1 to x1;

do j = 1 to x2;

var1_d[i,] = Xi1[i,2]#((Xi1[i,1] - initmean[,1])##2);

var2_d[j,] = Xi2[j,3]#((Xi2[j,1] - initmean[,2])##2);

end;

end;

newvar[,1] = var1_d[+,]/Xi1[+,2]; /*variance1*/

newvar[,2] = var2_d[+,]/Xi2[+,3]; /*variance2*/

/*Stops iterations once the difference between the latest log-likelihood*/

/*and the previous one is equal to zero*/

diff=abs(log_fun-newlogfun);

/*Replace the previous parameters with the adjusted parameters*/
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initmean = newmean;

initvar = newvar;

initweight = newweight;

log_fun = newlogfun;

/*Print the new parameters at the end of each Period*/

print "Iteration:" t;

print newmean;

print newvar;

print newweight;

print newlogfun;

CEM = CEM//(t||newmean||newvar||newweight||newlogfun);

t=t+1;

end;

nm={"Iteration" "Mean 1" "Mean 2" "Variance 1" "Variance 2" "Weight 1" "Weight 2" "logfun"}

print CEM[colname=nm];

/*Creating a dataset to plot the graphs*/

nm1={"Iteration" "mean1" "mean2" "var1" "var2" "Weight1" "Weight2" "logfun"}

create plot from CEM[colname=];

append from CEM;

close plot;

/*Graphs to plot the convergence of the parameters*/

/*Means*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Means";

proc gplot data=plot;

axis1 label=('Means');
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axis2 label=('Iterations');

plot mean1*Iteration mean2*Iteration / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Mean1' 'Mean2')

position=(bottom center outside);

run;

/*Variances*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Variances";

proc gplot data=plot;

axis1 label=('Variances');

axis2 label=('Iterations');

plot var1*Iteration var2*Iteration / vaxis=axis1 haxis=axis2 overlay legend=Legend1;

Legend1 label=('Plot')

order=(1 to 2)

value=('Variance1' 'Variance2')

position=(bottom center outside);

run;

/*Mixing coefficients*/

goptions reset=all;

symbol1 interpol=join width=1 color=blue;

symbol2 interpol=join width=1 color=red;

title;

title1 "Convergence of estimates for the Weights";

proc gplot data=plot;

axis1 label=('Weights');

axis2 label=('Iterations');

plot Weight1*Iteration Weight2*Iteration / vaxis=axis1 haxis=axis2 overlay legend=Legend1;
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Legend1 label=('Plot')

order=(1 to 2)

value=('Weight1' 'Weight2')

position=(bottom center outside);

run;

/*Graph to plot the observed data log-likelihood*/

goptions reset=all;

symbol1 interpol=join height=10pt value=circle CV=BLUE LINE=1 width=1;

title;

title1 "Log-likelihood over 28 Iterations";

proc gplot data=plot;

plot logfun*Iteration /overlay legend=Legend1;

Legend1 label=('Plot')

value=('Log-likelihood function')

position=(bottom center outside);

run;

EM simulation:

/*********************************************************************/

proc iml ;

start GEN;

pi1 = mat[kk,7];

pi2 = mat[kk,8];

delta = mat[kk,3];

m1 = mat[kk,2];

m2 = m1+delta;

v1 = mat[kk,5];

v2 = mat[kk,6];

n = mat[kk,4];

n1 = round(n*pi1);

n2 = n-n1;

73



sd1 = J(n1,1,0);

sd2 = J(n2,1,0);

x1=rannor(sd1)*sqrt(v1)+m1;

x2=rannor(sd2)*sqrt(v2)+m2;

x = x1 // x2;

finish GEN;

start EM;

call GEN;

/*Sort the variable x*/

call sort(x,{1});

/*Determine the quartiles and keep only the median - initial value for pi1=0.5*/

call qntl(q,x);

qpi = q[2];

*Identify values in x below and above the median;

*essentially splitting the data into k=2 groups;

mx = x#(x<=qpi) || x#(x>qpi);

*Random selection of initial values for the mean, variance and mixing coefficients;

*Mean 1;

mean1 = loc(mx[,1]^=0);

mean1 = (mx[,1])[m1];

mean1 = mean1[:];

*Mean 2;

mean2 = loc(mx[,2]^=0);

mean2 = (mx[,2])[mean2];

mean2 = mean2[:];

*Variance;

variance1 = var(x);

74



variance2 = variance1;

*Mixing Coefficients;

pi1=0.5;

pi2=1-pi1;

*The Stopping Criterion;

StopCriterion = 0.0001;

*Initializing the log-likelihood function;

logfun = -100000000000000000000;

*Initializing the difference;

diff = StopCriterion+1;

do i = 1 to 50 while (diff>StopCriterion);

s1=sqrt(variance1);

s2=sqrt(variance2);

/*E-step:*/

/*Calculating the normal densities*/

normd1 = pdf("Normal",x,mean1,s1);

normd2 = pdf("Normal",x,mean2,s2);

/*Calculating the pdfs*weights*/

post = pi1*normd1 || pi2*normd2;

post = post / post[,+];

/*Calculating of the Responsibilities*/

Zi1=post[,1];

Zi2=post[,2];

/*M-step:*/

/*Update the means of each of the components*/
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mean1 = sum(Zi1#x) / sum(Zi1);

mean2 = sum(Zi2#x) / sum(Zi2);

/*Update the variances of each of the components*/

v1 = sum(Zi1 # (x-mean1)##2) / sum(Zi1);

v2 = sum(Zi2 # (x-mean2)##2) / sum(Zi2);

/*Update the mixing coefficients of each of the components*/

pi1 = (Zi1)[:];

pi2 = (Zi2)[:];

/*Calculating the log-likelihood function*/

newlogfun = sum(log(pi1*normd1+pi2*normd2));

EM = EM // (i || mean1 || mean2 || variance1 || variance2 || pi1 || newlogfun);

/*Stops iterations once the difference between the latest log-likelihood*/

/*and the previous one is greater than 0.0001*/

diff = abs(logfun-newlogfun);

logfun=newlogfun;

end;

finish EM;

a=J(5,1,500);

b=J(5,1,40);

c=j(5,1,50);

d=J(5,1,16);

e=J(5,1,16);

f=J(5,1,0.5);

g=1-f;

mat = a||b||c||{30,50,100,200,500}||d||e||f||g;

do kk = 1 to nrow(mat);

call GEN;

do jj= 1 to 500;
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call EM;

simulation = simulation // (jj || i-1 || mean1 || mean2 || variance1 || variance2 || pi1);

free EM;

end;

nm={"n" "Iterations" "Mean 1" "Mean 2" "Variance 1" "Variance 2" "pi1"};

average = average // (simulation[:,2:7]);

end;

nn={30,50,100,200,500};

ave=nn||average;

print ave[colname=nm];

bmu1=40;

delta=50;

bmu2=bmu1+delta;

bv1=16;

bv2=bv1;

bmix=0.5;

Bias = Bias//(ave[,1]||ave[,2]||abs(bmu1-ave[,3])||abs(bmu2-ave[,4])||abs(bv1-ave[,5])

||abs(bv2-ave[,6])||abs(bmix-ave[,7]));

print Bias[colname={"n" "Iterations" "Mean 1" "Mean 2" "Variance 1" "Variance 2" "pi1"}];

data plot;

set plot1 plot2 plot3 plot4 plot5 plot6 plot7 plot8 plot9;

run;

quit;

/*Iterations*/

proc template;

define statgraph sgdesign;

dynamic _N _ITER1A _N2 _ITER2A _N3 _ITER3A _N4 _ITER4A _N5 _ITER5A _N6 _ITER6A _N7 _ITER7A

_N8 _ITER8A _N9 _ITER9A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;
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layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Iterations'));

seriesplot x=_N y=_ITER1A / name='series' legendlabel='Delta = 15 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N2 y=_ITER2A / name='series2' legendlabel='Delta = 15 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N3 y=_ITER3A / name='series3' legendlabel='Delta = 15 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N4 y=_ITER4A / name='series4' legendlabel='Delta = 30 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N5 y=_ITER5A / name='series5' legendlabel='Delta = 30 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N6 y=_ITER6A / name='series6' legendlabel='Delta = 30 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N7 y=_ITER7A / name='series7' legendlabel='Delta = 50 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N8 y=_ITER8A / name='series8' legendlabel='Delta = 50 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N9 y=_ITER9A / name='series9' legendlabel='Delta = 50 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7' 'series8'

'series9'/opaque=false border=true valign=bottom displayclipped=true down=1 order=rowmajor

location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=WORK.PLOT template=sgdesign;

dynamic _N="N" _ITER1A="ITER1" _N2="N" _ITER2A="ITER2" _N3="N" _ITER3A="ITER3"

_N4="N" _ITER4A="ITER4" _N5="N" _ITER5A="ITER5" _N6="N"

_ITER6A="ITER6" _N7="N" _ITER7A="ITER7" _N8="N" _ITER8A="ITER8"

_N9="N" _ITER9A="ITER9";

run;
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/*Mean 1*/

proc template;

define statgraph sgdesign;

dynamic _N _M11A _N2 _M12A _N3 _M13A _N4 _M14A _N5 _M15A _N6 _M16A _N7 _M17A

_N8 _M18A _N9 _M19A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Mean'));

seriesplot x=_N y=_M11A / name='series' legendlabel='Delta = 15 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N2 y=_M12A / name='series2' legendlabel='Delta = 15 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N3 y=_M13A / name='series3' legendlabel='Delta = 15 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N4 y=_M14A / name='series4' legendlabel='Delta = 30 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N5 y=_M15A / name='series5' legendlabel='Delta = 30 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N6 y=_M16A / name='series6' legendlabel='Delta = 30 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N7 y=_M17A / name='series7' legendlabel='Delta = 50 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N8 y=_M18A / name='series8' legendlabel='Delta = 50 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N9 y=_M19A / name='series9' legendlabel='Delta = 50 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7' 'series8'

'series9'/opaque=false border=true valign=bottom displayclipped=true down=1 order=rowmajor

location=outside;

endlayout;

endlayout;

endgraph;

end;
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run;

proc sgrender data=WORK.PLOT template=sgdesign;

dynamic _N="N" _M11A="M11" _N2="N" _M12A="M12" _N3="N" _M13A="M13" _N4="N" _M14A="M14"

_N5="N" _M15A="M15" _N6="N" _M16A="M16" _N7="N" _M17A="M17" _N8="N"

_M18A="M18" _N9="N" _M19A="M19";

run;

/*Mean 2*/

proc template;

define statgraph sgdesign;

dynamic _N _M21A _N2 _M22A _N3 _M23A _N4 _M24A _N5 _M25A _N6 _M26A _N7 _M27A

_N8 _M28A _N9 _M29A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Mean'));

seriesplot x=_N y=_M21A / name='series' legendlabel='Delta = 15 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N2 y=_M22A / name='series2' legendlabel='Delta = 15 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N3 y=_M23A / name='series3' legendlabel='Delta = 15 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N4 y=_M24A / name='series4' legendlabel='Delta = 30 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N5 y=_M25A / name='series5' legendlabel='Delta = 30 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N6 y=_M26A / name='series6' legendlabel='Delta = 30 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N7 y=_M27A / name='series7' legendlabel='Delta = 50 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N8 y=_M28A / name='series8' legendlabel='Delta = 50 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N9 y=_M29A / name='series9' legendlabel='Delta = 50 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );
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discretelegend 'series' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7' 'series8'

'series9'/opaque=false border=true valign=bottom displayclipped=true down=1 order=rowmajor

location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=WORK.PLOT template=sgdesign;

dynamic _N="N" _M21A="M21" _N2="N" _M22A="M22" _N3="N" _M23A="M23" _N4="N" _M24A="M24"

_N5="N" _M25A="M25" _N6="N" _M26A="M26" _N7="N" _M27A="M27" _N8="N" _M28A="M28"

_N9="N" _M29A="M29";

run;

/*Variance 1*/

proc template;

define statgraph sgdesign;

dynamic _N _V11A _N2 _V12A _N3 _V13A _N4 _V14A _N5 _V16A _N6 _V17A _N7 _V18A

_N8 _V15A _N9 _V19A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Variance'));

seriesplot x=_N y=_V11A / name='series' legendlabel='Delta = 15 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N2 y=_V12A / name='series2' legendlabel='Delta = 15 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N3 y=_V13A / name='series3' legendlabel='Delta = 15 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N4 y=_V14A / name='series4' legendlabel='Delta = 30 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N5 y=_V16A / name='series5' legendlabel='Delta = 30 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N6 y=_V17A / name='series6' legendlabel='Delta = 30 (pi = 0.5)'
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connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N7 y=_V18A / name='series7' legendlabel='Delta = 50 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N8 y=_V15A / name='series8' legendlabel='Delta = 50 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N9 y=_V19A / name='series9' legendlabel='Delta = 50 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7' 'series8'

'series9'/opaque=false border=true valign=bottom displayclipped=true down=1 order=rowmajor

location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=WORK.PLOT template=sgdesign;

dynamic _N="N" _V11A="V11" _N2="N" _V12A="V12" _N3="N" _V13A="V13" _N4="N" _V14A="V14"

_N5="N" _V16A="V16" _N6="N" _V17A="V17" _N7="N" _V18A="V18" _N8="N" _V15A="V15"

_N9="N" _V19A="V19";

run;

/*Variance 2*/

proc template;

define statgraph sgdesign;

dynamic _N _V21A _N2 _V22A _N3 _V23A _N4 _V24A _N5 _V25A _N6 _V26A _N7 _V27A _N8

_V28A _N9 _V29A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Variance'));

seriesplot x=_N y=_V21A / name='series' legendlabel='Delta = 15 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N2 y=_V22A / name='series2' legendlabel='Delta = 15 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );
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seriesplot x=_N3 y=_V23A / name='series3' legendlabel='Delta = 15 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N4 y=_V24A / name='series4' legendlabel='Delta = 30 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N5 y=_V25A / name='series5' legendlabel='Delta = 30 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N6 y=_V26A / name='series6' legendlabel='Delta = 30 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N7 y=_V27A / name='series7' legendlabel='Delta = 50 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N8 y=_V28A / name='series8' legendlabel='Delta = 50 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N9 y=_V29A / name='series9' legendlabel='Delta = 50 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7' 'series8'

'series9'/opaque=false border=true valign=bottom displayclipped=true down=1 order=rowmajor

location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=WORK.PLOT template=sgdesign;

dynamic _N="N" _V21A="V21" _N2="N" _V22A="V22" _N3="N" _V23A="V23" _N4="N" _V24A="V24"

_N5="N" _V25A="V25" _N6="N" _V26A="V26" _N7="N" _V27A="V27" _N8="N" _V28A="V28"

_N9="N" _V29A="V29";

run;

/*Mixing Coefficients*/

proc template;

define statgraph sgdesign;

dynamic _N _PI11A _N2 _PI12A _N3 _PI13A _N4 _PI14A _N5 _PI15A _N6 _PI16A _N7 _PI17A

_N8 _PI18A _N9 _PI19A;
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begingraph; layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Mixing Coefficient'));

seriesplot x=_N y=_PI11A / name='series' legendlabel='Delta = 15 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N2 y=_PI12A / name='series2' legendlabel='Delta = 15 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N3 y=_PI13A / name='series3' legendlabel='Delta = 15 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=MEDIUMDASH thickness=2 );

seriesplot x=_N4 y=_PI14A / name='series4' legendlabel='Delta = 30 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N5 y=_PI15A / name='series5' legendlabel='Delta = 30 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N6 y=_PI16A / name='series6' legendlabel='Delta = 30 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_N7 y=_PI17A / name='series7' legendlabel='Delta = 50 (pi = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N8 y=_PI18A / name='series8' legendlabel='Delta = 50 (pi = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

seriesplot x=_N9 y=_PI19A / name='series9' legendlabel='Delta = 50 (pi = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7' 'series8'

'series9'/opaque=false border=true valign=bottom displayclipped=true down=1 order=rowmajor

location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=WORK.PLOT template=sgdesign;

dynamic _N="N" _PI11A="PI11" _N2="N" _PI12A="PI12" _N3="N" _PI13A="PI13" _N4="N" _PI14A="PI14"

_N5="N" _PI15A="PI15" _N6="N" _PI16A="PI16" _N7="N" _PI17A="PI17" _N8="N" _PI18A="PI18"

_N9="N" _PI19A="PI19";

run;
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CEM simulation:

/*********************************************************************/

data sasuser.CEMSim;

run;

%macro cem;

proc iml;

start GEN;

n=30; *Will be changed - n={15,30,50,100,200,500};

weight1=0.2; *Will be changed - pi={0.2,0.4,0.5};

weight2=1-weight1;

delta=15; *Will be changed delta={15,30,50};

m1=40;

m2=m1+delta;

var1=16;

var2=var1;

k=ranuni(J(n,1,0));

xx1 = loc(k<weight1);

xx2 = loc(k>=weight1);

n1=ncol(xx1);

n2=ncol(xx2);

sd1 = J(n1,1,0);

sd2 = J(n2,1,0);

x1=rannor(sd1)*sqrt(var1)+m1;

x2=rannor(sd2)*sqrt(var2)+m2;

x = (x1 || J(n1,1,1)) // (x2 || J(n2,1,2));

finish GEN;

do kk= 1 to 100;

call GEN;

call sort(x,{1});

/*Calculating the number of rows and columns*/
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n=nrow(x);

dim = 1;

f = (sample(x[,1],2,"NoReplace"))`;

f=f`;

/*Initial values for the means*/

mean1=min(f);

mean2=max(f);

/*Initial values for the variances*/

variance1 = var(x[,1]);

variance2 = variance1;

/*Initial values for the mixing coefficients*/

pi1=0.5;

pi2=1-pi1;

logfun = -10000;

diff = 100000;

do t =1 to 50 while(diff > 0.01);

s1=sqrt(variance1);

s2=sqrt(variance2);

/*E-step:*/

/*Calculating the normal densities*/

normd1 = pdf("Normal",x[,1],mean1,s1);

normd2 = pdf("Normal",x[,1],mean2,s2);

post = pi1*normd1 || pi2*normd2;

post = post / post[,+];

/*C-step:*/

class = post[,<:>];

p1 = loc(class=1);
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p2 = loc(class=2);

x_full = x|| post || class;

Xi1 = x_full[p1,];

Xi2 = x_full[p2,];

/*M-step:*/

/*Counting the number of rows of each partition*/

x1=nrow(Xi1);

x2=nrow(Xi2);

/*Update the mixing coefficients of each of the components*/

pi1 = x1/N;

pi2 = 1-pi1;

/*Update the means of each of the components*/

mean1 = (Xi1[,1]#Xi1[,3])[+] / sum(Xi1[,3]); /*mean1*/

mean2 = (Xi2[,1]#Xi2[,4])[+] / sum(Xi2[,4]); /*mean2*/

/*Update the variances of each of the components*/

variance1 = (Xi1[,3]#((Xi1[,1]-mean1)##2))[+] / sum(Xi1[,3]); /*variance1*/

variance2 = (Xi2[,4]#((Xi2[,1]-mean2)##2))[+] / sum(Xi2[,4]); /*variance2*/

newlogfun = logfun;

/*Calculating the log-likelihood function*/

logfun = sum(log(pi1*normd1+pi2*normd2));

/*Stops iterations once the difference between the latest log-likelihood*/

/*and the previous one is greater than 0.01*/

diff = abs(logfun - newlogfun);

nm={"i" "Mean 1" "Mean 2" "Variance 1" "Variance 2" "pi1" "logfun"};

CEM = CEM // ( t || mean1 || mean2 || variance1 || variance2 || pi1 || logfun);

end;
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simulation = simulation // ( kk ||t||mean1||mean2||variance1||variance2||pi1);

free CEM;

end;

nm2={"Simulation" "Iterations" "Mean 1" "Mean 2" "Variance 1" "Variance 2" "pi1"};

print simulation[colname=nm2];

create simulation from simulation[colname=nm2] ;

append from simulation;

close simulation;

data sasuser.CEMSim;

set sasuser.CEMSim simulation;

run;

quit;

%mend;

%cem;

quit;

data sasuser.CEMgraphs;

set plot1 plot2 plot3 plot4 plot5 plot6 plot7 plot8 plot9;

run;

/*Graphing the Iterations*/

proc template;

define statgraph sgdesign;

dynamic _SAMPLE_SIZE1A _ITERATIONS1A _SAMPLE_SIZE2A _ITERATIONS2A _SAMPLE_SIZE3A

_ITERATIONS3A _SAMPLE_SIZE4A _ITERATIONS4A _SAMPLE_SIZE4A2 _ITERATIONS4A2 _SAMPLE_SIZE5A

_ITERATIONS5A _SAMPLE_SIZE6A _ITERATIONS6A _SAMPLE_SIZE7A _ITERATIONS7A _SAMPLE_SIZE8A

_ITERATIONS8A _SAMPLE_SIZE9A _ITERATIONS9A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( reverse=false label=('Sample size') tickvalueattrs=(color=CX000000 )

linearopts=( minorticks=OFF)) yaxisopts=( label=('Iterations'));

seriesplot x=_SAMPLE_SIZE1A y=_ITERATIONS1A / name='series'
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legendlabel='Delta = 15 (pi1 = 0.2)' connectorder=xaxis lineattrs=(color=CX0000FF

pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE2A y=_ITERATIONS2A / name='series2'

legendlabel='Delta = 15 (pi1 = 0.4)' connectorder=xaxis lineattrs=(color=CX0000FF

pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE3A y=_ITERATIONS3A / name='series3'

legendlabel='Delta = 15 (pi1 = 0.5)' connectorder=xaxis lineattrs=(color=CX0000FF

pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE4A y=_ITERATIONS4A / name='series4'

legendlabel='Delta = 30 (pi1 = 0.2)' connectorder=xaxis

lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE5A y=_ITERATIONS5A / name='series5'

legendlabel='Delta = 30 (pi1 = 0.4)' connectorder=xaxis

lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE6A y=_ITERATIONS6A / name='series6'

legendlabel='Delta = 30 (pi1 = 0.5)' connectorder=xaxis

lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE7A y=_ITERATIONS7A / name='series7'

legendlabel='Delta = 50 (pi1 = 0.2)' connectorder=xaxis

lineattrs=(color=CX00FF00 pattern=MEDIUMDASHSHORTDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE8A y=_ITERATIONS8A / name='series8'

legendlabel='Delta = 50 (pi1 = 0.4)' connectorder=xaxis

lineattrs=(color=CX00FF00 pattern=MEDIUMDASHSHORTDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE9A y=_ITERATIONS9A / name='series9'

legendlabel='Delta = 50 (pi1 = 0.5)' connectorder=xaxis

lineattrs=(color=CX00FF00 pattern=MEDIUMDASHSHORTDASH thickness=2 );

discretelegend 'series' 'series1' 'series2' 'series3' 'series4' 'series5' 'series6'

'series7' 'series8' 'series9' / opaque=false border=true valign=bottom displayclipped=true

down=1 order=rowmajor location=outside;

endlayout;

endlayout;

endgraph;

end;

run;
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proc sgrender data=sasuser.CEMgraphs template=sgdesign;

dynamic _SAMPLE_SIZE1A="'SAMPLE_SIZE1'n" _ITERATIONS1A="ITERATIONS1"

_SAMPLE_SIZE2A="'SAMPLE_SIZE2'n" _ITERATIONS2A="ITERATIONS2" _SAMPLE_SIZE3A="'SAMPLE_SIZE3'n"

_ITERATIONS3A="ITERATIONS3" _SAMPLE_SIZE4A="'SAMPLE_SIZE4'n" _ITERATIONS4A="ITERATIONS4"

_SAMPLE_SIZE4A2="'SAMPLE_SIZE4'n" _ITERATIONS4A2="ITERATIONS4"

_SAMPLE_SIZE5A="'SAMPLE_SIZE5'n" _ITERATIONS5A="ITERATIONS5"

_SAMPLE_SIZE6A="'SAMPLE_SIZE6'n" _ITERATIONS6A="ITERATIONS6"

_SAMPLE_SIZE7A="'SAMPLE_SIZE7'n" _ITERATIONS7A="ITERATIONS7"

_SAMPLE_SIZE8A="'SAMPLE_SIZE8'n" _ITERATIONS8A="ITERATIONS8"

_SAMPLE_SIZE9A="'SAMPLE_SIZE9'n" _ITERATIONS9A="ITERATIONS9";

run;

/*Graphing the means*/

/*Mean 1*/

proc template;

define statgraph sgdesign;

dynamic _SAMPLE_SIZE1A _MEAN11A _SAMPLE_SIZE2A _MEAN12A _SAMPLE_SIZE3A _MEAN13A

_SAMPLE_SIZE4A _MEAN14A _SAMPLE_SIZE5A _MEAN15A _SAMPLE_SIZE6A _MEAN16A _SAMPLE_SIZE7A

_MEAN17A _SAMPLE_SIZE8A _MEAN18A _SAMPLE_SIZE9A _MEAN19A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Mean'));

seriesplot x=_SAMPLE_SIZE1A y=_MEAN11A / name='series' legendlabel='Delta = 15 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE2A y=_MEAN12A / name='series2' legendlabel='Delta = 15 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE3A y=_MEAN13A / name='series3' legendlabel='Delta = 15 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE4A y=_MEAN14A / name='series4' legendlabel='Delta = 30 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE5A y=_MEAN15A / name='series5' legendlabel='Delta = 30 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE6A y=_MEAN16A / name='series6' legendlabel='Delta = 30 (pi1 = 0.5)'
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connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE7A y=_MEAN17A / name='series7' legendlabel='Delta = 50 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

seriesplot x=_SAMPLE_SIZE8A y=_MEAN18A / name='series8' legendlabel='Delta = 50 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

seriesplot x=_SAMPLE_SIZE9A y=_MEAN19A / name='series9' legendlabel='Delta = 50 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series1' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7'

'series8' 'series9' / opaque=false border=true valign=bottom displayclipped=true

down=1 order=rowmajor location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=sasuser.CEMgraphs template=sgdesign;

dynamic _SAMPLE_SIZE1A="'SAMPLE_SIZE1'n" _MEAN11A="MEAN11"

_SAMPLE_SIZE2A="'SAMPLE_SIZE2'n"

_MEAN12A="MEAN12" _SAMPLE_SIZE3A="'SAMPLE_SIZE3'n" _MEAN13A="MEAN13"

_SAMPLE_SIZE4A="'SAMPLE_SIZE4'n"

_MEAN14A="MEAN14" _SAMPLE_SIZE5A="'SAMPLE_SIZE5'n" _MEAN15A="MEAN15"

_SAMPLE_SIZE6A="'SAMPLE_SIZE6'n"

_MEAN16A="MEAN16" _SAMPLE_SIZE7A="'SAMPLE_SIZE7'n" _MEAN17A="MEAN17"

_SAMPLE_SIZE8A="'SAMPLE_SIZE8'n"

_MEAN18A="MEAN18" _SAMPLE_SIZE9A="'SAMPLE_SIZE9'n"

_MEAN19A="MEAN19";

run;

/*Mean 2*/

proc template;

define statgraph sgdesign; dynamic _SAMPLE_SIZE1A _MEAN21A _SAMPLE_SIZE2A _MEAN22A

_SAMPLE_SIZE3A _MEAN23A _SAMPLE_SIZE4A _MEAN24A _SAMPLE_SIZE5A _MEAN25A _SAMPLE_SIZE6A

_MEAN26A _SAMPLE_SIZE7A _MEAN27A _SAMPLE_SIZE8A _MEAN28A _SAMPLE_SIZE9A _MEAN29A;
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begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Mean'));

seriesplot x=_SAMPLE_SIZE1A y=_MEAN21A / name='series' legendlabel='Delta = 15 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE2A y=_MEAN22A / name='series2' legendlabel='Delta = 15 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE3A y=_MEAN23A / name='series3' legendlabel='Delta = 15 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE4A y=_MEAN24A / name='series4' legendlabel='Delta = 30 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE5A y=_MEAN25A / name='series5' legendlabel='Delta = 30 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE6A y=_MEAN26A / name='series6' legendlabel='Delta = 30 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE7A y=_MEAN27A / name='series7' legendlabel='Delta = 50 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

seriesplot x=_SAMPLE_SIZE8A y=_MEAN28A / name='series8' legendlabel='Delta = 50 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

seriesplot x=_SAMPLE_SIZE9A y=_MEAN29A / name='series9' legendlabel='Delta = 50 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series1' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7'

'series8' 'series9' / opaque=false border=true valign=bottom displayclipped=true

down=1 order=rowmajor location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=sasuser.CEMgraphs template=sgdesign;

dynamic _SAMPLE_SIZE1A="'SAMPLE_SIZE1'n" _MEAN21A="MEAN21" _SAMPLE_SIZE2A="'SAMPLE_SIZE2'n"

_MEAN22A="MEAN22" _SAMPLE_SIZE3A="'SAMPLE_SIZE3'n"

_MEAN23A="MEAN23" _SAMPLE_SIZE4A="'SAMPLE_SIZE4'n"
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_MEAN24A="MEAN24" _SAMPLE_SIZE5A="'SAMPLE_SIZE5'n"

_MEAN25A="MEAN25" _SAMPLE_SIZE6A="'SAMPLE_SIZE6'n"

_MEAN26A="MEAN26" _SAMPLE_SIZE7A="'SAMPLE_SIZE7'n"

_MEAN27A="MEAN27" _SAMPLE_SIZE8A="'SAMPLE_SIZE8'n"

_MEAN28A="MEAN28" _SAMPLE_SIZE9A="'SAMPLE_SIZE9'n"

_MEAN29A="MEAN29";

run;

/*Graphing the Variances*/

/*Variance 1*/

proc template;

define statgraph sgdesign;

dynamic _SAMPLE_SIZE1A _VARIANCE11A _SAMPLE_SIZE2A _VARIANCE12A _SAMPLE_SIZE3A _VARIANCE13A

_SAMPLE_SIZE4A _VARIANCE14A _SAMPLE_SIZE5A _VARIANCE15A _SAMPLE_SIZE6A _VARIANCE16A _SAMPLE_SIZE7A

_VARIANCE17A _SAMPLE_SIZE8A _VARIANCE18A _SAMPLE_SIZE9A _VARIANCE19A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Variance'));

seriesplot x=_SAMPLE_SIZE1A y=_VARIANCE11A / name='series' legendlabel='Delta = 15 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE2A y=_VARIANCE12A / name='series2' legendlabel='Delta = 15 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE3A y=_VARIANCE13A / name='series3' legendlabel='Delta = 15 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE4A y=_VARIANCE14A / name='series4' legendlabel='Delta = 30 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE5A y=_VARIANCE15A / name='series5' legendlabel='Delta = 30 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE6A y=_VARIANCE16A / name='series6' legendlabel='Delta = 30 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE7A y=_VARIANCE17A / name='series7' legendlabel='Delta = 50 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

seriesplot x=_SAMPLE_SIZE8A y=_VARIANCE18A / name='series8' legendlabel='Delta = 50 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );
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seriesplot x=_SAMPLE_SIZE9A y=_VARIANCE19A / name='series9' legendlabel='Delta = 50 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series1' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7'

'series8' 'series9' / opaque=false border=true valign=bottom displayclipped=true

down=1 order=rowmajor location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=sasuser.CEMgraphs template=sgdesign;

dynamic _SAMPLE_SIZE1A="'SAMPLE_SIZE1'n" _VARIANCE11A="VARIANCE11" _SAMPLE_SIZE2A="'SAMPLE_SIZE2'n"

_VARIANCE12A="VARIANCE12" _SAMPLE_SIZE3A="'SAMPLE_SIZE3'n" _VARIANCE13A="VARIANCE13"

_SAMPLE_SIZE4A="'SAMPLE_SIZE4'n" _VARIANCE14A="VARIANCE14" _SAMPLE_SIZE5A="'SAMPLE_SIZE5'n"

_VARIANCE15A="VARIANCE15" _SAMPLE_SIZE6A="'SAMPLE_SIZE6'n" _VARIANCE16A="VARIANCE16"

_SAMPLE_SIZE7A="'SAMPLE_SIZE7'n" _VARIANCE17A="VARIANCE17" _SAMPLE_SIZE8A="'SAMPLE_SIZE8'n"

_VARIANCE18A="VARIANCE18" _SAMPLE_SIZE9A="'SAMPLE_SIZE9'n" _VARIANCE19A="VARIANCE19";

run;

/*Variance 2*/

proc template;

define statgraph sgdesign;

dynamic _SAMPLE_SIZE1A _VARIANCE21A _SAMPLE_SIZE2A _VARIANCE22A _SAMPLE_SIZE3A _VARIANCE23A

_SAMPLE_SIZE4A _VARIANCE24A _SAMPLE_SIZE5A _VARIANCE25A _SAMPLE_SIZE6A _VARIANCE26A

_SAMPLE_SIZE7A _VARIANCE27A _SAMPLE_SIZE8A _VARIANCE28A _SAMPLE_SIZE9A _VARIANCE29A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Variance'));

seriesplot x=_SAMPLE_SIZE1A y=_VARIANCE21A / name='series' legendlabel='Delta = 15 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE2A y=_VARIANCE22A / name='series2' legendlabel='Delta = 15 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE3A y=_VARIANCE23A / name='series3' legendlabel='Delta = 15 (pi1 = 0.5)'

94



connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE4A y=_VARIANCE24A / name='series4' legendlabel='Delta = 30 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE5A y=_VARIANCE25A / name='series5' legendlabel='Delta = 30 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE6A y=_VARIANCE26A / name='series6' legendlabel='Delta = 30 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE7A y=_VARIANCE27A / name='series7' legendlabel='Delta = 50 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

seriesplot x=_SAMPLE_SIZE8A y=_VARIANCE28A / name='series8' legendlabel='Delta = 50 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

seriesplot x=_SAMPLE_SIZE9A y=_VARIANCE29A / name='series9' legendlabel='Delta = 50 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series1' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7'

'series8' 'series9' / opaque=false border=true valign=bottom displayclipped=true

down=1 order=rowmajor location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=sasuser.CEMgraphs template=sgdesign;

dynamic _SAMPLE_SIZE1A="'SAMPLE_SIZE1'n" _VARIANCE21A="VARIANCE21" _SAMPLE_SIZE2A="'SAMPLE_SIZE2'n"

_VARIANCE22A="VARIANCE22" _SAMPLE_SIZE3A="'SAMPLE_SIZE3'n" _VARIANCE23A="VARIANCE23"

_SAMPLE_SIZE4A="'SAMPLE_SIZE4'n" _VARIANCE24A="VARIANCE24" _SAMPLE_SIZE5A="'SAMPLE_SIZE5'n"

_VARIANCE25A="VARIANCE25" _SAMPLE_SIZE6A="'SAMPLE_SIZE6'n" _VARIANCE26A="VARIANCE26"

_SAMPLE_SIZE7A="'SAMPLE_SIZE7'n" _VARIANCE27A="VARIANCE27" _SAMPLE_SIZE8A="'SAMPLE_SIZE8'n"

_VARIANCE28A="VARIANCE28" _SAMPLE_SIZE9A="'SAMPLE_SIZE9'n" _VARIANCE29A="VARIANCE29";

run;

/*Graphing the mixing coefficients*/

proc template; define statgraph sgdesign; dynamic _SAMPLE_SIZE1A _PI11A _SAMPLE_SIZE2A _PI12A

_SAMPLE_SIZE3A _PI13A _SAMPLE_SIZE4A _PI14A _SAMPLE_SIZE5A _PI15A _SAMPLE_SIZE6A _PI16A
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_SAMPLE_SIZE7A _PI17A _SAMPLE_SIZE8A _PI18A _SAMPLE_SIZE9A _PI19A;

begingraph;

layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;

layout overlay / xaxisopts=( label=('Sample size')) yaxisopts=( label=('Mixing Coefficient'));

seriesplot x=_SAMPLE_SIZE1A y=_PI11A / name='series' legendlabel='Delta = 15 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE2A y=_PI12A / name='series2' legendlabel='Delta = 15 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE3A y=_PI13A / name='series3' legendlabel='Delta = 15 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CX0000FF pattern=MEDIUMDASH thickness=2 );

seriesplot x=_SAMPLE_SIZE4A y=_PI14A / name='series4' legendlabel='Delta = 30 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE5A y=_PI15A / name='series5' legendlabel='Delta = 30 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE6A y=_PI16A / name='series6' legendlabel='Delta = 30 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CXFF0000 thickness=2 );

seriesplot x=_SAMPLE_SIZE7A y=_PI17A / name='series7' legendlabel='Delta = 50 (pi1 = 0.2)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

seriesplot x=_SAMPLE_SIZE8A y=_PI18A / name='series8' legendlabel='Delta = 50 (pi1 = 0.4)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

seriesplot x=_SAMPLE_SIZE9A y=_PI19A / name='series9' legendlabel='Delta = 50 (pi1 = 0.5)'

connectorder=xaxis lineattrs=(color=CX00FF00 pattern=DASHDOTDOT thickness=2 );

discretelegend 'series' 'series1' 'series2' 'series3' 'series4' 'series5' 'series6' 'series7'

'series8' 'series9' / opaque=false border=true valign=bottom displayclipped=true

down=1 order=rowmajor location=outside;

endlayout;

endlayout;

endgraph;

end;

run;

proc sgrender data=sasuser.CEMgraphs template=sgdesign; dynamic _SAMPLE_SIZE1A="'SAMPLE_SIZE1'n"

_PI11A="PI11" _SAMPLE_SIZE2A="'SAMPLE_SIZE2'n" _PI12A="PI12" _SAMPLE_SIZE3A="'SAMPLE_SIZE3'n"

_PI13A="PI13" _SAMPLE_SIZE4A="'SAMPLE_SIZE4'n" _PI14A="PI14" _SAMPLE_SIZE5A="'SAMPLE_SIZE5'n"
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_PI15A="PI15" _SAMPLE_SIZE6A="'SAMPLE_SIZE6'n" _PI16A="PI16" _SAMPLE_SIZE7A="'SAMPLE_SIZE7'n"

_PI17A="PI17" _SAMPLE_SIZE8A="'SAMPLE_SIZE8'n" _PI18A="PI18" _SAMPLE_SIZE9A="'SAMPLE_SIZE9'n"

_PI19A="PI19";

run;
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Abstract

Simulating from a gamma distribution with small shape parameter, particularly α < 1, poses a

number of challenges. When the shape parameter approaches zero, the gamma distribution loses its

in�nite-divisibility property. The central limit theorem - to �nd a standardised normal approximation

for a variable having a gamma distribution with small shape parameter - is of little help. The key

to this dilemma is a computationally e�cient transformation of a gamma random variable. This

study evaluates acceptance-rejection Monte Carlo methods that have been developed to overcome

this problem and to compare the e�ciency of these methods. An extension of the transformation to

the bivariate case, under independence, is also considered.

Keywords and phrases: Acceptance rate; acceptance-rejection sampling; envelope function; loga-

rithmic concave functions; R software; SAS software.
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1 Introduction

Let X be a continuous random variable which is gamma distributed with probability density function

(pdf) given by (1)

f(x;α, β) =
1

βαΓ(α)
xα−1e−

x
β x > 0 (1)

where α > 0 and β > 0. The gamma distribution is a fundamental distribution in Statistics [9] and is

closely related to many other distributions including the exponential, Erlang, chi-square, Nakagami-m,

generalised gamma [21] and other transformations including inverse gamma, log-gamma and exponential-

gamma to name a few. The focus here is to study the behavior of a simulated gamma random variable

when α, the shape parameter, assumes small values. This is a signi�cant problem because the small shape

gamma distribution has applications in modelling lifetime random variables and also loss distributions

in insurance science where accuracy is paramount for predictions and reserve calculations [11]. The

gamma distribution with small shape parameter tends to be problematic to work with in a practical and

simulation environment where it is found that general calculations become inaccurate.

Many numerical problems in Statistics can be solved through Monte Carlo methods. Monte Carlo

simulation is a computer based mathematical procedure that produces distributions of possible outcomes,

in essence it is a means of statistical evaluation of mathematical functions using a random sample. Monte

Carlo simulation methods are useful for studying the characteristics of a population in compressed time.

The acceptance-rejection method, which is a statistical simulation technique, is a form of Monte Carlo

simulation. Without any doubt the power of Monte Carlo methods increases enormously when simulations

are combined with analytical calculations and it is therefore useful investigating the underlying theoretical

results [12]. Monte Carlo acceptance-rejection methods can be used to simulate from a gamma distribution

with a small shape parameter. Limitations of simulating small shape gamma variates are evident inR and

SAS when using basic functions such as rgamma, rangam and randgen (see Appendix and Figure 1)

respectively. When α is very small, typically α ≤ 0.3, the pdf of the gamma distribution is concentrated

around zero hence simulating practically non-zero values is quite di�cult. Figure 2 compares the empirical

pdf of (1), β = 1, to the theoretical as α → 0. For the empirical case it is observed that the pdf spikes

and is highly concentrated around zero as x→ 0.

In addition when α is very small, the central limit theorem to simulate a suitably standardised normal

approximation of a gamma random variable is not applicable. Simulating random gamma variates where

the shape parameter tends to zero is well reported in literature, see [1, 4, 13, 17, 23], with quite a few

prospective solutions including the acceptance-rejection method.

In Theorem 1 below it is demonstrated that for X∼gamma(α, 1) the transformation Z = −αlogX

8



(a) (b)

Figure 1: Gamma pdf for decreasing α using rgamma(R) (a) and rangam(SAS) (b).

[15], converges in distribution to an Exp(1) distribution which provides a compact envelope function. The

transformation is used to developed an acceptance-rejection algorithm to simulate small shape gamma

variates (returned on a log scale).

The transformation simpli�es simulating small shape gamma variates signi�cantly and is comparatively

more e�cient in terms of acceptance rates than other existing methods.

9



1.1 Aims and objectives

The aims and objectives of this study are described below:

• Study the acceptance-rejection method in detail.

• Investigate the acceptance-rejection method proposed by [15] of simulating from a gamma distri-

bution with small α values.

• Extend the methodology proposed by [15] to the bivariate case under independence.

• Compare the acceptance rates for the algorithm proposed by [15] to those of [1, 4, 13] in the

univariate case.

• Compare the acceptance rates of the univariate algorithm proposed by [15] to the extended bivariate

algorithm.

1.2 Outline of study

In section 2 the Monte Carlo acceptance-rejection method is introduced and an exploration into the

development of the acceptance-rejection methods proposed by [1, 4, 13, 17, 23, 15] respectively is studied.

In section 3 the limiting distribution result of the transformation Z = −αlog(X) proposed by [15] is

investigated. Further-more in section 4 an extension of the acceptance-rejection algorithm proposed by

[15] to the bivariate case under independence is considered and �nally in section 5, a comparison of the

acceptance rates in the univariate and bivariate case is given.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Theoretical (a to c, rotated plots) and empirical (d to f, rotated and empirical contour plot)
gamma pdf as α→0.
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2 Literature review

Simulating random gamma variates where the shape parameter tends to zero is well reported in literature

with quite a few prospective solutions including the acceptance-rejection method.

2.1 Acceptance-rejection method

Acceptance-rejection sampling is based on the idea that if it is di�cult or impossible to sample observa-

tions, x values, at random directly from the pdf of the target distribution, say f(x), then an appropriate

alternative would be to generate values from an envelope function, g(x), that satis�es the following:

1. Simpler to simulate from.

2. Completely bounds the target pdf as compactly as possible.

3. Reject values that are not acceptable.

The methodology can be summarised as follows:

1. Identify the target distribution f(x).

2. Choose a simpler distribution, g(x), that completely bounds f(x) as compactly as possible such

that f(x)
g(x) is bounded for all values of x.

3. Ensure that g(x) is a valid pdf. Let h(x) be the valid envelope pdf.

4. Let c = max f(x)
h(x) for all values of x where c ≥ 1.

5. Generate x values from h(x) and reject the values if they are not acceptable i.e. the value, h(x),

does not fall within f(x).

6. The proportion of sampled variates accepted is 1
c i.e. the acceptance rate.

7. Note that 0 < f(x)
ch(x) ≤ 1 and this ratio is independent of U ∼ uniform(0, 1).

8. The number of iterations 'N ' needed to successfully generate an X that comes from f(x) has a

geometric distribution with probability of success given by p = P
(
U ≤ f(x)

ch(x)

)
.

The basic acceptance-rejection algorithm is given by Algorithm 1.

Algorithm 1 Basic acceptance-rejection algorithm.

1. Generate X from the envelope function h(x).

2. Generate U ∼ uniform(0, 1) independently of X.

3. If U ≤ f(x)
ch(x) then return X otherwise, go to step 1.

12



In terms of e�ciency c can be viewed as the number of variates that must be generated on average in

order to end up with an acceptable value, where a smaller value of c is preferable i.e. closer to 1.

Proposition 1. The e�ciency of an acceptance-rejection algorithm is expressed in terms of the accep-

tance rate given by 1
c .

Proof. The probability of generating a pointX from h(x) that falls under f(x) is given by p = P
(
U ≤ f(x)

ch(x)

)
where U ∼ uniform(0, 1).

Therefore,

p = P

(
U ≤ f(X)

ch(X)
|X = x

)
.

Let A be the event such that U ≤ f(X)
ch(X) and B the event such that X = x then it follows that

p = P (A|B)

=
P (A ∩B)

P (B)

=

∞∫
−∞

f(x)

ch(x)
h(x)dx

=
1

c

∞∫
−∞

f(x)dx

=
1

c

using the de�nition of conditional probability.

2.2 The development of algorithm GS (gamma small shape)

[1] provides a renown acceptance-rejection algorithm, 'algorithm GS', that transforms uniformly dis-

tributed random numbers into gamma variates, speci�cally for simulating from a gamma distribution

with shape parameter 0 < α ≤ 1 and scale parameter β = 1. The gamma pdf, fAD(x;α), is given by (1)

when β = 1. The rejection method is based on the following envelope function

gAD(x;α) =


xα−1

Γ(α) 0 < x ≤ 1

e−x

Γ(α) 1 ≤ x.
(2)

Since

13



(a) (b)

Figure 3: gAD(x;α) for α = 0.9 (a) and α = 0.3 (b).


e−x ≤ 1 if 0 < x

xα−1 ≤ 1 if α ≤ 1 and 1 ≤ x.

See Figure 3 for a visual justi�cation for the choice of gAD(x;α).

However it has to be veri�ed whether gAD(x;α) is a valid pdf, thus from (2)

∞∫
0

gAD(x;α)dx =

1∫
0

xα−1

Γ(α)
dx+

∞∫
1

e−x

Γ(α)
dx

=
1

Γ(α)α
+

1

Γ(α)e1

=
(α+ e1)

Γ(α)αe1

=
(α+ e1)

Γ(α+ 1)e1
since Γ(α+ 1) = (α)Γ(α)

6= 1

where e1 = exp(1).

Therefore sampling takes place from the following valid pdf

hAD(x;α) =
g(x;α)
(α+e1)

Γ(α+1)e1

=


xα−1 e1α

(e1+α) 0 < x ≤ 1

e−x e1α
(e1+α) 1 ≤ x

(3)
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which is proportional to gAD(x;α). It follows that fAD(x;α) ≤ c1gAD(x;α) = hAD(x;α) and the

proportion of sampled deviates accepted is 1
c1

= (α+e1)
Γ(α+1)e1 . The acceptance-rejection technique leads to

Algorithm 2.

Algorithm 2 GS (0 < α ≤ 1) .

1. Generate U ∼ uniform(0, 1). Set b←
(
e1 + α

)
/e1 and P ← bU. If P ≥ 1 go to 3.

2. Case (x ≤ 1) . Set X ← P 1/α. Generate U∗ ∼ uniform(0, 1). If U∗ > e−X go back to 1. (U∗

independent of U )

3. Case (x > 1) . Set X ← −ln ((b− P ) /α) . Generate U∗. If U∗ > Xα−1 go back to 1. Otherwise
deliver X.

2.3 A modi�cation of algorithm GS

[4] proposes an algorithm, 'algorithm RGS (revised gamma small shape)' which is a modi�cation of Al-

gorithm 2 for generating random gamma variates for 0 < α < 1. The algorithm proves to be signi�cantly

faster (generates small shape gamma variates in shorter simulation time) and has lower rejection propor-

tions compared to Algorithm 2, however it is slightly more complex. Speci�cally two modi�cations are

made.

2.3.1 The �rst modi�cation

The gamma pdf, fB(x;α), is given by (1) when β = 1. Note that there is no di�erence between fB(x;α)

and fAD(x;α), they are denoted di�erently throughout to avoid confusion. In terms of the envelope

function, the restriction in (2) is changed from x ∈ (0, 1) and 1 ≤ x to x ∈ (0, z) and z ≤ x

respectively, where z is a function of α i.e. z = z(α), z should be chosen in such a way that
∞∫
0

gB(x;α)dx

is a minimum. The motivation for this function is discussed in [2]. [4] proposes an approximation,

z ≈ 0.07 + 0.75(1− α)1/2, which leads to the following envelope function

gB(x;α) =


xα−1

Γ(α) 0 < x ≤ z

zα−1e−x

Γ(α) z ≤ x.
(4)

See Figure 4 for a visual justi�cation for the choice of gB(x;α).

However it has to be veri�ed whether gB(x;α) is a valid pdf, thus
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(a) (b)

Figure 4: gB(x;α) for α = 0.9 (a) and α = 0.2 (b).

∞∫
0

gB(x;α)dx =

z∫
0

xα−1

Γ(α)
dx+

∞∫
z

zα−1e−x

Γ(α)
dx

=
zα

Γ(α)α
+

zα−1

Γ(α)ez

=
zα(ez + α

z )

Γ(α+ 1)ez

6= 1.

Therefore sampling gamma variates takes place from the pdf

hB(x;α) =
gB(x;α)
zα(ez+α

z )

Γ(α+1)ez

=


(
x
z

)α−1 α
(bz) 0 < x ≤ z

e−x α
(bz) z ≤ x

(5)

which is proportional to gB(x;α) and where b = 1 + e−z αz . It follows that

fB(x;α) ≤ c2gB(x;α) = hB(x;α) and the proportion of sampled deviates accepted is 1
c2

=
zα(ez+α

z )

Γ(α+1)ez .

2.3.2 The second modi�cation

The second modi�cation aims to improve the speed of Algorithm 2 by avoiding the exponentiation in

steps 2 and 3, in doing so making use of the following results given by [4]

1.

e−x ≥ (2− x)

(2 + x)
if x ≥ 0.

16



2.

(1 + x)
−c ≥ (1 +mx)

−1
if x ≥ 0, 1 ≥ m ≥ 0.

The �nal algorithm is given by Algorithm 3.

Algorithm 3 RGS (0 < α < 1) .

1. Initialise z ← .07 + .75(1 + α)1/2 , b← 1 + e−zα/z.

2. Generate U ∼ uniform(0, 1) and set P ← bU. If P > 1 go to step 4.

3. Set X ← zP 1/α. Generate U∗ ∼ uniform(0, 1). If U∗ ≤ (2−X)/(2 +X), deliver X.

4. If U∗ > e−X go to step 1, otherwise deliver X. (U∗ independent of U ).

5. Set X ← −ln (z (b− P ) /α) , Y ← X/z. Generate U∗. If U∗ (α+ Y − αY ) < 1, deliver X.

6. If U∗ > Y α−1 go to step 1, otherwise deliver X.

where step 1 is performed once if α remains constant whilst generating the required sample.

2.4 Simulating gamma variates using normal random variates

[17] proposes a method for generating gamma variates by taking the cube of a suitably scaled normal

random variate assuming there is a fast and e�cient way of generating normal variates. The main focus

is generating gamma variates for α ≥ 1. The procedure can be improved in terms of speed by

implementing the squeeze method proposed by [16]. To generate gamma variates, γα, for α < 1 [17]

proposes using γα = γ1+αU
1/α with U from uniform(0, 1) instead.

2.5 Simulating gamma variates using a generalised exponential distribution

[13] suggests a convenient acceptance-rejection method for simulating gamma variates, 0 < α < 1, using

a generalised exponential distribution.

2.5.1 The �rst algorithm

The gamma pdf, fKG(x;α), is given by (1) when β = 1. The following generalised exponential distribution

is initially used as an envelope function

gKG(x;α;
1

2
) =

{
α

2

(
1− e−x/2

)α−1

e−x/2. (6)

However it has to be veri�ed whether gKG(x;α; 1
2 ) is a proper pdf, thus
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∞∫
0

gKG(x;α;
1

2
)dx =

∞∫
0

α

2

(
1− e−x/2

)α−1

e−x/2dx

=

1∫
0

αuα−1du

(
u = 1− e−x/2 ⇒ du =

e−x/2dx

2

)

= α
uα

α

1

|
0

= uα
1

|
0

=
(

1− e−x/2
)α ∞
|
0

= 1.

This is as expected since gKG(x;α; 1
2 ) is already a valid pdf. In order to �nd an appropriate envelope

function a suitable c3 is needed such that fKG(x;α) ≤ c3gKG(x;α; 1
2 ) thus

fKG(x;α)

gKG(x;α;λ)
=

xα−1e−x

Γ(α)

α(1−e−x/2)
α−1

e−x/2

2

=
2xα−1e−x

αΓ(α)
(
1− e−x/2

)α−1
e−x/2

=
2xα−1e−x/2

Γ(α+ 1)
(
1− e−x/2

)α−1

≤ 2α

Γ(α+ 1)

= c3.

It follows that

fKG(x;α) ≤ hKG(x;α;
1

2
) = c3gKG(x;α;

1

2
) =

{
α2α

2Γ(α+1)

(
1− e−x/2

)α−1
e−x/2 x > 0. (7)

See Figure 5 for a visual justi�cation for the modi�cation of gKG(x;α; 1
2 ).
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(a) (b)

Figure 5: Modi�ed gKG(x;α; 1
2 ) for α = 0.9 (a) and α = 0.2 (b).

The �rst algorithm (Algorithm 4) makes use of (7).

Algorithm 4 Kundu-Gupta-1.

1. Generate U ∼ uniform(0, 1).

2. Compute X = −2ln
(
1− U1/α

)
.

3. Generate V ∼ uniform(0, 1) independent of U .

4. If V ≤ Xα−1e−X/2

2α−1(1−e−X/2)
α−1 accept X, otherwise go to step 1.

2.5.2 The second algorithm

It is noted that even though (7) is true for all values of x, the upper bound provided when 0 < x < 1

may result in a singularity, thus a new envelope function t1KG(x;α) is given to circumvent this where

t1KD(x;α) =


2α

Γ(α+1)gKG(x;α; 1
2 ) 0 < x < 1

e−x

Γ(α) x > 1.

(8)

It has to be veri�ed whether t1KG(x;α) is a proper pdf,
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∞∫
0

t1KD(x;α)dx =
2α

Γ(α+ 1)

1∫
0

gKG(x;α;
1

2
)dx+

∞∫
1

e−x

Γ(α)
dx

=
2α

Γ(α+ 1)

1∫
0

α

2

(
1− e−x/2

)α−1

e−x/2dx+

∞∫
1

e−x

Γ(α)
dx

=
2α

Γ(α+ 1)

(1−e−x/2)∫
0

αuα−1du+
1

Γ(α)e1

(
u = 1− e−x/2 ⇒ du =

e−x/2dx

2

)

=
2α

Γ(α+ 1)
uα

u=(1−e−x/2)
|

u=−1
+

1

Γ(α)e1

=
2α

Γ(α+ 1)

(
1− e−x/2

)α x=1

|
x=0

+
1

Γ(α)e1

=
1

αΓ(α)

(
2α
[
1− e−1/2

]α
+ αe−1

)
= c4

6= 1.

See Figure 6 for a visual justi�cation for the modi�cation of t1KG(x;α).

(a) (b)

Figure 6: Modi�ed gKG(x;α; 1
2 ) for various α = 0.9 (a) and α = 0.2 (b).

The normalised envelope pdf is given by

t∗1KD(x;α) =
1

c4
t1KD(x;α) =


2α

c4Γ(α+1)gKG(x;α; 1
2 ) 0 < x < 1

e−x

c4Γ(α) x > 1.

(9)

Algorithm 5 makes use of (9)
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Algorithm 5 Kundu-Gupta-2.

Set a =
(1−e−1/2)

α

(1−e−1/2)α+αe−1

2α

and b =
(
1− e−1/2

)α
+ αe−1

2α .

1. Generate U ∼ uniform(0, 1).

2. If U ≤ a, then X= −2ln
[
1− (Ub)

1/α
]
, otherwise X= −ln

[
2α

α b (1− U)
]
.

3. Generate V ∼ uniform(0, 1) independent of U . If X≤ 1, check whether V≤ Xα−1e−X/2

2α−1(1−e−X/2)
α−1 . If

true return X, otherwise go back to step 1. If X > 1, check whether V≤ Xα−1. If true return X,
otherwise go back to step 1.

2.5.3 The third algorithm

Observing that t1KD(x;α) is a piece wise pdf and using the same method as in [4] by altering the restriction

in (8) so that the bounds depend on α i.e. d = d(α). [13] suggests that d(α) = 1.0334 − 0.0766e2.2942α.

A modi�ed envelope function is given by

t2KD(x;α) =


2α

Γ(α+1)gKG(x;α; 1
2 ) 0 < x < d(α)

e−x

Γ(α) x > d(α).

(10)

However it has to be veri�ed whether t2KG(x;α) is a valid pdf, thus

∞∫
0

t2KD(x;α)dx =
2α

Γ(α+ 1)

d(α)∫
0

gKG(x;α;
1

2
)dx+

∞∫
d(α)

e−x

Γ(α)
dx

=
2α

Γ(α+ 1)

d(α)∫
0

α

2

(
1− e−x/2

)α−1

e−x/2dx+

∞∫
d(α)

e−x

Γ(α)
dx

=
2α

Γ(α+ 1)

(1−e−d(α)/2)∫
0

αuα−1du+
1

Γ(α)ed(α)

(
u = 1− e−x/2 ⇒ du =

e−x/2dx

2

)

=
2α

Γ(α+ 1)
uα

u=(1−e−d(α)/2)
|

u=−1
+

1

Γ(α)ed(α)

=
2α

Γ(α+ 1)

(
1− e−x/2

)α x=d(α)

|
x=0

+
1

Γ(α)ed(α)

=
1

αΓ(α)

(
2α
[
1− e−d(α)/2

]α
+ αe−d(α)

)
= c5

6= 1.

The normalised envelope pdf is given by
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t∗2KD(x;α) =
1

c5
t2KD(x;α) =


2α

c5Γ(α+1)gKG(x;α; 1
2 ) 0 < x < d(α)

e−x

c5Γ(α) . x > d(α).

(11)

Using (11) the �nal algorithm is given by Algorithm 6.

Algorithm 6 Kundu-Gupta-3.

Set d = 1.0334− 0.0766e2.2942α, a = 2α
(
1− e−d/2

)α
, b = αdα−1e−d and c = a+ b.

1. Generate U ∼ uniform(0, 1).

2. If U≤ a
a+b , then X= −2ln

[
1− (cU)1/α

2

]
, otherwise X= −ln

[
c(1−U)
αdα−1

]
.

3. Generate V ∼ uniform(0, 1) independent of U . If X≤ d, check whether V ≤ Xα−1e−X/2

2α−1(1−e−X/2)
α−1 . If

true return X, otherwise go back to step 1. If X > d, check whether V≤
(
d
X

)1−α
. If true return

X, otherwise go back to step 1.

Note that the normalising constant c5 ≥ 1 and in general the value of ′c′ should be as small as possible

to ensure that the proportion of values accepted is as large as possible. The method proposed by [13]

has greater acceptance rates compared to [1] and [4]. The only di�culty being that the approximation

is slightly inaccurate for 0.9 < α < 1 (see Section 5).

2.6 Simulating gamma random variables using the ratio-of-uniforms tech-

nique

[23] suggests a simple gamma random number generator with no restriction on the shape parameter

that can be used to generate gamma variates. Acceptance regions for the proposed algorithm are

determined by applying the ratio-of-uniforms methods (see Appendix). Various comparisons in terms of

computational time are made with other proposed generators such as [4, 6, 5, 19, 17].

2.7 Simulating gamma random variables using logarithmic transformations

A non-standard acceptance-rejection algorithm that provides results more e�cient than existing

methods is given by [15]. It is demonstrated that for X ∼gamma(α, 1) where fLiu(x) is given by (1)

when β = 1, the transformation

Z = −αlogX (12)
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converges in distribution to an Exp(1) distribution. The transformation simpli�es simulating small

shape gamma variates signi�cantly. By using methods suggested in [14] the envelope function is chosen

such that it is as tight an upper bound for the transformed target pdf, fLiu(z), as possible. The target

pdf is given by

fLiu(z) =

{
1

Γ(α+1)e
−z−e−z/α ∞ < z <∞. (13)

The un-normalised envelope function is given by (see Section 3 for the derivation)

hLiu1 (z) =


e−z z ≥ 0

wλeλz z < 0

(14)

where λ = λ (α) = α−1 − 1 and w = w (α) = α/e1(1 − α) and the acceptance rate for the suggested

method is r = r (α) = [1 + w (α)]
−1
. The normalised envelope function is a mixture pdf given by

hLiu2
(z) =

{
1

1+we
−z − w

1+we
λz . (15)

The proposed algorithm (Algorithm 7) is given by,

Algorithm 7 Ryan Martin.

1. Set λ = λ (α) , w = w (α) and r = r (α) .

2. Generate U ∼ uniform(0, 1).

3. If U ≤ r then z = −log (U/r) , otherwise z = − log(U)
λ .

4. If fLiu(z)
hLiu1 (z) > U then returnZ = z.

5. Return Y = e−Z/α.

The simulated variates (Y′s) are returned on log scale for convenience.

3 Univariate gamma simulation with small shape parameter

3.1 Application of acceptance-rejection sampling

It is important to keep in mind that when developing and using an acceptance-rejection algorithm the

choice of envelope function becomes crucial as it is directly related to the acceptance rate.

In [15] the overall target pdf is given by (1) when β = 1. For small values of α, the transformation

Z = −αlogX is made and the transformed target pdf is given by (13), the un-normalised envelope function
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is given by (14) and the corresponding normalised envelope function by (15). The limiting distribution

of the transformation, i.e. the limiting distribution of (13), is an Exp(1) distribution. The reason for

the transformation becomes clear due to the fact that generating exponential variates is computationally

quick as a result of the simple structure of the exponential distribution's cumulative density function.

The envelope function for the above transformation is determined by methods given in [14], by using

exponential curves as envelope functions. Since the target pdf is log-concave (this can be veri�ed by

showing d2

dz2 lnfLiu(z) ≤ 0 ∀ z ∈ (−∞,∞) , see Appendix) it is ideal for acceptance-rejection sampling

using a piece wise exponential distribution as an envelope function. Additionally since the mode, m, of

(13) occurs on the interior of the support of the pdf it will be highly advantageous using two exponential

functions orientated in opposite directions from the mode as the envelope function [14]. The proposed

envelope function is chosen to be a compact upper bound by, geometrically, selecting optimal tangent

points to (13). The un-normalised envelope function has the form

hLange1 (x) =


cleftλlefte

−λleft(m−x) x < m ′left′ of the mode

crightλrighte
−λright(x−m) x ≥ m ′right′ of the mode

(16)

and the normalised envelope pdf

hLange2 (x) =


cleft

cleft+cright
λlefte

−λleft(m−x) x < m

cright
cleft+cright

λrighte
−λright(x−m) x ≥ m.

(17)

The expressions given by [15] are derived as follows:

1. The target pdf is given by (13).

2. Solve for λ = −f ′Liu(z)/fLiu(z).

3. d2

dz2 ln [fLiu(z)] = d2

dz2 ln
(

1
c4
e−z−e

−z/α
)

= − e
− z
α

α2 ≤ 0 ∀ z ε (−∞,∞) ∴ log-concave.

4. Since Z → Exp(1) in distribution we have the following for x ≥ m where m = 0 :

• hLange1 (x) = e−x.

• ∴ λright = 1.

• ∴ cright = 1.

5. For x < m :

• λleft :
f ′Liu(z)
fLiu(z) =

(
e−z−e

−z/α
)

( 1
α e
−z/α−1)(

e−z−e
−z/α

) |Z=0 (optimal tangent point)=
1
α − 1.

• cleftt = w =

(
e−z−e

−z/α
)

( 1
α e
−z/α−1)

e−( 1
α e
−z/α−1)Z |Z=0 (optimal tangent point)=

α
e1(1−α) .
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6. r = 1
cleft+cright

= 1
1+w =

(
1 + α

e1(1−α)

)−1

(the acceptance rate).

Figure 7 shows plots of the envelope function hLiu1
(z) and the target pdf fLiu(z) for various values of α.

(a) (b)

Figure 7: fLiu(z) and hLiu1 (z) for α = 0.2 (a) and α = 0.01 (b).

3.2 Limit distribution result with transformation Z = −αlogX

For small α values the limiting distribution of the transformation Z = −αlogX is an Exp(1) distribution

with pdf given by

fexp (x) =


e−x x > 0

0 otherwise.

Theorem 2. For Y ∼ Gamma(α, 1), the transformation: Z = −αlogY converges in distribution to

Exp(1) as α→ 0.

Proof. Using Theorem 3.3.1 in [3],

Γ(α+ 1) = αΓ(α)

∴ Γ(α) =
Γ(α+ 1)

α
.

Secondly, from (1)
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E
(
Y k
)

=

∞∫
0

yk
y(α−1)e−y

Γ(α)
dy

=
1

Γ(α)

∞∫
0

y(k+α−1)e−ydy

=
1

Γ(α)

∞∫
0

Γ(α+ 1)

Γ(α+ 1)
y(k+α−1)e−ydy

=
Γ(α+ 1)

Γ(α)

∞∫
0

y(k+α−1)e−y

Γ(α+ 1)
dy

=
Γ(α+ 1)

Γ(α)
.

Consider the following transformation

Z = −αlogY.

The characteristic function of Z is given by

Φz(t) = E
(
eitz
)

= E
(
Y −iαt

)
=

Γ(α− iαt)
Γ(α)

.

This expression can be rewritten as

Φz(t) =
Γ(1 + α− iαt)/(α− iαt)

Γ(1 + α)/α

=
1

1− it
Γ(1 + 0 (α))

Γ(1 + 0 (α))

where 0 (α) become insigni�cant as α→ 0 (see Appendix). The gamma function is continuous on y > 0,

therefore the limit of Φz(t)) as α→ 0 exists and is given by 1
1−it which is the characteristic function of

the Exp(1) distribution.

Since Z is a one-to-one transformation we can obtain the pdf of Z by using techniques given in Chapter

6 of [3],
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fLiu(z) = fz(z) = fx (w (z)) |J(x→ z)|

=

{(
e−z/α

)α−1 1
Γ(α)e

−e−z/α (− 1
αe
−z/α)

=

{
1

Γ(α)αe
−z−e−z/α

=

{
1

Γ(α+1)e
−z−e−z/α

=

{
1
c6
e−z−e

−z/α −∞ < z <∞.

Figure 8 shows how the transformation converges to an Exp(1) and that the empirical pdf, using the

rangam generator in SAS, of the gamma distribution is concentrated around zero as α→ 0. Plots (a) to

(c) compare the empirical pdf of (13) 'TAlpha_alpha_size' to (1) 'Alpha_alpha_size' for α = 1, α = 0.1

and α = 0.01 respectively. Plot (d) overlays the theoretical pdf of an Exp(1) distribution on the empirical

pdf of (13) when α = 0.01.

(a) (b)

(c) (d)

Figure 8: Convergence of Z = −αlogX to an Exp(1).
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4 Bivariate gamma simulation with small shape parameters

4.1 Bivariate gamma distribution

In the univariate case the gamma distribution with small shape parameter tends to be problematic to

work with in a practical and simulation environment where it is found that general calculations become

inaccurate and the distribution appears to be degenerate. The pdf of the product of two independent

gamma variables also appears to be concentrated around zero (see Figure (9)) for α1 and α2 converging

to zero simultaneously, hence simulating practically non-zero values remains challenging. In Figure 9 -

12 the bin values for the frequency plots are calculated using the Euclidean distance between x1 and x2.

In the bivariate environment there are four cases to consider, namely:

1. α1 remains constant (α1 < 1) while α2 → 0.

2. α1 and α2 converging to zero simultaneously.

3. α1 increases from (0 <) to 1 and α2 decreases simultaneously from 1 to (0 <).

4. α2→ 0 and α1 > 1.

The premise of Section 4 is to focus on case 2.

This is a signi�cant problem because the bivariate gamma distribution with gamma marginals has

applications in the analysis of multivariate hydrological events [20].

Figure 9: Empirical distribution and contour plot for α1 and α2 converging to zero simultaneously.
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Figure 10: Empirical distribution and contour plot for α1 remains constant (α1 < 1) while α2 → 0.

Figure 11: Empirical distribution and contour plot for α1 increases from 0.01 to 1 and α2 decreases
simultaneously from 1 to 0.01.

(a) (b)

Figure 12: Empirical distribution for α2→ 0 and α1 = 1 (a) and α1 = 5 (b).
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Consider de�nition 3 for a joint pdf using [3].

De�nition 3. The continuous random variables X and Y are said to be independent if fX,Y (x, y) =

fX (x) .fY (y) .

Suppose that X1 and X2 are independent and have pdf given by (1) with parameters (α1, β1 = 1) and

(α2, β2 = 1) respectively. The joint pdf is given by

fX1,X2
(x1, x2) = fX1

(x1) .fX2
(x2)

=
1

Γ(α1)
xα1−1

1 e−x1 .
1

Γ(α2)
xα2−1

2 e−x2

=
1

Γ(α1)Γ(α2)
e−(x1+x2)xα1−1

1 xα2−1
2 . (18)

where x1, x2 > 0.

The interest here is how the transformation Z = −αilogYi given by [15] performs in the bivariate case

for simulation purposes.

Firstly, consider Theorem 4 for the joint transformation of several random variables using [15].

Theorem 4. Suppose that X= (X1, X2, . . ., Xk) is a k-variate random variable with a joint pdf

fX1,X2, . . .,Xk (x1, x2, . . ., xk) > 0 on a set A, and Z = (Z1, Z2, . . ., Zk) is de�ned by the one-to-one

transformation;

Zi = ui (X1, X2, . . ., Xk) for i = 1, 2, . . . , k.

On condition that the Jacobian is continuous and non-zero over the range of the transformation, then the

joint pdf of Z is

fZ1,Z2, . . .,Zk (z1, z2, . . ., zk) = fX1,X2, . . .,Xk (x1, x2, . . ., xk) |J |

where x= (x1, x2, . . ., xk) is the solution of z=u(x) .

The joint pdf of X1 and X2 is given by (18) where A = {(x1, x2) |0 < x1, 0 < x2} . The random variables

Z1 = −α1logX1 and Z2 = −α2logX2 are independent and have unique solutions X1 = e−
Z1
α1 and

X2 = e−
Z2
α2 . The Jacobian is given by

J =

∣∣∣∣∣∣∣
−e
− z1
α1

α1
0

0 −e
− z2
α2

α2

∣∣∣∣∣∣∣ =
e
−
(
Z1
α1

+
Z2
α2

)
α1α2
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Therefore

fZ1,Z2
(z1, z2) = fX1,X2

(
e−

z1
α1 , e−

z2
α2

) e−( z1α1
+
z2
α2

)
α1α2

=

{
1

Γ(α1)Γ(α2)e
−
(
e
− z1
α1 +e

− z2
α2

) (
e−

z1
α1

)
α1−1

(
e−

z2
α2

)
α2−1 e

−( z1α1
+
z2
α2

)
α1α2

=

{(
e−z1/α1

)α1−1 1
Γ(α1)e

−e−z/α
(
− 1
α1
e−z1/α1

) (
e−z2/α2

)α2−1 1
Γ(α2)e

−e−z2/α2
(
− 1
α2
e−z2/α2

)
=

{
1

Γ(α1+1)e
−z1−e−z1/α1 1

Γ(α2+1)e
−z2−e−z2/α2 (19)

=

{
1
c∗6
e−z1−e

−z1/α1 1
c∗6
e−z2−e

−z2/α2
z1, z2 ε (−∞,∞) .

4.2 Limit distribution result with transformations Zi = −αilogXi

Consider the following extension of Theorem 1.

Theorem 5. For X1 ∼ Gamma(α1, 1) and X2 ∼ Gamma(α2, 1) as α1 and α2 converge to zero simul-

taneously the joint pdf of Z1 and Z2 converges to the joint pdf of the product of two independent Exp(1)

random variables.

Proof.

Firstly, note that by theorem 3.3.1 in [3],

Γ(αj + 1) = αjΓ(αj) for j = 1, 2

∴ Γ(αj) =
Γ(αj + 1)

αj
.

Secondly,

E
(
Xk

1X
k
2

)
= E

(
Xk

1

)
E
(
Xk

2

)
=

∞∫
0

xk1
x

(α1−1)
2 e−x1

Γ(α1)
dx1

∞∫
0

(x)
x

(α2−1)
2 e−x2

Γ(α2)
dx2 (independence)

=
Γ(α1 + 1)

Γ(α1)

Γ(α2 + 1)

Γ(α2)

Consider the following transformations:

Z1 = −α1logX1 and Z2 = −α2logX2.

Since Z1 and Z2 are linear functions of the independent random variables it follows that Z1 and Z2 are

also independent, the independence of Z1 and Z2 implies the independence of eit1Z1 and eit2Z2 . The
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characteristic function is given by

Φz1, z2(t1, t2) = E
(
ei(t1Z1+t2Z2)

)
= E

(
eit1Z1

)
E
(
eit2Z2

)
= E

(
X−iα1t1

1

)
E
(
X−iα2t2

1

)
=

Γ(α1 − iα1t1)

Γ(α1)

Γ(α2 − iα2t2)

Γ(α2)
.

This expression can be rewritten as

Φz1, z2(t1, t2) =

(
Γ(1 + α1 − iα1t1)/(α1 − iα1t1)

Γ(1 + α1)/α1

)(
Γ(1 + α2 − iα2t2)/(α2 − iα2t2)

Γ(1 + α2)/α2

)
=

(
1

1− it1

)(
1

1− it2

)(
Γ(1 + 0α1

)

Γ(1 + 0α1)

)(
Γ(1 + 0α2

)

Γ(1 + 0α2)

)

where 0(αj) becomes insigni�cant as αj → 0. Given that the gamma function is continuous on xj > 0

therefore the limit of dz(t) as αj → 0 exists and is given by
(

1
1−it1

)(
1

1−it2

)
which is the product of two

independent Exp(1) characteristic functions.

Figure 13 shows how the product of two independent Exp(1) distributions can be used as an envelope

function for fZ1,Z2 (z1, z2) as α1 → 0 and α2 → 0 simultaneously. Plots (a) and (b) are rotated plots of

the bivariate target pdf for α1 = α2 = 0.3. Plots (c) and (d) are rotated plots of the bivariate target

pdf for α1 = α2 = 0.01. Plots (e) and (f) are rotated plots of the product of two independent Exp(1)

distributions i.e. the envelope function. Plots (g) and (h) are rotated plots indicating how compactly the

envelope function �ts over fZ1,Z2
(z1, z2) for α1 = α2 = 0.01.

Remark 6. For αi → 0 while αj remains constant/increases for i 6= j the characteristic function dz(t)

can be viewed as a 'mirror' function because the form of the �nal result remains the same i.e.

Φz1, z2(t1, t2) =
Γ(α1 − iα1t1)

Γ(α1)

Γ(α2 − iα2t2)

Γ(α2)

=

Γ(α1−iα1t1+1)
(α1−iα1t1)

Γ(α1+1)
α1

Γ(α2−iα2t1+1)
(α2−iα2t2)

Γ(α2+1)
α2

=

(
1

1− it1

)(
1

1− it2

)
Γ(α1 − iα1t1 + 1)

Γ(α1 + 1)

Γ(α2 − iα2t1 + 1)

Γ(α2 + 1)
.

Let α2 → 0
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Target pdf, fZ1,Z2
(z1, z2) for various α1 and α2 (a to d). Envelope function (e and f). Envelope

and target pdf (g and h). 33



Φz1, z2(t1, t2) =

(
1

1− it1

)(
1

1− it2

)
Γ(α1 − iα1t1 + 1)

Γ(α1 + 1)

=

(
1

1− it1

)(
1

1− it2

)
Γ(α1 [1− it1] + 1)

Γ(α1 + 1)
.

Similar results follow if α1 → 0, resulting in the product of two independent characteristic functions

of an Exp(1) and the ratio of gamma functions.

4.3 Simulating bivariate gamma random variables using logarithmic trans-

formations

Acceptance-rejection methods are used extensively in the univariate generation of random variables, how-

ever the extension to the multivariate case poses some signi�cant practical di�culties. Let c = [c1, . . , cn]

be a vector where ci is the i
th component of c and similarly for x = vec(x). The di�culty arises in �nding

a suitable envelope function cg(x) = h(x) if there is a strong dependence among the components ofX. An

appropriate choice for g(x) would be the pdf of the independent components of X whom have the same

marginal distribution as X [10]. It should be noted though that as the dependencies among the compo-

nents of X increase the acceptance rates tend to zero [10]. In addition the complexity of the envelope

function would make the search for c = sup f(x)
h(x) where x ∈ Rp, quite challenging. In the bivariate case

the goal is to sample two components from the product of two independent gamma(αi, 1) distributions

which can be achieved by simulating each Xi component from the independent marginal distributions

using Algorithm 7. It should be noted, however that components can also be sampled simultaneously,

baring in mind that simultaneous simulation may increase the complexity of the program (see SAS code

in Appendix).

(a)

Figure 14: Number of iterations required to simulate 2 random components from fZ1,Z2
(z1, z2) for

decreasing α1 and α2 based on 30 simulations (a).
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Consider Algorithm (8) as an extension of Algorithm (7) to generate two points simultaneously,

Algorithm 8 Ryan Martin extension to bivariate case.

1. Set λ1 = λ1 (α1) , λ2 = λ2 (α2) , w1 = w1 (α1) , w2 = w2 (α2) and r1 = r1 (α1) , r2 = r2 (α2) .

2. Generate U1 ∼ uniform(0, 1) and U2 ∼ uniform(0, 1).

3. If U1 ≤ r1 and U2 ≤ r2 then Z1 = −log (U1/r1) and Z2 = −log (U2/r2) .

4. If U1 ≤ r1 and U2 > r2 then Z1 = −log (U1/r1) and Z2 = −log (U2) /λ2.

5. If U2 ≤ r2 and U1 > r1 then Z2 = −log (U2/r2) and Z1 = −log (U1) /λ1.

6. If U1 > r1 and U2 > r2 then Z1 = −log (U1) /λ1 and Z2 = −log (U2) /λ2.

7. If fLiu(z1)
hLiu(z1) > U1 and fLiu(z2)

hLiu(z2) > U2 then return Z1 and Z2.

8. Return Y1 = e−Z1/α1 and Y2 = e−Z2/α2 .

An alternative method to generate a vector X of n components would be to generate each component,

Xi, individually i.e. to repeat Algorithm 7 n times. Algorithm 9 is a simple adaption of algorithm 7.

Algorithm 9 Ryan Martin for individual components.

1. Set λi = λi (αi) , wi = wi (αi) and ri = ri (αi) .

2. Generate U ∼ uniform(0, 1).

3. If U ≤ ri then zi = −log (U/ri) , otherwise zi = − log(U)
λi

.

4. If fLiu(zi)
hLiu1 (zi)

> U then return Zi = zi.

5. Return Yi = e−Zi/αi .

6. After n iterations return Y = [Y1, . . . , Yn]
‘
.

The choice of which algorithm to use is up to the end user, however from Figure 14 it is clear that

simulating the random variates simultaneously requires fewer iterations than simulating the components

individually.

5 Application

5.1 E�ciency in the univariate case

All the methods considered can be used to generate samples from the target pdf given by (1) for small α

using an acceptance-rejection technique. The most suitable way to compare these methods is to use the

acceptance rate 1
c (proportion of sampled variates accepted). Having a high acceptance rate is preferable
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and therefore minimising c is bene�cial. Table 1 provides the comparative acceptance rate expressions

for [2, 4, 13, 15]. Figure 15 compares the acceptance rates for [2, 4, 13, 15] for decreasing α respectively.

For all the methods discussed it is clear that the acceptance rate converges to 1 as α→ 0, however r(a)

converges quicker for α ≤ 0.3 thus the method proposed by [15] is highly e�cient for small α values which

is clear from Theorem 1. For α ∈ (0.3, 0.33) Algorithm 7 is less e�cient than that of Algorithm 6 and

for α > 0.55 Algorithm 7 becomes the most ine�cient.

Ryan Martin Ahrens-Dieter Best Kundu-Gupta(
1 + α

e(1−α)

)−1
Γ(α+1)e1

(α+e1)
Γ(α+1)ez

zα(ez+α
z )

[
1

αΓ(α)

(
2α
[
1− e−b(α)/2

]α
+ αb(α)α−1e−b(α)

)]−1

Table 1: Acceptance rates for the four indicated univariate methods.

(a) (b)

Figure 15: Acceptance rates for α < 0.5.

Figure 16 illustrates how the standard methods used by SAS (rangam and randgen('GAMMA'))

become highly inaccurate in terms of simulating practically non-zero values when the shape parameter

becomes 'small'. In addition to being computationally e�cient in terms of having higher acceptance

rates in shorter simulation time, Algorithm 7 does not su�er from this problem. Therefore as suggested

in [15] for α < 0.1 Algorithm 7 should be used in simulation and when α ≥ 0.1 it is suggested that the

randgen('GAMMA') function be used instead of the rangam generator (see Appendix and SAS help

for the advantages and comparisons between the rangam and randgen generator).
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(a) (b)

Figure 16: Proportion of zeros for rangam and randgen for sample size of 30 (a) and 300 (b).

5.2 E�ciency in the bivariate case

Simulating vectors from multivariate distributions where the cumulative density function does not have

a closed form expression can be quite challenging and computationally strenuous. The intention of

acceptance-rejection sampling is to identify an envelope function that is easier to simulate from and where

the range of the target pdf is a subset of the range of the envelope function and both are de�ned on the

same support. Identifying an envelope function in higher dimensions can become extremely di�cult. As

the dimension increases the acceptance rate tends to decrease exponentially [12].

Proposition 7. The e�ciency of a bivariate acceptance-rejection algorithm, assuming independence of

the components, is expressed in terms of the acceptance rate given by 1
c2 .

Proof. The probability of generating points X1 from h1(x) that falls under f1(x) and X2 from h2(x) that

falls under f2(x) simultaneously is given by

p = P

([
U1 ≤

f1(x)

ch1(x)

]
∩
[
U2 ≤

f2(x)

ch2(x)

])
= P

(
U1 ≤

f1(x)

ch1(x)

)
P

(
U2 ≤

f2(x)

ch2(x)

)

since U1 ∼ uniform(0, 1) and U2 ∼ uniform(0, 1) are independent of each other. Note that f1(x)
h1(x) is

independent of f2(x)
h2(x) as well.

Therefore following directly from the proof in section 2 the acceptance rate for the bivariate case is

given by
(

1
c

)2
. This can be generalised to any multivariate dimension under the assumption of indepen-

dence.
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6 Conclusion

The challenge of simulating gamma variates with small shape parameter(s) in the univariate and bivariate

environment can be dealt with (to a certain degree) using an acceptance-rejection method based on a

limit distribution approximation of a gamma distribution with a small shape parameter. The proposed

algorithm (Algorithm 7) can be extended from the R software package to SAS, and when compared to

various existing algorithms, including the rangam and randgen generators used in SAS, it proves to

be more e�cient for small shapes. In the case of the bivariate gamma distribution (under independence),

speci�cally where both shape parameters tend to zero simultaneously, it remains challenging to simulate

gamma variates that di�er from zero. Algorithm 7 can be extended to the bivariate case. Two variations

of the bivariate algorithm can be considered; the �rst simulates each component of the vector individu-

ally (Algorithm 9) and the second simulates the components simultaneously (Algorithm 8). Simultaneous

simulation of the vector components require fewer iterations than the individual simulation, however the

algorithms may become slightly more complex.

Adaptions to the acceptance-rejection method in the multivariate environment where the gamma variates

are dependent can be investigated in future studies where a new acceptance-rejection algorithm would

have to be formulated and the envelope function investigated. In addition adaptions from the univariate

limiting distribution result to the remaining three cases for the bivariate distribution can be studied

where consideration of the ratio of gamma functions needs to be evaluated.
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Appendix

6.1 O(h) functions

In mathematics O(h) notation describes the behavior of a function as the parameter of interest, say h,

tends towards a particular value or in�nity.

De�nition 8. A function f : < → < is o(h) if lim
h→0

f(h)
h = 0 [7].

6.2 Logarithmic concave functions

De�nition 9. A function f (x) : < → < is de�ned as convex if for any x and y ∈ < and for every

β ∈ [0, 1], f [βx+ (1− β) y] ≤ βf (x) + (1− β) f (y) . f (x) is concave if −f (x) is convex [22].

De�nition 10. A function f (x) <n → < is log-concave if logf [βx+ (1− β) y] ≥ βlogf (x)+(1− β) logf (y)

for every β ∈ [0, 1] [22].

6.3 RANGAM vs RANDGEN

The rangam generator returns a variate that is generated from a gamma distribution. For shape parameter

≤ 1 a rejection method proposed by [8] is used. The RANDGEN('GAMMA')/RAND function uses a

random number generator developed by [18]. The advantages of using the RAND generator over the

RANGAM generator can be summarised as follows as described by [24]:

1. A longer period:

The period of a random generator refers to the number of values that can be generated before

repetitions occur. The period of the RANGAM generator is 231 and the corresponding RANDGEN

function is 219937.

2. Superior statistical properties:

The randomness obtained in simulating a random sample (stream of random numbers) is more

accurate for the RANDGEN generator compared to the RANGAM generator. In essence this means

that the samples generated by the RANDGEN function have the correct proportion of duplicate

values in a simulated sample when compared to the RANGAM function.

3. A simpler speci�cation of the seed values:

The syntax for the RANGAM function requires the speci�cation of a seed value each time the

function is called which may lead to the misconception that changing the seed on consecutive calls

may result in a di�erent stream of random numbers, however this is not true since all random number

seeds except the �rst one, are completely ignored. The RANDGEN function clearly indicates that
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a single stream of random numbers is created. The CALL RANDSEED routine can be used to set

the random seed number for the RANDGEN function.

4. Uniform syntax:

The RANDGEN function uses the same syntax as other SAS functions for dealing with probability

distributions such as the pdf and quantile functions for the gamma distribution.

5. Improved handling of wider parameter space regions:

The RANDGEN function uses more recent algorithms that handle situations in where a distribution

tends to become degenerate as the parameter(s) tend to a limiting region.

6. Continued development and support:

Support for new distributions are added to the RANDGEN function in SAS, where as support for

the RANXXX functions are no longer developed.

6.4 The ratio-of-uniforms method

The ratio-of uniforms method is similar to the acceptance-rejection method, having the advantage that

the form of the target pdf only needs to be known up to a normalising constant [12]. The pdf from which

sampling takes place has the following form

f(z) = ch(z)

where h(z) is known but c may not be. Note that as before we require c > 0.

The methodology can be summarised as follows:

1. Generate a point (X, Y ) uniformly over the set

C =
{

(x, y) : 0 ≤ x ≤
√
h
(
y
x

)}
.

2. Return Z = Y
X .

6.5 Algorithm 7 adjusted for SAS

The following script has been adapted from the rgmass script given by [15].

proc iml; test=0;

Start RJgam(n,shape,scale=1);

a=shape;

e=2.71828182845905;

l=(1/a)-1;
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w=a/(e*(1-a));

r=inv(1+w);

seed=1;

const=(1/gamma(a+1));

scale=1; y=J(n,1,0);

do i=1 to n;

do until(f/h > ranuni(seed));

u=ranuni(seed);

if u <= r then z=-log(u/r);

else z=log(ranuni(seed))/l;

f=const*exp(-z-exp(-z/a));

if z>=0 then h=const*exp(-z);

else h=const*w*l*exp(l*z);

if f/h > ranuni(seed) then q=z;

end;

y[i,1]=log(scale) - (q/a);

end;

return(y);

finish;

n=30;

alpha=0.0001;

x=RJgam(n,alpha,1);

k=J(n,1,0);

do i=1 to n;

ran=rangam(1,alpha);

if ran <= test then k[i]= .;

else k[i]= log(ran);

end;

l=J(n,1,0);

call randgen(l, 'GAMMA', alpha);

do i=1 to n;

ran=rangam(1,alpha);

if l[i] <= test then l[i]= .;

else l[i]= log(l[i]);
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end;

d=x||k||l;

cn={"RJgamma" "rangam" "randgen"};

create Data from d[colname=cn];

append from d;

close;

print x;

6.6 Algorithm 8 adjusted for SAS

The following script has been adapted from the rgmass script given by [15].

proc iml;

test=0;

Start RJgam(n,shape1,shape2,scale=1);

a1=shape1;

a2=shape2;

e=2.71828182845905;

l1=(1/a1)-1; l2=(1/a2)-1;

w1=a1/(e*(1-a1));

w2=a2/(e*(1-a2));

r1=inv(1+w1);

r2=inv(1+w2);

seed=1;

const1=(1/gamma(a1+1));

const2=(1/gamma(a2+1));

scale=1; y=J(n,2,0);

do i=1 to n;

do until(f1/h1 > ranuni(seed) & f2/h2 > ranuni(seed) );

u1=ranuni(seed); u2=ranuni(seed);

if (u1 <= r1) & (u2 <= r2) then z1=-log(u1/r1) ;

if u1 <= r1 & u2 <= r2 then z2=-log(u2/r2) ;

if u1 <= r1 & u2 > r2 then z1=-log(u1/r1) ;

if u1 <= r1 & u2 > r2 then z2=log(ranuni(seed))/l1 ;

if u2 <= r2 & u1 > r1 then z2=-log(u2/r2) ;
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if u2 <= r2 & u1 > r1 then z1=log(ranuni(seed))/l2 ;

if u1 > r1 & u2 > r2 then z1=-log(u1/r1) ;

if u1 > r1 & u2 > r2 then z2=-log(u2/r2) ;

f1=const1*exp(-z1-exp(-z1/a1));

f2=const2*exp(-z2-exp(-z2/a2));

if z1>=0 then h1=const1*exp(-z1);

else h1=const1*w1*l1*exp(l1*z1);

if z2>=0 then h2=const2*exp(-z2);

else h2=const2*w2*l2*exp(l2*z2);

if f1/h1 > ranuni(seed) then q1=z1;

if f2/h2 > ranuni(seed) then q2=z2;

end;

y[i,1]=log(scale) - (q1/a1);

y[i,2]=log(scale) - (q2/a2);

end;

return(y);

finish;

n=30;

alpha1=0.001;

alpha2=alpha1;

x=RJgam(n,alpha1,alpha2,1);

print x;

The following script has been adapted from the rgmass script given by [15].

proc iml;

test=0;

Start RJgam(n,shape1,shape2,scale=1);

a1=shape1;

a2=shape2;

e=2.71828182845905;

l1=(1/a1)-1; l2=(1/a2)-1;

w1=a1/(e*(1-a1));

w2=a2/(e*(1-a2));

r1=inv(1+w1);

r2=inv(1+w2);
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seed=1;

const1=(1/gamma(a1+1));

const2=(1/gamma(a2+1));

scale=1; y=J(n,2,0);

do i=1 to n;

do until(f1/h1 > ranuni(seed) & f2/h2 > ranuni(seed) );

u1=ranuni(seed); u2=ranuni(seed);

if (u1 <= r1) & (u2 <= r2) then z1=-log(u1/r1) ;

if u1 <= r1 & u2 <= r2 then z2=-log(u2/r2) ;

if u1 <= r1 & u2 > r2 then z1=-log(u1/r1) ;

if u1 <= r1 & u2 > r2 then z2=log(ranuni(seed))/l1 ;

if u2 <= r2 & u1 > r1 then z2=-log(u2/r2) ;

if u2 <= r2 & u1 > r1 then z1=log(ranuni(seed))/l2 ;

if u1 > r1 & u2 > r2 then z1=-log(u1/r1) ;

if u1 > r1 & u2 > r2 then z2=-log(u2/r2) ;

f1=const1*exp(-z1-exp(-z1/a1));

f2=const2*exp(-z2-exp(-z2/a2));

if z1>=0 then h1=const1*exp(-z1);

else h1=const1*w1*l1*exp(l1*z1);

if z2>=0 then h2=const2*exp(-z2);

else h2=const2*w2*l2*exp(l2*z2);

if f1/h1 > ranuni(seed) then q1=z1;

if f2/h2 > ranuni(seed) then q2=z2;

end;

y[i,1]=log(scale) - (q1/a1);

y[i,2]=log(scale) - (q2/a2);

end;

return(y);

finish;

n=30;

alpha1=0.001;

alpha2=alpha1;

x=RJgam(n,alpha1,alpha2,1);

print x;
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The following script has been adapted from the rgmass script given by [15].

proc iml;

test=0;

Start RJgam(n,shape1,shape2,scale=1);

a1=shape1;

a2=shape2;

e=2.71828182845905;

l1=(1/a1)-1; l2=(1/a2)-1;

w1=a1/(e*(1-a1));

w2=a2/(e*(1-a2));

r1=inv(1+w1);

r2=inv(1+w2);

seed=1;

const1=(1/gamma(a1+1));

const2=(1/gamma(a2+1));

scale=1; y=J(n,2,0);

do i=1 to n;

do until(f1/h1 > ranuni(seed) & f2/h2 > ranuni(seed) );

u1=ranuni(seed); u2=ranuni(seed);

if (u1 <= r1) & (u2 <= r2) then z1=-log(u1/r1) ;

if u1 <= r1 & u2 <= r2 then z2=-log(u2/r2) ;

if u1 <= r1 & u2 > r2 then z1=-log(u1/r1) ;

if u1 <= r1 & u2 > r2 then z2=log(ranuni(seed))/l1 ;

if u2 <= r2 & u1 > r1 then z2=-log(u2/r2) ;

if u2 <= r2 & u1 > r1 then z1=log(ranuni(seed))/l2 ;

if u1 > r1 & u2 > r2 then z1=-log(u1/r1) ;

if u1 > r1 & u2 > r2 then z2=-log(u2/r2) ;

f1=const1*exp(-z1-exp(-z1/a1));

f2=const2*exp(-z2-exp(-z2/a2));

if z1>=0 then h1=const1*exp(-z1);

else h1=const1*w1*l1*exp(l1*z1);

if z2>=0 then h2=const2*exp(-z2);

else h2=const2*w2*l2*exp(l2*z2);

if f1/h1 > ranuni(seed) then q1=z1;
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if f2/h2 > ranuni(seed) then q2=z2;

end;

y[i,1]=log(scale) - (q1/a1);

y[i,2]=log(scale) - (q2/a2);

end;

return(y);

finish;

n=30;

alpha1=0.001;

alpha2=alpha1;

x=RJgam(n,alpha1,alpha2,1);

print x;

6.7 SAS code

48



49 

 

Proc univariate and SG plot for transformed alpha: 

proc iml; 

 

/*Plotting Gamma*/ 

n=2000; 

Data=J(n,5,0); 

 

a1=10; 

a2=1; 

a3=0.1; 

a4=0.01; 

seed=1; 

 

do i = 1 to 20 by 0.01; 

Data[i,5]=exp(-i); 

end; 

 

do i=1 to nrow(Data); 

 Data[i,1]=rangam(seed, a1); 

 Data[i,2]=rangam(seed, a2); 

 Data[i,3]=rangam(seed, a3); 

 Data[i,4]=rangam(seed, a4); 

end; 

 

names1={"Alpha=10", "Alpha=1", "Alpha=0.1", "Alpha=0.01", "exp"}; 

mattrib Data colname=names1; 

create GamData from Data [colname=names1]; 

append from data; 

close GamData; 

 

/*Plotting Transformed Gamma*/ 

Data2=J(n,4,0); 

 

do i=1 to nrow(Data2); 

 Data2[i,1]=-a1*log(Data[i,1]); 

 Data2[i,2]=-a2*log(Data[i,2]); 

 Data2[i,3]=-a3*log(Data[i,3]); 

 Data2[i,4]=-a4*log(Data[i,4]); 

end; 

 

/*print Data2;*/ 

 

names2={"TAlpha=10", "TAlpha=1", "TAlpha=0.1", "TAlpha=0.01"}; 

mattrib Data2 colname=names2; 

create TransGamData from Data2 [colname=names2]; 

append from Data2; 

close TransGamData; 

 

Data3=Data||Data2; 

 

names3={"Alpha=10", "Alpha=1", "Alpha=0.1", 

"Alpha=0.01","TAlpha=10","TAlpha=1", "TAlpha=0.1","TAlpha=0.01"}; 

mattrib Data3 colname=names3; 

create AllData from Data3 [colname=names3];  

append from Data3; 

close AllData; 

title '.'; 

proc univariate data = Gamdata plots noprint; 

var Alpha_10 Alpha_1 Alpha_0_1 Alpha_0_01; 

WHERE Alpha_0_01 between 0 and 1; 
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histogram Alpha_10 / gamma(alpha=10 sigma=1)  ; 

inset gamma(alpha sigma); 

histogram Alpha_1 /gamma(alpha=1 sigma=1); 

inset gamma(alpha sigma); 

histogram Alpha_0_1 /gamma(alpha=0.1 sigma=1); 

inset gamma(alpha sigma); 

 

histogram Alpha_0_01 /endpoints = 0 to 1 by 0.1 gamma(alpha=0.01 sigma=1 

theta=est); 

inset gamma(alpha sigma); 

 

run; 

 

proc univariate data = TransGamData plots noprint;; 

var TAlpha_10 TAlpha_1 TAlpha_0_1 TAlpha_0_01; 

 

histogram TAlpha_10 /  odstitle = "." 

exp(sigma=1 theta = est) ; 

inset exp(sigma theta); 

histogram TAlpha_1 / odstitle = "." exp(sigma=1 theta = est) ; 

inset exp(sigma theta); 

histogram TAlpha_0_1 / odstitle = "." exp(sigma=1 theta = est) ; 

inset exp(sigma theta); 

histogram TAlpha_0_01 / odstitle = "." exp(sigma=1 theta = est) ; 

inset exp(sigma theta); 

 

run; 

 

 

proc sgplot data=AllData; 

       histogram Alpha_10 / transparency=0.75 fillattrs=(color=red); 

       histogram TAlpha_10 / transparency=0.75 fillattrs=(color=blue); 

    keylegend / location=outside position=bottom; 

       xaxis label="Gamma Curves"; 

     run; 

 

proc sgplot data=AllData; 

 

    histogram Alpha_1 / transparency=0.75 fillattrs=(color=green); 

       histogram TAlpha_1 / transparency=0.75 fillattrs=(color=purple); 

    keylegend / location=outside position=bottom; 

       xaxis label="Gamma Curves"; 

  run; 

 

proc sgplot data=AllData; 

    histogram Alpha_0_1 / transparency=0.75 fillattrs=(color=orange); 

       histogram TAlpha_0_1 / transparency=0.75 fillattrs=(color=brown); 

    keylegend / location=outside position=bottom; 

       xaxis label="Gamma Curves"; 

  run; 

 

proc sgplot data=AllData; 

 

    histogram Alpha_0_01/ transparency=0.75 fillattrs=(color=green); 

       histogram TAlpha_0_01 / transparency=0.75 fillattrs=(color=red); 

    keylegend / location=outside position=bottom; 

       xaxis label="Gamma Curves"; 

     run; 

proc template; 

define statgraph sgdesign; 

dynamic _ALPHA_0_01A; 



51 

 

begingraph / designwidth=640 designheight=546; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / xaxisopts=( label=('x values') linearopts=( 

viewmin=0.0 viewmax=1.0)); 

         histogram _ALPHA_0_01A / name='histogram' legendlabel='Alpha = 

0.01' datatransparency=0.31 binaxis=false scale=Percent 

fillattrs=(color=CX009966 ) outlineattrs=(pattern=SOLID thickness=2 ); 

         discretelegend 'histogram' / opaque=false border=true halign=right 

valign=top displayclipped=true across=1 order=rowmajor location=inside 

titleattrs=(color=CXFFFFFF ); 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.ALLDATA template=sgdesign; 

dynamic _ALPHA_0_01A="'ALPHA_0_01'n"; 

run; 

 

Ahrens-Dieter Algorithm: 

proc iml; 

 

minX1=0.01; 

maxX1=4; 

step=0.01; 

Data=J((maxX1/step),3,0); 

alpha1=0.9; 

 

i=1; 

do x1=minX1 to maxX1 by step; 

 Data[i,1]=x1; 

 Data[i,2]=(1/gamma(alpha1))*exp(-x1)*x1**(alpha1-1); 

 if x1 >= 1 then 

 Data[i,3]=(1/gamma(alpha1))*exp(-x1); 

 if x1 < 1 then  

 Data[i,3]=(1/gamma(alpha1))*(x1**(alpha1-1)); 

 i=i+1; 

end; 

 

cn={"x","g","p1","p2"}; 

create gam from Data[colname=cn]; 

append from Data; 

close gam; 

proc template; 

define statgraph sgdesign; 

dynamic _X _G _X2 _P1A; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / yaxisopts=( label=('Density')); 

         seriesplot x=_X y=_G / name='series' legendlabel='Target 

distribution' connectorder=xaxis lineattrs=(color=CXCC00CC pattern=SOLID 

thickness=3 ) markerattrs=(color=CXC6C3C6 ); 

         seriesplot x=_X2 y=_P1A / name='series2' legendlabel='Envelope 

function' connectorder=xaxis lineattrs=(color=CX424142 pattern=SHORTDASH 

thickness=3 ); 
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         discretelegend 'series' 'series2' / opaque=false border=true 

halign=center valign=top displayclipped=true down=1 order=columnmajor 

location=inside; 

         discretelegend 'series' 'series2' / opaque=false border=true 

halign=center valign=top displayclipped=true down=1 order=columnmajor 

location=inside; 

         discretelegend 'series' 'series2' / opaque=false border=true 

halign=center valign=top displayclipped=true down=1 order=columnmajor 

location=inside; 

       *  discretelegend 'series' / opaque=false border=false halign=right 

valign=top displayclipped=true across=1 order=rowmajor location=inside 

titleattrs=(color=CX0000FF ); 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.GAM template=sgdesign; 

dynamic _X="X" _G="G" _X2="X" _P1A="P1"; 

run; 

 

 

Best Algorithm: 

proc iml; 

 

minX1=0.01; 

maxX1=4; 

step=0.01; 

Data=J((maxX1/step),3,0); 

alpha1=0.9; 

 

i=1; 

z=0.07+0.75*(1-alpha1)**0.5; 

do x1=minX1 to maxX1 by step; 

 Data[i,1]=x1; 

 Data[i,2]=exp(-x1)*x1**(alpha1-1); 

 if x1 >= z then 

 Data[i,3]=exp(-x1)*z**(alpha1-1); 

 if x1 <z then  

 Data[i,3]=x1**(alpha1-1); 

 i=i+1; 

end; 

 

cn={"x","g","p1","p2"}; 

create gam from Data[colname=cn]; 

append from Data; 

close gam; 

proc template; 

define statgraph Graph; 

dynamic _X _G _X2 _P1A; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / yaxisopts=( label=('Density')); 

         seriesplot x=_X y=_G / name='series' legendlabel='alpha = 0.2' 

connectorder=xaxis lineattrs=(color=CX39828C thickness=2 ); 

         seriesplot x=_X2 y=_P1A / name='series2' legendlabel='First mod 

envelope' connectorder=xaxis lineattrs=(color=CX424142 pattern=SHORTDASH 

thickness=2 ); 
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         discretelegend 'series' 'series2' / opaque=false border=true 

halign=right valign=top displayclipped=true across=1 order=rowmajor 

location=inside; 

        * discretelegend 'series' / opaque=false border=true halign=left 

valign=top displayclipped=true across=1 order=rowmajor location=inside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.GAM template=Graph; 

dynamic _X="X" _G="G" _X2="X" _P1A="P1"; 

run; 

 

Kundu-Gupta Algorithm 1: 

proc iml; 

 

minX1=0.01; 

maxX1=4; 

step=0.01; 

Data=J((maxX1/step),3,0); 

alpha1=0.2; 

 

i=1; 

z=0.07+0.75*(1-alpha1)**0.5; 

do x1=minX1 to maxX1 by step; 

 Data[i,1]=x1; 

 Data[i,2]=(1/gamma(alpha1))*exp(-x1)*x1**(alpha1-1); 

 Data[i,3]=((2**alpha1)/gamma(alpha1+1))*(alpha1/2)*((1-exp(-

x1/2))**(alpha1-1))*exp(-x1/2); 

  

 i=i+1; 

end; 

 

cn={"x","g","p1","p2"}; 

create gam from Data[colname=cn]; 

append from Data; 

close gam; 

proc template; 

define statgraph Graph; 

dynamic _X _G _X2 _P1A; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / yaxisopts=( label=('Density')); 

         seriesplot x=_X y=_G / name='series' legendlabel='alpha = 0.9' 

connectorder=xaxis lineattrs=(color=CXCE5539 thickness=2 ); 

         seriesplot x=_X2 y=_P1A / name='series2' legendlabel='Generalized 

exponential envelope' connectorder=xaxis lineattrs=(color=CX0000FF 

pattern=MEDIUMDASH thickness=2 ); 

         discretelegend 'series' 'series2' / opaque=false border=true 

halign=right valign=top displayclipped=true across=1 order=rowmajor 

location=inside; 

        * discretelegend 'series' / opaque=false border=true halign=left 

valign=top displayclipped=true across=1 order=rowmajor location=inside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 
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run; 

 

proc sgrender data=WORK.GAM template=Graph; 

dynamic _X="X" _G="G" _X2="X" _P1A="P1"; 

run; 

 

Kundu-Gupta algorithm 2: 

proc iml; 

 

minX1=0.01; 

maxX1=4; 

step=0.01; 

Data=J((maxX1/step),3,0); 

alpha1=0.2; 

 

i=1; 

z=0.07+0.75*(1-alpha1)**0.5; 

do x1=minX1 to maxX1 by step; 

 Data[i,1]=x1; 

 Data[i,2]=(1/gamma(alpha1))*exp(-x1)*x1**(alpha1-1); 

 Data[i,3]=((2**alpha1)/gamma(alpha1+1))*(alpha1/2)*((1-exp(-

x1/2))**(alpha1-1))*exp(-x1/2); 

  

 i=i+1; 

end; 

 

cn={"x","g","p1","p2"}; 

create gam from Data[colname=cn]; 

append from Data; 

close gam; 

proc template; 

define statgraph Graph; 

dynamic _X _G _X2 _P1A; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / yaxisopts=( label=('Density')); 

         seriesplot x=_X y=_G / name='series' legendlabel='alpha = 0.9' 

connectorder=xaxis lineattrs=(color=CXCE5539 thickness=2 ); 

         seriesplot x=_X2 y=_P1A / name='series2' legendlabel='Generalized 

exponential envelope' connectorder=xaxis lineattrs=(color=CX0000FF 

pattern=MEDIUMDASH thickness=2 ); 

         discretelegend 'series' 'series2' / opaque=false border=true 

halign=right valign=top displayclipped=true across=1 order=rowmajor 

location=inside; 

        * discretelegend 'series' / opaque=false border=true halign=left 

valign=top displayclipped=true across=1 order=rowmajor location=inside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.GAM template=Graph; 

dynamic _X="X" _G="G" _X2="X" _P1A="P1"; 

run; 
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Kundu-Gupta algorithm 3: 

proc iml; 

 

minX1=0.01; 

maxX1=4; 

step=0.01; 

Data=J((maxX1/step),3,0); 

alpha1=0.9; 

 

i=1; 

z=1.0334-0.0766*exp(2.2942*alpha1); 

do x1=minX1 to maxX1 by step; 

 Data[i,1]=x1; 

 Data[i,2]=(1/gamma(alpha1))*exp(-x1)*x1**(alpha1-1); 

 if x1 < z then 

 Data[i,3]=((2**alpha1)/gamma(alpha1+1))*(alpha1/2)*((1-exp(-

x1/2))**(alpha1-1))*exp(-x1/2); 

 else;  

 Data[i,3]=exp(-x1)/gamma(alpha1); 

 i=i+1; 

end; 

 

cn={"x","g","p1","p2"}; 

create gam from Data[colname=cn]; 

append from Data; 

close gam; 

proc template; 

define statgraph Graph; 

dynamic _X _G _X2 _P1A; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / yaxisopts=( label=('Density')); 

         seriesplot x=_X y=_G / name='series' legendlabel='alpha = 0.2' 

connectorder=xaxis lineattrs=(color=CXCE5539 thickness=2 ); 

         seriesplot x=_X2 y=_P1A / name='series2' legendlabel='Non singular 

GE envelope' connectorder=xaxis lineattrs=(color=CX6371AD pattern=SHORTDASH 

thickness=2 ); 

         discretelegend 'series' 'series2' / opaque=false border=true 

halign=right valign=top displayclipped=true across=1 order=rowmajor 

location=inside; 

         discretelegend 'series' / opaque=false border=true halign=left 

valign=top displayclipped=true across=1 order=rowmajor location=inside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.GAM template=Graph; 

dynamic _X="X" _G="G" _X2="X" _P1A="P1"; 

run; 

 

Ryan Martin algorithm in SAS ( SAS replication of rgmass): 

proc iml; 

test=0; 

 

Start RJgam(n,shape,scale=1); 
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a=shape; 

e=2.71828182845905; 

l=(1/a)-1; 

w=a/(e*(1-a)); 

r=inv(1+w); 

seed=1; 

const=(1/gamma(a+1)); 

scale=1; 

y=J(n,1,0); 

 

do i=1 to n; 

 do until(f/h > ranuni(seed));  

  u=ranuni(seed); 

   if u <= r then z=-log(u/r); else z=log(ranuni(seed))/l; 

    f=const*exp(-z-exp(-z/a)); 

     if z>=0 then h=const*exp(-z); else 

h=const*w*l*exp(l*z); 

      if f/h > ranuni(seed) then q=z; 

 end; 

y[i,1]=log(scale) - (q/a); 

end; 

 

return(y); 

finish; 

 

n=30; 

alpha=0.0001; 

x=RJgam(n,alpha,1); 

 

k=J(n,1,0); 

 do i=1 to n; 

  ran=rangam(1,alpha); 

   if ran <= test then 

   k[i]= .; else k[i]= log(ran);   

 end; 

 

l=J(n,1,0); 

call randgen(l, 'GAMMA', alpha);  

 

 do i=1 to n; 

  ran=rangam(1,alpha); 

   if l[i] <= test then 

   l[i]= .; else l[i]= log(l[i]);   

 end; 

 

d=x||k||l; 

 

cn={"RJgamma" "rangam" "randgen"}; 

 

create Data from d[colname=cn]; 

append from d; 

close; 

 

print x; 

 

Ryan Martin envelope and target density: 

proc iml; 

 

D1=J((7/0.01),3,0); 

alpha1=0.2; 
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l=(1/alpha1)-1; 

w=alpha1/(exp(1)*(1-alpha1)); 

 

i=1; 

do z=-1 to 6 by 0.01; 

 D1[i,1]=z; 

 D1[i,2]=exp(-z-exp(-z/alpha1)); 

  if z < 0 then D1[i,3]=w*l*exp(l*z);else 

  D1[i,3]=exp(-z); 

 i=i+1; 

end; 

 

print D1; 

cn={"z","d1","d2"}; 

create gam from D1[colname=cn]; 

append from D1; 

close gam; 

 

proc template; 

define statgraph Graph; 

dynamic _Z _D1A _Z2 _D2A; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / yaxisopts=( label=('Density')); 

         seriesplot x=_Z y=_D1A / name='series' legendlabel='fz(z)' 

connectorder=xaxis lineattrs=(color=CX424142 thickness=2 ); 

         seriesplot x=_Z2 y=_D2A / name='series2' legendlabel='Envelope 

function' connectorder=xaxis lineattrs=(color=CX009999 pattern=SHORTDASH 

thickness=2 ); 

         discretelegend 'series' 'series2' / opaque=false border=true 

halign=center valign=top displayclipped=true down=1 order=columnmajor 

location=inside; 

        * entry halign=center 'Alpha = 0.01 ' / valign=top 

location=outside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.GAM template=Graph; 

dynamic _Z="Z" _D1A="D1" _Z2="Z" _D2A="D2"; 

run; 

 

 

3D univariate theoretical gamma pdf for decreasing alpha: 

proc iml; 

 

minA=0.01; 

maxA=0.99; 

step=minA; 

xl=minA; 

xr=4; 

xstep=step; 

 

DataT=J(maxA/step,xr/xstep,0); 
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k=1; 

do i=minA to maxA by step; 

l=1; 

 do j=xl to xr by xstep; 

  DataT[k,l]=(1/gamma(i))*(j**(i-1))*exp(-j); 

  l=l+1; 

 end; 

 k=k+1; 

end; 

 

DataT2=J(nrow(DataT)*ncol(DataT),3,0); 

 

k=1; 

do i=1 to nrow(DataT2);  

 do j=1 to ncol(DataT); 

  DataT2[k,1]=minA+(i-1)*step; 

  DataT2[k,2]=xl+(j-1)*xstep; 

  DataT2[k,3]=DataT[i,j]; 

 k=k+1; 

 end; 

end; 

 

names={"Alpha" "X" "Density"}; 

create Gam3D_Data from DataT2[colname=names]; 

append from DataT2; 

close; 

 

goptions reset=all border; 

proc g3grid data=Gam3D_Data out=Gam3DG; 

   grid Alpha*X=Density /naxis1=200 naxis2=200; 

run; 

 

goptions reset=all; 

ods html image_dpi=300; 

ods graphics / ANTIALIAS=on ANTIALIASMAX=10000 SUBPIXEL=on; 

run; 

proc template; 

  define statgraph surfaceplotparm; 

    begingraph; 

      layout overlay3d/ 

  rotate=50 tilt=15 cube=false; 

    surfaceplotparm x=X y=Alpha z= Density /surfacetype=fillgrid 

                         name="surface" 

          reversecolormodel=true 

    surfacetype=fill  

          SURFACECOLORGRADIENT=Density 

          colormodel=(purple cyan grey );; 

    continuouslegend "surface" / title='Density'; 

      endlayout; 

 endgraph; 

  end; 

proc sgrender data=Gam3DG template=surfaceplotparm; 

run; 

 

3D univariate empirical gamma pdf for decreasing alpha: 

proc iml; 

 

minA=0.01; 

maxA=1; 

step=0.01; 
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n=400; 

seed=0; 

 

Data1=J(maxA/step,n,0); 

 

do i=1 to n; 

 c=1; 

 do j=minA to maxA by step; 

  Data1[c,i]=rangam(seed,j); 

  c=c+1; 

 end; 

end; 

 

 

 

max=max(Data1); 

min=min(Data1); 

 

/*create bins*/ 

 

interval=max-min; 

numBins=150; 

intW=interval/numBins; 

Bins=J(maxA/step,numBins,0); 

 

 

do i = 1 to nrow(Data1); 

 do j = 1 to ncol(Data1); 

  do d = 1 to numBins; 

   if (min + (d-1)*intW) <= Data1[i,j] && Data1[i,j] <= (min 

+ d*intW) then Bins[i,d]=Bins[i,d]+1; 

  end; 

 end; 

end; 

   

alphaM=j(maxA/step,1,0); 

do i = 1 to nrow(alphaM); 

 alphaM[i]=minA+(i-1)*step; 

end; 

 

DataAB=alphaM||Bins; 

 

/*Create data matrix*/ 

 

DataF=J(nrow(DataAB)*ncol(Bins),3,0); 

 

k=1; 

do i = 1 to nrow(DataF); 

 do j = 1 to ncol(Bins); 

  DataF[k,1]=DataAB[i,1]; 

  DataF[k,2]=j; 

  Dataf[k,3]=Bins[i,j]; 

  k=k+1; 

 end; 

end; 

 

 

names={"Alpha" "Bin" "Frequency"}; 

create Gam3D_Data from DataF[colname=names]; 

append from DataF; 

close; 
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proc g3grid data=Gam3D_Data out=Gam3DG; 

   grid Alpha*Bin=Frequency /naxis1=200 naxis2=200; 

run; 

 

goptions reset=all; 

ods html image_dpi=300; 

ods graphics / ANTIALIAS=on ANTIALIASMAX=10000 SUBPIXEL=on; 

run; 

proc template; 

  define statgraph surfaceplotparm; 

    begingraph; 

      layout overlay3d/ 

       xaxisopts=(label="    Bin Range") 

  yaxisopts=(label="Alpha") 

  rotate=90 tilt=89 cube=false; 

    surfaceplotparm x=Bin y=Alpha z= Frequency 

/surfacetype=fillgrid 

                         name="surface" 

          reversecolormodel=true 

    surfacetype=fill  

          SURFACECOLORGRADIENT=Frequency 

          colormodel=(green yellow red); 

    continuouslegend "surface" / title='Frequency'; 

      endlayout; 

 endgraph; 

  end; 

proc sgrender data=Gam3DG template=surfaceplotparm; 

run; 

 

 

 

Bivariate gamma case 1: 

proc iml; 

 

minA=0.01; 

maxA=1; 

step=0.01; 

n=400; 

seed=0; 

 

Data1=J(ceil(maxA/step),n,0); 

 

do i=1 to n; 

 c=1; 

 do j=minA to maxA by step; 

  Data1[c,i]=sqrt((rangam(seed,j))**2+(rangam(seed,0.5))**2); 

  c=c+1; 

 end; 

end; 

 

max=max(Data1); 

min=min(Data1); 

 

/*create bins*/ 

 

interval=max-min; 

numBins=200; 

intW=interval/numBins; 

Bins=J(maxA/step,numBins,0); 
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do i = 1 to nrow(Data1); 

 do j = 1 to ncol(Data1); 

  do d = 1 to numBins; 

   if (min + (d-1)*intW) <= Data1[i,j] && Data1[i,j] <= (min 

+ d*intW) then Bins[i,d]=Bins[i,d]+1; 

  end; 

 end; 

end; 

   

alphaM=j(maxA/step,1,0); 

do i = 1 to nrow(alphaM); 

 alphaM[i]=minA+(i-1)*step; 

end; 

 

DataAB=alphaM||Bins; 

 

/*Create data matrix*/ 

 

DataF=J(nrow(DataAB)*ncol(Bins),3,0); 

 

k=1; 

do i = 1 to nrow(DataF); 

 do j = 1 to ncol(Bins); 

  DataF[k,1]=DataAB[i,1]; 

  DataF[k,2]=j; 

  Dataf[k,3]=Bins[i,j]; 

  k=k+1; 

 end; 

end; 

 

 

names={"Alpha" "Bin" "Frequency"}; 

create Gam3D_Data from DataF[colname=names]; 

append from DataF; 

close; 

 

goptions reset=all; 

proc g3grid data=Gam3D_Data out=Gam3DG; 

   grid Alpha*Bin=Frequency /naxis1=250 naxis2=250; 

run; 

goptions reset=all; 

ods html image_dpi=300; 

ods graphics / ANTIALIAS=on ANTIALIASMAX=10000; 

run; 

proc template; 

  define statgraph surfaceplotparm; 

    begingraph; 

      layout overlay3d/ 

  xaxisopts=(label=".") 

  yaxisopts=(label=".") 

  zaxisopts=(label="Frequency") 

  rotate=90 tilt=88 cube=false; 

    surfaceplotparm x=Bin y=Alpha z= Frequency / 

surfacetype=fillgrid 

  name="surface" 

          reversecolormodel=true 

    surfacetype=fill  

          SURFACECOLORGRADIENT=Frequency 

           colormodel=(VIBG VIYG grey); 

    continuouslegend "surface" / title='Frequency'; 
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      endlayout; 

 endgraph; 

  end; 

proc sgrender data=Gam3DG template=surfaceplotparm; 

run; 

 

   

 

Bivariate gamma case 2: 

proc iml; 

 

minA=0.01; 

maxA=1; 

step=minA; 

n=400; 

seed=0; 

 

Data1=J(ceil(maxA/step),n,0); 

 

do i=1 to n; 

 c=1; 

 do j=minA to maxA by step; 

  Data1[c,i]=sqrt((rangam(seed,j))**2+(rangam(seed,j))**2); 

  c=c+1; 

 end; 

end; 

 

max=max(Data1); 

min=min(Data1); 

 

/*create bins*/ 

 

interval=max-min; 

numBins=300; 

intW=interval/numBins; 

Bins=J(maxA/step,numBins,0); 

 

 

do i = 1 to nrow(Data1); 

 do j = 1 to ncol(Data1); 

  do d = 1 to numBins; 

   if (min + (d-1)*intW) <= Data1[i,j] && Data1[i,j] <= (min 

+ d*intW) then Bins[i,d]=Bins[i,d]+1; 

  end; 

 end; 

end; 

   

alphaM=j(maxA/step,1,0); 

do i = 1 to nrow(alphaM); 

 alphaM[i]=minA+(i-1)*step; 

end; 

 

DataAB=alphaM||Bins; 

 

/*Create data matrix*/ 

 

DataF=J(nrow(DataAB)*ncol(Bins),3,0); 

 

k=1; 

do i = 1 to nrow(DataF); 
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if k<=40000 then do; 

 do j = 1 to ncol(Bins); 

  DataF[k,1]=DataAB[i,1]; 

  DataF[k,2]=j; 

  DataF[k,3]=Bins[i,j]; 

  k=k+1; 

 end; 

end; 

end; 

 

 

names={"Alpha1Dec_Alpha2Dec" "Bin" "Frequency"}; 

create Gam3D_Data from DataF[colname=names]; 

append from DataF; 

close; 

 

 

proc g3grid data=Gam3D_Data out=Gam3DG; 

   grid Alpha1Dec_Alpha2Dec*Bin=Frequency /naxis1=200 naxis2=200; 

run; 

goptions reset=all; 

ods html image_dpi=300; 

ods graphics / ANTIALIAS=on ANTIALIASMAX=10000; 

run; 

proc template; 

  define statgraph surfaceplotparm; 

    begingraph; 

      layout overlay3d/ 

  xaxisopts=(label=".") 

  yaxisopts=(label=".") 

  zaxisopts=(label="Frequency") 

  rotate=90 tilt=88 cube=false; 

    surfaceplotparm x=Bin y=Alpha1Dec_Alpha2Dec z= Frequency 

/surfacetype=fillgrid 

  name="surface" 

          reversecolormodel=true 

    surfacetype=fill  

          SURFACECOLORGRADIENT=Frequency 

           colormodel=(red orange grey); 

    continuouslegend "surface" / title='Frequency'; 

      endlayout; 

 endgraph; 

  end; 

proc sgrender data=Gam3DG template=surfaceplotparm; 

run; 

    

 

Bivariate gamma case 3: 

proc iml; 

 

minA=0.01; 

maxA=1; 

step=0.01; 

n=400; 

seed=0; 

 

Data1=J(ceil(maxA/step),n,0); 

 

do i=1 to n; 

 c=1; 
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 k=maxA; 

 do j=minA to maxA by step; 

  Data1[c,i]=sqrt((rangam(seed,j))**2+(rangam(seed,k))**2); 

  c=c+1; 

 k=k-step; 

 end; 

end; 

 

max=max(Data1); 

min=min(Data1); 

 

/*create bins*/ 

 

interval=max-min; 

numBins=50; 

intW=interval/numBins; 

Bins=J(maxA/step,numBins,0); 

 

 

do i = 1 to nrow(Data1); 

 do j = 1 to ncol(Data1); 

  do d = 1 to numBins; 

   if (min + (d-1)*intW) <= Data1[i,j] && Data1[i,j] <= (min 

+ d*intW) then Bins[i,d]=Bins[i,d]+1; 

  end; 

 end; 

end; 

   

alphaM=j(maxA/step,1,0); 

do i = 1 to nrow(alphaM); 

 alphaM[i]=minA+(i-1)*step; 

end; 

 

DataAB=alphaM||Bins; 

 

/*Create data matrix*/ 

 

DataF=J(nrow(DataAB)*ncol(Bins),3,0); 

 

k=1; 

do i = 1 to nrow(DataF); 

 do j = 1 to ncol(Bins); 

  DataF[k,1]=DataAB[i,1]; 

  DataF[k,2]=j; 

  DataF[k,3]=Bins[i,j]; 

  k=k+1; 

 end; 

end; 

 

 

names={"Alpha1Dec_Alpha2Inc" "Bin" "Frequency"}; 

create Gam3D_Data from DataF[colname=names]; 

append from DataF; 

close; 

 

proc g3grid data=Gam3D_Data out=Gam3DG; 

   grid Alpha1Dec_Alpha2Inc*Bin=Frequency /naxis1=150 naxis2=150  

             spline 

                         smooth=0.001 

; 

run; 
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goptions reset=all; 

ods html image_dpi=100; 

proc g3d data=Gam3DG; 

plot Alpha1Dec_Alpha2Inc*Bin=Frequency/ 

   rotate = -30 to 270 by 30 

   ctop=VIYG  cbottom=BIPB 

   zmin=0; 

run; 

   

proc template; 

define statgraph sgdesign; 

dynamic _BIN _ALPHA1DEC_ALPHA2INC _FREQUENCY; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / yaxisopts=( label=('Alpha1 dec and alpha2 inc')); 

         contourplotparm x=_BIN y=_ALPHA1DEC_ALPHA2INC z=_FREQUENCY / 

name='contour' contourtype=LINEFILL colormodel=ThreeColorRamp gridded=false 

lineattrs=(color=CXA4A5A4 ); 

         continuouslegend 'contour' / halign=right valign=center 

title='Frequency' location=outside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.GAM3D_DATA template=sgdesign; 

dynamic _BIN="BIN" _ALPHA1DEC_ALPHA2INC="'ALPHA1DEC_ALPHA2INC'n" 

_FREQUENCY="FREQUENCY"; 

run; 

 

 

  

Bivariate gamma case 4: 

proc iml; 

 

minA=0.01; 

maxA=1; 

step=0.01; 

n=400; 

seed=0; 

 

Data1=J(ceil(maxA/step),n,0); 

 

do i=1 to n; 

 c=1; 

 do j=minA to maxA by step; 

  Data1[c,i]=sqrt((rangam(seed,j))**2+(rangam(seed,1))**2); 

  c=c+1; 

 end; 

end; 

 

max=max(Data1); 

min=min(Data1); 

 

/*create bins*/ 

 

interval=max-min; 
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numBins=50; 

intW=interval/numBins; 

Bins=J(maxA/step,numBins,0); 

 

 

do i = 1 to nrow(Data1); 

 do j = 1 to ncol(Data1); 

  do d = 1 to numBins; 

   if (min + (d-1)*intW) <= Data1[i,j] && Data1[i,j] <= (min 

+ d*intW) then Bins[i,d]=Bins[i,d]+1; 

  end; 

 end; 

end; 

   

alphaM=j(maxA/step,1,0); 

do i = 1 to nrow(alphaM); 

 alphaM[i]=minA+(i-1)*step; 

end; 

 

DataAB=alphaM||Bins; 

 

/*Create data matrix*/ 

 

DataF=J(nrow(DataAB)*ncol(Bins),3,0); 

 

k=1; 

do i = 1 to nrow(DataF); 

 do j = 1 to ncol(Bins); 

  DataF[k,1]=DataAB[i,1]; 

  DataF[k,2]=j; 

  DataF[k,3]=Bins[i,j]; 

  k=k+1; 

 end; 

end; 

 

 

names={"Alpha1Dec_Alpha2grt1" "Bin" "Frequency"}; 

create Gam3D_Data from DataF[colname=names]; 

append from DataF; 

close; 

 

proc g3grid data=Gam3D_Data out=Gam3DG; 

   grid Alpha1Dec_Alpha2grt1*Bin=Frequency /naxis1=150 naxis2=150  

             spline 

                         smooth=0.001; 

run; 

 

 

goptions reset=all border cback=white htitle=12pt; 

ods html image_dpi=100;  

title1 'Alpha1=5'; 

proc g3d data=Gam3DG; 

plot Alpha1Dec_Alpha2grt1*Bin=Frequency/ 

rotate = -30 to 270 by 30 

   ctop=BIGB  cbottom=MOPPK 

   zmin=0; 

run; 

   

proc template; 

define statgraph sgdesign; 

dynamic _BIN _ALPHA1DEC_ALPHA2GRT1A _FREQUENCY; 
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begingraph; 

   entrytitle halign=center 'Alpha2 = 1'; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / yaxisopts=( label=('Alpha1 dec and Alpha2 greater 

than 1')); 

         contourplotparm x=_BIN y=_ALPHA1DEC_ALPHA2GRT1A z=_FREQUENCY / 

name='contour' contourtype=GRADIENT colormodel=ThreeColorRamp 

gridded=false; 

         continuouslegend 'contour' / halign=right valign=center 

title='Frequency' location=outside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.GAM3D_DATA template=sgdesign; 

dynamic _BIN="BIN" _ALPHA1DEC_ALPHA2GRT1A="'ALPHA1DEC_ALPHA2GRT1'n" 

_FREQUENCY="FREQUENCY"; 

run; 

 

 

  

Empirical bivariate gamma for both alpha decreasing simultaneously: 

proc iml; 

 

alpha1=0.01; 

alpha2=0.01; 

minX1=0.01; 

maxX1=1; 

step=0.01; 

seed=1; 

minX2=minX1; 

maxX2=maxX1; 

Data3=J((maxX1/step)**2,2,0); 

Data31=J((maxX1/step)**2,2,0); 

 

i=1; 

j=1; 

n=(maxX1/step)**2; 

do i=1 to n; 

 Data3[i,1]=(rangam(seed,alpha1)); 

 if Data3[i,1]=0 then Data3[i,1]=(rangam(seed,alpha1)); 

 Data3[i,2]=(rangam(seed,alpha2));  

 if Data3[i,2]=0 then Data3[i,2]=(rangam(seed,alpha1));  

end; 

 

do i=1 to nrow(Data3); 

 Data31[i,1]=-alpha1*log(Data3[i,1]); 

 Data31[i,2]=-alpha2*log(Data3[i,2]);    

end; 

 

 

/*create bins*/ 

 

numBins=100; 

Bins=J(numBins,2,0); 

 

b1=bin(Data31[,1],numBins); 
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b2=bin(Data31[,2],numBins); 

 

do i=1 to nrow(b1); 

 do j=1 to nrow(b1); 

  if b1[j]=i then Bins[i,1]=Bins[i,1]+1; 

  if b2[j]=i then Bins[i,2]=Bins[i,2]+1; 

 end; 

end; 

 

Data4=J(numBins,3,0); 

 

do i=1 to nrow(Bins); 

 Data4[i,1]=i; 

end; 

Data4[,2]=Data4[,1]; 

Data4[,3]=Bins[,1]+Bins[,2]; 

 

names3={"Bin1" "Bin2" "Frequency"}; 

create Gam3D_Data2 from Data4[colname=names3]; 

append from Data4; 

close; 

 

proc g3grid data=Gam3D_Data2 out=Gam3DG2; 

   grid Bin1*Bin2=Frequency /naxis1=200 naxis2=200; 

run; 

 

goptions reset=all; 

ods html image_dpi=300; 

ods graphics / ANTIALIAS=on; 

run; 

proc template; 

  define statgraph surfaceplotparm2; 

    begingraph; 

 entrytitle "Emperical Transformed Bivariate Gamma a1=0.01 a2=0.01"; 

      layout overlay3d/ 

       xaxisopts=(label="Bin1") 

  yaxisopts=(label="Bin2") 

  zaxisopts=(label="Frequency") 

  rotate=170 tilt=15 cube=false; 

    surfaceplotparm x=Bin1 y=Bin2 z= Frequency 

/surfacetype=fillgrid 

   name="surface" 

          reversecolormodel=true 

    surfacetype=fill  

          SURFACECOLORGRADIENT=Frequency 

           colormodel=(VLIV MOPR DAGRR); 

    continuouslegend "surface" / title='Frequency'; 

      endlayout; 

 endgraph; 

  end; 

proc sgrender data=Gam3DG2 template=surfaceplotparm2; 

run; 

 

 

 

Bivariate target and envelope densities: 

proc iml; 

 

 

Data1=J((6.5/0.01)**2,4,0); 
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alpha1=0.01; 

alpha2=0.01; 

 

j=1; 

l1=(1/alpha1)-1; 

l2=(1/alpha2)-1; 

w1=alpha1/(exp(1)*(1-alpha1)); 

w2=alpha2/(exp(1)*(1-alpha2)); 

do z1=-0.5 to 5 by 0.01; 

  do z2=-0.5 to 5 by 0.01; 

   Data1[j,1]=z1;  

   Data1[j,2]=z2;  

   Data1[j,3]=exp(-z1-exp(-z1/alpha1))*exp(-z2-exp(-

z2/alpha2)); 

   Data1[j,4]=exp(-z1)*exp(-z2); 

   if z1 < 0 then Data1[j,4] = 0; 

   if z2 < 0 then Data1[j,4] = 0; 

    j=j+1; 

  end; 

end; 

 

 

names1={"z1" "z2" "tar" "Density"}; 

create Gam3D_Data from Data1[colname=names1]; 

append from Data1; 

close; 

 

proc g3grid data=Gam3D_Data out=Gam3DG; 

   grid z1*z2=tar /naxis1=300 naxis2=300; 

run; 

proc g3d data=Gam3DG; 

plot z1*z2=tar/ 

CAXIS=white 

CTEXT=white 

rotate = 300  

ctop=BIYG  cbottom=BIPB name="plot7" ; 

run; 

proc g3grid data=Gam3D_Data out=Gam3DG; 

   grid z1*z2=Density /naxis1=70 naxis2=70; 

run; 

proc g3d data=Gam3DG; 

plot z1*z2=Density/ 

rotate = 300 

ctop=VIP cbottom=BIOY name="plot8"; 

   note; 

   note j=r  h=1.5  c=BIYG "Target pdf "  

        j=r  h=1.5 c=VIP "Envelope function " ; 

        

run; 

proc greplay tc=tempcat nofs igout=work.gseg; 

tdef WHOLE des="my template" 

        1/llx=0   lly=0 

          ulx=0   uly=100 

          urx=100 ury=100 

          lrx=100  lry=0 

          ; 

template = whole; 

treplay 1:plot7 1:plot8; 

run; 

 

proc g3grid data=Gam3D_Data out=Gam3DG; 
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   grid z1*z2=Density /naxis1=200 naxis2=200; 

run; 

 

goptions reset=all; 

ods html image_dpi=300; 

ods graphics / ANTIALIAS=on ANTIALIASMAX=10000 SUBPIXEL=on; 

run; 

proc template; 

  define statgraph surfaceplotparm; 

    begingraph; 

      layout overlay3d/ 

       xaxisopts=(label="Z1") 

  yaxisopts=(label="Z2") 

  zaxisopts=(label="Density") 

  rotate=150 tilt=15 cube=false; 

    surfaceplotparm x=z1 y=z2 z= Density /surfacetype=fillgrid 

                         name="surface" 

          reversecolormodel=true 

    surfacetype=fill  

          SURFACECOLORGRADIENT=Density 

          colormodel=(STP LIP VLIP); 

    continuouslegend "surface" / title='Density'; 

      endlayout; 

 endgraph; 

  end; 

proc sgrender data=Gam3DG template=surfaceplotparm; 

run; 

 

Bivariate target density IML studio: 

minX1=0.00001; 

maxX1=4; 

step=0.01; 

minX2=minX1; 

maxX2=maxX1; 

 

Data1=J((maxX1/step)**2,3,0); 

alpha1=0.2; 

alpha2=0.2; 

 

i=1; 

j=1; 

l1=(1/alpha1)-1; 

l2=(1/alpha2)-1; 

w1=alpha1/(exp(1)*(1-alpha1)); 

w2=alpha2/(exp(1)*(1-alpha2)); 

do x1=minX1 to maxX1 by step; 

  do x2=minX2 to maxX2 by step; 

   z1=-alpha1*log(x1); 

  z2=-alpha2*log(x2); 

   Data1[j,1]=z1;  

   Data1[j,2]=z2;  

   Data1[j,3]=exp(-z1-exp(-z1/alpha1))*exp(-z2-exp(-

z2/alpha2)); 

    j=j+1; 

  end; 

 i=i+1; 

end; 

print Data1; 

RotatingPlot.Create("plot", Data1[,1],Data1[,2],Data1[,3]); 
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Ryan Martin rgmass algorithm adapted to bivariate case for simultaneous simulation: 

proc iml; 

test=0; 

 

Start RJgam(n,shape1,shape2,scale=1); 

a1=shape1; 

a2=shape2; 

e=2.71828182845905; 

l1=(1/a1)-1; 

l2=(1/a2)-1; 

w1=a1/(e*(1-a1)); 

w2=a2/(e*(1-a2)); 

r1=inv(1+w1); 

r2=inv(1+w2); 

seed=1; 

const1=(1/gamma(a1+1)); 

const2=(1/gamma(a2+1)); 

scale=1; 

y=J(n,2,0); 

 

do i=1 to n; 

 do until(f1/h1 > ranuni(seed) & f2/h2 > ranuni(seed) );  

  u1=ranuni(seed); 

  u2=ranuni(seed); 

   if (u1 <= r1) & (u2 <= r2) then z1=-log(u1/r1) ; 

   if u1 <= r1 & u2 <= r2  then z2=-log(u2/r2) ; 

   if u1 <= r1 & u2 > r2  then z1=-log(u1/r1) ; 

   if u1 <= r1 & u2 > r2  then z2=log(ranuni(seed))/l1 ; 

   if u2 <= r2 & u1 > r1  then z2=-log(u2/r2) ; 

   if u2 <= r2 & u1 > r1  then z1=log(ranuni(seed))/l2 ; 

   if u1 > r1 & u2 > r2  then z1=-log(u1/r1) ; 

   if u1 > r1 & u2 > r2  then z2=-log(u2/r2) ; 

    

    

    f1=const1*exp(-z1-exp(-z1/a1)); 

    f2=const2*exp(-z2-exp(-z2/a2)); 

     if z1>=0 then h1=const1*exp(-z1); else 

h1=const1*w1*l1*exp(l1*z1); 

     if z2>=0 then h2=const2*exp(-z2); else 

h2=const2*w2*l2*exp(l2*z2); 

     if f1/h1 > ranuni(seed) then q1=z1; 

     if f2/h2 > ranuni(seed) then q2=z2; 

 end; 

y[i,1]=log(scale) - (q1/a1); 

y[i,2]=log(scale) - (q2/a2); 

end; 

 

return(y); 

finish; 

 

n=30; 

alpha1=0.001; 

alpha2=alpha1; 

x=RJgam(n,alpha1,alpha2,1); 

 

print x; 

 

Comparing acceptance rates in the univariate case: 

proc iml; 
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/* acceptance rates*/ 

 

/*Liu.et.al*/ 

 

minA=0.01; 

maxA=0.5; 

step=0.02; 

L=J(maxA/step,2,0); 

AD=J(maxA/step,1,0); 

Best=J(maxA/step,1,0); 

KG=J(maxA/step,1,0); 

e=2.71828182845905; 

 

k=1; 

do i=minA to maxA by step; 

zb=0.07+0.75*(1-i)**(0.5); 

d=1.0334-0.0766*exp(2.2942*i); 

a=(2**i)*(1-exp(-d/2))**i; 

b=i*d**(i-1); 

c=a+b; 

 L[k,1]=(1+(i)/(e*(1-i)))**(-1); 

 AD[k,1]=gamma(i+1)*e/(i+e); 

 Best[k,1]=(gamma(i+1)*exp(zb))/((zb**i)*(exp(zb)+i/zb)); 

 KG[k,1]=((1/gamma(i+1))*((2**i)*(1-exp(-d/2))**i + (i*d**(i-1))*exp(-

d)))**-1; 

 L[k,2]=i; 

 k=k+1; 

end; 

 

Data=AD||Best||KG||L; 

 

names={"AD" "Best" "KG" "Ryan" "Alpha"}; 

create AccData from Data[colname=names]; 

append from Data; 

close; 

 

proc template; 

define statgraph Graph; 

dynamic _ALPHA _RYAN _ALPHA2 _BEST _ALPHA3 _AD _ALPHA4 _KG; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / yaxisopts=( label=('Acceptance rate')); 

         seriesplot x=_ALPHA y=_RYAN / name='series' connectorder=xaxis 

lineattrs=(color=CXFF0000 thickness=2 ); 

         seriesplot x=_ALPHA2 y=_BEST / name='series2' connectorder=xaxis 

lineattrs=(color=CX00FF00 pattern=SHORTDASH thickness=2 ); 

         seriesplot x=_ALPHA3 y=_AD / name='series3' connectorder=xaxis 

lineattrs=(color=CX0000FF pattern=LONGDASH thickness=2 ); 

         seriesplot x=_ALPHA4 y=_KG / name='series4' connectorder=xaxis 

lineattrs=(color=CX990099 pattern=DOT thickness=2 ); 

         discretelegend 'series' 'series2' 'series3' 'series4' / 

opaque=false border=true halign=center valign=top displayclipped=true 

down=1 order=columnmajor location=inside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 
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proc sgrender data=WORK.ACCDATA template=Graph; 

dynamic _ALPHA="ALPHA" _RYAN="RYAN" _ALPHA2="ALPHA" _BEST="BEST" 

_ALPHA3="ALPHA" _AD="AD" _ALPHA4="ALPHA" _KG="KG"; 

run; 

 

 

Comparing the efficiency of the adapted bivariate algorithm in terms of simultaneous and individual 

component simulation: 

proc iml; 

 

a=0.001; 

e=2.71828182845905; 

l=(1/a)-1; 

w=a/(e*(1-a)); 

r=inv(1+w); 

seed=1; 

const=(1/gamma(a+1)); 

scale=1; 

n= 20; 

y=J(n,1,0); 

 

k=500; 

num=J(k,1,0); 

avg=J(0.1/0.001,3,0); 

 

idx=1; 

do a=0.001 to 0.1 by 0.001;  

 do j=1 to k; 

  count =0; 

  do i=1 to n; 

   ch=ranuni(seed); 

   do until(f/h > ch);  

    u=ranuni(seed); 

     if u <= r then z=-log(u/r); else 

z=log(ranuni(seed))/l; 

      f=const*exp(-z-exp(-z/a)); 

       if z>=0 then h=const*exp(-z); 

else h=const*w*l*exp(l*z); 

        if f/h > ch then q=z; 

        count = count +1; 

   end; 

  y[i,1]=log(scale) - (q/a); 

  end; 

 num[j]=count; 

  

 

 end; 

av1=num[:]; 

avg[idx,1]=a; 

avg[idx,2]=av1; 

idx=idx+1; 

end; 

 

a1=0.001; 

a2=a1; 

e=2.71828182845905; 

l1=(1/a1)-1; 

l2=(1/a2)-1; 

w1=a1/(e*(1-a1)); 
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w2=a2/(e*(1-a2)); 

r1=inv(1+w1); 

r2=inv(1+w2); 

seed=1; 

const1=(1/gamma(a1+1)); 

const2=(1/gamma(a2+1)); 

scale=1; 

n=10; 

y=J(n,2,0); 

num1=J(k,1,0); 

idx=1; 

 

do a1 = 0.001 to 0.1 by 0.001; 

a2=a1; 

do j = 1 to k; 

count = 0; 

 

 do i=1 to n; 

 ch1=ranuni(seed); 

 ch2=ranuni(seed); 

  do until(f1/h1 > ch1 & f2/h2 > ch2 );  

   u1=ranuni(seed); 

   u2=ranuni(seed); 

    if u1 <= r1 & u2 <= r2 then z1=-log(u1/r1) ; 

    if u1 <= r1 & u2 <= r2  then z2=-log(u2/r2) ; 

    if u1 <= r1 & u2 > r2  then z1=-log(u1/r1) ; 

    if u1 <= r1 & u2 > r2  then z2=log(ranuni(seed))/l1 

; 

    if u2 <= r2 & u1 > r1  then z2=-log(u2/r2) ; 

    if u2 <= r2 & u1 > r1  then z1=log(ranuni(seed))/l2 

; 

    if u1 > r1 & u2 > r2  then z1=-log(u1/r1) ; 

    if u1 > r1 & u2 > r2  then z2=-log(u2/r2) ; 

    

    

    f1=const1*exp(-z1-exp(-z1/a1)); 

    f2=const2*exp(-z2-exp(-z2/a2)); 

     if z1>=0 then h1=const1*exp(-z1); else 

h1=const1*w1*l1*exp(l1*z1); 

     if z2>=0 then h2=const2*exp(-z2); else 

h2=const2*w2*l2*exp(l2*z2); 

     if f1/h1 > ch1 then q1=z1; 

     if f2/h2 > ch2 then q2=z2; 

     count = count +1; 

  end; 

 y[i,1]=log(scale) - (q1/a1); 

 y[i,2]=log(scale) - (q2/a2); 

 end; 

num1[j]=count; 

 

end; 

av2=num1[:]; 

avg[idx,3]=av2; 

idx=idx+1; 

end; 

 

 

 

 

cn={"alpha" "N1" "N2"}; 

create res from avg[colname=cn]; 
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append from avg; 

close; 

 

proc template; 

define statgraph Graph; 

dynamic _ALPHA _N1A _ALPHA2 _N2A; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / xaxisopts=( label=('alpha (bivariate case a1=a2)')) 

yaxisopts=( label=('Number of iterations needed for vector of 10 

components')); 

         seriesplot x=_ALPHA y=_N1A / name='series' legendlabel='Simulating 

components individually' connectorder=xaxis lineattrs=(color=CX8CA6CE 

thickness=2 ); 

         seriesplot x=_ALPHA2 y=_N2A / name='series2' 

legendlabel='Simulating components simultaneously' connectorder=xaxis 

lineattrs=(color=CXFF8273 thickness=2 ); 

         discretelegend 'series' 'series2' / opaque=false border=true 

halign=center valign=center displayclipped=true down=1 order=columnmajor 

location=inside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.RES template=Graph; 

dynamic _ALPHA="ALPHA" _N1A="N1" _ALPHA2="ALPHA" _N2A="N2"; 

run; 

 

Proportion of zeros generated in univariate case using SAS generators: 

proc iml; 

 

n=30; 

 

d=J(0.01/0.0001,3,0); 

c=0; 

c1=0; 

j=1; 

test=0; 

 

do alpha=0.0001 to 0.01 by 0.0001; 

 

 k=J(n,1,0); 

   do i=1 to n; 

    ran=rangam(1,alpha); 

     if ran <= test then 

     k[i]= .; else k[i]= log(ran);   

   end; 

 

 l=J(n,1,0); 

  call randgen(l, 'GAMMA', alpha);  

 

   do i=1 to n; 

    ran=rangam(1,alpha); 

     if l[i] <= test then 

      l[i]= .; else l[i]= log(l[i]);   

   end; 
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   do i=1 to n; 

    if k[i]=. then c=c+1; 

    if l[i]=. then c1=c1+1; 

   end; 

d[j,1]=alpha; 

d[j,2]=c/n; 

d[j,3]=c1/n; 

c=0; 

c1=0; 

j=j+1; 

  

end; 

 

cn={"a" "c" "c1"}; 

 

create Data from d[colname=cn]; 

append from d; 

close; 

 

proc template; 

define statgraph Graph; 

dynamic _A _C _A2 _C1A; 

begingraph; 

   layout lattice / rowdatarange=data columndatarange=data rowgutter=10 

columngutter=10; 

      layout overlay / xaxisopts=( label=('Alpha')) yaxisopts=( 

label=('Proportion of zeros')); 

         seriesplot x=_A y=_C / name='series' legendlabel='Rangam' 

connectorder=xaxis lineattrs=(color=CX9C3418 pattern=SOLID thickness=2 ); 

         seriesplot x=_A2 y=_C1A / name='series2' legendlabel='Randgen' 

connectorder=xaxis lineattrs=(color=CX606260 pattern=SHORTDASH thickness=2 

); 

         discretelegend 'series' 'series2' / opaque=false border=true 

halign=center valign=top displayclipped=true down=1 order=columnmajor 

location=inside; 

      endlayout; 

   endlayout; 

endgraph; 

end; 

run; 

 

proc sgrender data=WORK.DATA template=Graph; 

dynamic _A="A" _C="C" _A2="A" _C1A="C1"; 

run; 
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Abstract

Density estimation is to construct an estimate of the density function using observed data and

can be classi�ed to be parametric or nonparametric. Kernel density estimation is a popular non-

parametric density estimation technique, evolved from the histogram and naive estimator. The

univariate and multivariate case will be explored. A popular way of measuring the global accuracy

of the kernel estimator is the Mean Integrated Square Error (MISE), which are used throughout

to compare performances between di�erent estimates. Asymptotic approximations of the MISE are

used to determine the optimal bandwidth and the optimal kernel function. For the univariate case

there has been good progress towards bandwidth estimation methods but for the multivariate case,

the progress has been relatively slow. Di�erent bandwidth methods will be studied and examples on

simulated and real datasets.
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1 Introduction

One of the key concepts in statistics is the probability density function. The purpose of this function is

to describe a random variable with its probabilities. Specifying the probabilities of a random variable

gives a natural description of the distribution of the random variable and through the distribution of the

random variable most, if not all the required information can be gathered.

Density estimation is to construct an estimate of the density function using observed data. Density

estimates can be used to assess the multimodality, skewness and also give other valuable information [1].

It plays a crucial part in machine learning, classi�cation, and clustering [21].

A graphical representation of a density estimate is of great value when presenting data back to a

client. Therefore, the density estimate is fairly easy to understand thus an explanation and illustration

can be provided for non-mathematicians [21]. Although the presentation of the obtained results is a vital

aspect of Statistics it is often overlooked.

Furthermore, density estimation can be classi�ed to be parametric or nonparametric. The predom-

inant distinction between the parametric and the nonparametric approach towards density estimation

lies in the assumptions made of the observed data. The parametric approach assumes that the observed

data's underlying distribution is one of the known parametric family of distributions. In the nonparamet-

ric case, there are no such strong assumptions made about the observed data, therefore this approach is

more robust. For the parametric approach, there has to be some degree of prior knowledge of the observed

data before assumptions are made. When a parametric model is speci�ed incorrectly, the subsequent sta-

tistical analysis may lead to inconsistent estimators and tests [21]. The nonparametric approach is far

more �exible in modeling a dataset and it is also not a�ected by the speci�cation bias [1]. This approach

allows the data to �speak� for itself in determining the estimate of the density more than the parametric

approach allows where the estimate is constrained to fall in a given parametric family of distributions

[21]. Many nonparametric density estimators evolved from the classical histogram [21]. According to

Silverman [21], many statisticians are moving from parametric models towards non-parametric models in

search for increased �exibility as needed for data exploration.

The disadvantages of the histogram and the naive estimator led to the motivation for the kernel

estimator [21]. The simplest explanation of the kernel estimator would be to consider the sum of `bumps'

placed at each observation. The kernel function (a known density function) determines the shape of

the `bump'. The width of the `bump' is controlled by the bandwidth, otherwise known as the smoothing

parameter. Note that the variance is a function of the bandwidth. Only �xed bandwidth will be considered
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here i.e. the bandwidth is held constant across the domain of the data.

Kernel density estimation is one of the most commonly used nonparametric techniques in data analysis

[21]. According to Silverman [21], this is not necessarily the best method to use in all cases, but there

are more than a few reasons to consider the kernel method as a primary option. The kernel method

is extensively relevant, particularly in the univariate case. It has strong intuitive appeal, conceptual

simplicity, and its current computing standards make it inexpensive to implement [21]. Silverman also

mentioned that it is worthwhile understanding the kernel method's behavior before considering other non-

parametric methods [21]. Kernel density estimation is separated into the univariate case and multivariate

case. Analysis of multivariate data is very important since the outcome of a situation usually depends on

more than one variable. The presentation of multivariate densities is di�cult. It is easy to understand the

graphics of a contour plot or a two-dimensional density function but it will take experts with sophisticated

graphics facilities to understand a presentation of a three-dimensional density function [21]. Therefore,

it is usually not the graphics that are required but the function so that it can be used in some other

statistical technique to give the required results. The multivariate kernel estimator is a generalization of

the univariate kernel estimator [21].

One-sided or two-sided bounded data can be problematic for kernel density estimation. Since the

kernel function used in this method is not bounded it will result in treating this observed bounded data

as if it is not bounded. Kernel density estimates will often go beyond the bounds of the data and then

the estimate is considerable bias at and near the bounds of the data [11]. As stated in [9], Jones provided

a variety of boundary correction methods for kernel density estimation using a �generalised jackkni�ng�

approach for many of the straightforward methods. A disadvantage of all generalised jackknife boundary

corrections is that they have a natural tendency to assign negative values to the density estimate near the

boundaries [11]. Jones and Foster [11] use a simple �non-negativisation� device which can be applied to

any boundary corrected density estimate to show that a non-negative version of each and every generalized

jackknife boundary corrected method can be obtained.

Kernel density estimation using a �xed bandwidth will result in a poor estimate when the observed

data are from a long-tailed distribution or the data exhibit multimodality [16].Working with data from a

long-tailed distribution and choosing a �xed bandwidth which adequately smooths near the mode of the

distribution will leave the tail severely undersmoothed [21]. In other words, there will appear spurious

(false) noise in the tails of the estimate because the bandwidth is �xed across the entire sample. If a

larger �xed bandwidth value is chosen, the tails will be su�ciently smoothed but it will remove important

features of the mode. For data from a multimodal distribution, it is di�cult to �nd a single bandwidth
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which will adequately di�erentiate between distinct peaks and valleys between the peaks [16]. Choosing

a bandwidth which is too large can erase modes which were signi�cant, and choosing a bandwidth which

is too small may introduce spurious peaks by undersmoothing.

Multivariate �xed bandwidth estimation will only operate with a large sample [16]. Sain [16] intro-

duced adaptive kernel density estimation which includes variable kernel estimators but also estimators

that attempt to identify and utilise the local structure and other features in the underlying density

through the sample data.

Some examples were kernel density estimation was applied to real datasets include the study of [10]

were Jones applied univariate kernel estimation to the dataset �Lean Body Mass� in the Australian

Institute of Sport which can be found in exercise 2.4 of [3] and the Old Faithful geyser dataset which

consists of 107 eruption durations of the Old Faithful geyser given by [21] was used in the studies for

[12]. Di�erent inference procedures like pattern recognition, computer vision, machine learning and data

mining use kernel estimation techniques extensively to produce the required results [15].

2 Background theory

The disadvantages of the histogram and naive estimator led to the motivation for the kernel estimator

[21]. This section will refer to [21] concerning the background theory of the kernel estimator.

The two main components of the histogram are the origin x0 and the bin width h. The bins of the

histogram fall in the intervals [x0 +mh, x0 + (m+ 1)h) for positive and negative integers m. Hence the

de�nition of the histogram follows as

f̂(x) =
1

nh
.

This value f̂(x) can be seen as the number of Xi in the same bin as x. Choosing di�erent origins can lead

to a non-statistician drawing di�erent conclusions. The bin width controls the amount of smoothing in the

histogram. The histogram is discontinuous at various points and this makes it mathematically di�cult

to calculate the derivative of the estimate. There is some degree of ine�ciency when investigating the

data using a histogram. A lack of accuracy in the study of measurements, properties, and relationships

may be present. There can be improved upon the histogram to attain more valuable information.

The naive estimator f̂(x) is an estimator of the density that follows naturally and contains a weight

function w(x), de�ned as
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w(x) =


1
2 if |x| < 1

0 otherwise

then, the de�nition of the naive estimator follows as

f̂(x) =
1

n

n∑
i=1

1

h
w

(
x−Xi

h

)
.

The simplest explanation of how the naive estimator is constructed would be to consider the sum of

`boxes' placed at each observation. The height of the 'box' is (2nh)−1 and the width of the 'box' is

2h. The height and width of the 'box' are controlled by the bin width h, also known as the smoothing

parameter. A weight function is included in the de�nition of the naive estimator. The purpose of the

weight function is to estimate the proportion of the sample contained in the interval (x − h, x + h) for

any given h. The naive estimator is similar to the histogram if every observation sampled, is the center

of a sampling interval. If this is the case, then the in�uence of the choice of the origin is limited but the

bin width is still controlling the amount by which the data is smoothed. The naive estimator has some

mathematical properties that are better than the histogram. It is not fully successful in presenting the

estimate of the density and it can lead to a misinterpretation by an untrained observer.

Some of the di�culties of the naive estimator are overcome by changing the weight function in the

de�nition of the naive estimator to a kernel function and this leads to the kernel density estimator. The

kernel estimator and the naive estimator are constructed similarly. In the case of the naive estimator, the

sum of `boxes' placed at each observation was considered. For the kernel estimator, the sum of `bumps'

placed at each observation will be considered. The kernel function determines the shape of the `bump'

and the width of the `bump' is controlled by the bandwidth h, also known as the smoothing parameter.

Deciding what the value of the bandwidth should be, takes a lot of time and e�ort. Since the bandwidth

plays a crucial role in the performance of the estimator. When the bandwidth is too small it will result

in a density estimate which is too `spiky'. A false structure of the density estimate (spurious features)

may become visible. When the bandwidth is too large important information regarding the underlying

structure of the density estimate may be lost.

One-sided or two-sided bounded data can be problematic for kernel density estimation. Since the

kernel function used in the method is not bounded it will result in treating the observed bounded data as

if it is not bounded. The kernel density estimation has also a minor disadvantage when the observed data

are from a long-tailed distribution. There will appear spurious (false) noise in the tails of the estimate

because the bandwidth is �xed across the entire sample.
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3 Univariate kernel density estimation

3.1 De�nition of the kernel estimator

The kernel estimate f̂(x) of a continuous univariate density function f(x) is de�ned as

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
=

1

n

n∑
i=1

Kh(x−Xi), where Kh(u) =
1

h
K
(u
h

)
.

The bandwidth or the smoothing parameter is represented by h and the kernel function is K(x). This

kernel function is usually a symmetric probability density function like the normal density but it can be

some other type of function although it needs to be a valid density function [21]. When considering a

�xed bandwidth the variance of the kernel function is also referred to as the bandwidth. The density

estimate also inherits all the continuity and di�erentiability properties of the kernel function [21].

3.2 Optimal bandwidth and kernel theory

3.2.1 Optimal bandwidth

The choice of the bandwidth is crucial to the performance of the kernel estimator [13, 21]. Measuring

the performance of a kernel estimator is to measure how well the kernel estimate f̂(x) �ts the data. In

other words the closeness of a kernel density estimate, f̂(x) to the true density function, f(x) [4]. There

are a few types of measures which can be used, they are also referred to as criterions. These measures

can be categorized into two main classes namely goodness-of-�t for known distributions (where the true

density function is known or assumed) and goodness-of-�t measures for unknown distributions (where

the true density function is not known or assumed) [22]. Goodness-of-�t measures for known distri-

butions are typically based on least squares approaches that attempt to minimise the squared distance

between the kernel estimate f̂(x) and the true density function. Some of these popular measures are the

mean-squared error, mean integrated squared error, and the asymptotic mean integrated squared error

[22]. Goodness-of-�t measures for unknown distributions are typically based on maximum likelihood

approaches that attempt to maximise the product of the likelihood of each data point belonging to the

estimated distribution (without knowing or assuming the true density function) [22]. The focus will be

on goodness-of-�t measures for known distributions for more information regarding the goodness-of-�t

measures for unknown distributions refer to Van der Wald in [22].

Expected value and variance of the kernel estimator

For the following derivations assume that the random sample X1, X2, . . . Xn is independent and iden-

tically distributed. The assumptions of independence and identically distributed are not common in
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real life situations but it is necessary to build the standard framework for density estimation [21]. The

expected value of the kernel estimate is de�ned to be

E[f̂(x)] =
1

nh

n∑
i=1

E

[
K

(
x−Xi

h

)]
=

1

h
E

[
K

(
x−X
h

)]
.

For a bounded measurable function g(y), the result

E[g(Xi)] =

∫
g(y)f(y)dy

can be used to set g(y) = K
(
x−y
h

)
since K is a bounded measureable function. Hence the expected value

of the kernel estimator will be

E[f̂(x)] =
1

h
E

[
K

(
x−X
h

)]
=

1

h

∫
K

(
x− y
h

)
f(y)dy

=

∫
Kh(x− y)f(y)dy

= (Kh ∗ f)(x)

(where * is the convolution operator). The variance of the kernel estimator will be

var{f̂(x)} = E[f̂(x)2]− E[f̂(x)]2

= E

[
1

n2

n∑
i=1

Kh(x−Xi)
2

]
− (Kh ∗ f)2(x)

=
1

n2

∑
i=j

E[Kh(x−Xi)Kh(x−Xj)] +
1

n2

∑
i 6= j

E[Kh(x−Xi)Kh(x−Xj)]− (Kh ∗ f)2(x)

=
1

n
E[Kh(x−X)2] +

1

n2

∑
i 6= j

E[Kh(x−Xi)]E[Kh(x−Xj)]− (Kh ∗ f)2(x)

=
1

n
(K2

h ∗ f)(x) +
(
n(n− 1)

n2
− 1

)
(Kh ∗ f)2(x)

=
1

n

{
(K2

h ∗ f)(x)− (Kh ∗ f)2(x)
}
.

Expressions for MSE and MISE

A natural measure of the error between the estimator and the true density at a single point x is the mean

square error and it is de�ned as

MSE(f̂(x)) = E

[{
f̂(x)− f(x)

}2
]
.

By this basic result E[X2] = var(X) + (E[X])2we can rewrite MSE as
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MSE(f̂(x)) = var{f̂(x)− f(x)}+
{
E
[
f̂(x)− f(x)

]}2

= var{f̂(x)}+
{
E
[
f̂(x)− f(x)

]}2

= var{f̂(x)}+
{
E
[
f̂(x)

]
− f(x)

}2

=
1

n

{
(K2

h ∗ f)(x)− (Kh ∗ f)2(x)
}
+ {(Kh ∗ f)(x)− f(x)}2 .

In the second step it is shown that the MSE is the sum of the squared bias de�ned as
[
bias(f̂(x))

]2
={

E
[
f̂(x)− f(x)

]}2

and the variance of the estimator. There is a tradeo� between the bias and the

variance

bias(f̂(x)) = E
[
f̂(x)− f(x)

]
= E

[
f̂(x)

]
− f(x)

= (Kh ∗ f)(x)− f(x).

The bias depends on the bandwidth h and if h is chosen to be a function of the sample size n then the bias

will also indirectly depend on n [21]. From the expression var{f̂(x)} = 1
n

{
(K2

h ∗ f)(x)− (Kh ∗ f)2(x)
}

it follows that the variance of the kernel estimator directly depends on h and n. Hence the variance can be

reduced by adjusting the bandwidth but then the bias will increase and vice versa [21]. A popular way of

measuring the global accuracy of the kernel estimator is the Mean Integrated Square Error since it is the

most mathematically tractable criterion and is the most commonly used in practice [4]. Mathematically

tractable refers to that the MISE can be solved in terms of a closed-form expression. The MISE is also

simple and allows for deep analysis [21]. De�ned by the following expression

MISE(f̂(x)) = E

[∫
{f̂(x)− f(x)}2dx

]
with

∫
being the de�nite integral over the real line. The MISE can also be rewritten as the sum of the

integrated square bias and the integrated variance.

MISE(f̂(x)) =

∫
E[{f̂(x)− f(x)}2]dx

=

∫
MSE(f̂(x))dx

=

∫ {
E
[
f̂(x)

]
− f(x)

}2

dx+

∫
var{f̂(x)}dx

=

∫ [
bias(f̂(x))

]2
dx+

∫
var{f̂(x)}dx

=

∫
{(Kh ∗ f)(x)− f(x)}2 dx+

∫
1

n

{
(K2

h ∗ f)(x)− (Kh ∗ f)2(x)
}
dx
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∫
(K2

h ∗ f)(x)dx =

∫ ∫
K2
h(x− y)f(x)dy dx

=

∫ ∫
1

h2
K

(
x− y
h

)2

f(x)dy dx

=

∫ ∫
1

h
K(z)2f(x− hz)dz dx

=

∫
1

h
K(z)2

∫
f(x− hz)dx dz

=
1

h

∫
K(x)2dx

The second set of equations is to show a simpler expression for
∫
(K2

h ∗ f)(x)dx which leads to a simpler

expression for the MISE. The reason for the last step is f(x− hz) will integrate to one over the de�nite

integral since f(x) is a valid density function. Hence a simpler expression for the MISE

MISE(f̂(x)) =

∫
(Kh ∗ f)2(x)dx− 2

∫
(Kh ∗ f)(x)f(x)dx+

∫
f(x)2dx− 1

nh

∫
K(x)2dx− 1

n

∫
(Kh ∗ f)2(x)dx

=

(
1− 1

n

)∫
(Kh ∗ f)2(x)dx− 2

∫
(Kh ∗ f)(x)f(x)dx−

1

nh

∫
K(x)2dx+

∫
f(x)2dx.

Approximations for the MSE and the asymptotic MISE

Asymptotic results will provide intuition on how the bandwidth operates as a smoothing parameter [10].

For approximations of the MSE and AMISE, the following assumptions are needed. The second derivative

of f(x) is a continuous, quadratically integrable (measurable function for which the integral of the square

of the absolute value is �nite) and monotonic function (either a completely increasing or completely

decreasing function). The kernel function is symmetric about the origin and satis�es the following

∫
K(z)dz = 1

∫
zK(z)dz = 0

∫
z2K(z)dz = µ2(K) = σ2

k 6= 0.

Typically K is set to be a symmetric probability density function like the normal density and σ2
k is a

constant which is the variance of this density function [21]. Note the following notation R(g) =
∫
g(x)2dx

then let the bandwidth be hnwhich is a non-random sequence of positve numbers such that lim
n→∞

hn = 0

and lim
n→∞

nhn =∞.

Consider the following change of variable z = x−y
h in the expressions for the expected value and
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variance of the kernel estimator

E
[
f̂(x)

]
= (Kh ∗ f)(x)

=
1

h

∫
K

(
x− y
h

)
f(y)dy

=

∫
K(z)f(x− hz)dz

var{f̂(x)} = 1

n

{
(K2

h ∗ f)(x)− (Kh ∗ f)2(x)
}

=
1

n

{
1

h

∫
K

(
x− y
h

)2

f(y)dy −
(
1

h

∫
K

(
x− y
h

)
f(y)dy

)2
}

=
1

nh

∫
K(z)2f(x− hz)dz − 1

n

{∫
K(z)f(x− hz)dz

}2

.

Theorem 1. Taylor's theorem: Let f be a real-valued function de�ned on the whole real space and x a

element of the whole real space. Assume f has q continuous derivatives in the interval (x− δ, x+ δ) for

some δ > 0. Then for any sequence αn converging to zero,

f(x+ αn) =

q∑
j=0

αjn
j!
f (j)(x) + o(αqn).

A Taylor series expansion of f(x− hz) about x gives

f(x− hz) = f(x)− hzf ′(x) + 1

2
h2z2f ′′(x) + o(h2)

therefore,

bias(f̂(x)) = E
[
f̂(x)

]
− f(x)

= f(x)

∫
K(z)dz − hf ′(x)

∫
zK(z)dz +

1

2
h2f ′′(x)

∫
z2K(z)dz + o(h2)− f(x)

= f(x) +
1

2
h2f ′′(x)σ2

k + o(h2)− f(x)

=
1

2
h2f ′′(x)σ2

k + o(h2)

≈
1

2
h2f ′′(x)σ2

k.
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Similarly,

var{f̂(x)} = 1

nh

∫
K(z)2f(x− hz)dz − 1

n

∫
K(z)f(x− hz)dz

=
1

nh

∫
K(z)2f(x− hz)dz − 1

n

{
f(x) + bias(f̂(x))

}2

=
1

nh

∫
K(z)2f(x− hz)dz − 1

n

{
f(x) + o(h2)

}2
=

1

nh

∫
K(z)2 {f(x)− hzf ′(x) + . . . } dz + o(n−1)

=
1

nh
f(x)

∫
K(z)2dz + o(n−1)

≈
1

nh
R(K)f(x)

where R(K) =
∫
K(x)2dx. Using the above it follows that

MSE(f̂(x)) = var{f̂(x)}+ [bias(f̂(x))]2

≈
1

nh
R(K)f(x) +

1

4
h4σ4

kf
′′(x)2

AMISE(f̂(x)) =

∫
bias(f̂(x))2dx+

∫
var{f̂(x)}dx

≈
1

4
h4σ4

kR(f
′′) +

∫
1

nh
R(K)f(x)dx

≈
1

4
h4σ4

kR(f
′′) +

1

nh
R(K)

where R(f ′′) =
∫
f ′′(x)2dx. Therefore the bandwidth h which minimizes the AMISE is the optimal

bandwidth given by

hAMISE =

[
R(K)

nσ4
kR(f

′′)

] 1
5

.

The following notation is also sometimes encountered [24]

hAMISE =

[
R(K)

n[µ2(K)]2R(f ′′)

] 1
5

.

3.2.2 Optimal kernel theory

Cline [2] showed that for a kernel estimator to be acceptable and valid the kernel function has to be

symmetric and unimodal. Substituting hAMISE back into the approximation for AMISE will result in

5

4
C(K)R(f ′′)

1/5n−
4/5

where C(K) is a constant given by

C(K) = σ
2/5R(K)

4/5.
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Kernel function K(z) E�ciency (to 4 d.p.)

Epanechnikov

{
3

4
√
5

(
1− 1

5z
2
)

for −
√
5 ≤ z ≤

√
5

0 otherwise
1

Biweight

{
15
16 (1− z

2)2 for |z| < 1

0 otherwise
0.9939

Triangular

{
1− |z| for |z| < 1

0 otherwise
0.9859

Gaussian 1√
2π
exp{− 1

2z
2} 0.9512

Rectangular

{
1
2 for |z| < 1

0 otherwise
0.9295

Table 1: Some kernel functions and their e�ciencies

If the bandwidth is chosen correctly then the kernel function, K should be chosen such that C(K) will

be a small value [21]. The Epanechnikov kernel

Ke(z) =


3

4
√
5

(
1− 1

5z
2
)
−
√
5 ≤ z ≤

√
5

0 otherwise

solves this problem and makes it theoretically possible to obtain a small value of the MISE [21]. The

e�ciency of any symmetric kernel function is de�ned by Silverman [21] as

eff(K) = {C(Ke)/C(K)}4/5

=
3

5
√
5
σ
−1/2
k R(K)−1.

Hence the e�ciency of a kernel function as de�ned by Silverman is a relative e�ciency to the Epanechnikov

kernel. Table 1 is found in [21] and Silverman describes the purpose of this table as to see how close

the e�ciency of di�erent kernel functions are to one another. Therefore the choice of the kernel function

should be based on other considerations as well, such as the degree of di�erentiability required or the

computational e�ort involved.

A practical way of �nding the optimal kernel function is to compare plots of di�erent kernel estimates

for the dataset of interest but these comparisons become meaningless when identical bandwidths are used

[13]. Since for the obvious, it would be just to change the kernel function in the kernel estimate each time

leaving the bandwidth unchanged. The problem is that the comparisons are not only based on di�erent

kernel functions but also based on di�erent amounts of smoothing since local averaging drives the density

estimator [13]. Marron and Nolan's [13] approach to solving this problem involved a so-called canonical

representation of the kernels which is a rescaling of the kernel function. They found that each kernel

function has exactly one rescaling that allows for functional comparison. This canonical rescaling of the
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kernel separates the optimal bandwidth from the kernel function for a complete discussion see [13].

3.3 Bandwidth estimation methods

The most suitable corresponding bandwidth will be selected after the appropriate kernel function has

been selected [22]. As discussed above it is very important to choose the correct amount of smoothing.

According to Silverman [21], the purpose of the density estimate will give an indication of the amount

of smoothing. For example, there will be relatively more smoothing present when the density estimate is

used to analyse the underlying structure of the data than when the density estimate is used to present

results back to the client. Since it is possible for the reader to do more smoothing 'by eye'. Pointed out by

Jones [10] it is often important that a software package choose the amount of smoothing for the density

estimate automatically for various reasons such as software packages need a default, people that are not

experts in the �eld and will save time for the experts to give them a good functional starting point.

Loader [12] emphasized on the opposite, how important it is to not just reply blindly on a bandwidth

estimation method that will automatically give you the right bandwidth. Loader's reason for this is that

if only the kernel estimate is plotted that �ts, a very one-sided view of the bias-variance trade-o� is

obtained, seeing the variance, but not the bias.

Bandwidth estimation methods are typically derived by optimizing an objective function with respect

to the bandwidth of the kernel estimator and then �nding an optimal solution [22]. An objective function

measures the performance of the estimator i.e. the closeness of a kernel density estimate f̂(x) to the true

density function f(x) [4]. Objective functions refer to types of criterions discussed above, for example,

the MSE, MISE and the AMISE.

Jones [10] classi�ed bandwidth estimation methods that were developed before the 1990's as ��rst

generation� methods. Loader [12] refers to these methods as classical estimation methods. The band-

width methods developed after the 1990's was classi�ed by Jones as �second generation� methods. Also

known as plug-in methods. There has been a massive improvement upon bandwidth estimation methods'

performances. They are far more superior and ready to be used as defaults in some software packages

[10]. Sheather and Jones [20] developed the so-called �solve-the-equation plug-in� method. According to

Jones [10], it is the best method in terms of the overall performance and should become the benchmark

for good performance.

Silverman's rule of thumb

Silverman's rule of thumb consists of substituting the unknown part of hAMISE which is R(f ′′) by an

estimated value based on a standard family of distributions. Silverman speci�cally used the normal
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distribution as a natural choice for the standard family of distributions [21]. In other words, Silverman

based this method on a normal reference rule. Let φ represents the standard normal density function

then the unknown part of hAMISE follows as

R(f ′′) =

∫
f ′′(x)2dx

= σ−5
∫
φ′′(x)2dx

=
3

8
π−

1/2σ−5

≈ 0.212σ−5.

Using this and a Gaussian kernel function hAMISE will result in

hAMISE = (4π)−1/10
3

8
π−

1/2σn−1/5

=

(
4

3

)1/5

σn−1/5

= 1.06σn−
1/5.

The next step will then only be to substitute an estimate for σ like the sample standard deviation s or

a more robust estimate for σ into this expression. If the distribution of the population is normal this

method will work well but Silverman stated that this method may oversmooth the estimate of the density

if the true distribution of the population is multimodal as a result of the value of (R(f ′′))
1/5

being larger

relative to the standard deviation [21].

Silverman investigated the sensitivity of the optimal bandwidth to skewness and kurtosis in unimodal

distributions. Discovering that for heavily skewed data using the above bandwidth estimator will over-

smooth the estimate of the density but this bandwidth estimator is remarkably insensitive to kurtosis

within the t family of distributions [21]. Therefore an improvement of this bandwidth method will be to

use a more robust measure of spread i.e. the interquartile range R of the underlying normal distribution

hAMISE = 0.79Rn−1/5

but unfortunately, this will oversmooth the density estimate even more if the true distribution of the

population is bimodal. Silverman reached the conclusion that the best will be using a adaptive estimate

of spread considering both situations

A = min(σ̂, R/1.34)
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hence hAMISE will be

hAMISE = 1.06An−1/5.

Reducing the factor from 1.06 to 0.9 will improve the bandwidth estimator even further. Hence Silver-

man's rule of thumb will be

hROT = 0.9An−1/5.

Silverman stated that this rule of thumb will do very well for a wide range of densities and is trivial to

evaluate. For many purposes, it will be an adequate choice of the bandwidth and for other purposes, it

will be a good starting point in search for an adequate choice of the bandwidth [21].

Least squares (unbiased) cross-validation

The idea came from representing the integrated squared error (ISE) as

ISEh(f̂) =

∫ (
f̂h(x)− f(x)

)2
dx =

∫
f̂h(x)

2dx− 2

∫
f̂h(x)f(x)dx+

∫
f(x)2dx.

The optimal bandwidth hLSCV that would minimize ISE will also be the same bandwidth that will

minimize the �rst two terms of the above expression. The �rst term,
∫
f̂h(x)

2dx is entirely known and

the second term
∫
f̂h(x)f(x)dx can be estimated by using method of moments [10]. Refer to [21] where

Silverman gives a brief discussion on the least squares cross-validation method.

Biased cross-validation

Scott and Terrell [19] developed the following bandwidth method. The biased cross-validation method

is constructed such that it attempts to directly minimize the AMISE. Estimating the unknown part

in AMISE i.e. R(f ′′) results in another kernel density estimation problem. Hence it requires selecting

another bandwidth. In [10] this di�culty is addressed by creating a dummy variable of minimization and

then taking the bandwidth to be this dummy variable. The smallest local minimizer hBCV of

BCVh =
1

nh
R(K) + h4

[
R(f̂ ′′α)−

R(K ′′)

mh

](∫
x2K/2

)2

gives better empirical performance than the global minimizer. See [19] for a detailed discussion on the

biased cross-validation method.
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Solve-the-equation plug-in-approach

Recall the integrated bias and the integrated variance approximations

Biash(x) = E
[
f̂h(x)− f(x)

]
≈
h2

2
f ′′
∫
z2K(z)dz

var{f̂h(x)} =
f(x)

nh

∫
K(z)2dz − f(x)2

n

these approximations are used to describe a plug-in-approach [12]. De�ned the optimal value for the

bandwidth, hAMISE to be

hAMISE =

[
R(K)

nσ4
k

∫
f ′′(x)2dx

]1/5

.

The idea of this method is to plug in an estimate of the unknown
∫
f ′′(x)2dx into the expression for

hAMISE [10]. Loader [12] stated that this unknown
∫
f ′′(x)2dx will usually be derived from a �pilot�

kernel estimate of the second derivative

f̂ ′′p (x) =
1

np3

n∑
i=1

K ′′
(
Xi − x
p

)
∫
f̂ ′′p (x)

2dx =
1

n2p6

n∑
i=1

n∑
j=1

∫
K ′′

(
Xi − x
p

)
K ′′

(
Xj − x
p

)
dx

then, the standard normal kernel φ(x) is used to obtain

∫
f̂ ′′p (x)

2dx =
1

n2(
√
2p)5

n∑
i=1

n∑
j=1

φ(4)
(
Xi −Xj√

2p

)
.

A pilot bandwidth p is selected such that there exists a relation between the bandwidth used in the kernel

estimator h and this pilot bandwidth p [12]. Clearly, the plug-in step alone doesn't solve what h should

be since by varying p a wide range of choices for h as describe by Loader [12]. Jones also mentioned

this di�culty in [10]. The solution that is most commonly used is to assume a relation between p and

h [12]. There are various ideas on the plug-in method in the literature some stated by Loader [12] as

di�erent ideas for specifying p, alternative estimates of the unknown
∫
f ′′(x)2dx, using more accurate bias

approximations in the expression for the MISE. Sheather and Jones [20] developed the following solution

for the relation between p and h. The idea behind this solve-the-equation plug-in-approach developed by

Sheather and Jones is to take hSJPI to be the solution of the �xed-point equation

h =

[
R(K)

nR(f ”g(h))(
∫
x2K)2

]1/5
.
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An important di�erence between this approach and the biased cross-validation used in [10] is that for

this approach the pilot bandwidth is written in the form g(h). Since there is a great di�erence between

bandwidths that are appropriate for curve estimation and bandwidths that are appropriate for estimating

R(f ”) as referred to by [10].

3.4 Comparing classical bandwidth estimation methods with plug-in meth-

ods

This section refers to the comparison studies done by Jones [10] and Loader [12]. These comparison

studies include evaluation of real and simulated data to compare the performance between classical and

plug-in methods. The asymptotic performances of these methods were also explored. For the real data

example, Jones [10] used the variable �Lean Body Mass� in the Australian Institute of Sports data in

exercise 2.4 of [3]. The Old Faithful geyser dataset which consists of 107 eruption durations of the Old

Faithful geyser given by [21] was used in the study of Loader [12]. The classical methods referred to by

Jones are Silverman's rule of thumb, least squares cross-validation and biased cross-validation (using a

dummy variable as referred to above). Loader [12] studied the likelihood cross-validation, akaike-style

criterion, least squares cross-validation as classical methods. Both studies considered the SJPI plug-in

method. Loader classi�ed the biased cross-validation method as a plug-in method, assuming the relation

to be p = h.

Through the real dataset example and considering other examples Jones concluded that the kernel

density estimate using the classical method Silverman's rule of thumb is often extremely oversmoothed

which leads to missing important features [10]. Least squares cross-validation is unreliable since its

performance is variable and will often undersmooth the estimate. Biased cross-validation has a tendency

to oversmooth the estimate and its performance is also variable. Jones stated supported by the real data

example that the SJPI plug-in method results in the best performer which is consistent, stable and can

also be used as the default in software packages [10].

It is extremely important to perform diagnostics to detect lack of �t and this is often neglected [12].

Loader used the Old Faithful data, simulations based on a smoothed bootstrap approach, residual diag-

nostics and higher order �ts to conclude that classical methods are correct in choosing small bandwidths,

and the plug-in methods incorrectly oversmooth the estimate, with regard to the integrated square error

loss function.

Loader [12] draws the conclusion that much of the criticism towards classical methods especially cross-

validation can actually be pointed towards kernel estimation and �xed bandwidth selection methods.
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Loader [12] discovered that classical methods particularly the least squares cross-validation oversmooth

the estimate when the underlying distribution of the data has heavy tails. Also pointed out by [18] when

the data has heavy tails, the least cross-validation method produces inconsistent �xed bandwidth kernel

estimates. This was the motivation for variable bandwidth kernels derived by Schuster and Gregory [18]

where the authors concluded a �xed bandwidth estimate is inadequate for data with heavy tails.

In [12] Loader discussed some �aws of the literature for comparison studies done between classical

selectors and plug-in methods. The plug-in methods essentially involve making some considerable prior

assumptions about what the bandwidth should be and if this information is wrong the plug-in estimates

will fail. Plug-in methods use higher order pilot estimates to obtain their information from the data.

If classical selectors were also allowed to consider higher order methods then the result would be better

estimates and comparison studies may have a di�erent conclusion.

4 Multivariate kernel density estimation

4.1 De�nition of the multivariate kernel estimator

The de�nition of the multivariate kernel density estimator, f̂(x) as in [5] for a d-variate random sample

X1, X2, . . . , Xnis de�ned as

f̂(x) =
1

n

n∑
i=1

|H|−1/2K
[
H−

1/2(x−Xi)
]
=

1

n

n∑
i=1

KH(x−Xi)

where x = (x1, x2, . . . , xn)
′ and Xi = (Xi1, Xi2, . . . , Xid)

′ for i = 1, 2, . . . , n. The kernel function,

K(x) is now de�ned for a d-dimensional x satisfying

∫
Rd
K(x)dx = 1.

Usually K(x) is a symmetric probability density function and the bandwidth matrix, H : d × d is

symmetric and positive de�nite [5, 24].

In general the bandwidth matrix,H will have 1
2d(d+1) independent elements which means that even

when d is not that large it will still be a considerable number of parameters that have to be chosen.

Wand and Jones suggested the following two restrictions to simplify the kernel estimator [24]. Let F

be the class of symmetric, positive de�nite d × d matrices, where the restriction HεD is imposed, with

D ⊆ F being the subclass of diagonal positive de�nite d × d matrices. In other words this restriction

HεD leads to a bandwidth matrix with only diagonal elements H = diag(h21, h
2
2, . . . , h

2
d) . Now the
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kernel estimator can be written as

f̂(x) =
1

n

(
d∏
l=1

hl

)−1 n∑
i=1

K

(
x1 −Xi1

h1
,
x2 −Xi2

h2
, . . . ,

xd −Xid

hd

)
.

A futher (verkeerd gespel) restriction can be imposed by letting HεS where S = {h2I : h > 0} and

leads to the single bandwidth kernel estimator

f̂(x) =
1

n
h−d

n∑
i=1

K{(x−Xi)/h}.

Hence Wand and Jones declared that there is a hierarchical class of smoothing parameterisation to

choose from when using a multivariate kernel estimator and this will be discussed in detail later on.

(cross referecing)

4.2 Optimal bandwidth matrix and kernel theory

Optimal bandwidth matrix

The performance of multivariate kernel density estimation is dependent on the selected bandwidth matrix

and according to Duong [7], the development of good bandwidth estimation methods has been relatively

slow. Recall that performance is measured by how close the kernel estimate f̂(x) is to the true density

function f(x). In the multivariate case, MISE will be de�ned as

MISE(f̂(x)) = E

[∫ (
f̂(x)− f(x)

)2
dx

]
=

∫
Bias

(
f̂(x)

)2
dx+

∫
var

(
f̂(x)

)
dx.

For the derivations of �nding the optimal bandwidth matrix �rst assume that the d-variate sample

X1, X2, . . . , Xn is independent and identically distributed. The expected value, bias, and variance of the

kernel density estimate are given by

E
[
f̂(x)

]
=E [KH(x−X)]

=

∫
KH(x− y)f(y)dy

=(KH ∗ f)(x)

Bias
(
f̂(x)

)
=(KH ∗ f)(x)− f(x)

V ar
(
f̂(x)

)
=n−1

{
(K2

H ∗ f)(x)− (KH ∗ f)(x)2
}
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(where * is the convolution). Now obtaining an expression for the MISE through combining the squared

bias and the variance

MISE(f̂(x)) = n−1
∫
[(K2

H ∗ f)(x)− (KH ∗ f)(x)2]dx+

∫
[(KH ∗ f)(x)− f(x)]2dx

= n−1R(K)|H|−1/2 + (1− n−1)
∫
(KH ∗ f)(x)2dx− 2

∫
(KH ∗ f)(x)f(x)dx+R(f)

where R(g) =
∫
g(x)2dx for any square integrable function g. In the multivariate case MISE is not a

mathematically tractable expression i.e. it does not have a closed form except if the true density function

f(x) has a normal mixture density and the Gaussian kernel function is used [4]. Therefore as referred to

by Duong [4], it is extremely di�cult to �nd the minimizer HMISEof the MISE

HMISE = argmin
HεH

MISE(f̂(x))

where H is the space of symmetric, positive de�nite d × d matrices. The asymptotic approximation

of the MISE is a mathematically tractable expression and the minimizer HAMISE of the AMISE can

be found more easily than HMISE . This asymptotic approximation will provide intuition on how the

bandwidth matrix operates as the smoothing parameter. Wand and Jones derived a simple asymptotic

approximation to the MISE using the multivariate version of Taylor's theorem [24].

Theorem 2. Multivariate version of Taylor's theorem

Let g be a d-variate function and αnbe a sequence of d×1 vectors with all components tending to zero.

Also, let Dg(x) be the vector of �rst-order partial derivatives of g and Dg(x) be the Hessiam matrix of g,

the d× d matrix having (i, j) entry equal to

∂2

∂xi∂xj
g(x).

Then, assuming that all entries of Dg(x) are continuous in a neighbourhood of x will lead to the following

result

g(x+ αn) = g(x) + α′nDg(x) +
1

2
α′nHg(x)αn + o(α′nαn).

The following assuptions are made by Wand and Jones to be able to use the multivariate version of

Taylor's theorem:

1. Each entry of Hf (.) is piecewise continuous and square integrable.

2. H =Hn is a sequence of bandwidth matrices such that n−1|H|−1/2 and all entries of H approach

zero as n→∞. Also, assume the ratio of the largest and smallest eigenvalues of H is bounded for

all n.
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3. K is a bounded, compactly supported d-variate kernel satisfying

∫
K(z)dz = 1∫
zK(z)dz = 0∫

zz‘K(z)dz = µ2(K)I

where µ2(K) =
∫
z2iK(z)dz is independent of i. The AMISE can be expressed as

AMISE(f̂(x)) =

∫
bias

(
f̂(x)

)2
dx+

∫
var

(
f̂(x)

)
dx

since the multivariate case is a generalization of the univariate case. The following matrix results is

needed to be able to derive the asymptotic bias of the kernel estimator. Let A : d× d be a square

matrix then

tr(A) =

d∑
i=1

aii

tr(AB) = tr(BA)

(1)

whenever both matrix products are de�ned. The meaning ofvecA is equal to stacking the columns of

A underneath each other in order from left to right and vechA is obtained from vecA by eliminating

all the above-diagonal elements of A. For example in the bivariate case

A =

 a11 a12

a12 a22



vec(A) =(a11, a12, a12, a22)‘

vech(A) =(a11, a12, a22)‘.

If Ais symmetric then vechA contains each of the distinct elements of A and vecAcontains the

elements of vechA with some duplicates. Dd : d2 × 1
2d(d + 1) is called the duplication matrix of

order d. It is a unique matrix of zeros and ones such that

DdvechA = vecA. (2)
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For example if d = 2 then the duplication matrix of order 2 will be

D2 =



1 0 0

0 1 0

0 1 0

0 0 1


.

The following result holds for all square matrices A

D′dvec(A) = vech(A+A′ − dgA) (3)

where dgA has the same diagonal elements as A and all the non-diagonal elements of the matrix

dgA is equal to zero. For example in the bivariate case

A =

 a11 a12

a12 a22



dgA =

 a11 0

0 a22

 .

A useful result is

tr(A′B) = vec(A)′vec(B). (4)

Suppose A : d× d is a invertible matrix then for linear changes of variables when integrating over

R ∫
g(Ax)dx = |A|

∫
g(y)dy. (5)

Using the above matrix results and the multivariate version of Taylor's theorem Wand and Jones [24]
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derived expressions for the asymptotic bias and variance of the kernel estimator

E
[
f̂(x)

]
= (KH ∗ f)(x)

=

∫
KH(x− y)f(y)dy

=

∫
|H|−1/2K(H−1/2(x− y))f(y)dy

=

∫
K(z)f(x−H1/2z)dz

=

∫
K(z){f(x)− (H1/2z)‘Df (x) +

1

2
(H1/2z)‘Hf (x)(H1/2z)}dz + o{tr(H)}

=

∫
K(z)f(x)dz −

∫
z‘H1/2Df (x)K(z)dz +

1

2

∫
z‘H1/2Hf (x)H1/2zK(z)dz + o{tr(H)}

= f(x) + 0 +
1

2
tr{H1/2Hf (x)H1/2

∫
zz‘K(z)dz}+ o{tr(H)} = f(x) +

1

2
µ2(K)tr{HHf (x)}+ o{tr(H)}

= f(x) + 0 +
1

2
tr{H1/2Hf (x)H1/2

∫
zz‘K(z)dz}+ o{tr(H)}

= f(x) +
1

2
µ2(K)tr{HHf (x)}+ o{tr(H)}

bias
(
f̂(x)

)
= E

[
f̂(x)

]
− f(x)

≈ 1

2
µ2(K)tr{HHf (x)}

var
(
f̂(x)

)
= n−1

{
(K2

H ∗ f)(x)− (KH ∗ f)(x)2
}

= n−1

{∫
KH(x− y)2f(y)dy −

[∫
KH(x− y)f(y)dy

]2}

= n−1

{∫
|H|−1K(H−1/2(x− y))2f(y)dy −

[∫
|H|−1/2K(H−1/2(x− y))f(y)dy

]2}

= n−1

{
|H|−1/2

∫
K(z)2f(x−H1/2z)dz −

[∫
K(z)f(x−H1/2z)dz

]2}

= n−1|H|−1/2R(K)f(x) + o(n−1H−1/2)

var(f̂(x)) ≈ n−1|H|−1/2R(K)f(x)

where R(K) =
∫
K(z)2dz. By the integrability assumptions (assumption 1 and 3) Wand and Jones

combined the above expressions to obtain the AMISE for the multivariate case

AMISE(f̂(x)) =

∫
bias

(
f̂(x)

)2
dx+

∫
var

(
f̂(x)

)
dx

=
1

4
µ2(K)2

∫
tr2{HHf (x)}dx+ n−1|H|−1/2R(K).
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Duong also studied multivariate kernel density estimation and used the following notation

AMISE(f̂(x)) =
1

4
µ2(K)2

∫
tr2{HD2f(x)}dx+ n−1|H|−1/2R(K)

where D2f(x) is the Hessian matrix of f(x) [4]. This Hessian matrix is de�ned as a square matrix of

second-order partial derivatives of f(x). For example in the bivariate case the Hessian matrix of f(x1, x2)

i.e. D2f(x) will be

D2f(x) =

 ∂2f(x1, x2)
∂x1x1

∂2f(x1, x2)
∂x1x2

∂2f(x1, x2)
∂x2x1

∂2f(x1, x2)
∂x2x2

 .

Back to the expression by Wand and Jones they showed that
∫
tr2{HHf (x)}dx can be expanded using

the matrix results (1) and (4) from above

∫
tr2{HHf (x)}dx =

∫
vec(H)‘vec(Hf (x))vec(Hf (x))‘vec(H)dx

=

∫
vech(H)‘Dd‘vec(Hf (x))vec(Hf (x))‘Ddvech(H)dx

= vech(H)‘ΨFvech(H)

where ΨF : 1
2d(d+ 1)× 1

2d(d+ 1) is (using matrix result (3))

ΨF =

∫
vech{2Hf (x)− dgHf (x)} × vech{2Hf (x)− dgHf (x)}‘dx.

Hence another expression for AMISE is given by

AMISE(f̂(x)) = n−1|H|−1/2R(K) +
1

4
µ2(K)2vech(H)‘ΨFvech(H).

The ΨF matrix might look complicated but Wand and Jones found a simple formula to obtain the entries

of ΨF by using integration by parts [24]. Hence an expression for ΨF can be explicitly stated in terms

of its individual elements [4]. Consider the following notation let r = (r1, r2, . . . , rd) where the elements

of this r vector are non-negative integers and let |r| =
d∑
i=1

ri then the r-th partial derivative of f(x)

(assuming the derivatives exists) can be written as

f (r)(x) =
∂|r|

∂xr11 ∂x
r2
2 . . . ∂xrdd

f(x).

Then Wand and Jones showed that

∫
f (r)(x)f (r

′)(x)dx = (−1)|r|
∫
f (r+r

′)(x)f(x)dx
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if |r + r′| is even, and 0 otherwise. Using this, the authors discovered that each entry of ΨF can be

written in the form

ψr =

∫
f (r)(x)f(x)dx = E

[
f (r)(X)

]
which is called the integrated density derivative functional by Duong and Hazelton [6] where |r| is even.

For example consider the bivariate case then ΨF will be given by

ΨF =


ψ4, 0 2ψ3, 1 ψ2, 2

2ψ3, 1 4ψ2, 2 2ψ1, 3

ψ2, 2 ψ1, 3 ψ0, 4

 .

Recall the expression for the AMISE used by Duong

AMISE(f̂(x)) =
1

4
µ2(K)2

∫
tr2{HD2f(x)}dx+ n−1|H|−1/2R(K).

An alternative expression for the AMISE is given by

AMISE(f̂(x)) = n−1R(K)|H|−1/2 + 1

4
µ2(K)2(vechH)‘Ψ4(vechH)

since
∫
Rd tr

2(HD2f(x))dx = (vechH)‘Ψ4(vechH) under the conditions that all elements of D2f(x) are

piecewise continuous and squared integrable, H → 0 and n−1|H|−1/2 → 0 as n → ∞[4]. The matrix

Ψ4 has dimensions 1
2d(d + 1) × 1

2d(d + 1) and note that the subscript 4 on Ψindicates the order of the

derivatives involved

Ψ4 =

∫
Rs

vech(2D2f(x)− dgD2f(x))vech(2D2f(x)− dgD2f(x))‘dx.

In the univariate case a general explicit expression for the AMISE-optimal bandwidth exists but in the

multivariate case it is not available but Wand and Jones showed in the case where HεD and HεS it is

possible to write down an explicit expression [25]. Hence the bandwith matrix reduces to

H = h2I

and then the alternative expression of the AMISE describe by Wand and Jones reduces to

AMISE(f̂(x)) = n−1h−dR(K) +
1

4
h4µ2(K)2

∫
{∇2f(x)}2dx
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Multivariate kernel function K(x)

Standard multivariate normal K(x) = (2π)−d/2exp(− 1
2x‘x)

Multivariate Epanechnikov Ke(x) =

{
1
2c
−1
d (d+ 2)(1− x‘x) if x‘x < 1

0 otherwise

K2(x) K2(x) =

{
3π−1(1− x‘x)2 if x‘x < 1

0 otherwise

K3(x) K3(x) =

{
4π−1(1− x‘x)3 if x‘x < 1

0 otherwise

Table 2: Some multivariate kernel functions

where

∇2f(x) =

d∑
i=1

(
∂2

∂x2i

)
f(x)

the explicit expression for the AMISE-optimal bandwidth is then given by

hAMISE =

[
dR(K)

µ2(K)2
∫
{∇2f(x)}2dxn

]1/(d+4)

.

Kernel theory

In Table 2 di�erent multivariate kernel functions are given. For the multivariate Epanechnikov kernel

function cd represents the volume of the d-dimensional sphere [21]. Meaning for 1-dimensional c1 = 2, for

2-dimensional c2 = π, for 3-dimensional c3 = 4π/3, etc. In the univariate case di�erent kernel functions

achieve very similar results for the MISE, which also holds for the multivariate case. Therefore the choice

of the kernel function should be based on other considerations for example taking concern about the

computational e�ort involved in calculating the kernel estimate. Also, note that the kernel estimator

will inherit the smoothness properties of the selected kernel function [21]. The Epanechnikov kernel is

the optimal kernel for only considering minimizing the MISE [21]. The most useful kernel functions in

the bivariate case are K2(x) and K3(x) according to Silverman [21]. Since these kernel functions lead to

kernel estimates which have higher order di�erentiability and in addition to this they can be calculated

with less computational e�ort.

4.3 Optimal bandwidth matrix methods

Multivariate kernel density estimators involves far more mathematically and computationally aspects

than univariate kernel density estimators [4]. Selecting a matrix and not just a single value for the band-

width raises di�culties [4]. The bandwidth matrix brings about some important information about the

orientation of the kernel function [4]. The parameterisation of the bandwidth matrix controls the type

of orientation of the kernel function [4]. Wand and Jones [23] considered parameterisation for bivariate

bandwidth matrices and classi�ed them into three main classes of parameterisation which are summa-
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Class 1 Symmetric, positive de�nite matrices H =

(
h11 h12
h12 h22

)
Class 2 Diagonal, positive de�nite matrices H =

(
h11 0
0 h22

)
Class 3 Positive constants times the identity matrix h2I =

(
h2 0
0 h2

)
Table 3: Parameterisation for bivariate bandwidth matrices

rized in Table 3. Class 1 parameterisation for bandwidth matrices are also referred to as unconstrained

bandwidth matrices and class 2 are also referred to as constrained bandwidth matrices. Duong [5] stud-

ied the performance of unconstrained and diagonal bandwidth matrices in the bivariate case. Where the

simulation part of Duong's study included simulations of the 'dumbbell' density which is given by the

following normal mixture

4

11
N


 −2

2

 ,
 1 0

0 1


+

3

11
N


 0

0

 ,
 0.8 −0.72

0.72 0.8


+

4

11
N


 2

−2

 ,
 1 0

0 1




note that this density is unimodal. Duong found that the diagonal bandwidth matrix constrains the

smoothing to be performed in directions parallel to the coordinate axes and therefore applies incorrect

levels of smoothing to the diagonally oriented central portion of the density estimate and results in a

bimodal density estimate [5]. Whereas the unconstrained bandwidth matrix produces a unimodal density

estimate which is correct. Considering the study of Wand and Jones [23] and other papers Duong stated

that the general conclusion from all these papers is that an unconstrained bandwidth matrix will yield

remarkably improved performance for densities which has large probability mass oriented away from the

coordinate axes (oriented diagonally to the coordinate axes), such as the dumbbell density [5].

Silverman's multivariate rule of thumb

Assume that the unknown density f(x) has bounded and continuous second derivatives. Silverman

investigated multivariate kernel density estimation by considering bandwidth matrices of class 3 param-

eterisation i.e. a positive constant times the identity matrix h2I. Hence the kernel estimator is de�ned

as

f̂(x;h) = n−1h−d
n∑
i=1

K(h−1(x−Xi)).

Silverman found that a closed form solution of the optimal bandwidths considering the AMISE is only

available if h1 = h2 = h3 = . . . = hd = h. Hence a closed form will exist if the following condition is met

hAMISE =

 dR(K)

nµ2(K)2
∫
tr2(D2f(x))dx


1/(d+4)

. (6)
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The problem now remains that, the optimal bandwidth hAMISE depends on the unknown density function

being estimated [21]. If the unknown density being estimated is the unit d-variate normal density (let φ

be the unit d-variate normal density) then it can be shown that

∫
tr2(D2f(x))dx =

∫
tr2(D2φ(x))dx = (2

√
π)−d(

1

2
d+

1

4
d2). (7)

This value can be substituted back into (6)(cross-reference) which will give the optimal bandwidth for

the smoothing of normally distributed data with unit variance [21]. Then Silverman's rule of thumb for

the optimal bandwidth is given by

hopt = A(K)n−1/(d+4)

where the constant

A(K) =

[
dR(K)

µ2(K)2(2
√
π)−d( 12d+

1
4d

2)

]1/(d+4)

depends on the kernel function [21].

Plug-in bandwidth methods

This section discusses some multivariate extensions of the popular univariate SJPI plug-in bandwidth

method which was developed by Sheather and Jones as referred to in [20]. Firstly in the multivariate

case, the plug-in bandwidth method requires pilot estimates of ψr (the integrated density derivative

functionals) since it is the unknown factors in the AMISE. Recall that

ψr = E
[
f (r)(X)

]

then a natural estimator of ψr are

ψ̂r(G) = n−1
n∑
i=1

f̂ (r)(Xi) = n−2
n∑
i=1

n∑
j=1

K
(r)
G (Xi −Xj)

where G is a pilot bandwidth matrix typically di�erent from H [6]. An appropriate way for choosing

the values for the matrix G is to consider G = g2I and pre-transformation of the data also called

sphering the data. This refers to choosing G = g2S where S is the sample covariance matrix [24]. The

remaining objective is to select an appropriate value for g and for this various methods exists. In the

case of multivariate normal data sphering the data will be appropriate but there is no theory supporting

sphering the data for estimation of general density shapes according to Wand and Jones [24] but it

is su�cient for selecting the pilot bandwidth G. Since it is not necessary to select G with the same

accuracy as H [5]. This restriction makes it possible to derive an analytical expression for the optimal

34



pilot bandwidth avoiding the intensive computational e�ort involved [5]. When using a multivariate

normal kernel function the plug-in estimate of the AMISE is given by

PI(H) = n−1(4π)−d/2|H|−1/2 + 1

4
(vech(H))‘Ψ̂4(vechH)

which can be numerically minimized to give ĤPI (an estimate of the optimal plug-in bandwidth matrix)

[5].

Wand and Jones [25] developed a multivariate extension of the plug-in method where the bandwidth

matrices are restricted to be diagonal. According to Wand and Jones, it is impossible to derive an explicit

expression for the optimal plug-in bandwidth matrix for general multivariate kernel estimators except in

the bivariate case for a diagonal bandwidth matrix. This bandwidth method is derived from the principle

of diagonal bandwidth matrices for bivariate density estimation where the analysis is more straightforward

[25]. Wand and Jones selected g such that it would be the minimizer of the AMSE criterion. Further on

the authors used the so-called �l-stage direct plug-in� bandwidth method for selecting appropriate values

for the elements of the diagonal bandwidth matrix H. A brief explanation of the �l-stage direct plug-in�

bandwidth method can be found in [24] where a common choice for the number of stages is considered

to be at least two.

The following plug-in method was developed by Duong and Hazelton [6] which selects a full bandwidth

matrix and is based on the principle of bivariate kernel density estimation. These authors note that using

this approach it may result in a bandwidth matrix with problems such as being positive de�nite or even

almost singular therefore they used a single, common tuning parameter to optimize all the elements of

the bandwidth matrix [6]. This ensures that the bandwidth matrix will be positive de�nite and also eases

the computational e�ort. Duong and Hazelton selected g to be the estimate of the bandwidth which

minimizes the sum of AMSE ( the SAMSE criterion) for Ψ4

g = agr
g>0

minSAMSE(Ψ̂4)

where

SAMSE(Ψ̂4) = SAMSE4(g) =
∑
r:|r|=4

AMSEψ̂r(g).

The SAMSE criterion has better numerical and theoretical properties than the AMSE according to

Duong [5]. There exists a closed form of the optimal pilot bandwidth using the SAMSE criterion. A brief

discussion on the plug-in method developed by Duong and Hazelton can be found in [6].
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Least squares cross-validation

LSCV is de�ned as

LSCV (H) =

∫
Rd

f̂(x;H)2dx− 2n−1
n∑
i=1

f̂−i(Xi;H)

where the estimator f̂−i(x;H) is called the leave-one-out estimator and is de�ned in [5] as

f̂−i(x;H) = (n− 1)−1
n∑
j=1
j 6=i

KH(x−Xj).

The bandwidth matrix of the kernel estimator is then selected to be

ĤLSCV = argminHεFLSCV (H)

as showed in [24]. Duong also easily proofed that E[LSCV (H)] =MISE(H)−
∫
Rd f(x)

2dx and therefore

the LSCV estimates the MISE directly [5]. The choice of the kernel function is not crucial. Using the

multivariate standard normal kernel function the LSCV can be rewritten as

LSCV (H) = n−1(4π)−d/2|H|−1/2 + n−1(n− 1)−1
n∑
i=1

n∑
j=1
j 6=i

(K2H − 2KH)(Xi −Xj).

Biased cross-validation

Sain, Baggerly, and Scott [17] derived two multivariate version of the univariate biased cross-validation

bandwidth method. For the development of these two methods Sain, Baggerly, and Scott only considered

diagonal bandwidth matrices for the multivariate normal kernel estimators. Note that the multivariate

normal density function was used as the kernel function. These biased cross-validation methods and

the plug-in method discussed above are related in the sense of depending on an estimator of ψr [5]. A

great di�erence is that for the biased cross-validation methods the pilot bandwidth matrix G will be

set equal to the bandwidth matrix for the kernel estimator H but for the plug-in method these two

matrices are completely independent of one another [5]. The principle on which Sain, Baggerly, and Scott

derived these biased cross-validation methods were treating the estimator of ψr as a function of h and

hence the unknown part of the AMISE criterion have been solved then ĥ (the estimate of the bandwidth

which will be used in the multivariate normal kernel estimator) is selected to be the minimizer of the

AMISE criterion [17]. Recall from above sphering the data (in the case of using H = h2S) is correct

when working with multivariate normal data but there is no theory supporting sphering the data for

estimation of general density shapes [24].
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These two versions of the biased cross-validation method are di�erent in the sense of using two

di�erent estimators for ψr. The full derivation of these two methods can be found in [17]. The two

di�erent estimators for ψr is given by

ψ̂r(H) = n−2
n∑
i=1

n∑
j=1
j 6=i

K
(r)
2H(Xi −Xj)

ψ̃r(H) = n−1
n∑
i=1

f̂
(r)
−i (Xi;H) = n−1(n− 1)−1

n∑
i=1

n∑
j=1
j 6=i

K
(r)
H (Xi −Xj).

Let Ψ̂4 and Ψ̃4 be the estimates of the matrixΨ4where the estimates ψ̂r and ψ̃rhave been substituted

respectively. Then the two versions of the biased cross-validation method follow as

BCV 1(H) = n−1(4π)−d/2|H|−1/2 + 1

4
µ2(K)2(vech(H))′Ψ̂4(vech(H))

BCV 2(H) = n−1(4π)−d/2|H|−1/2 + 1

4
µ2(K)2(vech(H))′Ψ̃4(vech(H)).

The estimates ĤBCV 1and ĤBCV 2 of the bandwidth matrix of the multivariate kernel estimator are the

minimizers of the BCV 1(H) and BCV 2(H) functions respectively [5].

Minimum leave-one-out entropy (MLE) bandwidth estimator

Van der Walt broadly categorised conventional kernel bandwidth estimators into rule-of-thumb, least-

squares cross-validation (LSCV), likelihood CV (LCV), and plug-in methods. The motivation for this

bandwidth estimation method was that conventional kernel bandwidth estimators were not developed for

the purpose of high-dimensional density estimation problems as often encountered in pattern recognition

[22]. Discussion of this method further on will refer to Van der Wald [22]. This kernel bandwidth

estimation method was derived by optimizing the LOUT ML objective function (criterion) with respect

to the kernel bandwidth matrix and then �nding an optimal solution in a maximum likelihood sense. The

ML objective function is often referred to as maximizing the log-likelihood function where this function

is de�ned as

lH(X) =

n∑
i=1

log(f̂(Xi;H)).

The following expression for the LOUT ML objective function

lH(−i)(X) =

n∑
i=1

log(f̂−i(Xi;H))
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was designed to prevent the trivial solution of the ML objective function where lH(X) =∞when H = 0.

Sample entropy is de�ned as

H(X) = − 1

n

n∑
i=1

log(f̂(Xi;H)).

Substituting the log-likelihood function in the sample entropy results in

H(X) = − lH(X)

n
.

This shows that the sample entropy can be expressed in terms of the log-likelihood function. Hence

maximizing the log-likelihood function for the ML objective function are equivalent to minimizing the

sample entropy. This is important since this result shows that deriving kernel bandwidth estimators that

maximise the ML objective function is equivalent to deriving kernel bandwidth estimators that minimise

the sample entropy.

If a multivariate Gaussian density function with a full covariance matrix is chosen for the kernel

function

KHk
(xi=xk) =

1

(2π)D/2|Hk|1/2
exp

(
−1

2
(xi − xk)′H

−1
k (xi − xk)

)
the optimal bandwidth matrix for the MLE estimator will be

HMLE(i);k =

n∑
i=1

(xi − xk)(xi − xk)′KHk
(xi=xk)

f̂−i(xi;H)
n∑
i=1

KHk
(xi=xk)

f̂−i(xi;H)

Hence the matrix ĤMLE(i);k is an estimate of the optimal bandwidth for the MLE estimator with a

multivariate Gaussian density function with a full covariance matrix as the kernel function centered on

data point xk. There are D(D+1)/2 bandwidth parameters to be estimated, for each of the n symmetric

full covariance matrices. (maak net seker oor hierdie)

A multivariate Gaussian density function with diagonal covariance matrix can be expressed as the

product of univariate Gaussian density functions

KHj (xi=xj) =

D∏
p=1

Khjp (xip − xjp)

where xip is the value of the data point xi in dimension p, similar forxjp and hjp is the bandwidth of the

univariate Gaussian kernel centred on the data point xj in dimension p. The diagonal bandwidth matrix

Hj is such that Hj(p,p) = h2jp. If a multivariate Gaussian density function with diagonal covariance
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matrix is chosen for the kernel function, the MLE estimator will have the following optimal bandwidth

h2kd =

n∑
i=1

Khkd
(xid=xkd)(xid − xkd)2

f̂−i(xi;H)

∏
p 6=d

Khkp
(xip − xkp)

n∑
i=1

Khkd
(xid=xkd)

f̂−i(xi;H)

∏
p 6=d

Khkp
(xip − xkp)

.

Substituting the de�nition of a multivariate Gaussian density function results in

Hk(d,d) =

n∑
i=1

KHk
(xi=xk)(xid − xkd)2

f̂−i(xi;H)
n∑
i=1

KHk
(xi=xk)

f̂−i(xi;H)

where HMLE(ii);k is the diagonal bandwidth matrix such that Hk(d,d) = h2kd. Hence the matrix

ĤMLE(ii);k is an estimate of the optimal bandwidth for the MLE estimator with a multivariate Gaussian

kernel with diagonal covariance matrix as the kernel function centered on the data point xk. There are D

bandwidth parameters to be estimated for each of the n diagonal covariance matrices. Hence there are a

total number of nD parameters to be estimated using the MLE bandwidth estimation method choosing

a multivariate Gaussian kernel with a diagonal covariance matrix, which is less than the total number

of parameters D(D + 1)/2 to be estimated for the full covariance matrix case. Note that assuming a

diagonal covariance matrix is not the same as assuming independence between the variables. Kernel

density estimators with diagonal bandwidth matrices are able of modelling correlation to some degree,

since they are centred on the data points i = 1, 2, . . . , k, . . . , n and if the data points vary together

between dimensions, the kernel density estimate will capture the covariance.

Van der Wald also developed an MLE bandwidth estimator that estimates an identical diagonal

bandwidth matrix for all kernels as opposed to where he originally derived a unique bandwidth matrix per

kernel. This estimator is called the global MLE estimator since it estimates a single diagonal bandwidth

matrix used globally. The leave-one-out estimator f̂−i(x;Hg) is now de�ned di�erently as

f̂−i(x;Hg) = (n− 1)−1
n∑
j=1
j 6=i

KHg
(x−Xj)

where Hg is the diagonal bandwidth matrix that is identical for all kernels. Choosing a Gaussian kernel
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with diagonal covariance matrix Hgresults in the estimate

Ĥg(d,d) =

n∑
i=1

∑
j 6=i
KHg

(xid=xjd)(xid − xkd)2

f̂−i(xi;Hg)

n∑
i=1

∑
j 6=i
KHg

(xid=xjd)

f̂−i(xi;Hg)

.

For a furtherer discussion on this method and other bandwidth estimation methods using the ML criterion

refer to [22].

4.4 Comparison

Duong did a comparison study of di�erent bandwidth matrices in the bivariate case [5]. The plug-in,

LSCV, BCV1, BCV2 and Smoothed cross-validation (SCV) bandwidth methods were considered in the

study. The multivariate normal density function was selected to be the kernel function. Smoothed cross-

validation was �rst introduced by Hall, Marron, and Park [8] in the univariate case. Duong and Hazelton

[7] generalised the SCV methodology for the multivariate case and declared that the SCV method for

full bandwidth matrices is the most reliable cross-validation method amongst these they had studied.

In the comparison study of Duong unconstrained and constrained bandwidth matrices were considered

where it was possible. The conclusion was that unconstrained bandwidth matrices will produce a better

density estimate than there diagonal counterparts when the data have large mass oriented diagonally to

the coordinate axes as referred to above. Duong's general recommendations were the SCV and the 2-stage

plug-in bandwidth method as de�ned by Wand and Jones in [25]. This also supports the statement of

Duong and Hazelton [7] that the SCV method is reasonably comparable to the best plug-in methods

currently available in the bivariate case. Another conclusion of Duong's study was that the LSCV

bandwidth method is useful in some cases but the performance of this bandwidth method is highly

variable [5].

Sain, Baggerly, and Scott [17] performed a comparison study between the LSCV, BCV1, BVC2, and

bootstrap bandwidth methods. This study was mainly between cross-validation bandwidth methods. For

a complete description of the bootstrap bandwidth method see [17]. The study considered asymptotic

results, simulations and real-life data examples in dimensions 1, 2 and 3. The overall results found,

suggested that the BCV2 method had performed the best. The LSCV method is inconsistent meaning

sometimes producing good estimates and sometimes producing seriously undersmoothed estimates. Sain,

Baggerly, and Scott stated that in their experience the LSCV method has a tendency to choose very

small bandwidths even when the size of the dataset is larger than a thousand.
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Referring now to a comparison study done by van der Walt [22] where the performance of bandwidth

methods in higher dimensions (higher than 10 dimensions), were considered. Plug-in methods were not

considered in this study since the performance is di�cult to predict in higher dimensions [22]. Silver-

man's rule of thumb, MSP, ML Gauss, MLE(i), LLCV, LSCV, and ULCV were the bandwidth methods

considered in this study. A clear de�nition of each of these bandwidth methods can be found in [22].

The ML Gauss method main focus is to calculate the covariance matrix and the MSP bandwidth method

assumes a normal reference rule like Silverman's rule of thumb. A number of simulated data sets and

real-world data sets were used in this study. Datasets which are representative of the samples sizes and

dimensionalities of typical pattern recognition problems were selected. The highest dimension considered

in these datasets was 617.

Van der Walt selected a multivariate normal density function as the kernel function. A diagonal

bandwidth matrix was considered for dimensions larger than 10 and an unconstrained bandwidth matrix

was considered for dimensions between 1 and 10. Table 4, 5 and 6 classi�es which bandwidth estimators

perform well in which class of dimensions according to the results found by Van der Walt. Considering

the tests done using unimodal simulated data Van der Walt found that the ML Gauss estimator gener-

ally performed the best. The estimators LLCV and LSCV performance severely decreased as dimensions

increased beyond 10. On the bimodal simulated data, the MLE(i) estimator's performance decreased as

the dimensions decreased. Considering higher dimensions on the bimodal simulated data resulted in the

ML Gauss estimator performing the best although the ML Gauss estimator assumes a unimodal distri-

bution. Van der Walt stated that this superior performance of the ML Gauss estimator might change if

the distance between the means of the two modes is increased. At higher dimensions, Silverman's rule

of thumb generally outperforms the MSP estimator. Using real-world data the LLCV, LSCV and ULCV

estimators' performance decreased as the dimensions increased where the MLE(i) and ML Gauss estima-

tors' performance increased as the dimensions increased. Silverman and the MSP estimator performed

well across all dimensionalities and were generally very competitive. Taking all the results together found

is this comparative study leads to the conclusion that the LLCV, LSCV, and ULCV estimators are not

suitable for dimensions higher than 10. The MLE(i) and ML Gauss estimators perform better for dimen-

sions higher than 10. Silverman's rule of thumb and the MSP estimator consistently perform well across

all dimensions.
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All dimensions Lower dimensions Higher dimensions

ML Gauss
ULCV

Silverman
MSP

MLE(i)

LLCV
LSCV

Table 4: Performance of estimators using unimodal simulated data

All dimensions Lower dimensions Higher dimensions

Silverman
MSP

LLCV
LSCV
ULCV

ML Gauss
MLE(i)

Table 5: Performance of estimators using bimodal simulated data

5 Application

5.1 Univariate

The objective of this section is to show di�erences in the kernel estimates using di�erent bandwidth esti-

mation methods and to con�rm some of the bandwidth method comparisons done by previous researchers.

Throughout this section, the Gaussian kernel function will be used. The graphs in Figure 1,2, 3 and 4 were

obtained using the package �ks� in the software program R [14]. In these �gures di�erent kernel estimates

were graphed by using di�erent bandwidth methods. In Figure 1 di�erent kernel estimates (using the

Gaussian kernel function but di�erent bandwidths) were applied to a simulated sample from the standard

normal distribution. The bandwidth method �nrd0� refers to Silverman's rule of thumb, �ucv� refers to

least squares (unbiased) cross-validation, �bcv� refers to biased cross-validation and �SJ-ste� refers to the

SJPI plug-in method of Sheater and Jones [20] where the �xed point equation

h =

[
R(K)

nR(f ”g(h))(
∫
x2K)2

]1/5
is solved by using the function �uniroot�. This function searches the interval from lower to upper for a

root of the �xed point equation.

In Figure 1 the di�erent bandwidth methods produced approximately the same density estimates

except the �ucv� bandwidth method produced a density estimate with some spurious features (under-

smoothed) in this case the bandwidth may be too small. Jones stated in [10] that the least squares

All dimensions Lower dimensions Higher dimensions

Silverman
MSP

LLCV
LSCV
ULCV

ML Gauss
MLE(i)

Table 6: Performance of estimators using real-world data
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(unbiased) cross-validation method is unreliable since it is too variable particularly in the direction of

undersmoothing and this statement is supported by the results presented in Figure 1. Otherwise, all the

methods considered performed well when the underlying structure of the data is standard normal. In

Figure 2 di�erent kernel estimates were applied to a simulated sample from a gamma distribution with

shape parameter 1 and scale parameter 1. Similarly in Figure 3 di�erent kernel estimates were applied to

a simulated sample from an exponential distribution with parameter 1. Observing the graphs in Figure

2 and 3 it seems Silverman's rule of thumb has performed the best with respect to producing a smooth

density estimate. The gamma and exponential distributions only exist for positive values including zero,

as mentioned above in the introduction, bounded data can cause problems for kernel density estimation.

Kernel density estimates will often go beyond the bounds of the data and then the estimate is considerable

bias at and near the bounds of the data [11]. Silverman's rule of thumb results in an estimate which is

considerable bias at 0. The gamma and the exponential distributions also have a long tail to the right

which can cause problems for kernel estimation. Note that there is a di�erence between a distribution

with long tails and a distribution with heavy tails. A distribution can have both but when a distribution

has long tails it does not necessarily have heavy tails and vice versa. Examples of distributions with

heavy tails include the Pareto, Weibull, and Cauchy distributions. As stated above in the introduction

and shown there will appear spurious (false) noise in the tails of the estimate if the underlying distribu-

tion of the data has long tails because the bandwidth is �xed across the entire sample. This is shown in

Figure 2 and 3. Silverman's rule of thumb led to an estimate which has the least spurious noise in the

tail where the other estimates have considerable spurious noise in the tails. Also note that the density

estimates produced by the bandwidth methods �ucv�, �bcv� and �SJ-ste� have relative larger magnitudes

at the mode when compared to the density estimate produced by Silverman's rule of thumb.

A beta distribution will be bimodal if both parameters are smaller than 1. In Figure 4 di�erent

kernel estimates were applied to a simulated sample from a beta distribution with both shape parameters

equal to 0.5 (the magnitude of the density function at both modes will be equal). In Figure 5 di�erent

kernel estimates were applied to a simulated sample from a beta distribution with shape parameters

equal to α = 0.5 and β = 0.75 (the magnitude of the density function at one of the modes is larger). As

mentioned above data from a multimodal distribution may cause some problems. Since it is di�cult to

�nd a single bandwidth which will adequately di�erentiate between distinct peaks and valleys between

the peaks [16]. Choosing a bandwidth which is too large can erase modes which were signi�cant and

choosing a bandwidth which is too small may introduce spurious peaks by undersmoothing. In Figure

4 and 5, the bandwidth methods �ucv� and �SJ-ste� perform the same. The following observations are

drawn from Figure 4 and 5. The densities produced by �ucv� and �SJ-ste� has a lot of spurious noise

between the two modes i.e. the bandwidth is too small. Note that the densities produced by �bcv� and
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Figure 1: Kernel estimates applied to a simulated sample from a standard normal distribution

Figure 2: Kernel estimates applied to a simulated sample from a gamma distribution with shape parameter
1 and scale parameter 1

Silverman's rule of thumb are a lot smoother. The density estimates produced by �ucv� and �SJ-ste� have

a relatively larger magnitude at the modes compared to the estimates produced by �bcv� and Silverman's

rule of thumb. These beta distributions from which the samples were drawn are also bounded between 0

and 1. Silverman's rule of thumb and �bcv� produced estimates which are considerable bias at and near

0 and 1 where the estimates produced by �ucv� and �SJ-ste� are less bias at and near the bounds. In

Figure 4 �bcv� and Silverman's rule of thumb perform very similarly (produced estimates which generally

look the same) but in Figure 5 they perform less similar.

Testing kernel estimates on real data are very important since it will indicate how well the kernel

estimation performs in practice [10]. The �rst real dataset on which kernel estimation will be performed
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Figure 3: Kernel estimates applied to a simulated sample from a exponential distribution with parameter
1

Figure 4: Kernel estimates applied to a simulated sample from a beta distribution with both shape
parameters equal to 0.5
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Figure 5: Kernel estimates applied to a simulated sample from a beta distribution with α = 0.5 and
β = 0.75

is the Old Faithful dataset as referred to above. Using the waiting variable and a sample size of 272.

The waiting variable refers to recorded times between consecutive eruptions of the Old Faithful geyser.

Another dataset that will be used is secondary school students' Mathematics and Portuguese scores

(a score out of 20). Kernel estimation will be performed on the Mathematics scores using a sample

of 200 students 1. The �rst graphs in Figure 6 up until Figure 9 are produced by using the KDE

procedure in the software program SAS and the second graphs are produced by using the �ks� package

in the software program R [14]. The KDE procedure in SAS performs univariate and multivariate kernel

density estimation using the Gaussian kernel function. In the KDE procedure, there is multiple bandwidth

selection methods available in the univariate case. Selecting the SJPI plug-in method the KDE procedure

solves the �xed point equation

h =

[
R(K)

nR(f ”g(h))(
∫
x2K)2

]1/5
where R(K) =

∫
K(x)2dx. This procedure uses a bisection algorithm which can be described as a root-

�nding method that repeatedly divides an interval into two equal parts and then chooses a subinterval

in which a root should be for furtherer processing. The starting values of this bisection algorithm are

selected to be the two largest values from a grid of values on a log scale that bound a solution of the

�xed point equation. A bisection algorithm is simple and robust but it is also relatively slow.

Looking at these graphs it seems that Silverman's rule of thumb is producing density estimates which

are oversmoothed. Jones [10] stated that using Silverman's rule of thumb often lead to density estimates

which are extremely oversmoothed leading to missing important features. For both of these datasets,

the SJPI bandwidth method performed the best considering the graphs. Note that the histograms do

1Datasets used can be found on Kaggle (https://www.kaggle.com/datasets).
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Figure 6: Kernel estimate using Silverman's rule of thumb applied to the Old faithful geyser dataset

Figure 7: Kernel estimate using SJPI plug-in method applied to the Old faithful geyser dataset

not look the same using the two di�erent software packages since the default settings for the histogram

in the KDE procedure cannot be changed. Jones [10] declared that the SJPI plug-in method results in

the best performer which is consistent, stable and can also be used as the default in software packages.

The default bandwidth selection method of the KDE procedure in the SAS software program is the SJPI

plug-in method.

5.2 Bivariate

The �ks� package in R will be used to generate di�erent bivariate kernel estimates produced by using dif-

ferent bandwidth estimation methods and the multivariate Gaussian kernel function. The objective of this

section is to compare di�erent bandwidth estimation methods by �tting di�erent kernel estimates �rstly

to simulated data and then to real-data examples. Simulated data from a bivariate normal distribution
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Figure 8: Kernel estimate using Silverman's rule of thumb applied to the Mathematic scores dataset

Figure 9: Kernel estimate using SJPI plug-in method applied to the Mathematic scores dataset
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Figure 10: Kernel estimate using the LSCV bandwidth method for simulated bivariate normal data

with parameters

µ =

 0

0



Σ =

 1 0.5

0.5 1


was used with the following bandwidth methods LSCV, Plug-in, BCV1, BCV2 and Silverman's rule

of thumb respectively to produce the di�erent density estimates in Figure 10, 11, 12, 13 and 14. For

the LSCV, plug-in, BCV1, and BCV2 bandwidth methods two di�erent versions were used, a diagonal

and unconstrained bandwidth matrix, to produce a kernel estimate. Those unconstrained bandwidth

matrices which are not described above can be found in [5]. The �rst kernel estimate in each of the

�gures is produced by using the diagonal bandwidth matrix and the second one is produced by using the

unconstrained bandwidth matrix. Looking at the graphs in Figure 10 and 11, only considering the class

of parameterisation, it seems as if class 2 of parameterisation i.e. the diagonal bandwidth matrix led to a

smoother density estimate for the LSCV and Plug-in method. Considering the class of parameterisation

in Figure 12 and 13 results in no di�erence between the two kernel estimates produced for the BCV1 and

BCV2 method. Actually, there is no di�erence between the four kernel estimates produced by the BCV1

method and the BCV2 method. Recall from above that the unconstrained bandwidth matrices can give

a remarkable better performance for some types of density in this case the bivariate normal distribution

is not one of the types of density. The kernel estimate produced by Silverman's rule of thumb looks very

similar to the kernel estimates produced by the LSCV and plug-in unconstrained bandwidth matrices.

By looking at the graphs a conclusion can be drawn that all the di�erent bandwidth matrices considered

here performed well when the underlying structure of the data has a bivariate normal distribution.
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Figure 11: Kernel estimate using the plug-in method for simulated bivariate normal data

Figure 12: Kernel estimate using the BCV1 method for simulated bivariate normal data

Figure 13: Kernel estimate using the BCV2 method for simulated bivariate normal data

50



Figure 14: Kernel estimate using Silverman's multivariate rule of thumb for simulated bivariate normal
data

Figure 15: Scatterplot of a sample of 500 from the 'dumbbell' density
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Figure 16: Kernel estimate using the LSCV bandwidth method for simulated bivariate 'dumbbell' data

Simulated data from the `dumbbell' density proposed by Duong [5] was used with the following

bandwidth methods LSCV, Plug-in, BCV1, BCV2, and Silverman's rule of thumb respectively to produce

the di�erent density estimates in Figure 16, 17, 18, 19 and 20. For the LSCV, Plug-in, BCV1, and

BCV2 bandwidth methods two di�erent versions were used, a diagonal and unconstrained bandwidth

matrix, to produce a kernel estimate. By observing the graphs in Figure 16 and 17 it seems class 1 of

parameterisation i.e. unconstrained bandwidth matrices led to a smoother density estimate. Considering

the class of parameterisation in Figure 18 and 19 results in no di�erence between the two kernel estimates

produced for the BCV1 and BCV2 method. These kernel estimates incorrectly produced a bimodal density

estimate. The kernel estimates produced by using a diagonal bandwidth matrix version of the LSCV

and Plug-in method also results in a bimodal density estimate. On the other hand, the unconstrained

bandwidth matrix correctly produces a unimodal density estimate. Therefore this simulation study

supports Duong's conclusion, excluding the BCV1 and BCV2 methods, that an unconstrained bandwidth

matrix can give a remarkable better performance for densities which has large probability mass oriented

away from the co-ordinate axes (oriented diagonally to the co-ordinate axes), such as the dumbbell density

[5]. Judging the performance of these bandwidth matrices on the basis of observing the graphs it seems

as if the unconstrained Plug-in bandwidth matrix has performed the best. Silverman's rule of thumb also

performed very well but there may also be some oversmoothing present in the density estimate.

As mentioned it is important to see how the estimation technique performs in practice. The students'

scores dataset will again be used for the real dataset examples including the Portuguese language scores

for the bivariate case. Another dataset which will be used is the Default of Credit Card Clients Dataset

2. The variables which will be considered are the age and the credit limit given in terms of New Taiwan

dollar and a sample size of 500 will be used.

The kernel estimates of the scores sample in Figure 22, 24 and 25 are generated by the Plug-in,

2Datasets used can be found on Kaggle (https://www.kaggle.com/datasets).
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Figure 17: Kernel estimate using the Plug-in method for simulated bivariate 'dumbbell' data

Figure 18: Kernel estimate using the BCV1 method for simulated bivariate 'dumbbell' data

Figure 19: Kernel estimate using the BCV2 method for simulated bivariate 'dumbbell' data
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Figure 20: Kernel estimate using Silverman's multivariate rule of thumb for simulated bivariate 'dumbbell'
data

BCV1 and BCV2 methods with unconstrained and diagonal bandwidth matrices respectively. In Figure

26 the kernel estimate for the scores sample is produced by using Silverman's rule of thumb. For the

LSCV method, the duplicate values in the sample �rst have to be removed since the LSCV method

is programmed in such a way that it can't function with duplicate values present in the sample. A

sample of 93 students is left when the duplicate values of the bivariate sample are removed. In Figure

23 the kernel estimates of this new sample without the duplicate values are generated by the LSCV

method with unconstrained and diagonal bandwidth matrices respectively. The contours of the density

estimate produced by the LSCV method for the scores sample di�ers signi�cantly from the others. For

this dataset, the LSCV method may be incomparable to the other methods since the sample size was

decreased dramatically to be able to apply the LSCV method. Comparing the other density estimates for

the scores sample it seems the unconstrained and diagonal bandwidth matrices of the BCV1 and BCV2

methods has performed very similarly. Comparing these kernel estimates to Silverman's rule of thumb

also results in very similar performance. The Plug-in method with the unconstrained bandwidth matrix

in Figure 22 performed well with the scores dataset where the estimate is a bit less smooth than the one

produced by Silverman's rule of thumb.

For the credit sample the estimates produced by the LSCV method may be comparable since the

sample size was large and when the duplicates were removed it was still relatively large. The two kernel

estimates in Figure 29 produced by the LSCV method (with unconstrained and diagonal bandwidth

matrices) performed very similarly in the sense of producing a smooth density estimate but there may

be oversmoothing present. Comparing the kernel estimates produced by the unconstrained and diagonal

bandwidth matrices of the BCV1 and BCV2 methods results in very similar performance as in the case

for the scores dataset. Comparing these kernel estimates to Silverman's rule of thumb also results in very

similar performance (as with the scores dataset). The kernel estimates produced by the LSCV method

may have some oversmoothing present, which will lead to missing important features. Comparing all
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Figure 21: Scatter plot of a sample of the student scores dataset

Figure 22: Kernel estimates using the Plug-in method for the student scores dataset

the kernel estimates it seems as if the diagonal bandwidth matrix of the plug-in method has performed

the best although the unconstrained and diagonal matrix of the plug-in method have performed very

similarly. For the credit dataset the values of the credit limit can only be positive but looking at the

kernel estimates produced from this dataset led to kernel estimates including values less than 0. Bivariate

kernel estimation is just a generalisation of univariate kernel estimation and the problem with bounded

data continues when working with �xed bandwidth estimators. Recall from above kernel density estimates

will often go beyond the bounds of the data and then the estimate is considerable bias at and near the

bounds of the data [9]. Therefore all the kernel estimates produced for the credit dataset will be biased

at and near 0 since they are all �xed bandwidth estimators.

In summary, the LSCV method is variable which is supported by Duong who also compared bandwidth

methods in the bivariate case and concluded that the LSCV method is highly variable but is useful in

some cases [5]. The 2-stage Plug-in method was one of the general recommended methods by Duong [5].

Silverman's rule of thumb will perform well across all dimensions was mentioned by Van der Walt and is

supported by this study [22].
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Figure 23: Kernel estimates using the LSCV method for the student scores dataset

Figure 24: Kernel estimates using the BCV1 method for the student scores dataset

Figure 25: Kernel estimates using the BCV2 method for the student scores dataset

56



Figure 26: Kernel estimate using Silverman's rule of thumb for the student scores dataset

Figure 27: Scatter plot of a sample of the credit dataset

Figure 28: Kernel estimate using Plug-in method for the credit dataset
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Figure 29: Kernel estimate using LSCV method for the credit dataset

Figure 30: Kernel estimate using BCV1 method for the credit dataset

Figure 31: Kernel estimate using BCV2 method for the credit dataset
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Figure 32: Kernel estimate using Silverman's rule of thumb for the credit dataset

6 Conclusion

For the univariate case, there has been good progress towards bandwidth estimation methods. The

di�erences between the kernel estimates produced by Silverman's rule of thumb, least squares (unbiased)

cross-validation, biased cross-validation and SJPI plug-in method of Sheater and Jones were investigated.

The least squares (unbiased) cross-validation method performance is variable particularly in the direction

of undersmoothing and therefore is unreliable. Also pointed out by [18] when the data has heavy tails,

the least cross-validation method produces inconsistent �xed bandwidth kernel estimates. Biased cross-

validation has a tendency to oversmooth the estimate. Silverman's rule of thumb is often extremely

oversmoothed which leads to missing important features. The SJPI plug-in method results in the best

performer which is consistent and stable.

More focus should be on performing diagnostics to detect lack of �t [12]. Loader used the Old Faithful

geyser data, simulations based on a smoothed bootstrap approach, residual diagnostics and higher order

�t to conclude that classical methods are correct in choosing small bandwidths, and the plug-in methods

incorrectly oversmooth the estimate, with regard to the integrated square error loss function.

There will appear spurious (false) noise in the tails of the kernel estimate if the underlying distribution

of the data has long tails because the bandwidth is �xed across the entire sample. Furtherer investigation

into variable bandwidth methods is required.

For data from a multimodal distribution, it is di�cult to �nd a single bandwidth which will adequately

di�erentiate between distinct peaks and valleys between the peaks [16]. Choosing a bandwidth which

is too large can erase modes which were signi�cant and choosing a bandwidth which is too small may

introduce spurious peaks by undersmoothing. More attention can go towards adaptive kernel density

estimation introduced by Sain [16] which includes variable kernel estimators but also estimators which
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attempts to identify and utilize local structure and other features in the underlying density through the

sample data.

One-sided or two-sided bounded data can be problematic for kernel density estimation. Since the

kernel function used in this method is not bounded it will result in treating this observed bounded data

as if it is not bounded. Kernel density estimates will often go beyond the bounds of the data and then

the estimate is considerable bias at and near the bounds of the data [11]. In [9] Jones provided a variety

of boundary correction methods for kernel density estimation using a �generalised jackkni�ng� approach

for many of the straight forward methods.

In the bivariate case only considering the parameterization of the bandwidth matrix the following

conclusion was made. An unconstrained bandwidth matrix can give a remarkable better performance for

densities which has large probability mass oriented away from the coordinate axes (oriented diagonally

to the coordinate axes), such as the dumbbell density. The performance of the following bandwidth

methods LSCV, Plug-in, BCV1, BCV2, and Silverman's rule of thumb were tested in the bivariate case.

The LSCV method is highly variable but is useful in some cases, Silverman's rule of thumb performed

well but the 2-stage Plug-in method resulted in the best performer. The results for the bivariate case are

very similar to the univariate case. The problem with bounded data was also seen to be present in the

bivariate case and a should be investigated further.
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Appendix

#Coding us ing the so f tware program R:

#Univar ia te :

#Kernel e s t imate s f o r s imulated data from an exponent i a l d i s t r i b u t i o n with parameter 1

s e t . seed (10) x <− rexp (10000 , r a t e = 1)

p l o t ( dens i ty (x , bw = "nrd0 ") , bty = 'n ' , xl im = c (−2 ,10) , yl im = c ( 0 , 1 . 1 ) ,

yaxt="n" , ylab="", xlab="", main="Kernel dens i ty e s t imate s " ,

c o l = " red ")

l i n e s ( dens i ty (x , bw = "ucv ") , bty = 'n ' , xl im = c (−2 ,10) ,

yl im = c ( 0 , 1 . 1 ) , yaxt="n" , ylab="", xlab="", c o l = "blue ")

l i n e s ( dens i ty (x , bw = "bcv ") , bty = 'n ' , xl im = c (−2 ,10) ,

yl im = c ( 0 , 1 . 1 ) , yaxt="n" , ylab="", xlab="", c o l = " green ")

l i n e s ( dens i ty (x , bw = "SJ−s t e ") , bty = 'n ' , xl im = c (−2 ,10) , yl im = c ( 0 , 1 . 1 ) ,

yaxt="n" , yaxt="n" , ylab="", xlab="", c o l = " purple ")

l a b e l <− c (" nrd0 " , "ucv " , "bcv " , "SJ−s t e ")

legend (" top r i gh t " , t i t l e ="Bandwidth methods " , l abe l , lwd=2,

c o l=c (" red " ," blue " ," green " ," purple " ) )

#Kernel e s t imate f o r the geyse r datase t ( v a r i a b l e wa i t ing )

#us ing s i l ve rmans ru l e o f thumb with a histogram over lay

h i s t ( geyser$wa i t ing , f r e q =FALSE, main="" , xlim = c (35 ,105) , yl im = c ( 0 , 0 . 0 6 ) ,

x lab= "wait ing ")

l i n e s ( dens i ty ( geyser$wai t ing , bw = "nrd0 ") , bty = 'n ' , xl im = c (35 ,105) ,

yl im = c (0 , 0 . 0 6 ) , yaxt="n" , ylab="", xlab="", main="", lwd=2)

#Kernel e s t imate f o r the geyse r datase t ( v a r i a b l e wa i t ing ) us ing SJPI method

#with a histogram over lay

h i s t ( geyser$wa i t ing , f r e q =FALSE, main="" , xlim = c (35 ,105) , yl im = c ( 0 , 0 . 0 6 ) ,

x lab= "wait ing ")
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l i n e s ( dens i ty ( geyser$wai t ing , bw = "SJ−s t e ") , bty = 'n ' , xl im = c (35 ,105) ,

yl im = c (0 , 0 . 0 6 ) , yaxt="n" , ylab="", xlab="", main="", lwd=2)

#Coding us ing the so f tware program SAS :

PROC KDE data=geyse r ;

UNIVAR wait ing /method=s r o t p l o t s=a l l ;

UNIVAR wait ing /method=s j p i p l o t s=a l l ;

run ;

PROC KDE data=Math ;

UNIVAR G3 /method=s r o t p l o t s=a l l ;

UNIVAR G3 /method=s j p i p l o t s=a l l ;

run ;

#Coding us ing the so f tware program R:

#Biva r i a t e :

#Kernel e s t imate s f o r b i v a r i a t e normal s imulated data

l i b r a r y (MASS)

s e t . seed (25)

mu <− c (0 , 0 )

Sigma <− matrix ( c (1 , . 5 , . 5 , 1 ) , 2)

bivn <− mvrnorm(5000 , mu = mu, Sigma = Sigma )

l i b r a r y ( ks )

plugin_diag <− Hpi . d iag ( bivn )

p lug in_ fu l l <− Hpi ( bivn )

l s c r o s s va l_d i ag <− Hlscv . d iag ( bivn )

l s c r o s s v a l_ f u l l <− Hlscv ( bivn )

s i l v e r <− Hns( bivn , de r i v . order=0)

fhat_plugin_diag <− kde ( bivn , plugin_diag )

fhat_plug in_fu l l <− kde ( bivn , p l ug in_ fu l l )

fhat_lscv_diag <− kde ( bivn , l s c r o s s va l_d i ag )
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f ha t_ l s cv_fu l l <− kde ( bivn , l s c r o s s v a l_ f u l l )

f ha t_s i l v <− kde ( bivn , s i l v e r ) p l o t ( fhat_plugin_diag , xlim = c (−2 ,2) ,

yl im= c (−2 ,2) , y lab="x2 " , xlab="x1 " , main="ke rne l

e s t imate us ing the Plug−in method with c l a s s 2

paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_plug in_fu l l , xl im = c (−2 ,2) , yl im= c (−2 ,2) , y lab="x2 " ,

xlab="x1 " , main="ke rne l e s t imate us ing the Plug−in method with c l a s s 1

paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_lscv_diag , xlim = c (−2 ,2) , yl im= c (−2 ,2) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the Plug−in method with c l a s s 2

paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_l scv_fu l l , xl im = c (−2 ,2) , yl im= c (−2 ,2) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the Plug−in method with c l a s s 1

paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_s i lv , xl im = c (−2 ,2) , yl im= c (−2 ,2) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing Silverman ' s mu l t i v a r i a t e r u l e o f thumb with

c l a s s 3 paramete r i s a t i on bandwidth matrix " )

#Kernel e s t imate s f o r s imulated data from the dumbbell dens i ty func t i on :

l i b r a r y ( ks )

samp <− 500

mus <− rbind ( c (−2 ,2) , c ( 0 , 0 ) , c (2 ,−2))

Sigmas <− rbind ( diag ( 2 ) , matrix ( c ( 0 . 8 , −0.72 , −0.72 , 0 . 8 ) , nrow = 2) ,

d iag ( 2 ) )

cwt <− 3/11

props <− c ((1−cwt )/2 , cwt , (1−cwt )/2)

x <− rmvnorm . mixt (n = samp , mu = mus , Sigma = Sigmas , props = props )

dens <− dmvnorm . mixt (x , mus , Sigmas , props )

p l o t (x , ylab="x2 " , xlab="x1 " , main="Sca t t e r p l o t o f a sample o f 500 from the

' dumbbell ' d ens i ty " )

l i b r a r y ( ks )

plugin_diag <− Hpi . d iag (x )

p lug in_ fu l l <− Hpi (x )
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l s c r o s s va l_d i ag <− Hlscv . d iag (x )

l s c r o s s v a l_ f u l l <− Hlscv (x )

s i l v e r <− Hns(x , de r i v . order=0)

bcv1_diag <− Hbcv . diag (x , whichbcv = 1)

bcv1_ful l <− Hbcv(x , whichbcv = 1)

bcv2_diag <− Hbcv . diag (x , whichbcv = 2)

bcv2_ful l <− Hbcv(x , whichbcv = 2)

fhat_plugin_diag <− kde (x , plugin_diag )

fhat_plug in_fu l l <− kde (x , p l ug in_ fu l l )

fhat_lscv_diag <− kde (x , l s c r o s s va l_d i ag )

fha t_ l s cv_fu l l <− kde (x , l s c r o s s v a l_ f u l l )

f ha t_s i l v <− kde (x , s i l v e r )

fhat_bcv1_diag <− kde (x , bcv1_diag )

fhat_bcv1_ful l <− kde (x , bcv1_ful l )

fhat_bcv2_diag <− kde (x , bcv2_diag )

fhat_bcv2_ful l <− kde (x , bcv2_ful l )

p l o t ( fhat_plugin_diag , xl im = c (−4 ,4) , yl im= c (−4 ,4) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the Plug−in method with c l a s s 2

paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_plug in_fu l l , xl im = c (−4 ,4) , yl im= c (−4 ,4) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the Plug−in method with c l a s s 1 paramete r i s a t i on

bandwidth matrix " )

p l o t ( fhat_lscv_diag , xlim = c (−4 ,4) , yl im= c (−4 ,4) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the Plug−in method with

c l a s s 2 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_l scv_fu l l , xl im = c (−4 ,4) , yl im= c (−4 ,4) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the Plug−in method with

c l a s s 1 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_s i lv , xl im = c (−4 ,4) , yl im= c (−4 ,4) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing Silverman ' s mu l t i v a r i a t e r u l e o f thumb

with c l a s s 3 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv1_diag , xlim = c (−4 ,4) , yl im= c (−4 ,4) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the BCV1 method with

c l a s s 2 paramete r i s a t i on bandwidth matrix " )
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p lo t ( fhat_bcv1_ful l , xl im = c (−4 ,4) , yl im= c (−4 ,4) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the BCV1 method with

c l a s s 1 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv2_diag , xlim = c (−4 ,4) , yl im= c (−4 ,4) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the BCV2 method with

c l a s s 2 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv2_ful l , xl im = c (−4 ,4) , yl im= c (−4 ,4) , y lab="x2 " , xlab="x1 " ,

main="ke rne l e s t imate us ing the BCV2 method with

c l a s s 1 paramete r i s a t i on bandwidth matrix " )

#Kernel e s t imate s f o r the student s c o r e s datase t

l i b r a r y ( ks )

p l o t ( s co re s , main="Sca t t e r p l o t o f a sample o f the student s c o r e s datase t ")

plugin_diag <− Hpi . d iag ( s c o r e s )

p l ug in_ fu l l <− Hpi ( s c o r e s )

l s c r o s s va l_d i ag <− Hlscv . d iag ( s c o r e s 2 )

l s c r o s s v a l_ f u l l <− Hlscv ( s c o r e s 2 )

s i l v e r <− Hns( sco re s , de r i v . order=0)

bcv1_diag <− Hbcv . diag ( s co re s , whichbcv = 1)

bcv1_ful l <− Hbcv( sco re s , whichbcv = 1)

bcv2_diag <− Hbcv . diag ( s co re s , whichbcv = 2)

bcv2_ful l <− Hbcv( sco re s , whichbcv = 2)

fhat_diag <− kde ( score s , plugin_diag )

f h a t_ fu l l <− kde ( score s , p l ug in_ fu l l )

fhat_lscv_diag <− kde ( score s2 , l s c r o s s va l_d i ag )

fha t_ l s cv_fu l l <− kde ( score s2 , l s c r o s s v a l_ f u l l )

f ha t_s i l v <− kde ( score s , s i l v e r )

fhat_bcv1_diag <− kde ( score s , bcv1_diag )

fhat_bcv1_ful l <− kde ( score s , bcv1_ful l )

fhat_bcv2_diag <− kde ( score s , bcv2_diag )

fhat_bcv2_ful l <− kde ( score s , bcv2_ful l )

p l o t ( fhat_diag , xl im= c (5 , 20 ) , yl im = c (5 , 20 ) , main="ke rne l e s t imate us ing

the Plug−in method with c l a s s 2 paramete r i s a t i on bandwidth matrix " )
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p lo t ( fha t_fu l l , xl im= c (5 , 20 ) , yl im = c (5 , 20 ) , main="ke rne l e s t imate us ing

the Plug−in method with c l a s s 1 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_lscv_diag , xlim= c (5 , 20 ) , yl im = c (5 , 20 ) , main="ke rne l e s t imate

us ing the LSCV method with c l a s s 2 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_l scv_fu l l , xl im= c (5 , 20 ) , yl im = c (5 , 20 ) , main="ke rne l e s t imate

us ing the LSCV method with c l a s s 1 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_s i lv , xl im= c (5 , 20 ) , yl im = c (5 , 20 ) , main="ke rne l e s t imate us ing

Silverman ' s mu l t i v a r i a t e r u l e o f thumb with

c l a s s 3 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv1_diag , xlim= c (5 , 20 ) , yl im = c (5 , 20 ) , main="ke rne l e s t imate

us ing the BCV1 method with c l a s s 2 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv2_ful l , xl im= c (5 , 20 ) , yl im = c (5 , 20 ) , main="ke rne l e s t imate

us ing the BCV2 method with c l a s s 1 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv2_diag , xlim= c (5 , 20 ) , yl im = c (5 , 20 ) , main="ke rne l e s t imate

us ing the BCV2 method with c l a s s 2 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv1_ful l , xl im= c (5 , 20 ) , yl im = c (5 , 20 ) , main="ke rne l e s t imate

us ing the BCV1 method with c l a s s 1 paramete r i s a t i on bandwidth matrix " )

#Kernel e s t imate s f o r the c r e d i t card datase t

l i b r a r y ( ks )

p l o t ( credit_card , main="Sca t t e r p l o t o f a sample o f the c r e d i t datase t ")

plugin_diag <− Hpi . d iag ( cred i t_card )

p lug in_ fu l l <− Hpi ( cred i t_card )

s i l v e r <− Hns( credit_card , de r i v . order=0)

bcv1_diag <− Hbcv . diag ( credit_card , whichbcv = 1)

bcv1_ful l <− Hbcv( credit_card , whichbcv = 1)

bcv2_diag <− Hbcv . diag ( credit_card , whichbcv = 2)

bcv2_ful l <− Hbcv( credit_card , whichbcv = 2)

fhat_diag <− kde ( credit_card , plugin_diag )

f h a t_ fu l l <− kde ( credit_card , p l ug in_ fu l l )

f ha t_s i l v <− kde ( credit_card , s i l v e r )

fhat_bcv1_diag <− kde ( credit_card , bcv1_diag )

fhat_bcv1_ful l <− kde ( credit_card , bcv1_ful l )

68



fhat_bcv2_diag <− kde ( credit_card , bcv2_diag )

fhat_bcv2_ful l <− kde ( credit_card , bcv2_ful l )

p l o t ( fhat_diag , xl im = c (−10000 ,4 e+05) , ylim=c (15 , 60 ) , main="ke rne l e s t imate

us ing the Plug−in method with c l a s s 2 paramete r i s a t i on bandwidth matrix " )

p l o t ( fha t_fu l l , xl im = c (−10000 ,4 e+05) , ylim=c (15 , 60 ) , main="ke rne l e s t imate

us ing the Plug−in method with c l a s s 1 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_s i lv , xl im = c (−30000 ,4 e+05) , ylim=c (15 , 60 ) , main="ke rne l e s t imate

us ing Silverman ' s mu l t i v a r i a t e r u l e o f thumb with

c l a s s 3 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv1_diag , xlim = c (−30000 ,4 e+05) , ylim=c (15 , 60 ) ,

main="ke rne l e s t imate us ing the BCV1 method with c l a s s 2

paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv2_ful l , xl im = c (−30000 ,4 e+05) , ylim=c (15 , 60 ) , main="ke rne l

e s t imate us ing the BCV2 method with c l a s s 1 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv2_diag , xlim = c (−30000 ,4 e+05) , ylim=c (15 , 60 ) ,

main="ke rne l e s t imate us ing the BCV2 method with

c l a s s 2 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_bcv1_ful l , xl im = c (−30000 ,4 e+05) , ylim=c (15 , 60 ) ,

main="ke rne l e s t imate us ing the BCV1 method with

c l a s s 1 paramete r i s a t i on bandwidth matrix " )

#Kernel e s t imate s f o r the c r e d i t card datase t without dup l i c a t e s

#us ing the LSCV method

l s c r o s s va l_d i ag <− Hlscv . d iag ( credit_88 )

l s c r o s s v a l_ f u l l <− Hlscv ( credit_88 )

fhat_lscv_diag <− kde ( credit_88 , l s c r o s s va l_d i ag )

fha t_ l s cv_fu l l <− kde ( credit_88 , l s c r o s s v a l_ f u l l )

p l o t ( fhat_lscv_diag , xlim = c (−10000 ,4 e+05) , ylim=c (15 , 60 ) ,

main="ke rne l e s t imate us ing the LSCV method with

c l a s s 2 paramete r i s a t i on bandwidth matrix " )

p l o t ( fhat_l scv_fu l l , xl im = c (−10000 ,4 e+05) , ylim=c (15 , 60 ) ,

main="ke rne l e s t imate us ing the LSCV method with

c l a s s 1 paramete r i s a t i on bandwidth matrix " )
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Abstract

Data in different fields of study, such as medicine and biostatistics, can be analysed using multiway

contingency tables. Loglinear models are useful for this analysis. Maximum likelihood estimation

is used to obtain the parameter estimates. The purpose of this study is to look at aspects of max-

imum likelihood estimation in loglinear modeling. The problems caused by having zero cells in the

contingency table are considered specifically.
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1 Introduction

“All models are wrong, but some are useful.” said Box [5]. Loglinear models are no exception to the

rule. A loglinear model is a mathematical model used to analyse categorical data whose logarithm is

a linear combination of parameters. We will estimate these parameters using the maximum likelihood

estimation method. Categorical data can be represented in the form of a contingency or a multi-way

table. Contingency tables can either be complete or incomplete. The former refers to a case where the

table has values for all the cells available and the latter is a case where the table is partially filled; meaning

at least one of the cells have a zero value. These zeros are one of two types:

a) Structural (fixed) zeros i.e. zero values caused by having no observations in that particular cell.

b) Sampling (random) zeros i.e. zero value caused by variation in sample or a sample size that is too

small, rectified by increasing the sample size since there exists a probability of having a non-zero

value in the cell.

Under statistical independence, the formula used to calculate the expected frequencies for a particular

two-way contingency table is given by the following formula:

Eij =
(Marginal total of row i)×(Marginal total of column j)

(grand total)

Having sampling zeros reduces the expected frequency calculated by the formula above and may

potentially cause the maximum likelihood estimate (MLE) to be non-existent. The following example

illustrates the impact of having zero valued cells when the calculation of expected frequencies (Eij) is

concerned. Table 1 summarises the observed frequencies:

1 2
1 8 3 11
2 5 9 14

13 12 25

Table 1: 2× 2 table of observed values

The expected values are calculated in Table 2:

1 2
1 5.72 5.28 11
2 7.28 6.72 14

13 12 25

Table 2: Expected frequencies of each cell obtained.

If the value 3 in row 1, column 2 of Table 1 is replaced by 0 then the new expected frequencies of row 1

are given in Table 3:
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1 2
1 4.72 4.36 8

Table 3: Adjusted expected frequencies incorporating the zero cell.

The calculation problem caused by having zero valued cells will be referred to as the problem of zeros

[7]. The existence of the MLE contributes vastly towards model selection. Even in cases where the

distribution of a statistic measuring the goodness of fit is taken from a known distribution, the MLE is

needed to identify the discrepancy of the observed data from the fitted data. In this paper we will

address the following questions:

1. What are the conditions for the existence of the MLE?

2. If some cells in our contingency table contain structural zeros, how is this handled in the

calculation of the MLE?

3. How accurate are the values produced after a method that deals with zero cells has been applied?

1.1 Literature Review

Categorical data analysis dates back to the 19th century with Statistician Karl Pearson [1], but is first

described at the start of the 20th century [7]. From the 20th century onwards the largest strides in

categorical data analysis were taken, where model development is concerned. A contingency table can

be used to represent categorical data and if information in one or more categorical variables is missing

it is called an incomplete contingency table. The term “contingency” originated with Pearson who used

it to refer to a measure of total deviation from “independent probabilities” in an i× j table. Years later

the word is used to refer to the actual table itself. In 1940 Pearson developed the tetrachoric correlation

coefficient for 2×2 tables with the assumption of bi-variate normality but there were problems countered

in the development [11]. The chosen approach at the time was the cross-classification using discrete fixed

variables, finding a structural relationship between them.

Loglinear models for multiway tables can be separated into dependence and independence models as

well as, saturated and unsaturated models. The saturated models are more complex involving association

terms that incorporate deviations from independence, unsaturated models are similar but do not include

association terms. In practice, unsaturated models are preferred because they are easier to interpret and

fit smoothly on sample data [1].

For a two-way I×J table , the general loglinear model of independence is

logmij = u+ u1(i) + u2(j)
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where mij denotes the expected value of cell (i, j), u1(i) is the row effect and u2(j) is the column effect.

The saturated model includes the association term u12(ij) and is given by:

logmij = u+ u1(i) + u2(j) + u12(ij) (1)

The total number of non-redundant parameters is 1 + (I − 1) + (J − 1) + (I − 1)(J − 1) = IJ , which is

the same as the total number of cells in the table.

2 Background Theory

2.1 Sampling distributions

Sampling distributions assist with obtaining maximum likelihood estimates. There are various methods

of sampling that may be used and the three most commonly encountered distributions are elaborated on

below.

2.1.1 Independent Poisson sampling

Under this type of sampling, each cell has an independent Poisson distribution. For a two dimensional

array, the probability density function (PDF) is:

f({xij}) =
∏
i,j

exp(−mij)m
xij

ij

xij !

The Poisson distribution occurs when sampling is done over a fixed period of time with no prior

knowledge about the number of observations during that period.

2.1.2 Simple multinomial sampling

Under this type of sampling, the total sample size is a fixed N . Given a series of independent Poisson

distributions, if this restriction is imposed it yields a multinomial distribution. The PDF of a two

dimensional array is:

f({xij}) =
N !∏
i,j xij !

∏
i,j

(
mij

N
)x+j

2.1.3 Binomial sampling (special case of simple multinomial sampling)

Under this type of sampling, the number of units/sample size N is predetermined and classified according

to two levels of a categorical variables. The PDF of a two dimensional array is:

p(x) =
xij !

mij !(xij −mij)!
(
xij
N

)mij (1− xij
N

)xij−mij
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where xij

N is the probability of a count falling in cell (i, j).

2.2 Sufficient statistics

To fit the loglinear models, first sufficient statistics must be derived. Sufficient statistics can be derived

for the different distributions. Below, is the derivation for the Poisson distribution and for the other

distributions it follows on similarly.

Consider the following joint Poisson probability:

∏
i

∏
j

exp(−mij)m
nij

ij

nij !

The likelihood function is given by:

L(µ) =
∑
i

∑
j

nij logmij −
∑
i

∑
j

mij (2)

Substituting the general loglinear model (1) ,described above, into (2) results in the likelihood function

being written as follows:

L(µ) = nu+
∑
i

ni+u1(i) +
∑
j

n+ju2(j)

+
∑
i

∑
j

niju12(ij) −
∑
i

∑
j

exp(u+ . . .+ u12(ij)) (3)

where the {nij} are the coefficients of {u12(ij)}. The coefficients are called the minimal sufficient

statistics. To find the estimate for the minimal sufficient statistic, differentiate equation (3) with respect

to the relevant u− term and equate the results of differentiation to zero.

2.3 Existence of maximum likelihood estimates

The first method of computing MLEs calculates the MLEs for a model with no second order association

for a 23 table [2]. Two PhD students from University of North Carolina, later added the concept of

explanatory variables and response variables, having explanatory variables being fixed factors [9, 10].

Collectively, they formulated the theory of two-way and three-way contingency tables and how they are

integrated through conditioning of different factors. Later, the method of testing for any interaction

between variables in a three-way table was derived but the existence of the MLE was not considered in

the research [9, 10]. The use of logarithmic expansion of cell mean vector was introduced thereafter [3].

Then, assuming that there are no sampling zeros, it was also showed that there is a unique maximum for

the log likelihood function. He also showed that the marginal sufficient statistics as well as the minimal
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sufficient statistics are equal to MLEs of expectations. The conditions sufficient for the existence of unique

non-zero MLEs were later given [6]. They were then updated to give necessary and sufficient conditions

under the Poisson and product-multinomial sampling schemes [8] .

The pressing matter is the problem caused by having cells containing structural in the contingency

table, affecting the accuracy of the model [1]. Throughout the centuries methods of determining necessary

and sufficient conditions for a MLE to exist have been derived and updated continuiously. These necessary

and sufficient conditions deal with the base level of what will be referred to from here onwards as the

“zero values matter”. The rest of the problem encompasses the tedious task of finding a procedure to deal

with the zero values in an attempt to compute accurate, reliable MLEs and hence an accurate reliable

model.

2.4 Maximum likelihood estimation

Maximum likelihood estimation aids in the obtaining of estimates for the parameters of the loglinear

model by maximizing the likelihood function. There are some advantages to using maximum likelihood

estimation for the loglinear model, namely:

1. The MLEs for loglinear models are easier to compute.

2. The MLEs follow certain intuitive marginal constraints which are not so intuitive for other estima-

tion methods.

3. The maximum likelihood estimation method can be applied directly to multinomial data consisting

of zero values without producing zero valued estimates.

2.4.1 Completeness

In as much as an incomplete table may have zero valued cells, a complete table may also have zero valued

cells. The difference between the zero valued cells in a complete table, however, is that those zeros are

sampling zeros. For a particular two-way contingency table, to find the expected cell estimates {m̂ij}

under the model of independence, the formula described earlier for Eij is applied as follows:

m̂ij =
(mi+)(m+j)

m++

where the number of individual observation from a sample size of N in cell (i., j) of the I × J

contingency table is given by mij . If we are summing a subscripted variable over a subscript, a ” + ” is

used to indicate the subscript we are summing. For example,
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mi+ =

J∑
j=1

mij

for i = 1, . . . , I, is the expected number of individual observations summing j = 1, . . . , J over each

subscript i = 1, . . . , I. Similarly we have

m+j =

I∑
i=1

mij

for j = 1, . . . , J and

m++ =

I∑
i=1

J∑
j=1

mij .

These are the maximum likelihood estimates under the two-way independence model. In the event that

the complete contingency table has cells with no observed counts (sampling zeros) the pattern formed by

the zero values in the table determines which loglinear model must be fitted.

To illustrate a situation where a complete contingency table has zero valued cells but they are posi-

tioned in such a manner that they do not affect how estimates for the model are calculated, consider the

Table 4:

a 0
0 d

Table 4: A complete table where a and d denote nonzero positive values

Under the general two-way independence model described earlier, the estimates for the model are

given in Table 5:

a2

a+d
ad
a+d

ad
a+d

d2

a+d

Table 5: Expected value estimates for the two-way independence model.

The cell estimates obtained in Table 5 are then used to calculate the u − term estimates under the

two-way table’s unsaturated loglinear independence model.

û = log
ad

a+ d

û1(1) = −û1(2) =
1

2
log(

a

b
)
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û2(1) = −û2(2) =
1

2
log(

a

b
)

To illustrate a situation where a complete table has zero valued cells but they are positioned in such

a manner that it is impossible to derive cell estimates since the top row adds up to 0, consider Table 6:

0 0
c d

Table 6: A complete table where c and d denote nonzero positive values

In this case, an alternative method is to fit a different model. A general two-way independence, model

as described earlier, may be used where u1(i) = 0, which means that the first variable has no effect on

the model. The estimates for the model are given in Table 7:

c
2

d
2

c
2

d
2

Table 7: Expected value estimates for the two-way independence model.

2.5 Maximum likelihood estimation for complete tables

Consider the likelihood function from equation (3) above which now becomes:

L(µ) = nu+ [
∑
i

∑
j

nijU12]

−[
∑
i

ni+u1 +
∑
j

n+ju2]−
∑
i

∑
j

exp(u+ . . .+ u12(ij))

The term isolated within first set of square brackets above yields the minimal sufficient statistic, the terms

in the second set of square brackets can be ignored. The minimal sufficient statistic corresponding to

U12 is nij . The unique set of maximum likelihood estimates for every cell may be derived from sufficient

statistics. Under some models the estimates can be written directly as a function of sufficient statistics.

For the two-way table model given in equation (1), if we put u12 = 0 the minimal sufficient statistic

are ni+ and n+j .

Note that ni+ = m̂i+ and n+j = m̂+j . Isolating mij in the model it follows that:

mi+ = exp(u+ u1(i))(
∑
j

exp(u2(j))) (4)

m+j = exp(u+ u2(j))(
∑
i

exp(u1(i))) (5)
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N = exp(u)(
∑
i

exp(u1(i)))(
∑
j

exp(u2(j)))

therefore

(mi+)(m+j)

N
= exp(u+ u1(i) + u2(j)) = mij

In this case cell estimates are given by ni+ and n+j as:

m̂ij =
ni+n+j

N

For the purpose of illustrating direct estimation, consider the following model for a three-way table

logmijk = u + u1(i) + u2(j) + u3(k) + u12(ij) + u23(jk) + u13(ik) + u123(ijk). If u12 = u123 = 0, mijk is

isolated as follows:

mijk = exp(u+ u1(i) + u2(j) + u3(k) + u13(ik) + u23(jk))

the elements of ni+k and n+jk, are estimates of :

mi+k = exp(u+ u1(i) + u3(k) + u13(ik))(
∑
j

exp(u2(j) + u23(jk)))

m+jk = exp(u+ u2(j) + u3(k) + u23(jk))(
∑
i

exp(u1(i) + u13(ik)))

The minimal sufficient statistic that they have in common is n++k which is an estimate of :

m++k = exp(u+ u3(k))
∑
i,j

exp(u1(i) + u2(j) + u13(ik) + u23(jk))

Rearranging, the above equation may be written as:

m++k = exp(u+ u3(k))
∑
i

exp(u1(i) + u13(ik))
∑
j

exp(u2(j) + u23(jk))

Dividing (mi+k)(m+jk) by m++k the following is obtained:

mijk =
(mi+k)(m+jk)

m++k

where the estimates can be directly obtained as:

m̂ijk =
(ni+k)(n+jk)

n++k
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3 Introduction to maximum likelihood estimation for incomplete

tables

The problem that is investigated in this paper revolves around having zero valued cells in incomplete

contingency tables. A researcher dealing with an incomplete contingency tables may fail to identify that

their contingency table is incomplete. The repercussions of this are that the researcher might choose to:

1. Fill in the zero valued cells with values that are deemed "appropriate".

2. Collapse the table until there are no longer any structural zeros visible.

3. Discard the whole investigation.

All these cases result in either inaccurate or non-existent conclusions for the particular investigation. In

the event that the researcher does identify that their contingency table as incomplete, a loglinear model

suitable for incomplete data may be applied. This is called the quasi-loglinear model. In the upcoming

sections quasi independence is introduced and explained further.

3.1 Quasi independence for two-way tables

Quasi independence states that a particular subset of cells (all cells not falling on the main diagonal)

satisfies the independence structure whereby the cell expected count is a product of a row effect and a

column effect. Let S be a set of cells in an incomplete two-way array made up of the cells not containing

structural zeros and, under a common independence model of variables, it is assumed that:

mij = aibj (6)

for all mij∈S, where ai and bjare positive constants for i = 1, . . . , I and j = 1, . . . , J . Other notation that

is used to describe this definition of independence is Πi,j , where Πi,j denotes the probability that a value

in the I × J population table falls in the (i, j) cell. The rows and columns are considered independent if

the cell probabilities can be written as Πij = Πi+Π+j for i = 1, . . . , I and j = 1, . . . , J . This allows for

the use of the mij formulas discussed initially to find the marginal totals of S, since the cells in S contain

no structural zeros.

Using the logarithmic model approach on the incomplete two-way tables we have:

logmij = u+ u1(i) + u2(j) + u12(ij) for (i, j)∈S (7)
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I∑
i=1

δ
(2)
i u1(i) =

J∑
j=1

δ
(1)
j u2(j) = 0 (8)

I∑
i=1

δiju12(ij) =

J∑
j=1

δiju12(ij) = 0

where

δij =


1 for (i, j)∈S

0 otherwise,
(9)

δ
(2)
i =


1 δij = 1 for some j

0 otherwise,

δ
(1)
j =


1 δij = 1 for some i

0 otherwise,

setting u12(ij) = 0 the quasi independence model is defined as:

logmij = u+ u1(i) + u2(j) for (i, j)∈S (10)

Isolating mij result in the following equation:

mij = exp(u1(i)) exp(u2(j))exp(u) for (i, j)∈S (11)

The equation (11) is equivalent to (6) since the mij is given as the product of a parameter depending

on i, one depending on j. The last parameter depends on neither i or j.
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3.2 Interpretation of the quasi independence model

3.2.1 Method 1

Quasi independence means that the relative proportions of values in the corresponding cells of two

rows/columns are the same, given that there are no structural zeros in one of the cells in these rows/columns.

So quasi independence is dependent on the fact that attention is diverted from the structural zero entries

to the non-zero portion of the table. To illustrate quasi independence consider Table 8 below:

0 a b
c d e
f g h

Table 8: Table illustrating the position of structural zero valued cells

Applying quasi independence, the first row can be deleted or alternatively the first column can be

deleted. For each case the remaining form is shown below in Table 9 and Table 10, respectively.

c d e
f g h

Table 9: 2× 3 table remaining after the first row is deleted.

a b
d e
g h

Table 10: 3× 2 table remaining after the first column is deleted.

The values in the cells are calculated using equation (6). The problem with quasi independence occurs

when the values of d and h in Table 8 are also zero; so the diagonals are also zero valued. Applying the

same method would imply that the whole table must be collapsed.

3.2.2 Method 2

This method is defined using the notation of interaction contrasts:

I∑
i=1

J∑
j=1

δijβij logmij (12)

18



(βij 6= 0 for some i, j) where

I∑
i=1

δijβij =

J∑
j=1

δijβij = 0

Recall that δij is defined in equation (9), so equation (12) is then restricted to contrasts involving

only cells in S. Consider equations (7) and (8), the interaction contrast (12) can be rewritten as :

I∑
i=1

J∑
j=1

δijβiju12(ij)

(βij 6= 0 for some i, j). Therefore u12(ij) = 0 if the contrast is set to 0 for various values of {βij}. In

other words, quasi independence is equivalent to zero for all interactive contrasts.

3.3 Sampling Distributions

3.3.1 Quasi independence model for Poisson likelihood

Earlier, a likelihood function for a two-way contingency table following a Poisson probability was stated

and therefore a loglinear model was built. Similarly, in the following steps a quasi independence model

for an incomplete table will be derived.

Let
∏∗ denote the product over all the cells contained in S.

Therefore, the likelihood function is given by:

∏
∗m

xij

ij

exp(−mij)

xij !

L(m) =
∑

δij [xij log(mij)−mij − log(xij !)]

substituting (10) into the above result gives:

L(m) = x++u+
∑
i

xi+u1(i) +
∑
j

x+ju2(j) −m++ −
∑

δij log(xij !)

where the total sample size N = x++ and the marginal totals xi+
∨
i and x+j

∨
j are minimal sufficient

statistics.
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3.4 Existence of MLE and Degrees of freedom of quasi independence

In general, the degrees of freedom are calculated by finding the difference between the number of cells in

the table and the number of independent parameters. To find the degrees of freedom for quasi indepen-

dence first an important theorem must be highlighted. The theorem which constitutes the necessary and

sufficient conditions for the MLE to exist was derived and is given as follows [1]:

Theorem 1

Let n be the vector of cell counts, let m be their expected values. Result (1) − (5) apply to Poisson

sampling and result (6) applies to multinomial sampling.

1. The log likelihood function is a strictly concave of log(m).

2. If a ML estimate of m exists, it is unique and satisfies the likelihood equations X’n=X’m̂. Con-

versely, if m̂ satisfies the model and also the likelihood equations, then it is the ML estimate of

m.

3. If all the ni > 0, then ML estimates of loglinear model parameters exist.

4. Suppose ML parameter estimates exist for a loglinear model that equates observed and fitted counts

in certain marginal tables. Then those marginal tables have uniformly positive counts.

5. Suppose modelM2 is a special case of modelM1. If ML estimates exist forM1, then they also exist

for M2.

6. For any loglinear model, the ML estimates m̂ are identical for multinomial and independent Poisson

sampling, and those estimates exist in the same situations.

For a quasi independence model of an inseparable incomplete table satisfying Theorem 1, the degrees

of freedom are calculated as IJ−ze−[I+J−1] = (I−1)×(J−1)−ze (ze is the number of cells containing

structural zeros). It is possible to have zero degrees of freedom with the table satisfying the conditions

discussed in the Theorem 1. For instance Table 11 below, will result in zero degrees of freedom:

4 6 - - -
- 5 7 - -
- - 6 3 -
- - - 4 5

Table 11: Incomplete table resulting in zero degrees of freedom
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For a separable incomplete table with, say k subtables, the nonempty cells of each subtable are denoted

as S1,S2, . . . , Sk. The value of degrees of freedom for the quasi independence model of the whole table

is the sum of the degrees of freedom of each S1,S2, . . . , Sk. For an inseparable incomplete table there

are zero degrees of freedom if and only if the cells not containing structural zeros are non-interactive. A

non-interactive cell is one that does not contribute to any of the interaction contrasts.

3.5 Goodness of fit

The goodness of fit test is used to test the fit of the quasi-independence model. The test statistic is a

chi-square (χ2) random variable that is, in general, defined as:

∑ (Oi − Ei)
2

Ei

where Oi is the observed frequency count at the i − th level of the categorical variables and Ei is the

expected frequency count at the i− th level of the categorical variables.

In order to apply the goodness of fit test to the quasi-independence model, the Pearson statistic is

used and defined as follows:

χ2 =
∑ (xij − m̂ij)

2

m̂ij

where m̂ij is the MLE of mij and the sum is taken over all the cells in an incomplete subtable S.

Alternatively, the likelihood-ratio test may be used and is defined as:

G2 = 2
∑

xij log(xij/m̂ij)

Under the null hypothesis of quasi independence both the test statistics given above have an asymp-

totic central χ2 distribution. The degrees of freedom are calculated as show in section 3.4 above.

3.6 Connectivity and Separability in incomplete tables

3.6.1 Introduction

Connectivity and separability is found amoungst a set of non-structural zero cells. The concept of separa-

bility is important to understand in order to deal with the degrees of freedom under quasi independence.

For a two-way contingency table, two cells are associated if there are no structural zeros in either and

if the cells are in the same row or the same column. If every pair of cells can, in some way, be linked

by a chain of other cells then there is connectivity within that pair. Since the main focus here is a two
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way table, an incomplete two-way table is connected if its non-structural zero cells form a connected set.

If the table is not connected then it is separable because the nonempty cells of a separable table can be

divided into two or more separate subtables. Each subtable has no repeating rows or columns in it. To

define separability we do not distinguish between structural and sampling zeros. Therefore it can be said

that an observed table is separable if the incomplete table is not connected.

3.6.2 Dealing with separable tables

Consider an incomplete table that is separable into k subtables. In other words, the set S is made up

of S1, S2, . . . , Sk. Which means that the set of nonempty cells of the incomplete table is made up of

k subsets of nonempty cells of each subtable. Since, by definition of separability, each of the subsets

have no rows or columns in common, equation (6) can be written such that each of the subsets have no

parameters in common. Therefore, each of the subsets has a separate quasi-independence model.

3.7 Methods to determine if a cell is non-interactive

There are other methods that may be used to obtain the MLEs for the expected cell counts of an

incomplete contingency table. These are iterative procedures and they are referred to as the indirect

procedures. In this paper the main focus is direct estimation procedure, so the preceding section describes

the direct estimation procedure used to get the MLEs for the expected cell counts in an incomplete table

under the quasi independence.

It is important to conclude whether a cell is non-interactive or not. If a cell is identified as a non-

interactive cell, it is known that under quasi independence the observed counts for individual cells is

the MLE for those cells. This knowledge allows for removal of these cells from the incomplete subtable

during the analysis of the table and replacement after the analysis is complete. The first two principles

of the procedure that will be introduced address the determination of non-interactive cells. The last two

principles allow the MLEs for two classes of complete tables to be captured.

3.7.1 Principle 1 (Cell Isolates)

When δij = 1 for some cell (i, j) but still in the same row, the remaining δij are zero, then m̂ij = xij .

This is because the MLEs are determined in a unique way, preserving of marginal total. Clearly, the

relevant cell is non-interactive so the i − th row and j − th column is deleted. For clarity, the following

example demonstrates Principle 1. Consider a 4× 4 tables with expected cells given in Table 12:
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m11 m12 m13 m14

m21 m22 m23 −
m31 m32 m33 -
− - - m44

Table 12: 4× 4 table with expected values and zero valued cells

Deleting the fourth row results in the (1, 4) cell becoming a cell isolate and it is also non-interactive

so the fourth column may also be deleted. The resulting table after the deletion is given in Table 13:

m11 m12 m13

m21 m22 m23

m31 m32 m33

Table 13: Resulting 3× 3

3.7.2 Principle 2 (Semiseparability)

Semiseparability is a concept that implies that the incomplete table can be made separable in two or more

subtables if a single row or column is removed. Now, consider a separable table that is partitioned into

sets of rows. Each set corresponds to one separable subtable derived from column deletion. Estimation

of expected cell counts is now made easier in each partitioned set of rows. Under quasi independence, the

estimation is done in the same way as it would if each set where a separable subtable. i.e specific MLEs

may be found for the table given that specific MLEs may be found for each set of rows. To illustrate

principle 2 more clearly, consider the following 5× 5 incomplete table with expected cell counts given in

Table 14 below:

m11 m12 - - -
m21 m22 - - m25

- - m33 m34 m35

- - m43 m44 -
- - m53 m54 m55

Table 14: 5× 5 table with expected cell counts mij and zero entries

It can be concluded that the table is semiseparable because if column 5 is deleted this results in two

separable subtables. Partitioning the table into the first 2 rows and the last three rows, consider the

reduced subtables given in Table 15 and Table 16, respectively:

m11 m12 -
m21 m22 m25

Table 15: Reduced subtable 1

23



m33 m34 m35

m43 m44 -
m53 m54 m55

Table 16: Reduced subtable 2

In Table 15, cell (2, 5) is a cell isolate yet it was not a cell of this nature in the original table. Deleting

the third column of Table 15 results in a 2 × 2 subtable whose MLEs maybe be calculated directly.

Deletion of the third column of Table 16 also admits direct MLEs. Using the proceeding principles,

principle 3 and principle 4, the direct MLEs may be pieced together to acquire the MLEs of the original

incomplete table.

3.7.3 Principle 3 (Block-Triangular Tables)

An incomplete table is in "block triangular" form if after the fitting of row and column permutations,

δij = 0 implies δkl = 0
∨
k = i and l = j. From "block triangular" forms explicit formulas for expected

cell values may be determined. Table 17 , Table 18 and Table 19 illustrate different examples of "block

triangular" tables.

m11 m12 m13 m14

m21 m22 m23

m31 m32

m41

Table 17: Block triangular table 1

m11 m12 m13 m14

m22 m23 m24

m32 m33 m34

m43 m44

m53 m54

Table 18: Block triangular table 2

m13 m14

m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

Table 19: Block triangular table 3
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The above forms are called block triangular because the non-structural zero cells form a right angled

triangle with blocks of cells lying along the hypotenuse of the triangle, given that the relevant permutations

of rows and columns have been performed.

MLEs for block triangular tables

MI1×J1 MI1×J2 MI1×J3

MI2×J1 MI2×J2 0I2×J3

MI3×J1 0I3×J2 0I3×J3

Table 20: I × J block triangular table where I = I1 + I2 + I3, J = J1 + J2 + J3

With reference to Table 20 above, it is noted that the structural zeros lie in two blocks of cells, specified

by setting δij = 0 for i = I1+1 and j = J1+J2+1 and for i = I1+I2+1 and j = J1+1. To find the MLEs

of the incomplete subset S, mij must be written in its multiplicative form in order for the function to only

be of marginal totals. Considering the blocks on the diagonals defined by i = I1 + 1, I1 + 2, . . . , I1 + I2

and j = J1 + 1, J1 + 2, . . . , J1 + J2 we have:

mi+m+j = (

J1+J2∑
l=1

exp(u+ u1(i) + u2(l)))(

I1+I2∑
k=1

exp(u+ u1(k) + u2(j)))

= exp(u+ u1(i) + u2(j))(

J1+J2∑
l=1

I1+I2∑
k=1

exp(u+ u1(k) + u2(l)))

= mij(

J1+J2∑
l=1

I1+I2∑
k=1

mkl)

and
J1+J2∑
k=1

I1+I2∑
l=1

mkl = m++ −
I1+I2+I3∑
i=I1+I2+1

mi+ −
J1+J2+J3∑
j=J1+J2+1

m+j

The mij for this block can be written as direct functions of the marginal totals, hence the MLEs are

given by:

m̂ij =
xi+x+j∑J1+J2

k=1

∑I1+I2
l=1 xkl

for i = I1 + 1, . . . , I1 + I2, j = J1 + 1, . . . , J1 + J2

The above formulas give the MLEs for the two diagonal blocks of cells. Now, revised marginal totals

are computed for the remaining cells by subtracting the known MLEs of the three diagonal blocks from

the original marginal totals and considering the already estimated cells as structural zeros in the rest of
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the proceedings. The block triangle will reduce in size thereafter and the calculation will continue using

the updated versions of the above formulas.

3.7.4 Principle 4 (Block-stairway Tables)

An inseparable incomplete table is deemed a "block-stairway" table if the table may be divided into

sets of rows each containing one rectangular array of nonzero cells, all after the relevant permutation of

rows and columns. In addition, each of these rectangular arrays shares columns only with those array

immediately above it and immediately below it. Under quasi independence, block-stairway incomplete

tables have closed form MLEs for nonzero expected counts. If one of the rectangular arrays in a block-

stairway table has one row or one column, that one column or row may have cell isolates or it may

potentially be semiseparable.

MLEs for block-stairway tables

0I1×J1 0I1×J2 MI1×J3 MI1×J4

0I2×J1 MI2×J2 MI2×J3 0I2×J4

0I3×J1 MI3×J2 0I3×J3 0I3×J4

MI4×J1 MI4×J2 0I4×J3 0I4×J4

Table 21: I × J block stairway incomplete table where I = I1 + I2 + I3 + I4, J = J1 + J2 + J3 + J4

In Table 21, there are seven nonzero entries. The sum of the MLEs is equal to the sum of the observed

counts. The calculation will first consider cell “ MI2×J3”, looking at the product of the marginal totals.

mi+m+j = (

J1+J2+J+3∑
l=J1+1

exp(u+ u1(i) + u2(l)))(

I1+I2∑
k=1

exp(u+ u1(k) + u2(j)))

= exp(u+ u1(i) + u2(j))(

J1+J2+J3∑
l=J1+1

I1+I2∑
k=1

exp(u+ u1(k) + u2(l)))

thus

mij =
mi+m+j

(
∑J1+J2+J3

l=J1+1

∑I1+I2
k=1 exp(u+ u1(k) + u2(l)))

(13)

summing over i, j in the block of cells gives:
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∑I1+I2
i=I1+1

∑J1+J2+J3

j=J1+J2+1mi+m+j∑I1+I2
i=I1+1

∑J1+J2+J3

j=J1+J2+1mij

=

J1+J2+J3∑
l=J1+1

I1+I2∑
k=1

exp(u+ u1(k) + u2(l)) (14)

Substituting result (14) in equation (13) results in an expression for mij that in terms of marginal

totals {mi+} and {m+j}, the following is obtained:

m̂ij =
xi+x+j(

∑J1+J2+J3

l=J1+1

∑I1+I2
k=1 xkl)∑J1+J2+J3

l=J1+1

∑I1+I2
k=1 xk+x+l

for i = I1 + 1, . . . , I1 + I2; j = J1 + J2 + 1, . . . , J1 + J2 + J3

3.8 Equivalence of closed-form and iterative estimates

Earlier in this paper it was noted that under quasi independence the MLEs for the expected cell counts

in an incomplete table are unique and exist if the conditions stated in Theorem 1 are met. Hence, both

the closed-form formulas and the iterative proportional fitting procedure are the same estimates, if the

MLEs for a particular incomplete table are written in closed form.

4 Application

4.1 Example 1 (To illustrate the block-triangular procedure)

Final
Initial state A B C D E Totals

E 11 23 12 15 8 69
D 9 10 4 1 - 24
C 6 4 4 - - 14
B 4 5 - - - 9
A 5 - - - - 5

35 42 20 16 8 121

Table 22: Initial and final disability of stroke patients rating

Table 22 is an extract from [4] and will be used to illustrate direct estimation when block-triangles are

considered. The data summarised in Table 22 is about the severity of physical disability after a stroke

of 121 patients from Massachusetts General Hospital, the grading was done on admission and again on

discharge of each patient. The “block-triangular” form is formed because a patient cannot be discharged

if their condition becomes worse, so their score on the discharge evaluation may only remain the same or

get better.

The calculation of the expected cell values begins with consideration of the diagonal cells, for instance

(A,A), (B,B), (C,C) and so on. The expected count for the cell with initial state B and final state B is
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calculated as follows:
9× 42

121− (20 + 16 + 8 + 5)
= 5.25

Similarly, the expected cell values for (A,A) is 5, for (C,C) is 3.37, for (D,D) is 4.52 and for (E,E) is

8. Note that (A,A) and (E,E) are cell isolates as described in Principle 1 above. Hence, their expected

values are equal to the observed values. Now, the diagonal cell estimates calculated above are subtracted

from the marginal totals and the procedure is repeated. The expected cell count for (C,B) is given as

follows:

(14− 3.37)(42− 5.25)

94.86− (16.63 + 11.48)− 3.75
= 6.20

Similarly, the expected cell values for (B,A) ,(D,C) and (E,D) are 3.75, 4.69 and 11.48, respectively.

Repeatedly doing this procedure will result in the values in Table 23 below:

Final
Initial State A B C D E Totals

A 15.66 21.92 11.94 11.48 8 69
B 6.16 8.63 4.69 4.52 - 24
C 4.43 6.20 3.37 - - 14
D 3.75 5.25 - - - 9
E 5 - - - - 5

Totals 35 42 20 16 8 121

Table 23: Estimated expected cell counts resulting form procedure explain above.

The goodness-of-fit statistics computed for this table are:

χ2 = 8.37

G2 = 9.60

both with 6 degrees of freedom. This implies that the quasi-independence model is a relatively good

fit.

4.2 Example 2 (To illustrate the block-stairway procedure)

Table 24 below, is data from two experiments done to study male Drosophila melanogaster carrying a

specific translocation between the X chromosome and the minute fourth chromosome, as well as a Y

chromosome and a normal fourth chromosome [4]. In the latter experiment, a random sample of males

were mated with attached-X females with the distal and of the translocation. In the former, a random

sample of males were mated with attached-X females with a Y chromosome. The sperm produced
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by the males carries either the proximal end of translocation (A) or Y (A′), and either the distal end

of the translocation (B) or the fourth chromosome (B′). This knowledge give the following possible

combinations: (AB), (A′B′), (A′B), (AB′). The main purpose of this example, however, is to illustrate

the block stairway method. The cells we consider to be structural zeros in this case are labeled "lethal"

and there is scientific understanding as to why mating that combination results in a lethal result.

Male sperm type
Female type AB A’B’ A’B AB’

FemY 1413 1029 lethal 2240
FemProx lethal 548 346 1287

Table 24: Summary of observed data values

After rearranging the table in Table 25 it is evident that the model of quasi independence fits the data

and cells (FemProx,A’B) and (FemY,AB) are cell isolates, so under quasi independence their estimates

are equal to their observed counts.

Type 1
Type 2 A’B A’B’ AB’ AB
FemY - 1029 2240 1413

FemProx 346 548 1287 -

Table 25: Observed values in block-stairway table form

Cells (FemY,A’B’), (FemY,AB’) and (FemProx,A’B’), (FemProx,AB’) form blocks. The estimates of

these blocks are calculated as follows:

m̂FemY,A’B’ =
(1577× 4682)× 3269

(1577× 4682) + (3527× 4682)
=

1577× 3269

5104
= 1010.03

m̂FemY,AB’ = 2258.97 (by subtraction)

m̂FemProx,A’B’ =
(1577× 2181)× 1835

(1577× 2181) + (3527× 2181)
=

1577× 1835

5104
= 566.97

m̂FemProx,AB’ = 1268.03

The Pearson goodness-of-fit statistic computed for this table is:

χ2 = 1.43

with one degree of freedom. This implies that the quasi-independence model is a very good fit.

The approach that will be taken for the rest of the practical application section is that the estimation

of expected cell values will be done using SAS. Firstly, the same examples (1 and 2) done above will be
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programmed for the purpose of comparing the computerized answers with the answers calculated above.

Secondly, another example (Example 3) will be introduced to solidify the concept.

For the first example, the estimated values from the SAS output are summarised in Table 26 below

and the SAS output and code can be found in the appendix.

Final
Initial A B C D E
A 15.6607 21.92498 11.93196 11.48235 8
B 6.161588 8.626223 4.694543 4.517647
C 4.427711 6.198795 3.373494
D 3.75 5.25
E 5

Table 26: Summary of expected values from SAS output for example 1.

In the second example, the estimated values from the SAS output are summaried in Table 27 below

and the SAS output and code can be found in the appendix.

Type 1
Type 2 A’B A’B’ AB’ AB
FemY 1413 1010.034 2258.966

FemProx 566.9661 346 1268.034

Table 27: Summary of expected values from SAS output for example 2.

It can be observed that the computerized values and the manually calculated values are exactly the

same.

4.3 Example 3

The data provided in Table 28 summarises the relationship between radial asymmetry and locular com-

position in Staphylea.

Coefficient of Radial Asymmetry
Locular Composition 0.00 0.47 0.82 0.94 1.25 1.41 1.63

3 even, 0 odd 1001 - - 263 - - 1
2 even, 1 odd - 744 160 - 20 4 -
1 even, 2 odd - 340 66 - 11 1 -
0 even, 3 odd 76 - - 17 - - 0

Table 28: Data indicating alternatives chosen given different conditions, where "-" indicates structural
zeros and "0" indicates sampling zeros.

If row 4 is removed then cells (3even, 0odd, 0.00), (3even, 0odd, 1.25), (3even, 0odd, 1.63) form cell iso-

lates and their corresponding columns may be removed too. Hence, cells (2even, 1odd, 0.47), (2even, 1odd, 0.82),

(2even, 1odd, 1.41), (1even, 2odd, 0.94) as well as cells (1even, 2odd, 0.47), (1even, 2odd, 0.82), (1even, 2odd, 1.41)

and (1even, 2odd, 0.94) are left behind, consider Table 29:
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Coefficient of Radial Asymmetry
Locular Composition 0.47 0.82 1.41 0.94

2 even, 1 odd 744 160 20 4
1 even, 2 odd 340 66 11 1

Table 29: New table of identification of cell isolates.

The MLEs may be determined directly. The estimates are given in Table 30 below and the SAS code

is given in the appendix.

Coefficient of Radial Asymmetry
Locular Composition 0.47 0.82 1.41 0.94

2 even, 1 odd 747.364 155.8158 21.37296 3.447251
1 even, 2 odd 336.636 70.18425 9.627043 1.552749

Table 30: Summary of expected values from SAS output for example 3.

The parameter estimates for the loglinear model under quasi independence are given as follows:

λL1 = 0.3988, λC1 = 2.6253, λC2 = 1.0574, λC3 = −0.9291

5 Conclusion

In this paper, the use of loglinear models to model cell counts for contingency tables is introduced .

Even though contingency tables are useful for model building, incomplete contingency tables can be a

nightmare when expected cell counts must be estimated. This is the problem that is investigated. Many

different methods have been proposed for handling such a problem. However, one of the shortfalls is that

due to the existence of structural zeros in the table, estimation of the individual cells may be difficult or

even impossible. The conditions for the existence of maximum likelihood estimates are discussed in the

paper but not much can be done if the estimates just simply do not exist. With the use of the methods

for handling incomplete tables that are discussed above, useful models can be built. But, of course with

more research, there is always room for improvement.
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Appendix

5.1 SAS code to example 1

data research;

input initial $ final $ count @@ ;

cards;

1 1 11 1 2 23 1 3 12 1 4 15 1 5 8

2 1 9 2 2 10 2 3 4 2 4 1 2 5 .

3 1 6 3 2 4 3 3 4 3 4 . 3 5 .

4 1 4 4 2 5 4 3 . 4 4 . 4 5 .

5 1 5 5 2 . 5 3 . 5 4 . 5 5 .

;

proc catmod data=research;

weight count;

model initial*final=_response_ /

missing=structural zero=sampling

freq pred=freq noparm oneway;

loglin initial final;
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Figure 1: Output from SAS containing the expected frequency results for example 1

5.2 SAS code to example 2

data research2;

input female $ male $ count @@;

cards;

1 1 1413 1 2 1029 1 3 . 1 4 2240

2 1 . 2 2 548 2 3 346 2 4 1287

;

proc catmod data=research2;

weight count;

model female*male=_response_/

missing=structural zero=sampling

freq pred=freq noparm oneway;
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loglin female male;

38



39



Figure 2: Output from SAS containing the expected frequency results for example 2.

5.3 SAS code to example 3

data research3;

input Locular $ coefficient $ count @@;

cards;

1 1 744 1 2 160 1 3 20 1 4 4

2 1 340 2 2 66 2 3 11 2 4 1

;

proc catmod data=research3;

weight count;

model Locular*coefficient=_response_/

missing=structural zero=sampling
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freq pred=freq oneway;

loglin Locular coefficient;
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Figure 3: Output from SAS containing the expected frequency results for example 3.
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Abstract

In this paper, the reader is familiarised with the concept of hierarchical data and statistical mod-

els which arise from data with such a structure, i.e. multilevel models. Multilevel models treat the

regression coe�cients as random variables which act as a �link� between the di�erent levels of the

hierarchical structured data, [13, 10]. Di�erent types of models can be formulated from the basic mul-

tilevel model, namely the random-intercept model the and random varying slope model. Furthermore,

the application of the multilevel model, namely the level-2 model, will be illustrated/�tted using the

recent Trends in International Mathematics and Science Study (TIMSS) 2015 data to analyze the

performance of individual students in mathematics, using the SAS statistical package.

2



Declaration

I, Tshidiso Thebe, declare that this essay, submitted in partial ful�llment of the degree BSc(Hons)

Mathematical Statistics, at the University of Pretoria, is my own work and has not been previously

submitted at this or any other tertiary institution.

_____________________________

Tshidiso Thebe

_____________________________

Dr Gretel Cra�ord

_____________________________

30 October 2017

3



Acknowledgements

I, Tshidiso Thebe, would like to thank the National Research Foundation for making it possible for me to

able to pursue my studies, and Dr. Gretel Cra�ord for her guidance and patience throughout the year.

4



Contents

1 Introduction 7

2 Background Theory 8

2.1 Origin of multilevel models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Types of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Estimation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Application 22

3.1 The null model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Models with school-level predictors only . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Models with student-level predictors only . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Models with both student- and school-level predictors . . . . . . . . . . . . . . . . . . . . 30

4 Conclusion 33

Appendix 36

List of Figures

1 Regression lines for �ve schools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Relationship between math achievement and student con�dence in mathematics . . . . . . 14

3 Relationship between math achievement and student con�dence in mathematics . . . . . . 15

4 Regression lines for the �ve schools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

List of Tables

1 Student-level variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 School-level variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Model 1 �xed e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Model 1 random e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Model 2-1 �xed e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Model 2.1 random e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Model 2.2 �xed e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5



8 Model 2.2 random e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 Model 3.1 �xed e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 Model 3.1 random e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

11 Model 3.2 �xed e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

12 Model 3.2 random e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

13 Model 4.1 �xed e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

14 Model 4.1 random e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

15 Model 4.2 �xed e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

16 Model 4.2 random e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

18 PROC GLM output for student-level variables . . . . . . . . . . . . . . . . . . . . . . . . 36

21 PROC GLM output for school-level variables . . . . . . . . . . . . . . . . . . . . . . . . . 37

6



1 Introduction

In the social, behavioral and educational sciences data often has a hierarchical structure, with individuals

nested within a network in an organized system. In the educational system of South Africa, students are

nested within classes, classes are nested within schools, and schools are nested within regions etc. This

is a typical example of a hierarchical structure. Data with such a structure occurs naturally within any

organization and each level has certain characteristics which may have an in�uence on the other levels of

the hierarchical structure. For instance, mathematics teachers in di�erent schools use di�erent methods

of teaching the subject and will therefore have some in�uence on the performance of the students in

the subject. Such an in�uence is therefore signi�cant and unique to each school, and thus cannot be

ignored when modeling the mathematics performance of students (level 1). Multilevel model analysis

incorporates in�uences, from di�erent levels in order to predict correct estimates of the standard errors

that in�uence di�erent hypothesis tests that can be performed.

[2] illustrates that multilevel modeling o�ers an improvement as compared to the classical regression

methods when dealing with hierarchical data and concludes that for prediction, multilevel models can be

essential, for casual inference they can be helpful, and useful for data reduction.

Consider a hierarchical data set, with students (level 1 units) nested within schools (level 2 units),

the basic 2-level model can be expressed in a number of ways, with the most convenient way being to

model both levels separately and then substituting the two to obtain a combined model, [12]. The model

at the �rst level can be expressed as

yij = b0i + b1ixij + εij , i = 1, 2, ..., N and j = 1, 2, ..., ni, (1)

where yij is the response variable, xij is the independent variable at the �rst level and εij is the error

term associated with the j-th student from the i-th school. The second level model can be expressed as

b0i = β0 + γ01zi + u0i, i = 1, 2, ..., N, (2)

b1i = β1 + γ11zi + u1i, i = 1, 2, ..., N, (3)

where b0i is the intercept model of the i-th school, b1i is the model of the slope of the i-th school. The

level-2 predictor, zi, is the i-th school's independent variable. The error terms u0i and u1i are associated

with the i-th school for the intercept- and slope models, respectively, denote the random variation of the

coe�cients. Substituting (2) and (3) into (1), the resulting model called the combined model, and is
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expressed as

yij = β0 + γ01zi + β1xij + γ11zixij + xiju1i + u0i + εij , i = 1, 2, ..., N and j = 1, 2, ..., ni. (4)

Model (4) incorporates predictors from both levels (student level and school level), in order to model

the response variable yij , which is the mathematics achievement for a Grade 9 student. The Trends in

International Mathematics and Science Study (TIMSS) 2015 data is a collection of data from schools in

57 countries, and in this sampled data, a hierarchical structure is exhibited. Using TIMSS 2015 data,

the South African grade 9 maths marks will be modeled with a 2-level model and subsequently, various

models will be used in order to detect the di�erent relationships in the marks. PROC MIXED in SAS

will be used in order to �t the various models for statistical inference purposes.

2 Background Theory

2.1 Origin of multilevel models

A hierarchy consists of individuals of a lower level nested within groups or organization at a higher level(s).

[7] describe multilevel models, also known as hierarchical linear models, as statistical models that contain

variables at di�erent levels of a hierarchy. The term �hierarchical linear models� was coined by [8], when

they used the models to analyze data with a hierarchical structure through Bayesian estimation. [11],

through his studies in ecological processes was one of the �rst researchers to recognize the need for

multilevel analysis. In 1961, Paul Lazarsfeld and Herbert Menzel developed a topology which described

the relations between variables belonging to di�erent levels in a hierarchical structure, which was further

enhanced to levels within individuals by Johan Galtung in 1969, [6].

This topology made it easier to distinguish the level to which the measurements belonged, and describes

the creation of related variables by aggregation and dis-aggregation. The lowest level in the structure

consists of measurements from individuals and is called the micro-level and the corresponding higher

levels are called macro-levels, also referred to as groups or contexts, [7]. Although not much progress was

made, the interest in analyzing and interpreting hierarchical structured data arose in the 1970's when

there was a surge in theoretical and statistical discussions related to educational and sociological research,

[6]. [1], expanded the concept of the topology presented Lazarsfeld and Menzel with path diagrams in

order to show relationships between variables and units belonging to levels in a hierarchical structures

and hence making it simpler to model multilevel models.

Social sciences involve the study of a population, and subsequently the data will possess a naturally

occurring hierarchy due to the �clustering� of human populations (similar to educational sciences), hence
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the need for multilevel analysis. During the 1970's, Robert Hauser disputed the need for contextual

analysis by claiming that the contextual e�ects were merely �grouped individual e�ects�, and lacked

substance to in�uence response variables. Prior to the development of multilevel models, the statistical

methods available to analyze hierarchical structured data were �awed as they ignored the di�erent levels

or treated them inadequately, [6]. Multilevel Models in Educational and Social Sciences by [4], Multilevel

Statistical Models by [5] and Hierarchical Linear Models by [9], were the initial texts that accelerated the

rise in researching multilevel models and have since been used as main references in multilevel analysis.

The model introduced in equation 4 is the basic two-level model with the students being the micro-level

and the schools forming the macro-level. [8] used the Bayesian approach in order to estimate the co-

variance components but their e�orts made little progress as the models required estimation of unbalanced

data. Various estimation approaches have since been o�ered including the maximum likelihood estima-

tion (MLE), restricted maximum likelihood estimation (REML) and iterative generalized least-squares

estimation, [13]. The birth of computers and subsequently the development of statistical packages HLM

and MLwiN by [9] and [5], respectively, for �tting multilevel models gave researchers the comfort of

estimating parameters and their corresponding errors. Numerous other statistical programs have since

been developed including the PROC MIXED procedure available in SAS. Prior to the development of

statistical computer packages, which brought some ease to the analysis of hierarchical structured data,

progress was minimal due to the complexity involved in the estimation techniques.

Researchers, equipped with the power of statistical software, have done extensive improvements to

multilevel analysis. Multilevel analysis has since become popular as it allows researchers from various

�elds to model contextual factors that in�uence the response variables of interest.

2.2 The Model

Consider the basic regression model of the mathematics achievement of the j-th student in the i-th school

yij , for a single school with a single explanatory variable xij ,

yij = b0 + b1xij + εij , i = 1, 2, ..., N and j = 1, 2, ..., ni (5)

where

• b0 is the expected math achievement for the school given that the explanatory variable, xij , assumes

a value of zero.

• b1 is the slope of the model.
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• and εij the random error term unique to each student with distributional assumptions εij ∼

iidN(0, σ2).

This regression model only includes the student's explanatory variables and does not take into con-

sideration the school level or �external� predictors which may in�uence the student's performance in

mathematics, for instance, in�uences like the method a certain school uses to teach. Such in�uences may

be signi�cant to the performance of students within schools. Figure 1 shows the regression lines �tted for

5 schools chosen from the TIMSS 2015 data. These regression lines show the relationship between math

achievement and the students con�dence in mathematics.

Figure 1: Regression lines for �ve schools

The graph shows that there is a huge variation in mathematics marks between the schools and �tting

a basic regression line for all schools would result in enormous errors in the estimates as there is a huge

spread in the data points plotted. For instance, considering school 23 and 24, the regression lines seem

to have the same slopes, i.e. the same relationship between math achievement and con�dence in math,

but students in school 24 are expected to achieve higher marks than a student in school 23 with the same

con�dence in mathematics (higher intercept), therefore there must be some school level variable that

causes the students in school 24 to perform slightly better, but basic regression methods do not account

for this type of variation. In order to solve this problem, [9] suggests that this variation between schools

can be modeled using multilevel models that include school-level explanatory variables that cause the

variation in mathematics achievement between schools.

Now consider that there is now data from N number of schools available. By incorporating school-level
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variables the model will now be multilevel, with two levels, due to the students being nested within the

schools.[12] states there are at least three di�erent ways to express this multilevel model, �rstly by writing

separate equations for the di�erent levels; secondly, by writing the separate equations at di�erent levels

and then substituting into the equation at the lowest level to end up with a single equation; and lastly,

by writing a single equation that speci�es the multiple sources of variation. Model (5) can be expressed

as a multilevel model with the level-1 model

yij = b0i + b1ixij + εij , i = 1, 2, ..., N and j = 1, 2, ..., ni, (6)

or equivalently in matrix form

yi = Xibi + εi, (7)

where yi=



yi1

yi2
...

yini


, Xi =



1 xi1

1 xi2
...

...

1 xini


, bi =

 b0i

b1i

 and εi =



εi1

εi2
...

εini


• yij is the j

thstudent in the ith school, which is the response variable being investigated, i.e mathe-

matics achievement.

• b0i is the intercept of the i
th school.

• b1i is the slope of the i
th school.

• εij is the error term associated with the jth student in the ith school, furthermore εij ∼ iidN(0, σ2).

The regression coe�cients in (6) are treated as random variables in order to distinguish between the

di�erent parameters in which the di�erent schools may take [13], i.e. two di�erent schools may have

di�erent mean performance in the subject at hand, thus the intercepts vary across schools. These random

coe�cients (level 2 units) can be expressed as a level 2 model

b0i = β0 + γ01zi + u0i, i = 1, 2, ..., N (8)
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b1i = β1 + γ11zi + u1i, i = 1, 2, ..., N. (9)

or equivalently in matrix form

bi = Ziγ + ui (10)

where Zi =

 1 zi 0 0

0 0 1 zi

 , γ =



β0

γ01

β1

γ11


and ui =

 u0i

u1i



• zi is a level 2 explanatory variable unique to the ith school.

• u0i and u1i are error terms associated with the ith school and they are assumed to have a joint

distribution with mean 0 and co-variance matrix Φ=

 τ00 τ01

τ10 τ11

 .

Substituting (8) and (9) into (6), the model becomes

yij = β0 + γ01zi + u0i + β1xij + γ11zixij + xiju1i + εij , i = 1, 2, ..., N and j = 1, 2, ..., ni (11)

or equivalently in matrix form

yi = Xi(Ziγ + ui) + εi

= XiZiγ +Xiui + εi (12)

with

E(yi) = XiZiγ (13)

and

Cov(yi,y
′
i) = XiΦX

′

i + σ2Ini
. (14)
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Further distributional assumption is that the student level errors and school level errors are uncorrelated,

i.e. Cov(εi,u
′

i) = 0. Models (7) and (10) form the basic models at level 1 and level 2, respectively,

and substitution will lead to the combined model (12). The �rst term, XiZiγ in (12) is called the �xed

component and the second term, Xiui + εi is called the random component of the model. [10] states

that models of higher levels can be expressed using the above logic.

2.2.1 Centering

In multilevel modeling, taking a two-level model for instance, the intercept and slopes in the level-1 model

are the outcomes of the level-2 model. The intercept of the level-1 model depends on the location of the

level-1 predictor variables, and in order to interpret the relationship between a response variable and a

given predictor variable, [10] suggest using a centering technique. Centering enhances the model to be

able to correctly depict the level-1 intercept, when the predictor variable takes on a value of zero. There

are two types of centering that [10] focus on, namely, group-mean centering and grand-mean centering,

to show that the location of the level-1 predictors impacts the interpretation of the models. Group-

mean centering involves subtracting the relevant mean of the level-2 group from an observation in that

group, therefore the centered observations to be involved in the model are of the form xij − x̄i, where

x̄i = 1
ni

ni∑
j=1

xij , is the mean of the ith school for the level-1 predictor variable, x.

Consider a basic regression model from one school of the form, yij = β0 + β1xij + εij , where y, is the

response variable (Math achievement) and x, the predictor variable (student con�dence in mathematics).

Figure 2, shows the �tted regression line with β0 and β1, being the intercept and slope for this school,

respectively. The intercept, β0, is the math achievement of a student given that the student's con�dence

in mathematics takes a value of zero, but in this case it cannot be interpreted as it is not clear where the

intercept lies. The problem that arises can be solved by the technique of centering the data around the

school's mean, [10].
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Figure 2: Relationship between math achievement and student con�dence in mathematics

Now consider the model described above being centered around the school mean, i.e. yij = β0 +

β1(xij − x̄i.) + εij . Figure 3, now shows that the intercept has shifted, and hence can be interpreted

correctly, meaning that given a value of zero (student con�dence equal to the school mean), a student

will achieve the corresponding intercept value, β0. Furthermore, it can be noted that the slope of the

model, β1, in Figure 2 and 3 remains the same, hence centering does not in�uence the relationship between

the two variables, it just makes the interpretation simpler.
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Figure 3: Relationship between math achievement and student con�dence in mathematics

Another form of centering is �grand-mean centering� which follows the same logic but subtracts the

overall mean of the predictor variable from the individual observations, hence the centered observations

included in the model are xij − ¯̄x, where ¯̄x = 1
N

∑N
i=1 x̄i, is the grand-mean of the predictor variable,

x. Centering is therefore an important technique in multilevel modeling because of its ability to let us

interpret the intercept of the model. Furthermore, as noted by [12], group mean centering may be applied

to level-1 units while grand mean centering is applied to level-2 units. Figure 4 shows the regression lines

for the �ve school with the students con�dence centered.
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Figure 4: Regression lines for the �ve schools

The �ve schools now have a clear intercept and the slopes are still the same as before. Displaying the

292 schools in the TIMSS 2015 data on a graph would result in a similar plot.

2.2.2 Types of models

Di�erent types of models (sub-models) can be formulated by setting certain terms in the basic model

equal to zero, depending on the type of tests a researcher is interested in performing. The sub-models fall

into two types of categories, namely the random-intercept models and random varying slope models. The

random-intercept models include, (i) the one-way analysis of variance (ANOVA) with random e�ects,

(ii) the means-as-outcomes model, (iii) the one-way analysis of co-variance (ANCOVA) model and (iv)

the non-randomly varying slopes model ([10]). The randomly varying slope models include, the random-

coe�cients regression model, as well as, the intercepts- and slopes-as-outcomes model ([10]). These six

models will now be explained further in order to explain the basic underlying rationale behind multilevel

models.

Model 1: One-way ANOVA with random e�ects

Considering basic two-level model hierarchical linear model given in (6), (8) and (9), and setting the slope

coe�cient, b1i, equal to zero for all i, the resulting with the level 1 model is:

yij = b0i + εij , i = 1, 2, ..., N and j = 1, 2, ..., ni, (15)
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with the assumption that each level-1 error term, εij , is normally distributed with mean zero and variance,

σ2. The level-2 model, with γ01 set equal to zero yields the random intercept model as:

b0i = β0 + u0i, (16)

and hence substituting (16) into (15), the combined model becomes:

yij = β0 + u0i + εij , (17)

with β0 as the grand mean in the population of schools, u0i, the error term for the i-th school and εij the

error associated with the j-th student from the i-th school levels. It is also assumed that u0i is normally

distributed with mean zero and variance τ00. Model (17) is called the one-way ANOVA with random

e�ects, also referred to as the null model. It can also be noted that the outcome yij , has the grand-mean,

β0, and variance, τ00 + σ2, since

E(yij) = E(β0 + u0i + εij) = β0, and (18)

V ar(yij) = V ar(β0 + u0i + εij) = V ar(u0i + εij) = τ00 + σ2. (19)

This combined model is also referred to as fully unconditional as it possesses no predictors both on

the �rst- and second-level models. Another parameter that is quite useful for this model is called the

�intraclass correlation coe�cient�, which measures the proportion of the variance in the outcome that is

due to the variance between the schools (level-2 units), and is de�ned as

ρ =
τ00

τ00 + σ2
. (20)

Model 2: Means-as-outcomes regression model

Considering the basic two-level model with no level-1 predictors, a sub-model called the means-as-

outcomes model can be formed by setting the slope model, b1i, equal to zero and including at least

one level-2 (school level) predictor, say zi in the intercept model, the level-2 model then becomes:

b0i = β0 + γ01zi + u0i, (21)

and the combined model yielded is then expressed as:

yij = β0 + γ01zi + u0i + εij . (22)
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This model essentially considers the e�ects that the school level predictor has on the outcome or response

variable. This leads to a variance that is conditional due to the inclusion of the predictor, zi, since u0i

is of the form, u0i = b0i − β0 − γ01zi, it follows that the variance between schools, τ00, is the variance in

b0i, after controlling for the predictor variable zi.

Model 3: ANCOVA model

As before, considering the basic two-level model, another sub-model can be formed by setting the level-2

coe�cients, γ01, γ11, and random e�ects, u1i, equal to zero, [10]. By including a level-1 predictor centered

around the grand mean, the combined model becomes,

yij = β0 + γ10(xij − ¯̄x) + u0i + εij . (23)

This model is called the one-way ANCOVA with random e�ects. The variance between students is now

conditional, due to the inclusion of the level-1 predictor, xij .

Model 4: Non-randomly varying slopes model

Consider the basic level-1 model with a predictor centered around the group mean (school level mean),

i.e. yij = b0i + b1i(xij − x̄i.) + εij , with x̄i. = 1
ni

∑ni

j=1 xij being the average of the predictor in the i-th

school. Furthermore, including a level-2 predictor, say zi, and setting the random e�ects in the slope

model, u1i, equal to zero, results in the following level-2 model:

b0i = β0 + γ01zi + u0i (24)

b1i = β1 + γ11zi. (25)

By substituting the level-2 model into the level-1 model yields the following combined model:

yij = β0 + γ01zi + β1(xij − x̄i.) + γ11zi(xij − x̄i.) + u0i + εij . (26)

This model is called the non-randomly varying slopes model, because even though the slopes may vary

from school to school due to the inclusion of the level-2 predictor, their variation is nonrandom due to

the constrained school level random e�ects slope variable, u1i.

Model 5: Random-coe�cients regression model

Considering the basic level-1 model with one predictor variable centered around the group mean, i.e.

yij = b0i +b1i(xij − x̄i.)+εij , with x̄i. as described above. Constraining γ01 and γ11 to be null, the level-2

model can now be expressed as:

b0i = β0 + u0i, (27)
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b1i = β1 + u1i, (28)

and the combined model yielded is called the random-coe�cients model given by,

yij = β0 + β1(xij − x̄i.) + u1i(xij − x̄i.) + u0i + εij . (29)

[10], also notes that the variation between the schools in this model can be viewed as being unconditional,

due to the absence of level-2 predictors, and has the co-variance matrix:

Cov(ui,u
′

i) =

 τ00 τ01

τ10 τ11

 = Φ, (30)

where τ00 is the unconditional variance in the level-1 intercepts, τ11, the unconditional variance in the

level-1 slopes and τ10 = τ01, the unconditional co-variance between level-1 intercepts and slopes.

Model 6: Intercepts and slopes-as-outcomes

This model can be viewed as the full basic model as it includes both level-1 and level-2 predictors. The

level-1 and level-2 models are given by

yij = b0i + b1ixij + εij , i = 1, 2, ..., N and j = 1, 2, ..., ni (31)

and

b0i = β0 + γ01zi + u0i, i = 1, 2, ..., N, (32)

b1i = β1 + γ11zi + u1i, i = 1, 2, ..., N. (33)

The combined model is then formulated by substituting (32) and (33) into (31), and is expressed as:

yij = β0 + γ01zi + β1xij + γ11zixij + xiju1i + u0i + εij , i = 1, 2, ..., N and j = 1, 2, ..., ni. (34)

The term β0 + γ01zi + β1xij + γ11zixij , is the �xed component and the second term, xiju1i + u0i + εij ,

is the random component of the model.

2.3 Estimation theory

This part of the report describes the parameter estimation of the two-level model and is divided into three

sections to outline the techniques used to estimate the di�erent components of the model. For a two-level

hierarchical model, there are three types of parameters that can be estimated, namely, the �xed e�ects,

the random level-1 coe�cients and the co-variance components. [10] mentions that the estimation of each
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of the parameters depends on the others. The basic two-level model will be used in order to illustrate

the estimation techniques used by [10].

1. Fixed e�ects estimation

Using matrix notation the general level-1 model with Q predictors can be expressed as:

yi = Xibi + εi, (35)

where yi is an ni by 1 vector of outcomes, Xi is an ni by (Q+1) matrix of Q predictor variables with

the vector 1, in the �rst column, bi is a (Q+1) by 1 vector of the unknown parameters and εi is an ni by

1 vector of the random errors. Furthermore, it is assumed that εi ∼ N(0, σ2Ini
), i.e. the random errors

are identically and independently normally distributed with mean 0, and variance of σ2. Assuming that

Xi is full rank, the ordinary least squares (OLS) estimator of bi is given by

b̂i = (X
′

iXi)
−1X

′

iyi, (36)

and its dispersion matrix is given by

V ar(b̂i) = σ2(X
′

iXi)
−1 = V i. (37)

A model for the estimated parameters, b̂i, can be built by pre-multiplying equation 35 with (X
′

iXi)
−1X

′

i.

The model for b̂i is

b̂i = bi + ei, (38)

where ei ∼ N(0, V i) and the dispersion of b̂i as an estimate of bi is indicated by the error-variance

matrix, V i. The general level-2 model with F predictors is given by

bi = Ziγ + ui, ui ∼ N(0,Φ), (39)

where Zi is a (Q+1) by F matrix of predictors, γ is an F by 1 vector of �xed e�ects, ui is a (Q+1) by 1

vector of school-level errors. The combined model for b̂i can be yielded by the substitution of (39) into

(38), i.e.

b̂i = Ziγ + ui + ei (40)

and the dispersion of b̂i, given Zi, is

V ar(b̂i) = V ar(ui + ei) = Φ + V i = ∆i (41)
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which the sum of the parameter dispersion and the error dispersion. These estimates are computed

for unbalanced data, i.e. for data with unequal number of students in schools. [10] note that given

that the data is unbalanced, the values for ∆i will di�er from school to school, and then a unique,

minimum-variance and unbiased estimator of γ is the generalized least squares (GLS) estimator

γ̂ = (

N∑
i=1

Z
′

i∆
−1
i Zi)

−1
N∑
i=1

Z
′

i∆
−1
i b̂i (42)

given that each ∆i is known.

2. Estimation of random level-1 coe�cients

As discussed in the estimation of the �xed e�ects, the OLS estimator of bi is given by equation 36, based

on data from the i-th school. Given the school's characteristics in the matrix Zi, a second estimator of

bi is the predicted value

ˆ̂
bi = Ziγ̂, (43)

where γ̂ is the GLS estimate in equation 42. Using empirical Bayes, the optimal combination of both of

these estimators is

b∗i = Λib̂i + (Ini
−Λi)Ziγ̂, (44)

where

Λi = Φ(Φ + V i)
−1

is the multivariate reliability matrix, i.e. the proportion of the parameter dispersion matrix for bi in

the total dispersion matrix for b̂i. More weight is put on the estimates b̂i, if they are more reliable.

The reliability of the estimates are calculated using the proportion of the estimate's variance in the total

dispersion.

3. Estimation of co-variance components

Estimation of the variance and co-variance components unbalanced data requires iterative numerical

procedures in order to obtain e�cient estimates. Maximum likelihood methods are commonly used,

mainly the full maximum likelihood (MLF) and the restricted maximum likelihood (REML). The basic

concept of maximum likelihood is that the estimates of γ, Φ and σ2 are chosen such that the probability

of observing the observed values y is a maximum. The distinct di�erence between the MLF and REML

estimation methods can be illustrated by considering the traditional regression model

yi = β0 + β1x1i + β2x2i + ...+ βQxQi + ri, ri ∼ N(0, σ2)
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for i = 1, 2, ..., n. The MLF estimator for σ2 is

σ̂2 =

∑n
i=1 ri
n

(45)

and the corresponding REML estimator for σ2 is

σ̂2 =

∑n
i=1 ri

n−Q− 1
. (46)

The distinct di�erence between MLF and REML is that the latter corrects for degrees of freedom that

is lost in estimating the residual r̂i = yi − β̂0 − β̂1x1i − β̂2x2i − ... − β̂QxQi, where each β̂q is the OLS

estimate ([10]). Furthermore, [3] proved that iterative generalized least squares will produce the same

estimates as REML.

3 Application

The TIMSS 2015 data contains a sample of 12514 students from 292 schools in South Africa. Using the

TIMSS 2015 data, the theory on multilevel modeling mentioned above is used, in particular the two-level

model where the learners are regarded as level-1 units and the schools as level-2 units, to analyze the

mathematics marks for grade 9 students in South Africa. The response variable, y, in all the models in

the application is the mathematics achievement of grade 9 learners in South Africa. The international

benchmark for mathematics is 500 units, and in this section it will be determined how South African

students performed and what in�uences their performance. PROC MIXED in the SAS statistical package

is used to �t the di�erent models in order to perform hypothesis tests that will allow interpretation and

analysis of the data. Table 1 and 2 give a description of the data used in the analysis of the TIMSS 2015

data set. A sub-sample of 8040 students from 196 schools was used in order to perform analyses using data

with no missing values. Furthermore, the student- and school-level variables chosen for the application

of the theory of the 2-level model have been proven to be signi�cant for modeling the mathematics

achievement of grade 9 students and the results are displayed in Figure 18 and 21 of the appendix.

Variable code Description Type

1 : Always
SLTest Student speaks language of test at home Ordinal 0 : Sometimes

-1: Never
GCSLM Student likes mathematics (grand-mean centered) Continuous
GCSCM Student con�dence in mathematics (grand-mean centered) Continuous

Table 1: Student-level variables
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Variable Description Type

1 : if 0 − 25%
SCHEcoDisadv Students background : Economic disadvantage Ordinal 0 : if 26 − 50%

−1 : if > 50%
−1 : if < 25%

CLTest Percentage of students speaking language of test Ordinal 0 : if 26 − 75%
1 : if > 76%

MeanDisc Schools discipline centered around the grand mean Continuous

Table 2: School-level variables

3.1 The null model

Model 1:The two-level model that can be used to estimate the average mathematics achievement for

grade 9 learners in South Africa is the one-way ANOVA with random e�ects which can be de�ned by the

level-1 model

yij = b0i + εij , (47)

where εij ∼ N(0, σ2), and the level-2 model as:

b0i = β0 + u0i, (48)

where u0i ∼ N(0, τ00), with the intercepts b0i, varying across schools. The null model includes no

predictors at both levels and the combined model is expressed as,

yij = β0 + u0i + εij (49)

with β0 as the grand mean of grade 9 mathematics marks across South Africa, u0i the random e�ects of

the ith school in South Africa and εij , the random e�ects of the jth student in the ith school in South

Africa. The results of the �xed and random e�ects of the model are displayed in Table 3 and Table 4,

respectively.

E�ect Estimate Standard Error p-value

Intercept 384.20 4.6745 <0.0001

Table 3: Model 1 �xed e�ects

Variance components Subject Estimate

Intercept IDSCHOOL 4189.67
Residual 3225.04

Table 4: Model 1 random e�ects

The intercept estimated, which is the grand mean of the grade 9 mathematics marks, in Table 3 has a

standard error of 4.6745, and a p-value of <0.0001, and at a 1% signi�cance level, it can be concluded that
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the average mathematics achievement in South Africa is signi�cantly di�erent from zero. It can therefore

be concluded that the estimated value of β̂0 = 384.20, is the grand mean of grade 9 mathematics marks

across schools in South Africa, giving all schools equal weight. Furthermore, the variation in mathematics

marks between schools is 4189.67, and the variation of mathematics achievement of students within schools

is 3225.04. This suggests that there is a higher variation of mathematics marks between schools than

within schools, which shows that there are schools performing way better than others in South Africa.

The proportion of the variance that is due to the variation between schools is determined by

ρ̂ =
τ̂00

τ̂00 + σ̂2
=

4189.67

4189.67 + 3225.04
= 0.5650,

hence 56.5% of the total variation is explained by the variation between schools. Therefore there is a vast

di�erence between school performances in South Africa and students within schools perform similar (not

as much of a di�erence).

3.2 Models with school-level predictors only

Model 2.1: Due to the large variation in the mathematics marks between schools, level-2 predictors can

be added to the null model in order to quantify the e�ects or variation between schools average math

achievement that is explained by the relevant school-level predictors. The level-1 model considered in

this part of the application remains the same as (47) and the level-2 model becomes,

b0i = β0 + γ01MeanDisci + u0i, (50)

whereMeanDisci is the i−th school's discipline rating centered around the grand mean, in order to make

the intercept more interpret-able. Table 5 and 6 present the �xed and random components, respectively,

for the combined model,

yij = β0 + γ01MeanDisci + u0i + εij , (51)

which is obtained by substituting (50) into (47).

E�ect Estimate Standard Error p-value

Intercept 381.75 4.3519 <.0001
MeanDisc 16.4250 2.8597 <.0001

Table 5: Model 2-1 �xed e�ects

Variance Component Subject Estimate

Intercept IDSCHOOL 3583.85
Residual 3225.09

Table 6: Model 2.1 random e�ects
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Table 5 shows the �xed e�ect estimates of the �tted model, the intercept β0, is estimated to be 381.75,

and the coe�cient ofMeanDisc, is estimated to be γ̂01 = 16.4250, both being signi�cant to the model as

the p-values of both estimates are less than the 5% level of signi�cance. Therefore, there is a relationship

between math achievement andMeanDisc, and a 1-unit increase inMeanDisc, will result in an increase

of 16.4250 in math achievement.

The variance components estimated, as shown in Table 6 are 3583.85 and 3225.09 for the between school

τ00, and the students within schools, σ2, respectively. In comparing with the threshold estimates of the

null model, there is a reduction in the variation between school average math achievement, from 4189.67

to 3583.85, which shows us that a portion of the variation between schools math achievement is explained

by the school's discipline, i.e. the variation is conditional upon the school-level predictor, MeanDisc. In

addition, the proportion in variation between school average math achievement that's explained by the

schools discipline is

4189.67 − 3583.85

4189.67
= 0.1446,

which means that 14.46% of the variation between school average math achievement is due to the schools

discipline. This is a signi�cantly large percentage, which shows that a school's discipline plays an im-

portant role in how well a school will perform, but the model can be enhanced in order to detect more

variables that explain the variation between schools.

Model 2.2: In order to detect more causes of variation, the model (51) is enhanced by adding a few

categorical variables from the school level predictors in Table 2. The combined model to be �tted is,

yij = β0 + γ01MeanDisci + γ02CLTesti + γ03SCHEcoDisadvi + u0i + εij , (52)

where all variables are detailed in Table 2. Table 7 shows that all the predictors are signi�cant to the

model (all p-values <0.0001).

E�ect Estimate Standard Error p-value

Intercept 417.25 4.5520 <0.0001
MeanDisc 6.8826 2.3715 0.0041
CLTest 21.5238 4.3509 <0.0001

SCHEcoDisadv 43.3937 5.2032 <0.0001

Table 7: Model 2.2 �xed e�ects

Variance component Estimate p-value

UN(1,1) 2088.44 <0.0001
Residual 3225.24 <0.0001

Table 8: Model 2.2 random e�ects
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The within schools variation, σ̂2, remains unconditional due to no student-level predictors in the

model and has not changed much as compared to the estimate of the null model. The proportion of

the total variation in average mathematics marks between schools that is explained by the predictors

included in model (52) is

4189.67 − 2088.44

4189.67
= 0.5015,

which is higher than that of model (51), and is therefore a better model in to explain the variation

between schools. The inclusion of only three level-2 predictors caused the between school variation to

drop drastically. The same logic of including more school-level predictors to the model can be used in

order to explain a higher proportion of variation between schools.

Furthermore, the �tted model reveals that schools that have less than 25% of their school population from

an economically disadvantaged background and more than 76% of their students speaking the language

that the tests are given, will have an expected mathematics of 482.1675, which is 97.9675 units higher

than the South African average math mark.

3.3 Models with student-level predictors only

Model 3.1: In order to detect causes of variation in mathematics marks within schools, level-1 predictors

are included to the null model. The e�ect of how much a student likes mathematics has on their results

is modeled by including the student-level predictor, GCSLM to the null model (47), yields the level-1

model,

yij = b0i + b1iGCSLMij + εij , (53)

where εij ∼ N(0, σ2), for i = 1, 2, ..., 252 and j = 1, 2, ..., ni. The level-2 model is expressed as,

b0i = β0 + u0i, (54)

b1i = β1 + u1i, (55)

where

 u0i

u1i

 ∼ N


 0

0

 ,

 τ00 τ01

τ10 τ11


 , and substitution of the level-2 model into the level-1

yields the combined model,

yij = β0 + β1GCSLMij + u1iGCSLMij + u0i + εij (56)

with the �xed component represented by β0 +β1GCSLMij , and the last three terms in (56) representing

the random component of the model.

26



E�ect Estimate Standard Error p-value

Intercept 384.56 4.8472 <0.0001
GCSLM 9.0395 0.3737 <0.0001

Table 9: Model 3.1 �xed e�ects

Variance component Subject Estimate Standard error p-value

UN(1,1) IDSCHOOL 4518.48 468.70 <0.0001
UN(2,1) IDSCHOOL -44.4711 27.8149 0.1099
UN(2,2) IDSCHOOL 1.5522 2.7310 0.2849
Residual 2977.83 48.1310 <0.0001

Table 10: Model 3.1 random e�ects

The estimates of the �xed e�ects of the model (56) are displayed in Table 9 and indicate that the

average school mean for mathematics after controlling for student's preference of mathematics is 384.56,

which does not di�er greatly from the results of the null model. The estimate for the coe�cient of

GCSLM is 9.0395, which means that a 1-unit increase in a student's preference for maths will result in

an increase of 9.0395 in their mathematics marks and subsequent increases in the student's preference

of mathematics will lead to further increments of their math marks in multiples of 9.0395. The low

p-values for the estimates of the intercept, β̂0 and of ˆGCSLM are low (both less than a 5% signi�cance

level), which leads us to conclude that there is a statistically signi�cant relationship between a student's

preference of maths and their maths marks.

The co-variance parameter estimates from Table 10, can be written in matrix form,

 τ̂00 τ̂01

τ̂10 τ̂11

 =

 4518.48 −44.4711

−44.4711 1.5522

 , (57)

with τ̂00 showing that the variation between the intercepts is 4518.48 and τ̂11 showing that the variation

between slopes is 1.5522 across schools. The co-variance between the intercepts and slopes across schools

is -44.4711. The estimate σ̂2 is 2977.83, which is conditional after controlling for the student's preference

of mathematics. The proportion of variation in the maths marks within schools that is explained by the

inclusion of the student's preference of mathematics is

σ̂2
model1 − σ̂2

model3.1

σ̂2
model1

=
(3225.04 − 2977.83)

3225.04
= 0.0767,

which means that 7.67% of the variation in the maths marks within schools is explained by how much a

student likes mathematics.
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Model 3.2: Consider the level-1 model,

yij = b0i + b1iGCSCMij + b2iSLTestij + εij (58)

where GCSCMij is the j − th student's con�dence in mathematics in the i− th school, SLTestij is how

often a particular student speaks the language of the test at home, and εij ∼ N(0, σ2). The level-2 model

is given by,

b0i = β0 + u0i, (59)

b1i = β1 + u1i, (60)

b2i = β2 + u2i, (61)

and the substitution of (59), (60) and (61) into (58) leads to the combined model,

yij = β0 + β1GCSCMij + u1iGCSCMij + β2SLTestij + u2iSLTestij + u0i + εij (62)

where Cov


u0i

u1i

u2i

 = Φ =


τ00 τ01 τ02

τ10 τ11 τ12

τ20 τ21 τ22

. The model (62) represents the relationship between

the students average mathematics marks and how con�dent a student is in the subject and how frequent

the student speaks the language that math tests are given.

Table 11 and 12 display the SAS results from �tting model (62) with PROC MIXED and certain im-

provements compared to model (56) be seen.

E�ect Estimate Standard error p-value

Intercept 380.03 4.4522 <0.0001
GCSCM 10.1710 0.3778 <0.0001
SLTest 13.3226 1.5269 <0.0001

Table 11: Model 3.2 �xed e�ects

Variance component Subject Estimate Standard error p-value

UN(1,1) IDSCHOOL 3749.45 409.13 <0.0001
UN(2,1) IDSCHOOL 38.3745 23.9714 0.1094
UN(2,2) IDSCHOOL 3.6747 2.3564 0.0594
UN(3,1) IDSCHOOL -52.1667 105.83 0.6221
UN(3,2) IDSCHOOL -3.6150 7.6045 0.6345
UN(3,3) IDSCHOOL 84.6014 39.2017 0.0155
Residual 2835.39 46.0649 <0.0001

Table 12: Model 3.2 random e�ects

Firstly, from Table 12, the estimate σ̂2 is 2835.39, which is the variation in average mathematics
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marks within schools after controlling for the students con�dence in mathematics and how frequent the

student speaks the language the test is given. The proportion of variation in mathematics marks within

schools with the inclusion of the level-1 predictors, GCSCM and SLTest, is

σ̂2
model1 − σ̂2

model3.2

σ̂2
model1

=
(3225.04 − 2835.39)

3225.04
= 0.1208,

hence 12.08% of the variation in average mathematics marks within schools is explained by the student's

con�dence in mathematics and how often the student speaks the language that the tests are written.

Furthermore, Table 12 shows that only the variation between schools intercepts (τ̂00 = 3749.45 with

p-value <0.0001) and the variation between school slopes ( τ̂22 = 84.6014 with p-value = 0.0155) are

statistically signi�cant to the model, when testing for signi�cance at a 5% level of signi�cance.

The estimates of the �xed e�ects are displayed in Table 11, with the intercept, β̂0 = 380.03 being the

expected mathematics marks for schools, the coe�cients,β̂1 = 10.1710 and β̂2 = 13.3226 for the student's

con�dence in mathematics (GCSCM) and frequency of speaking the language of the test (SLTest),

respectively. Hence the �tted model is,

ŷij = 380.03 + 10.1710GCSCMij + 13.3226SLTestij , (63)

which shows that for a 1-unit increase in a student's con�dence will result in an increase of 10.171 in the

mathematics marks from the grand mean of 380.03. Subsequently, the three �tted models will be,

ŷij = 380.03 + 10.1710GCSCMij + 13.3226, (64)

ŷij = 380.03 + 10.1710GCSCMij , (65)

and

ŷij = 380.03 + 10.1710GCSCMij − 13.3226, (66)

for students who always speak the language, sometimes speak the language and who never speak the

language of test, respectively. Therefore, students who always speak the language that the math test

is written have an expected math achievement of 393.3526 units, while students who never speak the

language will get a score of 366.7074. From these results, it is evident that the option of writing the tests

in your home language (combined with con�dence in mathematics) will lead to a substantial increase in

the performance of South Africa in the TIMSS ratings.
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3.4 Models with both student- and school-level predictors

Model 4.1: In order to show the e�ects of both the level-1 and level-2 predictors on the grade 9

mathematics results, models can be formulated including the speci�ed predictors from the two level. The

student-level predictor, GCSLM , and the school-level predictor, MeanDisc, are included in the model

in order to analysis the signi�cance of the combination of a school's discipline and how much a student

within the school likes mathematics has on the overall mathematics marks of South African students.

The level-1 model is expressed as,

yij = b0i + b1iGCSLMij + εij , (67)

where εij ∼ N(0, σ2), for i = 1, 2, ..., 252 and j = 1, 2, ..., ni. The level-2 model is,

b0i = β0 + γ01MeanDisci + u0i, (68)

b1i = β1 + γ11MeanDisci + u1i, (69)

where

 u0i

u1i

 ∼ N


 0

0

 ,

 τ00 τ01

τ10 τ11


, for i = 1, 2, ..., 252. The combined model becomes,

yij = β0 + β1GCSLMij + γ01MeanDisci + γ11(GCSLMij ∗MeanDisci) + u1iGCSLMij + u0i + εij .

(70)

The results for the �xed components and random components of model (70) are displayed in Table 13

and Table 14, respectively.

E�ect Estimate Standard Error p-value

Intercept 382.02 4.5365 <0.0001
GCSLM 9.0235 0.3666 <0.0001
MeanDisc 16.7711 2.9801 <0.0001

GCSLM*MeanDisc 0.5843 0.2142 0.0228

Table 13: Model 4.1 �xed e�ects

Variance component Estimate p-value

UN(1,1) 3909.18 <0.0001
UN(2,1) -61.4018 0.0146
UN(2,2) 0.7833 0.3844
Residual 2977.82 <0.0001

Table 14: Model 4.1 random e�ects

The SAS PROCMIXED results of the model (70) show that at a 5% signi�cant level, all the coe�cients
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are signi�cant to the model. The �tted model can therefore be written as,

ŷij = 382.02 + 9.0235GCSLMij + 16.7711MeanDisci + 0.5843GCSLMij ∗MeanDisci, (71)

which shows that there is a positive relationship between math achievement and student-level variable,

GCSLM , and also between math achievement and school-level variable, MeanDisc, while keeping the

other variable constant. It can be further noted that both GCSLM andMeanDisc have a mean value of

zero, since they are centered around the grand mean of the whole sample of schools, therefore the average

mathematics mark is 382.02 (which does not di�er greatly from the null model estimate).

The variance parameter estimate of τ11 in Table 14, has a p-value greater than the 5% signi�cance level,

which means that the null hypothesis that the slopes do not vary across schools cannot be rejected.

The variance components of the intercepts, however, remains signi�cantly di�erent from zero (p-value

<0.0001) and the co-variance between intercepts and slopes is also signi�cantly di�erent from zero, with

the estimates being τ̂00 = 3909.18 and τ̂01 = −61.4018. Therefore there is a negative relationship between

the intercepts and the slopes.

Model 4.2: Consider the level-1 model,

yij = b0i + b1iGCSLMij + εij , (72)

where GCSLMij is a level-1 predictor that measures how much the j-th student in the i-th school likes

mathematics and it is centered around the grand-mean, in order to be able to interpret the intercept and

εij ∼ N(0, σ2). The level-2 model to be considered in this section is,

b0i = β0 + γ01MeanDisci + γ02CLTesti + u0i, (73)

b1i = β1 + γ11MeanDisci + γ12CLTesti + u1i, (74)

where the level-2 predictor MeanDisci is the i-th school's discipline rating centered around the grand-

mean and CLTesti is the dummy variable that depicts the percentage of students in the i-th school that

speak the language that the math test is written as described in Table 2. Furthermore, the error terms

are

 u0i

u1i

 ∼ N


 0

0

 ,

 τ00 τ01

τ10 τ11


 distributed. Table 15 and 16 display the �xed and random

components for the combined model.
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E�ect Estimate Standard error p-value

Intercept 399.01 4.6175 <0.0001
GCSLM 8.8070 0.4327 <0.0001
MeanDisc 13.5654 2.6692 <0.0001
CLTest 36.6461 4.9275 <0.0001

GCSLM*MeanDisc 0.6391 0.2576 0.0131
GCSLM*CLTest -0.5568 0.4711 0.2373

Table 15: Model 4.2 �xed e�ects

Variance component Subject Estimate Standard error p-value

UN(1,1) IDSCHOOL 3033.00 319.00 <0.0001
UN(2,1) IDSCHOOL -46.2466 22.2432 0.0376
UN(2,2) IDSCHOOL 0.5344 2.6583 0.4203
Residual 2878.21 48.1351 <0.001

Table 16: Model 4.2 random e�ects

From the results in Table 15, the average math achievement among schools is estimated to be β̂0 = 399.01,

and the estimates for the coe�cients of GCSLM , MeanDisc, and CLTest are 8.8070, 13.5654 and

36.6461, respectively. These estimates are signi�cant to the model with p-values <0.0001 and the �tted

model follows as,

ŷij = 399.01 + 8.807GCSLMij + 13.5654MeanDisci + 36.6461CLTesti + 0.6391GCSLMij ∗MeanDisci.

(75)

Using the fact that the variable CLTest takes on the values -1,0, or 1 for schools with the percentage of

students speaking the language less than 25%, between 26 and 75%, and above 76% respectively, three

models can be �tted for the three categories. The three models are,

ŷij = 362.3639 + 8.807GCSLMij + 13.5654MeanDisci + 0.6391GCSLMij ∗MeanDisci, (76)

for schools that have less than 25% of their students speaking the language of the test,

ŷij = 399.01 + 8.807GCSLMij + 13.5654MeanDisci + 0.6391GCSLMij ∗MeanDisci. (77)

for schools that have between 26 and 75% of their students speaking the language of the test, and

ŷij = 435.6561 + 8.807GCSLMij + 13.5654MeanDisci + 0.6391GCSLMij ∗MeanDisci. (78)

for schools that have more than 76% of their students speaking the language of the test. The coe�cient

of the cross-product, GCSLMij ∗ CLTesti is not signi�cant to the model as it has a p-value equal to

0.2373, and therefore the null hypothesis that the coe�cient is equal to zero cannot be rejected on a 5%
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level of signi�cance. From (76) and (78) it can be seen that schools that have more than 76% of their

students speaking the language that mathematics is tested are expected to perform 73.2922 units better

than schools with less than 25% of their students speaking the language.

Table 16 displays the results for the random component of the model. The within school variance estimate,

σ̂2 = 2878.21 (with p-value <0.0001) is conditional after controlling for student's like of mathematics.

The proportion of variation in mathematics marks within schools that is due to the inclusion of the level-1

predictor GCSLM is

σ̂2
model1 − σ̂2

model4.2

σ̂2
model1

=
(3225.04 − 2878.21)

3225.04
= 0.1075,

which means that almost 11% of the mathematics marks within schools can be explained by how much

the students like maths. The variation in mathematics marks between school intercepts, τ̂00 = 3303.00

(with p-value <0.0001) is signi�cantly di�erent from zero, the proportion of variation in mathematics

marks between school intercepts that is due to the level-2 predictors in the model is,

4189.67 − 3303.00

4189.67
= 0.2116,

hence 21.16% of the variation. The co-variance between the intercepts and slopes of school, τ̂01 =

−46.2466, has a p-value equal to 0.0376 and is therefore signi�cantly di�erent from zero at a 5% level of

signi�cance test. Furthermore, it can be concluded that the variance of slopes between schools for this

model is zero, due to the fact that at a 5% level of signi�cance, the null hypothesis that the variation of

slopes is equal to zero cannot be rejected, as the estimate τ̂11 = 0.5344, has a p-value equal to 0.4203.

4 Conclusion

This research project is on multilevel models, which are models that are applied on data that has a distinct

hierarchical structure. As stated by [2], multilevel models provide more accurate estimates for data with

a hierarchical structure and are therefore more reliable than using traditional regression methods. The

theory on a 2-level model is extensively covered, also illustrating how to build models of a higher order.

There are di�erent types of sub-models that can be constructed from the basic model, depending on the

type of tests a researcher is interested in performing. Estimation of the model is rigorous, due to the

fact that the model has �xed and random components which need to be estimated. Restricted maximum

likelihood estimation is used for the estimation of the random component and least squares estimation

for the �xed component of the multilevel model. The power of statistical software makes it easier to

estimate the models and hence form a huge role in the development of studying hierarchical data sets.
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Multilevel models can be used as a tool in the study of variation.

The 2-level model is applied to the grade 9 TIMSS 2015 data for the mathematics marks in order to

�nd possible causes the variation in mathematics marks within and between South African schools. The

data used has the students serving as level-1 units and schools as level-2 units. The null model is used to

estimate the average mathematics mark across schools in South Africa for grade 9 students. Student-level

predictors are included in the model in order to �nd causes of variation within schools, and school-level

predictors are included in order to �nd the between school variation.

The variation in mathematics marks between schools over-weighs the within school variation and

most of this variation is caused by the schools discipline and the percentage of students that speak

the language in which the test is written. More school-level predictors can be used in order to �nd

more causes of variation, and in turn certain intervention measures can be taken to address the poor

performance of students. It can also be noted that schools with a higher percentage of students from

a disadvantaged background perform in mathematics worse than schools with a lesser percentage of

disadvantaged students.

The literature on multilevel models is quite extensive and cannot see how it can be improved, but the

literature on programming models of higher orders can be improved.
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Appendix

SAS Code:

proc glm data=timss15.ss9;

class IDSCHOOL;

model Mathach= GC_SLM GC_SCM S_LTest / solution;

run;

SAS Output:

Source DF Sum of Squares Mean Square F Value Pr > F

Model 3 8455553.48 2818517.83 498.06 <0.0001
Error 8036 45475666.17 5658.99

Corrected Total 8039 53931219.65

R-Square Coe� Var Root MSE Mathach Mean

0.156784 19.84343 75.22628 379.0992

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 365.2535407 0.97242631 375.61 <0.0001
GCSLM -3.0896085 0.59398087 -5.20 <0.0001
GCSCM 13.2303152 0.59449621 22.25 <0.0001
SLTest 43.3460529 1.51499778 28.61 <0.0001

Table 18: PROC GLM output for student-level variables

SAS Code:

proc glm data=timss15.ss9;

class IDSCHOOL;

model Mathach = MeanDisc SCHEcoDisadv C_LTest / solution;

run;

SAS output:
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Source DF Sum of Squares Mean Square F Value Pr > F

Model 3 13576844.58 4525614.86 901.21 <0.0001
Error 8036 40354375.07 5021.70

Corrected Total 8039 53931219.65

R-Square Coe� Var Root MSE Mathach Mean

0.251744 18.69272 70.86395 379.0992

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 416.6266400 1.13754191 366.25 <0.0001
MeanDisc 5.4269782 0.58486100 9.28 <0.0001

SCHEcoDisadv 43.8800238 1.28019144 34.28 <0.0001
CLTest 20.5585124 1.08572713 18.94 <0.0001

Table 21: PROC GLM output for school-level variables

Figure 1 SAS Code:

proc sgplot data=timss15.ss9;

reg x=BSBGSCM y=mathach / group = IDSCHOOL;

xaxis LABEL="Student confidence in mathematics";

yaxis LABEL="Mathematics achievement";

where IDSCHOOL < 20;

run;

Figure 2 SAS Code:

data timss15.ss8;

set timss15.ss7;

where IDSCHOOL in (2);

run;

proc sgplot data=timss15.ss8;

reg x=BSBGSCM y=mathach;

yaxis LABEL="Mathematics achievement";

run;

Figure 3 SAS Code:

proc sgplot data=timss15.ss8;

reg x=GC_SCM y=mathach;

xaxis LABEL="Student confidence centered around the mean";

yaxis LABEL="Mathematics achievement";
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run;

3.1 The null model

proc mixed data=timss15.ss9;

class IDSCHOOL;

model Mathach = /solution;

random intercept / sub = IDSCHOOL;

run;

3.2 Models with school-level predictors only

proc mixed data=timss15.ss9;

class IDSCHOOL;

model Mathach = MeanDisc / solution ddfm = bw;

random intercept / sub =IDSCHOOL;

run;

proc mixed data=timss15.ss9 noclprint covtest noitprint;

class IDSCHOOL;

model Mathach = MeanDisc C_LTest SCHEcoDisadv / solution ddfm=bw notest;

random intercept / sub=IDSCHOOL type=un;

run;

3.3 Models with student-level predictors only

proc mixed data=timss15.ss9 noclprint covtest noitprint;

class IDSCHOOL;

model Mathach = GC_SLM / solution ddfm=bw notest;

random intercept GC_SLM / sub=IDSCHOOL type=un;

run;

proc mixed data=timss15.ss9 noclprint covtest noitprint;

class IDSCHOOL;

model Mathach = GC_SCM S_LTest / solution ddfm=bw notest;

random intercept GC_SCM S_LTest / sub=IDSCHOOL type=un;

run;

3.4 Models with both student- and school-level predictors
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proc mixed data=timss15.ss9 noclprint covtest noitprint;

class IDSCHOOL;

model Mathach = GC_SLM MeanDisc GC_SLM*MeanDisc / solution ddfm=bw notest;

random intercept GC_SLM / sub=IDSCHOOL type=un;

run;

proc mixed data=timss15.ss7 noclprint covtest noitprint;

class IDSCHOOL;

model Mathach = GC_SLM GCNTD C_LTest GC_SLM*GCNTD GC_SLM*C_LTest / solution ddfm=bw notest;

random intercept GC_SLM / sub=IDSCHOOL type=un;

run;
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Abstract

The presence of undocumented shacks and informal roads in municipalities places great stress

on the infrastructure and may lead to unsuitable development or policy decisions if the municipal

authorities are unaware of their existence or location. This is a common problem in many South

African municipalities. Information on shacks and informal roads is critical for town planners wishing

to perform accessibility analyses in order to determine how many people have access to which facilities,

such as clinics and schools. This in turn will enable the municipality to decide where to build new or

upgrade existing roads and facilities, leading to sustainable city growth and maintenance.

In order to estimate the number and location of informal roads within an area to improve the

municipality's understanding of its inhabitants, the number and location of informal roads should �rst

be estimable. In this project, a �rst step towards this process, namely the detection of informal roads,

is addressed. The state of the art region-based urban road extraction algorithm proposed in [14] is

used. The method relies on the hierarchical representation of the study area in a Binary Partition Tree

(BPT). Regions in the image are modelled using two geometrical features, namely region elongation

and compactness, and two structural features, respectively utilising orientation histograms and path-

based morphological pro�les. The method is applied to extract roads from satellite images of two

areas of Mabopane, Gauteng Province, South Africa. Good results are produced in the case of broad,

straight unpaved roads (12−15m wide including road shoulders and sidewalks), but imperfect results

are found for narrower informal roads in areas with more prevalent vegetation.
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1 Introduction

There are many undocumented shack areas throughout South Africa. Unlike government-provided low

income housing, shacks are informal dwellings constructed by residents without the knowledge of the local

municipality, often outside of residential zones. These informal settlements, also known as townships, can

grow to eventually accommodate a large number of residents, who may create some informal infrastructure

inside the settlement, such as ad hoc unpaved roads. Without proper knowledge of the number and

location of shacks and informal roads, problems such as overpopulation or stress on the infrastructure in

an area may go unnoticed for too long, and no adequate solutions can be provided. On the other hand,

having this information can empower municipal authorities to do far more than merely solving problems

as they arise. Instead, it will enable them to proactively plan and assess the impacts of policies and

developments.

One way in which this information can be incorporated into decision-making is via accessibility analy-

ses. An accessibility analysis is a multiple-step process for determining which destinations can be reached

from given origins, in what ways and with how much e�ort [3, 4, 15]. Accessibility is a comprehensive

measure that can give an indication of the quality of the land use and transportation systems in an area.

It is essential for developing sound policies for transport and land use that will support sustainable devel-

opment [6, 4]. Since accessibility analyses provide information on how many people from given areas have

access to which facilities, such as schools, clinics, government o�ces and places of potential employment,

they also enable town planners and developers to decide where to build new or upgrade existing roads and

facilities. Van Eck and De Jong [35] provide examples of service location planning, speci�cally planning

the location of new shops, using accessibility information.

Three of the measures that should be minimised in order to increase accessibility are travel distance,

which may be measured as straight line distance or distance along a transport network, travel time and

travel cost [6, 13, 15, 35]. Data on informal unpaved roads is critical to accurately estimate all three.

Travel distance and travel time between an origin and a destination may be less than expected if there

is an informal unpaved road connecting them; however, it is also important to note that travel time on

such a road will di�er from that on a paved road. The quality of a paved road may decrease the travel

time, but informal roads may be less liable to su�er from tra�c congestion, which may compensate for

the poor road surface quality in terms of travel time. Travel costs will also be in�uenced by the presence

of informal unpaved roads. The cost of travel via such roads may be lower than the cost of travel between

the same origin and destination via a formal road if travel time or distance is signi�cantly reduced by

such roads. It may also be reduced if the unpaved roads can be navigated by an informal mode of

transport that is less expensive or otherwise more convenient than using the formal transport system,

such as minibus taxis. Only transport by automobile will be considered; walking will not be accounted

8



Figure 1: Low-income formal housing next to informal dwellings.
Imagery©2017 Google, Map data ©2017 AfriGIS (Pty) Ltd

Coordinates: 28◦03'01.2�E 25◦46'59.5�S

for since commuters do not necessarily walk only on roads.

Another important use for information on the number and location of informal roads is for the process

of formalising informal infrastructure. The Tshwane municipality's Project Tirane aims to upgrade

townships to formal settelements1. Knowing the extent of the informal road network in a township will

enable the municipality to decide which informal roads to formalise and pave in order to optimise the

local transport network.

Other services may also �nd the data on informal roads valuable, such as emergency services needing

to navigate informal settlements more e�ectively.

Figure 1 shows images of an area of Atteridgeville in Tshwane where the contrast between government

housing and informal settlements is clear. In the government-provided residential area, to the north of

Maunde road, the houses are larger, have yards and are placed in a regular pattern. The roads are wide

as well as generally straight and paved. The informal settlement to the south is characterised by small,

irregularly-placed dwellings and narrow dirt roads that tend to be curved or winding.

Figure 2 shows images from the same area, displaying roads detected by Google Maps and roads not

detected by Google Maps. In these images, all of the paved roads were detected, but not all of the dirt

roads. In particular, the narrower, more curved roads have not been captured.

Given an accurate and e�cient road extraction method, detecting informal unpaved roads from remote

sensing images could be more cost and time e�ective than land surveying or manual digitising, allowing

for the information to be updated more frequently. However, very little work has been done on the

automatic extraction of informal roads from remote sensing images. The di�culties associated with

informal unpaved roads include the irregular patterns followed by many informal road networks, as well

as the fact that land cover is highly heterogeneous at the scale of objects in informally settled areas

1As reported on the o�cial website of the Democratic Alliance, the South African political party of which the mayor of
Tshwane is a member.
Link: https://www.da.org.za/2017/07/da-led-tshwane-selling-mayoral-mansion-bring-better-services/
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Figure 2: Roads captured by Google Maps.
Imagery©2017 Google, Map data ©2017 AfriGIS (Pty) Ltd
Coordinates (left-hand image): 28◦02'49.5�E 25◦47'04.7�S
Coordinates (right-hand image): 28◦03'01.2�E 25◦46'59.5�S

in Very High Resolution (VHR) images [21]. The object-based approach employed in [21] is one of the

few works to address the problem of informal road extraction and highlights these and other di�culties.

There is still a need to develop a method for e�ciently extracting such informal roads from remote sensing

imagery.

In [38] road features are classi�ed and a wide variety of methods summarised and compared for ex-

tracting roads from remote sensing images, describing which methods make use of which road features. It

is mentioned that the application of topological and functional features to real-world data is problematic;

the implication is that geometric, photometric or texture features should be considered instead. Mena

[18] provides a comprehensive summary of road extraction methods along with an extensive bibliography.

Textures are based on the homogeneity of image regions [38]. Land cover may be highly heterogeneous

in VHR images, and roads may be partially covered by dust and hence appear heterogeneous. Detecting

roads by identifying them as homogeneous regions may therefore be problematic. Methods relying on the

photometric characteristics of images, such as many classi�cation-based methods, have the disadvantage

of misclassi�cation due to the spectral similarity between roads and other features. Informal roads are

generally unpaved and will therefore be spectrally identical to non-road dirt areas and to building roofs

made from local clay. Since roads have distinct elongated shapes, there is little risk of confusion with

other features, especially buildings or yards, if the geometric properties are considered. Any long linear

shape in the context of an informal settlement is likely to be a road, although it is important to distinguish

roads from streams or railways. A great variety of techniques are based on geometric features. Graph
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theory has the disadvantage of being complex, while dynamic programming requires prior knowledge of

the data and can be greatly in�uenced by the values of preset parameters [38]. The Hough transform

is often used to detect linear features [12], but is computationally intensive. Liu [16] proposes a more

time-e�ective and less complex variant on the Hough transform method, but this has so far only been

applied to straight lines. Active contour models are very sensitive to the preselected seed points. Math-

ematical morphology is compared to most of the abovementioned geometric methods, as well as some

classi�cation-based methods in [38] and has distinct advantages among these.

Mathematical morphology may be described as the mathematical study of shape [27]. Serra [26]

and Soille [29] are two seminal works on the theory of mathematical morphology. Zhang et al. [39]

applies mathematical morphology to automatically detect and extract road features. Amini et al. [1]

uses mathematical morphology to extract roads in two stages, �rst by extracting straight lines and then

by extracting a road skeleton. The line segment matching method is applied in [28] in order to form a

road network by detecting straight-line segments. A signi�cant disadvantage of morphological techniques

is that a reference shape must be predetermined [32], e.g. straight lines in order to detect roads or

rectangular shapes in order to detect buildings. In many cases, curved roads are approximated by short

straight line segments, which leads to a loss in accuracy. Valero et al. [32] provides a possible solution

with relation to road extraction by considering the morphological operators path openings and path

closings. These operators are independent of the reference shape and �t both rectilinear and curvilinear

structures. Path operators are clearly more �exible than morphological operations by straight lines; they

are also more restricted than area operators in that they are constrained to detect only linear structures.

Heijmans et al. [11] establishes the theory of path opening and closings. Morphological opening and

closing are de�ned in terms of adjacency and paths, and algorithms for computing path openings for

binary and grey tone images are provided. In [30], computationally e�cient algorithms for applying path

openings and closings are supplied.

The algorithm proposed in [14] will be applied to the problem. This algorithm is based on binary

partition trees (BPT). Binary partition trees provide a hierarchical representation of an image at various

scales which allows for the fast execution of complex image processing techniques [23]. BPT approaches

are region-based and allow for the employment of various characteristics of a region. In [34], a BPT

approach is shown to outperform the traditional pixel-based approach, where only spectral information

can be used. Salembier and Garrido [23] provide a comprehensive introduction to the use of BPTs for

image processing. Vilaplana et al. [36] applied BPTs to the problem of object detection. A review

of the literature and a thorough discussion of BPTs may be found in [33], as well as an algorithm for

constructing a BPT.

The algorithm in [14] considers the compactness and elongation of regions, as well as two features
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Study Area 1 Study Area 2
Coordinates: 28◦4'7�E 25◦30'53�S Coordinates: 28◦1'26�E 25◦31'25�S

Figure 3: The study areas.

based on path-based morphological pro�les and orientation histograms. In this project, the algorithm is

applied to Very High Resolution (VHR) satellite images of two areas of Mabopane, Tshwane Municipality,

Gauteng Province, South Africa, shown in Figure 3. The project aims to ascertain which types of roads

may be identi�ed, and explores the uncertainties associated with the extraction of roads as spatial objects

from spatial big data in the form of remote sensing images.

2 Background Theory

2.1 Mathematical Morphology

Mathematical morphology is a theory for the analysis of the shape of objects. It is based on rigorous

mathematical theory, including lattice algebra and set theory [27]. The idea behind mathematical mor-

phology is that the concept of the shape of an object exists neither exclusively in the physical world,

nor is it an entirely subjective or abstract human perception. Rather, it is something between the two

[26], an abstract concept that is evident in and severely constrained by physical reality. Mathematical

morphology seeks to quantify the abstract interpretive aspect of the de�nition of shape.

2.1.1 Images and their Representations

This research report will consider grey tone and binary images in two dimensions. An image can be

thought of as a two-dimensional grid where each element is called a pixel [29].

We will denote the set of all images by F and the set of all binary images by FB , where FB ⊂ F .

De�nition 1. Mathematically, an image f is a positive upper semi-continuous function [26] bounded

by a value t ∈ R which maps some subset Df of Z2 onto a subset of consecutive nonnegative integers

starting at zero [29], namely

f : Df ⊂ Z2 → {0, 1, ..., t} ⊂ N0,

where Df is a rectangular frame known as the de�nition domain of f [29].
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For a binary image f, t = 1, i.e. the value of each pixel of f can be either 0 or 1. The values are

assigned in the following way:

f(x) =

 1 if the pixel x is part of the foreground

0 if the pixel x is part of the background

The binary image f can be represented by the set of all image pixels.

Remark 2. Binary images may either consist of white foreground pixels on a black background, or black

foreground pixels on a white background.

Example 3. Figure 4 shows a binary image f. In this case, the image pixels are black while the

background is white. Letting the origin (0, 0) be the upper left corner, the set representation of f is

X = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),(2, 1), (2, 2)}.

Furthermore, f(x) = 1 if x ∈ {(0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1)}.

Figure 4: A binary image f

Let G be the set of all grey tone images. For a grey tone image f, t can take on any �nite value.

When t = 255, the image is called a greyscale image. Grey tone images can be represented as objects

in Z3 [10], where the (x, y, z) coordinates of each pixel are given by the x and y axes and the grey

value f(x, y) is given by the z axis. Soille [29] represents grey tone images as digital elevation models

where the elevation corresponds to the grey value. This representation allows us to envision grey tone

images as a stack of t binary images, one for each grey value, with corresponding set representations

X(i) = {x|f(x) = i}, i = 0, 1, ..., t. Grey tone images can be decomposed into these binary images using

the threshold operator T [29]:

[T[i,j](f)](x) =

 1 i ≤ f(x) ≤ j

0 elsewhere

CSi(f) is called the cross section of the grey tone image f and is the set of all pixels x of f such that

f(x) ≥ i, i.e.

[CSi(f)](x) = {x|i ≤ f(x) ≤ t} = [T[i,t](f)](x).
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Figure 5: A grey tone image f with its DEM representation

The grey tone image may be obtained by summing the cross sections CSi where i = 0, 1, 2, ... [29]:

f =

t∑
i=0

CSi(f).

The value of f(x) is the maximum value of i such that [CSi(f)](x) ≥ 0 [29], i.e.

f(x) = max{i|[CSi(f)](x) ≥ 0}.

Example 4. Figure 5 shows an image f with its representation as a digital elevation model (DEM).

Suppose the pixels of f take on values in the following way:

f(x) =



3 if the pixel x is black

2 if the pixel x is medium grey

1 if the pixel x is light grey

0 if the pixel x is white i.e. part of the background

The cross sections are as follows:

CS0 = {x|f(x) = 0} = {(0, 0)}

CS1 = {x|1 ≤ f(x) ≤ 3} = Df \ {(0, 0)}

CS2 = {x|2 ≤ f(x) ≤ 3} =
{(0, 1), (0, 2), (0, 4), (1, 0), (1, 4), (2, 0), (2, 2), (2, 3), (2, 4), (3, 0),

(3, 1)(3, 2), (4, 0), (4, 1), (4, 2)}

CS3 = {x|3 ≤ f(x) ≤ 3} = {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 2), (4, 2), (4, 3), (4, 4)}

So, for

example, [CS1(f)](0, 0) = 1 > 0, [CS2(f)](0, 0) = 1 > 0 and [CS3(f)](0, 0) = 1 > 0. Therefore

f(0, 0) = max{i|[CSi(f)](0, 0) > 0} = max{1, 2, 3} = 3. Similarly, f(1, 4) = max{i|[CSi(f)](1, 4) > 0}

= max{1, 2} = 2 and f(3, 0) = max{i|[CSi(f)](3, 0) > 0} = max{1} = 1, etc.

14



a) b)

Figure 6: Non-oriented graphs. 4-connectivitity is shown in a) while the graph in b) is 8-connected.

2.1.2 Graphs, Connectivity and Adjacency

The concepts and de�nitions in this section are compiled from [11], [30] and [32]. The theory in this

section is relevant to the sections 2.1.8, 2.1.9 and 2.1.11.

An image may be conceptualised as a set of pixels or points. However, some thought must be given

to the relationships between pixels, such as adjacency. The de�nitions in this section provide a way of

accounting for such relationships.

De�nition 5. A non-oriented graph G is a set of points connected by vertices [29].

The points in a graph may be in any pattern. Since an image is typically represented as a matrix of

pixels, the pattern relevant for image analysis is a square grid.

De�nition 6. Connectivity determines which points or pixels can be said to be adjacent to which other

points or pixels.

There are di�erent types of connectivity. The two most common examples in the case of square grids

are 8-connectivity and 4-connectivity. In the case of 8-connectivity, all points surrounding a point x are

connected to x, while in the case of 4-connectivity, only those points directly above, below, to the left

or the right of x are connected [29]. In the context of spatial raster data, 4-connectivity is sometimes

referred to as rook's connectivity, referring to the moves of a rook in a chess game, while 8-connectivity

is sometimes called queen's or king's connectivity [9].

Example 7. Figure 6 shows two non-oriented graphs. The points in these graphs are connected by lines

or vertices demonstrating 4-connectivity and 8-connectivity.

Another way of thinking of connectivity in non-oriented graphs is to imagine walking from point to

point, using the vertices as paths. Starting from a point x, one can only walk to those points sharing a

vertex with x. However, graphs are not always non-oriented. It may be useful to restrict the direction

of movement between points. Consider two connected points x and y and suppose that one is allowed to

walk from x to y, but not from y to x. This is the concept behind adjacency relations.
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Figure 7: A directional graph showing the predecessors and successors of the point a.

De�nition 8. The adjacency relation x 7→ y signi�es that the point y may be directly reached from the

point x, but not vice versa. The point y is called a successor of x while x is called a predecessor of y.

This relation is not in general symmetric or re�exive[11].

De�nition 9. A directional graph is de�ned by a set of points and vertices as well as an adjacency

relation � 7→�.

Example 10. A directional graph is shown in Figure 7. The point a may be reached either from the

point z1 or z2, so they are the predecessors of a. The points b1 and b2 are the successors of a since they

can be reached from a.

2.1.3 Properties of Operators

Let f and g be images with the same domain D. Let ψ and θ be operators that map elements of D onto

Z, i.e. ψ : D → Z and θ : D → Z. Then some of the possible properties of these operators are:

1. Increasingness: ψ is increasing if f ≤ g ⇒ ψ(f) ≤ ψ(g)

2. Exensivity: ψ is extensive if ψ(f) ≥ f

3. Anti-extensivity: ψ is anti-extensive if ψ(f) ≤ f

4. Idempotence: ψ is idempotent if ψψ(f) = ψ(f) ∀f ∈ F , i.e. ψψ = ψ

5. Duality: ψ and θ are dual operators if ψ(f c) = [θ(f)]c where c indicates the complement.

2.1.4 Dilation and Erosion

De�nition 11. TheMinkowski addition of a set A by a set {b} is denoted by Ab and is de�ned as follows:

Ab = A⊕ {b} = {a+ b|a ∈ A}
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De�nition 12. In [8], the Minkowski addition of two sets A and B is de�ned:

A⊕B = {a+ b|a ∈ A, b ∈ B}

The Minkowski addition of the sets is therefore obtained by taking the union of the Minkowski addition

of A with every element of B:

A⊕B =
⋃
b∈B

Ab

TheMinkowski decomposition or subtraction of two sets A and B is de�ned as the set C such that

A = B ⊕ C, which can be written as follows [29]:

A	B = {a|∀b ∈ B, a+ b ∈ A} =
⋂
b∈B

Ab

Minkowski addition and subtraction are closely related to the operators erosion and dilation [17, 26].

De�nition 13. The dilation of a set X by a set B is given by the Minkowski addition of X and B̌ where

B̌ =
⋃
b∈B
{−b} is called the transpose of set B, i.e.:

δB(X) = X ⊕ B̌ = {x|Bx ∩X 6= ∅}

De�nition 14. The erosion of a set X by a set B is given by the Minkowski subtraction of B̌ from X ,

i.e.

εB(X) = X 	 B̌ = {x|Bx ⊂ X}

De�nition 15. The set B is called the structuring element (SE).

Remark 16. Note that, in general, erosion and dilation do not undo one another's e�ects, i.e. δε(f) 6=

εδ(f).

Intuitively speaking, a binary image is dilated by placing the origin of the SE on some pixel within

the image and seeing if the SE hits any foreground pixels. If it does, the pixel at the origin of the SE is

included in the dilated image. This is repeated until the origin of the SE has been placed on every pixel

in the image. In e�ect, for each position of the SE, all the pixels in the SE will be foreground pixels in

the dilated image. Similarly, a binary image is eroded by placing the SE on some pixel within the image

and seeing if it is completely contained within an area of foreground pixels. If it does, those foreground

pixels will be included in the eroded image; otherwise, they will become background pixels. This process

is also repeated until the origin of the SE has been placed on every image pixel.

Example 17. Figure 8 shows the erosion of a binary image f by a symmetrical (in the origin) vertical

linear SE. The eroded image contains mostly vertical linear structures. The SE in Figure 9 is horizontal
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f εSE(f) SE

Figure 8: Erosion of a binary image f by a vertical linear SE

f εSE(f) SE

Figure 9: Erosion of a binary image f by a horizontal linear SE

f δSE(f) SE

Figure 10: Dilation of a binary image f by a vertical linear SE

f δSE(f) SE

Figure 11: Dilation of a binary image f by a horizontal linear SE
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f δSE(f) SE

Figure 12: Dilation of a grey tone image f by a horizontal linear SE

f εSE(f) SE

Figure 13: Erosion of a grey tone image f by a horizontal linear SE

linear, and the erosion contains primarily horizontal linear structures. In general, the features preserved

by the erosion will be of the same kind of structure as the SE. The dilation by a vertical linear SE

shown in Figure 10 preserves mainly vertical linear background shapes, while Figure 11 shows dilation

by a horizontal linear SE, which contains principally horizontal linear background areas. In general, the

shapes of the background areas preserved by the dilation are dictated by the structure of the SE.

Dilation and erosion can be generalised to grey tone images by making use of the operators ∨ (supre-

mum/maximum) and ∧ (in�mum/minimum). Let f be a grey tone image and B be a structuring element,

and let fb be the translation of f by the vector b, b ∈ B. Then the following hold [29]:

1. δB(f) =
∨

b∈B
(f-b)

2. [δB(f)](x) = max
b∈B

f(x+ b)

3. εB(f) =
∧

b∈B
(f-b)[εB(f)]

4. [εB ](f)(x) = min
b∈B

f(x+ b)

Example 18. Figure 12 shows the dilation of grey tone image f by a horizontal linear SE, while 13

shows the erosion of a di�erent grey tone image f by the same SE. Just as in the binary case, dilation

preserves and enlarges dark-coloured horizontal linear structures, while erosion preserves and enlarges

light-coloured horizontal linear structures.

Remark 19. The previous two examples clearly show that the image structures preserved by erosion and
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dilation are determined by the form of the SE. The advantage of this is that the choice of the SE allows

the image analyst to decide the kind of structure to be extracted. For example, linear SEs can be used

to extract straight line features, such as roads in remote sensing images, while square SEs can be used

to extract square features such as buildings. Serra [26] puts it as follows: �[T]he notion of a geometrical

structure ... does not exist in the phenomenon itself, nor in the observer, but somewhere in between

the two. Mathematical morphology quanti�es this intuition by introducing the concept of structuring

elements.� The disadvantage is that SEs can provide too rigid constraints. Roads, for example, may

be rectilinear or curvilinear, and so cannot be described by one SE structure; speci�ying a straight line

SE may lead to curved roads being omitted, while an SE trying to imitate the form of a curved road

would not lead to the extraction of the straight roads (as well as omitting roads that curve in a di�erent

direction, or are more curved or straighter than the SE). This notion is discussed further, and a possible

solution with regard to road extraction is provided in Section 2.1.11.

2.1.5 Opening and Closing

In this section, two particular compositions of erosions and dilations are discussed.

De�nition 20. The opening of an image f by a set B is de�ned as an erosion by B followed by a dilation

by B̌, i.e. γB(f) = [δB̌ ◦ εB ](f)

The opening removes all structures in the image that do not contain the SE B [29]. In this way it

removes small protrusions and opens up holes and cavities in structures in the image. It entirely removes

structures that are too small to contain the SE.

De�nition 21. The closing of an image f by a set B is de�ned as a dilation by B followed by an erosion

by B̌, i.e. φB(f) = [εB̌ ◦ δB ](f)

The closing �lls up cavities inside structures and bridges small gaps between structures in the image,

wherever the cavities and gaps are too small to �t the SE B [29].

Example 22. The opening and closing of a binary image by a 3× 3 square SE are shown in Figure 14.

The black pixels were considered part of objects while the background was white. Note that the opening

has entirely removed all black objects smaller than the SE, including the boundaries of the triangle and

the rectangle. It has also joined the white spots inside the ellipse. On the other hand, the closing has

joined the black spots inside the triangle, and has removed the white background areas smaller than the

SE, including the white spots in the octagon and the thin background slivers between some of the large

objects.

Figure 15 shows the opening and closing of a greyscale image, also by a 3 × 3 square SE. In this

case, the dark areas were preserved by the opening while the bright areas were preserved by the closing.
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a) b) c)

Figure 14: Opening and closing of binary image: a) Original image b) Binary opening c) Binary closing

a) b) c)

Figure 15: Opening and closing of greyscale image: a) Original image b) Grey tone opening c) Grey tone
closing

Most strikingly, the closing removed building shadows. The roads are clear in both the opening and the

closing, but appear to be more sharply delineated by the closing.

Properties of opening and closing

1. Opening and closing are dual operators.

2. The opening is (a) increasing, (b) idempotent, and (c) anti-extensive.

3. The closing is (a) increasing, (b) idempotent, and (c) extensive.

2.1.6 Geodesic Dilation and Geodesic Erosion

This section refers to [29]. Geodesic dilation and erosion involve the use of a control image or mask g to

limit the expansion and shrinking of the objects in an image f caused by dilation and erosion respectively.

The images g and f must have the same de�nition domain and g must be greater than or equal to f , i.e.

the requirements are:
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1. Df = Dg = D and

2. g ≥ f

where g ≥ f ⇔ g(x) ≥ f(x) ∀x ∈ D.

De�nition 23. The geodesic dilation of size 1 of an image f using a mask image g is obtained by taking,

at each pixel, the minimum of g and the dilation of f , i.e.:

δ
(1)
g (f) = δ(f) ∧ g = min{δ(f), g}

De�nition 24. The geodesic erosion of size 1 of an image f using a mask image g is obtained by taking,

at each pixel, the maximum of g and the erosion of f , i.e.:

ε
(1)
g (f) = δ(f) ∨ g = max{ε(f), g}

De�nition 25. The geodesic dilation or erosion of size n of an image f using a mask image g is obtained

by applying the geodesic dilation or erosion operator to f n times:

δ
(n)
g (f) = δ

(1)
g [δ

(n−1)
g (f)]

ε
(n)
g (f) = ε

(1)
g [ε

(n−1)
g (f)]

Remark 26. Geodesic dilation and geodesic erosion are dual operators.

Example 27. Figure 16 illustrates the geodesic erosion and dilation of a binary image. The original

image is shown in a) while the masks used in the geodesic operations are shown in b) and c). The erosion

and dilation of the original image are shown in d) and e) respectively. The geodesic erosion by the white

mask is shown in f) while the geodesic dilation by the black mask is shown in g).

Remark 28. It is worth noting that geodesic dilation and geodesic erosion both eventually converge to a

stable result. This is discussed further in Section 2.1.7.

2.1.7 Morphological Reconstruction

Repeatedly applying geodesic erosion or geodesic dilation to an image will eventually lead to a stable

result. This can be expressed as follows:

lim
n→∞

δ(n)
g (f) = hδ for some image hδ ∈ F

lim
n→∞

ε(n)
g (f) = hε for some image hε ∈ F

where δ
(n)
g (f) = [δ

(n−1)
g (δ

(1)
g )](f) and ε

(n)
g (f) = [ε

(n−1)
g (ε

(1)
g )](f).
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a) b) c)

d) e)

f) g)

Figure 16: Geodesic dilation and erosion of an image: a) Original image b) White mask c) Black mask d)
Erosion by a linear SE e) Dilation by the same SE f) Geodesic erosion using the black mask g) Geodesic
dilation using the white mask
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De�nition 29. The image obtained by performing geodesic erosion on an image f by a mask image

g until convergence is called the reconstruction by erosion of a mask image g from an image f and is

denoted by R
(ε)
g (f) [29], i.e.:

R(ε)
g (f) = ε(n)

g (f),

where n ≥ N and N is such that ε
(n)
g (f) = ε

(n+1)
g (f) i.e. convergence has been reached.

De�nition 30. The image obtained by performing geodesic dilation on an image f by a mask image

g until convergence is called the reconstruction by dilation of a mask image g from an image f and is

denoted by R
(δ)
g (f) [29], i.e.:

R(δ)
g (f) = δ(n)

g (f),

where n ≥ N and N is such that δ
(n)
g (f) = δ

(n+1)
g (f).

Note that R
(δ)
g = hδ and R

(ε)
g = hε with hδ and hε as de�ned previously.

De�nition 31. The opening by reconstruction of an image f by a structuring element B is denoted by

Γf and is obtained by �rst performing erosion on the image, and then performing geodesic dilation on

the eroded image ε(f) using the original image f as a mask, i.e.:

Γf = R
(δ)
f (εB(f)),

Opening by reconstruction �rst entirely removes all structures from the image that are too small to

contain the SE through the erosion. The erosion also shrinks the other structures; these are completely

restored to their respective original sizes and shapes by the geodesic dilation [37].

De�nition 32. The closing by reconstruction of an image f by a structuring element B is denoted by

Φf and is obtained by �rst performing dilation on the image, and then performing geodesic erosion on

the dilated image δ(f) using the original image f as a mask, i.e.:

Γf = R
(ε)
f (δB(f)).

Example 33. Figure 17 shows reconstruction by dilation and reconstruction by erosion of the image in

Figure 16. The geodesic dilation and erosion, respectively, after �rst 5 and then 10 iterations are shown,

along with the �nal converged results. Note that the �nal result of the reconstruction by erosion is in

this case the same as the white mask given in Figure 17 while the result of the reconstruction by dilation

is the same as the black mask.
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a) b) c)

d) e) f)

Figure 17: Morphological reconstruction of the binary image shown in Figure 16. Reconstruction by
dilation is shown in a)-c): a) Geodesic dilation after 5 iterations b) Geodesic dilation after 10 iterations
c) Reconstruction by dilation. Reconstruction by erosion is shown in d)-f): d) Geodesic erosion after 5
iterations e) Geodesic erosion after10 iterations f) Reconstruction by dilation.

2.1.8 Elementary SEs

This section de�nes the concept of elementary SEs, a concept crucial to understanding Section 2.1.9.

Recall from Section 2.1.2 that connectivity determines which pixels are immediate neighbours to which

other pixels and that two of the most common kinds of connectivity are 8-connectivity and 4-connectivity.

Recall that in the case of 8-connectivity, all pixels surrounding a pixel x are the 1st-order neighbours

of x. The pixels surrounding x with its 1st-order neighbours are the 2nd-order neighbours of x, etc.

In the case of 4-connectivity, only those pixels adjacent to x, i.e. sharing a side with x, are considered

1st-order neighbours. Those pixels sharing sides with the 1st-order neighbours of x are the 2nd-order

neighbours of x, etc.

De�nition 34. The elementary SE B? is the set containing a pixel and its immediate neighbours, where

the neighbours are de�ned by the underlying neighbourhood graph [29].

Example 35. Figure 18a) shows the �rst- to fourth-order neighbours of a pixel x along with the ele-

mentary SE in the case of an underlying 8-connectivity. Figure 18b) shows the same for an underlying

4-connectivity.

Remark 36. For the remainder of the theory section, we will assume that the underlying neighbourhood

graph is 8-connected unless otherwise stated. This simply means that the immediate neighbours of a
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a) b)

Figure 18: Neighbours and elementary SEs with respect to di�erent underlying connectivity. The 8-
connected case is shown in a) while b) shows the 4-connected case.

certain pixel x are all those pixels surrounding x.

2.1.9 Morphological Gradients and Top Hats

It is assumed that the edges of objects or structures in an image will be found in areas where the grey

values vary greatly [22, 29]. A morphological gradient is an operator that enhances the contrast in pixel

intensity in a speci�ed neighbourhood [22]. Since they enhance contrast, morphological gradients can be

used to detect edges.

The concept and function of morphological gradients will be made clearer by considering examples of

speci�c gradients. In the de�nitions of gradients and �lters in this section, erosion, dilation, opening and

closing are done with respect to the elementary SE, de�ned in Section 2.1.8.

The following de�nitions can be found in [29].

De�nition 37. The thin or Beucher gradient of an image f is de�ned as the di�erence between the

dilation and erosion of the image:

ρB?(f) = δB?(f)− εB?(f).

De�nition 38. The thick gradient of an image f is de�ned as the di�erence between the dilation and

erosion of the image where the size of the SE is greater than 1:

ρ
(n)
B? (f) = δ

(n)
B? (f)− ε(n)

B? (f).

Example 39. Figure 19 shows a binary image along with its gradients. The dimensions underneath each

gradient shows the dimensions of the SE. The underlying connectivity is 8-connectivity, so the elementary

SE is a square. The gradient by the elementary SE (i.e. the 3×3 square) is the Beucher or thin gradient,

while the others are thick gradients.
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Figure 19: Thin and thick gradients of a binary image

De�nition 40. The half-gradient by dilation or outer gradient of an image f is de�ned as the di�erence

between the dilation of the image and the original image:

ρ+
B?(f) = δB?(f)− f.

De�nition 41. The half-gradient by erosion or inner gradient of an image f is de�ned as the di�erence

between the original image and the erosion of the image:

ρ−B?(f) = f − εB?(f).

Example 42. Figure 20 shows a grey tone satellite image with its thin gradient (by a square SE), a

thick gradient (a gradient by a 5× 5 square SE) and its inner and outer gradients. Note that the outer

gradient gives a clearer delineation of linear structures than the inner gradient.

Just as erosion and dilation can be used to de�ne certain gradients, opening and closing can be used

to de�ne top hat �lters. The idea behind top hat �lters is to extract certain structures from an image by

�rstly removing the desired image structures using a morphological operation by an SE that does not �t

the structures, and by secondly considering the di�erence between the original image and the result of

the operation [29].

Let B be an SE.

De�nition 43. The white top hat of an image f is the di�erence between the original image and the

opening of the image:

WTH(f) = f − γB(f).

Since the opening removes light-coloured groups of pixels that do not �t the SE, the white top hat

extracts these light-coloured image structures.

De�nition 44. The black top hat of an image f is the di�erence between the closing of the image and
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a) b) c)

d) e)

Figure 20: Greyscale satellite image with its gradients a) Original grey tone satellite image b) Thin
gradient c) Thick gradient d) Inner gradient e) Outer gradient
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a) b)

c)

Figure 21: Greyscale satellite image shown in a) with b) White top hat c) Black top hat

the original image:

BTH(f) = φB(f)− f.

The black top hat extracts the dark-coloured image structures that are removed by the closing.

Example 45. Figure 21 shows a grey tone satellite image along with the results of the white top hat

and the black top hat (a cross-shaped SE was used). In this case, the dark pixels were considered part

of the background and the lighter pixels were considered to be feature pixels. Note that the white top

hat has extracted the lighter grey values (feature pixels) removed by the opening, namely the roads and

the lines on the �eld, while the black top hat has extracted the darker areas (background areas) that

were removed by the closing, namely the sides of the roads and lines. In both cases, the locations of the

roads and lines are fairly clear, although in this example the results of the white top hat may be more

appropriate for locating roads.

Example 46. Top hats are now applied to the problem of detecting roads in an informal settlement.

Figure 22 shows an image with both formal and informal settlements, with formal development occurring

in the bottom right part and informal settlements in the top left area. Alongside this image are the white

top hats of the image using the corresponding SEs. It is clear from these images that linear SEs are too

constrained to detect curved roads, or even straight roads at di�erent orientations. This motivates the

use of path operators, which will be discussed in Section 2.1.11.
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Figure 22: White top hats applied to an image of urban settlements.
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µ = 1 µ = 2 µ = 3 µ = 4

Figure 23: Structuring elements of size µ

2.1.10 Granulometries

It is often desirable to measure the distributions of the sizes of objects in an image. Size distributions,

also called granulometries, can be used to obtain and represent how the sizes of objects in an image

are distributed. Before granulometries can be further discussed, the absorption property must �rst be

de�ned.

De�nition 47. An operator ψ is absorbing if the operator has the following property:

ψµψλ = ψλψµ = ψmax (µ,λ),

where ψµ refers to the operator at size µ, i.e. acting on an image by an SE of size µ. Note that this

property implies idempotence: µ = λ→ ψµψµ = ψµψµ.

Figure 23 shows SEs of di�erent sizes, illustrating what is meant by an SE of size µ.

De�nition 48. A granulometry with size parameter µ is an operator ψ that is (a) increasing, (b) anti-

extensive, (c) absorbing, and that (d) generates a family of operators {ψµ}.

Recall that a grey tone image can be interpreted as a digital elevation model having volume, where

the volume of an image object is determined by the surface area of the object as well as the grey values.

A granulometric curve or pattern spectrum is formed by plotting the loss of volume (or surface area

in the case of a binary image) between ψµ and ψµ+1 against µ + 1. A peak in the pattern spectrum

indicates that a large number of objects can be found at that particular size [29]. A binary image and

its granulometry are shown in Figure 24.

2.1.11 Path-Based Morphology

This section refers back to Section 2.1.2 for preliminary theory on connectivity and adjacency graphs.

Let E be the domain of an image, i.e. E ⊂ Z2 and let E? be a directed graph on the points in

E, de�ned by an adjacency relation � 7→�. Let F(E?) and G(E?) be the set of all binary and grey tone
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Figure 24: A binary image with its granulometry.

images, respectively, de�ned on E?. For every point x in E? we have the set of predecessors as well as

the set of successors of x, a fact which makes it possible to state the following de�nition.

De�nition 49. For each point x in E?, the dilation δ({x}) is de�ned as the set of successors of x, i.e.

δ({x}) = {y ∈ E? : x 7→ y}.

Let X be an arbitrary subset of E?. Then the dilation on X, δ({X}) is de�ned as the set of successors

of every point x in X, i.e.

δ({X}) = {y ∈ E? : x 7→ y for some x ∈ X}.

Similarly, we can de�ne the set δ̌(x) as the set of all predecessors of x, i.e.

δ̌({x}) = {x : x 7→ y for some y ∈ E?}.

δ̌(X) is then the set of all points having a successor in X, i.e.

δ̌({X}) = {x ∈ E? : x 7→ y for some y ∈ X}.

The dilation operator is used to de�ne a δ-path, a fundamental concept in path-based morphology.

De�nition 50. A δ-path of length L is an L-tuple a = (a1, a2, ..., aL) such that ak+1 = δ({ak}) for

k = 1, 2, ..., L− 1, i.e. if ak 7→ ak+1, k = 1, 2, ..., L− 1. This means that each element of the tuple is

a predecessor of the next element.

The reverse path ǎ is an L-tuple given by ǎ = (aL, aL−1, ..., a1). Each element is therefore a successor

of the next element. ǎ is called a δ̌-path of length L since ǎk+1 = δ̌({ǎk}) for k = 1, 2, ..., L − 1 where

ǎk = aL+1−k, k = 1, 2, ..., L.

The set of all δ-paths of length L is denoted by ΠL while the set of all δ̌-paths of length L is denoted
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Figure 25: Example of path opening. The subset X is given in a), two possible paths are displayed in b)
and c) shows the path opening. The white dots with black borders have been excluded.

by Π̌L.

De�nition 51. For any path a = (a1, a2, ..., aL) in E?, the set of all the elements of a is given by

σ(a) = σ(a1, a2, ..., aL) = {a1, a2, ..., aL}.

The set of all δ-paths of length L completely contained in a subset X of E? is given by

ΠL(X) = {a ∈ ΠL : σ(a) ⊆ X}.

De�nition 52. The path opening αL with respect to the integer L and the subset X of E? is de�ned by

αL(X) =
⋃
{σ(a) : a ∈ ΠL(X)},

namely it is the union of all δ-paths of length L in X.

The path closing βL is obtained in the same way as the path opening, but using a subset X of the

background of the image instead of the foreground, having the same adjacency relation [32].

Remark 53. Note that the path opening and path closing have all the properties of an opening and a

closing respectively, i.e. both are increasing and idempotent, the path opening is anti-extensive and the

path closing is extensive [11].

Example 54. The path opening of a subset of points on a directional graph is shown in �gure 25. The

graph itself, E?, is shown in light grey while the subset of points X is shown by the black dots. In �gure

25 b), two possible paths of length L = 3 are shown. The path opening, the union of all δ-paths of length

3 in X, is shown in c). The white dots with black borders could not be connected to the other dots by

δ-paths of length 3 and were therefore excluded by the opening.

Determining path openings can be computationally intensive. Figure 26 shows four graphs with the

associated number of δ-paths of length L = 3. The �rst graph is fairly small and simple with only 4

rows and 3 columns, and northward (N) adjacency. There are 3 possible δ-paths of length 3. The graph
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3 δ-paths 6 δ-paths 12 δ-paths 24 δ-paths
a) b) c) d)

Figure 26: Demonstration of the increase in the number of δ-paths as graph size and adjacency complexity
increases. 4 × 3 graphs with N and NNE adjacency, respectively, are shown in a) and b) while 5 × 3
graphs with the same respective adjacencies are shown in c) and d).

can be made more complex by increasing the size, as in c), where the addition of one row increased the

number of δ-paths to 6, or by introducing more complex adjacency, as in b), where the northeast (NE)

adjacency was added. This resulted in a graph of the same size, but with northward and northeastward

(NNE) adjacency, which increased the number of δ-paths to 12. Finally, d) shows a 5 × 3 graph with

NNE adjacency, which had 24 possible δ-paths. The number of δ-paths for a large image with a complex

adjacency rule will be very great. A decomposition algorithm which greatly reduces the computational

e�ort required is provided in [11].

It may sometimes be necessary to work with long paths (large values of L). However, long paths have

the tendency to include noise [11]. To circumvent this problem and reduce the amount of noise, as well

as to create a more �exible operator that is not excessively constrained by the exact number of points in

the path, the concept of the more �exible incomplete path opening is introduced. The idea behind the

incomplete path opening is that a few points are allowed to lie outside of X.

Let Πk
L(X) be the set of all paths of length L inside E? with at least L−k points inside X, 0 ≤ k ≤ L.

De�nition 55. The incomplete path opening αkL(X) is de�ned as the union of all paths in E? such that

at least L− k points of the path lies inside X:

αkL(X) =
⋃
{σ(a) ∩X : a ∈ Πk

L(X)}, k = 1, 2, ..., L− 1.

The path opening operator, incomplete path opening and the decomposition algorithm can be gen-

eralised to the grey tone case using threshold decomposition, a concept discussed in the section Im-

ages and their Representations [30]. A new paramater ν, representing grey value, is introduced

for this purpose. Let g be a grey tone image and let Xν(g) be the cross section of g at ν, i.e.

Xν(g) = {x ∈ E? : ν ≤ g(x) ≤ t} where t is the maximum value of g on the domain X ⊆ E?.

The set of all δ-paths of length L at grey value ν is given by

Πν
L(g) = {a ∈ ΠL : g(ak) ≥ ν, k = 1, 2, ..., L}.
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Figure 27: An image with path openings: a) The original image. b) An incomplete path opening with
parameters L = 400 and k = 10. c) A path opening of length L = 400.

The following relation holds [11]: Πν
L(g) = ΠL(Xν(g)).

De�nition 56. Let V be the domain of g. Then the grey scale opening is de�ned as:

[AL(g)](a) = max{ν ∈ V : a ∈ σ(a) for some a ∈ Πν
L(g)}.

Example 57. Figure 27 shows an image with the results of a complete and an incomplete path opening.

In both of the results, the houses and patches of bare soil that are not connected to the roads have become

fainter. In the incomplete path opening shown in b), a maximum of 10 pixels are allowed to interrupt

the path. Many of the bare soil patches that are connected to the roads are still bright. In the complete

path opening shown in c), however, most of the non-linear patches of bare soil have become faint.

2.1.12 Path-Based Morphological Pro�les

A morphological pro�le (MP) function is a �fuzzy membership function related to a set of morphological

characteristics of the connected components in the image� and is useful for segmenting satellite images

[20]. Ghamisi [7] states that MPs can be used to model spatial information in images. MPs are constructed

by performing a sequence of openings and closings by an SE of increasing size on an image [7]; a more

detailed discussion on the construction of MPs in the case of classical SE-based morphology may be found

in [20].

As has been discussed previously in this report, classical morphology has the disadvantage of being

severely constrained by the choice of the SE or SEs used. A solution to this problem is to construct MPs

using path operators [14].

De�nition 58. The path-based morphological pro�le MP (x) of a pixel x is de�ned as

MP(x) = {ΠL(x)}, L = 1, 2, ..., Lmax,

where Lmax is the length of the longest path applied [14]. A path-based MP of a subset X, MP(X) is
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Figure 28: A satellite image with a binary thresholded version of the image, and a path opening. a) The
original satellite image. b) The binary thresholded image. c) A complete path opening with path length
L = 100 applied to the binary image in b).

thus created by applying a sequence of path openings of increasing length to the set of points or pixels

X.

2.1.13 Comparison of Classical Openings and Path Openings Applied to Binary Images

This section compares the results of classical and path-based openings on the same image, shown in

Figure 28b).

Applying a path opening directly to Figure 28b) results in the image shown in Figure 28c). In this

case, the non-directionality of the path opening was a disadvantage, since the white areas were mostly

connected. In order to separate the connected areas, the image was eroded using 28 SEs, obtained by

rotating a 15-pixel straight line at all possible angles given a 15 × 15 grid. Refer to �gure 37 in the

Appendix for the SEs and Figures 38 and 39 in the Appendix for the erosions of the image using the

di�erent SEs.

The result of these erosions is given in Figure 29a). An opening using the same 28 SEs was applied

to this eroded image, as was a complete path opening. The results are shown in Figure 29b) and c)

respectively. In this case, the path opening was less noisy and preserved curvilinear structures better

than the traditional opening.

In conclusion, binary path openings may not be e�ective when too many of the image objects are

connected. However, provided there is enough separation between the objects, path openings will give a

less noisy result with better preservation of curvilinear structures, as well as being simpler to calculate

than classical openings. This is due to the fact that a vast number of SEs must be used to avoid the

directional nature of the results of classical openings.
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Figure 29: Comparison of the results of a classical opening and a path opening. a) The original image.
b) A classical opening using 28 SEs. c) A complete path opening with length L = 100 performed on the
erosion from the classical morphology shown in a).

2.2 Binary Partition Trees

2.2.1 Connected Components and Operators

This section presents some de�nitions critical to the understanding of binary partition trees. It refers

back to the sections Graphs, Connectivity and Adjacency and Path-Based Morphology.

De�nition 59. A connected component of a set X with adjacency rule 7→ is the set of points that can

be connected by a path inside X [24].

De�nition 60. A �at zone FZ is the largest connected component of an area in an image where the

value of the image is constant [23].

De�nition 61. Suppose an image f is de�ned on a set E with adjacency rule 7→. Now suppose {Ri}, i =

1, 2, ..., n for some n > 0 is a set of connected components of E that are mutually disjoint. Then {Ri} is

a partition of E if E =
n⋃
i=1

Ri, i.e. the union of the Rsi makes up E. The Rsi are called the regions of f

[24].

Suppose an image f has n �at zones. When f is divided into its �at zones, these �at zones create a

partition. Let FZ = {FZi, i = 1, 2, ..., n} be the set of these �at zones. Then the partition of f is the

union of all the �at zones, i.e.
n⋃
i=1

FZi [23].

De�nition 62. Let PA =
n⋃
i=1

RAi and PB =
m⋃
j=1

RBj be two partitions of an image. Then PA is said to

be �ner than PB if the following holds:

p1,p2 ∈ RAi ⇒ ∃j 3 p1,p2 ∈ RBj ∀i = 1, 2, ..., n, p1,p2.

This means that any two pixels in the same region of partition PA are also in one unique region of

partition PB [23, 24].

37



PB PA

Figure 30: Two partitions PB and PA of the same image. PA is �ner than PB .

Example 63. Two partitions PB and PA of the same image are shown in Figure 30. PA has been created

by subdividing the regions of PB and hence any two pixels in one region of PA will also be in one region

of PB . PA is therefore clearly �ner than PB .

De�nition 64. Let f be a grey tone image. A connected operator ψ acting on images is an operator

that merges �at zones in an image, i.e. the partition of the �at zones of f is �ner than the partition of

the �at zones of ψ(f) [23, 24].

2.2.2 Binary Partition Trees

De�nition 65. A Binary Partition Tree (BPT) is a hierarchical tree-based representation of the regions

that can be obtained from an initial partition of an image [23, 34].

The hierarchy represents the image at di�erent scales and can be obtained by storing the steps in some

region merging algorithm [33, 23]. A BPT provides a natural representation of images that is suited for

a variety of applications [34] and allows for the quick application of complex image processing techniques

[23]. It also leads to a signi�cant reduction in computation time since not all the relationships between

regions need to be stored or analysed.

Refer to Figure 31. The leaves of the tree, i.e. the nodes found at the bottom of the BPT structure,

are the regions resulting from an initial partition. These regions are merged iteratively based on a region

model and a merging order until some stopping criterion is satis�ed. In the case of Figure 31, the stopping

criterion is that there should be only one region, i.e. all the regions should be merged.

De�nition 66. The region model and merging order are now de�ned.

� The region model MR is a vector containing the values of the properties of interest of a region.

� The merging order O(Ri, Rj) is a measure of similarity between two regions Ri and Rj . The exact

de�nition of O(Ri, Rj) depends on the problem.

Some merging criteria are statistical in nature, such as the MSE. This and other examples of merging

criteria and region models may be found in [36].
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Figure 31: Example of a binary partition tree constructed by keeping track of the merging steps in a
region merging algorithm. The initial partition is shown in step 0 while steps 1 to 4 show the merging
steps.

Example 67. The step-by-step results of a region merging algorithm with associated BPT are shown

in �gure 31. The grey values were represented by the Hue-Saturation-Intensity (HSI) model. Since all

the grey values had the same hue (namely 255) and saturation (namely 0), the region model MR was an

integer between 0 and 255 representing a region's intensity or grey value. The merging criterion O(Ri, Rj)

was de�ned as the average of the grey values of the two regions Ri and Rj , i.e.

O(Ri, Rj) =
(MRi

+MRj
)

2
.

Step 0 shows the initial partition, which is the result of segmentation. Table 1 gives the absolute di�erences

in the intensity between the �ve initial regions. The two regions with the smallest absolute di�erence,

namely regions 2 and 3, were merged to form region 6 (with an intensity of 128+154
2 = 141). In step 2,

the absolute di�erences between regions 1, 4, 5 and 6 were compared and regions 1 and 5 were merged

to form region 7. This process was repeated until there was only one region, namely region 9. The steps

followed are schematically represented in the BPT in �gure 31. Note that the only relationships stored

between regions are the relationships between each parent node and its child or children. There is no

need to store all the relationships between the regions or all the possible ways in which the regions could

have been merged. This leads to a reduction in computation time and e�ort, as well as storage space.

Remark 68. Note that the initial partition could be the pixels of the image [33], the set of �at zones

or any other initial segmentation [23]. A major advantage of using a segmentation that creates image

objects over simply using the pixels is the relationship between image objects and real-world objects [2].
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Region 1 2 3 4 5
Intensity 214 128 154 32 255

Region Intensity Absolute di�erence in intensity between regions
1 214 0 86 60 182 41
2 128 86 0 26 96 127
3 154 60 26 0 122 101
4 32 182 96 122 0 223
5 255 41 127 101 223 0

Table 1: Absolute di�erences in intensity between regions. These di�erences are used to determine the
order in which regions should be merged.

Figure 32: The application process.

There is no inherent relationship between image pixels and the real-world objects they represent.

A typical algorithm for BPT construction can be found in Valero et al. [33]. Np refers to the number

of regions in the initial partition.

Get O(Ri,Rj) values between all connecting regions

i=0

While i < Np - 1:

1. Rank O(Ri,Rj) values so that O(Ri,Rj) of most similar region pair is in first position

2. Merge regions Ri and Rj to form Rij

3. Update RAG by removing edge between Ri and Rj and creating new edges of Rij

4. Update list of O(Ri,Rj)s by adding O(Rij,Rk) for all k

5. i += 1

End while

3 Application

An overview of the method is given in Figure 32. The preprocessing, construction of the BPT and

road extraction were all done in Matlab using code provided by Dr. Mengmeng Li of the Faculty of

GeoInformation Science and Earth Observation, University of Twente. The quality assessment was done

using Python. The code for the quality assessment is given in the Appendix.

3.1 Problem Statement and Study Area

The study areas are both located in Mabopane, Tshwane Municipality, Gauteng Province, South Africa.

The informal settlements in this area are in many cases starting to formalise and roads are beginning to
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a) b)
Coordinates: 28◦4'7�E 25◦30'53�S Coordinates: 28◦1'26�E 25◦31'25�S

Figure 33: The study areas, located in Mabopane, Tshwane Municipality, Gauteng Province, South
Africa: a) Study area 1. b) Study area 2. The images are from The images are from Pléiades-1B.

take on a grid-like structure. The data used were two very high resolution (VHR) multispectral images,

with a spatial resolution of 0.5m, from the Pléiades-1B satellite. Each image consisted of 4 bands: 3

bands in the visible spectrum, namely Red, Green and Blue (RGB) and a Near-Infrared (NIR) band.

The study areas are shown in Figure 33. Due to the visually indistinct nature of many of the informal

roads, the expectation of this project was to determine which kinds of roads could be identi�ed by the

proposed method, rather than to achieve a high accuracy.

3.2 Data Preprocessing

Each image was segmented by applying the superpixels technique with 10000 segments to the RGB bands.

For each image, the Normalised Di�erence Vegetation Index (NDVI) was computed using the formula

NDVI=
NIR− R

NIR+R
.

Vegetation removal was performed by applying a threshold to the NDVI computed from the images. Li

et al. [14] applied Otsu's threshold [19]. However, this thresholding method delivered sub-optimal results

for both regions in this paper, as this eliminated much of the bare soil areas, making the detection of dirt

roads impossible. In order to include the bare soil, an experimentally determined threshold of 0.3 was

used, which had to be higher than Otsu's threshold.

The shadow regions were removed by converting the NIR-RGB colour space to a a Hue-Saturation-

Intensity (HSI) colour space and applying Otsu's threshold to an index computed from this new colour

space, namely Saturation - Intensity
Saturation + Intensity

, as proposed by [31]. To avoid misdetection of dark objects as shadows,

each image was subset into smaller parts, as in [14], and tree shadows were removed by considering the

directional relationship between trees and their shadows. The directional relationship between buildings

and their shadows was considered in order to remove buildings, as in [14]. The segments that were not

classi�ed as trees, buildings or shadows were used to construct the BPTs.
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a) b)

Figure 34: An image with its intensity gradient: a) An image showing some buildings and informal roads
within the study area. b) The Laplacian intensity gradient of the image.

3.3 Construction of the Binary Partition Tree

For this project, the region model MR consisted of the following components: two geometrical features,

the elongation and compactness of a region, and two structural features based on orientation histograms

and morphological pro�les respectively.

The elongation and compactness of a region Ri are respectively obtained as follows:

elongationi =
areai

length2
i

compactnessi =
2
√
π

perimeteri
,

where areai, lengthi, and perimeteri are the area, length and perimeter respectively of region Ri.

The orientation histogram of region Ri is denoted by HOGi and describes the distribution of the

directions of local intensity gradients in the region [5]. Intensity (grey value) gradients can be used to

identify edges, where the change in intensity is great, as shown in Figure 34. The directions of such

edges are binned to create an orientation histogram. The orientation histograms are computed as in [5],

with the di�erence that the minimum local neighbourhood is enforced for every HOGi. The orientation

histogram HOGi is computed over the bounding box of the region Ri, however, this region may be very

small. To ensure that the neighbourhood is not too small, a minimum cell size wcell is introduced. If

either the height or the width of the bounding box is smaller than wcell, the bounding box is bu�ered.

This method was proposed and implemented in [14].

Recall from Section 2.1.12 that the path-based morphological pro�le MP (x) of a pixel x is de�ned as

MP(x) = {ΠL(x)}, L = 1, 2, ..., Lmax,

where Lmax is the length of the longest path applied [14].
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Figure 35: A Z-shaped fuzzy membership function with parameters a = 0 and b = 100.

A path-based MP of a subset X, MP(X) is created by applying a sequence of path openings of

increasing length to the set of points or pixels X. The connectivity feature is de�ned as

confeaturei =
1

ni

ni∑
p=1

Lmax∑
L=0

wLΠL(xp), xp ∈ Ri,

where wL is the weight of a path opening with length L. The weights can be calculated using a linear or

a Gaussian function.

The merging order O(Ri, Rj) = Oij was computed using the parameters µ1,i, µ2,i, µ3,i and µ4,i. Let

the subscript ij denote region Rij , which is the union of adjacent regions Ri and Rj .

µ1,ij and µ2,ij are the membership values of the compactness and elongation of regions Rij as de�ned

by a Z-shaped fuzzy membership function, i.e.

µ1,ij = f(compactnessij ; 0, b1)

µ2,ij = f(elongationij ; 0, b2),

where

f(x; a, b) =



1 x ≤ a

1− 2(x−ab−a )2 a ≤ x ≤ a+b
2

2(x−bb−a )2 a+b
2 ≤ x ≤ b

0 x ≥ b

is the membership function. A visual representation of such a function is shown in Figure 35.

The orientation similarity between regions Ri and Rj is given by

µ3,ij = max{fbini
(Ri)− fbini

(Rj), fbinj
(Ri)− fbinj

(Ri)},
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where fbink
(Rl) is the normalised frequency of HOGl at the bin location bink, k, l ∈ i, j. Note that the

histogram is normalised by dividing it by its maximum value, therefore fbink
(Rk) = 1, k ∈ i, j.

Finally, µ4,ij is given by

µ4,ij =
areaiconfeaturei + areajconfeaturej

areai + areaj
.

The merging order Oij is now de�ned as

Oij = α
√

(µ1,ijµ2,ij) + (1− α)
√

(µ3,ijµ4,ij) + ε,

where

ε =
|widthij −max{widthi, widthj}|

widthij

limits the width of the merged regions and α is a prede�ned weight. The higher the value of α, the

higher the relative importance attached to the geometrical features and the lower the importance of the

structural features, and vice versa. In this project, the value of α was 0.5.

The parameter values used to construct the BPTs are given in Table 2. The parameters not given in

this table were assigned the same values as in [14]. All other parameters were assigned the same values

as in [14].

Parameter Value for Area 1 Value for Area 2 Use
b1 0.7 0.8 Used to de�ne the Z-shaped

fuzzy membership functions.b2 0.5 0.7

Table 2: Parameters used to construct the BPT.

3.4 Road Extraction

The method of [25] for automatically extracting objects from VHR images was applied to the BPT

representation. The membership degree of region Ri being a road was based on the geometric features

µ1,i and µ2,i. For each object, a possibility measure that the object was a road or a non-road, as well as

a necessity measure that the object was a road or a non-road was calculated.

Possibility measure that Ri is a road: Π(Ri) = max{µ1,i, µ2,i}

Possibility measure that Ri is a non-road: Π(R̄i) = max{1− µ1,i, 1− µ2,i}

Necessity measure that Ri is a road: N(Ri) = 1−Π(R̄i)

Necessity measure that Ri is a non-road: N(R̄i) = 1−Π(Ri)

Ri was classi�ed as a road if Π(Ri) > Π(R̄i) and N(Ri) > N(R̄i).
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Figure 36: Results. a) Results for the �rst study area. b) Results for the second study area.

Quality Measure Value for
Area 1

Value for Area 1
(Unpaved Roads

Only)

Value for
Area 2

Value for Area 2
(Unpaved Roads

Only)

Completeness = TP
TP+FN

89% 86% 74% 61%

Correctness = TP
TP+FP

20% 21% 13% 6%

Quality = TP
TP+FP+FN

33% 53% 30% 26%

Commission = FP
TP+FN

167% 61% 142% 130%

Omission = FN
TP+FN

11% 14% 26% 40%

Table 3: Assessment of the quality of the results.
(Notation: Number of pixels exhibiting TP = True Positive, FP = False Positive, TN = True Negative,

FN = False Negative)

3.5 Results

The obtained results are given in Figure 36, with corresponding quality assessment in Table 3. The

method proved robust with regards to the presence of cars on the road, and produced good results in the

areas with broad, unpaved roads (12− 15m wide including road shoulders and sidewalks). The unpaved

areas around paved roads were detected as roads, thereby increasing the number of false positives. This

occurrence is a natural result of considering both types of surfaces, however, and does not re�ect badly

on the method. If only paved roads were to be considered, the NDVI threshold could be made lower in

the preprocessing step, which would �lter out more of the bare soil. A great number of false positives was

due to other misdetections. Most notable among these was the large patch of bare soil in the centre of the

�rst study area which was detected as road. The problem of false positives was less prevalent around the

unpaved roads in the �rst study area, suggesting that the method may be suitable for detecting broad,

unpaved roads in an urban context. Fewer false positives were detected in the second study area, but

more false negatives were detected. Masking out the formal roads resulted in a high omission rate leading

to a very low correctness score. Despite this, the commission rate remains signi�cantly higher than the

omission rate, which agrees with the problem of false positive detection experienced in [21].
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4 Conclusion

On a theoretical level, this project discussed the theory of mathematical morphology, the study of shape.

It was highlighted that the dependence of classical morphology on a preset structural element is a sig-

ni�cant disadvantage, which may be overcome by using path-based morphology. However, path-based

binary openings may not produce useful results if too many of the image components are connected.

On a practical level, this project showed contributions in the modelling of the uncertainty of spatial

objects as extracted from spatial big data, namely the identi�cation of unpaved, informal roads. This is

a topic of great practical importance which has not yet been widely addressed.

The state of the art road detection method proposed in [14] was applied in a South African context.

The method produced satisfactory results in the detection of broad, straight, unpaved roads, and proved

robust with regards to the presence of cars on roads. It may therefore be a suitable method for the

detection of such roads. In the case of less formal, narrower unpaved roads, the method had a high

number of false negatives and may not be appropriate.

Future research is required to accurately detect narrower, more winding informal roads, as well as to

precisely determine the boundaries of roads and reduce the number of false positives. The ideal NDVI

thresholds for identifying bare soil roads as well as for identifying paved roads have yet to be determined.

LiDAR data may also be taken into account in future, since it would provide height information which

would be invaluable in di�erentiating tall objects (such as buildings) from roads.

The misdetection of unpaved areas as roads, especially those areas that may be used for navigation,

raises an interesting question: what precisely is a road and when and how do we di�erentiate a road from

a pathway? When venturing into the area of informal or unpaved roads, created by citizens on an ad hoc,

purely pragmatic basis, what exactly constitutes a road becomes unclear. This question invites future

discussion, and how it is answered must undergird any future attempt at the detection of informal roads.
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Appendix

Structuring Elements and Intermediate Results for Section 2.1.13

Figure 37: Structuring elements 1 to 28.
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Figure 38: Double erosions by individual structuring elements 1 to 16.
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Figure 39: Double erosions by individual structuring elements 17 to 28.

Code for Drawing the Z-shaped Fuzzy Membership Function

This code is in SAS/IML.

1. proc iml;

2. a=0; b=100; n=120;

3. fx=j(n,2,1);

4. do x=1 to n;

5. fx[x,1]=x;

6. end;

7. do x=1 to a;
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8. fx[x,2]=1;

9. end;

10. do x=a+1 to (a+b)/2;

11. fx[x,2]=1-2*(((x-a)/(b-a))**2);

12. end;

13. do x=(a+b)/2 + 1 to b;

14. fx[x,2]=2*(((x-b)/(b-a))**2);

15. end;

16. do x=b to n;

17. fx[x,2]=0;

18. end;

19. print fx;

20. create data1 from fx[colname={'x' 'y'}];

21. append from fx;

22. quit;

23. symbol1 interpol=join width=5;

24. proc gplot data=data1;

25. plot y*x;

26. run;

Code for Quality Assessment

This code is in Python.

1. import scipy

2. import numpy as np

3. import cv2

4. import matplotlib.pyplot as plt

5. from numpy import genfromtxt

6. imageTrue = cv2.imread('C:/Users/Renate/Desktop/Project/PleiadesCropped/

New/NewSmall/roadsTrue3.png',0)

7. imageResult=cv2.imread('C:/Users/Renate/Desktop/Project/PleiadesCropped/

New/NewSmall/Result.tif',0)

8. imarrayTrue=np.array(imageTrue)

9. imarrayResult=np.array(imageResult)

10. TP=0
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11. TN=0

12. FP=0

13. FN=0

14. nrow=imarrayTrue.shape[0]

15. ncol=imarrayTrue.shape[1]

16. omission=[ ]

17. commission=[ ]

18. TPmatrix=[ ]

19. TrueRoad=0

20. rowcount=0

21. while rowcount<nrow:

22. colcount=0

23. omRow=[ ]

24. comRow=[ ]

25. TPRow=[ ]

26. while colcount<ncol:

27. if imarrayTrue[rowcount][colcount]==0:

28. TrueRoad+=1

29. if imarrayResult[rowcount][colcount]==0:

30. TP+=1

31. TPRow.append(0)

32. omRow.append(255)

33. comRow.append(255)

34. if imarrayResult[rowcount][colcount]==255:

35. FN+=1

36. comRow.append(255)

37. omRow.append(0)

38. TPRow.append(255)

39. if imarrayTrue[rowcount][colcount]==255:

40. if imarrayResult[rowcount][colcount]==255:

41. TN+=1

42. comRow.append(255)

43. omRow.append(255)

44. TPRow.append(255)
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45. if imarrayResult[rowcount][colcount]==0:

46. FP+=1

47. omRow.append(255)

48. comRow.append(0)

49. TPRow.append(255)

50. colcount+=1

51. rowcount+=1

52. omission.append(omRow)

53. commission.append(comRow)

54. TPmatrix.append(TPRow)

55. completeness=TP/(TP+FN)

56. correctness=TP/(TP+TN)

57. quality=TP/(TP+FP+FN)

58. commissionR=(FP/TrueRoad)*100

59. omissionR=(FN/TrueRoad)*100

60. rowcount=0

61. omCount=0

62. comCount=0

63. while rowcount<nrow:

64. colcount=0

65. while colcount<ncol:

66. if omission[rowcount][colcount]==0:

67. omCount+=1

68. if commission[rowcount][colcount]==0:

69. comCount+=1

70. colcount+=1

71. rowcount+=1

72. scipy.misc.toimage(commission).save('C:/Users/Renate/Desktop/Project/

PleiadesCropped/New/NewSmall/comm.tif')

73. scipy.misc.toimage(omission).save('C:/Users/Renate/Desktop/Project/

PleiadesCropped/New/NewSmall/om.tif')

74. scipy.misc.toimage(TPmatrix).save('C:/Users/Renate/Desktop/Project/

PleiadesCropped/New/NewSmall/TP.tif')
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Abstract

The essay seeks to investigate whether it is possible to restructure a collection of random forests

as a collection of multilayered neural networks subject, to particular connection weights using the R

statistical software [3]. To this end, this analysis seeks a random forest is reformulated into a neural

network, leading to new hybrid procedures, namely neural random forests. Prior knowledge of the

underlying design of regression trees is used as they have less parameters than standard networks

that need adjusting, as well as exhibiting less restrictions on the decision boundaries. . Neural

random forests consider the implications and advantages of both models and seeks to combine them

in order to achieve a better performing model overall. The neural random forest uses the output of

a random forest as the input for the neural network to essentially simulate a random forest (and its

associated advantages) within a neural network. Neural random forests are reviewed by evaluating

consistency results, numerical evidence, as well as assessments based on real data sets to gauge the

method’s performance against various prediction problems. It is then shown that, using RStudio and

its associated packages, neural random forests cannot be formulated.
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1 Introduction

Decision tree learning itself has been a key popular data-modelling technique whose use has spanned

over fifty years in the fields of statistics and computer science. The approach has seen innumerable

applications and by extension has influenced many modern predictive algorithms to date. This is owing

to the simplicity and transparency of trees [3]. Regression trees can be traced back to earlier works

on Categorical and Regression Trees introduced in 1984 [4]. Today, the work has been extended to

random forests [6], applications of which contribute extensively to the most successful machine learning

algorithms [3]. The performance of random forests has received keen interest since their inception.

Numerous studies have been performed as a result. Most recently a study compared the performances

of 179 different classifiers from 17 families on the complete set of the UCI collection of data sets. The

study found that random forests indeed outperformed all other classifiers in a statistically significant way

[8]. An integral part of this method the bagging principle: a sample of the data is taken. The sample is

split into a training and testing set. (Generally, 80% towards the training and 20% the testing). Biau

et al. (2016) extends the splitting into training. validation and testing subject to 50%, 25% and 25%

splits respectively. A predictor is fitted on the training set, and the results thereof are pasted together.

Thereafter the predictor is applied to the testing set to see if the results are comparable to the training

set’s. Random forests have been shown to work fast, exhibit substantial improvement over single tree

learners and yield generalised error rates that often rank among the best [3]. “Forests have the flavour of

deep network architectures owing to their ability to discriminate between a large number of regions” [2].

Neural networks are fashioned after their namesake: the brain’s neurons. The tool works in a manner

analogous to that of the human brain. The brain is made up of approximately 85 billion neurons. The

branches of a neuron receive input signals from some stimulation or up-stream neurons. The signal is

then processed in the cell body and transmits along a projection of the neuron to the output node.

This output may be received by down-stream neurons or function organs such as muscles that deliver a

reaction.

Neural networks have become the common name for multi-layer perceptrons. A perceptron is a

linear binary classifier that partitions a space into parts using a linear function. This effectively separates

classes using a straight line. For example two-features will have a decision boundary that is a straight line,

input variables, the predictors and signal information. This information is then weighted according to its

respective importance (the work done by the branches in neurons). The weighted signals are summed and

processed by the activation function to deliver the output. The neuron in one layer is connected to all the

neurons in the next layer, and since the information flows in one direction only this is also called a feed-

forward network [14]. The power and advantage of neural networks lies in their ability to learn existing

relationships directly from the data being modelled. Once the network has acquired this knowledge
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through training, it can be applied to unknown data for the purpose of classification, prediction, time

series analysis, etc. As a result neural networks do not require implementing appropriate algorithms

in order to identify existing relationships. Alternatively, statistical analysis is reliant on assumptions

regarding a model form, e.g, linearity in parameters or describing relationships between variables. Neural

networks discover the the structure of the data through a training process. Once this is done, neural

networks no longer need to learn from algorithms; they learn by example [14].

Neural networks have many parameters that render them easy to fit while remaining an excellent

resource for complex modelling problems [3]. However, the aforementioned expressiveness bears the

disadvantage of increased over-fitting risk, particularly on small data sets. Random forests on the other

hand have fewer parameters but often perform inadequately for most data [3]. Extensive studies into the

casting of forests into random forests have been performed in order to take advantage of both unique

approaches while simultaneously bypassing their respective shortcomings [3]. As such, the neural random

forest method is proposed.

This review seeks to investigate the neural random forests method as a tool that can aid in regression

analysis. Section 2 explores the underlying theory of regression trees, random forests, neural networks and

neural random forests that is split into subsections 2.1,2.2,2.3 and 2.4 respectively. Section 3 includes the

results from the experiment and analysis of those results, with a final comparison in section 3.4 followed

by the conclusion. Random forests will be restructured into a collection of neural networks that bear

soft, non-linear and differentiable activation functions. They are thus trainable with a gradient-based

optimisation algorithm and are expected to show better general performance [3].

The connection between forests and neural networks remains largely unexplored. The research report

seeks to serve as an input into that exploration.

2 Background theory

2.1 Regression trees

Tree-based methods of classification were developed as part the CART program by Breiman et al (1984)

[7]. A decision tree renders a form of classification for the purpose of prediction and/or regression.

Regression trees differ from classification trees. In decision tree analysis X and Y are each observable- as

they are discrete- and a tree is drawn up with (x1, y1) ... (xn, yn)as the working domain/ range for some

i = 1, ..., n. In a node m, representing region Rm with Nm observations, let

p̂mk =
1

Nm

∑
x,∈Rm

I(yi = k),
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be the proportion of class k observations in node m. The observation contained in node m is classified

to the class in which it is the majority in node m owing to the condition k(m) = argmaxkp̂mk. In the

end the algorithm relies on a majority vote for classification. A certain leaf, that has been classified as

having, for simplicity, a 0 or 1 will bear certain characteristics and subject to certain parameters ( is

xi1bigger than 1 for example) will decide on what the data point should be classified as, given that it

falls within that particular set of conditions. In this manner a binary tree is constructed to minimise the

error in each training set.

A regression tree is a generalisation of the classification tree. However xi and yi are elements of real

numbers. The data is continuous and not easily observed. The data consists of p inputs and N obser-

vations, and a response for each observation. Thus (xi, yi) for i = 1, 2, ..., N , with xi = (xi1, xi2, ..., xip).

The algorithm needs to automatically decide on the splitting variables and split points[10], as well as the

shape of the tree. For this reason it is important to know where to split the data- as done on a simple

two-dimensional plane- to begin the tree. From the initial split yes or no leaves are created and the data

falls on either leaf. The aim is to minimise error such that: ŷ =
∑

(y − yi)2 for some region R for the

purpose of regression. ŷis the average of the yi’s. The first split asks “is x > 2” and it creates two “yes

or no” leaves: If no, then x > 1, which creates two more “yes or no” leaves. If no, then it is x < 1, and

this region can be referred to as region R1. The average of the data points in R1 is used as a reference

for all points that may fall within the region. This average is displayed underneath each leaf. For x > 1,

referred to as region R2, the average is calculated as well. This process is followed until all “yes or no”

questions are satisfied and all possible regions are classified. The “no” leaves are usually terminating and

the “yes” leaves extend to other branches that split into different regions. For a partition into M regions

R1, R2, .., RM , model the response as constant cm in each region:

f(x) =

M∑
m=1

cmI(x ∈ Rm).

Maintaining the objective of minimising the sum of squares
∑

(yi− f(xi))
2, the best response is then

the average of yi in region Rm, as seen by:

ĉm = ave(yi|xi ∈ Rm).

To find the best binary partition in terms of minimum sum of squares is considered computationally

uattainable [10], and as such necessitates a greedy algorithm: considering the set of all the data, set some

splitting variable j and an associated split point s, and define

R1(j, s) = {X|Xj ≤ s} ,
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and

R2(j, s) = {X|X > s} .

After this definition, seek values for j and s that render a solution to

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R1(j,s)

(yi − c2)2

 .
And for any choice j and s, the inner minimisation is solved by ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 =

ave(yi|xi ∈ R2(j, s)). After finding the best split, distribute the data into the two regions. This process

is then repeated on all the resulting regions, establishing the classifier [10]. The above is to grow a

single tree. This is not enough owing to the caveat that trees themselves have the disadvantage of being

unstable: they are characterised as having high variances due to the hierarchical nature of the process.

An error in the top split essentially ’trickles down’ to the resultant splits below it [10]. The problem can

be alleviated by bagging: averaging the collection trees to reduce the variance.

The abbreviation ’bagging’ refers to the method of bootstrap aggregation. Bootstrapping is a method

that is widely used to improve the statistical accuracy of a model. It has been identified as being good for

estimating extra-sample prediction error [10]. The rationale is as follows: consider a model that is fitted

to a set of training data Z = (z1, z2, ..., zN ) where zi = (xi, yi). At random, draw sample data sets from

Z while ensuring that each sample size is the same as the original training sample’s size. Sampling is

done with replacement. Perform the process B times in order to obtain B bootstrap samples. Following

this, refit the model to each bootstrap data set and evaluate the fit over the B replications [10]. Figure

1 depicts a prediction of S(Z) resulting from bootstrapping on Z. The above described model is fitted

and the resulting values S(Z1), ..., S(ZB) are then used to assess the statistical accuracy of Z. Bootstrap

sampling makes it possible to estimate any parameter of the distribution of the quantity, i.e. the variance,

ˆ

var[S(Z)] =
1

B − 1

B∑
b=1

(
S(Zb)− S

)2

where ¯S =
∑
b S(Zb)/B, is the sample mean. To estimate the prediction error, fit the model on a set

of bootstrap samples and monitor how well it predicts the original training set [10].

If ˆf b(xi) is the predicted value at xi, from the model fitted to the both bootstrap data set, the estimate

is,
ˆ

Errboot =
1

B

1

N

B∑
b=1

N∑
i=1

L(yi,f
b(xi)).

It should be noted that Hastie et al. highlight a drawback of bootstrapping: the method does not

provide a good estimate in general. This is owing to the fact that the bootstrap data sets are acting as
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Figure 1: A schematic representation of the underlying intuition of bootstrapping[10].

the training samples whereas the original training set is acting as the test sample. This delivers a key

problem in that the two observations have samples in common. This overlap can result in over-fitting the

predictions, rendering them exceptionally good, yet ultimately unrealistic [10]. In lieu of this problem,

Leo Breiman created bootstrap aggregation- otherwise known as bagging. The advantages of bagging are

that it reduces variance and improves model accuracy.

Bagging greatly aids in improving the bootstraps prediction. It exploits the connection between

bootstrapping and the Bayesian approach to inference in that the bootstrap mean is approximately a

posterior average [10] [5]. Consider a regression problem: the model described under bootstrapping

above is fitted to estimate f̂(x) at input x. The application of bagging averages this prediction across

the bootstrap samples B. This in turn reduces its variance [10]. For each b ∈ B and b = 1, 2, ..., B, fit

the model rendering prediction f̂ b(x). The bagging estimate is defined by

f̂bag(x) =
1

B

B∑
b=1

f̂ b(x).

The empirical distribution putting equal probability 1
N on each of the data points (xi, yi) is denoted

by ρ̂ . The true bagging estimate is thus defined by Eρ̂f̂
∗(x) where Z∗ = {(x∗1, y∗1), ..., (x∗N , y

∗
N )} and

each (x∗i , y
∗
i ) ∼ ρ̂. f̂bag(x) is a Monte Carlo estimate which is approached as the true bagging estimate,

approaching it as B → ∞[10]. Through this, bagging therefore allows for the averaging of many ’noisy

but unbiased’ models which subsequently reduces the variance [10].

Applied to regression trees, f̂(x) denotes the tree’s prediction at input vector x with each bootstrap

tree bearing differing features to the original, and may exhibit a varying number of terminal nodes [10].

The bagged estimate is the average prediction at x from B trees.
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2.2 Random forests

Section 2.1 highlights the process for growing a regression tree. The process can be replicated to create a

regression forest. The random forest method is a modification of bagging that builds a large connection

of decorrelated trees, and then averages them [11]. Trees are generally noisy [11], and averaging greatly

enhances the model. Each tree attained through bagging is identically distributed and as such the

expected value of B trees is the same as the expected value of any other tree. An average of B i.i.d

random variables, each with variance σ2, has variance 1
Bσ

2 [11]. During the tree growing process, and

before each split , on the bootstrapped data set, randomly select m ≤ p of the input variables before

splitting and then commence to grow the trees. Hastie et al puts the typical value for m at
√
p ’or even

as low as 1’ [11]. Upon growing the B trees, the random forest predictor is defined as:

f̂Brf (x) =
1

B

B∑
b=1

T (x; Θb).

Θb characterises the bth random forest tree in terms of split variables [11], cut-points at each node as

well as the terminal-node values. Through the reduction of m, the correlation between any pair of trees

is reduced and by extension, the variance, and the variance of the average.

2.3 Neural networks

Neural networks have become the common name for multi-layer perceptrons. A perceptron is a linear

binary classifier that partitions space into parts using a linear function. This effectively separates classes

using a straight line. For example two-features will have a decision boundary that is a straight line,

input variables, the predictors and signal information. This information is then weighted according to

its respective importance (the work done by the branches in neurons). The weighted signals are summed

and processed by the activation function to deliver the output. The neuron in one layer is connected to

all the neurons in the next layer, and since the information flows in one direction only this is also called

a feed-forward network [14].

The procedure can be expressed mathematically as:

y(x) = φ(Σmi=1wi ∗ xi)

, where y is the output signal, Φ() is the activation function, xi refers to the x1, ..., xm input variables

and wi is weight assigned to each input variable. Information is received from the raw data contained

in the feature variables and the activation function. This is combined with information from the input

nodes, rendering the output. This model can be compared to the regression model. Each input variable
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is in analogue to the predictors of a regression model with weight being the coefficient of each predictor.

All input nodes constitute a single layer: a network containing only input and output nodes is a termed

a single-layer, the simplest form of a neural network.

For example, simple linear regression problem: given the training data X = {x}, and the corresponding

output Y = {y}, the aim is to set Y in a linear fashion such that µk ≈ w0 + w1 ∗ x1. Subscript k is the

index of the data point in the training set (the neuron in question) and the subscript i refers to

coordinate of the data point (the input neuron to which the weight refers). The activation function

serves as a limiter of the permissible amplitude range of the output signal to some finite value. It is

typically the range of the output of a neuron is written in either of the following forms [0,1] or [-1,1].

The intercept/ bias term bk is included, whose effect is to increase or lower the net input of the

activation function depending on whether it is negative or positive.. This formula can be extended to

include multiple attributes: x can then be defined as x = [x0, ..., xm] followed by w = [wk1, ..., wkm]

resulting in a linear combination function of the form µk = w01 ∗ x0 + ...+ wkm ∗ xm =
∑m
i=0 wik ∗ xi.

The Figure 2 depicts the intuitive process of neuron k:

Figure 2: Intuitive process of neuron k [14]

From µk =
∑m
i=0 wik ∗ xi, another condition that accommodates for the activation function and bias

needs to be added that completes the form for neuron k: yk = ϕ(µk + bk). ϕ(•) refers to the activation

function. Weolowski et al. highlights certain steps to take when configure a suitable neural network: the

number of layers (input, hidden and output) must be established. Secondly, decide on how many nodes

must be in the hidden layer. Additionally it is essential to choose the correct activation function, error

criterion and learning algorithm. The activation function in the hidden and output layers is symmetric

sigmoid. A neuron with an activation function that is permanently set to 1 is added (for an MLP). This

neuron is called a bias: it connects to the neurons through a weight (referred to as the threshold). The

threshold’s purpose is to determine whether specific conditions are fulfilled in order to correctly in order

to correctly assess the results obtained [14].
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The correct set of weights is not known beforehand and as such a random variable is assigned to

them. To properly update these weights the Back-propagation algorithm (BP) is added. This process

is called training or teaching the model. The BP can be termed a generalisation of the least squares

algorithm that adjusts these weights to minimise the mean squared error (MSE) between the target value

and actual output. MSE is defined as:

MSE =
1

m

m∑
i=1

n∑
k=1

(outik − yk)2,

where m is the total number of training cases, n is the number of network outputs, outik is the output

for the ith neuron and kth network output. This is a supervised process as the output value is compared

to the target. It follows from above that to obtain the MSE it is essentially an aim to minimise the Sum

of the Squared Errors (SSE) as is mostly done in regression models and by extension regression forests.

2.4 Neural random forests

This section follows the development of the neural random forest model as posited by Biau et al. The

underlying structure is that of non-parametric regression estimation. The random input vector Xε [0, 1]
d
is

observed. The aim: predict the dependent variable Y εR through estimation by the regression function

r(x) = E[Y |X = x] [3]. Given this, assume a training sample Dn = ((X1, Y1) , ..., (Xn, Yn)), n ≥ 2 of

independent random variables distributed identically to (X,Y ). The data in Dn is used to construct an

estimate of the function r. Additionally, set the condition that the regression function estimate rn is

mean square error consistent if E[rn(X) − r(X)]2 → 0 as n → ∞. Upon establishing the above, it is

possible to continue from a tree to a neural network.

Biau et al. (2016) define a regression function as an estimate that uses a ’hierarchical segmentation

of the input space’ [3]. The observations within the space are ranked and separated in some order of

importance and applied to the estimate. Each tree node corresponds to one of the segmentation subsets

in [0, 1]d. As such, the type of trees developed are considered ordinary binary regression trees: A node

has exactly either zero or two leaves. The former renders the node terminal. If a node u represents the set

A ⊆ [0, 1]d and its leaves, designated uLand uR for ’left’ and ’right’ respectively, represent AL ⊆ [0, 1]d

and AR ⊆ [0, 1]d then it is required that A = AL ∪ AR and that AL ∩ AR = ∅. Thus ALand AR are

mutually exclusive. The root is a representation of the entire space [0, 1]dand the leaves , taken together,

form a division of [0, 1[d. Within an ordinary tree, to pass from A to either AL or AR occurs by answering:

on x = (x(1), ..., x(d)) “is x(j) ≥ α” , for some dimension jε{1, ..., d} and some αε[0, 1].

In prediction the input is first passed into the tree root node and is then iteratively transmitted to

the ’child’ node that belongs to the region in which the input is located. Repeat the process until a leaf

node is realised. If a leaf represents the region A, the natural regression function estimate takes the form
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Figure 3: Process from regression tree to neural network: the regression is fitted on the training data.
From there, the split directions and positions are extracted and these are used to fit the neural network.
Applied to the random forest, ’M CART-type trees are converted into M tree-type neural networks.

[3]

tn =
(
∑n
i=1 Yi‖XiεA)
Nn(A) , xεA, where Nn(A) is the number of observations in cell A. The prediction of point

x in leaf node A is the average of the outputs from all of the sample points belonging to that particular

region, region A. Figure 3 depicts a two-dimensional example.

Assume at hand a regression tree tnwhose construction depends on data Dn and takes on values

on each of the K ≥ 2 terminal nodes: interpret this estimate as a three-layer neural network estimate

comprised of two hidden layers as well as a single output layer. Let H = {H1, ...,Hk−1} be the collection

of all hyper-planes participating in the construction of tn. It is important to note that HkεH is of the

form Hk =
{
xε[0, 1]d : hk(x) = 0

}
, where hk(x) = x(jk) − α(jk) for some, eventually data dependent, jk

ε (1, ..., d) and αjkε[0, 1]. To each leaf of the query point x, for each query hyper-plane Hk, it is possible

to find the side on which x falls (+1 codes for right; −1 codes for left). With this notation, the tree

estimate tn is then considered identical to the neural network described below [3]. This formulates a

neural network analogous to a random forest.

First hidden layer: the first hidden layer of neurons corresponds to k − 1 perceptrons- one for each

inner tree node, whose activation is defined as

τ (hk(x)) = τ
(
x(jk) − αjk

)
,

where τ(u) = 2‖u≥0 − 1, is a threshold activation function and the weight vector is single one-hot

vector of feature jk with −αjk as the bias value. Associated with each split in the tree is a neuron

in the first layer that assigns the relative position of x in reference to the split. Ultimately, this layer

renders the ±1 vector (τ(h1(x)), ..., τ(hk−1(x))), which describes all decisions of the inner tree nodes [3].
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This includes those nodes not on the path of x. Intuitively, τ(h1(x)) is +1 if x is on one side of Hk;

-1 if on the other side. By convention: +1 if xεHk [3]. It is imperative to note that each neuron k is

connected to one-and-only-one input x(jk). This connection has a weight 1 and offset −αjk. Pursuant to

the activations in the first layer, the precise terminal cell of x is then reconstructed in the second layer.

Second hidden layer: the first layer outputs a k − 1-dimensional vector of τ (hk(x)), the ±1-bits. This

vector gives the location of x in the leaves of the tree. It is now possible to extract the leaf node

identity of x through a weighted combination of τ (hk(x)), in conjunction with an appropriate

thresholding [3]. Let L = {L1, ..., Lk} be the collection of all tree leaves, and let L(x) be the leaf

containing x. This second hidden layer possesses K neurons, one for each leaf, and assigns a terminal

cell to x. To achieve this, connect a unit k from the first layer to a unit k′ from the second layer if and

only if Hk in the sequence of splits forming a path from the root to the leaf Lk′ . This connection has a

weight +1 if, in that path, the split by Hk stems from a node to a right child, otherwise -1. It follows

then that if, (u1(x), ..., uk−1(x)) is the vector of ±1 bits from the first layer’s output, the output

vk′(x)ε{−1, 1} of neuron k
′

is τ
(∑

k→k′ bk,k′uk(x) + b0k′
)
, where k → k′ means that k is connected to k′

and bk,k′ = ±1 is the corresponding weight. The offset b0k′ is set to

b0k′ = −l(k′) +
1

2
(1)

where l(k′) is the length of the path from the root to Lk′ [3]. Biau et al. elaborates that to understand

2.4 , observe that there are exactly l(k′) connections starting from from the first layer and pointing to

k′, and that


∑
k→k′ bk,k′uk(x)− l(k′) + 1

2 = 1
2 , x ∈ Lk′∑

k→k′
bk,k′uk(x)− l(k′) +

1

2
≤ −1

2
, otherwise

thus with the choice (1), the argument of the threshold function is 1
2 if xεLk′ and smaller than − 1

2

otherwise. Hence vk′(x) = 1 if and only if it is the terminal cell of Lk′ .

Output layer: Let ((v1(x), ..., vk(x)) be the output of the second hidden layer. If vk′(x) = 1, then the

output layer computes the average Ȳk′ of the Yi corresponding to Xi falling in Lk′ . Equivalently,

l(n) =

K∑
k′=1

wk′vk′(x) + bout

where wk′ = 1
2 Ȳk′ for all k′ε {1, ...,K} and bout = 1

2

∑K
k′=1

¯Yk′ .
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3 Application

The analysis follows the same procedures, and uses some of the data sets, used by Biau et al.(2016). This

is in order to accomplish two goals: to find similar, if not replicate, their results as well as gauge the

practical attainability of neural random forests proposed in [3]. The data sets considered for analysis are

from the UCI Machine Learning Repository [1]. Both the initial predictors, namely the random forest

and neural network, are trained on the data sets. The data sets themselves are generally considered

small scale data. This is in line with the objective to evaluate the models’ performances on such types of

data sets. Trees, and by extension random forests, are considered simple and transparent, with extensive

applications to machine learning in explaining complex data sets. Additional studies have found that

compared to other classifiers, random forests boast the best performance and have been identified as one

machine learning algorithm that is capable of handling large-scale high-dimensional data sets [3]. Neural

networks are characterised by many parameters that make them an adaptable and rich instrument for

complex data modelling. This is however disadvantaged by an increased over fitting risk [3]. This risk is

contrasted by the random forest’s robustness to over fitting. Biau et al. (2016) posit a combination of

these two methods in order to develop hybrid methods that exploit their advantages while removing their

respective disadvantages. Ultimately prior knowledge from regression trees is used to initialise neural

random forests. To fit the neural random forest, the output from the random forest - namely, the split

directions and split positions, are extracted and used as the input to fit a neural network. It should be

noted that this approaching at combining random forests and neural networks has been critiqued: the

treatment of a random forest as an input is seen as hindering the performance of the neural model in

addition to being hard to learn[13]. However, it should be noted that those findings are from a study that

focused on classification instead of regression. The investigation into the merits of the claim fall outside

the scope of this analysis.

The evaluation criteria for performance is based on the model’s root mean squared error (RMSE) as

done in [3]. The statistical software used is R 1, particularly the RStudio console. This software has

the advantage of access to several machine learning packages that can be used to model predictors as

well as summarise results in both graphical and tabular form from within. The packages chosen are

randomForest [12] and neuralnet [9]. These were chosen for both their simplicity and ability to be tuned

in the required manner. Biau et al.(2016) uses the sickit-learn implementation to learn the random forest

and the neural network is trained using the tensorflow framework. The above mentioned packages work

similarlyr.

The data sets chosen are summarised in table 1. These are considered small-scale data sets and

have been chosen to investigate the performance of random forests and neural networks on such data.

1https://cran.r-project.org/doc/FAQ/R-FAQ.html
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Additionally, their nature aids in the practical implications of attempting to initialise the neural random

forest methods. Minor adjustments were made to the data sets: non-numerical input features and

variables with missing values were removed from the samples. Random within sampling was performed,

with replacement, on the data set subject to a 50:25:25 ratio split into training, validation and testing

sets respectively.

Name Number of samples Number of features

Auto MPG 398 7
Housing 506 13

Forest fires 517 10
Concrete 1030 8

Table 1: Summary of data sets and their attributes after adjustments [1]

3.1 Random forest

The random forest is trained with 30 trees subject to a maximum depth perception of 6 [3]. This translates

to a maximum of 6 tree nodes set into the randomForest function. The number of variables randomly

sampled as candidates at each split is also set to 6. Upon training the forest, a prediction is performed

using those results on the validation and testing samples. The mean squared error, hereafter referred

to as error, values associated with the number of trees from these predictions were plotted. Overall the

error values decrease as more trees are grown across all data sets. The results are graphically presented

in figure 4. Figures 4 a, b and d exhibit consistently decreasing error rates as the number of trees in the

forest grow to 30. Whereas figure 4 d experiences a slight increase when there are between 5 and 10 trees,

it is neither sharp nor uncontrolled. Figure 4 a shows a sharp increase to its highest error at 4 trees and

then continues to have less sharp and better controlled increases while exhibiting a gradual decrease as

the forest grows. Figure 4 c shows the least controlled behaviour: there is a significantly sharp decline

(the lowest witnessed) when there are between 3 and 4 trees, with a subsequent and significantly sharp

increase when there are 5 trees. From then it proceeds to exhibit similar behaviour to the other trained

models. Figure 4 d exhibits the best trained error rate performance, as the plot shows low error values

throughout as the forest is grown.

In order to determine the overall performances of each model and its applicable prediction, the errors

from all trees are averaged. The square root of that value is calculated to obtain the RMSE. The RMSE

values of each prediction are summarised in table 2. The RMSE values from training, validation and

testing for all four data sets are shown. Across all data sets there is an increase in RMSE values from

training, validation to testing. This differs from the behaviour of the values found in [3]. Only the forest

fires RMSE decreases from validation to sampling. The differences however, are not particularly large.

This does not mean the claim of robustness to over fitting should be discarded. The model results are
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a) Auto MPG b) Concrete compressive strength

c) Area burned by forest fires d) Boston housing median value

Figure 4: Error rate performances of trained random forest as the number of trees increased to 30.

consistent with the claim of robustness when considering these slight increases in RMSE values. In terms

of the RMSE values, the prediction of area burned by forest fires is the best performing random forest.

Data set Training Validation Testing

Auto MPG 1.4435 2.3336 2.5493
Concrete 2.8552 5.6986 5.7001

Forest fires 45.5609 49.9067 29.2824
Housing median value 1.8682 2.831 3.2081

Table 2: Summary of RMSE and standard deviations for the random forest models

Figure 5 contains the actual- versus predicted values plots for all data sets. Each prediction was fitted

to a linear regression in order to gauge the fit between actual sample values and predicted sample values.

All show a positive linear relationship between actual observations and the predicted values. Figures 5 a,

b and d show that the models delivered a good prediction: the values are clustered around the fitted linear

regression line. Figure 5 a shows a wider spread however, whereas b and d show consistent clustering with

only a few outliers. The clustering about the fitted line establishes confidence in the prediction being a

good fit: the actual- and predicted values are close to each other. Figure 5 shows interesting behaviour:

The values are congregated at very low values with more outliers than the other models. However, within

the original data set, the observed values were mostly small- many equal 0 with few being larger than 20.

There are, overall, large differences among the values. Inferences regarding the goodness of fit is hard:

the scattered nature of the values leads to the conclusion that this is not a good prediction.
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a) Auto MPG b) Concrete compressive strength

c) Area burned by forest fires d) Boston housing median value

Figure 5: Fit plots for testing prediction accuracy of the random forest models.

3.2 Neural network

The neural networks were trained in accordance with the 50:25:25 ratio and configured to have three

layers: two hidden and one output. The experiment was repeated 10 times. Figure 6 shows the trained

neural networks for all data sets. The neurons in the first hidden layer correspond with the number of

input variables in each data set, the 6 neurons in figure 6 a corresspond with 6 input variables in the

Auto MPG data set. This allows the user to identify what each input contributes towards determining

the outcome. The structure follows the instructions in [3]. The performances of these neural networks

are analysed with the aid of table 3 and the fitted plots in figure 7. It should be noted that in order to fit

the neural network, the data is scaled- or rather normalised. This is an important step in order for the

package to work. However, no meaningful interpretation is possible if the the results are not de-scaled.

As such the values in figure 6 are normalised. This is how neuralnet[9] outputs results. The prediction

results are descaled using a parameter. For example, for Auto MPG data, the values in the dependent

variable (mpg) were used to calculate the value of the descaling paramter:

Dn = (max(mpg$mpg)−min(mpg$mpg)) +min(mpg$mpg) (2)
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The value for equation 2 is multiplied with the predicted values to enable a meaningful interpretation of

the results. The complete descaling procedure is shown in the R code included in the Appendix.

a) Auto MPG b) Concrete compressive strength

c) Area burned by forest fires d) Boston housing median value

Figure 6: Trained neural networks.

Table 3 contains the RMSE values from the neural network predictions. Performances of the models

are based on the differences in the RMSE values between the training, validation and testing predictions.

The Auto MPG and forest fires predictions experience overall decreasing RMSE values between training

and testing. The Auto MPG RMSE values increase from validarion to testing and a decrease for forest

fires. The majority of the models experience an increase in RMSE values from validation to testing,

calling into question the model’s robustness to over-fitting. Boston housing median value RMSE values

increase throughout. The area burned by forest fires prediction maintains the highest RMSE values.

However, there is a substantial decrease in these values from training to validation to testing: this is

indicative of a well performing model and leads to the inference that the model is learning as it is trained.

This is not enough to gauge predictive performance: goodness fit established through an ’actual- versus

predicted values’ scatter plot as seen in figure 7.

The plots in figure 7 indicate that there is a difference between the actual- and predicted values.

Figure 7 a and d show more scattering in the points and more outliers as most of the points stray from

the fitted regression line. Figure 7 b shows a better fit as the points seem to congregate about the
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Data set Training Validation Testing

Auto MPG 3.7485 3.1696 3.5237
Concrete 6.8007 7.2664 7.1977

Forest fires 82.1534 35.2315 25.2297
Housing median value 3.7105 3.7441 4.2952

Table 3: Summary of RMSE and standard deviations for the neural network results.

fitted line. But, there are many outlying points as well. The points in figure 7 7 are mainly clustered

around themselves and not around the fitted line. Many of the values remain small but there is over-

and underestimation in the prediction in addition to significant outliers. This is indicative of a very poor

performance. Overall the models show adequate performance, that can be improved.

a) Auto MPG b) Concrete compressive strength

c) Area burned by forest fires d) Boston housing median value

Figure 7: Fit plot of results from neural network.

3.3 Neural random forest

In order to formulate the neural random forest, Biau et al. (2016) sets out a procedure to follow. First a

random forest is grown on the training data. From there isolate and extract the split directions and split

positions. The splits will serve as the input for the neural network in order to convert ’M CART-type

trees into M tree-type neural networks. However, the splits proved to be unattainable: the randomForest
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, or any other, package did not render an output that enables one to isolate and extract the splits. As

such, the neural random forest method could not be evaluated at this time. Neural random forests using

R statistical software and its available packages remains unattainable.

3.4 Comparison of results

In lieu of the results of section 3.3 the comparison is limited to random forests and neural networks.

Their respective performances are measured against each other.

The random forest predictions have lower RMSE values than the neural network.For all data sets

except for forest fires, in terms of RMSE, the random forest outperforms the neural network. Additionally

the actual- versus prediction plots follow the same behaviour: the random forest points are better fitted

with less outliers across the board. The neural network plots exhibit some adequate performance, however

it requires improvement and as such the neural network is not as good a predictor as the random forest.

4 Conclusion

The aim of this report was to evaluate the feasibility and results of the neural random forest method of

Biau et al. (2016) [3]. Inherent in the evaluation is the assessment of two models: random forests and

neural networks. Random forests have been identified as one of the best performing ensemble methods

that delivers results that are consistently robust to over-fitting. Additionally, they have been identified

as an important machine learning algorithm that is capable of handling large-scale high-dimensional data

sets [3]. Neural networks have many parameters that render them an adaptable and rich tool for complex

data modelling , but bear the burden of increased over-fitting risk. Neural random forests seek to exploit

each model’s unique advantages to establish a unique hybrid method. In the course of the analysis,

random forests prove that they do indeed outperform neural networks on small scale data. Random

forests maintain consistently lower RMSE values in addition to delivering better fitting predictions.

Where random forests lacked in performance the neural network did not offer much improvement. It

is recommended that the analysis of the forest fires data set be kept for classification: the area burned

should be split into categories such as ’none, small, medium and large’ for example. This will help in

understanding the factors that influence the relative sizes of the areas burned by forest fires.

From the application, it is clear that these configurations and in lieu of the empirical results, neural

random forests are not easily attainable in R [? ]. An alternative approach is available that addresses

the shortcomings of neural random forests in that the treatment of a random forest as an input is seen as

hindering the performance of the neural model in addition to being hard to learn[13]. Wang et al.(2017)

offer an alternative that warrants investigation. The method proposed in [13] outperforms the other

classifiers in its exploitation of its random forest tree like structure as well as the neural network’s ability
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to linearly combine features followed by a non-linear function. In light of this, it has been confirmed that

random forests outperform neural networks and a proper combination of the two models could result in

better performance overall.
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Random forest: code and output 

#import datatset mpg into r 
mpg=read.csv('C:/Users/USER/Google Drive/2017/School/STK 
795/Research/Application research/mpg.csv') 
mpg= subset(mpg,select = -c(horsepower, name)) #remove columns with missing 
values and characters that do not add to reg 
#str(mpg) #horsepower and name columns removed 
 
 
set.seed(123) #apply random sampliing to split samples into 3: train, val and 
test via Biau instruction 
samples = sample(seq(1, 3), size = nrow(mpg), replace = TRUE, prob = c(.5, 
.25, .25)) 
train = mpg[samples == 1,] #training sample 
test = mpg[samples == 2,] #testing sample 
val = mpg[samples == 3,] #validation sample 
 
library(randomForest) 

## Warning: package 'randomForest' was built under R version 3.3.3 

## randomForest 4.6-12 

## Type rfNews() to see new features/changes/bug fixes. 

#create a formula that lists the variables of interest. This code applies in 
neural networks as well 
#helps to create own formulas when they are not inherent in the function 
vars=colnames(mpg) 
predictvars=vars[!vars%in%"mpg"] 
predictvars=paste(predictvars,collapse = "+") 
form=as.formula(paste("mpg~",predictvars,collapse = "+")) 
predictvars 

## [1] "cylinders+displacement+weight+acceleration+model_year+origin" 

form 

## mpg ~ cylinders + displacement + weight + acceleration + model_year +  
##     origin 

RandomForest=randomForest(form,ntree=30, data=train,  nodesize=6, mtry=6, 
replace=TRUE, mse=TRUE , importance=TRUE) 
RandomForest 

##  
## Call: 
##  randomForest(formula = form, data = train, ntree = 30, nodesize = 6,      

5 Appendix
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mtry = 6, replace = TRUE, mse = TRUE, importance = TRUE)  
##                Type of random forest: regression 
##                      Number of trees: 30 
## No. of variables tried at each split: 6 
##  
##           Mean of squared residuals: 10.49601 
##                     % Var explained: 83.07 

plot(RandomForest, main = 'Auto MPG Trained Random Forest') 

 

#Evaluation of results via validation and testing. MSEs are calculated below 
RFTrainPredict=predict(RandomForest,train) 
RFValPredict=predict(RandomForest,val) 
RFTestPredict=predict(RandomForest,test) 
RFTrainPredict 

##        1        3        6       10       12       15       17       18  
## 17.47333 16.82611 14.35528 14.11889 14.27667 23.04444 19.72256 20.77700  
##       19       29       30       35       36       38       39       40  
## 27.10500 11.38333 27.10500 17.60883 17.40917 18.41356 14.11056 13.83917  
##       41       42       43       44       45       46       47       48  
## 13.94500 13.79333 12.29778 12.92111 12.57222 18.20000 21.95667 18.18667  
##       49       51       52       54       56       57       60       62  
## 18.21444 26.69000 29.94889 30.20472 27.63500 26.71806 23.12156 23.43778  
##       63       64       66       70       74       75       76       77  
## 13.76056 14.03472 13.84778 13.05222 13.25556 13.38333 13.91278 19.86611  
##       79       80       81       83       85       86       90       91  
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## 20.55394 26.51389 22.28111 22.50111 27.19722 13.47000 15.12167 12.26556  
##       93       95       96       98       99      102      103      105  
## 13.71889 12.64111 12.28222 19.24494 16.40500 21.84622 26.80972 12.26889  
##      109      110      112      113      116      120      122      123  
## 21.11333 20.66722 20.54028 20.37500 14.17056 20.98444 15.98500 21.86361  
##      124      125      127      128      129      140      141      142  
## 20.83833 12.86111 20.95906 19.98861 16.35761 13.62222 13.96222 27.55667  
##      143      144      146      147      148      149      152      153  
## 28.22389 25.54572 31.23944 27.46056 26.79667 25.90294 30.32222 19.42883  
##      154      155      156      158      159      160      162      164  
## 17.46861 15.92556 16.41444 14.93972 15.14222 14.31583 16.10083 17.41450  
##      165      168      169      170      172      177      182      184  
## 20.46467 28.58528 23.34489 19.62194 23.51589 18.96244 32.12544 26.20583  
##      186      187      191      192      196      197      199      201  
## 25.97322 27.57306 14.74750 20.68911 29.95139 26.12628 32.35378 17.49944  
##      205      207      208      209      210      211      212      213  
## 31.93033 25.89350 20.52556 14.42417 20.67600 19.72144 17.67183 15.51361  
##      215      217      218      221      225      226      227      232  
## 14.87972 32.03383 29.13706 32.23006 15.08556 17.96483 19.65783 15.27278  
##      234      235      236      237      239      243      245      247  
## 29.62183 24.16544 25.94956 24.13494 31.83839 24.29067 37.88200 34.31850  
##      251      252      254      257      258      259      267      268  
## 18.42650 19.02622 20.00572 20.04972 19.59461 20.27856 29.44117 26.89878  
##      269      272      273      274      278      279      282      283  
## 27.33461 23.88694 23.86683 25.56300 19.34228 32.87622 21.96156 23.91828  
##      284      285      286      287      288      289      291      292  
## 20.30517 20.41494 17.65139 18.28072 16.83528 17.88639 16.42378 18.70533  
##      293      298      299      302      306      307      308      309  
## 17.29806 24.57806 20.10239 32.44778 28.31367 27.01072 26.49706 32.28694  
##      310      311      312      314      315      318      319      322  
## 38.63439 38.74650 36.28339 27.75422 26.98789 34.53044 31.37783 32.99567  
##      323      325      326      328      329      332      335      336  
## 42.02994 40.97528 43.07811 34.10722 30.32817 35.54828 27.41528 33.15189  
##      341      342      344      345      346      348      349      351  
## 25.95267 25.35894 37.75528 37.37233 36.67300 37.63933 37.47050 34.30761  
##      354      358      359      361      362      364      365      367  
## 34.29689 31.59239 31.08867 28.60861 25.72061 22.89828 23.64933 21.34122  
##      368      369      370      371      372      374      378      379  
## 29.22222 28.46189 33.45278 29.70244 30.54856 25.69156 34.40439 36.99861  
##      383      387      388      389      390      392      395      396  
## 33.69528 27.82117 30.75622 26.68589 26.35467 33.57556 40.90644 32.49333  
##      397      398  
## 28.45744 29.37889 

RFValPredict 

##        7        9       13       14       22       23       25       26  
## 14.35528 14.09194 14.18556 16.65333 23.47444 23.28056 20.79411 13.42500  
##       27       28       33       55       61       72       73       78  
## 13.82778 13.94000 28.40278 30.20472 21.61000 21.75028 14.67056 22.18556  
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##       82       92       94      100      101      108      115      117  
## 23.23000 13.70361 13.80889 19.24728 17.98328 19.83167 23.18833 14.17083  
##      119      121      130      131      133      134      135      136  
## 26.23722 21.07283 30.88667 24.02361 23.92306 15.71917 15.29472 16.67872  
##      150      157      161      163      166      167      171      174  
## 24.00750 14.70667 16.69167 16.89394 18.21722 17.60167 23.03689 23.82250  
##      175      176      178      180      183      185      188      194  
## 20.59222 28.08100 23.29172 20.78444 25.08694 25.25028 14.39278 20.26244  
##      198      200      203      204      214      216      223      224  
## 28.99378 18.12867 17.51611 28.57322 15.10139 16.19783 16.42917 14.81333  
##      228      229      231      233      241      242      244      246  
## 18.78956 18.22800 15.11917 15.23250 28.86317 22.64967 23.29089 32.28550  
##      250      253      255      263      265      266      270      276  
## 19.15456 20.99517 20.49089 19.06667 19.15200 16.08372 28.29594 20.74400  
##      280      290      304      305      313      324      331      333  
## 30.86978 16.61878 35.37211 33.25428 37.52161 25.03967 37.67628 36.53583  
##      337      338      339      343      350      353      355      357  
## 26.19522 33.14822 31.60611 33.58444 35.29578 35.29422 33.25939 33.42822  
##      375      381      385      393  
## 28.73717 34.90700 35.31589 27.76400 

RFTestPredict 

##        2        4        5        8       11       16       20       21  
## 13.22778 17.16500 17.13167 14.35528 15.96389 20.82217 27.02028 22.67611  
##       24       31       32       34       37       50       53       58  
## 23.46417 23.46111 24.13500 20.69694 17.75028 24.58722 28.89389 23.08056  
##       59       65       67       68       69       71       84       87  
## 27.12000 13.54556 14.14444 13.54306 13.18556 13.76028 27.07167 13.84556  
##       88       89       97      104      106      107      111      114  
## 13.90056 13.90056 13.94389 12.25111 13.38500 13.52222 21.74389 21.45422  
##      118      126      132      137      138      139      145      151  
## 27.96556 20.56006 29.77667 13.86222 12.86556 13.78889 31.09000 24.41250  
##      173      179      181      189      190      193      195      202  
## 26.21867 20.50506 23.31894 14.45167 14.40417 18.18333 19.31050 16.95850  
##      206      219      220      222      230      238      240      248  
## 28.30028 30.84656 25.41506 15.91639 15.22500 31.68672 32.27617 35.34072  
##      249      256      260      261      262      264      271      275  
## 33.81778 24.49789 20.33994 20.77894 18.90367 19.59133 27.21478 23.58656  
##      277      281      294      295      296      297      300      301  
## 23.50289 21.42356 33.47389 34.04978 33.31628 28.02244 26.09472 20.07333  
##      303      316      317      320      321      327      330      334  
## 31.71556 29.15578 23.54272 31.64028 33.28767 36.30922 36.41461 25.12872  
##      340      347      352      356      360      363      366      373  
## 27.39111 37.83450 34.89861 34.15367 30.38550 28.63522 25.52228 27.65911  
##      376      377      380      382      384      386      391      394  
## 34.89939 36.42294 36.22156 34.39667 35.53089 35.23689 30.13778 26.67050 

RFTrainMSE=mean((train$mpg- RFTrainPredict)^2) 
RFTrainSTDev=sd(train$mpg - RFTrainPredict) 
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RFTrainRMSE=(RFTrainMSE)^0.5 
RFValMSE=mean((val$mpg-RFValPredict)^2) 
RFVALSTDev=sd(val$mpg - RFValPredict) 
RFValRMSE=(RFValMSE)^0.5 
RFTestSTDev=sd(test$mpg - RFTestPredict) 
RFTestMSE=mean((test$mpg-RFTestPredict)^2) 
RFtestRMSE=(RFTestMSE)^0.5 
 
 
#Fit plots to check prediction accuracy from all samples 
TrainregRF=lm(mpg~RFTrainPredict, data=train) 
plot(train$mpg,RFTrainPredict,col='blue',main = 'Random Forest Model Fit Real 
vs Predicted: Training',pch=1,cex=0.9,type = "p",xlab = "Actual",ylab = 
"predicted") 
abline(TrainregRF,col="red") 

 

ValregRF=lm(mpg~RFValPredict,data = val) 
plot(val$mpg,RFValPredict,col='blue',main = 'Random Forest Model Fit Real vs 
Predicted: Validation',pch=1,cex=0.9,type = "p",xlab = "Actual",ylab = 
"predicted") 
abline(ValregRF,col="red") 
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TestregRF=lm(mpg~RFTestPredict, data=test) 
plot(test$mpg,RFTestPredict,col='blue',main = 'Random Forest Model Fit Real 
vs Predicted: Testing',pch=1,cex=0.9,type = "p",xlab = "Actual",ylab = 
"predicted") 
abline(TestregRF,col="red") 
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#############################################################################
########### 
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Neural network: code and output 

#import datatset mpg into r 
mpg=read.csv('C:/Users/USER/Google Drive/2017/School/STK 
795/Research/Application research/mpg.csv') 
mpg= subset(mpg,select = -c(horsepower, name)) #remove columns with missing 
values and characters that do not add to reg  
#str(mpg) #horsepower and name columns removed 
########################################### 
 
#library(dplyr) #load grammar library 
 
#library(readr) 
#scale data in order normalise to fit neural net 
 
dn=(max(mpg$mpg)-min(mpg$mpg))+min(mpg$mpg) #descaling parameter 
dn 

## [1] 46.6 

apply(mpg, 2,range) 

##       mpg cylinders displacement weight acceleration model_year origin 
## [1,]  9.0         3           68   1613          8.0         70      1 
## [2,] 46.6         8          455   5140         24.8         82      3 

maxV=apply(mpg, 2, max) 
minV=apply(mpg, 2, min) 
scmpg=as.data.frame(scale(mpg,center = minV, scale = maxV-minV)) 
 
#create samples subject to the 50,25,25 percent split as per Biau2016 
 
set.seed(123) 
 
samples = sample(seq(1, 3), size = nrow(mpg), replace = TRUE, prob = c(.5, 
.25, .25)) 
train = scmpg[samples == 1,] 
test = scmpg[samples == 2,] 
val = scmpg[samples == 3,] 
 
#library(MASS) 
library(neuralnet) #load neural network package 

## Warning: package 'neuralnet' was built under R version 3.3.3 

#create a default formula 'form' to enter into arguments 
vars=colnames(mpg) 
predictvars=vars[!vars%in%"mpg"] 
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predictvars=paste(predictvars,collapse = "+") 
form=as.formula(paste("mpg~",predictvars,collapse = "+")) 
predictvars #explanatory variables 

## [1] "cylinders+displacement+weight+acceleration+model_year+origin" 

form #full formula 

## mpg ~ cylinders + displacement + weight + acceleration + model_year +  
##     origin 

#############################################################################
####### 
#fit a neural network with 2 hidden layers, 10 repetitions == TRAINING 
 
nn=neuralnet(formula=form,data = train,linear.output = TRUE, hidden = 
2,err.fct = "sse", rep = 10) 
str(nn) #netresult list containts the preditions based on the testing set 

## List of 13 
##  $ call               : language neuralnet(formula = form, data = train, 
hidden = 2, rep = 10, err.fct = "sse",      linear.output = TRUE) 
##  $ response           : num [1:210, 1] 0.239 0.239 0.16 0.16 0.133 ... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. ..$ : chr "mpg" 
##  $ covariate          : num [1:210, 1:6] 1 1 1 1 1 0.2 0.6 0.6 0.2 1 ... 
##  $ model.list         :List of 2 
##   ..$ response : chr "mpg" 
##   ..$ variables: chr [1:6] "cylinders" "displacement" "weight" 
"acceleration" ... 
##  $ err.fct            :function (x, y)   
##   ..- attr(*, "type")= chr "sse" 
##  $ act.fct            :function (x)   
##   ..- attr(*, "type")= chr "logistic" 
##  $ linear.output      : logi TRUE 
##  $ data               :'data.frame': 210 obs. of  7 variables: 
##   ..$ mpg         : num [1:210] 0.239 0.239 0.16 0.16 0.133 ... 
##   ..$ cylinders   : num [1:210] 1 1 1 1 1 0.2 0.6 0.6 0.2 1 ... 
##   ..$ displacement: num [1:210] 0.618 0.646 0.933 0.832 0.703 ... 
##   ..$ weight      : num [1:210] 0.536 0.517 0.773 0.634 0.566 ... 
##   ..$ acceleration: num [1:210] 0.2381 0.1786 0.119 0.0298 0 ... 
##   ..$ model_year  : num [1:210] 0 0 0 0 0 0 0 0 0 0 ... 
##   ..$ origin      : num [1:210] 0 0 0 0 0 1 0 0 1 0 ... 
##  $ net.result         :List of 10 
##   ..$ : num [1:210, 1] 0.172 0.178 0.142 0.15 0.135 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1] 0.159 0.161 0.109 0.127 0.14 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
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##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1] 0.167 0.171 0.121 0.139 0.15 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1] 0.162 0.167 0.111 0.132 0.147 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1] 0.171 0.179 0.116 0.142 0.157 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1] 0.154 0.159 0.106 0.13 0.144 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1] 0.198 0.206 0.11 0.148 0.209 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1] 0.166 0.174 0.122 0.153 0.167 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1] 0.184 0.205 0.143 0.205 0.233 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1] 0.157 0.162 0.112 0.129 0.136 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##  $ weights            :List of 10 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] 0.218 -0.113 2.187 2.851 0.205 ... 
##   .. ..$ : num [1:3, 1] -0.238 -0.829 1.779 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] 0.6129 -0.0926 0.6418 3.4712 -0.301 ... 
##   .. ..$ : num [1:3, 1] 1.26 -0.64 -0.54 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -1.02 0.11 -0.11 -3.29 1.03 ... 
##   .. ..$ : num [1:3, 1] -0.712 1.234 0.801 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -1.369 0.096 0.504 -3.678 1.017 ... 
##   .. ..$ : num [1:3, 1] 1.257 0.814 -1.182 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -1.576 -0.527 -0.878 -2.245 1.298 ... 
##   .. ..$ : num [1:3, 1] 0.606 0.576 -0.522 
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##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] 0.8087 -0.1892 -0.0118 -0.3589 -0.0432 ... 
##   .. ..$ : num [1:3, 1] 0.0582 1.2461 -0.6822 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -0.655 1.49 -4.448 -2.083 -3.015 ... 
##   .. ..$ : num [1:3, 1] 1.039 3.432 -0.965 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] 1.76046 -0.15682 -0.00457 -0.55919 -0.26018 ... 
##   .. ..$ : num [1:3, 1] -0.901 1.342 0.724 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -1.763 0.315 0.869 -3.509 0.919 ... 
##   .. ..$ : num [1:3, 1] 0.172 1.507 -0.171 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] 0.7783 0.0984 -0.7365 3.8271 0.2291 ... 
##   .. ..$ : num [1:3, 1] 0.487 -1.396 0.994 
##  $ startweights       :List of 10 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -1.185 2.199 1.312 -0.265 0.543 ... 
##   .. ..$ : num [1:3, 1] -0.516 -0.993 1.676 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -0.441 -0.723 -1.236 -1.285 -0.574 ... 
##   .. ..$ : num [1:3, 1] 1.9553 -0.0903 0.2145 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -0.739 -0.574 -1.317 -0.183 0.419 ... 
##   .. ..$ : num [1:3, 1] -1.36 -0.665 0.485 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -0.3756 -0.5619 -0.3439 0.0905 1.5985 ... 
##   .. ..$ : num [1:3, 1] 2.293 1.548 -0.133 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -1.7565 -0.3888 0.0892 0.845 0.9625 ... 
##   .. ..$ : num [1:3, 1] 0.736 0.386 -0.266 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] 0.118 0.134 0.221 1.641 -0.219 ... 
##   .. ..$ : num [1:3, 1] 0.021 1.25 -0.715 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -0.753 -0.939 -1.053 -0.437 0.331 ... 
##   .. ..$ : num [1:3, 1] 0.704 -0.106 -1.259 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] 1.684 0.911 0.237 1.218 -1.339 ... 
##   .. ..$ : num [1:3, 1] -0.722 1.519 0.377 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -2.052 -1.364 -0.201 0.866 -0.102 ... 
##   .. ..$ : num [1:3, 1] -0.18 1.01 -1.99 
##   ..$ :List of 2 
##   .. ..$ : num [1:7, 1:2] -0.427 0.117 -0.893 0.334 0.411 ... 
##   .. ..$ : num [1:3, 1] 0.378 -0.945 0.857 
##  $ generalized.weights:List of 10 
##   ..$ : num [1:210, 1:6] 0.341 0.332 0.376 0.368 0.418 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
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##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1:6] 0.182 0.186 0.111 0.144 0.157 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1:6] 0.0594 0.0606 0.0336 0.0451 0.0512 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1:6] 0.1857 0.1951 0.0946 0.1456 0.1815 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1:6] 0.462 0.499 0.249 0.405 0.461 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1:6] -0.247 -0.228 -0.542 -0.395 -0.322 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1:6] 0.781 0.823 0.3 0.59 0.944 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1:6] -0.149 -0.133 -0.32 -0.22 -0.181 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1:6] -1.005 -0.921 -1.359 -0.72 -0.336 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##   ..$ : num [1:210, 1:6] -0.02038 -0.01717 0.00894 0.01179 0.01431 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:210] "1" "3" "6" "10" ... 
##   .. .. ..$ : NULL 
##  $ result.matrix      : num [1:20, 1:10] 0.67941 0.00931 1748 0.21762 -
0.1135 ... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ : chr [1:20] "error" "reached.threshold" "steps" 
"Intercept.to.1layhid1" ... 
##   .. ..$ : chr [1:10] "1" "2" "3" "4" ... 
##  - attr(*, "class")= chr "nn" 

plot(nn) #visualise nn 
 
TrainfitNN=compute(nn,train[2:7]) 
 
TrainfitNN$net.result=TrainfitNN$net.result*dn 

37



 
train=train*dn 
 
 
TrainregNN=lm(formula = mpg~TrainfitNN$net.result , data = train) 
plot(train$mpg,TrainfitNN$net.result,col='blue',main = 'Neural Model Fit Real 
vs Predicted: Training',pch=1,cex=0.9,type = "p",xlab = "Actual",ylab = 
"predicted") 
abline(TrainregNN,col="red") 
 
TrainingError=train$mpg- TrainfitNN$net.result 
MSENNTrain=mean((TrainingError)^2) 
 
TrainingRMSE=(MSENNTrain)^0.5 
TrainingSTDev=sd(TrainingError) 
TrainingRMSE 

## [1] 3.748490718 

TrainingSTDev 

## [1] 3.757447456 

#SEE HOW WELL THE MODEL FITS VIA VALIDATION AND TESTING (predictions) 
ValFitNN=compute(nn,val[2:7]) 
TestFitNN=compute(nn,test[,2:7]) 
ValFitNN$net.result=ValFitNN$net.result*dn 
TestFitNN$net.result=TestFitNN$net.result*dn 
val=val*dn 
test=test*dn 
#ValFitNN 
summary(ValFitNN) 

##            Length Class  Mode    
## neurons     2     -none- list    
## net.result 92     -none- numeric 

str(ValFitNN) 

## List of 2 
##  $ neurons   :List of 2 
##   ..$ : num [1:92, 1:7] 1 1 1 1 1 1 1 1 1 1 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:92] "7" "9" "13" "14" ... 
##   .. .. ..$ : chr [1:7] "1" "cylinders" "displacement" "weight" ... 
##   ..$ : num [1:92, 1:3] 1 1 1 1 1 1 1 1 1 1 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:92] "7" "9" "13" "14" ... 
##   .. .. ..$ : NULL 
##  $ net.result: num [1:92, 1] 6.96 7.18 8.37 13.95 13.66 ... 
##   ..- attr(*, "dimnames")=List of 2 
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##   .. ..$ : chr [1:92] "7" "9" "13" "14" ... 
##   .. ..$ : NULL 

#TestFitNN 
summary(TestFitNN) 

##            Length Class  Mode    
## neurons     2     -none- list    
## net.result 96     -none- numeric 

str(TestFitNN) 

## List of 2 
##  $ neurons   :List of 2 
##   ..$ : num [1:96, 1:7] 1 1 1 1 1 1 1 1 1 1 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:96] "2" "4" "5" "8" ... 
##   .. .. ..$ : chr [1:7] "1" "cylinders" "displacement" "weight" ... 
##   ..$ : num [1:96, 1:3] 1 1 1 1 1 1 1 1 1 1 ... 
##   .. ..- attr(*, "dimnames")=List of 2 
##   .. .. ..$ : chr [1:96] "2" "4" "5" "8" ... 
##   .. .. ..$ : NULL 
##  $ net.result: num [1:96, 1] 8.06 8.38 7.41 6.36 9.14 ... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ : chr [1:96] "2" "4" "5" "8" ... 
##   .. ..$ : NULL 

#######EVALUATE######## 
ValidationError=val$mpg- ValFitNN$net.result 
plot(ValidationError) 
TestingError=test$mpg - TestFitNN$net.result 
MSENNVal=mean((ValidationError)^2) 
MSENNTest=mean((TestingError)^2) 
 
ValidationRMSE=(MSENNVal)^0.5 
TestingRMSE=(MSENNTest)^0.5 
 
ValidationSTDev=sd(ValidationError) 
TestingSTDev=sd(TestingError) 
 
ValidationRMSE 

## [1] 3.169557582 

ValidationSTDev 

## [1] 3.146972395 

TestingRMSE 

## [1] 3.531401505 
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TestingSTDev 

## [1] 3.523669235 

ValregNN=lm(formula = mpg~ValFitNN$net.result , data = val) 
plot(val$mpg,ValFitNN$net.result,col='blue',main = 'Neural Model Fit Real vs 
Predicted:  Validation',pch=1,cex=0.9,type = "p",xlab = "Actual",ylab = 
"predicted") 
abline(ValregNN,col="red") 
 
TestregNN=lm(mpg~TestFitNN$net.result, data = test) 
plot(test$mpg,TestFitNN$net.result,col='blue',main = '',pch=1,cex=0.9,type = 
"p",xlab = "Actual",ylab = "predicted") 
abline(TestregNN,col="red") 
#############################################################################
########### 
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Abstract

Di�usion processes, according to [12], allow for the investigation and quanti�cation of the dynamics

of various real world �nancial models. The dynamics of di�usion processes are governed by stochastic

di�erential equations (SDEs), which dictate how such processes evolve over time. Although di�usion

processes are assumed to evolve continuously over time, the real-world processes can only be observed

at discrete time epochs. Therefore to analyze such processes, the time-dimension over which the

di�usion processes are de�ned, needs to be discretized, e.g. monthly or daily �nancial data.

The transition density function of a di�usion process provides valuable insights on the process's

dynamics. It relates the probability of observing the trajectory of a di�usion process over discrete

epochs. Unfortunately closed-form solutions for the true transition density function cannot be ob-

tained for all di�usion processes. The premise of the present paper is to develop an e�cient closed-form

approximation for a di�usion process. A scalar di�usion process will �rstly be considered to develop

the relevant approximations and inferential methods. The obtained methodology will then be applied

on a mixed-e�ects (random and deterministic parameters) di�usion process, which is a generalization

of the scalar (all parameters deterministic) di�usion process.

The present paper will analyze and develop the applicable techniques on the scalar Cox, Inger-

soll and Ross (CIR) process. Although there exists a closed-form true transition density function

for the scalar CIR process, approximations for the transition density function will be derived and

then compared to the true transition density function. A Hermite-series transition density function

approximation, as developed by [1] will be derived. In an attempt to improve the approximation's

accuracy provided by the Hermite-series transition density function approximation, moment trunca-

tion, as developed by [12], will be utilized to develop a more e�cient closed-form approximation for

the transition density function.

Once a closed-form transition density function approximation is obtained a likelihood function

will be derived and utilized in maximum likelihood estimation, based on the observed Standard and

Poore 500 volatility index (S&P500VIX). By simulating future trajectories of the di�usion process,

based on the maximum likelihood estimates, predictions can be made.

Finally, a generalization of the scalar CIR process will then be formulated on which the developed

approximation and inferential techniques will be applied. This generalization will be known as the

mixed-e�ects CIR process, since this process will consist of both deterministic and random parameters.
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1 Introduction

According to [12], di�usion processes can be viewed as the stochastic counterparts to systems of ordinary

di�erential equations (ODEs). Furthermore, these di�usion processes evolve continuously over time,

inherit the Markov property and are driven by Brownian motion. The dynamics of a general di�usion

process are governed by the SDE, [1]:

dXt = µ(Xt, t;θ)dt+ σ(Xt, t;θ)dWt, (1)

s.t t ∈ [s, T ],

where Xt is the state variable of interest, µ(Xt, t,θ) and σ(Xt, t,θ) are time- and state dependent func-

tions, and θ the parameter vector. If all parameters of θ are scalars, the model is referred to as a scalar

di�usion process. If one or more of the parameters of θ becomes random in nature then this generalized

version of the scalar di�usion process is referred to as a mixed-e�ects model. It is worth noting that [s, T ]

is assumed to be the continuous time-dimension of the di�usion process given in Equation 1, and Xs the

initial value of the process.

Various results in the �eld of stochastic calculus, such as Itô's Lemma, can be applied to Equation 1 to

derive the dynamics of functions of the SDEs, and to approximate the stochastic integrals in closed-form.

In Appendix A some fundamental and relevant stochastic calculus and stochastic processes results are

discussed.

Scalar di�usion processes, in the form of Equation 1 will be explored, particularly in the application of

these processes in the �nancial environment. However, in �nancial markets, we observe our data in a dis-

crete time-dimension, therefore a variety of simulations and approximations will be used to discretize such

valuable continuous-time models for e�cient application in the world of �nance. The applications will be

focused on short-rate modeling, but can be applied to various �elds in �nancial modeling, e.g. derivative

pricing. A short-rate model, according to[3], is a time-homogeneous model with an instantaneous- or

short rate of interest as the single factor or state variable. In Equation 1, Xt represents the value of a

given short-rate at time t. The dynamics of the development of such a short-rate, over the given time-

dimension, is of particular interest, and will be investigated. This random movement of the short-rate

can be seen in the trajectory of a given di�usion process. According to [2], short-rate models are one of

the most explored �elds in �nancial modeling. Examples of familiar short-rate di�usion processes, which

can be analyzed and generalized, include those by Vasicek (Ornstein-Uhlenbeck), Cox, Ingersoll and Ross

(CIR), Merton, etc. Comparison of such short-rate models can be made on the basis of their dynamics

and ability to capture the random development of the short-term interest rate.

The CIR short-rate model will be considered, and through the analysis and inference of the dynamics
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of this di�usion process, closed-form transition density function approximations will be derived, which

can be used to predict future expected short-rate values. The techniques and approximations developed

on a given scalar di�usion process will be applied to a generalized version (mixed-e�ects model) of the

given process.

Di�usion processes form an integral part of �nancial modeling, and although these processes exhibit

attractive theoretical properties, from a modeling perspective, there exist various di�culties in the actual

application of such processes in �nancial markets. The present paper's application will focus on �nancial

short-rate modeling. Analysis of the term-structure (i.e how short-term interest rate processes evolve

over time) is of particular interest. In [3] short-rate models are de�ned as time-homogeneous single-factor

models, with the short rate of interest as the single state.

The scalar CIR process, a model which is often used in the analysis of the term structure of interest

rates, will be analyzed. This scalar CIR process will also be generalized to a mixed-e�ects model. The

dynamics of both the scalar and generalized model will be investigated and compared.

The evaluation will start by plotting the process's trajectory, as given in Equation 1, over a discrete

time-dimension to observe the nature, movement and stationarity of the di�usion process. The Euler-

Maruyama scheme will be utilized to simulate these continuous-time trajectories, over a discrete time-

dimension, to obtain a sampled distribution. Since a closed-form true transition density function does

not exist for all di�usion processes, the aim of this paper will be to derive an e�cient closed-form

approximation for such processes.

A variety of techniques and methodologies have been be developed in prior literature to derive satis-

factory transition density function approximations that are used to perform inference on the dynamics

and capabilities of such processes. The approximation methods developed and utilized in the present pa-

per include: moment truncation methods, as done by [12], the Hermite-series transition density function

approximation of transition densities, as in [1]. Once a closed-form approximation to the transition den-

sity function is found, a likelihood function will be derived and through maximum likelihood estimation,

the unknown parameters can be estimated. Approximations of the transition densities and maximum

likelihood estimation of the unknown parameter vector, as in [1] also provides valuable insights into the

approximate transition probabilities and inferences about the parameters of such processes. Since we ob-

tain maximum likelihood estimators, we have that these parameters inherit welcome asymptotic results,

which will be useful in the analysis of the di�usion process's steady-state distribution. The underlying

distributions will not always be Gaussian of nature, which we will see in our Euler-Maruyama simulations,

and this should be kept in mind and adjusted for in the proceedings of this paper.

The focus will be on deriving a closed-form approximation for the true transition density function by

moment truncation, as developed by [12], where a saddlepoint transition density function approximation,
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depending only the theoretical cumulants of the di�usion process, will be developed. The aim is to improve

on the approximation accuracy provided by the Hermite-series transition density function approximation.

The CIR process and generalized version thereof will be investigated to develop an accurate closed-

form transition density function approximation, to model the random movement of a given short-rate over

a given time-dimension. There exists a closed-form solution for the true transition density function of the

CIR process, however this true closed-form solution will be utilized in comparisons to develop an e�cient

closed-form transition density function approximation, which can be applied when a true transition

density function does not exist. The approximation techniques discussed and developed in the present

paper will be applied to a mixed-e�ects CIR process. Moment truncation, as developed by [12], will be

utilized to develop an e�cient closed-form approximation for the transition densities, which in turn will

be compared to the Hermite-series transition density function approximation, as developed by [1]. The

true transition density function for the scalar CIR process will be compared to the derived approximations

to determine the approximation's accuracy. Once a closed-form transition density function is obtained,

a likelihood function will be developed and utilized in maximum likelihood estimation based on the

S&P500 volatility index (S&P500VIX). The obtained maximum likelihood estimates will be used to

simulate random trajectories and analyze the given process's dynamics. A prediction of future values can

then be made and compared to known forecasting techniques.

2 Di�usion process analysis

2.1 Di�usion processes

Firstly, a formal de�nition, by [11], of di�usion processes is given:

De�nition 1. Xt, a Markov Process with p(η, t|x, s) as the transition probability, is called a di�usion

process if the following three conditions are met:

Firstly, let y − x = λ, then for all x and all ε > 0:

1. Continuity of the process:
∫
|λ|>ε p(dy, t|x, s) = o(t− s) uniformly over [s, t] for s < t.

2. Drift coe�cient: there exists a real-valued function µ(x, t) s.t.
∫
|λ|≤ε p(dy, t|x, s)λ = µ(x, t)(t− s) +

o(t− s) uniformly over [s, t] for s < t.

3. Di�usion coe�cient: there exists a real-valued function σ(x, t) s.t.
∫
|λ|≤ε p(dy, t|x, s)λ

2 = σ(x, t)(t−

s) + o(t− s) uniformly over [s, t] for s < t.

Di�usion processes, according to [12], can be considered as the class of models which are represented as

solutions to stochastic di�erential equations which evolve continuously over time, possessing the Markov
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property and are driven by change in time and Brownian motion. Therefore the process is driven by

both deterministic and random or stochastic forces. Combining the de�nitions, for a general di�usion

process, Xt , of [12] and [1], the dynamics of a di�usion process can be given by the stochastic di�erential

equation:

dXt = µ(Xt, t;θ)dt+ σ(Xt, t;θ)dWt (2)

where µ(Xt, t;θ) and σ2(Xt, t;θ) are the drift and di�usion of the di�usion process, respectively. Note

that for the purpose of this research report, the state variable, Xt, is de�ned over a single dimension,

but can be extended to p > 1 dimensions. Wt, t ≥ 0, is a Wiener process or a Brownian motion, in one

dimension, de�ned as follows:

De�nition 2. Wt for t ≥ 0, where Wt ∈ R, is a one-dimensional Brownian motion or a Wiener Process

if, according to [6], the following fundamental properties hold:

• If t0 < t1 < ... < tn−1 < tn then Wt0 , Wt1 −Wt0 , ..., Wtn −Wtn−1
are independent; hence Brownian

motion has independent increments.

• If s, t ≥ 0, and E a possible subset of a σ − algebra, say ξ, as in Appendix A1, then Wt+s −Ws∼

N(0, t), i.e P(Wt+s −Ws ∈ E) = 1√
2πt

∫
E
e−

y2

2t dy.

• t→Wt is continuous, with probability one.

• W0 = 0.

The time-dimension under consideration is [s, T ] s.t s ≤ t ≤ T . By [12], we can model di�usion processes,

as in Equation 2, by di�erential equations, where the change in time, dt, governs the deterministic part

of the process and the dWt-term (Brownian motion) drives the random or stochastic part of the process.

It is said that the sample paths of the di�usion process, Xt, are determined by a stochastic di�erential

equation as in Equation 2. An individual occurrence or sample path of the state space, Ω, is given

by Xt(ω) ∈ R s.t ω∈ Ω. This paper assumes that the sample path followed, is known and therefore

Xt(ω) = Xt. According to [10] the drift and di�usion can be viewed as the instantaneous changes in the

process under determination:

µ(Xt, t;θ) = lim
∆→0

E
[
Xt+∆−Xt|Xt

∆

]
and

σ2(Xt, t;θ) = lim
∆→0

E
[

(Xt+∆−Xt)2|Xt
∆

]
.

It is worth noting that the di�usion is also referred to as the instantaneous variance of the process. The

movement in the process, due to time changes, are described by the drift, whereas the magnitude of

12



random movements in the process are described by the di�usion. According to [12], to analyze a di�usion

process, a solution to Equation 2, should be derived over an appropriate transition horizon. Given that

the process started in the known state of Xs at time s < t, the trajectory of the stochastic process Xt,

from De�nition 22, is given by:

Xt = Xs +

∫ t

s

µ(Xv, v;θ)dv +

∫ t

s

σ(Xv, v;θ)dWv. (3)

The drift and di�usion coe�cients determine the existence of a solution to Equation 22 in Appendix A2.

Xt as given in Equation 2 is said to have a unit di�usion if the di�usion-coe�cient is equal to one, i.e

σ(Xt, t;θ) = 1.

2.2 Scalar di�usion processes and mixed-e�ects di�usion processes

Consider the general di�usion process given in Equation 2, with parameter vector θ = {θ1, θ2, ..., θm}

for some m ∈ N. For a scalar di�usion process, θi is �xed or deterministic of nature for all values of

i = 1, 2, ...,m. The works of [5] states that when a random e�ect is incorporated in the di�usion process,

in the sense that at least one θi for some i = 1, 2, ...,m become random of nature , with a known or

unknown probability distribution, then this generalized version of the scalar di�usion model is referred

to as a mixed-e�ects di�usion process. In some cases, as with the CIR process, an analytical expression

for the true transition density function and hence a likelihood function for inferential purposes can be

obtained. However when a mixed-e�ects model is considered, generally an analytical expression for the

true transition density function and hence a likelihood function cannot be obtained. This problem leads

to the premise of the present paper, which is to develop an e�cient approximation for the transition

density function of a scalar or mixed-e�ects di�usion process, which can be applied in the absence of a

true transition density for the given di�usion process. The theory will be developed on a scalar di�usion

process, which will be extended to a mixed-e�ects di�usion process.

2.3 Analysis of the true transition density function of a scalar di�usion pro-

cess

The ideal in modeling any di�usion process, is the existence of a true transition density function, in

closed-form. Unfortunately this theoretical density, in closed-form rarely exist for di�usion processes. As

in De�nition 9 let (S,F ,P), where S ⊆ R, be a probability space, over which the true transition density

function, p(y, t|x, s), of the di�usion process in Equation 22 in Appendix A2, is de�ned. It is worth noting

that the continuous-time-dimension is discretized. According [11] this true transition density function, if

it exists, can be obtained through solving the following equations:
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Kolmogorov Forward Equation:

∂

∂t
p(y, t|x, s;θ) = − ∂

∂y
[µ(y, t)p(y, t|x, s;θ)] +

1

2

∂2

∂y2
[σ2(y, t)p(y, t|x, s;θ)], (4)

Kolmogorov Backward Equation:

− ∂

∂s
p(y, t|x, s;θ) = −µ(x, s)

∂

∂x
p(y, t|x, s;θ) +

1

2
σ2(x, s)

∂2

∂x2
p(y, t|x, s;θ). (5)

As stated earlier, the true transition density function of the trajectory of the process given in Equation

2 can rarely be obtained in closed-form, either because the theoretical density does not exist or it is

immensely di�cult and time-consuming to obtain the true closed-form transition density function. This

leads to the main purpose of this paper, that is to obtain an accurate closed-form approximation for

this transition density function. Examples of di�usion processes where a true transition density function

exists, according to [1], include those by Cox, Ingersoll and Ross (CIR), Black and Scholes and Vasicek.

The CIR process will be thoroughly analyzed in the application-section of this paper.

2.4 transition density function approximations of scalar di�usion processes

Although di�usion processes, as given in Equation 2, gives a full description of the process's trajectory over

an in�nitesimally time period, in general it is extremely di�cult or even impossible to get a theoretical

closed-form expression for the transition density function of the process, [1]. Therefore the aim of this

section is to derive the general methodology and results for closed-form approximations for the transition

probability of the trajectory of the di�usion process given in Equation 2. There exist a variety of

approximation techniques, [13] discusses the Markov chain Monte Carlo approach, which is applied to

Bayesian statistics, as well a short discussion of the Euler Approximation. However this paper will focus

on the Hermite-series transition density function approximation as done by [1] and moment truncation

as done by [12].

2.4.1 Euler-Maruyama scheme of a scalar di�usion process

This section, based on the work done by [9], aims to �nd numerical solutions to stochastic di�erential

equations and hence di�usion processes. Consider a di�usion process as given in Equation 2. This section

utilizes the Euler-Maruyama scheme to simulate a numerical solution for the transition density function of

the given di�usion process, to get a general idea about the transition density function's shape. Consider

the scalar stochastic di�erential equation which governs the di�usion process, Xt, written in integral form

in Equation 3 and in di�erential form in Equation 2. A numerical approach is now applied to Equation

2 over the time-dimension [s, T ] s.t t ∈ [s, T ]. Firstly the process start by the dicretization of the time-
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dimension: let ∆t = T
N for N ∈ N, and ηi = i∆t. Denote Xi as the numerical approximation to X(ηi).

The Euler-Maruyama scheme is now given by the following recursive relationship:

Xi = Xi−1 + µ(Xi−1, i− 1;θ)∆t + σ(Xi−1, i− 1;θ)(Wηi −Wηi−1
) (6)

for all i = s+ 1, s+ 2, ..., s+N − 1, s+N and

Xs as initial state.

The integral Equation 3 is a result of:

X(ηi) = X(ηi−1) +
∫ ηi
ηi−1

µ(X(u), u;θ)du+
∫ ηi
ηi−1

σ(X(u), u;θ)dW (u).

Remark 3. Wηi −Wηi−1
= ∆Wt

d
= Wηi−ηi−1

= Wi∆t−(i−1)∆t
= W∆t

where ∆Wt ∼ N(0,∆2
t )

The Euler-Maruyama (EM) scheme is an e�cient method to get a general idea about the true transition

density function over a continuous time-dimension, by the simulation of a discretized process.

2.4.2 Hermite-series transition density function approximation of a scalar di�usion

The theory discussed and derived in this section is the works of [1], with the di�usion process given in

Equation 2 as the general model. The premise of this section is to obtain a closed-form transition density

function approximation to an unknown true transition density function, namely pX(xt, t|xs, s;θ), i.e the

conditional density of Xt = xt, given Xs = xs, s.t. t ∈ [s, T ]. These approximations can be utilized to

estimate the parameter vector θ and apply various results to �nancial data for �nancial decision making,

e.g derivative pricing. The method of Hermite-series transition density function approximation for the

transition density function of the general di�usion process, given in Equation 2, will now be discussed.

According to [1], to obtain the general Hermite-series transition density function approximation,

g
(K)
X (xt, t|xs, s;θ), where K ≥ 0 is the order of approximation, for the general true transition density

function, pX(xt, t|xs, s;θ) , such that g
(K)
X (xt, t|xs, s;θ) ≈ pX(xt, t|xs, s;θ), the function, Xt, �rst needs

to be transformed into Yt, which will have a unit di�usion. The transformation, Xt → Yt, to get a unit

di�usion is referred to as a Lamperti transform, where the techniques of this transformation method is

discussed in [7]. The Lamperti Transform to Yt is given in [1] by the following equation:

Yt =

∫ Xt 1

σ(v, t;θ)
dv ≡ ϕ(Xt, t;θ). (7)

By an application of Itô-Lemma as given in Theorem 25, Yt has the desired unit di�usion, as given by

the following di�usion process:

dYt = µY (Yt, t;θ)dt+ 1dWt. (8)
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The implication of the assumption that σ(Xt, t;θ) > 0 in DXt , is that ϕ(Xt, t;θ) in Equation 7 is

increasing and hence invertible. Therefore the drift coe�cient µY (Yt, t;θ) in Equation 8 can be given as:

µY (Yt, t;θ) = µ(ϕ−1(Yt,t;θ),t,θ)
σ(ϕ−1(Yt,t;θ),t,θ) −

1
2

∂
∂Xt

σ(ϕ−1(Yt, t;θ), t,θ).

The transformation Xt → Yt is made in order to derive a closed-form expansion for pY (yt, t|ys, s;θ), the

transition density function of Yt. Therefore an analytical expansion of pY (yt, t|ys, s;θ) up to order of ap-

proximation K ≥ 0, namely g
(K)
Y (yt, t|ys, s;θ), must be found, s.t. g

(K)
Y (yt, t|ys, s;θ) ≈ pY (yt, t|ys, s;θ).

But since the interest lies in �nding an approximation for the transition density function of Xt, i.e

g
(K)
X (xt, t|xs, s;θ) ≈ pX(xt, t|xs, s;θ), the Jacobian formula, as given in [1], can be used to obtain

pX(xt, t|xs, s;θ) from pY (yt, t|ys, s;θ) as follows:

pX(xt, t|xs, s;θ) =
∂

∂xt
P[Xt ≤ xt|Xs = xs]

=
∂

∂xt
P[Yt ≤ ϕ(xt, t;θ)|Xs = ϕ(xs, s;θ)]

=
∂

∂xt

∫ ϕ(xt,t;θ)

ylower

pY (yt, t|ϕ(xs, s;θ), s;θ)dyt

=
pY (ϕ(xt, t;θ), t|ϕ(xs, s;θ), s;θ)

σ(ϕ(xt, t;θ);θ)
.

(9)

Hence, a closed-form Hermite-series transition density function approximation pX(xt, t|xs, s;θ) from

pY (yt, t|ys, s;θ) will be derived using the transformation Xt → Yt and the Jacobian formula given in

9. The derivation of the approximation of the transition densities of Xt and Yt will start with a Hermite-

series expansion of the transition density function of Yt around a Normal density. Up to order K ≥ 0,

the analytical part of the expansion of pY (yt, t|ys, s;θ) is given by the following expression:

g
(K)
Y (yt, t|ys, s;θ) =

1√
∆
φ

(
yt − ys√

∆

)
e
∫ yt
ys
µY (υ,tv;θ)dυ

K∑
k=0

ck(yt, t|ys, s;θ)
∆k

k!
(10)

where ∆ = t− s for t ∈ [s, T ],

φ denotes the Standard Normal density, i.e φ(x) = 1√
2π
e−

x2

2 for X ∼ N(0, 1),

cs(yt, t|ys, s;θ) = 1 ,

and for all i > s

ci(yt, t|ys, s;θ) = i(yt − ys)−i
∫ yt

ys

(υ − ys)i−1

[
λYt(υ;θ)ci−1(υ, tυ|ys, s;θ) +

1

2

∂2

∂υ2
ci−1(υ, tυ|ys, s;θ)

]
dυ

(11)

s.t. λYt(υ;θ) = 1
2

[
µ2
Yt

(yt, t;θ) + ∂
∂yt

µYt(yt, t;θ)

]
.
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In Equation 10 the term 1√
∆
φ

(
yt−ys√

∆

)
is Gaussian and the term e

∫ yt
ys
µY (υ,tv ;θ)dυ corrects for the drift in

the di�usion process given in Equation 2 over the time-dimension [s, T ]. The correction term λYt(υ;θ)

aids in improving the discretizatian bias caused by using the Gaussian term as well as corrects for the

non-normality of pY (yt, t|ys, s;θ), however there will always remain some level of descretization bias.

By [1] the sequence of equations, for all K ≥ 0, given in Equation 10, solves the Kolmogorov forward and

Kolmogorov backward equations. Hence to obtain a closed-form conditional transition density function for

Yt = yt given Ys = ys, i.e g
(K)
Y (yt, t|ys, s;θ) for all orders of approximation K ≥ 0, the following adapted

Kolmogorov forward and Kolmogorov backward equations, from Equation 4and in5 , respectively, are

solved:

∂

∂∆
g

(K)
Y (yt, t|ys, s;θ) +

∂

∂yt
[µYt(yt, t;θ)g

(K)
Y (yt, t|ys, s;θ)]− 1

2

∂2

∂y2
t

g
(K)
Y (yt, t|ys, s;θ) = o(∆K),

∂

∂∆
g

(K)
Y (yt, t|ys, s;θ)− µTs(ys, s;θ)

∂

∂ys
g

(K)
Y (yt, t|ys, s;θ)− 1

2

∂2

∂y2
s

g
(K)
Y (yt, t|ys, s;θ) = o(∆K).

(12)

Lemma 4. A real-valued function g(x) is o(x) if lim
x→0

g(x)
x = 0

Since the interest lies with approximating the transition density function of Xt = xt given Xs = xs.

The Jacobian formula in Equation 9, will then be applied to get g
(k)
X (Xt, t|Xs, s; θ) from g

(K)
Y (Yt, t|Ys, s; θ)

which is obtained as a solution to Equation12. The relation is as follows:

g
(K)
X (Xt, t|Xs, s;θ) ≡ 1

σ(Xt, t; θ)
g

(K)
Y (ϕ(Xt, t;θ), t|ϕ(Xs, s;θ), s;θ), (13)

for all orders of K ≥ 0, and for ϕ(xτ , τ ;θ) a one-to-one function of Xτ at time τ . Order of approximation

K = 1 or K = 2 is seen as e�cient in �nancial modeling, as in these cases the approximation is quite

accurate. Order K = 1 will usually be used since the amount of extra work and computational power

needed to calculate the Hermite-series transition density function approximation for K = 2 exceeds the

added accuracy that the approximation for K = 2 provides. However increasing the order of approxi-

mation by the addition of terms ci(yt, t|ys, s;θ), for i = 1, 2, 3, 4, ... , as given in Equation 11, will still

lead to increasing accuracy in the approximation of the transition density function, however the trade-o�

between the added accuracy and the extra computational time needed should be considered.

2.4.3 Moment truncated saddlepoint transition density function approximation of a scalar

di�usion process

Moment truncation is based on the works of [12]. Again, consider the general di�usion process given in

Equation 2 under the time-dimension [s, T ], where t ∈ [s, T ]. The aim is to �nd a more accurate and

17



robust closed-form approximation for the transition density function of Xt = xt given Xs = xs. For the

given di�usion process, a sequence of ordinary di�erential equations (ODEs) for the theoretical moments

of the di�usion process, Xt, can be calculated as done in the Thesis of [12]. For f : R→ R , these

moments equations will be in the general form of:

m′j(t) = f(mj−1(t),mj(t),θj), (14)

for j = 1, 2, 3, ...

s.t mj(s) = Xj
s for j = 1, 2, 3, ... where

E[Xj
t |Xs] = mj(t), for all t 6= s , is the j − th theoretical moment of the given di�usion process,

and θj a scalar parameter function.

Through the application of Laplace transforms, where:

L{mj(t)} = Mj(v) =

∫ ∞
0

e−vtmj(t)dt,

partial fractions and a variety of di�erential equations methodologies and linear algebra techniques,

solutions for the theoretical moments of the process given in the sequence of ODEs in Equation 14 are

obtained. The solutions of the ODEs, which are the theoretical moment trajectories of the scalar di�usion

process, will be in the general form of:

mj(t) = z(mj−1(t), ..,m1(t),m0(t), Aj(α, β, σ)) (15)

Where Aj(α, β, σ) is a scalar parameter function unique to each moment trajectory. From these moments,

mj(t), the cumulants, Kj(t), are calculated for all j = 1, 2, 3, .... Note that Kj(t) denotes the j − th

theoretical cumulant. Only the �rst four moments and cumulants will be utilized in obtaining a closed-

form approximation for the conditional transition density function, as this still leads to a very accurate

approximation of the conditional transition density function. Increasing the number of moments and

cumulants used, does not increase the marginal bene�t in terms of accuracy in the approximation. The

�rst four cumulants is calculated from the �rst four moments through the following relationships:

K1(t) = m1(t),

K2(t) = m2(t)− (m1(t))2,

K3(t) = 2(m1(t))3 − 3(m1(t))(m2(t)) +m3(t),

K3(t) = −6(m1(t))4 + 12(m1(t))2(m2(t))− 3(m2(t))2 − 4(m1(t))(m3(t)) +m4(t).

(16)
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Using the cumulants as derived above, and applying the methodology, as provided in [8], the saddlepoint

transition density function approximation for a given di�usion process will be derived. Firstly, consider

the exact and approximate cumulant generating function respectively:

KX(t) =

∞∑
i=1

1

i!
tiKi(t), (17)

K̃X(t) =

N∑
i=1

1

i!
tiKi(t), (18)

for a chosen N ∈ N.

This paper will choose N = 4, since for N > 4 the additional computational time needed outweighs the

small increase in accuracy. A Taylor series is used to get the approximate cumulant generating function,

K̃Xt(t), for the given di�usion process. The exact cumulant generating function of the di�usion process

is KXt(t) = ln(MXt(t)), provided MXt(t) exists and MXt(t) > 0 for all values of t, where MXt(t) is the

exact moment generating function of the di�usion process under consideration. Next, consider the �rst

and second order partial derivatives , in terms of t:

K̃
′

X(t) =
∂

∂t
K̃X(t),

K̃
′′

X(t) =
∂2

∂t2
K̃X(t).

(19)

Setting Xt = K̃
′

X(t) = ∂
∂tK̃X(t), t is determined as a function of Xt, i.e:

t = ς(Xt). (20)

Using the result given in [8], and the results obtained in Equation 19 and 20, the closed-form moment-

truncated saddlepoint transition density function approximation, hX(Xt, t|Xs, s;θ), for the theoretical

closed-form transition density function of the scalar di�usion process is obtained as:

hX(xt, t|xs, s;θ) = exp(K̃X(t)− txt)
√

(2πK̃
′′
X(t))−1. (21)

2.4.4 Hermite-series transition density function approximation compared to the moment-

truncated saddlepoint approximation

The work of [16] indicates that the Hermite-series transition density function approximation can only be

applied to reducible (i.e Yt → Xt is a one-to-one transformation) di�usion processes, although all uni-

variate processes are reducible, not all multivariate di�usion processes are reducible. The Hermite-series

transition density function approximation is di�cult to implement and there is signi�cant improvement
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needed in the accuracy from that provided by the Hermite-series transition density function approxima-

tion.

Since a simpler, more general and accurate transition density function approximation is required,

the saddlepoint approximation is ideal since it only requires the �rst few moment trajectories of the

given di�usion process. The saddlepoint approximation also seems to be more robust to changes in the

underlying parameters.

Although neither the Hermite-series transition density function approximation, nor the moment-

truncated saddlepoint approximation integrate to 1, this can be corrected for by normalizing constants.

2.4.5 Maximum likelihood estimation of parameters for a scalar di�usion process

Assuming normality in the residual distribution, for an observed dataset with n observations the likelihood

function is given by:

L(θ|X) =

n∏
i=1

(pX(Xi, i|Xs, s;θ)), (22)

for X = (Xs, ..., XT ),

and the log-likelihood function is given by:

ln(L(θ|X)) = ln
{ n∏
i=1

(pX(Xi, i|Xs, s;θ))
}

=

n∑
i=1

ln
{

(pX(Xi, i|Xs, s;θ))
}
. (23)

To �nd the maximum likelihood estimators, Equation 23 needs to be maximized, that is θmax is to be

found which maximizes the log-likelihood function. Since di�usion processes have the Markov property

the likelihood function can also be de�ned as,[16]:

L(θ|X) =
∏n
i=1(pX(Xi, i|Xs, s;θ)) = pX(Xs, s;θ)

∏n
i=1(pX(Xi, i|Xi−1, i− 1;θ)

3 Generalization of a scalar di�usion process to a mixed-e�ects

di�usion process

3.1 Mixed-e�ect di�usion process

The dynamics of a general mixed-e�ects di�usion process are given by the following SDE:

dXt = µ(Xt, t; θ̊)dt+ σ(Xt, t; θ̊)dWt, (24)
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s.t t ∈ [s, T ].

Xt is the state variable of interest, µ(Xt, t, θ̊) and σ(Xt, t, θ̊) are time- and state dependent drift and

di�usion coe�cients respectively, where θ̊ ≡ (α, β, σ̊) is the parameter vector consisting of α and β as

the scalar parameters and σ̊ as the random e�ect. In the present paper it is assumed that σ̊ ∼ N(ν, %2).

Therefore the parameter vector can also be written as:

δ = (α, β, ν, %) ≡ θ̊ = (α, β, σ̊).

Note that any parameter in the parameter vector can be made a random e�ect following any probability

distribution; σ̊ ∼ N(ν, %2) was chosen for simplicity and to illustrate the a�ect of a random di�usion in

a di�usion process.

3.2 Transition density function approximations of a mixed-e�ects di�usion

processes

Only a generalized version of the moment-truncated saddlepoint approximation will be derived and ap-

plied for inferential purposes.

3.2.1 Simulated trajectory for a mixed-e�ects di�usion process

The trajectory of the mixed-e�ects di�usion process given in Equation 6 is simulatedM ∈ N times. Each

simulation takes on a new simulated value of σ̊ from a N(ν, %2) distribution. The average of the M

simulated trajectories are then investigated. As M increase the average trajectory smooths out on the

mean-reverted value of β.

3.2.2 Euler-Maruyama scheme for a mixed-e�ects di�usion process

The Euler-Maruyama scheme as applied to the scalar di�usion process as given in Equation 6, is repeated

M ∈ N times. Each iteration takes on a new simulated value of σ̊ from a N(ν, %2) distribution. Observing

the average over all the Euler-Maruyama simulations leads to the conclusion that as M increase, the

density of observing Xt = β (the mean value to which the process reverts) also increases.

3.2.3 Moment truncated saddlepoint transition density function approximation of a scalar

di�usion process

Consider the general mixed-e�ects di�usion process given in Equation 24 under the time-dimension [s, T ],

where t ∈ [s, T ]. The methodology is similar to the saddlepoint transition density function approximation
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derived for the scalar di�usion process, with the clear exception that σ, which was �xed, now becomes̊σ

which is a random e�ect. The moments of σ̊ will now become of importance.

m′j(t) = f(mj−1(t),mj(t), θ̊j) (25)

for j = 1, 2, 3, ...

s.t mj(s) = Xj
s for j = 1, 2, 3, ... and

s.t. E[Xj
t |Xs] = mj(t), for all t 6= s , is the j − th moment of the di�usion process,

and θ̊j a mixed-e�ects parameter function for moment ODE.

Through the application of Laplace transforms, where L{mj(t)} = Mj(v) =
∫∞

0
e−vtmj(t)dt, partial

fractions and a variety of di�erential equations methodologies and linear algebra techniques, solutions for

the theoretical moments of the process given in the sequence of ODEs in Equation 25 are obtained. The

solutions of the ODEs, which are the moment trajectories of the mixed-e�ects di�usion process, will be

in a general form of:

mj(t) = z(mj−1(t), ..,m1(t),m0(t), Bjj(α, β, σ̊), ..., B11(α, β, σ̊)) (26)

The coe�cients Bjj(α, β, σ̊) are a unique functions for each moment trajectory, where:

Bjj = Eσ̊[Aj(α, β, σ̊)] = ζ(α, β, ν, %2), (27)

where σ̊ ∼ N(ν, %2) in the present paper.

From these moments, mj(t), the cumulants, Kj(t), are calculated for all j = 1, 2, 3, .... Note that Kj(t)

denotes the j − th theoretical cumulant. Only the �rst four moments and cumulants will be utilized in

this document in obtaining a closed-form approximation for the conditional transition density function:

K1(t) = m1(t),

K2(t) = m2(t)− (m1(t))2,

K3(t) = 2(m1(t))3 − 3(m1(t))(m2(t)) +m3(t),

K3(t) = −6(m1(t))4 + 12(m1(t))2(m2(t))− 3(m2(t))2 − 4(m1(t))(m3(t)) +m4(t).

(28)

Using the cumulants as derived above and applying the methodology, as provided in [8], the saddlepoint

transition density function approximation for a given di�usion process will be derived. Firstly, consider
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the exact and approximate cumulant generating function respectively:

KX(t) =

∞∑
i=1

1

i!
tiKi(t), (29)

K̃X(t) =

N∑
i=1

1

i!
tiKi(t), (30)

for a chosen N ∈ N.

The exact cumulant generating function of the di�usion process is KXt(t) = ln(MXt(t)), providedMXt(t)

exists and MXt(t) > 0 for all values of t, where MXt(t) is the exact moment generating function of the

di�usion process. Next consider the �rst and second order partial derivatives , in terms of t:

K̃
′

X(t) =
∂

∂t
K̃X(t),

K̃
′′

X(t) =
∂2

∂t2
K̃X(t).

(31)

Setting Xt = K̃
′

X(t) = ∂
∂tK̃X(t), t is determined as a function of Xt, i.e:

t = $(Xt). (32)

Using the result given in [8], and the results obtained in Equation 31 and 32, the closed-form saddlepoint

transition density function approximation, hX(Xt, t|Xs, s; θ̊), for the theoretical closed-form transition

density function of the mixed-e�ects di�usion process is obtained as:

hX(xt, t|xs, s; θ̊) = exp(K̃X(t)− txt)
√

(2πK̃
′′
X(t))−1. (33)

s.t θ̊ = (α, β, σ̊), where σ̊ ∼ N(ν, %2).

3.2.4 Maximum likelihood estimation of parameters for a mixed-e�ects di�usion process

Assuming normality in the residual distribution, let

δ = (α, β, ν, %),

for an observed dataset with n observations the likelihood function is given by:

L(δ|X) =

n∏
i=1

(pX(Xi, i|Xs, s; δ)) (34)
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for X = (Xs, ..., XT ),

δ = (α, β, ν, %),

where ν and % are the mean and standard deviation of σ̊ respectively.

The log-likelihood function is given by:

ln(L(δ|X)) = ln
{ n∏
i=1

(pX(Xi, i|Xs, s; δ))
}

=

n∑
i=1

ln
{

(pX(Xi, i|Xs, s; δ))
}

(35)

To �nd the maximum likelihood estimators, Equation 35 needs to be maximized, that is δmax =

(αmax, βmax, νmax, ρmax) is to be found which maximizes the log-likelihood function. Since di�usion

processes have the Markov property the likelihood function can also be de�ned as, [16]:

L(δ|X) =
∏n
i=1(pX(Xi, i|Xs, s; δ)) = pX(Xs, s; δ)

∏n
i=1(pX(Xi, i|Xi−1, i− 1; δ)

4 Application of the derived methods on the CIR process

A scalar CIR process will �rstly be considered, where all parameters of the parameter vector are �xed

e�ects or scalars. The scalar process has an analytical solution to the true transition density function; this

true transition density function will be used as reference point for the derived approximations' accuracy.

This scalar CIR process will then be generalized to a mixed-e�ects CIR process, where the parameter

vector consists of �xed e�ects and one random e�ect, hence the name �mixed-e�ects� process. Since an

analytical solution to the true transition density function of the mixed-e�ects process is unattainable, the

derived approximations are of fundamental importance.

4.1 Application to the scalar CIR process

As in [4], consider Cox, Ingersoll and Ross (CIR) scalar di�usion process, which is a widely used di�usion

process in short-rate modeling, with dynamics given by the following stochastic di�erential equation :

dXt = α(β −Xt)dt+ σ
√
XtdWt (36)

s.t. [s, T ] is the time-dimension where t ∈ [s, T ] and s ≥ 0, and [Xs, XT ] the state-space, with Xs as the

initial state, and parameter vector θ = (α, β, σ), where α, β, σ are scalars or deterministic parameters.

Xt is a stochastic process, representing the value of a short-rate at time t. α(β − Xt) is the drift-term

and σ
√
Xt the di�usion, with α often being referred to as the speed of the di�usion process. [1] indicates
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that the CIR model is an ideal short-rate model when Xt has domain DXt = (0,∞). According to [4],

for α, β > 0, the di�usion process in Equation 36 is equivalent to a continuous-time AR(1) model. Over

longer duration it is given that lim
t→∞

Xt = β. Hence, if Xt represents the short-rate value at time t and

α, β > 0, then over the long term, this randomly moving short-rate will revert to β. By [4], Xt can

eventually become zero if σ2 > 2αβ. Putting the constraint σ2 ≤ 2αβ would make it impossible for Xt

to reach zero for all values of t ∈ [s, T ] s.t s ≥ 0. If Xs > 0 then Xt > 0 for all t ≥ 0. Further [4] stated

that the model given Equation 36 satis�es the following properties:

1. Xt ≥ 0 for all t ≥ 0 especially for t ∈ [s, T ] and s ≥ 0,

2. if Xt = 0 for some t ∈ [s, T ] then Xt can eventually become positive,

3. V AR(Xt) and the value of Xt are directly related, and

4. a steady-state distribution exists for Xt

4.1.1 Parameter adjustment e�ects on the simulated trajectory and transition density

function of the CIR process

Before the relevant parameter vector is chosen for this paper, the e�ects of various parameter values will

brie�y be indicated. The code for the output in Figure 1 is provided in Algorithm 2.

The code for the output in Figure 2 is provided in Algorithm 3.

In the works of [16] it is stated that the CIR process has the mean-reversion property, and the value

of the process will be positive if σ2 < 2αβ. These properties is suiting for short-rate modeling. From

both Figure 1 and Figure 2 it is clear that α is the speed of the reversion of the short-rate towards the

mean-reverted value of β. Furthermore σ is related to the volatility in the range of values Xt takes on

over time; the density becomes more condense towards the mean reverted value of β as σ decrease. For

α < 0 the short-rate diverges at a fast rate.

4.1.2 Parameter values to be used in the present paper for the scalar CIR process

Throughout the following sections the parameter values and domains used to analyze the scalar CIR

process in Equation 36, are given by:

• the time-dimension [s, T ] = [0, 5],

• state-space [Xs, XT ] = [0, 5],

• with Xs = 2.75 as the initial state, and

• parameter vector θ = (α, β, σ) = (0.8, 3, 0.25).
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Figure 1: Simulated trajectories for the scalar CIR process for various parameter values.
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Figure 2: Perspective plots for the scalar CIR process for various parameter values.
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Figure 3: Simulated trajectory of the scalar CIR di�usion process.

The parameter vector for the mixed-e�ects CIR process is chosen to be θ̊ = (α, β, σ̊) = (0.8, 3, σ̊), s.t

σ̊ ∼ N(0.25, 0.152), i.e γ = (0.8, 3, 0.25, 0.152).

4.1.3 Simulated trajectory of the scalar CIR process

Algorithm 1 in Appendix B provides the code for plotting the simulated trajectory of the CIR process,

as given in Equation 36. Since ∆Wt
∼ N(0,∆2

t ), the function rnorm() in R is used to simulate these

random Brownian motion or Wiener Process values. These values contribute to the stochastic or random

part of the trajectory. Let dt ≈ ∆t = 0.01 be the step length in the time-dimension [0, 7]. The continuous-

time CIR process as given in Equation 36 are discretized by the implementation of the following recursive

algorithm:

Xs+∆t = Xs + α(β −Xs)∆t + σ
√
Xs∆Wt , (37)

and for all t > s+ ∆t:

Xt+1 = Xt + α(β −Xt)∆t + σ
√
Xt∆Wt

. (38)

Figure 3 shows the trajectory of the scalar CIR process, i.e as Xt develops over the time-dimension.
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Equation 37 and 38 are used to plot this trajectory.

4.1.4 Euler-Maruyama (EM) scheme of the scalar CIR process

To get an idea of the general shape of the transition density function of the scalar CIR process, the Euler-

Maruyama scheme, as given in Equation 6, is utilized. Consider the time-dimension [0, 5] s.t t ∈ [0, 5],

the dicretization of the time-dimension is given by: ∆t = T
N = 5

500 = 0.01 for N = 500 ∈ N. The

Euler-Maruyama scheme is now given by the following recursive relationship:

Xi = Xi−1 + α(β −Xi−1)∆t + σ
√
Xi−1∆Wi

, (39)

for all i = 1, 2, ..., 499, 500, and with X0 = 2.75 as initial state, and ∆Wt
∼ N(0,∆2

t = 0.012). The

code for the EM scheme is given in Algorithm 1. In Figure 4 the EM scheme, simulated with 100000

trajectories and step-length of 0.01, indicates that the transition density function seems to be very close

to a Gaussian/Normal distribution. This gives an indication of the general conditional transition density

function of the CIR process's shape. In the next section it will be shown that the actual true transition

density function of the scalar CIR process is in fact a non-central Chi-square transition density function.

4.1.5 True transition density function of the scalar CIR process

The true transition density function, pX(Xt, t|Xs, s;θ), of the scalar CIR process can be obtained by

solving the the following forward Kolmogorov equation, as given in Equation 4, [16]:

∂

∂t
pX(Xt, t|Xs, s;θ) = − ∂

∂Xt
[α(β −Xt)pX(Xt, t|Xs, s;θ)] +

1

2

∂2

∂X2
t

[σ2XtpX(Xt, t|Xs, s;θ)]. (40)

By solving for pX(Xt, t|Xs, s;θ), in Equation 40, an analytical solution to the true transition density

function for the scalar CIR process, as derived in [4], is provided by:

pX(Xt, t|Xs, s;θ) = c exp(−(u+ v))
( v
u

) q
2 Iq(2(uv)

1
2 ), (41)

where s < t,

c = 2α
σ2(1−exp(−α∆)) ,

u = cXs exp(−α∆),

∆ = t− s,

v = cXt,
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q = 2αβ
σ2 − 1,

where Iq(2(uv)
1
2 ) is a modi�ed Bessel function of the 1st kind and of the q − th order, with dynamics

given by the following ODE:

t2X ′′t + tX ′t − (t2 + q2)Xt = 0,

where the solution for this di�erential equation, derived in [17], is given as:

Iq(2(uv)
1
2 ) = (uv)

q
2

∑∞
k=0

1
Γ(k+1)Γ(q+k+1) (uv)k,

where q is given as above and Γ(.) a gamma function, such that Γ(n) = (n−1)!. Analysis of the scalar CIR

di�usion process in Equation 36, as done by [4], yields that the following function of the time-dependent

stochastic process, Xt (short-rate), follows a non-central Chi-squared distribution. That is:

2cXt ∼ χ2(2q + 2, 2u),

with (2q + 2) degrees of freedom, and 2u as the parameter of non-centrality. The �rst- and second order

moments for the conditional distribution of Xt, given Xs, are as follows:

E[Xt|Xs] = Xse
−α(t−s) + β(1− e−α(t−s))

V AR(Xt|Xs) = Xs

(
σ2

α

)
(e−α(t−s) − e−2α(t−s)) + β

(
σ
2α

2
)
(1− e−α(t−s))2[4]

Letting t tend to in�nity, the steady-state transition density function for the scalar CIR di�usion process

is obtained:

lim
t→∞

pX(xt, t|xs, s;θ) = ωυ

Γ(υ)x
υ−1e−ωx,

where ω = 2α
σ2 ,

υ = 2αβ
σ2 ,

lim
t→∞

E[Xt|Xs] = β and lim
t→∞

V AR(Xt|Xs) = 2αβ
σ2 .

In Figure 4 the true transition density function is shown, with the corresponding code given in Appendix B

in Algorithm 1. Letting s = 0 and T = 5, where ∆ = T −s = 5 . Although the transition density function

closely resembles a Normal/Gaussian transition density function, Xt actually follows a non-central Chi-

square or Gamma distribution, as given above. The perspective plot given in Figure 5 indicates with

which probability di�erent states (values of Xt e.g. short-rate values) are attained, as time, t, progresses

through the time-dimension [s, T ] = [0, 5]. It is clear that a steady-state distribution is quickly attained

and resembles a Gaussian/Normal distribution.
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Figure 5: Perspective plot of the transition density function of the scalar CIR di�usion process.

Up to this point the closed-form true transition density function of the scalar CIR di�usion process has

been analyzed, but in the case of most di�usion processes a closed-form true transition density function

is unattainable. The scalar CIR process was chosen for analysis purposes to give a reference value for

the theoretical density function to display the e�ectiveness and accuracy of the closed-form transition

density function approximations that will be discussed in the next sections. When the mixed-e�ects

CIR process, with an unattainable true transition density function, is introduced, the importance of an

e�cient transition density function approximation will be become clear.

4.1.6 Hermite-series transition density function approximation of the scalar CIR process

Consider the univariate scalar CIR di�usion process given in Equation 37, with the corresponding dy-

namics and parameters. The Hermite-series transition density function approximation of order K = 0, 1

and 2, for the transition density function of the CIR di�usion process, will now be derived, as done by

[1]. Firstly the transformation Xt → Yt needs to be made such that such that Yt has a unit di�usion.

Therefore consider the transformation:

Yt = γ(Xt, t;θ) =
2
√
Xt

σ
. (42)
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It will now be showed that Yt has unit di�usion. Applying Itô's Lemma as in Equation 94 yields:

dYt =
∂

∂t
γ(Xt, t;θ)dt+

∂

∂Xt
γ(Xt, t;θ)dXt +

1

2

∂2

∂X2
t

γ(Xt, t;θ)(dXt)
2. (43)

Taking the derivatives according to Itô's Lemma:

∂

∂t
γ(Xt, t;θ) = 0,

∂

∂Xt
γ(Xt, t;θ) =

1

σ
√
Xt

,

∂2

∂X2
t

γ(Xt, t;θ) = − 1

2σ
X
− 3

2
t .

(44)

Since dXt = α(β −Xt)dt+ σ
√
XtdWt, using the result in Remark 26 implies:

(dXt)
2 =(α(β −Xt)dt+ σ

√
XtdWt)

2

=σ2Xt(dWt)
2

=σ2Xtdt.

(45)

Substituting Xt as given in Equation 36, the partial derivatives in Equation 44 and (dXt)
2 from Equation

45 into Equation 43 the result follows:

dYt =
[α(β −Xt)

σ
√
Xt

− σ

2
√
Xt

]
dt+ dWt. (46)

Since

σ(Yt, t;θ) = 1,

in Equation 46, Yt clearly has the unit di�usion, as required.

Let:

• ∆ = t− s, where t ∈ [s, T ] for s ≥ 0 ,

• speci�cally set s = 0 and t = 7 s.t ∆ = t− s = 7 and

• consider the transformation γ(xτ , τ ;θ) = yτ =
2
√
xτ
σ , since the domain of Xτ , for all τ ∈ [s, T ] is

DXτ [0,∞), the transformation is one-to-one. Therefore can the Hermite-series expansion now be

applied

The Hermite-series transition density function approximation of order K ≥ 0, can now be derived using

Equation 10. The Hermite-series transition density function approximation for the transition density

function of orderK = 0 will now be derived. The Hermite-series transition density function approximation
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of order K = 0 for Yt is given by:

g
(0)
Y (yt, t|ys, s;θ) =

1√
2π∆

exp(− (yt − ys)2

2∆
− y2

tα

4
+
αy2

s

4
)× y

− 1
2 + 2αβ

σ2

t × y
1
2−

2αβ

σ2
s . (47)

Using the relation in Equation 13 and the transformation given in Equation 42 the Hermite-series tran-

sition density function approximation of order K = 0 for Xt is given by:

g
(0)
X (xt, t|xs, s;θ) ≡ 1

σ(xt,t;θ)g
(0)
Y (γ(xt, t;θ), t|γ(xs, s;θ), s;θ),

g
(0)
X (xt, t|xs, s;θ) =

1

σ
√
xt

1√
2π∆

λ(xt, t|xs, s;θ)Ψ(xt, t|xs, s;θ), (48)

where

λ(xt, t|xs, s;θ) = exp(− (γ(xt, t;θ)− γ(xs, s;θ))2

2∆
− γ2(xt, t;θ)α

4
+
αγ2(xs, s;θ)

4
)

and Ψ(xt, t|xs, s;θ) = γ(xt, t;θ)−
1
2 + 2αβ

σ2 × γ(xs, s;θ)
1
2−

2αβ

σ2 .

The Hermite-series transition density function approximation for the transition density function of

order K = 1 will now be derived. The Hermite-series transition density function approximation of order

K = 1 for Yt is given by:

g
(1)
Y (yt, t|ys, s;θ) = g

(0)
Y (yt, t|ys, s;θ){1 + ∆c1(yt, t|ys, s;θ)}, (49)

where

c1(yt, t|ys, s;θ) = − (48β2α2−48βασ2+9σ4+ytα
2σ2(−24β+y2

tσ
2)ys+y

2
tα

2σ4y2
s+ytα

2σ4y3
s)

24ytysσ4 .

Using the relation in Equation 13 and the transformation given in Equation 42 the Hermite-series tran-

sition density function approximation of order K = 1, for Xt is given by:

g
(1)
X (xt, t|xs, s;θ) ≡ 1

σ(xt,t;θ)g
(1)
Y (γ(xt, t;θ), t|γ(xs, s;θ), s;θ),

g
(1)
X (xt, t|xs, s;θ) ≡ 1

σ
√
xt
g

(0)
Y (γ(xt, t;θ), t|γ(xs, s;θ), s;θ){1 + ∆c1(γ(xt, t;θ), t|γ(xs, s;θ), s;θ)}.

With the Hermite-series transition density function approximation, of order K = 1, for Xt, given by:

g
(1)
X (xt, t|xs, s; θ) = ψX(xt, t|xs, s; θ){1 + ∆c1(γ(xt, t;θ), t|γ(xs, s;θ), s;θ)}, (50)

where

ψX(xt, t|xs, s; θ) = 1
σ
√
xt

1√
2π∆

exp(− (γ(xt,t;θ)−γ(xs,s;θ))2

2∆ − γ(xt,t;θ)2α
4 + αγ(xs,s;θ)2

4 )Ψ(xt, t|xs, s;θ),
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where

Ψ(xt, t|xs, s;θ) = γ(xt, t;θ)−
1
2 + 2αβ

σ2 × γ(xs, s;θ)
1
2−

2αβ

σ2 ,

and

c1(γ(xt, t;θ), t|γ(xs, s;θ), s;θ) =− 1

24γ(xt, t;θ)γ(xs, s;θ)σ4

[
48β2α2 − 48βασ2 + 9σ4

+γ(xt, t;θ)α2σ2(−24β + γ(xt, t;θ)2σ2)γ(xs, s;θ)

+γ(xt, t;θ)2α2σ4γ(xs, s;θ)2 + γ(xt, t;θ)α2σ4γ(xs, s;θ)3)

]
.

The Hermite-series transition density function approximation for the transition density function of order

K = 2 will now be derived. The Hermite-series transition density function approximation of order K = 2,

for Yt is given by:

g
(2)
Y (yt, t|ys, s;θ) = g

(0)
Y (yt, t|ys, s;θ){1 + ∆c1(yt, t|ys, s;θ) + ∆2

2 c2(yt, t|ys, s;θ)}

with c1(yt, t|ys, s;θ) as in K = 1 and with c2(yt, t|ys, s;θ) given as:

c2(yt, t|ys, s;θ) = δ(yt, t|ys, s;θ)Υ (yt, t|ys, s;θ)

s.t

δ(yt, t|ys, s;θ) = 1
576y2

t y
2
sσ

8

and

Υ (yt, t|ys, s;θ) =9(256(αβ)4 − 512(αβ)3σ2 + 224(αβ)σ4 + 32(αβ)σ6 − 15σ8)

+6ytα
2σ2(−24β + y2

t σ
2)(16β2α2 − 16βασ2 + 3σ4)ys

+y2
tα

2σ4(672β2α2 − 48βα(2 + y2
tα)σ2 + (−6 + y4

tα
2)σ4)y2

s

+2ytα
2σ4(48β2α2 − 24βα(2 + y2

tα)σ2 + (9 + y4
tα

2)σ4)y3
s

+3y2
tα

4σ6(−16β + y2
t σ

2)y4
s + 2y3

tα
4σ8y5

s + y2
tα

4σ8y6
s .

Using the relation in Equation 13 and the transformation given in Equation 42, the Hermite-series tran-

sition density function approximation of order K = 2, for Xt is given by:

g
(2)
X (xt, t|xs, s;θ) ≡ 1

σ(xt,t;θ)g
(2)
Y (γ(xt, t;θ), t|γ(xs, s;θ), s;θ),

g
(2)
X (xt, t|xs, s;θ) ≡ 1

σ(xt, t;θ)
g

(0)
Y (γ(xt, t;θ), t|γ(xs, s;θ), s;θ)ξ(xt, t|xs, s;θ), (51)

s.t

ξ(xt, t|xs, s;θ) = {1 + ∆c1(γ(xt, t;θ), t|γ(xs, s;θ), s;θ) + ∆2

2 c2(γ(xt, t;θ), t|γ(xs, s;θ), s;θ)},
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with

c2(yt, t|ys, s;θ) = η(yt, t|ys, s;θ)ρ(yt, t|ys, s;θ),

s.t

η(yt, t|ys, s;θ) = 1
576γ2(xt,t;θ)γ2(xs,s;θ)σ8 ,

and

ρ(yt, t|ys, s;θ) =9(256(αβ)4 − 512(αβ)3σ2 + 224(αβ)σ4 + 32(αβ)σ6 − 15σ8)

+6γ(xt, t;θ)α2σ2(−24β + γ2(xt, t;θ)σ2)(16β2α2 − 16βασ2 + 3σ4)γ(xs, s;θ)

+γ2(xt, t;θ)α2σ4(672β2α2 − 48βα(2 + γ2(xt, t;θ)α)σ2 + (−6 + γ4(xt, t;θ)α2)σ4)γ2(xs, s;θ)

+2γ(xt, t;θ)α2σ4(48β2α2 − 24βα(2 + γ2(xt, t;θ)α)σ2 + (9 + γ4(xt, t;θ)α2)σ4)γ3(xs, s;θ)

+3γ2(xt, t;θ)α4σ6(−16β + γ2(xt, t;θ)σ2)γ4(xs, s;θ)

+2γ3(xt, t;θ)α4σ8γ5(xs, s;θ) + γ2(xt, t;θ)α4σ8γ6(xs, s;θ).

In Figure 6, the Hermite-series transition density function approximation of order K = 0, 1, 2, for the

CIR process is plotted against the true transition density function, with the corresponding code given

in Algorithm 4. The Hermite-series transition density function approximation for the CIR process for

K = 0, 1, 2 closely resembles a Gaussian density. For K small, according to [1], the asymptotic result

lim
K→∞

|gX−g(K)
X | = 0 follows. It is clear that the Hermite-series transition density function approximation,

of order K = 0, is far from accurate. For K = 1 and K = 2 the Hermite-series transition density function

approximations looks almost identical, this is due to the fact that c2(γ(xt, t;θ), t|γ(xs, s;θ), s;θ) ≈ 0,

this is illustrated in Figure 6. Therefore for K = 2 the added accuracy is outweighed by the extra the

computational power, and therefore the Hermite-series transition density function approximation for the

CIR process of order K = 1 is su�cient and is also plotted for comparison in Figure 4. It should be noted

from Figure 6 that the Hermite-series transition density function approximations for K ≥ 1 are still far

from the true transition density function of the CIR process, this leads to the need to obtain a more

e�cient and accurate approximation for the CIR process's transition density function. This improved

approximation is the moment-truncated saddlepoint transition density function approximation, which

will now be discussed in the next section.

4.1.7 Moment truncated saddlepoint transition density function approximation of the

scalar CIR process

Since a more accurate and e�cient closed-form approximation for the transition density function of the

scalar CIR process is required, the moment-truncated saddlepoint transition density function approxima-

tion of the scalar CIR process, based on the techniques of [12], will now be derived. Again consider the
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Figure 6: True transition density function with an overlayed Hermite-series transition density function
approximation, of order K = 0, 1, 2, for the scalar CIR process. It is also shown how insigni�cant the
improvement in approximation-accuracy is from K = 1 to K = 2 in the Hermite-series approximation,
due to c2 being signi�cantly close to 0.
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scalar CIR process, with dynamics and parameters as given in Equation 36, with time-dimension [s, T ]

s.t t ∈ [s, T ]. Letting s = 0 and T = 5 s.t ∆ = T − s = 5. The sequence of moment equations in the form

of ordinary di�erential equations, as in Equation 14, is given by:

m
′

1(t) = 1(αβ − αm1(t)),

m
′

2(t) = 2(αβm1(t)− αm2(t)) + σ2m1(t),

m
′

3(t) = 3(αβm2(t)− αm3(t)) + 3σ2m2(t),

m
′

4(t) = 4(αβm3(t)− αm4(t)) + 6σ2m3(t).

(52)

where E[Xj
t |Xs] = mj(t), for all t 6= s, is the j − th moment of the given di�usion process, and

mj(s) = Xj
s , for j = 1, 2, 3... Through the application of Laplace transforms, where L{mj(t)} = Mj(v) =∫∞

0
e−vtmj(t)dt, and L−1{Mj(v)} = mj(t), partial fractions and various di�erential and linear algebra

techniques, solutions to the ODEs in Equation 52 will now be derived. Consider:

m
′

1(t) = 1(αβ −m1(t)). (53)

Applying the Laplace transform throughout Equation 53:

L{m′1(t)} = L{αβ −m1(t)},

υM1(v)−m1(s) = αβ − αM1(ν),

s.t m1(s) = Xs.

Using partial fractions and simplifying:

M1(v) = 1
vβ +Xs

1
α+v − β

1
α+v .

Applying the inverse Laplace transform:

L−1{M1(v)} = L−1{ 1
vβ +Xs

1
α+v − β

1
α+v}.

The solution to the ODE in Equation 53 immediately follows:

E[Xt|Xs] = m1(t) = Xse
−αt + β(1− e−αt).

Consider:

m
′

2(t) = 2(αβm1(t)− αm2(t)) + σ2m1(t). (54)

Applying the Laplace transform throughout Equation 54:

L{m′2(t)} = L{2(αβm1(t)− αm2(t)) + σ2m1(t)},
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υM2(v)−m2(s) = (2αβ + σ2)M1(v)− 2αM2(v),

s.t m2(s) = X2
s .

Using partial fractions and simplifying:

M2(v) = β(β + σ2

2α ) 1
v + 2(β + σ2

2α )(Xs − β) 1
v+α +

[
X2
s + (β + σ2

2α )(β − 2Xs)
]

1
v+2α .

Applying the inverse Laplace transform:

L−1{M2(v)} = L−1{β(β + σ2

2α ) 1
v + 2(β + σ2

2α )(Xs − β) 1
v+α +

[
X2
s + (β + σ2

2α )(β − 2Xs)
]

1
v+2α}.

The solution to the ODE in Equation 54 immediately follows:

E[X2
t |Xs] = m2(t) = X2

s e
−2αt + (β + σ2

2α )(β + 2(Xs − β)e−αt + (β − 2Xs)e
−2αt).

Consider

m
′

3(t) = 3(αβm2(t)− αm3(t)) + 3σ2m2(t). (55)

Applying the Laplace transform throughout Equation 55:

L{m′3(t)} = L{3(αβm2(t)− αm3(t)) + 3σ2m2(t)},

υM1(v)−m2(s) = 3(αβ + σ2)M2(v)− 3αM3(v),

s.t m3(s) = X3
s .

Using partial fractions and simplifying:

M3(v) = X3
s

1
v+3α + 3(αβ + σ2)

[
A 1
v +B 1

v+α + C 1
v+2α +D 1

v+3α

]
,

where:

A =
β(β + σ2

2α )

3α
,

C =− 4(
1

4α2
(Υ − 9α2A)− 1

2α
(Φ− 3αA)),

Υ =α(X2
s + (β +

σ2

2α
)(β − 2Xs)) + 3αβ(β +

σ2

2α
) + 4α(β +

σ2

2α
)(Xs − β),

Φ =X2
s + (β +

σ2

2α
)(β − 2Xs) + β(β +

σ2

2α
) + 2(β +

σ2

2α
)(Xs − β),

B =
Φ− 3αΦ− αC

2α
,

D =−A−B − C.

Applying the inverse Laplace transform:

L−1{M3(v)} = L−1{X3
s

1
v+3α + 3(αβ + σ2)

[
A 1
v +B 1

v+α + C 1
v+2α +D 1

v+3α

]
}.

The solution to the ODE in Equation 55 immediately follows:
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E[X3
t |Xs] = m3(t) = X3

s e
−3αt + 3(αβ + σ2)(A+Be−αt + Ce−2αt +De−3αt).

Consider:

m
′

4(t) = 4(αβm3(t)− αm4(t)) + 6σ2m3(t). (56)

Applying the Laplace transform throughout Equation 56:

L{m′4(t)} = L{4(αβm3(t)− αm4(t)) + 6σ2m3(t)},

υM4(v)−m4(s) = (4αβ + 6σ2)M3(v)− 4αM4(v),

s.t m4(s) = X4
s .

Using partial fractions and simplifying:

M3(v) = X4
s

1
v+4α + (4αβ + 6σ2)

[
E 1
v + F 1

v+α +G 1
v+2α +H 1

v+3α + I 1
v+4α

]
,

where:

E =
ν∗

24α4
,

I =− 1

6α3

((
Ω∗ − 13

12

ν∗

α

)
− 12α2

(
γ∗ − ν∗

24α3

)
− 4α

((
λ∗ − 3

8

ν∗

α

)
− 7α

(
γ∗ − ν∗

24α3

)))
,

H =
1

2α2

((
λ∗ − 3

8

ν∗

α

)
− 7α

(
γ∗ − ν∗

24α3

)
− 6α2I

)
,

F =− E −G−H − I,

ν∗ =3(αβ + σ2)(6α3A),

γ∗ =5αX3
s + 3(αβ + σ2)

[
6αA+ 5αB + 4αC + 3αD

]
,

λ∗ =5αX3
s + 3(αβ + σ2)

[
6αA+ 5αB + 4αC + 3αD

]
,

Ω∗ =4α2X3
s + 3(αβ + σ2)

[
11α2A+ 6α2B + 3α2C + 2α2D

]
,

A =
β(β + σ2

2α )

3α
,

C =− 4(
1

4α2
(Υ − 9α2A)− 1

2α
(Φ− 3αA)),

Υ =α(X2
s + (β +

σ2

2α
)(β − 2Xs)) + 3αβ(β +

σ2

2α
) + 4α(β +

σ2

2α
)(Xs − β),

Φ =X2
s + (β +

σ2

2α
)(β − 2Xs) + β(β +

σ2

2α
) + 2(β +

σ2

2α
)(Xs − β),

B =
Φ− 3αΦ− αC

2α
,

D =−A−B − C.

Applying the inverse Laplace transform:

L−1{M4(v)} = L−1{X4
s

1
v+4α + (4αβ + 6σ2)

[
E 1
v + F 1

v+α +G 1
v+2α +H 1

v+3α + I 1
v+4α

]
}.

The solution to the ODE in Equation 56 immediately follows:
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Figure 7: The �rst four theoretical and empirical moments of the scalar CIR process.

E[X4
t |Xs] = m4(t) = X4

s e
−4αt + (4αβ + 6σ2)

[
E + Fe−αt +Ge−2αt +He−3αt + Ie−4αt

]
.

Therefore the �rst four theoretical moments of the scalar CIR process, given as the solutions of the ODEs

in Equation 52, is as follows:

E[Xt|Xs] =m1(t) = Xse
−αt + β(1− e−αt),

E[X2
t |Xs] =m2(t) = X2

s e
−2αt + (β +

σ2

2α
)(β + 2(Xs − β)e−αt + (β − 2Xs)e

−2αt),

E[X3
t |Xs] =m3(t) = X3

s e
−3αt + 3(αβ + σ2)(A+Be−αt + Ce−2αt +De−3αt),

E[X4
t |Xs] =m4(t) = X4

s e
−4αt + (4αβ + 6σ2)

[
E + Fe−αt +Ge−2αt +He−3αt + Ie−4αt

]
.

(57)

with A,B,C,D,E, F,G,H and I as above. In Figure 7, the theoretical moments of the scalar CIR

process, given in Equation 57, together with the empirical moments are plotted with the corresponding

code in Algorithm 5.

However to derive a saddlepoint transition density function approximation for the transition density

function of the scalar CIR process, it is ideal to derive and utilize the theoretical cumulants. Let Kj(t)

denote the j − th cumulant of the scalar CIR process. Therefore the �rst four cumulants of the of the
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Figure 8: The �rst four theoretical and empirical cumulants of the scalar CIR process.

scalar CIR process are given by:

K1(t) = m1(t),

K2(t) = m2(t)− (m1(t))2,

K3(t) = 2(m1(t))3 − 3(m1(t))(m2(t)) +m3(t),

K3(t) = −6(m1(t))4 + 12(m1(t))2(m2(t))− 3(m2(t))2 − 4(m1(t))(m3(t)) +m4(t).

(58)

In Figure 8 and in Algorithm 6 the theoretical cumulants of the CIR process, given in Equation 58,

together with the empirical moments are plotted. As the order of the cumulants increase the empirical

cumulants become much more volatile. But since the saddlepoint transition density function approxima-

tion utilizes a Taylor-series expansion, the weight put on the higher order cumulants in the transition

density function approximation becomes less signi�cant as the order of the cumulants increase.

Applying the methodology, as provided in [8], the saddlepoint transition density function approximation

of the CIR di�usion process is derived as follows. Consider the approximate cumulant generating function

with N = 4, given in Equation 18 as:

KX(t) ≈ K̃X(t) = tK1(t) +
1

2!
t2K2(t) +

1

3!
t3K3(t) +

1

4!
t4K4(t), (59)
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for Ki(t) for i = 1, 2, 3, 4 as in Equation 58. A Taylor-series is applied to get K̃Xt(t). Where the exact

cumulant generating function of the CIR process is KX(t) = ln(MX(t)), provided MXt(t) exists and

MXt(t) > 0 for all values of t, where MXt(t) is the exact moment generating function of the CIR process.

Consider the �rst and second order partial derivatives of Equation 59, in terms of t:

K̃
′

X(t) =
∂

∂t
K̃X(t) = K1(t) + tK2(t) +

1

2
t2K3(t) +

1

6
t3K4(t), (60)

K̃
′′

X(r) =
∂2

∂t2
K̃X(t) = K2(t) + tK3(t) +

1

2
t2K4(t). (61)

Setting Xt = K̃
′

X(t), t is determined as a function of Xt:

t =
−K2(t) +

√
(K2(t))2 − 2K3(t)(K1(t)−Xt)

K3(t)
(62)

Using the result given in [8], and the results in Equation 60,61 and 62, the closed-form saddlepoint

transition density function approximation, hX(Xt, t|Xs, s;θ), for the true transition density function of

the CIR process is obtained as:

hX(xt, t|xs, s;θ) = exp(K̃X(t)− txt)
√

(2πK̃
′′
X(t))−1,

which gives:

hX(xt, t|xs, s;θ) =

√
(2π(K2(t) + tK3(t) +

1

2
t2K4(t)))−1

× exp

[
tK1(t) +

1

2!
t2K2(t) +

1

3!
t3K3(t) +

1

4!
t4K4(t)

]
× exp

[
−

[
−K2(t) +

√
(K2(t))2 − 2K3(t)(K1(t)− xt)

K3(t)

]
Xt

] (63)

From Figure 9 it can be seen that the saddlepoint transition density function approximation is extremely

accurate in approximating the true transition density function, from Xt ≈ 2.3 onward. Since an e�cient

and accurate closed-form approximation has been developed, this transition density function approxima-

tion can now be applied to actual �nancial data. The S&P 500's volatility index (VIX) will be considered

and analyzed.

4.1.8 Maximum likelihood estimation of parameters for the scalar CIR process

In this section, actual �nancial data will be analyzed. Consider the daily S&P 500 volatility index (VIX),

which give a measure of the day-to-day variation in the S&P 500's index, which many investors use as

a barometer of the actual market performance. Figure 10 gives a time-plot for the daily VIX-values for
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Figure 9: True transition density function and the moment-truncated saddlepoint transition density
function approximation of the transition density function of the scalar CIR process.

30 December 2011 to 1 January 2017. Note that it is assumed that there are 250 trading days in a year.

Therefore ∆t = 1
250 . The 5 year S&P500VIX time series is plotted in Algorithm 8.

Firstly, maximum likelihood estimation, assuming a normal error-distribution, is done based on the true

transition density function of the scalar CIR process. Consider

max
θ

[
ln(L(θ|X))

]
= max

θ

[
ln

1250∏
i=1

(pX(Xt, t|Xs, s;θ))

]
(64)

= max
θ

[
ln

1250∏
i=1

(c exp(−(u+ v))
( v
u

) q
2 Iq(2(uv)

1
2 )))

]
(65)

Maximization of Equation 64, in Algorithm 9 gives the theoretical maximum likelihood estimates as:

θ̂ = (â, β̂, σ̂) = (22.43, 15.74, 5.13)

Secondly, maximum likelihood estimation is done based on the saddlepoint transition density function

approximation of the transition density function of the scalar CIR process. Consider:

max
θ

[
ln(L(θ|X))

]
= max

θ

[
ln

1250∏
i=1

(hX(xt, t|xs, s;θ))

]
, (66)

where hX(xt, t|xs, s;θ) is given as the saddlepoint transition density function approximation in Equation
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Figure 10: VIX time-plot for 30 December 2011 to 1 January 2017.

63. Maximization of Equation 66, in Algorithm 10, gives the saddlepoint transition density function

approximation maximum likelihood estimates as:

θ̂s = (âs, β̂s, σ̂s) = (22.27, 15.55, 5.27)

Figure 11 gives the simulated trajectories of the scalar CIR process based on the mle's of the true

transition density function and saddlepoint transition density function approximation of the scalar CIR

transition density function.

4.2 Application to the mixed-e�ects CIR process

Consider the following mixed-e�ects CIR process, a generalization of the scalar Cox, Ingersoll and Ross

process :

dXt = α(β −Xt)dt+ σ̊
√
XtdWt, (67)

where

σ̊ ∼ N(0.25, 0.152).
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Figure 11: Simulated trajectories of the scalar CIR process based on the mle's of the true- and saddlepoint
transition density functions.
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4.2.1 Parameter values to be used in the present paper for the mixed-e�ects CIR process

Throughout the following sections the parameter values and domains used to analyze the mixed-e�ects

CIR process in Equation 67 are given by the time-dimension [s, T ] = [0, 5], state-space [XI , XT ] =

[0, 5], with Xs = 2.75 as the initial state and parameter vector θ̊ = (α, β, σ) = (0.8, 3, σ̊) where σ̊ ∼

N(0.25, 0.152), hence γ = (0.8, 3, 0.25, 0.15).

4.2.2 Simulated trajectory of the mixed-e�ects CIR process

The function rnorm() in R is used to simulate the random Brownian motion or Wiener Process

values,∆Wt
∼ N(0,∆2

t ). These values contribute to the stochastic or random part of the trajectory,

where dt ≈ ∆t = 0.01 is used as a step length in the time-dimension [0, 5]. The mixed-e�ects CIR process

as given in Equation 67 are discretized by the implementation of the following recursive algorithm:

Xs+∆t
= Xs + α(β −Xs)∆t + σ̊

√
Xs∆Wt

, (68)

for all t > s+ ∆t.

The trajectory is simulated λ times, with a new simulated value of σ̊ from a N(ν, %2) distribution at

each simulation. The average of λtrajectories is calculated and also plotted as a trajectory. As can be

seen in Figure 12 various values of λare plotted and that the average trajectory smooths out towards the

mean-reverted value of β as λincreases.

The code for the plot in Figure 12 is provided in Algorithm 12.

4.2.3 Euler-Maruyama scheme of the scalar CIR process

Consider the time-dimension [0, 5] s.t t ∈ [0, 5], the dicretization of the time-dimension is given by:

∆t = T
N = 5

500 = 0.01 for N = 500 ∈ N. The Euler-Maruyama scheme is now given by the following

recursive relationship:

Xi = Xi−1 + α(β −Xi−1)∆t + σ̊
√
Xi−1∆Wi

(69)

for all i = 1, 2, ..., 499, 500 and with Xs = 2.75 as initial state and where ∆Wt
∼ N(0,∆2

t ). The Euler-

Maruyama scheme is simulated λ times, with a new simulated value of σ̊ from a N(ν, %2) distribution at

each simulation. As can be seen in Figure 13 the Euler-Maruyama schemes have been overlayed to give

a better idea of the impact the random e�ect has on the distribution. As the average is calculated over a

larger amount of simulations it can be seen in Figure that the process clearly reverts towards β = 3. The

frequency plots in Figure 14 also shows that with increasing simulations the process tends towards β.

The code for Figure 13 is provided in Algorithm 14 and the code for Figure 14 is provided in Algorithm

21.
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Figure 12: Simulated trajectories of the mixed-e�ects CIR di�usion process with various number of
simulations.
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Figure 13: Simulated Euler-Maruyama schemes for various σ̊ simulations.
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Figure 14: Frequency plots for 1 and 10 σ̊ simulations respectively.

4.2.4 Perspective plots for the mixed-e�ects CIR process

Plotting the true transition density for the scalar CIR process:

pX(Xt, t|Xs, s; θ̊) = c exp(−(u+ v))
( v
u

) q
2 Iq(2(uv)

1
2 ), (70)

for a various number of simulations and random values of σ̊ from N(υ, %2) and averaging the results, the

movement of the CIR short-rate can be analyzed visually for various σ̊ values. Figure 15 shows these

overlayed plots and average result. The corresponding code can be found in Algorithm 13. Again it is

clear Xt tends towards β = 3, but at di�erent densities due to the random e�ect.

4.2.5 Moment-truncated saddlepoint transition density function approximation of the mixed-

e�ects CIR process

Consider the moment trajectories derived for the scalar CIR process:
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Figure 15: Perspective plots of the transition density function for various σ̊ simulations.
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E[Xt|Xs] =m1(t) = Xse
−αt + β(1− e−αt),

E[X2
t |Xs] =m2(t) = X2

s e
−2αt + (β +

σ2

2α
)(β + 2(Xs − β)e−αt + (β − 2Xs)e

−2αt),

E[X3
t |Xs] =m3(t) = X3

s e
−3αt + 3(αβ + σ2)(A+Be−αt + Ce−2αt +De−3αt),

E[X4
t |Xs] =m4(t) = X4

s e
−4αt + (4αβ + 6σ2)

[
E + Fe−αt +Ge−2αt +He−3αt + Ie−4αt

]
.

(71)

To simplify proceedings, Equation 71 can in accordance to [12], be written in the following general form:

mj(t) = Xj
sL−1

{
1

k + iα

}
+Aj(α, β, σ)L−1

{
`j−1(k)

k + iα

}
, (72)

for j = 1, 2, 3, 4,

s.t `j−1(k) = L
{
mj−i(t)

}
= Mj−1(k),

where `0(k) = L
{
m0(t)

}
= L

{
r

exp(0)pX(xt, t|xs, s;θ)dx

}
= L

{
1

}
= 1

k ,

with scalar coe�cient function Aj(α, β, σ) = jαβ + j(j−2)
2 σ2.

Equation 71 then simpli�es to:

E[Xt|Xs] =m1(t) = XsL−1

{
1

k + α

}
+A1(α, β, σ)L−1

{
`0(k)

k + α

}
,

E[X2
t |Xs] =m2(t) = X2

sL−1

{
1

k + 2α

}
+A2(α, β, σ)L−1

{
`1(k)

k + 2α

}
,

E[X3
t |Xs] =m3(t) = X3

sL−1

{
1

k + 3α

}
+A3(α, β, σ)L−1

{
`2(k)

k + 3α

}
,

E[X4
t |Xs] =m4(t) = X4

sL−1

{
1

k + 4α

}
+A4(α, β, σ)L−1

{
`3(k)

k + 4α

}
,

(73)

s.t

A1(α, β, σ) =αβ,

A2(α, β, σ) =2αβ + σ2,

A3(α, β, σ) =3αβ + 3σ2,

A4(α, β, σ) =4αβ + 6σ2,

(74)

and
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`0(k) = L
{
m0(t)

}
= M0(k) =

1

k
,

`1(k) = L
{
m1(t)

}
= M1(k) = Xs

( 1

k + α

)
+A1(α, β, σ)

( 1
k

k + α

)
,

`2(k) = L
{
m2(t)

}
= M2(k) = X2

s

( 1

k + 2α

)
+A2(α, β, σ)

[
Xs

(
1

k+α

)
+A1(α, β, σ)

(
1
k

k+α

)
k + 2α

]
,

`3(k) = L
{
m3(t)

}
= M3(k) = X3

s

( 1

k + 3α

)

+A3(α, β, σ)

[
X2
s

(
1

k+2α

)
+A2(α, β, σ)L−1

(Xs( 1
k+α

)
+A1(α,β,σ)

(
1
k

k+α

)
k+2α

)
k + 3α

]
.

(75)

Substituting Equation 74 and Equation 75 into Equation 73 yields:

E[Xt|Xs] =m1(t) = XsL−1

{
1

k + α

}
+ αβL−1

{ 1
k

k + α

}
,

E[X2
t |Xs] =m2(t) = X2

sL−1

{
1

k + 2α

}
+ (2αβ + σ2)L−1

{Xs

(
1

k+α

)
+A1(α, β, σ)

(
1
k

k+α

)
k + 2α

}
,

E[X3
t |Xs] =m3(t) = X3

sL−1

{
1

k + 3α

}

+(3αβ + 3σ2)L−1

{X2
s

(
1

k+2α

)
+A2(α, β, σ)

[
Xs

(
1

k+α

)
+A1(α,β,σ)

(
1
k

k+α

)
k+2α

]
k + 3α

}
,

E[X4
t |Xs] =m4(t) = X4

sL−1

{
1

k + 4α

}

+(4αβ + 6σ2)L−1

{X3
s

(
1

k+3α

)
+A3(α, β, σ)

[
X2
s

(
1

k+2α

)
+A2(α,β,σ)L−1

(Xs( 1
k+α

)
+A1(α,β,σ)

(
1
k

k+α

)
k+2α

)
k+3α

]
k + 4α

}
.

(76)

By factorizing out the scalar coe�cients and parameters, the following inverse Laplace transforms comes

to the foreground; where solving the Laplace transforms yields:
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L−1

{
1

k

}
= 1,

L−1

{
1

k + α

}
= exp(−αt),

L−1

{
1

k + 2α

}
= exp(−2αt),

L−1

{
1

k + 3α

}
= exp(−3αt),

L−1

{
1

k + 4α

}
= exp(−4αt),

L−1

{
1

k(k + α)

}
=

1

α
exp(−αt),

L−1

{
1

k(k + α)(k + 2α)

}
=

1

2α2
exp(−2αt)(exp(αt)− 1)2,

L−1

{
1

k(k + α)(k + 2α)(k + 3α)

}
=

1

6α3
exp(−3αt)(exp(αt)− 1)3,

L−1

{
1

k(k + α)(k + 2α)(k + 3α)(k + 4α)

}
=

1

24α4
exp(−4αt)(exp(αt)− 1)4,

L−1

{
1

(k + α)(k + 2α)(k + 3α)(k + 4α)

}
=

1

6α3
exp(−4αt)(exp(αt)− 1)3,

L−1

{
1

(k + 2α)(k + 3α)(k + 4α)

}
=

1

2α2
exp(−4αt)(exp(αt)− 1)2,

L−1

{
1

(k + 3α)(k + 4α)

}
=

1

α
exp(−4αt)(exp(αt)− 1),

L−1

{
1

(k + 2α)(k + 3α)

}
=

1

α
exp(−3αt)(exp(αt)− 1),

L−1

{
1

(k + α)(k + 2α)

}
=

1

α
exp(−2αt)(exp(αt)− 1).

(77)

Simplifying Equation 76, using Equation 77, yields the original moments obtained for the scalar CIR

process, but in a form which is more appropriate to generalize to the mixed-e�ects CIR process.

Moment trajectories of the mixed-e�ects CIR process:

Note that scalar σ now becomes a random e�ect with an assumed Normal distribution, i.e. σ̊ ∼ N(υ, %2).

The mixed-e�ects coe�cients are now calculated by taking the expectation over σ̊:

B1(α, β, σ̊) =Eσ̊[αβ] = αβ,

B2(α, β, σ̊) =Eσ̊[2αβ + σ̊2] = 2αβ + Eσ̊ [̊σ2] = 2αβ + (%2 + υ2),

B3(α, β, σ̊) =Eσ̊[3αβ + 3σ̊2] = 3αβ + 3Eσ̊ [̊σ2] = 3αβ + 3(%2 + υ2),

B4(α, β, σ̊) =Eσ̊[4αβ + 6σ̊2] = 4αβ + 6Eσ̊ [̊σ2] = 4αβ + 6(%2 + υ2).

(78)
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Note that

Eσ̊ [̊σ2] = V AR(̊σ) +
(
E [̊σ]

)2

= %2 + υ2.

From the moment trajectories of the scalar CIR process the Aj-coe�cients can be identi�ed and replaced

by the generalized Bj-coe�cients. Finally the moment trajectories of the mixed-e�ects CIR process

becomes:

E[Xt|Xs] =m1(t) = Xs exp(−αt)

+B1(α, β, σ̊)

[
1

α
(1− exp(−αt))

]
,

E[X2
t |Xs] =m2(t) = X2

s exp(−2αt)

+B2(α, β, σ̊)

[
XS

1

α
exp(−2αt)(exp(αt)− 1) +B1(α, β, σ̊)

1

2α2
exp(−2αt)(exp(αt)− 1)2

]
,

E[X3
t |Xs] =m3(t) = X3

s exp(−3αt)

+B3(α, β, σ̊)

[
X2
s

1

α
exp(−3αt)(exp(αt)− 1) +B2(α, β, σ̊)Xs

1

2α2
exp(−2αt)(exp(αt)− 1)2

+B2(α, β, σ̊)B1(α, β, σ̊)
1

6α3
exp(−3αt)(exp(αt)− 1)3

]
,

E[X4
t |Xs] =m4(t) = X4

s exp(−4αt)

+B4(α, β, σ̊)

[
X3
s

1

α
exp(−4αt)(exp(αt)− 1) +B3(α, β, σ̊)X2

s

1

2α2
exp(−4αt)(exp(αt)− 1)2

+B3(α, β, σ̊)B2(α, β, σ̊)Xs
1

6α3
exp(−4αt)(exp(αt)− 1)3

+B3(α, β, σ̊)B2(α, β, σ̊)B1(α, β, σ̊)
1

24α4
exp(−4αt)(exp(αt)− 1)4

]
.

(79)

The empirical moment trajectories and the theoretical moment trajectories of the mixed-e�ects CIR

process as in Equation 79, with time-dimension [s, T ] = [0, 5] , state-space [Xs, XT ] = [0, 5], Xs = 2.75 as

the initial state and parameter vector θ̊ = (α, β, σ) = (0.8, 3, σ̊) where σ̊ ∼ N(ν = 0.25, %2 = 0.152) (i.e

δ = (α = 0.8, β = 3, υ = 0.25, % = 0.15)), are plotted in Figure 16 with the code provided in Algorithm

15.

The �rst four cumulants of the of the mixed-e�ects CIR process are given by:

K1(t) = m1(t),

K2(t) = m2(t)− (m1(t))2,

K3(t) = 2(m1(t))3 − 3(m1(t))(m2(t)) +m3(t),

K3(t) = −6(m1(t))4 + 12(m1(t))2(m2(t))− 3(m2(t))2 − 4(m1(t))(m3(t)) +m4(t).

(80)

Due to the extra variation provided by the random e�ect, the third and fourth order empirical and

55



0 1 2 3 4 5

2.75

2.80

2.85

2.90

2.95

3.00

t

m
1(

t)

Theoretical

Emperical

0 1 2 3 4 5

7.5

8.0

8.5

9.0

t

m
2(

t)

Theoretical

Emperical

0 1 2 3 4 5

22

24

26

28

t

m
3(

t)

Theoretical

Emperical

0 1 2 3 4 5

60

65

70

75

80

85

90

t

m
4(

t)

Theoretical

Emperical

Figure 16: The �rst four theoretical and empirical moments of the mixed-e�ects CIR process.
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Figure 17: The �rst four theoretical and empirical cumulants of the mixed-e�ects CIR process.
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theoretical cumulant trajectories is not closely related, however considering how small the cumulant

value for the K3(t) and K4(t) is, the impact of the di�erence is insigni�cant. Applying the methodology,

as provided in [8], the saddlepoint transition density function approximation of the mixed-e�ects CIR

process is derived as follows. Consider the approximate cumulant generating function with N = 4, given

in Equation 18 as:

KX(t) ≈ K̃X(t) = tK1(t) +
1

2!
t2K2(t) +

1

3!
t3K3(t) +

1

4!
t4K4(t), (81)

for Ki(t) for all i = 1, 2, 3, 4 as in Equation 58. A Taylor series is applied to get K̃Xt(t). Where the exact

cumulant generating function of the CIR process is KX(t) = ln(MX(t)), provided MXt(t) exists and

MXt(t) > 0 for all values of t, whereMXt(t) is the exact moment generating function of the mixed-e�ects

CIR process. Consider the �rst and second order partial derivatives of Equation 81, in terms of t:

K̃
′

X(t) =
∂

∂t
K̃X(t) = K1(t) + tK2(t) +

1

2
t2K3(t) +

1

6
t3K4(t), (82)

K̃
′′

X(r) =
∂2

∂t2
K̃X(t) = K2(t) + tK3(t) +

1

2
t2K4(t). (83)

Setting Xt = K̃
′

X(t), t is determined as a function of Xt:

t =
−K2(t) +

√
(K2(t))2 − 2K3(t)(K1(t)−Xt)

K3(t)
. (84)

Using the result given in [8], and the results in Equation 82,83 and 84, the closed-form saddlepoint tran-

sition density function approximation, wX(Xt, t|Xs, s; θ̊), for the mixed-e�ects CIR process is obtained

as:

wX(xt, t|xs, s; θ̊) = exp(K̃X(t)− txt)
√

(2πK̃
′′
X(t))−1,

which gives:

wX(xt, t|xs, s; θ̊) =

√
(2π(K2(t) + tK3(t) +

1

2
t2K4(t)))−1

× exp

[
tK1(t) +

1

2!
t2K2(t) +

1

3!
t3K3(t) +

1

4!
t4K4(t)

]
× exp

[
−

[
−K2(t) +

√
(K2(t))2 − 2K3(t)(K1(t)− xt)

K3(t)

]
Xt

]
.

(85)

From Figure 18 it can be seen that the saddlepoint transition density function approximation is an e�cient

density function, from Xt ≈ 2.3 onward. Although the approximation breaks between 0 ≤ Xt < 2.3,
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Figure 18: The moment-truncated saddlepoint transition density function approximation of the mixed-
e�ects CIR process.

from Xt ≈ 2.3 onward the moment-truncated saddlepoint is very accurate. Since the approximation is

very close to symmetric, interpolation techniques can be utilized in the range 0 ≤ Xt < 2.3.

From Figure 19 it can be seen that the mixed-e�ects saddlepoint approximation provides higher density

approximation to short-rate values near the mean-reverted value of β = 3, which is a clear improvement

on the saddlepoint approximation of the scalar CIR process, since it provides a higher probability of

observing the mean-reverted value.

4.2.6 Maximum likelihood estimation for the parameters of the mixed-e�ects CIR process

Consider the daily S&P 500 volatility index (VIX), which give a measure of the day-to-day variation

in the S&P 500's index. Maximum likelihood estimation is now done based on the moment-truncated

saddlepoint transition density function approximation of the transition density function of the mixed-

e�ects CIR process. Consider:

max
δ

[
ln(L(δ|X))

]
= max

δ

[
ln

1250∏
i=1

(wX(xt, t|xs, s; δ))

]
, (86)

where wX(xt, t|xs, s; δ) is given as the moment-truncated saddlepoint transition density function approx-

imation in Equation 85. Maximization of Equation 86, in Algorithm 19 gives the saddlepoint transition

density function approximation maximum likelihood estimates as:
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Figure 19: Overlayed moment-truncated saddlepoint transition density function approximations of the
scalar CIR process and mixed-e�ects CIR process.

δ̂ = (α̂, β̂, ν̂, %̂),= (22.15, 14.70, 4.96, 1.95)

4.3 Forecasting done in SAS and R based on 5 year S&P500VIX daily data

Figure 20 gives day 150-day forecast of the S&P500 volatility index, with the coding done in SAS, given

in Algorithm 22, where an autoregressive model of order 1, AR(1), was �tted to the observed 5 year daily

data.

Figure 21 gives a 250-day-forward simulated trajectory for the S&P500 volatility index, based on the

mle's of the moment-truncated saddlepoint transition density approximation of the mixed-e�ects CIR

process; with the coding done in R, given in Algorithm 20. The average of all the trajectories is used as

the prediction, and as the number of simulations for σ̊ increases, the average trajectory closely resembles

the forecast provided by the AR(1)-�tted model. The forward simulated trajectory done with the mixed-

e�ects saddlepoint transition density approximation seems to be more e�cient than an AR(1)-�tted

model forecast, since it seems to take more volatility into account in the prediction, whereas the forecast

based on the AR(1)-�tted model seems to rely solely on the �rst moment of the process.
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Figure 20: S&P500VIX 150-day forecast, programmed in SAS, by �tting an AR(1) model to the 5-year
daily data.
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Figure 21: SP500VIX 250-day forward simulated prediction trajectory based on the mixed-e�ects CIR
process moment-truncated saddlepoint transition density approximation's maximum likelihood estimates.
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5 Conclusion

In the present paper an e�cient closed-form transition density function approximation method for

both scalar di�usion processes and mixed-e�ects di�usion processes have been developed, namely the

moment-truncated saddlepoint transition density function approximation. It was shown that the moment-

truncated saddlepoint transition density function approximation provides a signi�cant improvement in

approximation accuracy than that provided by the Hermite-series transition density function approxi-

mation. This approximation can e�ciently be applied to infer on �nancial data and improve �nancial

decisions, especially in the absence of a true transition density function. In the process of obtaining the

moment-truncated saddlepoint transition density function approximation various insights into the CIR

process has been made, for example that the CIR process is a mean-reversion model, a behavior which the

moment-truncated saddlepoint transition density function approximation emulates this speci�c behavior

with greater accuracy than the Hermite-series transition density function approximation. Not only could

an appropriate and relatively accurate approximation be found for a scalar di�usion process, this paper

has shown how to generalize such a scalar model to a mixed-e�ects model with a random-e�ect. The

moment-truncated saddlepoint transition density function approximation can also be e�ectively applied

to the mixed-e�ects di�usion process.
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Appendix

A Fundamental results

The theorems, results and de�nitions given in this section, unless otherwise stated, are obtained and

adapted from the works of [14].

A1 Stochastic processes

Let Ω be the non-empty set of all attainable elements, where E and its complement EC possible events/-

subsets.

De�nition 5. A collection of subsets, ξ, of Ω is called a σ − algebra or σ − field if:

1. ∅ ∈ Ω where ∅ is called the empty set,

2. if E ∈ ξ then EC ∈ ξ,

3. if E1, E2, E3, ... is a sequence of sets in ξ, then
⋃∞
i=1Ei ∈ ξ.

De�nition 6. P is called a probability measure function if it maps ξ into [0, 1], where the following

conditions hold:

1. P(Ω) = 1,

2. P(E) ≥ 0 ∀ E ∈ ξ,

3. if E1, E2, E3, ... is a sequence of mutually disjoint subsets in ξ, then P
[⋃∞

i=1Ei

]
=
∑∞
i=1 P(Ei).

De�nition 7. For Ω, a non-empty �nite set, a sequence of σ − algebras, F0,F1,F2, ... , is called a

�ltration if Fk ⊆ Fk+1 for all k = 0, 1, 2, ....

The �ltration can be denoted as {Ft}∞t=0. It can be written that E ∈ Ft, if it is known that at time t

whether or not event E has occurred. If our time-dimension is �nite, i.e [0, t∗] then Ft∗ = F

De�neR to be the set of all real numbers.

De�nition 8. For Ω a non-empty �nite set, and ξ a σ − algebra of all possible subsets of Ω, a random

variable de�ned as a function mapping Ω onto R, i.e X is a random variable if it can be written as

X : Ω → R.

A probability space can now be de�ned.
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De�nition 9. (Ω,F ,P) is called a probability space, where the elements are de�ned as

1. A non-empty set, Ω, called the sample space which include all possible outcomes,

2. F is a σ − algebra, consisting of subsets of Ω,

3. P is called a probability measure function on (Ω,F), where (Ω,F) is a measurable space.

Stochastic processes are now introduced. Let S be the state-space consisting of all possible states, and

T ∗ an ordered set known as the time-dimension over which the stochastic process is de�ned.

De�nition 10. A collection of random variables {Xt : t ∈ T ∗}, de�ned on the probability space (Ω,F ,P),

is called a stochastic process.

For an individual occurrence or sample path of Ω it is given that ω∈ Ω, s.t. Xt(ω) ∈ R.

De�nition 11. A σ− algebra is called a Borel σ− algebra if it is the σ− algebra which contains all the

open intervals in R, and is denoted B(R).

Borel-measurable functions in R are of interest.

De�nition 12. For g : R→ R, g is Borel-measurable if {y ∈ R : g(y) ∈ G}∈ B(R) when G ∈ B(R).

A very important class of stochastic processes are Markov processes:

De�nition 13. Consider only Borel-measurable functions in R and consider {Ft}nt=0 a �ltration under

F . The stochastic process {Xt}nt=0, de�ned on the probability space (Ω,F ,P), is said to be Markov if:

1. {Xt} is adapted to {Ft}

2. {Xt} is said to have the Markov Property if the distribution of Xt+1, conditioned upon Ft is equal

in distribution of Xt+1, conditioned upon Xt, for all t = 0, 1, 2, ..., n − 1; i.e. P(Xt+1 ∈ E|Ft) =

P(Xt+1 ∈ E|Xt), where Ft depends on X0, X1, ..., Xt−1, Xt.

Throughout this text, S will represent the state-space and T ∗ the time-dimension over which a given

di�usion process is de�ned. In this document our continuous-time Markov processes, di�usion processes,

will need to be discretized, therefore the interest will lie in Markov chains, which can be seen as stochastic

processes with both a discrete time-dimension and discrete state-space. The de�nitions of transition

probabilities, under the Markov property, can now, according to [11], be introduced:

De�nition 14. The transition probability for a transition in the stochastic process, in a discrete state-

space, from Xs = x at time s to Xt = y at time t can be de�ned as:

Time-in homogeneous case: transition probabilities are time-dependent

P(Xt = y|Xs = x) = pxy(s, t) = p(y, t|x, s)
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Time-homogeneous case: transition probabilities are invariant to shifts in time:

P(Xt = y|Xs = x) = P(Xt+k = y|Xs+k = x) = pxy(t− s) for all k s.t s+ k, t+ k∈ T .

Lemma 15. The Chapman-Kolmogorov equation (for a time-in homogeneous case) is given as:

pxy(s, t) =
∑
∀τ
pxτ (s, r)pτy(r, t)

Now, by [? ], consider the case of a continuous state-space, and continuous time-dimension, s.t.

t ∈ [s, T ].

De�nition 16. P(Xt ∈ ζ|Xs = x) = p(ζ, t|x, s) is called the transition function, which is a probability

measure on A s.t. P(Xt ∈ A|Xs = x) = 1. p(ζ, t|x, s) is Borel-Measurable (B(A)) in x where ζ, s and t

are �xed and satis�es to the continuous-space Chapman Kolmogorov Equation:

p(ζ, t|x, s) =
∫
A
p(ζ, t|x, u)p(dy, u|x, s)

Fact 17. Given that the all information regarding Ft is known, it is said that Xt is Ft − adapted if the

value of the random variable Xt is known at time t

De�nition 18. Strictly stationary process: according to [11] for a stochastic process {Xt} to be strictly

stationary the joint distribution of Xt1 , Xt2 , ..., Xtn should be the same as the joint distribution of

Xt1+k
, Xt2+k

, ..., Xtn+k
, for all k s.t. ti+k ∈ T .

A2 Stochastic calculus

The results and theory given in this section is a combination based on the works of [15], [9] and [14].

Consider a standard Brownian motion or Wiener Process to be the continuous counterpart of a Random

Walk.

Lemma 19. E[WsWt] = min{s, t}

Proof. Assume that s ≤ t, then [0, s] and [0, t] is overlapping and hence Ws and Wt are dependent. Since

E[XY ] = E[X]E[Y ] if X and Y are independent random variables, let WsWt = Ws(Wt −Ws + Ws) =

Ws(Wt−Ws)+W 2
s . Since the distribution of Wt−Ws and Wt−s is the same, i.e N(0, t−s), the intervals

[0, s] and [0, t− s] are non-overlapping and hence Ws and Wt−s are independent. Therefore

E[WsWt] = E[Ws(Wt −Ws +Ws)]

= E[Ws(Wt −Ws) +W 2
s ]

= E[Ws(Wt −Ws)] + E[W 2
s ]

= E[Ws]E[(Wt −Ws)] + V AR(Ws) +
(
E[Ws]

)2
= s
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Since s ≤ t it is clear that E[WsWt] = s = min{s, t}.

Similarly if it is assumed that t ≤ s, it follows that E[WtWs] = t = min{t, s}. Therefore the result follows

that E[WsWt] = min{s, t}

Suppose {Xn}∞n=0 is a sequence of random variables, which in turn is also random.

Proposition 20. Xn converges in mean square to X if lim
n→∞

E[(Xn −X)2] = 0.

The stochastic integral and its meaning can now be introduced. Let Xt be a process be driven by

Brownian motion, then a stochastic integral can be denoted as
∫ t

0
Xs(ω)dWs(ω), where ω denotes the

speci�c path followed by the stochastic process. If this path is assumed to be known, which is assumed for

this section, then
∫ t

0
Xs(ω)dWs(ω) is equivalent to

∫ t
0
XsdWs. Let f be a continuous real valued function,

s.t. Xs = f(Ws), i.e. Xt is a stochastic process driven by Brownian motion. Let %n be a partitioning of

[0, t] s.t %n : 0 = s0 < s1 < ... < sn−1 < sn = t, where the mesh of the partitioning is given by: mesh(%n)

= max
1≤i≤n

(si − si−1). Consider the series:

Υn =
∑n−1
i=0 f(Wsj )(Wsj+1

−Wsj ), where sj is the left end-point of the interval.

Taking the mean square, which will always exist if E
(∫ t

0
|f(Ws)|2ds

)
< ∞, and noting that f(Ws) has

continuous sample paths since f is continuous. It follows that:

lim
n→∞

Υn = lim
n→∞

∑n−1
i=0 f(Wsj )(Wsj+1

−Wsj ) =
∫ t

0
XsdWs .

Theorem 21. Let f be a continuous function, where f(Ws) is a stochastic process driven by Brownian

motion. If
∫ t

0
E[f(Ws)

2]ds <∞then:

1. E
(∫ t

0
f(Ws)dWs

)
= 0,

2. E
(∣∣∣ ∫ t0 f(Ws)dWs

∣∣∣2) =
∫ t

0

[
E|f(Ws)|2

]
dWs.

The concept of stochastic di�erential equations and Itô processes can now be discussed.

De�nition 22. A stochastic process Xt is called an Itô process if the process can be given in the form

of:

Xt = X0 +

∫ t

0

Γsds+

∫ t

0

ΨsdWs (87)

s.t. Γ and Ψ are Ft − adapted processes driven by Brownian motion and where the following conditions

hold:

∫ t

0

|Γs|2ds <∞and
∫ t

0

E[Ψ2
s ]ds <∞.

Now if f is assumed to be a real-valued function, which is integrable. Let F (t) be de�ned as follows:

F (t) = F (0) +

∫ t

0

f(s)ds (88)
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Di�erentiating Equation 88 with respect to t:

d
dtF (t) = d

dtF (0) + d
dt

∫ t
0
f(s)ds,

it follows from the Fundamental theorem of Calculus that:

d
dtF (t) = f(t), or

F ′(t) = f(t).

Equation 87 can now be written in stochastic di�erential form:

dXt = Γtdt+ ΨtdWt (89)

Remark 23. The short-hand notion will be used throughout the text, but it is important to take note

that: Xs ≡ X(s,Ws), Γs ≡ Γ (s,Ws) and Ψs ≡ Ψ(s,Ws).

A fundamental result in stochastic calculus can now be introduced, namely Itô's Lemma:

Theorem 24. Itô's Lemma for a one-dimensional Brownian motion: for Wt a Brownian motion de�ned

on [0, T ] and real-valued function g(x), which is twice di�erentiable, then for all t ≤ T , it follows that:

g(Wt) = g(0) +
1

2

∫ t

0

g”(Ws)ds+

∫ t

0

g′(Ws)dWs

Proof. Consider a partition of [0, t] ⊆ [0, T ] namely %n : 0 = t0 < t1 < ... < tn−1 < tn = t. Let

g(Wt) = g(0) +

n−1∑
j=0

[g(Wtj+1)− g(Wtj )] (90)

As an implication of Taylor's Theorem it is given that:

g(Wtj+1)− g(Wtj ) = g′(Wtj )(Wtj+1 −Wtj ) +
1

2
g”(W ∗tj )(Wtj+1 −Wtj )

2 (91)

for some W ∗tj ∈ (Wtj ,Wtj+1). Through the substitution of Equation 6 into Equation 5, Equation 7 is

obtained:

g(Wt) = g(0) +

n−1∑
j=0

g′(Wt)(Wtj+1 −Wtj ) +
1

2

n−1∑
j=0

g”(W ∗tj )(Wtj+1
−Wtj )

2 (92)

For mesh(%n) = max
1≤i≤n

(ti − ti−1) and letting mesh(%n)→ 0, then taking the limit as n tends to in�nity

over Equation 92, the required result is obtained:

g(Wt) = g(0) +
1

2

∫ t

0

g”(Ws)ds+

∫ t

0

g′(Ws)dWs.

69



The general version of Itô's lemma can now be given:

Theorem 25. Itô's Lemma for a one-dimensional Itô process: for a one-dimensional Itô process, Xt,

satisfying the following stochastic di�erential equation:

dXt = atdt+ btdWt (93)

For g(t,Xt) : [0,∞)× R→ R and letting Yt = g(t,Xt) then

dYt =
∂

∂t
g(t,Xt)dt+

∂

∂Xt
g(t,Xt)dXt +

1

2

∂2

∂X2
t

g(t,Xt)(dXt)
2 (94)

Substituting Equation 93 into Equation 94 yields:

dYt =

(
∂

∂t
g(t,Xt) +

∂

∂t
g(t,Xt)at +

1

2

∂2

∂X2
t

g(t,Xt)b
2
t

)
dt+

∂

∂Xt
g(t,Xt)btdWt (95)

Remark 26. dtdWt = (dt)2 = 0 and (dWt)
2 = dt
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B Algorithms

B2 R algorithms

Algorithm 1 Trajectory, Euler-Maruyama scheme, perspective plot, theoretical density, Hermite-series
transition density function approximation and moment truncation approximation of the scalar CIR dif-
fusion process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)*dt + sigma(Xt,t)*dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4 rm(list=ls(all=TRUE))

5

6 #Seed:

7 set.seed (7)

8

9 #Parameters

10 s = 0

11 t = 5

12 Xs = 2.75

13 alpha = 0.8

14 beta = 3

15 sigma = 0.25

16 delta_t = 0.01 #step length

17 startingstate = 0

18 endstate = 5

19 numbsims = 10000

20 timespace = seq(s,t,delta_t)

21 statespace = seq(startingstate ,endstate ,delta_t)

22

23 par(ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1, 0), las =1)

24

25 #Simulating the trajectory

26

27 CIR_trajectory = function(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

28 {

29

30 timeseq = (seq(s,t,delta_t))

31 datamatrix = matrix(0,nrow = length(timeseq), ncol = 1)

32 Z1 = rnorm(1,mean = 0, sd = sqrt(delta_t))

33 Xt = Xs + alpha*(beta -Xs)*delta_t + sigma*sqrt(Xs)*Z1

34 datamatrix [1] = Xt

71



35

36 for(i in 2: length(timeseq))

37 {

38 dWt = rnorm(1,mean = 0, sd = sqrt(delta_t))

39 Xtplus1 = Xt + alpha *(beta -Xt)*delta_t + sigma*sqrt(Xt)*dWt

40 Xt = Xtplus1

41 datamatrix[i] = Xtplus1

42 }

43

44 X = datamatrix

45

46 plot(X~seq(s,t,delta_t),type ='l', col = "royalblue4",xlab="t",ylab = "Xt")

47 }

48

49 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

50

51 #Perspective Plot

52

53 CIR_perpective = function(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

54 {

55 timespace = seq(s,t,delta_t)

56 statespace = seq(startingstate ,endstate ,delta_t)

57

58 datamatrix = matrix(0,length(timespace),length(statespace))

59

60 for (t in s:length(timespace))

61 {

62 for (state in startingstate:length(statespace))

63 {

64 c = (2* alpha)/(( sigma ^2)*(1-exp(-alpha *( timespace[t]-s))))

65 u = c*Xs*exp(-alpha*( timespace[t]-s))

66 v = c*statespace[state]

67 q = 2*alpha*beta/( sigma ^2) - 1

68 besselparameter = 2*(u*v)^(0.5)

69 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+

besselparameter

70 logfXt_t = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

71 datamatrix[t,state] = exp(logfXt_t)

72 }

73

74 }

75

76
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77 persp(timespace ,statespace ,datamatrix , col = "royalblue4",xlab="t", ylab="Xt",zlab="

Density", border = NA, shade = 0.9 , theta = 45, phi = 35, r = 35, ticktype = "

detailed")

78 }

79

80 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

81

82 #Euler -Maruyama Scheme

83

84 CIR_EM = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

85 {

86 mufunc = function(Xt,t)

87 {

88 return(alpha*(beta - Xt))

89 }

90

91 sigfunc = function(Xt,t)

92 {

93 return(sigma*sqrt(Xt))

94 }

95

96 histfunc = function(Xs,s,t,delta_t,numbsims)

97 {

98

99 Xt = rep(Xs,numbsims)

100 timespace = seq(s,t,delta_t)

101

102 for(i in 2: length(timespace))

103 {

104 dWt = sqrt(delta_t)*rnorm(numbsims)

105 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt,timespace[i])*dWt

106 hist(Xt, freq = FALSE , col = 'royalblue4 ', breaks = 50, ylim = c(0 ,1.4), main = NA ,

border = "mediumpurple", xlab = "Xt", ylab = "Density")

107 }

108

109 return(list(Xt=Xt,time = t))

110

111 }

112

113 plot = histfunc(Xs ,s,t,delta_t,numbsims)

114 }

115

116 EM_plot = CIR_EM(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)
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117

118 #Theoretical density (Sahalia 1999)

119

120 CIR_theoretical1 = function(s,t,Xs,Xt ,alpha ,beta ,sigma)

121 {

122 c = (2* alpha)/(( sigma ^2)*(1-exp(-alpha*(t-s))))

123 u = c*Xs*exp(-alpha*(t-s))

124 v = c*Xt

125 q = 2* alpha*beta/(sigma ^2) - 1

126 besselparameter = 2*(u*v)^(0.5)

127 besselfunction = besselI(besselparameter ,q,expon.scaled = TRUE)

128 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+besselparameter

129 logfXt = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

130 return(exp(logfXt))

131 }

132

133 Xt = statespace

134 plot_theoretical1 = CIR_theoretical1(s,t,Xs,Xt,alpha ,beta ,sigma)

135

136 lines(plot_theoretical1~Xt,col = "black",lwd = 3)

137

138 #Hermite -series transition density function approximation:

139

140 CIR_Hermite -series= function(s,t,Xs,Xt ,alpha ,beta ,sigma ,K)

141 {

142

143 invsigxt = 1/( sigma*sqrt(Xt))

144 gamxt = ((2* sqrt(Xt))/sigma) # = Yt

145 gamxs = ((2* sqrt(Xs))/sigma) # = Ys

146 p1 = 1/sqrt (2*pi*(t-s))

147 p2 = exp(-((gamxt -gamxs)^2) /(2*(t-s)) -(alpha *( gamxt ^2)/4)+(alpha*(gamxs ^2)

/4))*(gamxt ^( -0.5+2* alpha*beta/sigma ^2))*( gamxs ^(0.5 -2* alpha*beta/sigma ^2))

148 p = p1*p2

149 c1 = -1/(24* gamxt*gamxs*sigma ^4) *(48*( alpha*beta)^2-48* alpha*beta*(sigma ^2)

+9*( sigma ^4)+gamxt*(alpha ^2)*(sigma ^2)*gamxs *( -24* beta+(gamxt ^2)*( sigma ^2))+(

gamxt ^2)*(alpha ^2)*( sigma ^4)*( gamxs ^2)+gamxt*(alpha ^2)*(sigma ^4)*(gamxs ^3))

150 hermitedens = invsigxt*p

151

152 if (K>0)

153 {

154 hermitedens = invsigxt*p*(1+(t-s)*c1)

155 }

156
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157 return(hermitedens)

158 }

159

160 K = 1

161 Xt = statespace

162 plot_Hermite -series = CIR_hermite(s,t,Xs,Xt,alpha ,beta ,sigma ,K)

163

164 lines(plot_hermite~Xt,lty = 3,col = "gray47", lwd = 3)

165

166 #Method of Moment Truncation

167

168 #Theoretical Moments

169 del = Xs^2 + (beta + (( sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2*

alpha)))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

170 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(beta + ((

sigma ^2) /(2* alpha)))+4* alpha*(beta + (( sigma ^2) /(2* alpha)))*(Xs -beta)

171 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

172 A = kappa /(6* alpha ^3)

173 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

174 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

175 D = -A-B-C

176

177 gamma_star = Xs^3 + 3*( alpha*beta + sigma ^2)*(A + B + C + D)

178 lambda_star = 3* alpha*Xs^3 + 3*( alpha*beta + sigma ^2) *(6* alpha*A + 5*alpha*B + 4*alpha*C

+ 3*alpha*D)

179 omega_star = 2*( alpha ^2)*Xs^3 + 3*( alpha*beta + sigma ^2) *(11*( alpha ^2)*A + 6*( alpha ^2)*B

+ 3*( alpha ^2)*C + 2*( alpha ^2)*D)

180 nu_star = 3*( alpha*beta + sigma ^2) *(6*A*alpha ^3)

181

182 E = nu_star /(24* alpha ^4)

183 I = ( -1/(6* alpha ^3))*((( omega_star -(13* nu_star /(12* alpha))) -12*( alpha ^2)*( gamma_star -(nu

_star /(24* alpha ^3)))) -4*alpha *(( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_

star -(nu_star /(24* alpha ^3))))))

184 H = (1/(2* alpha ^2))*((( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_star -(nu_

star /(24* alpha ^3))))) - 6*( alpha ^2)*I)

185 G = (-1/ alpha)*(( gamma_star -(nu_star /(24* alpha ^3)))+ 2*alpha*H + 3*alpha*I)

186 FF = -E - G - H - I

187

188 theomoment1 = Xs*exp(-alpha *(t-s)) + beta *(1 - exp(-alpha*(t-s)))

189 theomoment2 = (Xs^2)*exp(-2* alpha*(t-s)) + (beta + (sigma ^2) /(2* alpha))*(beta + 2*(Xs -

beta)*exp(-alpha *(t-s)) + (beta - 2*Xs)*exp(-2*alpha*(t-s)))

190 theomoment3 = (Xs^3)*exp(-3* alpha*(t-s)) + (3* alpha*beta +3* sigma ^2)*(A + B*exp(-alpha*(t-

s)) + C*exp(-2*alpha *(t-s)) + D*exp(-3*alpha*(t-s)))
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191 theomoment4 = (Xs^4)*exp(-4* alpha*(t-s)) + (4* alpha*beta + 6*sigma ^2)*(E + FF*exp(-1*

alpha*(t-s)) + G*exp(-2* alpha*(t-s)) + H*exp(-3*alpha *(t-s)) + I*exp(-4*alpha*(t-s)))

192

193 #theoretical Cumulants

194 theocumulant1 = theomoment1

195 theocumulant2 = theomoment2 -( theomoment1)^2

196 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

197 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*( theomoment2 ^2)

- 4* theomoment1*theomoment3 + theomoment4

198

199 X = statespace

200

201 #saddlepoint transition density approximation

202 s = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X)) -

theocumulant2)

203 Ksapprox = theocumulant1*s + theocumulant2 *((1/2)*s^2) + theocumulant3 *((1/6)*s^3) +

theocumulant4 *((1/24)*s^4)

204 Ks2approx = theocumulant2 + theocumulant3*s + 0.5* theocumulant4*s^2

205

206 saddle_pt_approx = exp(Ksapprox -s*X)*sqrt (1/(2* pi*Ks2approx))

207 #print(saddle_pt_approx)

208

209 lines(saddle_pt_approx~statespace ,lty = 3,col = "deepskyblue1", lwd = 3)

210

211 #Transition Density Plots

212 labels = c("Theoretical", "Hermite -seriesapprox", "Euler -Maruyama", "Saddle pt approx")

213 legend("topright", title = NA,labels ,lty = c(1,3,2,3), lwd = c(3,3,6,3) ,col=c("black", "

gray47","royalblue4","deepskyblue1"), bty = 'n')

214 box()

Algorithm 2 Simulated trajectories indicating the e�ect of parameter changes for the CIR process

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)*dt + sigma(Xt,t)*dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4

5 rm(list=ls(all=TRUE))

6

7 #Seed:

8 set.seed (7)

9

10 #Parameters

11 s = 0
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12 t = 5

13 Xs = 2.75

14 delta_t = 0.01 #step length

15 startingstate = 0

16 endstate = 5

17 numbsims = 10000

18 timespace = seq(s,t,delta_t)

19 statespace = seq(startingstate ,endstate ,delta_t)

20

21

22 #Simulating the trajectory

23

24 CIR_trajectory = function(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

25 {

26

27 timeseq = (seq(s,t,delta_t))

28 datamatrix = matrix(0,nrow = length(timeseq), ncol = 1)

29 Z1 = rnorm(1,mean = 0, sd = sqrt(delta_t))

30 Xt = Xs + alpha*(beta -Xs)*delta_t + sigma*sqrt(Xs)*Z1

31 datamatrix [1] = Xt

32

33 for(i in 2: length(timeseq))

34 {

35 dWt = rnorm(1,mean = 0, sd = sqrt(delta_t))

36 Xtplus1 = Xt + alpha *(beta -Xt)*delta_t + sigma*sqrt(Xt)*dWt

37 Xt = Xtplus1

38 datamatrix[i] = Xtplus1

39 }

40

41 X = datamatrix

42

43 plot(X~seq(s,t,delta_t),type ='l', col = rainbow(1, start = runif (1 ,0.55 ,0.8), end =

runif (1 ,0.55 ,0.7), alpha = 1) ,xlab="t",ylab = "Xt", ylim=c(0,5))

44 }

45

46

47 par(mfrow=c(3,4),ps=9,cex.lab=1,cex.axis =0.75,mar=c(1, 1, 2, 1), mgp=c(1.5, 0.8, 0), las

=1)

48 #Alpha change - mean reversion speed

49 beta = 3

50 sigma = 0.25

51

52 alpha = -1
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53 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

54 title(main=bquote(alpha == .( alpha)))

55 alpha = 0.2

56 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

57 title(main=bquote(alpha == .( alpha)))

58 alpha = 0.8

59 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

60 title(main=bquote(alpha == .( alpha)))

61 alpha = 1.4

62 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

63 title(main=bquote(alpha == .( alpha)))

64

65 #Beta change - to where mean revert

66 alpha = 0.8

67 sigma = 0.25

68

69 beta = 0

70 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

71 title(main=bquote(beta == .(beta)))

72 beta = 2

73 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

74 title(main=bquote(beta == .(beta)))

75 beta = 3

76 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

77 title(main=bquote(beta == .(beta)))

78 beta = 4

79 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

80 title(main=bquote(beta == .(beta)))

81

82 #Sigma change - diffusion coefficient

83 alpha = 0.8

84 beta = 3

85

86 sigma = 0

87 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

88 title(main=bquote(sigma == .( sigma)))

89 sigma = 0.15

90 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

91 title(main=bquote(sigma == .( sigma)))

92 sigma = 0.25

93 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

94 title(main=bquote(sigma == .( sigma)))

95 sigma = 0.5
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96 trajectory_plot = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

97 title(main=bquote(sigma == .( sigma)))

Algorithm 3 Perspective plots indicating the e�ect of parameter changes for the CIR process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)*dt + sigma(Xt,t)*dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4

5 rm(list=ls(all=TRUE))

6

7 #Seed:

8 set.seed (7)

9

10 #Parameters

11 s = 0

12 t = 5

13 Xs = 2.75

14 delta_t = 0.01 #step length

15 startingstate = 0

16 endstate = 5

17 numbsims = 1000

18 timespace = seq(s,t,delta_t)

19 statespace = seq(startingstate ,endstate ,delta_t)

20

21

22 #Perspective Plot

23

24 CIR_perpective = function(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

25 {

26 timespace = seq(s,t,delta_t)

27 statespace = seq(startingstate ,endstate ,delta_t)

28

29 datamatrix = matrix(0,length(timespace),length(statespace))

30

31 for (t in s:length(timespace))

32 {

33 for (state in startingstate:length(statespace))

34 {

35 c = (2* alpha)/(( sigma ^2)*(1-exp(-alpha *( timespace[t]-s))))

36 u = c*Xs*exp(-alpha*( timespace[t]-s))

37 v = c*statespace[state]

38 q = 2*alpha*beta/( sigma ^2) - 1
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39 besselparameter = 2*(u*v)^(0.5)

40 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+

besselparameter

41 logfXt_t = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

42 datamatrix[t,state] = exp(logfXt_t)

43 }

44

45 }

46

47

48 persp(timespace ,statespace ,datamatrix , col = rainbow(1, start = runif (1 ,0.55 ,0.8), end

= runif (1 ,0.55 ,0.7), alpha = 1),xlab="t", ylab="Xt",zlab="density", border = NA,

shade = 0.9 , theta = 45, phi = 35, r = 35, ticktype = "detailed")

49 }

50

51

52 par(mfrow=c(3,4),ps=9,cex.lab=1,cex.axis =0.6,mar=c(0.25, 0.25, 2, 0.25) , mgp=c(1.5, 0.8,

0), las=1)

53 #Alpha change - mean reversion speed

54 beta = 3

55 sigma = 0.25

56

57 alpha = -1

58 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

59 title(main=bquote(alpha == .( alpha)))

60 alpha = 0.2

61 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

62 title(main=bquote(alpha == .( alpha)))

63 alpha = 0.8

64 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

65 title(main=bquote(alpha == .( alpha)))

66 alpha = 1.4

67 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

68 title(main=bquote(alpha == .( alpha)))

69

70 #Beta change - to where mean revert

71 alpha = 0.8

72 sigma = 0.25

73

74 beta = 0

75 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

76 title(main=bquote(beta == .(beta)))

77 beta = 2
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78 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

79 title(main=bquote(beta == .(beta)))

80 beta = 3

81 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

82 title(main=bquote(beta == .(beta)))

83 beta = 4

84 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

85 title(main=bquote(beta == .(beta)))

86

87

88 #Sigma change - diffusion coefficient

89 alpha = 0.8

90 beta = 3

91

92 sigma = 0.025

93 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

94 title(main=bquote(sigma == .( sigma)))

95 sigma = 0.15

96 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

97 title(main=bquote(sigma == .( sigma)))

98 sigma = 0.25

99 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

100 title(main=bquote(sigma == .( sigma)))

101 sigma = 0.5

102 perspective_plot = CIR_perpective(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

103 title(main=bquote(sigma == .( sigma)))

Algorithm 4 Hermite-series density approximation of order K = 0, 1, 2 for the scalar CIR process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)*dt + sigma(Xt,t)*dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4

5 rm(list=ls(all=TRUE))

6

7

8 #Seed:

9 set.seed (7)

10

11 #Parameters

12 s = 0

13 t = 5

14 Xs = 2.75
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15 alpha = 0.8

16 beta = 3

17 sigma = 0.25

18 delta_t = 0.01 #step length

19 startingstate = 0

20 endstate = 5

21 numbsims = 10000

22 timespace = seq(s,t,delta_t)

23 statespace = seq(startingstate ,endstate ,delta_t)

24

25

26 par(mfrow=c(2,3), ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1, 0),

las =1)

27

28 #Hermite -series transition density function approximation:

29

30 CIR_main = function(Xt,K)

31 {

32

33 Xt = statespace

34

35 #Theoretical density (Sahalia 1999)

36

37 CIR_theoretical1 = function(s,t,Xs,Xt ,alpha ,beta ,sigma)

38 {

39 c = (2* alpha)/(( sigma ^2)*(1-exp(-alpha*(t-s))))

40 u = c*Xs*exp(-alpha*(t-s))

41 v = c*Xt

42 q = 2*alpha*beta/(sigma ^2) - 1

43 besselparameter = 2*(u*v)^(0.5)

44 besselfunction = besselI(besselparameter ,q,expon.scaled = TRUE)

45 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+besselparameter

46 logfXt = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

47 return(exp(logfXt))

48 }

49

50

51 plot_theoretical1 = CIR_theoretical1(s,t,Xs,Xt,alpha ,beta ,sigma)

52

53 plot(plot_theoretical1~Xt ,col = "black", type = "l" , lwd = 2, ylab = "Density" ,ylim =

c(0,2),xlab="t",xlim=c(startingstate ,endstate))

54

55
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56 CIR_Hermite -series= function(s,t,Xs,Xt ,alpha ,beta ,sigma ,K)

57 {

58

59 Xt = statespace

60

61 invsigxt = 1/( sigma*sqrt(Xt))

62 gamxt = ((2* sqrt(Xt))/sigma) # = Yt

63 gamxs = ((2* sqrt(Xs))/sigma) # = Ys

64 p1 = 1/sqrt (2*pi*(t-s))

65 p2 = exp(-((gamxt -gamxs)^2) /(2*(t-s)) -(alpha *( gamxt ^2)/4)+(alpha*(gamxs ^2)/4))

*(gamxt ^( -0.5+2* alpha*beta/sigma ^2))*( gamxs ^(0.5 -2* alpha*beta/sigma ^2))

66 p = p1*p2

67 c1 = -1/(24* gamxt*gamxs*sigma ^4) *(48*( alpha*beta)^2-48* alpha*beta*( sigma ^2)

+9*( sigma ^4)+gamxt*(alpha ^2)*(sigma ^2)*gamxs *( -24* beta+(gamxt ^2)*( sigma ^2))+( gamxt

^2)*( alpha ^2)*( sigma ^4)*(gamxs ^2)+gamxt*(alpha ^2)*(sigma ^4)*(gamxs ^3))

68 c2 = (1/(576* gamxt ^2* gamxs ^2))*(9*(256* alpha ^4* beta ^4 -512* alpha ^3* beta ^3* sigma

^2+224* alpha*beta*sigma ^6-15* sigma ^8) +6* gamxt*alpha ^2* sigma ^2*( -24* beta+gamxt ^2*

sigma ^2) *(16* beta ^2* alpha ^2 -16* beta*alpha*sigma ^2+3* sigma ^4)*gamxs+gamxt ^2* alpha ^2*

sigma ^4*(672* beta ^2* alpha ^2 -48* beta*alpha *(2+ gamxt ^2* alpha)*sigma ^2+( -6+ gamxt ^4*

alpha ^2)*sigma ^4)*gamxs ^2+2* gamxt*alpha ^2* sigma ^4*(48* beta ^2* alpha ^2-24* beta*alpha

*(2+ gamxt ^2* alpha)*sigma ^2+(9+ gamxt ^4* alpha ^2)*sigma ^4)*gamxs ^3+3* gamxt ^2* alpha ^4*

sigma ^6*( -16* beta+gamxt ^2* sigma ^2)*gamxs ^4+2* gamxt ^3* alpha ^4* sigma ^8* gamxs ^5+ gamxt

^2* alpha ^4* sigma ^8* gamxs ^6)

69

70

71 if (K==0)

72 {

73 hermitedens = invsigxt*p

74 }

75

76 if (K==1)

77 {

78 hermitedens = invsigxt*p*(1+(t-s)*c1)

79 }

80

81 if (K==2)

82 {

83 hermitedens = invsigxt*p*(1+(t-s)*c1 + (((t-s)^2)/2)*c2)

84 }

85

86 hermite_plot = lines(hermitedens~Xt, lty = 3, col = "azure4", lwd = 3)

87

88 return(hermite_plot)
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89

90 }

91

92 call_Hermite -series = CIR_hermite(s,t,Xs,Xt,alpha ,beta ,sigma ,K)

93 return(call_hermite)

94

95 }

96

97

98 call_main = CIR_main(Xt ,0)

99 labels = c("Theoretical", "Hermite: K=0")

100 legend("top", inset = -0.095, title = NA,labels ,lty = c(1,3), lwd = c(2,3) , col=c("black

","azure4"), bty = 'n')

101

102 call_main = CIR_main(Xt ,1)

103 labels = c("Theoretical", "Hermite: K=1")

104 legend("top", inset = -0.095, title = NA,labels ,lty = c(1,3), lwd = c(2,3) , col=c("black

","azure4"), bty = 'n')

105

106 call_main = CIR_main(Xt ,2)

107 labels = c("Theoretical", "Hermite: K=2")

108 legend("top", inset = -0.095, title = NA,labels ,lty = c(1,3), lwd = c(2,3) , col=c("black

","azure4"), bty = 'n')

109

110

111 CIR_hermite_diff = function(s,t,Xs,Xt ,alpha ,beta ,sigma ,K1,K2)

112 {

113

114 Xt = statespace

115

116 invsigxt = 1/( sigma*sqrt(Xt))

117 gamxt = ((2* sqrt(Xt))/sigma) # = Yt

118 gamxs = ((2* sqrt(Xs))/sigma) # = Ys

119 p1 = 1/sqrt (2*pi*(t-s))

120 p2 = exp(-((gamxt -gamxs)^2) /(2*(t-s)) -(alpha *( gamxt ^2)/4)+(alpha*(gamxs ^2)/4))

*(gamxt ^( -0.5+2* alpha*beta/sigma ^2))*( gamxs ^(0.5 -2* alpha*beta/sigma ^2))

121 p = p1*p2

122 c1 = -1/(24* gamxt*gamxs*sigma ^4) *(48*( alpha*beta)^2-48* alpha*beta*( sigma ^2)

+9*( sigma ^4)+gamxt*(alpha ^2)*(sigma ^2)*gamxs *( -24* beta+(gamxt ^2)*( sigma ^2))+( gamxt

^2)*( alpha ^2)*( sigma ^4)*(gamxs ^2)+gamxt*(alpha ^2)*(sigma ^4)*(gamxs ^3))

123 c2 = (1/(576* gamxt ^2* gamxs ^2))*(9*(256* alpha ^4* beta ^4 -512* alpha ^3* beta ^3* sigma

^2+224* alpha*beta*sigma ^6-15* sigma ^8) +6* gamxt*alpha ^2* sigma ^2*( -24* beta+gamxt ^2*

sigma ^2) *(16* beta ^2* alpha ^2 -16* beta*alpha*sigma ^2+3* sigma ^4)*gamxs+gamxt ^2* alpha ^2*
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sigma ^4*(672* beta ^2* alpha ^2 -48* beta*alpha *(2+ gamxt ^2* alpha)*sigma ^2+( -6+ gamxt ^4*

alpha ^2)*sigma ^4)*gamxs ^2+2* gamxt*alpha ^2* sigma ^4*(48* beta ^2* alpha ^2-24* beta*alpha

*(2+ gamxt ^2* alpha)*sigma ^2+(9+ gamxt ^4* alpha ^2)*sigma ^4)*gamxs ^3+3* gamxt ^2* alpha ^4*

sigma ^6*( -16* beta+gamxt ^2* sigma ^2)*gamxs ^4+2* gamxt ^3* alpha ^4* sigma ^8* gamxs ^5+ gamxt

^2* alpha ^4* sigma ^8* gamxs ^6)

124

125

126 if (K1==0)

127 {

128 hermitedens1 = invsigxt*p

129 }

130

131 if (K1==1)

132 {

133 hermitedens1 = invsigxt*p*(1+(t-s)*c1)

134 }

135

136 if (K1==2)

137 {

138 hermitedens1 = invsigxt*p*(1+(t-s)*c1 + (((t-s)^2)/2)*c2)

139 }

140

141

142 if (K2==0)

143 {

144 hermitedens2 = invsigxt*p

145 }

146

147 if (K2==1)

148 {

149 hermitedens2 = invsigxt*p*(1+(t-s)*c1)

150 }

151

152 if (K2==2)

153 {

154 hermitedens2 = invsigxt*p*(1+(t-s)*c1 + (((t-s)^2)/2)*c2)

155 }

156

157

158

159 plot(hermitedens1~Xt , type = "l" , col = "azure4", lwd =2,ylim=c

(0.5000000002 ,0.5000000004) , xlim = c(2.4941 ,2.49418) ,ylab="Density",axes = F)

160 axis(1, xaxp=c(2.4941 , 2.49418 , 1), las =2)
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161 #axis(2, yaxp=c(0.5000000002 , 0.5000000004 , 1),outer = F, las =2)

162 title(main="Density in [0.5000000002 , 0.5000000004]")

163 box()

164 lines(hermitedens2~Xt, lty = 1 , col = "cornflowerblue", lwd = 2, ylim=c

(0.5000000002 ,0.5000000004) , xlim = c(2.4941 ,2.49418) ,ylab=NA)

165

166 }

167

168 CIR_hermite_diff(s,t,Xs ,Xt,alpha ,beta ,sigma ,1,2)

169 labels = c("Hermite: K=1", "Hermite: K=2")

170 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) , col=c("azure4","

cornflowerblue"),pch = 1)

171

172 CIR_hermite_coeff = function(s,t,Xs,Xt ,alpha ,beta ,sigma ,coeff)

173 {

174

175 Xt = statespace

176

177 invsigxt = 1/( sigma*sqrt(Xt))

178 gamxt = ((2* sqrt(Xt))/sigma) # = Yt

179 gamxs = ((2* sqrt(Xs))/sigma) # = Ys

180 p1 = 1/sqrt (2*pi*(t-s))

181 p2 = exp(-((gamxt -gamxs)^2) /(2*(t-s)) -(alpha *( gamxt ^2)/4)+(alpha*(gamxs ^2)/4))

*(gamxt ^( -0.5+2* alpha*beta/sigma ^2))*( gamxs ^(0.5 -2* alpha*beta/sigma ^2))

182 p = p1*p2

183 c1 = -1/(24* gamxt*gamxs*sigma ^4) *(48*( alpha*beta)^2-48* alpha*beta*( sigma ^2)

+9*( sigma ^4)+gamxt*(alpha ^2)*(sigma ^2)*gamxs *( -24* beta+(gamxt ^2)*( sigma ^2))+( gamxt

^2)*( alpha ^2)*( sigma ^4)*(gamxs ^2)+gamxt*(alpha ^2)*(sigma ^4)*(gamxs ^3))

184 c2 = (1/(576* gamxt ^2* gamxs ^2))*(9*(256* alpha ^4* beta ^4 -512* alpha ^3* beta ^3* sigma

^2+224* alpha*beta*sigma ^6-15* sigma ^8) +6* gamxt*alpha ^2* sigma ^2*( -24* beta+gamxt ^2*

sigma ^2) *(16* beta ^2* alpha ^2 -16* beta*alpha*sigma ^2+3* sigma ^4)*gamxs+gamxt ^2* alpha ^2*

sigma ^4*(672* beta ^2* alpha ^2 -48* beta*alpha *(2+ gamxt ^2* alpha)*sigma ^2+( -6+ gamxt ^4*

alpha ^2)*sigma ^4)*gamxs ^2+2* gamxt*alpha ^2* sigma ^4*(48* beta ^2* alpha ^2-24* beta*alpha

*(2+ gamxt ^2* alpha)*sigma ^2+(9+ gamxt ^4* alpha ^2)*sigma ^4)*gamxs ^3+3* gamxt ^2* alpha ^4*

sigma ^6*( -16* beta+gamxt ^2* sigma ^2)*gamxs ^4+2* gamxt ^3* alpha ^4* sigma ^8* gamxs ^5+ gamxt

^2* alpha ^4* sigma ^8* gamxs ^6)

185

186 if (coeff == 1)

187 {

188 plot(c1~Xt, type = "p" , col = "blue", lwd = 2)

189 }

190

191 if (coeff == 2)
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192 {

193 plot(c2~Xt, type = "p" , col = "skyblue", lwd = 2)

194 }

195

196 }

197

198 CIR_hermite_coeff(s,t,Xs,Xt,alpha ,beta ,sigma ,1)

199 CIR_hermite_coeff(s,t,Xs,Xt,alpha ,beta ,sigma ,2)

Algorithm 5 Empirical and theoretical moments of the scalar CIR process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)dt + sigma(Xt ,t)dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4

5 rm(list=ls(all=TRUE))

6

7 #Seed:

8 set.seed (7)

9

10 #Parameters

11 s = 0

12 t = 5

13 Xs = 2.75

14 alpha = 0.8

15 beta = 3

16 sigma = 0.25

17 delta_t = 0.01 #step length

18 startingstate = 0

19 endstate = 5

20 numbsims = 10000

21 timespace = seq(s,t,delta_t)

22 statespace = seq(startingstate ,endstate ,delta_t)

23

24

25 par(mfrow=c(2,2),ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1, 0), las

=1)

26

27 #m1t emperical and theoretical:

28 #Using Euler -Maruyama

29

30 CIR_moment1 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

31 {
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32 mufunc = function(Xt,t)

33 {

34 return(alpha*(beta - Xt))

35 }

36

37 sigfunc = function(Xt,t)

38 {

39 return(sigma*sqrt(Xt))

40 }

41

42 momentfunc = function(Xs,s,t,delta_t,numbsims)

43 {

44

45 Xt = rep(Xs ,numbsims)

46 timespace = seq(s,t,delta_t)

47

48 moment1mat = matrix(Xs,nrow=length(timespace),ncol =1)

49

50 for(i in 1: length(timespace))

51 {

52 dWt = sqrt(delta_t)*rnorm(numbsims)

53 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

54 moment1mat[i] = mean(Xt)

55 }

56

57 plot(moment1mat~timespace ,xlab='t',ylab='m1(t)',type = 'p',lwd = 1 ,col = 'grey')

58

59 theomoment1 = Xs*exp(-alpha*timespace) + beta *(1 - exp(-alpha*timespace))

60 lines(theomoment1~timespace ,col="blue",lwd = 2)

61

62 }

63

64 m = momentfunc(Xs,s,t,delta_t,numbsims)

65 }

66

67 #m2t emperical and theoretical:

68 #Using Euler -Maruyama

69

70 CIR_moment2 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

71 {

72 mufunc = function(Xt,t)

73 {

74 return(alpha*(beta - Xt))
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75 }

76

77 sigfunc = function(Xt,t)

78 {

79 return(sigma*sqrt(Xt))

80 }

81

82 momentfunc = function(Xs,s,t,delta_t,numbsims)

83 {

84

85 Xt = rep(Xs ,numbsims)

86 timespace = seq(s,t,delta_t)

87

88 moment2mat = matrix(Xs,nrow=length(timespace),ncol =1)

89

90 for(i in 1: length(timespace))

91 {

92 dWt = sqrt(delta_t)*rnorm(numbsims)

93 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

94 moment2mat[i] = mean(Xt^2)

95 }

96

97 plot(moment2mat~timespace ,xlab='t',ylab='m2(t)',type = 'p',lwd = 1 ,col = 'grey')

98

99 theomoment2 = (Xs^2)*exp(-2* alpha*timespace) + (beta + (sigma ^2) /(2* alpha))*(beta +

2*(Xs-beta)*exp(-alpha*timespace) + (beta - 2*Xs)*exp(-2*alpha*timespace))

100 lines(theomoment2~timespace ,col="blue",lwd = 2)

101

102 }

103

104 m = momentfunc(Xs,s,t,delta_t,numbsims)

105 }

106

107

108 #m3t emperical and theoretical:

109 #Using Euler -Maruyama

110

111 CIR_moment3 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

112 {

113 mufunc = function(Xt,t)

114 {

115 return(alpha*(beta - Xt))

116 }
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117

118 sigfunc = function(Xt,t)

119 {

120 return(sigma*sqrt(Xt))

121 }

122

123 momentfunc = function(Xs,s,t,delta_t,numbsims)

124 {

125

126 Xt = rep(Xs ,numbsims)

127 timespace = seq(s,t,delta_t)

128

129 moment3mat = matrix(Xs,nrow=length(timespace),ncol =1)

130 for(i in 1: length(timespace))

131 {

132 dWt = sqrt(delta_t)*rnorm(numbsims)

133 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

134 moment3mat[i] = mean(Xt^3)

135 }

136

137 plot(moment3mat~timespace ,xlab='t',ylab='m3(t)',type = 'p',lwd = 1 ,col = 'grey')

138

139

140 del = Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2*

alpha)))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

141 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(beta

+ ((sigma ^2) /(2* alpha)))+4* alpha *(beta + (( sigma ^2) /(2* alpha)))*(Xs -beta)

142 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

143 A = kappa /(6* alpha ^3)

144 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

145 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

146 D = -A-B-C

147 theomoment3 = (Xs^3)*exp(-3* alpha*timespace) + (3* alpha*beta +3* sigma ^2)*(A + B*exp(-

alpha*timespace) + C*exp(-2*alpha*timespace) + D*exp(-3*alpha*timespace))

148 lines(theomoment3~timespace ,col="blue",lwd = 2)

149

150 }

151

152 m = momentfunc(Xs,s,t,delta_t,numbsims)

153 }

154

155 #mt4 emperical and theoretical:

156 #Using Euler -Maruyama
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157

158 CIR_moment4 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

159 {

160 mufunc = function(Xt,t)

161 {

162 return(alpha*(beta - Xt))

163 }

164

165 sigfunc = function(Xt,t)

166 {

167 return(sigma*sqrt(Xt))

168 }

169

170 momentfunc = function(Xs,s,t,delta_t,numbsims)

171 {

172

173 Xt = rep(Xs ,numbsims)

174 timespace = seq(s,t,delta_t)

175

176 moment4mat = matrix(Xs,nrow=length(timespace),ncol =1)

177 for(i in 1: length(timespace))

178 {

179 dWt = sqrt(delta_t)*rnorm(numbsims)

180 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

181 moment4mat[i] = mean(Xt^4)

182 }

183

184 plot(moment4mat~timespace ,xlab='t',ylab='m4(t)',type = 'p',lwd = 1 ,col = 'grey')

185

186

187 #theoretical Moment

188 del = Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2*

alpha)))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

189 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(beta

+ ((sigma ^2) /(2* alpha)))+4* alpha *(beta + (( sigma ^2) /(2* alpha)))*(Xs -beta)

190 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

191 A = kappa /(6* alpha ^3)

192 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

193 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

194 D = -A-B-C

195 gamma_star = Xs^3 + 3*( alpha*beta + sigma ^2)*(A + B + C + D)

196 lambda_star = 3* alpha*Xs^3 + 3*( alpha*beta + sigma ^2) *(6* alpha*A + 5*alpha*B + 4*

alpha*C + 3* alpha*D)
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197 omega_star = 2*( alpha ^2)*Xs^3 + 3*( alpha*beta + sigma ^2) *(11*( alpha ^2)*A + 6*( alpha

^2)*B + 3*( alpha ^2)*C + 2*( alpha ^2)*D)

198 nu_star = 3*( alpha*beta + sigma ^2) *(6*A*alpha ^3)

199

200 E = nu_star /(24* alpha ^4)

201 I = ( -1/(6* alpha ^3))*((( omega_star -(13*nu_star /(12* alpha))) -12*( alpha ^2)*(gamma_star

-(nu_star /(24* alpha ^3)))) -4*alpha *(( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha

*(( gamma_star -(nu_star /(24* alpha ^3))))))

202 H = (1/(2* alpha ^2))*((( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_star -(nu_

star /(24* alpha ^3))))) - 6*( alpha ^2)*I)

203 G = (-1/alpha)*(( gamma_star -(nu_star /(24* alpha ^3)))+ 2*alpha*H + 3* alpha*I)

204 FF = -E - G - H - I

205

206

207 theomoment4 = (Xs^4)*exp(-4* alpha*timespace) + (4* alpha*beta + 6*sigma ^2)*(E + FF*exp

(-1*alpha*timespace) + G*exp(-2*alpha*timespace) + H*exp(-3*alpha*timespace) + I*

exp(-4*alpha*timespace))

208 lines(theomoment4~timespace ,col="blue",lwd = 2)

209

210 }

211

212 m = momentfunc(Xs,s,t,delta_t,numbsims)

213 }

214

215 #Plots

216

217

218 M1_plot = CIR_moment1(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

219 labels = c("Theoretical", "Emperical")

220 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("blue","grey"),

bty = 'n', inset = -0.025)

221

222 M2_plot = CIR_moment2(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

223 labels = c("Theoretical", "Emperical")

224 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("blue","grey"),

bty = 'n', inset = -0.025)

225

226 M3_plot = CIR_moment3(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

227 labels = c("Theoretical", "Emperical")

228 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("blue","grey"),

bty = 'n', inset = -0.025)

229

230 M4_plot = CIR_moment4(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)
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231 labels = c("Theoretical", "Emperical")

232 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("blue","grey"),

bty = 'n', inset = -0.025)

Algorithm 6 Empirical and theoretical cumulants of the scalar CIR process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)dt + sigma(Xt ,t)*dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4

5 rm(list=ls(all=TRUE))

6

7 #Seed:

8 set.seed (7)

9

10 #Parameters

11 s = 0

12 t = 5

13 Xs = 2.75

14 alpha = 0.8

15 beta = 3

16 sigma = 0.25

17 delta_t = 0.01 #step length

18 startingstate = 0

19 endstate = 5

20 numbsims = 10000

21 timespace = seq(s,t,delta_t)

22 statespace = seq(startingstate ,endstate ,delta_t)

23

24

25 par(mfrow=c(2,2),ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.8, 1, 0), las

=1)

26

27 #k1t emperical and theoretical:

28 CIR_cumulant1 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

29 {

30 mufunc = function(Xt,t)

31 {

32 return(alpha*(beta - Xt))

33 }

34

35 sigfunc = function(Xt,t)

36 {
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37 return(sigma*sqrt(Xt))

38 }

39

40 cumulantfunc = function(Xs,s,t,delta_t,numbsims)

41 {

42

43 Xt = rep(Xs ,numbsims)

44 timespace = seq(s,t,delta_t)

45

46 cumulant1mat = matrix(Xs ,nrow=length(timespace),ncol =1)

47 for(i in 1: length(timespace))

48 {

49 dWt = sqrt(delta_t)*rnorm(numbsims)

50 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

51 cumulant1mat[i] = mean(Xt)

52 }

53

54 plot(cumulant1mat~timespace ,xlab='t',ylab='k1(t)',type = 'p',lwd = 1 ,col = 'grey')

55

56 #theoretical Moment

57 theomoment1 = Xs*exp(-alpha*timespace) + beta *(1 - exp(-alpha*timespace))

58

59 #theoretical Cumulant

60 theocumulant1 = theomoment1

61 lines(theocumulant1~timespace ,col="blue",lwd = 2)

62

63 }

64

65 c = cumulantfunc(Xs,s,t,delta_t,numbsims)

66 }

67

68

69 #k2t emperical and theoretical:

70 CIR_cumulant2 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

71 {

72 mufunc = function(Xt,t)

73 {

74 return(alpha*(beta - Xt))

75 }

76

77 sigfunc = function(Xt,t)

78 {

79 return(sigma*sqrt(Xt))
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80 }

81

82 cumulantfunc = function(Xs,s,t,delta_t,numbsims)

83 {

84

85 Xt = rep(Xs ,numbsims)

86 timespace = seq(s,t,delta_t)

87

88 cumulant2mat = matrix(Xs,nrow=length(timespace),ncol =1)

89 for(i in 1: length(timespace))

90 {

91 dWt = sqrt(delta_t)*rnorm(numbsims)

92 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

93 cumulant2mat[i] = mean(Xt^2) - (mean(Xt))^2

94 }

95

96 plot(cumulant2mat~timespace ,xlab='t',ylab='k2(t)',type = 'p',lwd = 1 ,col = 'grey')

97

98 #theoretical Moment

99 theomoment1 = Xs*exp(-alpha*timespace) + beta *(1 - exp(-alpha*timespace))

100 theomoment2 = (Xs^2)*exp(-2* alpha*timespace) + (beta + (sigma ^2) /(2* alpha))*(beta +

2*(Xs-beta)*exp(-alpha*timespace) + (beta - 2*Xs)*exp(-2*alpha*timespace))

101

102 #theoretical Cumulant

103 theocumulant2 = theomoment2 -( theomoment1)^2

104 lines(theocumulant2~timespace ,col="blue",lwd = 2)

105

106 }

107

108 c = cumulantfunc(Xs,s,t,delta_t,numbsims)

109 }

110

111 #k3t emperical and theoretical:

112 CIR_cumulant3 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

113 {

114 mufunc = function(Xt,t)

115 {

116 return(alpha*(beta - Xt))

117 }

118

119 sigfunc = function(Xt,t)

120 {

121 return(sigma*sqrt(Xt))
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122 }

123

124 cumulantfunc = function(Xs,s,t,delta_t,numbsims)

125 {

126

127 Xt = rep(Xs ,numbsims)

128 timespace = seq(s,t,delta_t)

129

130 cumulant3mat = matrix(Xs,nrow=length(timespace),ncol =1)

131 for(i in 1: length(timespace))

132 {

133 dWt = sqrt(delta_t)*rnorm(numbsims)

134 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

135 #theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

136 cumulant3mat[i] = mean(Xt^3) - 3*mean(Xt)*(mean(Xt^2)) + 2*mean(Xt)^3

137 }

138

139 plot(cumulant3mat~timespace ,xlab='t',ylab='k3(t)',type = 'p',lwd = 1 ,col = 'grey')

140

141 #theoretical Moment

142 del = Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2*

alpha)))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

143 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(beta

+ ((sigma ^2) /(2* alpha)))+4* alpha *(beta + (( sigma ^2) /(2* alpha)))*(Xs -beta)

144 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

145 A = kappa /(6* alpha ^3)

146 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

147 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

148 D = -A-B-C

149

150 theomoment1 = Xs*exp(-alpha*timespace) + beta *(1 - exp(-alpha*timespace))

151 theomoment2 = (Xs^2)*exp(-2* alpha*timespace) + (beta + (sigma ^2) /(2* alpha))*(beta +

2*(Xs-beta)*exp(-alpha*timespace) + (beta - 2*Xs)*exp(-2*alpha*timespace))

152 theomoment3 = (Xs^3)*exp(-3* alpha*timespace) + (3* alpha*beta +3* sigma ^2)*(A + B*exp(-

alpha*timespace) + C*exp(-2*alpha*timespace) + D*exp(-3*alpha*timespace))

153

154 #theoretical Cumulant

155 theocumulant1 = theomoment1

156 theocumulant2 = theomoment2 -( theomoment1)^2

157 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

158 lines(theocumulant3~timespace ,col="blue",lwd = 2)

159

160 }
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161

162 c = cumulantfunc(Xs,s,t,delta_t,numbsims)

163 }

164

165 #k4t emperical and theoretical:

166 CIR_cumulant4 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

167 {

168 mufunc = function(Xt,t)

169 {

170 return(alpha*(beta - Xt))

171 }

172

173 sigfunc = function(Xt,t)

174 {

175 return(sigma*sqrt(Xt))

176 }

177

178 cumulantfunc = function(Xs,s,t,delta_t,numbsims)

179 {

180

181 Xt = rep(Xs ,numbsims)

182 timespace = seq(s,t,delta_t)

183

184 cumulant4mat = matrix(Xs,nrow=length(timespace),ncol =1)

185 for(i in 1: length(timespace))

186 {

187 dWt = sqrt(delta_t)*rnorm(numbsims)

188 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

189 #theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

190 cumulant4mat[i] = -6*(mean(Xt)^4) + 12*( mean(Xt)^2)*(mean(Xt^2)) - 3*( mean(Xt^2)^2)

- 4*mean(Xt)*mean(Xt^3) + mean(Xt^4)

191 }

192

193 plot(cumulant4mat~timespace ,xlab='t',ylab='k4(t)',type = 'p',lwd = 1 ,col = 'grey')

194

195 #theoretical Moment

196 del = Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2*

alpha)))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

197 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(beta

+ ((sigma ^2) /(2* alpha)))+4* alpha *(beta + (( sigma ^2) /(2* alpha)))*(Xs -beta)

198 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

199 A = kappa /(6* alpha ^3)

200 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

97



201 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

202 D = -A-B-C

203 gamma_star = Xs^3 + 3*( alpha*beta + sigma ^2)*(A + B + C + D)

204 lambda_star = 3* alpha*Xs^3 + 3*( alpha*beta + sigma ^2) *(6* alpha*A + 5*alpha*B + 4*

alpha*C + 3* alpha*D)

205 omega_star = 2*( alpha ^2)*Xs^3 + 3*( alpha*beta + sigma ^2) *(11*( alpha ^2)*A + 6*( alpha

^2)*B + 3*( alpha ^2)*C + 2*( alpha ^2)*D)

206 nu_star = 3*( alpha*beta + sigma ^2) *(6*A*alpha ^3)

207

208 E = nu_star /(24* alpha ^4)

209 I = ( -1/(6* alpha ^3))*((( omega_star -(13*nu_star /(12* alpha))) -12*( alpha ^2)*(gamma_star

-(nu_star /(24* alpha ^3)))) -4*alpha *(( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha

*(( gamma_star -(nu_star /(24* alpha ^3))))))

210 H = (1/(2* alpha ^2))*((( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_star -(nu_

star /(24* alpha ^3))))) - 6*( alpha ^2)*I)

211 G = (-1/alpha)*(( gamma_star -(nu_star /(24* alpha ^3)))+ 2*alpha*H + 3* alpha*I)

212 FF = -E - G - H - I

213

214 theomoment1 = Xs*exp(-alpha*timespace) + beta *(1 - exp(-alpha*timespace))

215 theomoment2 = (Xs^2)*exp(-2* alpha*timespace) + (beta + (sigma ^2) /(2* alpha))*(beta +

2*(Xs-beta)*exp(-alpha*timespace) + (beta - 2*Xs)*exp(-2*alpha*timespace))

216 theomoment3 = (Xs^3)*exp(-3* alpha*timespace) + (3* alpha*beta +3* sigma ^2)*(A + B*exp(-

alpha*timespace) + C*exp(-2*alpha*timespace) + D*exp(-3*alpha*timespace))

217 theomoment4 = (Xs^4)*exp(-4* alpha*timespace) + (4* alpha*beta + 6*sigma ^2)*(E + FF*exp

(-1*alpha*timespace) + G*exp(-2*alpha*timespace) + H*exp(-3*alpha*timespace) + I*

exp(-4*alpha*timespace))

218

219 #theoretical Cumulant

220 theocumulant1 = theomoment1

221 theocumulant2 = theomoment2 -( theomoment1)^2

222 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

223 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*(

theomoment2 ^2) - 4* theomoment1*theomoment3 + theomoment4

224 lines(theocumulant4~timespace ,col="blue",lwd = 2)

225

226 }

227

228 c = cumulantfunc(Xs,s,t,delta_t,numbsims)

229 }

230

231 #Plots

232

233
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234 C1_plot = CIR_cumulant1(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

235 labels = c("Theoretical", "Emperical")

236 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("blue","grey"),

bty = 'n', inset = -0.025)

237

238 C2_plot = CIR_cumulant2(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

239 labels = c("Theoretical", "Emperical")

240 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("blue","grey"),

bty = 'n', inset = -0.025)

241

242 C3_plot = CIR_cumulant3(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

243 labels = c("Theoretical", "Emperical")

244 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("blue","grey"),

bty = 'n', inset = -0.025)

245

246 C4_plot = CIR_cumulant4(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

247 labels = c("Theoretical", "Emperical")

248 legend("topleft", title = NA ,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("blue","grey"), bty

= 'n',inset = -0.14)

Algorithm 7 True transition density and the Moment-truncated saddlepoint transition density approx-
imation of the transition density of the scalar CIR process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)dt + sigma(Xt ,t)dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4

5 rm(list=ls(all=TRUE))

6

7 #Seed:

8 set.seed (7)

9

10 #Parameters

11 s = 0

12 t = 5

13 Xs = 2.75

14 alpha = 0.8

15 beta = 3

16 sigma = 0.25

17 delta_t = 0.01 #step length

18 startingstate = 0

19 endstate = 5
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20 numbsims = 10000

21 timespace = seq(s,t,delta_t)

22 statespace = seq(startingstate ,endstate ,delta_t)

23

24 par(ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1, 0), las =1)

25

26 #Theoretical density 1: PLotted from the density given in Sahalia -paper

27

28 CIR_theoretical1 = function(s,t,Xs,Xt ,alpha ,beta ,sigma)

29 {

30 c = (2* alpha)/(( sigma ^2)*(1-exp(-alpha*(t-s))))

31 u = c*Xs*exp(-alpha*(t-s))

32 v = c*Xt

33 q = 2* alpha*beta/(sigma ^2) - 1

34 besselparameter = 2*(u*v)^(0.5)

35 besselfunction = besselI(besselparameter ,q,expon.scaled = TRUE)

36 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+besselparameter

37 logfXt = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

38 return(exp(logfXt))

39 }

40

41 Xt = statespace

42 plot_theoretical1 = CIR_theoretical1(s,t,Xs,Xt,alpha ,beta ,sigma)

43

44 plot(plot_theoretical1~Xt ,col = "black",lwd = 3, type="l", ylab = "Density", xlab='Xt')

45

46 #saddlepoint Approx

47

48 #theoretical Moment

49 del = Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2* alpha)

))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

50 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(beta + ((

sigma ^2) /(2* alpha)))+4* alpha*(beta + (( sigma ^2) /(2* alpha)))*(Xs -beta)

51 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

52 A = kappa /(6* alpha ^3)

53 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

54 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

55 D = -A-B-C

56

57 gamma_star = Xs^3 + 3*( alpha*beta + sigma ^2)*(A + B + C + D)

58 lambda_star = 3* alpha*Xs^3 + 3*( alpha*beta + sigma ^2) *(6* alpha*A + 5*alpha*B + 4*alpha*C

+ 3*alpha*D)

59 omega_star = 2*( alpha ^2)*Xs^3 + 3*( alpha*beta + sigma ^2) *(11*( alpha ^2)*A + 6*( alpha ^2)*B
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+ 3*( alpha ^2)*C + 2*( alpha ^2)*D)

60 nu_star = 3*( alpha*beta + sigma ^2) *(6*A*alpha ^3)

61

62 E = nu_star /(24* alpha ^4)

63 I = ( -1/(6* alpha ^3))*((( omega_star -(13*nu_star /(12* alpha))) -12*( alpha ^2)*(gamma_star -(nu_

star /(24* alpha ^3)))) -4*alpha *(( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_

star -(nu_star /(24* alpha ^3))))))

64 H = (1/(2* alpha ^2))*((( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_star -(nu_star

/(24* alpha ^3))))) - 6*( alpha ^2)*I)

65 G = (-1/alpha)*(( gamma_star -(nu_star /(24* alpha ^3)))+ 2*alpha*H + 3* alpha*I)

66 FF = -E - G - H - I

67

68 theomoment1 = Xs*exp(-alpha *(t-s)) + beta *(1 - exp(-alpha*(t-s)))

69 theomoment2 = (Xs^2)*exp(-2* alpha*(t-s)) + (beta + (sigma ^2) /(2* alpha))*(beta + 2*(Xs -

beta)*exp(-alpha *(t-s)) + (beta - 2*Xs)*exp(-2*alpha*(t-s)))

70 theomoment3 = (Xs^3)*exp(-3* alpha*(t-s)) + (3* alpha*beta +3* sigma ^2)*(A + B*exp(-alpha*(t-

s)) + C*exp(-2*alpha *(t-s)) + D*exp(-3*alpha*(t-s)))

71 theomoment4 = (Xs^4)*exp(-4* alpha*(t-s)) + (4* alpha*beta + 6*sigma ^2)*(E + FF*exp(-1*

alpha*(t-s)) + G*exp(-2* alpha*(t-s)) + H*exp(-3*alpha *(t-s)) + I*exp(-4*alpha*(t-s)))

72

73 #theoretical Cumulant

74 theocumulant1 = theomoment1

75 theocumulant2 = theomoment2 -( theomoment1)^2

76 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

77 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*( theomoment2 ^2)

- 4* theomoment1*theomoment3 + theomoment4

78

79 X = statespace

80

81 s = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X)) -

theocumulant2)

82 Ksapprox = theocumulant1*s + theocumulant2 *((1/2)*s^2) + theocumulant3 *((1/6)*s^3) +

theocumulant4 *((1/24)*s^4)

83 Ks2approx = theocumulant2 + theocumulant3*s + 0.5* theocumulant4*s^2

84

85 saddle_pt_approx = exp(Ksapprox -s*X)*sqrt (1/(2* pi*Ks2approx))

86 #print(saddle_pt_approx)

87

88 lines(saddle_pt_approx~statespace ,lty = 3,col = "dodgerblue1", lwd = 3)

89 labels = c("Theoretical", "saddlepoint approx")

90 legend("topleft", title = NA ,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("black","

dodgerblue1"), bty = 'n')
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Algorithm 8 Trajectory of the 5 year observed S&P500VIX dataset.

1 rm(list = ls(all = TRUE))

2 set.seed (7)

3

4 library(readxl)

5 SP500VIX <- read_excel("D:/ ResearchUSB/Report_Draft_Final/Code/R_code/final_draft_code/

original_model/SP500VIX.xlsx",

6 col_types = c("date", "numeric"))

7

8

9 X = as.matrix(na.omit(SP500VIX$VIX),nrow(na.omit(SP500VIX$VIX)) ,1) #1Jan2012 -30 Dec2016

10

11

12 #Simulating the trajectory of saddlepoint mles and theoretical mles

13

14 set.seed (7)

15

16 par(ps=9,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1.5, 0), las=1)

17

18 plot(SP500VIX$VIX ,SP500VIX$date ,ylab = "VIX",xlab="Days",type = "l", col="black",ylim = c

(0,40))

19 legend("bottomright", title = NA, "Observed VIX",lty = c(1), lwd = c(2) ,col="black", bty

= 'n',horiz=F)

Algorithm 9 Theoretical maximum likelihood estimation of the scalar CIR process's parameters.

1 rm(list = ls(all = TRUE))

2

3 set.seed (7)

4

5 library(readxl)

6 SP500VIX <- read_excel("D:/ ResearchUSB/Report_Draft_Final/Code/R_code/final_draft_code/

original_model/SP500VIX.xlsx",

7 col_types = c("date", "numeric"))

8

9 Xt = as.matrix(na.omit(SP500VIX$VIX),nrow(na.omit(SP500VIX$VIX)) ,1) #1Jan2012 -30 Dec2016

10

11 n = nrow(Xt)

12 s = 1/250

13 t = 5

14
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15 timespace = seq(s,n/250,s)

16

17

18 likelihood = function(theta)

19 {

20 alpha = theta [1]

21 beta = theta [2]

22 sigma = theta [3]

23 Xt = Xt[-n]

24 Xs = Xt[-1]

25 dt = diff(timespace)[1] #1/250

26 a = ((sigma ^2)/alpha)*(exp(-alpha*(dt))-exp(-2*alpha *(dt)))

27 b = (1-exp(-alpha*(dt)))

28 mean = Xs*exp(-alpha*(dt)) + beta*b

29 variance = Xs*a + beta *(( sigma ^2) /(2* alpha))*(b^2)

30 theta = variance/mean

31 kappa = (mean ^2)/variance

32 f = dgamma(Xt ,scale=theta ,shape=kappa ,log=TRUE)

33 minloglike = -sum(f)

34 return(minloglike)

35 }

36

37 mle_estimates = nlm(likelihood , c(0.5 ,3 ,0.2))

38

39 print(mle_estimates$estimate)

Algorithm 10 Moment-truncated saddlepoint transition density approximation maximum likelihood
estimation of the scalar CIR process's parameters.

1

2 rm(list = ls(all = TRUE))

3

4 set.seed (7)

5

6 library(readxl)

7 SP500VIX <- read_excel("D:/ ResearchUSB/Report_Draft_Final/Code/R_code/final_draft_code/

original_model/SP500VIX.xlsx",

8 col_types = c("date", "numeric"))

9

10 #saddlepoint mle

11 X = as.matrix(na.omit(SP500VIX$VIX),nrow(na.omit(SP500VIX$VIX)) ,1) #1Jan2012 -30 Dec2016

12

13
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14 #plot(SP500VIX , type = "l", ylab="VIX")

15

16 s = 1/250

17 Xs = mean(X)

18 Tt = 5

19 numberparsim = 1000

20 numberpar = 3

21 sims = 1

22 alpha_min = 20

23 alpha_max = 24

24 beta_min = 13

25 beta_max = 17

26 sigma_min = 3

27 sigma_max = 7

28 simulations = 10

29 dt = s

30

31 max_theta_matrix = matrix(0,simulations ,numberpar)

32

33

34 for (m in 1: simulations)

35 {

36

37 main_function = function(numberparsim ,numberpar ,s,t,Xs,alpha_min ,alpha_max ,beta_min ,

beta_max ,sigma_min ,sigma_max)

38 {

39 m = numberpar + 1

40

41 theta_matrix = matrix(0,numberparsim ,m)

42 for (i in 1: numberparsim)

43 {

44 theta_matrix[i,1] = runif(1,alpha_min ,alpha_max)

45 theta_matrix[i,2] = runif(1,beta_min ,beta_max)

46 theta_matrix[i,3] = runif(1,sigma_min ,sigma_max)

47

48 alpha = theta_matrix[i,1]

49 beta = theta_matrix[i,2]

50 sigma = theta_matrix[i,3]

51

52 #theoretical Moment

53 del = Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2*

alpha)))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

54 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(
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beta + (( sigma ^2) /(2* alpha)))+4* alpha*(beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

55 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

56 A = kappa /(6* alpha ^3)

57 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

58 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

59 D = -A-B-C

60

61 gamma_star = Xs^3 + 3*( alpha*beta + sigma ^2)*(A + B + C + D)

62 lambda_star = 3* alpha*Xs^3 + 3*( alpha*beta + sigma ^2) *(6* alpha*A + 5* alpha*B + 4*

alpha*C + 3* alpha*D)

63 omega_star = 2*( alpha ^2)*Xs^3 + 3*( alpha*beta + sigma ^2) *(11*( alpha ^2)*A + 6*( alpha

^2)*B + 3*( alpha ^2)*C + 2*( alpha ^2)*D)

64 nu_star = 3*( alpha*beta + sigma ^2) *(6*A*alpha ^3)

65

66 E = nu_star /(24* alpha ^4)

67 I = ( -1/(6* alpha ^3))*((( omega_star -(13*nu_star /(12* alpha))) -12*( alpha ^2)*(gamma_

star -(nu_star /(24* alpha ^3)))) -4*alpha *(( lambda_star -(3*nu_star /(8* alpha ^2))) -7*

alpha *(( gamma_star -(nu_star /(24* alpha ^3))))))

68 H = (1/(2* alpha ^2))*((( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_star -(

nu_star /(24* alpha ^3))))) - 6*( alpha ^2)*I)

69 G = (-1/alpha)*(( gamma_star -(nu_star /(24* alpha ^3)))+ 2*alpha*H + 3* alpha*I)

70 FF = -E - G - H - I

71

72 theomoment1 = Xs*exp(-alpha*dt) + beta *(1 - exp(-alpha*dt))

73 theomoment2 = (Xs^2)*exp(-2* alpha*dt) + (beta + (sigma ^2) /(2* alpha))*(beta + 2*(Xs-

beta)*exp(-alpha*dt) + (beta - 2*Xs)*exp(-2*alpha*dt))

74 theomoment3 = (Xs^3)*exp(-3* alpha*dt) + (3* alpha*beta +3* sigma ^2)*(A + B*exp(-alpha*

dt) + C*exp(-2*alpha*dt) + D*exp(-3*alpha*dt))

75 theomoment4 = (Xs^4)*exp(-4* alpha*dt) + (4* alpha*beta + 6* sigma ^2)*(E + FF*exp(-1*

alpha*dt) + G*exp(-2*alpha*dt) + H*exp(-3*alpha*dt) + I*exp(-4* alpha*dt))

76

77

78 #theoretical Cumulant

79 theocumulant1 = theomoment1

80 theocumulant2 = theomoment2 -( theomoment1)^2

81 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

82 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*(

theomoment2 ^2) - 4* theomoment1*theomoment3 + theomoment4

83

84 n = nrow(X)

85 cumul_sum_vec = matrix(0,n,1)

86

87 r = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X[1]))
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- theocumulant2)

88 Krapprox = theocumulant1*r + theocumulant2 *((1/2)*r^2) + theocumulant3 *((1/6)*r^3)

+ theocumulant4 *((1/24)*r^4)

89 Kr2approx = theocumulant2 + theocumulant3*r + 0.5* theocumulant4*r^2

90 saddle_pt_approx = exp(Krapprox -r*X[1])*sqrt (1/(2* pi*Kr2approx))

91 sum1 = log(saddle_pt_approx)

92

93 cumul_sum_vec [1] = sum1

94

95 for (l in 2:n)

96 {

97 r = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X[l

])) - theocumulant2)

98 Krapprox = theocumulant1*r + theocumulant2 *((1/2)*r^2) + theocumulant3 *((1/6)*r

^3) + theocumulant4 *((1/24)*r^4)

99 Kr2approx = theocumulant2 + theocumulant3*r + 0.5* theocumulant4*r^2

100 saddle_pt_approx = exp(Krapprox -r*X[l])*sqrt (1/(2* pi*Kr2approx))

101 log_saddle = log(saddle_pt_approx)

102 sum_log_saddle = cumul_sum_vec[l-1] + log_saddle

103 cumul_sum_vec[l] = sum_log_saddle

104 }

105

106 theta_matrix[i,4] = cumul_sum_vec[n]

107

108 }

109

110 return(theta_matrix)

111

112 }

113

114

115 call_main_function = main_function(numberparsim ,numberpar ,s,t,Xs,alpha_min ,alpha_max ,

beta_min ,beta_max ,sigma_min ,sigma_max)

116 #print(call_main_function

117

118

119

120 for (i in 1: numberparsim)

121 {

122 if ((call_main_function[i,4]=="NaN"))

123 {call_main_function[i,4] = -100000000000000000000000000}

124 }

125
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126 maximum = max(call_main_function [,4])

127

128 for (j in 1: numberparsim)

129 {

130 if (call_main_function[j,4]== maximum)

131 {

132 max_theta = call_main_function[j,1:3]

133 max_alpha = max_theta [1]

134 max_beta = max_theta [2]

135 max_sigma = max_theta [3]

136 }

137 }

138

139 max_theta_matrix[m,1] = max_alpha

140 max_theta_matrix[m,2] = max_beta

141 max_theta_matrix[m,3] = max_sigma

142

143 }

144

145 print(max_theta_matrix)

146

147 one = matrix(1,1, simulations)

148 theta_mles = (1/ simulations)*one %*%( max_theta_matrix)

149 names(theta_mles) = c("alpha","beta","sigma")

150

151 theta_mles_fin = as.data.frame(rbind(names(theta_mles),theta_mles) ,1,3)

152

153 print(theta_mles_fin)

154

155 saddle_mlesa = as.matrix(theta_mles_fin ,3,1)

Algorithm 11 Simulated trajectories using the theoretical and saddlepoint transition density approxi-
mation maximum likelihood estimates of the scalar CIR process.

1 rm(list = ls(all = TRUE))

2

3 library(readxl)

4 SP500VIX <- read_excel("D:/ ResearchUSB/Report_Draft_Final/Code/R_code/final_draft_code/

original_model/SP500VIX.xlsx",

5 col_types = c("date", "numeric"))

6

7

8 X = as.matrix(na.omit(SP500VIX$VIX),nrow(na.omit(SP500VIX$VIX)) ,1) #1Jan2012 -30 Dec2016
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9

10

11 #Simulating the trajectory of saddlepoint mles and theoretical mles

12

13 set.seed (7)

14

15 par(mfrow=c(2,1),ps=9,cex.lab=1,cex.axis=1,mar=c(2.5 ,2.5 ,2.5 ,2.5), mgp=c(1.5, 0.75, 0),

las =1)

16

17

18 #parameters:

19 s = 1/250

20 Tt = 5

21 dt = s

22 Xs = mean(X)

23

24

25 CIR_mle_theoretical_trajectory = function(s,Tt,Xs,alpha ,beta ,sigma ,dt)

26 {

27

28 #Theoretical mle's

29 alpha = 22.425318

30 beta = 15.740536

31 sigma = 5.127504

32

33 timeseq = (seq(s,Tt,dt))

34 datamatrix = matrix(0,nrow = length(timeseq), ncol = 1)

35 Z1 = rnorm(1,mean = 0, sd = sqrt(dt))

36 Xt = Xs + alpha*(beta -Xs)*dt + sigma*sqrt(Xs)*Z1

37 datamatrix [1] = Xt

38

39 for(i in 2: length(timeseq))

40 {

41 dWt = rnorm(1,mean = 0, sd = sqrt(dt))

42 Xtplus1 = Xt + alpha *(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

43 Xt = Xtplus1

44 datamatrix[i] = Xtplus1

45 }

46

47 X = datamatrix

48

49 plot(X~seq(s,Tt,dt),type = "l", col="mediumorchid", xlab="Years", ylab = "Simulated VIX

- theoretical mle's")
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50 }

51

52 trajectory_plot = CIR_mle_theoretical_trajectory(s,Tt ,Xs,alpha ,beta ,sigma ,dt)

53

54 CIR_mle_Saddle_trajectory = function(s,Tt,Xs,alpha ,beta ,sigma ,dt)

55 {

56

57 #saddlepoint mles

58 alpha = 22.2687135545537

59 beta = 15.5513544885442

60 sigma = 5.2684889501892

61

62

63 timeseq = (seq(s,Tt,dt))

64 datamatrix = matrix(0,nrow = length(timeseq), ncol = 1)

65 Z1 = rnorm(1,mean = 0, sd = sqrt(dt))

66 Xt = Xs + alpha*(beta -Xs)*dt + sigma*sqrt(Xs)*Z1

67 datamatrix [1] = Xt

68

69 for(i in 2: length(timeseq))

70 {

71 dWt = rnorm(1,mean = 0, sd = sqrt(dt))

72 Xtplus1 = Xt + alpha *(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

73 Xt = Xtplus1

74 datamatrix[i] = Xtplus1

75 }

76

77 X = datamatrix

78

79 plot(X~seq(s,Tt,dt),type="l",col="royalblue",xlab="Years", ylab = "Simulated VIX -

saddlepoint approx. mle's")

80 }

81

82 trajectory_plot = CIR_mle_Saddle_trajectory(s,Tt ,Xs,alpha ,beta ,sigma ,dt)

Algorithm 12 Simulated trajectories for the mixed-e�ects CIR process

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)*dt + sigma(Xt,t)*dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4

5 rm(list=ls(all=TRUE))

6
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7 #Seed:

8 set.seed (7)

9

10 #Parameters

11 s = 0

12 t = 5

13 Xs = 2.75

14 alpha = 0.8

15 beta = 3

16 sigma = 0.25

17 delta_t = 0.01 #step length

18 startingstate = 0

19 endstate = 5

20 timespace = seq(s,t,delta_t)

21 statespace = seq(startingstate ,endstate ,delta_t)

22

23

24 #Simulating the trajectory

25 func = function(randsims , a,b)

26 {

27 sigma_vec = rnorm(randsims ,a,b)

28 trajectory_matrix = matrix(0,nrow = length(timespace), ncol = randsims)

29 one = matrix(1,nrow = randsims , 1)

30

31 for (r in 1: randsims)

32 {

33 sigma = sigma_vec[r]

34

35 CIR_trajectory = function(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

36 {

37

38 timespace = seq(s,t,delta_t)

39 datamatrix = matrix(0,nrow = length(timespace), ncol = 1)

40 Z1 = rnorm(1,mean = 0, sd = sqrt(delta_t))

41 Xt = Xs + alpha *(beta -Xs)*delta_t + sigma*sqrt(Xs)*Z1

42 datamatrix [1] = Xt

43 trajectory_matrix [,1] = datamatrix [1]

44

45 for(i in 2: length(timespace))

46 {

47 dWt = rnorm(1,mean = 0, sd = sqrt(delta_t))

48 Xtplus1 = Xt + alpha *(beta -Xt)*delta_t + sigma*sqrt(Xt)*dWt

49 Xt = Xtplus1
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50 datamatrix[i] = Xtplus1

51 }

52 return(datamatrix)

53 }

54

55 trajectory_matrix[,r] = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,

endstate)

56

57 }

58

59 #print(trajectory_matrix)

60

61 plot(trajectory_matrix [,1]~ timespace ,type ='l', col = rainbow(1, start = runif

(1 ,0.55 ,0.85), end = runif (1 ,0.65 ,0.75),alpha = 0.15), xlab="t",ylab = "Xt",ylim=c

(0,5))

62

63

64 color = rainbow(randsims -1, start = .5, end = .7)

65 for (plotnumb in 2: randsims)

66 {

67 lines(trajectory_matrix[,plotnumb ]~timespace ,col = rainbow(1, start = runif

(1 ,0.55 ,0.85), end = runif (1 ,0.65 ,0.85),alpha = 0.15), type = 'l')

68 }

69

70 mean_trajectory = (1/ randsims)*trajectory_matrix %*% one

71 #print(mean_trajectory)

72

73 lines(mean_trajectory~timespace , col = "midnightblue", type = 'l', lwd = 3)

74

75 }

76

77 par(mfrow=c(2,2),ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1, 0), las

=1)

78

79 a = 0.25

80 b = 0.15

81

82 func(10,a,b)

83 labels = c("10 Simulations", "Average")

84 legend("bottomright", title = NA, labels ,lty = c(1,1), lwd = c(5,3) ,col=c(rainbow(1,

start = 0.7, end = 0.75 ,alpha = 0.25) ,"midnightblue"), bty = 'n',horiz=T)

85

86 func(25,a,b)
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87 labels = c("25 Simulations", "Average")

88 legend("bottomright", title = NA, labels ,lty = c(1,1), lwd = c(5,3) ,col=c(rainbow(1,

start = 0.7, end = 0.75 ,alpha = 0.35) ,"midnightblue"), bty = 'n',horiz=T)

89

90 func (100,a,b)

91 labels = c("100 Simulations", "Average")

92 legend("bottomright", title = NA, labels ,lty = c(1,1), lwd = c(5,3) ,col=c(rainbow(1,

start = 0.7, end = 0.75 ,alpha = 0.5),"midnightblue"), bty = 'n',horiz=T)

93

94 func (250,a,b)

95 labels = c("250 Simulations", "Average")

96 legend("bottomright", title = NA, labels ,lty = c(1,1), lwd = c(5,3) ,col=c(rainbow(1,

start = 0.7, end = 0.75 ,alpha = 0.6),"midnightblue"), bty = 'n',horiz = T)

Algorithm 13 Overlayed perspective plots for the mixed-e�ects CIR di�usion process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)*dt + sigma(Xt,t)*dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4

5 rm(list=ls(all=TRUE))

6

7

8 set.seed (7)

9

10 #Parameters

11 s = 0

12 t = 5

13 Xs = 2.75

14 alpha = 0.8

15 beta = 3

16 delta_t = 0.1 #step length

17 startingstate = 0

18 endstate = 5

19 timespace = seq(s,t,delta_t)

20 statespace = seq(startingstate ,endstate ,delta_t)

21 a = 0.25

22 b = 0.15

23 randsimsactual = 100

24

25

26 simplotfunc = function(a,b,randsims ,randsimsactual , theta_rv,phi_rv ,r_rv)

27 {
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28

29 #Perspective Plot

30 funcpersps = function(randsims ,randsimsactual ,a,b,theta_rv ,phi_rv,r_rv)

31 {

32 set.seed (7)

33

34 CIR_perspective = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,shade

_rv = 0.9, theta_rv , phi_rv, r_rv,seedval ,transparency ,make_axes)

35 {

36

37 set.seed(seedval)

38

39 timespace = seq(s,t,delta_t)

40 statespace = seq(startingstate ,endstate ,delta_t)

41

42 datamatrix = matrix(0,length(timespace),length(statespace))

43

44 for (t in s:length(timespace))

45 {

46 for (state in startingstate:length(statespace))

47 {

48 c = (2* alpha)/(( sigma ^2)*(1-exp(-alpha *( timespace[t]-s))))

49 u = c*Xs*exp(-alpha*( timespace[t]-s))

50 v = c*statespace[state]

51 q = 2* alpha*beta/( sigma ^2) - 1

52 besselparameter = 2*(u*v)^(0.5)

53 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+

besselparameter

54 logfXt_t = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

55 datamatrix[t,state] = exp(logfXt_t)

56 }

57

58 }

59

60

61 if (make_axes ==1)

62 {

63 perspplot = persp(timespace ,statespace ,datamatrix , col = rainbow(1, start = runif

(1 ,0.85 ,0.95), end = runif (1 ,0.30 ,0.90),alpha=transparency), xlab="t", ylab="

Xt",zlab="Density", border = NA, shade = 0.7 , theta = theta_rv , phi = phi_rv

, r = r_rv, ticktype = "detailed",zlim=c(0 ,5.5),box=T)

64 }

65 else
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66 {

67 perspplot = persp(timespace ,statespace ,datamatrix , col = rainbow(1, start = runif

(1 ,0.55 ,0.65), end = runif (1 ,0.45 ,0.65), alpha=transparency), xlab=NA, ylab=

NA,zlab=NA, border = NA , shade = 0.7, theta = theta_rv, phi = phi_rv, r = r_

rv, box = FALSE ,zlim=c(0 ,5.5))

68 }

69

70

71 return(perspplot)

72

73

74 }

75

76 sigma_vec = rnorm(randsimsactual ,a,b)

77 transvec = seq(0.4,0.7, length.out = randsims)

78 plotsigmavec = matrix(0,randsims ,1)

79 plot_selection_seed = round(runif (1 ,1 ,10000))

80 set.seed(plot_selection_seed)

81 plotsigmavec = sample(sigma_vec ,randsims ,replace=F)

82

83 #Renew Original Seed

84 set.seed (7)

85

86 CIR_perspective(s,t,Xs,alpha ,beta ,plotsigmavec [1],delta_t,startingstate ,endstate ,

shade_rv = 0.8 , theta_rv, phi_rv ,r_rv,seedval=1, transparency=transvec [1],1)

87 for (plotnumb in 2: randsims)

88 {

89 transparency = 1-transvec[plotnumb]

90 seedval=plotnumb

91 par(new=T)

92 CIR_perspective(s,t,Xs ,alpha ,beta ,plotsigmavec[plotnumb],delta_t,startingstate ,

endstate ,shade_rv = 0.8 , theta_rv, phi_rv ,r_rv ,seedval ,transparency ,0)

93 }

94

95 }

96

97 #Final Plotting

98

99 funcpersps(randsims ,randsimsactual ,a,b,theta_rv,phi_rv ,r_rv)

100 title(main = bquote(lambda == .( randsims)))

101

102 }

103
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104 par(mfrow=c(4,3),ps=9,cex.lab=1,cex.axis =0.6,mar=c(2, 2, 2, 0.25) , mgp=c(2, 1.5, 0), las

=1)

105

106 simplotfunc(a,b,randsims=2,randsimsactual ,45 ,35 ,35)

107

108 simplotfunc(a,b,randsims=2,randsimsactual ,0,0,90)

109

110 simplotfunc(a,b,randsims=2,randsimsactual ,90,0,35)

111

112 ######

113

114 simplotfunc(a,b,randsims=3,randsimsactual ,45 ,35 ,35)

115

116 simplotfunc(a,b,randsims=3,randsimsactual ,0,0,90)

117

118 simplotfunc(a,b,randsims=3,randsimsactual ,90,0,35)

119

120 ######

121

122 simplotfunc(a,b,randsims=7,randsimsactual ,45 ,35 ,35)

123

124 simplotfunc(a,b,randsims=7,randsimsactual ,0,0,90)

125

126 simplotfunc(a,b,randsims=7,randsimsactual ,90,0,35)

127

128 ######

129

130

131 aveplotfunc = function(a,b,randsimsactual ,theta_ave_rv,phi_ave_rv,r_ave_rv)

132 {

133 CIR_perspective = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

134 {

135 set.seed (7)

136 timespace = seq(s,t,delta_t)

137 statespace = seq(startingstate ,endstate ,delta_t)

138

139 datamatrix = matrix(0,length(timespace),length(statespace))

140

141 sumdens = as.matrix(0,length(timespace) ,1)

142

143 sigma_vec = rnorm(randsimsactual ,a,b)

144 for (k in 1: randsimsactual)

145 {
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146

147 sigma = sigma_vec[k]

148 for (t in s:length(timespace))

149 {

150 for (state in startingstate:length(statespace))

151 {

152 c = (2* alpha)/(( sigma ^2)*(1-exp(-alpha *( timespace[t]-s))

))

153 u = c*Xs*exp(-alpha*( timespace[t]-s))

154 v = c*statespace[state]

155 q = 2*alpha*beta/( sigma ^2) - 1

156 besselparameter = 2*(u*v)^(0.5)

157 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+

besselparameter

158 logfXt_t = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

159 datamatrix[t,state] = exp(logfXt_t)

160

161 }

162

163 }

164

165 sumdens = sumdens + datamatrix[,length(statespace)]

166 }

167 average = sumdens/randsimsactual

168

169

170 datamatrix[,length(statespace)]= average

171 perspplot = persp(timespace ,statespace ,datamatrix , col = "navyblue", xlab="t", ylab=

"Xt",zlab="Density", border = NA, shade = 0.7 , theta = theta_ave_rv, phi = phi_

ave_rv , r = r_ave_rv , ticktype = "detailed",zlim = c(0 ,5.5))

172 }

173 par(new=F)

174 perspective_plot = CIR_perspective(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,

endstate)

175 title(main="Average: 100 simulations")

176

177 }

178

179

180 aveplotfunc(a,b,randsimsactual ,45 ,35 ,35)

181

182 aveplotfunc(a,b,randsimsactual ,0,0,90)

183
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184 aveplotfunc(a,b,randsimsactual ,90,0,35)

Algorithm 14 Euler-Maruyama Schemes for the mixed-e�ects CIR process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)dt + sigma(Xt ,t)dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4 #sigma ~ N(a,b^2)

5

6

7 rm(list=ls(all=TRUE))

8

9 #Seed:

10 set.seed (7)

11

12 #Parameters

13

14 s = 0

15 t = 5

16 Xs = 2.75

17 alpha = 0.8

18 beta = 3

19 delta_t = 0.01 #step length

20 startingstate = 0

21 endstate = 5

22 numbsims = 1000

23 timespace = seq(s,t,delta_t)

24 statespace = seq(startingstate ,endstate ,delta_t)

25 N = length(timespace)

26 X = rep(Xs, numbsims)

27

28 a = 0.25 #sigma ~ N(a,b^2)

29 b = 0.15

30 randsims = 10

31

32

33 #Euler -Maruyama Scheme

34

35 CIR_EM_ME = function(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims ,

transparency ,add ,ans)

36 {

37

38 mufunc = function(Xt,t)
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39 {

40 return(alpha*(beta - Xt))

41 }

42

43 sigfunc = function(Xt,t)

44 {

45 return(sigma*sqrt(Xt))

46 }

47

48 histfunc = function(Xs,s,t,delta_t,numbsims ,ans)

49 {

50

51 Xt = rep(Xs,numbsims)

52 timespace = seq(s,t,delta_t)

53

54 for(i in 1: length(timespace))

55 {

56 if (i==1)

57 {

58 Xt = Xs

59 }

60

61 dWt = sqrt(delta_t)*rnorm(numbsims)

62 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt,timespace[i])*dWt

63 }

64

65 if (ans ==1)

66 {

67 hist(Xt, freq = FALSE , col = rainbow(1, start = runif (1 ,0.55 ,0.85), end = runif

(1 ,0.65 ,0.85),alpha = transparency), border = NA, breaks = 50, xlim =c(0.5 ,5.5),

ylim=c(0,5), main = NA ,add=F)

68 return(list(Xt=Xt,time = t))

69 }

70 else

71 {

72 hist(Xt, freq = FALSE , col = rainbow(1, start = runif (1 ,0.55 ,0.85), end = runif

(1 ,0.65 ,0.85),alpha = transparency), border = NA, breaks = 50, xlim =c(0.5 ,5.5),

ylim=c(0,5), main = NA ,xlab = NA ,ylab=NA,add=F)

73 return(list(Xt=Xt,time = t))

74 }

75

76 }

77
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78

79 plot = histfunc(Xs=Xs,s,t,delta_t,numbsims ,ans)

80

81 }

82

83

84 EM_gen_func = function(a,b,randsims)

85 {

86

87 sigma_vec = rnorm(randsims ,a,b)

88 transparency_vec = sort(as.vector(runif(randsims ,0.15 ,0.45)),decreasing = T)

89

90 CIR_EM_ME(s,t,Xs,alpha ,beta ,sigma=sigma_vec[1], delta_t,startingstate ,endstate ,numbsims ,

transparency =0.3,F,1)

91

92 for (i in 2: randsims)

93 {

94 par(new=T)

95 sigma = sigma_vec[i]

96 transparency = transparency_vec[i]

97

98 CIR_EM_ME(s,t,Xs,alpha ,beta ,sigma=sigma_vec[i],delta_t,startingstate ,endstate ,

numbsims ,transparency =0.5,F,0)

99

100 }

101

102 }

103

104 par(mfrow=c(3,3),ps=9,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1.5, 0),

las =1)

105

106 sim_plot_vec = c(1,2,3,4,10,25)

107

108 randsims = sim_plot_vec [1]

109 EM_gen_func(a,b,randsims)

110 title(main=bquote(lambda == .( randsims)))

111 box()

112

113 for (n in 2: length(sim_plot_vec))

114 {

115 randsims = sim_plot_vec[n]

116 EM_gen_func(a,b,randsims)

117 title(main=bquote(lambda == .( randsims)))
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118 box()

119 }

120

121

122

123

124 CIR_EM_ME_AVE = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims

)

125 {

126

127 mufunc = function(Xt,t)

128 {

129 return(alpha*(beta - Xt))

130 }

131

132 sigfunc = function(Xt,t)

133 {

134 return(sigma*sqrt(Xt))

135 }

136

137 Xt = rep(Xs,numbsims)

138 timespace = seq(s,t,delta_t)

139

140 for(i in 1: length(timespace))

141 {

142 if (i==1)

143 {

144 Xt = Xs

145 }

146

147 dWt = sqrt(delta_t)*rnorm(numbsims)

148 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt,timespace[i])*dWt

149 }

150 return(Xt)

151 }

152

153

154

155

156

157 ave_EM = function(a,b,randsimsactual)

158 {

159 sigma_vec = rnorm(randsimsactual ,a,b)
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160 Yt = matrix(0,length(CIR_EM_ME_AVE(s,t,Xs,alpha ,beta ,sigma =0.5, delta_t,

startingstate ,endstate ,numbsims)) ,1)

161 for (a in 1: randsimsactual)

162 {

163 sigma = sigma_vec[a]

164 Xt = CIR_EM_ME_AVE(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

165 Yt = Yt + Xt

166 }

167

168 Xtave = (1/ randsimsactual)*Yt

169

170 hist(Xtave , freq = FALSE , col = "navyblue",border = "orchid",main=NA,xlab = "Xt",ylab="

Density",add=F)

171

172 }

173

174

175 ave_EM(a,b,randsimsactual =10)

176 title(main="Average: 10 simulations")

177 box()

178 ave_EM(a,b,randsimsactual =100)

179 title(main="Average: 100 simulations")

180 box()

181 ave_EM(a,b,randsimsactual =1000)

182 title(main="Average: 1000 simulations")

183 box()

Algorithm 15 Theoretical and empirical moments of the mixed-e�ects CIR process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)dt + sigma(Xt ,t)dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4 #sigma ~ N(a,b^2)

5

6 rm(list=ls(all=TRUE))

7

8 #Seed:

9 set.seed (7)

10

11 simulate = function(numbsims = 10000)

12 {

13 #Parameters

14
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15

16 s = 0

17 t = 5

18 Xs = 2.75

19 alpha = 0.8

20 beta = 3

21 delta_t = 0.01 #step length

22 startingstate = 0

23 endstate = 5

24 timespace = seq(s,t,delta_t)

25 statespace = seq(startingstate ,endstate ,delta_t)

26 N = length(timespace)

27 X = rep(Xs, numbsims)

28

29 a = 0.25 #sigma ~ N(a,b^2)

30 b = 0.15

31

32 moments = matrix(0,4,N)

33 moments [,1] = Xs ^{1:4}

34 sigma_gen = rnorm(numbsims ,a,b)

35

36 for(i in 2:N)

37 {

38 dWt = sqrt(X)*rnorm(numbsims ,0,sqrt(delta_t))

39 X = X + alpha*(beta -X)*delta_t + sigma_gen*dWt

40 moments[,i] = c(mean(X), mean(X^2), mean(X^3), mean(X^4))

41 }

42 rtrn = list(X= X, moments = moments ,time = timespace)

43

44 return(rtrn)

45 }

46

47 res = simulate ()

48 hist(res$X, freq = F,breaks = 30, col = 'grey75 ', border = 'white ')

49

50

51 par(mfrow=c(2,2),ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1, 0), las

=1)

52

53

54 #Parameters

55 s = 0

56 t = 5
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57 Xs = 2.75

58 alpha = 0.8

59 beta = 3

60 delta_t = 0.01 #step length

61 startingstate = 0

62 endstate = 5

63 numbsims = 10000

64 timespace = seq(s,t,delta_t)

65 statespace = seq(startingstate ,endstate ,delta_t)

66 N = length(timespace)

67 X = rep(Xs, numbsims)

68

69 a = 0.25 #sigma ~ N(a,b^2)

70 b = 0.15

71

72 #m1t emperical and theoretical mixed -effects Model:

73

74 plot(res$moments [1,]~res$time , xlab='t',ylab='m1(t)',type = 'p',lwd = 0.5, col = "

lightblue1")

75

76 CIR_moment1 = function(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

77 {

78

79 momentfunc1 = function(Xs ,s,t,delta_t,numbsims)

80 {

81

82 Xt = rep(Xs ,numbsims)

83 timespace = seq(s,t,delta_t)

84

85 b11 = alpha*beta

86 g1 = (1 - exp(-alpha*timespace))

87

88 y1 = (1/ alpha)*g1

89

90 theomoment1 = Xs*exp(-alpha*timespace) + b11*y1

91 lines(theomoment1~timespace ,col="navyblue",lwd = 3)

92

93 }

94

95 m = momentfunc1(Xs ,s,t,delta_t,numbsims)

96 }

97

98 M1_plot = CIR_moment1(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)
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99 labels = c("Theoretical", "Emperical")

100 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("navyblue","

lightblue1"), bty = 'n',inset = -0.025)

101

102

103 #m2t emperical and theoretical mixed -effects Model:

104

105 plot(res$moments [2,]~res$time , xlab='t',ylab='m2(t)',type = 'p',lwd = 0.5, col = "

lightblue1")

106

107

108 CIR_moment2 = function(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

109 {

110

111 momentfunc2 = function(Xs ,s,t,delta_t,numbsims)

112 {

113

114 Xt = rep(Xs ,numbsims)

115 timespace = seq(s,t,delta_t)

116

117 #b12 = 2*( alpha*beta)^2 + (alpha*beta)*(b^2+a^2)

118 b22 = 2* alpha*beta + (b^2+a^2)

119 b11 = alpha*beta

120

121 h1 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^1

122 h2 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

123

124 q1 = Xs*(1/ alpha)*h1

125 q2 = b11 *(1/(2* alpha ^2))*h2

126

127 theomoment2 = (Xs^2)*exp(-2* alpha*( timespace)) + (b22)*(q1+q2)

128 lines(theomoment2~timespace ,col="navyblue",lwd = 3)

129

130 }

131

132 m = momentfunc2(Xs ,s,t,delta_t,numbsims)

133 }

134

135

136 M2_plot = CIR_moment2(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

137 labels = c("Theoretical", "Emperical")

138 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("navyblue","

lightblue1"), bty = 'n')
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139

140

141 #m3t emperical and theoretical mixed -effects Model:

142

143 plot(res$moments [3,]~res$time , xlab='t',ylab='m3(t)',type = 'p',lwd = 0.5, col = "

lightblue1",inset = -0.025)

144

145

146 CIR_moment3 = function(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

147 {

148

149 momentfunc3 = function(Xs ,s,t,delta_t,numbsims)

150 {

151

152 Xt = rep(Xs ,numbsims)

153 timespace = seq(s,t,delta_t)

154

155 b33 = 3* alpha*beta + 3*(b^2+a^2)

156 b22 = 2* alpha*beta + (b^2+a^2)

157 b11 = alpha*beta

158

159 d1 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)

160 d2 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

161 d3 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^3

162

163 p1 = ((Xs^2)/alpha)*d1

164 p2 = (((Xs)*(b22))/(2* alpha ^2))*d2

165 p3 = ((beta)/(6* alpha ^2))*b22*d3

166

167 theomoment3 = (Xs^3)*exp(-3* alpha*( timespace)) + b33*(p1+p2+p3)

168 lines(theomoment3~timespace ,col="navyblue",lwd = 3)

169

170 }

171

172 m = momentfunc3(Xs ,s,t,delta_t,numbsims)

173 }

174

175

176 M3_plot = CIR_moment3(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

177 labels = c("Theoretical", "Emperical")

178 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("navyblue","

lightblue1"), bty = 'n')

179
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180 #m4t emperical and theoretical mixed -effects Model:

181

182 plot(res$moments [4,]~res$time , xlab='t',ylab='m4(t)',type = 'p',lwd = 0.5, col = "

lightblue1",inset = -0.025)

183

184

185 CIR_moment4 = function(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

186 {

187

188 momentfunc4 = function(Xs ,s,t,delta_t,numbsims)

189 {

190

191 Xt = rep(Xs ,numbsims)

192 timespace = seq(s,t,delta_t)

193

194 b44 = 4* alpha*beta + 6*(b^2+a^2)

195 b33 = 3* alpha*beta + 3*(b^2+a^2)

196 b22 = 2* alpha*beta + (b^2+a^2)

197 b11 = alpha*beta

198

199 f1 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)

200 f2 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^2

201 f3 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^3

202 f4 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^4

203

204 w1 = (Xs^3) *(1/ alpha)*f1

205 w2 = b33*(Xs^2) *(1/(2* alpha ^2))*f2

206 w3 = Xs*b33*b22 *(1/(6* alpha ^3))*f3

207 w4 = b33*b22*b11 *(1/(24* alpha ^4))*f4

208

209 theomoment4 = (Xs^4)*exp(-4* alpha*( timespace)) + b44*(w1 + w2 + w3 + w4)

210

211 lines(theomoment4~timespace ,col="navyblue",lwd = 3)

212

213 }

214

215 m = momentfunc4(Xs ,s,t,delta_t,numbsims)

216 }

217

218

219 M4_plot = CIR_moment4(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

220 labels = c("Theoretical", "Emperical")

221 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("navyblue","
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lightblue1"), bty = 'n',inset = -0.025)

Algorithm 16 Theoretical and empirical moments of the mixed-e�ects CIR process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)dt + sigma(Xt ,t)dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4 #sigma ~ N(a,b^2)

5

6 rm(list=ls(all=TRUE))

7

8 #Seed:

9 set.seed (7)

10

11 simulate = function(numbsims = 10000)

12 {

13 #Parameters

14

15

16 s = 0

17 t = 5

18 Xs = 2.75

19 alpha = 0.8

20 beta = 3

21 delta_t = 0.01 #step length

22 startingstate = 0

23 endstate = 5

24 timespace = seq(s,t,delta_t)

25 statespace = seq(startingstate ,endstate ,delta_t)

26 N = length(timespace)

27 X = rep(Xs, numbsims)

28

29 a = 0.25 #sigma ~ N(a,b^2)

30 b = 0.15

31

32 cumulants = matrix(0,4,N)

33 cumulants [,1] = Xs ^{1:4}

34 sigma_gen = rnorm(numbsims ,a,b)

35

36 for(i in 2:N)

37 {

38 dWt = sqrt(X)*rnorm(numbsims ,0,sqrt(delta_t))

39 X = X + alpha*(beta -X)*delta_t + sigma_gen*dWt
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40 ke1 = mean(X)

41 ke2 = mean(X^2) - (mean(X))^2

42 ke3 = mean(X^3) - 3*mean(X)*(mean(X^2)) + 2*mean(X)^3

43 ke4 =-6*( mean(X)^4) + 12*( mean(X)^2)*(mean(X^2)) - 3*( mean(X^2)^2) - 4*mean(X)*mean(X

^3) + mean(X^4)

44

45 cumulants[,i] = c(ke1 , ke2 , ke3 , ke4)

46 }

47 rtrn = list(X= X, cumulants = cumulants ,time = timespace)

48

49 return(rtrn)

50 }

51

52 res = simulate ()

53 hist(res$X, freq = F,breaks = 30, col = 'grey75 ', border = 'white ')

54

55

56 par(mfrow=c(2,2),ps=10,cex.lab=1,cex.axis=1,mar=c(4.5 ,4.5 ,4.5 ,2.5), mgp=c(3.2, 1, 0), las

=1)

57

58

59 #Parameters

60 s = 0

61 t = 5

62 Xs = 2.75

63 alpha = 0.8

64 beta = 3

65 delta_t = 0.01 #step length

66 startingstate = 0

67 endstate = 5

68 numbsims = 10000

69 timespace = seq(s,t,delta_t)

70 statespace = seq(startingstate ,endstate ,delta_t)

71 N = length(timespace)

72 X = rep(Xs, numbsims)

73

74 a = 0.25 #sigma ~ N(a,b^2)

75 b = 0.15

76

77 #K1t emperical and theoretical mixed -effects Model:

78

79 plot(res$cumulants [1,]~res$time , xlab='t',ylab='K1(t)',type = 'p',lwd = 0.5, col = "

lightblue1")
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80

81 CIR_cumulant1 = function(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

82 {

83

84 cumulantfunc1 = function(Xs ,s,t,delta_t,numbsims)

85 {

86

87 Xt = rep(Xs ,numbsims)

88 timespace = seq(s,t,delta_t)

89

90 b11 = alpha*beta

91 g1 = (1 - exp(-alpha*timespace))

92

93 y1 = (1/ alpha)*g1

94

95 theomoment1 = Xs*exp(-alpha*timespace) + b11*y1

96

97 #theoretical Cumulant

98 theocumulant1 = theomoment1

99

100 lines(theocumulant1~timespace ,col="navyblue",lwd = 3)

101

102 }

103

104 c = cumulantfunc1(Xs,s,t,delta_t,numbsims)

105 }

106

107 K1_plot = CIR_cumulant1(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

108 labels = c("Theoretical", "Emperical")

109 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("navyblue","

lightblue1"), bty = 'n',inset = -0.025)

110

111

112 #K2t emperical and theoretical mixed -effects Model:

113

114 plot(res$cumulants [2,]~res$time , xlab='t',ylab='K2(t)',type = 'p',lwd = 0.5, col = "

lightblue1",ylim=c(0 ,0.3))

115

116

117 CIR_cumulant2 = function(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

118 {

119

120 cumulantfunc2 = function(Xs ,s,t,delta_t,numbsims)
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121 {

122

123 Xt = rep(Xs ,numbsims)

124 timespace = seq(s,t,delta_t)

125

126

127 b11 = alpha*beta

128 g1 = (1 - exp(-alpha*timespace))

129

130 y1 = (1/ alpha)*g1

131

132 theomoment1 = Xs*exp(-alpha*timespace) + b11*y1

133

134 b22 = 2* alpha*beta + (b^2+a^2)

135 b11 = alpha*beta

136

137 h1 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^1

138 h2 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

139

140 q1 = Xs*(1/ alpha)*h1

141 q2 = b11 *(1/(2* alpha ^2))*h2

142

143 theomoment2 = (Xs^2)*exp(-2* alpha*( timespace)) + (b22)*(q1+q2)

144

145 #theoretical Cumulants

146 theocumulant2 = theomoment2 -( theomoment1)^2

147

148 lines(theocumulant2~timespace ,col="navyblue",lwd = 3)

149

150 }

151

152 c = cumulantfunc2(Xs,s,t,delta_t,numbsims)

153 }

154

155

156 K2_plot = CIR_cumulant2(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

157 labels = c("Theoretical", "Emperical")

158 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("navyblue","

lightblue1"), bty = 'n',inset = -0.025)

159

160

161 #K3t emperical and theoretical mixed -effects Model:

162
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163 plot(res$cumulants [3,]~res$time , xlab='t',ylab='K3(t)',type = 'p',lwd = 0.5, col = "

lightblue1",ylim=c(0 ,0.03))

164

165

166 CIR_cumulant3 = function(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

167 {

168

169 cumulantfunc3 = function(Xs ,s,t,delta_t,numbsims)

170 {

171

172 Xt = rep(Xs ,numbsims)

173 timespace = seq(s,t,delta_t)

174

175 b11 = alpha*beta

176 g1 = (1 - exp(-alpha*timespace))

177

178 y1 = (1/ alpha)*g1

179

180 theomoment1 = Xs*exp(-alpha*timespace) + b11*y1

181

182 b22 = 2* alpha*beta + (b^2+a^2)

183 b11 = alpha*beta

184

185 h1 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^1

186 h2 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

187

188 q1 = Xs*(1/ alpha)*h1

189 q2 = b11 *(1/(2* alpha ^2))*h2

190

191 theomoment2 = (Xs^2)*exp(-2* alpha*( timespace)) + (b22)*(q1+q2)

192

193

194 b33 = 3* alpha*beta + 3*(b^2+a^2)

195 b22 = 2* alpha*beta + (b^2+a^2)

196 b11 = alpha*beta

197

198 d1 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)

199 d2 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

200 d3 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^3

201

202 p1 = ((Xs^2)/alpha)*d1

203 p2 = (((Xs)*(b22))/(2* alpha ^2))*d2

204 p3 = ((beta)/(6* alpha ^2))*b22*d3
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205

206 theomoment3 = (Xs^3)*exp(-3* alpha*( timespace)) + b33*(p1+p2+p3)

207

208 #theoretical Cumulants

209 theocumulant1 = theomoment1

210 theocumulant2 = theomoment2 -( theomoment1)^2

211 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

212

213 lines(theocumulant3~timespace ,col="navyblue",lwd = 3)

214

215 }

216

217 c = cumulantfunc3(Xs,s,t,delta_t,numbsims)

218 }

219

220

221 K3_plot = CIR_cumulant3(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

222 labels = c("Theoretical", "Emperical")

223 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("navyblue","

lightblue1"), bty = 'n',inset = -0.025)

224

225 #K4t emperical and theoretical mixed -effects Model:

226

227 plot(res$cumulants [4,]~res$time , xlab='t',ylab='K4(t)',type = 'p',lwd = 0.5, col = "

lightblue1",ylim = c(0 ,0.003))

228

229

230 CIR_cumulant4 = function(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

231 {

232

233 cumulantfunc4 = function(Xs ,s,t,delta_t,numbsims)

234 {

235

236 Xt = rep(Xs ,numbsims)

237 timespace = seq(s,t,delta_t)

238

239 b11 = alpha*beta

240 g1 = (1 - exp(-alpha*timespace))

241

242 y1 = (1/ alpha)*g1

243

244 theomoment1 = Xs*exp(-alpha*timespace) + b11*y1

245
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246 b22 = 2* alpha*beta + (b^2+a^2)

247 b11 = alpha*beta

248

249 h1 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^1

250 h2 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

251

252 q1 = Xs*(1/ alpha)*h1

253 q2 = b11 *(1/(2* alpha ^2))*h2

254

255 theomoment2 = (Xs^2)*exp(-2* alpha*( timespace)) + (b22)*(q1+q2)

256

257

258 b33 = 3* alpha*beta + 3*(b^2+a^2)

259 b22 = 2* alpha*beta + (b^2+a^2)

260 b11 = alpha*beta

261

262 d1 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)

263 d2 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

264 d3 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^3

265

266 p1 = ((Xs^2)/alpha)*d1

267 p2 = (((Xs)*(b22))/(2* alpha ^2))*d2

268 p3 = ((beta)/(6* alpha ^2))*b22*d3

269

270 theomoment3 = (Xs^3)*exp(-3* alpha*( timespace)) + b33*(p1+p2+p3)

271

272

273 b44 = 4* alpha*beta + 6*(b^2+a^2)

274 b33 = 3* alpha*beta + 3*(b^2+a^2)

275 b22 = 2* alpha*beta + (b^2+a^2)

276 b11 = alpha*beta

277

278 f1 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)

279 f2 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^2

280 f3 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^3

281 f4 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^4

282

283 w1 = (Xs^3) *(1/ alpha)*f1

284 w2 = b33*(Xs^2) *(1/(2* alpha ^2))*f2

285 w3 = Xs*b33*b22 *(1/(6* alpha ^3))*f3

286 w4 = b33*b22*b11 *(1/(24* alpha ^4))*f4

287

288 theomoment4 = (Xs^4)*exp(-4* alpha*( timespace)) + b44*(w1 + w2 + w3 + w4)
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289

290 #theoretical Cumulants

291 theocumulant1 = theomoment1

292 theocumulant2 = theomoment2 -( theomoment1)^2

293 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

294 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*(

theomoment2 ^2) - 4* theomoment1*theomoment3 + theomoment4

295

296

297 lines(theocumulant4~timespace ,col="navyblue",lwd = 3)

298

299 }

300

301 c = cumulantfunc4(Xs,s,t,delta_t,numbsims)

302 }

303

304

305 K4_plot = CIR_cumulant4(a,b,s,t,Xs,alpha ,beta ,delta_t,startingstate ,endstate ,numbsims)

306 labels = c("Theoretical", "Emperical")

307 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("navyblue","

lightblue1"), bty = 'n',inset = -0.025)

Algorithm 17Moment truncated saddlepoint transition density approximation of the mixed-e�ects CIR
process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)dt + sigma(Xt ,t)dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4 #sigma ~ N(a,b^2)

5

6 rm(list=ls(all=TRUE))

7

8 #Seed:

9 set.seed (7)

10

11 #Parameters

12 s = 0

13 t = 5

14 Xs = 2.75

15 alpha = 0.8

16 beta = 3

17 delta_t = 0.1 #step length

18 startingstate = 0
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19 endstate = 5

20 timespace = seq(s,t,delta_t)

21 statespace = seq(startingstate ,endstate ,delta_t)

22 a = 0.25

23 b = 0.15

24 randsimsactual = 100

25

26 par(ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1, 0), las =1)

27

28 #saddlepoint Approx

29

30 timespace = t-s

31

32 b11 = alpha*beta

33 g1 = (1 - exp(-alpha*timespace))

34

35 y1 = (1/ alpha)*g1

36

37 theomoment1 = Xs*exp(-alpha*timespace) + b11*y1

38

39 b22 = 2* alpha*beta + (b^2+a^2)

40 b11 = alpha*beta

41

42 h1 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^1

43 h2 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

44

45 q1 = Xs*(1/ alpha)*h1

46 q2 = b11 *(1/(2* alpha ^2))*h2

47

48 theomoment2 = (Xs^2)*exp(-2* alpha*( timespace)) + (b22)*(q1+q2)

49

50

51 b33 = 3* alpha*beta + 3*(b^2+a^2)

52 b22 = 2* alpha*beta + (b^2+a^2)

53 b11 = alpha*beta

54

55 d1 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)

56 d2 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

57 d3 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^3

58

59 p1 = ((Xs^2)/alpha)*d1

60 p2 = (((Xs)*(b22))/(2* alpha ^2))*d2

61 p3 = ((beta)/(6* alpha ^2))*b22*d3
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62

63 theomoment3 = (Xs^3)*exp(-3* alpha*( timespace)) + b33*(p1+p2+p3)

64

65

66 b44 = 4* alpha*beta + 6*(b^2+a^2)

67 b33 = 3* alpha*beta + 3*(b^2+a^2)

68 b22 = 2* alpha*beta + (b^2+a^2)

69 b11 = alpha*beta

70

71 f1 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)

72 f2 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^2

73 f3 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^3

74 f4 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^4

75

76 w1 = (Xs^3) *(1/ alpha)*f1

77 w2 = b33*(Xs^2) *(1/(2* alpha ^2))*f2

78 w3 = Xs*b33*b22 *(1/(6* alpha ^3))*f3

79 w4 = b33*b22*b11 *(1/(24* alpha ^4))*f4

80

81 theomoment4 = (Xs^4)*exp(-4* alpha*( timespace)) + b44*(w1 + w2 + w3 + w4)

82

83 #theoretical Cumulants

84 theocumulant1 = theomoment1

85 theocumulant2 = theomoment2 -( theomoment1)^2

86 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

87 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*( theomoment2 ^2)

- 4* theomoment1*theomoment3 + theomoment4

88

89 X = statespace

90

91 s = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X)) -

theocumulant2)

92 Ksapprox = theocumulant1*s + theocumulant2 *((1/2)*s^2) + theocumulant3 *((1/6)*s^3) +

theocumulant4 *((1/24)*s^4)

93 Ks2approx = theocumulant2 + theocumulant3*s + 0.5* theocumulant4*s^2

94

95 saddle_pt_approx = exp(Ksapprox -s*X)*sqrt (1/(2* pi*Ks2approx))

96 #print(saddle_pt_approx)

97

98 plot(saddle_pt_approx~X,col = "orchid4",lwd = 3, type="l", ylab = "Density", xlab='Xt')

99 labels = c("saddlepoint approx")

100 legend("topleft", title = NA ,labels ,lty = 1 ,lwd = 3, col=c("orchid4"), bty = 'n')
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Algorithm 18 Moment-truncated saddlepoint transition density approximation for the mixed-e�ects
and scalar CIR di�usion process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)dt + sigma(Xt ,t)dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4 #sigma ~ N(a,b^2)

5

6 rm(list=ls(all=TRUE))

7

8 #Seed:

9 set.seed (7)

10

11 #Parameters

12 s = 0

13 t = 5

14 Xs = 2.75

15 alpha = 0.8

16 beta = 3

17 delta_t = 0.1 #step length

18 startingstate = 0

19 endstate = 5

20 timespace = seq(s,t,delta_t)

21 statespace = seq(startingstate ,endstate ,delta_t)

22 a = 0.25

23 b = 0.15

24 randsimsactual = 100

25

26 par(ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1, 0), las =1)

27

28 #mixed -effects Model , sigma random

29

30 #saddlepoint Approx

31

32 timespace = t-s

33

34 b11 = alpha*beta

35 g1 = (1 - exp(-alpha*timespace))

36

37 y1 = (1/ alpha)*g1

38

39 theomoment1 = Xs*exp(-alpha*timespace) + b11*y1

40
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41 b22 = 2* alpha*beta + (b^2+a^2)

42 b11 = alpha*beta

43

44 h1 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^1

45 h2 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

46

47 q1 = Xs*(1/ alpha)*h1

48 q2 = b11 *(1/(2* alpha ^2))*h2

49

50 theomoment2 = (Xs^2)*exp(-2* alpha*( timespace)) + (b22)*(q1+q2)

51

52

53 b33 = 3* alpha*beta + 3*(b^2+a^2)

54 b22 = 2* alpha*beta + (b^2+a^2)

55 b11 = alpha*beta

56

57 d1 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)

58 d2 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

59 d3 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^3

60

61 p1 = ((Xs^2)/alpha)*d1

62 p2 = (((Xs)*(b22))/(2* alpha ^2))*d2

63 p3 = ((beta)/(6* alpha ^2))*b22*d3

64

65 theomoment3 = (Xs^3)*exp(-3* alpha*( timespace)) + b33*(p1+p2+p3)

66

67

68 b44 = 4* alpha*beta + 6*(b^2+a^2)

69 b33 = 3* alpha*beta + 3*(b^2+a^2)

70 b22 = 2* alpha*beta + (b^2+a^2)

71 b11 = alpha*beta

72

73 f1 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)

74 f2 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^2

75 f3 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^3

76 f4 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^4

77

78 w1 = (Xs^3) *(1/ alpha)*f1

79 w2 = b33*(Xs^2) *(1/(2* alpha ^2))*f2

80 w3 = Xs*b33*b22 *(1/(6* alpha ^3))*f3

81 w4 = b33*b22*b11 *(1/(24* alpha ^4))*f4

82

83 theomoment4 = (Xs^4)*exp(-4* alpha*( timespace)) + b44*(w1 + w2 + w3 + w4)
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84

85 #theoretical Cumulants

86 theocumulant1 = theomoment1

87 theocumulant2 = theomoment2 -( theomoment1)^2

88 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

89 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*( theomoment2 ^2)

- 4* theomoment1*theomoment3 + theomoment4

90

91 X = statespace

92

93 s = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X)) -

theocumulant2)

94 Ksapprox = theocumulant1*s + theocumulant2 *((1/2)*s^2) + theocumulant3 *((1/6)*s^3) +

theocumulant4 *((1/24)*s^4)

95 Ks2approx = theocumulant2 + theocumulant3*s + 0.5* theocumulant4*s^2

96

97 saddle_pt_approx = exp(Ksapprox -s*X)*sqrt (1/(2* pi*Ks2approx))

98 #print(saddle_pt_approx)

99

100 plot(saddle_pt_approx~X,col = "orchid4",lwd = 3, type="l", ylab = "Density", xlab='Xt',

ylim = c(0 ,1.2))

101

102

103 #Original Model sigma fixed

104 sigma = 0.25

105

106 #saddlepoint Approx

107

108 #theoretical Moment

109 del = Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2* alpha)

))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

110 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(beta + ((

sigma ^2) /(2* alpha)))+4* alpha*(beta + (( sigma ^2) /(2* alpha)))*(Xs -beta)

111 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

112 A = kappa /(6* alpha ^3)

113 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

114 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

115 D = -A-B-C

116

117 gamma_star = Xs^3 + 3*( alpha*beta + sigma ^2)*(A + B + C + D)

118 lambda_star = 3* alpha*Xs^3 + 3*( alpha*beta + sigma ^2) *(6* alpha*A + 5*alpha*B + 4*alpha*C

+ 3*alpha*D)

119 omega_star = 2*( alpha ^2)*Xs^3 + 3*( alpha*beta + sigma ^2) *(11*( alpha ^2)*A + 6*( alpha ^2)*B
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+ 3*( alpha ^2)*C + 2*( alpha ^2)*D)

120 nu_star = 3*( alpha*beta + sigma ^2) *(6*A*alpha ^3)

121

122 E = nu_star /(24* alpha ^4)

123 I = ( -1/(6* alpha ^3))*((( omega_star -(13*nu_star /(12* alpha))) -12*( alpha ^2)*(gamma_star -(nu_

star /(24* alpha ^3)))) -4*alpha *(( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_

star -(nu_star /(24* alpha ^3))))))

124 H = (1/(2* alpha ^2))*((( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_star -(nu_star

/(24* alpha ^3))))) - 6*( alpha ^2)*I)

125 G = (-1/alpha)*(( gamma_star -(nu_star /(24* alpha ^3)))+ 2*alpha*H + 3* alpha*I)

126 FF = -E - G - H - I

127

128 theomoment1 = Xs*exp(-alpha *(t-s)) + beta *(1 - exp(-alpha*(t-s)))

129 theomoment2 = (Xs^2)*exp(-2* alpha*(t-s)) + (beta + (sigma ^2) /(2* alpha))*(beta + 2*(Xs -

beta)*exp(-alpha *(t-s)) + (beta - 2*Xs)*exp(-2*alpha*(t-s)))

130 theomoment3 = (Xs^3)*exp(-3* alpha*(t-s)) + (3* alpha*beta +3* sigma ^2)*(A + B*exp(-alpha*(t-

s)) + C*exp(-2*alpha *(t-s)) + D*exp(-3*alpha*(t-s)))

131 theomoment4 = (Xs^4)*exp(-4* alpha*(t-s)) + (4* alpha*beta + 6*sigma ^2)*(E + FF*exp(-1*

alpha*(t-s)) + G*exp(-2* alpha*(t-s)) + H*exp(-3*alpha *(t-s)) + I*exp(-4*alpha*(t-s)))

132

133 #theoretical Cumulant

134 theocumulant1 = theomoment1

135 theocumulant2 = theomoment2 -( theomoment1)^2

136 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

137 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*( theomoment2 ^2)

- 4* theomoment1*theomoment3 + theomoment4

138

139 X = statespace

140

141 s = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X)) -

theocumulant2)

142 Ksapprox = theocumulant1*s + theocumulant2 *((1/2)*s^2) + theocumulant3 *((1/6)*s^3) +

theocumulant4 *((1/24)*s^4)

143 Ks2approx = theocumulant2 + theocumulant3*s + 0.5* theocumulant4*s^2

144

145 saddle_pt_approx = exp(Ksapprox -s*X)*sqrt (1/(2* pi*Ks2approx))

146 #print(saddle_pt_approx)

147

148 lines(saddle_pt_approx~statespace ,lty = 31,col = "dodgerblue1", lwd = 3)

149 labels = c("Original Model", "mixed -effects model")

150 legend("topleft", title = NA ,labels ,lty = c(1,1), lwd = c(3,3) ,col=c("orchid4","

dodgerblue1"), bty = 'n')
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Algorithm 19 Maximum likelihood estimation of the parameters of the mixed-e�ects CIR process's
saddlepoint transition density approximation, based on the S&P500VIX dataset.

1 rm(list = ls(all = TRUE))

2

3 set.seed (7)

4

5 library(readxl)

6 SP500VIX <- read_excel("D:/ ResearchUSB/Report_Draft_Final/Code/R_code/final_draft_code/

original_model/SP500VIX.xlsx",

7 col_types = c("date", "numeric"))

8

9 #saddlepoint mle

10 X = as.matrix(na.omit(SP500VIX$VIX),nrow(na.omit(SP500VIX$VIX)) ,1) #1Jan2012 -30 Dec2016

11 nn=nrow(SP500VIX)

12 nn

13

14 #plot(SP500VIX , type = "l", ylab="VIX")

15

16 s = 1/250

17 Xs = mean(X)

18 Tt = 5

19 numberparsim = 1000

20 numberpar = 4

21 sims = 1

22 alpha_min = 20

23 alpha_max = 24

24 beta_min = 13

25 beta_max = 17

26 a_min = 2

27 a_max = 8

28 b_min = 0.5

29 b_max = 5

30 simulations = 10

31 dt = s

32

33 max_theta_matrix = matrix(0,simulations ,numberpar)

34

35

36 for (m in 1: simulations)

37 {

38

39 main_function = function(numberparsim ,numberpar ,s,t,Xs,alpha_min ,alpha_max ,beta_min ,
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beta_max ,a_min ,a_max ,b_min ,b_max)

40 {

41 m = numberpar + 1

42

43 theta_matrix = matrix(0,numberparsim ,m)

44

45 for (i in 1: numberparsim)

46 {

47 theta_matrix[i,1] = runif(1,alpha_min ,alpha_max)

48 theta_matrix[i,2] = runif(1,beta_min ,beta_max)

49 theta_matrix[i,3] = runif(1,a_min ,a_max)

50 theta_matrix[i,4] = runif(1,b_min ,b_max)

51

52

53 alpha = theta_matrix[i,1]

54 beta = theta_matrix[i,2]

55 a = theta_matrix[i,3]

56 b = theta_matrix[i,4]

57

58

59 #saddlepoint Approx

60

61 timespace = dt

62

63 b11 = alpha*beta

64 g1 = (1 - exp(-alpha*timespace))

65

66 y1 = (1/ alpha)*g1

67

68 theomoment1 = Xs*exp(-alpha*timespace) + b11*y1

69

70 b22 = 2* alpha*beta + (b^2+a^2)

71 b11 = alpha*beta

72

73 h1 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^1

74 h2 = (exp(-2*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

75

76 q1 = Xs*(1/ alpha)*h1

77 q2 = b11 *(1/(2* alpha ^2))*h2

78

79 theomoment2 = (Xs^2)*exp(-2* alpha*( timespace)) + (b22)*(q1+q2)

80

81
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82 b33 = 3* alpha*beta + 3*(b^2+a^2)

83 b22 = 2* alpha*beta + (b^2+a^2)

84 b11 = alpha*beta

85

86 d1 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)

87 d2 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^2

88 d3 = (exp(-3*alpha *( timespace)))*(exp(alpha*( timespace)) -1)^3

89

90 p1 = ((Xs^2)/alpha)*d1

91 p2 = (((Xs)*(b22))/(2* alpha ^2))*d2

92 p3 = ((beta)/(6* alpha ^2))*b22*d3

93

94 theomoment3 = (Xs^3)*exp(-3* alpha*( timespace)) + b33*(p1+p2+p3)

95

96

97 b44 = 4* alpha*beta + 6*(b^2+a^2)

98 b33 = 3* alpha*beta + 3*(b^2+a^2)

99 b22 = 2* alpha*beta + (b^2+a^2)

100 b11 = alpha*beta

101

102 f1 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)

103 f2 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^2

104 f3 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^3

105 f4 = exp(-4*alpha*( timespace))*(exp(alpha*( timespace)) -1)^4

106

107 w1 = (Xs^3) *(1/ alpha)*f1

108 w2 = b33*(Xs^2) *(1/(2* alpha ^2))*f2

109 w3 = Xs*b33*b22 *(1/(6* alpha ^3))*f3

110 w4 = b33*b22*b11 *(1/(24* alpha ^4))*f4

111

112 theomoment4 = (Xs^4)*exp(-4* alpha*( timespace)) + b44*(w1 + w2 + w3 + w4)

113

114 #theoretical Cumulants

115 theocumulant1 = theomoment1

116 theocumulant2 = theomoment2 -( theomoment1)^2

117 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

118 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*(

theomoment2 ^2) - 4* theomoment1*theomoment3 + theomoment4

119

120

121 n = nrow(X)

122 cumul_sum_vec = matrix(0,n,1)

123
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124 r = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X[1]))

- theocumulant2)

125 Krapprox = theocumulant1*r + theocumulant2 *((1/2)*r^2) + theocumulant3 *((1/6)*r^3)

+ theocumulant4 *((1/24)*r^4)

126 Kr2approx = theocumulant2 + theocumulant3*r + 0.5* theocumulant4*r^2

127 saddle_pt_approx = exp(Krapprox -r*X[1])*sqrt (1/(2* pi*Kr2approx))

128 sum1 = log(saddle_pt_approx)

129

130 cumul_sum_vec [1] = sum1

131

132 for (l in 2:n)

133 {

134 r = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X[l

])) - theocumulant2)

135 Krapprox = theocumulant1*r + theocumulant2 *((1/2)*r^2) + theocumulant3 *((1/6)*r

^3) + theocumulant4 *((1/24)*r^4)

136 Kr2approx = theocumulant2 + theocumulant3*r + 0.5* theocumulant4*r^2

137 saddle_pt_approx = exp(Krapprox -r*X[l])*sqrt (1/(2* pi*Kr2approx))

138 log_saddle = log(saddle_pt_approx)

139 sum_log_saddle = cumul_sum_vec[l-1] + log_saddle

140 cumul_sum_vec[l] = sum_log_saddle

141 }

142

143 theta_matrix[i,5] = cumul_sum_vec[n]

144

145 }

146

147 return(theta_matrix)

148

149 }

150

151 call_main_function = main_function(numberparsim ,numberpar ,s,t,Xs,alpha_min ,alpha_max ,

beta_min ,beta_max ,a_min ,a_max ,b_min ,b_max)

152

153

154 for (i in 1: numberparsim)

155 {

156 if ((call_main_function[i,5]=="NaN"))

157 {call_main_function[i,5] = -100000000000000000000000000}

158 }

159

160 maximum = max(call_main_function [,5])

161
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162 for (j in 1: numberparsim)

163 {

164 if (call_main_function[j,5] == maximum)

165 {

166 max_theta = call_main_function[j,1:4]

167 max_alpha = max_theta [1]

168 max_beta = max_theta [2]

169 max_a = max_theta [3]

170 max_b = max_theta [4]

171 }

172 }

173

174 max_theta_matrix[m,1] = max_alpha

175 max_theta_matrix[m,2] = max_beta

176 max_theta_matrix[m,3] = max_a

177 max_theta_matrix[m,4] = max_b

178

179 }

180

181 print(max_theta_matrix)

182

183 one = matrix(1,1, simulations)

184 theta_mles = (1/ simulations)*one %*%( max_theta_matrix)

185 names(theta_mles) = c("alpha","beta","a","b")

186

187 theta_mles_fin = as.data.frame(rbind(names(theta_mles),theta_mles) ,1,4)

188

189 print(theta_mles_fin)

190

191 saddle_mlesa = as.matrix(theta_mles_fin ,4,1)

Algorithm 20 Forward simulated trajectories and 250-day prediction based on the maximum likelihood
estimates for the mixed-e�ects CIR process.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)*dt + sigma(Xt,t)*dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4 rm(list = ls(all = TRUE))

5

6 library(readxl)

7 set.seed (7)

8

9 VIX_5year_inday0punt004steps <- read_excel("D:/ ResearchUSB/Report_Draft_Final/Code/R_code
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/VIX_5year_inday0punt004steps.xlsx",

10 col_types = c("numeric", "numeric"))

11 #View(VIX_5year_inday0punt004steps)

12

13 X = as.matrix(na.omit(VIX_5year_inday0punt004steps$VIX),nrow(na.omit(VIX_5year_

inday0punt004steps$VIX)) ,1) #1Jan2012 -30 Dec2016

14

15

16 #Parameters

17 s = 1/250

18 tobs = 5

19 t = tobs+1

20 Xs = mean(X)

21 #MLE's:

22 alpha = 22.1485165404156

23 beta = 14.6996205216274

24 a = 4.96140836593695

25 b = 1.95301413626876

26

27 delta_t = s #step length

28 startingstate = min(X)

29 endstate = max(X)

30 timespace = seq(s,t,delta_t)

31 statespace = seq(startingstate ,endstate ,delta_t)

32 timespaceobs = seq(s,t,s)

33

34 #Simulating the trajectory

35 func = function(randsims , a,b)

36 {

37 sigma_vec = rnorm(randsims ,a,b)

38 trajectory_matrix = matrix(0,nrow = length(timespace), ncol = randsims)

39 one = matrix(1,nrow = randsims , 1)

40

41 for (r in 1: randsims)

42 {

43 sigma = sigma_vec[r]

44

45 CIR_trajectory = function(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate)

46 {

47

48 timespace = seq(s,t,delta_t)

49 datamatrix = matrix(0,nrow = length(timespace), ncol = 1)

50 Z1 = rnorm(1,mean = 0, sd = sqrt(delta_t))
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51 Xt = Xs + alpha *(beta -Xs)*delta_t + sigma*sqrt(Xs)*Z1

52 datamatrix [1] = Xt

53 trajectory_matrix [,1] = datamatrix [1]

54

55 for(i in 2: length(timespace))

56 {

57 dWt = rnorm(1,mean = 0, sd = sqrt(delta_t))

58 Xtplus1 = Xt + alpha *(beta -Xt)*delta_t + sigma*sqrt(Xt)*dWt

59 Xt = Xtplus1

60 datamatrix[i] = Xtplus1

61 }

62 return(datamatrix)

63 }

64

65 trajectory_matrix[,r] = CIR_trajectory(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,

endstate)

66

67 }

68

69 #print(trajectory_matrix)

70

71 plot(trajectory_matrix [,1]~ timespace ,type ='l', col = rainbow(1, start = runif

(1 ,0.55 ,0.85), end = runif (1 ,0.65 ,0.75),alpha = 0.15), xlab="years",ylab = "VIX",

ylim=c(-5,40),xlim=c(0,6))

72 text(1,0, "FORECAST:", col = "midnightblue", cex = 1.1, adj = c(-9.5,-21))

73 abline(v = 5, col = "midnightblue", lty = 3, lwd = 3)

74

75 color = rainbow(randsims -1, start = .5, end = .7)

76 for (plotnumb in 2: randsims)

77 {

78 lines(trajectory_matrix[,plotnumb ]~timespace ,col = rainbow(1, start = runif

(1 ,0.55 ,0.85), end = runif (1 ,0.65 ,0.85),alpha = 0.15), type = 'l')

79 }

80

81 mean_trajectory = (1/ randsims)*trajectory_matrix %*% one

82 #print(mean_trajectory)

83

84 par(new=T)

85 plot(VIX_5year_inday0punt004steps ,ylab = NA, xlab=NA,type = "l", col="violetred",ylim =

c(-5,40),xlim=c(0,6))

86 lines(mean_trajectory~timespace , col = "midnightblue", type = 'l', lwd = 1)

87

88 }
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89

90

91

92 par(mfrow=c(4,1),ps=10,cex.lab=1,cex.axis=1,mar=c(2.5 ,2.5 ,2.5 ,2.5), mgp=c(1.5, 0.75, 0),

las =1)

93

94

95 func(10,a,b)

96 labels = c("10 Simulations", "Average", "VIX data")

97 legend("bottomleft", title = NA, labels ,lty = c(1,1,1), lwd = c(5,2,2) ,col=c(rainbow(1,

start = 0.7, end = 0.75 ,alpha = 0.25) ,"midnightblue","violetred"), bty = 'n',horiz=T

)

98

99 func(25,a,b)

100 labels = c("25 Simulations", "Average","VIX data")

101 legend("bottomleft", title = NA, labels ,lty = c(1,1,1), lwd = c(5,2,2) ,col=c(rainbow(1,

start = 0.7, end = 0.75 ,alpha = 0.35) ,"midnightblue","violetred"), bty = 'n',horiz=T

)

102

103 func (100,a,b)

104 labels = c("100 Simulations", "Average","VIX data")

105 legend("bottomleft", title = NA, labels ,lty = c(1,1,1), lwd = c(5,2,2) ,col=c(rainbow(1,

start = 0.7, end = 0.75 ,alpha = 0.5),"midnightblue","violetred"), bty = 'n',horiz=T)

106

107 func (250,a,b)

108 labels = c("250 Simulations", "Average","VIX data")

109 legend("bottomleft", title = NA, labels ,lty = c(1,1,1), lwd = c(5,2,2) ,col=c(rainbow(1,

start = 0.7, end = 0.75 ,alpha = 0.6),"midnightblue","violetred"), bty = 'n',horiz =

T)

Algorithm 21 State frequency diagrams based on 1 and 10 simulations.

1 #CIR Diffusion Process Analysis

2 #General: dXt = mu(Xt,t)dt + sigma(Xt ,t)dWt

3 #dXt = alpha*(beta -Xt)*dt + sigma*sqrt(Xt)*dWt

4 #sigma ~ N(a,b^2)

5

6 library(RColorBrewer)

7 library(hexbin)

8

9

10 rm(list=ls(all=TRUE))

11
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12 #Seed:

13 set.seed (7)

14

15 #Parameters

16

17 s = 0

18 t = 5

19 Xs = 2.75

20 alpha = 0.8

21 beta = 3

22 delta_t = 0.01 #step length

23 startingstate = 0

24 endstate = 5

25 numbsims = 1000

26 timespace = seq(s,t,delta_t)

27 statespace = seq(startingstate ,endstate ,delta_t)

28 N = length(timespace)

29 X = rep(Xs, numbsims)

30

31 a = 0.25 #sigma ~ N(a,b^2)

32 b = 0.15

33 randsims = 1

34

35

36 rf <- colorRampPalette(rev(brewer.pal(11,'Spectral ')))

37 r <- rf(32)

38

39

40 heatplot = function(s,t,Xs ,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

41 {

42

43 mufunc = function(Xt,t)

44 {

45 return(alpha*(beta - Xt))

46 }

47

48 sigfunc = function(Xt,t)

49 {

50 return(sigma*sqrt(Xt))

51 }

52

53

54 Xt = rep(Xs,numbsims)
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55 timespace = seq(s,t,delta_t)

56

57 heatmat = matrix(0,length(timespace) ,1)

58 heatmat [1] = Xs

59

60 for(i in 2: length(timespace))

61 {

62 dWt = sqrt(delta_t)*rnorm(numbsims)

63 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt,timespace[i])*dWt

64 heatmat[i] = Xt

65 }

66

67 return(heatmat)

68 }

69

70 sigma_vec = rnorm(randsims ,a,b)

71

72 Xt1 = as.vector(heatplot(s,t,Xs,alpha ,beta ,sigma=sigma_vec[1], delta_t,startingstate ,

endstate ,numbsims))

73

74 X = cbind(timespace ,Xt1)

75 X = as.data.frame(X)

76

77 for (r in 2: randsims)

78 {

79 X = as.matrix(X,randsims ,nxol(X))

80 sigma = sigma_vec[r]

81 Xtr = as.vector(heatplot(s,t,Xs,alpha ,beta ,sigma=sigma_vec[r],delta_t,startingstate ,

endstate ,numbsims))

82 timeXtr = cbind(timespace ,Xtr)

83 times_Xts = as.data.frame(X)

84 X = rbind(X,times_Xts)

85

86 }

87

88 my_frame = data.frame(X)

89

90 names(my_frame) = c("t","Xt")

91

92 hexbinplot(Xt~t, data=my_frame , colramp=rf ,type = c("g"), ybnds = "data",xbins =15)
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B3 SAS algorithm

Algorithm 22 SAS code for the S&P500VIX data AR(1)-�tted model, 150 year forecast.

1 data SP;

2 set work.SP500VIX;

3 Zt = VIX;

4 t=_n_;

5 dZt = dif(Zt);

6 run;

7

8

9 goptions reset=all i=join;

10 axis1 label=('VIX');

11 axis2 label=('days');

12 legend1 label=('PLOTS:') value =('VIX' 'VIX first difference ');

13 symbol1 color=blue width =2;

14 symbol2 color=red width =1.5;

15 title 'Timeplot of VIX and VIX first difference ';

16 proc gplot data=SP;

17 plot (Zt dZt)*t / overlay legend=legend1 vaxis=axis1 haxis=axis2;

18 run;

19

20 title 'AR(1) - fitted ';

21 proc arima data=SP out=reg1;

22 identify var=Zt scan esacf minic p=(0:3) q=(0:3) stationarity =(adf=(0,1,2,3,4,5))

;

23 estimate p=1 method=ml plot;

24 forecast lead =250;

25 run;

26

27 data reg2;

28 set reg1;

29 t = _n_;

30 run;

31

32

33 goptions reset=all i=join;

34 axis1 label=('Residual ');

35 axis2 label=('t');

36 symbol1 color=aqua width =2;

37 title 'Timeplot of residuals vs time(t)';

38 proc gplot data=reg2;
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39 plot residual*t / vaxis=axis1 haxis=axis2;

40 run;

41

42 goptions reset=all i=join;

43 axis1 label=('Residual ');

44 axis2 label=('prediction ');

45 symbol2 color=green width =1.5;

46 title 'Timeplot of residual vs prediction ';

47 proc gplot data=reg2;

48 plot residual*forecast / vaxis=axis1 haxis=axis2;

49 run;

50

51 proc corr data=reg2;

52 var forecast Zt;

53 run;

54

55 proc univariate data=reg2;

56 histogram residual / normal (mu = est sigma = est color=blue w=2);

57 qqplot residual / normal (mu = est sigma = est color=blue w=2) square;

58 probplot residual / normal (mu = est sigma = est color=blue w=2) square;

59 run;

60

61

62

63 goptions reset=all i=join;

64 axis1 order=5 to 30 by 5 label =('VIX');

65 axis2 order =1000 to 1400 by 50 label=('days');

66 legend1 label=('Plots:') value =('VIX data' 'forecast ' 'l95' 'u95');

67 symbol1 color=purple width =1;

68 symbol2 color=blue width =1;

69 symbol3 color=pink line=2 width =1;

70 symbol4 color=pink line=2 width =1;

71 title 'Partially shown VIX trajectory and 250 day forecast ';

72 proc gplot data=reg2;

73 plot (Zt forecast l95 u95)*t / overlay legend=legend1 vaxis=axis1 haxis=axis2

href =1258;

74

75 run;
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Abstract

Often we face situations where we have to decide which model summarize our data best for a

speci�c purpose. Model selection has thus become an important task in a statistical analysis and

it can be done in various ways. Using Bayesian information criterion (BIC), Akaike information

criterion (AIC) or the Minimum Description Length (MDL) principle, etc. Where the MDL principle

measures the amount of variation in information and will be the main focus of this report, along with

how Hu�man coding can be used to measure the information captured through the regression model.

The MDL principle uses the complexity of each description when comparing competing models. From

the theory of algorithmic complexity by Kolmogorov, this approach started. Further developed in

the literature on information theory, and have been developing in statistics recently.
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1 Introduction

The problem often arises as to which model summarizes the data best. The Minimum Description Length

(MDL) principle is proposed to assist in selecting the better model. Stine [9] stated: "The description

length is the length of this code for the data plus the length of a description of the model itself." A

statistical model can be described as a code, for compressing data into a sequence of bits [9]. The MDL

principle chooses the model with the smallest sequence of bits, balancing complexity and �t [9]. The

length of code needed to describe the data is the �t, and the length of code needed to describe the model

structure is the complexity. Therefor complexity and �t must be combined for a model selection criterion

to produce an aggregate �gure of merit for selection of the better model [1]. The MDL of the data will be

calculated based on the concept of Hu�man coding introduced by David Hu�man in 1952. It is important

to note that two types of compression exist. Lossless compression being compressed data that would be

able to reproduce the original data exactly without losing any data, whereas with lossy compression one

would not be able to reproduce the original data exactly. Hu�man coding is a well known method for

lossless data compression with variable-length codes. Where code of variable lengths is used to represent

the data based on their frequency of occurrence. That is, we assign shorter codes to the more frequently

occurring symbols and longer codes to the symbols that occur infrequently. It will be compared with

�xed length codes such as ASCII (American Standard Code for Information Interchange) which requires

a �xed amount of 8 bits to represent each character in a document. The expected lengths of these two

types of code are then calculated and compared to the entropy. Entropy was introduced by Claude

Shannon in 1948, as the equation that provides a way to estimate the average minimum number of bits

needed to encode a symbol, based on the symbols frequency of occurrence. Shannon entropy provides a

lower bound that can be achieved for data compression. The average length of Hu�man coding may not

always equal entropy, but comes close and satisfy the following equation,

H(Y ) ≤ average length of Huffman code ≤ H(Y ) + 1, (1)

where H(Y ) represents entropy.

Having the equation of entropy, the equations of complexity and �t are then derived on that concept.

Noting the similarity between the MDL principle and alternative model selection methods as the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC). The equations of complexity

and �t are then applied to di�erent models. The sum of complexity and �t for each model will result in

the description lengths of each model. Finally the model with the minimum description length (smallest

sequence of bits) can be selected, as the model that will represent the data best. Before presenting a

practical application, it is of importance to discuss some background theory and consider the derivations
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of the equations to be used.

2 Theoretical discussion

2.1 Concept of Hu�man coding

David Hu�man went to Ohio State University, but the unusual part of his BS Electrical Engineering

degree was that he received it in 1944, at the age of 18 [8]. Hu�man served in the US Navy where after

he �nished his MS degree at Ohio in 1949 and �nished his PhD at MIT in 1953 [8]. The famous Hu�man

code developed in 1952 in a �nal term paper which Hu�man wrote at MIT, where Robert Fano (his

professor) gave a question on shortest variable-length coding, given the probability of occurrence. In [8]

Salomon mentioned: "It should be noted that in the late 1940s, Fano himself (and independently, also

Claude Shannon) had developed a similar, but suboptimal, algorithm known today as the Shannon�Fano

method." There was a di�erence in the code of Hu�man and in the code of Shannon-Fano. In a sense

that the Hu�man code tree is build from the bottom upwards, whereas the Shannon-Fano code tree

was constructed from the top downwards. Hu�man coding is known to at least equal the e�ciency of

Shannon-Fano coding and is generally seen as optimal.

To explain how Hu�man coding works, in Figure 1 it is seen that given an example set of data

symbols and their probabilities or, their frequencies of occurrence, a set of variable-length code-words

are allocated to the symbols, see [8]. Given the probabilities as 1
2 ,

1
4 ,

1
8 ,

1
8 for symbols y = {y1, y2,y3,y4}

respectively. From the frequency of occurrence for each symbol, shorter code-words are allocated to

symbols that occur more frequently and longer code-words for lower frequency symbols. The code-words,

binary code, consist out of a sequence of bits, 0's and 1's, used in an unambiguous manner and should

be pre�x-free. A code is said to be pre�x-free if no code-word is the pre�x, the �rst part, of another

code-word. To see how to allocate this binary code to the probabilities, the Hu�man tree is used. The

Hu�man tree was constructed in Figure 1 by arranging the probabilities of each symbol in ascending or

descending order. Then grouping the smallest two probabilities by connecting them with branches and

adding the two probabilities together. The process is then repeated, each time connecting the smallest

two branch probabilities together. When grouping the �nal two branches, the probabilities should equal

to 1. In doing so, a binary code of 0`s and 1`s are allocated to the branches on both sides of the joined

probabilities. Allocating the binary codes in a systematic way, such that the 0 are always assigned to

the branch on the same side of the joined probabilities. On completion, allocate the binary codes to

the symbols. In Figure 1 it was done by reading o� the binary code from top to bottom. The order of

the code-word is important, because if the sequence of binary code is read o� backwards, the resulting

code will not be pre�x-free. This variable-length binary codes were presented in Table 1 column Code V.
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Note that in Table 1, a �xed length code-words example are given in column Code F, where equal length

code-words were allocated to the symbols, not determined by using Hu�man`s method, but an arbitrary

method.

Figure 1: Hu�man tree for creating variable length code-words

The code length are the amount of bits needed to encode a symbol y, and is represented by l(y). Let

p(y) be the probability of occurrence for the symbol y.

The theorem of Claude Shannon [4] shows that the optimal code length of a symbol y is related to

the probability p(y) of the symbol y,

l(y) = −log2p(y). (2)

Using this equation, from the example in Figure 1, the example code lengths of the variable length code-

words can be determined and denoted by lV (yi) for symbol yi, i = 1, 2, 3, 4. Let p(yi) be the probability

of occurrence for the symbol yi, i = 1, 2, 3, 4, then

lV (yi) = −log2p(yi) (3)

where V indicate the optimal length encoder. Note that in Table 1, the example symbol probabilities

comply with equation (3), and the Hu�man coding is thus optimal, with equality in equation (1). In the

cases where equation (3) indicate a fractional bit count, the upper bound in equation (1) will be relevant,

making Hu�man coding almost optimal, see Figure 2. The �xed code, Code F, with a bit count of 2
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for each symbol, is not optimal. The �xed lengths and variable lengths are given in columns lF (yi) and

lV (yi) respectively in Table 1.

i Symbol yi p(yi) Code F (Fixed) lF (yi) Code V (Variable) lV (yi)

1 y1 0.5 00 2 0 1

2 y2 0.25 01 2 10 2

3 y3 0.125 10 2 110 3

4 y4 0.125 11 2 111 3

Table 1: Code length comparisons

From Hansen and Yu in [4] it is stated that the correspondence between the variable code length and

probability can also be reversed, and satisfy the Kraft inequality,

∑
y∈Θ

2−l(y) ≤ 1 (4)

where symbol y for y ∈ Θ, the domain with positive mass.

The Kraft inequality proof is given by Cover and Thomas [2].

This inequality states that the sum of the probabilities should be smaller or equal to 1, with equality

if the coding scheme is e�cient, or optimal. Thus, if we know the code length, using equation (4), we

can calculate the probability of occurrence for symbol y as

p(y) = 2−l(y) (5)

for all y in the symbol set. That is, 2−l(y) behaves like a probability function, it is non-negative and

sums to unity. There is thus a one-to-one relationship between optimal coding schemes and probability

functions. The Kraft inequality relates the notation of information and uncertainty explained by a

probability function.

The Kraft inequality can be illustrated on the example symbol probabilities. From Table 1, for

instance, if the length of the fourth symbol yi, i = 4, is known as 3. The probability of occurrence can

be determined as

p(yi) = 2−lV (yi)

p(y4) = 2−lV (y4)

= 2−(3)

p(y4) = 0.125. (6)
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2.2 Entropy

Consider a random variable Y with probability distribution p(y) for y ∈ Θ, the domain with a positive

mass. The minimum length of bits to code y, y ∈ Θ, is given by equation (2) as −log2p(y). The expected

minimum length to code Y is thus given by

E(l(Y )) =
∑
y∈Θ

−p(y)log2p(y)

= H(Y ). (7)

The expected minimum, [4], is know as Shannon entropy or just as entropy. In [9] it is stated that: "On

average, the length l(y) of any lossless code is at least the entropy [2]." Since Hu�man coding is lossless,

it achieves the entropy lower bound and is seen as an optimal code. At most Hu�man coding will be 1

unit above entropy.

In [9] it is seen that Shannon`s theorem states, that

E(l(Y )) ≥ H(Y ). (8)

It follows that H(Y ) ≤ E(l(Y )) ≤ H(Y ) + 1 with

E(l(Y )) =
∑
y∈Θ

p(y)l(y). (9)

From the example in Table 1, knowing the probability of occurrence p(yi) for yi, i = 1, 2, 3, 4. With

V the optimal length encoder, knowing the code lengths lV (yi), the expected minimum length for Code

V can be denoted and determined as

E(lV (yi)) =

4∑
i=1

p(yi)lV (yi)

= (0.5)(1) + (0.25)(2) + (0.125)(3) + (0.125)(3)

= 1.75. (10)

The entropy H(yi) for the probability distribution given in Table 1 is calculated as

10



H(yi) =

4∑
i=1

−p(yi)log2p(yi)

= −0.5log20.5− 0.25log20.25− 0.125log20.125− 0.125log20.125

= 1.75. (11)

The expected minimum length of Code F can be calculated as

E(lF (yi)) =

4∑
i=1

p(yi)lF (yi)

= (0.5)(2) + (0.25)(2) + (0.125)(2) + (0.125)(2)

= 2 (12)

which is larger than H(yi), thus not an optimal code.

In the example above, it is seen that the expected length of Code V is shorter than those of Code F,

and that it equals the entropy. Making Code V an optimal code, also showing that Hu�man coding can

reach the entropy lower bound.

i Symbol yi p(yi) Code F (Fixed) lF (yi) Code V (Variable) lV (yi)

1 y1 0.5 00 2 0 1
2 y2 0.25 01 2 10 2
3 y3 0.1875 10 2 110 2.415 ≈ 3
4 y4 0.0625 11 2 111 4

Table 2: Code length comparisons using fractional variable code-word lengths

Table 2 presents a slight di�erent probability distribution as compared to Table 1. The table also

include minimum length −log2p(yi), which indicate fractional code-word lengths. Rounding the code

lengths to the next integer, code-words as in Figure 1 have been selected. It is shown in Figure 2 that the

fractional code-word lengths had resulted in no changes to the structure of the Hu�man tree. However,

the number of bits, for example, needed to represent the symbols are lV (y3) = 2.415 ≈ 3 (rounded) and

lV (y4) = 4.
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Figure 2: Hu�man tree for creating variable length code-words using fractional code-word lengths

The expected length of Code V was then determined as

E(lV (yi)) =

4∑
i=1

p(yi)lV (yi)

= (0.5)(1) + (0.25)(2) + (0.1875)(3) + (0.0625)(4)

= 1.8125 (13)

and the corresponding entropy can be calculated as

H(yi) =

4∑
i=1

−p(yi)log2p(yi)

= −0.5log20.5− 0.25log20.25− 0.1875log20.1875− 0.0625log20.0625

= 1.70281. (14)

Thus the expected length did not reach entropy, but is within one unit,

H(Y ) ≤ average length of Huffman code ≤ H(Y ) + 1. (15)
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2.3 Model selection

Model selection is to determine and select the model that best summarize the data. Thus coding the

data and the model in terms of code lengths. The code length measures the model coding e�ectiveness.

A model associate a probability to the observed data. That probability, in turn, suggest an optimal code

length to representing the data [9]. The ideal is a minimum number of bits (shortest code) to summarize

the data and the model structure used. The best model produces the shortest code. What the best model

and coding have in common, is that they both maximize the likelihood of the observed data. Thus, the

best code for a random variable Y ∼ p, has an idealized length of l(y) = −log2p(y) [9]. The length of

this code for representing a sample Y1, Y2, ..., Yn ∼ p(y) is the negative log-likelihood [9],

l(y1, ..., yn) = −log2L(y1, ..., yn)

= −log2p(y1)p(y2)...p(yn). (16)

The expected length of any other code will be larger. If coding just maximize the likelihood, over �t

needs to be avoided. It is overcome by the code identifying the model used, as to which method was used

to encode the data. The code length will therefor be represented by two components, one to identify the

data when encoded with the chosen model and a component to identify the model structure itself. Thus

description length, DL, is de�ned as the combination of code length required to represent the data plus

the code length required to describe the model structure [9]. In order to determine the DL of a model,

based on the concept of Hu�man coding, consider the following. Let y denote n response observations

y1, y2, ..., yn. Let Mθ denote the parametric model indexed by parameter vector θ and let L(y | Mθ)

denote the likelihood given the model. Let θ̂(y) be the maximum likelihood estimator, since maximizing

the likelihood, obtain the shortest code for the data. Let l(Mθ̂(y)) denote the number of bits required to

represent the �tted model. The DL is then given by

D(y; Mθ̂(y)) = l(Mθ̂(y))− log2L(y |Mθ̂(y)). (17)

In the above equation, the �rst term of the equation represents complexity, the code length required to

identify the model structure. The second term represents �t, the length of code required to identify the

data. Before calculating the DL`s, the equation above needs to be considered. In a regression model,

consider how to encode a parameter, for example, the slope. The best data summary through a model

is obtained by using the maximum likelihood estimator (MLE) of the parameter. The coding for the

model has to identify θ̂(y), because the MLE depends on y. Least square slopes are often integers values.

Rissanen showed in [7] that, rather than identifying θ̂(y) exactly, we only need to calculate how many
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standard errors (SE) it lies from 0. Deriving θ̃(y) from θ̂(y) as

θ̃(y) = SE(θ̂(y))

〈
θ̂(y)

SE(θ̂(y))

〉

= SE(θ̂(y)) zθ̃(y), (18)

where 〈x〉 denotes the integers closest to x. Therefor there is no need to encode θ̂(y), but rather encode,

for example, zθ̃ = 4, meaning the estimate lies four SE`s above zero. The likelihood and code`s ability

to summarize data, are hardly e�ected by this rounding. In practice the rounded estimates are used to

calculate DL. From equation (17) and (18), the DL is derived as

D(y; Mθ̂(y)) ≈ l(Mθ̃(y))− log2L(y |Mθ̂(y)). (19)

Encoding integer z scores will be the last step in the process of determining the MDL. Before contin-

uing, consider the following equation,

AIC(θ̂(y)) = dim(θ̂(y))− log2L(y |Mθ̂(y)). (20)

It shows that alternative model selection methods, such as the AIC, selects the model with a minimum

penalized likelihood. Where dim(θ̂(y)) is used to denote the parameter dimension. Comparing equation

(20) with (19), it is shown that the code length l(Mθ̃(y)) used in equation (19) to identify the model,

�ll the role of a penalty factor in equation (20). To determine the amount of bits needed to present the

model, the rounded z scores need to be encoded. Since the rounded z scores have integer values, assuming

they are each bounded in size by |z̃| < B/2. Given B, for |z̃| is identi�ed by its binary expansion 1+log2B

and setting the bound B =
√
n [7]. Then the MDL criteria result to

D(y; Mθ̂(y)) = dim(θ)(1 +
1

2
log2n)− log2L(y |Mθ̂(y)). (21)

For large n, the �rst term plays the role of the BIC penalty. From the work of Elias [3], Rissanen [6],

a universal code to represent integers were proposed. It assigns probabilities that decrease as z̃ moves

away from zero, rather than dividing the code evenly over a bounded area. Where an integer, for j 6= 0 ,

the ideal universal code length is approximated by

lu(j) = 2 + log+
2 |j|+ 2log+

2 log
+
2 |j| , (22)

with log+
2 (x) as the positive log function. Where log+

2 (x) = 0 for |x| ≤ 1. A collection of rounded z scores

are denoted by [9],
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z̃j =

〈
θ̂j

SE(θ̂j)

〉
, j = 1, ..., dim(θ), (23)

Then the DL becomes

D(y; Mθ̂(y)) =

dim(θ)∑
j=1

lu(z̃j)− log2L(y |Mθ̂(y)). (24)

Assuming the structure of the model is known in advance and not determined from the data, and

the predictors in the model does not need to be identi�ed by the code. Referring back to equation (19),

under the assumption of normality and using the rounded t statistics, complexity can be calculated as

l(Mθ̃(y)) =

dim(θ)∑
j=1

lu(z̃j), (25)

and the �t can be calculated as

−log2L(y |Mθ̂(y)) =
n

2
log2

(
ESS(θ̂)

n

)
, (26)

where ESS(θ̂) is the error sum of squares for the �tted model.

The DL for the regression model is then given by

D(theoretical regression) =

dim(θ)∑
j=1

lu(z̃j) +
n

2
log2

(
ESS(θ̂)

n

)
. (27)

The model with the lowest DL, balancing complexity and �t, is then the MDL.

3 Application

A data sample was taken from lake Laengelmavesi near Tampere in Finland [5]. The sample has 157

observations of randomly selected �sh. The sample has seven variables, including species, three lengths,

height, width and weight. The Weight of the �sh was the dependent variable from the given data.

Weight will be known as (Y ) and was given in grams. The estimated Weight will be determined as Ŷ .

The independent variables will be Species, Length1, Length2, Length3, Height% and Width%. Length1

(L1) indicate a measurement from the nose to the beginning of the tail in centimeters. Length2 (L2)

indicate a measurement from the nose to the notch of the tail in centimeters. Length3 (L3) was measured

from the nose to the end of the tail in centimeters. The maximal Height% (H) and Width% (W ) was

measured as a percentage of Length3. Species will be represented by dummy variables, 1 if the selected

specie occur, 0 otherwise. The di�erent species are illustrated in Table 3.

Remark 1. Images in Table 3 are free to use or share, even commercially.
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Species Image Species Image

Bream Roach

Parkki Smelt

Perch White�sh

Pike

Table 3: Fish species

We want to determine which model will describe our data best for a given purpose.

For Model 1, the model was selected as

Y = B0 +B1L1 +B2L2 +B3L3 +B4H +B5W +B6D1 +B7D2 +B8D3 +B9D4 +B10D5 +B11D6.

The model is simple and can be seen as a full model since it includes all the independent variables. This

model was selected because it contains all the predictor variables, but the high number of variables may

lead to a high complexity value.

The �t of Model 1 was determined as

−log2L(y |Mθ̂(y)) =
n

2
log2

(
ESS(θ̂)

n

)

=
157

2
log2

(
1241215.8

n

)
= 10.121661
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and the complexity was determined as

l(Mθ̃(y)) =

dim(θ)∑
j=1

lu(z̃j)

= lu(15) + lu(2) + lu(2) + lu(1) + lu(0) + lu(0) + lu(1) + lu(2) + lu(1) + lu(5) + lu(0) + lu(8)

= 9.8389323 + 3 + 3 + 2 + 2 + 2 + 2 + 3 + 2 + 6.7525747 + 2 + 8.169925

= 45.761432.

The DL for regression Model 1 was then determined as

D(theoretical regression) =

dim(θ)∑
j=1

lu(z̃j) +
n

2
log2

(
ESS(θ̂)

n

)

= 45.761432 + 10.121661

= 55.883093.

When looking at the t-values and their respective p-values, most of them are signi�cantly larger than 0.05.

The respective null hypotheses Bk = 0 are accepted for k = 2, 3, 4, 5, 6, 7, 8, 10. The relatively high value of

R2 = 0.938199 with few signi�cant t statistics is the one indicator of multicollinearity. Several high values

in the correlation matrix suggest the same. Since there exist high correlations between the three length

measurements, only one length measurement can be used. Knowing that a �sh is three dimensional and

since volume has a linear relationship with Weight, calculating the volume of a �sh could be a suitable

approximation of Weight. In determining the volume, we should remember that Height% and Width%

was measured as a maximal percentage of Length3. The Height can thus be approximated by Height =

Height%∗Length3/100 and the Width can be approximated by Width = Width%∗Length3/100. Thus

approximating Volume as

V olume1 ∝ Length33 ∗Height% ∗Width%

1002
.

Then Model 2 was selected as

Y = B0 +B1V olume1.
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The �t of Model 2 was determined as

−log2L(y |Mθ̂(y)) =
n

2
log2

(
ESS(θ̂)

n

)

=
157

2
log2

(
2218926.9

n

)
= 10.540715

and the complexity was determined as

l(Mθ̃(y)) =

dim(θ)∑
j=1

lu(z̃j)

= lu(13) + lu(35)

= 9.4758331 + 11.846797

= 21.322631.

The DL for regression Model 2 was then determined as

D(theoretical regression) =

dim(θ)∑
j=1

lu(z̃j) +
n

2
log2

(
ESS(θ̂)

n

)

= 21.322631 + 10.540715

= 31.863346.

It is shown that Model 2 perform signi�cantly better that Model 1 when comparing the two DL`s, due to

a signi�cantly lower complexity value in Model 2, even though there was not a large di�erence between

the �t of the two models. In Figure 3 and 4 below, a graphical presentation of Model 1 and 2 was given.

The model �tted to the data was used to determine the predicted Weights, Ŷ , and was given on the

x-axis. Furthermore, the observed Weights, Y , which was given in the data set was plotted on the y-axis.

The ideal model would then be plotted as a positive linear 45 degree line from the origin. A graphical

presentation thus allows the reader to see graphically as to which model best summarize the data.
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Figure 3: Model 1 �tted to the data

Figure 4: Model 2 �tted to the data

Suppose for di�erent species, there are di�erent linear relationships, since all seven species have

diversi�ed shapes. A di�erent model can be used for each individual specie. But due to the lack of
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observations per specie, indicated in Table 4, it won`t be an accurate representation of the data.

Species Frequency

Bream 34

Parkki 11

Perch 56

Pike 17

Roach 19

Smelt 14

White�sh 6

Table 4: Frequencies of �sh species in the sample

For Perches it might be worthwhile to determine its own model since the observation number is large

enough. Should the modeler have insu�cient knowledge about the di�erent �sh species or as in the

instance of not having enough observation per specie, one could also use the next model.

It is known that a �sh are not plane and unidimensional, as seen in Model 1. A cubic relationship is

thus explored. Model 3 was then selected as

3
√
Y = B0 +B1L3 +B2H +B3W.

The data tends to be non-linear, thus 1
3 seems to be a reasonable power of Y , since a �sh are three

dimensional. Then the �t of Model 3 was determined as

−log2L(y |Mθ̂(y)) =
n

2
log2

(
ESS(θ̂)

n

)

=
157

2
log2

(
7.9960594

n

)
= 1.4996446

and the complexity was determined as

l(Mθ̃(y)) =

dim(θ)∑
j=1

lu(z̃j)

= lu(1) + lu(31) + lu(14) + lu(22)

= 2 + 11.571498 + 9.6649331 + 10.773151

= 34.009583.
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The DL for regression Model 3 was then determined as

D(theoretical regression) =

dim(θ)∑
j=1

lu(z̃j) +
n

2
log2

(
ESS(θ̂)

n

)

= 34.009583 + 1.4996446

= 35.509227.

According to the DL`s, Model 2 is preferred over Model 3, because Model 2 had a lower DL of 31.863346

compared to Model 3 with a DL of 35.509227. Even though Model 2 might have a better DL than Model 3,

it is observed in Table 6 that Model 3 have better R2 and R2
a values than those of Model 2. Furthermore,

note that from the �rst three models explored, Model 3 had a signi�cantly lower �t of 1.5, rounded,

compared to Model 1 and 2 with rounded values of 10.1 and 10.5 respectively. In Figure 5 it was clearly

shown that Model 3 had a better �t compared to the �rst two models. Yet it might suggest over �t.

Figure 5: Model 3 �tted to the data

In the next model to be tested, the length needed to calculate the volume will be changed. Knowing

that volume consists out of three dimensions. Almost as in Model 2, where Length3 was used for all three

the dimensions, where Height% and Width% were maximal percentages of Length3. What if the length

used for the volume approximation were now changed from Length3 to Length2. Since the measurement

from the nose to the end of the tail may not be an accurate representation in determining the weight,
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because of a lack of weight in the tail. Yet, the length in the tail should not be disregarded. Therefor

using Length 2, which is the measurement from the nose to the notch of the tail. Then Model 4 was

given by

Y = B0 +B1V olume2

where Volume is now determined as

V olume2 ∝ Length2 ∗ (Length3 ∗Height%) ∗ (Length3 ∗Width%)

1002
.

The �t of Model 4 was determined as

−log2L(y |Mθ̂(y)) =
n

2
log2

(
ESS(θ̂)

n

)

=
157

2
log2

(
2209633.2

n

)
= 10.537688

and the complexity was determined as

l(Mθ̃(y)) =

dim(θ)∑
j=1

lu(z̃j)

= lu(13) + lu(35)

= 9.4758331 + 11.846797

= 21.322631.

The DL for regression Model 4 was then determined as

D(theoretical regression) =

dim(θ)∑
j=1

lu(z̃j) +
n

2
log2

(
ESS(θ̂)

n

)

= 21.322631 + 10.537688

= 31.860318.

The DL of Model 4 is very close the DL of Model 2, both would round to 32 bits. Indicating that

correlation exist between the two lengths, since it had no signi�cant e�ect on either the �t nor the

complexity, such that a di�erence in DL only occur from the third decimal. Noting that their R2 and R2
a

have no signi�cant di�erence up to the third decimal as well.
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Up to this point, Model 2 and 4 are the best models with regard to their, almost identical, DL`s.

Would the di�erent lengths used, to approximate the volume, still present the same DL if Species were to

be considered in the two models? And will the addition of Species improve the models further, or would

it increase the complexity of the model excessively? The following two models were explored. Model 5,

where Species was added to Model 2, given by

Y = B0 +B1V olume1 +B2D1 +B3D2 +B4D3 +B5D4 +B6D5 +B7D6.

Model 6, where Species was added to Model 4, given by

Y = B0 +B1V olume2 +B2D1 +B3D2 +B4D3 +B5D4 +B6D5 +B7D6.

The �t of Model 5 was determined as

−log2L(y |Mθ̂(y)) =
n

2
log2

(
ESS(θ̂)

n

)

=
157

2
log2

(
1690713.3

n

)
= 10.3446

and the complexity was determined as

l(Mθ̃(y)) =

dim(θ)∑
j=1

lu(z̃j)

= lu(12) + lu(31) + lu(2) + lu(1) + lu(2) + lu(0) + lu(2) + lu(5)

= 9.2688786 + 11.571498 + 3 + 2 + 3 + 2 + 3 + 6.7525747

= 40.592952.

The DL for regression Model 5 was then determined as

D(theoretical regression) =

dim(θ)∑
j=1

lu(z̃j) +
n

2
log2

(
ESS(θ̂)

n

)

= 40.592952 + 10.3446

= 50.937552.

It was shown in Figure 6 that the �t of Model 5 are similar to the �t of Model 2, but not identical.

From the calculation of complexity for Model 5, it is shown that adding the Species variable to Model 2,

did indeed increase the complexity value. Thus con�rming that complexity increase as the independent
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variables increase. This was expected. From the de�nition of complexity, it was known that, complexity

is the amount of length needed to identify the model structure.

Figure 6: Model 5 �tted to the data

For Model 6 the �t was determined as

−log2L(y |Mθ̂(y)) =
n

2
log2

(
ESS(θ̂)

n

)

=
157

2
log2

(
1634569.9

n

)
= 10.32024

and the complexity was determined as

l(Mθ̃(y)) =

dim(θ)∑
j=1

lu(z̃j)

= lu(13) + lu(32) + lu(3) + lu(1) + lu(2) + lu(0) + lu(2) + lu(6)

= 9.4758331 + 11.643856 + 4.9138599 + 2 + 3 + 2 + 3 + 7.3252492

= 43.358798.
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The DL for regression Model 6 was then determined as

D(theoretical regression) =

dim(θ)∑
j=1

lu(z̃j) +
n

2
log2

(
ESS(θ̂)

n

)

= 43.358798 + 10.32024

= 53.679038.

It is observed that with Species in the model, the DL`s of Model 5 and 6 does in fact di�er. Model 5

and 6 have similar �t values, but di�erent complexity values. Therefore the graphical representations

are expected to be very similar as well. Yet neither one of the two have been observed to be optimal. If

Model 3 is used as before, it is expected that when adding Species to the model, the complexity would

increase as well. Yet it is the �t result that is achieved that is interesting. For Model 7 given by

3
√
Y = B0 +B1L3 +B2H +B3W +B4D1 +B5D2 +B6D3 +B7D4 +B8D5 +B9D6

The �t of Model 7 was determined as

−log2L(y |Mθ̂(y)) =
n

2
log2

(
ESS(θ̂)

n

)

=
157

2
log2

(
5.53748

n

)
= 1.2346148

and the complexity was determined as

l(Mθ̃(y)) =

dim(θ)∑
j=1

lu(z̃j)

= lu(2) + lu(18) + lu(5) + lu(7) + lu(2) + lu(2) + lu(4) + lu(3) + lu(1) + lu(1)

= 3 + 10.289968 + 6.7525747 + 7.7857779 + 3 + 3 + 6 + 4.9138599 + 2 + 2

= 48.74218.

The DL for regression Model 7 was then determined as

D(theoretical regression) =

dim(θ)∑
j=1

lu(z̃j) +
n

2
log2

(
ESS(θ̂)

n

)

= 48.74218 + 1.2346148

= 49.976795.
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Looking back at Model 3, with a DL of 35.509227. Model 3 summarized the data fairly well, recalling a

�t of 1.4996446. After adding the species variable to Model 3, Model 7 is observed with an even smaller

�t of 1.2346148. In comparison with all models tested, Model 7 was observed with the smallest �t value.

Figure 7 re�ect how well Model 7 is �tted to the data. Should the Modeler deem �t to be of most

importance, irrelevant of the high complexity. Then Model 7 should be chosen to summarize the data.

Disregarding the fact that Model 7 have a high DL value compared to previous models tested.

Figure 7: Model 7 �tted to the data

For the last model tested, it came to thought that Model 3 was tested using Width% and Height% as

maximal percentages of Length 3. Therefore it would be interesting to see how the model would fare if the

actual Width and Height measures were used, whereHeight was approximated byHeight%∗Length3/100

and the Width was approximated by Width% ∗ Length3/100. Model 8 was then given by

3
√
Y = B0 +B1L3 +B2H(L3/100) +B3W (L3/100).
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The �t of Model 8 was determined as

−log2L(y |Mθ̂(y)) =
n

2
log2

(
ESS(θ̂)

n

)

=
157

2
log2

(
37.212465

n

)
= 2.608857

and the complexity was determined as

l(Mθ̃(y)) =

dim(θ)∑
j=1

lu(z̃j)

= lu(10) + lu(7) + lu(8) + lu(6)

= 8.7859698 + 7.7857779 + 8.169925 + 7.3252492

= 32.066922.

The DL for regression Model 8 was then determined as

D(theoretical regression) =

dim(θ)∑
j=1

lu(z̃j) +
n

2
log2

(
ESS(θ̂)

n

)

= 32.066922 + 2.608857

= 34.675779.

It has been observed that Model 8 do fare better than Model 3. Not only because Model 8 have a lower

DL than Model 3, with values determined as 34.675779 and 35.509227 respectively. When considering

the fact that the modeler should balance complexity and �t. Model 8 seems more balanced with a �t of

2.608857, and complexity of 32.066922, compared to Model 3 with a �t of 1.4996446, and complexity of

34.009583. Figure 8 illustrate how Model 8 was �tted to the data.
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Figure 8: Model 8 �tted to the data

Comparing all eight models explored, Model 2 and 4 are both rounded to a DL of 32. Thus Model 2

and 4 can be seen as the MDL models. Stating that when a �sh species are unknown, but knowing that

a �sh are three dimensional beings, Model 2 and Model 4 are the best models to summarize the data

balancing complexity and �t. Should the modeler feel that the �t in Model 2 and 4 was to vague. Then

Model 8 would be a su�cient alternative model to use. At the expense of 3 more bits for the rounded

DL, Model 8 had a signi�cant better �t. Thus, even though Model 8 was not the MDL, in accordance

with the modelers preference for balancing complexity and �t, Model 8 could be an acceptable model to

summarize the data.

In Table 5 a summary of all the models explored was given.

Model 1 Y=B0 +B1L1 +B2L2 +B3L3 +B4H +B5W +B6D1 +B7D2 +B8D3 +B9D4 +B10D5 +B11D6

Model 2 Y=B0 +B1V olume1

Model 3 3
√
Y = B0 +B1L3 +B2H +B3W

Model 4 Y=B0 +B1V olume2
Model 5 Y = B0 +B1V olume1 +B2D1 +B3D2 +B4D3 +B5D4 +B6D5 +B7D6

Model 6 Y = B0 +B1V olume2 +B2D1 +B3D2 +B4D3 +B5D4 +B6D5 +B7D6

Model 7 3
√
Y = B0 +B1L3 +B2H +B3W +B4D1 +B5D2 +B6D3 +B7D4 +B8D5 +B9D6

Model 8 3
√
Y = B0 +B1L3 +B2H(L3/100) +B3W (L3/100)

Table 5: Summary of models used

In Table 6 the SAS results were summarized for each of the models used in Table 5. The ESS will

denote the error sum of squares, R2 will denote the coe�cient of determination and R2
a will be the
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adjusted R square. The complexity, �t and DL are also shown in Table 6.

ESS R2 R2
a Fit Complexity Description length

Model 1 1241215.8 0.938199 0.9335106 10.121661 45.761432 55.883093

Model 2 2218926.9 0.889518 0.8888053 10.540715 21.322631 31.863346

Model 3 7.9960594 0.9912744 0.9911033 1.4996446 34.009583 35.509227

Model 4 2209633.2 0.8899808 0.889271 10.537688 21.322631 31.860318

Model 5 1690713.3 0.9158182 0.9118633 10.3446 40.592952 50.937552

Model 6 1634569.9 0.9186136 0.9147901 10.32024 43.358798 53.679038

Model 7 5.53748 0.9939573 0.9935874 1.2346148 48.74218 49.976795

Model 8 37.212465 0.9593925 0.9585963 2.608857 32.066922 34.675779

Table 6: Summary of results per model

4 Conclusion

It can be concluded that MDL is an e�ective model selection criteria. For selecting the model that best

summarize the data, for a speci�c purpose. Using MDL, it was noted that complexity and �t was the

key elements of the description length. As the results indicated on the data sample taken from lake

Laengelmavesi in Finland. Relatively equal description lengths can be found, with complexity and �t

di�erently distributed. It is the task of the modeler to assign the weights of importance to these two

elements when selecting a signi�cant model. This trade o� leads to an important property of the MDL

principle. The trade o� provides a natural safeguard against over �t. It is important to realize that

the MDL principle did not state how to select the suggested models. This could be seen as one of the

shortfalls of the principle. In practice, the building of models are done on human judgment or past

experience, with prior knowledge of similar models. Noting that the eight suggested models used in this

report was selected on human judgment. Better models may be available, yet the models used was for

illustration of how the MDL principle can be used to select the best model from those suggested. The

MDL principle allows for comparison of models from di�erent types, since a general criterion is used. In

comparison with the BIC and AIC, which only depend on the number of parameters used in the model.

Noting that both AIC and BIC fare well when many predictors are related to the response. So which

model �ts best? It depends on how the modeler approach the analysis. Even though models can be

imperfect, MDL can still provide reliable estimates of all the properties captured by the model. If theory

allows to express something as a probability distribution, then MDL presents a framework in which its

merits can be judged.

29



References

[1] Peter G Bryant and Olga I Cordero-Brana. Model selection using the minimum description length

principle. The American Statistician, 54(4):257�268, 2000.

[2] Thomas M Cover and Joy A Thomas. Elements of information theory. New York: John Wiley, 1991.

[3] Peter Elias. Universal codeword sets and representations of the integers. IEEE Transactions on

Information Theory, 21(2):194�203, 1975.

[4] Mark H Hansen and Bin Yu. Model selection and the principle of minimum description length. Journal

of the American Statistical Association, 96(454):746�774, 2001.

[5] J Puranen. Fish catch data set. Journal of Statistics Education Data Archive, 1917.

[6] Jorma Rissanen. A universal prior for integers and estimation by minimum description length. The

Annals of Statistics, pages 416�431, 1983.

[7] Jorma Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15. World scienti�c, 1998.

[8] David Salomon. A Concise Introduction to Data Compression. Springer Science & Business Media,

2007.

[9] Robert A Stine. Model selection using information theory and the MDL principle. Sociological Methods

& Research, 33(2):230�260, 2004.

30



Appendix

SAS code for the data sample taken from lake Laengelmavesi near Tampere in Finland.

quit;

dm 'log;clear';

dm 'odsresult;clear';

PROC IMPORT OUT= WORK.fish

DATAFILE= "C:\PAUL\#Tuks\Honours\STK 795\sas coding\sas_data.xls"

DBMS=EXCEL REPLACE;

RANGE="fish";

GETNAMES=YES;

MIXED=NO;

SCANTEXT=YES;

USEDATE=YES;

SCANTIME=YES;

RUN;

proc print data = work.fish;

run;

title "The Species Variable";

proc freq data=work.fish;

tables Species;

run;

proc iml;

print 'Model 1';

use work.fish; read all var{Weight} into Y;

use work.fish; read all var{Length1} into Length1;

use work.fish; read all var{Length2} into Length2;

use work.fish; read all var{Length3} into Length3;

use work.fish; read all var{Height} into Height;

use work.fish; read all var{Width} into Width;

use work.fish; read all var{Species} into Species;

31



print 'Weight=Y';

print 'Length1=L1, Length2=L2, Length3=L3, Height=H, Width=W';

print 'Species: Bream=D1, Parkki=D2, Perch=D3, Pike=D4, Roach=D5, Smelt=D6, Whitefish=D7';

print 'Y= b0 +b1L1 +b2L2 +b3L3 +b4H +b5W +b6D1 +b7D2 +b8D3 +b9D4 +b10D5 +b11D6';

n=157;

Species2=Species;

Species = designf( Species );

*print Species2;

X=J(n,1,1)||Length1||Length2||Length3||Height||Width||Species;

*print X;

k=ncol(x);

bh=inv(X`*X)*X`*Y;

H=X*inv(X`*X)*X`;

yh=H*Y;

res=y-x*bh;

ESS=res`*res;

TSS=ssq(y-y[:]);

RSS=TSS-ESS;

df_ess=n-ncol(x);

df_rss=ncol(x)-1;

df_tss=n-1;

MSE=ESS/df_ess;

MSR=RSS/df_rss;

R2=RSS/TSS;

aR2=1 - ((1-R2)*((n-1)/(n-k)));

Cov_b=MSE*inv(X`*X);

se_b=sqrt(vecdiag(Cov_b));

t_values=bh/se_b;

t_int= abs(round(t_values));

p_t= 2*(1-probt(abs(t_values),df_ess));

print n k ESS , R2 aR2 , bh se_b p_t t_values t_int;
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Corr=corr(x);

nm={"int" "Length1" "Length2" "Length3" "Height" "Width" "D1" "D2" "D3" "D4" "D5" "D6"};

print Corr[colname=nm rowname=nm];

Fit=(n/2)*(log2(ESS)/n);

print Fit;

do i=1 to nrow(t_int);

if t_int[i,] <=1 then L_var=2;

else L_var=2+log2(t_int[i,])+2*log2(log2(t_int[i,]));

*print L_var;

L_var_comb = L_var_comb // L_var;

end;

print L_var_comb;

Complexity=L_var_comb[+];

print Complexity;

Description_length=Fit+Complexity;

print Description_length;

create yhat from yh[colname="yh"];

append from yh;

quit;

data work.fish;

merge work.fish yhat;

run;

proc sort data =work.fish;

by Weight;
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run;

goptions reset=all;

axis1 label=(angle=90 'Observed Weight');

axis2 label=('Predicted Weight');

legend1 label=('Species:')

value=('Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish');

symbol1 color=black value=plus;

symbol2 color=red value=x;

symbol3 color=blue value=star;

symbol4 color=green value=square;

symbol5 color=orange value=triangle;

symbol6 color=purple value=hash;

symbol7 color=brown value=dot;

title1 'Plot of Observed Weight against Predicted Weight';

proc gplot data=fish;

plot Weight *yh =Species / legend=legend1 vaxis=axis1 haxis=axis2;

run;

proc iml;

print 'Model 2';

use work.fish; read all var{Weight} into Y;

use work.fish; read all var{Length1} into Length1;

use work.fish; read all var{Length2} into Length2;

use work.fish; read all var{Length3} into Length3;

use work.fish; read all var{Height} into Height;

use work.fish; read all var{Width} into Width;

use work.fish; read all var{Species} into Species;

print 'Weight=Y';

print 'Length3=L3, Height=H, Width=W';

print 'Volume1= (L3^3 *H *W) /100^2';

print 'Y= b0 +b1Volume1';
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n=157;

Species2= Species;

Species = designf( Species );

*print Species;

volume1=((Length3##3)#Height#Width)/(100##2);

*print volume1;

X=J(n,1,1)||volume1;

*print X;

k=ncol(x);

bh=inv(X`*X)*X`*Y;

H=X*inv(X`*X)*X`;

yh=H*Y;

res=y-x*bh;

ESS=res`*res;

TSS=ssq(y-y[:]);

RSS=TSS-ESS;

df_ess=n-ncol(x);

df_rss=ncol(x)-1;

df_tss=n-1;

MSE=ESS/df_ess;

MSR=RSS/df_rss;

R2=RSS/TSS;

aR2=1 - ((1-R2)*((n-1)/(n-k)));

Cov_b=MSE*inv(X`*X);

se_b=sqrt(vecdiag(Cov_b));

t_values=bh/se_b;

t_int= abs(round(t_values));

p_t= 2*(1-probt(abs(t_values),df_ess));

print n k ESS , R2 aR2 , bh se_b p_t t_values t_int;

Corr=corr(x);

nm={"int" "Volume1"};

print Corr[colname=nm rowname=nm];
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Fit=(n/2)*(log2(ESS)/n);

print Fit;

do i=1 to nrow(t_int);

if t_int[i,] <=1 then L_var=2;

else L_var=2+log2(t_int[i,])+2*log2(log2(t_int[i,]));

*print L_var;

L_var_comb = L_var_comb // L_var;

end;

print L_var_comb;

Complexity=L_var_comb[+];

print Complexity;

Description_length=Fit+Complexity;

print Description_length;

create yhat from yh[colname="yh"];

append from yh;

quit;

data work.fish;

merge work.fish yhat;

run;

proc sort data =work.fish;

by Weight;

run;

goptions reset=all;
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axis1 label=(angle=90 'Observed Weight');

axis2 label=('Predicted Weight');

legend1 label=('Species:')

value=('Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish');

symbol1 color=black value=plus;

symbol2 color=red value=x;

symbol3 color=blue value=star;

symbol4 color=green value=square;

symbol5 color=orange value=triangle;

symbol6 color=purple value=hash;

symbol7 color=brown value=dot;

title1 'Plot of Observed Weight against Predicted Weight';

proc gplot data=fish;

plot Weight *yh =Species / legend=legend1 vaxis=axis1 haxis=axis2 ;

run;

proc iml;

print 'Model 3';

use work.fish; read all var{Weight} into Y;

use work.fish; read all var{Length1} into Length1;

use work.fish; read all var{Length2} into Length2;

use work.fish; read all var{Length3} into Length3;

use work.fish; read all var{Height} into Height;

use work.fish; read all var{Width} into Width;

use work.fish; read all var{Species} into Species;

print 'Weight=Y';

print 'Length3=L3, Height=H, Width=W';

print 'Y^1/3= b0 +b1L3 +b2H +b3W';

n=157;

Species2= Species;

Species = designf( Species );
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*print Species;

X=J(n,1,1)||Length3||Height||Width;

*print X;

k=ncol(x);

Y=Y##(1/3);

ynew=Y;

*print y;

bh=inv(X`*X)*X`*Y;

H=X*inv(X`*X)*X`;

yh=H*Y;

res=y-x*bh;

ESS=res`*res;

TSS=ssq(y-y[:]);

RSS=TSS-ESS;

df_ess=n-ncol(x);

df_rss=ncol(x)-1;

df_tss=n-1;

MSE=ESS/df_ess;

MSR=RSS/df_rss;

R2=RSS/TSS;

aR2=1 - ((1-R2)*((n-1)/(n-k)));

Cov_b=MSE*inv(X`*X);

se_b=sqrt(vecdiag(Cov_b));

t_values=bh/se_b;

t_int= abs(round(t_values));

p_t= 2*(1-probt(abs(t_values),df_ess));

print n k ESS , R2 aR2 , bh se_b p_t t_values t_int;

Corr=corr(x);

nm={"int" "Length3" "Height" "Width"};

print Corr[colname=nm rowname=nm];

Fit=(n/2)*(log2(ESS)/n);

print Fit;
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do i=1 to nrow(t_int);

if t_int[i,] <=1 then L_var=2;

else L_var=2+log2(t_int[i,])+2*log2(log2(t_int[i,]));

*print L_var;

L_var_comb = L_var_comb // L_var;

end;

print L_var_comb;

Complexity=L_var_comb[+];

print Complexity;

Description_length=Fit+Complexity;

print Description_length;

create yhat from yh[colname="yh"];

append from yh;

create yn from ynew[colname="ynew"];

append from ynew;

quit;

data work.fish;

merge work.fish yhat yn;

run;

proc sort data =work.fish;

by ynew;

run;

goptions reset=all;

axis1 label=(angle=90 'Observed Weight');
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axis2 label=('Predicted Weight');

legend1 label=('Species:')

value=('Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish');

symbol1 color=black value=plus;

symbol2 color=red value=x;

symbol3 color=blue value=star;

symbol4 color=green value=square;

symbol5 color=orange value=triangle;

symbol6 color=purple value=hash;

symbol7 color=brown value=dot;

title1 'Plot of Observed Weight against Predicted Weight';

proc gplot data=fish;

plot ynew *yh =Species / vzero hzero legend=legend1 vaxis=axis1 haxis=axis2;

run;

proc iml;

print 'Model 4';

use work.fish; read all var{Weight} into Y;

use work.fish; read all var{Length1} into Length1;

use work.fish; read all var{Length2} into Length2;

use work.fish; read all var{Length3} into Length3;

use work.fish; read all var{Height} into Height;

use work.fish; read all var{Width} into Width;

use work.fish; read all var{Species} into Species;

print 'Weight=Y';

print 'Length2=L2, Length3=L3, Height=H, Width=W';

print 'Volume2= (L2 *(H*L3) *(W*L3)) /100^2';

print 'Y= b0 +b1Volume2';

n=157;

Species2= Species;

Species = designf( Species );
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*print Species;

volume2=(Length2#(Height#Length3)#(Width#Length3))/(100##2);

*print volume2;

X=J(n,1,1)||volume2;

*print X;

k=ncol(x);

bh=inv(X`*X)*X`*Y;

H=X*inv(X`*X)*X`;

yh=H*Y;

res=y-x*bh;

ESS=res`*res;

TSS=ssq(y-y[:]);

RSS=TSS-ESS;

df_ess=n-ncol(x);

df_rss=ncol(x)-1;

df_tss=n-1;

MSE=ESS/df_ess;

MSR=RSS/df_rss;

R2=RSS/TSS;

aR2=1 - ((1-R2)*((n-1)/(n-k)));

Cov_b=MSE*inv(X`*X);

se_b=sqrt(vecdiag(Cov_b));

t_values=bh/se_b;

t_int= abs(round(t_values));

p_t= 2*(1-probt(abs(t_values),df_ess));

print n k ESS , R2 aR2 , bh se_b p_t t_values t_int;

Corr=corr(x);

nm={"int" "Volume2"};

print Corr[colname=nm rowname=nm];

Fit=(n/2)*(log2(ESS)/n);

print Fit;
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do i=1 to nrow(t_int);

if t_int[i,] <=1 then L_var=2;

else L_var=2+log2(t_int[i,])+2*log2(log2(t_int[i,]));

*print L_var;

L_var_comb = L_var_comb // L_var;

end;

print L_var_comb;

Complexity=L_var_comb[+];

print Complexity;

Description_length=Fit+Complexity;

print Description_length;

create yhat from yh[colname="yh"];

append from yh;

quit;

data work.fish;

merge work.fish yhat;

run;

proc sort data =work.fish;

by Weight;

run;

goptions reset=all;

axis1 label=(angle=90 'Observed Weight');

axis2 label=('Predicted Weight');

legend1 label=('Species:')

value=('Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish');
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symbol1 color=black value=plus;

symbol2 color=red value=x;

symbol3 color=blue value=star;

symbol4 color=green value=square;

symbol5 color=orange value=triangle;

symbol6 color=purple value=hash;

symbol7 color=brown value=dot;

title1 'Plot of Observed Weight against Predicted Weight';

proc gplot data=fish;

plot Weight *yh =Species / legend=legend1 vaxis=axis1 haxis=axis2;

run;

proc iml;

print 'Model 5';

use work.fish; read all var{Weight} into Y;

use work.fish; read all var{Length1} into Length1;

use work.fish; read all var{Length2} into Length2;

use work.fish; read all var{Length3} into Length3;

use work.fish; read all var{Height} into Height;

use work.fish; read all var{Width} into Width;

use work.fish; read all var{Species} into Species;

print 'Weight=Y';

print 'Length3=L3, Height=H, Width=W';

print 'Species: Bream=D1, Parkki=D2, Perch=D3, Pike=D4, Roach=D5, Smelt=D6, Whitefish=D7';

print 'Volume1= (L3^3 *H *W) /100^2';

print 'Y= b0 +b1Volume1 +b2D1 +b3D2 +b4D3 +b5D4 +b6D5 +b7D6';

n=157;

Species2= Species;

Species = designf( Species );

*print Species;

volume1=((Length3##3)#Height#Width)/(100##2);
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*print volume1;

X=J(n,1,1)||volume1||Species;

*print X;

k=ncol(x);

bh=inv(X`*X)*X`*Y;

H=X*inv(X`*X)*X`;

yh=H*Y;

res=y-x*bh;

ESS=res`*res;

TSS=ssq(y-y[:]);

RSS=TSS-ESS;

df_ess=n-ncol(x);

df_rss=ncol(x)-1;

df_tss=n-1;

MSE=ESS/df_ess;

MSR=RSS/df_rss;

R2=RSS/TSS;

aR2=1 - ((1-R2)*((n-1)/(n-k)));

Cov_b=MSE*inv(X`*X);

se_b=sqrt(vecdiag(Cov_b));

t_values=bh/se_b;

t_int= abs(round(t_values));

p_t= 2*(1-probt(abs(t_values),df_ess));

print n k ESS , R2 aR2 , bh se_b p_t t_values t_int;

Corr=corr(x);

nm={"int" "Volume1" "D1" "D2" "D3" "D4" "D5" "D6"};

print Corr[colname=nm rowname=nm];

Fit=(n/2)*(log2(ESS)/n);

print Fit;

do i=1 to nrow(t_int);

if t_int[i,] <=1 then L_var=2;
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else L_var=2+log2(t_int[i,])+2*log2(log2(t_int[i,]));

*print L_var;

L_var_comb = L_var_comb // L_var;

end;

print L_var_comb;

Complexity=L_var_comb[+];

print Complexity;

Description_length=Fit+Complexity;

print Description_length;

create yhat from yh[colname="yh"];

append from yh;

quit;

data work.fish;

merge work.fish yhat;

run;

proc sort data =work.fish;

by Weight;

run;

goptions reset=all;

axis1 label=(angle=90 'Observed Weight');

axis2 label=('Predicted Weight');

legend1 label=('Species:')

value=('Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish');

symbol1 color=black value=plus;

symbol2 color=red value=x;
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symbol3 color=blue value=star;

symbol4 color=green value=square;

symbol5 color=orange value=triangle;

symbol6 color=purple value=hash;

symbol7 color=brown value=dot;

title1 'Plot of Observed Weight against Predicted Weight';

proc gplot data=fish;

plot Weight *yh =Species / legend=legend1 vaxis=axis1 haxis=axis2;

run;

proc iml;

print 'Model 6';

use work.fish; read all var{Weight} into Y;

use work.fish; read all var{Length1} into Length1;

use work.fish; read all var{Length2} into Length2;

use work.fish; read all var{Length3} into Length3;

use work.fish; read all var{Height} into Height;

use work.fish; read all var{Width} into Width;

use work.fish; read all var{Species} into Species;

print 'Weight=Y';

print 'Length2=L2, Length3=L3, Height=H, Width=W';

print 'Species: Bream=D1, Parkki=D2, Perch=D3, Pike=D4, Roach=D5, Smelt=D6, Whitefish=D7';

print 'Volume2= (L2 *(H*L3) *(W*L3)) /100^2';

print 'Y= b0 +b1Volume2 +b2D1 +b3D2 +b4D3 +b5D4 +b6D5 +b7D6';

n=157;

Species2= Species;

Species = designf( Species );

*print Species;

volume2=(Length2#(Height#Length3)#(Width#Length3))/(100##2);

*print volume2;

X=J(n,1,1)||volume2||Species;
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*print X;

k=ncol(x);

bh=inv(X`*X)*X`*Y;

H=X*inv(X`*X)*X`;

yh=H*Y;

res=y-x*bh;

ESS=res`*res;

TSS=ssq(y-y[:]);

RSS=TSS-ESS;

df_ess=n-ncol(x);

df_rss=ncol(x)-1;

df_tss=n-1;

MSE=ESS/df_ess;

MSR=RSS/df_rss;

R2=RSS/TSS;

aR2=1 - ((1-R2)*((n-1)/(n-k)));

Cov_b=MSE*inv(X`*X);

se_b=sqrt(vecdiag(Cov_b));

t_values=bh/se_b;

t_int= abs(round(t_values));

p_t= 2*(1-probt(abs(t_values),df_ess));

print n k ESS , R2 aR2 , bh se_b p_t t_values t_int;

Corr=corr(x);

nm={"int" "Volume2" "D1" "D2" "D3" "D4" "D5" "D6"};

print Corr[colname=nm rowname=nm];

Fit=(n/2)*(log2(ESS)/n);

print Fit;

do i=1 to nrow(t_int);

if t_int[i,] <=1 then L_var=2;

else L_var=2+log2(t_int[i,])+2*log2(log2(t_int[i,]));

*print L_var;
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L_var_comb = L_var_comb // L_var;

end;

print L_var_comb;

Complexity=L_var_comb[+];

print Complexity;

Description_length=Fit+Complexity;

print Description_length;

create yhat from yh[colname="yh"];

append from yh;

quit;

data work.fish;

merge work.fish yhat;

run;

proc sort data =work.fish;

by Weight;

run;

goptions reset=all;

axis1 label=(angle=90 'Observed Weight');

axis2 label=('Predicted Weight');

legend1 label=('Species:')

value=('Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish');

symbol1 color=black value=plus;

symbol2 color=red value=x;

symbol3 color=blue value=star;

symbol4 color=green value=square;
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symbol5 color=orange value=triangle;

symbol6 color=purple value=hash;

symbol7 color=brown value=dot;

title1 'Plot of Observed Weight against Predicted Weight';

proc gplot data=fish;

plot Weight *yh =Species / legend=legend1 vaxis=axis1 haxis=axis2;

run;

proc iml;

print 'Model 7';

use work.fish; read all var{Weight} into Y;

use work.fish; read all var{Length1} into Length1;

use work.fish; read all var{Length2} into Length2;

use work.fish; read all var{Length3} into Length3;

use work.fish; read all var{Height} into Height;

use work.fish; read all var{Width} into Width;

use work.fish; read all var{Species} into Species;

print 'Weight=Y';

print 'Length3=L3, Height=H, Width=W';

print 'Species: Bream=D1, Parkki=D2, Perch=D3, Pike=D4, Roach=D5, Smelt=D6, Whitefish=D7';

print 'Y^1/3= b0 +b1L3 +b2H +b3W +b4D1 +b5D2 +b6D3 +b7D4 +b8D5 +b9D6';

n=157;

Species2 =Species;

Species = designf( Species );

*print Species;

X=J(n,1,1)||Length3||Height||Width||Species;

*print X;

k=ncol(x);

Y=Y##(1/3);

ynew=y;

*print y;
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bh=inv(X`*X)*X`*Y;

H=X*inv(X`*X)*X`;

yh=H*Y;

res=y-x*bh;

ESS=res`*res;

TSS=ssq(y-y[:]);

RSS=TSS-ESS;

df_ess=n-ncol(x);

df_rss=ncol(x)-1;

df_tss=n-1;

MSE=ESS/df_ess;

MSR=RSS/df_rss;

R2=RSS/TSS;

aR2=1 - ((1-R2)*((n-1)/(n-k)));

Cov_b=MSE*inv(X`*X);

se_b=sqrt(vecdiag(Cov_b));

t_values=bh/se_b;

t_int= abs(round(t_values));

p_t= 2*(1-probt(abs(t_values),df_ess));

print n k ESS , R2 aR2 , bh se_b p_t t_values t_int;

Corr=corr(x);

nm={"int" "Length3" "Height" "Width" "D1" "D2" "D3" "D4" "D5" "D6"};

print Corr[colname=nm rowname=nm];

Fit=(n/2)*(log2(ESS)/n);

print Fit;

do i=1 to nrow(t_int);

if t_int[i,] <=1 then L_var=2;

else L_var=2+log2(t_int[i,])+2*log2(log2(t_int[i,]));

*print L_var;

L_var_comb = L_var_comb // L_var;
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end;

print L_var_comb;

Complexity=L_var_comb[+];

print Complexity;

Description_length=Fit+Complexity;

print Description_length;

create yhat from yh[colname="yh"];

append from yh;

create yn from ynew[colname="ynew"];

append from ynew;

quit;

data work.fish;

merge work.fish yhat yn;

run;

proc sort data =work.fish;

by ynew;

run;

goptions reset=all;

axis1 label=(angle=90 'Observed Weight');

axis2 label=('Predicted Weight');

legend1 label=('Species:')

value=('Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish');

symbol1 color=black value=plus;

symbol2 color=red value=x;

symbol3 color=blue value=star;

symbol4 color=green value=square;
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symbol5 color=orange value=triangle;

symbol6 color=purple value=hash;

symbol7 color=brown value=dot;

title1 'Plot of Observed Weight against Predicted Weight';

proc gplot data=fish;

plot ynew *yh =Species / vzero hzero legend=legend1 vaxis=axis1 haxis=axis2;

run;

proc iml;

print 'Model 8';

use work.fish; read all var{Weight} into Y;

use work.fish; read all var{Length1} into Length1;

use work.fish; read all var{Length2} into Length2;

use work.fish; read all var{Length3} into Length3;

use work.fish; read all var{Height} into Height;

use work.fish; read all var{Width} into Width;

use work.fish; read all var{Species} into Species;

print 'Weight=Y';

print 'Length3=L3, Height=H, Width=W';

print 'Y^1/3= b0 +b1L3 +b2H(L3/100) +b3W(L3/100)';

n=157;

Species2= Species;

Species = designf( Species );

*print Species;

X=J(n,1,1)||Length3||Height#(Length3/100)||Width#(Length3/100);

*print X;

k=ncol(x);

Y=Y##(1/3);

ynew=y;

*print y;

bh=inv(X`*X)*X`*Y;
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H=X*inv(X`*X)*X`;

yh=H*Y;

res=y-x*bh;

ESS=res`*res;

TSS=ssq(y-y[:]);

RSS=TSS-ESS;

df_ess=n-ncol(x);

df_rss=ncol(x)-1;

df_tss=n-1;

MSE=ESS/df_ess;

MSR=RSS/df_rss;

R2=RSS/TSS;

aR2=1 - ((1-R2)*((n-1)/(n-k)));

Cov_b=MSE*inv(X`*X);

se_b=sqrt(vecdiag(Cov_b));

t_values=bh/se_b;

t_int= abs(round(t_values));

p_t= 2*(1-probt(abs(t_values),df_ess));

print n k ESS , R2 aR2 , bh se_b p_t t_values t_int;

Corr=corr(x);

nm={"int" "Length3" "H(L3/100)" "w(L3/100)"};

print Corr[colname=nm rowname=nm];

Fit=(n/2)*(log2(ESS)/n);

print Fit;

do i=1 to nrow(t_int);

if t_int[i,] <=1 then L_var=2;

else L_var=2+log2(t_int[i,])+2*log2(log2(t_int[i,]));

*print L_var;

L_var_comb = L_var_comb // L_var;
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end;

print L_var_comb;

Complexity=L_var_comb[+];

print Complexity;

Description_length=Fit+Complexity;

print Description_length;

create yhat from yh[colname="yh"];

append from yh;

create yn from ynew[colname="ynew"];

append from ynew;

quit;

data work.fish;

merge work.fish yhat yn;

run;

proc sort data =work.fish;

by ynew;

run;

goptions reset=all;

axis1 label=(angle=90 'Observed Weight');

axis2 label=('Predicted Weight');

legend1 label=('Species:')

value=('Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish');

symbol1 color=black value=plus;

symbol2 color=red value=x;

symbol3 color=blue value=star;

symbol4 color=green value=square;

symbol5 color=orange value=triangle;
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symbol6 color=purple value=hash;

symbol7 color=brown value=dot;

title1 'Plot of Observed Weight against Predicted Weight';

proc gplot data=fish;

plot ynew *yh =Species / vzero hzero legend=legend1 vaxis=axis1 haxis=axis2;

run;
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Abstract

In this study, we introduce the Kumaraswamy generalised normal distribution (KGN). Applied to

a real-life data set, the KGN distribution outperforms its competing beta generalised normal distribu-

tion (BGN) making it a useful contribution to the Kumaraswamy generated family of distributions.

To familiarise the reader, the beta generator is discussed alongside the Kumaraswamy generator as

a comparison study between the two generators by use of various applications of the beta Weibull,

Kumaraswamy Weibull, BGN and KGN distributions to real-life data sets. Explicit expansions for

mathematical properties are derived such as the PDF, CDF, moments, moment generating function

and hazard function. The methods of estimation include maximum likelihood estimation (MLE). The

evaluation of goodness-of-fit is done by Akaike information criterion (AIC), Bayesian information cri-

terion (BIC) and Consistent Akaike information criterion (CAIC).

An excerpt of this report titled, "On the Kumaraswamy-generalised normal distribution" is under

revision for the peer-reviewed SASA 2017 conference proceedings.
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1 Introduction

In a scientific field, certain univariate models are known or developed to fit particular data. As such,

every distribution is suited best to the data for which it was created.

It may happen, though, that the most appropriate distribution for a certain application does not

yield a good fit. Makgai et al. [17] studied this problem under peak-over-threshold data. In their paper,

they found that the best suited Pareto distribution model (the baseline distribution) would not give an

adequate fit for a certain river flooding data set. The generating method addresses certain shortfalls of

the baseline distribution, such as allowing for heavier tail weights [29].

Generated families of distributions usually have complex expressions and therefore have been made

more feasible by the computational and analytical facilities available in modern programming software

[29]. The beta-generator approach was pioneered by Eugene et al. [8] while deriving the beta normal

distribution. This distribution is intended for modelling symmetric heavy-tailed distributions as well as

skewed and bimodal distributions.

Jones [12] proved that the beta type I generated family has its origins in order statistics. To illustrate

the intuition behind the effect of the shape parameters offered in a beta generated family, we consider

the origin of the beta-generator approach.

Let random variable H with probability density function (PDF) h(x) be the α′th order statistic from

a random sample of size β from some baseline distribution G [1]:

h(x) =
1

B(α, β)
G(X)α−1(1−G(x))β−αg(x). (1)

The set of PDFs for the order statistics α = 1, ..., 30 of random sample size β = 30 of G ∼ Normal(0, 1)

are given in Figure 1. The baseline distribution is skewed positively to negatively with increasing values

of α relative to β. Note that the PDF (1) implies X = G−1(F ) with F ∼ Beta(α, β + 1 − α), see (69).

By letting α > 0 and β > 0 vary as real-valued numbers we generalise the equation (1) to yield the beta

type I generated family.

Here we show the Kumaraswamy generated family has similar origins in order statistics to the beta

type I generated family. For a set of β independent random samples of size α from an Uni(0, 1) distribu-

tion. Taking the maxima of the samples, the minimum value of the maxima will follow a Kumaraswamy

distribution with parameters α and β [13]. The beta type I distribution is related to the Kumaraswamy

in the cases of (α, 1) and (1, β) where their PDFs are equal as can be seen in equations (3) and (5).

Generalising the PDF of the Kumaraswamy for real-valued numbers of α > 0 and β > 0 we have the

motivation for the Kumaraswamy generated family.

8



Figure 1: Illustrating the effect of increasing the value of the shape parameter α in the beta type I
generated family. The PDFs for the order statistics α = 1, 2, . . . , 30 (from left to right) are from a
random sample size β = 30 from a Normal(0, 1) distribution, analogous to the baseline distribution.

Figure 2: Illustrating the effect of increasing the value of transformation the shape parameters α and β
in the Kumaraswamy generated family. The PDFs for increasing values of α = 0.3, 0.7, 1.1 with β = 1.3
(from left to right). The density functions for increasing values of β = 0.3, 0.7, 1.1 with α = 1.3 (from
right to left).
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Increasing values of α skew the baseline distribution negatively and vice versa for values of β as shown

in Figure 2.

The inverse probability integral transformation gives another perspective on how the generator op-

erates. The transformation is given by X = G−1(F ) where F ∼ Uni(0, 1). By simply replacing F with

any distribution, that has a support of (0, 1), we have a generated distribution. In this case we will let

F ∼ Beta(α, β) or F ∼ Kumaraswamy(α, β) and this relation then inserts the indexing parameters α

and β to the baseline distribution as required.

Moving to motivation of the derivation of the Kumaraswamy generalised normal distribution. The

shape of the BGN PDF has desirable properties such as high flexibility in location, dispersion, modality

and skewness. Applying the BGN model to image pixels from pasture and ocean data, Cintra et al. [3]

concluded that the BGN more adequately described the data than classical models for synthetic aperture

radar data.

In 2004, Jones [12] recommended the use of symmetric baseline distributions for beta generators such

as the generalised normal (GN) distribution. Also in 2009, Jones [13] proposed the Kumaraswamy as

a beta-type generator with tractability advantages. This motivates the derivation of the Kumaraswamy

generalised normal (KGN) distribution for the first time.

1.1 Methodology

A distribution is said to be generated if it has a cumulative distribution function (CDF) H(x) and PDF

h(x) as defined by:

H(x) = F (G(x))

=

ˆ G(x)

0

f(w)dw

∴ h(x) =
d

dx
F (G(x)), (2)

where F (·) and f(·) are the CDF and PDF the generator distribution and G(·) the CDF the baseline

distribution [17].

1.1.1 The beta type family

In this study, two members of the beta family will be investigated as generators, namely the beta type I

and Kumaraswamy distributions.

The beta type I PDF (3) and CDF (4) are given below:
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f(w) =
1

B(α, β)
wα−1(1− w)β−1, 0 ≤ w ≤ 1, α > 0, β > 0 (3)

and

F (w) =
1

B(α, β)

ŵ

0

tα−1(1− t)β−1dt (4)

where B(·, ·) is the beta function (Appendix eq.(61))[14].

The Kumaraswamy PDF (5) and CDF (6) are given below [15]:

f(w) = αβwα−1(1− wα)β−1, 0 ≤ w ≤ 1, α > 0, β > 0 (5)

and

F (w) = 1− (1− wα)β . (6)

Remark: The PDFs (3) and (5) are equal for the cases of α = 1 or β = 1.

1.1.2 Baseline distributions

The underlying baseline distributions are chosen as the Weibull and generalised normal distributions.

The Weibull distribution as defined by [14] has a PDF g(x) and CDF G(x) are given by:

g(x) =


k

λ

(x
λ

)k−1

exp
{
−
(x
λ

)k}
if x ≥ 0

0 if x > 0

(7)

and

G(x) =


1− exp

{
−
(x
λ

)k}
if x ≥ 0

0 if x > 0

(8)

0 < x <∞, k > 0, λ > 0

The GN distribution as studied by Nadarajah [21], see also Subbotin [28], has a PDF g(x) and CDF

G(x) are given by:
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g(x) =
s

2σΓ (1/s)
exp

{
−
∣∣∣∣x− µσ

∣∣∣∣s} (9)

and

G(x) =


s
´ x
−∞ exp

{
−
(
µ−y
σ

)}
dy

2σΓ (1/s)
if x ≤ µ

1−
s
´∞
x

exp
{
−
(
y−µ
σ

)s}
dy

2σΓ (1/s)
if x > µ

(10)

=


Γ
(

1/s,
(
µ−x
σ

)s)
2Γ (1/s)

if x ≤ µ

1−
Γ
(

1/s,
(
x−µ
σ

)s)
2Γ (1/s)

if x > µ

(11)

−∞ < x <∞,−∞ < µ <∞, s > 0, σ > 0,

where the location, dispersion, and shape is given by parameters µ, σ, and s. Also note that Γ(·) and

Γ(·, ·) are the complete and upper incomplete gamma functions (Appendix eq.(57) & (60)).

The GN PDF includes the Laplace distribution PDF for s = 1 and the normal distribution PDF for

s = 2 as illustrated in Figure 3.

Figure 3: The PDF of a generalised normal distribution with parameters µ = 0, σ = 1, and s = {1, 2, 8}.
Note that the GN PDF resembles the Laplace PDF for s = 1 the and the normal PDF for s = 2.
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1.2 Literature review

The generator and beta-generator approach has led to an extensive body of research literature. We note

the Marshall-Olkin family of generated distributions by Marshall and Olkin [18]; the beta generated

distributions by Eugene et al. [8]; gamma generated distributions by Zografos and Balakrishnan [32];

Kumaraswamy generated distributions by Cordeiro and Castro [7]; modified beta generated distributions

by Nadarajah et al. [24]; finally, the beta Burr type X distribution by Merovci et al. [19]. For a detailed

list of Kumaraswamy and beta generated distributions see the Appendix Tables 7, 8 & 9.

1.3 Report structure

The study is organised as follows.

In Sections 2 and 3, the beta type I and Kumaraswamy distributions will be considered as generators.

Using the beta-generator approach, each generator will be coupled with the Weibull distribution as

baseline. Properties such as the PDF, CDF, moments, and hazard functions of the beta type I Weibull

(BW) and Kumaraswamy Weibull (KW) are revisited and studied.

In Sections 4 and 5, the beta type I and Kumaraswamy distributions will be coupled with the GN

distribution. This will be the first coupling of the Kumaraswamy and generalised normal distribution.

Properties such as the PDF, CDF, moments, and hazard functions of the beta type I generalised normal

(BGN) and Kumaraswamy generalised normal (KGN) are derived and studied.

In Section 6, an application of the two generator distributions is done to compare and evaluate

performance of each. In the application, the distributions are fitted using MLE and the performance is

measured by AIC, BIC and CAIC.

In Section 7, the study ends with some final concluding remarks and recommendations for future

research.

2 The beta type I Weibull Distribution

The beta type I Weibull (BW) distribution was introduced by Lee et al. [16] using the beta generator

approach. The derivations of the PDF, CDF, hazard function, moments, moment generating function

and likelihood function are included in this Section.

2.1 Introduction

The PDF h(x) and CDF H(x) is obtained using definition (2), baseline CDF (8) and generator CDF (4)

[5]:
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h(x) =
1

B(α, β)
G(x)α−1(1−G(x))β−1g(x) (12)

=
1

B(α, β)

[
1− exp

{
−
(x
λ

)k}]α−1 [
1−

(
1− exp

{
−
(x
λ

)k})]β−1

·k
λ

(x
λ

)k−1

exp
{
−
(x
λ

)k}
=

1

B(α, β)

k

λk
xk−1exp

{
−
(x
λ

)k}[
1− exp

{
−
(x
λ

)k}]α−1

·exp
{
−(β − 1)

(x
λ

)k}
=

1

B(α, β)

k

λk
xk−1

[
1− exp

{
−
(x
λ

)k}]α−1

exp
{
−β
(x
λ

)k}
(13)

and

H(x) =
1

B(α, β)

ˆ G(x)

0

tα−1(1− t)β−1dt, 0 < x <∞, k, λ, α, β > 0. (14)

This random variable will be denoted as X ∼ BW (k, λ, α, β).

In Figure 4 the BW PDF is shown for various combinations of its parameters demonstrating the

flexibility of the PDF shapes achievable. The Weibull baseline distribution, with α = 1 and β = 1, is

shown as reference (dashed).

2.2 Hazard function

The hazard rate function of the BW distribution is derived from the definition (Appendix eq.(56)), (13),

(14)) and (Appendix eq.(65)) [5]:

τ(x) =
h(x)

1−H(x)

=

1
B(α,β)

k
λk
xk−1

[
1− exp

{
−
(
x
λ

)k}]α−1

exp
{
−β
(
x
λ

)k}
1− 1

B(α,β)

´ 1−exp
{
−( xλ )

k
}

0 tα−1(1− t)β−1dt
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=

1
B(α,β)

k
λk
xk−1

[
1− exp

{
−
(
x
λ

)k}]α−1

exp
{
−β
(
x
λ

)k}
1− I

1−exp
{
−( xλ )

k
}(α, β)

=

1
B(α,β)

k
λk
xk−1

[
1− exp

{
−
(
x
λ

)k}]α−1

exp
{
−β
(
x
λ

)k}
1−

(
1− I

exp
{
−( xλ )

k
}(β, α)

)

=

k
λk
xk−1

[
1− exp

{
−
(
x
λ

)k}]α−1

exp
{
−β
(
x
λ

)k}
B(α, β)I

exp
{
−( xλ )

k
}(β, α)

,

where I·(·, ·) is the incomplete beta function ratio (Appendix eq.(64)).

In Figure 4 the BW hazard function is shown for various combinations of its parameters. The Weibull

baseline distribution hazard function is shown as reference (dashed).

Figure 4: The effect of parameters k, λ, α, β on the BW PDF. The Weibull baseline distribution, without
the influence of the α and β, is shown (dashed) for comparison.
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Figure 5: The effect of parameters k, λ, α, β on the BW hazard function (solid). The Weibull baseline
distribution, without the influence of the α and β, is shown as reference (dashed).

2.3 Infinite expansion of the probability density function

The infinite expansion of the BW distribution CDF is used to derive an infinite expansion of the BW

PDF.

Firstly, and important integral is expanded with (Appendix eq.(82)) and (Appendix eq.(68)) [5]:

xˆ

0

tα−1(1− t)β−1dt =

ˆ x

0

(1− (1− t))α−1(1− t)β−1dt

=

ˆ x

0

∞∑
i=0

(
α− 1

i

)
(−(1− t))i(1− t)β−1dt

=

∞∑
i=0

(
α− 1

i

)
(−1)

i
ˆ x

0

(1− t)β+i−1dt

=

∞∑
i=0

(
α−1
i

)
(−1)

i

β + i

(
1− (1− x)β+i

)
=

∞∑
i=0

Γ(α) (−1)
i

Γ(a− i)i!(β + i)

(
1− (1− x)β+i

)
, 0 < x < 1, 0 < α, 0 < β. (15)

Note that the upper bound of the sum is α− 1 for integer values of α, see (Appendix eq.(83)).

Substituting (15) and (8) into (14), we have that:
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H(x) =
1

B(α, β)

∞∑
i=0

Γ(a) (−1)
i

Γ(a− i)i!(β + i)
(1− (1−G(x))β+i)

=

∞∑
i=0

wi(α, β)

(
1− exp

{
−(β + i)

(x
λ

)k})

=

∞∑
i=0

wi(α, β)

(
1− exp

{
−
(

(β + i)
1/k x

λ

)k})

=

∞∑
i=0

wi(α, β)Gλi,k(x)

h(x) =
d

dx
H(x)

=

∞∑
i=0

wi(α, β)gλi,k(x), (16)

where

wi(α, β) =
Γ(α) (−1)

i

Γ(α− i)
1

B(α, β)(β + i)i!

=
(1− α)i

B(α, β)(β + i)i!
(17)

and (α)i is the Pochhammer function (Appendix eq.(66) & (67)).

The CDF (14) is now given by an infinite weighted sum of Weibull CDFs Gλi,k(x) with parameter

λi = λ/(β+i)
1/k (see eq.(8)) and weights wi(α, β). The PDF (13) is similarly given by Weibull PDFs

gλi,k(x) (see eq.(7)).

2.4 Moments

The r′th moment of the BW is derived using the infinite weighted sum of Weibull PDFs with parameters

λi = λ/(β+i)
1/k and k (16).

From the definition of a moment, (16) and (17), it follows that the moments of the BW is [5]:

E (Xr) =

ˆ ∞
0

xrh(x)dx

=

ˆ ∞
0

xr
∞∑
i=0

wi(α, β)gλi,k(x)dx

=

∞∑
i=0

wi(α, β)

ˆ ∞
0

xrgλi,k(x)dx.

From the moment µ′i,r =
´∞

0
xrgλi,k(x)dx = Γ (r/k + 1)λri see (Appendix eq.(74)):
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E (Xr) =

∞∑
i=0

wi(α, β)

ˆ ∞
0

xrgλi,k(x)dx

=

∞∑
i=0

wi(α, β)Γ
( r
k

+ 1
)
λri

= Γ
( r
k

+ 1
) ∞∑
i=0

wi(α, β)λri

= Γ
( r
k

+ 1
) ∞∑
i=0

wi(α, β)

(
λ

(β + i)1/k

)r
= Γ

( r
k

+ 1
)
λr
∞∑
i=0

wi(α, β)(β + i)−
r
k

=
Γ
(
r
k + 1

)
B(α, β)

λr
∞∑
i=0

(1− α)i
i!(β + i)1+r/k

.

Note that the upper bound of the sum is α− 1 for integer values of α, see (Appendix eq.(83)).

2.5 Moment generating function

From the definition of a moment generating function, the infinite expansion of the PDF (13), (Appendix

eq.(82)), (Appendix eq.(68)) and (Appendix eq.(67)). The BW moment generating function is [5]:

M(t) = E[exp {tX}]

=

ˆ ∞
0

exp {tx} 1

B(α, β)

k

λk
xk−1

[
1− exp

{
−
(x
λ

)k}]α−1

exp
{
−β
(x
λ

)k}
dx

=
k

λkB(α, β)

ˆ ∞
0

xk−1exp
{
tx− β

(x
λ

)k}[
1− exp

{
−
(x
λ

)k}]α−1

dx

=
k

λkB(α, β)

ˆ ∞
0

xk−1exp
{
tx− β

(x
λ

)k} ∞∑
i=0

(
α− 1

i

)[
−exp

{
−
(x
λ

)k}]i
dx

=
k

λkB(α, β)

∞∑
i=0

(
α− 1

i

)
(−1)i

ˆ ∞
0

xk−1exp
{
tx− β

(x
λ

)k}
exp

{
−i
(x
λ

)k}
dx

=
k

λkB(α, β)

∞∑
i=0

Γ(a)(−1)i

Γ(a− i)i!

ˆ ∞
0

xk−1exp
{
tx− (β + i)

(x
λ

)k}
dx

=
k

λkB(α, β)

∞∑
i=0

(1− α)i
i!

ˆ ∞
0

xk−1exp

{
tx−

(
(i+ β)1/kx

λ

)k}
dx, (18)

Note that the upper bound of the sum is α− 1 for integer values of α, see (Appendix eq.(83)).

Remark:

For an alternative expression of the moment generating function, consider the transformation y = xk,

which implies x = y
1
k and dx

dy = 1
ky

1
k−1 on the integral in (18):
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ˆ ∞
0

xk−1exp

{
tx−

(
(i+ β)1/kx

λ

)k}
dx =

1

k

ˆ ∞
0

y
1
k−1y

k−1
k exp

tx−
(

(i+ β)1/ky
1
k

λ

)k dy

=
1

k

ˆ ∞
0

exp
{
− (i+ β)

λk
y

}
exp

{
ty

1
k

}
dy

=
1

k
EY

[
exp

{
ty

1
k

}]
,

where Y ∼ Exp
(
i+β
λk

)
distributed, see (71). Therefore,

M(t) =
1

λkB(α, β)

∞∑
i=0

(1− α)i
i!

EY

[
exp

{
ty

1
k

}]
.

2.6 Likelihood function

The likelihood function follows from (13),

L(x;λ, α, β) =

n∏
i=1

h(xi)

=

n∏
i=1

1

B(α, β)

k

λk
xk−1
i exp

{
−
(xi
λ

)k}[
1− exp

{
−
(xi
λ

)k}]α−1

·exp
{
−(β − 1)

(xi
λ

)k}
. (19)

Due to the complexity of the solutions to the maximum likelihood estimators (MLE) in (19) are not

derived analytically. This function is however used to numerically obtain the MLE estimates in Section

6 for estimates of λ, α, β.

3 The Kumaraswamy Weibull Distribution

The Kumaraswamy Weibull (KW) distribution was introduced by Cordeiro et al. [6] using the beta

generator approach. The derivations of the PDF, CDF, hazard function, moments, moment generating

function and likelihood function are included in this Section.

3.1 Introduction

The PDF h(x) and CDF H(x) is obtained using definition (2), baseline CDF (8) and generator CDF (6)

[6]:

19



h(x) = αβG(x)α−1(1−G(x)α)β−1g(x) (20)

= αβ

(
1− exp

{
−
(x
λ

)k})α−1(
1−

(
1− exp

{
−
(x
λ

)k})α)β−1

·k
λ

(x
λ

)k−1

exp
{
−
(x
λ

)k}
= αβ

k

λk
xk−1 exp

{
−
(x
λ

)k}(
1− exp

{
−
(x
λ

)k})α−1

·
(

1−
(

1− exp
{
−
(x
λ

)k})α)β−1

(21)

and

H(x) = 1− (1−G(x)α)β (22)

= 1−
(

1−
(

1− exp
{
−
(x
λ

)k})α)β
, 0 < x <∞, k, λ, α, β > 0. (23)

This random variable will be denoted as X ∼ KW (k, λ, α, β).

In Figure 6 the KW PDF (dashed) is compared to the BW PDF (shaded from axis). The KW PDF

displays the same flexibility as the BW PDF but with lower and higher peaks in the PDF for small and

large values of α.

3.2 Hazard function

The hazard rate function of the KW distribution is derived from the definition (Appendix eq.(56)), (21)

and (23) [6]:

τ(x) =
αβ k

λk
xk−1 exp

{
−
(
x
λ

)k}(
1− exp

{
−
(
x
λ

)k})α−1 (
1−

(
1− exp

{
−
(
x
λ

)k})α)β−1

(
1−

(
1− exp

{
−
(
x
λ

)k})α)β
=

αβ k
λk
xk−1 exp

{
−
(
x
λ

)k}(
1− exp

{
−
(
x
λ

)k})α−1

1−
(

1− exp
{
−
(
x
λ

)k})α .

In Figure 7 the KW hazard function (dashed) is compared to the BW hazard function (shaded from

axis). The differences between the KW hazard function (dashed) and the BW hazard function (shaded

from axis) is more pronouced for changes in α and β. This is due to the functional difference of the α

parameter in the generators.
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Figure 6: The effect of the parameters on KW PDF (dashed) compared to the BW PDF (shaded from
the axis).

Figure 7: The effect of the parameters on KW hazard function (dashed) compared to the BW hazard
function (shaded from the axis). Note the BGN and KGN hazard functions are mathematically equal for
α = 1 (lower left corner).
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3.3 Infinite expansion of the probability density function

From the result (Appendix eq.(82)) and (Appendix eq.(68)), (20) is expanded [6]:

h(x) = αβg(x)G(x)α−1(1−G(x)α)β−1

= αβg(x)G(x)α−1
∞∑
i=0

(
β − 1

i

)
(−G(x)α)i

=

∞∑
i=0

Γ(β) (−1)
i

Γ(β − i)i!
αβg(x)G(x)α(i+1)−1

=

∞∑
i=0

β
Γ(β) (−1)

i

Γ(β − i)(i+ 1)i!
α(i+ 1)g(x)G(x)α(i+1)−1

=

∞∑
i=0

wi(β)α(i+ 1)g(x)G(x)α(i+1)−1, (24)

where

wi(β) = β
Γ(β) (−1)

i

Γ(β − i)
1

(i+ 1)i!

= β
(1− β)i
(i+ 1)i!

, 0 < x <∞, 0 < k, 0 < λ, 0 < α, 0 < β, (25)

see (67)). Note that the upper bound of the sum is β − 1 for integer values of β, see (Appendix eq.(83)).

From (Appendix eq.(75)) the PDF (20) is now given by an infinite weighted sum of exponentiated

Weibull PDFs gvi,λ,k(x) with parameter vi = α(i+ 1) and weights wi(β).

3.4 Moments

The r′th moment of the KW is derived using the infinite weighted sum of exponentiated Weibull PDFs

with parameters λ, k and vi = α(i+ 1) (24).

From the definition of a moment, (24) and (25), it follows that the moments of the KW is [6]:

E (Xr) =

ˆ ∞
0

xr
∞∑
i=0

wi(β)gvi,λ,k(x)dx

=

∞∑
i=0

wi(β)

ˆ ∞
0

xrgvi,λ,k(x)dx.

From the moment µ′i,r = viλ
rΓ(r/k)

∑∞
j=0

(1−vi)j
j!(j+1)(r+k)/k

see (Appendix eq.(77)) and vi defined above. Note
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that the upper bound of the sums are β − 1 and vi − 1 for integer values of β and vi, see (Appendix

eq.(83)).

3.5 Moment generating function

From the definition of a moment generating function, the infinite expansion of the PDF (21), (Appendix

eq.(82)), (Appendix eq.(68)) and (Appendix eq.(67)). The KW moment generating function is [6]:

M(t) = E[exp {tX}]

=

ˆ ∞
0

exp {tx}αβ k

λk
xk−1 exp

{
−
(x
λ

)k}(
1− exp

{
−
(x
λ

)k})α−1

·
(

1−
(

1− exp
{
−
(x
λ

)k})α)β−1

dx

= αβ
k

λk

ˆ ∞
0

xk−1exp
{
tx−

(x
λ

)k} ∞∑
i=0

(
α− 1

i

)(
−exp

{
−
(x
λ

)k})i
·
∞∑
j=0

(
β − 1

j

)j (
−
(

1− exp
{
−
(x
λ

)k})α)j
dx

= αβ
k

λk

ˆ ∞
0

xk−1
∞∑
i=0

(
α− 1

i

)
(−1)iexp

{
tx−

(x
λ

)k}
exp

{
−i
(x
λ

)k}

·
∞∑
j=0

(
β − 1

j

)j
(−1)j

(
1− exp

{
−
(x
λ

)k})αj
dx

= αβ
k

λk

∞∑
i=0

∞∑
j=0

(
α− 1

i

)
(−1)i

(
β − 1

j

)j
(−1)j

ˆ ∞
0

xk−1exp
{
tx− (i+ 1)

(x
λ

)k}

·

( ∞∑
l=0

(
αj

l

)(
−exp

{
−
(x
λ

)k})l)
dx

= αβ
k

λk

∞∑
i=0

∞∑
j=0

Γ(α)(−1)i

Γ(α− i)i!
Γ(β)(−1)j

Γ(β − j)j!

ˆ ∞
0

xk−1exp
{
tx− (i+ 1)

(x
λ

)k}

·

( ∞∑
l=0

(
αj

l

)
(−1)lexp

{
−l
(x
λ

)k})
dx

= αβ
k

λk

∞∑
i=0

∞∑
j=0

∞∑
l=0

(1− α)i
i!

(1− β)j
j!

(
αj

l

)
(−1)l

ˆ ∞
0

xk−1exp
{
tx− (i+ 1)

(x
λ

)k}

·exp
{
−l
(x
λ

)k}
dx

= αβ
k

λk

∞∑
i=0

∞∑
j=0

∞∑
l=0

(1− α)i
i!

(1− β)j
j!

(1− αj)i
i!

ˆ ∞
0

xk−1exp
{
tx− (i+ l + 1)

(x
λ

)k}
dx

= αβ
k

λk

∞∑
i=0

∞∑
j=0

∞∑
l=0

wi,j(α, β)

ˆ ∞
0

xk−1exp
{
tx−

(
(i+ l + 1)

1/k x

λ

)k}
dx, (26)

where

wi,j(α, β) =
(1− α)i

i!

(1− β)j
j!

(1− αj)i
i!

.
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Note that the upper bound of the sums are α− 1 and β − 1 for integer values of α and β, see (Appendix

eq.(83)).

Remark:

For and alternative expression of the moment generating function, consider the transformation y = xk,

which implies x = y
1
k and dx

dy = 1
ky

1
k−1 on the integral in (26):

ˆ ∞
0

xk−1exp
{
tx− (i+ l + 1)

(x
λ

)k}
dx =

1

k

ˆ ∞
0

y
1
k−1y

k−1
k exp

tx− (i+ l + 1)

(
y

1
k

λ

)k dy

=
1

k

ˆ ∞
0

exp
{
− i+ l + 1

λk
y

}
exp

{
ty

1
k

}
dy

=
1

k
EY

[
exp

{
ty

1
k

}]
,

where Y ∼ Exp
(
i+l+1
λk

)
distributed, see (71). Therefore,

M(t) = αβ
1

λk

∞∑
i=0

∞∑
j=0

∞∑
l=0

wi,j(α, β)EY

[
exp

{
ty

1
k

}]
.

3.6 Likelihood function

The likelihood function follows from (21),

L(x;λ, α, β) =

n∏
i=1

h(xi)

=

n∏
i=1

αβ
k

λk
xk−1
i exp

{
−
(xi
λ

)k}(
1− exp

{
−
(xi
λ

)k})α−1

·
(

1−
(

1− exp
{
−
(xi
λ

)k})α)β−1

. (27)

Due to the complexity of the solutions to the maximum likelihood estimators (MLE) in (27) are not

derived analytically. This function is however used to numerically obtain the MLE estimates in Section

6 for estimates of λ, α, β.
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4 The beta type I generalised normal distribution

The beta type I generalised normal (BGN) distribution was introduced by Cintra et al. [3] using the beta

generator approach. The derivations of the PDF, CDF, hazard function, moments, moment generating

function and likelihood function are included in this Section.

4.1 Introduction

The PDF h(x) and CDF H(x) is obtained using definition (2), baseline CDF (11), generator CDF (4)

and (12) [3]:

h(x) =
1

B(α, β)

[
Φs

(
x− µ
σ

)]
α−1

[
1− Φs

(
x− µ
σ

)]
β−1

· s

2σΓ (1/s)
exp

{
−
∣∣∣∣x− µσ

∣∣∣∣s}
=

1

σB(α, β)

[
Φs

(
x− µ
σ

)]
α−1

[
1− Φs

(
x− µ
σ

)]
β−1φs

(
x− µ
σ

)
(28)

and

H(x) =
1

B(α, β)

ˆ Φs( x−µσ )

0

tα−1(1− t)β−1dt,−∞ < x <∞,−∞ < µ <∞, s, σ, α, β > 0, (29)

where φs(·) and Φs(·) is defined in (78) and (79). This random variable will be denoted as X ∼

BGN(µ, σ, s, α, β).

In Figure 8 the PDF of the BGN is shown for various combinations of its parameters. The flexibility

of the BGN is shown to fit real data with pronounced skewness and bi-modality. The generalised normal

baseline distribution, with α = 1 and β = 1, is shown as reference (dashed). Note that the BGN is equal

to the beta normal (BN) distribution for s = 2, with the only difference of σBN =
√

2σ, and the normal

distribution s = 2, α, β = 1, see (28) and Figure 8.

4.2 Hazard function

The hazard rate function of the BGN distribution is derived from (Appendix eq.(56)), (28) and (29) [3]:

τ(x) =

1
B(α,β)

[
Φs
(
x−µ
σ

)]
α−1

[
1− Φs

(
x−µ
σ

)]
β−1 s

2σΓ(1/s) exp{−|x−µσ |
s}

1− 1
B(α,β)

´ G(x)

0
tα−1(1− t)β−1dt
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=

1
σB(α,β) [Φs(z)]

α−1[1− Φs(z)]
β−1φs(z)

1− 1
B(α,β)

´ Φs(z)

0
tα−1(1− t)β−1dt

=
[Φs(z)]

α−1[1− Φs(z)]
β−1φs(z)

σ
(
B(α, β)−

´ Φs(z)

0
tα−1(1− t)β−1dt

)
=

[Φs(z)]
α−1[1− Φs(z)]

β−1φs(z)

σ
(
B(α, β)− IΦs(z)(α, β)

) ,

where I·(·, ·) is the incomplete beta function ratio (Appendix eq.(64))). In Figure 9 the hazard function is

depicted for various combinations of its parameters. The generalised baseline distribution hazard function

is shown as reference (dashed).

Figure 8: The effect of parameters µ, σ, s, α, β on the BGN PDF. The generalised normal baseline dis-
tribution is shown as reference (dashed). Note that in the upper left corner we have the BN PDF (solid
orange) and the standard normal PDF (dashed orange).
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Figure 9: The effect of parameters σ, s, α, β on the BGN hazard function. The generalised normal baseline
hazard function is shown as reference (dashed).

4.3 Infinite expansion of the probability density function

From (2), (3), (Appendix eq.(82)), (Appendix eq.(68)) and defining weights wi(β) it follows that [3]:

h(x) =
1

B(α, β)
Φs

(
x− µ
σ

)α−1(
1− Φs

(
x− µ
σ

))β−1

φs

(
x− µ
σ

)
=

1

B(α, β)
φs

(
x− µ
σ

)
Φs

(
x− µ
σ

)α−1 ∞∑
i=0

(
β − 1

i

)(
−Φs

(
x− µ
σ

))i
=

1

B(α, β)
φs

(
x− µ
σ

)
Φs

(
x− µ
σ

)α−1 ∞∑
i=0

Γ(β) (−1)
i

Γ(β − i)i!
Φs

(
x− µ
σ

)
i

=
1

σB(α, β)

∞∑
i=0

Γ(β) (−1)
i

Γ(β − i)i!
Φs

(
x− µ
σ

)
i+α−1φs

(
x− µ
σ

)

=
1

σB(α, β)

∞∑
i=0

wi(β)Φs

(
x− µ
σ

)
i+α−1φs

(
x− µ
σ

)
,−∞ < x <∞, 0 < α, 0 < β, (30)

where

wi(β) =
Γ(β) (−1)

i

Γ(β − i)i!
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=
(1− β)i

i!
(31)

with φs(·) and Φs(·) is defined in ((9)&(11)) also see (67). Note that the upper bound of the sums are

α− 1 and β − 1 for integer values of α and β, see (Appendix eq.(83)).

4.4 Moments

From the definition of moments, (30) and (31) it follows that [3]:

E (Xr) =

ˆ ∞
−∞

xr
1

σB(α, β)

∞∑
i=0

wi(β)Φs

(
x− µ
σ

)
i+α−1φs

(
x− µ
σ

)
dx

=
1

σB(α, β)

∞∑
i=0

wi(β)

ˆ ∞
−∞

xrΦs

(
x− µ
σ

)
i+α−1φs

(
x− µ
σ

)
dx. (32)

Using the transformation z = (x−µ)/σ, which implies x = σz + µ and dx
dz = σ, and (Appendix eq.(82)).

The integral in (32) specifically becomes:

ˆ ∞
−∞

xrΦs

(
x− µ
σ

)
i+α−1φs

(
x− µ
σ

)
dx = σ

ˆ ∞
−∞

(σz + µ)rΦs(z)
i+α−1φs(z)dz

= σ

ˆ ∞
−∞

r∑
k=0

(
r

k

)
µr−k(σz)kΦs(z)

i+α−1φs(z)dz

= σµr
r∑

k=0

(
r

k

)
σkµ−k

ˆ ∞
−∞

zkΦs(z)
i+α−1φs(z)dz

= σµr
r∑

k=0

(
r

k

)(
σ

µ

)k ˆ ∞
−∞

zkΦs(z)
i+α−1φs(z)dz. (33)

Splitting the range of the integral (33), using (Appendix eq.(80)),(Appendix eq.(81)) and (Appendix

eq.(82)) we obtain:

ˆ ∞
−∞

zkΦs(z)
i+α−1φs(z)dz =

ˆ ∞
0

zkΦs(z)
i+α−1φs(z)dz

+

ˆ 0

−∞
zkΦs(z)

i+α−1φs(z)dz
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=

ˆ ∞
0

zkΦs(z)
i+α−1φs(z)dz

+

ˆ ∞
0

(−z)k(1− Φs(z))
i+α−1φs(z)dz

=

ˆ ∞
0

zkΦs(z)
i+α−1φs(z)dz

+(−1)k
ˆ ∞

0

zk
∞∑
l=0

(
i+ α− 1

l

)
(−Φs(z))

lφs(z)dz

=

ˆ ∞
0

zkΦs(z)
i+α−1φs(z)dz

+

∞∑
l=0

(
i+ α− 1

l

)
(−1)k+l

ˆ ∞
0

zkΦs(z)
lφs(z)dz.

Defining the quantity Q(s)
i,j =

´∞
0
ziΦs(z)

jφs(z)dz, using (Appendix eq.(85)) and reindexing the sums:

ˆ ∞
−∞

zkΦs(z)
i+α−1φs(z)dz =

ˆ ∞
0

zk
∞∑
m=0

vm(i+ α− 1)Φs(z)
mφs(z)dz

+

∞∑
l=0

(
i+ α− 1

l

)
(−1)k+l

ˆ ∞
0

zkΦs(z)
lφs(z)dz

=

∞∑
m=0

vm(i+ α− 1)

ˆ ∞
0

zkΦs(z)
mφs(z)dz

+

∞∑
l=0

(
i+ α− 1

l

)
(−1)k+l

ˆ ∞
0

zkΦs(z)
lφs(z)dz

=

∞∑
m=0

vm(i+ α− 1)Q
(s)
k,m +

∞∑
l=0

(
i+ α− 1

l

)
(−1)k+lQ

(s)
k,l

=

∞∑
n=0

(
vn(i+ α− 1) +

(
i+ α− 1

n

)
(−1)k+n

)
Q

(s)
k,n, (34)

where

vi(α) =

∞∑
j=i

(−1)i+j
(
α

j

)(
j

i

)
. (35)

Finally from (Appendix eq.(87)) and substituting backward, (34) into (33) and (33) into (32), it follows

that:

E (Xr) =
µr

B(α, β)

∞∑
i=0

wi(β)

r∑
k=0

(
r

k

)(
σ

µ

)k ∞∑
n=0

(
vn(i+ α− 1) +

(
i+ α− 1

n

)
(−1)k+n

)
Q

(s)
k,n,
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where

Q
(s)
k,n =

1

(2Γ(1/s)) n+1

n∑
m=0

(
n

m

)
Γ (1/s)

n−m
∞∑
l=0

cl,mΓ

(
l +

k +m+ 1

s

)

and c0,m = sm, cl,m = 1/ls
∑l
r=1(rm− l + r) ((−1)r/(1/s+r)r!) cl−r,m for all l ≥ 1.

4.5 Moment generating function

From the definition of a moment generating function, (30) and (31), we have that:

E
(
etX
)

=

ˆ ∞
−∞

etx
1

σB(α, β)

∞∑
i=0

wi(β)Φs

(
x− µ
σ

)
i+α−1φs

(
x− µ
σ

)
dx

=
1

σB(α, β)

∞∑
i=0

wi(β)

ˆ ∞
−∞

etxΦs

(
x− µ
σ

)
i+α−1φs

(
x− µ
σ

)
dx (36)

Using the transformation z = (x−µ)/σ, which implies x = σz + µ and dx
dz = σ, and (Appendix eq.(82)).

The integral in (36) specifically becomes:

ˆ ∞
−∞

etxΦs

(
x− µ
σ

)
i+α−1φs

(
x− µ
σ

)
dx = σ

ˆ ∞
−∞

et(σz+µ)Φs(z)
i+α−1φs(z)dz. (37)

Splitting the range of the integral (37), using (Appendix eq.(80)),(Appendix eq.(81)) and (Appendix

eq.(82)) we obtain:

ˆ ∞
−∞

etxΦs

(
x− µ
σ

)
i+α−1φs

(
x− µ
σ

)
dx = σ

ˆ ∞
0

et(σz+µ)Φs(z)
i+α−1φs(z)dz

+σ

ˆ 0

−∞
et(σz+µ)Φs(z)

i+α−1φs(z)dz

= σ

ˆ ∞
0

et(σz+µ)Φs(z)
i+α−1φs(z)dz

+σ

ˆ ∞
0

et(−σz+µ)(1− Φs(z))
i+α−1φs(z)dz
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= σ

ˆ ∞
0

et(σz+µ)Φs(z)
i+α−1φs(z)dz

+σ

ˆ ∞
0

et(−σz+µ)
∞∑
n=0

(
i+ α− 1

n

)
(−Φs(z))

nφs(z)dz

= σ

ˆ ∞
0

et(σz+µ)Φs(z)
i+α−1φs(z)dz

+

∞∑
n=0

(
i+ α− 1

n

)
(−1)nσ

ˆ ∞
0

et(−σz+µ)Φs(z)
nφs(z)dz.

Defining the quantities M (s)
j =

´∞
0
et(σz+µ)Φs(z)

jφs(z)dz, M
(s,−)
j =

´∞
0
et(−σz+µ)Φs(z)

jφs(z)dz,

using (Appendix eq.(85)) and reindexing the sums:

σ

ˆ ∞
−∞

et(σz+µ)Φs(z)
i+α−1φs(z)dz = σ

ˆ ∞
0

et(σz+µ)
∞∑
m=0

vm(i+ α− 1)Φ(z)mφs(z)dz

+

∞∑
n=0

(
i+ α− 1

n

)
(−1)nσ

ˆ ∞
0

et(−σz+µ)Φs(z)
nφs(z)dz

=

∞∑
m=0

vm(i+ α− 1)σ

ˆ ∞
0

et(σz+µ)Φs(z)
mφs(z)dz

+

∞∑
n=0

(
i+ α− 1

n

)
(−1)nσ

ˆ ∞
0

et(−σz+µ)Φs(z)
nφs(z)dz

=

∞∑
m=0

vm(i+ α− 1)σM (s)
m +

∞∑
n=0

(
i+ α− 1

n

)
(−1)i+nσM (s,−)

n

=

∞∑
n=0

[
vn(i+ α− 1)σM (s)

n +

(
i+ α− 1

n

)
(−1)i+nσM (s,−)

n

]
.(38)

Finally from (Appendix eq.(89)&(90)) and substituting backward, (38) into (37) and (37) into (36), it

follows that:

E
(
etX
)

=
1

B(α, β)

∞∑
i=0

wi(β)

( ∞∑
n=0

[
vn(i+ α− 1)M (s)

n +

(
i+ α− 1

n

)
(−1)i+nM (s,−)

n

])
,

where

M (s)
n =

etµ

2Γ (1/s)

n∑
k=0

(
n

k

)
Γ (1/s)

n−k
∞∑
m=0

cm,k

∞∑
p=0

tσp

p!
Γ

(
m+

i+ k + p+ 1

s

)
,
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M (s,−)
n =

etµ

2Γ (1/s)

n∑
k=0

(
n

k

)
Γ (1/s)

n−k
∞∑
m=0

cm,k

∞∑
p=0

(−tσ)
p

p!
Γ

(
m+

i+ k + p+ 1

s

)

and c0,m = sm, cl,m = 1/ls
∑l
r=1(rm− l + r) ((−1)r/(1/s+r)r!) cl−r,m for all l ≥ 1.

4.6 Likelihood function

The likelihood function follows from (28),

L(x;µ, σ, s, α, β) =

n∏
i=1

h(xi)

=

n∏
i=1

1

σB(α, β)

[
Φs

(
xi − µ
σ

)]
α−1

[
1− Φs

(
xi − µ
σ

)]
β−1φs

(
xi − µ
σ

)
(39)

Due to the complexity of the solutions to the maximum likelihood estimators (MLE) in (39) are not

derived analytically. This function is however used to numerically obtain the MLE estimates in Section

6 for estimates of µ, σ, s, α, β.

5 The Kumaraswamy generalised normal distribution

In this Section the Kumaraswamy generalised normal distribution (KGN) distribution is proposed for the

first time using the generator approach. The derivations of the PDF, CDF, hazard function, moments,

moment generating function and likelihood function are included in this Section.

5.1 Introduction

The PDF h(x) and CDF H(x) is obtained using definition (2), baseline CDF (11), generator CDF (6),

(20) and (22):

h(x) =
αβ

σ
Φs

(
x− µ
σ

)α−1(
1− Φs

(
x− µ
σ

)α)β−1

φs

(
x− µ
σ

)
(40)

and

H(x) = 1−
(

1− Φs

(
x− µ
σ

)α)β
−∞ < x <∞,−∞ < µ <∞, s, σ, α, β > 0. (41)
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This random variable will be denoted as X ∼ KGN(µ, σ, s, α, β).

In Figure 10 the PDF of the KGN (dashed) is compared to the PDF of the BGN (shaded from axis)

for various combinations of its parameters. The KGN has the same flexibility in real data fitting as the

BGN but with previously mentioned tractability advantages. Notice that the two PDFs are markedly

different for sufficiently small or large values of α. Note that the KGN is equal to the Kumaraswamy

normal (KN) distribution for s = 2, with the only difference of σKN =
√

2σ, see [4].

5.2 Hazard function

The hazard rate function of the KGN distribution is derived from (Appendix eq.(56)), (28) and (29):

τ(x) =
αβ
(
Φs
(
x−µ
σ

))α−1
(

1−
(
Φs
(
x−µ
σ

))α)β−1

φs
(
x−µ
σ

)
(
1− Φs

(
x−µ
σ

))β
=

αβ
(
Φs
(
x−µ
σ

))α−1
φs
(
x−µ
σ

)
1− Φs

(
x−µ
σ

) .

In Figure 11 the KGN hazard function (dashed) is compared to the BGN hazard function (shaded

from axis). Note the pronounced effect of the σ parameter on KGN hazard function compared to the

BGN hazard function in Figure 11 (upper left corner).

Figure 10: The effect of the parameters on KGN PDF (dashed) compared to the BGN PDF (shaded from
the axis).
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Figure 11: The effect of the parameters on KGN hazard function (dashed) compared to the BGN hazard
function (shaded from the axis).

5.3 Infinite expansion of the probability density function

From (Appendix eq.(82)),(Appendix eq.(68)) and defining weights wi(β) it follows that:

h(x) = αβΦs

(
x− µ
σ

)α−1(
1− Φs

(
x− µ
σ

)α)β−1

φs

(
x− µ
σ

)
= αβφs

(
x− µ
σ

)
Φs

(
x− µ
σ

)α−1 ∞∑
i=0

(
β − 1

i

)(
−Φs

(
x− µ
σ

)α)i
= αβ

∞∑
i=0

(
β − 1

i

)
(−1)iφs

(
x− µ
σ

)
Φs

(
x− µ
σ

)αi+α−1

=
αβ

σ

∞∑
i=0

Γ(β) (−1)
i

Γ(β − i)i!
Φs

(
x− µ
σ

)α(i+1)−1

φs

(
x− µ
σ

)

=
αβ

σ

∞∑
i=1

wi(β)Φs

(
x− µ
σ

)α(i+1)−1

φs

(
x− µ
σ

)
,−∞ < x <∞, 0 < α, 0 < β, (42)

where wi(β) is defined in (31). Note that the upper bound of the sums are α − 1 and β − 1 for integer

values of α and β, see (Appendix eq.(83)).
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5.4 Moments

From the definition of moments, (42) and (31) it follows that:

E (Xr) =

ˆ ∞
−∞

xr
αβ

σ

∞∑
i=0

wi(β)Φs

(
x− µ
σ

)
α(i+1)−1φs

(
x− µ
σ

)
dx

=
αβ

σ

∞∑
i=0

wi(β)

ˆ ∞
−∞

xrΦs

(
x− µ
σ

)
α(i+1)−1φs

(
x− µ
σ

)
dx (43)

Using the transformation z = (x−µ)/σ, which implies x = σz + µ and dx
dz = σ, and (Appendix eq.(82)).

The integral in (43) specifically becomes:

ˆ ∞
−∞

xrΦs

(
x− µ
σ

)
α(i+1)−1φs

(
x− µ
σ

)
dx = σ

ˆ ∞
−∞

(σz + µ)rΦs(z)
α(i+1)−1φs(z)dz

= σ

ˆ ∞
0

r∑
k=0

(
r

k

)
µr−k(σz)kΦs(z)

α(i+1)−1φs(z)dz

= σµr
r∑

k=0

(
r

k

)
σkµ−k

ˆ ∞
−∞

zkΦs(z)
α(i+1)−1φs(z)dz

= σµr
r∑

k=0

(
r

k

)(
σ

µ

)k ˆ ∞
−∞

zkΦs(z)
α(i+1)−1φs(z)dz.(44)

Splitting the range of the integral (44), using (Appendix eq.(80)),(Appendix eq.(81)) and (Appendix

eq.(82)) we obtain:

ˆ ∞
−∞

zkΦs(z)
α(i+1)−1φs(z)dz =

ˆ ∞
0

zkΦs(z)
α(i+1)−1φs(z)dz

+

ˆ 0

−∞
zkΦs(z)

α(i+1)−1φs(z)dz

=

ˆ ∞
0

zkΦs(z)
α(i+1)−1φs(z)dz

+

ˆ ∞
0

(−z)k(1− Φs(z))
α(i+1)−1φs(z)dz

=

ˆ ∞
0

zkΦs(z)
α(i+1)−1φs(z)dz

+(−1)k
ˆ ∞

0

zk
∞∑
l=0

(
α(i+ 1)− 1

l

)
(−Φs(z))

lφs(z)dz
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=

ˆ ∞
0

zkΦs(z)
α(i+1)−1φs(z)dz

+

∞∑
l=0

(
α(i+ 1)− 1

l

)
(−1)k+l

ˆ ∞
0

zkΦs(z)
lφs(z)dz

Defining the quantity Q(s)
i,j =

´∞
0
ziΦs(z)

jφs(z)dz, using (Appendix eq.(85)) and reindexing the sums:

ˆ ∞
−∞

zkΦs(z)
α(i+1)−1φs(z)dz =

ˆ ∞
0

zkΦs

∞∑
m=0

vm(α(i+ 1)− 1)Φs(z)
mφs(z)dz

+

∞∑
l=0

(
α(i+ 1)− 1

l

)
(−1)k+l

ˆ ∞
0

zkΦs(z)
lφs(z)dz

=

∞∑
m=0

vm(α(i+ 1)− 1)

ˆ ∞
0

zkΦs(z)
mφs(z)dz

+

∞∑
l=0

(
α(i+ 1)− 1

l

)
(−1)k+l

ˆ ∞
0

zkΦs(z)
lφs(z)dz

=

∞∑
m=0

vm(α(i+ 1)− 1)Q
(s)
k,m +

∞∑
l=0

(
α(i+ 1)− 1

l

)
(−1)k+lQ

(s)
k,l

=

∞∑
n=0

(
vn(α(i+ 1)− 1) +

(
α(i+ 1)− 1

n

)
(−1)k+n

)
Q

(s)
k,n, (45)

where vi(α) is defined in (35).

Finally from (Appendix eq.(87)) and substituting backward, (45) into (44) and (44) into (43), it follows

that:

E (Xr) = αβµr
∞∑
i=0

wi(β)

r∑
k=0

(
r

k

)(
σ

µ

)k ∞∑
n=0

(
vn(α(i+ 1)− 1) +

(
α(i+ 1)− 1

n

)
(−1)k+n

)
Q

(s)
k,n,

where

Q
(s)
k,n =

1

(2Γ(1/s)) n+1

n∑
m=0

(
n

m

)
Γ (1/s)

n−m
∞∑
l=0

cl,mΓ

(
l +

k +m+ 1

s

)

and c0,m = sm, cl,m = 1/ls
∑l
r=1(rm− l + r) ((−1)r/(1/s+r)r!) cl−r,m for all l ≥ 1.

5.5 Moment generating function

From the definition of a moment generating function, (42) and (31) it follows that:
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E
(
etX
)

=

ˆ ∞
−∞

etx
αβ

σ

∞∑
i=0

wi(β)Φs

(
x− µ
σ

)
α(i+1)−1φs

(
x− µ
σ

)
dx

=
αβ

σ

∞∑
i=0

wi(β)

ˆ ∞
−∞

etxΦs

(
x− µ
σ

)
α(i+1)−1φs

(
x− µ
σ

)
dx (46)

Using the transformation z = (x−µ)/σ, which implies x = σz + µ and dx
dz = σ, and (Appendix eq.(82)).

The integral in (46) specifically becomes:

ˆ ∞
−∞

etxΦs

(
x− µ
σ

)
α(i+1)−1φs

(
x− µ
σ

)
dx = σ

ˆ ∞
−∞

et(σz+µ)Φs(z)
α(i+1)−1φs(z)dz (47)

Splitting the range of the integral (47), using (Appendix eq.(80)),(Appendix eq.(81)) and (Appendix

eq.(82)) we obtain:

ˆ ∞
−∞

et(σz+µ)Φs(z)
α(i+1)−1φs(z)dz = σ

ˆ ∞
0

et(σz+µ)Φs(z)
α(i+1)−1φs(z)dz

+σ

ˆ 0

−∞
et(σz+µ)Φs(z)

α(i+1)−1φs(z)dz

= σ

ˆ ∞
0

et(σz+µ)Φs(z)
α(i+1)−1φs(z)dz

+σ

ˆ ∞
0

et(−σz+µ)(1− Φs(z))
α(i+1)−1φs(z)dz

= σ

ˆ ∞
0

et(σz+µ)Φs(z)
α(i+1)−1φs(z)dz

+σ

ˆ ∞
0

et(−σz+µ)
∞∑
n=0

(
α(i+ 1)− 1

l

)
(−Φs(z))

nφs(z)dz

= σ

ˆ ∞
0

et(σz+µ)Φs(z)
α(i+1)−1φs(z)dz

+

∞∑
n=0

(
α(i+ 1)− 1

n

)
(−1)nσ

ˆ ∞
0

et(−σz+µ)Φs(z)
nφs(z)dz

(48)

Defining the quantities M (s)
j =

´∞
0
et(σz+µ)Φs(z)

jφs(z)dz, M
(s,−)
j =

´∞
0
et(−σz+µ)Φs(z)

jφs(z)dz, as
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before using (Appendix eq.(85)) and reindexing the sums:

σ

ˆ ∞
−∞

et(σz+µ)Φs(z)
α(i+1)−1φs(z)dz = σ

ˆ ∞
0

et(σz+µ)
∞∑
m=0

vm(α(i+ 1)− 1)Φ(z)mφs(z)dz

+

∞∑
n=0

(
α(i+ 1)− 1

n

)
(−1)nσ

ˆ ∞
0

et(−σz+µ)Φs(z)
nφs(z)dz

=

∞∑
m=0

vm(α(i+ 1)− 1)σ

ˆ ∞
0

et(σz+µ)Φs(z)
mφs(z)dz

+

∞∑
n=0

(
α(i+ 1)− 1

n

)
(−1)nσ

ˆ ∞
0

et(−σz+µ)Φs(z)
nφs(z)dz

=

∞∑
m=0

vm(i+ α− 1)σM (s)
m +

∞∑
n=0

(
α(i+ 1)− 1

n

)
(−1)i+nσM (s,−)

n

=

∞∑
n=0

[
vn(i+ α− 1)σM (s)

n +

(
α(i+ 1)− 1

n

)
(−1)i+nσM (s,−)

n

]
,

(49)

where vi(α) is defined in (35).

Finally from (Appendix eq.(89)&(90)) and substituting backward, (49) into (45) and (44) into (46), it

follows that:

E
(
etX
)

= αβ

∞∑
i=0

wi(β)

( ∞∑
n=0

[
vn(i+ α− 1)M (s)

n +

(
α(i+ 1)− 1

n

)
(−1)i+nM (s,−)

n

])
,

where

M (s)
n =

etµ

2Γ (1/s)

n∑
k=0

(
n

k

)
Γ (1/s)

n−k
∞∑
m=0

cm,k

∞∑
p=0

tσp

p!
Γ

(
m+

i+ k + p+ 1

s

)
,

M (s,−)
n =

etµ

2Γ (1/s)

n∑
k=0

(
n

k

)
Γ (1/s)

n−k
∞∑
m=0

cm,k

∞∑
p=0

(−tσ)
p

p!
Γ

(
m+

i+ k + p+ 1

s

)

and c0,m = sm, cl,m = 1/ls
∑l
r=1(rm− l + r) ((−1)r/(1/s+r)r!) cl−r,m for all l ≥ 1.

5.6 Likelihood function

The likelihood function follows from (40),
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L(x;λ, α, β) =

n∏
i=1

h(xi)

=

n∏
i=1

αβ

σ
Φs

(
xi − µ
σ

)α−1(
1− Φs

(
xi − µ
σ

)α)β−1

φs

(
xi − µ
σ

)
(50)

Due to the complexity of the solutions to the maximum likelihood estimators (MLE) in (50) are not

derived analytically. This function is however used to numerically obtain the MLE estimates in Section

6 for estimates of µ, σ, s, α, β.

6 Application and comparison of the generators

In this Section a random number generator (RNG) for the BW, KW, BGN and KGN are introduced.

The two generators are then compared by application to real data sets and their performance is measured

using AIC, BIC and CAIC.

6.1 Random number generator

Specifically we show the RNG algorithm for the BGN as done by [3] only, since the other RNGs work

similarly.

Let be a X ∼ BGN(µ, σ, s, α, β) distribution, CDF H(·) of X is given below by definition (2):

H(x) = F (G(x)),

where F (·) is the CDF of Beta(α, β) distribution and G(·) is the CDF of a GN(µ, σ, s) distribution.

From the inverse probability integral transformation it follow that [27]:

H(X) = F (G(X))
D
= U, (51)

where U ∼ Uni(0, 1) and ”
D
= ” indicates equality in distribution.

From (51) we have that:

G(X) = F−1(U)
D
= B, (52)

where B ∼ Beta(α, β) and F−1(·) is the quantile function of a Beta(α, β) distribution.

Lastly from (52):
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X = G−1(B), (53)

where G−1(·) is the quantile function of a GN(µ, σ, s) distribution.

Considering the baseline CDF (11), from (58) we have:

G(x) =


Γ
(

1/s,
(
µ−x
σ

)s)
2Γ (1/s)

if x ≤ µ

1−
Γ
(

1/s,
(
x−µ
σ

)s)
2Γ (1/s)

if x > µ

=


1

2

(
Γ(1/s)− γ(1/s,

(
x−µ
σ

)s
)

Γ (1/s)

)
if x ≤ µ

1

2

(
2−

Γ(1/s)− γ(1/s,
(
x−µ
σ

)s
)

Γ (1/s)

)
if x > µ

=



1

2

1−
γ
(

1/s,
(
µ−x
σ

)s)
Γ (1/s)

if x ≤ µ

1

2

1 +
γ
(

1/s,
(
x−µ
σ

)s)
Γ (1/s)

if x > µ

.

Lastly from (70) it follows:

G(x) =


1

2

{
1−H

((
µ− x
σ

)s)}
if x ≤ µ

1

2

{
1 +H

(
x− µ
σ

)s}
if x > µ

(54)

where H(·) is the CDF of a Gamma(1/s, 1) distribution.

To derive the inverse function G−1(·) of G(·), for the use in statement (53), we set (54) equal to

dummy variable f .

For x ≤ µ:

f =
1

2

{
1−H

((
µ− x
σ

)s)}
1− 2f = H

((
µ− x
σ

)s)
(55)

µ− x
σ

=
[
H−1 (1− 2f)

] 1
s

∴ x = µ− σ
[
H−1(1− 2f)

] 1
s
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with a bound of

0 ≤ H
((

µ−x
σ

)s) ≤ 1

0 ≤ 1− 2f ≤ 1

0 ≤ f ≤ 1
2 ,

which follows from (55) and since H(·) is a valid CDF.

Similarly for x > µ:

f =
1

2

{
1 +H

(
x− µ
σ

)s}
,

with implies

x = µ+ σ
[
H−1(2f − 1)

] 1
s ,

with a bound of 1
2 < f ≤ 1.

where H−1(·) is the quantile function of a Gamma(1/s, 1) distribution.

Therefore the RNG is algorithmically described below:

1. Generate a value f from a Beta(α, β) distribution.

2. If 0 ≤ f < 1
2 then calculate x = µ − σ

[
H−1(1− 2f)

] 1
s else x = µ − σ

[
H−1(1− 2f)

] 1
s , using the

quantile function of a Gamma(1/s, 1) distribution.

3. return x.

We now generate a 5000000 points from a BGN(104.93, 331.57, 0.25, 285.58, 248.88) distribution using

SAS1 proc iml Listing 1. This simulation corresponds to the estimated BGN distribution fitted to the

relapse-time data in Section 6.2. Table 1 gives a comparison of the first two theoretical and empirical

moments and Figure 12 displays a histogram and kernel density of the sample. Comparing Figure 12 to

Figure 14 it can be seen that the simulated PDF approximates the theoretical PDF. In Table 1 it is clear

the empirical moment values approximate the theoretical moment values.
1Copyright (c) 2002-2012 by SAS Institute Inc., Cary, NC, USA. All Rights Reserved
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Moment µ1 µ2

Theoretical 2158.01 7323340

Empirical 2157.95 7319369.1

Absolute Error 0.06 3970.92

Table 1: Theoretical and empirical moments for 5000000 BGN(104.93, 331.57, 0.25, 285.58, 248.88) values.

Figure 12: Sample of 5000000 generated BGN(104.93, 331.57, 0.25, 285.58, 248.88) points with estimated
kernel density.

6.2 Application to data

In this Section, we obtain MLEs and various goodness-of-fit statistics for the applications of each model

to real data sets. The maximisation of the log-likelihood function is done by the optim subroutine in R

[26].

Firstly, we consider data that represents the price (US dollars) of 308 diamonds. We evaluate the

data with the BW and KW distributions. The fitted PDFs are shown in Figure 2; Table 2 contains the

MLEs of the parameters; and Table 3 contains the values of the AIC, BIC and CAIC for the price data.

Lower values of these statistics indicate better model fitting.

κ λ α β

BW 0.170 335.125 61.531 19.753
KW 0.151 7.305 38.110 21.660

Table 2: MLEs for the price data.
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AIC BIC CAIC
BW 5, 605.745 5, 620.665 5, 624.665
KW 5, 599.298 5, 614.218 5, 618.218

Table 3: Information criteria for the price data.

Figure 13: Fitted PDF of the BW, KW and empirical kernel density for the price data.

Since all the values of the statistics in 3 are smaller for the KW distribution than the BW distribution,

the KW is a better model to explain the weight data.

Secondly, we compare the KGN model with the beta generalised normal (BGN). We consider data

based on the National Wilm’s Tumor Study [2]. The data represents observed relapse times of 460

children diagnosed with stage 4 embryonal cancer of the kidney known as Wilm’s tumour. The fitted

PDFs are shown in Figure 14; Table 4 contains the MLEs of the parameters; and Table 5 contains the

values of the AIC, BIC and CAIC for the relapse-time data.

µ σ s α β

BGN 104.938 331.574 0.250 285.582 248.876
KGN 118.172 113.295 0.273 11.195 190.856

Table 4: MLEs for the relapse-time data.

43



AIC BIC CAIC

BGN 8, 019.805 8, 036.330 8, 040.330
KGN 7, 995.733 8, 012.258 8, 016.258

Table 5: Information criteria for the relapse-time data.

Figure 14: Fitted PDF of the BGN, KGN and empirical kernel density for the relapse-time data.

Since all the values of the criteria in Table 5 are smaller for the KGN distribution than the BGN

distribution, the KGN is a better model to explain the relapse-time data.

7 Conclusion

The research presented in this report is focussed with the construction of Kumaraswamy and beta gener-

ated distributions. The distribution function of such a distribution is defined as H(·) = F (G(·)), where F

is the distribution function of the generator distribution and G is the distribution function of the baseline

distribution.

By combining the distribution functions of the Kumaraswamy and generalised normal distributions in

this way, we introduce the KGN distribution. Computationally manageable expressions for the moments

and moment generating functions are derived for the KGN distribution. The performance of the KGN on

observed data sets shows that this distribution is an useful contribution to the Kumaraswamy generated

family of distributions.

The beta and Kumaraswamy generators function in fundamentally similar ways which is evident in
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the performance of these distributions on real data sets. The Kumaraswamy generator has tractability

advantages over the beta generator, since it has a closed-form distribution function. In contrast to this,

the infinite expansions of mathematical properties are less complex for the beta generator. The right

tail prominence of the Kumaraswamy generator is useful in modelling specific data sets as shown by the

applications of the study.

Future work could include the derivation of the order statistic distribution of the KGN, the moments

of these order statistics and extensions of the model to the multivariate case.
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Appendix

Abbreviations and symbols

PDF Probability density function

CDF Cumulative density function

BW Beta Weibull

KW Kumaraswamy Weibull

GN Generalised normal

BN Beta normal

KN Kumaraswamy normal

BGN Beta generalised normal

KGN Kumaraswamy generalised normal

AIC Akaike information criterion

BIC Bayesian information criterion

CAIC Consistent Akaike information criterion

RGN Random number generator

h(x) PDF of random variable X

H(x) CDF of random variable X

g(x) PDF of the baseline distribution

G(x) CDF of the baseline distribution

f(x) PDF of the generator distribution

F (x) CDF of the generator distribution

τ(x) Hazard function of distribution X

L(x; θ) Likelihood function of parameters θ given values x

Γ(α) Gamma function

γ(α, x) Incomplete lower gamma function

Γ(α, y) Incomplete upper gamma function

B(α, β) Beta function

B(x;α, β) Incomplete beta function

Ix(α, β) Beta function ratio

(α)i Pochhammer coefficient(
i
j

)
Binomial coefficient

φs(z) PDF of GN ∼ (0, 1, s) distribution
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Φ(z) CDF of GN ∼ (0, 1, s) distribution

Re Set of real numbers

X ∼ Normal(µ, σ) Normal distribution with parameters µ and σ

X ∼ Uni(a, b) Uniform distribution with parameters a and b

X ∼ Exp(θ) Exponential distribution with parameter θ

X ∼ Beta(α, β) Beta type I distribution with parameters α and β

X ∼ Kumaraswamy(α, β) Kumaraswamy distribution with parameters α and β

X ∼ BW (k, λ, α, β) Beta Weibull distribution with parameters k, λ, α and β

X ∼ KW (k, λ, α, β) Kumaraswamy Weibull distribution with parameters k, λ, α and β

X ∼ BGN(µ, σ, s, α, β) Beta generalised normal distribution with parameters µ, σ, s, α and β

X ∼ KGN(µ, σ, s, α, β) Kumaraswamy generalised normal distribution with parameters µ, σ, s, α and β

Results

Result 1

The hazard function for a random variable X with PDF f(x) and CDF F (x) is defined as

τ(x) =
f(x)

1− F (x)
. (56)

([1], p. 541, eq.16.2.2).

Result 2

The gamma function, denoted Γ(α), is defined as

Γ(α) =

ˆ ∞
0

e−ttα−1dt, (57)

where Re α > 0 ([10], p. 892, eq.8.310.1).

Remark: By splitting the range of the integral it is clear that the gamma function can be represented

by (59) and (60):
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Γ(α) =

ˆ x

0

e−ttα−1dt+

ˆ ∞
x

e−ttα−1dt

= γ(α, x) + Γ(α, x). (58)

Result 3

The incomplete lower gamma function, denoted γ(α, x), is defined as

γ(α, x) =

ˆ x

0

e−ttα−1dt, (59)

where Re α > 0 ([10], p. 899, eq.8.350.1).

Result 4

The incomplete upper gamma function, denoted Γ(α, y), is defined as

Γ(α, x) =

ˆ ∞
x

e−ttα−1dt, (60)

where Re α > 0 ([10], p. 899, eq.8.350.2).

Result 5

The beta function, denoted B(α, β), is defined as

B(α, β) =

1ˆ

0

tα−1(1− t)β−1dt (61)

and

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(62)

where Re α > 0,Re β > 0 ([10], p. 908, eq.9.380.1).
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Result 6

The incomplete beta function, denoted B(x;α, β), is defined as

B(x;α, β) =

xˆ

0

tα−1(1− t)β−1dt (63)

where 0 ≤ x ≤ 1,Re α > 0,Re β > 0 ([10], p. 910, eq.8.391).

Result 7

The incomplete beta function ratio, denoted Ix(α, β), is defined as

Ix(α, β) =
B(x;α, β)

B(α, β)
(64)

where Re α > 0,Re β > 0 ([10], p. 910, eq.8.392).

Remark:

Ix(α, β) = 1− I1−x(β, α)

Proof: From the properties of an integral:

1− I1−x(β, α) = 1− B(1− x;β, α)

B(β, α)

=
B(β, α)−B(1− x;β, α)

B(β, α)

=

´ 1

0
tβ−1(1− t)α−1dt−

´ 1−x
0

tβ−1(1− t)α−1dt

B(β, α)

=

´ 1

1−x t
α−1(1− t)β−1dt

B(β, α)
.

Consider the transformation s = 1 − t, which implies t = 1 − s and dt
ds = −1,and the properties of an

integral:
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´ 1

1−x t
β−1(1− t)α−1dt

B(β, α)
=
−
´ 0

x
sα−1(1− s)β−1)ds

B(β, α)

=

´ x
0
sα−1(1− s)β−1)ds

B(β, α)

=
B(x;α, β)

B(β, α)

= Ix(α, β). (65)

Result 8

The Pochhammer coefficient is defined as

(α)i = α(α+ 1) · · · (α+ i− 1) = Γ(α+i)
Γ(α)

(66)

where i = 1, 2, . . . ,(α)0 = 1,Re α > 0,Re α + i > 0 and Γ(·) is the gamma function (Appendix eq.(57)).

([25], p. 164, eq.18:12:1)

Remark:

(1− α)i =
Γ(α)(−1)i

Γ(α− i)
(67)

where Re α > 0, i an integer and Γ(·) is the gamma function (Appendix eq.(57)).

Proof: From equation (66):

Γ(α)(−1)i

Γ(α− i)
= (−1)

i Γ((α− i) + i)

Γ(α− i)
= (−1)

i
(α− i)i

= (−1)
i
((α− 1)− i+ 1)i

Since Pochhammer polynomials obey the reflection formula (−x)i = (−1)
i
(x − i + 1)i ([25], p. 161,

eq.18:5:1),

Γ(α)(−1)i

Γ(α− i)
= (−1)

i
((α− 1)− i+ 1)i

= (−(α− 1))i

= (1− α)i.
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Result 9

(
i

j

)
=

Γ(i+ 1)

Γ(i+ 1− j)j!
(68)

where Re i > 0,j > 0 an integer and Γ(·) is the gamma function (Appendix eq.(57)).

Motivation: It is known that the binomial coefficient is defined as:

(
i

j

)
=

i!

j!(i− j)!
.

Using the generalisation of the factorial function n! = Γ(n+ 1) ([25], p. 25, eq.2:12:1),

(
i

j

)
=

Γ(i+ 1)

Γ(i+ 1− j)j!
.

Result 10

The random variable X has a generated distribution if:

X = G−1(F ), (69)

where G−1(·) is the quantile function of the baseline distribution and F a random variable distributed as

the generator distribution.

Proof: Let X = G−1(F ) as defined above. Then for H(·) the CDF of the generated distribution

and F (·) the CDF of the generator distribution, see Section 1.1 of report, we have:

H(x) = P (X ≤ x)

= P
(
G−1(F ) ≤ x

)
= P (F ≤ G(x))

= F (G(x)),

which satisfies the definition (2) of a generated distribution.
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Result 11

H(x) =
γ(α, x)

Γ(k)
, (70)

where x > 0,Re α > 0,Re β > 0 and H(·) the CDF of a Gamma(k, 1) distribution.

Proof: The CDF, H(·), of a Gamma(k, θ) distribution is given by (73) and rewritten with (59):

H(x) =
1

Γ(k)θk

ˆ x

0

tk−1e−
x
θ dt

=
γ
(
α, xθ

)
Γ(k)θk

.

Setting θ = 1 proves the result.

Result 12

A continuous random variable X is said to have an exponential distribution with parameter k and θ > 0

if it’s PDF takes the form below:

f(x) =


1

θ
e−

1
θ if x > 0

0 if x ≤ 0

(71)

([1], p. 115, eq.3.3.16).

Result 13

A continuous random variable X is said to have an gamma distribution with parameters θ > 0 and k > 0

if it’s PDF and PDF takes the form below:

f(x) =


1

θkΓ(κ)
xk−1e−

x
θ if x > 0

0 if x ≤ 0

(72)

and

F (x) =


ˆ x

0

1

θkΓ(κ)
tk−1e−

t
θ dt if x > 0

0 if x ≤ 0

(73)
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([1], p. 111, eq.3.3.8 & 3.3.10).

Result 14

For a Weibull distribution with parameters k and λ distribution the r′th moment is given by [5]:

µ′r = Γ (r/k + 1)λr, r > 0 (74)

where Γ(·) is the gamma function (Appendix eq.(57)).

Result 15

Mudholkar and Srivastava proposed the exponentiated Weibull distribution with PDF h(x) and CDF

H(x) as [20]:

h(x) =
vk

λk
xk−1exp

{
−
(x
λ

)k}(
1− exp

{
−
(x
λ

)k})v−1

(75)

and

H(x) =

(
1− exp

{
−
(x
λ

)k})v
(76)

where 0 ≤ x <∞, λ, k, v > 0.

Result 16

For an for an exponentiated Weibull distribution with parameters k,v and λ distribution the r′th moment

is given by [23]:

µ′r = vλrΓ (r/k)

∞∑
j=0

(1− v)j
j!(j + 1)(r+k)/k

, r > −k (77)

where (·)i is the Pochhammer function (Appendix eq.(66)) and Γ(·) is the gamma function (Appendix

eq.(57)). Note that the upper bound of the sum is v − 1 for integer values of v, see (Appendix eq.(83)).
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Result 17

For a GN ∼ (µ, σ, s) distribution the the PDF and CDF of the standardised random variable Z =

(X − µ)/σ is given by φs(z) and Φ(z) below [21]:

φs(z) =
s

2Γ (1/s)
exp {−|z|s} (78)

and

Φs(z) =


Γ (1/s, (−z)s)

2Γ (1/s)
if z ≤ 0

1− Γ (1/s, zs)

2Γ (1/s)
if z > 0

(79)

−∞ < z <∞, s > 0.

Proof: From (11) the transformation z = (x−µ)/σ, which implies x = σz + µ and dx
dz = σ, it follows

that:

g(x) =
s

2σΓ (1/s)
exp

{
−
∣∣∣∣x− µσ

∣∣∣∣s}
∴ φs(z) =

s

2Γ (1/s)
exp{−|z|s}

and

∴ G(x) =


s
´ x
−∞ exp

{
−
(
µ−y
σ

)s}
dy

2σΓ (1/s)
if x ≤ µ

1−
s
´∞
x

exp
{
−
(
y−µ
σ

)s}
dy

2σΓ (1/s)
if x > µ

=


s
´ x
−∞ exp {− (−z)s} dz

2σΓ (1/s)
if z ≤ 0

1−
s
´∞
x

exp {−zs} dz
2σΓ (1/s)

if z > 0

.

Lastly from the transformation k = zs, which implies z = k
1
s and dx

dz = 1
sk

1
s−1, and symmetry it follows

that:
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G(x) =


´∞
x
k

1
s−1exp {k} dk
2Γ (1/s)

if k ≤ 0

1−
´∞
x
k

1
s−1exp {k} dk
2Γ (1/s)

if k > 0

∴ Φs(z) =


Γ(1/s, (−z)s)

2Γ (1/s)
if z ≤ 0

1− Γ(1/s, zs)

2Γ (1/s)
if z > 0

and where Γ(·, ·) is the upper incomplete gamma function, see (Appendix eq.(60)).

Result 18

For a standardised generalised normal distribution, Z = (X−µ)/σ where X ∼ GN(µ, σ, s), the following

properties hold:

Φs(−z) = 1−Φs(z) (80)

and

φs(−z) = φs(z) (81)

where Φs(·) and φs(·) are defined in (Appendix eq.(78)&(79)).

Proof: These results follow directly from the symmetry of the PDF, see (9).

Result 19

(1 + x)q =

∞∑
k=0

(
q

k

)
xk (82)

where q 6= 0 not a natural number and |x| < 1 ([10], p. 25, eq.1.110).

Result 20

(1 + x)n =

n∑
k=0

(
n

k

)
xk (83)

where n is a natural number ([10], p. 25, eq.1.111).
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Result 21

ex =

∞∑
k=0

xk

k!
(84)

where n is a natural number ([10], p. 26, eq.1.121.1).

Result 22

If Re α > 0 non-integer, then

Φs(z)
α =

∞∑
i=0

∞∑
j=i

(
α

j

)(
j

i

)
(−1)i+jΦs(z)

i. (85)

[3].

Proof: If Re α > 0 non-integer, then using (Appendix eq.(82)) successively:

Φs(z)
α = (1− (1− Φs(z)))

α

=

∞∑
i=0

(
α

i

)
(−1)i(1− Φs(z))

i

=

∞∑
i=0

i∑
j=0

(
α

i

)(
i

j

)
(−1)i+jΦs(z)

j

=

∞∑
i=0

i∑
j=0

ai,jΦs(z)
j

where ai,j =
(
α
j

)(
j
i

)
(−1)i+j .

Expanding the sum and re-indexing into new sums:

∞∑
i=0

i∑
j=0

ai,jΦs(z)
j = a0,0

+a1,0 + a1,1Φs(z)

+a2,0 + a2,1Φs(z) + a2,2Φs(z)
2

+a3,0 + a3,1Φs(z) + a3,2Φ(z)2 + a3,3Φs(z)
3

. . .
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=

∞∑
i=0

ai,0Φs(z)
0 +

∞∑
i=1

ai,1Φs(z)
1 +

∞∑
i=2

ai,2Φs(z)
2 +

∞∑
i=3

ai,3Φs(z)
3 +

∞∑
i=4

ai,4Φs(z)
4 + . . .

=

∞∑
j=0

∞∑
i=j

ai,jΦ(z)j .

Lastly substituting ai,j =
(
α
j

)(
j
i

)
(−1)i+j into the previous step the result is proven:

Φs(z)
α =

∞∑
j=0

∞∑
i=j

(
α

i

)(
i

j

)
(−1)i+jΦ(z)j .

Result 23

[ ∞∑
i=0

(−1)
i

(1/s + i)i!
yi

]j
=

∞∑
i=0

ci,jy
i, (86)

where c0,j = sj and ci,j = 1/is
∑i
k=1(kj − i + k)((−1)k/(1/s+k)k!)ci−k,j for all i ≥ 1 and j a natural

number [3].

Proof: This result follows directly from ([10], p. 17, eq.0.314) with ak = (−1)k/(1/s+k)k!.

Result 24

Q
(s)
i,j =

ˆ ∞
0

ziΦs(z)
jφ(z)dz

=
1

(2Γ(1/s)) j+1

j∑
k=0

(
j

k

)
[Γ(1/s)]

j−k
∞∑
l=0

cl,kΓ

(
l +

i+ k + 1

s

)
(87)

where c0,k = sk, cl,k = 1/ls
∑l
r=1(rk − l + r) ((−1)r/(1/s+r)r!) cl−r,k for all l ≥ 1 and Γ(·) is the gamma

function (Appendix eq.(57)) [3].

Proof: Define the more general quantity:

Q
(s)
i,j (a, b) =

ˆ b

a

ziΦs(z)
jφ(z)dz, 0 < a < b

Thus Q(s)
i,j ≡ Q

(s)
i,j (0,∞).

From the definition of Φs(·) (Methodology eq.(11)) and the transformation y = zs, which implies

z = y
1
s and dz

dy = 1
s , we have that:
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Q
(s)
i,j (a, b) =

ˆ b

a

ziΦs(z)
jφ(z)dz

=

ˆ b

a

zi
(

1− Γ(1/s, zs)

2Γ (1/s)

)
j

(
s

2Γ (1/s)
exp {−zs}

)
dz

=

ˆ b

a

zi
(

2Γ (1/s)− Γ(1/s, zs)

2Γ (1/s)

)
j

(
s

2Γ (1/s)
exp {−zs}

)
dz

=
s

(2Γ (1/s))
j+1

ˆ b

a

zi (2Γ (1/s)− Γ(1/s, zs)) j exp {−zs} dz

=
1

(2Γ (1/s))
j+1

ˆ b

a

y
i+1
s −1 (2Γ (1/s)− Γ(1/s, y)) j exp{−y}dy

where Γ(·, ·) is the upper incomplete gamma function (Appendix eq.(60)).

As shown by [22] the lower incomplete gamma function, γ(·, ·) (Appendix eq.(59)), admits the power

series expansion γ(a, x) = xa
∑∞
m=0

(−x)m/(a+m)m!) and therefore also admits Γ(a, x) = Γ(a)− γ(a, x) =

Γ(a)− xa
∑∞
m=0

(−x)m/((a+m)m!). Using the latter and (Appendix eq.(83)):

Q
(s)
i,j (a, b) =

1

(2Γ (1/s))
j+1

ˆ b

a

y
i+1/s−1 (Γ (1/s) + γ (1/s, y)) j exp{−y}dy

=
1

(2Γ (1/s))
j+1

ˆ b

a

y
i+1/s−1

j∑
k=0

(
j

k

)
(γ (1/s, y))

k
(Γ (1/s))

j−k
exp{−y}dy

=
1

(2Γ (1/s))
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
ˆ b

a

y
i+1
s −1γ (1/s, y)

k
exp{−y}dy

=
1

(2Γ (1/s))
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
ˆ b

a

y
i+1
s −1

·

(
y

1
s

∞∑
m=0

(−y)m/(1/s+m)m!)

)k
exp{−y}dy

=
1

(2Γ (1/s))
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
ˆ b

a

y
i+k+1
s −1

·

( ∞∑
m=0

(−y)m/(1/s+m)m!)

)k
exp{−y}dy (88)

Let c0,k = sk and cm,k = 1/ms
∑m
l=1(lk −m+ l)

(
(−1)l/(1/s+l)l!

)
cm−l,k for all m ≥ 1.
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Then from (Appendix eq.(86)) the power series in the integral (88) is re-written:

Q
(s)
i,j (a, b) =

1

(2Γ (1/s))
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k

·
ˆ b

a

y
i+k+1
s −1

( ∞∑
m=0

(−y)m/(1/s+m)m!)

)k
exp{−y}dy

=
1

(2Γ (1/s))
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
ˆ b

a

y
i+k+1
s −1

∞∑
m=0

cm,ky
m exp{−y}dy

=
1

(2Γ (1/s))
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
∞∑
m=0

cm,k

ˆ b

a

ym+ i+k+1
s −1 exp{−y}dy

=
1

(2Γ (1/s))
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k

·
∞∑
m=0

cm,k

[
Γ

(
m+

i+ k + 1

s
, b

)
− Γ

(
m+

i+ k + 1

s
, a

)]

where where Γ(·, ·) is the upper incomplete gamma function, see (Appendix eq.(60)).

Letting a = 0 and b =∞ proves the result:

Q
(s)
i,j =

1

(2Γ (1/s))
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
∞∑
m=0

cm,kΓ (m+ i+k+1/s) .

Result 25

M
(s)
j =

ˆ ∞
0

et(σz+µ)Φs(z)
jφs(z)dz

=
etµ

2Γ (1/s)

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
∞∑
m=0

cm,k

∞∑
p=0

tσp

p!
Γ

(
m+

i+ k + p+ 1

s

)
(89)

M
(s,−)
j =

ˆ ∞
0

et(−σz+µ)Φs(z)
jφs(z)dz

=
etµ

2Γ (1/s)

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
∞∑
m=0

cm,k

∞∑
p=0

(−tσ)
p

p!
Γ

(
m+

i+ k + p+ 1

s

)
(90)

where c0,k = skand cl,k = 1/ls
∑l
r=1(rk − l + r)

(
(−1)k/(1/s+r)r!

)
cl−r,k for all l ≥ 1.
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Proof: Define the more general quantities:

M
(s)
j (a, b) =

ˆ b

a

et(σz+µ)Φs(z)
jφs(z)dz

and

M
(s,−)
j (a, b) =

ˆ b

a

et(−σz+µ)Φs(z)
jφs(z)dz, 0 < a < b.

Thus M (s)
i,j ≡M

(s)
i,j (0,∞) and M (s,−)

i,j ≡M (s,−)
i,j (0,∞).

From the definition of Φs(·) (Methodology eq.(11)) and the transformation y = zs, which implies

z = y
1
s and dz

dy = 1
s , we have that:

M
(s)
j (a, b) =

ˆ b

a

et(σz+µ)Φs(z)
jφs(z)dz

=

ˆ b

a

et(σz+µ)

(
1− Γ(1/s, zs)

2Γ (1/s)

)j (
s

2Γ (1/s)
exp {−|z|s}

)
dz

= etµ
ˆ b

a

(
2Γ (1/s)− Γ(1/s, zs)

2Γ (1/s)

)j (
s

2Γ (1/s)
exp {tσz − zs}

)
dz

=
setµ

2Γ (1/s)
j+1

ˆ b

a

(2Γ (1/s)− Γ(1/s, zs))
j

(exp {tσz − zs}) dz

=
etµ

2Γ (1/s)
j+1

ˆ b

a

y
1
s−1 (2Γ (1/s)− Γ(1/s, y))

j
exp

{
tσy

1
s − y

}
dy

where Γ(·, ·) is the upper incomplete gamma function (Appendix eq.(60)).

As shown by [22] the lower incomplete gamma function, γ(·, ·) (Appendix eq.(59)), admits the power

series expansion γ(a, x) = xa
∑∞
m=0

(−x)m/(a+m)m!) and therefore also admits Γ(a, x) = Γ(a)− γ(a, x) =

Γ(a)− xa
∑∞
m=0

(−x)m/((a+m)m!). Using the latter and (Appendix eq.(83)):

M
(s)
j (a, b) =

etµ

2Γ (1/s)
j+1

ˆ b

a

y
1
s−1 exp{tσy 1

s − y} (Γ (1/s) + γ (1/s, y))
j
dy

=
etµ

2Γ (1/s)
j+1

ˆ b

a

y
1
s−1 exp{tσy 1

s − y}

·
j∑

k=0

(
j

k

)
γ (1/s, y)

k
Γ (1/s)

j−k
dy
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=
etµ

2Γ (1/s)
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k

·
ˆ b

a

y
1
s−1 exp

{
tσy

1
s − y

}
γ (1/s, y)

k
dy, (91)

where γ(·, ·) is the lower incomplete gamma function (Appendix eq.(59)).

Let c0,k = sk and cm,k = 1/ms
∑m
l=1(lk − m + l)((−1)l/(1/s+l)l!)cm−l,k for all m ≥ 1. Then from

(Appendix eq.(86)) and (Appendix eq.(84)) the integral (91) is re-written:

M
(s)
j (a, b) =

etµ

2Γ (1/s)
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k

·
ˆ b

a

y
1
s−1 exp

{
tσy

1
s − y

}(
y

1
s

∞∑
m=0

(−y)m/(1/s+m)m!)

)k
dy

=
etµ

2Γ (1/s)
j+1

j∑
k=0

(
j

k

)
Γ (1/s)

j−k

·
ˆ b

a

y
1+k
s −1 exp

{
tσy

1
s − y

} ∞∑
m=0

cm,ky
mdy

=
etµ

2Γ (1/s)

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
∞∑
m=0

cm,k

ˆ b

a

ym+ 1+k
s −1 exp

{
tσy

1
s − y

}
dy

=
etµ

2Γ (1/s)

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
∞∑
m=0

cm,k

ˆ b

a

∞∑
p=0

(
tσy

1
s

)p
p

ym+ 1+k
s −1 exp {−y} dy

=
etµ
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j∑
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(
j

k

)
Γ (1/s)

j−k
∞∑
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∞∑
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p!

ˆ b
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s −1 exp {−y} dy

=
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(
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Γ (1/s)
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∞∑
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∞∑
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[
Γ

(
m+

i+ k + p+ 1

s
, b

)
− Γ

(
m+

i+ k + p+ 1

s
, a

)]

where where Γ(·, ·) is the upper incomplete gamma function, see (Appendix eq.(60)).

Letting a = 0 and b =∞ proves the result (89):

M
(s,−)
j =

etµ

2Γ (1/s)

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
∞∑
m=0

cm,k

∞∑
p=0

tσ

p!
Γ

(
m+

i+ k + p+ 1

s

)

Similarly it follows for result (90) that:

M
(s,−)
j =

etµ

2Γ (1/s)

j∑
k=0

(
j

k

)
Γ (1/s)

j−k
∞∑
m=0

cm,k

∞∑
p=0

(−tσ)
p

p!
Γ

(
m+

i+ k + p+ 1

s

)
.
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Tables

Tables 7, 8 & 9 contain most of the beta and Kumaraswamy generated distributions, the surnames of the

relevant authors and the year of publication. The distributions are organised alphabetically according to

their generator distribution and then according to the year of study.
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Table 7: List of Kumaraswamy and beta generated distributions.
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Table 8: Continued list of Kumaraswamy and beta generated distributions.
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Table 9: Continued list of Kumaraswamy and beta generated distributions.
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Programs

Listing 1 contains a user defined SAS software, a proc iml call function, for simulating values from

a X ∼ BGN(µ, σ, s, α, β) distribuion. Listing 2 implements user defined R software functions, using

packages [9] and [31], for the PDFs; CDFs; estimation of distribution parameters by MLE and KS

estimation; and simulation of the BW, KW, BGN and KGN distributions. The Listings 3 & 4 contain

programs of the applications in Section 6.2. The application programs function by calling the user

defined functions in Listing 2 and uses the package [30]. Listing 5 contains Mathematica software [11]

with functions of the PDFs; CDFs; and hazard functions of the BW, KW, BGN and KGN distributions.

These functions were used to plot the graphs in this study.

Listing 1: Beta Generalised Normal RGN

proc iml ;

s t a r t rbgn (mu, sigma , s , alpha , beta , n ) ;

x=J (n , 1 , 0 ) ;

f=rand ( ’ beta ’ , J (n , 1 , alpha ) , J (n , 1 , beta ) ) ;

ind=l o c ( f <0 .5) ;

x [ ind ]=mu−sigma∗ quan t i l e ( ’gamma’ ,(1−2∗ f [ ind ] ) , ( 1 / s ) ,1)##(1/ s ) ;

ind=l o c ( f >=0.5);

x [ ind ]=mu+sigma∗ quan t i l e ( ’gamma’ , ( 2 ∗ f [ ind ]−1) ,(1/ s ) ,1)##(1/ s ) ;

r e turn (x ) ;

f i n i s h ;

n=5000000;

c a l l randseed ( 1 23 , 1 ) ;

x= rbgn (104 . 938 , 331 . 574 , 0 . 250 , 285 . 582 , 248 . 876 , n ) ;

theo =2158 . 01 | | 7 . 32334∗10∗∗6 | | 3 . 13892∗10∗∗10 | | 1 . 62197∗10∗∗14 ;

mom=mean(x | | x##2||x##3||x##4);
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d i f f=theo−mom;

skew=skewness ( x ) ;

kurt=ku r t o s i s ( x ) ;

p r i n t theo , mom, d i f f , skew , kurt ;

c r e a t e t e s t from x [ colname={x } ] ;

append from x ;

qu i t ;

proc s gp l o t data=t e s t ;

∗ t i t l e " Simulated D i s t r i bu t i on " ;

histogram x ;

dens i ty x / type=ke rne l ;

∗ keylegend / l o c a t i o n=i n s i d e po s i t i o n=topr i gh t ;

run ;
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Listing 2: User Defined R Functions

l i b r a r y ( z ipfR )

l i b r a r y (VGAM)

###########################################################

#Beta−Weibull dens i ty func t i on

dBW_func <− f unc t i on (x , parameters )

{

k <−parameters [ 1 ]

lambda<−parameters [ 2 ]

alpha <−parameters [ 3 ]

beta1 <−parameters [ 4 ]

i f (k>0 & lambda>0 & alpha>0 & beta1 >0)

{

T1 <− 1/( beta ( alpha , beta1 ) )∗ ( k/lambda^k)∗x^(k−1)

T2 <− (1−exp(−(x/lambda)^k ))^( alpha−1)

T3 <− exp(−beta1 ∗( x/lambda)^k )

d <− T1∗T2∗T3

}

e l s e

{

d<−rep (0 , l ength (x ) )

}

re turn (d)

}

###########################################################

#Beta−Weibull cumulat ive dens i ty func t i on

cdfBW_func <− f unc t i on (x , parameters )

{

k <−parameters [ 1 ]

lambda<−parameters [ 2 ]

alpha <−parameters [ 3 ]

beta1 <−parameters [ 4 ]
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i f (k>0 & lambda>0 & alpha>0 & beta1 >0)

{

GX <− 1−exp(−(x/lambda)^k )

T1 <− 1/( beta ( alpha , beta1 ) )

cd <− T1∗ Ibeta (GX, alpha , beta1 )

}

e l s e

{

cd<−rep (0 , l ength (x ) )

}

re turn ( cd )

}

###########################################################

#Kumaraswamy Weibull dens i ty func t i on

dKW_func <− f unc t i on (x , parameters )

{

k <−parameters [ 1 ]

lambda<−parameters [ 2 ]

alpha <−parameters [ 3 ]

beta1 <−parameters [ 4 ]

i f (k>0 & lambda>0 & alpha>0 & beta1 >0)

{

T1 <− alpha ∗beta1 ∗k/( lambda^k)∗x^(k−1)∗exp(−(x/lambda)^k )

T2 <− (1−exp(−(x/lambda)^k ))^( alpha−1)

T3 <− (1−(1−exp(−(x/lambda)^k ))^ alpha )^( beta1−1)

d <− T1∗T2∗T3

}

e l s e

{

d<−rep (0 , l ength (x ) )

}
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re turn (d)

}

###########################################################

#Kumaraswamy−Weibull cumulat ive dens i ty func t i on

cdfKW_func <− f unc t i on (x , parameters )

{

k <−parameters [ 1 ]

lambda<−parameters [ 2 ]

alpha <−parameters [ 3 ]

beta1 <−parameters [ 4 ]

i f (k>0 & lambda>0 & alpha>0 & beta1 >0)

{

cd <− 1−(1−(1−exp(−(x/lambda)^k ))^ alpha )^ beta1

}

e l s e

{

cd<−rep (0 , l ength (x ) )

}

re turn ( cd )

}

###########################################################

#Beta−Genera l i s ed normal dens i ty func t i on

dBGN_func <− f unc t i on (x , parameters )

{

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−parameters [ 3 ]

alpha <−parameters [ 4 ]

beta1 <−parameters [ 5 ]
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z <−(x−mu)/ sigma

i f ( sigma>0 & s>0 & alpha>0 & beta1 >0)

{

T1 <− 1/( sigma∗beta ( alpha , beta1 ) )

T2 <− GNPhi_func ( z , s )^( alpha−1)

T3 <− (1−GNPhi_func ( z , s ) )^( beta1−1)

T4 <−GNphi_func ( z , s )

d <− T1∗T2∗T3∗T4

}

e l s e

{

d<−rep (0 , l ength (x ) )

}

re turn (d)

}

###########################################################

#Beta−Genera l i s ed normal cumulat ive dens i ty func t i on

cdfBGN_func <− f unc t i on (x , parameters )

{

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−parameters [ 3 ]

alpha <−parameters [ 4 ]

beta1 <−parameters [ 5 ]

z <−(x−mu)/ sigma

i f ( sigma>0 & s>0 & alpha>0 & beta1 >0)

{

GX <− GNPhi_func ( z , s )

T1 <− 1/( beta ( alpha , beta1 ) )

cd<− T1∗ Ibeta (GX, alpha , beta1 )

}
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e l s e

{

cd<−rep (0 , l ength (x ) )

}

re turn ( cd )

}

###########################################################

#Kumaraswamy Genera l i s ed normal dens i ty func t i on

dKGN_func <− f unc t i on (x , parameters )

{

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−parameters [ 3 ]

alpha <−parameters [ 4 ]

beta1 <−parameters [ 5 ]

z <−(x−mu)/ sigma

i f ( sigma>0 & s>0 & alpha>0 & beta1 >0)

{

T1 <− alpha ∗beta1 /sigma∗GNphi_func ( z , s )

T2 <− GNPhi_func ( z , s )^( alpha−1)

T3 <− (1−GNPhi_func ( z , s )^ alpha )^( beta1−1)

d <− T1∗T2∗T3

}

e l s e

{

d<−rep (0 , l ength (x ) )

}

re turn (d)

}

###########################################################
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#Kumaraswamy−Genera l i s ed normal cumulat ive dens i ty func t i on

cdfKGN_func <− f unc t i on (x , parameters )

{

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−parameters [ 3 ]

alpha <−parameters [ 4 ]

beta1 <−parameters [ 5 ]

z <−(x−mu)/ sigma

i f ( sigma>0 & s>0 & alpha>0 & beta1 >0)

{

cd <− 1−(1−GNPhi_func ( z , s )^ alpha )^ beta1

}

e l s e

{

cd<−rep (0 , l ength (x ) )

}

re turn ( cd )

}

###########################################################

#Genera l i s ed normal dens i ty func t i on

dGN_func <− f unc t i on (x , parameters )

{

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−parameters [ 3 ]

z <−(x−mu)/ sigma

i f ( sigma>0 & s>0)

{

d <− GNphi_func ( z , s )/ sigma

}

e l s e
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{

d<−rep (0 , l ength (x ) )

}

re turn (d)

}

###########################################################

#Genera l i s ed normal cumulat ive dens i ty func t i on

cdfGN_func <− f unc t i on (x , parameters )

{

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−parameters [ 3 ]

z <−(x−mu)/ sigma

i f ( sigma>0 & s>0)

{

cd <− GNPhi_func ( z , s )

}

e l s e

{

cd<−rep (0 , l ength (x ) )

}

re turn ( cd )

}

###########################################################

#Kumaraswamy normal dens i ty func t i on

dKN_func <− f unc t i on (x , parameters )

{

parameters<−c ( parameters [ 1 ] , parameters [ 2 ] ∗ s q r t ( 2 ) , 2 , parameters [ 3 : 4 ] )

d <− dKGN_func(x , parameters )

re turn (d)
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}

###########################################################

#Kumaraswamy normal cumulat ive dens i ty func t i on

cdfKN_func <− f unc t i on (x , parameters )

{

parameters<−c ( parameters [ 1 ] , parameters [ 2 ] ∗ s q r t ( 2 ) , 2 , parameters [ 3 : 4 ] )

d <− cdfKGN_func (x , parameters )

re turn (d)

}

###########################################################

#beta normal dens i ty func t i on

dBN_func <− f unc t i on (x , parameters )

{

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ] ∗ s q r t (2 )

alpha <−parameters [ 3 ]

beta1 <−parameters [ 4 ]

i f ( sigma>0 & alpha>0 & beta1 >0)

{

T1 <− 1/( sigma∗beta ( alpha , beta1 ) )

T2 <− pnorm(x , mean = mu, sd = sigma , lower . t a i l = TRUE, log . p = FALSE)^( alpha−1)

T3 <− (1−pnorm(x , mean = mu, sd = sigma , lower . t a i l = TRUE, log . p = FALSE))^( beta1−1)

T4 <−dnorm(x , mean = mu, sd = sigma , l og = FALSE)

d <− T1∗T2∗T3∗T4

}

e l s e

{

d<−rep (0 , l ength (x ) )

}

re turn (d)

}
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###########################################################

#beta normal cumulat ive dens i ty func t i on

cdfBN_func <− f unc t i on (x , parameters )

{

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ] ∗ s q r t (2 )

alpha <−parameters [ 3 ]

beta1 <−parameters [ 4 ]

i f ( sigma>0 & alpha>0 & beta1 >0)

{

GX <− pnorm(x , mean = mu, sd = sigma , lower . t a i l = TRUE, log . p = FALSE)

T1 <− 1/( beta ( alpha , beta1 ) )

cd<− T1∗ Ibeta (GX, alpha , beta1 )

}

e l s e

{

cd<−rep (0 , l ength (x ) )

}

re turn ( cd )

}

###########################################################

# Genera l i s ed Phi f unc t i on s

GNphi_func <− f unc t i on ( z , s )

{

i f ( s>0)

{

T1<−s /(2∗gamma(1/ s ) )

T2<−exp(−abs ( z )^ s )

d<−T1∗T2

}

e l s e

{
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d<−rep (0 , l ength ( z ) )

}

re turn (d)

}

GNPhi_func <− f unc t i on ( z , s )

{

i f ( s>0)

{

pos<−z<=0

neg<−z>0

z [ pos]<−Igamma(1/ s ,(− z [ pos ] )^ s , lower = FALSE)/(2∗gamma(1/ s ) ) # f o r z e lements negat ive

z [ neg]<− 1−Igamma(1/ s , z [ neg ]^ s , lower = FALSE)/(2∗gamma(1/ s ) ) # f o r z e lements p o s i t i v e

phi<−z

}

e l s e

{

phi<−rep (0 , l ength ( z ) )

}

re turn ( phi )

}

###########################################################

# minLike l ihood func t i on f o r g iven density_func and parameters

minLL_func <− f unc t i on ( density_func , x , parameters )

{

maxLL <− −I n f

LLvec <− density_func (x , parameters )

i f ( a l l ( i s . f i n i t e ( LLvec ) ) )

{
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i f ( a l l ( LLvec !=0))

{

LLvec <− l og ( LLvec )

maxLL <− sum(LLvec )

}

}

minLL <− −maxLL

return (minLL)

}

###########################################################

# ML Se l e c t i o n func t i on f o r g iven density_func and parameters

MLselect_func <− f unc t i on ( density_func , x , inputva lue s )

{

minevaluat ion <− I n f

f o r ( k in 1 : nco l ( inputva lue s ) )

{

dummy <− i nputva lue s [ , k ]

eva lua t i on <− minLL_func ( density_func , x ,dummy)

i f ( i s . f i n i t e ( eva lua t i on ) & eva luat ion<minevaluat ion )

{

minevaluat ion <− eva lua t i on

minevaluat ionparameters <− dummy

}

}

i f ( minevaluat ion == In f )

{

minevaluat ionparameters<−NULL

}

return ( minevaluat ionparameters )

}
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###########################################################

# minKS func t i on f o r g iven parameters cdf_func and parameters

minKS_func<−f unc t i on ( cdf_func , x , cd fva lues , parameters )

{

n<−l ength (x )

s t a t i s t i c 1 <− max( abs ( cdf_func (x , parameters)− cd fva lu e s ) )

s t a t i s t i c 2 <− max( abs ( cdf_func (x , parameters )+1/n−cd fva lu e s ) )

s t a t i s t i c <− max( s t a t i s t i c 1 , s t a t i s t i c 2 )

re turn ( s t a t i s t i c )

}

###########################################################

# KS Se l e c t i o n func t i on f o r g iven parameters

KSselect_func <− f unc t i on ( cdf_func , x , cd fva lues , i nputva lue s )

{

minevaluat ion <− I n f

f o r ( k in 1 : nco l ( inputva lue s ) )

{

dummy <− i nputva lue s [ , k ]

eva lua t i on <− minKS_func ( cdf_func , x , cd fva lues ,dummy)

i f ( i s . f i n i t e ( eva lua t i on ) & eva luat ion<minevaluat ion )

{

minevaluat ion <− eva lua t i on

minevaluat ionparameters <− dummy

}

}

i f ( minevaluat ion == In f )

{

minevaluat ionparameters<−NULL

}

return ( minevaluat ionparameters )
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}

#SIMULATION

###########################################################

#Simulat ion o f Beta Weibull

rBW_func<−f unc t i on ( parameters , n , s e edva l )

{

s e t . seed ( s e edva l )

k <−parameters [ 1 ]

lambda<−parameters [ 2 ]

alpha <−parameters [ 3 ]

beta1 <−parameters [ 4 ]

betaX <−rbeta (n , alpha , beta1 )

BWx <−lambda∗(− l og (1−betaX ))^(1/ k )

re turn (BWx)

}

###########################################################

#Simulat ion o f Kumaraswamy Weibull

rKW_func<−f unc t i on ( parameters , n , s e edva l )

{

s e t . seed ( s e edva l )

k <−parameters [ 1 ]

lambda<−parameters [ 2 ]

alpha <−parameters [ 3 ]

beta1 <−parameters [ 4 ]

KumX <− rkumar (n , alpha , beta1 )

KWx <− lambda∗(− l og (1−KumX))^(1/ k )

re turn (KWx)

}

###########################################################

#Simulat ion o f Beta Genera l i s ed Normal
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rBGN_func<−f unc t i on ( parameters , n , s e edva l )

{

s e t . seed ( s e edva l )

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−parameters [ 3 ]

alpha <−parameters [ 4 ]

beta1 <−parameters [ 5 ]

y<−rbeta (n , alpha , beta1 )

neg<−y<=0.5

pos<−y>0.5

z<−rep (0 , l ength (y ) )

z [ neg]<−−Igamma . inv (1/ s , ( ( y [ neg ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

z [ pos]<−Igamma . inv (1/ s ,((1−y [ pos ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

x<−sigma∗z+mu

return (x )

}

###########################################################

#Simulat ion o f Kumaraswamy Genera l i s ed Normal

rKGN_func<−f unc t i on ( parameters , n , s e edva l )

{

s e t . seed ( s e edva l )

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−parameters [ 3 ]

alpha <−parameters [ 4 ]

beta1 <−parameters [ 5 ]

y<−rkumar (n , alpha , beta1 )

neg<−y<=0.5

pos<−y>0.5
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z<−rep (0 , l ength (y ) )

z [ neg]<−−Igamma . inv (1/ s , ( ( y [ neg ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

z [ pos]<−Igamma . inv (1/ s ,((1−y [ pos ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

x<−sigma∗z+mu

return (x )

}

###########################################################

#Simulat ion o f Genera l i s ed Normal

rGN_func<−f unc t i on ( parameters , n , s e edva l )

{

s e t . seed ( s e edva l )

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−parameters [ 3 ]

y<−r un i f (n)

neg<−y<=0.5

pos<−y>0.5

z<−rep (0 , l ength (y ) )

z [ neg]<−−Igamma . inv (1/ s , ( ( y [ neg ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

z [ pos]<−Igamma . inv (1/ s ,((1−y [ pos ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

x<−sigma∗z+mu

}

###########################################################

#Simulat ion o f Kumaraswamy normal

rKN_func<−f unc t i on ( parameters , n , s e edva l )

{

s e t . seed ( s e edva l )

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−2

alpha <−parameters [ 3 ]
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beta1 <−parameters [ 4 ]

y<−rkumar (n , alpha , beta1 )

neg<−y<=0.5

pos<−y>0.5

z<−rep (0 , l ength (y ) )

z [ neg]<−−Igamma . inv (1/ s , ( ( y [ neg ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

z [ pos]<−Igamma . inv (1/ s ,((1−y [ pos ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

x<−sigma∗z+mu

return (x )

}

###########################################################

#Simulat ion o f Kumaraswamy normal

rBN_func<−f unc t i on ( parameters , n , s e edva l )

{

s e t . seed ( s e edva l )

mu <−parameters [ 1 ]

sigma <−parameters [ 2 ]

s <−2

alpha <−parameters [ 3 ]

beta1 <−parameters [ 4 ]

y<−rbeta (n , alpha , beta1 )

neg<−y<=0.5

pos<−y>0.5

z<−rep (0 , l ength (y ) )

z [ neg]<−−Igamma . inv (1/ s , ( ( y [ neg ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

z [ pos]<−Igamma . inv (1/ s ,((1−y [ pos ] )∗2∗gamma(1/ s ) ) , lower = FALSE)^(1/ s )

x<−sigma∗z+mu

return (x )

}
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#ESTIMATION

###########################################################

#Estimation o f a Beta Weibull

minLL_BW<−f unc t i on (x , parameters )

{

re turn (minLL_func (dBW_func , x , parameters ) )

}

minKS_BW<−f unc t i on (x , cd fva lues , parameters )

{

re turn (minKS_func (cdfBW_func , x , cd fva lues , parameters ) )

}

#c a l l f unc t i on

eBW<−f unc t i on (x , parameter_range , s i z e , i t e r a t i o n s , type )

{

#Empir ica l cd f va lue s

cdensity_func<−ecd f ( x )

cdf_x<−cdens ity_func (x )

es t imates<−rep ( 0 . 1 , 4 )

f o r ( z in 1 : i t e r a t i o n s )

{

# Random a l l o c a t i o n o f s t a r t i n g va lue s f o r opt im i sa t i on

k <− r un i f ( s i z e , 0 . 0 00001 , parameter_range )

lambda<− r un i f ( s i z e , 0 . 0 00001 , parameter_range )

alpha <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

beta1 <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

n_startvalues<−rbind (k , lambda , alpha , beta1 )

i f ( type=="MLE")

{

# ML e s t im i s a t i o n BW

sta r tpa r <−MLselect_func (dBW_func , x , n_startva lues )
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optimised<−optim ( s ta r tpar ,minLL_BW, x = x)

dummy <−opt imised$par

}

i f ( type=="KS")

{

#KS es t imat i on BW

sta r tpa r <−KSselect_func ( cdfBW_func , x , cdf_x , n_startva lues )

optimised<−optim ( s ta r tpar ,minKS_BW, x = x , cd f va lu e s = cdf_x )

dummy <−opt imised$par

}

i f (minKS_BW(x , cdf_x ,dummy)<minKS_BW(x , cdf_x , e s t imate s ) )

{

est imates<−dummy

}

}

return ( e s t imate s )

}

##############################################################

#Estimation o f a Kumaraswamy Weibull

minLL_KW<−f unc t i on (x , parameters )

{

re turn (minLL_func (dKW_func , x , parameters ) )

}

minKS_KW<−f unc t i on (x , cd fva lues , parameters )

{

re turn (minKS_func (cdfKW_func , x , cd fva lues , parameters ) )

}

#c a l l f unc t i on

eKW<−f unc t i on (x , parameter_range , s i z e , i t e r a t i o n s , type )

{

#Empir ica l cd f va lue s

cdensity_func<−ecd f ( x )
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cdf_x<−cdens ity_func (x )

es t imates<−rep ( 0 . 1 , 4 )

f o r ( z in 1 : i t e r a t i o n s )

{

# Random a l l o c a t i o n o f s t a r t i n g va lue s f o r opt im i sa t i on

k <− r un i f ( s i z e , 0 . 0 00001 , parameter_range )

lambda<− r un i f ( s i z e , 0 . 0 00001 , parameter_range )

alpha <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

beta1 <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

n_startvalues<−rbind (k , lambda , alpha , beta1 )

i f ( type=="MLE")

{

# ML e s t im i s a t i o n KW

sta r tpa r <−MLselect_func (dKW_func , x , n_startva lues )

optimised<−optim ( s ta r tpar ,minLL_KW, x = x)

dummy <−opt imised$par

}

i f ( type=="KS")

{

#KS es t imat i on KW

sta r tpa r <−KSselect_func (cdfKW_func , x , cdf_x , n_startva lues )

optimised<−optim ( s ta r tpar ,minKS_KW, x = x , cd fva lu e s = cdf_x )

dummy <−opt imised$par

}

i f (minKS_KW(x , cdf_x ,dummy)<minKS_KW(x , cdf_x , e s t imate s ) )

{

est imates<−dummy

}

}

return ( e s t imate s )

}

89



#Estimation o f a Beta Genera l i s ed Normal

minLL_BGN<−f unc t i on (x , parameters )

{

re turn (minLL_func (dBGN_func , x , parameters ) )

}

minKS_BGN<−f unc t i on (x , cd fva lues , parameters )

{

re turn (minKS_func ( cdfBGN_func , x , cd fva lues , parameters ) )

}

#c a l l f unc t i on

eBGN<−f unc t i on (x , parameter_range , s i z e , i t e r a t i o n s , type )

{

#Empir ica l cd f va lue s

cdensity_func<−ecd f ( x )

cdf_x<−cdens ity_func (x )

es t imates<−rep ( 0 . 1 , 5 )

f o r ( z in 1 : i t e r a t i o n s )

{

# Random a l l o c a t i o n o f s t a r t i n g va lue s f o r opt im i sa t i on

mu <−rep (mean(x ) , s i z e )

sigma <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

s <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

alpha <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

beta1 <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

n_startvalues<−rbind (mu, sigma , s , alpha , beta1 )

i f ( type=="MLE")

{

# ML e s t im i s a t i o n BGN

s ta r tpa r <−MLselect_func (dBGN_func , x , n_startva lues )
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optimised<−optim ( s ta r tpar ,minLL_BGN, x = x)

dummy <−opt imised$par

}

i f ( type=="KS")

{

#KS es t imat i on BGN

s ta r tpa r <−KSselect_func ( cdfBGN_func , x , cdf_x , n_startva lues )

optimised<−optim ( s ta r tpar ,minKS_BGN, x = x , cd f va lu e s = cdf_x )

dummy <−opt imised$par

}

i f (minKS_BGN(x , cdf_x ,dummy)<minKS_BGN(x , cdf_x , e s t imate s ) )

{

est imates<−dummy

}

}

return ( e s t imate s )

}

##############################################################

#Estimation o f a Kumaraswamy Genera l i s ed Normal

minLL_KGN<−f unc t i on (x , parameters )

{

re turn (minLL_func (dKGN_func , x , parameters ) )

}

minKS_KGN<−f unc t i on (x , cd fva lues , parameters )

{

re turn (minKS_func (cdfKGN_func , x , cd fva lues , parameters ) )

}

#c a l l f unc t i on

eKGN<−f unc t i on (x , parameter_range , s i z e , i t e r a t i o n s , type )

{

#Empir ica l cd f va lue s

cdensity_func<−ecd f ( x )
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cdf_x<−cdens ity_func (x )

es t imates<−rep ( 0 . 1 , 5 )

f o r ( z in 1 : i t e r a t i o n s )

{

# Random a l l o c a t i o n o f s t a r t i n g va lue s f o r opt im i sa t i on

mu <−rep (mean(x ) , s i z e )

sigma <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

s <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

alpha <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

beta1 <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

n_startvalues<−rbind (mu, sigma , s , alpha , beta1 )

i f ( type=="MLE")

{

# ML e s t im i s a t i o n KGN

s ta r tpa r <−MLselect_func (dKGN_func , x , n_startva lues )

optimised<−optim ( s ta r tpar ,minLL_KGN, x = x)

dummy <−opt imised$par

}

i f ( type=="KS")

{

#KS es t imat i on KGN

s ta r tpa r <−KSselect_func (cdfKGN_func , x , cdf_x , n_startva lues )

optimised<−optim ( s ta r tpar ,minKS_KGN, x = x , cd fva lu e s = cdf_x )

dummy <−opt imised$par

}

i f (minKS_KGN(x , cdf_x ,dummy)<minKS_KGN(x , cdf_x , e s t imate s ) )

{

est imates<−dummy

}

}

return ( e s t imate s )

}
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##############################################################

#Estimation o f a Genera l i s ed Normal

minLL_GN<−f unc t i on (x , parameters )

{

re turn (minLL_func (dGN_func , x , parameters ) )

}

minKS_GN<−f unc t i on (x , cd fva lues , parameters )

{

re turn (minKS_func ( cdfGN_func , x , cd fva lues , parameters ) )

}

#c a l l f unc t i on

eGN<−f unc t i on (x , parameter_range , s i z e , i t e r a t i o n s , type )

{

#Empir ica l cd f va lue s

cdensity_func<−ecd f ( x )

cdf_x<−cdens ity_func (x )

es t imates<−rep ( 0 . 1 , 5 )

f o r ( z in 1 : i t e r a t i o n s )

{

# Random a l l o c a t i o n o f s t a r t i n g va lue s f o r opt im i sa t i on

mu <−rep (mean(x ) , s i z e )

sigma <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

s <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

n_startvalues<−rbind (mu, sigma , s )

i f ( type=="MLE")

{

# ML e s t im i s a t i o n GN

s ta r tpa r <−MLselect_func (dGN_func , x , n_startva lues )

optimised<−optim ( s ta r tpar ,minLL_GN, x = x)

dummy <−opt imised$par
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}

i f ( type=="KS")

{

#KS es t imat i on GN

s ta r tpa r <−KSselect_func ( cdfGN_func , x , cdf_x , n_startva lues )

optimised<−optim ( s ta r tpar ,minKS_GN, x = x , cd fva lu e s = cdf_x )

dummy <−opt imised$par

}

i f (minKS_GN(x , cdf_x ,dummy)<minKS_GN(x , cdf_x , e s t imate s ) )

{

est imates<−dummy

}

}

return ( e s t imate s )

}

##############################################################

#Estimation o f a Kumaraswamy normal

minLL_KN<−f unc t i on (x , parameters )

{

re turn (minLL_func (dKN_func , x , parameters ) )

}

minKS_KN<−f unc t i on (x , cd fva lues , parameters )

{

re turn (minKS_func ( cdfKN_func , x , cd fva lues , parameters ) )

}

#c a l l f unc t i on

eKN<−f unc t i on (x , parameter_range , s i z e , i t e r a t i o n s , type )

{

#Empir ica l cd f va lue s

cdensity_func<−ecd f ( x )

cdf_x<−cdens ity_func (x )
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est imates<−rep ( 0 . 1 , 4 )

f o r ( z in 1 : i t e r a t i o n s )

{

# Random a l l o c a t i o n o f s t a r t i n g va lue s f o r opt im i sa t i on

mu <−rep (mean(x ) , s i z e )

sigma <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

alpha <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

beta1 <−r un i f ( s i z e , 0 . 0 00001 , parameter_range )

n_startvalues<−rbind (mu, sigma , alpha , beta1 )

i f ( type=="MLE")

{

# ML e s t im i s a t i o n KN

s ta r tpa r <−MLselect_func (dKN_func , x , n_startva lues )

optimised<−optim ( s ta r tpar ,minLL_KN, x = x)

dummy <−opt imised$par

}

i f ( type=="KS")

{

#KS es t imat i on KN

s ta r tpa r <−KSselect_func ( cdfKN_func , x , cdf_x , n_startva lues )

optimised<−optim ( s ta r tpar ,minKS_KN, x = x , cd fva lu e s = cdf_x )

dummy <−opt imised$par

}

i f (minKS_KN(x , cdf_x ,dummy)<minKS_KN(x , cdf_x , e s t imate s ) )

{

est imates<−dummy

}

}

return ( e s t imate s )

}
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Listing 3: Diamond Price Data Estimation and Visualisation

source ("UserFunc .R")

diamonds <− read . csv ( f i l e ="Diamonds . csv "

, header=TRUE

, sep=" ,")

obs<−diamonds$USD

h i s t ( obs )

t<−1

w<−10

cd_func<−ecd f ( obs )

cdf_obs<−cd_func ( obs )

estBW<−c (0 .1702306 ,335 .1246261 ,61 .5313845 ,19 .7527699)

estKW<−c (0 .1507911 ,7 .3050742 ,38 .1096384 ,21 .6602616)

# f o r ( i in 1 : 5 )

# {

# dummy<−eBW( obs , i ∗w,1000 ,1 , "MLE")

# i f (minKS_BW( obs , cdf_obs ,dummy) < minKS_BW( obs , cdf_obs , estBW))

# {

# estBW<−dummy

# }

#

# dummy<−eKW( obs , i ∗w,1000 ,1 , "MLE")

# i f (minKS_KW( obs , cdf_obs ,dummy) < minKS_KW( obs , cdf_obs , estKW))

# {

# estKW<−dummy

# }

# }
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##########################################################

# Comparison o f r e s u l t s

# Plot :

# The black l i n e i s a ke rne l dens i ty es t imate f o r the sample .

# The green l i n e r ep r e s en t s the dens i ty based on the BW.

# The green l i n e r ep r e s en t s the dens i ty based on the KW.

par (mfrow=c (1 , 2 ) )

x <− seq (0 , range ( obs ) [ 2 ] , by = 0 . 05 )

a <− dBW_func(x , estBW)

b <− dKW_func(x , estKW)

ylim<−c ( 0 , 1 . 1∗max(dBW_func( obs , estBW) ) )

p l o t ( dens i ty ( obs , ad jus t = 0 . 7 )

, type = " l "

, xlab = "x"

, ylab = "Density "

, c o l ="black "

, l t y = "dotted "

, xlim = c (0 , range (x ) [ 2 ] )

, yl im = ylim

,main = "" )

l i n e s (x , a , c o l = " red ")

l i n e s (x , b , c o l = "dark green ")

legend ( legend = c (" Kernel "

,"BW"

,"KW")

, c o l = c (" black "

," red "

," dark green ")
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, x ="top r i gh t "

, l t y = c (3 , 1 , 1 , 1 )

, cex = 0.75

, bty = "n")

Sys . s l e e p ( t )

lx<−quan t i l e ( obs , probs = c (0 . 00025 , 0 . 9 9975 ) )

curve ( cd_func (x )

, l x [ 1 ]

, l x [ 2 ]

, yl im = c (0 , 1 )

, y lab = "Cumulative Density ")

curve ( cdfBW_func (x , estBW)

, lx [ 1 ]

, l x [ 2 ]

, c o l = " red "

, add = TRUE)

curve (cdfKW_func(x , estKW)

, lx [ 1 ]

, l x [ 2 ]

, c o l = "dark green "

, add = TRUE)

legend ( legend = c (" Kernel "

,"BW"

,"KW")

, c o l = c (" black " ," red " ," dark green ")

, x ="bottomright "

, l t y = c (3 , 1 , 1 , 1 )

, cex = 0.75

, bty = "n")
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KS_BW<−minKS_func (cdfBW_func , obs , cdf_obs , estBW)

KS_KW<−minKS_func (cdfKW_func , obs , cdf_obs , estKW)

KS_BW

KS_KW

par<−l ength ( parameters )

maxLL<−−minLL_BW( obs , estBW)

n<−l ength ( obs )

AIC_BW<−2∗(par−maxLL)

BIC_BW<−par∗ l og (n)−2∗maxLL

CAIC_BW<−par ∗( l og (n)+1)−2∗maxLL

maxLL<−−minLL_KW( obs , estKW)

n<−l ength ( obs )

AIC_KW<−2∗(par−maxLL)

BIC_KW<−par∗ l og (n)−2∗maxLL

CAIC_KW<−par ∗( l og (n)+1)−2∗maxLL

c (KS_BW,KS_KW)

c (AIC_BW,AIC_KW)

c (BIC_BW,BIC_KW)

c (CAIC_BW,CAIC_KW)

estBW

estKW

l i b r a r y ( s t a r ga z e r )

tablBW<−estBW

tablKW<−estKW

tabl<−rbind (tablBW , tablKW)
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tabl<−as . matrix ( tab l

, nrow = 2

, nco l = 9

, byrow = TRUE)

rownames ( tab l)<−c ("BW" ,"KW")

colnames ( tab l)<−c ("k" ," lambda " ," alpha " ," beta ")

s t a r ga z e r ( t ab l

, t i t l e = "Maximum Like l i hood Est imates ")

tablBW<−c (AIC_BW,BIC_BW,CAIC_BW)

tablKW<−c (AIC_KW,BIC_KW,CAIC_KW)

tabl<−rbind (tablBW , tablKW)

tabl<−as . matrix ( tab l

, nrow = 2

, nco l = 9

, byrow = TRUE)

rownames ( tab l)<−c ("BW" ,"KW")

colnames ( tab l)<−c ("AIC" ,"BIC" ,"CAIC" ,"KS")

s t a r ga z e r ( t ab l

, t i t l e = "Goodness−of− f i t S t a t i s t i c s ")
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Listing 4: Relapse-time Data Estimation and Visualisation

source ("UserFunc .R")

l i b r a r y ( s u r v i v a l )

l i b r a r y (moments )

obs<−nwtco$edre l [ nwtco$stage==4]

h i s t ( obs )

skewness ( obs )

ku r t o s i s ( obs )

t<−1

w<−0.0025

estBGN<−c (104 .93845 ,331 .57412 ,0 . 24972 ,285 .58180 ,248 .87601)

estKGN<−c (118 .1720226 ,113 .2945576 ,0 .2732401 ,11 .1949726 ,190 .8560605)

estGN<−c (3102 . 270 , 3099 . 292 , 7355 . 291 )

# f o r ( i in 1 : 5 )

# {

# dummy<−eBGN( obs , i ∗10∗w,1000 ,1 , "MLE")

# i f (minLL_BGN( obs ,dummy) < minLL_BGN( obs , estBGN) )

# {

# estBGN<−dummy

# }

#

# dummy<−eKGN( obs , i ∗10∗w,1000 ,1 , "MLE")

# i f (minLL_KGN( obs ,dummy) < minLL_KGN( obs , estKGN))

# {

# estKGN<−dummy

# }

# dummy<−eGN( obs , i ∗20 ,1000 ,1 ,"MLE")

# i f (minLL_GN( obs ,dummy) < minLL_GN( obs , estGN ) )

# {

# estGN<−dummy

# }
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#

# }

###########################################################

# Comparison o f r e s u l t s

cd_func<−ecd f ( obs )

cdf_obs<−cd_func ( obs )

KS_BGN<−minKS_func ( cdfBGN_func , obs , cdf_obs , estBGN)

KS_KGN<−minKS_func (cdfKGN_func , obs , cdf_obs , estKGN)

KS_GN<−minKS_func ( cdfGN_func , obs , cdf_obs , estGN)

par<−l ength ( parameters )

maxLL<−−minLL_BGN( obs , estBGN)

n<−l ength ( obs )

AIC_BGN<−2∗(par−maxLL)

BIC_BGN<−par∗ l og (n)−2∗maxLL

CAIC_BGN<−par ∗( l og (n)+1)−2∗maxLL

maxLL<−−minLL_KGN( obs , estKGN)

n<−l ength ( obs )

AIC_KGN<−2∗(par−maxLL)

BIC_KGN<−par∗ l og (n)−2∗maxLL

CAIC_KGN<−par ∗( l og (n)+1)−2∗maxLL

maxLL<−−minLL_GN( obs , estGN)

n<−l ength ( obs )

AIC_GN<−2∗(par−maxLL)

BIC_GN<−par∗ l og (n)−2∗maxLL

CAIC_GN<−par ∗( l og (n)+1)−2∗maxLL

# AIC=2∗(para−l o g va l ) ;

# BIC=para∗ l og (n)−2∗ l o g va l ;
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# CAIC=para ∗( l og (n)+1)−2∗ l o g va l ;

c (KS_BGN,KS_KGN,KS_GN)

c (AIC_BGN,AIC_KGN,AIC_GN)

c (BIC_BGN,BIC_KGN,BIC_GN)

c (CAIC_BGN,CAIC_KGN,CAIC_GN)

c (KS_BGN,KS_KGN)

c (AIC_BGN,AIC_KGN)

c (BIC_BGN,BIC_KGN)

c (CAIC_BGN,CAIC_KGN)

estBGN

estKGN

estGN

###############################Plot reproduct ion in a r t i c l e#####################################

#SASA PLOT

#Axis l im i t s

par (mfrow=c (1 , 2 ) )

dfunc<−approxfun ( dens i ty ( obs ) )

yl <−1.6∗ range ( dfunc ( obs ) )

xl<−range ( obs )

# x<−seq (0 , x l [ 2 ] , 1 )

x<−seq ( x l [ 1 ] , x l [ 2 ] )

h i s t ( obs

, breaks = 12

, p r obab i l i t y = TRUE

, xlab = "x"

, ylab = "PDF"

,main = ""

, ylim= yl
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, xl im = xl )

l i n e s ( dens i ty ( obs ) , l t y = "dotted " , c o l = " blue ")

{par (new = TRUE)}

p lo t (x , dKGN_func(x , estKGN)

, c o l = "dark green "

, type = " l "

, xaxt="n"

, yaxt ="n"

, ann = FALSE

, ylim= yl

, xl im = xl )

{par (new = TRUE)}

p lo t (x , dBGN_func(x , estBGN)

, c o l = " red "

, type = " l "

, xaxt="n"

, yaxt ="n"

, ann = FALSE

, ylim= yl

, xl im = xl )

t i t l e ( )

l egend ( legend = c ("BGN"

,"KGN"

," Kernel ")

, c o l = c (" red "

," dark green "

," blue ")

, x ="top r i gh t "

, l t y = c (1 , 1 , 3 )

, cex = 0.75

, bty = "n" )

######################CDF p l o t s######################################
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lx<−quan t i l e ( obs , probs = c (0 . 00005 , 0 . 999975 ) )

curve ( cd_func (x )

, l x [ 1 ]

, l x [ 2 ]

, yl im = c (0 , 1 )

, c o l ="blue "

, l t y = 3

, ylab = "CDF")

curve ( cdfBGN_func (x , estBGN)

, l x [ 1 ]

, l x [ 2 ]

, c o l = " red "

, l t y = 1

, add = TRUE)

curve ( cdfKGN_func (x , estKGN)

, lx [ 1 ]

, l x [ 2 ]

, c o l = "dark green "

, add = TRUE)

# t i t l e (" Empir ica l & Estimated Cumulative Density ")

legend ( legend = c ("BGN"

,"KGN"

," Kernel ")

, c o l = c (" red "

," dark green "

," blue ")

, x ="bottomright "

, l t y = c (1 , 1 , 3 )

, cex = 0.75

, bty = "n" )

##############################################################################

l i b r a r y ( s t a r ga z e r )

tablKGN<−estKGN
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tablBGN<−estBGN

tabl<−rbind (tablKGN , tablBGN)

tabl<−as . matrix ( tab l

, nrow = 2

, nco l = 9

, byrow = TRUE)

rownames ( tab l)<−c ("KGN" ,"BGN")

colnames ( tab l)<−c ("mu" ," sigma " ," s " ," alpha " ," beta ")

s t a r ga z e r ( t ab l

, t i t l e = "Maximum Like l i hood Est imates ")

tablKGN<−c (AIC_KGN,BIC_KGN,CAIC_KGN)

tablBGN<−c (AIC_BGN,BIC_BGN,CAIC_BGN)

tabl<−rbind (tablKGN , tablBGN)

tabl<−as . matrix ( tab l

, nrow = 2

, nco l = 9

, byrow = TRUE)

rownames ( tab l)<−c ("KGN" ,"BGN")

colnames ( tab l)<−c ("AIC" ,"BIC" ,"CAIC")

s t a r ga z e r ( t ab l

, t i t l e = "Goodness−of− f i t S t a t i s t i c s ")
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Listing 5: Mathematica Functions

dbw[x_, κ_, λ_, α_, β_]:= κ
Beta[α,β] ×

xκ−1

λκ ×
(
1− Exp

[
−
(
x
λ

)κ])α−1 × Exp
[
−β
(
x
λ

)κ]
cdbw[x_, κ_, λ_, α_, β_]:=BetaRegularized

[
1− Exp

[
−
(
x
λ

)κ]
, α, β

]
hzbw[κ_, λ_, α_, β_]:= dbw[x,κ,λ,α,β]

1−cdbw[x,κ,λ,α,β]

dkw[x_, κ_, λ_, α_, β_]:=α× β × κ× xκ−1

λκ × Exp
[
−
(
x
λ

)κ]× (1− Exp
[
−
(
x
λ

)κ])α−1×(
1−

(
1− Exp

[
−
(
x
λ

)κ])α)β−1

cdkw[x_, κ_, λ_, α_, β_]:=1−
(

1−
(
1− Exp

[
−
(
x
λ

)κ])α)β
hzkw[κ_, λ_, α_, β_]:= dkw[x,κ,λ,α,β]

1−cdkw[x,κ,λ,α,β]

phi[s_, z_]:= s

2×Gamma[ 1
s ]
× Exp [−(Abs[z])s]

Phi[s_, z_]:=If
[
z ≤ 0,

Gamma[ 1
s ,(−z)

s]
2×Gamma[ 1

s ]
, 1− Gamma[ 1

s ,z
s]

2×Gamma[ 1
s ]

]
dbgn[x_, µ_, σ_, s_, α_, β_]:=

1
σ×Beta[α,β] ×

(
Phi

[
s, x−µσ

])α−1 ×
(
1−

(
Phi

[
s, x−µσ

]))β−1 × phi
[
s, x−µσ

]
cdbgn[x_, µ_, σ_, s_, α_, β_]:=BetaRegularized

[
Phi

[
s, x−µσ

]
, α, β

]
hzbgn[µ_, σ_, s_, α_, β_]:= dbgn[x,µ,σ,s,α,β]

1−cdbgn[x,µ,σ,s,α,β]

dkgn[µ_, σ_, s_, α_, β_]:=α×β
σ ×

(
Phi

[
s, x−µσ

])α−1 ×
(

1−
(
Phi

[
s, x−µσ

])α)β−1

×

phi
[
s, x−µσ

]
cdkgn[x_, µ_, σ_, s_, α_, β_]:=1−

(
1−

(
Phi

[
s, x−µσ

])α)β
hzkgn[µ_, σ_, s_, α_, β_]:= dkgn[x,µ,σ,s,α,β]

1−cdkgn[x,µ,σ,s,α,β]
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