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Abstract

Multilevel models are used to model data that are nested within an organisational hierarchy. Owing to

the availability of large amounts of data that speci�cally inhibits a hierarchical structure, traditional meth-

ods of modeling cannot accommodate the dependence within hierarchical levels as multilevel modeling.

The regression coe�cients are treated as random coe�cients to accommodate the hierarchial structure,

and explanatory variables at various levels are incorporated in the model.
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1 Introduction

Multilevel modeling techniques have become more attractive over the last two decades for analyzing data
that has a hierarchical structure [5]. This type of data is frequently found within educational, clinical and
research enviroments [1]. Multilevel models can be seen as regression models taking place at multiple levels.
This report will exclusively examine a two level approach that can be easily adjusted to more complex models
where more nested levels are considered. As mentioned previously, disregarding the levels within the hierarchy
can in�uence estimated variances and covariance e�ects, leading to statistical signi�cance test results being
inaccurately interpreted. As stated by Bell [1], �Multilevel models can vary in terms of the number of levels
(e.g. two level, three level), type of design (e.g. hierarchial, longitudinal with repeated measures), scale of
the outcome variable (e.g. categorical, continuous), and number of outcomes (e.g. univariate, multivariate)�.
The two level model that will be built will consist of both �xed and random e�ects with special attention
being given to categorical or continuous independent variables. In this report, the reading score of invidual
students will be modelled and the impact of characteristics asssociated with the school those students attend
will be studied. This will produce a basic two level structure with students at level one and schools, within
which the students are nested, at level two. The multilevel model will allow questions concerning �xed
e�ects to be explored, in addition to questions regarding random level one and level two coe�cients and the
variance-covariance components. In this report the theory behind multilevel modeling will be explained with
the use of practical examples to illustrate the concept, for which the programming code will be presented.
All programing will be coded in SASr software1. The motivation behind this particular topic is a result of
the recent increase in popularity of this �eld, and to gain insight as to what in�uences the reading score - not
only within in the student's socio-economic context, but also the schools educational quality. As a result of
this research, it is hoped that the concept of multilevel modeling will be mastered. Due to the heterogeneous
population within the educational system, there is a great need to investigate hierarchial levels within South
Africa.

2 Literature Review

Two of Singer's articles [5, 6], centred on multilevel modeling, have been reviewed to explore and understand
this concept. Theoretical knowledge behind the idea of multilevel models, speci�cally hierarchial structures,
is thoroughly explained with the aid of practical examples. In addition, there are step-by-step tutorials on
how SAS PROC MIXED works and is used to construct the models. This provided a guide for e�ective use of
SAS's procedure PROC MIXED and demonstrated the positive attributes of this procedure. Within Singer's
article [5], the method of gradually building the model one step at a time was found to be extremely helpful.
Furthermore, the output was interpreted and the code was evaluated in a very clear and understandable
manner. Singer's articles have portrayed the concept of multilevel modeling brilliantly and have been of
great assistance to grasp the motivation behind multilevel modeling. Goldstein's [2] book expressed alterna-
tive means of creating and motivating the two level model, presenting methods for estimating parameters,
constructing con�dence intervals, and testing functions of the parameters. It provided illustrative examples
on observational data that has a clustered structure and how clusters occur. Speci�c attention was given to
school e�ectiveness and the advantages associated with multilevel modeling in this regard. Goldstein focused
on the construction of the model in the form of matrices and explicitly explained the importance of multiple
residual terms. An article by Bell [1] provided a brief introduction to the �eld of multilevel modeling, along
with real world examples to help with explanations. The practical examples were used in conjunction with
narrative explanations on how PROC MIXED worked and the equivalent code was presented. Both random
intercept and random intercept and slope models were demonstrated. Raudenbush's book [4] introduces
the concept of multilevel modeling with speci�c attention being given to data with a hierarchical structure.
Raudenbush begins by describing the vastness of data that inhibits a nested structure such, as organizational
studies, demographic studies and educational research and provides the problems encounted with this type
of data. A short history on the development of the statistical anaylsis of multilevel models is explained and

1The data analysis for this essay was performed using SAS software, Version 9.4 of the SAS System for Windows. Copyright

© 2016 SAS Institute Inc., Cary, NC, USA.
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the applications in which it has been most widely used. It was interesting to note the advancements that
have been made in this �eld as well as the areas that languished and needed an alternative approach. Due
to these recent developments, there is now an intergrated set of techniques that allows e�cient estimation
[4]. Raudenbush's book continues by studying the logic behind hierarchial linear models and emphasizes the
signi�cnace of the random coe�cients allowing for the variability in the regression coe�cients across the two
levels. The concept of centering is touched on which has been of great assistance as not many articles studied
so far have introduced this concept. In addition to this theory, in subsequent chapters Raudenbush illustrates
all the examples and provides applications in organizational research.

3 Background theory and Application

3.1 The PIRLS study

As mentioned in the introduction, we will be examining a two level school e�ects model. Data that has an
organizational hierarchy, such as students within a school can be used to predict a speci�c outcome using
predictors from not only level-one but level-two as well. For the purposes of this report the data is sourced
from PIRLS (Progress in International Reading Literacy Study) in 2011. The aim is to identify factors,
on both student and school level that a�ect a South African student's reading score. Questionnaires were
distributed to grade four students, their parents and to their schools. A number of variables were included
in the questionnaire but for this report only a few of those variables will be used. These variables will be
discussed as the report develops. South Africa, with an average point of 461 has performed considerably
poorer than the International centre point of 500 which is illustrated in Figure 1. [3]

Figure 1: Comparison of PIRLS reading score between bench marking countries.[3]

Before the model is constructed a few interesting �ndings can be noted regarding the various in�uences on
the reading score. The stronger the school rules are, the higher the reading score is. Schools that discipline
more than three times a year have a mean reading score of 434.067, whereas schools that discipline between
2 to 3 times a year have a mean score of 391.92. It can be seen that there is a substantial di�erence in
reading scores from students at di�erent schools and there is a heavy impact of discipline within an eduation
institution on the reading scores. In the �gures below, four variables have been chosen to examine the
strength of the in�uence it has on the reading score of a student. A quick summary of the results has been
made. The reading score of a student that own books on average is 62.5 points higher than a student that
does not own books. On average, a girl's reading score is considerably higherthan a boy's reading score. The
more often a parent tells their child a story, the higher the reading score is. On average, the reading score of
a student that does not have access to the internet is 66 points lower than a student that does have access
to the internet.
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Figure 2: The impact on reading score if a student that owns books

Figure 3: The impact on reading score if a student can access internet at home

Figure 4: The impact on reading score if a student's parent tells them stories

Figure 5: The impact on reading score for gender

3.2 Unconditional means model

An unconditional means model is a model that contains neither level-one nor level-two predictors. It is the
most basic model which can be used as a foundation for building more complex models [4]. This model will
be �tted to analyze the variation in the reading scores across several schools. This can also be viewed as a
one-way random e�ects ANOVA model. The group e�ects are seen as random which gives rise to the name,
random-e�ects model [4]. This is presented in 1:

Yij = µ+ αj + rij (1)

where αj ∼ iidN(0, τ00) and rij ∼ iidN(0, σ2).

It is important to note that this model comprises of two components; the �xed e�ect and the random
e�ects. In this model there is only one �xed e�ect, namely µ and there are two random e�ects, αj and rij .
The variation component of the �rst e�ect (τ00), denotes the variation between schools where as the variance
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component of the second e�ect (σ2) denotes the variation between students within a school. The equation
(1) can be re-written in a broader approach that will be useful when building more complex models. The
two models that are used are related, a model at level-one (student) and a model at level-two (school) which
together will yield a combined model. The student's outcome at level-one will be made up of an intercept
for the students school (β0i) and a random error (rij) that is related to the ith student within the jth school.

Y = β0j + rij (2)

where rij ∼N(0,σ2).

The school level at level-two comprises of the grand school mean (γ00) and the random deviations from
the mean (u0j).

β0j = γ00 + u0j (3)

where u0j ∼N(0,τ00).

If equation 3 is substituted into equation 2 it will create the combined two level model:

Yij = γ00 + u0j + rij (4)

where u0j ∼ N(0, τ00) and rij ∼ N(0, σ2).

Just like before this combined model 4 can be broken into two portions, the �xed e�ects and the random
e�ects.

� γ00 is a �xed e�ect and expresses the average reading score in the population.

� τ00 is the variance component of the �rst random e�ect which represents the variability between school
means.

� σ2 is the variance component of the second random e�ect which represnts the variability within schools.

If the variance components from the two random e�ects are selected and placed into a matrix, assuming that
u0j and rij are independent, it will produce a block diagonal matrix [5]. The level-one outcome is predicted
using a single parameter in level-two, i.e. the intercept. This model o�ers insight on the variability of the
speci�c outcome across all levels, which makes it extremely useful. As well as creating a point estimate and
con�dence intervals for the grand mean which can be used as a starting point for analyzing the e�ectiveness
of the model [4], the intraclass correlation coe�cient can be used to calculate the proportion of variation in
the outcome within level-two units. This can be calculated as follows:

ρ =
τ00

τ00 + σ2

proc mixed data=schools.new6 noclprint covtest;

class idschool;

model Reading_score= /solution;

random intercept/sub=idschool;

run;
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Figure 6: Output for Unconditional Means Model.

The two variance components from Figure 6 are signi�cantly di�erent from 0 with τ00 estimated at 7254.51
and σ2 at 5616.76. From these results it can be seen that between school variance varies slightly to the within
school variance. This can be an outcome of school predictors having a greater impact than student predictors.
In South Africa, due to factors such as socio-economic status, it can be seen that a school can de�ne the
students within the school. For example, a school with a high socio-economic status is most likely to have
students that have a high socio-economic status. Hence, the greater variance between schools compared to
within schools. Another way to understand what creates variation in the reading score can be found through
the intraclass correlation. The intraclass correlation is denoted by, ρ and it shows us the how much of the
total variation is made up of variance between schools. Using the formula given previously, we can calculate
out intraclass correlation as follows:

ρ =
7254.51

7254.51 + 5616.76

ρ = 0.5636

From these results, it can be seen that more than half of the total variation stems from the variation
between schools. These results coincide with our previous results when the estimated values were interpreted.

The section of output named, `Fit Statistics' can be used to compare goodness of �t between various
models that di�er in their random e�ects but have the same �xed e�ects. In this example, the best �t would
be the smallest value (as indicated on the SAS output). Without other models to compare, this information
renders useless. The values will be compared later in this paper. The last estimate provided in the output is
the estimate for the �xed e�ect. In this case, the estimate of 432.66 tells us the average reading score used
in this sample of South African schools. Unfortunately, it is seen that the average reading score in a South
African school is relatively below the global average score of 500.

3.3 Model including the e�ects of level one predictors

This section speci�cally looks at how the model changes when a level one (student) predictor is added to
the model without involving any level two predictors. The student level predictor that will be used in this
illustration will be denoted by 'HRL', which represents home resources for learning. This will be of assistance
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to predict the outcome variable (reading score). The �rst model presented will be the level one model for
only one school.

Yi = β0 + β1HRLi + ri (5)

Take note that this model is only examining the relationship between the home resources for learning and
reading score within one school. The variable within the equation 5 can be de�ned as follows:

� β0 is the achievement mark of an individual student (i) when the HRL is equal to zero

� β1 explains the relationship between the HRL of a student and that student's reading score, ie. if the
HRL was to be increased by one unit, how this would a�ect the reading score

� ri the unique error component that corresponds to student i

Firstly, the model expressing the relationship between HRL and the reading score will be examined within
two schools. Two models can be built to represent school one and school two. These models are provided
below:

Yi1 = β01 + β11HRLi1 + ri1

Yi2 = β02 + β12HRLi2 + ri2

Figure 7: Regression line for school 33.
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Figure 8: Regression line for school 50.

By making use of Figure 7 and Figure 8, two di�erences concerning the two schools can be observed.
Firstly, school 50 has a higher overall mean of 510 in comparison to school 33 which had an overall mean
440. This can be seen by the intercept values (β02 ≥ β01) which can bring about the conclusion that school
one is more e�ective than school two. Secondly, HRL has less of an in�uence on reading score in school 50,
compared to school 33. This can be seen by school 50 having a slope of 7 and school 33 having a steeper
slope of 50. Therefore, school 50 is not only more e�ective than school 33 but also more equitable.[4] Finally,
the model concerning just one school can be easily generalized for j schools. Each school will have a unique
intercept and slope speci�c to that corresponding school. Using the level one model, a pair of level two models
can be presented to describe the level one parameter's variation[6]. The student level model is presented in
Equation 6 followed by the school level models in Equation 7 and 8:

Yij = β0j + β1jHRLij + rij (6)

β0j = γ00 + u0j (7)

β1j = γ10 + u1j (8)

where rij ∼ N(0, σ2) and

(
u0j
u1j

)
∼ N

[(
0
0

)
,

(
τ00 τ01
τ10 τ11

)]
.

With including the student predictor (HRL) which is a �xed e�ect, there is also an extra random e�ect
(u1j). This shows that there is not only a relationship between HRL and reading score but in addition that
the relationship between HRL can vary between schools. Furthermore, with the addition of the level one
predictor, this allows each school (j) to have an unique slope and intercept. This produces the usual variance
components from the intercept and slope, in addition to a covariance component that shows the correlation
between the intercept and slope [5]. For easier or more meaningful interpretation of the model, centering
will be used. If the interpretation of β0j in Equation 6 is considered across the entire sample, it can be seen
that HRL has a mean of zero. Furthermore, β0j will be interpreted as the mean resading score for a student
with a average HRL[5]. Centering can be accomplished by subtracting the average HRL from each individual
HRL score ( ¯CHRL). The interpretation of β0j now becomes the mean reading score for students. With the
use of centering, the model can be re-written as follows:

Yij = β0j + β1j ¯CHRLij + rij (9)

12



β0j = γ00 + u0j (10)

β1j = γ10 + u1j (11)

where rij ∼ N(0, σ2) and

(
u0j
u1j

)
∼ N

[(
0
0

)
,

(
τ00 τ01
τ10 τ11

)]
.

By subsituting Equation 10 and 11 into Equation 9 the combined model is produced:

Yij = γ00 + u0j + γ10 ¯CHRLij + u1j ¯CHRLij + rij (12)

where rij ∼ N(0, σ2) and

(
u0j
u1j

)
∼ N

[(
0
0

)
,

(
τ00 τ01
τ10 τ11

)]
.

The model in Equation 12 now has two �xed e�ects and three random e�ects. Through the �xed and
random e�ects it can be seen that the reading score of a student varies both between schools and within
schools. The model has been written out in a format that groups that �xed e�ects and random e�ects for
easier understanding. The �xed e�ects are grouped together on the left hand side and the random e�ects on
the right hand side.

Yij =
[
γ00 + γ10 ¯CHRLij

]
+

[
u0j + u1j ¯CHRLij + rij

]
Without knowing the interpretation of each of the variables, the model renders powerless. Therefore, it

is of great importance to examine each of the variables:

� γ00 is the overall school mean reading score for all schools in the population

� γ10 is the average HRL-reading score slope

� u0j is the random e�ect for school j associated with the mean reading score

� u1j is the random e�ect for school j associated with the HRK-reading score slope

� rij is the error component for student i within school j

The di�erence between the combined model and the standard ANCOVA model is that u0j , the random e�ect
of school j is seen as a random e�ect instead of a �xed e�ect[4].

proc mixed data=schools.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=C_Home_resources_for_learning/solution ddfm=bw notest;

random intercept C_Home_resources_for_learning/sub=idschool type=un;

run;
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Figure 9: Output for level one predictors

Figure 10: Regression line for model with HRL predictor

Holding all predictors equal to zero, the average reading score is 432.68. This is the intercept term and is

14



denoted in the model as γ00. The relationship between the reading score and home resources for learning can
be represented by γ01 . An increase in one unit of home resources for learning will increase the reading score
by 7.8539 points. The standard errors for both of these terms are relatively small, creating large t-values and
signi�cant p-values. This allows us to conclude that there is a positive relationship between home resources
for learning and reading score. The covariance component can be written in matrix notation:(

τ00 τ01
τ10 τ11

)
=

(
7258.70 377.46
377.46 46.13

)
As shown above in the covariance matrix, 7258.70 represents the variability in the intercepts, 46.1306

represents the variability in slopes and 377.46 represents the covariance between intercepts and slopes. The
covariance output also provides tests of the null hypothesis that each covariance component equals 0. Since
the intercepts are very variable, it can be concluded that even after controlling for the e�ects of HRL schools
do di�er in reading score. In order to �nd out how much of the within school variance in reading score is
explained by HRL, the percentage can be computed using a simple formula as used previously. Please note
that comparisons will be made to the `Unconditional Means Model'. It was seen that for the Unconditional
Means model, σ2 = 5616.76. For the model with a level one predictor, the conditional estimate, σ2 =
5400.41. By including the variable HRL it has explained 3.85 % of the explainable variation within schools.
By comparison, it will be proved later that the school variable, emphasis on reading in early grades explains
much more of the variation in school level reading score than `HRL' explains in the within school variation
in student level for reading score. This was calculated as follows:

5616.76 − 5400.41

5616.76
= 0.0385

3.4 Model including the e�ects of level two predictors

3.4.1 Model including the e�ects of emphasis on reading in early grades

Up to this point characteristics associated with the student namely, HRL has been used as a predictor variable
to measure the outcome variable. This section will focus on the use of school characteristics (level two) to
help predict the outcome variable. The predictor variable that will be used will be 'EREG', which is the
emphasis on reading in early grades that particular school enforces. Again, as in the previous section, the
predictor variable EREG is centered around the overall mean ( ¯CEREG). This will be of help in interpreting
the intercept. The model predicting the reading score as a function of EREG can be written as follows:

Yij = β0j + rij (13)

β0j = γ00 + γ01 ¯CEREGj + u0j (14)

where rij ∼ N(0, σ2) and u0j ∼ N(0, τ00)

By substituting Equation 14 into Equation 13:

Yij = γ00 + γ01 ¯CEREGj + u0j + rij (15)

This model has two components, a �xed component and a random component. The �xed components
consists of the �rst two terms and the random component consists of the last two terms. The random e�ects
are denoted by σ2 and τ00, their corresponding variance components [5]. These variance components are the
conditional variance in β0j after controlling for EREG [4]. The random terms can be de�ned as follows; u0j
is the random variation in intercepts between schools and rij is the variation within the school [5].

proc mixed data=schools.new6 noclprint covtest;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades/solution ddfm=bw;

random intercept/sub=idschool;

run;
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Figure 11: Output for level two predictor EREG

Figure 12: Regression line for model with EREG predictor

The average reading score in a particular school is 431.22, when holding EREG constant. This is the
estimated value of the intercept γ00. The term for the other �xed e�ect γ01 is the relationship between
the reading score and the emphasis on reading in early grades. The estimate of γ01 is 12.59 which can be
interpreted as follows; a unit increase of emphasis on reading in early grades will result in an increase of the
reading score by 12.59. Both terms are signi�cant, but the intercept has a greater standard error. Since
EREG is centered around a grand mean, γ00 is the estimated reading score in a school of average EREG.
The standard error for this term (EREG) produces a t-value of 3.14 and a corresponding p-value of 0.0025
which will reject the null hypothesis of no relationship between emphasis on reading in early grades and the
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reading score of the students. Therefore, it can be concluded that there is a relationship between emphasis
on reading in early grades and reading score. The covariance parameter estimates provide more information
about the random e�ects, where τ00 can be estimated to be 6377.35 and σ2 to be 5617.25. Despite the same
symbols being used in the `Unconditional Means' section, the interpretation of these terms are di�erent. Note
that comparisons made in this section will refer to estimates in the `Unconditional Means' section. Now that
there is a predictor within level two, these become conditional components. The estimate for σ2 has only
changed slightly (from 5616.76 to 5617.25), whereas the variance component τ00 has reduced substantially
(from 7254.51 to 6377.35). It can be seen from this observation that a small percentage of the school-to-
school variation in the average reading score can be explained by the predictor EREG. This percentage can
be calculated as follows:

7254.51 − 6377.35

7254.51
= 0.1209

This is interpreted as 12% of school-to-school variation in the average reading school can be attributed
to EREG. Considering the data used has 92 school variables (for the purposes of this report only a few
variables were selected) this is a reasonably high percentage for one variable to attain. Considering the
variance component, σ2 because there was only a very small increase in variance, there will be no percentage
explained. But this makes sense, because σ2 measures the within school variation (level 1) and nothing has
changed within level one. The slight increase in variation can therefore be seen as random.

After explaining away 12% of the explain variation, it might be helpful to see if there is any variation
within school means remaining that still needs to be explained. One way in which this can be done is through a
simple hypothesis test. τ00 has a z-statistic of 5.56 and a corresponding p-value of <.0001. The null hypothesis
stating that τ00 is 0, can be rejected. It can be concluded that there is still additional explainable variation
present, despite EREG being included. A second way is to use the intraclass correlation coe�cient to estimate
the fraction of the sum of both variance components that occurs at school level. [5] This can be calculated
as follows:

ρ =
6377.35

6377.35 + 5617.25

ρ = 0.5317

This intraclass correlation can be seen as a partial correlation. It can be interpreted as the similarity of
reading score among students within schools after controlling for the e�ect of EREG.

3.4.2 Model including the e�ects of a library

A second predictor within the school level can be examined. The covariate will be called 'LIB' and it speci�es
whether a school has an existing library. LIB will take on the value as 0 for a school with no existing library
and 1 for a schools with an existing library.[5] A model containing only the LIB predictor in the school level
is written as follows:

Yij = β0j + rij (16)

β0j = γ00 + γ02LIBj + u0j (17)

where u0j ∼ N(0, τ00)

The combined model in Equation 18 is found by substituting Equation 17 into Equation 16:

Yij = γ00 + γ02LIBj + u0j + rij (18)
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proc mixed data=schools.new6 noclprint covtest;

class idschool;

model Reading_score=library/solution ddfm=bw;

random intercept/sub=idschool;

run;

Figure 13: Output for level two predictor LIB

Figure 14: E�ect of LIB predictor on the intercept

The average reading score of a student at a school that does not have an existing library is 375.18. This
can be compared to a student at a school with an existing library who has average reading score 454.44.
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The covariance parameter estimates provide more information about the random e�ects, where τ00 can be
estimated to be 6081.38 and σ2 to be 5616.60. Again note that comparisons made in this section will refer to
estimates in the `Unconditional Means' section. The estimate for σ2 has only changed slightly (from 5616.76
to 5616.60) as was the case when EREG was explained. On the other hand, the variance component τ00 has
reduced slightly more than when EREG was explained (from 7254.51 to 6081.38). It can be seen from this
observation that 16% of the school-to-school variation in the average reading score can be explained by the
predictor LIB. This percentage can be calculated as follows:

7254.51 − 6081.38

7254.51
= 0.1617

3.4.3 Model including the e�ects of a library and the emphasis on reading in early grades

The �rst and second level equation for the intercept including both school predictors will look as follows:

Yij = β0j + rij (19)

β0j = γ00 + γ01 ¯CEREGj + γ02LIBj + u0j (20)

The combined model is obtained by substituting Equation 20 into Equation 19:

Yij = γ00 + γ01 ¯CEREGj + γ02LIBj + u0j + rij (21)

where rij ∼ N(0, σ2) and u0j ∼ N(0, τ00)

proc mixed data=sasuser.new6 noclprint covtest;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library/solution ddfm=bw;

random intercept/sub=idschool;

run;

Figure 15: Output for level two predictors EREG and LIB
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Figure 16: Regression line for model with EREG and LIB predictors

The interpretation of the following terms will be considered:

� γ00 is the overall reading score for all schools without an existing library;

� γ01 is the relationship between reading score and emphasis on reading in early grades in school j;

� γ02 is the overall di�erence in reading scores between schools with and without an existing library;

� u0j is the random e�ect of school j's average reading score, given LIB was held constant.[4]

A school with a library will have a intercept that is 73.7 points higher than a school without a library. For
all schools, the slope (EREG) will be the same, producing parallel lines. A student at a school, whether the
school has a library or not will have a slope of 11.4. All terms in this model are seen to be signi�cant. The
variance and covariance components now become conditional variance-covariance components as they denote
the variability in β0j and β1j after holding LIB constant [4].

3.5 Modeling including the e�ects of both level one and level two predictors

3.5.1 Full model including all possible predictors

After studying the models with a student predictor and a school predictor separately, a model with both
predictors can be considered. To help with the understanding of the model, it will be expressed as separate
models at level one (Equation 22) and level two (Equation 23 and 24) and then will be combined to give the
�nal model (Equation 25). The separate models are as follows:

Yij = β0j + β1j ¯CHRLij + rij (22)

β0j = γ00 + γ01 ¯CEREGj + γ02LIBj + u0j (23)

β1j = γ10 + γ11 ¯CEREGj + γ12LIBj + u1j (24)

where rij ∼ N(0, σ2) and

(
u0j
u1j

)
∼ N

[(
0
0

)
,

(
τ00 τ01
τ10 τ11

)]
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These two separate models are combined to illustrate the full model including all possible level one and
level two predictors. However, due to the insigni�cance of certain terms which can be seen in Figure 17
this is not the �nal model that will be used in the application. This model is provided for theoretical and
consistency purposes only.

Yij = γ00 + γ01 ¯CEREGj + γ02LIBj + γ10 ¯CHRLij + γ11 ¯CEREGj
¯CHRLij

+γ12LIBj
¯CHRLij + u0j + u1j ¯CHRLij + rij (25)

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning

c_Emphasis_reading_early_grades*C_Home_resources_for_learning

library*C_Home_resources_for_learning / solution ddfm=bw notest;

random intercept C_Home_resources_for_learning/sub=idschool type=un;

run;

Figure 17: Output of full model.

3.5.2 Model without any interaction e�ects

A simple model without interaction e�ects is given as follows:

Yij = β0j + β1j ¯CHRLij + rij (26)

β0j = γ00 + γ01 ¯CEREGj + γ02LIBj + u0j (27)

β1j = γ10 + u1j (28)

Level 1 model (Equation 26) and level 2 models (Equation 27 and 28) are combined to produce:

Yij = γ00 + γ01 ¯CEREGj + γ02LIBj + γ10 ¯CHRLij + u0j + ¯u1jCHRLij + rij (29)

where rij ∼ N(0, σ2) and u0j ∼ N(0, τ00)
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proc mixed data=schools.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library

C_Home_resources_for_learning /solution ddfm=bw notest;

random intercept Home_resources_for_learning/sub=idschool type=un;

run;

Figure 18: Output for the combined model without interaction e�ects

The �tted models can be written as follows;
School without an existing library:

Readingscore = 382.94 + 9.89 ¯CEREG+ 7.74 ¯CHRL

School with an existing library:

Readingscore = 449.97 + 9.89 ¯CEREG+ 7.74 ¯CHRL

A dummy variable has been added to this model. It represents a 1 if there is an existing school library
and 0 if there is no existing school library. Through the e�ect of the variable `LIB', it can be seen that the
intercepts in the two models above di�er signi�cantly. Basic interpretations of the estimates can be made as
follows:

� The average reading score of a school without an existing library is 382.94.

� The average reading score of a school with an existing library is 449.97.

3.5.3 Final model

A model was �tted with an interaction e�ect to explain the variation in the trend in EREG and HRL. For the
purposes of this report, this interaction e�ect was removed as it was not signi�cant and did not contribute to
a better model. The �nal model that has been chosen for the purposes of application contains one interaction
e�ect between HRL and LIB. The interaction e�ect between HRL and EREG was tested and found to be
insigni�cant, hence it was removed from the model. The �nal model is given as follows:

Yij = β0j + β1j ¯CHRLij + rij (30)
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β0j = γ00 + γ01 ¯CEREGj + γ02LIBj + u0j (31)

β1j = γ10 + γ12LIBj + u1j (32)

Level 2 models (Equation 31 and 32) are substituted into level 1 model (Equation 30) to produce the �nal
combined model in Equation 33:

Yij = γ00 + γ01 ¯CEREGj + γ02LIBj + γ10 ¯CHRLij

+γ12LIBj
¯CHRLij + u0j + u1j ¯CHRLij + rij (33)

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library

C_Home_resources_for_learning

library*C_Home_resources_for_learning /solution ddfm=bw notest;

random intercept C_Home_resources_for_learning/sub=idschool type=un;

run;

Figure 19: Output for �nal model
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Figure 20: Regression line for HRL and LIB predictors and holding EREG constant

Since the variable LIB is a dummy variable indicating whether a school has an existing library, it can be
re-written with a pair of models.The �nal models can be �tted as follows:

School without an existing library:

Readingscore = 377.51 + 9.89 ¯CEREG+ 4.50 ¯CHRL

School with an existing library:

Readingscore = 452.03 + 9.89 ¯CEREG+ 9.06 ¯CHRL

All �xed e�ects are substantially signi�cant for the purposes of this report. The output of the e�ect
�library� indicates that the intercepts of the two models (with or without an existing library) di�er signif-
icantly. The average reading score for a student at a school with no existing library is 377.51, whereas a
student at a school with an existing library has a reading score of 452.03. A library is seen to play a big
role within a school when reading is concerned as it alone increases the reading score by 74 points. The
interaction e�ect between library and home resources for learning indicates that there are di�erent slopes
for schools with a library and schools without a library. For a school with an existing library, the slope for
HRL is much steeper than for a school without an existing library. This demonstrates the importance of a
school library. HRL accentuates a student's reading score to a greater extent in a school with a library. This
comparison is made by observing the di�erence between the two coe�cients of HRL, namely 4.50 and 9.06.
As mentioned previously, the interaction e�ect between HRL and EREG was found to be insigni�cant. The
variance component of the intercept (τ00) is still signi�cant (p-value <.0001) which means that there is still
additional variation in average school reading scores that has yet to be explained. This suggests that there
are still remaining school variables that would explain the variation in school means. The covariance matrix
can be written as follows: (

τ00 τ01
τ10 τ11

)
=

(
5377.91 258.8
258.8 47.57

)
There has been a decrease in the variance in intercepts and the covariance between intercepts and slopes

but there has been very slight increase in the variance of the slopes if compared to the covariance matrix we
observed with level one predictors. It can be stated again that the intercepts are very variable. Schools di�er
in their average reading score even after controlling for e�ects of HRL, EREG and LIB. A simpler model
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could be implemented, in which intercepts vary across schools but the slopes do not. It would be wise to
compare �t statistics to determine if the simpler model �ts the data best. The model will be �t as follows:

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library

C_Home_resources_for_learning library*C_Home_resources_for_learning /solution ddfm=bw notest;

random intercept /sub=idschool;

run;

Figure 21: Model with random intercepts only

The comparison of the �t statistics between a model with random intercepts and slopes and a model with
random intercepts only can be made to conclude which model �ts the data best. For the ease of comparison,
the �ts statistics of both models are provided:

AIC AICC BIC

Random intercepts and slopes 21771.6 21771.6 21780.6
Random Intercepts 21781.3 21781.3 21785.7

Table 1: Comparison of Fit Statistics

Recalling that a smaller value for all the methods of �t statistics, it can be concluded that the model with
random intercepts and slopes ( a less restricted model ) provides a better �t.

4 Conclusion

With the increase in data that has a nested hierarchy, there is a need for a technique that accommodates the
dependence within hierarchical levels. This study revealed the variables, both on school and student level
that had a impact on the reading score of a South African student. Upon examining the Unconditional Means
Model, it was concluded that majority (56%) of the variation came from the between schools variation. This
highlights the fact that every school has it's own unique intercept and slope. While studying a model with
solely student predictors(level one) a high variance in the intercepts was observed. It was concluded that even
after controlling for the e�ects of home resources schools do di�er in reading score. The student predictor,
�home resources for learning� explained 3.85 % of the explainable variation within schools. In comparison,
the school variable, �emphasis on reading in early grades� explained 12% of the school to school variation.
With majority of the variation stemming from between schools and the school predictor explaining away a
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relatively high percentage of variation, it can be concluded that the school with which a student goes to
has a greater impact than the resources available to the student in the home environment. It was noted
that despite emphasis on reading in early grades accounted for a signi�cant amount of the school-to-school
variation, there is still remaining explainable variation. Upon �tting multiple models including both level
one and two variables, it was decided that the model in Figure 11 with random intercepts and slopes would
be used. The positive impact on a school having a library was proved. A student at a school with a library is
most likely to score 74 points higher than a student at a school without a library. Multi-level modeling is a
brilliant technique that accommodates the hierarchical structure and the dependence across all levels of the
hierarchy. In the future, further studies could be done to make techniques more approachable for researchers
and gain popularity. With the increase in data accessibility, more sophisticated models can be developed and
implemented from a theoretical sense to a practical use.
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Appendix

proc contents data=sasuser.student;

run;

proc freq data=sasuser.student;

tables ASBG01;

run;

proc means data=sasuser.student;

class asbg01;

var asrrea01;

run;

data sasuser.new;

merge sasuser.student (keep=idschool idstud asbg01 asbg04 asbg05a asbg05b asbg05c asbg05e asrrea01 asbghrl asbgslr)

sasuser.school(keep=idschool acbg09 acbg10ag acbg05c acbg11cd acbg12f acbgrss acbgeas)

;

by idschool;

run;

data sasuser.new2;

merge sasuser.new

sasuser.parent (keep=idstud asbh02b asbh09b asbh17a asbh17b)

;

by idstud;

run;

proc contents data=sasuser.new3;

run;

data sasuser.final;

set sasuser.new2;

Gender=asbg01;

Books_at_home=asbg04;

Student_owns_computer=asbg05a;

Student_owns_desk=asbg05b;

Student_owns_books=asbg05c;

Student_access_internet=asbg05e;

Reading_score=asrrea01;

Home_resources_for_learning=asbghrl;

Student_enjoys_reading=asbgslr;

Existing_school_library=acbg09;

School_computers_for_instruction=acbg10ag;

Average_income_level_for_area=acbg05c;

School_Rules=acbg11cd;

Parental_involvement_at_school=acbg12f;

Parents_tell_stories=asbh02b;

Parents_help_with_hw=asbh09b;

Level_education_father=asbh17a;

Level_education_mother=asbh17b;

Emphasis_reading_early_grades=acbgrss;

Emphasis_on_academic_sucess=acbgeas;
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run;

data sasuser.new3;

set sasuser.final;

gender=asbg01;

if acbg09="YES" then library=1;

if acbg09="NO *(IF NO, GO TO #10)*" then library=0;

*if library=. then delete;

*if gender=. then delete;

run;

proc univariate data=sasuser.new3 freq;

var Library;

run;

proc freq data=sasuser.new3;

tables library;

run;

proc means data=sasuser.new3;

class Emphasis_on_academic_sucess;

var Reading_score;

run;

proc means data=sasuser.new6;

class Parents_help_with_hw;

var Reading_score;

run;

ods graphics on;

proc corr data=sasuser.new3 plots=scatter;

var Reading_score Emphasis_on_academic_sucess ;

run;

ods graphics off;

data sasuser.plots;

set sasuser.new3 (obs=100);

run;

proc reg data=sasuser.new3;

model Reading_score=Home_resources_for_learning;

plot Reading_score*Home_resources_for_learning;

run;

proc reg data=sasuser.new3;

model Reading_score=Emphasis_reading_early_grades;

plot Reading_score*Emphasis_reading_early_grades;

run;

data sasuser.test;

set sasuser.new3;

if idschool=19 then keep idschool;

run;
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proc means data=sasuser.new3;

class idschool;

var Home_resources_for_learning;

output out=center;

run;

proc sort data=center;

by _freq_;

run;

proc univariate data=center;

var idschool Home_resources_for_learning;

run;

proc means data=sasuser.new4;

class idschool;

var Home_resources_for_learning;

output out=try mean=average;

run;

proc corr data=try;

var _freq_ average;

run;

proc univariate data=try freq;

var average;

run;

proc sort data=try;

by _freq_;

run;

data sasuser.new4;

set sasuser.new3;

if nmiss (Home_resources_for_learning, Emphasis_reading_early_grades)=0;

run;

data sasuser.new5;

merge sasuser.new4

try

;

by idschool;

run;

data sasuser.new6;

set sasuser.new5;

C_Home_resources_for_learning=Home_resources_for_learning-average;

run;

proc means data=sasuser.new6;

class library;
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var Home_resources_for_learning Emphasis_reading_early_grades;

run;

proc means data=sasuser.new6;

class library;

var Reading_score;

run;

proc means data=sasuser.new6;

var Emphasis_reading_early_grades;

output out=mich;

run;

data sasuser.new6;

set sasuser.new6;

c_Emphasis_reading_early_grades=Emphasis_reading_early_grades-9.1048611;

run;

proc univariate data=sasuser.new6;

var C_Home_resources_for_learning;

run;

/*Unconditional Means*/

proc mixed data=sasuser.new6 noclprint covtest;

class idschool;

model Reading_score= /solution;

random intercept/sub=idschool;

run;

/*Level two predictors*/

proc mixed data=sasuser.new6 noclprint covtest;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades/solution ddfm=bw;

random intercept/sub=idschool;

run;

proc mixed data=sasuser.new6 noclprint covtest;

class idschool;

model Reading_score=library/solution ddfm=bw s;

random intercept/sub=idschool s;

run;

proc mixed data=sasuser.new6 noclprint covtest;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library/solution ddfm=bw;

random intercept/sub=idschool;

run;

/*Level one predictors*/

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=C_Home_resources_for_learning/solution ddfm=bw notest;
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random intercept C_Home_resources_for_learning/sub=idschool type=un;

run;

/*Level one and two predictors*/

/*useeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee*/

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning

library*C_Home_resources_for_learning / solution ddfm=bw notest;

random intercept C_Home_resources_for_learning/sub=idschool type=un;

run;

/*************************/

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning / solution ddfm=bw notest;

random intercept C_Home_resources_for_learning/sub=idschool type=un;

run;

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning

c_Emphasis_reading_early_grades*C_Home_resources_for_learning library*C_Home_resources_for_learning / solution ddfm=bw notest;

random intercept C_Home_resources_for_learning/sub=idschool type=un;

run;

/*simpler model*/

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning

library*C_Home_resources_for_learning / solution ddfm=bw notest;

random intercept /sub=idschool type=un;

run;

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning

library*C_Home_resources_for_learning / solution ddfm=bw notest;

random intercept /sub=idschool type=un;

run;

/*final model */

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning /solution ddfm=bw notest;

random intercept C_Home_resources_for_learning/sub=idschool;

run;

proc mixed data=sasuser.new6 noclprint covtest noitprint;
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class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning /solution ddfm=bw notest;

random intercept /sub=idschool;

run;

/*new*/

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning library*C_Home_resources_for_learning /solution ddfm=bw notest;

random intercept /sub=idschool;

run;

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=c_Emphasis_reading_early_grades library C_Home_resources_for_learning library*C_Home_resources_for_learning /solution ddfm=bw notest;

random intercept C_Home_resources_for_learning/sub=idschool;

run;

proc reg data=sasuser.new6;

model Reading_score=C_Home_resources_for_learning;

by idschool;

/*where idschool in(33,34);*/

run;

proc freq data=sasuser.new6;

tables idschool;

output out=regression;

run;

proc print data=sasuser.new6;

var Reading_score C_Home_resources_for_learning;

where idschool=50;

run;

proc reg data=plot1;

model Yi1=hrl_i1;

plot yi1*hrl_i1;

Title "School 33 regression line";

run;

proc reg data=plot1;

model Yi2=hrl_i2;

plot yi2*hrl_i2;

Title "School 50 regression line";

run;

proc reg data=sasuser.new6;

model Reading_score=Emphasis_reading_early_grades library C_Home_resources_for_learning;

output out=stats;

run;

proc means data=sasuser.new6;
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class idschool;

run;

ods graphics on;

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=Emphasis_reading_early_grades library C_Home_resources_for_learning

library*C_Home_resources_for_learning / solution ddfm=bw notest outp=try;

random intercept C_Home_resources_for_learning/sub=idschool type=un;

run;

ods graphics off;

proc reg data=line2;

*model reading_score=home_resources_for_learning;

model reading_score_lib_=home_resources_for_learning_lib_;

plot reading_score_lib_*home_resources_for_learning_lib_;

run;

proc reg data=line2;

model reading_score=home_resources_for_learning;

plot reading_score*home_resources_for_learning;

run;

proc mixed data=sasuser.new6 noclprint covtest noitprint;

class idschool;

model Reading_score=Emphasis_reading_early_grades library C_Home_resources_for_learning

library*C_Home_resources_for_learning / solution ddfm=bw notest;

random intercept C_Home_resources_for_learning/sub=idschool type=un;

run;
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Abstract

The vast use of social media in this day and age presents a great opportunity to mine large scale

data on public opinions. As people increasingly use emoticons in text on social media sites to express

themselves, there has arisen a great need for these sentiments to be analyzed, because this could possibly

provide a link between understanding behavior and sentiment analysis. Sentiment analysis is a type of

supervised learning involving labeled data. Labeling tends to be expensive and time consuming, added

to that labeled copora tend to be highly contextualized. This means a labeled corpus used for politics

can't be used for consumer analysis.

The goal of this report is to understand the behavior of topic models on short text with emoticons.

A labeled corpus will be analyzed to investigate the coherence of topics for which emoticons with high

probabilities have sentiment labels. This should provide an indication on the feasibility of emoticon topic

modeling and whether it can be used to enhance sentiment analysis.
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1 Introduction

Topic modeling is a text mining technique, that unearths hidden topics from a large corpus of documents
[6]. This paper will explore topic modeling for short text that contains emoticons. Emoticons are a proxy for
emotions that people use to express sentiment in a post on social media in the body of a text . This can be
classi�ed as an emotional signal [4]. In a natural setting, sentiments can easily be detected by observing the
behavior of a person, whether it be a smile or a frown. However, with computer-mediated communication
in plain text, ocular prowess counts for nothing. This is where emoticons really come into the fray. These
emoticons play the role of visual cues in texts and for this setting, they replace the ordinary physical cues
such as a smile or an expression of stress [3]. An emoticon can be read sideways, like :-( , this is considered
to be the expression for a sad face [3].

In this paper an alternative approach to supervised sentiment classi�cation is investigated, in incorporating
emoticons into topic models. A topic model is deployed on a labeled text �le in order to derive topics and
usually in doing so special characters and stop words are removed. In this case however emoticons are kept
because the idea behind this approach is to investigate the coherence between topics for which emoticons
have high probabilities and sentiment labels.

The structure of a topic model is considered to be as follows: A topic model factorizes a word x document
matrix into topic x document and word x topic matrices. The matrices represent probabilities and the words
associated with high probabilities in a topic vector provide a good description of that topic, as can be seen
in �gure 1 .

Water

Summer
Beach
Bikini
Party
Blue

Sur�ng
Sand

Holiday
Drinks

Figure 1: Word and Topic Matrix

In a similar way the doc x topic matrix can be sorted and documents associated with high probabilities
in a topic vector should all have similar content. If tweets(documents) associated with high probabilities in
this topic overlap signi�cantly with tweets labeled as positive, then it is a good indication that topic models
with emoticons can bootstrap sentiment classi�cation. One of the data sets discussed in this paper is labeled
with sentiment labels which provides the opportunity to investigate this modeling approach.

2 Literature Review

In a world where more than a billion people use social media, text data mining techniques have widespread
applications, in trying to gain a perspective into what knowledge is in texts. This paper focuses on opinion
mining, and the aim is to understand the feelings people use in text based on emoticons expressed in them.
Lin and He [5] propose using a novel probabilistic modeling framework based on LDA [5] in order to conduct
this analysis. To fully understand LDA, Blei's [2] article will be employed. The bene�ts of mining and
quantifying sentiments are huge and an example would be the business sector. In such a setting a possible
application of this would be to �nd out customers possible opinions on a certain product or topic, often
expressed in text. The text analyzed is from micro blogging sites such as Twitter and Facebook [1]. In order
to garner information from short text, topic modeling has proven to be instrumental in automatic discovery
of thematic information. Gaining knowledge on topic modeling for short text will require the article done
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by Mazarura [6]. It is possible to gather insights from a large archive of documents. The way LDA works is
that documents will be viewed as a mixture of probabilistic topics, where a topic is a probability distribution
over words [8]. Within these components, certain structures in the document can be inferred by standard
statistical inference.

3 Background Theory

In order to carry out the analysis di�erent topic models can be employed. One popular one that is used is
Latent Dirichlet Allocation(LDA), proposed by David Blei et al [2]. Latent Dirichlet allocation is a generative
probabilistic model for collections of discrete data such as text corpora.

One of the main topic modeling techniques that will be implemented for this paper will be the LDA
topic modeling technique. This is a probabilistic model that forms collections of data that are discrete, such
as text corpora. It is a three-level Bayesian model in which an item is modeled over a �nite mixture of
underlying topics. These topics are modeled over an in�nite mixture underlying a set of topic probabilities,
which provide a very good representation of a document. The general idea is that a document could possibly
be represented as a random mixture over latent topics, where a topic would be characterized by a distribution
over words [2].

3.1 Notation and Terminology

Some notation and terminology that will be used in this report is listed as follows:

• Emoticon: used to express emotion on social media and text. Combination of special characters used
to express emotion e.g:-), :-( .

• Word: In this setting is a unit of discrete data.

• Stop Words: These are words such as the, and, but, for, because, since etc.

• Document: Is a sequence of N words, and a document is denoted by a= { a1, a2,.....,aN}, an is the
nth word.

• Special Characters: symbols such as #,*,& would fall into this category.

• Corpus: Is a collection of M Documents, its is denoted as D={a1,....,aM}.

3.2 Latent Dirichlet Allocation

Topic modeling is a text mining technique, that unearths hidden topics from a large corpus of documents [6].
The method of topic modeling that will be used in this report is Latent Dirichlet Allocation(LDA) . In LDA
the basic idea is that documents are represented as random mixtures over latent topics, where each topic is
characterized by a distribution over words[2]. Each word belongs to a certain topic drawn from a speci�c
distribution [7].

With LDA the following assumptions are made for each document a in a corpus D[2].

1. Choose N~Poi(δ)

2. Choose Θ~Dir(α)

3. For each of the N words in an:

• Choose a topic yn~Multinomial(Θ)

• Choose a word an from p(an|yn,β) Multinomial probability conditioned on the topic.
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As proposed by David Blei et al [2] in order for the basic model to work there are several simplifying
assumptions made. Firstly the N is independent of θ and y. Secondly we assume the dimensionality of k
for the Dirichlet distribution is �xed and known. Lastly β is a k×V matrix that Parameterizes the word
probabilities. Where βij= p(aj=1| yi=1) and in this case we treat it as a �xed quantity.

For a k dimensional vector Dirichlet random variable Θ, the k vector lies within a (k-1) simplex if Θi≥0,∑k
i=1 Θi = 1 and has the following probability mass function.

p(Θ|α) =
Γ(

∑k
i=1 αi)∏k

i=1 Γ(αi)
Θαi−1

1 ........Θα
αk−1
k (1)

Where α is a k vector, and are α′is are positive. Γ(x) is a gamma distribution. This model with its
accompanying properties facilitates the development of the parameter estimation for the LDA algorithm.

Furthermore the joint distribution over a topic mixture Θ given αand β, a list of N topics y and also N
words a, the following is obtained:

p(Θ, y, a|α, β) = p(Θ|α)

N∏
i=1

p(yn|Θ)p(an|yn, β) (2)

If we integrate over Θ and sum over topic y, the marginal distribution of a document is:

p(a|α, β) = p(Θ|α)(

N∏
n=1

∑
yn

p(zn|Θ)p(an|yn, β)dΘ (3)

Taking the product over M documents for the equation stated above we get the probability of the corpus
as follows:

p(D|α, β) =

M∏
d=1

p(Θd|α)(

Nd∏
n=1

∑
yn

p(ydn |Θd)p(wdn |ydn , β))dΘd (4)

This forms the basis of LDA topic modeling.

3.3 The Gibbs Sampler

Murphy [7] states that the Gibbs Sampler is an algorithm based on the Markov Chain Monte Carlo or MCMC.
The MCMC is an important algorithm and the basic idea behind it, is to construct a Markov Chain on a
state space whose distribution is the target density of interest.

With Gibbs sampling, each variable sampled is conditioned on the values of all the other variables in the
distribution. This means that given a joint sample of ysof all the variables, a new sample is generated ys+1

by sampling each component in turn, based on the most recent values of the other variables. For example if
we had three variables, y1,y2 and y3, then to demonstrate what goes on with Gibbs sampling we would have:

• ys+1
1 ~ p(y1|y

s
2, y

s
3)

• ys+1
2 ~ p(y2|ys+1

1 , ys3)

• ys+1
3 ~p(y3|ys+1

1 , ys+1
2 )

This does generalize for D variables. If xi is known we do not need to sample it.
The expression p(yi|yi+1) is called the full conditional for variable i where yi depends on other variables

in general.

8



4 Data

The three general sentiments that will be considered for this experiment will go into three categories. These
categories are positive sentiments, negative sentiments and neutral sentiments. Table 1will illustrate which
group of sentiments the emoticons considered will go.

POSITIVE NEGATIVE NEUTRAL

:-) : ( :-/
; ) : - ( :/
:-D : '( :-o
: D : '-( :o
; ) : - |

Table 1: Emoticons Table

4.1 Weather Data Set

The weather data set contains tweets with regards to weather. The data set is labeled, so it can be used it
to test the correlation between labeled documents and documents associated with positive topics. The data set
was obtained from crowd �ower and can be accessed via this link https://www.crowd�ower.com/data/weather-
sentiment/. It contains 19611 tweets.

Table 2 contains statistics on the emoticons in the weather data set, the weighted percentages is weighted
on the total number of emoticons considered for this experiment.

Emoticon Weighted Percentage Unweighted Percentage

:-) 21.76% 16.4%
; ) 4.29% 3.24%
:-D 0.89% 0.68%
: D 23.82% 17.96%
; ) 4.29% 3.24%
: ( 9.99% 7.53%
: - ( 4.99% 3.77%
: '( 1.41% 1.06%
: '-( 0.64% 0.48%
:-/ 2.75% 2.08%
:/ 22.73% 17.14%
:-o 0.13% 0.09%
:o 2.11% 1.59%
: - | 0.19% 0.14%

Table 2: Emoticon Statistics

5 Application

5.1 Preprocessing

The preprocessing stage entails removing words and special characters that will corrupt the output. Examples
of the things that will be removed are words that appear once, or words like �the�, �and� during preprocessing.
Special characters are also taken out during the preprocssing stage, because of this the emoticons that will
be considered for this analysis will be assigned special codes that will be illustrated in table 3. The bene�t of
doing it this way, is that one can easily keep track of the emoticons even after the preprocessing. The gensim
library in python is used to do the topic modeling. Table 3 also shows the percentages of positive, negative
and neutral sentiment in the weather data set.
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POSITIVE NEGATIVE NEUTRAL

Hapnfa Sadnfa Sernfa
:-) : ( :-/
; ) : - ( :/
:-D : '( :-o
: D : '-( :o
; ) : - |

Weighted Percentage 55.06% 17.03% 27.91%
Unweighted Precentage 41.53% 14.92% 18.98%

Table 3: Preprocessing

5.2 Experimental Design

Each topic model will have ten slots and these slots will be made up of emoticons and words. The reason
for having the ten slots is because in my python code I set up a loop that will ensure each topic model has
ten slots. This is so that inference of what the thematic information has is simpli�ed. The expected output
in this stage will be in a speci�c topic model. There will be at least one emoticon conveying the statements
and a bunch of words that have a latent meaning. So once the meaning of the latent collection of words has
been deduced, coupled with the emoticons, we will be able to know the sentiments attached to the topic for
a speci�c topic model. As stated in the background theory, the LDA method will be used to do the topic
modeling. Table 4 will serve as an example of how the output for the o�cial experiments will look.

Hapnfa

Summer
Beach
Bikini
Party
Hapnfa
Sur�ng
Sand

Holiday
Drinks

Sadnfa

Windy
Gust
Chill

Drizzles
cold

Sadnfa
Stuck
Home
Winter

Sernfa

Bloomberg
Financials
Markets
Currencies
Forex
Trading
Opening
Sernfa
Closing

Table 4: Example of output

From the �rst topic in the table above, it can be deduced that its summer holiday time and there are a
lot of fun activities going on at the beach. The general sentiments with regards to it are positive, with the
happy emoticons being expressed a lot. In reference to table 3, the �Hapnfa� coverts to happy emoticons.

From the second topic in the table above it can be deduced that it is a day with winter rains and the
general sentiments with regards to that are negative, In reference to table 3, the �Sadnfa� coverts to sad
emoticons.

From the third topic in the table above it can be inferred that its talk about �nancial markets provided
by Bloomberg, the general sentiments associated with this are neutral.

The general idea for the actual application with regards to this is that ten topics will be obtained. Some
of the topic will possible have more than one category of sentiments in it.

6 Results

6.1 Weather Data Set

This serves as the o�cial application of topic modeling on the weather data set.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

Condtions Day Weather Friday Humidity Year Time Week
Lake Rainy National Raining Mph Went Weather Weather
High Hapnfa Service Check Wind Weather Supposed Wtf
Tho Early Tornado School Weather Tired Tuesday Sadnfa
Low Humid Shelter Joplin Feels Fall Seattle Course

Hapnfa Today Indiana Hapnfa Noh Girl Family Games
Current Times Sadnfa Weather East Sernfa Hapnfa Appreciate
Guys Pleasant Delayed Play Southeast Missing Cancelled Eating

Forecast Breakfast Loves Break Southwest Flooding Today Showing
Thinking Flip Children Okay Bipolar Trip Talking Canceled

Topic 9 Topic 10

Weather Better
Central Weather
Dallas End
Bbq World
Type Red
Austin Miles
Living Expected

Coverage Keeps
Storm Phone
Worst Wake

Table 5: Actual output for weather data set

As can be seen from table 5, there are some topic models without any emoticons in them and some do
have. Each of the topics with emoticons in them will have their meaning deciphered and the topics with
emoticons in them will be classi�ed into one of the three sentiment group classi�cations. This will show us
whether or not there is a correlation between the topics and the sentiment expressed. If there is a correlation
then topic modeling on short text with emoticons can be used as a quick and easy sentiment analysis tool.

Topic one refers to a weather forecast predicting favorable conditions out on a lake. This could be good
information for �sherman, hence the positive emotion expressed in the model via the positive emoticon. Topic
one can be classi�ed in the positive sentiment group.

Topic two refers to a day with early morning rains and humidity later on, and this has a positive signal
because sleeping during rain or waking up to it is generally a nice feeling. Topic two will be classi�ed into
the positive sentiment group.

Topic three refers to a tornado in Indiana and thus it has a negative emotional signal, possibly due to
damages in property and the danger posed to peoples lives. Topic three falls into the negative sentiment
group.

From topic four it could be inferred that its a rainy Friday in Joplin, a city in the USA. This has been
met with a positive reaction and thus topic four will be grouped into positive sentiments group.

Topic six refers to �ooding and possible missing persons. This has the structure of a news report because
the sentiment classi�cation is neutral thus it will be placed in the neutral sentiments group.

Topic seven refers to an event being canceled on account of weather in Seattle and this leaves room for
family bonding. This topic is classi�ed into the positive sentiment group.

Topic eight also refers to the cancellation of an event, possibly a gaming convention and this leads to
topic eight be classi�ed in the negative sentiments group.
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7 Conclusion

The research problem is to see whether there is a correlation between the sentiments expressed in a topic
via emtoicons and the actual topic. In the application section of this paper it could be seen there was a
correlation. An example would be topic three where a tornado was on rampage, it was met with negative
sentiments. Weather reports predicting favorable weather conditions are met with positive sentiments and
this does make sense, as everyone typically likes good weather.

All in all, topic modeling with emoticons can be used as a quick and easy form of sentiment analysis.
Possible shortfalls of this research is that �rstly the data set should be rich in emoticons, if it isn't then trying
to conduct sentiment analysis this way is pointless. In the application section it could be seen that some
topics were not classi�ed into one of the three sentiment classi�cation groups. This could stem from the fact
that the weather data set is not rich in emoticons. Secondly the topic modeling was deployed on a labeled
data set which did simplify things, a future recommendation would be to do the same on an unlabeled data
set. Lastly due to the nature of topic modeling, inferring the meaning of the topic model could vary from
user to user.
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Appendix

# -*- coding: utf-8 -*-

"""

Created on Wed Aug 24 11:56:48 2016

@author: Mwila Chikonde

"""

from gensim.corpora import Dictionary

from gensim.models import ldamodel

from gensim.parsing.preprocessing import STOPWORDS

from gensim import utils

import numpy

import re

def wordlist(text,stopwords=STOPWORDS):

#remove stopwords and words <= 2 letters

return [w

for w in utils.tokenize(text, lower=True)

if w not in stopwords and len(w) > 2]

#path to text file:

f_path = "modweather.txt"

#open text file:

fopen = open(f_path)

#read text file

tweet_corpus = fopen.readlines()

texts = [[w for w in wordlist(tweet)] for tweet in tweet_corpus]

dictionary = Dictionary(texts)

dictionary.filter_extremes(no_below=5, no_above=0.85)

corpus = [dictionary.doc2bow(text) for text in texts]

numpy.random.seed(1) # setting random seed to get the same results each time.

model = ldamodel.LdaModel(corpus, id2word=dictionary, num_topics=100)

for i in model.show_topics():

print i[1]

print '\n'

#model.get_term_topics('water')
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Abstract

In this paper, the Gaussian local level model will be considered. The model is the simplest form of the

state space model. We will also examine the theory of the Kalman �lter and illustrate the application of

the Kalman �lter to obtain the smoothing and �ltering distributions. In a simulation study, the Kalman

�lter was applied to a data set that was randomly generated from a normal distribution and it was found

that the �lter calculated the mean and variance of the unobserved state given the observations obtained

from the data set. From the simulation study, the signal to noise ratio had an impact on the results

obtained by applying the Kalman �lter. For a signal to noise ratio of less than 1, the signal extraction

of the process has some random variation, meaning that the noise in the process is large relative to the

signal. On the other hand, a signal to noise ratio of more than 1 shows that the signal extraction of the

process is easier and more reliable. In other words, the process has a larger signal relative to the noise.

The case when the signal to noise ratio is 0 is known as a special case. The estimation results show that

when the signal to noise ratio is 0, the process has approached a steady state. The technique was also

applied to the Nile data set to analyse the e�ect that the Ashwan high dam has had on the Nile River

from 1871 to 1970. It was found that the Ashwan high dam has caused various level shifts in the time

series depicted by the Nile data, meaning that the construction of the Ashwan high dam has played a

major role on the �ow of the Nile River.
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1 Introduction and Literature Review

The phrase �state space� originated from the article �rst published in 1960 by Rudolph Kalman [16]. Koller
and Friedman [19] de�ned the state space model as a class of probabilistic graphical models. The state space
model provides a general framework for analyzing deterministic and stochastic models. This model allows
us to make a link between the observed variables and the state variables in order for us to make statistical
inference about the unobserved states.

The state space model is used widely in various technical and quantitative �elds such as economics, �-
nance, engineering and genetics. Considering its vast usage, di�erent �elds have di�erent names all referring
to the state space model. In engineering, Roumeliotis and Bekey [25] used the state space model in robotics.
They de�ned a robot as a device that carries sensors that are able to monitor its motion and also allows it
to estimate its path as it moves away from its current location. The state space model was used speci�cally
to track the pose displacements of the robot from one place to another, thus the robot was able to navigate
from place to place given that its current position and orientation at any given time was known. Strang
and Borre [29] applied the state space model in navigation. The model was used in positioning problems
for a Global Positioning System (GPS), which watches the movement of the earth's crust. Furthermore, the
state space model has also been used in areas of tracking [21] and computer vision [24]. From an engineering
standpoint, the state space model is generally referred to as a dynamic linear model.

In economics and �nance, Wu and Zeng [32] made use of the state space model to model �nancial data
for prediction of interest rates, Stock and Watson [28] used these models to measure the sensitivity of the
business cycles and Hamilton [3] used the model in the estimation of future expected in�ation. The state
space model is also referred to as the latent process model [20] in some applications or as a hidden Markov
model [32, 22] where as some fundamental statistical treatments of its classes are discussed in Cappé, Mouline
and Rydén [4].

The simplest form of the state space model is called the local level model. This paper will focus on the
Gaussian local level model by assuming normality and thus making computations of the recursive equations
easier [8].

In 1960, Rudolph Kalman [16] published his now widely used article on the Kalman �lter. His article
described a recursive algorithm that can be used to �nd the solution to a linear �ltering problem based on a
discrete data set.

The Kalman �lter is a set of mathematical equations that provide a recursive algorithm to enable one
to estimate the state and the error covariance of a given process. In terms of estimation, it is a very powerful
tool because it takes into account the past, present and future of the states in the process.The main aim of
the �lter is to minimize the mean square error of the estimated parameters [27]

Lipton, Fujiyoshi and Patil [33] used the Kalman �lter to explain human motion tracking. Due to the
fact that the tracking of the human body is a problem, the Kalman �lter was used in estimation of the
parameters of the human body where as moving targets were extracted from a real time video stream. The
targets were then classi�ed into categories based on image-based properties and thus made tracking possible
[33]. Human motion tracking was further illustrated by Welch [31]. From recent research by The Council for
Scienti�c and Industrial Research (CSIR) [1], human language technology makes it easier for humans to com-
municate with machines. In order for the machine to recognize a human's voice with precision, the Kalman
�lter has been used to �lter out noise signals. Other applications of the Kalman �lter in voice recognition in
devices have been presented in [15]. The Kalman �lter has also played a vital role in video stabilization [2]
and in econometrics and �nance [12].

In section 2, a discussion on the Gaussian local level model and the Kalman will be presented with all
necessary equations. By making use of the Kalman �lter and its recursive equations, �ltering and smooth-
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ing distributions will be obtained. In section 3, two examples (Simulation study and Nile data set) will be
included on how to use a Kalman �lter for linear �ltering and prediction in order to obtain the smoothing
and �ltering distributions using R as the programming language. Particular attention will be given on the
graphs obtained for the original distribution, �ltered distribution and the smoothed distribution. Lastly, in
section 4, comments on the �ndings of the examples will be provided. A brief discussion on the shortfalls
and recommendations of the research report will also be included.

2 Model

2.1 Gaussian local level model

In this section, the Gaussian local level model will be discussed by looking at the three parts that make up
the model, namely: the measurement equation, the transition equation and the initial state [8].

The �rst part is the observation equation which is also referred to as the measurement equation and it
is given by:

Yt = µt + εt , εt
iid∼ N(0, σ2

ε) , t = 1, 2, 3....T (1)

The second part is the state equation which is also referred to as the transition equation and it is given by:

µt+1 = µt + ηt , ηt
iid∼ N(0, σ2

η) , t = 1, 2, 3.... (2)

Lastly, the third part is the initial state given by:

µ1 | F1 ∼ N(a1, P1) (3)

From (1), the observation yt consists of a state µt which measures the stochastic trend and the noise/error
term εt. The state µt is a slowly varying component also known as a random walk. Since a random walk is
non-stationary, the Gaussian local level model is thus non-stationary meaning that the distributions of the
variables Yt and µt depend on time t . Since Yt is a messed up version of the true state µt of the process,
the state is allowed to move over time. In addition, the assumption that εt is independent and identically
normally distributed with mean 0 and variance σ2

ε has been made. By using equation (1), the main aim is
to extract the true state µt from the observed measurement yt. [8]

From (2), the unobserved state µt+1 consists of the state µt which measures the stochastic trend such that µt
is a random walk and the noise/error term ηt. The state is a Markovian process since it only depends on the
previous period and the transition equation is a random walk process. It is assumed that ηt is independent
and identically normally distributed with mean 0 and variance σ2

η. [8]

From (3), the initial state µ1 given the observations (y1, y0) is normally distributed with E(µ1 | F1) = a1
and var(µ1 | F1) = P1. This is prior information regarding the state of the process. [8]

The signal to noise ratio is de�ned as: the measure of the strength of the signal relative to the strength
of the noise. Taking into account the fact that the behaviour of the process Yt is in�uenced greatly by the
signal to noise ratio, signal extraction will be considered by making use of the signal to noise ratio (SNR)
which is de�ned as:

q =
σ2
η

σ2
ε

(4)
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The signal to noise ratio is used to determine whether the process has a signal (not just a random variation)

or just noise (a random variation). From (4), the SNR = q =
σ2
η

σ2
ε
= 0 if and only if σ2

η = 0, this means that

the unobserved state µt+1 is equal to the state µt thus the process has a steady state. On the other hand, a
larger signal to noise ratio (σ2

η > σ2
ε) , means that the strength of the signal is large relative to the strength of

the noise thus the signal is signi�cant. A large signal to noise ratio also means that extraction of information
for the process Yt is easier and the results thereof are more reliable. [8, 27, 14]

2.2 Kalman �lter

In this section, the Kalman �lter will be considered by �rstly focusing on the distributional properties of
di�erent components of the process and then to speci�cally focus on the smoothing and �ltering distributions.

The Kalman �lter provides us with a recursive algorithm such that it calculates the mean and variance
of the unobserved state µt of Yt+1, given a set of observations. The recursive algorithm makes computations
easier in such a way that as soon as a new observation yt becomes available, the process can be updated and
the new best estimate can be recalculated. [8]

The local level model considers the observation variable Yt over time where the latent state µt is unob-
served. Since the Gaussian local level model is under consideration, this means that all distributions are
normal hence the conditional joint distributions of observations will again be normal. In essence, the condi-
tional joint distribution of a set of observations given another set of observations will be normally distributed.
[27, 8] [See Appendix]

2.2.1 Filtering

Filtering is done to extract the state µt given a set of observations. Observations from time period 1 are
used up to a speci�ed time period t such that the observations Ft = {y1, y2, ......, yt} are used to estimate the
state µt. Filtering is done to remove measurement errors from the given data.

Using the initial condition µ1 | F1 ∼ N(a1, P1) and the fact that the error terms εt and ηt are Gaus-
sian, we have that the model Y1, Y2..., YT , µ1, ...µT is a big multivariate normal due to its linear structure.
Thus the conditional distribution of µ1, ...µT | Y1, Y2, ......YT is normal hence we can assume that the model
will have marginal densities that are also normal.

Assume µt | Y1, Y2, ......Yt−1 ∼ N(at, Pt) where at and Pt (State variance) are known. Also assume that
the conditional distribution of µt+1 | Y1, Y2, ......Yt ∼ N(at+1, Pt+1). In addition, the conditional distribution
of µt | Y1, Y2, ......Yt ∼ N(at|t, Pt|t), which is known as the �ltering distribution. As soon as a new obser-
vation yt becomes available, at|t, Pt|t, at+1 and Pt+1 need to be recalculated in order to make inferences
about the parameters of the new best estimate. The �ltered estimate of the state µt is de�ned as at|t such
that E(µt | Y1, Y2, ......Yt) = at|t with a corresponding variance of Pt|t. On the other hand, at+1 is called
the one step ahead predictor of the unobserved state µt+1 such that E(µt+1 | Y1, Y2, ......Yt) = at+1 with a
corresponding variance of Pt+1.

Starting with the initial condition µ1 | F1 ∼ N(a1, P1) , at+1, Pt+1 and Ft can be calculated by making
use of recursive equations.

vt, the one step ahead prediction error of yt is de�ned as vt = yt − at for t = 1, 2....T such that E(vt) =
E(E(vt | Ft−1)) = 0 since E(vt | Ft−1) = 0 and var(vt) = var(yt − at) = var(yt) + var(at) = Pt + σ2

ε = Ft
thus vt ∼ N(0, Ft).
Recursive equations for at+1, Pt+1 and Ft are de�ned as follows:
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at+1 = at +Ktvt where Kt =
Pt
Ft

=
Pt

Pt + σ2
ε

(5)

Pt+1 = Pt(1−Kt) + σ2
η (6)

Ft = Pt + σ2
ε (7)

where Ft is referred to as the variance of the prediction error vt and Kt is known as the Kalman gain such
that Kt ∈ [0, 1] .

As soon as a new observation yt is available, parameters of the new state µt+1 can be estimated using
the prior information at+1, Pt+1, Ft and an updated vt.

at|t = E(µt | Ft) = at +Ktvt = at + (
Pt
Ft

)vt = at + (
Pt

Pt + σ2
ε

)(yt − at) = at+1 (8)

Pt|t = var(µt | Ft) = var(µt | Ft−1, vt) =
Ptσ

2
ε

Pt + σ2
ε

= Pt+1 − σ2
η (9)

thus the distribution of µt+1 becomes known, in other words µt+1 ∼ N(at|t, Pt|t).

The �ltering distribution can thus be de�ned as : µt | Y1, Y2, ......Yt ∼ N(at|t, Pt|t). [27, 8]

The process starts with the observation y1 and an initial condition of (a1, P1) , it is then possible to compute
(a2, P2, F2). When a new observation y2 becomes available, v2 is updated using the given equations above.
The new value v2 is used to then update the conditional mean a2|2 and the conditional variance P2|2 thus
the distribution of the new state with its estimated parameters is obtained. This process is repeated until
time period t. [27, 8]

If Pt, the state variance, converges to a positive value, this means that the process has reached a steady
state hence Pt+1 = Pt. As soon as the process converges, the computation of Ft and Kt can be stopped
because at+1 = at +Ktvt from (1). [8]

As the process approaches a steady state (t→∞), the Kalman gain Kt =
Pt
Ft
→ K =

√
q2+4q−q

2 +q√
q2+4q−q

2 +q+1
∈ [0, 1].

So the update at|t = at +Ktvt u at +Kvt whereby as t increases, the approximation becomes more precise
and accurate. This is known as the EWMA (Exponentially weighted moving average) forecast meaning that
�ltering converges to the EWMA forecast where K is de�ned in terms of the signal to noise ratio (SNR). In
other words, the local level model is a model representation for EWMA forecasting.

2.2.2 Smoothing

Smoothing is done to extract the state µt given a set of observations whereby observations from time period
1 to the end of the process at time period T are used (FT = {y1, y2, ....yt..., yT }). The mean and variance is
calculated conditional on the set of observationsFT .

Once again, using the initial condition µ1 | F1 ∼ N(a1, P1) and the fact that the error terms εt and ηt
are Gaussian, we have that the model Y1, Y2..., YT , µ1, ...µT is a big multivariate normal due to its linear
structure. Thus the conditional distribution of µ1, ...µT | Y1, Y2, ......YT is normal hence we can assume that
the model will have marginal densities that are also normal.

The smoothing distribution can be de�ned as: µt | Y1, Y2, ......YT ∼ N(at|T , Pt|T ) for t = 1, 2, ..., T where at|T
is called the smoothed state and Pt|T is called the smoothed state variance. [23]
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By using joint distribution properties and the Bayes theorem, it can be shown that µt | Ft ∼ N(at|t, Pt|t)
and µt+1 | µt, Ft ∼ N(µt, σ

2
η).

Hence the backward result can be de�ned as follows:

µt | µt+1,FT ∼ N

(
at|t +

Pt|t

Pt+1|t
(µt+1 − at|t) , Pt|t −

P 2
t|t

Pt+1|t

)
(10)

Since µt+1 | FT ∼ N
(
at+1|T , Pt+1|T

)
then µt | FT ∼ N

(
at|T , Pt|T

)
where

at|T = E(µt | FT ) = at|t +
Pt|t

Pt+1|t
(at+1|T − at|t) = at|t +Ht(at+1|T − at|t), Ht =

Pt|t

Pt+1|t
(11)

Pt|T = var(µt | FT ) = Pt|t −
P 2
t|t

Pt+1|t
+

(
Pt|t

Pt+1|t

)2

Pt+1|T = Pt|t +Ht(Pt+1|T − Pt+1|t)H
′

t (12)

If a simulation from µT | FT ∼ N(aT |T , PT |T ) is done, then it is possible to simulate backwards through the
result given by (10) to t = T, T − 1, T − 2, ....., 1 meaning that (10) can be run backwards in time. This
process is known as the smoother in time series. It is also referred to as the �xed lag smoother or as the
Kalman smoother. [23]

The simulation smoother is the path drawn from µ1, ...µT | FT whereby classical references based on the
simulation smoother have been discussed in [6], [10] and [5].

3 Application

In this section, the Kalman �lter will be illustrated to obtain the smoothing and �ltering distributions by
making use of two di�erent applications namely: a simulated local level model and a set of observations from
the Nile river.

3.1 Simulated local level model

The local level model was simulated in R (Appendix) as de�ned in (1), (2) and (3). The random normal
deviates ε∗t ∼ N(0, σ2

ε) and η∗t ∼ N(0, σ2
η) for t = 1, ..., T are drawn. Using the local level recursion, the

observations are generated as follows [8] :

y∗t = µ∗t + ε∗t for t = 1, ..., T

µ∗t+1 = µ∗t + η∗t for t = 1, ..., T

for some initial values a∗1 and P
∗
1

The application of �ltering and smoothing on the simulated local level model is shown in the R code (Ap-
pendix) as de�ned in equations (5) - (9) for �ltering and (11) - (12) for smoothing.

The simulated data will be analyzed using the local level model with a1 = 0 , P1 = 1, 000, 000 and dif-
ferent pairs of (σ2

η , σ
2
ε). The di�erent components of �ltering and smoothing for t = 1, 2....T given by the

Kalman �lter is shown graphically in Figure 1 - Figure 5 where the role of the signal to noise ratio is also
illustrated.
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Case 1: σ2
ε > σ2

η (σ2
ε = 400, σ2

η = 25, q = 0.0625)

Figure 1: Simulated data and output: (i) simulated data, signal, �ltered state and its 95% con�dence intervals;
(ii) simulated data, signal, smoothed state and its 95% con�dence interval; (iii) Filtered and smoothed mean;
(iv) Filtered and smoothed standard error.

From the panel of sketches above, the most obvious feature is that there is a large con�dence interval due
to the uncertainty associated with the noise being more signi�cant than the signal in the process. Another
feature observed is that the smoother has a more even surface than the �lter. It is also visibly clear that the
standard error for the smoother is less than the standard error of the �lter for the entire process. However,
at time period T, the standard error for the both the smoother and the �lter converges to a constant value.
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Case 2: σ2
ε > σ2

η (σ2
ε = 1, σ2

η = 0.1, q = 0.1)

Figure 2: Simulated data and output: (i) simulated data, signal, �ltered state and its 95% con�dence intervals;
(ii) simulated data, signal, smoothed state and its 95% con�dence interval; (iii) Filtered and smoothed mean;
(iv) Filtered and smoothed standard error.

Similarly to case 1, the panels of sketches above show that the smoother has a more even surface than the
�lter. Looking at the �lter and smoother standard error, the smoother standard error is less than the �lter
standard error. The only di�erence between case 1 and case 2 is the interval on the vertical axis. Case 1 has
a larger interval compared to case 2 due to the fact that the chosen values for σ2

ε and σ
2
η in case 1 are bigger

than those in case 2.
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Case 3: σ2
ε < σ2

η (σ2
ε = 25, σ2

η = 400, q = 16)

Figure 3: Simulated data and output: (i) simulated data, signal, �ltered state and its 95% con�dence intervals;
(ii) simulated data, signal, smoothed state and its 95% con�dence interval; (iii) Filtered and smoothed mean;
(iv) Filtered and smoothed standard error.

From the panel of sketches above, it can be observed that the con�dence interval is narrower due to the fact
that the strength of the signal is large relative to the strength of the noise in the process. This means that
the noise in the process has been �ltered/smoothed out in such a way that there is greater con�dence in the
process that the state obtained is the unobserved state since the state is more signi�cant. From graph (iii),
there is no signi�cant di�erence between the �lter and smoother mean. Similarly to case 1, the standard
error of the smoother is less than that of the �lter although the gradient is higher. At time period T, the
standard error converges to the same constant value.

13



Case 4: σ2
ε < σ2

η (σ2
ε = 2, σ2

η = 3, q = 1.5)

Figure 4: Simulated data and output: (i) simulated data, signal, �ltered state and its 95% con�dence intervals;
(ii) simulated data, signal, smoothed state and its 95% con�dence interval; (iii) Filtered and smoothed mean;
(iv) Filtered and smoothed standard error.

Similarly to case 3, the signal in the process is large relative to that of the noise. It can also be observed
that both the �lter and smoother do not di�er signi�cantly from the signal hence there is almost a perfect
�t. The interval in case 4 is smaller than case 2 because of the chosen values for σ2

ε and σ
2
η for the di�erent

cases. Considering the fact there is not much of a di�erence between the �lter/smoother and the signal, the
extraction of information for the process Yt is more reliable.
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Case 5: σ2
η = 0 (σ2

ε = 400, σ2
η = 0, q = 0)

Figure 5: Simulated data and output: (i) simulated data, signal, �ltered state and its 95% con�dence intervals;
(ii) simulated data, signal, smoothed state and its 95% con�dence interval; (iii) Filtered and smoothed mean;
(iv) Filtered and smoothed standard error.

From the panel of sketches above, it is very evident that when σ2
η = 0, the signal is also 0 and thus this implies

that the state will stay the same for the entire process. Similarly to the four cases above, the smoother is
has an even surface compared to the �lter. Since σ2

η = 0 and using the local level model (2), it justi�es the
fact that the mean of the smoother is 0 and the standard error is approximately 0. The standard error for
the smoother has a gradient of 0 and its value has not changed since the start of the process. It can also be
observed that the standard error for the �lter decreases exponentially and at time period T, the value of the
standard error is the same as that of the smoother.
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3.2 Nile River

The Nile data set consists of observations that are a series of readings of the annual �ow volume at Aswan
from time period 1871 to 1970. The local level model [(1), (2), (3)] will be illustrated by selecting arbitrary
values for a1 and P1 and the values for σ2

η and σ2
ε will be chosen such that these values are the maximum

likelihood estimates.

The data will be analyzed using the local level model with a1 = 0, P1 = 10, 000, 000, σ2
η = 24.51 and

σ2
ε = 129.92. After running the R code (Appendix), the values of the �ltered state, the smoothed state

together with the other components such as Pt and the con�dence intervals for t = 1, ..., T , given by the
Kalman �lter can shown graphically in Figure 6 and 7 .

Figure 6: Nile data and output of Kalman �lter: (i) simulated data, signal, �ltered state and its 95%
con�dence intervals; (ii) simulated data, signal, smoothed state and its 95% con�dence interval.
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Figure 7: Nile data and output of Kalman �lter: (i) Filtered and smoothed mean; (ii) Filtered and smoothed
standard error.

Comparing the graphs obtained in (i) and (ii) of �gure 6, the con�dence interval associated with the
smoother is narrower than the con�dence interval for the �lter and the smoother does indeed have a more
even surface compared to the �lter.

From �gure 7, graph (i), it can be observed that the smoother mean is generally less than the �lter mean
for the process. Using the values for σ2

η and σ2
ε , a signal to noise ratio of 0.189 is calculated hence it is

justi�able to say that the �ltered values will not necessarily tend closely to the Nile data.

Looking at �gure 7, graph (ii), it is very evident that the variance of the prediction error Ft and the state
variance Pt converge rapidly to constant values meaning that the process has since stabilized and thus the
local level model has a steady state solution.In addition, notice that the standard error at t = 100 which is
the time that the last observation was measured is the same for the �lter and the smoother. However from
time t = 0, 1, 2, ...., 99, the smoother has a lower standard error than that of the �lter. Paying speci�c
attention to time t = 50 (halfway through the process) and using the fact that
(standard error)2 = variance, it can be observed that the �ltering variance is greater than the smoothing
variance. This is due to the fact that the �ltering distribution only took into account observations from
time t = 0, ....50 while the smoothing distribution has taken into account observations from time
t = 0, ...50, ....100.

4 Conclusion

In this essay, we considered the Gaussian local level model and the use of the Kalman �lter to obtain �ltering
and smoothing distributions. The Kalman �lter was applied to a simulated data set and a Nile data set. By
examining the results obtained from the simulated study, it is clear that the role of the signal to noise ratio is
to determine whether the process has a signal (not just a random variation) or just noise (random variation).
If the signal to noise ratio is less than 1, it means that the noise is relatively larger than the signal and thus
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there is some variation. Alternatively, if the signal to noise ratio is greater than 1, the signal is relatively
larger than the noise meaning that it is easier to extract information for the process and the information is
more reliable. From the results obtained by applying the Kalman �lter to the Nile data, it is evident that
the Nile data shows various level shifts and this is due to the fact that the Ashwan high dam was constructed
and therefore it impacted the annual �ow of the Nile River.

In this paper, the Gaussian local level model was considered, however it is possible to consider other com-
plex models of the state space model such as a non-linear non-Gaussian state space model as discussed by
Kitagawa in [18, 17]. In addition, methods such as unscented �ltering [30], Bayesian �ltering [9, 26] and the
extended Kalman �lter [7, 11] can all be used as alternatives of the Kalman �lter.
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Appendix

Multivariate Normal Distributions

Given random variables X1, X2...... Xp such that X : p × 1 matrix distributed ∼ Np(µ , Σ) , then the p-
dimensional normal density has the form:

fX(x) =
1

(2π)
p
2 |Σ|

1
2

e−
1
2 [(x−µ)‘Σ

−1(x−µ)]

where −∞ < xi <∞, i = 1, 2...., p . [13]

Univariate Normal

Given that X ∼ N(µ, σ2), the density function of X is de�ned as:

fX(x) =
1√
2πσ

e−
1
2 (

x−µ
σ )

2

where −∞ < x <∞. [13]

Bivariate Normal (Joint density function)

Given that X : 2× 1, X ∼ N(µ,Σ) such that µ =

[
µ1

µ2

]
andΣ =

[
σ2
1 σ12

σ12 σ2
2

]
, the joint density function

is de�ned as:

fX1,X2(x1, x2) =
1

(2π)σ1σ2
√

1− ρ2
e
− 1

2(1−ρ2)

[(
x1−µ1
σ1

)2
−2ρ

(
x1−µ1
σ1

)(
x2−µ2
σ2

)
+
(
x2−µ2
σ2

)2
]

where ρ = σ12√
σ2
1

√
σ2
2

. [13]

Bivariate Normal (Conditional)

Given that X : 2× 1, X ∼ N(µ,Σ) such that µ =

[
µ1

µ2

]
andΣ =

[
σ11 σ12
σ12 σ22

]
We have that X1 | X2 = x2 ∼ N(µ1 +

σ12

σ22
(x2 − µ2), σ11 − σ2

12

σ22
) thus the conditional normal density of X1

given that X2 = x2 is de�ned by:

fX1|X2
(x1) =

1
√
2π
√
σ11 − σ2

12

σ22

e

− 1
2

 x1−(µ1+
σ12
σ22

(x2−µ2))√
σ11−

σ212
σ22


2

. [13]
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Simulated local level model and the Nile data set (Code)

Simulation of local level model

Filtering

22



Smoothing
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Maximum likelihood estimates for σ2
η and σ2
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Abstract

Online education is undeniably popular and accepted worldwide. Universities are concerned about
measurable performance of student learning activities in web-based courses. Will student performances
be equal or better when implementing more and more blended learning techniques? This report will
discuss blended learning and the bene�ts of applying it. It will test if positive outcomes are attainable
when introducing di�erent blended learning tools. The speci�c statistical method which will be used is
called a two-way analysis of covariance (ANCOVA) where we will compare the averages of continuous
variables of independent groups while covariates are controlled. A hypothesis test will be conducted in
which we will evaluate the F -test statistic and its p-value to determine whether the result is signi�cant.
In case a signi�cant outcome is obtained, post hoc tests are applied to analyse the pattern of di�erences
between the averages.
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1 Introduction

Graham challenged the width and ambiguity of the term �blended learning� and rede�ned �blended learning
systems� as a combination of the traditional face-to-face learning environment and the distributed learning
environment, using to some extent computer-mediated technologies [10]. The 21st century can be regarded as
a transformation era in terms of exposure to technological communication and information. A new world with
countless possibilities unfolded and it is nearly impossible for any educational institution to grow without
including some form of a blended system. It is inevitable that new developments will alter the way we
communicate and learn and therefore also the way we think. [10] is of the opinion that blended learning has
become such a popular tool in education that the term �blended� will disappear and blended learning will be
regarded as just learning.

Blended learning o�ers an enormous transformative potential, especially in higher education. Ultimately
it is important for a university to recognise and explore how to best utilise both face-to-face learning (syn-
chronous) and text-based internet learning (asynchronous) activities [8]. Information and communication
technology tools provide �exibility in terms of time, place and diversity. This is bene�cial for students as it
o�ers some kind of control over the way they interact and learn [19]. Integrating the strengths of both these
activities are challenging and requires reconceptualisation and re-organising of existing dynamics to be con-
structive and meaningful [1]. Di�erent instructional methods can be incorporated into traditional university
programmes. Universities need to cater for a diverse section of the population entering the blended learning
environment. Adjustments for growing expectations and demands for better quantity and quality of learning
experiences and outcomes are required.

Blended learning has been part of society ever since older communication tools such as radio, televi-
sion and telephones have been available. Since the internet became more available and accessible, blended
learning practices a�ected higher education substantially [17]. Current practices in blended learning include
simulations, visualizations, communication and interactive technology e.g. immediate feedback on online
assignments. Mobile learning is one of the largest practices currently applied, using social networking sites
such as Facebook, MySpace, Flickr and Twitter as a tool to stay connected and improve communication
between students as well as lecturers.[6] According to the Executive Committee of the National Council of
Teachers of English in [10], the social impact of learning is increasingly related to the ability to use and
combine digital tools in learning environments. Group e�ort on a social platform promotes problem solving
as well as independent thought. Students are exposed to multiple amounts of information and learn how to
process, analyze and conceptualize information. They interact and develop skills to master the technology
behind di�erent language of instruction tools whilst practising ethical behaviour.

According to the report of Staker and Horn [19] combinations of blended learning resulted in four suggested
models. First, he mentioned the �Rotation� model which is applied when instruction is presented online but
rooted in and combined with, constant supervision of a teacher who is available for face-to-face consultation
and support. Instruction occurs in a cyclical manner. The suggested �Flex� model applies when multiple
students are primarily engaged online, but with supervisory teacher capacity. The �Self-Blending� model
is applicable to those students who choose to supplement their learning through participating in additional
online courses o�ered by institutions. They do so in a setting where a supervising teacher and other students
are co-present, or completely by themselves o�-site. The �Enriched-Virtual� model is used when learning
occurs on an online platform, with optional teacher check-ins, face-to-face.[19] Graham suggested that new
pathways will evolve from scratch from initially blended environments to meet the emerging needs in education
and training. The choice of the blend is important to universities and requires presentation tools to be
reliable and consumer friendly. It is essential to have high quality technical support as backup, as well as
trained instructors.[2] Overlapping of models often occurs depending on individual or institutional needs.
The University of Pretoria makes use of a combination of all four models in some way or another.
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It is the opinion of Graham that blended learning occurs at many levels e.g. institutional-, programme-,
course-, and activity levels. Participation at course and activity levels has instructor stakeholders and is pri-
marily focussed on learning e�ectiveness and productivity. Blended learning at programme and institutional
levels have administrator stakeholders who are mainly interested in issues of cost e�ectiveness and expanding
learning access.[10] Universities will strive to adopt the instructor stakeholder level where the focus is on the
students and to promote their learning abilities, but at the same time they necessarily need to be aware of
the cost implications and expansion of learning access with new technological accessories and tools.

Graham mentioned three core bene�ts of blended learning. Firstly he spoke of improved learning ef-
fectiveness and enhanced skills in problem solving. Secondly mentioned is increased access to up-to-date
resources, time �exibility and freedom over time, place and pace. One can also expect the convenience of-
fered by an online environment. Lastly he mentioned increased cost e�ectiveness and reduction in teaching
costs as a major advantage.[10] Ar�eld described other advantages such as positive attitude adjustments of
students towards learning. Overall communication improvements and instant measures of academic progress
of students are also possible due to the availability of student performance data.[2] Alfred et al. mentioned a
bene�t of blended learning as being an increased perception of belonging to a study community which were
experienced when mutual participation took place [18]. Hughes is of the opinion that an increased student
support via e-learning led to improved student retention rates [13].

We live in a blended era and advantages of blended learning are countless. Models and the integration
thereof are here to stay. New initiatives will be tested and applied, not necessarily to only create new models,
but also to identify and make use of the strengths of each environment [16].

Blended learning at the University of Pretoria will be investigated using a �rst year module (STK110)
when various interventions were introduced over a period of 5 years, i.e. 2011 to 2015.

2 Background theory

2.1 Methodology

An analysis of variance (ANOVA) model is appropriate when a continuous dependent variable is predicted by
at least one categorical explanatory variable with two or more levels (treatments). ANOVA refers to a case
where independent samples are drawn from several populations and their averages compared. A two-way
ANOVA model refers to a cross classi�cation of two or more factors where averages of the dependent variable
between two groups are compared with the main purpose to determine whether interaction between the two
independent variables on the dependent variable exist. A two-way analysis of covariance (ANCOVA) model
is applicable when an independent continuous variable, called the covariate, is also added to the model. This
covariate has a relationship with the dependent variable but is not in�uenced by the factors. Adding the
covariate and also using more than one factor, is expected to increase the goodness of �t of the model and
thereby also increase the accuracy of the estimates.[11]

Using a two-way ANOVA involves a randomized block design where the treatments are referred to factor
A and the blocks to factor B. Blocks are the levels at which we hold an extraneous factor �xed so that we
can measure its contribution to the total variation of the data. The treatments are distributed at random
within each of the blocks and each treatment appears only once in each block. The levels of the �rst factor
as well as the levels of the second factor are compared. We are primarily interested in testing the treatment
averages per block. Testing for a di�erence in block averages is equivalent to test whether the blocking
was e�ective in removing the extraneous source of variation. If there are no di�erences among the block
averages, we conclude that blocking is not e�ective in reducing the variability. In ANCOVA the focus is on
the analysis of the e�ect of the factor levels, holding the covariate constant. Adding a covariate to the model
can signi�cantly a�ect the �nal results and improve the accuracy of the model.[11]
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2.2 Test procedure

2.2.1 The hypothesis test

A hypothesis test is conducted to test on a 5% level of signi�cance whether di�erences between the averages
of the dependent variables for the di�erent levels are signi�cant, and also whether blocking on students was
e�ective in reducing variation in their average marks. The data is collected according to a randomized block
design in which the treatments are distributed at random within each of the blocks and each treatment
appears once in each block. The null hypothesis, H0 : µ1 = µ2 = µ3 = . . . = µk (equal population
averages for the treatments) is tested against the alternative hypothesis, H1 : µi 6= µj for at least one pair
i 6= j; i, j = 1, 2, . . . , k are not equal, that is at least two population averages di�er from each other.

We assume that the averages of the populations are normally distributed with a common unknown vari-
ance. We have to estimate the variance from the sample information. The total sum of squares (SST) for
the randomized block design is partitioned into three parts, namely

SST = SSA+ SSB + SSE

where,

SSA = Treatment sum of squares

SSB = Block sum of squares

SSE = Error sum of squares

The �rst source of variation is the variation between samples and is measured by the variation of the
sample averages about the overall sample mean, namely

MSA =
n1(Ȳ1 − Ȳ )2 + n2(Ȳ2 − Ȳ )2 + n3(Ȳ3 − Ȳ )

2
+ . . .+ nk(Ȳk − Ȳ )2

n− 1

=
SSA

n− 1

MSB =
n1(Ȳ1 − Ȳ )2 + n2(Ȳ2 − Ȳ )2 + n3(Ȳ3 − Ȳ )

2
+ . . .+ nk(Ȳk − Ȳ )2

n− 1

=
SSB

n− 1

These quantities are called the between-sample variations. The quantity in the numerator is denoted by
SSA, the treatment sum of squares, and the quantity in the denominator is the number of samples minus
one. We can say MSA or MSB is based on (n− 1) degrees of freedom. The total number of treatments is
denoted by n and we subtract one from it for the estimation for the overall mean.

The second source of variation is the variation within samples and it is measured by a pooled estimator
of the variance based on individual variances of all the samples, namely

MSE =

n1∑
i=1

(Yi1 − Ȳ1)2+
n2∑
i=2

(Yi2 − Ȳ2)2+
n3∑
i=3

(Yi3 − Ȳ3)3 + . . .+
nk∑
i=j

(Yij − Ȳj)k

n1 + n2 + n3 + . . .+ nk − k

=
(n1 − 1)S2

1 + (n2 − 1)S2
2 + (n3 − 1)S2

3 + . . .+ (nk − 1)S2
k

n1 + n2 + n3 + . . .+ nk − k

=
SSE

n− k
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This quantity is called the within-sample variation. The numerator is denoted by SSE, the error sum of
squares. MSE measures unexplained variation, in this case variation unexplained by the di�erences between
sample averages. MSE is based on n− k degrees of freedom. The total number of treatments is denoted by
n. We subtract k for each of the treatment averages being estimated.[11]

2.2.2 The two-way ANCOVA table

Assume that a is the number of treatments and b is the number of blocks in the following table for a
two-way ANCOVA:

Source of variation Df Sum of squares Mean sum of squares F -test statistic

Factor A (Treatments) a− 1 SSA MSA MSA
MSE

Factor B (Blocks) b− 1 SSB MSB MSB
MSE

Covariate 1 SSCov MSCov
MSCov

MSE

Error N − a− b SSE MSE

Total N − 1 SST

Table 1: Two-way theoretical ANCOVA table

The test statistic for testing the e�ect of factor A is

f =
MSA

MSE

The test statistic for testing the e�ect of factor B is

f =
MSB

MSE

The test statistic for testing the e�ect of the covariate is

f =
MSC

MSE

2.2.3 The general linear model (GLM)

A GLM for an ANCOVA is appropriate when the explanatory variables of interest are categorical, but a
continuous, observed value which is the covariate is controlled.[12] The relationship between a continuous
dependent variable y and explanatory variables x1, x2, . . . , xk can be expressed in terms of a linear regression
model,

E(y) = β0 + β1x1 + β2x2 + . . .+ βkxk (1)

where the regression coe�cients β0, β1, . . . , βk are unknown constants which have to be estimated from the
data. The explanatory variables x1, x2, . . . , xk may be categorical or a mixture of categorical and continuous
variables. It is assumed that the distribution of y within each subpopulation is normal with equal variances.
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2.2.4 E�ect size

E�ect size allow us to move beyond the simplistic �signi�cant or not� statement to a more sophisticated
�how well and with what magnitude does it work?� statement. It is valuable for quantifying the size and
e�ectiveness of an intervention and the di�erence between two groups relative to some comparison. The size
of the e�ect has practical importance in reporting and interpreting e�ectiveness. It places emphasis on the
most important aspect of an intervention, the size of the e�ect, rather than its statistical signi�cance. E�ect
size is thus the magnitude of the di�erence between groups.[4]

2.2.5 Post hoc procedures

When the null hypothesis is rejected, ANOVA gives a signi�cant result thus that not all means are equal
which indicates that at least one group di�ers on average from the other groups. Post hoc tests are conducted
as follow-up analyses when additional exploration of the di�erences among the groups are needed to provide
speci�c information on exactly which means for the speci�c groups are signi�cantly di�erent from each other,
by using pairwise comparisons, multiple pairwise comparisons or planned comparisons.[7] Various post hoc
tests can be used to compare averages. Fisher's Least Signi�cant Di�erence (LSD) test, Tukey's Honest
Signi�cant Di�erence (HSD) test, the Dunnett test, the Sidak test, the Bonferroni test and the She�é test
are some of the tests that will be explained and considered to do post hoc analyses with.

Fisher's LSD test
Fisher's LSD test evaluates the averages of the groups by using t-tests. It compares all possible pairwise

comparisons by calculating a set of individual t-tests. The LSD test shows increasing power in that it computes
the pooled standard deviation from all groups. The LSD is the smallest signi�cant di�erence between two
averages and they are declared signi�cant if their values are larger than the LSD.[12] The equation for the
LSD is,

LSD = t×
√

2×MSE

n

where t is the critical value with the associated degrees of freedom and n is the number of groups compared
and used to calculate the averages of interest.

Tukey's HSD test
Tukey's HSD test calculates a new critical value which involves the average di�erence that has to be

exceeded to achieve signi�cant results. It can be used to calculate the di�erence between all possible pairwise
averages so that each di�erence can be compared to the critical HSD value to test if the comparison is
signi�cant. All possible comparisons are required before the HSD test can be a powerful test and can be
used when sample sizes are unequal or con�dence intervals are lacking. It is conservative and therefore more
likely to detect di�erences if they exist.[15] The HSD equation can be written as

HSD = q ×
√
MSE

n

where MSE is the mean square error and n is the number of q is the studentised range statistic equated
as

q =
ȳ1 − ȳ2
MSE

and where µ1 is for example the largest mean of the two. MSE is the mean square error of the F -test
and n is the sample size of each group.
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The Dunnett test
This test is used for pairwise multiple comparisons and it's based on a t-test that compares a set of

treatments against a single control average. It compares a single group average against all other group
averages.

DDunnett = tDunnett ×
√

2MSE

n

where DDunnett is the di�erence which will be used for comparison and tDunnett is the new t-test statistic.
If the two averages are greater than DDunnett, a signi�cant di�erence between the two averages exist in which
the control average is used.[14]

The Bonferroni test
The overall error rate across statistical tests conducted on the same experimental data is known as the

familywise error (FWE) rate and it gives the chance of having made at least one Type 1 error. The FWE
rate can be calculated using the equation αFWE = 1− (1− 0.05)n where n is the number of tests carried out
on the data. This test uses t-tests to perform pairwise comparisons between group averages. The Bonferroni
correction controls the FWE by calculating a new pairwise alpha value by dividing the FWE rate by the
number of comparisons to ensure that the cumulative Type 1 error is below 0.05. Controlling the FWE
rate causes the Bonferroni test to lack power. By being more conservative in the Type 1 error rate for each
comparison, the probability of rejecting an e�ect that does actually exist (Type 2 error) is increased.[7]

The �idák test
The �idák test is also a method to control the FWE rate only when the comparisons are independent.

This test uses an adjusted p-value calculated as 1− (1− unadjusted p− value)× k, where k is the number
of comparisons in the family of comparisons.[14]

The Sche�é test
The Sche�é test computes a new critical value, (n−1)F0.05 after the number of groups that are compared

are taken into account [20]. This new value represents the critical value for the maximum possible FWE
rates. Hair et al. described the Sche�é test as conservative in cases when pairwise comparisons are the only
comparisons of interest and it also results in a higher than desired Type II error rate [12]. According to the
She�é method of multiple comparisons, two population averages are considered to be signi�cant if,

|ȳ1 − ȳ2| >
√

(n− 1)F0.05MSE(
1

n1
+

1

n2
).

3 Application

3.1 Problem description

In this report, the �nal marks of �rst year level Statistics at the University of Pretoria were analysed to
determine if the marks varies according to the years at which di�erent blended learning techniques were
implemented and therefore to evaluate whether blended learning has had any e�ect on student performance.
A hypothesis test will be conducted on a 5% level of signi�cance by comparing the averages of the �rst
year �rst semester (STK110) �nal marks for the di�erent years (treatments), using an ANCOVA test. The
continuous variable of interest is therefore STK110 �nal marks and it may be in�uenced by at least two factors
which are potential sources of variation. These factors are known s the categorical independent variables in
the model. The �rst factor in the model was the di�erent years (2011 to 2015) in which the techniques were
implemented and the block factor was language. Language was taken into consideration since the language in
which students speak at home and the language in which they receive teaching has an impact on their marks
if these two di�er from each other.[9] A new dummy variable was created called �language� which was equal
to one if the language of preference of the students is equal to their home language and zero otherwise. The
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language factor helped to try and reduce the existing unexplained variation and to test whether blocking on
students was e�ective in reducing variation in the average STK110 marks. The �rst year students' grade 12
mathematics results were used to represent the covariate, mathematics. According to the article of Chimka
et al. students with better mathematics marks are more likely to pass at tertiary level.[3] Mathematics is
therefore expected to have an in�uence on their STK110 �nal marks. Data sets will be taken from consecutive
years where a new add-on blended learning technique was implemented in each year.

In 2011 no blended learning techniques were implemented and no interventions existed. This year will
be regarded as the baseline year. In 2012 the Department of Statistics started intervening by implementing
an online platform called Aplia. Aplia is an educational technology company which can be used by students
mainly to do the homework assignments or tests after each STK110 lecture. This was a means for lecturers
to evaluate students knowledge gained during lectures. In 2013 a �ipped classroom was introduced for the
�rst time in this module. This technique required students to do online assignments in Aplia before a
STK110 lecture commenced. It was employed in order for students to be well prepared and to have a better
understanding of the content of the work beforehand. In 2014 the �ipped classroom technique was also used,
but in a more re�ned way than the previous year. Students were required to do extensive self preparation
before class, using Aplia. During the last year, 2015, more blended learning techniques were implemented. In
this year, in addition to Aplia and the �ipped classroom, clickers and Mindtap were also introduced. Clicker
is an interactive �keypad� response software tool students used to answer test questions in class where the
lecturer could immediately collect and view the responses of the entire class. Mindtap is a cloud-based and
personal learning program provided by Cengage Learning when students could access their course materials,
e-textbook, homework and quizzes, etc.

The data set received from the University of Pretoria's Bureau for Institutional Research and Planning
(BIRAP) had to be �ltered in order for the data to be usable and comparable before it could be used to do
analyses on. In order to work with STK110 mainstream date we decided to exclude any anti-semester and
winter school students. Module repeaters had to be �ltered out since we worked only with the students who
were exposed to the module for the �rst time. Students were allowed to take the module if they had a mark
of 60% or more for their grade 12 mathematics subject. Some students still managed to enter the system
with a lower mark than 60% in maths though. These students were removed from the data set as well.

To test if there is a signi�cant relationship between blended learning and students' average �nal marks
for the module, the null hypothesis, H0 : µ1 = µ2 = µ3 = µ4 = µ5 , of equal population averages is tested
against the alternative hypothesis, H1 : µi 6= µj for at least one pair i 6= j; i, j = 1, 2, 3, 4, 5 i.e. not all
population averages are equal or at least two di�er from each other. We assumed that the marks for every
year are normally distributed with a common unknown variance σ2 that has to be estimated from sample
information. The variation in the marks consists of two components namely the variation explained by the
di�erences between the �ve years as well as the variation within each of the �ve years' marks.

3.2 Results

Term N Mean Standard deviation
2011 1617 55.5708 14.1122
2012 1206 58.4784 14.0467
2013 1351 64.6462 14.774
2014 1394 61.0897 15.93
2015 1415 64.617 15.6223

Table 2: Descriptive statistics
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The data analysis for this essay was performed using SAS software, Version 9.4 of the SAS System for
Windows. Copyright © 2016 SAS Institute Inc., Cary, NC, USA. The means procedure is used in SAS
to obtain descriptive statistics in which we can evaluate the equality of variances. Techniques are robust
if they maintain their statistical properties under violations of assumptions. From the output in Table 2
it is evident that the variances are very close to each other and since the sample sizes are fairly equal, i.e.
n1 ≈ n2 ≈ n3 ≈ n4 ≈ n5 ,we relied on the robustness of the test. Assume homogeneity of variances. [5]

Source of variation Df Sum of squares Mean sum of squares F -test statistic p-value
Term 4 88088.8189 220022.2047 99.33 <0.0001

Language 1 1730.1304 1730.1304 7.8 <0.0001
Maths 1 4340.44123 4340.44123 19.58 0.0052
Error 6976 1546556.058 221.943
Total 6982 1644270.652

Table 3: Two-way ANCOVA table

A two-way ANCOVA model with �ve treatments, a blocking factor and a covariate is written, using
Equation 1 as follows:

E(y) = β0 + βAxA + βBxB + β1x1

where,

µ = β0, i.e. the intercept term in the model

xA = Factor A

(treatment i.e terms: 2011, 2012, 2013, 2014, 2015)

xB = Factor B

(language: 1 when home language=language of preference, 0 otherwise)

x1 = The covariate, i.e. grade 12 mathematics marks of students.

The F -test for the model (f=73.46) is highly signi�cant (p-value<0.0001) of Output 4 in the Appendix.
From Output 5 in the Appendix it follows that the treatment- and block factors as well as the covariate are
signi�cant. It means that the average marks of the 5 years di�er signi�cantly (f=99.33 and p-value<0.0001)
as well as the average marks for language (f=7.8 and p-value=0.0052) while controlling for the covariate i.e.
mathematics marks of students. The e�ect of the covariate is also signi�cant (f=19.58 and p-value<0.0001).

It is important to note that we are working with a large sample. Large samples imply high statistical power,
i.e. even small di�erences between groups may be statistically signi�cant. This begs the question whether
these di�erences are of any practical importance. The �e�ect size� statement in SAS is used to evaluate this
problem. Cohen suggested guidelines for interpreting speci�c e�ect size measures. These suggested levels at
which we'd describe an e�ect as either small, medium or large are 0.01, 0,06 and 0.14 respectively for partial
η2.[4] Partial η2 is an appropriate measure of e�ect size for ANCOVA to describe the practical signi�cance of
di�erences observed between each year. The partial η2 for term is 0.0558, which is a medium e�ect according
to the Cohen's guidelines. The partial η2for maths are 0.0028 and for language 0.0011. Both these variables
have small e�ects according to Cohen's guidelines. However, the University of Pretoria is a large educational
institution with a large number of students enrolled for the STK110 module. Even small increases from year
to year will still have a relatively large impact and outcomes will still remain signi�cant.
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We used the Tukey statement in SAS to determine which groups di�er signi�cantly from one another.
From SAS Output 6 in the Appendix, and from Table 1 it can be seen that there was a year-on-year increase
in the �nal mark of students, with the exception of 2013 to 2014. In this year no new intervention was
introduced. A signi�cant di�erence was found from 2011 and 2012, 2012 and 2013, and 2014 and 2015.

4 Conclusion

It can be assumed that the techniques that were implemented added substantial value since all average marks
were signi�cantly di�erent from one another. Each year's average marks increased compared to the average
marks in 2011 (the baseline year). In 2012 when Aplia was implemeted, the average marks increased. In
2013 when the �ipped classroom e�ect was introduced, the average marks increased from 2012. But in 2014,
when the e�ect of the �ipped classroom was more re�ned, the average marks decreased from 2013. The last
year, 2015, when the �ipped classroom, clickers and Mindtap were implemented, the highest average marks
had been achieved comparative to all the other years.

Since we have observed signi�cant results when applying an increasing number of blended learning tools,
we can conclude that these kind of applications will enhance student performance and learning. The statistical
method, a two-way ANCOVA, was successful in demonstrating that when more and more blended learning
techniques are implemented, student performances will be enhanced. Positive outcomes have been attained
after di�erent blended learning tools were introduced and when various interventions took place.

It can be concluded that Factor B (language) as well as the covariate (mathematics marks of students)
are useful and signi�cant predictors. Blocking was e�ective in reducing the extraneous source of variation
and thus decreasing the error term in the model. The covariate that was added to the model, improved the
accuracy of the model. To further re�ne the model, more factors can be added, for instance, a student's
gender or the area in which students live, so that the goodness of �t of the model can be increased.
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Appendix

Output 1: SAS code used to build a two-way ANCOVA model:
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Output 2: Descriptive statistics

Output 2 continued: Descriptive statistics
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Output 3: The GLM procedure

Output 3 continued: The relevant F - and p-values
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Output 4: Tukey's HSD edited test results
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Abstract

The kappa statistic (κ) was introduced by Cohen in 1960 as a measure of interrater agreement between
two independent raters who allocate a �xed amount of subjects into the same number of categories on
a nominal scale.[2, 11] Kappa has di�erent uses, advantages and disadvantages as well as important
assumptions associated with it, which will be discussed in this essay.

One of the extensions of kappa that will be discussed is weighted kappa (κw), which was developed by
Jacob Cohen in 1968 [3] as a generalisation of the kappa statistic. Weighted kappa is used in situations
where data, classi�ed into ordinal categories, are being analysed and weights need to be assigned to the
categories according to the importance of each category [3].

Another measure of interrater agreement that will be explained in this essay is Fleiss' kappa statistic,
which is an improvement upon Cohen's unweighted kappa statistic. Fleiss developed this statistic in 1971
[6] to allow for measurement of chance-corrected agreement among any constant number of raters.

Formulae to calculate these statistics will be explained in this essay. Interpretation of the results using
a practical dermatology example as well as a practical example based on data used in a doctoral thesis,
will be done.
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1 Introduction

There are two main types of agreement; interrater agreement and intrarater agreement, which di�er from each
other as follows. Intrarater agreement is the agreement that originates from the same person evaluating the
same group of subjects at di�erent points in time and the McNemar chi-square test for comparison of paired
proportions is used in this case. With intrarater agreement the k x k contingency table of joint categorical
assignment frequencies is used to calculate a contingency coe�cient, C, based on the chi-square statistic,
χ2, to measure agreement in the k categories [3]. Interrater agreement is the agreement that originates from
two or more independent raters evaluating the same group of subjects [4]. The kappa statistic is used as a
measure of this type of agreement.

In this essay, the kappa statistic (κ), introduced by Cohen in 1960 [2, 11] and the weighted kappa statistic
(κw), introduced by Cohen in 1968 [3, 11], will be reviewed. Kappa is a statistical measure used to quantify
and test for the degree of interrater agreement between two independent raters who allocate a �xed amount
of subjects into categories on a nominal scale [6].

Chance plays a prominent role in this process of categorisation and in�uences the degree of interrater agree-
ment between the raters. Cohen's kappa attempts to remove the element of chance by taking into account the
chance-expected agreement when calculating kappa, thus only measuring the interrater agreement beyond
chance [11, 4, 2]. The formulae to illustrate this will be explained as well as the advantages and disadvantages
when using kappa, di�erent uses of kappa and the interpretation of the statistic.

Weighted kappa (κw) was developed by Cohen in 1968 [3] as a generalisation of the kappa statistic. This
statistic is used in situations where data, classi�ed into ordinal categories, are analysed and weights need to
be assigned to the categories according to the importance of each category.

Fleiss addressed one of the restrictions of kappa in [6], by improving on Cohen's unweighted kappa statistic
to allow for measurement of chance-corrected agreement among any constant number of raters, instead of
just two raters. The formulae to illustrate this will also be explained.

The objective of this essay is to investigate the use and restrictions of Cohen's kappa, weighted kappa and
Fleiss's improvement of Cohen's unweighted kappa statistic. This will be done through the interpretation
of the results of a practical dermatology example and a practical example which is based on data used in a
doctoral thesis that investigated emotionally triggered involuntary violent behaviour (ETIVB).

2 Background theory

There are two uses for the kappa statistic: to test rater independence and to quantify the level of agreement1.
The kappa statistic was developed by Cohen in 1960 to measure agreement between two independent raters,
who rate a �xed amount of subjects on a nominal scale of k categories [2, 11]. Kappa is de�ned as the
agreement beyond chance divided by the total amount of possible agreement beyond chance [4]. Cohen's
kappa is limited to the case of only two raters and where the same two raters rate the same group of subjects
[6].

Cohen proposed the following assumptions for the kappa statistic [2]: all the measured units are independent
of one another, the k categories of the nominal scale are independent, mutually exclusive and exhaustive and
the investigators or raters work independently. The results can be displayed in a k x k contingency table.

The formula for calculating kappa is [10, 2, 3] :

κ =
Po − Pe

1− Pe
(1)

where Po is the observed probability of agreement, i.e. the relative frequencies in the diagonal cells of the
square k x k table and Pe is the probability of chance-expected agreement calculated by using the appropriate
marginal totals of the k x k table.

1Taken from www.john-uebersax.com, accessed on 28 February 2016.
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In the literature there are various guidelines for the interpretation of the kappa statistic. Dawson, for example,
provides the following guidelines in [4]:

Kappa Statistic Strength of Agreement

≤0.00 No agreement
0.01-0.20 Poor agreement
0.21-0.40 Slight agreement
0.41-0.60 Fair agreement
0.61-0.80 Good agreement
0.81-0.92 Very good agreement
0.93-1.00 Excellent agreement

Table 1: Kappa Guidelines

A similar table in [10] contains fewer categories. Kappa treats all disagreements equally and the magnitude
of the kappa statistic is dependent on how the categories were de�ned [3, 12]. The value of the kappa statistic
will be higher when there are fewer categories, thus in�uencing the conclusion made about the degree of
agreement of the situation being evaluated [12].

There are both advantages and disadvantages when using the kappa statistic. The advantages are that it is
relatively easy to calculate and it is suitable for measuring agreement beyond chance. One disadvantage is
that it is not often comparable among studies, because it depends on the distribution of the phenomenon
being studied2. In Cohen's case the fact that kappa is limited to only two raters can be considered as a
disadvantage since most studies include more than two raters. Another inconvenience is the restriction of
identical categories that must be used by raters when rating subjects [6].

In 1968 Cohen developed a weighted kappa statistic (κw) which is applicable in situations where ordinal data
are used. When some categories are considered more important than others, as could be argued for ordinal
data, weights are assigned to re�ect the importance among the rated conditions [3, 11]. Hence weighted
kappa is a chance-corrected proportion of agreement.

The formula to calculate weighted kappa can be derived in the following way [3] :

Starting from the formula for kappa, as de�ned in Equation 1 above,

κ =
Po − Pe

1− Pe

we de�ne a weighted proportion of observed agreement, p′o and a weighted proportion of chance-expected
agreement, p′e as follows:

p′o =

∑
wijPoij

wmax

and

p′e =

∑
wijPeij

wmax

where wij are cell weights that re�ect agreement, wmax is a maximum weight that represents complete
agreement, Poij is the proportion of the joint judgements observed in cell ij and Peij is the proportion in cell
ij expected by chance.

There are two types of agreement weights that can be used to calculate weighted kappa, namely Cicchetti-
Allison (CA) weights,

2Taken from www.john-uebersax.com, accessed on 28 February 2016.
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wij = 1− |Ci − Cj |
Ck − C1

and Fleiss-Cohen (FC) weights,

wij = 1− (Ci − Cj)
2

(Ck − C1)
2 .

CA and FC weights are de�ned for two categories, i and j, where Ci is the score attached to category i, Cj is
the score attached to category j, Ck is the score attached to the last category and C1 is the score attached to
the �rst category. Ci, Cj , Ck and C1 are table scores, that represent either the numeric value of the category
labels or the category numbers if the categories are of character type.[8]

The only di�erence between the CA and the FC weights is that the CA weights use the absolute value of the
di�erence between the scores of the two categories, i and j, and the FC weights use the squared value of the
di�erence between the scores of the two categories, i and j.

Replacing the unweighted proportions in the basic formula for kappa, Equation 1, with the above proportions
of weighted agreement yields

κw =
p′o − p′e
1− p′e

(2)

The agreement weight, wij , is a positive weight determined by a panel of experts or the investigator's own
judgement. This weight should be determined before the collection of data and should yield a ratio scale.

An example of such a ratio weight is to assign a maximum weight of one for perfect agreement on the diagonal
values of a 6 x 6 table and a minimum weight of 0 representing no agreement. [3]

Fleiss addressed the restriction of two raters in [6] by improving on Cohen's unweighted kappa statistic to
allow for the measurement of chance-corrected agreement among any constant number of raters. Fleiss' kappa
statistic is an extension of Scott's π-statistic for two raters and not, as is generally believed, a generalisation
of Cohen's kappa statistic. The di�erence between Cohen's kappa and Scott's π is in the way Pe is calculated:
Cohen's kappa calculates the expected frequency as the sum of the products of the row and column categories
while Scott's π measures the likelihood of agreement by chance, i.e. the sum of the squared averages of the
column and row totals [8]. For this Fleiss kappa, the constant number of raters need not necessarily be the
same group of raters for each subject, but may be randomly chosen from a group of raters.[6]

The formula that Fleiss developed is :

κf =
P̄ − P̄e

1− P̄e

where P̄ is the overall extent of agreement over all the subjects and P̄e is the mean proportion of chance-
expected agreement.[6]

The overall extent of agreement, P̄ , is calculated with the following formula:

P̄ =
1

N

N∑
i=1

Pi

and the mean proportion of chance-expected agreement, P̄e, is calculated as follows:

P̄e =

k∑
j=1

p2j

pj is the proportion of all assignments to the jth category and is calculated with:
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pj =
1

nN

N∑
i=1

nij

where N is the total number of subjects, n is the number of ratings per subject and nij is the number of
raters who assigned the ith subject to the jth category.

A number of di�erent indices to quantify interrater agreement on binary data exists, as discussed by Fleiss
in [7]; for example three indices developed by Goodman and Kruskal, two indices developed by Rogot and
Goldberg, an index by Armitage et al. as well as indices developed by Cohen and Fleiss. Among these
authors there was no consensus that chance-expected agreement should be incorporated into the assessment
of interrater agreement. The value expected by chance of the majority of these indices yield kappa as the
chance-corrected method of agreement.

In 1977 Landis and Koch realised that the rater himself could also be a source of measurement error that
could cause interobserver bias. The interested reader is referred to [7].

3 Application

3.1 Evaluating two raters

In this section a practical dermatology example, from SAS/STAT® 13.2 User's Guide3 in The FREQ Proce-
dure Agreement Study example, will be discussed to illustrate the use of Cohen's kappa and weighted kappa
statistics.

3.1.1 Problem setting for two raters

Medical researchers want to evaluate a new treatment for a skin condition. Two dermatologists (raters)
examined the same group of 88 patients who used this new treatment and evaluated their skin condition by
classifying the patients into one of four categories.

The results are shown in Table 2:

Dermatologist 1 Dermatologist 2

Clear Marginal Poor Terrible Total
Clear 13 6 2 0 21
Marginal 5 12 4 2 23
Poor 2 12 10 5 29
Terrible 0 1 4 10 15

Total 20 31 20 17 88

Table 2: Four categories of skin conditions

To test the e�ect of fewer categories on the values of kappa and weighted kappa, the 'poor' and 'terrible'
categories of Table 2 were merged into one category labelled 'bad', resulting in a table with three categories
(see Table 3).

3The data analysis for this essay was performed using SAS software, Version 9.4 of the SAS System for Windows. Copyright

© 2016 SAS Institute Inc., Cary, NC, USA.

9



Dermatologist 1 Dermatologist 2

Clear Marginal Bad Total
Clear 13 6 2 21
Marginal 5 12 6 23
Bad 2 13 29 44

Total 20 31 37 88

Table 3: Three categories of skin conditions

The 'clear' and 'marginal' categories were then merged into one category labelled 'normal', in order to have
a table with two categories (see Table 4).

Dermatologist 1 Dermatologist 2

Normal Bad Total
Normal 36 8 44
Bad 15 29 44
Total 51 37 88

Table 4: Two categories of skin conditions

3.1.2 Results

Interrater measures like kappa and weighted kappa were calculated, using SAS software, for each of the three
tables above (Tables 2 to 4). The weighted kappa statistics were calculated using the Fleiss-Cohen agreement
weights from Table 7. The code of the SAS programme appears in the Appendix.

The interrater measures, based on Tables 2 to 4, are summarised in Table 5:

Statistic Number of categories

Four Three Two
Kappa 0.3449 0.3996 0.4773
Weighted kappa 0.6607 0.3113 0.4773

Table 5: Cohen's kappa and weighted kappa values

The two di�erent ways to calculate the agreement weights wij , used in the formula to calculate weighted
kappa for interrater agreement in Tables 2 and 3, were also investigated and the results are shown in Tables
6 and 7:

Dermatologist 1 Dermatologist 2

Clear Marginal Poor Terrible
Clear 1 0.6667 0.3333 0
Marginal 0.6667 1 0.6667 0.3333
Poor 0.3333 0.6667 1 0.6667
Terrible 0 0.3333 0.6667 1

Table 6: Cicchetti-Allison agreement weights for the four categories of skin conditions in Table 2
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Dermatologist 1 Dermatologist 2

Clear Marginal Poor Terrible
Clear 1 0.8889 0.5556 0
Marginal 0.8889 1 0.8889 0.5556
Poor 0.5556 0.8889 1 0.8889
Terrible 0 0.5556 0.8889 1

Table 7: Fleiss-Cohen agreement weights for the four categories of skin conditions in Table 2

3.1.3 Interpretation and discussion

From Table 2 the exact agreement can be calculated as 45
88 , i.e. 0.5114, by using the counts on the diagonal.

The exact agreement value was calculated without taking the element of chance into account, whereas Cohen's
kappa statistic represents agreement beyond chance and is equal to 0.3449 for four categories of skin conditions
(From Table 5). This value of Cohen's kappa would lead to the conclusion that there is slight agreement (see
Table 1) between the ratings of the two dermatologists.

Figure 1: Agreement plot for four categories of skin conditions

The agreement between the two dermatologists is shown visually in Figure 1 (from the SAS output). The
dark blue blocks represent the exact agreement values as seen on the diagonal of Table 2 and the light blue
blocks represent the o�-diagonal partial agreement values in Table 2.

From the results in Table 5 it can be seen that the value of the kappa statistic increases when reducing the
number of categories. For four categories of skin conditions the value of Cohen's kappa is 0.3449. When
the categories are combined into three categories of skin conditions, it can be seen that the value of Cohen's
kappa is 0.3996, indicating an increase in the kappa value and slight agreement between the ratings of the two
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dermatologists. In the last case of two categories of skin conditions, it can be seen that the value of Cohen's
kappa is 0.4773, which is again higher than the two previous cases, indicating fair agreement (see Table 1)
between the ratings of the two dermatologists. Using two categories of skin conditions instead of three or
four categories, resulted in a higher value of the kappa statistic and thus a more favourable conclusion of a
higher degree of agreement between the ratings of the two dermatologists, as mentioned in Section 2.

From Table 5 it is also clear that the value of Cohen's weighted kappa statistic decreases when reducing the
number of categories. Weights are assigned to the categories according to the importance of each category.
For four categories of skin conditions the value of weighted kappa is 0.6607 and for three categories of skin
conditions the value of weighted kappa is 0.3113. For two categories of skin conditions the value of kappa
and weighted kappa are the same and equal to 0.4773. Researchers should thus be cautious when deciding on
the amount of categories for the interpretation of results, due to the fact that it can in�uence the conclusion
made about the degree of agreement present.

The Cicchetti-Allison and Fleiss-Cohen agreement weights are shown in Tables 6 and 7. It is clear from Table
7 that the Fleiss-Cohen weights are bigger than the Cicchetti-Allison weights in Table 6, thus the decision of
agreement weights will also in�uence the value of the weighted kappa statistic.

3.2 Evaluating more than two raters

In this section a practical example, based on a portion of data used in a doctoral thesis that investigated
emotionally triggered involuntary violent behaviour (ETIVB), will be discussed to illustrate the use of Fleiss'
kappa.

3.2.1 Problem setting for more than two raters

An ETIVB-instrument, comprising several sets of criteria as an assessment tool, was developed by Joubert
in [9]. In his thesis Joubert investigated ETIVB with this instrument. Part of the study also consisted of
evaluating the instrument's reliability. In his study 25 psychiatrists (raters) used the ETIVB list of criteria to
determine whether a patient's behaviour can be classi�ed as ETIVB. Several patients were evaluated in the
study; in this section I will be considering only two of these patients (patient A and patient B). Furthermore,
only one set of the criteria (F1 to H1) was considered in order to investigate Fleiss' kappa and the agreement
of the 25 psychiatrists with regards to the classi�cation of the criteria into one of the four categories: met,
not met, uncertain or not applicable.

3.2.2 Results

The classi�cation of the criteria, by the 25 raters, into one of the four categories, is as follows for each of the
two patients:

Criteria Categories for classi�cation of criteria
Met Not Met Uncertain Not Applicable

F1 25 0 0 0
F2 17 6 1 1
F3 21 4 0 0
F4 24 0 1 0
F5 22 1 2 0
G1 2 22 0 1
H1 11 14 0 0

Total
122 47 4 2

175

Table 8: Rater classi�cation for patient A
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Criteria Categories for classi�cation of criteria
Met Not Met Uncertain Not Applicable

F1 0 22 0 3
F2 0 22 0 3
F3 0 22 0 3
F4 0 21 2 2
F5 0 21 1 3
G1 1 23 0 1
H1 6 17 1 1

Total
7 148 4 16

175

Table 9: Rater classi�cation for patient B

Tables 8 and 9 were used to calculate Fleiss' kappa for both patients, using Fleiss' formula in Section 2, and
summarised in Table 10:

Statistic Patient A Patient B

Kappa 0.4096 0.0122

Table 10: Fleiss' kappa value for each patient

3.2.3 Interpretation and discussion

The results from the SAS/IML code, refer to the Appendix, are presented in Table 10. The results in Table
10 indicate that for patient A there was fair agreement among the 25 raters when they classi�ed the criteria
for patient A, since the value of Fleiss' kappa is 0.4096. For patient B the value of Fleiss' kappa is 0.0122,
which means there was poor agreement among the 25 raters when they classi�ed the criteria for patient B.
This result for patient B is contradicting the results from Table 9, which show that 85% (148/175) of all
the ratings �agreed� that the criteria were not met and thus also that the majority of raters agreed that
the criteria were not met. A better value for the measure of agreement than that of the result of Fleiss'
kappa (0.0122) was thus expected. As seen from the results of patient B, Fleiss' kappa can be �awed. This
shortcoming is not unique to this study and dataset, Cicchetti and Feinstein have also found this shortcoming
and discussed it in [5] and [1]. When evaluating the results of any study it is therefore very important to
evaluate the value of the statistic, together with the data itself, in order to detect any shortcomings as seen
in the case of patient B.

4 Conclusion

This essay sought to provide a basic overview of Cohen's weighted and unweighted kappa as well as Fleiss'
kappa, which are all measures of interrater agreement. The background, use, advantages and disadvantages
of these statistics were discussed. Cohen's weighted and unweighted kappa statistics are limited to the case
of only two raters and where the same two raters rate the same group of subjects [6]. Fleiss addressed
the restriction of two raters in [6] by improving on Cohen's unweighted kappa statistic to allow for the
measurement of chance-corrected agreement among any constant number of raters.
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As seen in the essay, both of these statistics have shortcomings that need to be kept in mind when performing
a study that involves measuring agreement. In the case of Cohen's kappa and weighted kappa the number
of categories should be carefully considered since they can in�uence the value of the kappa statistic and thus
the conclusion made about the degree of agreement between the raters. In the case of Fleiss' kappa it is
possible to obtain a low value for the kappa statistic even though it is clear from the data that there is a
high level of agreement among the raters.

Various other measures for evaluating not only interrater but also intrarater agreement are available. This
essay only focussed on three measures of agreement, but as mentioned in Section 1 and 2, other measures
that can be used are the McNemar chi-square statistic or Scott's π statistic.

The three statistics discussed in this essay are therefore not the only measures of agreement but the most
common ones used to evaluate agreement, especially in medical practice. It would not be wise to compare
these statistics among di�erent studies as the number of categories for Cohen's kappa or raters for Fleiss'
kappa may di�er among the studies. In any study it is very important to consider the data together with the
results when interpreting them and coming to a conclusion. Any discrepancies that might be found should
be stated.
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Appendix

See the SAS code used for the examples, discussed in the practical application section, below.

Evaluating two raters

/****** Calculating kappa and weighted kappa for more than two categories *******/

/************************ Four Categories (Table 2) *****************************/

data Ex1;

input Dermatologist_1$ Dermatologist_2$ Count @@;

datalines;

terrible terrible 10

terrible poor 4

terrible marginal 1

terrible clear 0

poor terrible 5

poor poor 10

poor marginal 12

poor clear 2

marginal terrible 2

marginal poor 4

marginal marginal 12

marginal clear 5

clear terrible 0

clear poor 2

clear marginal 6

clear clear 13

;

run;

ods graphics on;

proc freq data=Ex1 order=data;

tables dermatologist_1*dermatologist_2 /Agree(WT=FC) printkwt plots=agreeplot;

weight Count;

run;

ods graphics off;

*To calculate weighted kappa using CA weights the (WT=FC) option in the TABLES

statement was left out;

*The plots option generates the agreement plot and the printkwt option prints

the weights used to calculate weighted kappa;

/************************** Three Categories (Table 3) **************************/

data Ex2;

input Dermatologist_1$ Dermatologist_2$ Count @@;

datalines;

clear clear 13

clear marginal 6

clear bad 2

marginal clear 5

marginal marginal 12

marginal bad 6

bad clear 2
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bad marginal 13

bad bad 29

;

run;

proc freq data=Ex2;

tables dermatologist_1*dermatologist_2 / Agree score=table printkwt;

weight Count;

run;

/************************** Two Categories (Table 4) ****************************/

data Ex3;

input Dermatologist_1$ Dermatologist_2$ Count @@;

datalines;

normal normal 36

normal bad 8

bad normal 15

bad bad 29

;

run;

proc freq data=Ex3;

tables dermatologist_1*dermatologist_2 / Agree(WT=FC) score=table printkwt;

weight Count;

run;

Evaluating more than two raters

/********************************* Fleiss kappa *********************************/

PROC IMPORT OUT= WORK.fleiss

DATAFILE= "C:\Users\Cairstine\Documents\University\2016\Re

searchReport\PracApplication\Joubert_Data\CdK Joubert_1_Edited_7 Dec 201

2_1.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

proc format;

value aa 1= Met

2= Not_met

3= Uncertain

4= Not_applicable;

run;

proc print data=fleiss;

format F1 F2 F3 F4 F5 G1 H1 aa.;

run;

proc freq data=fleiss;

tables patient*(F1 F2 F3 F4 F5 G1 H1)/nopercent norow nocol;

format F1 F2 F3 F4 F5 G1 H1 aa.;
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run;

proc iml;

n=25;

NN=7;

*Frequency Table --> Patient A;

A={25 . . .,17 6 1 1,21 4 . .,24 . 1 .,22 1 2 .,2 22 . 1,11 14 . .};

Total_A=A[+,];

Sum_A=Total_A[,+];

Print 'Classification for Patient A',, A, Total_A, Sum_A;

A2=A##2;

Sum_A2=A2[,+];

print A2, Sum_A2;

Pi_A=(1/(n*(n-1)))*(Sum_A2-J(nrow(Sum_A2),1,n));

print Pi_A;

P_bar_A=(1/NN)*(Pi_A[+,]);

print P_bar_A;

Pj_A=Total_A/Sum_A;

Pj_A2=Pj_A##2;

print Pj_A Pj_A2;

Pbar_e_A=Pj_A2[,+];

print Pbar_e_A;

Kappa_A=(P_bar_A-Pbar_e_A)/(1-Pbar_e_A);

print "Fleiss's kappa for patient A", Kappa_A;

*Frequency Table --> Patient B;

B={. 22 . 3, . 22 . 3, . 22 . 3, . 21 2 2, . 21 1 3, 1 23 . 1, 6 17 1 1};

Total_B=B[+,];

Sum_B=Total_B[,+];

Print 'Classification for Patient B',, B, Total_B, Sum_B;

B2=B##2;

Sum_B2=B2[,+];

print B2, Sum_B2;

Pi_B=(1/(n*(n-1)))*(Sum_B2-J(nrow(Sum_B2),1,n));

print Pi_B;

P_bar_B=(1/NN)*(Pi_B[+,]);

print P_bar_B;

Pj_B=Total_B/Sum_B;

Pj_B2=Pj_B##2;

print Pj_B Pj_B2;

Pbar_e_B=Pj_B2[,+];

print Pbar_e_B;

Kappa_B=(P_bar_B-Pbar_e_B)/(1-Pbar_e_B);

print "Fleiss's kappa for patient B", Kappa_B;

quit;
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Abstract

In the real world, the e�ectiveness of text classi�cation models -like support vector machines and logistic

regression- are highly dependent on the quality and structure of the training data set. In practice unla-

belled data are in abundance, as opposed to labelled data, which are the usual standard when it comes to

building a classi�er. Semi-supervised methods for classi�cation do exist, although some of them do not

perform as well in practice as the theory behind them would suggest.

This paper evaluates speci�c methods for classi�cation of unlabelled text data by determining how e�ective

they are when compared to a standard supervised learning method such as the support vector machine.

Two independent, fully labelled data sets will be used in order to evaluate these methods and determine

if it is at all possible to apply them in the real world.
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1 Introduction

Binary text classi�cation using semi-supervised methods will form the main focus of this report. Large
amounts of data are available thanks to modern technology but the challenge with the available data is that
the data are typically unlabelled; in other words, there is no corresponding label or class on raw data (e.g.
stating that the sentiment of a tweet is positive). Usually, when supervised classi�cation is taking place, it
means that a human being had to manually label the training data set. This can be tedious and expensive in
terms of time and money. Naturally the solution would be to use as little labelled data as possible without
compromising on the performance of the model. This is exactly what will be attempted in this report. The
experimental application will consist of applying several semi-supervised learning algorithms on a data set
containing tweet text along with sentiment labels. The algorithms are applied using varying amounts of
labelled data and the results are compared to a logistic regression performed on the same data, as well as
two supervised models.

The topic of the tweets to be used in the experimental application will be similar to that of Charalam-
pakis et al. [2], where they classi�ed political tweets in Greece as ironic or not. Their hypothesis was that
humorous political tweets could be used to predict election results and their approach was semi-supervised
since they did not have a lot of labelled data at their disposal. They used collective learning algorithms
(collective classi�cation) in order to take both labelled and unlabelled data into account and in the end, they
compared it to previous research they conducted using supervised classi�cation. The same methods will not
be implemented in this report. The concept of using semi-supervised techniques is very similar, however this
report will classify sentiment in tweets rather than irony.

In order to discuss some of the options available to us in the realms of semi-supervised classi�cation us-
ing support vector machines (SVMs), it is important to start at the beginning. In 1995, the concept of SVM
was born thanks to Cortes & Vapnik [3]. Conceptually, SVMs non-linearly map input vectors onto a high-
dimensional space. In our case, these vectors will represent the text documents (tweet text). When vectors
are mapped, a linear decision surface is constructed, onto which a separating hyperplane is mapped as well.
In the case of two-way classi�cation, this hyperplane will separate the vectors of the two classes. In order for
the hyperplane to be optimal and generalised, it needs to be a linear decision function that maximises the
distance between the closest vectors from the di�erent classes. Their algorithm for support vector networks
proved to work quite well, even relative to other classical algorithms. This, along with other properties like
capacity control and the ease of changing the implemented decision surface make SVMs quite capable as
general machine learning models.

Building on what Cortes & Vapnik [3] created, Joachims [6] went a step further in an attempt to improve
what was already a very solid and reliable binary-classi�er. Joachims introduced Transductive Support Vec-
tor Machines (TSVMs) speci�cally for text classi�cation as a solution to the problem of manually labelling
data. An SVM can perform transduction by �nding the optimal hyperplane with respect to both labelled
and unlabelled data [16]. This makes it an ideal method for semi-supervised classi�cation. The inductive
approach (standard SVM) attempts to induce a decision function with a small error onto the entire collection
of examples for a particular task, which means it can generalise to independent data sets; while the goal of
the transductive approach is simply to classify a set of examples while generating the fewest errors possible,
not regarding the decision function at all. TSVMs are especially e�ective on short text (like tweets), and
in some cases, according to Joachims [6], reduces the amount of labelled data required by a factor of 20.
TSVMs excel at using the speci�c statistical properties of text and use the margins of separating hyperplanes
to encode prior knowledge into the model. It should be noted that TSVMs cannot be generalised to be used
on independent data due to its design.

Acquiring unlabelled data in very large quantities is not very di�cult, the issue is how to use it. Thus,
determining the value of unlabelled data under certain classi�cation models is vital. Zhang & Oles [17]
approached their analysis of unlabelled data from a statistical point of view, given the assumption that the
correct model of the underlying statistical distribution is given. They used Fisher information matrices to
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evaluate the asymptotic value of the unlabelled data and applied this methodology to active learning as well
as passive partially supervised learning. According to their paper, SVMs are not quite suited to passive par-
tially supervised learning, however, that is not the case with active learning, where their experiments showed
that SVMs are de�nitely suitable for active learning. With active learning, an algorithm selects unlabelled
observations and requires the user to input the label so that it can train further. With that in mind, Tong &
Koller [16] introduced an active learning SVM model in their paper Support Vector Machine Active Learning
with Applications to Text Classi�cation. They described pool-based active learning as a procedure in which
the learner/model has a pool of unlabelled instances available to it, from which it can request labels. Thus,
the algorithm they proposed is useful for choosing which instance the model should request next. The hope
was that the additional �exibility added by a learner that can actively choose the training data would lessen
the thirst for large amounts of labelled data. The next issue was to ensure that the learner would request
good labels or queries from the pool. For this, they [16] suggested TSVMs, where the performance of the
model is evaluated on the original test set rather than a new, independent one. Tong & Koller[16] used three
algorithms and all three of them led to improvements for both SVMs and TSVMs.

In their paper, Li & Lui [10] discussed a special case of semi-supervised text classi�cation, where there
exists two sets of documents. Assuming a binary classi�er, one document set contains unlabelled data, and
the other one contains data which is labelled as only one of the two classes (i.e. semi-supervised due to the
lack of a second class). Let the unlabelled document set be U , and the labelled document set be P (positive).
Note that while P only contains documents of class P , document set U contains unlabelled documents that
may belong to either of the possible classes. Now, given U and P , the objective is to build a model that can
classify documents in U as either P or �not P � (let it be N , for negative). The proposed solution by Li & Lui
[10] was to use the Rocchio1 classi�er to extract some reliable negative documents (RN) from U and then
use an SVM iteratively for building a classi�er. Two main methods that were used:

1. Standard Rocchio: Is treated U as only negative documents and then used P and U as training sets
to train the Rocchio classi�er. The classi�er was then used to classify U and the negative documents
were denoted by RN (reliable negative documents).

2. Rocchio with clustering: It was used when the decision boundary was non-linear which might have
caused Rocchio to extract some positive documents from U and put them into RN . The point of the
clustering was to further purify RN . To summarise, the k -means algorithm [4] was used to cluster RN
into k clusters. Then Rocchio was used to build a classi�er using each cluster and P . The idea was
that the classi�er will �nd positive documents in the clusters and remove them.

These methods derive the �nal negative sets RN and RN' respectively. An SVM was used to build the �nal
classi�er, using P as the positive training set and RN or RN' as the negative training set. Implementing and
evaluating these methods used by Li & Lui [10] form the main focus of this paper.

1Note: Rocchio method is in essence Nearest Centroid classi�cation using TF-IDF vectors[13].
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2 Background Theory

Basic de�nitions:

Hyperplane: A hyperplane is a �at subspace of dimension n− 1 in an n-dimensional vector space (e.g. in
a 2-dimensional space, a hyperplane is a line)[5].

Margin: In the context of support vector machines, a margin is the distance between a hyperplane and
the closest examples / observations [15].

Kernel: A function that can quantify the similarity / relationship between two data points or vectors.
Kernels can have multiple uses. An example would be a kernel of the form

κ (xi,x
′
i) = (1+

P∑
j=1

xijx
′
ij)

d

which is a polynomial kernel used for enlarging feature space [4].
Confusion matrix: A summary of classi�cation performance with respect to some test data. Matrix con-
tains four cells, true positive (TP), false positives (FP), true negatives (TN) and false negatives (FN) [15].

Precision (Positive Predictive Value): The proportion of correct positive predictions relative to total posi-
tive predictions [15]:

Precision = TP/(TP + FP )

Sensitivity (Recall / True Positive Rate): Proportion of correct positive predictions to the total actual
positive values [15]:

Recall = TP/(TP + FN)

Speci�city: (True Negative Rate): Proportion of correct negative predictions to the total actual negative
values [15]:

Specificity = TN/(TN + FP )

False Positive Rate: (1-Speci�city): Proportion of incorrect negative predictions to the total actual nega-
tive values [15]:

FPR = 1− TNR = 1− Specificity

F1-score: Used in evaluating the prediction accuracy in binary classi�cation. Calculated as the harmonic
mean between recall and precision (also tends toward the lower of the two values) [15].

F1 =
2TP

2TP + FP + FN

AUC: Area under curve. Empirical evaluation of classi�er performance. AUC is the area under an ROC
curve [15].

ROC curves: A graph plotting the trade-o� between Sensitivity (True Positive Rate, TPR) and the False
Positive Rate (FPR) for di�erent threshold values for a model's decision function [15].
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Cross-validation: Cross-validation is a resampling method used to evaluate a model's performance by
estimating the test error associated with the model [5]. K-fold cross-validation partitions data into k samples
(S1 → Sk), called folds. Then the learning method is applied k times (i = 1 to k), using Sias the test set
and the union of all other folds as the training set [15].

2.1 Document classi�cation

In order to classify text, it should be possible to mathematically compare two documents. To do this, one
can use kernels. In this report, the kernel that will be used to compare documents is the cosine similar-
ity. For comparing two documents, xi and xi′ , the cosine similarity, when using a bag-of-words document
representation, can be written as the kernel function

κ (xi,xi′) =
xTi ·xi′
||xi|| ||xi||

where xij is the number of times the word j appears in document i. The kernel function above measures the
cosine of the angle between the two documents, where the documents are represented by vectors. Note that
0 ≤ κ (xi,xi′) ≤ 1 since the document xiis a count vector. From this, it is clear that if the kernel is zero, the
vectors are orthogonal, and have no words in common [12].

This method is not ideal, because:

1. Non-discriminative words such as �the� and �a� may increase similarity between documents, even if
documents aren't similar at all (Also known as stop words).

2. A document's similarity may be boosted (arti�cially) due to the same word occurring multiple times.

The above issues can be solved by replacing the count vectors with TF-IDF (term frequency - inverse docu-
ment frequency) vectors [12].

Term frequency,

tf(xij) ≡ log (1 + xij)

reduces the impact of the second point above, while inverse document frequency,

idf(j) ≡ log
N

1+
N∑
i=1

II (xij > 0)

where N = number of documents
and the denominator counts documents containing j.

Finally, we have:

tfidf(xi) ≡ [tf(xij)× idf(j)]Vj=1

New kernel:

κ (xi,xi′) =
Φ(xi)

T ·Φ(xi)
||Φ(xi)|| ||Φ(xi′)||

where Φ(x) = tfidf(x) [11].
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TF-IDF scores assigns a weight to term j in document i given by the formula mentioned above. This
weight is:

1. Highest when j occurs frequently in few documents (i.e. unique and discriminating).

2. Lower when j appears less frequently in a document or appears across many documents.

3. Lowest when j appears in all documents.

Simply put, every document is a vector with a weighted value corresponding to each term in the dictionary.
Naturally, when a term does not occur in a document, the weight is zero [11].

This representation of document vectors, in one vector space, is known as the vector space model. Fol-
lowing from the fact that document vectors are length-normalized, there exists a direct relationship between
cosine similarity and euclidean distance calculations. In fact, it hardly matters which of these metrics are
used to determine the relation between two documents in a vector space [11]. The vector space model is very
important going forward since Rocchio and SVM are both vector space classi�ers.

2.2 Rocchio classi�er

The Rocchio classi�er is based on the Rocchio algorithm for relevance feedback. In the case of the classi�er,
instead of having to classify something as relevant or not, it can be used to classify something as positive or
not-positive. It is extensively used for text classi�cation (with TFIDF vectors used as features) [7]. Essen-
tially it computes a prototype vector pc for each class c, where the prototype vector is the average of the
document vectors in either class. In order to classify a new document, it calculates the distance between
the unlabelled document and the prototype vectors, and classi�es according to the closest prototype vector.
These prototype vectors serve the same purpose as centroids in nearest centroid classi�cation. The average or
median value within a cluster is usually used as a centroid [11]. It is assumed that the vectors of documents
of the same class form a cluster.

Figure 1a from [11] illustrates what a Rocchio classi�cation would look like. In this illustration, there
are 3 classes with the feature vectors plotted onto a 2-dimensional space. The lines separating the vectors
from the di�erent classes are called decision boundaries. A simple example of classifying a new observation
would be to classify it according to which boundary it falls into (e.g. the star would be classi�ed as China).
Thus it is clear that, in order to classify a new observation, class boundaries need to be constructed. Rocchio
classi�cation uses the centroids of each class to de�ne the decision boundaries. Let c be the class, then it's
centroid is calculated as either the average across the vectors or the median, as mentioned above.

In Figure 1a, the centroids are denoted by bold dots. The set of observations that are equal distance
from two centroids form the class boundaries. This can be seen in the �gure, represented by |a1| = |a2| and
so on. These lines can also be referred to as separating hyperplanes.

Using Rocchio for classi�cation is quite simple. Initially, the normalised document vectors of both classes,xi
& xj , (in the case of binary classi�cation) are summed up. Then, the prototype vector is computed as:

w =
1

|i : yi = +1|
∑

i:yi=+1

xi − β
1

j : yj = −1
∑

j:yj=−1
xj

where β adjusts relative impact of training examples from both classes.

A β-value of 0.25 is recommended. As required by Rocchio, all elements wi < 0 in vector w are set to
zero. Using this classi�cation rule to classify a new document x, one computes the cosine between vector w
and vector x [7]. If the vectors are similar, x is classi�ed as �relevant� (whichever one of the classes it may
be), and if not, classi�ed as the other class.
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The Rocchio classi�er that will be used in the semi-supervised classi�cation algorithms in this paper is
very similar to the one mentioned above. It will be discussed in the next section.

The motivation for using Rocchio given by Li & Lui [10] is that the unlabelled document set U will ex-
hibit the following characteristics:

• The ratio of positive documents to negative documents in the unlabelled set U , is small, which means
it doesn't a�ect the centroid c all too much.

• The negative documents in the unlabelled set U are of a wide range of topics, which means they cover
a signi�cant area in the vector space.

• Topics covered by the positive documents in the positively labelled set P are not as diverse, thus
covering a much smaller area in the vector space.

Given the above, assume that there exists a decision boundary S that perfectly separates the positive and
negative documents. Take note that from here on out the centroid will be replaced by a prototype vector,
which serves the same purpose (as mentioned above) [11]. This means that the prototype vector for the
positive class c+ will be much closer to S relative to the prototype vector for the negative class c−, due
to vector summation. After applying the similarity calculation, a few negative documents from U will be
classi�ed as positive because they are closer to the prototype vector for the positive class. Thus, Rocchio
extracts negative documents with high precision, and positive documents with low precision (but high recall).
The Rocchio algorithm used by Li & Lui [10] is explained in section 2.4.1, under Algorithm 1.

(a) Rocchio classi�cation [11] (b) SVM classi�cation [11]

Figure 1: Illustrations of Rocchio and SVM

2.3 Support vector machines

SVMs are a group of algorithms that can be implemented in classi�cation and regression problems. On
a basic binary classi�cation level, SVMs map a hyperplane that separates data from the two classes while
maximising the margin between the nearest observations. SVMs have very generalisation capabilities, which
means once the classi�er is trained it can easily be used on an independent data set, and they also support
specialised optimisation methods which means that they are able to be trained e�ciently on large quantities
of data [15].

Maximum margin hyperplane Support vector machines are a generalisation of the maximum margin
classi�er. The maximum margin classi�er uses a separating hyperplane (a hyperplane that divides the data
between their respective classes) to form a decision function over the observed data. Since the data are
linearly separable, an in�nite amount of separating hyperplanes exist. So in the case of the maximum margin

11



classi�er, we use the maximum margin hyperplane, also known as the optimal separating hyperplane. This
is the hyperplane that is furthest from all the data points from both classes. The distances between the
hyperplane and all the data points are calculated, and the smallest observed distance forms the margin. So,
as the name suggests, the maximum margin classi�er attempts to maximise the margin. Put di�erently, the
optimal hyperplane is the one for which the margin is maximised. In Figure 1b [11] the maximum margin
hyperplane is found to form the decision function of the maximum margin classi�er. The data points that lie
on the margin are referred to as support vectors. Note that these support vectors are the only observations
that a�ect the maximum margin hyperplane. In order to compute the maximum margin hyperplane, one
has to solve a restricted optimisation problem. This optimisation problem involves maximising the margin
subject to some constraints[10]. One drawback of the maximum margin classi�er is that it is extremely
sensitive to a change in the data points because no observations are allowed to fall within the margin. Even
a single data point could throw it o�. To solve this problem, consider a classi�er that does not perfectly
separate the data.

Support vector classi�cation Support vector classi�ers do not perfectly separate the observations as the
maximum margin classi�er did. This makes it more robust and better at classifying most of the training
observations. The support vector classi�er works largely the same as the abovementioned classi�er. It also
generates a hyperplane in order to separate all the data, however, it is not restricted to classifying every single
training observation correctly. Support vector classi�ers follow the same constrained optimisation problem
as the maximum margin classi�er did, but for a small di�erence. There is an added tuning parameter which
allows for slack variables to be added to the constraints. The role of the slack variables is to allow for some
of the observations to be on the inside of the margin and on the wrong side of the hyperplane, while the
role of the tuning parameter is to �tune� amount and the magnitude of the violations caused by the slack
variables[5].

Support vector machines The main di�erence between SVMs and the two classi�ers mentioned above
(it can be argued that all three of these classi�ers together form SVMs), is that both the maximum margin
classi�er and the support vector classi�er relies on the observations from the two classes to be linearly
separable. Linearly separable data is not that common in practice, though. SVMs are an extension of the
abovementioned methods, generalising them and applying them to data where the data points between the
classes are not linearly separable (as of yet). SVM's use kernels to add dimensions to the current feature
space in an attempt to be able to separate the observations from the two classes in a non-linear fashion. The
kernel approach is best for this because of its e�ciency in its computations [5]. Thus, SVM's are maximum
margin classi�ers with added �exibility for slack variables (by softening what is meant with separating) and
the ability to separate non-linearly separable data by making use of kernels [4].

Mathematically Consider the training set {(xi, yi)}ni=1 where xi ∈ Rp is the feature vector for the ith

example in p dimensions, with corresponding labels yi ∈ {1,−1}. Assume for now that the observations
are linearly separable, and let f (X) = β0 + β1X1 + β2X2 + . . . + βpXp be the equation for the separating
hyperplane [4]. Then:

f (x) > 0 for points on one side of the hyperplane (yi = +1)

f (x) < 0 for points on the other side of the hyperplane (yi = −1)
f (x) = 0 for points on the hyperplane

Thus, β0 + β1X1 + β2X2 + . . . + βpXp = 0 is the separating hyperplane. As before, the objective is to �nd
the optimal separating hyperplane, in other words the one that maximises the margin. This is a constrained
optimisation problem. Equation (1) and (2) below represents the relevant constraints:
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max
β0,β1,...,βp

M subject to:

p∑
j=1

β2
j = 1 (1)

yi(β0 + β1Xi1 + β2Xi2 + . . .+ βpXip) ≥M (2)

with

M = distance of ith point from current hyperplane (de�ned by βj 's)

This can be solved e�ciently using many optimisation algorithms. The most popular one is the Sequential
Minimal Optimisation (SMO) algorithm by Platt [14], and is implemented in popular SVM software packages
such as libsvm [1]. A software package that uses a di�erent optimisation algorithm is SVMlight [8]. The
point of the optimisation problem above is to �nd the parameters for the hyperplane that will maximise M
(such that each observation is at least M units from the hyperplane).

The optimisation problem above only applies to data with perfectly and linearly separable features. In
order to use SVMs on data that do not exhibit perfectly separable features, the optimisation problem is
modi�ed such that:

max
β0,β1,...,βp

M subject to:

p∑
j=1

β2
j = 1 (3)

yi(β0 + β1Xi1 + β2Xi2 + . . .+ βpXip) ≥M(1− εi) (4)

εi ≥ 0,

n∑
i=1

εi ≤ C

with

εi = how much an observation is allowed beyond the margin

(1− εi) = discount factor for allowing some slack

C = total overlap

The above problem maximises the margin subject to a modi�ed constraint in equation (4), and can also be
solved using the aforementioned software packages. Note that a higher value for C will lead to a more robust
hyperplane.

The two cases discussed both require features that are linearly separable. Since data are rarely separa-
ble in the real world, adjusting the aforementioned methods is necessary. In order to build a classi�er that
can e�ectively predict data points that aren't linearly separable, a non-linear decision boundary needs to be
formulated. This can be done by using kernels to expand the feature space (polynomial transformations can
also be used, but lack the e�ciency of kernels as the degree of the polynomial increases) [4]. The modi�ed
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decision function:

f (x) = β0 +
∑
i∈S

α̂iK(x,xi)

with

α̂i = estimated parameters

K(x,xi) = the kernel function used to transform the feature space

Linear (which is just a standard support vector classi�er), polynomial and radial kernels are all examples of
kernel functions that are used in practice [4]. Choosing a kernel function wholly depends on the structure
and separation of the features.

2.4 Theoretical implementation

Constructing negative document set

The �rst step to implementing the methods by Li & Lui [10], is to construct a reliable negative data set RN .
As mentioned before, the �rst algorithm uses only the Rocchio classi�er on positively labelled documents P
and unlabelled documents U , in order to form RN , while the second one uses k-means clustering to further
purify RN , as to get to RN ′.

Method 1: Rocchio The �rst method is quite simple (See Algorithm 1) [10]. Every document d is
represented as vector d = (q1, ..., qn), while each element qi represents a word wi with qi = tfi × idfi (Refer
to section 2.1).

• tfi = number of occurrences of word wi in document d.

• idfi = log(|D|/df(wi)) with |D| = total number of documents and df(wi) = number of documents
containing wi.

From Algorithm 1 both c+ and c− are prototype vectors for the two classes. α and β adjust for the relative
impact of training examples from the two classes. In this case, values α = 16 and β = 4 are recommended
[7]. The algorithm then uses cosine similarities2 between each test document d′ and the prototype vectors
to compute the similarity. From there each document is classi�ed into whichever class it is most similar to.
Negatively classi�ed documents now form RN .

Algorithm 1 Rocchio

1. Assign the unlabelled set U the negative class, and the positive set P the positive class;
2. Let c+ = α 1

|P |
∑
dεP

d
||d|| − β

1
|U |

∑
dεU

d
||d|| ;

3. Let c− = α 1
|U |

∑
dεU

d
||d|| − β

1
|P |

∑
dεP

d
||d|| ;

4. for each document d′ in U do

5. if sim (c+,d′) ≤ sim (c−,d′) then
6. RN = RN ∪ {d′};

2Euclidean distances serve the same purpose as the feature vectors are normalised [11].
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Method 2: Rocchio with clustering There may exist an issue with the �rst method since Rocchio is
a linear classi�er that constructs it's separating hyperplane using cosine similarities. In a case where the
decision boundary is non-linear, there is a chance that some of the positive documents in U may be wrongly
classi�ed and placed in RN . This could hamper the performance of the �nal SVM classi�er. Thus, the second
method in Algorithm 2 attempts to further purify RN by means of k-means clustering, eventually �nalising
RN ′ as the �nal set of reliable negative documents [10]. This approach uses the clustering to apportion RN
into many similar groups. After that Rocchio is used again with the clusters as the negative input and P for
the positive input to build new classi�ers for each cluster. Use these classi�ers to �nd and remove probable
positive documents from each cluster. Unlike in the �rst case where the negative set was fairly heterogeneous,
clustering results in both the positive set and now the cluster (negative) set, to be fairly homogeneous. This
enables Rocchio to compute more representative prototype vectors.

In Algorithm 2, line 1 performs initial algorithm (Algorithm 1) to construct RN and in lines 2 and 3,
k-means clustering is performed. Lines 5 and 6 construct the aforementioned prototype vectors for the posi-
tive and the negative class. The removal of positive documents starts at line 8, while lines 9 and 10 perform
the actual extraction. After the extraction the �nal reliable negative document set RN ′ is formed.

Algorithm 2 Rocchio with clustering

1. Perform Algorithm 1 and generate the initial negative set RN ;
2. Choose k initial cluster centres {M1,M2, ...,Mk} randomly from RN ;
3. Perform k-means clustering to produce k clusters {O1, O2, ..., Ok};
4. for j = 1 to k
5. nj = α 1

|Oj |
∑

dεOj

d
||d|| − β

1
|P |

∑
dεP

d
||d|| ;

6. pj = α 1
|P |

∑
dεP

d
||d|| − β

1
|Oj |

∑
dεOj

d
||d|| ;

7.RN ′ = {};
8.for each document diεRN do

9. Find the nearest prototype vector pv todi, where v = argmax
j

sim (pj , di);

10. if there exist an njwith j = 1, 2, ..., k such that
sim (pv, di) ≤ sim (nj , di) then

11. RN ′ = RN ′ ∪ {di};

Constructing �nal classi�er

The second step in [10] by Li & Lui is to build the �nal classi�er using the positive document set P and
the newly formed reliable negative document set RN ′. The method shown in Algorithm 3 is to build a
SVM classi�er iteratively. The reason for this is that the reliable set RN or RN ′ from the �rst step may in
fact not be large enough to train the best classi�er. Let Q be the remaining unlabelled documents3. The
reason for training the SVM iteratively is to extract more negative documents from Q on each iteration,
therefore bolstering the amount of available negative documents and further improving performance. The
iteration from line 3 to line 5 stops when Q is exhausted of negative documents. If it happens that one of
the iterations misbehaves and extracts positive documents from Q and adds them to RN / RN ′, then the
�nal SVM classi�er will perform quite poorly. To avoid using a poor �nal classi�er, choose between using
the �rst classi�er Si or the last one Slast. To choose between the two, �rst use Slast to classify the labelled
set P . If more than 5% of the positive documents are classi�ed incorrectly (negative), it indicates that an
iteration has gone wrong and S1 should rather be used as the �nal classi�er.

3Q = U −RN or Q = U −RN ′
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Algorithm 3 Train �nal SVM

1. Assign label +1 to every document in P ;
2. Assign label -1 to every document in RN/RN ′;
3. Train initial SVM classi�er Si, using P and RN/RN ′, iteratively (starting at i = 1) over lines 3-5;
4. Use Si to classify Q. Let documents in Q that are classi�ed as negative be W ;
5. if W = {} then stop;

else Q = Q−W ;
RN = RN ∪W or RN ′ = RN ′ ∪W ;
go to line 3;

6. Classify P using Slast, the �nal SVM classi�er;
7. if more than 5% classi�ed as negative then use S1 as �nal classi�er;
else use Slast;
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3 Application

Data

In order to test the methods on real data, it is important to �rst implement them on a base data set that
is known to work well with classi�cation algorithms. The data to be used for the baseline testing is the
commonly used 20 News data set [9], which consists of approximately 20 000 news documents, all labelled as
one of twenty topics. The two topics used (since the methods in this paper only consider binary classi�cation)
for testing the methods are alt.atheism and soc.religion.christian, which reduces the number documents to
approximately 2 000 (1 000 per topic). The data was accessed via scikit-learn's built-in data sets [13].

The real data that will be used to test the algorithms on is the GOP data set was acquired from Crowd�ower4.
This data set consists of the text of tweets which was streamed by Crowd�ower during the �rst Republican
debate in 2016. Originally, the data set contained tweets that were labelled as one of Positive, Negative
or Neutral sentiment. Again, due to the implementation of only binary classi�cation, all tweets labelled as
Neutral were removed (Table 1). The composition of classes in the GOP data is relatively imbalanced. After
removing duplicates in the text column, the number of tweets exhibiting positive sentiment is 1675, while
the number of negative tweets is 6070.

sentiment text label

1 Positive RT @ScottWalker: Didn't catch the full #GOPdeb... 1
2 Positive RT @RobGeorge: That Carly Fiorina is trending ... 1
4 Positive RT @DanScavino: #GOPDebate w/ @realDonaldTrump... 1
5 Positive RT @GregAbbott_TX: @TedCruz: "On my �rst day ... 1
5 Negative RT @warriorwoman91: I liked her and was happy ... 0

Table 1: Sample GOP data

Before initiating the process of building the reliable negative data sets RN and RN`, it is necessary to clean
up the feature text. Some parts of text, for example, the user name at which a tweet is directed (e.g.
@ScottWalker in Table 1) and unique URLs, have no in�uence on the sentiment of a tweet. Note that even
though a pro�le name may receive a weighty TF-IDF score since it is unique and discriminating, logically it
might have no e�ect on the sentiment of a tweet whatsoever [11]. Following the manual extraction of some
obvious unique words from the text, the built-in remove stop words option in scikit-learn's TfIdfVectoriser
[13] function removes all the common words such as is and or.

In order to implement and evaluate the performance of the abovementioned semi-supervised methods, Li
& Lui [10] decided upon a method for extrapolating sets of positively labelled documents from the overall
set in various fractions, giving one an opportunity to evaluate the methods for various fractions of labelled
and unlabelled data. Let α take on values in the range 5, 15, 25, 35, 45 and 65. These values represent the
percentage of positively labelled data (P) to be used along with the unlabelled set (U ) in the implementation
of the methods. Take α = 5 as an example: Of the 1675 tweets labelled as positive, 5% is used as the positive
set P, while the other 95% is combined with 95% of the negative tweets to form the unlabelled set, U. This
is done for all 7 values of α. The motivation for using equal fractions of set P and set N is to preserve the
natural class ratio present in the data set.

Evaluation

For this speci�c case, the test data set (on which the methods will be evaluated), will be the unlabelled set
U for each value of α. The reason for using U as the testing set in order to align it with the objective of
classifying the unlabelled data and to better compare the results with the results reported by Li & Lui [10]
since used U as the test data as well. The main metrics used for evaluation is F1 scores, accuracy scores

4https://www.crowdflower.com/
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and ROC curves. Along with these metrics, tabled results containing F1, precision, recall and accuracy
scores have been included in the Appendix (Tables 4 to 6). For evaluating general performance, classi�cation
accuracy is used. This is simply the fraction of correctly predicted documents from the test set. Note that
using accuracy as a stand-alone measure should be avoided given the large class imbalance. The F1 score
is used in evaluating the prediction accuracy in binary classi�cation and is widely used especially in text
classi�cation. It is calculated as the harmonic mean between recall and precision (also tends toward the
lower of the two values) [15]. It measures the performance of a model with regards to each class, which makes
it an ideal measure for a classi�cation problem with such disparity between classes. The same metrics were
used by Li & Lui [10], thus a comparison can be made between the �nal results. In order to achieve robust
results, the whole process, from randomly generating P and U and constructing RN/RN' to the training of
the �nal classi�er was repeated 10 times. From this, the mean values for the tabled scores were calculated.

Results

When interpreting the results, the scores for the initial and �nal classi�er of both methods used in determining
RN and RN' are plotted in Figures 2a, 2b, 3a, and 3b. For each method, the initial and �nal SVM corresponds
to Si and Slast in Algorithm 3. The scores are plotted for a model, in this case, logistic regression [12], that
was trained on the same data as the initial Rocchio classi�er in Method 1, to illustrate the performance gained
by using one of the two semi-supervised methods. The ROC curves for the initial SVM of both methods
is plotted in Figure 4a and Figure 4b, to illustrate the di�erences between the two in terms of a di�erent
metric. Table 3 contains the total number of observations used as negatively labelled documents for training
the three classi�ers (Logistic regression and SVMs for Methods 1 and 2). The logistic regression model is
trained using P as the positive set and the original unlabelled set as the negative set, while Si and Slastwas
trained using P as the positive set with RN and RN' as the respective negative document sets.

20 Newsgroups data GOP data
Method Accuracy F1 Accuracy F1
SVM 0.975 0.978 0.814 0.56

Logistic regression 0.964 0.969 0.8 0.54

Table 2: F1 and accuracy scores for supervised models

Additionally, Table 2 contains scores for a supervised logistic regression model and a supervised SVM model
which were trained on both data sets (80% training data). Table 2 should serve as a reference point when
comparing the di�erences between supervised and semi-supervised. It is important to keep in mind that a
much larger fraction of labelled data is required for training purposes with the supervised models.
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20 Newsgroups data GOP data

α Class Original unlabelled set RN RN` Original unlabelled set RN RN`

5%
Negative 760 758 749 5767 5680 3499
Positive 948 861 742 1592 1440 839

15%
Negative 680 679 502 5160 4790 2272
Positive 848 568 95 1424 978 342

25%
Negative 600 598 425 4553 4078 1694
Positive 748 421 30 1257 761 236

35%
Negative 520 518 344 3946 3342 1358
Positive 649 320 23 1089 595 147

45%
Negative 440 439 306 3339 2733 1167
Positive 549 245 9 922 452 106

55%
Negative 360 358 221 2732 2196 1018
Positive 449 186 10 754 325 61

65%
Negative 280 279 136 2125 1715 646
Positive 349 138 6 587 191 44

Table 3: Number of assumed negative observations before and after implementation of semi-supervised
methods.

20 Newsgroup data

In Figures 2a and 2b it is clear that the semi-supervised methods performed well on the 20 Newsgroups
data. The accuracy scores (see Table 4 in the Appendix) are very high, as are the F1-scores with increasing
values for α, particularly for the second method (using RN' ). Note that scores for the second method can be
compared to the supervised models in Table 2. Furthermore, it seems that the iterative training of the �nal
classi�er does not have a signi�cant impact on performance. In fact, it performs worse for lower values of
α. It is clear that none of the methods perform particularly well for α values lower than 25% since the ratio
between labelled and unlabelled data at those values is too small. These results are similar to what Li & Lui
[10] found. Hence this data set serves as the perfect baseline for comparison to the results of the GOP data.

(a) F1-scores over all α (b) Accuracy scores over all α

Figure 2: Accuracy and F1 scores for 20 newsgroups data
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GOP data

Even though the accuracy scores appear to be acceptable (Figure 3b), both the methods reach F1-scores of
just under 0.6 for α = 65%. These scores do compare well to the supervised case, only performing slightly
worse. This is encouraging, considering the di�erent amounts of labelled data used. The logistic regression
(semisupervised) model performs the best overall (see Table 5), indicating that in this case, it might be
better to use neither method. The poor performance may be due to the disparity in classes among the data
where the labelled document class is underrepresented in the unlabelled set. Performance is considerably
better (Table 6) for the case where the labelled used for implementing the methods are documents from the
negative document set, which indicates that (in this case) the models bene�ts from the prevalence of negative
documents in the unlabelled set. Li & Lui [6] did not encounter the same results in their tests, which was
also implemented on a data set with considerable class imbalances, which may indicate that there exists a
di�erent issue with this data set. Figure 3a shows the plotted F1 scores for the case where positive labelled
documents were used as labelled data to implement the methods. In Table 6 the opposite is shown, where
negative labelled documents are used as the labelled data in the training set.

(a) F1 scores over all values of α (b) Accuracy scores over all α

Figure 3: Accuracy and F1 scores for GOP data

The plotted ROC curves in Figures 4a and 4b show that there generally does not exist a signi�cant di�erence
between Si and Slast, however it does indicate again the performance gains achieved by increasing the value
for α.

4 Conclusion

The methods discussed provide a good starting point for improving e�ciency in classi�cation tasks where la-
belled data sets are problematic to acquire. It seems that the optimal value for α would be some point between
25% and 45%, which would reduce the amount of labelled data required for classi�cation considerably in the
case where the labelled class is in the minority. Both methods thoroughly outperformed the logistic regression
model on the 20 Newsgroups data when implemented on a data set with balanced classes (Figures 2a and 2b).

From Figure 3a it is clear that imbalanced classes have an adverse e�ect on the performance of the classi�er.
It should be noted that using documents that are more prevalent in the overall data set as the labelled data in
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(a) Method 1: ROC curves for all values of α (b) Method 2: ROC curves for all values of α

Figure 4: ROC curves for GOP data

these methods is pointless, since the same accuracy can be achieved by simply classifying every single docu-
ment as the prevalent class (Table 6 in the Appendix) and it would be similar to training a classi�cation model
on data where the two labels are the same. Real-world data sets would likely not be of a balanced nature
and would display feature set issues similar to that of the GOP data set, which may lead to undesirable results.

The performance of the two methods were overall acceptable considering the data used and that very little pre-
processing and feature engineering was done, therefore it opens up various alternative avenues for development
of these methods, which might enable them to be more robust to class imbalance. One alternative to these
methods that can be explored is making use of Joachims' TSVMs [6] to extract and determine the �nal
negative set, RN, or combining it with active learning could also be an option. Furthermore, if one of the
two methods for creating RN or RN' is performing well then one can focus on the �nal step and explore the
possibility of �nding an optimal classi�er in between Si and Slast. Finally, the ultimate goal would be the
ability to expand these methods to a multi-class environment, although a very strong performing foundation
would be required.
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Appendix

Notation

For graphs:

• Method 1: Initial SVM - Refers to the initial trained SVM classi�er, Si, for the �rst semi-supervised
technique, Rocchio.

• Method 1: Final SVM - Refers to the �nal trained SVM classi�er, Slast, for the �rst semi-supervised
technique, Rocchio.

• Method 2: Initial SVM - Refers to the initial trained SVM classi�er, Si, for the second semi-
supervised technique, Rocchio with clustering.

• Method 2: Final SVM - Refers to the �nal trained SVM classi�er, Slast, for the second semi-
supervised technique, Rocchio with clustering.

• Model: Logistic Regression - Refers to the logistic regression classi�er trained on P and U (see
below). Training of this classi�er made no use of any semi-supervised techniques.

For algorithms:

• P - Set of positively labelled documents/observations to be used as labelled data in implementation
of semi-supervised methods.

• N - Set of negatively labelled documents, some of which will form part of the unlabelled set, U.

• U - Set of unlabelled documents, comprised of (1−α)% positively labelled documents and (1−α)%
negatively labelled documents.

• RN - Reliable negative document set obtained after implementing the �rst semi-supervised method.

• RN' - Reliable negative document set obtained after implementing the second semi-supervised
method.

• α - Fractions of positively labelled documents used as labelled data, ranging from 5% to 65%.

• Si - Initial SVM classi�er trained by using either method. The training procedure is outlined in
Algorithm 3.

• Slast - Initial SVM classi�er trained by using either method. The training procedure is outlined in
Algorithm 3.

• Q - Remaining unlabelled documents after generating RN / RN'. (Q = U - RN or Q = U - RN')

• W - Set of documents that are classi�ed as negative when training �nal classi�er (Algorithm 3).
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Code

Data & preprocessing:

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleimport pandas as pd

basicstylebasicstyle basicstyledf = pd.read_csv('Sentiment.csv')

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyle##Remove unwanted entries:

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyledf= df.drop(df.columns [[0,1,2,3,4,6,7,8,9,10,11,12,13,14,16,17,18,19,20]], axis =1)

basicstylebasicstyle basicstyledf = df.loc[df.sentiment != 'Neutral ']

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyle##Redefine labels:

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyledef relabel (df):

basicstylebasicstyle basicstyleif df.sentiment == "Negative":

basicstylebasicstyle basicstylereturn 0

basicstylebasicstyle basicstyleelif df.sentiment == "Positive":

basicstylebasicstyle basicstylereturn 1

basicstylebasicstyle basicstylereturn "Other"

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyledf["label"] = df.apply(lambda df: relabel (df),axis =1)

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyle#Filter initial stopwords: (Will add common stopwords when vectorising)

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyledf["Clean_Text"]=df.text.str.replace("(?<=\W)[@]\S*","")

basicstylebasicstyle basicstyledf["Clean_Text"]=df.Clean_Text.str.replace("[@]\S*","")

basicstylebasicstyle basicstyledf["Clean_Text"]=df.Clean_Text.str.replace("RT","")

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf.drop(df.columns [[0,1]], axis=1,inplace=True)

basicstylebasicstyle basicstyleprint df.head (5)

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf.drop_duplicates('Clean_Text ',inplace=True)

basicstylebasicstyle basicstyledf.label.value_counts ()

basicstylebasicstyle basicstyleprint 'Full set : ',df.shape

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf.to_csv(r'full.csv', header=True , index=None , mode='w', encoding='utf -8')

Semi-supervised methods & ROC plotting:

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleimport pandas as pd

basicstylebasicstyle basicstyleimport numpy as np

basicstylebasicstyle basicstyleimport matplotlib.pyplot as plt

basicstylebasicstyle basicstylefrom sklearn.feature_extraction.text import TfidfVectorizer

basicstylebasicstyle basicstylefrom sklearn.svm import SVC

basicstylebasicstyle basicstylefrom sklearn.neighbors import NearestCentroid

basicstylebasicstyle basicstylefrom sklearn.cluster import KMeans

basicstylebasicstyle basicstylefrom sklearn.linear_model import LogisticRegression
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basicstylebasicstyle basicstylefrom sklearn.metrics import accuracy_score , recall_score , precision_score ,\

basicstylebasicstyle basicstylef1_score ,roc_curve , auc

basicstylebasicstyle basicstyleimport itertools

basicstylebasicstyle basicstyle#plt.style.use('seaborn -paper ')

basicstylebasicstyle basicstyleplt.style.use('ggplot ')

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf = pd.read_csv("full.csv")

basicstylebasicstyle basicstylevc = df.label.value_counts ()

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylealpha = [5,15,25,35 ,45 ,55,65]

basicstylebasicstyle basicstyleposval = [ int(float(alpha[i])/100* vc[1]) for i in xrange(len(alpha)) ]

basicstylebasicstyle basicstylenegval = [ int(float(alpha[i])/100* vc[0]) for i in xrange(len(alpha)) ]

basicstylebasicstyle basicstyleprint 'Samples for P: ' ,posval

basicstylebasicstyle basicstyleprint 'Samples for N: ' ,negval

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylepos = df[df.label ==1]

basicstylebasicstyle basicstyleneg = df[df.label ==0]

basicstylebasicstyle basicstyleP,P_U = {},{}

basicstylebasicstyle basicstyleN,N_U = {},{}

basicstylebasicstyle basicstyleU = {}

basicstylebasicstyle basicstyledata = {}

basicstylebasicstyle basicstylepos = pos.iloc[np.random.permutation(len(pos))]

basicstylebasicstyle basicstylepos =pos.reset_index(drop=True)

basicstylebasicstyle basicstyleneg.iloc[np.random.permutation(len(neg ))]

basicstylebasicstyle basicstyleneg =neg.reset_index(drop=True)

basicstylebasicstyle basicstylefor i in xrange(len(posval )):

basicstylebasicstyle basicstyleP[i], P_U[i]= pos.head(posval[i]), pos.tail(len(pos)-posval[i])

basicstylebasicstyle basicstyleN[i], N_U[i]= neg.head(posval[i]), neg.tail(len(neg)-negval[i])

basicstylebasicstyle basicstyleobjs = [P_U[i],N_U[i]]

basicstylebasicstyle basicstyleU[i] = pd.concat(objs ,axis=0,join='outer',ignore_index=True)

basicstylebasicstyle basicstyleU[i]['nlabel '] = 0

basicstylebasicstyle basicstyleP[i]['nlabel '] = 1

basicstylebasicstyle basicstyledata[i] = pd.concat ([U[i],P[i]],axis=0, ignore_index=True)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleX = {}

basicstylebasicstyle basicstyley= {}

basicstylebasicstyle basicstyleX_U = {}

basicstylebasicstyle basicstylevectorize = TfidfVectorizer(stop_words='english ')

basicstylebasicstyle basicstylefor i in xrange(len(data )):

basicstylebasicstyle basicstyleX[i] = vectorize.fit_transform(data[i]. Clean_Text)

basicstylebasicstyle basicstyley[i] = data[i]. nlabel.astype('int64 ')

basicstylebasicstyle basicstyleX_U[i] = vectorize.transform(U[i]. Clean_Text)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylerocchio = NearestCentroid(metric='euclidean ')

basicstylebasicstyle basicstyleclf_1 = {}

basicstylebasicstyle basicstylefor i in xrange(len(data )):

basicstylebasicstyle basicstyleclf_1[i] = rocchio.fit(X[i],y[i])

basicstylebasicstyle basicstyleU[i]['preds']=clf_1[i]. predict(X_U[i])

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleRN1 = {}

basicstylebasicstyle basicstyledata_m1 = {}

basicstylebasicstyle basicstylefor i in xrange(len(data )):

basicstylebasicstyle basicstyleRN1[i] = U[i].loc[U[i]. preds == 0]

basicstylebasicstyle basicstyleRN1[i] = RN1[i].drop(RN1[i]. columns [[2]], axis =1)

basicstylebasicstyle basicstyleRN1[i]. rename(columns = {'preds':'nlabel '}, inplace = True)

basicstylebasicstyle basicstyledata_m1[i] = pd.concat ([RN1[i],P[i]],axis=0, ignore_index=True)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylekmeans = KMeans(n_clusters = 10)

basicstylebasicstyle basicstyleX_RN1 = {}
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basicstylebasicstyle basicstyleclust = {}

basicstylebasicstyle basicstylecdata_m2 = {}

basicstylebasicstyle basicstylefor i in xrange(len(RN1)):

basicstylebasicstyle basicstyleX[i] = vectorize.fit_transform(data[i]. Clean_Text)

basicstylebasicstyle basicstyleX_RN1[i] = vectorize.transform(RN1[i]. Clean_Text)

basicstylebasicstyle basicstyleclust[i] = kmeans.fit(X_RN1[i])

basicstylebasicstyle basicstylecdata_m2[i] = pd.DataFrame ({'Cluster_labels ':kmeans.labels_ ,

basicstylebasicstyle basicstyle'Clean_Text ':RN1[i]. Clean_Text ,'nlabel ' : 0})

basicstylebasicstyle basicstylecdata_m2[i]. set_index('Cluster_labels ',drop=False ,inplace=True)

basicstylebasicstyle basicstylecdata_m2[i]. sort_index(axis=0,inplace=True)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylelabel = np.arange (0,10,1)

basicstylebasicstyle basicstyledf_clust = []

basicstylebasicstyle basicstyleclusters = {}

basicstylebasicstyle basicstyledfdf = {}

basicstylebasicstyle basicstylefor j in xrange(len(data )):

basicstylebasicstyle basicstylefor i in xrange (10):

basicstylebasicstyle basicstyledf_clust1 = {}

basicstylebasicstyle basicstyleclusters[i] = cdata_m2[j].loc[cdata_m2[j]. Cluster_labels == label[i]]

basicstylebasicstyle basicstyleobj = [clusters[i],P[j]]

basicstylebasicstyle basicstyledf_clust1[i]= pd.concat(obj ,axis=0,join='outer',ignore_index=True)

basicstylebasicstyle basicstyledf_clust.append(df_clust1)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleclustdf = {}

basicstylebasicstyle basicstylefor j in xrange(len(data )):

basicstylebasicstyle basicstyleclustdf[j] = {}

basicstylebasicstyle basicstylefor i,dics in enumerate(df_clust ):

basicstylebasicstyle basicstyleif (j*10) <=i<(j*10+10):

basicstylebasicstyle basicstylem = (i-j*10)

basicstylebasicstyle basicstyleclustdf[j][m] = dics[m]

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylefor j in xrange (7):

basicstylebasicstyle basicstylefor i in xrange (10):

basicstylebasicstyle basicstyleclustdf[j][i]= clustdf[j][i].drop(clustdf[j][i]. columns [[1,2]], axis =1)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleRN2 = RN1

basicstylebasicstyle basicstylepredictions = {}

basicstylebasicstyle basicstyleclfc = {}

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstyleclfc[i]={}

basicstylebasicstyle basicstylepredictions[i] = {}

basicstylebasicstyle basicstyleX[i] = vectorize.fit_transform(data[i]. Clean_Text)

basicstylebasicstyle basicstylefor x in xrange (10):

basicstylebasicstyle basicstyleclfc[i][x] = rocchio.fit(vectorize.transform(clustdf[i][x]. Clean_Text),

basicstylebasicstyle basicstyleclustdf[i][x]. nlabel)

basicstylebasicstyle basicstylepredictions[i][x] = clfc[i][x]. predict(X_RN1[i])

basicstylebasicstyle basicstyleRN2[i]['pred_%s' %(x)] = predictions[i][x]

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylesums = {}

basicstylebasicstyle basicstylefor i in xrange(len(RN2)):

basicstylebasicstyle basicstylesums[i] = RN2[i].drop(RN2[i]. columns [[0,1,2]], axis =1)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstyleRN2[i]['sums'] = sums[i].sum(axis =1)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylevalcnt = {}

basicstylebasicstyle basicstyleRN_Final = {}

basicstylebasicstyle basicstylefor i in xrange(len(RN2)):
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basicstylebasicstyle basicstyleRN_Final[i] = RN2[i].loc[RN2[i]['sums']<=8]

basicstylebasicstyle basicstylevalcnt[i] = RN_Final[i]. label.value_counts ()

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledata_m2 = {}

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstyledata_m2[i] = pd.concat ([ RN_Final[i],P[i]],axis=0,join='outer',ignore_index=True)

basicstylebasicstyle basicstyledata_m2[i] = data_m2[i].drop(data_m2[i]. columns [[3,4,5,6,7,8,9,10,11,12,13]],

basicstylebasicstyle basicstyleaxis =1)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleuvc = {}

basicstylebasicstyle basicstylernvc = {}

basicstylebasicstyle basicstyleprint "Value counts: "

basicstylebasicstyle basicstyleprint 'Alpha | Class | Origin | RN1 | RN2 |'

basicstylebasicstyle basicstyleprint '_______________________________________________ '

basicstylebasicstyle basicstylefor i in xrange(len(data )):

basicstylebasicstyle basicstyleuvc[i] = U[i]. label.value_counts ()

basicstylebasicstyle basicstylernvc[i] = RN1[i].label.value_counts ()

basicstylebasicstyle basicstylevalcnt[i] = RN_Final[i]. label.value_counts ()

basicstylebasicstyle basicstyleprint ' {0}% '.format(alpha[i]), ' Negative ' ,uvc[i][0], ' ',rnvc[i][0], ' ',valcnt[i][0]

basicstylebasicstyle basicstyleprint ' ', 'Positive ' ,uvc[i][1], ' ',rnvc[i][1], ' ',valcnt[i][1]

basicstylebasicstyle basicstyleprint '-----------------------------------------------'

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleX_1 = {}

basicstylebasicstyle basicstyleX_2 = {}

basicstylebasicstyle basicstyley_1 = {}

basicstylebasicstyle basicstyley_2 = {}

basicstylebasicstyle basicstyleX_test = {}

basicstylebasicstyle basicstyley_test = {}

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstyleX[i] = vectorize.fit_transform(data[i]. Clean_Text)

basicstylebasicstyle basicstyleX_1[i] = vectorize.transform(data_m1[i]. Clean_Text)

basicstylebasicstyle basicstyleX_test[i] = vectorize.transform(U[i]. Clean_Text)

basicstylebasicstyle basicstyleX_2[i] = vectorize.transform(data_m2[i]. Clean_Text)

basicstylebasicstyle basicstyley_1[i] = data_m1[i]. nlabel

basicstylebasicstyle basicstyley_2[i] = data_m2[i]. nlabel

basicstylebasicstyle basicstyley_test[i] = U[i].label.astype('int64')

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylefinal_clf1 = {}

basicstylebasicstyle basicstylefinal_clf2 = {}

basicstylebasicstyle basicstylefinal_clf3 = {}

basicstylebasicstyle basicstylescore_m1= {}

basicstylebasicstyle basicstylescore_m2 = {}

basicstylebasicstyle basicstyleproba_m1 = {}

basicstylebasicstyle basicstyleproba_m2 = {}

basicstylebasicstyle basicstylenpred_m1 = {}

basicstylebasicstyle basicstylenpred_m2 = {}

basicstylebasicstyle basicstylescore_m3= {}

basicstylebasicstyle basicstyleproba_m3 = {}

basicstylebasicstyle basicstylenpred_m3 = {}

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstylesvm = SVC(kernel='linear ',class_weight='balanced ')

basicstylebasicstyle basicstylefinal_clf1[i] = svm.fit(X_1[i],y_1[i])

basicstylebasicstyle basicstylescore_m1[i] = final_clf1[i].score(X_test[i],y_test[i])

basicstylebasicstyle basicstyleproba_m1[i] = final_clf1[i]. decision_function(X_test[i])

basicstylebasicstyle basicstylenpred_m1[i] = final_clf1[i]. predict(X_test[i])

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylesvm = SVC(kernel='linear ',class_weight='balanced ')

basicstylebasicstyle basicstylefinal_clf2[i] = svm.fit(X_2[i],y_2[i])
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basicstylebasicstyle basicstylescore_m2[i] = final_clf2[i].score(X_test[i],y_test[i])

basicstylebasicstyle basicstyleproba_m2[i] = final_clf2[i]. decision_function(X_test[i])

basicstylebasicstyle basicstylenpred_m2[i] = final_clf2[i]. predict(X_test[i])

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylelogreg = LogisticRegression(class_weight='balanced ')

basicstylebasicstyle basicstylefinal_clf3[i] = logreg.fit(X[i],y[i])

basicstylebasicstyle basicstylescore_m3[i] = final_clf3[i].score(X_test[i],y_test[i])

basicstylebasicstyle basicstyleproba_m3[i] = final_clf3[i]. predict_proba(X_test[i])

basicstylebasicstyle basicstylenpred_m3[i] = final_clf3[i]. predict(X_test[i])

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledef evaluation(npred1 ,npred2 ,npred3 ,y2,model_list = ['Method 1',

basicstylebasicstyle basicstyle'Method 2','Method 3']):

basicstylebasicstyle basicstyleacc_m1 = accuracy_score(y2,npred1)

basicstylebasicstyle basicstyleacc_m2 = accuracy_score(y2,npred2)

basicstylebasicstyle basicstyleacc_m3 = accuracy_score(y2,npred3)

basicstylebasicstyle basicstylerecall_m1 = recall_score(y2 ,npred1)

basicstylebasicstyle basicstylerecall_m2 = recall_score(y2 ,npred2)

basicstylebasicstyle basicstylerecall_m3 = recall_score(y2 ,npred3)

basicstylebasicstyle basicstyleprecision_m1 = precision_score(y2 ,npred1)

basicstylebasicstyle basicstyleprecision_m2 = precision_score(y2 ,npred2)

basicstylebasicstyle basicstyleprecision_m3 = precision_score(y2 ,npred3)

basicstylebasicstyle basicstylef1_m1 = f1_score(y2 ,npred1)

basicstylebasicstyle basicstylef1_m2 = f1_score(y2 ,npred2)

basicstylebasicstyle basicstylef1_m3 = f1_score(y2 ,npred3)

basicstylebasicstyle basicstylereturn recall_m1 ,recall_m2 ,recall_m3 ,precision_m1 ,precision_m2 ,precision_m3 ,\

basicstylebasicstyle basicstylef1_m1 ,f1_m2 ,f1_m3 ,acc_m1 ,acc_m2 ,acc_m3

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledef roc_calcs(probs ,y2):

basicstylebasicstyle basicstylefprs = {}

basicstylebasicstyle basicstyletprs = {}

basicstylebasicstyle basicstyleaucs = {}

basicstylebasicstyle basicstylethresh = {}

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylefor k in xrange(len(probs )):

basicstylebasicstyle basicstylefprs[k],tprs[k],thresh[k] = roc_curve(y2,probs[k])

basicstylebasicstyle basicstyleaucs[k] = auc(fprs[k],tprs[k])

basicstylebasicstyle basicstylereturn fprs , tprs , thresh , aucs

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleroc_vals = {}

basicstylebasicstyle basicstyleprobsa = {}

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstyleprobsa[i] = [proba_m1[i],proba_m2[i],proba_m3[i][: ,1]]

basicstylebasicstyle basicstyleroc_vals[i] = roc_calcs(probsa[i],y_test[i])

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylefpr_m1 = {}

basicstylebasicstyle basicstylefpr_m2 = {}

basicstylebasicstyle basicstylefpr_m3 = {}

basicstylebasicstyle basicstyletpr_m1 = {}

basicstylebasicstyle basicstyletpr_m2 = {}

basicstylebasicstyle basicstyletpr_m3 = {}

basicstylebasicstyle basicstyleauc_m1 = {}

basicstylebasicstyle basicstyleauc_m2 = {}

basicstylebasicstyle basicstyleauc_m3 = {}

basicstylebasicstyle basicstylefprs1 = []

basicstylebasicstyle basicstyletprs1 = []

basicstylebasicstyle basicstyleaucs = []
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basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstylefpr_m1[i] = roc_vals[i][0][0]

basicstylebasicstyle basicstylefpr_m2[i] = roc_vals[i][0][1]

basicstylebasicstyle basicstylefpr_m3[i] = roc_vals[i][0][2]

basicstylebasicstyle basicstyletpr_m1[i] = roc_vals[i][1][0]

basicstylebasicstyle basicstyletpr_m2[i] = roc_vals[i][1][1]

basicstylebasicstyle basicstyletpr_m3[i] = roc_vals[i][1][2]

basicstylebasicstyle basicstyleauc_m1[i] = roc_vals[i][3][0]

basicstylebasicstyle basicstyleauc_m2[i] = roc_vals[i][3][1]

basicstylebasicstyle basicstyleauc_m3[i] = roc_vals[i][3][2]

basicstylebasicstyle basicstylefprs1.append ([ fpr_m1[i],fpr_m2[i],fpr_m3[i]])

basicstylebasicstyle basicstyletprs1.append ([ tpr_m1[i],tpr_m2[i],tpr_m3[i]])

basicstylebasicstyle basicstyleaucs.append ([ auc_m1[i],auc_m2[i],auc_m3[i]])

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylelist0 = []

basicstylebasicstyle basicstylelist1 = []

basicstylebasicstyle basicstylelist2 = []

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylelist3 = []

basicstylebasicstyle basicstylelist4 = []

basicstylebasicstyle basicstylelist5 = []

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylelist6 = []

basicstylebasicstyle basicstylelist7 = []

basicstylebasicstyle basicstylelist8 = []

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylefor i in xrange (0,7):

basicstylebasicstyle basicstylelist0.append(fprs1[i][0])

basicstylebasicstyle basicstylelist1.append(fprs1[i][1])

basicstylebasicstyle basicstylelist2.append(fprs1[i][2])

basicstylebasicstyle basicstylelist3.append(tprs1[i][0])

basicstylebasicstyle basicstylelist4.append(tprs1[i][1])

basicstylebasicstyle basicstylelist5.append(tprs1[i][2])

basicstylebasicstyle basicstylelist6.append(aucs[i][0])

basicstylebasicstyle basicstylelist7.append(aucs[i][1])

basicstylebasicstyle basicstylelist8.append(aucs[i][2])

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylefprs2 = [list0 ,list1 ,list2]

basicstylebasicstyle basicstyletprs2 = [list3 ,list4 ,list5]

basicstylebasicstyle basicstyleaucs2 = [list6 ,list7 ,list8]

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyletitles = ['Method 1: Rocchio ',

basicstylebasicstyle basicstyle'Method 2: Rocchio w/ clustering ','Logistic regression ']

basicstylebasicstyle basicstylemethods1 = ['alpha =5% (AUC = {0:.2f})','alpha =15% (AUC = {0:.2f})',

basicstylebasicstyle basicstyle'alpha =25% (AUC = {0:.2f})','alpha =35% (AUC = {0:.2f})',

basicstylebasicstyle basicstyle'alpha =45% (AUC = {0:.2f})','alpha =55% (AUC = {0:.2f})',

basicstylebasicstyle basicstyle'alpha =65% (AUC = {0:.2f})']

basicstylebasicstyle basicstylecolors1 = ['#7FEBFF','#00 D7FF','#00 BAFF','#43 A9FD','#038 DFF','#008 FFF',

basicstylebasicstyle basicstyle'#0072 CC']

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyledef roc_plot(fpr ,tpr ,auc ,methods ,colors ,title='foo'):

basicstylebasicstyle basicstyleplt.figure(figsize =(8 ,7))

basicstylebasicstyle basicstyleplt.title(title ,fontsize='x-large')

basicstylebasicstyle basicstyleplt.xlabel('False Positive Rate (1 - Specificity)',fontsize='large')

basicstylebasicstyle basicstyleplt.ylabel('True Positive Rate (Sensitivity)',fontsize='large')

basicstylebasicstyle basicstylefor x in xrange(0,len(methods )):
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basicstylebasicstyle basicstyleplt.plot(fpr[x],tpr[x],color=colors[x],

basicstylebasicstyle basicstylelabel=methods[x]. format(auc[x]),linewidth =2.5)

basicstylebasicstyle basicstyleplt.legend(loc=4,fontsize='large')

basicstylebasicstyle basicstyleplt.xlim ([0.0 ,1.0])

basicstylebasicstyle basicstyleplt.ylim ([0.0 ,1.0])

basicstylebasicstyle basicstyleplt.grid(True)

basicstylebasicstyle basicstyleplt.savefig('3roc_figs {0}. png'.format(alpha[j]),dpi =100)

basicstylebasicstyle basicstyleplt.plot([0, 1], [0, 1], 'k--')

basicstylebasicstyle basicstyleplt.show()

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylefor j in xrange (3):

basicstylebasicstyle basicstyleroc_plot(fprs2[j],tprs2[j],aucs2[j],methods1 ,colors1 ,title=titles[j])

basicstylebasicstyle basicstyleplt.show()

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylemethods = ['Method: Rocchio ','Method: Rocchio w/ clustering ',

basicstylebasicstyle basicstyle'Logistic regression ']

basicstylebasicstyle basicstylef1_scores_m1 = []

basicstylebasicstyle basicstylef1_scores_m2 = []

basicstylebasicstyle basicstylef1_scores_m3 = []

basicstylebasicstyle basicstylerecall_scores_m1 = []

basicstylebasicstyle basicstylerecall_scores_m2 = []

basicstylebasicstyle basicstylerecall_scores_m3 = []

basicstylebasicstyle basicstyleprecision_scores_m1 = []

basicstylebasicstyle basicstyleprecision_scores_m2 = []

basicstylebasicstyle basicstyleprecision_scores_m3 = []

basicstylebasicstyle basicstyleaccuracy_m1 = []

basicstylebasicstyle basicstyleaccuracy_m2 = []

basicstylebasicstyle basicstyleaccuracy_m3 = []

basicstylebasicstyle basicstyleevalu = {}

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstyleevalu[i] = evaluation(npred_m1[i],npred_m2[i],npred_m3[i],y_test[i],

basicstylebasicstyle basicstylemodel_list = methods)

basicstylebasicstyle basicstylerecall_scores_m1.append(evalu[i][0])

basicstylebasicstyle basicstylerecall_scores_m2.append(evalu[i][1])

basicstylebasicstyle basicstylerecall_scores_m3.append(evalu[i][2])

basicstylebasicstyle basicstyleprecision_scores_m1.append(evalu[i][3])

basicstylebasicstyle basicstyleprecision_scores_m2.append(evalu[i][4])

basicstylebasicstyle basicstyleprecision_scores_m3.append(evalu[i][5])

basicstylebasicstyle basicstylef1_scores_m1.append(evalu[i][6])

basicstylebasicstyle basicstylef1_scores_m2.append(evalu[i][7])

basicstylebasicstyle basicstylef1_scores_m3.append(evalu[i][8])

basicstylebasicstyle basicstyleaccuracy_m1.append(evalu[i][9])

basicstylebasicstyle basicstyleaccuracy_m2.append(evalu[i][10])

basicstylebasicstyle basicstyleaccuracy_m3.append(evalu[i][11])

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleobj1 = {}

basicstylebasicstyle basicstyleobj2 = {}

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstyleobj1[i] = [RN1[i].drop(RN1[i]. columns[np.arange (3,14,1)], axis=1),

basicstylebasicstyle basicstyleU[i].drop(U[i]. columns [[3]], axis =1)]

basicstylebasicstyle basicstyleobj2[i] = [RN_Final[i].drop(RN_Final[i]. columns[np.arange (3,14,1)], axis=1),

basicstylebasicstyle basicstyleU[i].drop(U[i]. columns [[3]], axis =1)]

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleQ_m1 = {}

basicstylebasicstyle basicstyleQ_m2 = {}

basicstylebasicstyle basicstylefor i in xrange (7):

basicstylebasicstyle basicstyleQ_m1[i] = pd.concat(obj1[i],axis=0,join='outer ')\

basicstylebasicstyle basicstyle.drop_duplicates('Clean_Text ',keep=False)
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basicstylebasicstyle basicstyleQ_m2[i] = pd.concat(obj2[i],axis=0,join='outer ')\

basicstylebasicstyle basicstyle.drop_duplicates('Clean_Text ',keep=False)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledef iter_class(Q1 ,data1 ,test_set ):

basicstylebasicstyle basicstyledata2 = data1

basicstylebasicstyle basicstyleQ=Q1

basicstylebasicstyle basicstyleW = pd.DataFrame ()

basicstylebasicstyle basicstylefor i in itertools.count ():

basicstylebasicstyle basicstyledata2 = pd.concat ([W,data2],axis=0, ignore_index=True)

basicstylebasicstyle basicstyleprint '--------------'

basicstylebasicstyle basicstyleprint 'Iteration: ' ,i

basicstylebasicstyle basicstyleprint '--------------'

basicstylebasicstyle basicstyleytrain = data2.nlabel

basicstylebasicstyle basicstyley_test = test_set.label

basicstylebasicstyle basicstyleXtrain = vectorize.transform(data2.Clean_Text)

basicstylebasicstyle basicstyleX_pred = vectorize.transform(Q.Clean_Text)

basicstylebasicstyle basicstyleXtest = vectorize.transform(test_set.Clean_Text)

basicstylebasicstyle basicstylesvm = SVC(kernel='linear ',class_weight='balanced ')

basicstylebasicstyle basicstyleclf = svm.fit(Xtrain ,ytrain)

basicstylebasicstyle basicstyleQ['preds '] = clf.predict(X_pred)

basicstylebasicstyle basicstyleW = Q.loc[Q.preds == 0]

basicstylebasicstyle basicstyleW = W.drop(W.columns [[2]], axis =1)

basicstylebasicstyle basicstyleW.rename(columns = {'preds':'nlabel '}, inplace = True)

basicstylebasicstyle basicstyleprint len(Q),len(W)

basicstylebasicstyle basicstyleQ = Q.loc[Q.preds != 0]

basicstylebasicstyle basicstyleQ = Q.drop(Q.columns [[3]], axis =1)

basicstylebasicstyle basicstylepredict = clf.predict(Xtest)

basicstylebasicstyle basicstylerecalls = recall_score(y_test ,predict)

basicstylebasicstyle basicstyleprecisions = precision_score(y_test ,predict)

basicstylebasicstyle basicstylef1s = f1_score(y_test ,predict)

basicstylebasicstyle basicstyleaccuracys = clf.score(Xtest ,y_test)

basicstylebasicstyle basicstyleif len(W)==0 or len(Q)==0:

basicstylebasicstyle basicstylebreak

basicstylebasicstyle basicstylereturn predict ,precisions ,recalls ,f1s ,accuracys

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylepredicted_val1 = {}

basicstylebasicstyle basicstylepredicted_val2 = {}

basicstylebasicstyle basicstylef1_final1 = []

basicstylebasicstyle basicstylef1_final2 = []

basicstylebasicstyle basicstylerec_final1 = []

basicstylebasicstyle basicstylerec_final2 = []

basicstylebasicstyle basicstyleprec_final1 = []

basicstylebasicstyle basicstyleprec_final2 = []

basicstylebasicstyle basicstyleacc_final1 = []

basicstylebasicstyle basicstyleacc_final2 = []

basicstylebasicstyle basicstylelastiter1 = {}

basicstylebasicstyle basicstylelastiter2 = {}

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstylefor x in xrange (7):

basicstylebasicstyle basicstyleprint '***************** '

basicstylebasicstyle basicstyleprint '**** SET','1','.',x,'****'

basicstylebasicstyle basicstyleprint '***************** '

basicstylebasicstyle basicstylelastiter1[x] = iter_class(Q_m1[x],data_m1[x],U[x])

basicstylebasicstyle basicstyleprint '***************** '

basicstylebasicstyle basicstyleprint '**** SET','2','.',x,'****'

basicstylebasicstyle basicstyleprint '***************** '

basicstylebasicstyle basicstylelastiter2[x] = iter_class(Q_m2[x],data_m2[x],U[x])

basicstylebasicstyle basicstylef1_final1.append(lastiter1[x][3])

basicstylebasicstyle basicstylef1_final2.append(lastiter2[x][3])
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basicstylebasicstyle basicstylerec_final1.append(lastiter1[x][2])

basicstylebasicstyle basicstylerec_final2.append(lastiter2[x][2])

basicstylebasicstyle basicstyleprec_final1.append(lastiter1[x][1])

basicstylebasicstyle basicstyleprec_final2.append(lastiter2[x][1])

basicstylebasicstyle basicstyleacc_final1.append(lastiter1[x][4])

basicstylebasicstyle basicstyleacc_final2.append(lastiter2[x][4])

basicstylebasicstyle basicstylepredicted_val1[x] = lastiter1[x][0]

basicstylebasicstyle basicstylepredicted_val2[x] = lastiter2[x][0]

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylef1_scores = [f1_scores_m1 ,f1_scores_m2 ,f1_scores_m3 ,f1_final1 ,f1_final2]

basicstylebasicstyle basicstylerecall_scores = [recall_scores_m1 ,recall_scores_m2 ,recall_scores_m3 ,rec_final1 ,

basicstylebasicstyle basicstylerec_final2]

basicstylebasicstyle basicstyleprecision_scores =[ precision_scores_m1 ,precision_scores_m2 ,precision_scores_m3 ,

basicstylebasicstyle basicstyleprec_final1 ,prec_final2]

basicstylebasicstyle basicstyleaccuracy_scores =[ accuracy_m1 ,accuracy_m2 ,accuracy_m3 ,acc_final1 ,acc_final2]

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf_F1 = pd.DataFrame(f1_scores ,columns=alpha)

basicstylebasicstyle basicstyledf_prec = pd.DataFrame(precision_scores ,columns=alpha)

basicstylebasicstyle basicstyledf_rec = pd.DataFrame(recall_scores ,columns=alpha)

basicstylebasicstyle basicstyledf_acc = pd.DataFrame(accuracy_scores ,columns=alpha)

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf_scores = pd.concat ([df_F1 ,df_prec ,df_rec ,df_acc],axis=0,join='outer')

basicstylebasicstyle basicstyledf_scores = df_scores.reset_index ()

basicstylebasicstyle basicstyledf_scores = df_scores.drop(df_scores.columns [0],axis =1)

basicstylebasicstyle basicstyleprint df_scores

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf_scores.to_csv(r'paper_test(cv10).csv', header=True , index=True , mode='w',

basicstylebasicstyle basicstyleencoding='utf -8')

Final results & plotting

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleimport pandas as pd

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf1 = pd.read_csv('paper_test(cv1).csv')

basicstylebasicstyle basicstyledf2 = pd.read_csv('paper_test(cv2).csv')

basicstylebasicstyle basicstyledf3 = pd.read_csv('paper_test(cv3).csv')

basicstylebasicstyle basicstyledf4 = pd.read_csv('paper_test(cv4).csv')

basicstylebasicstyle basicstyledf5 = pd.read_csv('paper_test(cv5).csv')

basicstylebasicstyle basicstyledf6 = pd.read_csv('paper_test(cv6).csv')

basicstylebasicstyle basicstyledf7 = pd.read_csv('paper_test(cv7).csv')

basicstylebasicstyle basicstyledf8 = pd.read_csv('paper_test(cv8).csv')

basicstylebasicstyle basicstyledf9 = pd.read_csv('paper_test(cv9).csv')

basicstylebasicstyle basicstyledf10 = pd.read_csv('paper_test(cv10).csv')

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf1.drop(df1.columns [[0]], inplace=True ,axis =1)

basicstylebasicstyle basicstyledf2.drop(df2.columns [[0]], inplace=True ,axis =1)

basicstylebasicstyle basicstyledf3.drop(df3.columns [[0]], inplace=True ,axis =1)

basicstylebasicstyle basicstyledf4.drop(df4.columns [[0]], inplace=True ,axis =1)

basicstylebasicstyle basicstyledf5.drop(df5.columns [[0]], inplace=True ,axis =1)

basicstylebasicstyle basicstyledf6.drop(df6.columns [[0]], inplace=True ,axis =1)

basicstylebasicstyle basicstyledf7.drop(df7.columns [[0]], inplace=True ,axis =1)

basicstylebasicstyle basicstyledf8.drop(df8.columns [[0]], inplace=True ,axis =1)

basicstylebasicstyle basicstyledf9.drop(df9.columns [[0]], inplace=True ,axis =1)
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basicstylebasicstyle basicstyledf10.drop(df10.columns [[0]], inplace=True ,axis =1)

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylesum_df = df1.add(df2.add(df3.add(df4.add(df5.add(df6.add(df7.add(df8.add(df9.add(df10 )))))))))

basicstylebasicstyle basicstyleavg_df = sum_df.divide (10)

basicstylebasicstyle basicstyleavg_df.to_csv(r'avg_results.csv', header=True , index=None , mode='w', encoding='utf -8')

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleround_df = avg_df.round (2)

basicstylebasicstyle basicstyleround_df.to_excel(r'round_results.xlsx', header=True , index=None , encoding='utf -8')

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyleimport pandas as pd

basicstylebasicstyle basicstyleimport numpy as np

basicstylebasicstyle basicstyleimport matplotlib.pyplot as plt

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyleplt.style.use('ggplot ')

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstyledf = pd.read_csv("avg_results.csv")

basicstylebasicstyle basicstyle#df.drop(df.columns [[0]] , inplace=True ,axis =1)

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylealpha = [5,15,25,35 ,45 ,55,65]

basicstylebasicstyle basicstylef1_scores = df.iloc[np.arange (0,5,1),:]

basicstylebasicstyle basicstyleaccuracy_scores = df.loc[np.arange (15 ,20,1),:]

basicstylebasicstyle basicstyleprecision_scores =df.iloc[np.arange (5,10,1),:]

basicstylebasicstyle basicstylerecall_scores = df.iloc[np.arange (10,15,1),:]

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylef1_scores = f1_scores.values.tolist ()

basicstylebasicstyle basicstyleaccuracy_scores = accuracy_scores.values.tolist ()

basicstylebasicstyle basicstyleprecision_scores =precision_scores.values.tolist ()

basicstylebasicstyle basicstylerecall_scores = recall_scores.values.tolist ()

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylecolors = ['#7FEBFF ','#0072 CC','#43 A9FD','#7 FEBFF','#0072CC']

basicstylebasicstyle basicstylemarkers = ['s','o','D','s','o']

basicstylebasicstyle basicstylelines = ['--','--','-','-','-']

basicstylebasicstyle basicstyledef plot_scores(methods ,alpha ,scores ,i,line ,marks ,cols ,title = 'Score'):

basicstylebasicstyle basicstyleplt.figure(figsize =(8 ,7))

basicstylebasicstyle basicstyleplt.title('{0} scores for GOP data (Positive = labelled)'.format(title),

basicstylebasicstyle basicstylefontsize='xx -large')

basicstylebasicstyle basicstyleplt.xlabel('Alpha (%)',fontsize='large')

basicstylebasicstyle basicstyleplt.ylabel('{0} score '.format(title),fontsize='large')

basicstylebasicstyle basicstylefor x in xrange(0,i):

basicstylebasicstyle basicstyleplt.plot(alpha ,scores[x],marker=marks[x],color=cols[x],linestyle=line[x],

basicstylebasicstyle basicstylelabel=methods[x],markersize =7.5, linewidth =2.0)

basicstylebasicstyle basicstyleplt.legend(loc=4,fontsize='large')

basicstylebasicstyle basicstyleplt.xlim ([0 ,70])

basicstylebasicstyle basicstyleplt.ylim ([0 ,1.0])

basicstylebasicstyle basicstyleplt.tick_params(labelsize='medium ')

basicstylebasicstyle basicstyleplt.xticks(alpha)

basicstylebasicstyle basicstyleplt.grid(True)

basicstylebasicstyle basicstyleplt.savefig('{0}_P1.png'.format(title),dpi =100)
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basicstylebasicstyle basicstyleplt.show()

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle#%%

basicstylebasicstyle basicstylemethods = ['Method 1: Intital SVM','Method 2: Initial SVM','Model: Logistic regression ',

basicstylebasicstyle basicstyle'Method 1: Final SVM','Method 2: Final SVM']

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyleplot_scores(methods ,alpha ,f1_scores ,len(methods),lines ,markers ,colors ,title='F1')

basicstylebasicstyle basicstyleplot_scores(methods ,alpha ,accuracy_scores ,len(methods),lines ,markers ,colors ,title='Accuracy ')

basicstylebasicstyle basicstyleplot_scores(methods ,alpha ,precision_scores ,len(methods),lines ,markers ,colors ,title='Precision ')

basicstylebasicstyle basicstyleplot_scores(methods ,alpha ,recall_scores ,len(methods),lines ,markers ,colors ,title='Recall ')
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Results

20 Newsgroup data

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 49 149 249 348 448 548 648

Rocchio
Initial SVM 0,06 0,35 0,57 0,65 0,68 0,7 0,69
Final SVM 0,04 0,24 0,53 0,65 0,68 0,7 0,69

Supervised Logistic Regression 0,05 0,2 0,33 0,42 0,46 0,48 0,46

Rocchio w/ clustering
Initial SVM 0,11 0,74 0,9 0,91 0,92 0,92 0,9
Final SVM 0,04 0,27 0,7 0,9 0,94 0,94 0,93

(a) F1 scores

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 49 149 249 348 448 548 648

Rocchio
Initial SVM 0,03 0,21 0,4 0,49 0,52 0,54 0,53
Final SVM 0,02 0,14 0,36 0,48 0,52 0,54 0,53

Supervised Logistic Regression 0,03 0,11 0,2 0,26 0,3 0,31 0,3

Rocchio w/ clustering
Initial SVM 0,06 0,61 0,86 0,89 0,94 0,94 0,96
Final SVM 0,02 0,15 0,54 0,83 0,91 0,94 0,96

(b) Recall

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 49 149 249 348 448 548 648

Rocchio
Initial SVM 0,99 0,99 0,99 0,99 0,99 0,99 0,98
Final SVM 1 0,99 0,99 0,99 0,99 0,99 0,98

Supervised Logistic Regression 0,99 0,99 1 1 1 1 0,99

Rocchio w/ clustering
Initial SVM 0,99 0,97 0,95 0,93 0,9 0,89 0,85
Final SVM 1 0,99 0,99 0,98 0,97 0,94 0,91

(c) Precision

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 49 149 249 348 448 548 648

Rocchio
Initial SVM 0,46 0,56 0,66 0,71 0,73 0,74 0,74
Final SVM 0,46 0,52 0,64 0,71 0,73 0,74 0,74

Supervised Logistic Regression 0,46 0,51 0,56 0,59 0,61 0,62 0,61

Rocchio w/ clustering
Initial SVM 0,48 0,77 0,9 0,91 0,91 0,9 0,88
Final SVM 0,46 0,53 0,74 0,9 0,94 0,94 0,92

(d) Accuracy

Table 4: Results: 20 Newsgroups data
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GOP data with positive tweets as labelled data

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 83 251 418 586 753 921 1088

Rocchio
Initial SVM 0,05 0,25 0,39 0,46 0,51 0,54 0,59
Final SVM 0,03 0,18 0,32 0,42 0,48 0,54 0,59

Supervised Logistic Regression 0,06 0,21 0,31 0,39 0,45 0,5 0,57

Rocchio w/ clustering
Initial SVM 0,09 0,39 0,46 0,47 0,46 0,49 0,49
Final SVM 0,03 0,18 0,34 0,43 0,49 0,53 0,56

(a) F1 scores

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 83 251 418 586 753 921 1088

Rocchio
Initial SVM 0,03 0,16 0,29 0,4 0,51 0,61 0,71
Final SVM 0,02 0,11 0,23 0,34 0,45 0,58 0,7

Supervised Logistic Regression 0,03 0,12 0,21 0,28 0,35 0,41 0,51

Rocchio w/ clustering
Initial SVM 0,05 0,33 0,57 0,69 0,77 0,8 0,86
Final SVM 0,02 0,11 0,25 0,38 0,51 0,66 0,79

(b) Recall

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 83 251 418 586 753 921 1088

Rocchio
Initial SVM 0,68 0,65 0,59 0,55 0,52 0,49 0,5
Final SVM 0,63 0,59 0,56 0,54 0,52 0,5 0,51

Supervised Logistic Regression 0,69 0,67 0,64 0,63 0,64 0,63 0,64

Rocchio w/ clustering
Initial SVM 0,64 0,48 0,39 0,35 0,33 0,35 0,34
Final SVM 0,61 0,56 0,53 0,5 0,48 0,44 0,44

(c) Precision

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 83 251 418 586 753 921 1088

Rocchio
Initial SVM 0,79 0,8 0,8 0,8 0,79 0,78 0,79
Final SVM 0,79 0,79 0,79 0,79 0,79 0,78 0,79

Supervised Logistic Regression 0,79 0,8 0,8 0,81 0,82 0,82 0,83

Rocchio w/ clustering
Initial SVM 0,79 0,78 0,71 0,66 0,62 0,64 0,61
Final SVM 0,78 0,79 0,79 0,78 0,77 0,75 0,74

(d) Accuracy

Table 5: Results: GOP data (positive tweets as labelled)
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GOP data with negative tweets as labelled data

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 303 910 1517 2124 2731 3338 3945

Rocchio
Initial SVM 0,11 0,36 0,47 0,54 0,58 0,64 0,71
Final SVM 0,08 0,34 0,46 0,53 0,58 0,63 0,7

Supervised Logistic Regression 0,08 0,22 0,29 0,33 0,35 0,35 0,35

Rocchio w/ clustering
Initial SVM 0,42 0,77 0,8 0,82 0,84 0,85 0,87
Final SVM 0,09 0,42 0,65 0,75 0,81 0,84 0,86

(a) F1 scores

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 303 910 1517 2124 2731 3338 3945

Rocchio
Initial SVM 0,06 0,23 0,32 0,38 0,43 0,49 0,57
Final SVM 0,04 0,21 0,31 0,38 0,43 0,49 0,57

Supervised Logistic Regression 0,04 0,12 0,17 0,2 0,21 0,22 0,21

Rocchio w/ clustering
Initial SVM 0,28 0,71 0,79 0,8 0,85 0,86 0,89
Final SVM 0,05 0,28 0,52 0,66 0,76 0,83 0,87

(b) Recall

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 303 910 1517 2124 2731 3338 3945

Rocchio
Initial SVM 0,87 0,88 0,89 0,9 0,91 0,91 0,93
Final SVM 0,86 0,87 0,89 0,9 0,91 0,91 0,93

Supervised Logistic Regression 0,88 0,9 0,91 0,92 0,92 0,93 0,94

Rocchio w/ clustering
Initial SVM 0,84 0,83 0,83 0,83 0,83 0,84 0,85
Final SVM 0,86 0,87 0,88 0,87 0,86 0,86 0,85

(c) Precision

α 5% 15% 25% 35% 45% 55% 65%

Method Labelled observations 303 910 1517 2124 2731 3338 3945

Rocchio
Initial SVM 0,26 0,37 0,44 0,48 0,52 0,56 0,63
Final SVM 0,24 0,36 0,43 0,48 0,52 0,56 0,63

Supervised Logistic Regression 0,25 0,3 0,34 0,36 0,37 0,37 0,37

Rocchio w/ clustering
Initial SVM 0,4 0,66 0,7 0,72 0,75 0,76 0,78
Final SVM 0,25 0,4 0,57 0,66 0,72 0,76 0,78

(d) Accuracy

Table 6: Results: GOP data (negative tweets as labelled)
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Abstract

This research report looks at how RGB colour histograms are used for colour recognition and they

can be applied to �elds such as robotics. We will proceed by giving an example of how colour histograms

function for colour recognition. A write up of the Kalman �lter for localization will be included as well

as an application of how colour histograms can be used to classify images based on colour with the aid

of histogram distances for image comparison.
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1 Introduction

Have you ever wondered how cameras these days are able to detect bright colours or how robots can visualize
their surroundings? The answer lies with colour histograms. A colour histogram of an image is de�ned as
the colour density function of the image pixels in a given colour space [10] and denotes the joint probabilities
of the intensities of the three colour channels, namely the RGB colour space shown in Figure 11. A colour
histogram is produced by counting the number of pixels in an image of each colour. It �rst does this by
splitting the image into its red, green and blue colour levels then counts them individually in each level.
A computer typically has 16,777,216 (2563) colours which are made up by mixing the colours red, green
and blue. In Figure 1, the RGB colour space is represented in cartesian coordinate system with red, green
and blue on the major axes. All 2563 colours are represented by a mixture of red, green and blue. For
example in Figure 1, the colour cyan which has coordinates (0,255,255) is a mixture of blue and green with
respective coordinates (0,0,255) and (0,255,0). You may also observe the diagonal from black (0,0,0) to white
(255,255,255) which makes up the greyscale of an image or in other words, black and white.

Figure 1: The RGB Colour space

Colour recognition is a good example of how colour histograms can be used. Consider the four paintings
in Figure 22. Firstly one would choose a query image. Secondly choose a colour space, in this case the RGB
model. Then matching of colour histograms done through various measurements. Another model available is
the HSV (Hue, Saturation and Value) colour space [12], but for purposes of this report, we will concentrate
on the RGB colour space. It is also mentioned in [6, 12] how to interchange between the colour spaces
mentioned. This is achieved by using the Euclidean distance approach.

1Figure 1 downloaded from http://www.viz.tamu.edu and
https://developer.apple.com/library/content/documentation/GraphicsImaging/Conceptual/csintro/csintro_colorspace/csintro_colorspace.html
2Images in Figure 2 downloaded from:
Image 1- https://www.google.com/culturalinstitute/beta/asset/bgEuwDxel93-Pg?utm_source=google&utm_medium=kp&projectld=art-

project,
Image 2- http://www.paintinghere.com/painting/vincent_van_gogh_branches_of_an_almond_tree_in_blossom_in_red_27683.html,
Image 3- http://www.vggallery.com/painting/p_0611.html and
Image 4 https://www.khanacademy.org/humanities/becoming-modern/symbolism/a/munch-the-scream
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An image retrieval algorithm, such as [12, 6, 5], proceeds to quantize or transform the image. This helps
in reducing computational time since it would take some time for comparison of 256*256*256 bins to be
compared. In [6] the transformation is from 256*256*256 bins into 8*8*8 bins. The algorithm proceeds to
compute the histogram which it does by merely counting the number of pixels of each colour in the image
and plots them as frequencies on a histogram. For comparison purposes proportion instead of frequencies
are used in order to make comparison of images of di�erent size possible. The details of this procedure will
be expanded on in the theory section of this report. Now to compare images, distance formulas are used for
example histogram euclidean distance and histogram intersection[6, 5]. Results are then displayed of potential
matches i.e images with the shortest distance. Referring back to the images in Figure 2, one would expect
the image with the most red (Image 1) to have a peak on the red histogram, and similarly the paintings
with the green (Image 2) and the blue (Image 3) will have peaks on the red and green bins respectively. One
would expect to observe a unimodal histogram. Image 4 has a bit of blue, green and some red. So one would
most likely observe a peak at all these three colours, not as pronounced as the other histograms however.

In Figure 3 we observe the colour histograms computed by MATLAB R©3 for Image 4. A histogram with
51 bins and one with 8 bins was computed for each colour level of Image 4. For each histogram, the y-axis
is labelled the proportion of pixels so as to account for the di�erent number of pixels in each image.

Image 1 Image 2

Image 3 Image 4

Figure 2: Sample images

Various applications of colour histograms can also be found in the �eld of robotics. For example the
Robocup tournament [2] where uniform colour goals are now used and also how robots are able to recognize
colours. In this report, we will focus on how colour histograms are used to compare images based on colour
using a similar approach to the image retrieval algorithm [12, 6, 5] and how this can be applied to �elds such
as robotics, for example in a localization problem with the use of the Kalman �lter [13, 7, 11, 18].

3http://www.mathworks.com/products/matlab/
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(a) Red - 51 bins (d) Red - 8 bins

(b) Green - 51 bins (e) Green - 8 bins

(c) Blue - 51 bins (f) Blue - 8 bins

Figure 3: The RGB levels of Image 4 in Figure 2. (a)-(c) 51 bins (d)-(f) 8 bins
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2 Literature Review

2.1 Colour histograms

Statistics for robotics: Colour Classi�cation [8], includes a short and very brief practical approach to colour
recognition with R R©4. This paper is from a workshop in 2015 at the University of Pretoria and illustrates
how a robot can be used to identify objects based on thier colour, in a colour coded environment.

Histogram-Based Color Image Retrieval [6], contains a detailed approach to image retrieval. The article
focuses on six histogram based retrieval methods in the two colour spaces namely the RGB and HSV. They
begin by de�ning a colour space as a model which represents colour intensities and a colour space de�nes a
one to four dimensional space. They go on to de�ne the RGB and HSV colour spaces.

Jeong [6] goes on to describe and give a comprehensive illustration of the histogram-based image retrieval
method which has been mentioned earlier in the introduction of this report and conclude that the HSV
colour model outperforms the RGB colour model and further mentions that the histogram intersection-based
image retrieval in HSV colour space performs when taking into account computational time and retrieval
performance.

Colour histogram based retrieval [5], provides a more theoretical approach to colour histogram compared
to the previous paper [6]. Hussian et al [5] provide a detailed image retrieval using colour histograms.

2.2 The Kalman �lter and application to robotics

Probabilistic Robotics [15] includes a broad introduction to the �eld of robotics. It focuses on the statistical
techniques employed in robotics, for example, Gaussian �lters namely the Kalman �lter. The Kalman �lter
algorithm is explained in detail and is followed by an illustrative example. The Kalman �lter relies on
the linearity assumption, however Thrun et al [15] discuss another version of the Kalman �lter known as
the Extended Kalman �lter (EKF) which does not assume linearity. The EKF is more popular than the
Kalman �lter as a tool for state estimation in robot localisation, however a limitation exhibited by the EKF
is that it approximates state transitions using linear Taylor expansions whereas most robotics applications
are nonlinear. Other versions of the Kalman �lter discussed include the Unscented Kalman �lter which uses
a stochastic method for linearization, the information �lter and lastly the extended information �lter. Thrun
et al [15] also include nonparametric �lters such as the particle �lter which represents a distribution by a set
of samples drawn from this distribution. A particle is a hypothesis as to what the true world state may be
at time t. Unlike the Kalman �lter which uses underlying Gaussian assumption, the particle �lter includes a
wider range of distributions.
Kalman �ltering in R R© [16], provides a detailed comparison of di�erent R R© packages used for computing the
Kalman �lter. It also includes a detailed write up of the Kalman �lter.

Statistics for robotics : Kalman �lter [9], is from a workshop done in 2015 at the University of Pretoria.
It gives a short and brief description as well as a write up of the Kalman �lter. The algorithm carried out is
done using the R R© software package.

Colour Histograms as Background Description: An approach to overcoming the Uniform-Goal problem
within the SPL for the RoboCup WC 2012 [2], focuses on a possible solution in order tackle the recent
change in rules to the RoboCup, that now states that each team should score in their own unique goal. This
is a challenge since the robots allowed to compete in the RoboCup competition do not have a GPS system.
This report proposes the use of visual background as an aid to robot localization, in order to overcome the
challenging uniform goal problem. They achieve this by analyzing colour histograms and how they may be
used for this particular problem.

On the application of colour histograms for mobile robot localization [10], illustrates an appearance-based
method to be used for topologically localising a robot. They use a non-parametric clustering paradigm, a
self-organising map neural network as well as information obtained from segmentation of a single image to
approximate a colour probability density function.

4https://www.r-project.org/
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A self-organizing map (SOM) network approximates the colour probability distribution thus the colour his-
tograms of the image in the RGB space and retains the topological information and three dimensional
distribution of the data.
To explain how the histograms are approximated, consider M images collected while the robot is navigating
a path. At time t, the robot stores q previous images denoted It−1, It−2, ..., It−q and the latest image is It.
The entire image is not used however a smaller section of the image is obtained and is known as the region
of interest (ROI). A ratio rt−j of the image is obtained such that the most recent images have a greater
weighting than the other images.
Now at time t the trained linear SOM network, using the information from the images, approximates the
colour histograms, utilizing the weights and distribution of units along the RGB space as well as a segmenta-
tion procedure for the current image. Segmentation is the process where the image is separated into the red,
green and blue components of the corresponding image. The histogram is now projected through the neural
network weights de�ned as (ωr

i (t), ωg
i (t), ωb

i (t)) with index i denoting the bin and super-script for the colours.
The network goes on to segment the image It using the neural network weights. Hence three histograms are
obtained each representing the di�erent colour components of the RGB space.
Repeating the process through all M images, a collection of elements is obtained:

{υ1(t), υ2(t), ......., υs(t)}

from t = 0 to M where υj(t) = {(ωr
j (t), ωg

j (t), ωb
j(t))} represents the relative frequencies of the j − th bin of

the RGB component with j = 1 to K and M is the number of images in the sequence.
Ranó et al [10] propose a number of histogram distances in order to compare histograms obtained at each
time step with previously stored histograms.
The distances presented in this paper include the simple and the popular euclidean distance, the Manhattan
distance, histogram intersection, chi-squared distance [10] , correlation distance [14] and �nally the Bhat-
tacharyya measure [4].

3 Background Theory

3.1 The Kalman �lter

3.1.1 Kalman �lter background

The Kalman �lter was �rst introduced by Swerling [13] and Kalman [7] as a technique for �ltering and
prediction in linear Gaussian systems. Gaussian �lters all share the same concept that the beliefs follow
multivariate normal distributions. The underlying distributions of the Kalman �lter are multivariate normal.
The beliefs of the Kalman �lter are denoted at time t by (bel(xt)) with mean µt and covariance

∑
t. It is

simply a linear weighted average of two sensor values. It uses a combination of measurements from the same
variable from di�erent sensors namely an approximation or prediction of the system's state denoted as γt
with an approximate measurement of the state denoted as zt .
It has various uses in aeronautics, engineering and statistics. More speci�cally in navigation, guidance, radar
tracking and stock price prediction [11, 18].

Let random variables X and Y be continuous random variables. If x is a value that we would like to estimate
using y then the density function p(x) is known as the prior distribution which is de�ned as

p(x) =

ˆ
p(x|y)p(y).

This distribution is the information we have with regards to X prior to incorporating Y. If we now incorporate
Y we get the density function p(x|y) known as the posterior distribution and is de�ned as

p(x|y) =
p(y|x)p(x)

p(y)
.
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Now we an apply these de�ntions to the Kalman �lter since they an important role in the algorithm.
In order for the posterior denoted as bel(xt) of the Kalman �lter to be Gaussian, the following three properties
must hold:

1. The state transition probability p (xt|γt,xt−1) known as the posterior state since the density of xt is
now calculated using the information from the previous time step xt−1 and control information at time
t, γt, must be a linear function with Gaussian error and is expressed by the following equation:

xt=Atxt−1 +Btγt + εt

with intial prior knowledge x0 ∼N(µ0,
∑

0), where xt and xt−1 are n×1 state transition vector at time
t and t− 1 respectively, γt is an n× 1 control vector at time t, At is a sqaure matrix of dimension n, Bt

is an n×m matrix and εt is an n× 1 Gaussian random vector which models the uncertainty brought
about by the state transititon with mean zero and covariance matrix Rt i.e εt ∼ N(0,Rt) . The density
of the posterior is given by

p(xt|γt,xt−1) = |2πRt|−
1
2 exp{−1

2
(xt −Atxt−1 −Btγt)

′R−1
t (xt −Atxt−1 −Btγt)}

which is a normal distribution with mean Atxt−1 +Btγt and covariance matrix Rt.

2. The measurement probability p (zt|xt) which is also a posterior since the density of zt is obtained by
incorporating known information namely xt, must also be a linear function with a Gaussian error, that
is,

zt = Gtxt + δt

where zt is a k × 1 measurement vector (e.g input from sensors, GPS) at time t , Gt is a k × n matrix
and δt is a k × 1 Gaussian random vector which represents the measurement uncertainty with mean
zero and covariance matrix Qt i.e δt ∼ N(0, Qt). The density of the posterior is given by

p(zt|xt) = |2πQt|−
1
2 exp{−1

2
(zt − Ctxt)

′Q−1
t (zt − Ctxt)}.

3. The initial belief bel (x0) must be normally distributed i.e xo ∼ N(µ0,

∑
0).

3.1.2 The Kalman �lter algorithm

The Kalman �lter algorithm represents the belief bel(xt) at time t with mean µt and the covariance
∑

t.
The input parameters of the Kalman �lter is the belief at time t − 1 and is denoted with parameters µt−1

and
∑

t−1. Also γt and zt are de�ned above as the control and measurement vectors respectively and are
required in order to update the input parameters and give the output parameters µt and

∑
t , the belief

parameters at time t .
The algorithm of the Kalman �lter is as follows:

Input
(
µt−1,

∑
t−1
)

Now using information obtained at time t − 1, namely µt−1 and
∑

t−1, where µt−1 is de�ned as the belief
bel(xt) at time t− 1 with covariance matrix

∑
t−1.

10



1. µ̄t = Atµt−1+Btγt

where µ̄t is the mean of the predicted belief b̄el(xt) and is a linear function of µt−1 and γt.

2.
∑̄

t = At

∑
t−1A

′

t +Rt

where
∑̄

is the covariance of b̄el(xt) which is a function of
∑

t−1 and Rt. Hence b̄el(xt) ∼ N(µ̄t,
∑̄

t).

3. Kt =
∑̄

tG
′

t(Gt

∑̄
tG

′

t +Qt)
−1

Kt is known as the Kalman gain.

4. µt = µ̄t +Kt(zt−Gtµ̄t)

where µt is the mean of the belief bel(xt) and is a function of the mean predicted belief µ̄t,Kt and the
measurement vector zt.

5.
∑

t = (I −KtGt)
∑̄

t

where
∑

t is the covariance of bel(xt).

Output (µt,
∑

t)

In steps 1 and 2 the predicted belief µ̄t and
∑̄

t is computed using the control vector γt. Then µ̄t is computed
using the state transition vector with µt−1 in place of xt−1 and

∑̄
t is computed using the fact that states are

dependent on past states with linear matrix At. The �rst two steps of the Kalman �lter algorithm are known
as the control update or prediction steps. In step 3, Kt determines the extent to which zt is incorporated
into the new state estimate.
In steps 4 and 5, µt and

∑
t are obtained using µt,

∑̄
t as well as the measurement vector zt. Steps 3 to 5 are

known as the measurement update steps. By using b̄el(xt) these three steps help in re�ning the predicted
values calculated in step 1 and 2 thus giving a better estimate of the mean which has a smaller .
The Kalman �lter algorithm returns µt and

∑
t which are the belief parameters at time t denoted as bel(xt)

[15].
In Figure 4, the Kalman �lter algorithm is summarized. The mathematics behind the Kalman �lter can be
a bit complex to understand at �rst, however Figures 5 and 6 provide a one dimensional representation of
the Kalman �lter as well as a numerical example with some graphs included for visual illustration.

3.1.3 Examples

Figure 5(a) shows the initial belief (bel(x0)) or the prior of the robot and is given as a normal distribution.
In Figure 5(b), the robot analyses its sensor input for example, GPS system or infrared, and returns a
measurement of its position which is found at the peak of Figure 5(b) which is approximated by the sensor
input and the spread corresponds to the uncertainty of the measurement. Now in Figure 5(c) the dashed

11



Figure 4: The Kalman �lter algorithm

blue line is as a result of steps 4 and 5 of the Kalman �lter algorithm. The mean of the belief at time t = 1
is found between the two previous means and the uncertainty of the robot's position is smaller.

Now, suppose the robot moves to the right. The Gaussian shown in bold red in Figure 6(a) is a result of
steps 2 and 3 which compute µ2 and

∑̄
2 of the Kalman �lter, namely the prediction steps. It is shifted by

the magnitude that the robot has moved. It has a wider spread compared to the belief at t = 1 due to the
increased uncertainty brought about by the stochastic nature of the state transtition. A second measurement
is received by the robot which results in the Gaussian in Figure 6(b) shown as the bold blue line. Once again
this leads to lines 3 to 5 of the Kalman �lter where µ2 and

∑
2 are computed resulting in the Gaussian in

Figure 6(c) represented by the dashed blue line.
This example perfectly illustrates that steps 3 to 5 of the Kalman �lter algorithm decreases the uncertainty

as is seen in Figures 5(c) and 6(c), whereas steps 1 and 2 increase the uncertainty of the robots position as
illustrated in Figure 6(b).

We now provide an example in two dimensions.

Initial starting values at time t = 0:

µ0 =

(
0.2
−0.2

)
∑

0 =

(
0.4 0.3
0.3 0.45

)
At = A =

(
0.4 0.5
0.2 0.3

)
Bt = B =

(
0.1 0.5
0.2 0.1

)
γt = γ =

(
0.4
0.2

)
Rt = R =

(
0.5 0.2
0.2 0.1

)
Gt = G =

(
0.1 0.4
0.3 0.6

)
Qt = Q =

(
0.4 0.1
0.1 0.2

)
and zt is a random vector generated from N(0, I) distribution for each time step. All the values de�ned
above have been randomly chosen. The example is to illustrate how the Kalman �lter works. This is a simple
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(a) Intial belief of robot at t = 0

(b) Position of robot after measurement step at t = 1.

(c) Belief of robot at t = 0. Notice how the uncertainty at this point is reduced.

Figure 5: One dimensional illustration of Kalman �lter, initial steps

example since we assumed At, Bt, Rt, Gt and Qt to be constant. The algorithm can also be adjusted in order
to be time non-homogenous.

From t = 1 to t = 2
At t = 1:

1. µ̄1 = Aµ0 +Bγ =

(
0.12
0.08

)

2.
∑̄

1 = A
∑

0A
T + R =

(
0.7965 0.3655
0.3655 0.1925

)
since this the prediction step, it can be seen that the

covariance matrix in the step above increases the uncertainty given the inital covariance structure

3. K1 =
∑̄

1G
T
(
G
∑̄

1G
T +Q

)−1
=

(
−0.0082 0.9738
0.0033 0.4748

)

4. µ1 = µ̄1 +K1(z1 −Gµ̄1) =

(
2.4550
1.2116

)
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(a) Position of robot after prediction steps at t = 2.

(b) Position of robot after measurement at t = 2.

(c) Belief f robot at t = 2. Again the uncertainty is reduced from the two previous steps.

Figure 6: One dimensional illustration of Kalman �lter, subsequent steps

5.
∑

1 = (I −K1G)
∑̄

1 =

(
0.3521 0.1472
0.1472 0.0852

)

The uncertainty in step 2 which is represented as covariance matrix
∑̄

t is reduced in step 5. The
uncertainty in step 5 is also smaller than the initial uncertainty given by

∑̄
0. Hence it is evident that the

step 5 of the Kalman �lter otherwise known as part of the measurement update step decreases uncertainty.
This helps to explain the function that the Kalman �lter serves in decresing the uncertainty of the prediction
steps by using the measurement update.

At t = 2 :

1. µ̄2 = Aµ1 +Bγ =

(
1.7278
0.9545

)
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2.
∑̄

2 = A
∑

1A
T +R =

(
0.6365 0.2733
0.2733 0.1394

)

3. K2 =
∑̄

2G
T
(
G
∑̄

2G
T +Q

)−1
=

(
−0.0099 0.8794
0.0022 0.4071

)

4. µ2 = µ̄2 +K2(z2 −Gµ̄2) =

(
1.2096
0.7159

)

5.
∑

2 = (I −K2G)
∑̄

2 =

(
0.3261 0.1285
0.1285 0.0718

)

The predicted uncertainty represented by covariance matrix
∑̄

2 calculated in step 2 of the Kalman �lter
algorithm at time ( which is a function of

∑
1) has a larger uncertainty compared to

∑
1. This is due to the

fact that the robot has not receieved any new information of its location in order to better approximate its
position. It only has previous information on which to rely on. Once the robot has receieved measurement
update then only can it go through steps 3 to 5 of the Kalman �ltter in order to reduce the uncertainty of
its position and so on .

Figures 7 and 8 represent the measurement vectors zt (red crosses) as well as the µt vectors (blue stars).
Figure 7 represents three time steps and Figure 8 represents 1000 time steps. In Figure 7, the points labelled
t = 1 and t = 2 are plotted using the values of µ1 and µ2 respectively in the example above. The algebra
for t = 3 is not shown in example but is calculated in the same manner. Time t = 0 was a randomly chosen
starting point.

In Figure 8, similar steps shown in the example above are carried out one thousand times. This plot
shows a graphical representation of what the Kalman �lter does. It can be seen that the Kalman �lter
processes the random measurement vectors and �lters them and decreases the uncertainty brought about by
the measurement vectors.

Figure 7: Three time steps of the Kalman �lter example
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Figure 8: One thousand time steps of the Kalman �lter example. The red illustrates the random vectors
and the blue is after the prediction steps of the Kalman �lter. Notice how the uncertainty is reduced by the
prediction steps.

3.2 Colour Histograms

3.2.1 De�nition

A histogram denoted H = {hi}mi=1, is de�ned as a mapping from a set of d-dimensional integer vectors m
to the set of non-negative reals. In this case m represents the number of bins, i represents the ith bin. For
example, when constructing a colour histogram, each pixel in an image has three values hence a 3-dimensional
integer vector. The number of bins m is predetermined. The non-negative reals can either be the number or
proportion of pixels in the bin range. Colour histogram refers to the probability mass function (pdf) of the
colour intensitites [6]. Hence colour histograms are a type of histogram and are de�ned as:

hic = P (C = c, I = i)

which is the joint probability of the colour intensity and the bin value, where C represents either R, G orB
of the RGB colour space. Colour histograms are formed by separating (discretizing) the colours of an image
and counting the number of pixels with that colour. Several types of histograms can be used, for example,
the separate RGB histogram in [1] which computes three separate histograms each representing one of the
three colour levels of the RGB space. This is the method represented by hic.
Colour histograms have several advantages and are thus widely used in image retrieval or image recognition
[3] .

• They provide a condensed version of the image which is much easier for a computer to store.

• Image retrieval based on colour histograms should accurately retrieve images regardless of orientation,
size and position of the image.

• They are quite e�cient in terms of content information.
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Colour histograms are not without limitations. They are unable to incorporate the spatial information of
the colours in an image. Comparison of black and white images is not necessarily useful based on a colour
algorithm [3].
Colour histograms contain statistical information that can be useful in robot localization.

3.2.2 Image comparison

Figure 9, illustrates an image comparison algorithm with the use of colour histograms. This algorithm is to
be used in the application section of this report.
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���������	
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Figure 9: Image comparison algorithm

Firstly, images are read into MATLAB R©. An image is represented as an m× n× j array whereby m× n is
the number of pixels in an image and j is the R,G and B level of an image. Each pixel in an image has three
values corresponding to the R, G and B levels. These three values range from 0 to 255 which represent the
colour intensities with 255 being the highest image. For example, a pixel in an image can have the values
[26, 90, 220] which represent the red, blue and green levels respectively.
The algorithm proceeds to quantize the images. This process groups the values of the respective colour levels
into a predetermined number of groups. For example, suppose an image is quantized such that there are
eight groups. Using the values [26, 90, 220] from the previous example, the red value will be in group one,
the green value in group two and the blue value in group six. The more groups there are, the better the
algorithm is at comparing images at the expense of computational time.
Once the images have been quantized, the groups obtained from this process are used to construct a histogram.
The x-axis of the histogram represents the groups (otherwise known as bins) from the quantization process
and the y-axis represents the proportion of pixels in each bin so as to compare histograms of di�erent images
since each image has a di�erent number of pixels.
Finally, the histograms can be compared for image matching. This is done by using the distance formulas
discussed in the next section.
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3.2.3 Histogram distances

This section gives a more in depth look as to how two histograms are compared in the algorithm in Figure 9.
Consider HC,1 and HC,2 which represent two histograms with the same number of bins and C represents the
three colours red, green or blue and for comparison purposes the non-negative reals is the relative frequency.
Let N represent the number of bins, and hicj represents the proportion of pixels of the ith bin of colour c and

the jth histogram and hcj = 1
m

m∑
i=1

hicj is the mean proportion of pixels of the jth histogram, where j = 1, 2

for the two histograms being compared. The distances illustrated below will compare the similarity of images
based on their histograms [10, 4, 14].

Euclidean distance:

D(HC,1, HC,2) =

√√√√ m∑
i=1

(hic1 − hic2)2.

This is the most used out of the distances de�ned. The smaller the value, the more similarity there is
in that colour of the image. Hence a value of zero means that the two images have the same amount of the
colour. If all three values of the colour levels is zero, then the two images are the same.

Manhattan distance:

D(HC,1, HC,2) =

m∑
i=1

|hic1 − hic2|.

The Manhattan distance sums the absolute value of the di�erences between the proportion of pixels
between bins of di�erent histograms. The smaller the value, the more similarity there is in the colour of the
image. Hence a value of zero means that the two images has the same amount of that colour. If all three
values of the colour levels is zero, then the two images are the same.

Histogram intersection:

D(HC,1, HC,2) =

m∑
i=1

min(hic1, h
i
c2).

The histogram intersection method calculates a goodness of match value. It computes the sum of the
minimum value between the same bin from di�erent histograms. The closer the value of a colour level is to
one, the more similarity there is in the colour of the image. Hence a value of one means that the two images
have the same amount of the colour level. If all three values of the colour levels is one, then the two images
are the same.

Chi-Square distance:

D(HC,1, HC,2) =

m∑
i=1

(hiC1 − hiC2)2

hiC2

.

This distance function determines whether a histogram or distribution comes from the distribution of interest.
It computes the sum of the squared di�erences of the observed histogram bin and the corresponding bin from
histogram divided by the histogram of interest bin.

The smaller the value of each colour level, the more similarity there is in the colour distribution of that
colour. Hence a value of zero means that the colour distribution of a colour level is the same for both images.
If all three values of the colour levels is zero, then the two images are the same. Issues may arise when the
value in the denominator is zero then the value cannot be calculated (singularity issue).

Correlation distance:
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D(HC,1, HC,2) =

∑m
i=1(hic1 − hc1)(hic2 − hc2)√∑m
i=1(hic1 − hc1)2(hic2 − hc2)2

.

This distance formula calculates the dependence between two images. The closer the value is to one of a
colour level, the more similarity there is in the colour of the images. Hence a value of one means that the
two images has the same amount of that colour level.

Bhattacharyya distance:

D(HC,1, HC,2) =

√√√√1− 1√
hc1hc2N2

m∑
i=1

√
hc1hc2.

The closer the value is to one, the more similarity there is in the colour of the image. Hence a value of
zero means that the two images has the same amount of the colour level. If all three values of the colour
levels is zero, then the two images are the same.

An interesting thing to note is that the Bhattacharyya distance is an approximation of the chi-square
distance [4]. This helps avoid dividing by zero in the chi-square formula in the case that both distribution
are zero.
These six distances [10, 4, 14] are used to compare images based on their colour content in the next section.
This provides the basis in order for a robot to be able to learn its surrounding by comparing images it has
stored.

4 Application

4.1 Colour recognition

The aim of the application is to write an algorithm that classi�es red, green and blue cars as either red,
green or blue with the use of the histogram distances mentioned in Section 3.2.3 in the background theory.
Three main databases were created namely the car database, clean database and the test database. The car
database has three groups of images where each group has 30 cars of the same colour (red, green or blue).
Sample images of this database are found in Figure 10. The clean database has three groups with 30 images
whereby each group has di�erent images that are predominately one of the three colours (red, green and
blue). Sample images of this database are found in Figure 11. The test database consists of three red, three
green and three blue cars. One red test image is found in Figure 10 and one of the green test images is in
Figure 11. All images in the three databases are of similar size (roughly 300*150). Each of nine test images
was compared to each of the six groups of images in both of the two databases using the method discussed
in Section 3.2.2 and 3.2.3 of this report. A mean of the 30 comparisons is obtained and this results in a set
of 18 distances from the six distances formulas in Section 3.2.3 (three distances for each colour level).

To classify a test image, the colour level corresponding to the colour of the car in the test image is
compared across the three groups in the database since one would expect, for example an image of a blue
car to have a higher amount of blue in an image than any of the other colour. Hence for a car test image in
Figure 10, the value of each of the histogram distances is observed for the three groups in each database.
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A test image

Some red sample images Some green sample images

Some blue sample images

Figure 10: Test images as well as sample images from the car database

A test image

Some red sample images Some green sample images

Some blue sample images

Figure 11: Test images as well as sample images from the clean database
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4.1.1 Results

The results for the comparison algorithm are found in Tables 1-3 for the car database and Tables 4-6 for
the clean database. Each table has the results of three test images of the same colour labelled car 1, car 2
and car 3 to each of the three groups in one database. Since there are nine test images (in groups of three)
and two databases (three groups in each database), there are six tables. Three sets of results in a row arises
from comparing one test image to the three groups, labelled red images, green images and blue images in any
one of the two databases. Each test image is categorized using each of the distance formulas. For example,
consider the test image in Figure 10 which is compared each group of images in the car database with sample
images in Figure 10. The results of this comparison is found in �rst row of Table 1 under the heading car
1. The value of the euclidean distances for the red colour level after comparison to the three groups of car
images are 0.283477, 0.342454 and 0.347446. Since 0.283477 is the smallest value, the test image is classi�ed
as red which is a correct classi�cation since the car is in fact red and this value is highlighted in red. Another
example is test image in Figure 11 compared to the clean database with sample images in Figure 11 with
results are displayed in Table 5 under the heading car 3. The values for the correlation distances for the green
colour level after comparison are −0.26322, 0.067394 and −0.2171. Since 0.067394 (highlighted in red) is the
closest to 1, the car is classi�ed as red when in fact it is green hence it is misclassi�ed. The classi�cation is
done in the same manner for all the other comparison using the distances discussed in the background theory.

Another thing to note is that the blue cars have a higher classi�cation rate than the red or green cars.
This may be a results of the shadows in the images or any dark colours in an image that may in�uence the
blue values of the RGB colour space and hence bring a false classi�cation as a result. This may be useful to
look into in the future and �nd ways in which to possibly eliminate the e�ect of the shadows or colour depth
in and image and only extract the useful information in an image. Another option would be to look at other
colour spaces as well. Also a way to use all three histograms to classify could be investigated in future, as
herein we focus on the histogram average of the colour associated with the test image.
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5 Conclusion

The aim of this research was to analyse a method that can be used for visual information in the robotics
industry. The �eld of robotics continues to grow and new challenges arise in order to make a robot self
learning. This requires a lot of input so that a robot can make use of this information in order to predict
where it may be at any given time. This led to an analysis of images based on their colour with the use of
RGB colour histograms. Histograms of di�erent images were compared using histogram distances and this
can be used to compute similarities of a current image and training images as discussed in the self-organizing
maps, in which a robot can make a map based on this information. Colour histograms can be used for a
wide range of colour spaces such as the HSV space which may have an advantage over the RGB space [6].
Information of the distances calculated can be used as sensor input for the Kalman �lter in order to better
predict a robot's location.
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Appendix

Kalman �lter illustrative example

x=[0:0.1:30];

norm=normpdf(x,10,5)

norm2=normpdf(x,8,3)

norm3=normpdf(x,9,1.5)

% figure;

% plot(x,norm,'color','r','Linewidth',1)

% hold on;

% plot(x,norm2,'color','b','Linewidth',2)

% hold on;

% plot(x,norm3,'Linestyle','--')

% hold off

rnorm=normpdf(x,20,4)

rnorm2=normpdf(x,25,3.5);

rnorm3=normpdf(x,22.5,2)

figure;

plot(x,rnorm,'color','r','Linewidth',1)

hold on;

plot(x,rnorm2,'color','b','Linewidth',1)

hold on;

plot(x,rnorm3,'Linestyle','--')

hold off;

Kalman �lter algorithm

n=1000

sigma=[0.4 0.3;0.3 0.45]

mut=[0.2;-0.2]

At=[0.4 0.5;0.2 0.3]

Bt=[0.1 0.5;0.2 0.1]

gamma=[0.4;0.2]

Rt=[0.5 0.2; 0.2 0.1]

Gt=[0.1 0.4;0.3 0.6]

I=[1 0;0 1]

Qt=[0.4 0.1;0.1 0.2]

muz=[0;0]

sigmaz=[1 0;0 1]

zt=mvnrnd(muz,sigmaz,n)

mu=zeros(n,2)

for t=1:n

mutbar=At*mut + Bt*gamma

sigmabar=At*sigma*At' + Rt

Y=inv(Gt*sigmabar*Gt'+ Qt)
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Kt=sigmabar*Gt'*Y

mutnew=mutbar + Kt*(zt(t,:)' - Gt*mutbar)

sigmanew=(I-Kt*Gt)*sigmabar

%update step:

mut=mutnew

sigma=sigmanew

mu(t,:)=mutnew

end

plot(zt(:,1),zt(:,2),'+','Color',[1 0 0]);

hold on

plot(mu(:,1),mu(:,2),'*','Color',[0 0 1]);

hold on

plot(0.2,-0.2,'O','Color',[0 1 0]);

hold off

x0=0.2;

y0=-0.2;

txt= ' \leftarrow t=0';

text(x0,y0,txt)

Colour Histogram algorithm (including histogram comparisons)

function [euclidean,manhattan,inter,chisq,corr,bharchat, distance]

=comparison(image1)

imgPath = 'C:\Users\User\Dropbox\My shared Folder\Tinashe and Carel\

Histogram\Green Cars\'; dCell = dir([imgPath '*.jpg']);

disp('Loading image files.');

for d = 1:length(dCell)

img{d} = imread([imgPath dCell(d).name]);

pause(2)

end

g=imread(image1)

dist=zeros(length(dCell),18)

for d = 1:length(dCell)

img{d} = imread([imgPath dCell(d).name]);

h=img{d};

[n,m,j]=size(g)

[a,b,c]=size(h)
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newg= zeros(n,m,j);

newh=zeros(a,b,c);

for k = 1 : j

for i = 1 : n

for l = 1: m

value = g(i,l,k);

if value <=32

newg(i,l,k) = 1;

elseif value <= 64

newg(i,l,k) = 2;

elseif value <= 97

newg(i,l,k) = 3;

elseif value <= 129

newg(i,l,k) = 4;

elseif value <= 161

newg(i,l,k) = 5;

elseif value <= 193

newg(i,l,k) = 6;

elseif value <= 225

newg(i,l,k) = 7;

else newg(i,l,k) = 8;

end

end

end

end

for k = 1 : c

for i = 1 : a

for l = 1: b

value = h(i,l,k);

if value <=32

newh(i,l,k) = 1;

elseif value <= 64

newh(i,l,k) = 2;

elseif value <= 97

newh(i,l,k) = 3;

elseif value <= 129

newh(i,l,k) = 4;

elseif value <= 161

newh(i,l,k) = 5;

elseif value <= 193

newh(i,l,k) = 6;

elseif value <= 225

newh(i,l,k) = 7;

else newh(i,l,k) = 8;
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end

end

end

end

count=zeros(8,3);%red

count2=zeros(8,3)

proportion=zeros(8,3)

proportion2=zeros(8,3)

total=n*m

total2=a*b

for f=1:j

for k=1:8

for i=1:n

for l=1:m

value2=newg(i,l,f);

if value2 == k

count(k,f)=count(k,f)+1;

end

end

end

proportion(k,f)=count(k,f)/total;

end

end

for f=1:c

for k=1:8

for i=1:a

for l=1:b

value3=newh(i,l,f);

if value3 == k

count2(k,f)=count2(k,f)+1;

end

end

end

proportion2(k,f)=count2(k,f)/total2;

end

end

euclidean=sqrt(sum((proportion-proportion2).^2))

manhattan=sum(abs(proportion-proportion2))

sum1=zeros(1,3);

for j=1:3

for i=1:8
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sum1(1,j)=sum1(1,j)+min(proportion(i,j),proportion2(i,j));

end

end

s1=sum(proportion);

s2=sum(proportion2);

inter=sum1

chisq=sum(((proportion-proportion2).^2)./proportion)

hb1=(1/8)*s1;

hb2=(1/8)*s2;

hbar1=vertcat(hb1,hb1,hb1,hb1,hb1,hb1,hb1,hb1);

hbar2=vertcat(hb2,hb2,hb2,hb2,hb2,hb2,hb2,hb2);

numcorr=sum((proportion-hbar1).*(proportion2-hbar2))

varcovh1=sum((proportion-hbar1).^2)

varcovh2=sum((proportion2-hbar2).^2)

dencorr=sqrt(varcovh1.*varcovh2)

corr=numcorr./dencorr

bt1=1./sqrt(hb1.*hb2.*(8^2))

bt2=sum(sqrt(proportion.*proportion2))

bharchat=sqrt(1-bt1.*bt2)

dist(d,1:18)=(horzcat(euclidean,manhattan,inter,chisq,corr,bharchat))

end

dist2=mean(dist)

distance=vertcat(dist2(1,1:3),dist2(1,4:6),dist2(1,7:9),dist2(1,10:12),

dist2(1,13:15),dist2(1,16:18))

34



Ridge regression

Lebogang Komane 13257022

STK795 Research Report

Submitted in partial ful�llment of the degree BCom(Hons) Statistics

Supervisor: Dr N Strydom

Department of Statistics, University of Pretoria

2 November 2016

1



Abstract

The presence of multicollinearity in multiple regression a�ects the estimation of regression coe�cients.
Particularly, the ordinary least squares (OLS) estimates become highly unstable and have a large predic-
tion variance when multicollinearity is present. Consequently, having a large variance means that some
variables are coming out statistically insigni�cant.

The main focus of this paper is on ridge regression. Hoerl and Kennard [5] introduced ridge regression
as a remedial measure for multicollinearity. Ridge regression introduces a small bias, the ridge constant
(k), to shrink the OLS estimates towards zero so that more stable and accurate estimates can be obtained.
This paper presents the ridge estimator and its properties and also how the ridge estimator is obtained
geometrically.

Furthermore we discuss di�erent methods for selecting the ridge constant. Variations and applications
on ridge regression will also be discussed. In order to illustrate ridge regression practically with a data
set we primarily use SAS procedures [2]. The applications are intended to give more insight on how ridge
regression works in practice.
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1 Introduction

A multiple regression model is one of the most used statistical methods in almost every �eld of science and
technology, �nance and economics. It is primarily used to examine the relationship between a dependent
variable and multiple independent variables [3]. Many a times when a multiple regression model is �tted to
the observed data set, the independent variables tend to be highly correlated. This often occurs in multiple
regression analysis in the presence of multicollinearity.

Multicollinearity is often used to describe the existence of high correlation between independent variables.
When multicollinearity is present in the data, very poor estimates are usually obtained. The ordinary least
squares (OLS) estimator has a large prediction variance even though it has the property of being the best linear
unbiased estimator (Gauss-Markov theorem [3]). Consequently, having an in�ated variance means that some
variables are coming out statistically insigni�cant when they might be signi�cant without multicollinearity.

Hoerl and Kennard [5] suggested using ridge regression as a bias regression technique that analyzes a multiple
regression model in the presence of multicollinearity. Ridge regression introduces a small bias, the ridge
constant (k) to the diagonal elements of the OLS estimator. This de�nes the ridge estimator which shrinks
the least squares estimates towards zero to get more reliable and stable estimates. The ridge constant is also
used to reduce the in�ated variance. Therefore, determining an optimal value of the ridge constant is crucial
in ridge regression since it controls the amount of shrinkage.

Several methods have been suggested to estimate the best value for the ridge constant, such that the intro-
duction in bias does not exceed the reduction in the prediction variance. Hoerl and Kennard [5] proposed
using a graphical method, the ridge trace. Hoerl et al. [7] suggested the �xed point method. In a following
paper Hoerl and Kennard [6] proposed the iterative method. Many researchers also suggested other methods
for selecting the ridge constant such as Lawless and Wang [9], McDonald and Galarneau [11], Mallows [10],
Khalaf and Shukur [8] and many more others.

The introduction of ridge regression as a bias technique to deal with the problem of multicollinearity has
been followed by a number of papers in statistical literature. This includes the the least absolute shrinkage
and selection operator (LASSO) introduced by Tibshirani [13] followed by the elastic net introduced by Zou
and Hastie [14].

2 Theoretical Background

Suppose a multiple regression model is written in matrix notation as:

y = Xβ + u,

where y is a vector of observations on the dependent variable, X is a design matrix, β is a column vector
of regression coe�cients to be estimated and u is a vector of residuals [3]. Essentially, y is a vector of
independent normal random variables,

y ∼ N(Xβ, σ2I)

where σ2 is the variance and I is the identity matrix.

In the estimation of the regression coe�cients, the method of ordinary least squares minimizes the criterion,

Q = (y −Xβ)′(y −Xβ)
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yielding the following OLS estimator,

β̂ols = (X′X)−1X′y

When perfect multicollinearity (exact relationships) is present, the determinant of the matrix X′X becomes
singular and will not be invertible, thus the estimation of the regression coe�cients and standard errors
cannot be determined. For variables that are highly correlated, the determinant of the matrix X′X becomes
nearly singular. Therefore, very poor estimates of the regression coe�cients are usually obtained.

2.1 The role of the mean square error (MSE) and variance

The expected value of the OLS estimator is:

E(β̂ols) = E[(X′X)−1X′y)]

= (X′X)−1X′E{y}

= (X′X)−1X′Xβ

= β

∴ β̂ols is an unbiased estimator of β.

The variance of the OLS estimator is de�ned as:

Var{β̂ols} = σ2[(X′X)−1X′y]

= (X′X)−1X′σ2{y}X((X′X)−1X′)′

= (X′X)−1X′(σ2I)X(X′X)−1)′

= σ2(X′X)−1X′X((X′X)′)−1

= σ2(X′X)−1

The equation above shows that the variance of the OLS estimator becomes in�ated when the determinant
of the matrix X′X becomes nearly singular. Therefore, the OLS estimates will have large standard errors
resulting in statistical inferences becoming unreliable.

The MSE of the OLS estimator is:

MSE(β̂ols) = E(β̂ols − β)
′
(β̂ols − β)

= TraceVar(β̂ols)

= σ2Trace(X′X)−1

= σ2

p∑
i=1

1

λi
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where λi is the i
th eigenvalue of the matrix X′X. When multicollinearity is present, the eigenvalues become

relatively small, thus the MSE of the OLS estimator becomes very large. When the variance is in�ated we
get wider con�dence intervals, resulting in the acceptance of the null hypothesis (i.e. the true population
coe�cient is zero).

2.2 Ridge regression

Hoerl and Kennard [5] suggested that the ill-conditioning problem of the OLS estimates could be improved
by adding the ridge constant (k), to the matrix X′X before inverting it. Therefore, ridge regression modi�es
the matrix X′X such that its determinant is non-singular, this ensures that the inverse of the matrix X′X
can be determined. The matrix becomes (X′X+ kI) and the term kI e�ectively shrinks the OLS estimates
towards zero.

The ridge estimator is de�ned as:

β̂ridge = (X′X+ kI)−1X′y

The ridge estimator is basically the same as the OLS estimator when k = 0. Essentially, the ridge constant
is the parameter that di�erentiates the ridge estimator from the OLS estimator [12].

The expected value of the ridge estimator is:

E(β̂ridge) = E[(X′X+ kI)−1X′y)]

= (X′X+ kI)−1X′E{y}

= (X′X+ kI)−1X′Xβ

= Lkβ

where Lk = X′X+ kI)−1X′X. Therefore, β̂ridge is a biased estimator of β.

The variance of the ridge estimator is:

Var(β̂ridge) = σ2[(X′X+ kI)−1X′y]

= ((X′X+ kI)−1X)σ2{y}((X′X+ kI)−1X)′

= σ2(X′X+ kI)−1X′X(X′X+ kI)−1

= σ2(X′X+kI)−1X′X(X′X+kI)−1

The variance of the ridge estimator shows that the ridge constant reduces the in�ated variance in the presence
of multicollinearity. Thus as the ridge constant increases the variance decreases.
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The MSE of the ridge estimator is:

MSE(β̂ridge) = Var(β̂ridge) + Bias2

= σ2Trace[(X′X+kI)−1X′X(X′X+kI)−1] + k2β′(X′X+kI)−2β

= σ2

p∑
i=1

λi
(λi + k)2

+ k2β′(X′X+kI)−2β

This equation shows that the trade-o� between the introduction in bias and the reduction in variance can be
best explained by the MSE. Thus, the ridge constant should be chosen such that the increase in bias does
not exceed the reduction in the prediction variance. This will result in a better MSE of the ridge estimator
than the MSE of the unbiased OLS estimator.

2.3 Properties of the ridge estimator

• The ridge estimator is obtained by minimizing the residual sum of squares (RSS):

n∑
i=1

(yi−
p∑

j=1

βjxij)
2

subject to the constraint
p∑

j=1

βj
2 ≤ c, where c is a positive constant [4].

• The ridge estimator de�ned as:

β̂ridge = (X′X+ kI)−1X′y,

is a linear transformation of the unbiased OLS estimator.

• The ridge estimator is a biased estimator but has a smaller MSE than the OLS estimator.

• The ridge estimator always produces shrinkage towards zero and the amount of shrinkage is controled
by the ridge constant .

• Bias in the ridge estimator increases and decreases with the ridge constant.

2.4 Geometric interpretation of ridge regression

Figure 1 shows a geometric representation of how the ridge estimator is obtained with only two independent
variables in the model. The ellipses around the OLS estimate correspond to the contours of the RSS. The
OLS estimate at the center of the ellipse is the least squares solution where the RSS, achieves its minimum.

The blue shaded area of the circle corresponds to the constraint in ridge regression,
p∑

j=1

βj
2 ≤ c. Therefore,

the ridge estimate is obtained at the point at which the ellipse touches the circumference of the circle.
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Figure 1: Geometric interpretation of ridge regression (from STAT 897D [1])

2.5 The ridge constant

In the following section we discuss di�erent methods proposed by many researchers for selecting the best
value for the ridge constant:

The ridge trace [5] is a two-dimensional plot of the coe�cient estimates as a function the ridge constant (k).
Essentially, we use the ridge trace to help us visualize where the estimates stabilize. From the ridge trace we
would select the smallest value of the ridge constant for which stabilization occurs, since the ridge constant
(normally lies between 0 and 1) is related to the amount of bias introduced.

Hoerl et al. [7] suggested that the ridge constant can be estimated by using the formula:

k̂ =
pσ̂2

β̂ols ‘β̂ols

where p represents the number of predictors and σ̂2 is the estimated variance. This method is well known as
the �xed point method. They argued that using this method is the best choice for the ridge constant because
it obtains the minimum variance.

Hoerl and Kennard [6] proposed the iterative procedure. In this method the ridge constant is calculated as:

k̂i =
pσ̂2

p∑
j=1

(β̂j(k̂i − 1))2

for i ≥ 1 until the di�erence between successive estimates k̂i of k is relatively small and insigni�cant.

Lawless and Wang [9] suggested using this formula for selecting the ridge constant:

k̂ =
pσ̂2

p∑
i=1

λiβ̂2
i

where λi is the i
th eigenvalue of the matrix X′X. This method is a modi�es the �xed point method, by

multiplying the denominator of the �xed point method with the eigenvalues.

Mallows [10] modi�ed the Cp statistic to a Ck statistic. The Cp statistic is de�ned as:

Cp =
RSS

MSR
− (n− 2p) + 1

where MSR is the residual mean square for the model.

10



The Ck statistic suggested is computed as follows:

Ck =
RSS

σ̂2
− (n− 2) + 2Trace(XL)

where L = (X′X + kI)−1X′. Therefore, minimizing Ck statistic will give us the best value of the ridge
constant.

McDonald and Galarneau [11] suggested the following method. Let G be equal:

G = β̂
′
olsβ̂ols − σ̂2

p∑
j=1

(
1

λi

)

Then an estimator of the ridge constant is selected by solving the following equation:

β̂
′
ridgeβ̂ridge = G if G > 0

Otherwise if G < 0 choose k = 0 or if G = 0 choose k =∞.

Khalaf and Shukur [8] proposed the following method:

k = (λmaxσ̂
2)/((n− p− 1)σ̂2 + λmaxβ̂

2
max

where λmax is the maximum eigenvalue of the matrix X′X.

2.6 Variations and developments

Tibshirani [13] introduced the least absolute shrinkage and selection operator (LASSO) as a method of
estimation following the work on ridge regression. The LASSO reduces the dramatic variation of the OLS
estimator by shrinking some of the correlated coe�cients to exactly zero. The LASSO estimator is obtained
by minimizing the RSS subject to the constraint:

p∑
j=1

|βj | ≤ c

The constraint shows that the LASSO produces some coe�cient estimates that are exactly zero and hence
improving both prediction accuracy and model interpretability.

The main di�erence between ridge regression and the LASSO is that in ridge regression, the OLS estimates
are shrunk towards zero whereas with the LASSO some OLS estimates become exactly zero. Nevertheless,
both ridge regression and LASSO introduce a small bias to improve the OLS estimates.

One of the limitations of the LASSO is that it fails to do a group selection when there are groups of strongly
correlated independent variables. It only selects one variable from a group and ignores the other variables.
Zou and Hastie [14] introduced the elastic net to overcome the limitations of the LASSO. The elastic net is
a method used to group strongly correlated predictors. In addition, the elastic net estimator is obtained by
minimizing the RSS subject to the ridge and LASSO constraints:

βenet = ||yi−
p∑

j=1

βjxj)
2||

subject to
p∑

j=1

βj
2 ≤ c and

p∑
j=1

|βj | ≤ c.
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The penalty part:

p∑
j=1

|βj | ≤ c

performs variable selection by setting some coe�cients to exactly zero.

The penalty part:

p∑
j=1

βj
2 ≤ c

encourages the group selection by shrinking the coe�cients of correlated variables towards zero.

3 Application

Suppose that a researcher is interested in determining the relationship between high blood pressure (Y in
mm Hg) and weight (X1 in kg), body surface area (X2 in m2) and age (X3 in years) of 20 workers at Pick `n
Pay in Hat�eld Plaza.

To detect the presence of multicollinearity in the data set, we �rst examine the correlation matrix by using
the PROC CORR procedure in SAS [2] (see Appendix A) which yields the following output.

'

&

$

%

Pearson Correlation Coefficients, N = 20

Prob > |r| under H0: Rho=0

Y X1 X2 X3

Y 1.00000 0.84438 0.87911 0.14355

<.0001 <.0001 0.5512

X1 0.84438 1.00000 0.92495 0.45889

<.0001 <.0001 0.0435

X2 0.87911 0.92495 1.00000 0.08578

<.0001 <.0001 0.7337

X3 0.14355 0.45889 0.08578 1.00000

0.5512 0.0435 0.7337

From the output above it is very clear that multicollinearity is present, since the correlation between weight
(X1) and body surface area (X2) is relatively high (r = 0.92495).
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The following output below gives the OLS estimates by using the PROC REG procedure in SAS [2].

'

&

$

%

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 117.08571 99.78351 1.28 0.2789

X1 1 4.33511 3.01662 1.55 0.1711

X2 1 -2.85795 2.58313 -1.22 0.2951

X3 1 -2.18707 1.59661 -1.48 0.1917

Looking at the p−values of the output above we see that the all the OLS estimates are statistically insigni�cant
at a 5% level of signi�cance. In this example β2 = −2.86, this means that high blood pressure (Y) is expected
to decrease by 2.86 mm Hg when the body surface area (X2) increases by one m2, holding weight (X1) and
age (X3 ) constant. Whereas one would be expecting a positive relationship between high blood pressure (Y)
and body surface area (X2). This shows that the presence of multicollinearity can result in highly unstable
estimates and coe�cients appear to have the wrong sign.

To apply ridge regression we use the PROC REG procedure in SAS [2] with the RIDGE option to get the
ridge estimator and RIDGEPLOT option to plot the ridge trace (see Appendix B). The results are given
below:
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'

&

$

%

Parameter Estimates

Parameter

Variable DF Estimate

Intercept 1 -7.403

X1 1 0.555

X2 1 0.368

X3 1 -0.192

Figure 2: Ridge trace

The value of the ridge constant is chosen by looking at the variance in�ation factors (VIF) that is very close
to one. From the output in Appendix B we see that when k=0.020 with the VIF values 1.1031, 1.081 and
1.011 the ridge estimates obtained. The ridge estimates are β1 = 0.555, β2 = 0.368 and β3 = −0.192. The
OLS estimates have been shrunk towards zero and the negative sign on β2 is removed. Therefore, applying
ridge regression to the model results in more accurate and stable estimates.

Figure 2 demonstrates the ridge trace for this example with the coe�cient estimates on the vertical axis and
various values of the ridge constant along the horizontal axis. From the ridge trace we see that when k = 0
there is a huge variation between the OLS estimates. However, as the ridge constant increases slowly from
zero, the coe�cients seem to settle down and gradually drift towards zero. From this graph, the best choice
of the ridge constant that can be selected is when k = 0.02, since it is the smallest value of the ridge constant
where the coe�cients are relatively stable.

The LASSO estimates are obtained by using the PROC GLMSELECT procedure in SAS [2] (see Appendix
C).
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'

&

$

%

Parameter Estimates

Parameter

Variable DF Estimate

Intercept 1 6.565371

X1 1 0.982820

X2 1 0

X3 1 -0.406975

The results above show that applying the LASSO method to the observed data, sets some of the highly
correlated explanatory variables to exactly zero as discussed earlier. In this example weight (X1) and body
surface area (X2) are highly correlated and the LASSO has selected body surface area (X2) as the only
independent variable to be equal zero.

To do an application of the elastic net we use PROCGLMSELECT in SAS [2] with the SELECTION=ELASTICNET
option (Appendix D).

'

&

$

%

Elastic Net Selection Summary

Effect Effect Number Validation

Step Entered Removed Effects In ASE ASE

0 Intercept 1 24.7695 24.7695

----------------------------------------------------------------------

1 X2 2 10.1821 10.1821

2 X1 3 5.5018 5.5018

3 X3 4 5.3024 5.3024

4 X2 3 5.2972 5.2972

5 X2 4 5.0939 5.0939*

* Optimal Value of Criterion

The output above shows that the elastic net method groups the highly correlated variables, weight (X1) and
body surface area (X2) as the variables to be removed from the model.

4 Conclusion

In this paper, we had a thorough discussion on ridge regression. Ridge regression introduces a small bias
in coe�cient estimation by continuously shrinking the least squares estimates to obtain improved parameter
estimates. Properties of the ridge estimator and various methods suggested for selecting the optimal value of
the ridge constant were presented. Furthermore, we also discussed alternative methods such as the LASSO
and elastic net to improve the quality of prediction when multicollinearity is present. The results from the
application have shown that ridge regression does very well in shrinking the OLS estimates to obtain better
estimates and more interpretable results.
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Appendix

Appendix A'

&

$

%

data Income;

infile 'C:\Users\LEBOGANG\Desktop\RAL 780\Ex 6\CH07TA01.txt';

input X1-X3 Y;

run;

proc corr data=Income;

var Y X1-X3;

run;

Appendix B'

&

$

%

proc reg data=Income outest=ridge outvif ridge=0 to 0.1 by 0.002;

model Y = X1-X3;

plot / ridgeplot nomodel;

run;

proc print data=ridge;

run;

data new;

set ridge;

if _type_='RIDGEVIF';

run;

proc sort data=new;

by _type_;

run;

goptions reset=all i=join;

axis1 label=(angle=90 'Standardized coefficients') order = 0 to 60 by 5;

axis2 label=('Ridge constant k') minor=(number=4) order = 0 to 0.1 by 0.002;

legend1 label=('Plot:') value=('X1' 'X2' 'X3' );

symbol1 color=purple line=3 width=2;

symbol2 color=blue value=star width=2;

symbol3 color=orange value=dot width=2;

proc gplot data= new;

by _type_;

plot (X1-X3)*_RIDGE_/overlay legend=legend1 vaxis=axis1 haxis=axis2;

run;
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'

&

$

%

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 396.98461 132.32820 21.52 <.0001

Error 16 98.40489 6.15031

Corrected Total 19 495.38950

Root MSE 2.47998 R-Square 0.8014

Dependent Mean 20.19500 Adj R-Sq 0.7641

Coeff Var 12.28017

_RIDGE_ _RMSE_ Intercept X1 X2 X3

PARMS . 2.47998 117.086 4.335 -2.858 -2.187

RIDGEVIF 0.000 . . 708.843 564.343 104.606

RIDGE 0.000 2.47998 117.086 4.335 -2.858 -2.187

RIDGEVIF 0.002 . . 50.559 40.448 8.280

RIDGE 0.002 2.54921 22.277 1.464 -0.401 -0.674

RIDGEVIF 0.004 . . 16.982 13.725 3.363

RIDGE 0.004 2.57173 7.725 1.023 -0.024 -0.441

RIDGEVIF 0.006 . . 8.503 6.976 2.119

RIDGE 0.006 2.58174 1.842 0.844 0.128 -0.346

RIDGEVIF 0.008 . . 5.147 4.305 1.624

RIDGE 0.008 2.58739 -1.331 0.746 0.210 -0.294

RIDGEVIF 0.010 . . 3.486 2.981 1.377

RIDGE 0.010 2.59104 -3.312 0.685 0.262 -0.262

RIDGEVIF 0.012 . . 2.543 2.231 1.236

RIDGE 0.012 2.59360 -4.661 0.643 0.297 -0.239

RIDGEVIF 0.014 . . 1.958 1.764 1.146

RIDGE 0.014 2.59551 -5.637 0.612 0.322 -0.223

RIDGEVIF 0.016 . . 1.570 1.454 1.086

RIDGE 0.016 2.59701 -6.373 0.589 0.341 -0.210

RIDGEVIF 0.018 . . 1.299 1.238 1.043

RIDGE 0.018 2.59822 -6.946 0.570 0.356 -0.200

RIDGEVIF 0.020 . . 1.103 1.081 1.011

RIDGE 0.020 2.59924 -7.403 0.555 0.368 -0.192

RIDGEVIF 0.022 . . 0.956 0.963 0.986

RIDGE 0.022 2.60011 -7.776 0.543 0.378 -0.185

RIDGEVIF 0.024 . . 0.843 0.872 0.966

RIDGE 0.024 2.60087 -8.083 0.532 0.386 -0.179
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Appendix C�

�

�

�
proc glmselect data=Income plots=coefficient(stepaxis=normb unpack);

model Y = X1-X3 / selection=LASSO(stop=4);

run;

'

&

$

%

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value

Model 3 389.29126 129.76375 19.57

Error 16 106.09824 6.63114

Corrected Total 19 495.38950

Root MSE 2.57510

Dependent Mean 20.19500

R-Square 0.7858

Adj R-Sq 0.7457

AIC 63.37266

AICC 67.65838

SBC 45.35559

Appendix D�

�

�

�
proc glmselect data=Income valdata=Income plots=coefficients;

model Y = X1-X3/ selection=elasticnet(steps=140 L2=0.02 choose=validate);

run;
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'

&

$

%

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value

Model 3 393.51198 131.17066 20.60

Error 16 101.87752 6.36735

Corrected Total 19 495.38950

Root MSE 2.52336

Dependent Mean 20.19500

R-Square 0.7943

Adj R-Sq 0.7558

AIC 62.56078

AICC 66.84650

SBC 44.54371

ASE (Train) 5.09388

ASE (Validate) 5.09388

Parameter Estimates

Parameter DF Estimate

Intercept 1 -7.403425

X1 1 0.555353

X2 1 0.368144

X3 1 -0.191627
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Abstract

Overcon�dence can a�ect how students perform regardless of their abilities. This can prolong the
time required by students to complete their studies as it can result in students having to repeat courses
over and over again due to failure. The objective of this study is to determine the correlation between
�rst year statistics students' level of overcon�dence and their academic performance (pass or fail); which
is to �nd whether there exist a relationship between students' poor performance and overcon�dence.
Statistics is a challenge to many students and often educators mainly focus on the cognitive side which
includes the acquisition of skills and knowledge; little attention is given to the non-cognitive side which
also a�ects students' performance-this includes feelings, beliefs, attitude, expectations, perception as well
as motivation. These factors may a�ect the students' ability to learn statistics and make it di�cult for
them to gain a deeper understanding of statistics.

It is of vital importance to determine whether or not overcon�dence contributes to poor pass rates of �rst
year level statistics students in order to prevent the e�ect thereof and to ensure that the �eld of statistics
at the University of Pretoria gains continuous excellent performance. The sample used in this study was
1157 students enrolled at the University of Pretoria for �rst level statistics (STK 110) for the �rst time
in 2014. A logistic regression was used to model the data. The results indicate that overcon�dence has
an impact on students' performance in �rst level statistics, whilst mathematics was found not to be a
signi�cant determinant of performance in statistics. English was a signi�cantly predictor of students'
performance at a 10 % level.
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1 Introduction

Overcon�dence is a controversial subject that has been studied repeatedly in the past years; it is a global
subject which has attained attention across various disciplines and the world at large. Evidence indicates that
this phenomenon is not only a problem in statistics, for instance it has been identi�ed in various domains such
as in chemistry [31], business studies [19], �nancial markets [34], [13], [17], politics [42] and in driving [18],
[12]. Given the above information it is evident that overcon�dence is a major problem which if not addressed
may in the long-run a�ect performance, which is not only determined by one's ability or intelligence but also
determined by individual's perceptions and expectations.

Overcon�dence has been studied over the years as the di�erence between individuals' expected performance
and their actual performance [27]. Overcon�dence entails the overestimation of one's abilities, performance
as well as chances of succeeding [26]. Furthermore overcon�dence is de�ned as both over-optimism and over-
precision, that is, individuals who are over-optimistic tend to overestimate their abilities either absolutely
or comparing themselves with others [26]. Moreover individuals who are over-precise (i.e. people who often
tend to be excessively certain regarding the accuracy of their beliefs) often do not consider uncertainty.

Overcon�dence is also revealed when people tend to see themselves as better than others [6] and when
people inaccurately access themselves, for instance people may overestimate their reasoning abilities, driving
skills [18], [46] as well as their grammar knowledge [21]. In addition people also tend to underestimate the
e�ort and time needed to complete tasks [3].

A study by [31] has shown that poor performance doesn't necessary mean inability; it can be dealt with
if help is provided in time. Hence it is of vital importance to address the problem of overcon�dence as this
can help individuals to improve and do better in future. For the purpose of this study we will focus on the
analysis of overcon�dence particularly in statistics.

Previous studies have shown that overcon�dence could to a certain degree be attributed to poor pass rates of
�rst level students and can lead to changes in university courses [40], [35]. Students tend to be overcon�dent
when it comes to their academic abilities [14], [28], [15], that is, students often fail to distinguish between
what they know and what they do not know and often incorrectly assess themselves. Failure of students
to accurately evaluate themselves often leads to poor academic performance [19]. There exist a negative
relationship between students' perceived marks and actual marks [23]. That is, students who were highly
con�dent about their marks actually performed poor and this is due to the fact that students who think
highly of themselves tend to allocate less time to study. The study by [20] shows similar results, students
were asked what marks they think they will get, then their actual marks were compared with the marks they
expected and the study revealed that most of the students got marks lower than they had predicted.

In addressing the problem of students inaccurately evaluating themselves, [31] conducted a study to identify
high risk students in a �rst year chemistry module. In this study it was found that the identi�cation of high
risk students at an early stage can to some extent reduce poor performance, as well as university drop-outs
by giving the students appropriate assistance in time. In addition to the identi�cation of high risk students
[36] conducted a study to monitor accuracy, where he focused on relative accuracy. The study revealed that
calibration (over/under con�dence) had an e�ect in the total amount of time student allocate for studying.
That is an overcon�dent student might feel prepared enough and stop studying prematurely and thus attain
poor grades. The study by [36] focused on developing intervention measures that could help students better
evaluate themselves, this study indicates that the intervention appears to assist students' in distinguishing
between information they know and that which still needs additional study.

Di�erent people exhibit di�erent levels of overcon�dence, [22] distinguished between high and low performing
students and found that high performing students often exhibit lower levels of overcon�dence, since they
appear to be able to better distinguish between what they know and what they do not know as opposed
to low performing students. Supporting this is the study by [14] which reveals that students who had high
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Stochastic Achievement Test (SAT) scores were more accurate than those with low SAT.

Overcon�dence further varies with gender; [2] has shown that gender di�erences in con�dence are depen-
dent on the context as well as the domain being tested, that is, it normally depends on the kind of questions
asked. For instance [4] found that women appear to be less con�dent than men in subjects such as math-
ematics, solving complex problems and science. In terms of perceived performance males tend to be more
overcon�dent when they are incorrect than when they are correct and the opposite holds for females [22].
Thus [4] and [22] concluded that there is no evidence that self-con�dence can be translated to real academic
achievement. Furthermore other studies reveal that gender is not related to performance [16].

To extend on the relationship between overcon�dence and performance, [27] examined the relationship be-
tween self-e�cacy (which refers to one's belief in their ability to succeed in a speci�c situation or task
accomplishment) and performance. This study revealed a positive relationship between self-e�cacy and
performance, when considering the level of over-and-under con�dence, overcon�dence led to a negative rela-
tionship, which indicates that overcon�dence results to poor performance. Supporting these literatures are,
[44] who found that individuals who exhibited high self-e�cacy tend to experience reduction in motivation
which in turn has a negative e�ect on performance. These �ndings further supports the perpetual control
theory by [32], which states that high self-e�cacy, may cause a person to prematurely believe that their goals
state has been reached, which may lead to a reduction in e�ort and thus performance.

Performance is not only a�ected by overcon�dence, it can also be negatively a�ected by attitude and per-
ception [45], [10]. Students' perception as well as their attitude towards statistical courses can a�ect their
performance [38], these studies reveals that students' tend to have a negative attitude towards statistics or it
tends to develop overtime with class attendance. Consequently they see statistics as a barrier between them
and their quali�cations [9], [29] and this a�ects their performance [30]. Students also tend to develop anxiety
when they learn that they will attend statistical undergraduate courses [38], thus this anxiety a�ects how
they perform in those courses. Students even go to the extreme of renaming the statistics course �sadistic� [37].

Expectations are also determinants of student's performance; in a study by [8] it was found that �rst year
students may have un-realistic expectations about their academic performance which tend to reduce chances
of them being successful in their studies. Evidence further indicates that students' performance can be af-
fected by factors such as teaching strategies [1], their level of motivation [41], students approach to studying
[25], students' balance between academic and social life [43], students' e�ort [39] and psychological factors
[24]. The study by [24] further revealed that students' perception is also a factor a�ecting their performance,
that is, students` perception of what will increase or decrease their chances of success have a strong in�uence
on how they behave. For instance if a student believes that attending classes will help them pass they will
attend classes regularly to increase their chances of success.

This paper will examine the relationship between �rst year statistics students' level of overcon�dence and
their academic performance (pass or fail), that is to �nd whether there exist a relationship between students'
poor performance and overcon�dence. Data from the University of Pretoria's 2014 �rst year statistics student
will be utilised and a regression logistic model will be used to conduct the analysis.

2 Background Theory

2.1 Logistic regression

The logistic regression model is used to explain the relationship between a dependent binary variable and
one or more continuous/categorical independent variables. The dependent variable takes the values 1 with
probability θ or 0 with probability 1-θ. Logistic regression provides the odds of a successful event, i.e.
the probability of success divided by the probability of failure and the results are provided in the form of
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odds ratio. The logistic regressions goal is to �nd the best �tting model that will describe the relationship
between the dependent binary variable and independent variables (predictors). Multinomial regression is
not appropriate as it will violate the assumptions of normality of the responses and homoscedasticity of the
residuals. Furthermore the discriminant analysis which can also be used to classify categories is also not
appropriate since the assumption of multivariate normality of the independent variables cannot be satis�ed
with categorical prediction [7], [33].

2.2 Odds

The odds of an event de�nes how likely an event will occur and it's calculated as follows:

odds =
p

1− p

where p repesents the probability of an event occurring and 1- p being the probability that the event doesn't
occur. The odds of an event occurring are di�cult to interpret hence the use of odds ratio is preferred when
interpreting the estimated parameter coe�cients.

2.3 Odds ratio

An odds ratio measures the relationship between an outcome and an exposure. It is a representation of an
outcome occuring given a particular exposure and is denoted as follows,

P (successs A)

P (failure A)
÷ P (success B)

P (failure B)

which is the ratio of success for a patiular group divided by the success of another group.

2.4 Logit function

The logit function gives an estimation of the probability that a particular event occurs. It is usually referred
to as a link function and it is de�ned as,

logit(p) = ln(
p

1− p
)

which measures the log of the odds of the event occurring. Thus the resulting logistic regression model is as
follows:

ln(
p

1− p
) = β0 + β1xi1 + β2xi2 + . . . . . . . . . .+ βpxip + ε (1)

The logistic regression model does not use ordinary least squares but rather uses the maximum likelihood
estimation to solve for the parameter estimate that best �ts the data.

2.5 Interpretimg the logistic coe�cients

To interpret the parameter estimators (β's), equation 1 is converted back to odds by exponentiating both
sides of equation (1) which yields the following:

p̂

1− p̂
= eb0eb1xi1eb2xi2 ...........ebpxip

The odds of an event occurring are increased by a multiplicative factor of eb1 for a one-unit change in xi1.
In order to get the odds ratios, the parameter estimates (β's) are exponentiated. Therefore the β' s are the
log-odds, negative coe�cient values implies that the odds ratios are less than 1 meaning that the outcome
event is less likely to occur, whilst positive coe�cient values implies that the odds ratios are more than 1
thus the outcome event is more likely to occur.
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2.6 Tests and con�dence intervals for the model and parameters

2.6.1 Deviance and likelihood ratio test

Maximum likelihood is used to �nd the best �tting line by �nding the smallest possible deviance between
the observed and predicted values. The deviance is a measure of the lack of �t of the data in a logistic
regression model, once the maximum likelihood has identi�ed the best solution, it assigns a value for the
deviance which is referred to as "negative two log likelihood" (-2 log likelihood). The deviance statistic is
calculated as follows:

D = −2ln( likelihood of the �tted model

likelihood of the saturated model
)

the equation above represents the likelihood-ratio test. D follows approximately a chi-squared distribution,
with small values indicating better �t since the �tted model deviates less from the saturated model.

2.6.2 Wald test

A Wald test measures the statistical signi�cance of each coe�cient β's in the model. It then computes a Z
statistic which is denoted as follows:

z =
β̂

SEβ̂

with SE denoting some estimate of the standard error of β̂ which may be the maximum likelihood estimator.
The 95% con�dence interval is

β̂ ± 1.96SE(β̂)

2.7 Goodness of �t of the model

A goodness of �t measure is used to determine how well the model �ts the data, that is, are the values
predicted close to the values observed.

2.7.1 The Hosmer-Lemeshow test

The Hosmer-Lemeshow statistic provides an evaluation of how well the model �ts the data by means of a
chi-square statistic. The Hosmer-Lemeshow does not limit the number of explanatory variables (continuous
or categorical). The Hosmer-Lemeshow is denoted as follows:

g∑
i=1

∑2
j=1 =

(obsij−expij)2
expij

g= number of groups, obsij= observed values, expij= expected values. The test uses a chi-square with g-2
degrees of freedom.

2.7.2 Pseudo-R2 for logistic regression

Several statistics in logistic regression have been developed to measure whether the explanatory variables can
successfully predict the dependent variable and these statistics are the same as the linear regression coe�cient
of determination R2. The frequently used statistics are the Cox & Snell and the Nagelkerke R2 which attains
a maximum value that is less than 1. Furthermore the Nagelkerke R2 is Cox & Snell R2 adjusted version
which has values that ranges between 0, thus it is often preferred.
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2.7.3 Classi�cation tables

The classi�cation table indicates the comparison of the number of successes predicted by the logistic regres-
sion model compared to the number actually-observed and similarly the number of failures predicted by the
logistic regression model to the number actually-observed.

Success observed Failure observed
Success predicted True Positive False Positive Predicted Positive
Failure predicted False Negative True Negative Predicted Negative

Observed Positive Observed Negative Total sample size

Table 1: Classi�cation table

The overall accuracy of the logistic regression is a measure of the �t of the model and it is de�ned as:

Accuracy = (
True positive

True negative
)÷ Totalsamplesize

3 Application

3.1 Data source

The data used in this study was collected during the commencement of STK 110 lectures in 2014, with the
aim of understanding whether students are able to identify information that they know versus that which
they do not know. The study focused on students who registered for STK 110 for the very �rst time and the
data was collected by means of a pre-test. The pre-test consisted of 16 multiple choice questions that where
purely based on basic mathematics operations and basic statistics understanding. Furthermore, students' had
to give a rating on how con�dent they were in the answers they provided (Table 2), thus in total the test had
32 questions. Students' �nal matric results of mathematics and English, as well as information on gender,
language and preferred language of instruction were obtained from the Bureau for Institutional Research and
Planning (BIRAP). The actual performance of students was obtained by allocating a value 1 for the correct
answer and 0 for an incorrect answer to the questions. The expected performance was obtained from the
con�dence data collected from the test (Table 2). This con�dence data was scored as follows: 0 if a student
chose A or B and 1 for C or D; it was based on the assumption that students either expected to be incorrect
or correct.

Totally guessed answer Almost a guess Almost certain Certain

A B C D

Table 2: Con�dence index for each question in the pre-test

3.2 Organizing the data set

For the purpose of this study the following students were considered: students who were taking STK 110 for
the �rst time in the year 2014, students who had a minimum of 60% for their �nal grade 12 mathematics
results and students who wrote the �nal STK 110 examination. The total number of students included in
this study is 1157. The data set comprised of the following variables: home language; preferred language
of instruction; mathematics and English �nal matric examination results; STK 110 �nal results; actual
performance achieved for the pre-test, as well as the expected performance achieved for the pre-test.
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3.3 De�nition of variables

3.3.1 Dependent variable

The dependent variable STK110_bi was derived from students' �nal mark obtained for the module STK 110.
This variable was created by assigning a value 1 (pass) for marks greater than or equal to 50 and a value 0
(fail) for marks less than 50.

3.3.2 Predictor/independent variables

The following predictor variables were considered:

� Mathematics: Final mathematics results achieved in matric

� English: Final English results achieved in matric

� Actual: Students' actual performance achieved for the pre-test (%)

� Expected: students expected performance achieved for the pre-test (%)

� Overcon�dence: computed as the di�erence between the expected and actual performance, expressed
as a percentage of the total number of questions in the test.

� Ratio: Computed as the expected test performance divided by the actual test performance

� Gender: Derived by assigning a value 1 if the student is a female and 0 if is a male

� Language: Derived as 1 if home language is the same as preferred language of instruction and 0
otherwise.

Variables Categories Frequency Percentage

STK 110_bi 1= Pass 137 11.84
0= Fail 1020 88.16

Gender 1=Female 535 46.24
0= Male 622 53.76

Language 1= Home= Instruction 487 42.09
0= Home 6=Instruction 670 57.91

Table 3: Frequency table for categorical variables

3.4 Data exploration

The descriptive statistics results in Table 4 indicate that the average of students' expected performance is
more than 10% higher than their average actual performance. The huge di�erence in the two means indicates
the extent of overcon�dence (misjudgement) observed amongst students. The mean of Ratio 1.25 indicates
that on average students overestimated their true performance by 25%.

Minimun Maximum Mean Standard Deviation

English 45 99 74.94 7.55
Mathematics 60 99 75.37 9.29
STK 110 18 99 62.28 15.70
Actual 12.5 100 62.09 14.41

Expected 0 100 74.07 17.19
Overcon�dence -50 75 11.97 17.51

Ratio 0 6 1.25 0.41

Table 4: Descriptive Statistics
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3.5 Correlation of predictor variables with the dependent variable

Since the dependent variable is binary, a point biserial correlation was calculated between the dependent
variable and each of the explanatory variables in order to measure how strong is the relationships between
them. The correlation ranges between -1 and 1, where -1 indicates a perfect negative correlation and 1
indicates a perfect positive correlation and 0 indicating no correlation at all. The correlations were conducted
in order to determine which variables contribute signi�cantly in predicting the dependent variable as well as to
determine any correlations amongst the explanatory variables. Most importantly the correlation analysis was
conducted in order to identify which overcon�dence (Overcon�dence or Ratio) index to use in the prediction
model.
According to the correlation output both the con�dence indices (Ratio and Overcon�dence) have a negative
relationship with the dependent variable (STK110_bi) as hypothesised. This indicates that higher levels of
overcon�dence can negatively a�ect performance. These indices are highly correlated therefore cannot be
used together in the prediction model. Since Ratio has the strongest correlation with the dependent variable it
will be used in the prediction model. The correlation between actual performance and the dependent variable
is positive, indicating that the better the student performed in the test, the higher their chance of passing
the module. Positive correlations also exist between English and STK110_bi and between mathematics
and STK110_bi, indicating that better performance in both English and mathematics may increase the
probability of passing STK 110.

3.6 Logistic regression

A binary logistic regression model was used to analyse the data since the underlying dependent variable,
STK110_bi is dichotomous. The binary dependent variable follows a binomial distribution and the log of the
odds of passing STK 110 will be modelled as a function of the explanatory variables, mathematics, English,
language, gender and Ratio.
The binary logistic regression model is given by:

ln(
p

1− p
) = 0.3372−0.7592Ratio+0.0112Mathematics+0.0202English+0.2989Language+0.2881Gender

where p is the probability of passing STK110.

3.6.1 Statistical results

The data analysis for this essay was performed using SAS software, Version 9.4 of the SAS System for Win-
dows. Copyright © 2016 SAS Institute Inc., Cary, NC, USA.
SAS output is attached in the appendix.

Statictic DF Chi-square Pr �Chi-square
-2 Log (Likelihood) 5 20.063 ≺ 0.0001

Score 5 31.814 ≺ 0.0001
Wald 5 27.220 ≺ 0.0001

Table 5: Test of the null hypothesis H0 : β=0

The likelihood ratio chi-square of 20.063 with a p-value of ≺ 0.0001 indicates that the model as a whole
�ts signi�cantly better than an intercept model. However, the pseudo -R2 is very low at 0.0240, indicating
that only a small portion of the variability in the odds of passing STK110 can be explained by this model.
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Source Coe�cient Standard error Wald Chi-sq Pr �Chi-sq Odds ratio

Intercept 0.3372 1.1746 0.0824 0.7741
Ratio -0.7592 0.1969 14.8727 0.0001 0.468

Mathematics 0.0112 0.0102 1.2085 0.2716 1.011
English 0.0202 0.0122 2.7370 0.0980 1.020
Language 0.2989 0.1879 2.5303 0.1117 1.348
Gender 0.2881 0.1865 2.3871 0.1223 1.334

Table 6: Estimated model parameters

The coe�cient for Ratio is highly signi�cant (p ≺ 0.0001) and the coe�cient of English is statistically
signi�cant at a 10% level. None of the other coe�cients are signi�cant.

The odds ratio of the signi�cant predictors can be interpreted as follows:

� For every unit increase in Ratio, the odds of passing STK 110 (versus failing) are less than 0.5 for
students who are overcon�dent, compared to those who are not overcon�dent. In other words, Over-
con�dent students' are more than twice as likely to fail.

� For every unit (one percent) increase in English, the odds of passing STK 110 (versus falling STK 110)
increases by a factor of 0.02.

Fail Pass % correct

STK110_bi Fail 1 136 7
Pass 1 1019 99.9

Overall % 88.2

Table 7: Classi�cation Table

According to table 7, the overall accuracy of the model is 88.2%. The model is expected to correctly predict
pass since the majority of students passed, but the model performs poorly in predicting students who failed.

4 Conclusion

In this study the e�ect of overcon�dence on performance of �rst level statistics students was measured. It
was expected that the grade 12 mathematics results would be a core contributor to predict the STK 110 pass
rate. However according to the binary logistic model; it did not have a signi�cant in�uence on the passing
of the 2014 cohort of STK 110 students. The only two signi�cant contributors were Ratio (p≺0.0001) and
English (p≺0.1) while the other variables did not contribute signi�cantly to students' performance. The non-
signi�cance of language is contrary to the �nding by [11], which shows that language does have an association
with students' performance. Although the results further indicates that gender does not have a signi�cant
e�ect on performance, it played a substantial role in overcon�dence, showing that females were less con�-
dent than males (p≺0.05). Furthermore it was found that students with low pre-test scores appeared to be
more overcon�dent than those with high pre-test scores. Some high-ability students showed under-con�dence.

Self-motivation and con�dence should not be misinterpreted for overcon�dence, as students who are con-
�dent and motivated can actually perform well. Early intervention can help students to perform better and
overcome the problem of overcon�dence. Interventions such as the pre-test at the commencement of lectures
and letting students to provide reasons for their answers may help students to prepare better for their as-
sessments. Furthermore this will allow students to recognize their own level of skills and thus develop and
improve those skills, as [5] has indicated that students overestimate their performance not because of cognitive
competence. The problem of overcon�dence can be conquered if students and lectures work together.
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Appendix

Descriptive statistics

The MEANS Procedure

Variable Label N Minimum Maximum Mean Std Dev

STK110 STK110 1157 18.0000000 99.0000000 62.2765774 15.7028389

English English 1157 45.0000000 99.0000000 74.9351772 7.5453725

Mathematics Mathematics 1157 60.0000000 99.0000000 75.3716508 9.2923579

Actual Actual 1157 12.5000000 100.0000000 62.0894555 14.4052541

Expected Expected 1157 0 100.0000000 74.0654710 17.1942640

Overconfidence Overconfidence 1157 -50.0000000 75.0000000 11.9760156 17.5075558

Ratio Ratio 1157 0 6.0000000 1.2451576 0.4088745

Pearson Correlation Coefficients, N = 1157

Prob > |r| under H0: Rho=0

STK_110

_bi Overconfidence Ratio Actual Expected Mathematics English

STK_110_bi 1.00000 -0.09218 -0.14131 0.16953 0.04817 0.04807 0.05928

STK 110 bi 0.0017 <.0001 <.0001 0.1015 0.1022 0.0438

Overconfidence -0.09218 1.00000 0.89241 -0.43295 0.65549 -0.05304 -0.02260

Overconfidence 0.0017 <.0001 <.0001 <.0001 0.0713 0.4424

Ratio -0.14131 0.89241 1.00000 -0.55153 0.44660 -0.07539 -0.03086

Ratio <.0001 <.0001 <.0001 <.0001 0.0103 0.2942

Actual 0.16953 -0.43295 -0.55153 1.00000 0.39695 0.09541 0.08392

Actual <.0001 <.0001 <.0001 <.0001 0.0012 0.0043

Expected 0.04817 0.65549 0.44660 0.39695 1.00000 0.02593 0.04729

Expected 0.1015 <.0001 <.0001 <.0001 0.3782 0.1079

Mathematics 0.04807 -0.05304 -0.07539 0.09541 0.02593 1.00000 0.10330

Mathematics 0.1022 0.0713 0.0103 0.0012 0.3782 0.0004

English 0.05928 -0.02260 -0.03086 0.08392 0.04729 0.10330 1.00000

English 0.0438 0.4424 0.2942 0.0043 0.1079 0.0004

The FREQ Procedure

STK 110 bi

Cumulative Cumulative

STK_110_bi Frequency Percent Frequency Percent

0 137 11.84 137 11.84

1 1020 88.16 1157 100.00

Language

0 487 42.09 487 42.09

1 670 57.91 1157 100.00

Gender
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0 535 46.24 535 46.24

1 622 53.76 1157 100.00

Descriptive statistics

The LOGISTIC Procedure

Model Information

Data Set WORK.STATS

Response Variable STK_110_bi STK 110 bi

Number of Response Levels 2

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 1157

Number of Observations Used 1157

Response Profile

Ordered STK_110_ Total

Value bi Frequency

1 0 137

2 1 1020

Probability modeled is STK_110_bi=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept

Intercept and Criterion only Covariates

AIC 843.704 825.642

SC 848.758 855.963

-2 Log L 841.704 813.642

R-Square 0.0240 Max-rescaled R-Square 0.0464

Descriptive statistics

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 28.0629 5 <.0001

Score 31.8143 5 <.0001

Wald 27.2196 5 <.0001
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Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 0.3372 1.1746 0.0824 0.7741

Ratio 1 -0.7592 0.1969 14.8727 0.0001

Mathematics 1 0.0112 0.0102 1.2085 0.2716

English 1 0.0202 0.0122 2.7370 0.0980

Language 1 0.2989 0.1879 2.5303 0.1117

Gender 1 0.2881 0.1865 2.3871 0.1223

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

Ratio 0.468 0.318 0.688

Mathematics 1.011 0.991 1.032

English 1.020 0.996 1.045

Language 1.348 0.933 1.949

Gender 1.334 0.926 1.923

Association of Predicted Probabilities and Observed Responses

Percent Concordant 61.9 Somers' D 0.250

Percent Discordant 36.9 Gamma 0.253

Percent Tied 1.3 Tau-a 0.052

Pairs 139740 c 0.625

The LOGISTIC Procedure

Partition for the Hosmer and Lemeshow Test

STK_110_bi = 1 STK_110_bi = 0

Group Total Observed Expected Observed Expected

1 116 89 88.93 27 27.07

2 116 101 97.65 15 18.35

3 116 94 99.97 22 16.03

4 116 102 101.46 14 14.54

5 116 102 102.86 14 13.14

6 116 108 104.03 8 11.97

7 116 103 105.16 13 10.84

8 116 109 106.22 7 9.78

9 116 105 107.46 11 8.54

10 113 107 106.26 6 6.74

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

7.0470 8 0.5316

Classification Table

Correct Incorrect Percentages

Prob Non- Non- Sensi- Speci- False False
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Level Event Event Event Event Correct tivity ficity POS NEG

0.140 1020 0 137 0 88.2 100.0 0.0 11.8 .

0.160 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.180 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.200 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.220 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.240 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.260 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.280 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.300 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.320 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.340 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.360 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.380 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.400 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.420 1020 1 136 0 88.2 100.0 0.7 11.8 0.0

0.440 1019 1 136 1 88.2 99.9 0.7 11.8 50.0

0.460 1019 1 136 1 88.2 99.9 0.7 11.8 50.0

0.480 1019 1 136 1 88.2 99.9 0.7 11.8 50.0

0.500 1018 1 136 2 88.1 99.8 0.7 11.8 66.7

0.520 1018 1 136 2 88.1 99.8 0.7 11.8 66.7

0.540 1018 1 136 2 88.1 99.8 0.7 11.8 66.7

0.560 1018 2 135 2 88.2 99.8 1.5 11.7 50.0

0.580 1018 2 135 2 88.2 99.8 1.5 11.7 50.0

0.600 1017 2 135 3 88.1 99.7 1.5 11.7 60.0

0.620 1015 2 135 5 87.9 99.5 1.5 11.7 71.4

0.640 1015 2 135 5 87.9 99.5 1.5 11.7 71.4

0.660 1012 2 135 8 87.6 99.2 1.5 11.8 80.0

0.680 1012 2 135 8 87.6 99.2 1.5 11.8 80.0

0.700 1012 4 133 8 87.8 99.2 2.9 11.6 66.7

0.720 1008 6 131 12 87.6 98.8 4.4 11.5 66.7

0.740 1004 8 129 16 87.5 98.4 5.8 11.4 66.7

0.760 1000 9 128 20 87.2 98.0 6.6 11.3 69.0

0.780 990 15 122 30 86.9 97.1 10.9 11.0 66.7

0.800 973 16 121 47 85.5 95.4 11.7 11.1 74.6

0.820 943 22 115 77 83.4 92.5 16.1 10.9 77.8

0.840 892 31 106 128 79.8 87.5 22.6 10.6 80.5

0.860 794 44 93 226 72.4 77.8 32.1 10.5 83.7

0.880 637 72 65 383 61.3 62.5 52.6 9.3 84.2

0.900 442 94 43 578 46.3 43.3 68.6 8.9 86.0

0.920 207 117 20 813 28.0 20.3 85.4 8.8 87.4

0.940 46 132 5 974 15.4 4.5 96.4 9.8 88.1

0.960 1 137 0 1019 11.9 0.1 100.0 0.0 88.1

0.980 0 137 0 1020 11.8 0.0 100.0 . 88.2
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Abstract

Survival analysis deals with analyzing the duration of time until one or more events occur. In this
report, survival analysis will be applied to lifetime-type educational data in order to obtain a distribution
of the duration of undergraduate studies of a complete sample of students for the period of 2010 to 2015
in the Department of Statistics. This distribution will be used to examine how many students �nish their
degree in the prescribed amount of time, how many students drop out, and how many students study
longer than the prescribed period. We will investigate what students who drop out have in common with
�perpetual students�, as Kalamatianou & McClean referred to the censored observations [6]. Di�erence
in features between perpetual students and students who �nish their degree within the prescribed three
years will also be investigated. It will be taken into account whether a student is male or female.

To evaluate and understand the problem of students who do not complete their degree in the prescribed
period, we will make use of non-parametric survival analysis techniques, more speci�cally, the Kaplan-
Meier product limit method.

We will construct one survival curve to examine the distribution of study time-duration for all stu-
dents. We will search for common traits between perpetual students in order to pinpoint the problem
of students not �nishing their degree. For the same reason we will also draw comparison between the
traits of students who �nished their degree in the minimum amount of time and the traits of perpetual
students. The logrank test to compare survival curves is the most appropriate method since some of the
observations will still be censored at the end of the study.
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1 Introduction

It is important for the University of Pretoria and the Department of Statistics to estimate the likelihood and
the time scale of graduation of students. It is also important for the university to better understand why
students complete their degrees in the set amount of time and why other students only complete their degrees
one or two years later than they should have, or not at all. There are a few main reasons why it is vitally im-
portant for the university to be able to examine the distribution of the duration of studies for students in the
Department of Statistics. Firstly, the university can measure the performance of the Statistics Department
by looking at the degree completion rates in the minimum time. If the Statistics Department is not e�cient
enough, these rates would typically be very low. Funding is the second reason for the university's interest in
this topic. The longer a student takes to get their degree, the longer their studies have to be funded, albeit
with a loan, a bursary or parents funding the student's studies. [6] A topic that overlaps in a certain sense
with reason number two and which brings us to the third reason, is the fact that, as the duration of a student's
study career increases, the time period before they can become an asset to the economy also increases. The
fourth reason for concern is that these students take up the space of other students, since there are limited
resources available. In e�ect, these �perpetual students� as Kalamatianou & McClean [6] labelled them, are
putting a damper on the growth of the skilled labour force in the �eld of statistics, because new students,
who possibly could have �nished their degree in the prescribed time-limit are now being prevented to enter
the system.

The aim of this research report is to identify the distribution of the duration of undergraduate studies
for statistics students at the University of Pretoria in order to examine how many students �nish their degree
in the prescribed minimum time period of three years, how many students study longer than the prescribed
minimum time period, and how many students drop out before �nishing their degree. Furthermore, identify-
ing similarities in students who study longer than the prescribed three years, making use of survival analysis
techniques, may help the university to re�ne their admission requirements. Various survival curves will be
constructed in order to look at the problem of students studying longer than the prescribed time period and
students dropping out, from di�erent angles. In order to construct these survival curves, the focus will be
placed on a set of characteristics in individual students. A set of survival curves, separating students on
gender will be constructed. The purpose of constructing more than one survival curve is to compare the
traits of individual �perpetual students� in order to �nd similarities and diagnose the problem of students
not �nishing their degree in the prescribed minimum time period of three years, or dropping out altogether.

According to Allison, survival analysis is a family of statistical methods used to study the occurrence and
timing of events. These methods are most often applied to the medical �eld to study the timing of patient
deaths or the recurrence of disease in certain experiments. [1] Noda and colleagues (2002) in Dawson and
Trapp did an experiment on small-cell cancer patients' reaction- and survival times on di�erent combinations
of cancer �ghting medications. A death in this case would be the death of a patient. Borghi and colleagues
(2002) in Dawson and Trapp compared di�erent diets with recurrent formation of calcium oxolate stones.
A death in this case would be the recurrence of a calcium oxolate stone. [5] Although survival analysis
is historically most popular in the medical �eld, it is also applied and very useful in engineering (equip-
ment failures), physics and science (earthquakes), econometrics (stock market crashes) and social sciences
(revolutions, births, marriages and arrests) to name but a few [1],[6]. The name survival analysis and the
terminology used in the �eld such as a death, have the unfortunate e�ect of narrowing the view of potential
applications of these statistical methods. Survival analysis may take on di�erent names in di�erent �elds of
study. In sociology it is called event history analysis, while reliability analysis and failure time analysis is
used in engineering, and duration analysis is used in econometrics. The di�erence in names does not imply
a di�erence in methods, although approaches may di�er from one discipline to another.

According to Allison (2010), survival analysis was designed for long-term data on the occurrence of certain
events. He de�nes an event as a qualitative change (transformation from one discrete state to an additional
discrete state) that can be situated in time. An arrest for example, is a transition from being a free person
to being arrested. To apply survival analysis, it is important to know when the change occurred. The event
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should be plotable in time. [1] In 2003 Kalamatianou & McClean conducted a study on 10 313 students at a
Greek university. The goal was to examine the distribution of the duration from the start of a student's study
career up until the moment that the student graduated, if the student graduated. Students that continued
their studies inde�nitely were referred to as perpetual students (right censored students) and students that
dropped out or moved to another university were excluded from the study. Graduation was considered a
death or in other words, the event of interest. In this case, a death was a positive outcome, which is often
contrary to the usual survival analysis terminology, where a death is seen as a failure. The data were right
censored, meaning that at the time of conclusion of study, there were still survivors (students that have still
not �nished studying). [6] These students were referred to as right censored students. Students with censored
data presented only partial information about event occurrence. If a student's event time was censored, the
researchers would only know, that if the person experienced the event, it would have been after the collection
of the data has ended. Kalamatianou & McClean used parametric as well as nonparametric survival models
to estimate and examine the distribution of duration of studies at this Greek university [6]. Parametric
survival models are most commonly used in the engineering workspace, while its alternative, nonparametric
survival models are more popular in the �eld of medicine [10]. Although Kaplan & Meier (1958) in their
seminal article developed their nonparametric survival analysis models in the medical �eld [7], these models
have been used by Kalamatianou & McClean in the �eld of lifetime-type educational data. In this article, we
will also make use of nonparametric, rather than parametric survival models. When looking at graduation
rates of women and men separately, it was found by Kalamatianou & McClean that there were signi�cant
di�erences between the graduation rates of the two gender groups. [6] To compare survival times for two or
more groups, Dawson & Trapp explained two di�erent methods. These methods are the actuarial method
and the Kaplan-Meier product limit method. The actuarial method groups the data into small time intervals
in order to keep the number of censored cases in each interval small. This method gives credit to participants
who withdrew during the study. The Kaplan-Meier product limit method is homogenous to actuarial analy-
sis, except that the time since entry is not partitioned into intervals. Depending on the number of events that
occurred, Kaplan-Meier product limit method, also called Kaplan-Meier curves, involves fewer calculations
than the actuarial method, mainly since survival is only estimated when an event occurs, so withdrawals are
ignored in a certain sense. [5],[7]

Similar to Kalamatianou & McClean's study, Plank and colleagues conducted a study on high school dropout
rates in America using data from the National Longitudinal Survey of Youth of 1997. The study was done to
answer a few main questions of concern. Firstly, they wanted to estimate the amount of students dropping out
of high school. Secondly they tried to identify reasons for students dropping out and thirdly they addressed
solutions to this long run economical problem. [9]

2 Background theory

This chapter will be separated into two sub-sections: Terminology and Methodology.

2.1 Terminology

Some terms in survival analysis need some brief explanation, since survival analysis uses a very speci�c set
of terms. Survival analysis techniques are described using common words which have a unique meaning in
survival analysis context. These terms will be explained in this section.

Death:
An event of interest occurring. In the case of this study, a death will be the event of a student �nishing their
degree.

Survival:
The absence of the event of interest. In the case of this study, survival will be the event of a student contin-
uing to study after the minimum time period to obtain a degree.
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Censored:
There is only partial information available regarding the survival time of an individual. In the case of this
study, all students who have not completed their degree at the conclusion of the study, will be categorised as
censored cases, since we do not know whether they will obtain their degree or not.

Right censored:
With right censored data, the unobserved data lies to the right of the conclusion time of the study.

Left censored:
With left censored data, it is not possible to know when a subject entered the study, e.g. if a student has
already been in the academic system when the study started, we have no way of knowing whether the student
has failed or whether the student changed their academic plan.

Withdrawal:
A subject, for whatever reason (except for a death, i.e. obtaining their degree), is not part of the study
anymore. A subject may move to another city, or he/she willingly resigns from the study. In the case of this
study, a dropout will be seen as a withdrawal.

Number of students still at risk:
The amount of subjects still at risk, can be explained as the number of subjects left to still experience a
death. Two factors can have an e�ect on the number of students still at risk. A death can decrease the
amount at risk, while a withdrawal also decreases the amount at risk, since withdrawn subjects get excluded
from the study. In the case of this study, the amount still at risk is the number of students who are yet to
receive their degree. Thus, at the beginning of the study, the number of students at risk equals the total
number of students entered into the study.

Right truncated:
Only observations who experience the event of interest by a speci�c time will be included in the sample.

Left truncated:
Only observations who survive past a certain time will be included in the sample.

2.2 Methodology

We will use the Kaplan-Meier method to estimate the survival function S(t), for t taking on the values 3,
4 and 5 (total amount of years before degree completion). This method takes into account the time that
an event (death or a withdrawal) occurred ti, the amount of events that have occurred at a certain time di
and the amount of subjects that are still at risk just prior to the event occurring ri. Each time an event
occurs, we will calculate Ŝti , which is the estimated survival function at time t.We will estimate the survival
function S(t) with the following: [2]

Ŝt =
∏
ti≤t

[
ri − di
ri

]
(1)

where:
ti= Time at which a student graduated
t = Time at which this study is concluded
di= Number of students that obtained a degree at time ti
ri= Number of registered students who are yet to receive a degree just prior to time ti

To compare two survival functions (groups of students with di�erent traits) with one another, we will make
use of the logrank test. The logrank test will compare the number of observed graduations in each group
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with the number of expected graduations based on the number of graduations in the combined groups. Using
the null hypothesis that survival curves are equal in the two groups, we can use the following expression to
test it: [5]

χ2 =
(O1 + E1)

2

E1
+

(O2 + E2)
2

E2
(2)

where:
O1= Total number of observed graduations in group 1
E1= Total number of expected graduations in group 1
O2= Total number of observed graduations in group 2
E2= Total number of expected graduations in group 2

3 Application

The data analysis for this essay was performed using SAS software, Version 9.4 of the SAS System for
Windows. Copyright © 2016 SAS Institute Inc., Cary, NC, USA.

3.1 Description of study

In this report, we will make use of nonparametric survival analysis methods, more speci�cally, the Kaplan-
Meier method, in order to estimate the distribution of the duration of undergraduate studies in the Depart-
ment of Statistics. Similar to the 2003 study of Kalamatianou & McClean, we will conduct a study on 20 000
students from the University of Pretoria. We will also consider graduation as a death, i.e. as the occurrence
of an event. Since Kalamatianou & McClean found signi�cant di�erences between the graduation times of
men and women, this phenomenon will also be studied. [6] We will further compare groups of students who
completed their degree on time with groups of students who studied longer than the prescribed minimum
time period in order to identify signi�cant di�erences. Since it goes beyond the scope of this research report,
solutions to the problem of students dropping out or students studying longer than the prescribed minimum
time period will not be addressed. The SAS procedure PROC LIFETEST will be used for the practical
application; the data were obtained from the University of Pretoria's Bureau for Institutional Research and
Planning (BIRAP) database.

3.2 Practical application

From the BIRAP dataset, we have only included students who were supposed to take Statistics up until
their third year according to their academic plan. These academic plans are BCom: Economics and BCom:
Statistics. Our study included 406 students. 89 of these students either dropped out, or changed their degree
to something other than BCom:(Statistics) or BCom:(Economics) before they could complete their third year
of study. This means that at the beginning of the third year of study for the students in our set, only 317
students remained.

The SAS procedure, PROC LIFETEST was used to conduct survival analysis on the data. Comparisons
of survival between student genders and the school systems the student matriculated from were drawn using
a logrank test statistic in the PROC LIFETEST procedure.
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3.3 Results

Table 1: Students registered vs. students passed

Table 1 summarises the amount of registered students at the beginning of each year, the amount of degrees
awarded at the end of each year, the amount of students left at the end of each year, the percentage of students
that passed and the percentage of students that did not return to complete their studies the following year.
Only 55.5% of all students who made it up to their third year of studies completed their degree. Of the 406
students who started out in the �rst year, a mere 43.3% went on to obtain a degree. This number implies that
less than half of the �rst year students hopeful to obtain a degree, actually see it through. It is interesting,
but expected that the percentage of students who do not return to �nish their studies, increase each year.
This can be explained by the fact that students either give up, and feel that they will not be able to complete
their degree, or the funds to continue studying are depleted, and these students are forced to give up.

Figure 1: Graphical representation of the distribution of the duration of undergraduate studies with Statistics
as a subject up to third year level

In Figure 1, the distribution of the duration of studies for undergraduate students at the University of
Pretoria per year can be observed. The number of students unsuccessful at the end of year one and year two
is equal to the number of students who registered, since the minimum time period to obtain an undergraduate
degree in Statistics or Economics at the University of Pretoria is three years. The blue bar represents the
number of students registered with the university at the beginning of each year; the green bar represents
the amount of degrees awarded at the end of that year; the red bar represents the amount of censored
(unsuccessful) students at the end of the year; the yellow bar represents the amount of students who dropped
out at the end of the year, i.e. did not be return the next year. Thus, right censored students - number of
students dropped out = number of registered students for the next year.
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Figure 2: Percentage of students registered and degrees awarded per year

Figure 2 shows the percentage of students registered, dropped out and the percentage of degrees awarded.
After 3 years of studies, only 25.62% of students who registered for a degree have been awarded with a
degree, while 21.9% have dropped out. Of those who reached their third year, only 32.8% graduated within
the prescribed minimum time period of three years. This is extremely costly to the university out of a
�nancial and spacial perspective. Not only are the 67.2% of students who study longer than the prescribed 3
years costing the university money in subsidies but these students are also taking up the space of prospective
students who are eager to join the university. These low �gures also re�ect badly on the university and
warrants some initiative from the university to create an overall better experience for a student regarding
his/her relationship with the university. Analysis should be done on the students who do not obtain their
degree in the minimum time frame, to try and ascertain how they can be assisted to obtain their degree.
Said analysis is beyond the scope of this article.

Figure 3: Graduates by gender

From Figure 3 it can be seen that females generally have a higher graduation rate than males. 60 out of
the 104 degrees that were awarded after 3 years of studies were awarded to females. This equates to about
58% of the students who obtained a degree after 3 years. There can be various reasons for this occurrence,
including �eld of study and responsibility levels at the age of 20 between males and females. With �eld of
study, it is meant that if this analysis is done on students studying computer science, which is a mainly
male dominated �eld of study, the graduation numbers would likely take on the opposite pattern of what we
observe in our data. With responsibility levels, it is meant that male and female students between the ages
of 18 and 20 do not have the same sense of responsibility. Females tend to generally be more tame, with a
stronger sense of responsibility and duty.[3, 8]
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Figure 4: Graduates by school

From Figure 4 it can be seen that even though the largest number of students who graduate, are from
public schools, the highest percentage of students who graduate obtained their matric certi�cate in a foreign
country. A possible reason for this could be that students from other countries experience more pressure to
graduate since they are here on a study permit.

Figure 5: Survival curve of all students

Figure 5 displays a survival curve for the students who graduated in year 3, 4, 5 or 6 of their studies.
From this curve, based on the data acquired from the BIRAP dataset, the estimated probability of a student
graduating in their third year of study, is a mere +- 20%. As can be expected, the estimated probability of
a student to graduate increases as the number of years studied increase. The probability of a student to be
awarded with their degree after 4 years of study is +- 50% which is a 30% jump from year 3 to year 4. The
probability of a student graduating after 5 years of study is +- 65%. This is only a 15% increase in probability
from year 4 to year 5. After 5 years, students who have not �nished their studies are requested to terminate
their studies with the university. This means that these students are considered as right censored. We do
not know if these students enrolled for a degree at another university, or if they dropped out completely.
The reason for our study still containing students in a 6th year of study is that these students changed their
degree at some point or took a gap year, and thus were given an extra year to �nish their degree.
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In the following two �gures, Figure 6 and Figure 7, we will look at survival curves of students by gen-
der and by schooling system, making use of the logrank test statistic to draw comparison between di�erent
groups:

Figure 6: Survival curves of students by gender

The survival curve in Figure 6 shows that the probability of a female student obtaining her degree in
years 3, 4 and 5 is higher than the probability of their male counterparts obtaining their degree. This could
be ascribed to the fact that female students are more �dedicated� in a certain sense (a female student would
rather stay at home to study, rather than attend a sports event on the eve of a test).

From the logrank test statistic, χ2= 11.6112 with p= 0.0007, it can be seen that the graduation behaviour
of males and females di�er even on a 1% level of signi�cance, which makes gender a very in�uential variable
in the analysis of whether and when a student will in fact obtain their degree. Similar results were found in
several other studies [3, 8].
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Figure 7: Survival curve of students by school

Figure 7 shows the di�erent probabilities of students who matriculated from di�erent schooling systems
obtaining their degrees. The di�erent schooling systems we looked at are public schools, IEB schools, schools
in foreign countries and schools that follow Cambridge syllabus. It has to be noted that most of the students
in our study received their secondary education from a public school in South Africa. There is a signi�cant
di�erence between the probability of a student who attended public school and the probability of a student
who attended a school with a Cambridge schooling system to obtain their degrees, with a student who at-
tended a public school having a higher probability to obtain a degree. Since there are large di�erence in the
number of students attending public schools versus the other schooling systems, we can refer back to Figure
4, making use of percentages, for more context. Studies have already been done in 2015 on the signi�cance
of a student's grades in secondary school [4].

The logrank test statistic is χ2 = 7.2806 with a p-value of 0.0635. The di�erent schooling systems are
not signi�cantly di�erent on a 5% level of signi�cance, but are signi�cantly di�erent on a 10% level of
signi�cance.

4 Conclusion

From our �ndings, it can be concluded that for the period of 2010 to 2015, only a quarter of the students who
registered for a three year degree in BCom:(Statistics) or BCom:(Economics) actually obtained said degree
within the minimum prescribed period. This information provides the university with the necessary informa-
tion that the intake criteria for students applying to study towards a Statistics or Economics degree may be
due for revision. In the monitored time period of 2010 to 2015, a signi�cant amount of 230 students did not
obtain their degree due to dropping out before �nishing. This is a staggering number of 56.65% of students.
Furthermore, 72 of the 176 students who graduated (40.9%), took longer than the prescribed minimum time
period of three years. We analysed the graduation rates between males and females and observed that more
females than males tend to �nish their degree. Only 75 (42.6%) out of the 176 students who graduated were
males. We have constructed three separate survival curves, of which two were used for logrank tests. From
these survival curves, it can be seen that the model is a good �t for the data. The survival curves separating
graduation times on gender con�rms what we found in the data. Females are more likely to graduate than
males. The survival curves separating graduation times on schooling systems also shows a moderately signi�-
cant albeit smaller di�erence between public schooling graduates and graduates from other schooling systems.
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To conclude, gender de�nitely plays a role in obtaining an undergraduate degree in statistics, while the
student's schooling system also has a part to play. Going forward, it would be possible, with more research
from the university, to start identifying the candidates at risk of struggling to obtain a degree even before
the student starts their career at the University of Pretoria. This way, the university can start intervening
to make sure that students from previously disadvantaged backgrounds get the same learning experience
as students with an advantage and the university can ensure that students with the highest aptitude for
statistics will get a chance before a student who might just drop out in second year. Much research, which is
beyond the scope of this essay still needs to be done on this topic to fully understand and grasp the intricate
workings of why one student would drop out while another would hold on and �nish their degree.

15



References

[1] Paul D Allison. Survival analysis using SAS: a practical guide. SAS Institute, 2010.

[2] Alan B Cantor. SAS Survival analysis techniques for medical research. SAS Institute, 2003.

[3] Justin R Chimka, Teri Reed-Rhoads, and Kash Barker. Proportional hazards models of graduation.
College student retention, 2007.

[4] Renata Clerici, Anna Giraldo, and Silvia Meggiolaro. The determinants of academic outcomes in a
competing risks approach: evidence from italy. Studies in Higher Education, 2015.

[5] B Dawson and R.G. Trapp. Basic & Clinical Biostatistics. Lange, 2004.

[6] Aglaia G Kalamatianou and Sally McClean. The perpetual student: Modeling duration of undergraduate
studies based on lifetime-type educational data. Lifetime Data Analysis, 9(4):311�330, 2003.

[7] Edward L Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. Journal of
the American Statistical Association, 53(282):457�481, 1958.

[8] Gillian M Nicholls. Analyszing time to student course withdrawal patterns for predictive modeling.
ASEE Southeast section conference, 2013.

[9] Stephen B Plank, Stefanie DeLuca, and Angela Estacion. High school dropout and the role of career and
technical education: A survival analysis of surviving high school. Sociology of Education, 81(4):345�370,
2008.

[10] G. Rupert and JR. Miller. Survival Analysis. Wiley Publications, 1998.

16



Appendix

SAS code to generate the survival curves:

Generating a survival curve using the whole set of data.

Generating survival curves to draw comparison between gender and schools by making use of the Logrank
test statistic:
Drawing a comparison between gender using survival curves:

Drawing comparison between schools using survival curves.
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Abstract

In this essay, we will be looking at one of the assumptions stated by the Classical Linear Regression
Model (CLRM), namely, that the model must be correctly speci�ed. The focus of the essay will be to
distinguish between the two di�erent types of model speci�cation errors namely, over-�tting and under-
�tting of models, then the consequences of these errors and di�erent testing procedures which can be
used to detect the model speci�cation errors are discussed. A cubic cost function was considered as an
application and all the test procedures were illustrated based on the cubic cost function and were put
into practice.
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1 Introduction and Literature Review

In this essay, we will distinguish between two types of model speci�cation errors in depth and give high-
lights on what model mis-speci�cation errors is. Model speci�cation errors includes di�erent types of errors
namely: omission of relevant variables, inclusion of unnecessary variables, the use of incorrect functional form,
incorrect speci�cation of the stochastic error term, and errors of measurement in the dependent variable Y
and the explanatory variable X [7]. To detect model speci�cation errors, di�erent tests are to be considered
namely: the Durbin-Watson d statistic, Ramsey's RESET test, examination of residuals, Lagrange Multiplier
(LM) test, t − test and the F − test. In this essay, we will mainly focus on the omission and addition of
relevant/irrelevant variables in a model.

The Ramsey RESET test [13] was discovered by Ramsey J.B in 1968 while doing his Ph.D thesis paper at
the Wisconsis-Madison University. Ramsey argued and have shown that residuals are normally distributed
with constant but not zero mean values under least squares distributions for di�erent speci�cation errors
[13]. The RESET test is said to be a useful indicator when something is wrong [12] and it is generally for
testing mis-speci�cation as well as heteroscedasticity. This test has no power in detecting any results when
the omitted variable(s) are linearly related to the variables that are included [7, 13].

The Durbin-Watson d statistic was developed by Geo�rey Watson and James Durbin and in 1950/1951
they developed the test's bounds to check for the existence of auto-correlation [7, 15, 14]. The Durbin-
Watson d test is used to calculate residuals for the existence of auto-correlation [5]. A model is assumed
and the residuals are calculated under Ordinary Least Squares (OLS). If there is a mis-speci�cation of the
assumed model, then there is an exclusion of a necessary independent variable. We calculate the d value and
if it is signi�cant, then we do not reject and conclude that the model is mis-speci�ed [8]. The Durbin-Watson
d statistic is calculated then compared to its dLOWER and dUPPER [7, 14] to check for any auto-correlation
in the residuals [5, 15]. Observed auto-correlation will re�ect that some variables are included in the error
term instead of the model itself [5, 15].

The Lagrange Multiplier (LM) test was developed by Dr. C.R Rao in the University of Pennsylvania state
and all results were published by Rao and Poti in 1946 [4, 7, 10]. This test let you compare a true model
against a restricted model [7], then if the critical chi-square obtained is greater than the calculated value
then we do not reject the restricted model, that is the restricted model is the true one [8, 9]. It is found that
when two models are being compared to each other, the true model among the two models will re�ect with
the highest R2 value or R̄2 value [5, 9].

There are many examples on econometric modelling under model speci�cation and mis-speci�cation er-
rors that exists [3, 8]. Model speci�cation errors originated from the correlation between the error term and
independent variable which are caused by: the omission of important variables, including unnecessary vari-
ables, the use of incorrect functional form into a model, wrong speci�cation of the stochastic error term,etc
[1, 5, 7, 8, 9, 11].

In this research essay we will discuss the model speci�cation errors throughout using a cost function
example [7] from a cubic polynomial ,stated as

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + µi (1)
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Figure 1: The total cost curve.

This cost function is a cubic polynomial since it resembles an S-shaped curve, this will be proven in the
application section, with Y representing the total cost and X representing the output thereof. The law of
diminishing returns dictated that the average and marginal cost curves are presented by U-shape curves.
Both the AC and MC decreases as output rises but they tend to go up after a certain level of output leading
to the e�ects of the law of diminishing marginal returns. We use the total cost curve to derive both the
AC and MC cost curves and for that reason, parameters from the total cost function (Eq.(1)) have some
restrictions on them because of the found U-shaped curves from the AC and MC curves, and those restrictions
that must be satis�ed by the parameters are as follows

1. β0, β1 and β3 are greater than 0.

2. β2 is less than 0.

3. β2
2 is greater than [3×(β1× β3)].

All these restrictions will be useful for our application section, since they will help checking if our model have
some speci�cation errors or not.

In section 2 we will consider the types of model speci�cation errors but we will only discuss the �rst two
types of model speci�cation errors mentioned below in more detail. We will also discuss the test procedures
and the detection of unnecessary variables under these two errors of speci�cation. In section 3 we will apply
the test procedures and the detection of unnecessary variables method in our cubic cost function to test for
errors. In section 4 we conclude our �ndings.
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2 Background Theory

Model Speci�cation Errors.

2.1 Types of model speci�cation errors

In this section, the di�erent types of model speci�cation errors will be considered. The main types of model
speci�cation errors are:

1. Omission of relevant variables (Under-�tting).

2. Inclusion of irrelevant variables (Over-�tting).

3. Using a wrong functional form.

4. Measurement errors (Dependent and independent variable).

5. Wrong speci�cation of the stochastic error term.

6. Assuming a normal distribution for the error term.

We will only focus on the �rst two model speci�cation errors above namely, the omission of relevant variables
(under-�tting) and the inclusion of irrelevant variables (over-�tting). These model speci�cation errors will
be illustrated based on a practical example of the estimation of a total cost function.

2.2 Omission of relevant variables (Under-�tting).

In this section we consider the under-�tting of a model which is the omission of important variables in a
model being used or observed. It is the leaving out of important variables that can assist in explaining the
dependent variable. A systematic pattern will remain unexplained in the model.

Consider the following true model of a cost function, given in Eq(1) , as speci�ed in [7]

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + µi

this equation is a cost function ,where Xi's represents output and Y represents the total cost of producing
the output.

But then suppose that we use the following model instead of the true model

Yi = α0 + α1Xi + α2X
2
i + εi (2)

equation (2) is our �tted model, then in Eq.(2) we have omitted a relevant variable (X3
i ) which leads to a

speci�cation error.
The error term / residual of Eq.(2) is

εi = µ1i + β3X
3
i

Such a model with missing relevant variable(s) can face consequences , where:

� Regression coe�cients are biased and inconsistent, which implies that as the sample size speci�ed
increases the regression coe�cient estimates , α̂0 and α̂1 from Eq(2) still remain biased.

� The error variance σ2 is estimated incorrectly.

� The estimated variance of α̂2 is a biased estimator of the variance of β̂2.

� Measured con�dence interval and hypotheses-testing statistics gives false results and those results are
also misleading when conclusions are being made given by incorrectly estimated parameters from the
model.
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� Forecasting based on the incorrect model gives false results.

� The correlation coe�cient (r23) between the omitted variable (X3) and the included variable(s) (X2)
is not zero.

There are various ways that can be used to test the omission of certain relevant variables in a model, consider
the most important used tests below:

2.2.1 Ramsey's RESET test

The RESET (Regression Equation Speci�cation Error Test) is generally proposed to detect speci�cation
errors. Specifying a model where variables have been omitted, we can detect a systematic pattern in residuals.
Let us consider the following cost function but now we assume that our cost function is linear in output for
simplicity

Yi = α0 + α1Xi + νi (3)

where Y is total cost and X is total output. The pattern in residuals can be detected by plotting the
residuals (µ̂i) obtained in Eq.(3) against the estimated Yi thereof. When using the RESET method, you will
be required to follow four certain steps to get to a conclusion, which are:

1. From Eq.(3) , calculate the model's R2 ( denoted as R2
old ) and the estimated Yi ( denoted as Ŷi ).

2. Observe the relationship between µ̂i and Ŷi by rerunning Eq.(3) and a new model will be speci�ed
(possibly correct), then we run

Yi = β0 + β1Xi + β2Ŷ
2
i + β3Ŷi

3
+ µi (4)

therefore Ŷ 2
i and Ŷ 3

i (additional regressors) contains additional information that was left out in Eq.(3).

3. We then obtain R2 (denoted as R2
new) from Eq.(4). We then use the F test stated below to check

whether the increase in R2
new is statistically signi�cant.

F =
(R2

new −R2
old)/(number of new regressors)

(1−R2
new)/(n− number of parameters in the newmodel)

(5)

4. If found that our F value is statistically signi�cant, for example at a 5% level of signi�cance, then we
can conclude that our model is mis-speci�ed from Eq.(3).

Using the RESET method has advantages and disadvantages. It is very easy to apply the F - test and it
does not require us to state the alternative model but then if found that the initial model is mis-speci�ed,
we will still face a problem in choosing a better alternative model. [7, 13]

2.2.2 Durbin-Watson D statistic

The Durbin-Watson d statistics is given by

d =

∑n
i=2(µ̂i − µ̂i−1)2∑n

i=1 µ̂
2
i

(6)

Note: i is the index of observation and n is the total number of observations.
Observing our cost function (Eq.(1)) again to use the Durbin-Watson d test to check for speci�cation errors
in a model. We compute a d-value for the cost function, and we compare it to the critical values (dlower and
dupper ) obtained at a certain percentage, then we can conclude our model using these critical values. If our
d-value is below dlower, it shows a positive auto correlation in the residuals , a value above dupper indicate
a negative auto correlation in the residuals and a value between dlower and dupper indicate indecision. The
Durbin-Watson test always has results between 0 and 4. The correlation being observed re�ects that some of
the variable(s) included in the error term belongs in the model as part of the explanatory variable(s), if X3

i is
excluded from the cost function, as Eq.(2) shows, with the error term being mis-speci�ed (µ1i + β3X

3
i ) , and

if X3
i a�ects Yi signi�cantly , then a systematic pattern will be present in the errors. Let us now consider few

steps that can be used to detect speci�cation errors in a model through the Durbin-Watson d test method:
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1. From Eq.(2), calculate the Ordinary Least Squares (OLS) error terms (µ̂i).

2. Put all residuals / error terms (µ̂i) obtained in step 1 in order according to the increasing values of the
excluded variable, that is X3

i .

3. Calculate the d statistic value, using Eq.(6), from the ordered error terms

4. If the computed d statistic is statistically signi�cant checked from the Durbin-Watson tables, then we
can conclude that our hypothesis of the model is mis-speci�ed. [1, 7]

2.2.3 Lagrange Multiplier (LM) test

The LM test is similar to the Ramsey's RESET test. Again, we are using our cost function example to
illustrate the Lagrange Multiplier (LM) test. Comparing the cubic cost function (Eq.(1)) to the linear cost
function (Eq.(3)), we see that Eq.(3) is a restricted regression model with zero coe�cients for the squared
and cubed output variables. To put the LM test in use, one can follow its procedures:

1. Use OLS to estimate Eq.(3) (the restricted regression) and get the residuals(µ̂i).

2. If Eq.(1) ( the unrestricted regression ) is true, then the error terms (µ̂i) under the restricted model
(Eq.(3)) have close relationship to the outputs from the squared and cubed variables (X2

i and X3
i ).

3. We then do regression on all the residuals from the �rst step on the regressors from Eq.(1) ,the unre-
stricted model, we then obtain:

µ̂i = α0 + α1Xi + α2X
2
i + α3X

3
i + νi (7)

with νi being the error term and α′is are our parameter estimates.

4. Using a large sample, from Eq.(7) , the total number of the sample (n) multiplied by R2 shows a
chi-squared distribution with degrees of freedom (df) the same as the number of restricted variable(s):

nR2 ∼ χ2
(number of restrictions) (8)

and with the cost function case example it is two (df = 2) since only two variables are left out (X2
i and

X3
i ).

5. We will reject the restricted regression, if the chi-square value (in Eq.(8)) is greater than that value of
the critical chi-squared at a given level of signi�cance or otherwise, the restricted regression will not be
rejected. [7, 10]

2.2.4 Examining residuals

The examination of residuals in a cross-sectional data set helps to detect model speci�cation errors, by in
fact checking errors that exists and plotting the errors will give a clear pattern and one can simply conclude
from that pattern obtained. Reconsidering the cost function example, we assume that the cubic cost function
is the true model

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + µ1i (9)

but one researcher decides to �t a quadratic cost function instead, that is

Yi = α0 + α1Xi + α3X
2
i + µ2i (10)

and another researcher chooses to �t a linear cost function of

Yi = λ0 + λ1Xi + µ3i (11)

Even though we know that both the quadratic and the linear cost functions have speci�cation errors, we go
ahead and estimate their residuals and then plot them in order to observe their patterns. If speci�cation
errors exists, the pattern of the residuals will be detected.[7]
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2.3 Inclusion of irrelevant variables (Over-�tting).

In this section we will discuss the model speci�cation errors of including irrelevant variables which is over-
�tting of a model by using too many variables in a model and including some unnecessary and unrelated
variables to the response variable. This is caused by errors in theory and improper variable selection proce-
dures.

An example of a model with extra irrelevant variables:

We �rst consider a true model

Y = θ0 + θ1Xi + θ2X
2
i + θ3X

3
i + εi

the �tted model with unnecessary variables is

Y = α0 + α1Xi + α2X
2
i + α3X

3
i + α4X

4
i + πi

The consequences of this type of model speci�cation error are given below:

� Variance of regression coe�cients are exaggerated.

� Fitted or measured model is not good for prediction of new data- Prediction is biased.

� The error variance of the model is estimated correctly.

� The measured con�dence interval and hypotheses-tests are valid and true under the over-�tted model.

� The OLS estimated parameters of the over-�tted model are consistent and unbiased.

2.3.1 Detecting the presence of unnecessary variables

Consider a true cost function being developed

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + εi (12)

Then we specify a model with irrelevant variables as follows

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + β4X

4
i + µi (13)

and to �nd out if the variable X4
i belongs to the true model we can simply use the t−test. We then

specify our null hypothesis and its alternative, that is

H0 : β4 = 0

Ha : β4 6= 0

The t−test [7] can be used to detect the existence of only one variable X4
i in a model by checking if the

related estimated coe�cient parameter β4 is signi�cant by using the following formula of the t−test:

t =
β̂4

se (β̂4)

where β̂4 is the estimated parameter of β4 and se (β̂4) is the standard error of the estimated coe�cient
parameter. We conclude that our hypothesis (H0) is not rejected if the calculated t−value is less than the
given critical t−value. However, if we need to check if more than one variable belongs to true cost function, for
example variables X2

i and X3
i , then we need to use the f−test [7]. We then �rst specify our null hypothesis

and its alternative of
H0 : β2 = β3 = 0

Ha : at least one β 6= 0

11



Consider Eq.(12) as the unrestricted cost function and must be compared to our restricted cost function of

Yi = β0 + β1Xi + υi (14)

The F−test is used to detect the existence of more than one variable in a model by checking its signi�cance
using the restricted and unrestricted models from their residual sum of squares ( denoted as RSS ) and their
degrees of freedom ( df ) as follows:

F =
(RSSR − RSSUR ) /m

(RSSUR ) / (n − k )

Note :RSSR=
∑
µ̂2
R, is the residual sum of squares of the restricted model.

RSSUR =
∑
µ̂2
UR, is the residual sum of squares of the unrestricted model.

m =restrictions number
n =total number of observations.
k =the number of coe�cient parameters in the unrestricted model.

We conclude that there are no extra or unnecessary variables in a model and we have a good model when
our tests (F − test and t− test ) shows that our estimated coe�cients parameters are statistically signi�cant
and proved that the model's R2-value is high.

3 Application

In this section we will consider the following test procedures for under-�tting the model namely, the RESET
test, the LM restricted, examining the residuals ,and the Durbin-Watson d statistic and over-�tting the model
namely, t−test and F−test.

We now consider the cost function's applications and empirical results, the true cost function given in [7]
is a third(cubic)-degree polynomial as follows:

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + µi (15)

with the given following data set that will be used below with 10 observations.

Total cost Output
Xi X2

i X3
i

193 1 1 1
226 2 4 8
240 3 9 27
244 4 16 64
257 5 25 125
260 6 36 216
274 7 49 343
297 8 64 512
350 9 81 729
420 10 100 1000

Table 1: Total Cost Function

Looking at the empirical results illustrated under the omission of relevant variables as follows:

3.1 The Ramsey's RESET test.

As stated before, for simplicity we will use the linear cost function ( denoted as the old function ) as described
in section 2, as follow

Yi = α0 + α1Xi + νi (16)
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we get the following estimated regression model:

Ŷi = 166.46667 + 19.93333Xi

(19.021) (3.066)
with R2

old= 0.8409 [16]. Then the new cost function speci�ed ( possibly correct ) is

Yi = β0 + β1Xi + β2Ŷ
2
i + β3Ŷi

3
+ µi (17)

estimated as
Ŷi = 2140.7223 + 476.6557Xi − 0.09187Y 2

i + 0.000119Y 3
i

(6.375) (4.778) (0.9856) (0.0592)
with R2

new =0.9983 [16], regressors = 2 and parameters = 4 ( new model ) . We specify the hypothesis

H0 : Restrictedmodel

Ha : Unrestrictedmodel

The F-test is

F =
(R2

new −R2
old)/(# of new regressors)

(1−R2
new)/(n−# of parameters in the newmodel)

=
( 0.9983 − 0.8409 )/2

( 1 − 0.9983 )/( 10 − 4 )

= 277.76

and given the critical value of F( 0.05, 2, 6 ) = 5.14 from the F -distribution tables. Since our F-value is very
large and larger than the given critical F -test [ F = 277.76 > F(0.05,2,6) = 5.14 ], the null hypothesis is
rejected at a 5% level of signi�cance and concluding that the unrestricted model Eq.(15) is the correct model.

3.2 Lagrange Multiplier (LM) test

Consider the restricted regression Eq.(16) :

Ŷi = 166.46667 + 19.93333Xi

(19.021) (3.066)
where Y is our total cost and X is output. Then regressing the residuals of the restricted regression we

get the following results
µ̂i = α0 + α1Xi + α2X

2
i + α3X

3
i + νi (18)

µ̂i = −24.7 + 43.5443Xi − 12.9615X2
i + 0.9396X3

i

(6.375) (4.779) (0.0986) (0.059)
with R2= 0.9896 [16], then we calculate our

nR2 = 10(0.9896) = 9.896

The R2 suggests that 98.96% of the residuals of the restricted model are explained by the omitted variables
which shows that there is still a systematic pattern in the residuals which was left unexplained. The following
value is the critical chi-square

χ2
(0.05)(2) = 5.99147

The null hypothesis is rejected at a 5% level of signi�cance and we conclude that the unrestricted model
is the correct model, since the critical chi-square value is smaller than that of the estimated nR2 [ nR2 >
χ2
(0.05) = 5.9914 ].
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3.3 Examining residuals

Examining the residuals gives a visual diagnostic to test for speci�cation errors. If we detect a certain pattern
of the residuals then we have speci�cation errors.

Looking at our unrestricted model or true cost function which is the cubic polynomial of

Ŷi = 141.7667 + 63.4776Xi − 12.9615X2
i + 0.9396X3

i

Figure 2: Residuals v.s Xi, X
2
i and X

3
i

When observing the pattern of the residuals from the true cost function, it can be seen that they do not
have a noticeable pattern forming a certain shape, the residuals are very small and randomly distributed and
is a good indication that nothing is left unexplained in the model.

Consider the following quadratic cost function of

Ŷi = 222.38333− 8.02500Xi + 2.54167X2
i

14



Figure 3: Residuals v.s Xiand X
2
i

When using this quadratic cost function we get a noticeable pattern of an almost S-shaped curve but
not clear enough, meaning the residuals are larger than that from the cubic cost function discussed above.
This is a clear indication that there is an unexplained pattern in the residuals which should prompt you to
reconsider the model speci�cation.

Lastly consider the linear cost function of

Ŷi = 166.467 + 19.933Xi

Figure 4: Residual v.s Xi
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Under the linear cost function we see a very clear noticeable pattern of an S-shape. This linear cost
function is rejected simply because the residuals are very large compared to the other two models with a
clear systematic pattern in the residual term.

3.4 Durbin-Watson d statistic

We now examine the calculated d statistic for linear, quadratic and cubic cost functions. Figure 4 below
shows the estimated cost functions with their standard errors, R2 ,adjusted R2 and the estimated d statistics
thereof.

� Ŷi = 166.467 + 19.933Xi R2 = 0.8409

(19.021) (3.066) R̄2 = 0.8210
d = 0.716

� Ŷi = 222.383− 8.0250Xi + 2.542X2
i R2 = 0.9284

(23.488) (9.809) (0.869) R̄2 = 0.9079
d = 1.038

� Ŷi = 141.767 + 63.478Xi − 12.962X2
i + 0.939X3

i R2 = 0.9983

(6.375) (4.778) (0.9856) (0.0592) R̄2 = 0.9975
d = 2.70

Figure 5: Estimated d statistics for the linear, quadratic and cubic cost functions.

Under the linear function the estimated d = 0.716 comparing it to dU = 1.320 and dL = 0.879, we �nd a
positive auto correlation in the estimated residuals. For the quadratic cost function d = 1.038 is compared to
the critical values of dU = 1.641 and dL = 0.697 ,this shows an indecision results but if the modi�ed statistic
test is used then we �nd a positive auto correlation in the estimated residuals. Under the cubic function
d = 2.70 and we know from Durbin-Watson table that a value of 2 suggests no correlation and simply means
no model speci�cation errors, this is the correctly speci�ed model.

We now consider the empirical results illustrated under the inclusion of irrelevant variables as follows:

3.5 The t−test
Considering that Eq.(19) below is our true cost function

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + β4X

4
i + µi (19)

Ŷi = 146.4167 + 57.5161Xi − 10.7802X2
i + 0.6415X3

i + 0.0136X4
i R2 = 0.9984

(11.6084) (13.0840) (4.5315) (0.6055) (0.0274) R̄2 = 0.9972
To test if β4 does belong in our cost function we use the t−test. Specifying the hypothesis

H0 : β4 = 0

Ha : β4 6= 0

Test statistic: t = β̂4−0
se(β̂4)

= 0.0136
0.0274 = 0.4964

with p-value=0.6416.
By comparing this value to our critical value of t(0.05/2,6) = 1.943 > t. We do not reject H0 at a 5% level

of signi�cance and we therefore conclude that β4 is an irrelevant variable which is included in the model and
it should therefore be removed.
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3.6 The F−test
Treating Eq.(19) as our unrestricted cost function and comparing it to a �tted restricted cost function below,
that is Eq.(20)

Yi = β0 + β1Xi + υi (20)

Ŷi = 166.467 + 19.933Xi R2 = 0.8409
(19.021) (3.066) R̄2 = 0.8210

In order to determine whether more than one variable, that is X2
i and X

3
i , belong in the true cost function

, we use the F test. We specify the null hypothesis

H0 : β2 = β3 = 0 (Restrictedmodel )

Ha : at least one β 6= 0 (Unrestrictedmodel )

Our F-value is: F = (RSSR−RSSUR)/m
(RSSUR)/(n−k) = (6202.53−64.74)/2

64.74/(10−6) = 284.42

By comparing this value to a critical value of F(0.05,2,6) = 5.14 , at least one β 6= 0 and therefore we
reject the null hypothesis at a 5% level of signi�cance, since F = 284.42 > F(0.05,2,6) = 5.14. We therefore
conclude that the unrestricted model is the correct model.

All results found and stated in this section shows either a certain model is in fact correctly speci�ed or
model speci�cation errors took place and if we did encounter speci�cation errors, we can simply apply reme-
dies to those errors, for example, we found that Eq.(16) is under-�tted, we just have to add the missing
variables ( X2

i and X3
i ) and Eq.(19) is over-�tted, we then remove the extra irrelevant variables, which is

X4
i .

4 Conclusion

In this essay we considered two types of model speci�cation errors, under-�tting and over-�tting. We discussed
the consequences of the speci�cation errors and also di�erent test procedures which could be used to detect
mis-speci�cation of a model namely, Ramsey's RESET test, Durbin-Watson d statistic , Lagrange Multiplier ,
examination of residuals , t−test and the F - test. The test procedures were illustrated in a practical example
of a cubic cost function being estimated and the following results below were obtained:

� Under the omission of relevant variable(s):

Firstly, the Ramsey's RESET test was used to detect model mis-speci�cation and the linear cost function
Eq.(16) was rejected based on the results found, where the F test statistic was greater than that of the
critical F - value.

Secondly, the Lagrange Multiplier test showed that the restricted regression was rejected at a 5% level of
signi�cance, since we found that the χ2 statistic was greater than that of the critical chi-square χ2

(0.05)(2).
Thirdly, three �gures were depicted for examining residuals. Figure 2 resembled a random distribution of

residuals and no pattern was depicted. Figure 3 and �gure 4 formed S-shaped curves, meaning residuals are
large and we have a speci�cation error, then the functions of �gure 3 and �gure 4 were rejected as they were
not the true cost functions and �gure 2 was the true cost function.

Lastly, under the Durbin-Watson d statistic, we calculated the d statistics for the linear and quadratic
cost functions and both gave a positive auto correlation in residuals and this suggests that we have model
speci�cation errors.

� Under the inclusion of irrelevant variable(s):

Firstly, the t -test was considered. Since the critical t - value was greater than the t test statistic , we
concluded that β4 = 0 and the null hypothesis was not rejected at a 5% level of signi�cance.
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Secondly, the F -test was considered. We concluded that at least one β 6= 0 and therefore we rejected the
null hypothesis since the critical F - value was greater than that of the F test statistics. The restricted cost
function suggests speci�cation errors and the unrestricted cost function is found to be the correctly speci�ed
cost function.

In this research essay we distinguished the di�erence between di�erent model speci�cation errors and we
found that if a speci�cation error occurred or was found in a model then it means that model is mis-speci�ed.
We mainly focused on the two types of model speci�cation errors mentioned above. These two types were
illustrated practically and some results were obtained and simple remedies thereof were also stated. Model
speci�cation errors can always be avoided simply by using the correctly speci�ed model.

In this essay we only considered the discussion of the two types of model speci�cation errors fully and
could include a comprehensive discussion of the other types of model speci�cation errors namely, using a
wrong functional form, measurement errors ( dependent and independent variables ), wrong speci�cation of
the stochastic error term and assuming a normal distribution for the error term, in future research. Model
mis-speci�cation errors were not introduced in this essay and could also be considered for future research.
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Appendix

� SAS PROGRAM

data a;
input Y X1 X2 X3;
cards;
193 1 1 1
226 2 4 8
240 3 9 27
244 4 16 64
257 5 25 125
260 6 36 216
274 7 49 343
297 8 64 512
350 9 81 729
420 10 100 1000
;
run;
data b; set a;
nx2=x1**2;
nx2=x1**3;
x4=x1**4;
run;
proc reg data=a;
model y=x1 x2 x3/xpx i alpha=0.05 covb clb clm cli;
run;
proc reg data=a;
model y=x1 x2/xpx i alpha=0.05 covb clb clm cli;
run;
proc reg data=a;
model y=x1/xpx i alpha=0.05 covb clb clm cli;
run;
data c; set a;
y2=y**2;
y3=y**3;
run;
proc reg data=a;
model y=x1 y2 y3/xpx i alpha=0.05 covb clb clm cli;
run;
proc reg data=b;
model y=x1 x2 x3 x4/xpx i alpha=0.05 covb clb clm cli;
run;
ods graphics on;
proc reg data=a plots=(�t(nolimits));
model y=x1 x2 x3;
id x1 x2 x3;
plot y*x1x2x3;
plot y*x1x2;
plot y*x1;
run;
ods graphics o�;
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� SAS OUTPUT

Figure 6: Cubic cost function
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Figure 7: Cubic cost function
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Figure 8: Quadraic cost functon

23



Figure 9: Quadratic cost function

Figure 10: Linear cost function
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Figure 11: Linear cost function
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Figure 12: Cubic model and adding an irrelevant variable
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Figure 13: Cubic model and adding an irrelevant variable
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Abstract

Ordinary least squares (OLS) estimators for a linear model is sensitive to unusual data. Even one extreme
observation for example may have a major e�ect on the estimated parameters of the regression. Robust estimation
regression can be used as an alternative estimation procedure to ordinary least squares regression in the case of
unusual data. Robust estimation regression procedures are less in�uenced by unusual data and uses methods
that are resistant to the possibility that one or several unknown outliers may occur in the data and will therefor
provide more useful estimated models. M-estimation and bounded-in�uence estimation as robust estimation
regression procedures is presented. In addition, comparisons of these robust estimates based on their robustness
and e�ciency will be done through a simulation study. A real data application is provided to compare robust
estimation regression procedures with ordinary least squares regression.
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1 Introduction

Ordinary least squares (OLS) regression [11] is used to study how the response variables y′is is related to a set
of regressors x′is were (xi, yi) for i = 1, 2, 3, ......, n is independent and identically distributed (i.i.d). The linear
regression model is given by,

Y = Xβ + ε

where Y is a (n× 1) response variable vector, X is a (n× p) design matrix, β is an unknown (p× 1) parameter
vector, and ε is a random error vector and is independent and identically distributed (iid) and independent of X
with E(εi|xi) = 0. The size of the residuals are an indication of the regression models performance. An universally
used estimate for β is the OLS estimator which minimize the quantity with respect to β,

Q = (Y −Xβ)
′
(Y −Xβ)

= Y ′Y − 2β′X′Y + β′X′Xβ

Di�erentiating with respect to β and setting the partial derivatives equal to zero yields,

−2X′Y + 2X′Xb = 0

to obtain the normal equations,

X′Xb = X′Y

Permultiply with (X ′X)
−1

to obtain the ordinary least square estimator,

b = (X′X)
−1
X′Y

The OLS estimate is ideal among the class of linear unbiased estimates and it is also the most e�cient unbiased
estimate under the assumption that the residuals in regression models are normally distributed with εi ∼ N

(
0, σ2

)
and independent distributed where i = 1, ....., n. On the other hand, in application, residuals do not always
precisely follow a normal distribution. In any given data set there might be outliers or the residuals may follow
another distribution for example a t-distribution which has a heavier tail than the normal distribution. In both
these cases, the ordinary least squares estimator will deviate strongly from the true value of the estimates. [9]

Outlier data can be seen as unusual data. There are di�erent types of outliers that can in�uence the ordinary
least squares estimates. Vertical outliers, good leverage points and bad leverage points will be discussed. [10]
Vertical outlier are those observations that have unusual values in the y-dimension but not in the x-dimension.
A vertical outlier has an e�ect on the ordinary least squares estimates, especially on the intercept estimator. A
good leverage point can be seen as observation that have unusual values in the region of the explanatory variable
but are still close to the regression line. A good leverage point will not have an e�ect on the the ordinary least
squares estimates but rather on the statistical inference seeing that they in�ate the estimated standard errors. A
bad leverage point can be seen as the observations that have unusual values in the region of the explanatory variable
but does not lay close to the regression line. A bad leverage point will e�ect both the estimation of the intercept
and the slope of the OLS estimates.

A common method to improve the estimate sensitivity to outliers, is by transforming the data, and applying
OLSs regression to the transformed data. Standard methods for outlier detection in a data set are based on initial
ordinary least squares �t and using numerical or graphical procedures called regression diagnostics to detect unusual
observations. But seeing that all of the above mentioned methods used by regression diagnostics are based on the
initial ordinary least squares �t, the parameters and leverages may be largely in�uenced by extreme observations.
These methods can therefore be misled by the combined action of several outliers, and may even fail to identify a
single outlier. [4]

Therefor, unusual observation may have a substantial e�ect on the parameter estimates of the regression model.
Robust estimation regression can be used as an alternative to OLS regression. [11]
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Robust estimation regression is originated to avoid some boundaries of established parametric methods. OLS
models make strong assumptions about the structure of data, assumptions that often do not hold in applications.
This report will review some standard robust estimation regression methods and discuss their properties. Usually
the properties of e�ciency, the breakdown point, and the in�uence function is used to measure the performance
of regression estimates. In this report the breakdown point of an estimator, more speci�cally the �nite sample
breakdown point of an estimator, known as the smallest fraction of bad data a data set may contain before estimates
turn bad, is used to illustrate the impact of unusual data. The e�ciency indicates how well the robust method works
compared to OLS estimation when data precisely follow a normal distribution. Since OLS estimation is the best
estimation method when the data set are normally distributed, the aim is to get the robust estimators to perform
as closely to ordinary least squares estimation as possible. Therefor, high e�ciency is desired for robust estimation.
Robust regression methods mainly deal with the following problems:

1. Outliers only in the response domain (y-domain)

2. High leverage outliers (outliers in both the x-domain and y-domain)

3. Distribution with heavier tail than normal distribution [2]

The M-estimation, a generalization of maximum likelihood estimates (MLE) from principle, is one of the most
commonly used estimation method to address problems with outliers. The three most commonly used M-estimators
is known as the OLS, Huber and Tukey bisquare estimators. Sometimes the M-estimator may be vulnerable to
high leverage points and therefor bounded-in�uence regression is used. Very high breakdown estimates do not
permit for diagnosis of model misspeci�cation, and should be avoided.[3] One of the bound-in�uence estimators is
least-trimmed squares (LTS) regression and will be presented in the report. A comparisons of the M-estimation
and least trimmed squares estimation based on their robustness and e�ciency will be done through a simulation
study. A real data application is also provided to compare robust regression procedures with ordinary least squares
regression.
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2 Background theory

2.1 Breakdown and measuring robustness

With robust methods the aim is to develop models which have bene�cial behavior in an approximately normally
distributed model. Fox and Weisberg [5] de�ned the �nite sample breakdown point of an estimator to be the
smallest fraction (α) of the data such that if [nα] tends to in�nity then the value of the estimator also trends to
in�nite. Therefor an estimator with a high breakdown point is more robust. Consider the observed random sample
{x1, x2, ....., xn} with average,

xn =
1

n

n∑
i=1

xi (1)

Geyer [6] rewrite (1) ,

xn =
1

n

[
n−1∑
i=1

xi + xn

]

=
n− 1

n
x̄n−1 +

1

n
xn (2)

with x1, x2, ......., xn−1 �xed and xn →∞ , then xn →∞. Fox and Weisberg [5] then suggested x̄n can be made
as large as possible, by increasing the value of xn, regardless of the other n− 1 values. Geyer [6] implied that the
�nite sample breakdown point of an estimator is some function of n, thus for calculation purposes, the asymptotic
breakdown point of an estimator is used to get a single number. Geyer [6] de�ned the asymptotic breakdown point
to be the limit of the �nite sample breakdown point as n tends to in�nity.

Considering the above, the breakdown point of a sample mean and ordinary least square estimates is 1
n with a

asymptotic breakdown point of 0, since even one outlier may involve in a substantial change in the estimation. The
median stays within the majority data, if the minority of data trend to in�nity. Although the median changes, it
does not become subjectively bad. The breakdown point of the sample median is 1

2 . If a breakdown point exceeds
1
2 then more than half of the data are outliers, which will make it is impossible to distinguish between the good and
bad distributions. Although the sample median can achieve the �nest breakdown point value, its e�ciency is very
low. Geyer [6] then concluded that from the breakdown point characterisation of robustness, the sample mean is
the worst estimator that can be used, for the reason that it is only suitable for ideal data with no outliers and that
the median is the better one of the two.

The breakdown point is very in�uenced by extreme values, and therefor a trimmed mean is suggested, a robust
estimator less in�uenced by outliers. The trimmed mean is calculated by trimming [αn] observations on both sides,
after all observations has been ordered from smallest to largest so that,

X(1) ≤ X([nα]+1) ≤ .... ≤ X(n−[nα]) ≤ X(n)

According to Stigler [8] the trimmed mean can be written as,

Xα =
1

n− 2nα

n−[nα]∑
i=[nα]+1

X(i)

where n is the number of observations in the dataset, and [nα] is the proportions of the observations trimmed
on both sides, with n− 2nα as the remaining observations.

Another standard measurement of robustness is the in�uence function ψ. Let b be the estimate of β based on
the original data and b0 be the estimate based on the modi�ed data which has no outliers. The sensitivity curve of
b is then known as b− b0. The in�uence function is an asymptotic version of the sensitivity curve, and measures the
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rate at which β responds to a small amount of contamination at x0and therefor showing the in�uence of a single
outlier on the estimate. For robust estimators, the in�uence function should not trend to in�nity as x becomes
subjectively large. Therefore, a bounded in�uence function is preferred.

2.2 M-estimation

As stated previously, the ordinary least square (OLS) estimates are in�uenced by unusual data, therefor Fox and
Weisberg [5] suggested the M-estimate and implied that the breakdown of the sample mean is equivalent to the
breakdown of the OLS estimator.

Consider the follow linear model,

yi = β0 + β1xi1 + β2xi2 + ........+ βnxin + εi

= x′iβ + εi (3)

for i = 1, 2, ......., n. Assuming that the model is not the problem and that E(y | x) = x
′

iβ, the distribution of
the residuals are unknown and can therefor be heavy-tailed with outliers. By estimating β with the estimator b,
we have

ŷi = b0 + b1xi1 + b2xi2 + ........+ bpxin + ei

= x′ib

where ei = yi − ŷi, b =

 b0
...
bp

 and x
′

i =
[
1 xi1 · · · xin

]
.

In M-estimation the parameter b are determined by minimizing an objective function,

n∑
i=1

ρ (ei) =

n∑
i=1

ρ (yi − ŷi)

=

n∑
i=1

ρ
(
yi − x′ib

)
(4)

where ρ (· ) is a loss function, de�ned as a cost for any given error ei. For the loss function ρ (· ) to be reasonable,
ρ (· ) should have the following properties:

� ρ (e) ≥ 0 (positive)

� ρ (0) = 0

� ρ (e) = ρ (−e)(symmetric)

� ρ (ei) ≥ ρ (e′i) for |ei| > |e′i|.

These properties hold for the OLS estimator. Consider ρOLS (ei) = e2 for the OLS. It is clear that this complies to
the properties of a lost function.[5]

� e2 ≥ 0 (positive)

� ρOLS (0) = 0

� ρOLS (e) = ρOLS (−e)(symmetric)

� ρOLS (ei) ≥ ρOLS (e′i) for |ei| > |e′i|.
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2.2.1 Computing M-estimates

Fox and Weisberg [5] further implied that the M-estimates can be calculated by minimizing (4) since,

∂

∂b

n∑
i=1

ρ (ei) =
∂

∂b

n∑
i=1

ρ
(
yi − x′ib

)
=

n∑
i=1

ψ
(
yi − x′ib

)
x′i (5)

where the in�uence function ψ (ei) = ∂
∂bρ (ei) . The in�uence function ψ (· ) can be de�ned as the the overall

sensitivity of the estimate. Re-writing (5) as a robust estimator in a form familiar to the problem like weighted
least squares, the weight function can be de�ned as,

wi = w (ei)

=
1

ei

(
∂

∂e
ρ (ei)

)
(6)

=
1

ei
ψ (ei)

From (4) we have,

n∑
i=1

wi
(
yi − x′ib

)
x′i (7)

and can be solved by setting equal to zero. Fox and Weisberg [5] proposed an iterative solution known as
iteratively reweighted least square (IRLS) and is required for (7), considering that the weights wi depends on the
residuals, and therefor the weight in unknown until after the regression is completed. Iteratively reweighted least
squares is calculated in three steps,

1. Initial estimates of b(0)are selected.

2. Calculate an estimate of the scale of the residuals e
(t−1)
i together with the weights w

(t−1)
i = w

[
e
(t−1)
i

]
for

each repetition of t.

3. Obtain the new weighted least squares estimates by solving:

b(t) =
[
X ′W (t−1)X

]−1
X ′W (t−1)y

Where X is the a matrix and W (t−1) = diag
{
w

(t−1)
i

}
is the current weight matrix. Repeating the last two

steps will allow the model to converge. The asymptotic co-variance matrix of b is then,

ν (b) =
E
(
ψ2
)

[E (ψ′)]
2 (X′X)

−1
(8)

and the estimate ν̂ (b) for ν (b) in (8) can be written as,

ν̂ (b) =

∑
[ψ (ei)]

2

[
∑
ψ′ (ei) /n]

2 (X′X) (9)

Note that the estimate ν̂ (b) in (9) is not reliable in small samples. [5]
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2.2.2 Objective functions

Fox and Weisberg [5] further presented the three types of M-estimators with each estimators objective function and
weighted function. The three methods is known as the ordinary least squares (OLS), Huber and Tukey bisquare
estimators. Several choices of ρ have been proposed. If ρOLS (e) = 1

2e
2 then the in�uence function becomes

ψOLS (e) = e with weight function, wOLS (e) = 1.

From this it can be seen that an outlier will have an in�uence on the model, and therefor Fox and Weisberg [5]
suggested the Huber estimator instead, which choose ρ (· ) to be the loss function. For the Huber function,

ρH (e)

{
1
2e

2 for|e| ≤ k
k|e| − 1

2k
2 for|e| > k

The corresponding in�uence function for the Huber loss function is,

ψH (e)

{
e for|e| ≤ k
k for|e| > k

With weight function,

wH (e) =

{
1 for|e| ≤ k
k
|e| for|e| > k

where k is the tuning constant. The tuning constant k is selected to give reasonably high e�ciency if the
residuals are normally distributed. If the tuning constant k is small, there will be more resistance to the outliers
and the e�ciency will be lower when the residuals are normally distributed.

For the Tukey bisquare estimators,

ρB (e) =

 k2

6

{
1−

[
1−

(
e
k

)2]3}
for|e| ≤ k

k2

6 for|e| > k

The corresponding in�uence function is,

ψB (e)

e
[
1−

(
e
k

)2]2
for|e| ≤ k

0 for|e| > k

With weight function,

wB (e) =


[
1−

(
e
k

)2]2
for|e| ≤ k

0 for|e| > k
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Figure 1: Objective functions [5]

In Figure 1 comparisons of the di�erent functions for the OLS, Huber, and Tukey bisquare estimator is presented.
For the Huber estimator in Figure 1 a tuning constant of k = 1, 345 was used and k = 4, 685 was used for the Tukey
bisquare estimator. [5]

The ordinary least squares function increases rapidly as the residuals deviates from zero, with equal assigned
weights to each observation. The Huber function also increase as the residuals deviates from zero, but not as quickly
as the ordinary least squares function. The Huber function assigns equal weights to each observation, but declines
for |e| > k. The Tukey bisquare function increases as the residuals deviates from zero, but levels of for |e| > k. The
weights assigned to each observation declines as soon as the residuals departs from zero and are zero for |e| < k .
[5]

2.3 Bound-in�uence regression

M-estimators with Huber function or Tukey bisquare function are robust to outliers in the response variable with
high e�ciency. However, the M-estimator may be just as vulnerable as ordinary least squares estimates to high
leverage points and therefor bounded-in�uence regression is used. Very high breakdown estimates do not permit for
diagnosis of model misspecication, and should be avoided, unless one is positive that the �tted model is correct.[3]
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2.3.1 Least-trimmed squares (LTS)

Least trimmed squares is one of the bound-in�uence estimators with a breakdown point of nearly 50%. By ranking
the squared error terms acceding, (

e2
)
(1)
,
(
e2
)
(2)
, ...........,

(
e2
)
(n)

(10)

To minimize the sum of the smallest possible m of 10, least-trimmed squares estimator uses the regression

coe�cient b , were m = bn2 c+ b (k+2)
n c, and bcdenotes rounding down to the next smallest integer,

LTS (b) =

m∑
i=1

(
e2
)
(i)

Bounded-In�uence estimators can be given an output of unreasonable results, and there's no straightforward
formula to be used for coe�cient standard errors [7].

3 Application

3.1 Simulation study

Many methods have been developed in response to the problems unusual observations causes. This report aims
to demonstration the advantages of the di�erent objective functions and some available robust techniques. This
report will explore three di�erent regression estimates namely the M-estimate using Huber weights, M-estimate
using Tukey weights, and LTS estimation. A simulation study will be preformed on these three robust estimation
method, together with ordinary least squares (OLS) estimation, and comparisons will be made based on their
robustness and e�ciency under di�erent scenarios. The data analysis for this essay was performed using SAS
software, Version 9.4 of the SAS System for Windows. Copyright © 2016 SAS Institute Inc., Cary, NC, USA.

In order to obtain simulated data for the comparison, a 1000 random observation where generated. The �rst
900 observations are from a linear model, and to allow 10% contamination in the data, the last 100 observations
are signi�cantly biased in the y-direction. The parameter estimates for M-estimation and LTS estimation were
generated with the ROBUSTREG procedure. The OLS estimates were generated with the REG procedure. These
estimates are shown in Table 1.

Estimation methods Intercept β1 β2

OLS estimates 19.06712 3.55485 2.12341
Robust estimates (M-estimation, Huber) 10.1054 4.9972 3.0088
Robust estimates (M-estimation, bisquare) 10.0024 5.0077 3.0161

Robust Estimates (LTS estimation) 10.0083 5.0316 3.0396

Table 1: Comparison of estimation methods for data with 10% contamination

While the OLS estimate did not correctly estimate the regression coe�cients for the main model for data with
10% contamination the M-estimation and LTS estimation did. The OLS analysis with 10% contaminated data
indicates that X1 and X2 have a signi�cant in�uence on y at a 5% level of signi�cant.

The next scenario demonstrates the estimations under 40% contaminated data.

Estimation methods Intercept β1 β2

M-estimates with default settings for 40% contaminated data 44.8991 2.4309 1.3742
M-estimates (tuned) for 40% contaminated data 10.0137 4.9905 3.0399

LTS estimation (default setting) for data with 40% contamination 24.0106 18.0792 4.7076
LTS estimation (tuned) for data with 40% contamination 10.0276 4.9970 3.0656

Table 2: Comparison of estimation methods for data with 40% contamination
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It can be seen in Table 2 that the M-estimation method with default options, did not correctly estimate the
regression coe�cients for the main model. Therefor the constant c was modi�ed for the M-estimation method since
the breakdown values of the estimates can be increased and thus one can capture the correct model. Similarly, the
constant H can also be modi�ed for the LTS method and can then correctly estimate the main model with these
methods.

Regardless of the value of constant c used, the M-estimator may be just as vulnerable as ordinary least squares
estimates to high leverage points and can therefor fail to correctly estimate the main model. For this reason
bounded-in�uence regression methods is used instead. The LTS in PROC ROBUSTREG are robust to bad leverage
points, and will correctly estimate the main model. The next scenario demonstrates the estimations under data
with 1% bad high leverage points.

Estimation methods Intercept β1 β2

M-estimates for data with 1% leverage points 44.8991 2.4309 1.3742
LTS estimation for data with 1% leverage points 9.9742 5.0010 3.0219

Table 3: Comparison of estimation methods under data with 1% bad high leverage points

3.2 Real data application

For the real data application the data set crime will be used with 51 observation and can be found in [1]. The
data set contains the following variables: state id (sid), state name (state), violent crimes per 100,000 people
(crime), murders per 1,000,000 (murder), percent of population living in metropolitan areas (pctmetro), percent
of population that is white (pctwhite), percent of population with a high school education or above (pcths), percent
of population living under poverty line (poverty), and percent of population that are single parents (single). The
variable pctmetro, pctwhite, pcths, poverty and single will be used in the regression procedure to predict crime.

Output 1: Ordinary least squares (OLS) estimates

The Ordinary least squares (OLS) analysis shown in Output 1 indicates that pctmetro, poverty and single have
a signi�cant in�uence on crime at the 5% level.
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Output 2: M-estimation summary statistics information

Output 3: M-estimation model �tting information

The M-estimates can be seen in Output 2 and Output 3. Besides the individuals living in metropolitan areas
(pctmetro), the individuals living under poverty line (poverty) as well as the individuals that are single parents
(single), the robust analysis also indicates that the individuals that is white (pctwhite) is signi�cant. This
new �nding is explained in Output 4, where the outliers and leverage points are identi�ed with asterisks. These
unusual observations are de�ned by the standardized robust residuals and robust MCD distances that exceed the
corresponding cuto� values displayed in the diagnostics summary.
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Output 4: Diagnostics

Output 4 indicates that LA, the 18th state in the data and MS, the 25th state in the data, are outliers. Output
4 also identi�es leverage points based on the robust MCD distances, however, there are two high-leverage points in
this data set, HI, the 11th state and DC the 51th state. There are two valuable scatter plots for illustrating these
outliers and leverage points identi�ed in Output 4, namely the standardized robust residuals against the robust
distances and the robust distances against the classical Mahalanobis distances. These corresponding graphs can be
seen in Output 5.

Output 5: Residuals by distance plot and distance by distance plot for crime data

As mentioned previously M-estimator may be just as vulnerable as ordinary least squares estimates to high
leverage points and can therefor fail to correctly estimate the main model. For this reason bounded-in�uence
regression methods is used instead. The LTS in PROC ROBUSTREG are robust to bad leverage points, and will
correctly estimate the main model.
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Output 6: LTS estimates

Output 7: Diagnostics and LTS R Square

Output 7 indicates that FL, HI, LA and MS are outliers. Output 4 also identi�es leverage points based on the
robust MCD distances, however, there are two high-leverage points in this data set, HI, the 11th state and DC the
51th state.

Output 8: Final Weighted LS Estimates

Output 8 shows the least squares estimates calculated after deleting the detected outliers showed in Output 7.
In table 4 a comparison can be made for the di�erent estimation methods used for the real data application .
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Method Estimated model

OLS Y = −1795.90 + 7.61X1 − 4.48X2 + 8.65X3 + 26.24X4 + 109.47X5

M-estimation Y = −1258.80 + 5.69X1 − 6.58X2 + 4.23X3 + 26.45X4 + 119.74X5

LTS estimation Y = −84.73 + 3.75X1 − 17.06X + 6.72X3 + 21.61X4 + 95.41X5

Weighted OLS Y = −635.43 + 4.86X1 − 14.51X2 + 10.15X3 + 28.85X4

Table 4: Comparison of estimated models for real data

4 Conclusion

Ordinary least squares models make strong assumptions about the structure of data, assumptions that often do not
hold in application. Robust regression was used as an alternative estimation procedure to ordinary least squares
regression in the case of unusual data as in application. This report reviewed some standard robust regression
methods and discuss their properties. In application the conclusion was made in both the simulated data and
real data that the robust estimation methods estimated the models more correctly than OLS estimation methods.
Therefor robust regression procedures are proven to be less in�uenced by unusual data by making use of methods
that are resistant to the possibility that one or several unknown outliers may occur in the data and therefor provided
more useful estimated models than OLS regression.
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Abstract

The logistic distribution is frequently used as a growth model in many problems. It has often been
selected as an alternative to the normal distribution because of its higher kurtosis and longer tails. This
paper discusses three di�erent generalizations of the logistic distribution, each with two shape parameters.
The three di�erent types of generalizations are the quantile-based generalized logistic (GLO) distribution
developed by [7], quantile-based GLO distribution possessing skewness-invariant measures of kurtosis,
developed by [11], and the quantile-based skew GLO studied by [2].The L-moment ratio diagrams for
each distribution are used to compare their �exibility with regards to distributional shape.
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1 Introduction

The logistic distribution is a continuous symmetric distribution. It has a similar appearance to the normal
distribution in shape, but it has longer tails and thus a higher level of kurtosis - measure of the distribution tail
(heavy or light tailed) relative to the normal. Consider the following cumulative distribution function(CDF)
of the standardized normal and the logistic distributions respectively:

G1 (x) =
1

2
erf

(
x√
2

)
(1)

and

G2 (x) =

[
1 + e

(
− πx√

3

)]−1

, (2)

where erf(x) is the error function de�ned as:

erf(x) =
2√
π

ˆ x

−∞
e−t

2

dt.

From Figure 1, both G1 (x) and G2 (x) are symmetric about x = 0, so it makes sense where suitable to
replace the normal distribution with the logistic distribution, in order to simplify theoretical analysis.

Figure 1: Graph of logistic and normal cumulative distribution functions .

The logistic distribution can be de�ned in terms of its CDF, probability density function, PDF, and quantile
function, Q(p). The book by [1] discusses in great detail of its application and various properties. Sometimes
distributions tend to have no closed-form expressions for their cumulative distribution functions, F (x) or
their probability density functions, f(x). In such cases, a quantile-based distribution comes into play and
it is de�ned in terms of its quantile function, Q(p), and quantile density function, q(p). Examples of such
distributions are Tukey's lambda distribution [9], various types of generalized lambda distributions [8, 10]
and the Davies distribution [4].

2 Background history/Literature Review

The simple form of the logistic distribution enabled researchers to propose several generalizations of this
distribution. The generalized distributions are quite �exible in distributional shape. They are indexed by
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one or two shape parameters, to introduce skewness (measure of symmetry) and to alter their tail weights.
In common practice, the data is not always symmetric. The need for the generalized distributions is essential
to model such data.

The new quantile-based generalized logistic distribution with two shape parameters is proposed by [7]. The
quantile function of the GLO, proposed by [5], is used as the building block to create the new quantile-
based distribution. The quantile-based GLO is highly �exible with regards to distributional shape, in which
it displays extensive levels of skewness and kurtosis. [7] also discusses distributional properties through
L-moments. An estimation algorithm for estimating the distribution's parameters, with the method of
L-moments estimation is also proposed.

[6] de�nes the L-moment as an expectation of linear combinations of order statistics. The �rst order L-
moment, L1,is the L-location and second order L-moment, L2 is the L-scale. The r

th order L− moments are
rarely used as their variability and increases when r > 2, hence the moment-ratios are used to give skewness
and kurtosis measures. The rthorder L-moment ratio is given by τr = Lr

L2
, with τ3 and τ4 as the L-skewness

and L−kurtosis moment ratios respectively.

The generalization of the quantile-based skew logistic distribution is proposed by [11] using the quantile-
based approach, which was originally introduced by [3] . [11] extended his work by investigating further
properties of the skew logistic distribution, and provides closed-form estimators for the parameters. The
work was further discussed in detail by [2], where he presents and provides a generalization of this model.
In addition, he discusses its properties as well as a method of estimation for its parameters.

A quantile-based generalized logistic distribution possessing skewness-invariant measures of kurtosis is pre-
sented by [11]. They showed that the distribution possesses kurtosis measures based on L-moments and
quantiles, which are skewness invariant.

Distributions that have no closed-form expressions for their either cumulative distribution functions, F (x) ,
or their probability density functions, f (x) , generate moments that are complex in nature. Subsequently,
the method of moments estimation is complicated to use in the estimation of the parameters. Alternative
methods such as the method of percentiles and method of L−Moments can be implemented to simplify the
theoretical analysis.

3 The report objective

The report discusses three di�erent generalizations of the logistic distribution, each with two shape parame-
ters. The main idea of including the two shape parameters is to provide greater �exibility of the distributions
and in modeling skewed data. The three di�erent types of generalizations mentioned above will be com-
pared in terms of their �exibility. The L-moment ratio diagrams for each distribution is used to make the
comparison.

The structure of the report is outlined in the following manner.

• In Section 4, the three di�erent generalizations of the GLO are de�ned. Their quantile functions, Q(p),
quantile density functions, q(p), density quantile functions, fp(p), and L−Moments are discussed.

• Section 5 presents the application to compare the �exibility of the di�erent generalization via the
L−moment ratio diagrams.
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4 Generalizations of the GLO distributions

The random variable X is said to have a logistic distribution if its cumulative distribution is given by

FX (x) =
1

1 + e−
x−µ
σ

,−∞ < x <∞.

The corresponding probability density function is given by

fX(x) =
−x−µσ

σ
(

1 + e−
x−µ
σ

)2 ,−∞ < x <∞

where µ(−∞ < µ < ∞) is the location parameter and σ > 0 is the scale parameter. The generalization of
logistic distribution is obtained through the addition of one or more shape parameters to provide greater
�exibility ot the distribution. All the generalizations of the logistic distribution in this paper have two
shape parameters. The case where the distributions tend to have no closed-form expression, for either their
cumulative distribution or their probability density function, the quantile-based distribution is de�ned in
terms of its quantile function. In this paper, generalizations of the logistic distribution are de�ned in terms
of their quantile function and are therefore known as quantile-based distribution.

4.1 Quantile-based generalized logistic distribution(GLOvsk)

A quantile-based generalized logistic distribution possessing skewness-invariant measures of kurtosis is stud-
ied by [11]. The quantile function, Q(p), quantile density function, q(p), and the L-Moments of the GLOvsk
are presented.

De�nition 1. LetX be a real-valued random variable. X is said to have aGLOvsk i.eX ∼ GLOvsk(α, β, λ, δ),
if the quantile function is de�ned as

Q(p) = α+ β

(
1− δ
λ

((
p

1− p

)λ
− 1

)
+
δ

λ

(
1−

(
1− p
p

)λ))
, 0 ≤ p ≤ 1 (3)

where α and β (> 0) are location and scale parameters respectively, and where λ and 0 ≤ δ ≤ 1 are the
shape parameters.

Theorem 2. The quantile density and density quantile functions of the GLOvsk are

q(p) =

(
p

1−p

)λ
β (δ − 1)−

(
1
p − 1

)λ
βδ

(p− 1) p
, 0 < p < 1, (4)

and

fp(p) =
(p− 1) p(

p
1−p

)λ
β (δ − 1)−

(
1
p − 1

)λ
βδ

, 0 < p < 1

respectively.

Proof. q(p) is obtained by di�erentiating Eq 3 with respect to p.
The result are shown as follows:

Q(p) = α+ β

{
(1− δ)
λ

(
p

1− p

)λ
− (1− δ)

λ
+
δ

λ
− δ

λ

(
1− p
p

)λ}

8



then

q (p) =
dQ(p)

dp

= β

{
(1− δ)
λ

λ

(
p

1− p

)λ−1
d

dp

(
p

1− p

)
− δ

λ
λ

(
1− p
p

)λ−1
d

dp

(
1− p
p

)}

= β

{
(1− δ)

(
p

1− p

)λ−1(
1

1− p

)2

+ δ

(
1− p
p

)λ−1(
1

p

)2
}

= β

{
(1− δ) pλ−1

(
1

1− p

)λ+1

+ δ (1− p)λ−1

(
1

p

)λ+1
}

=

(
p

1−p

)λ
β (δ − 1)−

(
1
p − 1

)λ
βδ

(p− 1) p

In order to obtain fp (p) , the reciprocal of q (p) in Eq 4 is taken and the following result is obtained.

fp(p) =
1

q (p)

=
1

β

{
(1− δ) pλ−1

(
1

1−p

)λ+1

+ δ (1− p)λ−1
(

1
p

)λ+1
}

=

(
β

{
(1− δ) pλ−1

(
1

1− p

)λ+1

+ δ (1− p)λ−1

(
1

p

)λ+1
})−1

=
(p− 1) p(

p
1−p

)λ
β (δ − 1)−

(
1
p − 1

)λ
βδ

Theorem 3. Let X ∼ GLOvsk(α, β, λ, δ). The L-Moments of the GLOvsk, L- location(L1), L− scale(L2),
L−skewness(τ3) and L- kurtosis(τ4) respectively exist for −1 < λ < 1 and are presented as follows:

L1 = α+ β(1− 2δ)

(
πCsc [πλ]− 1

λ

)
,

L2 = πβλCsc [πλ] ,

τ3 = λ(1− 2δ),

and

τ4 =
1

6
(1 + 5λ2),

where Csc[· ] is a cosec function.

Proof. See [11] for the results.

The L−kurtosis moment ratio is invariant to any values of δ(scale parameter). Meaning that, for a given
value of δ the L−kurtosis remains unchanged [11].
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Figure 2 shows the probability density curves for the GLOvsk for selected values of λ and δ. Without loss
of generality, α = 0 and β = 1.

(a) (b)

Figure 2: The density curves for the quantile-based generalized logistic distribution(GLOvsk).

The basic properties of the quantile-based generalized logistic model(GLOvsk) are listed below:

• The probability density curve of the GLOvsk reduces to the logistic distribution when λ = 0.

• When δ = 0 or δ = 1, the GLOvsk is J−shaped for |λ| ≥ 1, unimodal for all other combinations of
values of λ and δ. See Figure 2b.

• The distribution is symmetric when δ = 0.5. See Figure 2a.

• The quantile-based generalized logistic model is negatively skewed for values of δ > 0.5 (See �gure 2b)
and positively skewed for δ < 0.5 (See Figure 2a).

4.2 Generalized skew logistic model(GSLOQB)

A generalization of the quantile-based skew logistic distribution of [11] was studied further by [2]. He presents
a generalization of this model and discusses its properties, as well as a method of estimation of its parameters.

De�nition 4. Let X be a real-valued random variable. X is said to have a generalized quantile based skew
logistic distribution denoted by X ∼ GSLOQB(α, β, δ, κ), if it has the quantile function:

QGSLO(p) = α+ β{(1− δ)log(pκ)− δlog(1− pκ)}, 0 ≤ p ≤ 1, (5)

where α and β(> 0) are the location and scale parameters respectively, and δ(0 ≤ δ ≤ 1) and κ(> 0) are
shape the parameters.
Using the re�ection rule for quantile functions by [3], the re�ected QGSLO(p) is equivalent to −QGSLO(1−p).

Theorem 5. Let X ∼ GSLOQB(α, β, δ, κ), the quantile density and density quantile functions of the
GSLOQB are given as

q(p) = β

(
κ(1− δ)

p
+
δκpκ−1

1− pκ

)
, 0 ≤ p ≤ 1, (6)

and
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fp(p) =
p (1− pκ)

βκ (1− δ − pκ + 2δpκ)
, 0 ≤ p ≤ 1

respectively.

Proof. The same idea as in Theorem 2 is used. q(p) is derived by di�erentiating 5 with respect to p. fp(p)
by taking the reciprocal of q(p).

Theorem 6. Suppose X ∼ GSLOQB(α, β, δ, κ) then the L-location(L1), L−scale(L2), L−skewness(τ3) and
L- kurtosis(τ4) of GSLOQB are respectively given as

L1 = α+ β

(
−δψ(1) + (1− δ)ψ

(
1

κ

)
− (1− 2δ)ψ

(
1

κ
+ 1

))
,

L2 =
1

2
β(1− 2δ)κ+ βδ(−ψ(

1

κ
) + ψ(

2

κ
)),

τ3 =
− 1

6β (1− 2δ)κ+ βδ
(
ψ
(

1
κ

)
− 3ψ

(
2
κ

)
+ 2ψ

(
3
κ

))
1
2β(1− 2δ)κ+ βδ

(
−ψ

(
1
κ

)
+ ψ

(
2
κ

)) ,

and

τ4 =
1
12β (1− 2δ)κ+ βδ

(
−ψ

(
1
κ

)
+ 6ψ

(
2
κ

)
− 10ψ

(
3
κ

)
+ 5ψ

(
4
κ

))
1
2β(1− 2δ)κ+ βδ

(
−ψ

(
1
κ

)
+ ψ

(
2
κ

)) ,

where ψ(t) = d
dt ln Γ(t) = Γ

′
(t)

Γ(t) is the digamma function.

Proof. Refer to [2] for detailed proof of the results.

[2] plotted two plots of the L−skewness and the L−kurtosis against κ for di�erent �xed values of δ. From
each plot he observed that the L−skewness increases beyond 1

3 for large δ, which results in the upper bound
for SLDQB of [11]. For δ = 0, 0 < δ < 1 and δ = 1, τ3 is constant at − 1

3 , τ3 increases up to some point and
then decreases eventually to − 1

3 respectively as κ increases. The limit of τ3 when κ �∞ is 1.
It follows that all together the GSLOQB and the re�ected GSLOQB have all theoretically possible values of
τ3, in e�ect from -1 to 1.

The τ4 plots pass through 1
6 when κ = 1, which is in agreement with [11]. For δ = 0, 0 < δ < 1 and δ = 1,

τ4 is a constant at 1
6 , increases up to some point and then decreases to 1

6 respectively as κ increases. The
limit of τ4 when κ �∞ is 1. For the summary of τ3 and τ4 refer to [2].
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In Figure 3 the probability density curves for the GSLOQB are illustrated with selected values of δ and κ.
Without loss of generality, assume α = 0 and β = 1.

(a) (b) (c)

Figure 3: The probability density curves for the generalized skew logistic model(GSLOQB).

From Figure 3, some basic properties of the generalized skew logistic model GSLOQB are listed below:

• The distribution is symmetric around point zero when δ = 0.5 and κ = 1.

• The distribution is positively skewed if δ > 0.5 and negatively skewed if δ < 0.5.

• When κ = 1, the generalized skew logistic model GSLOQB reduces to the quantile-based generalized
logistic distribution(GLOvsk) of [11].

4.3 The quantile-based generalized logistic distribution (GLOQB)

The new quantile-based generalized logistic distribution was proposed by [7]. It has two shape parameters.
In this subsection, their �ndings are presented.

De�nition 7. Let X be a real-valued random variable. X is said to have a quantile-based generalized
logistic distribution, denoted by X ∼ GLOQB (λ1, λ2, λ3, λ4) ,if it has a quantile function, de�ned as:

Q(p) = λ1 +
1

λ2

(
1

λ3

((
p

1− p

)λ3

− 1

)
− 1

λ4

((
1− p
p

)λ4

− 1

))
, 0 < p < 1, (7)

where λ1 and λ2 are location and scale parameters respectively, whilst λ3 and λ4 are the shape parameters.

Theorem 8. Suppose X ∼ GLOQB (λ1, λ2, λ3, λ4) . The quantile density and density quantile functions of
the GLOQB are

q(p) =
1

λ2p (1− p)

((
p

1− p

)λ3

+

(
1− p
p

)λ4
)
, 0 < p < 1

and

fp(p) = λ2p (1− p)

((
p

1− p

)λ3+1

+

(
1− p
p

)λ4−1
)

respectively.
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Proof. The same methodology as in Theorem 5 is applied, where q(p) is derived by di�erentiating Eq 7 with
respect to p and fp(p) by taking the reciprocal of q(p).

Theorem 9. Let X ∼ GLOQB (λ1, λ2, λ3, λ4). The L-Moments of the GLOQB, L- location(L1), L−
scale(L2), L−skewness(τ3) and L- kurtosis(τ4) respectively exists for −1 < λ3 < 1 and −1 < λ4 < 1
are given as

L1 = λ1 +
1

λ2

(
π (Csc [πλ3]− Csc [πλ4])− 1

λ3
+

1

λ4

)
,

L2 =
1

λ2
(π (Csc [πλ3]λ3 + Csc [πλ4]λ4)) ,

τ3 =
Csc [πλ3]λ2

3 + Csc [πλ4]λ2
4

Csc [πλ3]λ3 + Csc [πλ4]λ4
,

and

τ4 =
Csc [πλ3]λ3

(
1 + 5λ2

3

)
+ Csc [πλ4]λ4

(
1 + 5λ2

4

)
6 (Csc [πλ3]λ3 + Csc [πλ4]λ4)

,

where Csc [·] is the cosec function.

Proof. Refer to [7] for the detailed proof of the result.

Figure 4 plots the probability density function of the GLOQB , with selected values of the shape parameter
λ4 and λ3. Without loss of generality, assume λ1 = 0 and λ2 = 1.

(a) (b)

Figure 4: The density curves for the quantile-based generalized logistic distribution (GLOQB).

The following basic descriptions are observered from Figure 4:

• The GLOQB is symmetric around point 0 when λ3 = λ4. See Figure 4a.
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• When λ3 > λ4, the GLOQB is negatively skewed (See Figure 4b) and positively skewed when λ3 < λ4

(See Figure 4a).

• The GLOQB is J−shaped when λ3 ≥ 1 (λ3 ≤ −1) and λ4 ≤ −1 (λ4 ≥ 1). For all other combinations
of the values of λ3 and λ4, the GLOQB is unimodal. See Figure 4b.

• The probablity density function the GLOQB reduces to logistic distribution when λ3 = λ4 = 0.

• If X ∼ GLOQB (λ1, λ2, λ3, λ4) , then X ∼ GLOQB (λ1, λ2, λ3, λ4) = X ∼ GLOQB (λ1, λ2,−λ3,−λ4).

5 The L−moment ratio diagrams

The L− moment ratio diagrams( plot of L−kurtosis against L−skewness) helps to decide on which prob-
ability distribution function to be chosen for regional frequency analysis. The L−moment ratio diagrams
for the three generalization of the logistic distributions are illustrated in Figure 5-7. Figure ?? compares
the �exibility of the di�erent generalization. The dotted graph is the boundary for all distributions and the
coloured region is the generalized logistic distribution. It is expected that all the three generalizations of the
logistic distribution to plot within the dotted graph. The more area covered by the generalized logistic, the
�exible it is with respect to distributional shape.

Figure 5 plots the L− moment ratio diagram for the GLOvsk. The shaded area(green) is the spaced covered
by the GLOvsk. The logistic distribution is obtained when λ = 0 and has the point

(
0, 1

6

)
. From Figure

7, the symmetry is obtained when δ = 1
2 (τ3 = 0), positively skewed for δ < 1

2 (τ3 > 0) when λ > 0 and
negatively skewed for δ > 1

2 (τ3 < 0) when λ > 0. It follows from Figure 5 that the minimum value for τ4 for
the GLOvsk is the same for that of logistic distribution.

Figure 5: The L− moment ratio diagram for the GLOvsk.

The shaded area(Blue) in Figure 6 is the area covered by the generalized skew logistic(GSLOQB). The
logistic distribution is obtained at the point

(
0; 1

6

)
and exponential distribution(E) at the point

(
1
3 ; 1

6

)
and

the re�ected exponential(RE) at the point
(
− 1

3 ; 1
6

)
.
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Figure 6: The L− moment ratio diagram for the GSLOQB .

Figure 7 shows the L− moment ratio diagram for the GLOQB . The shaded area(Orange) in Figure 7 is
the space covered by the GLOQB . The logistic distribution is obtained when λ3 = λ4 = 0 and has the
point

(
0, 1

6

)
. The symmetry is obtained when λ3 = λ4 (τ3 = 0), positively skewed when λ3 > λ4 (τ3 > 0) and

negatively skewed when λ3 < λ4 (τ3 > 0) . The minimum value for τ4 from the GLOQB is 1
6 which is the

same as τ4 for the logistic distribution.

Figure 7: The L− moment ratio diagram for the GLOQB .

The GLOvsk and GLOQB covers equal amount of area see Figure 8. Note that the GSLOQB covers a small
amount of area shaded by red. Hence the GLOvsk and GLOQB are more �exible as compared to GSLOQB
with regard to distributional shape since large amount of area is covered.
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(a) (b) (c)

Figure 8: Comparing the �exibility of the di�erent generalizations via the L−moment ratio diagrams.

6 Conclusion

The paper discusses three di�erent generalizations of the logistic distribution, each with two shape parame-
ters. The three di�erent types of generalizations are the quantile-based generalized logistic (GLO) distribu-
tion developed by [7], quantile-based GLO distribution possessing skewness-invariant measures of kurtosis,
developed by [11], and the quantile-based skew GLO studied by [2]. The properties of the generalization of
the logistic distribution can be easily obtained from the probability density curves.
The L−moment ratio diagram( a plot for the τ4 against τ3) for each generalization of the logistic is obtained.
Distributions with two or more shape parameters cover a two-dimensional area on the L−moment ratio
diagram. Clearly from Figure 8, the GLOQB and the GLOQB show more �exibility than the GSLOQB with
regard to distributional shape since large area is covered..
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Abstract

There are many di�erent models that can be used to obtain prices for options. In this report, we compare

the option prices obtained using the Bacherlier and Black-Scholes models. Both of these models are based

on Brownian motion. The assumptions that lead to the formulation of both models are also discussed.

We also study �nancial markets, together with the various instruments that are traded in these markets.

Our main focus in this study is on options, particularly European call options. These are the most basic

type of options that are available. An important concept that we also consider while calculating the

option prices, is arbitrage. This concept is discussed in some detail in the report.

The Bacherlier and Black-Scholes models are �tted to a real world data set using two techniques. The

�rst technique involves estimating the model parameters while the second technique involves a process

called calibration which we describe in detail in this report. Calibration is necessary in order for us to

make an objective comparison of the numerical results obtained. Our conclusions are based on the results

obtained.
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1 Introduction

The New York, London, Tokyo and Johannesburg stock exchanges are very well known. Reports of the
trading activities in these �nancial markets frequently make the front pages of newspapers. These reports
are also often featured on television newscasts. In the sections to follow, we study �nancial markets, as well
as some of the instruments that are traded in these markets.

Various �nancial instruments are traded in a �nancial market. Some of these instruments (called derivatives)
derive their value from a more basic underlying asset, often a stock. Large �nancial markets contain numerous
di�erent types of derivatives, such as options. In this study, our primary focus will be on European options,
particularly call options. These are the simplest types of options that are available.

There are many di�erent models that can be used to obtain prices for options. In this report, we compare
two option pricing models based on Brownian motion; the Bacherlier and Black-Scholes models. We also
discuss the assumptions that lead to the formulation of each of these two models.

The Bacherlier model was the �rst attempt to model the workings of a �nancial market mathematically. It,
however, had some problems. These include the model allowing for stock prices to be negative, which is in
contradiction with economic theory. The Black-Scholes model followed the Bacherlier model 73 years later.
The newer model is not a�icted by the same problems as its predecessor.

Although more advanced models are available, the Black-Scholes model remains the industry standard. Com-
paring the Bacherlier and Black-Scholes models is interesting because the models have a similar form but
di�erent motivations.

Both models will be �tted to observed stock price data and the corresponding option prices will be calculated
using the parameter estimates obtained. Observed prices of options and those calculated under each model,
are compared in terms of a distance measure. Furthermore, given the observed option prices, we will choose
the parameters of the models considered in such a way that we minimize a distance measure between these
and the option prices calculated under each model.

The rest of the report is structured as follows: Section 2 discusses the theory that formed a central part of
this study. Section 3 discusses the �tting and the calibration of the models considered, to an observed data
set. A comparison of the results is also given in Section 3. Our conclusions are given in Section 4.

2 Literature review

This section discusses �nancial markets as well as the assets found in these markets. Section 2.1 de�nes
a �nancial market while Section 2.2 introduces European options. Section 2.3 introduces the concept of
arbitrage pricing. We end this section by introducing, in Sections 2.4 and 2.5, the two models considered.

2.1 Financial markets

A �nancial market is a market in which people and institutions trade �nancial instruments. This market is
sub-divided into di�erent markets where all of these trading activities take place; [5]. The various types of
�nancial instruments available in these markets are explained brie�y below.

We �rstly consider a stock. A stock is an equity investment that represents partial ownership in a listed
company and entitles the holder to a part of that company's earnings and assets. Investors, be it individuals
or institutions, can buy stocks of a particular company at the current market price. The price of the stock is
a function of the performance of the issuing company. This price �uctuates over time. As a result, investors
in stocks may realize �nancial gains, but they are also exposed to the risk of �nancial losses.
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The �nancial market considered also include more secure investments for risk-adverse investors. Such in-
vestors can invest in bonds. Generally, the bond issuer is obliged to pay the bond holder regular interest
payments during the term of the contract, as well as a speci�ed amount at the end of the term of the contact
(the date of maturity); [6]. The terms that are speci�ed in the contract of the bond determines how and
when interest is going to be paid. Investing in bonds generally carries no risk; a bond has a payo� that is
known and certain. The only risk that can be incurred is that of the bankruptcy of the issuer. In this report,
we assume that bonds are risk-free assets.

We denote by Bt , the value of a bond at time t. In this case, Bt = B0ert , where B0 denotes the value of a
bond at the beginning of a given period and r denotes the interest rate. We assume that the interest earned
on bonds is constant and exponentially compounded throughout the report.

Di�erent investors have di�erent appetites for risk. Certain investors would prefer investing in assets that are
riskier than stocks and bonds. This brings us to derivative instruments, which are used for many purposes.
There are various types of derivative instruments. These include, amongst others, forwards, futures, swaps
and options; [6]. Investors can use these instruments to reduce their exposure to risk, or to increase their
exposure in the hope of increasing pro�ts. European call options play a central role in this report. This
derivative is discussed in more detail below.

We make some simplifying assumptions in the market considered. We allow the short-selling of assets (neg-
ative quantities of assets can be held). In this market, we assume that money can be borrowed and lent in
arbitrary amounts at the same constant and exponentially compounded interest rate. We also allow fractional
holdings of assets; meaning that numbers of stocks and bonds held are not restricted to whole numbers.

2.2 European options

There are various types of derivative instruments that investors have at their disposal. An option is de�ned as
a contract which gives the holder the right, but not the obligation, to buy or sell an asset at a speci�ed price
within a speci�ed period or at a certain point in time; [6]. This report mainly focuses on options, particularly
European call options. These options are the simplest types of options available in the derivatives market; [4].

A European call option is de�ned as a contract which gives the holder the right, but not the obligation, to
buy an asset at a speci�ed price at a certain point in time. Let St denote the stock price at time t, and let
T denote the date of the expiry of the option contract. Let K denote the price at which the stock can be
bought; K is called the strike price of the option. Suppose that at time T , the stock price, ST , is greater
than the strike price, K . The holder of the call option can then buy the stock at the strike price K and
immediately sell it at the current stock price ST . This holder's pro�t will then be ST − K . If the stock price
is less than the strike price, the holder of the call option will not exercise the option. The payo� function of
a call option is thus given by

Pcall =

{
ST − K if ST > K,

0 if ST ≤ K .

As was mentioned before, options can be used to reduce an investor's exposure to risk. Investors can however,
deliberately expose themselves to risk in the hopes of increasing pro�ts. This is precisely what speculators do.
Suppose that a speculator is of the opinion that the price of a particular stock will increase. The speculator
may then buy a call option. If indeed the stock price ST is greater than the strike price K , the investor will
exercise the option. The realized pro�t will be ST − K in this case. Speculating is, however, more risky than
buying the stock. This is since an investor can lose the full amount that they have invested, if there is a large
decrease in the stock price. On the other hand, if they buy the stock, a large decrease in the stock price will
not reduce their capital to zero. However, since the price of the option is typically much less than that of the
stock, the potential gains associated with buying options are much more than those associated with buying
the stock.
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2.3 Arbitrage pricing

An important concept in arbitrage pricing is that of a portfolio, which is a collection of �nancial assets.
Portfolios are designed according to di�erent investors' risk appetites and their investment objectives. The
values of some derivative instruments can be replicated by constructing a portfolio consisting of stocks and
bonds; [2]. This means that, at any given point in time, a self-�nancing portfolio's return characteristics
exactly matches those of the derivative instrument; [6]. A portfolio is said to be self-�nancing if and only if
the change in its value depends only on the change of the asset prices; [2].

The idea of a portfolio brings us to that of a portfolio strategy. A portfolio strategy details the amount of
each asset held in our portfolio at any given instant; [2]. In a �nancial market consisting of a stock St and
a bond Bt , a portfolio strategy can be represented by πt = (φt, ψt ), where φt and ψt represents the number
of units of stock and bond held at time t. If the market contains additional assets (such as options), the
de�nition of a portfolio can be extended accordingly.

In simple terms, arbitrage is a situation where a portfolio can be constructed at no initial cost, and this port-
folio has a positive probability of yielding a positive payo� and a zero probability of yielding a negative payo�.
Let πt be a portfolio strategy at time t and let Vt be the value of this portfolio at time t; Vt = φtSt + ψtBt .
Then a portfolio strategy πt constitutes an arbitrage opportunity on the time interval [0,T ] if:

a) πt is self-�nancing.
b) The initial value of πt is zero; V π

0 = 0.

c) P
(
V π
T ≥ 0

)
= 1 and P

(
V π
T > 0

)
> 0; [3].

As an example, an arbitrage opportunity occurs when a portfolio that replicates the payo� of a given asset
can be constructed for a price other than that of the asset. Investors will take advantage of this opportunity
to realize a pro�t. They will simultaneously buy and sell this asset and its replicating portfolio, in arbitrary
quantities in order to realize a pro�t from the di�erence in the prices. They will do so by buying the cheaper
of the two and immediately thereafter selling it at the higher price. This will lead to a high demand for the
asset with the lower price. Using the same reasoning, the supply of the asset with the higher price will be
high. The laws of supply and demand will force the di�erence between the asset prices to shrink until the
prices coincide exactly. These sets of trades carry no risk whatsoever. This means that investors can make
arbitrary risk-free pro�ts; [2]. It is thus important that the price of a given option must match that of its
replicating portfolio at any given point in time if such a replicating portfolio exists; [6]. We assume that
there are no arbitrage opportunities in our market. This assumption of no-arbitrage makes sense from an
economic point of view, as argued above.

In order to calculate option prices, we need a suitable model for the price of a stock. Bacherlier proposed
using Brownian motion as a model for the stock price. Black and Scholes, on the other hand, proposed
using a di�erent model. They proposed using a geometric Brownian motion. We assume that, under a given
model, the evolution of the stock price is governed by some unknown probability measure that we denote
by P. This probability measure determines the behaviour of the stock price. P can be estimated from the
observed historical stock prices.

The �rst fundamental theorem of asset pricing states that European call option prices can be calculated as
expected values of the random variable (ST − K )+, taken with respect to Q, where Q is a probability measure
satisfying certain requirements; Q must be an equivalent martingale measure. We �rst de�ne what we mean
by equivalence. If A is an event in the sample space where P and Q are measures, then measures P and Q are
said to be equivalent if and only if P (A) > 0 ⇐⇒ Q (A) > 0; [2]. In other words, if A is possible under P,
then it is possible under Q, and if A is impossible under P, then it is impossible under Q. In order to explain
what is meant by a martingale measure, we de�ne a martingale. A stochastic process {Wt }t≥0 is said to be a
martingale with respect to the measure P if and only if:
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a) EP (|Wt |) < ∞ for all t,
b) EP (Wt |Fs) = Ws for all s ≤ t,

where EP denotes the expected value taken with respect to the probability measure P; [2]. A martingale
measure is a probability measure which makes the expected future value of the discounted stock price, con-
ditional on its present value and past history, equal to its present value; [2]. Under this newly introduced
probability measure Q, which is referred to as the risk-neutral measure, prices are obtained by calculating
expected values of the random variable (ST − K )+ and discounting.

Brownian motions de�ned under the measures P and Q are equivalent if and only if their volatilities are equal;
[2]. Below we consider the changes in probability measure from P to equivalent martingale measures under
both of the models considered.

2.4 The Bacherlier model

Movements in the prices of stocks in �nancial markets are random and happen on a continual basis; [2]. This
implies that we cannot model the price of a given stock in a deterministic way. The �rst attempt to model the
behaviour of �nancial markets was made in Louis Bacherlier's thesis entitled �The Theory of Speculation�,
published in 1900; [1].

Bacherlier did not consider the e�ect of interest in his thesis, because at the time all payments happened on
the same day. We introduce continuously compounded interest into his model. This is done to ensure that
his model is realistic from a modern day �time-value of money� perspective, where the payments involved
happen at two di�erent points in time (a rand today will not have the same value a year from now). Bacherlier
modelled the discounted value of a stock, e−rtSt , using Brownian motion. The model for the price of a stock
under Bacherlier's model is given by the following:

St = ert (S0 + µt + σWt ) ,

where S0 denotes the current price of a given stock, r denotes the risk-free interest rate, µ and σ denote the
drift and volatility of the stock. Wt denotes a standard Brownian motion. Under this model, the returns of
the stock price process follow a Brownian motion.

In order for the discounted stock to form a martingale under the Bacherlier model, the drift parameter µ
must be set equal to zero. By setting the drift parameter to zero, we obtain a new probability measure Q
under which arbitrage-free option prices are obtained. Under this new probability measure Q, the model for
the stock price is given by the following:

St = ert (S0 + σWt ) .

This model for the price of a stock is used to derive a formula for the price of a European call option. The
formula for the price of a European call option under the Bacherlier model is given by the following:

V (S0, K,T ) =
(
S0 − e−rT K

)
Φ (−a) +

σ
√

T
√
2π

e−
1
2
a2

, (1)

where a = e−rTK−S0

σ
√
T

and Φ (x) = P (Z ≤ x) is the standard normal distribution function.

The main criticism against Bacherlier's model is that it allows the stock price to take negative values which
would be inconsistent with economic theory; [2]. This is since Brownian motion Wt , used to model to the
stock price, can assume any real value. Companies listed on a stock exchange cannot have negative stock
prices. If the stock price of a particular company reaches zero, then that company will have to be liquidated.
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A second criticism against the Bacherlier model is that the size of the price movements are not a function of
the current stock price. By this we mean that the stock price is likely to move a �xed amount independent of
the current stock price. As an example, consider a stock with a �xed volatility. Under the Bacherlier model,
the probability that the stock price will increase by at least R10 in one day, is the same whether the current
stock price is R10 or R1000.

Neither of the shortcomings mentioned above are present in the Black-Scholes model.

2.5 The Black-Scholes model

In their 1973 paper; [4], Black and Scholes propose using a geometric Brownian motion as a model for stock
prices. This ensures that the modelled stock prices remain positive. Under this model, the distribution of
stock price di�erences in any �nite interval is log-normal. The log-returns are modelled using a Brownian
motion. The volatility of the log-return on the stock is constant; [4]. This means that the variance of the
log-returns in a given interval is proportional to the square root of the length of the interval.

Using the same notation as before, the formula for a stock price modelled by a geometric Brownian motion
is given by the following:

St = S0exp (σWt + µt) .

In order to ensure that the price process of the stock forms a martingale, the drift parameter µ is set equal to(
r − 1

2σ
2
)
. As was the case under the Bacherlier model, this change in probability measure ensures that we

can calculate option prices that are arbitrage-free. The stock price model under the new probability measure
is given by:

St = S0exp
(
σWt +

(
r −

1

2
σ2

)
t
)
.

This model leads to a formula for the price of a European call option; [5]. Using the same notation as before,
the price V , of a European call option is given by the following:

V (S0, K,T ) = S0Φ
*.
,

log S0

K +
(
r + 1

2σ
2
)

T

σ
√

T
+/
-
− Ke−rTΦ *.

,

log S0

K +
(
r − 1

2σ
2
)

T

σ
√

T
+/
-
, (2)

where Φ (x) = P (Z ≤ x) is the standard normal distribution function; [2].

In the next section, we show the numerical results pertaining to the models discussed above.

3 Practical implementation

In this section, we calculate the prices of European call options under both the Bacherlier and Black-Scholes
models. We �rst calculate the price of a single option under each of the models, using the formulas provided
in the previous sections. Thereafter we estimate these prices using Monte Carlo simulation.

We also �t both the Bacherlier and Black-Scholes option pricing models to a real world data set. The pa-
rameters of the two models are estimated based on the observed stock prices. The estimated parameters are
then used to calculate option prices under the given model. Given the observed and calculated option prices,
we can then calculate distance measures between these two sets of prices and compare the results.

The calibration of the two models to observed option prices, is also considered. The calibration of a given
option pricing model to a set of observed option prices, entails choosing the parameters of the given model in
such a way that the observed and calculated option prices correspond as closely as possible. We will illustrate
this in detail in the calibration sections of both models.
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The price of an option is calculated using two independent methods, in Section 3.1. In Section 3.2, we dis-
cuss the observed �nancial data that we use for the practical application. Section 3.3 discusses the di�erent
measures used to test the �t of the models. The results obtained by model �tting and those obtained by
calibration, are given in Sections 3.4 and 3.5.

Various numerical and visual comparisons of the results will be featured in this section. All of the analysis
and the simulations in this report was done using the statistical programming language R; [7].

3.1 Con�rmatory analysis

In this section, the price of a single European call option under both the Bacherlier and Black-Scholes models,
is calculated. This price is calculated using the formula given under each model and thereafter estimated using
Monte Carlo simulation. Calculating the price using two independent methods, is used as a con�rmatory
analysis; i.e. this procedure is used to con�rm that the algorithms used for the calculation of option prices
contain no coding errors.

3.1.1 Application of the Bacherlier model

In this section, we calculate the price of a speci�c European call option using the formula given in (1) . The
price of this call option is calculated by taking the following values: S0 = 100, T = 126, K = 100, σ = 1,
r = 0.10

252 and µ = 0. Figure 1 gives a possible path of the simulated stock price under this model. The code
used in order to obtain this �gure is given in Appendix A.

Figure 1: Simulated stock price under the Bacherlier model

The formula given in (1) gives us a value of V = 7.3328 for this option. This value is the exact price of this
option. We now estimate this option price using Monte Carlo simulation. The price, V , is estimated by the
following:

V = e−rTEn [(ST − K )+] ,

where En is the empirical estimate of the expected value. A total of a 100000 Monte Carlo replications were
used to estimate the option price. The value of the option was �rst estimated using 1000 simulations, then
2000, thereafter 3000 up until all 100000 simulations were used. The code for the simulation is included in
Appendix B. Figure 2 below shows a graph of the estimated option price as a function of the total number
of simulations used.
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Figure 2: Monte Carlo simulation of a call option under the Bacherlier model

From Figure 2 above, we conclude that the estimated option price converges, as the number of simulations
increase, to the same value given by the formula. We also conclude that the code used to calculate the option
prices is correct.

3.1.2 Application of the Black-Scholes model

In this section, a speci�c European call option's price is calculated. This price is calculated using the Black-
Scholes formula given in (2) and thereafter using Monte Carlo simulation.

We use the same values that we used when we calculated the price of this option under the Bacherlier model.
The only di�erence here is that under the Black-Scholes model, we take σ = 0.01 and u =

(
r − 1

2σ
2
)
. A

simulated stock price path under the Black-Scholes model is given by Figure 3 below.

Figure 3: Simulated stock price under the Black-Scholes model
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The code used for this simulation is given in Appendix C. The exact value of V = 7.2308 for this option,
is calculated using (2); the Black-Scholes option pricing formula. Monte Carlo simulation is then used to
estimate this price. The option price, V , is then estimated by the following:

V = En [(ST − K )+] ,

where En again denotes the empirical estimate of the expected value. This option price is �rst estimated using
1000 Monte Carlo replications, then 2000, thereafter 3000 up until a 100000 replications are used. Appendix
D gives the code for this simulation. A graph of the estimated option price as a function of the number of
simulations used, is given by Figure 4 below.

Figure 4: Monte Carlo simulation of a call option under the Black-Scholes model

From Figure 4 above, we see that the results obtained indicate a similar convergence to that found under
the Bacherlier model. As a result, we are con�dent that the code that we used to calculate the option prices
gives us prices that are accurate.

3.2 Observed �nancial data

For a practical application, we use the log-returns of the S&P 500 index from the 19th of April 2001 to the
18th of April 2002. On the last day of this period, the prices of 75 European call options were recorded on
the S&P 500 index. The strike prices of these options vary from $975 to $1500 whereas the times to maturity
vary from 21 days to 436 days. This data is given in Appendix E. The price path of the S&P 500 index over
this period is given by Figure 5 below.
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Figure 5: S&P 500 index

The code used to obtain the above �gure is given in Appendix F.

3.3 Distance measures

There are various distance measures that can be used to measure the discrepancy between observed option
prices and option prices calculated under some model. For the purposes of this application, we de�ne three
that are commonly used.

In a market containing n options, we denote the observed and the model prices of the ith option, by πOi and
πEi respectively. The model price is obtained under a given model. The average absolute error (AAE) is
de�ned by

AAE =
1

n

n∑
i=1

|πOi − π
E
i |.

The root mean square error (RMSE) is de�ned by

RMSE =

√√
1

n

n∑
i=1

(
πOi − π

E
i

)2
.

The average relative error (ARE) is de�ned by

ARE =
1

n

n∑
i=1

|πOi − π
E
i |

πOi
.

In order to calibrate the models considered to observed option prices, we need to use one of these distance
measures. For this purpose, we use the AAE. This measure is chosen because of its simple interpretation.
The AAE is simply interpreted as the average amount that a given option pricing model misprices the options
considered.

3.4 Results obtained by model �tting

In this section, we �t the Bacherlier and Black-Scholes models to observed stock prices. The results obtained
when estimating the parameters of these two models are presented in this section. We use the estimated
parameters to obtained prices for options. A comparison of the results will also be given in this section.
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3.4.1 Fitting the Bacherlier model

We will now �t the Bacherlier model to the observed data set. When �tting the Bacherlier model to observed
stock prices, we want to estimate the parameters of the model; µ and σ, under the probability measure P.
In order to estimate µ and σ, consider the following, under Bacherlier's model:

St = ert (S0 + µt + σWt ) ,

where Wt is a normal random variable with mean 0 and variance t . The data that we have available give the
stock prices at the end of each day. Let St denote the stock price at the end of day t .

Then

St+1 = er (t+1) (S0 + µ (t + 1) + σWt+1)
= er (t+1) (S0 + µt + σWt + µ + σ (Wt+1 −Wt ))
= er (t+1) (S0 + µt + σWt ) + er (t+1) (µ + σ (Wt+1 −Wt ))
= Ster + er (t+1) (µ + σ (Wt+1 −Wt ))

St+1 = Ster + er (t+1) (µ + σZ ) where Z ∼ N (0, 1) .

As a result
St+1 − Ster = er (t+1) (µ + σZ ) ,

and
St+1 − Ster

er (t+1) = µ + σZ .

As a result, under the Bacherlier model,

e−rt
(
e−r St+1 − St

)
∼ N

(
µ, σ2

)
.

The expression, e−rt
(
e−r St+1 − St

)
, represents the �rst di�erences of the given time series data, discounted

accordingly under the Bacherlier model. These di�erences are the daily returns for the S&P 500 index and
are independent normal random variables under the model used. We now estimate the parameters of the
model based on these values. This entails estimating the mean and variance, which are denoted by:

µ̂ =
1

n

n∑
i=1

Ui and σ̂2 =
1

n − 1

n∑
i=1

(Ui − µ̂)2 ,

where Ui = e−ri
(
e−r Si+1 − Si

)
for i = 1 to n. µ̂ and σ̂2 are unbiased estimators for the theoretical population

mean µ and variance σ2.

Under the martingale measure Q, we only estimate the volatility, σ̂. µ̂ is set equal to zero in order for the
price process to form a martingale under this model. The estimated volatility σ̂ of the daily returns of the
S&P 500 index over the time period considered is σ̂ = 13.1591. The code used in this estimation procedure
is in Appendix G. We use this estimated volatility to calculate option prices, using (1) . A graph showing the
observed option prices and those calculated is given in Figure 6 below. The observed option prices are given
by the circles whereas the prices under the model are given by the stars.
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Figure 6: Observed (circles) and calculated (stars) option prices under the Bacherlier model

The prices obtained by the model correspond quite closely to the market prices. However, the model seems
to overestimate the market prices in the majority of the cases.

3.4.2 Fitting the Black-Scholes model

We now �t the Black-Scholes model to a real world data set, as we did with the Bacherlier model. We use
the same S&P 500 index data discussed in Section 3.2. The parameters of the model; µ and σ, are estimated.
These parameters are those of the distribution of the stock prices observed under the probability measure P.

In order to estimate the parameters µ and σ under the Black-Scholes model, we consider the following:

St = S0exp (σWt + µt) ,

where Wt is a normal random variable with mean 0 and variance t . We are given stock prices at the end of
each day, so St denotes the stock price at the end of the day t .

Then

St+1 = S0exp (σWt+1 + µ (t + 1))
= S0exp (σWt + µt + µ + σ (Wt+1 −Wt ))
= S0exp (σWt + µt) exp (µ + σ (Wt+1 −Wt ))
= Stexp (µ + σ (Wt+1 −Wt ))

St+1 = Stexp (µ + σZ ) where Z ∼ N (0, 1) .

As a result
St+1
St
= exp (µ + σZ ) ,

and

ln
(

St+1
St

)
= µ + σZ .

Therefore

ln
(

St+1
St

)
∼ N

(
µ, σ2

)
,
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since if a random variable z is log-normally distributed, then the random variable ln (z) is normally distributed;
[6]. The log-returns ln (St+1)−ln (St ), of the given stock price data are obtained. These values are independent
normally distributed random variables and they represent the daily returns on the S&P 500 index under this
model. The mean and variance of these daily returns are denoted by:

µ̂ =
1

n

n∑
i=1

Ui and σ̂2 =
1

n − 1

n∑
i=1

(Ui − µ̂)2 ,

where Ui = ln (Si+1) − ln (Si) for i = 1 to n. These estimates are the unbiased estimates for the population
parameters, µ and σ2.

Under the Black-Scholes model, we obtain a new probability measure Q by setting µ =
(
r − 1

2σ
2
)
. µ and

σ are then estimated and the estimates are found to be µ̂ = −0.0004 and σ̂ = 0.0116. These estimates are
used to calculate the prices of options under this model. This is done using (2) . Figure 7 below shows the
observed option prices and prices obtained under this model. The code used to calculate the option prices
under this model, is given in Appendix H.

Figure 7: Observed (circles) and calculated (stars) option prices under the Black-Scholes model

We brie�y comment on the above �gure. The model and the market prices correspond very closely, as was
the case with the Bacherlier model. However, in most of the cases, the model tends to overestimate the
market prices.

3.4.3 Comparison of the results

We compare, in this section, the �t of both models to the observed prices of options. We use the distance
measures de�ned in Section 3 for our comparison. The parameter estimates obtained under each model,
together with the distance measures, are given in Table 1 below. The code used to obtain these estimates is
included in Appendices G and H, right at the end of the programs.
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Bacherlier model Black-Scholes model

µ 0 −0.00044
σ 13.1591 0.0116

AAE 4.4209 5.6359
RMSE 5.1345 6.5970
ARE 0.1467 0.1979

Table 1: Estimation results

Looking at the distance measures obtained, the Bacherlier model performs better than the Black-Scholes
model in estimating the market prices. This means that the calculated option prices correspond more closely
to the market prices, under the Bacherlier model than is the case under the Black-Scholes model.

3.5 Calibration results

In calibrating a given option pricing model to observed option prices in the market, we aim to minimize some
distance measure between the observed prices and the prices calculated using the model. In order to compare
the �t of various models to observed option prices, three distance measures were de�ned above; AAE, RMSE
and ARE. In this section, we consider the process of minimizing one of these three distance measures, namely
the AAE.

Our aim is to minimize the AAE by adjusting the volatility of the stock price under each model. This is
since the drift of the stock price process does not a�ect the option prices calculated. We adjust the volatility
under each model by constructing on the real line, a grid of possible values for σ. That is for k ∈ N, we have
that σ̂k ∈ [i, j] for some i, j ∈ R, where i < j . We then calculate the option prices as well as the corresponding
AAE, for each value of σ. The calibration process used entails choosing the value of σ that minimizes the
AAE.

3.5.1 Calibration of the Bacherlier model

We consider the minimization of the AAE with respect to the volatility σ under this model. Figure 8 shows
a graph of the AAE as a function of the σ values. Appendix I gives the code used to obtain the below �gure.

Figure 8: AAE as a function of σ under the Bacherlier model
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The minimum value of the AAE is 3.7049 and is obtained when σ = 12.44. For this value of σ, the
corresponding values of the RMSE and the ARE are given in Table 2 below.

σ̂initial = 13.1591 σ̂min−AAE = 12.44

AAE 4.4209 3.7049
RMSE 5.1345 5.0818
ARE 0.1467 0.0993

Table 2: Calibration results: Bacherlier model

3.5.2 Calibration of the Black-Scholes model

We now obtain the value of σ that minimizes the AAE under the Black-Scholes model. The AAE, as a
function of the σ values, is given in Figure 9 below. The code used to obtain this graph is provided in
Appendix J.

Figure 9: AAE as a function of σ under the Black-Scholes model

The minimum value of the AAE, obtained when σ = 0.0108, is 4.6947. Table 3 below gives the values of the
RMSE and the ARE for this value of σ.

σ̂initial = 0.0116 σ̂min−AAE = 0.0108

AAE 5.6359 4.6947
RMSE 6.5970 6.5118
ARE 0.1979 0.1199

Table 3: Calibration results: Black-Scholes model

3.5.3 Comparison of the results

We consider, in this section, a comparison of the results of the calibrations of the two models considered.
These results are given in Table 4 below.
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Bacherlier model Black-Scholes model

σ̂initial 13.1591 0.0116
σ̂minimum 12.44 0.0108

AAE 3.7049 4.6947
RMSE 5.0818 6.5118
ARE 0.0993 0.1199

Table 4: Calibration results: comparison

Looking at the results, we see that with both models a smaller volatility value than the one initially estimated,
is required in order for the observed and calculated option prices to correspond much more closely. Again,
considering the calibration results, we see that the Bacherlier model still performs better than the Black-
Scholes model in predicting the market prices. This is an interesting �nding, as one would expect the
Black-Scholes model to perform better.

4 Conclusion

The purpose of this research was to compare two option pricing models; namely the Bacherlier and Black-
Scholes models. The report discussed the assumptions that led to the formulation of these two models. This
was done keeping in mind that the development of the two models happened at di�erent points in time. The
stock price, under both models, is driven by Brownian motion. The Black-Scholes model is considered an
improvement over the Bacherlier model, since the possibility of negative stock prices is removed under the
Black-Scholes model.

In order to get a broader understanding of the comparison, we provided an overview of �nancial markets as
well as the various �nancial instruments that are traded in these markets. Some of the �nancial instruments
that were studied include stocks, bonds and options; speci�cally European call options. These options were
given special attention as they formed the basis of our comparison. Arbitrage-free option pricing was also
discussed in detail in this report.

The highlight of our research was the �tting and the calibration of both option pricing models to a real world
data set. The �tting of the models entailed estimating the model parameters based on the observed stock
prices over a given period of time. Calibration, on the other hand, entailed minimizing a distance measure
(the average absolute error) between the option prices observed and those calculated using a model. It was
rather interesting to see that in both cases of our comparison, the Bacherlier model performed better than
the Black-Scholes model. This is despite the Black-Scholes model being an improvement over the Bacherlier
model and the most used option pricing model in practice.

The two option pricing models considered in this report are both quite simple. The option prices under both
models are determined by a single parameter. Further research might generalize this study by including more
complex models.
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Appendix

A) Simulation of the stock price path under the Bacherlier model:

S0 = 100
T = 126 # denotes the time to maturity. There are 252 business days in a year.
n = 250 # denotes the number of sub-intervals up to the time to maturity.
K = 100
sigma = 1
r = (0.1/252)

dt = (T/n)
t = seq(dt,T,by=dt)
x = c(sigma*sqrt(dt)*rnorm(n))
B = cumsum(x)
St = exp(r*T)*(S0+B)
plot(t,St,type="l")

B) Calculation of the price of a European call option using the Bacherlier option pricing model.
This price is then estimated using Monte Carlo simulation:

S0 = 100
T = 126
n = 100
K = 100
sigma = 1
r = (0.1/252)

dt = (T/n)
t = seq(dt,T,by=dt)
MC = 100000
SP = matrix(0,MC,n)

# Bacherlier option pricing formula

EuropeanOption.dim <- function(S0,T,K,sigma,r) {

a1 = (exp(-r*T)*K-S0)/(sigma*sqrt(T))
a2 = exp((a1^2)*(-1/2))
a3 = 1/sqrt(2*pi)
V = (S0-exp(-r*T)*K)*pnorm(-a1)+(sigma*sqrt(T)*a2*a3)

return(V)
}

V = EuropeanOption.dim(S0,T,K,sigma,r)
V

# Monte Carlo simulation

for (j in 1:MC) {

x = c(sigma*sqrt(dt)*rnorm(n))
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B = cumsum(x)
St = exp(r*T)*(S0+B)
SP[j,] = St

}

V = matrix(0,100,1)

for (j in 1:100) {

ST = SP[,n]
S = ST[1:(j*1000)]
V[j]= exp(-r*T)*mean((S-K)*(S>K))

}

MC =seq(1000, 100000, by=1000)
plot(MC, V, xlab="Number of simulation trials" , type="l")
abline(h = 7.332798, untf = FALSE, lty = 2)

C) Simulation of the stock price path under the Black-Scholes model:

S0 = 100
T = 126
n = 250
K = 100
sigma = 0.01
r = (0.1/252)
mu = (r-sigma*sigma/2)

dt = (T/n)
t = seq(dt,T,by=dt)
x = c(mu*dt+sigma*sqrt(dt)*rnorm(n))
B = cumsum(x)
St = S0*exp(B)
plot(t,St,type="l")

D) Calculation of the price of a European call option using the Black-Scholes option pricing
model. This price is then estimated using Monte Carlo simulation:

S0 = 100
T = 126
n = 100
K = 100
sigma = 0.01
r = (0.1/252)
mu = (r-sigma*sigma/2)

dt = (T/n)
t = seq(dt,T,by=dt)
MC = 100000
SP = matrix(0,MC,n)
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# Black-Scholes option pricing formula

EuropeanOption <- function(S0,T,K,sigma,r) {

b1 = log(S0/K)+(r+0.5*(sigma^2))*T
b2 = log(S0/K)+(r-0.5*(sigma^2))*T
c = exp(-r*T)
V = S0*pnorm(b1/(sigma*sqrt(T)))-K*c*pnorm(b2/(sigma*sqrt(T)))

return(V)
}

V = EuropeanOption(S0,T,K,sigma,r)
V

# Monte Carlo simulation

for (i in 1:MC) {

x = c(mu*dt+sigma*sqrt(dt)*rnorm(n))
B = cumsum(x)
St = S0*exp(B) SP[i,] = St

}

V = matrix(0,100,1)

for (j in 1:100) {

ST = SP[,n]
S = ST[1:(j*1000)]
V[j]= exp(-r*T)*mean((S-K)*(S>K))

}

MC =seq(1000, 100000, by=1000)
plot(MC, V, xlab="Number of simulation trials" , type="l")
abline(h = 7.230768, untf = FALSE, lty = 2)

E) The table below consists of the prices of the 75 European call options on the S&P 500 index:
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Strike price K T = 21 T = 46 T = 111 T = 176 T = 241 T = 306 T = 436

975 161.6 173.3
995 144.8 157 182.1
1025 120.1 133.1 146.5
1050 84.5 100.7 114.8 143 171.4
1075 64.3 82.5 97.6
1090 43.1
1100 35.6 65.5 81.2 96.2 111.3 140.4
1110 39.5
1120 22.9 33.5
1125 20.2 30.7 51 66.9 81.7 97
1130 28
1135 25.6 45.5
1140 13.3 23.2 58.9
1150 19.1 38.1 53.9 68.3 83.3 112.8
1160 15.3
1170 12.1
1175 10.9 27.7 42.5 56.6 99.8
1200 19.6 33 46.1 60.9
1225 13.2 24.9 36.9 49.8
1250 18.3 29.3 41.2 66.9
1275 13.2 22.5
1300 17.2 27.1 49.5
1325 12.8
1350 17.1 35.7
1400 10.1 25.2
1450 17
1500 12.2

F) Code for the path of the S&P 500 index from the 19th of April 2001 to the 18th of April 2002.

Data <- read.table(�le="SP500_logrets_19Apr2001_18Apr2002_yahoo2.csv")
Prices <- as.matrix(Data)
Prices <- Prices[N:1]
plot(Prices, type="l")

G) Observed and estimated prices of options under Bacherlier model:

Data <- read.table(�le="SP500_logrets_19Apr2001_18Apr2002_yahoo2.csv")
Prices <- as.matrix(Data)
Prices <- Prices[N:1]

N = length(Prices)
Louis = matrix(0,N-1,1)
# r = 1.9% per year (interest)
# q = 1.2% per year (divident)
# nett interest rate = r - q
r = (0.007/252)

for (i in 1:N-1) {

t = -(N-i)
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u = exp(-r*t)*(exp(-r)*Prices[i+1]-Prices[i])
Louis[i] = u

}

volatility = sd(Louis, na.rm=FALSE)
volatility

Data <- read.table(�le="Calls.csv", sep=",")
Options <- as.matrix(Data)

S0 = Prices[N]
sigma = volatility

EuropeanOption <- function(S0,T,K,sigma,r) {

a1 = (exp(-r*T)*K-S0)/(sigma*sqrt(T))
a2 = exp((a1^2)*(-1/2))
a3 = 1/sqrt(2*pi)
V = (S0-exp(-r*T)*K)*pnorm(-a1)+(sigma*sqrt(T)*a2*a3)

return(V)
}

V = matrix(0,75,1)
K = Options[,1]
ObsPrice = Options[,2]
T = Options[,3]

for (j in 1:length(ObsPrice)) {

V[j] = EuropeanOption(S0,T[j],K[j],sigma,r)

}

V
# Graphing the observed and estimated prices of options

plot(K,ObsPrice,col = "red")
points(K,V,col = "blue",pch = "*",cex = 1.5)

AAE = mean(abs(ObsPrice-V))
AAE
RMSE = sqrt(mean((ObsPrice-V)^2))
RMSE
ARE = mean(abs(ObsPrice-V)/(ObsPrice))
ARE

H) Observed and estimated prices of options under the Black-Scholes model:

Data <- read.table(�le="SP500_logrets_19Apr2001_18Apr2002_yahoo2.csv")
Prices <- as.matrix(Data)
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Prices <- Prices[N:1]

N = length(Prices)
LogRtns = matrix(0,N-1,1)

for (i in 1:N-1) {

u = log(Prices[i+1]/Prices[i])
LogRtns[i] = u

}

drift = mean(LogRtns)
drift
volatility = sd(LogRtns, na.rm=FALSE)
volatility

Data <- read.table(�le="Calls.csv", sep=",")
Options <- as.matrix(Data)

S0 = Prices[N]
sigma = volatility
# r = 1.9% per year (interest)
# q = 1.2% per year (divident)
# nett interest rate = r - q
r = (0.007/252)

EuropeanOption <- function(S0,T,K,sigma,r) {

b1 = log(S0/K)+(r+0.5*(sigma^2))*T
b2 = log(S0/K)+(r-0.5*(sigma^2))*T
c = exp(-r*T)
V = S0*pnorm(b1/(sigma*sqrt(T)))-K*c*pnorm(b2/(sigma*sqrt(T)))

return(V)
}

V = matrix(0,75,1)
K = Options[,1]
ObsPrice = Options[,2]
T = Options[,3]

for (j in 1:length(ObsPrice)) {

V[j] = EuropeanOption(S0,T[j],K[j],sigma,r)

}

V
# Graphing the observed and estimated prices of options

plot(K,ObsPrice,col = "red")
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points(K,V,col = "green",pch = "*",cex = 1.5)

AAE = mean(abs(ObsPrice-V))
AAE
RMSE = sqrt(mean((ObsPrice-V)^2))
RMSE
ARE = mean(abs(ObsPrice-V)/(ObsPrice))
ARE

I) Minimizing the AAE with respect to sigma under the Bacherlier model:

Data <- read.table(�le="SP500_logrets_19Apr2001_18Apr2002_yahoo2.csv")
Prices <- as.matrix(Data)

N = length(Prices)
Prices <- Prices[N:1]
Louis = matrix(0,N-1,1)
r = (0.007/252)

for (i in 1:N-1) {

t = -(N-i)
u = exp(-r*t)*(exp(-r)*Prices[i+1]-Prices[i])
Louis[i] = u

}

volatility = sd(Louis, na.rm=FALSE)

Data <- read.table(�le="Calls.csv", sep=",")
Options <- as.matrix(Data)

S0 = Prices[N]
sigma = volatility

EuropeanOption <- function(S0,T,K,sigma,r) {

a1 = (exp(-r*T)*K-S0)/(sigma*sqrt(T))
a2 = exp((a1^2)*(-1/2))
a3 = 1/sqrt(2*pi)
V = (S0-exp(-r*T)*K)*pnorm(-a1)+(sigma*sqrt(T)*a2*a3)

return(V)
}

V = matrix(0,75,1)
K = Options[,1]
ObsPrice = Options[,2]
T = Options[,3]

sigma = seq(11,14,by=0.01)
xxx = matrix(0,length(ObsPrice),length(sigma))
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AAE = matrix(0,length(sigma),1)

for (i in 1:length(sigma)) {

for (j in 1:length(ObsPrice)) {
V[j] = EuropeanOption(S0,T[j],K[j],sigma[i],r)
xxx[j,i] = V[j]

}}

for (j in 1:length(sigma)) {

AAE[j] = mean(abs(xxx[,j]-ObsPrice))

}

plot(sigma,AAE,type="l")
min(AAE)
sigma[which.min(AAE)]

J) Minimizing the AAE with respect to sigma under the Black-Scholes model:

Data <- read.table(�le="SP500_logrets_19Apr2001_18Apr2002_yahoo2.csv")
Prices <- as.matrix(Data)

N = length(Prices)
LogRtns = matrix(0,N-1,1)
Prices <- Prices[N:1]

for (i in 1:N-1) {

u = log(Prices[i+1]/Prices[i])
LogRtns[i] = u

}

drift = mean(LogRtns)
volatility = sd(LogRtns, na.rm=FALSE)

Data <- read.table(�le="Calls.csv", sep=",")
Options <- as.matrix(Data)

S0 = Prices[N]
r = (0.007/252)
sigma = volatility

EuropeanOption <- function(S0,T,K,sigma,r) {

b1 = log(S0/K)+(r+0.5*(sigma^2))*T
b2 = log(S0/K)+(r-0.5*(sigma^2))*T
c = exp(-r*T)
V = S0*pnorm(b1/(sigma*sqrt(T)))-K*c*pnorm(b2/(sigma*sqrt(T)))
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return(V)
}

V = matrix(0,75,1)
K = Options[,1]
ObsPrice = Options[,2]
T = Options[,3]

sigma = seq(0.001,0.02,by=0.0001)
xxx = matrix(0,length(ObsPrice),length(sigma))
AAE = matrix(0,length(sigma),1)

for (i in 1:length(sigma)) {

for (j in 1:length(ObsPrice)) {
V[j] = EuropeanOption(S0,T[j],K[j],sigma[i],r)
xxx[j,i] = V[j]

}}

for (j in 1:length(sigma)) {

AAE[j] = mean(abs(xxx[,j]-ObsPrice))

}

plot(sigma,AAE,type="l")
min(AAE)
sigma[which.min(AAE)]
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Abstract

To many people, the sole purpose of studying is to pass without fully understanding the content of the
work. For deep learners however, this is not the case. This paper will explore the role of three approaches
associated with Higher Education students' learning, namely: surface, strategic and deep approaches to
learning in the context of a �rst year extended progamme in foundation level statistics at the University of
Pretoria. An evaluation of the extent to which it succeeds in shaping deep learning is conducted. The ICE
model of assessment used in the programme is untangled in terms of its application in both formative
and summative assessment activities. Results include descriptive statistics to identify relationships in
how students perceive their own level of learning, to how they actually perform on higher level tasks.
McNemar's test of symmetry in SAS (9.4) is used to re�ect on the statistical signi�cance of the results.
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1 Introduction

Educators all around the world are faced with challenges that include teaching students appropriate content
and shaping them into people who can not only regurtitate the work they are taught but also to understand
it. This is often more pertinent in the case of foundation level teaching, where teachers are tasked with
introducing learners to more rigorous and demanding routines that present di�cult concepts with the aim
of understanding it and being able to apply it. Statistics is de�ned by the Oxford dictionary as the practice
or science of collecting and analysing numerical and categorical data in large quantities, especially for the
purpose of inferring proportions in a whole from those in a representative sample. It is clear from the intri-
cacy of the de�nition alone that understanding statistical concepts is an important component that cannot
be neglected.

The study of scienti�c methods such as statistics requires students to grasp and understand the theoret-
ical content well before using it in application. The challenge then arises for educators to strike a balance
on how to achieve this while learners continue to do well in school. Shaping students' approach to learning
to a more critical way of thinking is known as deep learning. On the opposite end of that scale is what
is known as surface learning and is characterised broadly by the tendency to stick closely to the minimum
course requirements only. In between the two is what is known as strategic learning which is characterised
by the motivation to perform well in an examination. Many current university students have been taught
by teachers at school level only to achieve the necessary marks they need to move onto the next year of
schooling. This has built a fear of failure in students and since the method works for them, they see no
need to change it. They have almost been coached to be surface learners and bring that �skill� with them to
university, which results in students not being interested in engaging with real understanding of concepts as
well as they should. This further impacts their capacity to be employable graduates once they do graduate.
In statistics, where understanding concepts builds from the bottom up; a deep approach of learning is vital
for students to truly excel at the subject and become quality graduates that contribute credibly to the �eld.
Simply studying to pass without understanding the connection between concepts and the extention of ideas to
the real world of practising statistics will neither contribute towards becoming an informed user of statistics
nor a successful statistician of profession.

Thorough research has been conducted concerning how then to reverse the type of coaching students tend
to be receiving in school and develop a deep approach to learning necessary for university studies. A deep
approach of learning can be encouraged by giving students the opportunity to discuss and debate their own
understanding of the work they have been presented but also by teachers that design assessment which re-
wards making connections at a higher level [6]. As [8] indicates, teachers in higher education have considerable
responsibility for the organisation of their courses in order to achieve this goal.

The aim of this paper is to evaluate the assessment practice for Mathematical Statistics (WST) 133/143
in the four year extended programme at the Mamelodi Campus of the University of Pretoria for the extend
to which it succeeds in encouraging deep learning. It is envisioned to produce statistical results, using data
collected over the past three years on both a re�ective and an action level to determine whether it achieves
its goal of shaping students to a deep level approach of learning. Results will consist of descriptive statistics
processed in SAS (9.4) and Microsoft EXCEL as well as categorical analysis techniques to help answer this
telling question.

In addition to the background theory following in section 2, the methodology for this research study is
presented in section 3 along with the results, and concluding remarks follow in section 4.
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2 Background Theory

2.1 Literature Review

According to [12], research has shown that there are considerable learning bene�ts when teachers introduce
regular formative assessment into the classroom practice. It is now widely recognized that a key component
in the learning process is assessment and feedback. An ICE Model of assessment introduced by Robin James
Wilson and Sue Fostaty-Young [15] and further developed by more researchers will be used in this study
to represent three hierarchical levels of learning growth [15]. The acronym for the ICE Model breaks down
to I(deas), C(onnections) and E(xtensions) and is a framework that describes the progression of student
learning from novice all the way through to expert. It is a useful tool to ensure that the intended outcomes
are appropriate for the level of learning.

Students need to be actively involved in the learning process as discussed in Troskie-de Bruin and Otto's
[10] research study surrounding the in�uence of assessment practices on students' learning approach. This
notion alongside with Abedin et. al [3] is recognition that students' learning approach is important and the
focus should be on the alignment of teaching, learning and assessment. The paper on using ICE to improve
student learning by Sue Fostaty Young [14] describes the extension element of learning as the �AHA!� phase
where students who reach the extensions phase are able to ask the �so what�? question, using previous
knowledge and its application to internalise learning beyond the original learning context. A surface learner
may attempt answering an extensive level question using a literal and not well thought out route.

Mantz Yorke [13] states that too often students' success is measured by indicators not pertaining to their
conceptual and methodological strengths, like retention and completion rates amongst others. He goes on to
say: "In the context of the �rst year experience, success is probably best viewed in terms of the extent to
which the student (from a school or other background) is able to adjust to the demands posed by study in
higher education" [13].

The ICE model helps curb this issue, providing a skeletal device to work with to quantify the level of
student approach towards learning in a �rst year statistics module. This model is divided into 3 sub-sections:
Ideas, Connections and Extensions, with the latter serving as a true measure of a deep level approach learner
as it encourages them to create new learning from the old. Learning and understanding is tested extensively
using this model of assessment as examination papers are divided into questions that purposely test each
sub-section. Assessment in higher education shapes the experience of students and in�uences their behaviour
more than the teaching itself [5]. The theoretical framework component in section 2.2 of this paper will
elaborate more on taxonomies of assessment in higher education to aid in drawing possible conclusions about
the extent to which the programme under evaluation succeeds in shaping students' approach to learning,
considering both item construction and response level as indicators.

Research compiled by Troskie-de Bruin and Otto [10] is similar to that proposed in this paper. The authors'
research question addresses the extent to which the assessment practices at a higher education institution
in�uenced the quality of student learning. Quality of student learning is being evaluated using the same
measuring instrument used in this research yet competing techniques are being used in terms of analysis. In
reporting their main �ndings, the authors of [10] did a correlation study between examination results and
learning approach and concluded that no signi�cant correlation could be found between learning approach
and academic performance on examination papers. In this paper, the assumption is that deep level learning
approaches are encouraged by the mere implementation of the ICE assessment model. We are interested
in the shift more speci�cally in terms of growing from surface level approach to learning at a deeper level,
making tests of symmetry more appropriate.
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2.2 Theoretical Framework

Learning approaches

Substantial attention has been given to the study of students' learning approaches at all levels and with
varying disciplines. Entwistle describes the deep approach of learning as the intention to infer meaning to
generate industrious learning processes that involve describing ideas, pattern and principle recognition on
the one hand and making use of the proof and scrutinizing the logic of the argument on the other[6]. In
contrast, the surface approach students only intend to just cope with the task without carrying out any deep
processes of the material. The third approach is one associated with students who organise their learning
with the objective of achieving high grades and is known as the strategic approach [6]. The following table
of descriptors details the approaches further:

Surface Strategic Deep

• Memorizing

• Skim Reading

• Piecing bits of information
together

• Selecting/ Picking what is
needed from the material

• The intention is to repro-
duce/regurgitate

• Identify what is needed for
the full mark and focus on
that

• May or may not involve un-
derstanding.

• The intention is to ex-
cel and motivated by good
marks

• Looking at whole texts to
understand the author's in-
tention

• Selecting within the mate-
rial

• The intention is to under-
stand

Table 1: Approaches to learning

Taxonomies of assessment

The idea of an 'ideal' assessment framework has received a signi�cant amount of attention by researchers
in the past. Bloom's taxonomy of educational objectives, which is recognised as the archetypal framework,
is "a framework for classifying statements of what we expect or intend for students to learn as a result of
instruction" [7]. The structure of the taxonomy (focusing on item construction) is divided into six main
categories, namely: Remember, Understand, Apply, Analyse, Evaluate and Create; which depict a step by
step level of growth in the way a student learns. The categories according to [7] explained are:

1) Recall facts and basic concepts.
2) Explain ideas and concepts.
3) Use information in new concepts.
4) Draw connections among ideas.
5) Justify a decision.
6) Produce original work
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The Structural Observation of Learning Outcomes (SOLO) taxonomy developed by Biggs and Collis �pro-
vides a systematic way of describing how a learner's performance grows in complexity when mastering many
tasks� [4]. The structure of this taxonomy focuses on response quality and describes a student's understand-
ing of a subject or topic in �ve levels of increasing complexity:

1) Prestructural; describes a response of a student that has not understood the point and uses a generic
and simple way to answer a question.
2) Unistructural; where basic connecions are made but the signi�cance of the connections have not been fully
grasped by the student.
3) Multistructural; multiple connections are made at this level. Aspects of the task are picked up and used
but the whole signi�cance is also missed.
4) Relational; students are now able to recognise the value of each of the parts in relational to the whole .
5) Extended Abstract Level; the student makes connections within and beyond the subject.

The following table showcases the type of verbs associated with each level of complexity:

Prestructural Unistructural Multistructural Relational Extended Abstract

• Name

• Spot

• De�ne

• Identify

• Perform sim-
ple procedure

• De�ne

• Describe

• List

• Combine

• Compare

• Explain
causes

• Classify

• Analyse

• Apply

• Formulate
questions

• Evaluate

• Theorise

• Generalise

• Predict

• Create

• Hypothesise

• Re�ect on

Table 2: Five Levels of increasing complexity described by SOLO

The quality of extrapolation and capacity of making connections desrcibed by the extended abstract level
of the SOLO taxonomy is exactly what is required of statistics students. They are challenged daily by the
complexity of the work they encounter and need to make connections from a basic level all the way through
to a well developed one. The student that achieves this level of complexity in responding to higher level
questions has understood the subject matter and has been able to make deductions beyond what they have
been taught. This student possess a deep level of learning.

The ICE model, described in more detail in the next section, combines the focus on item construction
and response quality into a compact and more portable assessment framework, developed by Robin James
Wilson and Sue Fostaty-Young [14].
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2.3 The ICE Model

The ICE (Ideas, Connections and Extensions) model of assessment is an intuitive and easy to understand
framework used by lecturers and students alike to track the development of the student from surface learning
to deep learning. It has been viewed as a useful framework in ensuring that the intended outcomes are ap-
propriate for the level of learner [15]. This model has been implemented by the programme under evaluation
for assessment design and classi�cation of outcomes. The weight allocated to the various learning outcomes
plays an important role (as indicated in Table 3). It is important to have a balanced mix of the categories
'ideas', 'connections' and 'extensions'. In attempting to achieve this goal, the ICE model is seen to combine
both the item construction and response quality in one rather portable model, easy to understand for students.

Ideas are the building blocks of learning, the factual recall of information and grasping of basic concepts. It
is only the information that students possess and is made of the facts that are contained in the assigned text.
These make up the basis of new learning and form the �rst step of the model. An example of an idea level
task in statistics is:

�Calculate the mean and the median from the given sample�.

Knowing that the mean constitutes an average and median is the midpoint of a frequency distribution is an
example of a basic concept that transpires from instruction. The question does not test the student's ability
to make connections from previous ideas nor does it encourage new learning, it is merely a calculation.

Connections are the ties we make from our previous knowledge. It can be considered as knowledge built
from ideas that have previously been stored. According to [14], it is recognizing general ideas across
di�erent contexts and being able to demonstrate relationships and connections among concepts. It can also
be viewed as the ability to articulate relationships or articulating new learning to what is already there. An
example of a connection level task is:

�Sketch a histogram in which the mean is greater than the median�

This requires students to build from several ideas that are assigned in the text and make the connections to
answer the question e�ectively.

The third hierarchical level known as extensions occurs when students no longer have to refer to the rules
for operations and make connections to several concepts even beyond the scope of the immediate topic being
presented. It is associated with predicting future outcomes, justifying a position, proposing solutions and
evaluating outcomes. New learning and ways of thinking is the ultimate outcome of this level and this skill
is associated with learners who have a deep approach to learning. An example of an extensions level task is:

�Describe an example in which the median is a better measure than the mean�

The answer to a this question is not one that a student can simply learn from a textbook and will require
them to know properties of both measures and beyond that, encourage creative thinking to provide a
unique example that answers the question.
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3 Application

Measuring the success of the aforementioned assessment practice is a task that involves collecting data
related to students' performances over time, analysing the possible changes in the performance and how the
intervention of the assessment framework lends a hand in explaining possible variation. The data used in
this study was readily available and had been collected over time.

3.1 Description

Data and Instrumentation

Data about students who were registered for and enrolled in �rst year Mathematical Statistics (WST 133/143)
from 2013 up to and including 2015 at the Mamelodi Campus of the University of Pretoria was made available
for analysis. The performance data included grades and percentages of individual students across various
assessment activities during the semester together with how that attributes to the �nal mark received at the
end of the year. Measurements of how students performed over time, as well as the scores of a self-report
questionnaire on Approaches on Study Skills Inventory for Students (ASSIST), developed by Marton and
Saljo [3], is used for analysis purposes in this study.

The purpose of this research is to determine whether there are indications that the assessment model is
shifting students' approach to learning from a surface learning approach to deeper learning approach, based
on the design of activities to speci�cally encourage a deep approach to learning. To quantify the e�ect of
the assessment being investigated, �rst year students for the years 2013, 2014 and 2015 were questioning
regarding their attitude towards learning by completing the ASSIST questionnaire before exposure to the
assessment model and its intention. A self report re�ective score is calculated subsequently referred to as
the �Before ASSIST score�. The students were then introduced to the ICE model of assessment and after
completing several activities throughout the �rst semester, were again asked to complete the ASSIST ques-
tionnaire reported as �After ASSIST score�.

The ASSIST instrument has been used globally by credible institutions to assess students' learning in higher
level education making it a useful tool for the purposes of this research. The three learning approaches of
deep, strategic and surface are identi�ed by the instrument which allows students to rank statements about
their own level of learning using a 5-point scale from 1 ('de�nitely disagree') to 5 ( 'de�nitely agree'). The
scores are then tallied and the approach is identi�ed from that. Validation of the instrument is important
for it to be taken as reliable and to improve the quality of the results it yields, hence extensive research
surrounding the validity of the ASSIST instrument has raised questions speci�cally about whether or not it
is logically and factually sound in concluding the information it does [9]. For the cohort of students that
make up the bulk of the data for this investigation, the validity of the instrument has previously been re-
searched by a former University of Pretoria student, Sharon Kgowedi, through a CFA factor analysis [1]. It
was concluded that �ASSIST as an instrument yielded reliable and valid results for assessing the learning
approaches of Statistics students on this particular programme�.

Assessment Tasks

The ICE classi�cation of tasks is useful for the purpose of gauging student learning approaches. A student
who is capable of successfully completing higher level tasks is more likely to have used the deep learning
approach. The teacher would thus be able to determine the learning approach of a student by looking at
their relative score in each of the three ICE levels. The following table summarises the WST assessment
framework and how the ICE classi�cation is incorporated and merged with the assessment tasks.
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Method I(deas) C(onnections) E(xtensions) Total weight

Semester tests 15 10 5 30
Class tests 5 5 10

Practical exam 5 5 10
Project work 5 15 20

Continuous assessment 20 5 5 30
SEMESTER MARK 50 25 25 100

Table 3: WST 133/143 Assessment Framework with ICE

The table above outlines the 2015 assessment weighting framework for the semester mark, with the only
di�erence in preceeding years being the weight distribution of the Project Work (15 in 2013 and 2014). The
exam mark is composed similarly with 50% (Idea level), 25% (Connection level) and 25% (Extension level).
A �nal module mark is calculated with the semester mark carrying 60% of weight and exam mark carrying
40%. Three items are being analysed:

• Project work for WST 133

• Final module mark of WST 143

• Before ASSIST against After ASSIST

This is done assuming that an assessment practice which encourages a deep approach to learning would impact
positively on the academic performance of students who are naturally inclined to follow this approach, but
could also potentially change the learning approach to deeper levels of learning.

Project work

Project work as a speci�c component of the WST 133/143 assessment framework addresses the much desired
need to encourage the adoption of a deep approach to learning. A deep learning approach is understood as
learning identi�ed by a motivation to seek meaning beyond assigned text, understanding of principles and
assumptions thereof and being able to identify relationships between various ideas as previously mentioned.
Project work demands these performance outcomes of students as it goes beyond just regurgitating the
content in the assigned text. As an activity it invites almost only higher level responses like connections and
extensions, thus making the performances of students in project work an appropriate and reliable measure
to identify their learning approaches on an action level.

Classi�ying Project work

The distinction in the three learning approaches can be identi�ed from the way students performed in project
work. The scales may di�er for various tasks. For the purposes of this research, the classi�cation of each
approach was divided in the following manner for WST 133:

• Deep - 66% and higher

• Strategic - Between 55 % and 65%

• Surface - Below 55%

The mark a student obtained in the project work was then merged with their re�ective 'After ASSIST' classi-
�cation acquired after the ICE framework had been introduced to them and the project had been completed.
This allowed students an opportunity to accurately score themselves after getting to understand what the
model meant and required. The purpose of merging the information was to perform a cross tabulation anal-
ysis as it is a useful analytical tool and is a main-stay of this research study.

The project work activity was completed in groups of 4-5 which brought with it a limitation in terms of
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allocating accurate marks for the work each individual did. Despite the strength of project work as the most
useful activity to measure the shaping of deep learning, given the extent to which it tests at an extension level,
a need to test the impact of the treatment in shaping individual students' approach, is perhaps important.
The �nal module marks obtained in the �nal semester was therefore chosen as another response variable.

Final module mark

The �nal module marks incorporate a balanced mix of assessment levels across all activities and also account
for individual performance of students. This lends a more precise measure of the impact of the assessment
model as an intervention that encourages deep learning for all students. Taken here as an 'activity' on its
own, it is worth mentioning that a student's total mark is comprised of several activities across each level of
the ICE model throughout the semester as seen in table 3.

Classifying Final Module Mark

As depicted in table 3, in theory, a student can obtain a distinction at the end of the semester without having
performed on an extension level. This however would imply that a student received full marks allocated to all
the idea and connection level questions in each activity and none for extension level, which is highly unlikely
in practice. Therefore, using the fact that the �nal mark comprises a balanced mix of levels, the classi�cation
will di�er from a strict extension level task such as project work and is categorised in the following manner:

• Deep - 60% and higher

• Strategic - Between 50% and 59%

• Surface - Below 50%

Final module marks for WST 143 were merged with �After ASSIST� scores to perform a cross-tabulation
analysis that will aid in concluding the impact of the assessment model as an intervention for individual
students.

ASSIST Before and ASSIST After

Approaches to learning re�ect the individual di�erences in strategies used to achieve a particular learning
outcomes and are gauged by the ASSIST instrument on a re�ective level for this cohort of students. The
purpose of capturing students' own perceptions of their learning approaches before and after the intervention
of the ICE model is to explore the way they have been shaped over and above improvements in their grades.
This measure of their re�ective approaches will give a clear and concise overview of the way students have
received the model which plays a key a role in assessing its longevity and impact.

The trimmed 18 item (on a �ve point likert scale) ASSIST questionnaire was completed by students in
the years 2013, 2014 and 2015. The items are speci�cally designed to measure the three learning approaches
with questions arranged randomly from surface to deep level learning characteristics. There are six items of
each approach and the highest of the tallied scores constitutes that student's learning approach.
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3.2 Methodology

McNemar's Test and Bowker's Test of Symmetry

McNemar's standard test typically compares the proportions for two correlated variables that have been
divided into sharply distinguished parts to check if the two classi�cations give similar results where the ob-
served frequencies occuring outside the main diagonal of the matrix reports the non-compliance of the two
measurements. For this study, the test had to be extended to a 3x3 square table based on the three di�erent
learning approaches. A test of agreement called the Bowker's test of symmentry is consequently required. To
analyse the signi�cance of the implementation of this assessment model as a treatment on shaping students'
learning approaches, a SAS frequency procedure with an agree option is used to derive a contingency table
along with statistics that aid with verifying the hypothesis of treatment signi�cance.

The null hypothesis states that the cell proportions are symmentric. That is,

H0 : Oij = Oji

for all pairs of table cells where Oij and Oji are the frequencies of the symmetrical pairs in our 3x3 design.

Bowker's Test of Symmetry

The basic assumptions of Bowker's test are that measurements are on a nominal scale and dependenct.
Cochran's Q (test statistic) is computed for multiway tables and Bowker's test of symmetry is computed as,

QB =
∑∑

(nij − nij)
2/(nij + nij) for i < j.

The hypotheses for the purposes of this research are as follows:

H0 = The number of students who classi�ed themselves re�ectively as deep learners (or surface learners) is
exactly the same for each possible symmetric action level classi�cation ,

Ha = The number of students who classi�ed themselves re�ectively as deep learners (or surface learners) is
di�erent for at least one of the possible symmetric action level classi�cation.

Using the second round of ASSIST classi�cations against the project work students completed during the
semester as well as the �nal module mark, a Bowker's test is used to provide critical statistics that will aid
in exploring the e�ect of the assessment model. The most important statistic associated with the
Bowker-McNemar test is Cohen's kappa coe�cient which measures the inter-rater agreement for nominal
variables.

Kappa Coe�cient

Cohen's kappa coe�cient is a statistic introduced by Jacob Cohen in 1960 which measures inter-rater agree-
ment for categorical variables. It can be used to measure the level of agreement between two independent
ratings, beyond chance. The simple kappa coe�ecient is calculated as,

κ = (P0−Pe)/(1 − Pe),

where P0 =
∑

i pij and Pe =
∑

j pi.pj .
The kappa coe�cient is 1 if there is absolute agreement of the raters. The strength of the agreement is
measured by the magnitude of the statistic. Kappa is greater than zero when the observed agreement is
larger than the chance agreement.
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3.3 Results

Cross-tabulation analysis - Project work

To represent the relationship between how a student performed on action level and their own re�ection of
learning approach, a pivot table was compiled using Microsoft EXCEL. The following results display the
cross-tables for 'After ASSIST' classi�cation, represented as rows, and project work classi�cation represented
as columns for the years 2013, 2014 and 2015 for WST 133 (�rst semester project work).

COUNT Project Work Classi�cation

ASSIST Results Deep Strategic Surface Grand Total
Deep 79 2 10 91

Strategic 78 9 10 97
Surface 32 4 4 40

Grand Total 189 15 24 228

Table 4: Contingency table of 2013

COUNT Project Work Classi�cation

ASSIST Results Deep Strategic Surface Grand Total
Deep 89 20 15 124

Strategic 40 14 11 65
Surface 28 11 8 47

Grand Total 157 45 34 236

Table 5: Contingency table of 2014

COUNT Project Work Classi�cation

ASSIST Results Deep Strategic Surface Grand Total
Deep 64 21 18 103

Strategic 45 23 14 82
Surface 23 9 10 42

Grand Total 132 53 42 227

Table 6: Contingency table of 2015

Tables 4, 5 and 6 show frequencies by cross-classifying the observations from 2013, 2014 and 2015, re-
spectively. Over the course of the three years, the number of students performing on a surface level in the
assessment task has been lower than that of the other two approaches depicted, despite an increasing percent-
age of surface level performances in each subsequent year (10.5% in 2013, 14.4% in 2014 and 18.5% in 2015).
These slight increases, might however be due to the change in the assessment standards of project work since
2013. The ICE model was introduced to students in 2013 but only extensively implemented in 2015; over this
three year period, re�nement of assessment to align with the model is a possible reason why surface learning
shows a slight increase as the years went on. Improvements are expected from 2015 onwards due to the fact
that students and lecturers alike are now familiar with the model and the standards of assessment required.

Similar to research done by [10], this study is interested in the development of deeper thinking learners.
The results in tables 4, 5 and 6 disinctly show a movement of students being shaped into deeper thinking
learners. In 2013, 80% (32) of students who classi�ed themselves as surface learners actually performed on
a deep level in the project work activity, with only 10.98% (10) of those that classi�ed themselves as deep
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learners, actually performing on a surface level. Similar improvements are seen for the years 2014 and 2015,
with 59.57% (28) and 54.76% (23) of learners who classi�ed themselves as surface learners actually perfomed
on a deep level, respectively.

The following bar graphs depict the desired movement from the re�ective �After ASSIST� classi�cation
by students themselves and the performance classi�cation in the formative group work project activity for
all three years.

Figure 1: 2013 ASSIST and Project work classi�cation

Figure 2: 2014 ASSIST and Project work classi�cation
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Figure 3: 2015 ASSIST and Project work classi�cation
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Statistical interpretation - Project work

The data from the students' project work and �After ASSIST� classi�cations were analysed in SAS using the
'Agree' option in the frequency procedure. The SAS (9.4) output in Table 7 documents the results of the
Bowker- McNemar's test for the years 2013, 2014 and 2015.

Bowker-McNemar test 2013 2014 2015

Statistics 86.2952 10.5969 10.4240
DF 3 3 3

Pr > S <.0001 0.0141 0.0153

Table 7: Tests of symmetry - Project work

Considering the p-values associated with all three years, the null hypothesis is rejected. There is su�cient
evidence to suggest that the number of students who classi�ed themselves under the three approaches is
di�erent for at least one of the possible symmetric level approaches. This supports the statistical signi�cance
of the descriptive �ndings in tables 4,5 and 6, indicating a shift to a deeper level of learning or that students
changed their approach to learning. The implementation of the ICE model of assessment seems to be e�ective
in shaping students' approach towards a deeper level of learning.

Table 8 shows the estimate of Cohen's kappa coe�cient across all three years:

Cohen's kappa 2013 2014 2015

KAPPA 0.0421 0.0695 0.0727
ASE 0.0319 0.0471 0.0489

95% Lower Con�dence Interval -0.0205 -0.0228 -0.0231
95% Upper Con�dence Interval 0.1046 0.1619 0.1684

Table 8: Simple kappa coe�cient statistics - Project work

The magnitude of the kappa statistics across all three years indicate that the strength of agreement in
the re�ective and action level ratings are weak whilst the observed disagreement remains larger than the
chance agreement. This result supports the signi�cance of the treatment in its intention to encourage deeper
levels of learning. There is is a de�nite indication that more learners classifying themselves as surface level,
perform on a deep level in project work.
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Cross-tabulation analysis - Final module mark

Unlike project work, the �nal module mark is a performance score that includes a substantial element of
summative assessment activities on an individual level. As such, it could be considered gauging the possible
impact of the intervention for individual students. The results presented in tables 9, 10 and 11 represent the
relationship between individual students performance on an action level and the �After ASSIST� re�ective
classi�cation.

COUNT Final module mark classi�cation

After ASSIST Deep Strategic Surface Grand Total
Deep 43 25 23 91

Strategic 53 26 18 97
Surface 10 10 20 40

Grand Total 106 61 61 228

Table 9: 2013 Final marks contingency table

COUNT Final module mark classi�cation

After ASSIST Deep Strategic Surface Grand Total
Deep 62 24 29 115

Strategic 44 6 13 63
Surface 16 7 19 42

Grand Total 122 37 61 220

Table 10: 2014 Final marks contingency table

COUNT Final module mark classi�cation

After ASSIST Deep Strategic Surface Grand Total
Deep 67 24 12 103

Strategic 65 11 6 82
Surface 28 9 5 42

Grand Total 160 44 23 227

Table 11: 2015 Final marks contingency table

Final module mark results, much like the project work activity, show an increase in the number of deep
level learners across the three years from those that classi�ed themselves as deep using the ASSIST instrument.
The number of students who classi�ed themselves as surface learners and actually performed on a surface
level also increased in the years 2013 (52.5%) and 2014 (45.24%) when the ICE model had not been entirely
implemented in the extended programme module. When the intervention was formally implemented in 2015,
the number of surface level learners decreased by 45% from their re�ective classi�cation in favour of deep
learning. Table 11 also shows the highest increase in the number of deep level learners; the 55% increase from
103 to 160 serves as a strong indication that the assessment model in this module is indeed shaping students'
learning approaches, especially since the 2015 results are the latest that have been collected and analysed.
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Statistical interpretation - Final module marks

Table 12, computed similarly to table 8, detail the kappa statistics for the �nal module marks of WST 143.

Cohen's kappa 2013 2014 2015

KAPPA 0.0674 0.0047 -0.0726
ASE 0.0493 0.0487 0.0445

95% Lower con�dence interval -0.0292 -0.0907 -0.1599
95% Upper con�dence interval 0.1639 0.1001 0.0146

Table 12: Simple kappa coe�cient statistics - Final module marks

The slight agreement given by the kappa statistics in the years 2013 and 2014, similar to the analysis of
project work, support the signi�cance of the ICE model as a treatment in its intention to encourage deep
levels of learning. There is a clear indication that the treatment has achieved its goal in shifting of surface
level learners performing on a deep level. The negative kappa statistic (-0.0726) indicates a less than chance
agreement and is not interpreted di�erently from any other kappa statistics less than 0.20. The magnitude
of the statistic supports the signi�cance of the treatment in shaping students' approach to learning.

Cross-tabulation analysis - ASSIST scores

As a means of a truer re�ection on how students perceive a change in their own approach to learning, a cross-
tabulation of the before and after ASSIST scores was compiled. From a research perspective, the importance
of these results attempts to indicate how students' attitude toward learning on a re�ection basis has shifted,
if at all. The results for the years 2013, 2014 and 2015 are presented in the following tables:

COUNT After ASSIST

Before ASSIST Deep Strategic Surface Grand Total
Deep 25 10 6 41

Strategic 19 40 8 67
Surface 2 2 7 11

Grand Total 46 52 21 119

Table 13: 2013 ASSIST scores contingency table

COUNT After ASSIST

Before ASSIST Deep Strategic Surface Grand Total
Deep 52 14 16 82

Strategic 50 43 15 108
Surface 9 5 12 26

Grand Total 111 62 43 216

Table 14: 2014 ASSIST scores contingency

COUNT After ASSIST

Before ASSIST Deep Strategic Surface Grand Total
Deep 59 13 15 87

Strategic 32 61 13 106
Surface 5 3 9 17

Grand Total 96 77 37 210

Table 15: 2015 ASSIST scores contingency table
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Across the three years, theres is an indication that the ICE model of assessment does indeed succeed in
encouraging a deep approach to learning. The consistent rise in the number of 'deep' approach classi�cations
from before to after ASSIST measurement tables in 13, 14 and 15 con�rm this observation.

A result seen across all three years is the drop in the number of learners who classi�ed themselves as strategic
and spreading themselves between deep and surface learning. This result can be alluded to the fact that at
the beginning of every year, most students are motivated by getting the best marks and do not focus entirely
on understanding. Towards the end of the year students will categorise themselves more realistically after
having exposed to the assessment model. Taking the case of 2015 (Table 15), 9 of the 29 students who initially
felt they were strategic learners classi�ed themselves as deep learners in the 'After ASSIST' questionnaire.
This 9.4% increase strengthens the assumption that the assessment model as an intervention shapes students
and encourages deep learning.

4 Conclusion

The purpose of this paper was to evaluate the assessment practice for Mathematical Statistics (WST) 133/143
in the four year extended programme at the Mamelodi Campus of the University of Pretoria for the extend
to which it succeeds in encouraging a deep learning approach in students. Cross tabulations were compiled
from the results that students obtained in the re�ection level of the ASSIST questionnaire, project work and
�nal module marks to provide a thorough descriptive analysis about the relationship between how students
performed on an action level task (project work and �nal module mark) and their own re�ective learning
approach ('After ASSIST').

The three learning approaches were cross tabulated against one another to analyse marginal homogene-
ity. The ASSIST results of before and after the intevention had been exposed to students serves a strong
indication of the impact of the ICE assessment model on a re�ective level with a reported increase in all
three years investigated in the number of deep level learners. This consistent rise is depicted in tables 13, 14
and 15 (5 in 2013, 29 in 2014 and 9 in 2015).

The project work activity was completed in groups of 4-5 which brought with it limitations in terms of
allocating accurate marks for the work each individual did. Results however supported the strength of the
argument that the implementation of the ICE model shapes students' approach to learning in the extended
programme module where the p-values obtained in table 7 support the statistical signi�cant of the descriptive
�ndings in tables 4, 5 and 6.

It was further found that the �nal module marks as a response for the individual student's movement from
surface to deep learning also depict an improvement across all three years among the students. The kappa
statistics for all three years in question show a slight agreement which invariably support the signi�cance of
the ICE model of assessment as a treatment in its intention to encourage deep levels of learning approach.

Overall, results showed that the implementation of the ICE model was e�ective in shaping students' ap-
proach to learning towards deeper levels of learning in all three facets that were investigated as the statistics
pertaining to agreement and signi�cance align with the descriptive �ndings.
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Appendix

data research; set sasuser.tableone;
proc import OUT = sasuser.Tableone DATAFILE= "C:\Users\Sizwe Mbele\Desktop\STK795 Analy-

sis\SAS\2013Table.xlsx" DBMS = xlsx REPLACE; GETNAMES = YES; DATAROW = 2;
RUN;
*/WST 133 2014 Data; proc import OUT = sasuser.TableTwo DATAFILE= "C:\Users\Sizwe Mbele\Desktop\STK795

Analysis\SAS\2014Table.xlsx" DBMS = xlsx REPLACE; GETNAMES = YES; DATAROW = 2;
RUN;
*2015 data for 133; proc import OUT = sasuser.TableThree DATAFILE= "C:\Users\Sizwe Mbele\Desktop\STK795

Analysis\SAS\2015Table.xlsx" DBMS = xlsx REPLACE; GETNAMES = YES; DATAROW = 2;
RUN; **Final module marks**; **2013**; proc import OUT = sasuser.Tablefour DATAFILE= "C:\Users\Sizwe

Mbele\Desktop\2013FM.xlsx" DBMS = xlsx REPLACE; GETNAMES = YES; DATAROW = 2;
RUN;
**2014**; proc import OUT = sasuser.Table�ve DATAFILE= "C:\Users\Sizwe Mbele\Desktop\2014FM.xlsx"

DBMS = xlsx REPLACE; GETNAMES = YES; DATAROW = 2;
RUN;
**2015**; proc import OUT = sasuser.Tablesix DATAFILE= "C:\Users\Sizwe Mbele\Desktop\2015FM.xlsx"

DBMS = xlsx REPLACE; GETNAMES = YES; DATAROW = 2;
RUN;
proc freq data = research; Title 'Bowkwer - McNemar Test for samples - 2013'; tables after*project_classi�cation_133/agree;

test kappa; run;
*2014 Bowker-McNemar; proc freq data = sasuser.tabletwo; Title 'Bowkwer - McNemar Test for samples

- 2014'; tables after*project_classi�cation/ agree; test kappa; run;
*2015 Bowker-McNemar; proc freq data = sasuser.tablethree; Title 'Bowkwer - McNemar Test for samples

- 2015'; tables after*project_classi�cation/ chisq agree; test kappa; run;
**Statistics for �nal module marks**;
**2013**;
proc freq data = sasuser.tablefour; Title 'Kappa Statistics - Final module marks - 2013'; tables �-

nal_mark_classi�cation*after; test kappa; run;
**2014**; proc freq data = sasuser.table�ve; Title 'Kappa Statistics - Final module marks - 2014'; tables

�nal2014*after; test kappa; run;
**2015**; proc freq data = sasuser.tablesix; Title 'Kappa Statistics - Final module marks - 2015'; tables

�nal2015*after; test kappa; run;
*/2013 Graphs; pattern1 color = pink; axis1 minor = none label = ("After ASSIST Classi�cation"); axis2

minor=none label=("Frequency") order=(0 to 200 by 10) ; PROC gchart DATA = research; VBAR after/
discrete width = 8 inside = freq raxis=axis2 maxis = axis1; RUN;

pattern1 color = lightblue; axis1 minor = none label = ("Project Work Classi�cation"); axis2 minor=none
label=("Frequency") order=(0 to 200 by 10) ; PROC gchart DATA= research; VBAR project_classi�cation_133/discrete
width = 8 inside = freq raxis=axis2 maxis = axis1; RUN;

ods listing gpath="C:\Users\Sizwe Mbele\Desktop\STK795 Analysis";
*/2014 Graphs; pattern1 color = pink; axis1 minor = none label = ("After ASSIST Classi�cation");

PROC gchart DATA = sasuser.tabletwo; VBAR after/discrete width = 8 inside = freq raxis=axis2 maxis =
axis1; RUN;

pattern1 color = lightblue; axis1 minor = none label = ("Project Work Classi�cation"); PROC gchart
DATA = sasuser.tabletwo; VBAR project_classi�cation/discrete width = 8 inside = freq raxis=axis2 maxis
= axis1; RUN;

*2015 Graphs; pattern1 color = pink; axis1 minor = none label = ("After ASSIST Classi�cation");
PROC gchart DATA = sasuser.tablethree; VBAR after/discrete width = 8 inside = freq raxis=axis2

maxis = axis1; RUN;
pattern1 color = lightblue; axis1 minor = none label = ("Project Work Classi�cation");
PROC gchart DATA = sasuser.tablethree; VBAR project_classi�cation/discrete width = 8 inside = freq

raxis=axis2 maxis = axis1; RUN;
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Figure 4: 2013 Agreement plot between project work and 'After ASSIST'

24



Figure 5: 2014 Agreement plot between project work and 'After ASSIST'
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Figure 6: 2015 Agreement plot between project work and 'After ASSIST'
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Abstract

Statistical Process Control (SPC) is concerned with monitoring key quality attributes of a process.

Traditionally an experimental phase i.e. Phase I, is used to estimate the charting parameters for on-line

Phase II monitoring purposes. In practice this in an expensive and sometimes impractical route to follow.

Additionally, for the case of charting a statistic with a skewed distribution, using control limits with three

standard deviations on the upper as well as the lower control will prove ineffective. In this research a

Shewhart-type Q-chart based on the gamma distribution is investigated with the help of a SAS program;

it is a self-starting chart with standardised control limits.
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1 Introduction

Statistical Process Control (SPC) has been in existence since the 1930’s, when W.A. Shewhart and W.E.
Deming were influential in the establishment of control charts [11]. They developed the so-called Shewhart
charts, which chart different statistics from normal distributions on separate charts, e.g. the mean (location),
variance (scale) and the range. These statistics are then compared to an upper control limit (UCL) and
a lower control limit (LCL) to monitor whether a shift in the process has taken place, which needs to be
investigated and when need be corrected. In order to do this, one needs to know the correct parameters
against which to compare these statistics. The traditional approach is a system of two phases, namely Phase
I (also called the retrospective phase) and Phase II (prospective phase). Phase I consists of taking samples
in order to estimate the correct parameters against which the charting statistics can be compared. This only
happens when the correct parameters of the process are unknown, which is most of the time [5]. When this
has been established to a satisfactory manner, the process of quality control can begin.

The process that follows will either produce statistics that are plotted in-between the allocated control
limits and will therefore be in control (IC); or when the statistics are plotted outside the control limits, the
chart will give a signal, which will then have to be investigated. There is a distinction between common and
assignable causes of signals. In the case of a common cause, the process will still be in control, the signal will
just be due to uncontrollable variations in the process. This signal will be called a false alarm. An assignable
cause will be due to an error in the process, which needs to be investigated and corrected. In this case, the
process is declared out-of-control (OOC).

The traditional approach poses several problems. First of all, not all processes follow a normal distri-
bution. Processes following a different distribution will result in distorted charting and false evaluations of
the process. Second, separate charts are needed to monitor the mean and the variance, as the measures are
plotted on different scales. This could pose a challenge to the person monitoring the different charts. Third,
preparing samples for Phase I testing can be very costly or impractical in the industry, especially when typical
recommendations such as 30 samples of size more than 5 need to be taken in order to determine the right
parameters [3]. This creates a problem especially in the case where fewer parts need to be produced i.e. the
process is only short-run. In their literature review, Jensen et al also point out the problems of using a Phase
I to determine the estimators of the parameters, especially concerning the bigger variability in estimated
parameters [5].

The issue concerning non-normal processes has mainly been addressed by constructing non-parametric
charts i.e. charts that can monitor processes from different distributions, e.g. Chakraborti et al [2]. Another
option is to construct a chart for a specific distribution [1].

Gosh et al discovered that a much higher number of measurements were needed in Phase I for the estima-
tion of parameters than the usual 30 [3]. This was the case for charts measuring the location. Quesenberry
emphasized this point, by recommending more than a hundred measurements [10]. Jensen et al came to the
conclusion that against usual practice, the control limits in Phase II should therefore be adjusted when the
process had been documenting an IC mode for too long [5].

Quesenberry devised the Q-chart, which monitors whether a process is stable or not. This means it does
not measure the location or scale against a pre-established parameter, but compares the sample means or
variances in order to establish any significant changes in these statistic. Monitoring can therefore start at
the beginning of the process. These statistics are then transformed in order to chart them on a standardized
normal control chart. This is especially helpful for charting statistics with a skewed distribution, like a range
or the standard deviation. The advantage of transformed statistics, is that both the location and the scale
parameters can be plotted on one chart, which can simplify the monitoring process, as the scale will be the
same. In order to establish whether a process is still in control or has started to venture out of control,
control limits are established around a centre line. Quesenberry suggests limits of ± 3 standard deviations.
If a process requires more or less sensitive detection abilities, then probability limits of LCL = q(1� ↵) and
UCL = q↵ can be utilised. “q↵ is the (1� ↵)th fractile of a standard normal distribution” [9].

These charts belong to the field of self-starting charts. Hawkins suggested a similar approach, where his
self-starting CUSUM charts continuously update the estimates, but charts them as well [4]. Sullivan and
Jones also measure the deviation of former sample averages [12], Li et al use “the likelihood ratio test and
the exponentially weighted moving average procedure” [7] and Jones broadens the control limits to mirror

5



the variability of the parameters [6].
One of the disadvantages of Quesenberry’s Q-chart, is that it is specified for a normal distribution.

Adamski, Human and Bekker succesfully adapted it for the exponential distribution [1]. They use the
starting statistic developed by Quesenberry [9] and adapt it for a process with an underlying exponentional
distribution. The components of the charting statistic follow a chi-squared distribution, the charting statistic
itself follows a new generalized multivariate beta distribution [1].

This report contains the result of simulations of a Q-chart, where the distribution of the separate parts
of the charting statistic follow the gamma distribution. The underlying process however is the univariate
exponential distribution. A SAS program was written in order to simulate the run-length and calculate
various characteristics in order to evaluate the run-length.

2 Background Theory

The Q-chart addresses two features in statistical process control, which can be costly and impractical. It
belongs to the start-up charts, which can immediately start to monitor the relevant process, without im-
plementing a Phase I sampling to determine the parameters to be used. The second feature is that it uses
standardized control limits or charting statistics. This is especially useful when the charting statistic follows
a skewed distribution. The Q-chart does not determine the value of the process parameters, but will merely
state whether the process is still in control compared to the previous measured samples. Therefore we will
have to make the assumption that the first measurement made in the specific process will be in-control.

2.1 The relationship between the exponential, gamma, chi-square and F-distribution

For this investigation, a charting statistic with three different components is used. The underlying process
follows a univariate exponential distribution with the location parameter ✓. Each component represent either
one sample, or a group of samples. The grouped samples can be combined to form one statistic, as the
degrees of freedom (df) for the statistic will depend on the number of samples in the statistic. Each statistic
is drawn from the gamma distribution for the purposes of this assignment.

The following results will be needed for the derivation of the charting statistic.
The gamma distribution usually has two parameters: a location parameter (✓) as well as a shape parameter

(↵). The gamma distribution is used to measure the waiting time for the ↵

th event. The notation of any
statistic with a gamma distribution will be e.g. V ⇠ GAM(✓,↵).

The exponential distribution is a special form of the gamma distribution, in that it is a gamma distribution
with a shape parameter of ↵ = 1. If this were the case for V, the notation would be: V ⇠ GAM(✓, 1) ⇠
EXP (✓).

The chi-square distribution also belongs to this family. If the random variable V has a gamma distribution
with ✓ = 2 and ↵ = �

2 , i.e. V ⇠ GAM(2, ⌫
2 ), this is identical to a chi-square distribution with V ⇠ �

2
�.

For a EXP (✓) process with identically and independently distributed elements Xi = (X1, X2, ..., Xn) ,
Pn

i=1 Xi ⇠ GAM(✓, n) ) X ⇠ GAM( ✓n , n) ) 2nX
✓ ⇠ �

2
2n (1)

This means that if a random variable P is a function of X and takes on the form 2nX
✓ , it will have a chi

square distribution with 2n degrees of freedom, i.e. we can say that:

P =
2nX

✓

⇠ �

2
2n (2)

The chi-square distribution forms a link to the family of the normal distribution. The formula to stan-
dardise any normal distribution is: z = (X�X)

SD , or z = (X�µ)
� with X as the sample estimate for µ (the

population mean) and SD as an estimate for � (the population standard deviation). z

2 = �

2
1, therefore the

chi-square distribution can be used to express the sum of squares of a deviation of the mean. The degrees
of freedom will denote the number of squared deviations added together, i.e. it could represent the number
of samples drawn. The expression for the estimate of an unbiased population variance is s

2 =
P

(y�y)2

N�1 . N
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signifies the sample size. This can be expressed in terms of the chi-square distribution: �

2
N�1 = (N�1)s2

�2 .
The F-distribution is the ratio of two sample variances or estimates of the sample variances, therefore F = s21

s22

but also the ratio of two chi-square statistics, divided by its degrees of freedom: F =
�2
�1/�1

�2
�2/�21

. This means

that �2
N�1

(N�1) =
(N�1)s2

(N�1)�2 = s2

�2 . �2 represents the population variance, and therefore in a ratio of two chi-square
variable from the same population, this will cancel out:

F�1,�2 =
�

2
�1/�1

�

2
�2/�21

=
s

2
1

s

2
2

(3)

.

2.2 Derivation of the two-sample statistic

The workings and the notations in this report will heavily correspond to those of Adamski et al. [1], including
all of the formulae, except for the transformation to the gamma distribution.

In order for charting statistic of the Q-chart to be calculated one will have to draw r samples of size n.
It is assumed that all the “observations of the samples are independent and identically distributed [1].” As
stated above, the underlying process is assumed to be a univariate exponential distribution. The location
parameter ✓ is assumed to be unknown. The first sample is drawn and the mean of this sample is used as an
estimate of ✓. The mean of the second sample is then compared to the mean of the first, in order to detect,
whether there was a change in the process. Both the sample means are then used to calculate an overall
mean. This overall mean will retain information of the both sample one and sample number two. The third
sample mean is then compared to this overall mean, consisting of the sample means of sample one and two.
When there is no change, the sample mean of sample number three is used to calculate a new overall sample
mean. This process will carry on until a shift is detected in the process. From the second sample onwards
an overall mean can be calculated with the following formula :

Xr = 1
r

h

Xr + (r � 1)Xr�1

i

for r = 1, 2, 3, ... (4)

Here Xr denotes the overall mean and consists of the mean of sample r and the overall mean of samples
r = 1, 2, 3, ..., r � 1. Xr�1 is multiplied by the number of sample means included in Xr�1. The sum of
the overall mean Xr�1 and the current sample mean is then divided by the total amount of sample means
considered. When the process is in control Xr will be the MLE of ✓. Essentially, the overall mean is calculated
from two samples; the current sample r and a pooling of all the samples from 1 : r � 1. The hypothesis
is that both Xr and Xr are independent samples drawn from univariate exponential distributions with the
same unknown parameter ✓. In order to test this hypothesis the two-sample statistic is used:

U

⇤
r =

Xr

Xr�1

(5)

It is assumed that the individual samples in Xr�1 are drawn from a univariate exponential distribution with
parameter ✓ and those in Xr from an univariate exponential distribution with parameter ✓1, i.e. both samples
are independently distributed. ✓1 = �✓ and � > 0. � signifies the shift in the process. When ✓ = ✓1, � = 1

that means that no shift has occured. When it is found that the Xr = Xr�1, the conclusion is reached that
both samples are drawn from an univariate exponential distribution with the same unknown parameter ✓.

In order to use U⇤
r , which has a F distribution, we need to find two random variables, which are a function

of Xr and Xr�1 respectively and have a chi-square distribution, in order for U

⇤
r to test whether ✓ = ✓1.

From (2) we can deduce the form of a random variable as a function from the overall sample mean Xr�1

with a chi-square distribution:

Y =
2n(r � 1)Xr�1

✓

:�

2
2n(r�1) (6)
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where nsignifies the number of measurements in each sample and r� 1 represents the number of samples
represented by Xr�1, as

Xr�1 = 1
r�1

Pr�1
i=1 Xi =

1
(r�1)n

Pr�1
i=1

Pn
j=1 Xij for r = 1, 2, 3, ...

Xi represents the sample means of sample i and Xij the j

thmeasurement in sample i.
Equation (6) can also be written in the following ways:

Xr�1 = ✓

Y

2n(r � 1)

Y

2n(r � 1)
=

Xr�1

✓

(7)

Here Y represents the chi-square statistic divided by its degrees of freedom from (3), thus preparing it
for the F-distribution.

For sample r the parameter is set as ✓1 before it has been established whether ✓1 = ✓, as every sample
drawn is assumed to be drawn from an independent distribution. Xr is the mean for only one sample and
therefore a random variable that is a function of Xr will have the following form, where the degrees of freedom
indicate that only one sample was considered:

X =
2nXr

✓1
:�

2
2n (8)

Where
Xr = ✓1

X

2n

and
X

2n
=

Xr

✓1

U

⇤
r can be rewritten as

U

⇤
r = �Z

where

� =
✓1

✓

and

Z =
X
2n
Y

2n(r�1)

=
Xr
✓1

Xr�1

✓

⇠ F2n,2n(r�1)

This means:

U

⇤
r =

✓1

✓

Xr
✓1

Xr�1

✓

=
Xr

Xr�1

⇠ F2n,2n(r�1) (9)

In essence (5) was multiplied by ✓1
✓ /

✓1
✓ = 1.

When no shift has occured U

⇤
r = Z. After a shift, i.e. � 6= 1 and U

⇤
r = �Z.

In order to transform Y and X to the gamma distribution, we consider (1):

Pn
i=1 Xi ⇠ GAM(✓, n) ) X ⇠ GAM( ✓n , n) ) 2nX

✓ ⇠ �

2
2n

The degrees of freedom of the chi-square distribution are not dependent on ✓, however the degrees of freedom
of the gamma distribution are. This poses problems for the simulation of the process, as in order to estimate
the MLE for ✓, we need an estimate for ✓ in the degrees of freedom. We can however transform X in such a
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way that the gamma distribution will have a location parameter of one. i.e. we multiply X and the location
parameter by n

✓ :

X ⇠ GAM(
✓

n

, n) ) nX

✓

⇠ GAM(1, n)

Therefore:
Y = n(r�1)Xr�1

✓ :GAM(1, n(r � 1)) and X = nXr
✓1

:GAM(1, n) (10)

2.3 Derivation of the charting statistic

For good quality control, it is essential to detect a shift in the process as soon as possible. We assume that
a permanent shift will take place at sample k and this shift will be detected when the charting statistic is
bigger than the UCL or smaller than the LCL. After a shift, the process parameter will no longer be ✓ but ✓1.
Therefore all the means from sample 1 to sample k� 1 are originating from samples drawn from a univariate
exponential distribution with parameter ✓ and all the sample means from sample k to sample k+ t� 1 stem
from samples from a univariate exponential distribution with ✓1 as a parameter. We are therefore concerned
with the following statistic: U

⇤
k+t, k = 2, 3, ... and t = 0, 1, 2, ....

U

⇤
k+t =

Xk+t

Xk+t�1

(11)

The overall mean for k + t� 1 in the denominator is divided into two parts: the overall mean of samples
1 : k� 1, i.e. all the samples before the shift occurred and the overall mean from samples k : k+ t� 1, i.e. all
the samples after the shift occurred until one sample before the current sample. From the form of equation
(4), we can derive the following form of equation (11):

U

⇤
k+t =

Xk+t

1
k+t�1

h

(k � 1)X [1:k�1] + tX [k:k+t�1]

i (12)

When we multiply (12) with ✓1
✓✓1

/

✓1
✓✓1

, we will obtain the following form:

U

⇤
k+t =

✓1
✓

Xk+t

✓1

1
k+t�1



(k � 1) ✓1✓1
Xk�1

✓ + t

✓1
✓

X[k:k+t�1]

✓1

� (13)

This will prepare the charting statistic for the gamma distribution form, where we divide each sample

mean by its relevant estimated parameter: Xk�1

✓ ;
X[k:k+t�1]

✓1
and Xk+t

✓1
. By substituting � = ✓1

✓ into (13), we
get:

U

⇤
k+t =

�

Xk+t

✓1

1
k+t�1



(k � 1)Xk�1

✓ + t�

X[k:k+t�1]

✓1

�

We can now substitute the three statistics in the form of (7) into the preceding formula:

U

⇤
k+t = (k + t� 1)

�

n

Wk+t

n

o

h

(k � 1)
n

W[1:k�1]

n(k�1)

o

+ t�

n

W[k:k+t�1]

nt

oi

We now cancel (k�1)
(k�1) , t

t and the n

0
s. This will bring us to the ultimate form of the charting statistic. The

F-distribution needs the degrees of freedom from the chi-square distribution, as it is only defined as the ratio
of two chi-square distributed variables and not of two gamma distributed variables:

U

⇤
k+t = (k + t� 1)

�W k+t

W[1:k�1] + �W[k:k+t�1]
⇠ F2n,(2n(k�1)+2nt) (14)
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The statistic consists of the following random variables:

Wk+t =
nXk+t

✓1
:GAM(1, n)

W[1:k�1] =
n(k � 1)Xk�1

✓

:GAM(1, n(k � 1))

W[k:k+t�1] =
ntX [k:k+t�1]

✓1
:GAM(1, nt)

When t=0, the term W[k:k+t�1] will be undefined and the denominator will only consist of W[1:k�1]

2.4 Control limits

The Q-chart is part of a Shewhart type chart, where the charting statistic is charted between or outside
control limits:

LCL

⇤
k+t < U

⇤
k+t < UCL

⇤
k+t

For the purposes of this report, the control limits will be

UCLk+t =
UCL

⇤
k+t

(k + t� 1)

LCLk+t will have the same distribution.
Using control limits with 3-sigma limits will work for statistics which are normally distributed, or rather

symmetrical around a certain point; however if the distribution of the statistic to be charted is skewed, then
a 3-sigma limit will prove to be impractical for one direction or the other.

For a normal distribution Shewhart chart, one will choose the control limits after the following formula.

UCL = µ+ k�

CL = µ

LCL = µ� k�

According to the empirical rule for data with a bell-shaped distribution, close to 100% of the data will be
within 3 standard deviations of the mean, therefore k = 3. For the standard normal distribution, the mean
will have a value of zero and the standard deviation a value of one. If we substitute this information into the
above formula we will obtain control limits of plus/minus three respectively.

2.5 Classical probability integral transformation

The Q-chart uses the classical probability integral transformation [9] to standardize the charting statistic in
order to compare it to 3-sigma limits above and below the centre line (CL). This transformation has the
advantage that no information about the original charting statistic is lost.

If one takes the CDF of U⇤
k+t it will return a probability between [0,1], i.e. the

F (U⇤
k+t) = Pu(k+t) ⇠ UNIF (0, 1)

where Pu(k+t) signifies the given probability of the CDF of U⇤
k+t.

If we use the inverse function of the standard normal distribution and substitute Pu(k+t) into it, it will
return the corresponding z-value of the standard normal function:

10



F

�1(Pu(k+t)) = ZP [u(k+t)] ⇠ N(0, 1)

If this value is less than -3 or larger than 3, the chart will signal.
In the same way we can transform the control limits:
In this instance the control limits (LCL = lower control limit, UCL = upper control limit) are the Z-value

of the standard normal distribution LCL = �3 and UCL = 3.
We take the CDF of LCL and UCL to obtain a probability between [0,1]. For the the LCL:

F (LCL) = PLCL ⇠ UNIF (0, 1)

We insert the given value into the inverse function F � distribution with the df of the current sample in
order to obtain a value which can be compared to the current charting statistic:

F

�1(PLCL) = XP [LCL] ⇠ F2n,(2n(k�1)+2nt)

The same procedure is followed for the UCL.

2.6 Run-length and other measures

The probability to obtain a signal when the process is still in-control is called the false alarm rate (FAR). It
represents the probability associated with the z-value of the control limits derived from the standard normal
distribution. In this case it would be -3/3. i.e. P (Signal) = P (z  �3) + P (z � 3) = 2 ⇤ (1 � 0.99865) =
0.0027. The reciprocal of this figure will be the in-control average run-length, for a FAR of 0.0027 this will
be around 370. Control limits that are narrower will result in a higher FAR. Conversely, wider limits will
generate a lower FAR. However a chart with narrower limits will also be able to detect a shift in the process
earlier and vice versa. A balance between the cost of the time it takes to investigate a false alarm and the
cost to produce more components, which will have to be discarded will have to be found for each individual
process. Especially for short-run processes or high cost productions, it could be desirable to have a higher
FAR versus higher wastage.

According to Jensen et al [5], if the parameters of a chart are known, the run-length (RL) of a control
chart are the number of observations monitored until a signal occurs. For all independent and identically
distributed (i.i.d.) samples, the run-length, as a random variable, as well as the control limits will be
constants. For a normal Shewhart charts the parameter of the run-length is the probability that a signal
will be observed. In the case of known parameters and i.i.d. statistics, the run-length distribution will be a
geometric distribution, for any underlying distribution. When parameters are estimated, the RL is no longer
geometrically distributed. The probability of a signal therefore does not have a meaningful interpretation.
Therefore measures such as the average run length (ARL) and the standard deviation of the run length
(SDRL), the median of the run length (MDRL) and different percentiles will form a more complete evaluation
of a control chart.

The average run length of a chart is the average number of observations before an observation plots outside
the control limits i.e. a signal is obtained. The in control ARL (IC ARL) is the number of observations before
a false alarm is obtained and the out-of-control ARL will be the number of observations before a signal, when
the process has indeed become OOC.

.

3 Application

3.1 Description of SAS program

The SAS program for this investigation into the run-length distribution of the gamma distribution is contained
in the Appendix. It consists of two do-loops: an outer do-loop for the number simulations and an inner do-loop
for the calculation of the run length of each simulation.

The following scenarios are simulated:

11



• the sample sizes n = 5 and n = 10

• shift ratio � = 0.5, 1, 1.5, 2, 5.

• shift time k = 31 for every scenario.

For each scenario, 20 000 simulations were executed and different calculations were done on the resulting the
data.

For every simulation the maximum considered run length calculation is capped at 2000. The control
limits are set at 3 standard deviations of the standard normal distribution above and below a central line of
0, i.e. a z-value of -3 & 3. The CDF of the control limits returns the uniform distributed value between 0
and1, which represents the probability of a signal above the UCL and below the LCL. These transformation
are done outside the inner do-loop. The last transformation, to compare the charting statistic to the control
limits is done inside the inner do-loop for every iteration.

The first sample for every calculation represents all the samples before the shift W[1:k�1]. The degrees
of freedom for the chi-square distribution of this statistic would be 2n * the number of samples taken. In
this instance it is k � 1 samples, i.e. df = 2n(k � 1). For the gamma distribution the degrees of freedom
are n * number of samples taken, i.e. W[1:k�1] ⇠ GAM(n(k � 1)). The location parameter for the gamma
distribution is set as a default of one in SAS and is therefore omitted in the notation for this section.

The inner do-loop consists of two sections, one for time t = 0 and one for time k + t. At the time of
the shift t = 0, i.e. no sample has been collected after the shift has taken place. The charting statistic will
therefore only consist of the ratio of the current sample, Wk+t ⇠ GAM(n) and W[1:k�1] ⇠ GAM(n(k � 1),
therefore

Uk+t =
�W k+t

W[1:k�1]
⇠ F2n,2n(k�1) (15)

Next the control limits need to be transformed to a F statistic in order to be compared to Uk+t. The
Quantile function is used LCLf = Quantile(0F 0

, LCLc, 2n, 2n(k � 1))/(k � 1) with the current df of Uk+t.
This statistic can then be compared to the suitable control limits in order to check, whether the statistic
plots inside or outside of the control limits. Should it plot outside the control limits, the do-loop will end
and a run length of one will be recorded for this simulation. If the charting statistic plots inside the control
limits, the program will continue to run.

W[k:k+t�1] from the current iteration is updated from Wk+t and W[k:k+t�1] of the previous iteration. The
degrees of freedom are W[k:k+t�1] ⇠ GAM(nt). Even though the statistic only ranges until t�1, the number
of samples found in W[k:k+t�1] = t, as counting starts with t = 0.

In essence, only Wk+t ⇠ GAM(nt) is simulated in each do-loop. W[1:k�1] does not change, as we only
assume one shift at time k = 31 in our simulation and therefore the sample before the shift can be seen as a
constant.

For t > 0 the charting statistic is the following:

Uk+t =
�W k+t

W[1:k�1] + �W[k:k+t�1]
⇠ F2n,(2n(k�1)+2nt)

The control limits are transformed to the following Quantile function e.g. for LCL. The same is valid for
UCL:

LCLf = Quantile(0F 0
, LCLc, 2n, (2n(k � 1)2nt))/(k + t� 1)

The do-loop repeats itself until a charting statistic falls outside the control limits. The do-loop is discon-
tinued and the count is recorded as the run length of the current simulation.

3.2 Simulation results

When the parameters of a chart are estimated, as is the case with the Q-chart, the run length will have a
different distribution for every different type of settings, i.e. the size of the shift and the sample size will play
a role. With known parameters, the run length will have a geometric distribution. This is the reason that
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Figure 1: Run-length histogram for n = 5, � = 0.5

different moments are used to evaluate the run length. The average run length (ARL), the standard deviation
of the run-length (SDRL), the median run-length (MDRL) and different percentiles serve this purpose. Gosh
et al. found that as the simulations tend to infinity that the run length distribution will converge to a
geometric distribution [3]. Table 1 contains the values obtained for all combinations.

Figure 1 is an example of the run-length distribution of for n = 5 and � = 0.5. The run-length distribution
is highly skewed to the right. This attribute will affect some of the evaluation measures.

The ARL of � = 1 represents the in-control ARL as no shift has occurred and both the current mean and
the overall mean of the preceding samples are still equal.

From Table 1 it is clear that the chart performed in a satisfactory manner with an in-control ARL of
around 370 for both n = 5 and n = 10.

� = 0.5 represents a reduction in ✓ of 50% and � = 1.5 an increase of 50% in ✓.
An interesting feature can be seen in Figure 2 where the ARL of both n = 5 and n = 10 is plotted. For

n = 5 it takes longer to detect a decrease in ✓ versus the increase, whereas for n = 10 it is the other way
around.

The MDRL is consistently lower than the ARL; this is an indication of the right skewedness of the run-
length distribution. This means that the density of observed run-lengths is higher at values lower than the
ARL and more dispersed at values higher than the ARL.

For the IC ARL the run-length will approximate a geometric distribution. In this case, the SDRL will be
nearly as large as the ARL [8].

The SDRL also shows signs of a right skewed distribution. It is consistently higher than the ARL. The
ARL ranges between 1,0189 (for n = 10 and � = 5) and 373,87625 (for n = 10 and � = 1) for the data
obtained; however the 95th percentile displays a maximum value of 1094,5 (for n = 5 and � = 1). This value
is nearly three times higher then the ARL. This explains a higher SDRL.

The SDRL for n = 5 is higher than for n = 10. This is due to a higher variability of run lengths for smaller
sample sizes. The bigger the sample size, the more the SDRL will converge to the ARL. This characteristic
can be observed from the IC ARL. Here the sample size is not higher, however the SDRL nearly equals the
ARL, i.e. it displays the characteristic that if the variability of the ARL smaller is, the SDRL will be close
to the value of the ARL.

In general the chart will detect larger shifts faster, i.e. a very low ARL. This can be seen for � = 5,
which represents an increase in theta of 500%, the ARL is around 1. Even the 95th percentile only displays
a run-length of 2 for n = 5 and 1 for n = 10. The SDRL decreases significantly at � = 2 as well, this means
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N K l ARL SDRL MDRL P05 P10 P25 P50 P75 P90 P95

5 31 0,5 252,7057 359,5427408 97 3 6 20 97 351 717 1002

10 31 0,5 71,25525 197,265758 10 1 2 4 10 34 171 408,5

5 31 1 367,042 365,1460763 254 19 39 106 254 512 844 1094,5

10 31 1 373,87625 374,4088665 260 20 39 107 260 515 856,5 1123

5 31 1,5 194,1631 299,7311371 63 2 4 13 63 254 572 811

10 31 1,5 121,3957 247,2846431 18 1 2 5 18 104 396 632,5

5 31 2 47,0885 149,1312381 6 1 1 2 6 19 91 257

10 31 2 7,0756 39,23860303 2 1 1 1 2 5 10 16

5 31 5 1,23745 0,573571222 1 1 1 1 1 1 2 2

10 31 5 1,0189 0,139440891 1 1 1 1 1 1 1 1

Table 1: Evaluation of Data

Figure 2: Average run length
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Figure 3: Average run length and the median run length for n = 5

that fewer runs will signal on a later stage for such a big shift. The percentiles for n = 5 for � = 0.5 display
a big range in the percentiles for the 5th percentile = 3 and the 95th percentile = 1002. One reason for this
big range could be that with smaller sample sizes, one will have a higher variation in the data. The range of
n = 10 is lower than n = 5 for all shifts. According to Luceño and Puig-Pey, a large IC ARL in connection
with relatively small values in the lower quantiles is an indication of large amount of false alarms in the early
stage of charting [8]. For � = 1, that means that 5% of the false alarms will occur at a run length of 19 (for
n = 5) or 20 (for n = 10).

4 Conclusion

Even though the parameters are not estimated in the Q-chart, the ARL, SDRL and MDRL show indications
that the run-length distribution could be approximated by the geometric distribution, i.e. a highly right-
skewed distribution. The IC ARL is on par with industrial standards (approximately 370) and the OOC
ARL is more effective for n = 10, as it detects the changes faster with a bigger sample size.

The Q-chart displays characteristics that are well suited for its design, i.e. for short-run processes and
situations, where a variety of components need to be processed. However higher sample sizes will still render
better results than smaller sample sizes, as a result of the high variation smaller samples might return. One
also needs to be careful to make sure that the production line works well from the beginning, as a process
that is out of control from the onset, will not be detected immediately. Some knowledge of the nature of the
process, i.e. is the process stable from the onset, or does the process need a “warm-up” period [9] is essential,
in order to make efficient use of the chart. This is however a practical and workable chart for small-scale
producers.
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Figure 4: Standard deviation of the run length
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Appendix

proc iml ;

Pr int ’SAS program f o r the eva lua t i on o f the run�l ength d i s t r i b u t i o n o f
the Shewhart�type Q�chart f o r the gamma d i s t r i b u t i o n ’ ;

∗Var iab l e s ;
∗Number o f measurements in each sample ;
n=5;
∗Time at which the s h i f t takes p lace ;
k=31;
∗Sh i f t r a t i o ;
lambda=1.0;

∗Number o f s imu la t i on s ;
sim=20000;
∗Matrix to s t o r e the runlength o f each s imu la t i on ;
run l=j ( sim , 1 , . ) ;
∗Maximum runlength to be i n v e s t i g a t e d determined ;
maxrunl=2000;

∗Creat ing LCL and UCL;
∗Distance o f the c on t r o l l im i t s from the cente r l i n e ;
LCL=j (1 ,1 , �3) ;
UCL=j ( 1 , 1 , 3 ) ;
∗C l a s s i c a l p r obab i l i t y i n t e g r a l t rans fo rmat ion ;
LCLc=j ( 1 , 1 , . ) ;
UCLc=j ( 1 , 1 , . ) ;
LCLc=CDF( ’Normal ’ ,LCL, 0 , 1 ) ;
UCLc=CDF( ’Normal ’ ,UCL, 0 , 1 ) ;
∗Matr ices f o r f i n a l t rans fo rmat ion o f the c on t r o l l im i t s ;
LCLf=j ( 1 , 1 , . ) ;
UCLf=j ( 1 , 1 , . ) ;

∗ s s = s imu la t i on loop va r i ab l e ;
do s s=1 to sim ;

∗Obtain f i r s t sample r ep r e s en t i n g a l l samples be f o r e the s h i f t ;
W_1_to_k_minus_1=j ( 1 , 1 , . ) ;
∗Degrees o f freedom f o r a ch i square va r i ab l e ;
df1=2∗n∗ (k�1);
∗Transformation o f df to the gamma d i s t r i b u t i o n ;
c a l l randgen (W_1_to_k_minus_1 , ’gamma ’ , 0 . 5∗df1 ) ;

i n d i c a t o r =0;
count=0;

∗At s h i f t at time k t=0;
t =0;

∗Represents the (k : t�2) samples ;
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∗For t=0, t h i s w i l l a l s o be 0 ;
W_k_to_k_plus_t_minus_1_a=0;

∗ i = sampling loop va r i ab l e ;
∗ Chart s i gna l s , when i nd i c a t o r =1;
do i = 0 to 1000000 un t i l ( i n d i c a t o r = 1 ) ;

count=count+1;

i f i = 0 then do ;
∗Obtain sample o f the s h i f t , f o r t =0;
df3=2∗n ;
W_k_plus_t=j ( 1 , 1 , . ) ;
c a l l randgen (W_k_plus_t , ’gamma ’ , 0 . 5∗df3 ) ;

∗Calcu la te char t ing s t a t i s t i c at k i . e . at t=0;
U_k_plus_t= ( lambda∗ W_k_plus_t )/ ( W_1_to_k_minus_1 ) ;

∗Transformation tak ing the df i n to account ;
LCLf=Quanti le ( ’F ’ ,LCLc , df3 , df1 )/ (k�1);
∗Chisquare df ’ s f o r the F d i s t r i b u t i o n ;
UCLf=Quanti le ( ’F ’ ,UCLc, df3 , df1 )/ (k�1);

∗Check f o r s i g n a l i . e . does the chart p l o t above UCL or below LCL;
i f U_k_plus_t>UCLf | U_k_plus_t<LCLf then i nd i c a t o r =1;

end ;
e l s e do ;

t=t +1;

∗Sample s e t between the s h i f t and cur rent sample (k+t �1);
∗Previous sample ( t �1);
W_k_to_k_plus_t_minus_1_b=W_k_plus_t ;
∗Sum of (k+t�2) and ( t�1) to generate the (k+t�1) sample ;
W_k_to_k_plus_t_minus_1
= W_k_to_k_plus_t_minus_1_a + W_k_to_k_plus_t_minus_1_b ;

∗Set as ( t�2) sample f o r next run o f loop ;
W_k_to_k_plus_t_minus_1_a = W_k_to_k_plus_t_minus_1 ;
∗Degrees o f freedom f o r the sum of ( k+t�1) samples ;
df2=2∗n∗ t ;

∗Obtain the (k+t ) sample ;
df3=2∗n ;
W_k_plus_t=j ( 1 , 1 , . ) ;
c a l l randgen (W_k_plus_t , ’gamma ’ , 0 . 5∗df3 ) ;

∗Calcu la te char t ing s t a t i s t i c f o r a l l samples when t>0 ;
U_k_plus_t =(( lambda∗ W_k_plus_t )/
( W_1_to_k_minus_1 + lambda∗W_k_to_k_plus_t_minus_1 ) ) ;

∗Fina l t rans fo rmat ion o f c on t r o l l im i t s ;
LCLf=Quanti le ( ’F ’ ,LCLc , df3 , ( df1+df2 ) )/ ( k+t �1);
UCLf=Quanti le ( ’F ’ ,UCLc, df3 , ( df1+df2 ) )/ ( k+t �1);
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∗Check f o r s i g n a l ;
i f U_k_plus_t>UCLf | U_k_plus_t< LCLf then i nd i c a t o r =1;

end ;
end ;
∗Count r ep r e s en t s the run�l ength ;
run l [ ss ,1 ]= count ;
∗Matrix to c a l c u l a t e the pmf f o r each sample a f t e r k ;
r=j ( count , 1 , 1 ) ;
∗Standard ize the vec to r in order to concatenate l a t e r ;
kt=shape ( r , maxrunl , 1 , 0 ) ;
∗Concatenation o f kt v e c to r s ;
ksum=ksum | | kt ;

end ;
∗At time t obta in the sum f o r in c on t r o l i n d i c a t o r s ;
kcount=ksum [ ,+ ] ;
∗Vector o f sample number index ;
knr=1:maxrunl ;
tknr=knr ‘ ;
∗Probab i l i t y o f no s i g n a l at time k+i ;
prob1=kcount/sim ;

∗Create l a b e l s f o r output ;
np1=repeat (n , 2 0 0 0 , 1 ) ;
kp1=repeat (k , 2 0 0 0 , 1 ) ;
lambdap1=repeat ( lambda , 2 0 0 0 , 1 ) ;

∗Calcu la te pmf at k=1;
pmf1=j (1 ,1 ,1)� prob1 [ 1 , 1 ] ;
∗Calcu la te pmf f o r 1<k<=maxrunl ;
pmf2=prob1 [ 1 : maxrunl�1,1]�prob1 [ 2 : maxrunl , 1 ] ;
pmf=pmf1//pmf2 ;
∗Calcu la te CDF f o r k+i ;
CDF=cusum(pmf ) ;
∗Average run�l ength ;
aver=j (1 , 1 , run l [ : , ] ) ;
∗Standard dev i a t i on run�l ength ;
s d r l=j (1 , 1 , s td ( run l ) ) ;
∗Median run�l ength ;
mdrl=j (1 , 1 , median ( run l ) ) ;
∗Def ine which p e r c e n t i l e s needed ;
p={0.05 , 0 . 10 , 0 . 25 , 0 . 5 , 0 . 75 , 0 . 90 , 0 . 9 5 } ;
∗Calcu la te p e r c e n t i l e s ;
c a l l qnt l (q , runl , p ) ;
quant=q ‘ ;

∗Create output matr i ce s ;
output1=np1 | | kp1 | | lambdap1 | | tknr | | kcount | | prob1 | | pmf | | cd f ;
output2=n | | k | | lambda | | aver | | s d r l | | mdrl ;
output3=n | | k | | lambda | | quant ;

c r e a t e STK from output1 [ colname={n k lambda kt tcount prob pmf cd f } ] ; ;
append from output1 ;
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c r e a t e ARL from output2 [ colname={n k lambda ARL sd r l mdrl } ] ;
append from output2 ;

c r e a t e p e r c e n t i l e s from output3 [ colname={n k lambda P05 P10 P25 P50 P75 P90 P95 } ] ;
append from output3 ;

qu i t ;

proc export data = STK
o u t f i l e = "C:\ Users \Carola \Documents\STK\stkn5k31L1_0 . csv "

dbms=dlm rep l a c e ;
d e l im i t e r=’ , ’ ;

proc export data = ARL
o u t f i l e = "C:\ Users \Carola \Documents\STK\arln5k31L1_0 . csv "

dbms=dlm rep l a c e ;
d e l im i t e r=’ , ’ ;

proc export data = p e r c e n t i l e s
o u t f i l e = "C:\ Users \Carola \Documents\STK\pern5k31L1_0 . csv "
dbms=dlm rep l a c e ;
d e l im i t e r=’ , ’ ;

run ;
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Figure 1: Caption

Column 1 Column 2

Row 1
Row 2

Table 1: Example

1 Introduction

The introduction should provide a detailed description of the topic and the aim of the research report. In
addition the literature review should intertwine with this. It is important to always reference where needed.
All work from somewhere else requires a reference [1]. Inline equation x. Display equation:

x = y (1)

x = y (2)

x = y + 1

.
Numbered equation:

x = y + 1 (3)

Equation array:

x = y + 2 + 3

= y + 5.

2 Background Theory

The theory of the topic should be thoroughly discussed in this chapter. The student must should their
pro�ciency on the topic as well as additional insight. This chapter may be separated into a few chapters as
necessary.

3 Application

The application should be presented in this chapter. Code should be included in an appendix as well as
additional output if needed.

4 Conclusion

The conclusion should summarise what was done in the research report. It should also provide shortfalls of
the research and recommendations on what could be investigated in future. This section should be an honest
summary of the research.
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Abstract

The estimation of covariance matrices plays a vital role in industries such as the �nancial economics in-

dustry and more particularly in portfolio selection, risk management and asset pricing. The conventional

estimator, namely the sample covariance matrix, becomes problematic in the large dimensional case. Nu-

merous methodologies including shrinkage methods, factor model methods and Bayesian approaches were

developed to overcome the problems that arise in this case. An overview of these estimation methodolo-

gies for large dimensional covariance matrices with a focus on the application in portfolio selection will

be presented in this report.
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1 Introduction

The use of large dimensional covariance matrix estimation in portfolio selection is essential since, generally,
in �nancial markets the more recent data is desirable for inference on future data. This means a limited
number of observation points are used for a large number of stocks. The focus of the application of large
dimensional covariance matrix estimation is on portfolio selection under the Markowitz model. Under this
model it is vital to have a covariance matrix of stock returns that is invertible. This invertible covariance
matrix is needed to calculate the portfolio weights.

There are a number of ways to estimate covariance matrices. Use of the conventional estimator, namely the
sample covariance matrix, becomes problematic in the large dimensional case. When the number of variables,
p, is less than the number of observations, n, an invertible and unbiased sample covariance matrix can be
found. However when n < p the sample covariance matrix has unfavourable properties. It contains large
amounts of estimation error and the inverse does not exist. Improvements on the sample covariance matrix
as estimator for the population covariance matrix had to be made because of the unfavourable properties it
poses for the case where n < p.

In earlier theory on the estimation of covariance matrices, the large dimensional case was not considered.
Numerous methods broke down when the number of observations, n, were equal to or less than the number
of variables, p. For example, methods that used either the Wishart or the inverted Wishart distribution for
estimation of the covariance matrix failed since the restriction that the degrees of freedom should be strictly
greater than the number of variables, p, is violated. This is because the degrees of freedom is n − 1 (when
using sample data) and since n < p, the violation occurs. Thus considering these methods that break down
in the large dimensional case, new theory on estimation of covariance matrices developed.

The aim of this report is to give an overview of some of these improvements to the sample covariance
matrix as an estimator for the population covariance matrix. Shrinkage estimation represents one of these
improvements. Numerous adjustments under shrinkage estimation are found in theory. However, methods
under shrinkage estimation that used a loss function that involved an inverted covariance matrix would always
fail. Ledoit and Wolf [5] improved on the shrinkage estimation by using a loss function that did not include
an inverted covariance matrix. They then developed an optimal solution for the shrinkage estimator of the
population covariance matrix.

In this report, under shrinkage estimation focus will be on the method developed by Ledoit and Wolf .
Other methods of estimation such as the Moore-Penrose inverse method and the principal component analysis
method will also be discussed. Under each of these methods, a detailed explanation on how to construct
the covariance matrix is given. An application in portfolio selection is illustrated. With each method, the
calculation of the covariance of stock returns from a dataset compiled of stocks listed on the JSE's1 Top 40
All Share Index is done. After testing if an inverse of the covariance matrix calculated exists, the portfolio
weights are calculated and then compared.

In Section 2 the terminology used in industry is explained followed by background theory on the sample
covariance matrix and why it breaks down as an estimator. An overview of the di�erent alternative methods
of estimation is discussed next. In Section 3 an application illustrates three of these methods of estimation.
The report �nishes o� with the conclusion in Section 4.

1Johannesburg Stock Exchange
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2 Background Theory

2.1 Portfolio Selection and Mean-Variance Theory under the Markowitz Model

Portfolio selection is the process of selecting a combination of stocks to include in a portfolio while simul-
taneously considering the risk, returns and other features that can a�ect individual stocks and the portfolio
as a unit. Risk can be a�ected by interest rates, equity prices (value of stock or portfolio), foreign exchange
rates and price �uctuation of commodities. Return of a stock (per monetary unit invested) for time period
t2 is measured as:

TRt =
(Pt − Pt−1) +D

Pt−1
(1)

where t is the time period of interest, Pt is the closing price of the stock for the time period t, Pt−1 is the
closing price of the stock for time period t− 1 and D is the dividends for the time period.

The return is the pro�t made through either the trading of stock or through the dividends received. It is
variable in nature and subject to risk. These stock returns can be measured against the stock market return
or speci�c market indices. These indices demonstrate how the market is faring generally. These market
indices have several ways in which the stocks that fall under them are weighted. An equal-weighted index
equally weights each constituent. Therefore, each stock equally contributes to the return as well as the risk of
that index. A value-weighted index weights the stocks per share price of the stocks. A capitalization-weighted
index is weighted by market capitalization3. The last two types of indices mentioned have the disadvantage
of being heavily in�uenced, in risk and in return, by the large companies. The risk in such indices is not a
true re�ection of how large on average each constituent's risk is but rather how large on average the larger
companies' risk is.

The aim of the mean-variance portfolio theory under the Markowitz model is to minimize the variance
within a portfolio (risk associated with that portfolio) subject to certain constraints namely,

p∑
i=1

wi = 1 (2)

p∑
i=1

wiµi = r̄ (3)

where wi is the weight associated with stock i, µi is the average stock return of stock i and r̄ is the average
return of the portfolio. In constraint (2) the weights per stock in the portfolio should sum up to 1 (it is
possible to get negative weights). Negative weights suggest short-selling the asset. Short-selling is the selling
of a stock that is not owned by the seller. The seller borrows the stock and then sells the borrowed stock for
which the seller gets credited. The seller, however, has to eventually pay for the borrowed stocks. The seller
can make a pro�t from short-selling if the price at which the shares were sold is higher than the price the
seller is expected to pay for them. In constraint (3) the weighted average of the portfolio should be equal
to the speci�ed average return wanted, r̄. This, collectively, can be referred to as the Markowitz problem.
The solution to this problem �nds the portfolio weights that minimize portfolio variance for a given value of
average return. In order to �nd this solution, an invertible covariance matrix is required.

2t could represent a day, week, month, year etc.
3Weight of company using capitalization-weighted index= Capital Of Stock

Total Market Capital
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2.2 Sample Covariance Matrix

The sample covariance matrix, S, is the conventional estimator of the population covariance matrix, Σ. It
can be calculated as follows:

S =
1

n− 1
Y′(I− 1

n
J)Y (4)

where Y is the data matrix (n × p matrix), n is the number of observations, p is the number of variables, I
is n × n identity matrix and J is an n × n matrix of 1′s.

An advantage of the sample covariance matrix is that it can easily be constructed using the data matrix
Y , as seen in equation (4). Other advantages include that it is an unbiased estimator of the population
covariance matrix, i.e. E(S) = Σ, and the inverse exists when n > p.

Under the assumption of normality, the sample covariance matrix, S, is the maximum likelihood estimator
of the true covariance matrix, Σ. The maximum likelihood estimator is based solely on the data and does
not perform well when the data is small, i.e n ≤ p. Generally, problems with the sample covariance matrix,
S, being an estimator arises when n ≤ p. The rank of S is n − 1 since it is at most the rank of matrix
(I − 1

nJ). However, in the case where n ≤ p, the inverse of S does not exist even if the true population
covariance matrix, Σ, has an inverse.

In this report, the case when n < p will be considered. In portfolio selection this is when the number of
stocks, p, is greater than the number of observations or historic data available, n. With n < p, the estimation

of the covariance matrix becomes a problem because a p × p covariance matrix with p + p2−p
2 parameters,

assuming the covariance matrix is symmetric, needs to be estimated. Since n < p < p + p2−p
2 , there are

not enough observations to estimate these parameters. To be able to estimate Σ, some structure on the
estimator needs to be imposed. The type of structure is dependent on the problem at hand. With respect to
portfolio selection and stock returns, a lower-dimensional factor model is often used to impose structure on
an estimator.

2.3 Overview of Estimation Methods

A number of methods exist for the estimation of large dimensional covariance matrices. Stein [10] noted that
the sample covariance matrix does not perform well as an estimator of the population covariance matrix, Σ
when the ratio p

n is large. Therefore, improvements on the sample covariance matrix, S, as an estimator ofΣ,
had to be made. Shrinkage estimation of covariance matrices is one such method. For n < p, when elements
of S are calculated, the estimates may be in�ated and, therefore, contain estimation error. This is due to the
number of observation points available. Shrinkage estimation of Σ, considers a weighted linear combination
of S with some structured matrix, say B. A structured matrix has fewer parameters to estimate compared
to the parameters required for estimation of S. The contribution of the unstructured S as an estimator of Σ
is reduced by some percentage, say δ. Thus reducing the in�uence of estimation error. Consequently, δ% of
the structured matrix will contribute to the estimator of Σ. Therefore, the resulting estimator of Σ, under
shrinkage estimation, is Σ̂ = (1− δ)S + δB. The amount by which we shrink this sample covariance matrix
is determined by minimizing certain risk functions. Risk functions are de�ned by taking the expected value
of the particular loss functions. Commonly used loss functions include Stein's loss function

L1(Σ̂,Σ) = tr(Σ̂Σ−1)− log
∣∣∣Σ̂Σ−1

∣∣∣− p (5)

and the quadratic loss function

L2(Σ̂,Σ) = tr(Σ̂Σ−1 − I) (6)

where I : p× p the identity matrix and tr represents the trace of the matrix. It can be seen that estimating
the covariance matrix using such loss functions will fail when n ≤ p, simply because their loss functions
require calculation of the inverse of the covariance matrix.

Ledoit and Wolf [4] used an alternative loss function that does not include an inverse of the covariance
matrix. This is explained in more detail in Section 2.3.1. In Section 2.3.2, the inverse of the covariance matrix
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is estimated using the Moore-Penrose inverse of the sample covariance matrix, S. Lastly, in Section 2.3.3,
the method of principal components is discussed. This is a method widely used in the �nancial economics
industry.

Another method that could be used for large dimensional covariance matrix estimation is the Bayesian
approach, which also has a relation to shrinkage estimation. There is extensive theory available for the
estimation of large dimensional covariance using the Bayesian approach [2, 9]. For example, Bai and Shi [2]
give a review of some methods of estimation that have been developed to work for the large dimensional
case, in addition to the Bayesian approach. This approach will not form part of the methods discussed in
this report but it important to mention.

2.3.1 Shrinkage Estimation with Ledoit and Wolf's Shrinkage Constant

In portfolio selection, an invertible covariance matrix needs to be estimated in order to calculate e�cient
portfolio weights under the Markowitz mean-variance portfolio theory. Ledoit and Wolf get this invertible
covariance matrix by shrinking the sample covariance matrix, S, to Sharpe's single-index model covariance
matrix estimator. The aim of Ledoit and Wolf's paper is to use Sharpe's single-index model to impose
structure to the unstructured sample covariance matrix, and determine how much of this structured covariance
matrix should be imposed on the estimator.

Sharpe's single-index model de�nes stock returns at time t as

xit = αi + βix0t + εit for i = 1, 2, . . . , p (7)

where εit are the residuals that are uncorrelated with the market returns x0t and αi is a constant for asset
i and βi is the factor loading for the market returns for asset i. It is regarded as a single-factor model with
the single-factor being the market returns.

The covariance matrix under Sharpe's single-index model shows risk in a systematic way and is de�ned
as

Φ = σ2
00ββ

′ +4 (8)

where4 is the diagonal matrix of residual variances, var(εit) = δii, β is the vector of slope estimates (factor
loadings) and σ2

00 is the variance of market returns. The covariance under Sharpe's index model breaks down
risk into two components: σ2

00ββ
′ is the macroeconomic component representing market in�uences and4 is

the microeconomic component that represents the stock-speci�c random component. It is important to note
that Ledoit and Wolf have assumed that Φ 6= Σ. The estimate of the covariance matrix under this model is

Φ̂ = s200bb′ + D (9)

where s200 is the sample variance of market returns, each element of b is a least squares estimator of the
corresponding element in β and D is a diagonal matrix of σ̂2

i,ε's for i = 1, 2, .., p where σ̂2
i,ε is based on the

ordinary least squares residuals. This estimate will be used as the shrinkage target matrix. The shrinkage
target matrix is the matrix used to impose structure on the estimator of the covariance matrix. The percentage
by which the sample covariance matrix is shrunk, i.e. the shrinkage intensity, is explicitly calculated in their
paper [4].

Ledoit and Wolf's optimal shrinkage intensity is derived by minimizing the risk function corresponding

to the loss function de�ned by Lα =
∥∥∥(1− α)S + αΦ̂−Σ

∥∥∥2. After minimization of the risk function, the

optimal shrinkage intensity is de�ned as

α∗ =

p∑
i=1

p∑
j=1

var(sij)− cov(φ̂ij , sij)

p∑
i=1

p∑
j=1

var(φ̂ij − sij) + (φij − σij)2
(10)

The shrinkage intensity, α∗, is the percentage by which we �shrink� the sample covariance matrix, S. It
can also be seen as the weight of structure we want to impose on the estimator of the covariance matrix,
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thus the percentage of the shrinkage target matrix that will be used in the weighted average calculation of
the shrinkage target matrix and the sample covariance matrix.

Consequently, an optimal shrinkage intensity, α∗, is obtained that does not rely on a loss function that
involves the inverse of the covariance matrix. Equation (10) converges to the following expression

α∗ =
κ

n
, κ = (π−ρ)

γ , (11)

π represents the estimation error on S, ρ measures the covariance between the estimation errors of S and
Φ̂ and γ represents the squared di�erence in value between Φ and Σ. The shrinkage intensity placed on
the shrinkage target increases with error on S (through parameter π). The intensity decreases when there
is a misspeci�cation of the shrinkage target (through the parameter γ). If ρ > 0 (ρ < 0) then the bene�t of
the weighted linear combination of S and Φ̂ is smaller (larger). Using the sample data, values of κ can be

estimated by constant k = (c−d)
g , assuming that γ > 0 (cf. [4]). This version of the formula for α∗ is only

true for the case when shrinking S towards the covariance estimator matrix of the single-index model, Φ̂,
since d is estimated using the market returns data. The value of d will have to be readjusted if a di�erent
shrinkage target is used. The weighted linear combination of S and Φ̂ with optimal shrinkage intensity α∗

can be expressed as Σ̂L&W = ( kn )Φ̂ + (1− k
n )S.

The inverse for Σ̂L&W exists since Φ̂ has an inverse. Using this invertible covariance matrix, optimal
portfolio weights can be calculated as follows

w =
C − r̄B
AC −B2

Σ−11 +
r̄A−B
AC −B2

Σ−1µ (12)

where A = 1′Σ−11, B = 1′Σ−1µ, C = µ′Σ−1µ, r̄ = w′µ, 1 is a conformable vector of ones, r̄ is the
expected rate of return that is required for the portfolio and µ is a vector of the average rate of return per
asset/stock.

An advantage of Ledoit and Wolf's method is that it can be generalized. Instead of shrinking the sample
covariance matrix to the covariance matrix of the single-index model, another shrinkage target matrix can be
used. A trade-o� between the sample covariance matrix and its estimation error and asymptotic unbiasedness
with another estimator matrix that has opposite properties occurs. Another advantage is that the shrinkage
intensity is consistently optimal.

2.3.2 The Moore-Penrose Generalized Inverse

A generalized inverse of a matrix Y : n × p of arbitrary rank is a matrix G : p × n such that for a vector
b, b = Gx is a solution of Yb = x for any vector x for which the system of equations is consistent. The
Moore-Penrose matrix, M, is a generalized inverse, which satis�es the following four conditions:

(i) YMY = Y

(ii) MYM = M (13)

(iii) (YM)′ = YM

(iv) (MY)′ = MY

where ′ represents the transpose of the matrix. This Moore-Penrose matrix, M, is unique for matrix Y.
The concept of the generalized inverse of a matrix was originally documented by Moore [6]. Penrose [8]

later developed similar theory where both authors gave the same conditions to what is now known as the
Moore-Penrose generalized inverse.

In the article by Pappas et al. [7] it is recommended that for large portfolio applications a generalized
inverse (Moore-Penrose inverse) is used when a sample covariance matrix is not invertible, close to being non-
invertible (i.e.det(S) ≈ 0) or is ill-conditioned. It is further proven in the article that the optimal portfolio
weights can be calculated similarly to equation (12) with Σ−1 replaced by the Moore-Penrose inverse, M.
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2.3.3 The Method of Principal Components

The latent factor model with r common factors as de�ned in the book by Johnson and Wichern[3] is:

xj = µ+Lf + ε for j = 1, 2, ..., n and xj : p× 1, µ : p× 1, L : p× r , f : r × 1, ε : p× 1 .(14)

where xij is the variable (stock return) i at time j, µi is the mean of the variable i, εi is the i
th variable

speci�c factor (i = 1, 2, ..., p), ft is the tth common factor (t = 1, 2, ...r) and lit is the loading of the ith

variable on the tth factor. The factor model in (14) is then referred to as an orthogonal factor model if the
random vectors f and ε satisfy the following conditions:

1) f and ε are independent ⇒ COV (ε, f ′) = 0
2) E(f) = 0, COV (f, f ′) = I where I is an r × r identity matrix.
3) E(ε) = 0, COV (ε, ε) = Ψ where Ψ is a diagonal matrix.

The covariance matrix for this factor model is then,

Σ = LL′ + Ψ for r < p, where Ψ is a diagonal matrix, (15)

thus the covariance matrix can be broken up into a linear combination of a structure of communality (through
LL′) and a variable speci�c structure (Ψ).

The principal component factor analysis of the sample covariance matrix, S, is a special case of the factor

analysis of the orthogonal factor model. Considering S =
p∑
i=1

λ̂2i êiê
′
i, the spectral decomposition of the

sample covariance matrix and using the ordered eigenvalue-eigenvector pairs (λ̂1, ê1), ..., (λ̂p, êp) of the
sample covariance matrix S, the estimated matrix of factor loadings is calculated as:

L̂ =

[√
λ̂1 × ê1

...

√
λ̂2 × ê2

... . . .
...

√
λ̂r × êr

]
(16)

The estimated matrix for Ψ (also referred to as the matrix of speci�c variance) is calculated by the
diagonal elements of the matrix S − L̂L̂′, i.e.:

Ψ̂ = diag(S − L̂L̂′) (17)

thus

Ψ̂ =


ψ̂1 0 · · · 0

0 ψ̂2 0
...

... 0
. . . 0

0 . . . 0 ψ̂p

 where ψ̂i = sii−
r∑
t=1

l2it

The estimated covariance matrix is then calculated as:

Σ̂PCM = L̂L̂′ + Ψ̂ for r < p (18)

The number of factors, r, needs to be estimated. One way to estimate the value for r is to look at the
eigenvalues of S and then the number of factors (components) is taken to be the point at which the remainder
of the eigenvalues tend to be about the same size and are relatively small. Another way is to increase the
number of factors retained by accumulating the following formula:

proportion of
total sample variance

due to ith

factor

=
λ̂i
p∑
i=1

λ̂i

(19)
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until a �suitable proportion� of total sample variance (
p∑
i=1

sii =
p∑
i=1

λ̂i) has been explained. It is important to

note that for the sample covariance matrix S, λ̂1 > λ̂2 > λ̂3 > . . . λ̂p−1 > λ̂p.

An advantage of this method is that it can decrease the number of variables, p, to a value less than the
number of observations, n. Consequently, an invertible covariance matrix can be estimated. The estimated
covariance matrix under this method is also easy to compute. A disadvantage of this method is the di�culty
in interpreting what these factors represent. Another disadvantage is that the selection of the number of
factors r is subjective, which indirectly in�uences how the portfolio will be selected (through the calculation
of portfolio weights).

3 Application of Estimation Methods

For purposes of application, the stock returns are selected from the 40 companies listed under the Johannes-
burg Stock Exchange's All Share Index (also referred to as the All Share Top 40 Index)4 for the 36 working
days before 23 of April 2016 (exclusive). Therefore n = 36 and p = 43 (Note that there are 40 companies
listed but three of the companies break up into two separate entities, i.e. p = 43) . These companies are
ranked by full-market capitalization. This index is market-capitalization weighted. These weights can be
found in Table 1. This index also forms a benchmark to measure South Africa's stock market. Under each
method developed in the previous section, an explanation of how the portfolio weights are calculated using
that method is given. A comparison of the portfolio weights of the current method with those of the methods
preceding that method is included under each section. A visual representation of the di�erent weights in the
form of a line graph is given in Figure 1.

Note that the speci�ed average return, r̄, is equal to 35. This was calculated by getting the average of
the stock returns over the 36 working days.

3.1 Shrinkage Estimation with Ledoit and Wolf's Shrinkage Constant

The aim of Ledoit and Wolf's estimator for the covariance matrix was to impose structure to the sample
covariance matrix, S. Using SAS/IMLTMsoftware5 together with Ledoit and Wolf's method, an invertible
estimated covariance matrix was found (cf. Appendix). The shrinkage intensity, α∗, was calculated using

the estimated κ, k = (c−d)
g , derived from equation (11). The α∗ was found to be 0.3148191 (≈32% ). This

means about 32 of the shrinkage target (the structured matrix) and 68%of the sample covariance matrix
contributed to the estimated covariance matrix, Σ̂L&W . Using the inverse of Σ̂L&W , the weights were then
calculated using equation (12). These weights are given in Table 1. It was found that some of the weights
were negative, suggesting short-selling of stocks. Usually all weights under a market-capitalization weighted
portfolio, like the All Share Top40 Index, are positive. Therefore, the negative weights obtained create a new
perspective of how the index can be weighted.

3.2 The Moore-Penrose Generalized Inverse

The Moore-Penrose generalized inverse is calculated with the sample covariance matrix,S. The sample
covariance matrix, S, is calculated using equation (4). The Moore-Penrose inverse is calculated using a
function in SAS/IMLTM 6 (cf. Appendix). The weights calculated using this inverse are given in Table 1.
Generally, it can be seen that where Ledoit and Wolf's method had negative weights, the Moore-Penrose
method also gives negative weights. However, there are a few stocks in which the signs of the weights between

4Source: INET BFA accessed: 22/04/2016
5The data analysis for this report was performed using SAS software, Version 9.4 of the SAS System for Windows. Copyright

© 2016 SAS Institute Inc., Cary, NC, USA.
6The SASTM software by default gives the Moore-Penrose generalized inverse when the function ginv(.) is used, thus

satisfying conditions (13).
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the two methods do not correlate, namely: APN, BHP, GRT, INL, MNP and OML. As stated previously,
negative weights introduce the opportunity of short-selling stocks within a portfolio.

3.3 The Method of Principal Components

Using the sample covariance matrix S, the eigenvalues and their corresponding normalized eigenvectors are
calculated using SAS/IMLTM (cf. Appendix). Using the criterion (19), the number of factors were found
to be three (i.e. r = 3). The three factors explained 0.8301995(≈ 83 of the total sample variance. Using
equation (16) and (17) to estimate the covariance matrix under principal components analysis, i.e L̂ and Ψ̂,
the estimated covariance matrix is obtained:

Σ̂PCM = L̂L̂′ + Ψ̂ (20)

Σ̂PCM is also found to be invertible. Using the inverse of Σ̂PCM the portfolio weights were calculated
using equation (12). These weights are given in Table 1. The weights given suggest fewer stocks to short-sell
compared to the previous methods. Ledoit and Wolf's method and the Moore-Penrose generalized inverse
method suggest to short-sell 21 and 23 stocks, respectively. The method of principal components suggests
only 18 of the stocks should be short-sold.
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Company - JSE Code MC 7 L&W 8 MP 9 PCM 10

Anglo American plc - AGL 0.0253 0.0042703 0.0151125 0.0146484
Anglo American Plat Ltd - AMS 0.00360 -0.000608 -0.019323 0.0005753

Anglogold Ashanti - ANG 0.0136 0.0034621 0.0428483 0.0062537
Aspen Pharmacare Hldgs Ltd - APN 0.01760 0.0270044 -0.011731 0.0225694

Brait SE - BAT 0.00910 -0.002389 -0.026428 0.0149818
Barclays Africa Grp Ltd -BGA 0.008 -0.020119 -0.051203 -0.010971

BHP Billiton plc - BIL 0.05810 0.0267154 -0.001907 0.0225354
British American Tob plc - BTI 0.04330 0.0012627 0.0095342 0.0175517

Bidvest Ltd - BVT 0.01980 -0.03029 -0.058957 -0.007105
Capital&Counties Prop plc - CCO 0.0036 -0.12231 -0.00549 -0.082198
Compagnie Fin Richemont - CFR 0.0810 -0.049072 -0.068339 -0.041722
Capitec Bank Hldgs Ltd - CPI 0.0049 -0.002389 -0.026428 0.0149818

Discovery Ltd - DSY 0.0065 0.0166048 0.0374232 0.043187
Fortress Inc Fund Ltd A - FFA 0.0020 0.2892937 0.1926394 0.1991857
Fortress Inc Fund Ltd B - FFB 0.0035 0.21188 0.3292963 0.3409548

Firstrand Ltd - FSR 0.0243 -0.102561 -0.444776 -0.13838
Growthpoint Prop Ltd - GRT 0.0106 -0.191929 0.1565488 -0.062845

Investec Ltd - INL 0.0046 0.0308881 -0.060352 0.0193429
Investec plc - INP 0.0106 0.0626047 0.1388342 0.0380417

Intu Properties plc - ITU 0.0103 -0.074528 -0.172851 -0.079496
Mediclinic Int plc - MEI 0.0116 -0.008497 -0.074491 0.0086333

Mondi Ltd - MND 0.0056 -0.005384 -0.197504 -0.017689
Mondi plc - MNP 0.0172 -0.008038 0.2334727 -0.018148

Mr Price Group Ltd - MRP 0.0068 -0.019507 -0.014595 -0.006696
MTN Group Ltd - MTN 0.0393 -0.015053 -0.066062 0.0001248

Nedbank Group Ltd - NED 0.0063 -0.0468 -0.013054 -0.044923
Naspers Ltd -NPN 0.1466 0.0022677 0.0039263 0.0022086

Netcare Limited - NTC 0.0087 0.4098525 0.329101 0.2554168
Old Mutual plc - OML 0.0321 0.0877328 -0.127568 0.0164473

Rede�ne Properties Ltd - RDF 0.0087 0.361329 0.1601653 0.2650805
Reinet Investments S.C.A - REI 0.0077 0.1119173 0.0866355 0.1665838

Remgro Ltd - REM 0.0199 0.0072972 0.1025899 -0.001678
RMB Holdings Ltd - RMH 0.0067 -0.2073 -0.160008 -0.170705

Rand Merchant Inv Hldgs Ltd - RMI 0.0048 0.0225929 0.3686101 -0.010255
SABMiller plc - SAB 0.1458 -0.003493 -0.005866 -0.003262

Standard Bank Group Ltd - SBK 0.0264 0.0402402 0.1801614 0.0140749
Shoprite Holdings Ltd - SHP 0.0125 0.022401 0.0397192 0.0151718

Sanlam Limited - SLM 0.0199 0.1126068 0.2269389 0.1079946
Steinho� Int Hldgs N.V. - SNH 0.0409 -0.037861 -0.02124 -0.022421

Sasol Limited - SOL 0.0405 -0.009143 -0.024752 -0.002607
Tiger Brands Ltd - TBS 0.0087 0.0234629 0.0280735 0.0198354

Vodacom Group Ltd - VOD 0.0087 0.1252443 0.0570971 0.1088403
Woolworths Holdings Ltd - WHL 0.0141 -0.043661 -0.085803 -0.014122

Table 1: Table of Top 40 Index market-capitalization weights vs weights produced by estimated covariance
matrix using di�erent methods

7Market-capitalization weights from Johannesburg Stock Exchange (JSE) as at 31/03/2016, Source:FTSE Group
8Weights produced by estimated covariance matrix using Ledoit and Wolf method
9Weights produced by estimated covariance matrix using Moore-Penrose Generalised Inverse method
10Weights produced by estimated covariance matrix using Method of Principal Components
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4 Conclusion

Di�erent methods of estimating large dimensional covariance matrices for the case where the number of
observations, n, is fewer than the number of variables, p, are explored. For each method, the construction
of the covariance matrix is discussed. For purposes of application, it is important that these covariance
matrices are invertible. For example, in portfolio selection the inverse of the covariance matrix is needed for
the calculation of portfolio weights under the Markowitz model. This forms part of the application section of
this report. With the use of one dataset of stock returns over a certain time period, portfolio weights under
each method of estimation were calculated and compared.

When comparing the three methods, fewer stocks agree on the short-selling of the stock, and more stocks
are inconsistent throughout the three methods. Note that consistency is measured with respect to all methods
suggesting either short-selling or buying the stock. Even with the consistent stocks, the weights given for the
di�erent methods are not similar or approximately equal. This is due to the di�erent methods of calculating
these large dimensional covariance matrices, showing the importance of choosing the best method. Many
other methods, such as the Bayesian approach (cf. [2, 9]), are available in literature but are not discussed in
this report of limited scope.

When comparing the market-capitalization weights with those calculated by the three methods, it can
be seen that when the volatility of the stock is considered the opportunity for short-selling is introduced.
An advantage of strictly positive values of the market-capitalization weights is that there is no gamble taken
through the short-selling of a stock. However, the market-capitalization weights have the disadvantage that
the volatility of the stock, i.e. the day-to-day variability of the stock return, is not considered in calculation of
the weights. Under the Markowitz model (the model used by all three methods in the calculation of portfolio
weights) the aim is to �nd the portfolio weights such that the variability is minimized.

In addition to application in portfolio selection, large dimensional covariances have applications in �nancial
risk management. An example would be in the calculation of value at risk (VaR) models. These models give
a measure of the risk in a particular investment instrument. The article by Alexander and Leigh [1] further
examines the use of covariance matrix estimation in VaR models. A further study could be done to verify if
methods developed for large dimensional covariance matrix estimation in portfolio selection can be used in
VaR model calculations.
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Appendix

/*Using Ledoit and Wolf Method to find Estimated Covariance Matrix*/

proc iml;

use sasuser.Top40;

read all into X1;

x=X1[,2:44];

n=nrow(x);

p=ncol(x);

meanx=mean(x);

mean2x=(1/p)*sum(meanx);

meannx=J(n,p,1)#meanx;

x=x-meannx;

xmkt=mean(x`)`;

xxmkt=x||xmkt;

sample=((n-1)/n)*cov(xxmkt);

covmkt=sample[1:p,p+1];

varmkt=sample[p+1,p+1];

prior = (covmkt*covmkt`)#(1/varmkt);

diagonalprior= diag(prior);

priorwithoutdiagonal=prior - diagonalprior;

diagsample=diag(sample[1:p,1:p]);/*D from equation (12)*/

newprior=priorwithoutdiagonal+diagsample; /*Shrinkage target*/

ranknewprior=round(trace(ginv(newprior)*newprior));

/* to prove that shrinkage target is invertible (therefore full rank)*/

print ranknewprior,

'thus shrinkage target is invertible since full rank (rank(shrinkage target)=p)';

sampleminusnewprior=sample[1:p,1:p]-newprior;

g=norm(sampleminusnewprior,'frobenius')**2;

y=x##2;

yty=y`*y;/*used to calculate first part of calculating c*/

sumsample2=sum(sample[1:p,1:p]##2);/*second part of calculating c*/

rauhat=(1/n)*sum(yty)-sumsample2;/*c*/

sumy2=sum(y##2);/*first part of calculating Ddiag*/

Ddiag=(1/n)*sumy2-sum(diag(sample[1:p,1:p])##2);/*Ddiag*/

z=x#xmkt;/*z*/

v1=(1/n)*y`*z-covmkt#sample[1:p,1:p];/*v1*/

v1c=v1#(covmkt`);

sumv1c=sum(v1c);

Doffdiag1=sumv1c/varmkt-sum(diag(v1)*covmkt)/varmkt;/*Doff1*/

v3=(1/n)*z`*z-varmkt*sample[1:p,1:p];/*v3*/

Doffdiag3=sum(v3#(covmkt*covmkt`))/(varmkt**2)-sum(diag(v3)#(covmkt##2))/(varmkt**2);/*Doff3*/

Doffdiag=2*Doffdiag1-Doffdiag3;/*roff*/

d=Ddiag+Doffdiag;/*r*/

k=(rauhat-d)/g;/*used to compute the shrinkage intensity*/

shrinkage=max(0,min(1,k/n));

estimatedcovariance=shrinkage*newprior+(1-shrinkage)*sample[1:p,1:p];

print 'Shrinkage intensity', shrinkage;
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print 'Estimated covariance using Ledoit and Wolf method', estimatedcovariance;

rankE=round(trace(ginv(estimatedcovariance)*estimatedcovariance));

/*to prove that estimated covariance is invertible (thus full rank)*/

print rankE,

'thus estimated covariance is invertible since full rank (rank(estimated covariance)=p)';

/* calculating portfolio weights for Ledoit and Wolf method*/

ones=J(p,1,1);

invEstimatedCovariance=inv(estimatedcovariance);

A=ones`*invEstimatedCovariance*ones;

rbar=35;/*what is selected as the expected rate of return per day expected from portfolio*/

mu=meanx`;

B=ones`*invEstimatedCovariance*mu;

C=mu`*invEstimatedCovariance*mu;

wpart1=((C-rbar*B)/(A*C-B**2))*invEstimatedCovariance*ones;

wpart2=((rbar*A-B)/(A*C-B**2))*invEstimatedCovariance*mu;

weights=wpart1+wpart2;

print weights;

/*Using Moore-Penrose Generalised Inverse to find Estimated Covariance Matrix*/

use sasuser.Top40;

read all into Y1;

Y=Y1[,2:44];

meanY=mean(Y);

n1=nrow(Y);

p1=ncol(Y);

ones=J(n1,1,1);

deviationssquared=(Y-(1/n1)*ones*ones`*Y)`*(Y-(1/n1)*ones*ones`*Y);

SampleCov=(1/(n1-1))*deviationssquared;/*This would represent "Y" in equation (16)*/

M=ginv(SampleCov);/*Moore-Penrose Generalized Inverse of Y

calculated by default by function ginv() in SAS*/

/* calculating portfolio weights for Moore-Penrose method*/

ones2=J(p1,1,1);

A=ones2`*M*ones2;

rbar=35;/*The expected rate of return per day expected from portfolio*/

mu=meanY`;

n=nrow(mu);

B=ones2`*M*mu;

C=mu`*M*mu;

wpart11=((C-rbar*B)/(A*C-B**2))*M*ones2;

wpart21=((rbar*A-B)/(A*C-B**2))*M*mu;

weights1=wpart11+wpart21;

print weights1;
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/*Using Method of Principal Components to find Estimated Covariance Matrix*/

use sasuser.Top40;

read all into Z1;

Z=Z1[,2:44];

meanZ=mean(Z);

n2=nrow(Z);

p2=ncol(Z);

ones=J(n2,1,1);

deviationssquared=(Z-(1/n2)*ones*ones`*Z)`*(Z-(1/n2)*ones*ones`*Z);

S=(1/(n2-1))*deviationssquared;

call eigen(values,vectors,S);/*function to get the eigenvalues and corresponding

eigenvectors of S*/

r=rank(values); /*ranks eigenvalues in ascending order*/

prop1=values[1]/sum(values); /*using equation (19)*/

prop2=values[2]/sum(values); /*...*/

prop3=values[3]/sum(values); /*...*/

prop4=values[4]/sum(values); /*...*/

prop5=values[5]/sum(values); /*...*/

cumulative=prop1+prop2+prop3; /*shown to equal 0.8301995*/

print prop1 prop2 prop3 prop4 prop5, cumulative;

L=(values[1:3]##(1/2))`#vectors[,1:3]; /*using equation (19)*/

EstimatedCov=L*L`+diag(S-L*L`); /*Estimated Covariance using method of Principal

Components (Using L calculated above and equation (20)) */

print L;

rankEC=round(trace(ginv(EstimatedCov)*EstimatedCov)); /*to prove that covariance is

invertible so that weights can be calculated the same as that in previous 2 methods*/

print rankEC ,'thus covariance is full rank (implies invertibility)';

/* calculating portfolio weights for Method of Principal Components method*/

InvEstimatedCov=inv(EstimatedCov);

ones2=J(p2,1,1);

A=ones2`*InvEstimatedCov*ones2;

rbar=35;/*The expected rate of return per day expected from portfolio*/

mu=meanZ`;

n=nrow(mu);

B=ones2`*InvEstimatedCov*mu;

C=mu`*InvEstimatedCov*mu;

wpart12=((C-rbar*B)/(A*C-B**2))*InvEstimatedCov*ones2;

wpart22=((rbar*A-B)/(A*C-B**2))*InvEstimatedCov*mu;

weights2=wpart12+wpart22;

print weights2;

/*Data matrix used to make line graph of portfolio weights in excel*/

use sasuser.Mcweights;

read all into A1;

MC=A1`;

Portfolioweights=MC||weights||weights1||weights2;

cn={'MC' 'L$W' 'MP' 'PCM'};

rn={'Anglo American plc - AGL' 'Anglo American Plat Ltd - AMS''Anglogold Ashanti - ANG'
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'Aspen Pharmacare Hldgs Ltd - APN''Brait SE - BAT''Barclays Africa Grp Ltd -BGA'

'BHP Billiton plc - BIL''British American Tob plc - BTI' 'Bidvest Ltd - BVT'

'Capital&Counties Prop plc - CCO''Compagnie Fin Richemont - CFR''Capitec Bank Hldgs Ltd - CPI'

'Discovery Ltd - DSY''Fortress Inc Fund Ltd A - FFA''Fortress Inc Fund Ltd B - FFB'

'Firstrand Ltd - FSR''Growthpoint Prop Ltd - GRT''Investec Ltd - INL'

'Investec plc - INP''Intu Properties plc - ITU''Mediclinic Int plc - MEI'

'Mondi Ltd - MND''Mondi plc - MNP''Mr Price Group Ltd - MRP''MTN Group Ltd - MTN'

'Nedbank Group Ltd - NED''Naspers Ltd -N- - NPN''Netcare Limited - NTC''Old Mutual plc - OML'

'Redefine Properties Ltd - RDF''Reinet Investments S.C.A - REI''Remgro Ltd - REM'

'RMB Holdings Ltd - RMH''Rand Merchant Inv Hldgs Ltd - RMI''SABMiller plc - SAB'

'Standard Bank Group Ltd - SBK''Shoprite Holdings Ltd - SHP''Sanlam Limited - SLM'

'Steinhoff Int Hldgs N.V. - SNH''Sasol Limited - SOL''Tiger Brands Ltd - TBS'

'Vodacom Group Ltd - VOD''Woolworths Holdings Ltd - WHL' };

print Portfolioweights[colname=cn rowname=rn];

create Portfolioweights from Portfolioweights[rowname=rn colname=cn];

append from Portfolioweights [rowname=rn];

quit;

/*"Portfolioweights" data matrix was exported to excel where a line graph was compiled*/
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Abstract

In this report heavy tail distributions for claims data are discussed. Predicting the event of observing
very large or even extreme claims is done using the upper tail of the such distributions. The presence
of a heavy upper tail suggests high risk and should be modeled as accurately as possible. Methods
to describe/measure these extremes such as extreme value theory (EVT) and techniques to detect the
presence of heavy tail occurrence of large claims are discussed and studied. The theory is applied to
simulated data consisting of two underlying distributions. The results indicate that the splicing point can
be estimated with these methods.
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1 Introduction

Often we have few observations (or claims) from the upper tail of a distribution, however the occurrence of
large claims needs to be modeled accurately for prediction purposes. When modeling claims data, we are
often interested in two processes: 1) Describing claim sizes and, 2) claim frequency where the distributions
for the two random variables of the respective processes are studied independently. In practice the normality
assumption is often used due to the fact that it is easy to apply and most often used for inferential purposes.
However when we are interested in the occurrence of extreme events (events resulting in large claims) the
use of the normal distribution is no longer a reliable representation.

Figure 1: Standard normal density

From Figure 1 which is a normal distribution with mean µ = 0 used as a loss distribution, however there
is one problem amongst others with this representation of a loss distribution. The range of the claim amounts
is x ∈ (−∞,∞) which is incorrect since it is not possible to have a negative claim. A better (but not perfect)
representation of an ideal loss distribution would be as described in Figure 2.

Figure 2: Standard normal density with shifted mean (µ=2)

Figure 2 is the same as the normal distribution used in Figure 1 except with µ > 0. In Figure 2 there is
a small area where range of the claim amounts (x) is negative but this becomes negligible as the number of
claims tends to in�nity (N → ∞) so that the variance becomes small and the mean remains larger than 0.
Therefore one can argue that the distribution in Figure 2 can be used as a loss distribution. Now consider
the following representation of a loss distribution in Figure 2.

Figure 3: Beta distribution
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Figure 3 presents an ideal loss distribution simply because range of claim amounts is x ∈ (0,∞), the
distribution is positively skewed, indicating a higher probability of small claims, and the upper tail not too
heavy which is a more realistic representation of a loss distribution.

In this report we will cover theory on how to measure heaviness of the tail of distributions, as well as
extreme value theory, which includes distributions of extreme events such as large maxima, and the use of
exponential and Pareto QQ-plots as well as mean excess values to predict the occurrence of a heavy tail or
extreme event. The report will conclude with an application of the techniques studied.

2 Literature Review

With the main objectives stated above, the literature review will be conducted with the focus being on
extreme value distributions and their domain of attraction as well as positively skewed distributions. A brief
overview of the literature will be discussed below with structure being as follows:

• A literature review on modeling claims data.

• Then the focus will move to methods to measure tail heaviness.

• Then �nally we give a brief background on research conducted on extreme value distributions and claim
arrival of a portfolio of policies.

Literature on modeling claims data

In insurance the prediction of the event of a claim is of great importance. In [12] a hierarchical model is
proposed of three components, corresponding to the frequency, type as well as severity of a claim. The �rst
model is a negative binomial regression model used for the assessment of claim frequency. It also turns out
that driver age, vehicle age, gender and claims discount are important variables for predicting the event of a
claim. More methods for the modeling of claims data are discussed in [16, 27, 17].

Measuring tail heaviness

Di�erent methods of measuring tail heaviness which deal with whether a distribution is exponentially bounded
are introduced and discussed in [21] where exponentially bounded implies light-tailed. Further methods for
measuring heavy tails are discussed in [11, 9, 20, 2, 24, 5, 1].

Extreme value distributions and claim arrival

It is widely acknowledged in the literature that there is a need for the consideration of heavy tailed distribu-
tions. In [22] the distribution of the maximum order statistic is considered, the reason for this is believed to
be that a heavy tail is normally associated with a large number of extreme observations, which in insurance
would be large claims. The convergence of the distribution function after normalization is also considered
together with its possible limits.

In most of the literature on claims arrival an allowance is made for single claims to arrive at a time. In
practice however a portfolio of policies presents the reality of several claims arriving within the same time
period from di�erent risks where these risks may be dependent in some cases [14].

In [4] a similar observation of the maximum order statistic was made and in addition methods related
to the upper right tail of claim frequency or claim size distribution will be considered. Methods such as the
Hill estimator, exponential and Pareto QQ-plots are discussed therein where the Hill estimator is a series of
estimators that are considered to be unbiased.

Conclusion

The brief literature review above serves as motivation for this research report as we look into extreme value
theory, tail heaviness and more methods of measuring tail heaviness including those already stated.
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3 Background Theory

3.1 The Claim Model

Let the aggregate claim amount (claim model) be S(t) =
N(t)∑
i=1

Xi where claim number process {N(t) : t ≥ 0}

is a counting process satisfying the following three conditions with positive parameter λ:

• N(0) = 0 (no claims occur at time zero)

• N(t) has independent increments

• N(t) has stationary increments, i.e. N(t)−N(s) ∼ Poisson(λ(t− s)), ∀s < t

Therefore {N(t) : t ≥ 0} is a Poisson process and {S(t) : t ≥ 0} is compound Poisson process [21].
The sequence of claim sizes {Xt : t ∈ N} are assumed to be independent and identically distributed

random variables. It is often assumed that {N(t) : t ≥ 0} and {Xt : t ∈ N} are independent so that they
can be studied independently. The practical advantage of this assumption is that factors a�ecting claim sizes
and claim numbers may be di�erent. Consider motor insurance as an example. A long spell of bad weather
may have an e�ect on the claim numbers but only a slight e�ect on the distribution claim sizes. Conversely,
in�ation may have an e�ect on the cost of repairing a car, thus on the distribution of the claim sizes, but
only a slight e�ect on the distribution of claim numbers. Now the following example is given to show a basic
illustration of the claim model.

Example 1. Consider individual claim sizes X ∼ Pareto(α, β) with probability density function:

fX(x) =
αβα

(β + x)α+1
, x > 0.

if we have annual aggregate claim numbers from a group of general insurance policies having a compound
Poisson distribution with parameter λ. Then it follows that:

S(t) =

N(t)∑
i=1

Xi ∼ Comp.Poisson(λt, FX(x)) i.e. N(t) ∼ Poisson(λt)

where FX(x) is the distribution function of individual claim sizes.

3.2 Tail Heaviness

According to [9] the class of well-behaved distributions is de�ned as those distributions F which satisfy
1− FX(x) ≤ ce−ax where c, a are positive valued and this is true ∀x ≥ 0, FX(x) is the distribution function
of the claim sizes. To see why the inequality already stated makes sense, consider large claim size x∗ arbitrarily
chosen. Then we have

P (X > x∗) = 1− P (X ≤ x∗) = 1− FX(x∗) ≤ ce−ax
∗
.

It is desired that the probability stated above tend to zero as claim size becomes too large. If a particular
loss distribution does satisfy this inequality, then

lim
x∗→∞

P (X > x∗) = lim
x∗→∞

(1− FX(x∗)) ≤ lim
x∗→∞

ce−ax
∗

= 0

=⇒ lim
x∗→∞

P (X > x∗) = 0.

Using this reasoning, it can be argued that a loss distribution is well de�ned if 1 − FX(x) ≤ ce−ax. We
illustrate this concept with the following example from [24].
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Example 2. Consider random variable X ∼Weibull(γ, β) with probability density function :

FX(x) =

{
1− e−(

x
γ )
β

, y > 0

0 elsewhere.

If we suppose that 0 < β < 1 and further suppose that there exists a δ > 0 such that

1− FX(x) ≤ e−δx,

which implies
(
xβ−1

γβ

)
≥ δ. Thus if we have 0 < β < 1, then

lim
x→∞

δ ≤ lim
x→∞

(
xβ−1

γβ

)
= 0

which is clearly a contradiction to the fact that there exists a value δ > 0. This implies there does not exist
a δ > 0 and c > 0 such that 1− FX(x) ≤ ce−δx. It can therefore be said that the Weibull distribution with
parameter values for 0 < β < 1 is not well-behaved since there does not exist a δ > 0 and c > 0 such that
1− FX(x) ≤ ce−δx.

3.3 Methods to detect and measure tail heaviness

Firstly consider two exponential distributions with the parameters α1 and α2 such that 0 < α2 < α1 < ∞.
The two probability density functions are given in Figure 4. The exp(3.5) is considered to have a heavier tail
than the exp(2.5).

Figure 4: Comparison of two exponential probability density functions exp(α1) and exp(α2)

Let X be a non-negative and absolutely continuous random variable. Now we consider methods for
detecting tail heaviness.

Method 1:

A distribution FX(x) is said to be heavy tailed if
´
R e

λxFX(x)dx =∞, ∀λ ∈ R and light tailed if
´
R e

λxFX(x)dx <
∞ for some values λ > 0 [11].
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Method 2:

An absolutely continuous distribution with distribution function, FX(x), is said to have an exponentially
bounded tail if there exists a b > 0 and c > 0 such that

F̄X(x) = 1− FX(x) ≤ be−cx,∀x > 0

A distribution with an exponentially bounded tail is said to have a light tail [21].

Method 3:

Consider two di�erent distributions, F (x) and G(x) and suppose further we can �nd a very x∗ situated in
the upper tail such that f(x∗) = g(x∗). Now consider a case where F̄ (x∗) > Ḡ(x∗) while f(x∗) = g(x∗),
implying that for a given x∗ the weight in the upper tail of F (x) is heavier than the weight of the upper tail
of G(x). Therefore the following implies that F (x) has a heavier upper tail than G(x):

1

Ḡ(x∗)
>

1

F̄ (x∗)
⇒ f(x∗)

Ḡ(x∗)
>
f(x∗)

F̄ (x∗)
⇒ g(x∗)

Ḡ(x∗)
>
f(x∗)

F̄ (x∗)
(since f(x∗) = g(x∗) )

However this comparison does not hold ∀x ≥ x∗, but only proven to hold at x∗[24].

Method 4:

An absolutely continuous distribution function, FX(x), is said to have a heavy-tail if ∀t > 0 the moment
generating function MX(t) is �nite i.e. MX(t) <∞ [21, 11].

Method 5:

Consider the following de�nitions:

De�nition 3. The hazard function [2] of random variable X, with distribution function FX(x) is de�ned as

hX(x) = −ln(1− FX (x)) = −ln
(
F̄X (x)

)
(1)

and the hazard rate function of random variable X, de�ned for FX (t) < 1, is given by

h∗X (t) =
fX (t)

1− FX (t)
. (2)

Therefore it follows that if probability density function fX (x) is continuous, then hX (x) is di�erentiable
and thus d

dx (hX (x)) = h∗X (x) [from 1 and 2].

De�nition 4. Residual hazard rate distribution function [20], Ft (x) , is de�ned by

Ft (x) =
FX (t+ x)− FX (t)

1− FX (t)
=
P (t < X ≤ x+ t)

P (X > t)
= P (X ≤ x+ t|X > t) = P (X − t ≤ x|X > t)

for FX(t) < 1. The mean residual hazard function [6, 5, 8] is given by:

µFt = E[X − t|X > t] =

´∞
t

(F̄X(x))dx

1− FX(t)
, FX(t) < 1.

Therefore mean residual function gives average amount by which the random variable X exceeds the value
t. This is also known as the exceedance function.

Now consider the following:

h∗X (t) =
fX (t)

1− FX (t)
=
− d
dt (1− FX (t))

1− FX (t)
= − d

dt
(ln (1− FX (t))) [from 1 and 2]
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=⇒ 1− FX (t) = e−
´ t
0
h∗
X(y)dy

=⇒ F̄X (t) = e−
´ t
0
h∗
X(y)dy.

Therefore it follows that,

F̄t (t) = 1− FX (t+ x)− FX (t)

1− FX (t)

=
F̄X (t+ x)

1− FX (t)

=
e−
´ t+x
0

h∗
X(y)dy

e−
´ t
0
h∗
X(y)dy

= e−
´ t+x
t

h∗
X(y)dy.

Now the ratio of F̄X(x + t) to F̄X(t) is increasing if the hazard rate function h∗X(t) = fX(t)
1−FX(t) is decreasing

[5]. Therefore mean residual hazard function de�ned above can be written as [21, 2]:

µFt = E[X − t|X > t] =

∞̂

0

e−
´ x
0
h∗
X(y+t)dydx.

This implies that if hazard rate function is decreasing then mean residual function is increasing. The mean
residual hazard function can be used to compare two distributions where the one with a heavier tail will have
a mean residual hazard function that increases at a faster rate.

Method 6:

Let γF = lim sup
x→∞

hX(x)
x . If γF = 0, then FX(x) is heavy-tailed [21].

Method 7:

If a distribution function FX(x) de�ned on R+ has the following property

lim
x→∞

1− F ∗2(x)

1− F (x)
= 2,

where F ∗2X (x) is the two-fold convolution1 of FX (x) , then the distribution is said to be a member of the
subexponential class represented by S.

Now each distribution F ∈ S is heavy-tailed [21]. Furthermore consider two distribution functions F (x)
and G(x) where we know that the two distributions are tail equivalent and F ∈ S, it follows that G ∈ S [1].
The example that follows will use the distribution in Figure 4 to make an illustration of method 3.

Example 5. Now from Figure 4 we have the following density and distribution functions:

f(x) =
1

α1
e−(

x
α1

), x ≥ 0

F (x) = 1− e−
(
x
α1

)
, x ≥ 0

and

g(x) =
1

α2
e
−
(
x
α2

)
, x ≥ 0

1The n-fold convolution of FX (x) is de�ned as F ∗n
X (x) = F ∗n−1

X (x) ∗ F ∗
X(x)
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G(x) = 1− e−
(
x
α2

)
, x ≥ 0.

From Figure 4 it is clear that we can �nd a value x∗ such that f(x∗) = g(x∗) which is given by:

x∗ =
α2α1ln

(
α2

α1

)
α2 − α1

now we have,

1

α2
>

1

α1
⇒ −x

∗

α2
<
−x∗

α1
⇒ e

−x∗
α2 < e

−x∗
α1 ⇒ Ḡ(x∗) < F̄ (x∗) =⇒ 1

Ḡ(x∗)
>

1

F̄ (x∗)
, x∗ > 0

⇒ g(x∗)

Ḡ(x∗)
>
f(x∗)

F̄ (x∗)

It therefore follows from Method 3 that F (x) has a heavier tail than G(x) proven to hold from the point x∗

only.

Example 6. If we have G(x) = 1− e−α2x, x ≥ 0 then it follows that

ˆ

R

eλxG (x) dx =

ˆ
R
eλx − ex(λ−α2)dx =

[
1

λ
eλx
]
R
−
[

1

λ− α2
e(λ−α2)x

]
R
, λ > 0

now since λ > λ− α2 ⇒ eλ > eλ−α2 , it follows that

ˆ

R

eλxG (x) dx <∞

by Method 1 G(x) is light-tailed.

Example 7. Consider X ∼ exp(α1) therefore X has moment generating function,

MX(t) =
α1

α1 − t
, t < α <∞

therefore since t > 0
⇒ α1

α1 − t
<∞.

So by Method 4, F (x) is heavy-tailed.

Example 8. Consider the survival function of distribution G(x), given by

Ḡ (x) = 1−G(x) = e−α2x

since X ∼ exp(α2). Now if b, c ∈ R are chosen such that c = α2 and b > c > 0 then

Ḡ (x) = e−α2x ≤ be−cx =⇒ Ḡ (x) ≤ be−cx,∀x > 0

So by Method 2 G(x) is exponentially bounded since ∃ b, c > 0 such that Ḡ (x) ≤ be−cx, therefore implying
that G(x) is light-tailed.

Example 9. We have hX(x) = −ln(1− FX (x)), where X ∼ exp(α2), now
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γF = lim sup
x→∞

(
hX(x)

x

)
= lim sup

x→∞

(
d
dxhX(x)

1

)
[L′Hospital]

= lim sup
x→∞

(
h∗X(x)

1

)
= lim sup

x→∞
(0)

= 0

Therefore by Method 6, this is inductive of a heavy-tailed distribution.

Example 10. Consider lim
x→∞

(
1−G∗2

X (x)
1−GX(x)

)
, where G∗2X (x) is the two-fold convolution of GX (x) .

⇒ lim
x→∞

e−α2x (1 + α2x)

e−α2x
= lim
x→∞

(1 + α2x) =∞

So G(x) is not a member of the subexponential class. G(x) has been shown to be exponentially bounded and
therefore lighted-tailed.

Example 11. Consider mean residual hazard rate functions of F (x) and G (x) given by

µFt = E[X − t|X > t] =

´∞
t

(F̄X(x))dx

1− F (t)
=

1

α1

and

µGt = E[X − t|X > t] =

´∞
t

(ḠX(x))dx

1−G(t)
=

1

α2

from [21] for an exponential distribution, now since 0 < α2 < α1 < ∞, F (x) has a heavier tail than G (x).
It therefore follows that mean residual hazard function of F (x) increases at a faster rate than mean residual
hazard function of G (x), so F (x) has a heavier tail.

3.4 Extreme Value Theory

We normally associate a heavy tail with a large number of extreme observations i.e. large claims. This is
why it is necessary to also look at extreme value theory.

Consider the distribution function of the maximum order statisticXn:n given by: P (X1 ≤ x, ...,Xn ≤ x) =
P (Xn:n ≤ x) = Fn (x) , where X1, . . . , XN are i.i.d and FX (x) is the distribution of each Xi [18].

Sometimes the distribution function stated above is di�cult to obtain. To overcome this issue consider
convergence of (Xn:n−bn)

an
as n→∞ where an, bn ∈ R, sequence of real numbers otherwise known as normal-

ising constants. The theorem that follows states that Xn:n, after being normalized, converges in distribution
to only one of a possible three distributions [10, 13].

Theorem 12. If ∃ sequence of real numbers an, bn > 0 such that

lim
n→∞

P

(
(Xn:n − bn)

an
≤ x

)
= Fn (anx+ bn) = G (x) , say

where Fn (x) = P (Xn:n ≤ x) and then G(x) is a non-degenerate distribution function and belongs to one of
the following 3 types:

1. Frechet: Φα (x) = e(−x
−α), (x, α > 0)

2. Weibull: Φα (x) = e(−(−x
α)), (x < 0, α > 0)
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3. Gumbel: Φα (x) = e(−e
−x), x ∈ R

This theorem is known as Fisher-Tippett-Gnedenko theorem [10, 13].

Remark 13. The three distributions above are particular cases (where α = 1
β and �rst order moment does

not exist if β > 1) of Generalized Extreme Value (GEV) distribution, where the distribution function is given
by [10, 13]

Gβ (x) =

e−(1+βx)
−( 1

β )
for 1 + βx > 0, β 6= 0

e(−e
−x) for x ∈ R, β = 0

where β is the tail index or extreme value index which is related to the tail weight of the distribution. If
the result stated in the above theorem holds for a particular distribution F it is said that F belongs to the
maximum-domain of attraction of the distribution function Gβ which is denoted by F ∈ D (Gβ).

Consider Figure 5 with distributions where their tails are shown from lightest to heaviest where exponential
is the lightest and Pareto the heaviest.

Figure 5: Distributions from �light� to �heavy� tailed

In light of this we consider more methods to measure tail heaviness.

Method 8 (Exponential QQ-plot and mean excess values):

Consider the quantile function de�ned as

Q(p) = inf {x : F (x) ≥ p} for 0 < p < 1.

Now using the following relationship

Q(p) = F−1 (p) where F (x) = 1− e−xα

it follows that

F (x) = p⇒ x =
−1

α
log (1− p)⇒ F−1 (p) =

−1

α
log (1− p)
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where F (x) = p was solved for x in terms of p. We thus obtain

Q(p) =
−1

α
log (1− p) for 0 < p < 1

which is known as the exponential quantile function where p = j
n+1 , j = 1, . . . , n. The non-parametric

estimator of Q
(

j
n+1

)
is given by Xj:n. Therefore we have exponential quantile plot given by the points:(

− log

(
1− j

n+ 1

)
;Xj:n

)
for j = 1, . . . , n.

Now, if the exponential �t is linear then the data is exponential. However if the tail of the data distribution
is heavier than that of the exponential then exponential QQ-plot will be convex.

Alternatively mean excess values,

ek:n =
1

k

[
k∑
i=1

Xn−i+1:n

]
−Xn−k:n

of the exponential QQ-plot where
(
− log

(
k+1
n+1

)
;Xn−k:n

)
is the right anchor point can be used. The mean

excess plot is given by the points:
(Xn−k:n; ek:n) .

If the mean excess values stay horizontal with increasing k then data is exponential otherwise we have an
indication of a heavy tail [4].

Method 9 (Pareto QQ-plot):

Recall the quantile function de�ned in method 8, now using the relationship

Q(p) = G−1 (p) where G (x) = 1− 1

xλ

note that G (x) is the distribution function from a basic Pareto distribution. It follows that

G (x) = p⇒ x = (1− p)
−1
λ ⇒ G−1 (p) = (1− p)

−1
λ

so that

logQ (p) =
−1

λ
log (1− p) for 0 < p < 1.

Now similar to Method 8, the non-parametric estimator of log
(
Q
(

j
n+1

))
is given byXj:n where p = j

n+1 , j =

1, . . . , n. The Pareto QQ-plot is given by the points:(
− log

(
1− j

n+ 1

)
, log (Xj:n)

)
for j = 1, . . . , n.

If the Pareto QQ-plot is linear then the data is Pareto. However, if the Pareto QQ-plot is concave then the
tail of the data distribution is less heavy than that of the Pareto.

Alternatively mean excess values (Hill's estimator 1975) [4],

Hk:n =
1

k

(
k∑
i=1

log (Xn−i+1:n)

)
− log (Xn−k:n)

of the Pareto QQ-plot where
(
− log

(
k+1
n+1

)
; log (Xn−k:n)

)
is the right anchor point can be used. If the Hk:n

value remains horizontal with decreasing k then the Pareto �t is appropriate. Note also that if Hk:n values
decreases with decreasing k then the tail of the data distribution is lighter than Pareto. The Hill plot is given
by the points [4]:

(log(Xn−k:n);Hk:n) .

We now present an example to illustrate Method 8 and 9.

15



Example 14. For this particular example 200 observations were simulated from the lognormal with pa-
rameters 0 and 1, Weibull with parameters 0.5 and 2, Pareto with parameters 2.5 and 1 and exponential
with parameter 1 distributions. The tail heaviness of the respective distributions were then compared using
method 8. This example is done in-order to demonstrate how the results produced by the exponential QQ-
plot and the mean excess plot di�er when the underlining distribution changes for the data generated. For
the exponential data generated we have the exponential QQ-plot in Figure 6 followed by its mean excess plot
in Figure 7.

Figure 6: Exponential QQ-plot for simulated exp(1)

Figure 7: Mean excess plot for simulated exp(1)
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Now using method 8, since exponential QQ-plot is linear the data is considered exponential and the mean
excess value plot stays horizontal with increasing k, therefore the data is considered exponential as it should
be.

For the Weibull data generated we have the exponential QQ-plot in Figure 8 followed by its mean excess
plot in Figure 9.

Figure 8: Exponential QQ-plot for simulated Weibull(0.5, 2)

Figure 9: Mean excess plot for simulated Weibull(0.5, 2)

Now using method 8 since we see convex exponential QQ-plot in Figure 8 for the Weibull data generated,
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therefore the tail of the Weibull data is heavier than the exponential distribution. The mean excess value
plot does not stay horizontal with increasing k, which is an indication of a heavy tail.

For the lognormal data generated we have the exponential QQ-plot in Figure 10 followed by its mean
excess plot in Figure 11.

Figure 10: Exponential QQ-plot for simulated logNormal(0, 1)

Figure 11: Mean excess plot for simulated logNormal(0, 1)

Similar to the Weibull data, using method 8 we have a convex exponential QQ-plot in Figure 10 for the
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lognormal data generated therefore the tail of the lognormal data is heavier than the exponential distribution.
The mean excess value plot does not stay horizontal with increasing k, which is an indication of a heavy tail.

For the Pareto data generated we have the exponential QQ-plot in Figure 12 followed by its mean excess
plot in Figure 13.

Figure 12: Exponential QQ-plot for simulated Pareto(2.5, 1)

Figure 13: mean excess plot for simulated Pareto(2.5, 1)

Similar to the Weibull and lognormal data, using method 8 we have a convex exponential QQ-plot in
Figure 12 for the Pareto data generated therefore the tail of the Pareto data is heavier than the exponential
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distribution. The mean excess values do not stay horizontal with increasing k, which is an indication of a
heavy tail.

Example 15. For this example, using the same simulated data from example 14, the tail heaviness of the
respective distributions was then compared using method 9. For the Pareto data generated we have the
Pareto QQ-plot in Figure 14 followed by its Hill plot in Figure 15.

Figure 14: Pareto QQ-plot for simulated Pareto(2.5, 1)

Figure 15: Hill plot for simulated Pareto(2.5, 1)
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Now using method 9, since Pareto QQ-plot in Figure 14 is linear the data is Pareto and we have that the
Hk:n in Figure 15 stays relatively horizontal with decreasing k it follows that the Pareto �t is appropriate.

Now for the lognormal data generated we have the Pareto QQ-plot in Figure 16 followed by its Hill plot
in Figure 17.

Figure 16: Pareto QQ-plot for simulated logNormal(0, 1)

Figure 17: Hill plot for for simulated logNormal(0, 1)

Now using method 9 since we have a concave Pareto QQ-plot in Figure 16 for the lognormal data generated,
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therefore the tail of the lognormal data is less heavy than that of the Pareto distribution. Since Hk:n decreases
with decreasing k it follows that the tail of the lognormal data is lighter than that of the Pareto.

For the weibull data generated we have the Pareto QQ-plot in Figure 18 followed by its Hill plot in Figure
19.

Figure 18: Pareto QQ-plot for simulated weibull(0.5, 2)

Figure 19: Hill plot for simulated Weibull(0.5, 2)

Similar to the lognormal data, the Pareto QQ-plot in Figure 18 of the weibull data is concave therefore the
tail of the weibull data is less heavy than that of the Pareto. Note also that Hk:n decreases with decreasing
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k therefore it follows that the tail of the weibull data is lighter than that of the Pareto.
For the exponential data generated we have the Pareto QQ-plot in Figure 20 followed by its Hill plot in

Figure 21.

Figure 20: Pareto QQ-plot for simulated exp(1)

Figure 21: Hill plot for simulated exp(1)

Similar to the lognormal and Weibull data, the Pareto QQ-plot in Figure 20 of the exponential data is
concave therefore the tail of the exponential data is less heavy than that of the Pareto. Note also that Hk:n
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decreases with decreasing k in Figure 21 therefore it follows that the tail of the exponential data is lighter
than that of the Pareto.

3.5 Splicing

It has often been seen that in the modeling of claims data that one model is su�cient to capture claims
behavior over one interval where as other models are su�cient on the other intervals. This is why we
consider the splicing method to create new distributions that take this into account.

Consider the two probability density functions f1 and f2 with corresponding distribution functions F1

and F2, now we have:

f∗1 (x) =

{
f1(x)

F1(t)−F1(tl)
, tl ≤ x ≤ t

0 otherwise

and

f∗2 (x) =

{
f2(x)

F2(T )−F2(t)
, t ≤ x ≤ T

0 otherwise

which is the transformation of f1 and f2 to valid densities on the intervals
[
tl; t
]
and [t;T ] where tl and T

are the lower and upper truncation but t is the splicing point. It follows that the splicing density is given by:

f (x) =


0 , x ≤ tl

αf∗1 (x) , tl < x ≤ t
(1− α) f∗2 (x) , t < x < T

0 , x ≥ T

(3)

where α and (1− α) are constants such that α+ (1− α) = 1, making f (x) a legitimate density function [4].

4 Application

A simulation was performed using MATLAB R2016a [26] in which 5000 observations were generated from
3 initial distributions, namely, N(190093.2401, 81585.08159), Gamma(2, 73779) and exp(110000) where the
minimum claim amount is zero and a maximum of 350000 (i.e. truncation is applied) is set for the 3 initial
distributions. From the claim amount of 350000 onward 100 observations were generated from 4 distributions
exp(0.5), Weibull(0.5, 0.8), LogNormal(0.01, 1.5) and Pareto(0.0001, 1.8) respectively, therefore forming a
total of 12 spliced distributions.
The value of α from Equation 3 was not determined as it is mathematically technical. Rather the data
was simulated to match visually, and in this section the value of α was set to be approximately equal to
5000
5250 = 95.2% such that most of data generated comes from the initial distribution. Therefore 1 − α =
4.8% =⇒ α + (1 − α) = 1, it follows that approximately 5% of the data generated comes from the tail
distribution., see Figure 31-42.
The aim of the application section is to demonstrate methods 8 and 9 using real simulated data, where the
data is from a spliced distribution. The 3 initial distributions and the 4 tail distributions are shown in Figures
22 and 23.
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Figure 22: Initial distributions (X < 350000)

Figure 23: Tail distributions (X < 350000)

The simulated data for the 3 initial distributions, is shown in Figures 24, 25 and 26.
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Figure 24: Simulated data for N(190093.2401, 81585.08159)

Figure 25: Simulated data for Gamma(2, 73779)
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Figure 26: Simulated data for exp(110000)

The simulated data for the 4 tail distributions is shown in Figures 27, 28, 29 and 30.

Figure 27: Simulated data for exp(0.5)
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Figure 28: Simulated data for Weibull(0.5, 0.8)

Figure 29: Simulated data for LogNormal(0.01, 1.5)
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Figure 30: Simulated data for Pareto(0.0001, 1.8)

Figures 31-42 show the 12 simulated data from the 12 spliced distributions were obtained.

Figure 31: N(190093.2401, 81585.08159) spliced with exp(0.5)
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Figure 32: N(190093.2401, 81585.08159) spliced with Weibull(0.5, 0.8)

Figure 33: N(190093.2401, 81585.08159) spliced with LogNormal(0.01, 1.5)
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Figure 34: N(190093.2401, 81585.08159) spliced with Pareto(0.0001, 1.8)

Figure 35: exp(110000) spliced with exp(0.5)
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Figure 36: exp(110000) spliced with Weibull(0.5, 0.8)

Figure 37: exp(110000) spliced with LogNormal(0.01, 1.5)
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Figure 38: exp(110000) spliced with Pareto(0.0001, 1.8)

Figure 39: Gamma(2, 73779) spliced with exp(0.5)
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Figure 40: Gamma(2, 73779) spliced with Weibull(0.5, 0.8)

Figure 41: Gamma(2, 73779) spliced with LogNormal(0.01, 1.5)
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Figure 42: Gamma(2, 73779) spliced with Pareto(0.0001, 1.8)

4.1 Unknown splicing point

Now we look at a situation where the splicing point is assumed unknown and we would like to know when a
heavy tail has occurred in the 12 spliced distributions above. Using the simulated data from the 12 spliced
distributions and applying method 8 the following exponential QQ-plots and mean excess plots and were
obtained.

Figure 43: Exponential QQ-plot and mean excess plot for simulated N(190093.2401, 81585.08159) spliced
with exp(0.5)
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Figure 44: Exponential QQ-plot and mean excess plot for simulated N(190093.2401, 81585.08159) spliced
with Weibull(0.5, 0.8)

Figure 45: Exponential QQ-plot and mean excess plot for simulated N(190093.2401, 81585.08159) spliced
with LogNormal(0.01, 1.5)

Figure 46: Exponential QQ-plot and mean excess plot for simulated N(190093.2401, 81585.08159) spliced
with Pareto(0.0001, 1.8)
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Figure 47: Exponential QQ-plot and mean excess plot for simulated exp(110000) spliced with exp(0.5)

Figure 48: Exponential QQ-plot and mean excess plot for simulated exp(110000) spliced with
Weibull(0.5, 0.8)

Figure 49: Exponential QQ-plot and mean excess plot for simulated exp(110000) spliced with
LogNormal(0.01, 1.5)
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Figure 50: Exponential QQ-plot and mean excess plot for simulated exp(110000) spliced with
Pareto(0.0001, 1.8)

Figure 51: Exponential QQ-plot and mean excess plot for simulated Gamma(2, 73779) spliced with exp(0.5)

Figure 52: Exponential QQ-plot and mean excess plot for simulated Gamma(2, 73779) spliced with
Weibull(0.5, 0.8)
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Figure 53: Exponential QQ-plot and mean excess plot for simulated Gamma(2, 73779) spliced with
LogNormal(0.01, 1.5)

Figure 54: Exponential QQ-plot and mean excess plot for simulated Gamma(2, 73779) spliced with
Pareto(0.0001, 1.8)

Now consider the exponential QQ-plot in Figure 48, by looking at the horizontal axis
[
−log(1− j

n+1 )
]
we

see that from 0 to 4 we have a relatively linear line, from 4 onward we see the line taking a convex shape.
Furthermore log(4) = 1.386 on the log scale. This sudden change in the behavior of the line is caused by the
splicing of two di�erent distributions at some point, in this case the point is 350000. Since the mean excess
plot is convex from 4 onward by Method 8, the spliced distribution is heavy tailed. Similar reasoning can be
used for the other spliced distributions using their exponential QQ-plots.

This can be useful in practice because if we have claims data from particular insurance company and
would like to determine the splicing point, looking at the exponential QQ-plot for the claims data we can
determine the splicing point then split the claims data at that particular point. This is done so that a further
analysis can be performed on the two pieces separately.

Now using the simulated data from the 12 spliced distributions and applying Method 9 Figures 55 to 66
Pareto QQ-plots and Hill plots were obtained.
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Figure 55: Pareto QQ-plot and Hill plot for simulated N(190093.2401, 81585.08159) spliced with exp(0.5)

Figure 56: Pareto QQ-plot and Hill plot for simulated N(190093.2401, 81585.08159) spliced with
Weibull(0.5, 0.8)

Figure 57: Pareto QQ-plot and Hill plot for simulated N(190093.2401, 81585.08159) spliced with
LogNormal(0.01, 1.5)
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Figure 58: Pareto QQ-plot and Hill plot for simulated N(190093.2401, 81585.08159) spliced with
Pareto(0.0001, 1.8)

Figure 59: Pareto QQ-plot and Hill plot for simulated exp(110000) spliced with exp(0.5)

Figure 60: Pareto QQ-plot and Hill plot for simulated exp(110000) spliced with Weibull(0.5, 0.8)
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Figure 61: Pareto QQ-plot and Hill plot for simulated exp(110000) spliced with LogNormal(0.01, 1.5)

Figure 62: Pareto QQ-plot and Hill for simulated exp(110000) spliced with Pareto(0.0001, 1.8)

Figure 63: Pareto QQ-plot and Hill plot for simulated Gamma(2, 73779) spliced with exp(0.5)
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Figure 64: Pareto QQ-plot and Hill plot for simulated Gamma(2, 73779) spliced with Weibull(0.5, 0.8)

Figure 65: Pareto QQ-plot and Hill plot for simulated Gamma(2, 73779) spliced with LogNormal(0.01, 1.5)

Figure 66: Pareto QQ-plot and Hill plot for simulated Gamma(2, 73779) spliced with Pareto(0.0001, 1.8)

We can see that the Pareto QQ-plots do not illustrate the splicing point as e�ectively as the exponential
QQ-plots. However, the Hill plots do indicate the tails from the point log(Xn−k:n) = 12.7 onward on the
horizontal axis. For example if we look at Figures 58, 62 and 66 where the tail distribution is a Pareto
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distribution, we see that from the point log(Xn−k:n) = 12.7 onward we have a relatively horizontal plot
whereas the other Hill plots do not behave in this nature. Furthermore log(350000) = 12.766, which is very
close to 12.7 where 350000 is the approximated splicing point.
The application of methods 1 − 7 will not be illustrated in this section since it is illustrated in the M.Sc.
thesis �Statistical distributions in general insurance stochastic processes�[24].

5 Conclusion

On the basis of the literature review it is evident that a huge amount of research is available on the modeling
of claims data and measuring of tail heaviness.

The research conducted revealed that when the application techniques, which were gathered in the study,
were applied to the simulated claims data it is often di�cult to �nd a single distribution to describe the
distribution of the whole range of observed claims. It was later realized in the application phase that in-order
to overcome this a segmentation based on claim size can be performed so that a speci�c distribution may
be �tted on the upper range or tail of the observed claims data while another distribution is �tted on the
lower range of the observed claims data. These distributions can then be considered as one single distribution
known as a spliced distribution. As a result one would have to incorporate these two distributions and the
splicing point between the two into the algorithm to �t the model.

It was also found that some methods for detecting tail heaviness are easier to implement then others and
that some methods obtain results more accurately than others.

With the above in mind, it is suggested that judgment not be based solely on a theoretical perspective
but also on a expert analyst's opinion on whether the �tted distributions of the model make sense or not.

44



References

[1] S Asmussen, H Schmidli, and V Schmidt. Tail probabilities for non-standard risk and queueing processes
with subexponential jumps. Advanced Applied Probability, 31:422�477, 1999.

[2] R Barlow, A Marshall, and F Proschan. Properties of probability distributions with monotone hazard
rates. The Annals of Mathematical Statistics, 34(2):375�389, 1963.

[3] J Beirlant, C Bouquiaux, and BJM Werker. Semiparametric lower bounds for tail index estimation.
Journal of Statistical Planning and Inference, 136(3):705�729, 2006.

[4] J Beirlant, Y Goegebeur, J Segers, and J Teugels. Statistics of Extremes: Theory and Applications.
John Wiley & Sons, 2006.

[5] M Brown. Further monotonicity properties for specialised renewal processes. The Annals of Probability,
9(5):891�895, 1981.

[6] M Bryson. Heavy-tailed distributions: Properties and tests. Technometrics, 16(1):61�68, 1974.

[7] H Drees. Minimax risk bounds in extreme value theory. The Annals of Statistics, 29(1):266�294, 2001.

[8] P Embrechts, R Frey, and H Furrer. Stochastic Processes in Insurance and Finance. To �nd, 1999.

[9] P Embrechts, C Kluppelberg, and T Mikosch. Modelling Extremal Events: for Insurance and Finance,
volume 33. Springer Science & Business Media, 2013.

[10] Ronald Aylmer Fisher and Leonard Henry Caleb Tippett. Limiting forms of the frequency distribution of
the largest or smallest member of a sample. In Mathematical Proceedings of the Cambridge Philosophical
Society, volume 24, pages 180�190. Cambridge Univ Press, 1928.

[11] S Foss, D Korshunov, and S Zachary. An Introduction to Heavy-Tailed and Subexponential Distributions.
Springer, 2011.

[12] Edward W Frees and Emiliano A Valdez. Hierarchical insurance claims modeling. Journal of the
American Statistical Association, 103(484):1457�1469, 2008.

[13] B Gnedenko. Sur la distribution limite du terme maximum d'une serie aleatoire. Annals of mathematics,
44(3):423�453, 1943.

[14] Dominique Guegan and Jing Zhang. Change analysis of a dynamic copula for measuring dependence in
multivariate �nancial data. Quantitative Finance, 10(4):421�430, 2010.

[15] P Hall. On estimating the endpoint of a distribution. The Annals of Statistics, 10(2):556�568, 1982.

[16] Carrie N Klabunde, Joan L Warren, and Julie M Legler. Assessing comorbidity using claims data: an
overview. Medical Care, 40(8):4�26, 2002.

[17] Christopher A Powers, Christina M Meyer, M Christopher Roebuck, and Baze Vaziri. Predictive model-
ing of total healthcare costs using pharmacy claims data: a comparison of alternative econometric cost
modeling techniques. Medical Care, 43(11):1065�1072, 2005.

[18] Ronald H Randles and Douglas A Wolfe. Introduction to the Theory of Nonparametric Statistics, vol-
ume 1. Wiley New York, 1979.

[19] S I Resnick. Heavy tail modeling and teletra�c data: special invited paper. The Annals of Statistics,
25(5):1805�1869, 1997.

[20] J Rolski, H Schmidli, V Schmidt, and J Teugels. Stochastic Processes for Insurance and Finance. John
Wiley and Sons, 1999.

45



[21] J Rolski, H Schmidli, V Schmidt, and J Teugels. Stochastic Processes for Insurance and Finance. John
Wiley and Sons, 2008.

[22] Paulo Jose Araujo dos Santos. Excesses, durations and forecasting value-at-risk. PhD thesis, University
of Lisbon, 2011.

[23] SAS Institute. SAS 9.4. SAS Institute, 2016.

[24] JHH Steenkamp. Statistical distributions in general insurance stochastic processes. Master's thesis,
University of Pretoria, 2014.

[25] J Teugels. The class of subexponential distributions. The Annals of Probability, 3(6):1000�1011, 1975.

[26] The MathWorks Inc. MATLAB R2016a version 9. The MathWorks Inc., Natick, Massachusetts, 2016.

[27] Karen CH Yip and Kelvin KW Yau. On modeling claim frequency data in general insurance with extra
zeros. Insurance: Mathematics and Economics, 36(2):153�163, 2005.

46



Appendix

MATLAB Code [26]

%Code illustrating tail heaviness;

x=1:0.1:10;

y1=exppdf(x,1);

y2=wblpdf(x,2,1.5);

y3=lognpdf(x,0,1);

y4=gppdf(x,2.5,1,0);

figure

plot(x,y1,'Linestyle','-.','Color','b','Linewidth',2)

hold on

plot(x,y2,'Linestyle','--','Color','g','Linewidth',2)

hold on

plot(x,y3,'Linestyle',':','Color','b','Linewidth',2)

hold on

plot(x,y4,'color','r','Linewidth',2)

legend({'Exponential','Weibull','Lognormal','Pareto'},'Location','NorthEast');

hold off

grid on

SAS Code [23]

/*--------------------------------SAS Code start------------------------------------*/

proc iml;

n=200;

/*seed=10;*/

wbl=J(n,1);

a=2;

b=0.5;

exp=J(n,1);

logn=J(n,1);

Par=J(n,1);

call randgen(Par,'PARETO',2.5,1); /* fill 200 observations generated from Pareto(2.5,1) */

call randgen(exp,'EXPONENTIAL',1); /* fill 200 observations generated from exp(1) */

do j= 1 to n;

wbl[j,1] = RAND('WEIBULL', b, a); /* fill 200 observations generated from Weibull(a,b) */

logn[j,1] = RAND('LOGNORMAL'); /* fill 200 observations generated from lognormal(0,1) */

end;

print exp wbl logn Par;

/*Sort column vectors for order statistics*/

expOrder=exp;

b = expOrder;

expOrder[rank(expOrder),] = b;
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wblOrder=wbl;

b = wblOrder;

wblOrder[rank(wblOrder),] = b;

lognOrder=logn;

b = lognOrder;

lognOrder[rank(lognOrder),] = b;

ParOrder=Par;

b = ParOrder;

ParOrder[rank(ParOrder),] = b;

print expOrder wblOrder lognOrder ParOrder;

OrderedData=expOrder||wblOrder||lognOrder||ParOrder;

create dataExpQQ from OrderedData;

append from OrderedData;

create dataParQQ from OrderedData;

append from OrderedData;

create datawblNew from wblOrder; /*Just added new for WBL col vector 200 observations*/

append from wblOrder;

quit;

proc export data=dataExpQQ outfile="C:\Users\Kuselo Kusi Ntsaluba\Dropbox\Research\

Proposal and Final report drafts\SAS\data1" dbms=xlsx replace;

run;

proc export data=dataParQQ outfile="C:\Users\Kuselo Kusi Ntsaluba\Dropbox\Research\

Proposal and Final report drafts\SAS\data2" dbms=xlsx replace;

run;

/*Just added new for WBL col vector 200 observations*/

proc export data=datawblNew outfile="C:\Users\Kuselo Kusi Ntsaluba\Dropbox\Research\

Proposal and Final report drafts\SAS\dataWbl" dbms=xlsx replace;

run;

/*----------------------------------------------------------------------------------*/

/*--------------For simulation of 5000 values for applications----------------------*/

proc iml;

m=5000;

k=100;

NormalVec=J(m,1);

GammaVec=J(m,1);

ExpVec=J(m,1);

ExpVecGreater=J(k,1);

WblVecGreater=J(k,1);

lognVecGreater=J(k,1);

ParVecGreater=J(k,1);
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NormPercentile=Quantile('NORMAL',0.95,3.5,2);

GammaPercentile=Quantile('Gamma',0.95,2,1);

ExpPercentile=Quantile('Exponential',0.95,1);

print NormPercentile GammaPercentile ExpPercentile;

/*For simulation of 5000 values for Normal*/

do i=1 to 5000;

find=0;

do until (find=1);

x=RAND('NORMAL',3.5 , 2);

if (x>0 & x<=NormPercentile) then find=1;

end;

NormalVec[i,1]=x;

end;

print NormalVec;

/*For simulation of 5000 values for Gamma*/

do i=1 to 5000;

find=0;

do until (find=1);

x=RAND('GAMMA',2 , 1);

if (x<=GammaPercentile) then find=1;

end;

GammaVec[i,1]=x;

end;

print GammaVec;

/*For simulation of 5000 values for Exponential*/

do i=1 to 5000;

find=0;

do until (find=1);

x=RAND('EXPONENTIAL', 1);

if (x<=ExpPercentile) then find=1;

end;

ExpVec[i,1]=x;

end;

print ExpVec;

/*For simulation of 100 values for Exponential tail against Normal*/

do i=1 to 100;

find=0;
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do until (find=1);

x=RAND('EXPONENTIAL', 3);

if (x>=NormPercentile) then find=1;

end;

ExpVecGreater[i,1]=x;

end;

print ExpVecGreater;

/*For simulation of 100 values for Weibull tail against Normal*/

do i=1 to 100;

find=0;

do until (find=1);

x=RAND('WEIBULL', 0.5, 2);

if (x>=NormPercentile) then find=1;

end;

WblVecGreater[i,1]=x;

end;

print WblVecGreater;

/*For simulation of 100 values for Lognormal tail against Normal*/

do i=1 to 100;

find=0;

do until (find=1);

x=RAND('LOGNORMAL');

if (x>=NormPercentile) then find=1;

end;

lognVecGreater[i,1]=x;

end;

print LognVecGreater;

/*For simulation of 100 values for Pareto tail against Normal*/

do i=1 to 100;

find=0;

do until (find=1);

call randgen(x,'PARETO',2.5,1);

if (x>=NormPercentile) then find=1;

end;

ParVecGreater[i,1]=x;

end;

print ParVecGreater;

quit;

/*--------------------------------SAS Code end------------------------------------*/
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MATLAB Code [26]

function ExpQQPlot(xdata)

%xdata is already ordered;

y = xdata;

n = size(xdata,1);

x = zeros(n,1);

for i = 1 : n

x(i) = -log(1-i/(n+1));

end

plot(x,y);

xlabel('-log(1-(j/(n+1)))')

ylabel('X_j_:_n')

title('exponential QQ plot')

grid on

%Mean excess Values:

e = zeros(n,1);

for k = 1 : n-1

e(k) = 0;

for j = 1 : k

e(k) = e(k) + xdata(n-j+1);

end

e(k) = e(k)/k - xdata(n-k);

end

yreverse = zeros(n,1);

for k = 1 : n-1

yreverse(k) = y(n-k);

end

figure

plot(yreverse,e,'*');

xlabel('X_n_-_k_:_n')

ylabel('e_k_:_n')

title('mean excess plot')

grid on

end

function ParetoQQPlot(xdata)

%xdata is already ordered;

y = log(xdata);

n = size(xdata,1);

x = zeros(n,1);

for i = 1 : n

x(i) = -log(1-i/(n+1));

end

plot(x,y);

xlabel('-log(1-(j/(n+1)))')

ylabel('log(X_j_:_n)')

title('Pareto QQ plot')

grid on

%Hill plot Values:

e = zeros(n,1);

for k = 1 : n-1

e(k) = 0;
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for j = 1 : k

e(k) = e(k) + log(xdata(n-j+1));

end

e(k) = e(k)/k - log(xdata(n-k));

end

yreverse = zeros(n,1);

for k = 1 : n-1

yreverse(k) = (y(n-k));

end

figure

plot(yreverse,e,'*');

xlabel('log(X_n_-_k_:_n)')

ylabel('H_k_:_n')

title('Hill plot')

grid on

end

%Code for data of Initial distributions (3 densities and parameters);

%MATLAB

x=0:0.1:350000;

z=0:0.1:700000;

y1=(normpdf(x,190093.2401,81585.08159));

syms betaGam

% BetaG=double(solve(0.95==gamcdf(350000,2,betaGam)))

BetaG=73779; % such that probability=0.95 when a=2

probability=gamcdf(350000,2,73779)

y2=gampdf(x,2,BetaG);

syms l

% lamda=double(solve(0.95==1-exp(-350000*l)))

y3=exppdf(x,110000);

figure

plot(x,y1,'Linestyle','-','Color','r','Linewidth',2)

hold on

plot(x,y2,'Linestyle','--','Color','b','Linewidth',2)

hold on

plot(x,y3,'Linestyle',':','Color','g','Linewidth',2)

legend({'Normal','Gamma','Exponential'},'Location','NorthEast');

hold off

title('Initial distributions (<350000)')

xlabel('x')

ylabel('f(x)')

grid on

% B=unifrnd(0,1,5,1)

%Code for data tail distributions (4 densities and parameters);MATLAB

z=0:0.000005:6;

w=0:0.5:600000;

size(z)

size(w)
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%Exponential Tail Distrubtion%

Mean=0.5;

y2 = pdf('exponential', z, Mean);

figure

plot(w+350000,y2,'Linestyle','-.','Color','b','Linewidth',2)

%Weibull Tail Distribution%

lambda = 0.5;

k = 0.8;

y3 = pdf('weibull',z,lambda,k);

hold on

plot(w+350000,y3,'Linestyle','-.','Color','r','Linewidth',2)

%Pareto Tail Distribution%

minn = 1.8;

alpha = 0.0001;

y4 = pdf('Generalized Pareto',z,alpha,minn,0);

hold on

plot(w+350000,y4,'Linestyle','-.','Color','g','Linewidth',2)

%Lognormal Tail Distribution%

sigma = 1.1;

mu = 0.1;

y5 = pdf('Lognormal',z,mu,sigma);

plot(w+350000,y5,'Linestyle','-.','Color','c','Linewidth',2)

figure

plot(w+350000,y2,'Linestyle','-.','Color','b','Linewidth',2)

hold on

plot(w+350000,y3,'Linestyle',':','Color','g','Linewidth',2)

hold on

plot(w+350000,y4,'Linestyle','-','Color','r','Linewidth',2)

hold on

plot(w+350000,y5,'Linestyle','--','Color','c','Linewidth',2)

legend({'Exponential','Weibull','Pareto','Lognormal'},'Location','NorthEast');

hold off

title('Comparison of tails')

xlabel('x')

ylabel('f(x)')

grid on

axis([350000 950000 0 2.5]);

% ///Code for Random number generation (3 initial distributions) MATLAB///

n=5000;

count=0;

randUniform=zeros(n,1);

randExp=zeros(n,1);

randGamma=zeros(n,1);
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randNorm=zeros(n,1);

while count<n

uni=unifrnd(0,1,1,1); % generate 1 value from uniform(0,1)

if uni<=0.958

count=count+1;

randUniform(count)=uni;

randExp(count)=expinv(uni,110000); %generate Exp(110000) values

end

end

count=0;

while count<n

uni=unifrnd(0,1,1,1); % generate 1 value from uniform(0,1)

if uni<=0.95

count=count+1;

randUniform(count)=uni;

randGamma(count)=gaminv(uni,2,73779); %generate gamma(2,73779) values

end

end

count=0;

while count<n

uni=unifrnd(0,1,1,1); % generate 1 value from uniform(0,1)

if uni<=0.974

count=count+1;

randUniform(count)=uni;

if norminv(uni,190093.2401,81585.08159)<0

randNorm(count)=abs(norminv(uni,190093.2401,81585.08159));

%generate N(190093.2401,81585.08159) values

else randNorm(count)=norminv(uni,190093.2401,81585.08159);

end

end

end

% %Initial Histograms

% figure

% hist(randExp,50)

% title('Exponential simulated data');

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(randGamma,50)

% title('Gamma simulated data');

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(randNorm,50)

% title('Normal simulated data');

% xlabel('Claim amounts')

% ylabel('Number of Claims')

%///////Code for Random number generation (4 tail distributions)///////////

m=100;
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count=0;

randUniform=zeros(m,1);

randExp2=zeros(m,1);

randWbl=zeros(m,1);

randLogn=zeros(m,1);

randPar=zeros(m,1);

while count<m

uni=unifrnd(0,1,1,1); % generate 1 value from uniform(0,1)

count=count+1;

randUniform(count)=uni;

randExp2(count) = 100000*icdf('exponential', uni, 0.5)+350000;

%generate scaled Exp(0.5) value

end

count=0;

while count<m

uni=unifrnd(0,1,1,1); % generate 1 value from uniform(0,1)

count=count+1;

randUniform(count)=uni;

randWbl(count) = 100000*icdf('Weibull', uni, 0.5, 0.8)+350000;

%generate scaled wbl(0.5,0.8) value

end

count=0;

while count<m

uni=unifrnd(0,1,1,1); % generate 1 value from uniform(0,1)

count=count+1;

randUniform(count)=uni;

randLogn(count) = 100000*icdf('Lognormal', uni, 0.01, 1.5)+350000;

%generate scaled Logn(0.01,1.5) value

end

count=0;

while count<m

uni=unifrnd(0,1,1,1); % generate 1 value from uniform(0,1)

count=count+1;

randUniform(count)=uni;

randPar(count) = 100000*icdf('Generalized Pareto', uni, 0.0001, 1.8, 0)+350000;

%generate GP(0.0001,1.8,0) value

end

% %Tail Histograms

% figure

% hist(randExp2,50)

% title('Exponential simulated data');

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% xlim auto

% figure

% hist(randWbl,50)

% title('Weibull simulated data');

% xlabel('Claim amounts')
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% ylabel('Number of Claims')

% xlim auto

% figure

% hist(randLogn,50)

% title('Lognormal simulated data');

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% xlim auto

% figure

% hist(randPar,50)

% title('Pareto simulated data');

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% xlim auto

%Normal spliced vectors

NormExp=sort(vertcat(randNorm,randExp2));

NormWbl=sort(vertcat(randNorm,randWbl));

NormLogn=sort(vertcat(randNorm,randLogn));

NormPar=sort(vertcat(randNorm,randPar));

%Exponential spliced vectors

ExpExp=sort(vertcat(randExp,randExp2));

ExpWbl=sort(vertcat(randExp,randWbl));

ExpLogn=sort(vertcat(randExp,randLogn));

ExpPar=sort(vertcat(randExp,randPar));

%Gamma spliced vectors

GammaExp=sort(vertcat(randGamma,randExp2));

GammaWbl=sort(vertcat(randGamma,randWbl));

GammaLogn=sort(vertcat(randGamma,randLogn));

GammaPar=sort(vertcat(randGamma,randPar));

% %Normal Spliced Histograms

% figure

% hist(NormExp,50)

% title('Normal spliced with Exp')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(NormWbl,50)

% title('Normal spliced with Wbl')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(NormLogn,50)

% title('Normal spliced with LogN')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(NormPar,50)

% title('Normal spliced with Par')

% xlabel('Claim amounts')
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% ylabel('Number of Claims')

%

% %Exponential Spliced Histograms

% figure

% hist(ExpExp,50)

% title('Exp spliced with Exp')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(ExpWbl,50)

% title('Exp spliced with Wbl')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(ExpLogn,50)

% title('Exp spliced with LogN')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(ExpPar,50)

% title('Exp spliced with Par')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% %Gamma Spliced Histograms

% figure

% hist(GammaExp,50)

% title('Gamma spliced with Exp')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(GammaWbl,50)

% title('Gamma spliced with Wbl')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(GammaLogn,50)

% title('Gamma spliced with LogN')

% xlabel('Claim amounts')

% ylabel('Number of Claims')

% figure

% hist(GammaPar,50)

% title('Gamma spliced with Par')

% xlabel('Claim amounts')

% ylabel('Number of Claims')
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Abstract

The analysis of multilevel models is based on looking at di�erent regression models with di�erent

explanatory variables at di�erent levels. There are various ways to analyse the multilevel models, one of

which is the use of SAS PROC MIXED. There are 2 types of multilevel analysis. Hierarchical data found

commonly in educational and clinical research settings as well as longitudinal data, which represents

models of individuals over time. The level 1 units can be explained by regression over time, which

are commonly dependent, however, other there may exist secondary, level 2 units, which are additional

explanatory variables and in�uence the regression outcome.
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1 Introduction

Multilevel models are models which can be analyzed using di�erent regression models, considering both �xed
and random variables and eventually creating one regression equation which has integrated all variables. The
aim of the research paper is to answer the research question: What is the in�uence of the level 2 explanatory
variables on the slopes and intercepts over time? The research paper will be looking at 2 level growth model
analysing the depression levels of individuals that are unemployed between certain periods of time. It is
essential to look at the detailed levels because ignoring details can lead to in�ated type 1 error rates, as well
as errorneous reading and interpretation of statistical signi�cance tests[1]. The models that are generally
formulated from mulitlevel models are models with varying intercepts or models with varying intercepts and
slopes.

This paper is investigating the level of depression level (CESD score) between a sample of people who have
not been employed for 1 month, 5 months, and 11 months. At level 1 we look at the e�ect on the CESD score
over time, while at level 2, the explanetory variable, in this case is whether a person is unemployed or not
will be added in order to crate a combined model. This paper will discuss 4 types of models for longitudinal
data. First, the Unconditional means model, the Unconditional growth model, and the Conditional growth
model, and lastly, the Conditional growth model with �xed slopes.. Each model will have level 1 and level
2 in�uences and we will produce combined model estimates with both �xed and random e�ects from the
explanatory variables. For all of the models we make the following assumptions:

εi ∼ N(0, σ2I3)

,and

uij ∼ N(0, τ00)

These assumptions are based on [11, 10].
The paper will then calculate and interprete the variance components σ2 and Φ, which are the �between-

person� and �within-person� variances respectively.

2 Background Theory

Origin of Multilevel analyis The �rst step concerning multilevel analysis was in the United States
of America in the 1940's. It was referred to as contextual analysis and the �rst statistical techniques on
contextual analysis were by [7] where and [8] . In the early 1970's the development of multilevel analysis
started and it took part in schools [9]. The innovation was to analyse each school seperately and the
dependent variable would be marks for a certain subject with explanatory variables such as gender or parents
socioeconomic status. An estimation for a identical regression models for each school therefore yeilded a set
of intercepts and regression coe�cients that showed the systematic variation between schools[ESS99]. This
led to the slopes-as-approach was looked at as a two-stage multiple regression.

Innovation of Multilevel model According to [10] the analysis of multilevel models is essential in
order to know he e�ects of a model with di�erent levels. Not everything is as simple and linear as it seems.
Most cases have other in�uences that form part of the building blocks that make up the main or combined
model. [10] shows that time is a predictor of regression models, especially growth models dependent on the
lapse of time.

[11] further explains how using SAS PROC MIXED can analyse multilevel hierarchical linear models as
well as individual growth models. A simple explainantion of �xed e�ects can be e�ects that cannot be altered
and are constant, such as time whereas the random e�ects can be in�uenced and usually change. These
random e�ects are gerally in the form of dummy variables. One of the comparative techniques [10] uses is
two-stage generalized least squares model in order to estimate the linear regression of an individual outcome
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on a group in studies of multilevel data. The di�erence from ordinary least squares (OLS) estimation is that
they assume an intra-class correlation among the errors within the group. Further research by [6] shows the
di�erent methods used to perform a multilevel analysis, which includes analysing residuals, examining slope
variation using ordinary least squares, doing intraclass correlations, as well as hypothesis testing and other
estimation methods. [6] analyses multilevel regression by using di�erent softwares, such as HLM, MPlus,
Stata, and SAS to name a few. He uses the approach of multilevel structural equation modelling (MSEM).
First, he takes a sample of units from the higher level (e.g. schools), and next he samples the sub-units from
the available units (e.g. sample pupils from the schools). In these samples, the individual observations are
generally not independent. [6] states: �Pupils in the same school tend to be similar to each other, because
of selection processes and because of common history the pupils share by going to the same school.� The
resulting intraclass correlation between variables measured on pupils from the same schools is higher than
the average correlation measured on pupils from di�erent schools.

[2] States that multilevel analysis in sociology is individual analysis based on di�erent levels caused by
context. Multilevel models are also referred to as contextual models. They identify the link by showing
di�erent social science research used to analyse multilevel models while [5] states that nonlinear multilevel
models exist and usually occur when modelling discrete data. He shows how to linearize nonlinear multilevel
data and do estimations on the data by using iterative generalized least squares estimation which was taken
to be equivalent to maximum likelihood.

The innovation of this paper This paper will extract the unemployment data from [10] notes, where
[10] captures the depression levels of individuals who are unemployed over time. speci�cally on the Chapter
5 analysis in her book. The months of the dataset have been altered for the purpose of clearly de�ning the
timeline of the investigation. The dataset was provided in the form of a person-period dataset, with 674
observations. In this paper, we manipulated the dataset to make it more simpler to analyse by setting 3 time
intervals, 1 month, 5 months, and 11 months. We also want to work with complete data so we changed the
dataset from a person-period dataset to a period-level dataset. Once the dataset was changed, we deleted
all missing �elds as well as individuals who do not have CESD scores for all 3 months. Once the data was
made complete, we reverted the dataset back to a person-period dataset and we eventually had 579 complete
observations. The SAS coding is provided in the appendix.

We then use SAS Proc Mixed to analyse the the random and �xed e�ects of time on the level 1 regression
model, the unemployment e�ect and time on the level 2 regression, and �nally combine level 1 and level 2
model to create a multilevel regression model with all the e�ects. The results in this paper will be displayd
in a matrix format and the parameters and variances will be discussed.

The paper will also investigate the intra class correlation between the CESD scores, months, and unem-
ployment in the Unconditional means model.

3 Application

3.1 Concepts

3.1.1 Unconditional means model: completely random, no time or explanatory variables in-

�uence

The Unconditional means model is a multilevel model, with level 1 and level 2 e�ects, however, all the vari-
ables are completely random. The model equation is:

Level 1:

yi =

 1
1
1

 b0i + εi

Level 2:
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b0i = γ00 + u0j

Combined model:

ŷi = 1(γ00 + u0j) + εi

ŷi = γ001 + u0j1 + εi

Estimates:

•Fixed
yi = ˆγ001 = (14.9223)1

The results show that on average, an unemployed person has a CESD score of 14.92.

•Variance components
Φ̂ = ˆτ00 = 58
σ̂2 = 80

•Intraclass Correlation Coe�cient
ρ̂ = ˆτ00

ˆτ00+σ̂2
= 58

58+80 = 0.42

Figure 1 represents individual models that have been �tted to explain the CESD scores over time. The
y-axis represents the time in months.

Figure 1: Unconditional means model

8



3.1.2 Unconditional linear growth model

In this model, we only consider the in�uence of time. It is essential to know that Xi = 1, 5, 11. And in order
to enable a starting point for the intercepts, we create the variable ti = 0, 4, 10 , therefore for the rest of this
paper we will consider ti.

Level 1:

yi =

 1 0
1 4
1 10

( b0i
b1i

)
+ εi

Level 2:(
b0i = γ00 + u0j
b1i = γ10 + u1j

)
, where (

u0j
u1j

)
∼ N

((
0
0

)
,

(
τ00 τ01
τ10 τ11

))
Combined model:

yi =
(
1 ti

)( γ00 + u0j
γ00 + u1j

)
+ εi

yi = γ001 + γ10ti + u0j1 + u1jti + εi

Estimates:

•Fixed
ŷi = ˆγ001 + ˆγ10ti = (16.97)1− 0.439ti
The results show that on average, on the �rst day of unemployment, the CESD score is 16.97 and the

CESD score declines by 0.439. We notice that when we include the in�uence of time to the unconditional
means model, the within person variation decreases from 80 to 67.

•Variance components

Φ̂ =

(
ˆτ00 ˆτ01
ˆτ10 ˆτ11

)
=

(
76.25 −2.29
−2.29 0.359

)
σ̂2 = 67

Figure 2 displays the �tted models �tted above. We can see that the intercepts are randomised and the
slopes are di�erent.
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Figure 2: Unconditional linear growth model

3.1.3 Conditional linear growth model

This model allows for the e�ect of unemployment to vary over time.

Level 1:

yi =

 1 0
1 4
1 10

( boi
b1i

)
+ εi

Level 2:

(
b0i = γ00 + ziγ01 + u0j
b0i = γ10 + ziγ11 + u1j

)
, where

(
uoj
u0j

)
∼ N

((
0
0

)
,

(
τ00 τ01
τ10 τ11

))
Combined model:

yi =
(
1 ti

)( γ00 + ziγ01 + u0j
γ10 + ziγ11 + u1j

)
+ εi

yi = γ001 + γ011 + γ10ti + γ11ziti + u0j1 + u1jti + εi

Estimates:

•Fixed
yi = ˆγ001 + ˆy01zi1 + ˆy11ziti
= 16.91 + 0.09zi1− 0.593ti + 0.307ziti

Unemployed: zi = 1
ŷi = 16.991 − 0.286ti
Not Unemployed: zi = 0
ŷi = 16.991 − 0.593ti
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The results show that the CESD score of people who are unemployed is greater than the people who are
employed. The purple lines in Figure 3 represent the unemployed individuals, while the blue lines show the
CESD scores of employed individuals. The estimates also show that for an employed individual the CESD
score, on average, decreases by 0.593, while for the unemployed, it decreases by 0.286.

It is important to notice that both employed and unemployed models start at the same intercept, 16.991
which can be explained by assuming that all individuals were unemployed in the �rst month. The within
person variation is 67, and insigni�cant.

Φ̂ =

(
ˆτ00 ˆτ01
ˆτ10 ˆτ11

)
=

(
81.2 −2.65
−2.65 0.359

)
σ̂2 = 67

Figure 3: Conditional linear growth model

3.1.4 Conditional linear growth model : With �xed slopes

This model also allows for the e�ect of unemployment to vary over time, we then decided to hold the slopes
�xed.

Level 1:

yi =

 1 0
1 4
1 10

( b0i
b1i

)
+ εi

Level 2:(
b0i = γ00 + ziγ01 + u0j

b1i = γ10

)
Combined model:

yi =
(
1 ti

)( γ00 + ziγ01 + u0j
γ10 + z

i
γ11 + u1j

)
+ εi

11



= γ001 + γ01zi1 + γ10ti + u0j1 + εi

Figure 4: Conditonal growth model with �xed slopes

3.1.5 SAS Output

Model 1:Unconditional Means model

Covariance Parameter Estimate

Standard Z

Cov Parm Subject Estimate Error Value Pr > Z

UN(1,1) id 58.0485 8.8741 6.54 <.0001

Residual 80.4525 5.7911 13.89 <.0001

Model 1:Unconditional Means model 2

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 14.9223 0.6631 192 22.50 <.0001

Model 2: Unconditional Linear Growth Model

Covariance Parameter Estimates

Standard Z

Cov Parm Subject Estimate Error Value Pr Z

UN(1,1) id 76.2509 13.9706 5.46 <.0001

UN(2,1) id -2.2975 1.3679 -1.68 0.0930

UN(2,2) id 0.3598 0.2172 1.66 0.0488

Residual 66.6687 6.7867 9.82 <.0001
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Model 2: Unconditional Linear Growth Model

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 16.9725 0.8116 192 20.91 <.0001

months -0.4393 0.09318 385 -4.71 <.0001

Model 3: Conditional Linear Growth Model

Covariance Parameter Estimates

Standard Z

Cov Parm Subject Estimate Error Value Pr Z

UN(1,1) id 77.3084 14.1239 5.47 <.0001

UN(2,1) id -2.4257 1.3792 -1.76 0.0786

UN(2,2) id 0.3598 0.2172 1.66 0.0488

Residual 66.6687 6.7867 9.82 <.0001

Model 3: Conditional Linear Growth Model 6 Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 16.1376 1.0517 191 15.34 <.0001

months -0.4393 0.09318 385 -4.71 <.0001

unemp 1.6611 1.3226 191 1.26 0.2107

Model 4: Conditional Linear Growth Model:With fixed slopes

Covariance Parameter Estimates

Standard Z

Cov Parm Subject Estimate Error Value Pr > Z

UN(1,1) id 59.4704 8.8587 6.71 <.0001

Residual 75.7593 5.4604 13.87 <.0001

Model 4: Conditional Linear Growth Model:With fixed slopes

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 16.2064 1.0253 191 15.81 <.0001

months -0.4393 0.08802 385 -4.99 <.0001

unemp 1.5242 1.3251 191 1.15 0.2515

4 Conclusion

The research question has been answered and displayed showing that both level 1 and level 2 e�ects have
a in�uence on the combined outcome of the individual. In this paper it shows the basic intuition that the
CESD score of an individual is expected to decrease, however, if the person is unemployed then they will
have a higher CESD score, which in turn, are more depressed than an individual who is employed. There
are exceptions however, where even though the individual is employed their depression levels still increase
and that can be caused by other factors. This paper proves that it is essential to consider other underlying
e�ects on a regression model in both hierarchical and longitudinal data.
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Graphics Program

libname research 'G:\Judith Singer\ALDA'; **Create new permanent library;

run;

data research.unemployment;

infile "G:\Judith Singer\ALDA\Research\unemployment.csv"

pad missover dsd dlm=',' lrecl=300 firstobs=2;

input id

months

cesd

unemp

;

run;

data research.depression;

set research.unemployment;

interaction=months*unemp;

run;

proc sgplot data=research.depression (rename=(unemp=unemployment)) noautolegend ;

yaxis min = 0 max = 4;

reg x=months y=unemployment

/ group = id nomarkers LINEATTRS = (COLOR= gray PATTERN = 1 THICKNESS = 1) ;

reg x=months y=unemployment

/ nomarkers LINEATTRS = (COLOR= red PATTERN = 1 THICKNESS = 3) ;

run;

quit;

Data manipulation

data clean;

array tvar[3] t1-t3;

array cesdvar[3] cesd1-cesd3;

do i=1 to 3 until (last.id);

set a;

by id;

tvar [i]=t;

cesdvar[i]=cesd;

end;

drop i cesd ;

run;

data research.b;

set clean;

if nmiss(cesd1,cesd2,cesd3)>0 then delete;

run;

data research.c;

set research.b;

array tvar [3] t1-t3;

array cesdvar[3] cesd1-cesd3;

do i=1 to 3;

t=i;

if t=2 then t=5;

if t=3 then t=11;
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\subsection*{Regression Coding}

\begin{verbatim}

title "Model 1:Unconditional Means model";

proc mixed data = research.c noclprint covtest;

class id;

model cesd = /solution ddfm = bw;

random intercept / subject = id type = un;

run;

title "Model 2: Unconditional Linear Growth Model";

proc mixed data = research.c covtest noclprint;

class id;

model cesd = months /solution ddfm = bw ;

random intercept months / subject = id type = un;

run;

title "Model 3: Conditional Linear Growth Model";

proc mixed data = research.c covtest noclprint;

class id;

model cesd = months unemp /solution ddfm = bw ;

random intercept months / subject = id type = un;

run;

title "Model 4: Conditional Linear Growth Model:With fixed slopes";

proc mixed data = research.c covtest noclprint;

class id;

model cesd = months unemp /solution ddfm = bw ;

random intercept / subject = id type = un;

run;
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Abstract

In this study we compare properties of the geometric Poisson and di�erent geometric weighted Poisson
distributions in order to get a greater understanding of the geometric Poisson distribution. The focus will
be on analysing the dispersion (variability) of the geometric Poisson in relation to two geometric weighted
Poisson distributions using the Fisher index as a measure of dispersion.
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1 Introduction

The geometric Poisson distribution is a special case of a compound Poisson distribution with each term
geometrically distributed. The geometric Poisson distribution is de�ned as

X =

Nλ∑
i=1

Y i

where Nλ is a Poisson random variable with parameter λ > 0 and Y i, i = 1, 2, 3, ... are i.i.d. geometric
random variables, independent of Nλ. This distribution is also known as the Polya-Aeppli distribution; see
Johnson et al. [8].

This distribution has been applied in several �elds hence it is important to study and understand its
properties. There are many real life examples for which the geometric Poisson distribution has been used.
Randolph and Sahinoglu [12] illustrated the importance of the geometric Poisson distribution in controlling
defects in softwares, and Robin [13] and Robin et al. [14] used the geometric Poisson distribution to model
the distribution of overlapping word occurrences. Chen et al. [4] showed that the geometric Poisson
distribution can be used in process control to come up with a geometric Poisson CUSUM control chart.
The geometric Poisson distribution was also used by Rosychuk et al. [15] to explain DNA substitution by
assuming that the substitution events were Poisson distributed whilst the number of substitutions per event
were geometrically distributed.

In order to learn more about this distribution we will compare the geometric Poisson distribution (GPD) to
two geometric weighted Poisson distributions (GWPDs). In this essay the weight functions w (n) = n and
w(n) = 1

n+1 will be considered; see Minkova and Balakrishnan [9].

For the GWPD we have

Mw =

Nwλ∑
i=1

Y i

where Nw
λ has a weighted Poisson distribution with parameter λ > 0 and Y i, i = 1, 2, 3, ... are i.i.d.

geometric random variables, independent of Nw
λ . The probability mass function (pmf) of the weighted

version of the Poisson distribution is given by

fw(n) = P (Nw
λ = n) =

w(n)f(n)

E[w(Nλ)]
for n = 0, 1, 2, ...

where Nλ ∼ POI(λ), E[w(Nλ)] =
∞∑
n=0

w(n)λ
ne−λ

n! and f(n) is the pmf of Nλ.

To calculate and compare the dispersion of the GPD and the GWPD we will use the Fisher index of
dispersion de�ned as FI(X) = var(X)

E(X) which is used to measure the variability of a set of observed values
compared to a standard statistical model. A distribution is over-dispersed if FI(X) > 1 , equi-dispersed if
FI(X) = 1 and FI(X) < 1; see Minkova and Balakrishnan [9].

Anwar and Ahmad [2] derived several properties of the GPD including the survival function and Ata and
Ozel [3] derived the survival functions for the geometric Poisson process. Minkova and Balakrishnan [9]
derived the compound weighted Poisson distribution and went on to derive the Fisher index of dispersion of
the distributions for di�erent weight functions as well as derived some properties of the weighted Poisson
distributions through the analysis of the Fisher index. Özel and Ìnal [11] derived the explicit probability
function of the GPD and used it in the computation of the probabilities. They also used the probability
generating function of the GPD to calculate the moments needed to �nd the Fisher index. Özel and Ìnal
[11] also looked at the application and numerical examples of the GPD using tra�c accident data.
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2 Preliminary results

In this section we list the de�nitions of distributions, its properties and important statistical results that will
be used in the study.

De�nition 1. Let Y be a geometric distributed random variable with parameter 0 < θ ≤ 1 and probability
mass function given by

P (Y = j) = pj = θ(1− θ)j−1, j = 1, 2, 3, ... (1)

where E(Y ) = 1
θ and V (Y ) = 1−θ

θ2 . Then the probability generating function of Y is given by

gY (s) = E[sY ] =

∞∑
j=1

sjθ(1− θ)j−1 =
θs

1− (1− θ)s
. (2)

See Johnson et al. [8].

Theorem 2. Suppose Yi, i = 1, 2, 3, ..n are i.i.d. GEO(θ). Then

n∑
i=1

Yi ∼ NB(n, θ) and

P

(
n∑
i=1

Yi = y

)
=

(
y − 1
n− 1

)
θn(1− θ)y−n. (3)

De�nition 3. Let Nλ be a Poisson distributed random variable with parameter λ > 0 and probability mass
function given by

P (Nλ = n) =
λne−λ

n!
, n = 0, 1, 2, ... (4)

where E(Nλ) = λ and V (Nλ) = λ. Then the probability generating function of Nλ is given by

gNλ(s) = E(sNλ) =

∞∑
n=0

sne−λλn

n!
= e−λ

∞∑
n=0

(sλ)n

n!
= exp[(s− 1)λ]. (5)

See Johnson et al. [8].

De�nition 4. Let Nw
λ be a weighted Poisson distributed (WPD) random variable with parameter λ > 0,

weight function w(n) > 0 , n = 0, 1, 2, 3..., and probability mass function given by

P (Nw
λ = n) =

w(n)

E(w(Nλ))

λne−λ

n!
, n = 0, 1, 2, ... (6)

where Nλ ∼ POI(λ) and E(w(Nλ)) =
∑∞
n=0 w(n)

λne−λ

n! <∞ is the normalising constant. Then the expected

value and variance ofNw
λ are E(Nw

λ ) = λE(w(Nλ+1))
E(w(Nλ))

and V (Nw
λ ) = E(Nw

λ )+λ
2

[
E(w(Nλ+2))
E(w(Nλ))

−
(
E(w(Nλ+1))
E(w(Nλ))

)2]
and the probability generating function is given by

ψNwλ (s) = E(sN
w
λ ) =

E(w(Nλs))

E(w(Nλ))
e−λ(1−s) (7)

where Nλs ∼ POI(λs); see Minkova and Balakrishnan [9].

De�nition 5. let Nλ be a Poisson random variable with parameter λ > 0 and let Yi, i = 1, 2, 3, ..., be i.i.d.
random variables, independent of Nλ where E(Yi) = η and V (Yi) = σ2. Then

7



X =

Nλ∑
i=1

Y i (8)

is said to have a compound Poisson distribution with E(X) = λη and V (X) = λ(η2 + σ2).

De�nition 6. Let X be any random variable, the Fisher index of dispersion for X is de�ned as FI(X) =
var(X)
E(X) ; see Fisher [7].

De�nition 7. The survival function of a nonnegetive discrete random variable X is de�ned as the probability
S(x) = 1− P (X ≤ x) = P (X > x).

Theorem 8. Let X and N be random variables. The conditional expected value and conditional variance
are given by

E(X) = EN [E(X|N)] and V ar(X) = E [V ar(X|N)] + V ar [E(X|N)] . (9)

Theorem 9. The conditional probability of the event A given the event B is given by P (A/B) = P (A∩B)
P (B) . If

A and B are independent then

P (A/B) =
P (A)P (B)

P (B)
= P (A). (10)

3 The geometric Poisson distribution

In this section we derive the results of the geometric Poisson distribution and its Fisher index. The GPD we
will look at is de�ned as X =

∑Nλ
i=1 Yi with paramters λ > 0 and 0 < θ < 1 where Nλ ∼ POI(λ) and Yi,

i = 1, 2, 3, ... are i.i.d. geometric random variables independent of Nλ.

Theorem 10. The probability mass function of X is given by

PX(X = k) =

k∑
n=1

e−λ
λn

n!

(
k − 1
n− 1

)
θn(1− θ)k−n, k = 1, 2, 3, ... n = 1, 2, 3, .... (11)

It is said that X has a geometric Poisson distribution and is denoted by X ∼ GPD(λ, θ).

Proof. By the de�nition of a probability mass function and using (3), (4) and (10), the pmf of X is

pX(X = k)

=
∑∞
n=0 P (

∑Nλ
i=1 Yi = k, Nλ = n)

=
∑∞
n=0 P (Y1 + Y2 + ...+ YNλ = k|Nλ = n)P (Nλ = n)

=
∑∞
n=0 P (Y1 + Y2 + ...+ Yn = k)e−λ λ

n

n!

=
∑k
n=1 e

−λ λn
n!

(
k − 1
n− 1

)
θn(1− θ)k−n, k = 1, 2, 3, ...

8



Theorem 11. If X =
∑Nλ
i=1 Y i ∼ GPD(λ, θ), then the pgf of X is given by

gX(s) = exp[(gY (s)− 1)λ] (12)

where gY (s) =
θs

1−(1−θ)s from (2) .

Proof. Let Nλ ∼ POI(λ) with pgf gNλ(s) given by (5) and Yi ∼ GEO(θ), i = 1, 2, 3, ... with pgf gY (s) given
by (2). Using (2) , (5) and (9) and the de�nition of a pgf, the pgf of X is given by

gX(s)

= E[sX ]

= E[E[sX |Nλ]]

= E[E[sY1+Y2+Y3+...+YNλ |Nλ]]

= E[E[sY1sY2....sYNλ |Nλ]]

= E[gY (s)]
Nλ

= gNλ(gY (s))

= exp [(gY (s)− 1)λ]

= exp
[
( s−1
1−(1−θ)s )λ

]
.

Theorem 12. Let X =
∑Nλ
i=1 Y i ∼ GPD(λ, θ). Then

E(X) =
λ

θ
and V ar(X) =

λ(2− θ)
θ2

. (13)

Proof. From (12) the �rst and second derivatives of the pgf of a geometric Poisson random variable are given
by

g
′

X(s) = g
′

Y (s)λ exp[λ(gY (s)− 1)]

where g
′

Y (s) = θ[1− (1− θ)s]−2

and
g
′′

X(s) = g
′′

Y (s)λ exp[λ(gY (s)− 1)] + g
′

Y (s)λ(g
′

Y (s)λ exp[λ(gY (s)− 1)])

where g
′′

Y (s) = 2θ(1− θ)[1− (1− θ)s]−1.

Letting s = 1 we have
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gY (1) = 1, g
′

Y (1) =
1
θ and g

′′

Y (1) =
2(1−θ)
θ2 .

Then
g
′

X(1) = g
′

Y (1)λ exp[λ(gY (1)− 1)] = λ
θ

and
g
′′

X(1) = 2λ(1−θ)+λ2

θ2 .

Since g
′

X(1) = E(X) and g
′′

X(1) = E[X(X − 1)] = E(X2)− E(X)

It follows that
E(X) = λ

θ

and
V ar(X) = E(X2)− (E(X))2

= g
′′

X(1) + g
′

X(1)− [g
′

X(1)]2

= λ(2−θ)
θ2 .

Theorem 13. If X ∼ GPD(λ, θ) then

FI(X) =
2− θ
θ

. (14)

Proof. This follows directly from the results of the pervious theorem. Using (13)

FI(X)

= V ar(X)
E(X)

=
λ(2−θ)
θ2
λ
θ

= 2−θ
θ .

Since 0 < θ < 1, for any value of θ used FI(X) = 2−θ
θ > 1 hence the geometric Poisson distribution is

always over dispersed.

4 The geometric weighted Poisson distribution

In this section we derive the results of the geometric weighted Poisson distribution for the general case and
the two special cases where the weight functions are w(n) = n and w(n) = 1

n+1 . We also derive and explain
the Fisher indices.
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4.1 The general case of the geometric weighted Poisson distribution

In this section we will look at the random variableMw =
∑Nwλ
i=1 Yi where N

w
λ ∼WPD(λ) and Yi, i = 1, 2, 3, ...

are i.i.d. GEO(θ) variables independent of Nw
λ . E(w(Nλ)) =

∑∞
n=0 w(n)

λne−λ

n! is the normalizing constant
for the weighted Poisson distribution with Nλ ∼ POI(λ).

Theorem 14. The probability mass function of Mw is given by

P (Mw = k) =

k∑
n=1

w(n)

E(w(Nλ))

λne−λ

n!

(
k − 1
n− 1

)
θn(1− θ)k−n k = 1, 2, 3..., n = 1, 2, 3, ..., (15)

It is said that Mw has a geometric weighted Poisson distribution and is denoted as Mw ∼ GWPD(λ, θ).

Proof. By the de�nition of a probability mass function and using (3), (6) and (10), the pmf of Mw is

P (Mw = k)

=
∑∞
n=0 P (

∑Nwλ
i=1 Yi = k, Nw

λ = n)

=
∑∞
n=0 P (Y1 + Y2 + ...+ Yn = k|Nw

λ = n)P (Nw
λ = n)

=
∑∞
n=0 P (Y1 + Y2 + ...+ Yn = k) w(n)

E(w(Nλ))
λne−λ

n!

=
∑k
n=1

w(n)λne−λ

n!E(w(Nλ))

(
k − 1
n− 1

)
θn(1− θ)k−n, k = 1, 2, 3, ...

Theorem 15. If Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ) then the pgf of Mw is given by

gMw(s) =
1

E(w(Nλ))

∞∑
n=0

w(n)
(λgY (s))

ne−λ

n!
=
E(w(NλgY (s)))

E(w(Nλ))
exp

[
(

s− 1

1− (1− θ)s
)λ

]
(16)

where NλgY (s) ∼ POI(λgY (s)).

Proof. Let Nw
λ ∼ WPD(λ) independent of Yi ∼ GEO(θ), i = 1, 2, 3...with pgf gY (s) given by (2). Using

(2),(6) and (9) and the de�nition of a pgf, the pgf of Mw is given by

gMw(s)

= E[sM
w

]

= E[E[sM
w |Nw

λ = n]]

= E[E[s
Y1+Y2+Y3+...+YNw

λ |Nw
λ = n]]

=
∑∞
n=0E[s

Y1+Y2+Y3+...+YNw
λ |Nw

λ = n]P (Nw
λ = n)

=
∑∞
n=0E[sY1sY2....s

YNw
λ |Nw

λ = n]P (Nw
λ = n)

11



=
∑∞
n=0[gY (s)]

n w(n)
E(w(Nλ))

λne−λ

n!

= 1
E(w(Nλ))

∑∞
n=0 w(n)

(λgY (s))ne−λ

n!

= 1
E(w(Nλ))

e−λ

e−λgy(s)

∑∞
n=0 w(n)

(λgY (s))ne−λgy(s)

n!

=
E(w(NλgY (s)))

E(w(Nλ))
exp [−λ(1− gY (s))]

=
E(w(NλgY (s)))

E(w(Nλ))
exp

[
( s−1
1−(1−θ)s )λ

]
where NλgY (s) ∼ POI(λgY (s)).

Theorem 16. Let Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ). Then

E(Mw) =
λ

θ

E(w(Nλ + 1))

E(w(Nλ))
(17)

and

V ar(Mw) =
(2− θ)λ

θ2
E(w(Nλ + 1))

E(w(Nλ))
+
λ2

θ2

[
E(w(Nλ + 2))

E(w(Nλ))
−
(
E(w(Nλ + 1))

E(w(Nλ))

)2
]
. (18)

Proof. The �rst and second derivatives of the pgf of a GWPD given in (16) are given by

g′Mw(s)

= λe−λ

E(w(Nλ))

∑∞
n=1 w(n)

[λgY (s)]n−1

(n−1)! g′Y (s)

g′′Mw(s)

= λe−λ

E(w(Nλ))

∑∞
n=1

w(n)λ(n−1)

(n−1)!
[
(n− 1)(gY (s))

n−2[g′Y (s)]
2 + g′′Y (s)(gY (s))

n−1]
= λ2e−λ

E(w(Nλ))

∑∞
n=2 w(n)

(λgY (s))n−2

(n−2)! [g′Y (s)]
2 + λe−λ

E(w(Nλ))

∑∞
n=1 w(n)

(λgY (s))n−1

(n−1)! g′′Y (s)

= λ2e−λ

E(w(Nλ))

∑∞
n=0 w(n+ 2) [λgY (s)]n

n! [g′Y (s)]
2 + λe−λ

E(w(Nλ))

∑∞
n=0 w(n+ 1) [λgY (s)]n

n! g′′Y (s).

By the de�nition of a pgf E(Mw) = g
′

Mw(1) and E [Mw(Mw − 1)] = g
′′

Mw(1).

The �rst two moments of Mw are then given by E(Mw) = g
′

Mw(1) and E[Mw]2 = g
′′

Mw(1) + g
′

Mw(1).

From (2) for Y ∼ GEO(θ) gY (1) = 1, g
′

Y (1) =
1
θ and g

′′

Y (1) =
2(1−θ)
θ2 .

From this and the expressions for g′Mw(s) and g′′Mw(s) it follows that
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E[Mw]

= λe−λ

E(w(Nλ))

∑∞
n=1 w(n)

[λgY (1)]n−1

(n−1)! g′Y (1)

= λe−λ

E(w(Nλ))

∑∞
n=1 w(n)

λn−1

(n−1)!
1
θ

= λ
θE(w(Nλ))

∑∞
n=0 w(n+ 1)λ

ne−λ

n!

= λ
θ
E(w(Nλ+1))
E(w(Nλ))

.

Also,
E[Mw]2

= g
′′

Mw(1) + g
′

Mw(1)

= λ2e−λ

E(w(Nλ))

∑∞
n=0 w(n+ 2) [λgY (1)]n

n! [g′Y (1)]
2 + λe−λ

E(w(Nλ))

∑∞
n=0 w(n+ 1) [λgY (1)]n

n! g′′Y (1) +
λ
θ
E(w(Nλ+1))
E(w(Nλ))

= λ2e−λ

E(w(Nλ))

∑∞
n=0 w(n+ 2)λ

n

n!
1
θ2 + λe−λ

E(w(Nλ))

∑∞
n=0 w(n+ 1)λ

n

n!
2(1−θ)
θ2 + λ

θ
E(w(Nλ+1))
E(w(Nλ))

= λ2

E(w(Nλ))

∑∞
n=0 w(n+ 2)λ

ne−λ

n!
1
θ2 + λ

E(w(Nλ))

∑∞
n=0 w(n+ 1)λ

ne−λ

n!
2(1−θ)
θ2 + λ

θ
E(w(Nλ+1))
E(w(Nλ))

= λ2

E(w(Nλ))
E(w(Nλ + 2)) 1

θ2 + λ
E(w(Nλ))

E(w(Nλ + 1)) 2(1−θ)θ2 + λ
θ
E(w(Nλ+1))
E(w(Nλ))

Hence var(Mw) = E((Mw)2)− (E(Mw))2

= λ2E(w(Nλ+2))
θ2E(w(Nλ))

+ λE(w(Nλ+1))
E(w(Nλ))

(2−2θ)
θ2 + λ

θ
E(w(Nλ+1))
E(w(Nλ))

−
(
λ
θ
E(w(Nλ+1))
E(w(Nλ))

)2

= (2−θ)λ
θ2

E(w(Nλ+1))
E(w(Nλ))

+ λ2

θ2

[
E(w(Nλ+2))
E(w(Nλ))

−
(
E(w(Nλ+1))
E(w(Nλ))

)2]
.

Theorem 17. If Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ) then

FI(Mw) =
(2− θ)
θ

+
λ

θ

[
E(w(Nλ + 2))

E(w(Nλ + 1))
− 1

λ
E (Nw

λ )

]
. (19)
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Proof. This follows directly from the results of Theorem 16. That is, using (17) and (18)

FI(Mw) =
var(Mw)

E(Mw)
=

(2−θ)λ
θ2

E(w(Nλ+1))
E(w(Nλ))

+ λ2

θ2

[
E(w(Nλ+2))
E(w(Nλ))

−
(
E(w(Nλ+1))
E(w(Nλ))

)2]
λ
θ
E(w(Nλ+1))
E(w(Nλ))

=
(2− θ)
θ

+
λ

θ

[
E(w(Nλ + 2))

E(w(Nλ + 1))
−
(
E(w(Nλ + 1))

E(w(Nλ))

)]
.

From De�nition 4

E (Nw
λ ) = λ

E(w(Nλ + 1))

E(w(Nλ))

and it follows that

FI(Mw) =
(2− θ)
θ

+
λ

θ

[
E(w(Nλ + 2))

E(w(Nλ + 1))
− 1

λ
E (Nw

λ )

]
.

From the above expression for the Fisher index we see that the dispersion of a GWPD is dependent upon
the weight function of the underlying weighted Poisson random variable.

4.2 A geometric weighted Poisson distribution with weight functionw (n) = n

In Section 4.1 we derived the results of a GWPD with the weight function unspeci�ed. In this section we
apply the results obtained to the speci�c case where w (n) = n. We consider Mw =

∑Nwλ
i=1 Yi ∼ GWPD(λ, θ)

with parameters λ > 0 and 0 < θ < 1, Nw
λ ∼ WPD(λ) with Yi, i = 1, 2, 3, ... i.i.d. geometric random

variables independent of Nw
λ . With weight function w (n) = n and E(w(Nλ)) = E(Nλ) = λ.

Theorem 18. Let Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ) with weight function w (n) = n. Then the pmf of Mw is

given by

P (Mw = k) =

k∑
n=1

λn−1e−λ

(n− 1)!

(
k − 1
n− 1

)
θn(1− θ)k−n k = 1, 2, 3..., n = 1, 2, ..., (20)

Proof. Using (15) and the fact that E(w(Nλ)) = λ it follows

P (Mw = k)

=
∑k
n=1

n
λ
λne−λ

n!

(
k − 1
n− 1

)
θn(1− θ)k−n

=
∑k
n=1

λn−1e−λ

(n−1)!

(
k − 1
n− 1

)
θn(1− θ)k−n.
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Theorem 19. If Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ) with weight function w (n) = n then the pgf of Mw is given

by

gMw(s) = gY (s) exp

[
(

s− 1

1− (1− θ)s
)λ

]
(21)

where gY (s) is given by (2).

Proof. From (16) and the fact that NλgY (s) ∼ POI(λgY (s)) it follows

gMw(s)

=
E(w(NλgY (s)))

E(w(Nλ))
exp

[
( s−1
1−(1−θ)s )λ

]
=

E(NλgY (s))

E(Nλ)
exp

[
( s−1
1−(1−θ)s )λ

]
= λgY (s)

λ exp
[
( s−1
1−(1−θ)s )λ

]
= gY (s) exp

[
( s−1
1−(1−θ)s )λ

]
.

Theorem 20. Let Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ) with weight function w (n) = n. Then

E (Mw) =
λ+ 1

θ
(22)

and

V ar(Mw) =
(1− θ) + (2− θ)λ

θ2
. (23)

Proof. From (17) and (18)

E (Mw)

= λ
θ
E(w(Nλ+1))
E(w(Nλ))

= λ
θ
E(Nλ+1)
E(Nλ)

= λ+1
θ .

V ar(Mw)

= (2−θ)λ
θ2

E(w(Nλ+1))
E(w(Nλ))

+ λ2

θ2

[
E(w(Nλ+2))
E(w(Nλ))

−
(
E(w(Nλ+1))
E(w(Nλ))

)2]
= (2−θ)λ

θ2
λ+1
λ + λ2

θ2

[
λ+2
λ −

(
λ+1
λ

)2]
= (1−θ)+(2−θ)λ

θ2 .
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Theorem 21. The Fisher index for a GWPD with weight function w (n) = n is given by

FI(Mw) =
2− θ
θ
− 1

θ(1 + λ)
<

2− θ
θ

. (24)

Proof. Using (22) and (23), the Fisher index of dispersion is

FI(Mw) =
var(Mw)

E(Mw)

=
(1−θ)+(2−θ)λ

θ2

λ+1
θ

=
(1− θ) + (2− θ)λ

θ(λ+ 1)

=
2− θ
θ

λ

λ+ 1
+

1− θ
θ(1 + λ)

+
2− θ

θ(1 + λ)
− 2− θ
θ(1 + λ)

=
2− θ
θ
− 1

θ(1 + λ)
<

2− θ
θ

.

From the above expression for the Fisher index we see that the dispersion of a GWPD with weight func-
tion w (n) = n is always lower than that of the GPD for all values of λ > 0 and 0 < θ < 1.

4.3 A geometric weighted Poisson distribution with weight function w(n) = 1
n+1

In this section we look at the other special case of the GWPD with weight function w(n) = 1
n+1 . We consider

Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ) with parameters λ > 0 0 < θ < 1, Nw

λ ∼WPD(λ) and Yi, i = 1, 2, 3, ... i.i.d.
geometric random variables independent of Nw

λ .

Theorem 22. Let Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ) with weight function w (n) = 1

n+1 . Then the pmf is given
by

P (Mw = k) =

k∑
n=1

e−λ

(1− e−λ)
λn+1

(n+ 1)!

(
k − 1
n− 1

)
θn(1− θ)k−n k = 1, 2, 3..., n = 1, 2, , ..., (25)

Proof. Using (15),

P (Mw = k)

=
∑k
n=1

1

E( 1
n+1 )(n+1)

λne−λ

n!

(
k − 1
n− 1

)
θn(1− θ)k−n

From the exponential function power series
(∑∞

k=0
zk

k! = ez
)
it follows that
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E
(

1
Nλ+1

)
=
∑∞
n=0

1
n+1

λne−λ

n!

= e−λ

λ

∑∞
n=0

λn+1

(n+1)!

= e−λ

λ

(∑∞
n=0

λn

n! − 1
)

= e−λ

λ

(
eλ − 1

)
= 1

λ (1− e
−λ).

Hence

P (Mw = k)

=
∑k
n=1

1
1
λ (1−e−λ)

λne−λ

(n+1)!

(
k − 1
n− 1

)
θn(1− θ)k−n

=
∑k
n=1

e−λ

(1−e−λ)
λn+1

(n+1)!

(
k − 1
n− 1

)
θn(1− θ)k−n .

Theorem 23. If Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ) with weight function w (n) = 1

n+1 . Then the pgf of Mw is
given by

gMw(s) =
e−λ(exp(gY (s)λ)− 1)

[1− e−λ]gY (s)
0 < θ < 1, λ > 0 (26)

where gY (s) is the pgf of a GEO(θ) random variable.

Proof. From (16) and the fact that E(w(Nλ)) =
1
λ (1− e

−λ) for w(n) = 1
n+1 and Nλ ∼ POI(λ) it follows that

gMw(s)

=
E(w(NλgY (s)))

E(w(Nλ))
exp

[
( s−1
1−(1−θ)s )λ

]

=
∑∞
n=0

1
(n+1)n!

(λgY (s))ne−λgY (s)

1
λ (1−e−λ)

exp
[
( s−1
1−(1−θ)s )λ

]

= e−λgY (s)

(1−e−λ)gY (s)

∑∞
n=0

(λgY (s))n+1

(n+1)! exp
[
( s−1
1−(1−θ)s )λ

]

= e−λgY (s)

(1−e−λ)gY (s)
(eλgY (s) − 1) exp [(gY (s)− 1)λ]

= e−λ(egY (s)λ−1)
(1−e−λ)gY (s)

.
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Theorem 24. Let Mw =
∑Nwλ
i=1 Yi ∼ GWPD(λ, θ) with weight function w (n) = 1

n+1 . Then

E (Mw) =
1

(1− e−λ)θ
(λ− 1 + e−λ) (27)

and

V ar(Mw) =
(2− θ)(1− e−λ)(λ− 1 + e−λ) + (1− e−λ)2 − λ2e−λ

θ2(1− e−λ)2
. (28)

Proof. From (17) and (18)

E (Mw)

= λ
θ
E(w(Nλ+1))
E(w(Nλ))

= λ
θ

∑∞
n=0

1
n+2

λne−λ
n!

1
λ (1−e−λ)

= 1
(1−e−λ)θ

∑∞
n=0

λn+2(n+1)e−λ

(n+2)!

setting y = n+ 2

= 1
(1−e−λ)θ

∑∞
y=2

λye−λ

y! (y − 1)

= 1
(1−e−λ)θ

(∑∞
y=0

λye−λ

y! (y − 1)− λ0e−λ

0! (−1)− λe−λ

1 (0)
)

= 1
(1−e−λ)θ (λ− 1 + e−λ)

V ar(Mw)

= (2−θ)λ
θ2

E(w(Nλ+1))
E(w(Nλ))

+ λ2

θ2

[
E(w(Nλ+2))
E(w(Nλ))

−
(
E(w(Nλ+1))
E(w(Nλ))

)2]
= (2−θ)

θ2
(λ−1+e−λ)
[1−e−λ] + λ2

θ2

[
E(w(Nλ+2))

1
λ [1−e−λ]

−
(

(λ−1+e−λ)
λ[1−e−λ]

)2]
Since E(w(Nλ + 2))

=
∑∞
n=0

1
n+3

λne−λ

n!

= 1
λ3

∑∞
n=0

λn+3e−λ

(n+3)! (n+ 1)(n+ 2)

Letting z = n+ 3 it follows

E(w(Nλ + 2))

= 1
λ3

∑∞
z=3

λze−λ

z! (z − 1)(z − 2)

= 1
λ3

(∑∞
z=0

λze−λ

z! (z − 1)(z − 2)− λ0e−λ

0! (0− 2)(0− 1)− λ1e−λ

1! (1− 1)(1− 2)− λ2e−λ

2! (2− 1)(2− 2)
)
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= 1
λ3

(∑∞
z=0

λze−λ

z! (z − 1)(z − 2)− 2e−λ
)

= 1
λ3

(
λ2 − 2λ+ 2− 2e−λ

)
.

Therefore V ar(Mw)

= (2−θ)(1−e−λ)(λ−1+e−λ)+(1−e−λ)2−λ2e−λ

θ2(1−e−λ)2 .

Theorem 25. The Fisher index for the geometric weighted Poisson distribution with weight function w (n) =
1

n+1 is

FI(Mw) =
(2− θ)
θ

+
(1− e−λ)2 − λ2e−λ

θ(1− e−λ)(λ− 1 + e−λ)
. (29)

Proof. Using (27) and (28) the Fisher index of dispersion is given by

FI(Mw)

=
var(Mw)

E(Mw)

=

(2−θ)(1−e−λ)(λ−1+e−λ)+(1−e−λ)2−λ2e−λ

θ2(1−e−λ)2
1

(1−e−λ)θ (λ− 1 + e−λ)

=
(2− θ)(1− e−λ)(λ− 1 + e−λ) + (1− e−λ)2 − λ2e−λ

θ(1− e−λ)(λ− 1 + e−λ)

=
(2− θ)
θ

+
(1− e−λ)2 − λ2e−λ

θ(1− e−λ)(λ− 1 + e−λ)
.
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5 Summary of the results

Table 1 summaries the results for the three distributions that were looked at previously. For any value of
0 < θ < 1 the Fisher index of the GPD is always greater than 1 hence the GPD is always over-dispersed.
The Fisher index for GWPD: w(n) = n is always smaller than the Fisher index for the GPD and is therefore
under-dispersed relative to the GPD. On the other hand, the GWPD: w(n) = 1

n+1 is over-dispersed relative

to the GPD since the term (1−e−λ)2−λ2e−λ

θ(1−e−λ)(λ−1+e−λ) is always positive.

Distribution Pmf Pgf , g(s)

GPD
PX(X = k) =

k∑
n=1

e−λ λ
n

n!

(
k − 1
n− 1

)
θn(1− θ)k−n

exp[(gY (s)− 1)λ]

GWPD:
w(n) = n P (Mw = k) =

k∑
n=1

λn−1e−λ

(n−1)!

(
k − 1
n− 1

)
θn(1− θ)k−n

gY (s) exp
[
( s−1
1−(1−θ)s )λ

]

GWPD:
w(n) = 1

n+1
P (Mw = k) =

k∑
n=1

e−λ

(1−e−λ)
λn+1

(n+1)!

(
k − 1
n− 1

)
θn(1− θ)k−n

e−λ(exp(gY (s)λ)−1)
[1−e−λ]gY (s)

(a) The probability mass functions and probability generating functions of the distributions.

Distribution Expected value Variance Fisher index

GPD λ
θ

λ(2−θ)
θ2

2−θ
θ

GWPD:
w(n) = n

λ+1
θ

(1−θ)+(2−θ)λ
θ2

2−θ
θ −

1
θ(1+λ)

GWPD:
w(n) = 1

n+1

(λ−1+e−λ)
(1−e−λ)θ

(2−θ)(1−e−λ)(λ−1+e−λ)+(1−e−λ)2−λ2e−λ

θ2(1−e−λ)2
(2−θ)
θ + (1−e−λ)2−λ2e−λ

θ(1−e−λ)(λ−1+e−λ)

(b) The moments and Fisher index of the distributions.

Table 1: Summary of the results.

6 Graphical comparison of the distributions

In this subsection we study the pmfs and the Fisher indices of the three distributions for di�erent parameter
values, �rst by keeping θ constant and varying λ and then by keeping λ constant and varying θ. For illustration
purposes, we will use continuous lines for the pmf graphs even though the distributions are discrete. The
data analysis for this subsection was performed using SAS software [1].
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6.1 The probability mass functions

For θ �xed and λ varying.

Table 2 gives the summary of statistics calculated for the three distributions when θ = 0.5 and λ increases
from 3 to 6 to 20. Figures 1(a), 1(c) and 1(e) give the graphical displays of these distributions for these
values. From Table 2 it can be seen that as λ increases the mean and variance of each of the distribu-
tions increases. For given values of θ and λ the central location of the GWPD:w(n) = n is always greater
than that of the GPD whilst the central location of the GWPD:w(n) = 1

n+1 is always smaller than that of
the GPD. The same order is also observed for the variances with the GWPD:w(n) = n having the largest
variance and the GWPD:w(n) = 1

n+1 having the smallest variance of the three distributions for given θ and λ.

λ Expected value Variance Fisher index
3 6 18 3

GPD 6 12 36 3
20 40 120 3
3 8 20 2.5

GWPD: w(n) = n 6 14 38 2.714
20 42 122 2.905
3 4.314 14.958 3.467

GWPD: w(n) = 1
n+1 6 10.030 33.731 3.363

20 38 118 3.105

Table 2: Numerical summary of statistics for θ = 0.5 and λ varying

For λ �xed and θ varying.
Table 3 shows as θ increases the variance and mean of each of the distributions decreases. This is also

illustrated in Figures 1(b), 1(d) and 1(f) where its seen that as θ increases the distributions become less
spread out. It is also observed that the central location and variance of the GWPD:w(n) = n is always
greater than that of the GPD whilst the central location and variance of the GWPD:w(n) = 1

n+1 is always
smaller than that of the GPD.

θ Expected value Variance Fisher index
0.2 30 270 9

GPD 0.5 12 36 3
0.7 8.571 15.918 1.857

0.2 35 290 8.286
GWPD : w(n) = n 0.5 14 38 2.715

0.7 10 16.531 1.653

0.2 25.075 248.429 9.908
GWPD : w(n) = 1

n+1 0.5 10.030 33.731 3.363
0.7 7.164 15.163 2.116

Table 3: Numerical summary of statistics for λ = 6 and θ varying
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(a) For θ = 0.5 and λ = 3 (b) For θ = 0.2 and λ = 6

(c) For θ = 0.5 and λ = 6 (d) For θ = 0.5 and λ = 6

(e) For θ = 0.5 and λ = 20 (f) For θ = 0.7 and λ = 6

Figure 1: The Probability mass functions under di�erent parameter values
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6.2 The Fisher indices

Keeping θ constant and letting λ vary

We obtain Figure 2(a) which shows how the Fisher indices for each distribution changes as λ increases. In
Figure 2(a) we see that when θ = 0.5 the Fisher index of GPD remains constant as λ increases. However
the Fisher index of the GWPD: w(n) = n is seen to increase steepily at �rst and then approaches a limit.
The Fisher index of the GWPD: 1

n+1 increases to a certain level, then steadily decreases and approaches
a limit. The limit approached by both the GWPDs is the Fisher index of the GPD. From Figure 2(a) it
can be seen that the GWPD: 1

n+1 is over-dispersed with respect to the GPD and the GWPD: w(n) = n is
under-dispersed with respect to the GPD.

Keeping λ constant and letting θ vary
Figure 1(b) shows how the Fisher indices for the distributions change when λ remains constant and θ

increases. The Fisher indices decrease as θ increases but the di�erence between the three distributions are
very small. It can still be seen that the GWPD: 1

n+1 is over-dispersed with respect to the GPD and the
GWPD: w(n) = n is under-dispersed with respect to the GPD.

(a) Fisher indices for θ = 0.5 and λ varying (b) Fisher indices for λ = 3 and θ varying

Figure 2: The graphical representation of the Fisher indices

7 Conclusion

In this essay the distributions, moments and Fisher indices of the geometric Poisson distribution and two
geometric weighted Poisson distributions with weight functions w(n) = n and w(n) = 1

n+1 are derived and
compared. The main aim was to compare the dispersion of the GPD to the two variations of the GPD
(the GWPDs). The dispersion was measured using the Fisher index. A distribution is over-dispersed if
FI(X) > 1, equi-dispersed if FI(X) = 1 and under-dispersed if FI(X) < 1. The GPD is always over-
dispersed, that is the Fisher index is always greater than one. Relative to the GPD the GWPD:w(n) = n
and the GWPD:w(n) = 1

n+1 are respectively under and over-dispersed. This di�erence is more pronounced
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for �xed values of θ and varying λ. The three distributions were also studied and compared graphically to
see how the probability mass function and Fisher index change for di�erent parameter values.
We found, the GPD can be easily modi�ed to give a set of �exible distributions (the GWPDs) that can be
�tted to data allowing for di�erent dispersions hence increasing its application to di�erent types of data.
Since the GPD is overdispersed it is suited for clumped, concentrated data, the level of concentration then
determines which GWPD to modify the GPD to.
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Appendix

The data analysis for this essay was performed using SAS software [1], the sas codes that were used are given
below.

SAS code for the probability mass functions.

/*Code to commute values of the Probability mass functions and the graphical representation.*/
/*For k>=n*/
data probmass;
theta = 0.5;
Lamda=3;
do k=0 to 100;
Probability=0;
sumgwpd1=0;
sumgwpd2=0;
do n=1 to k;
GPD=exp((-1)*lamda)*((lamda**n)/(fact(n)))*(comb(k-1,n-1))*(theta**n)*((1-theta)**(k-n));
GWPD1=((lamda**(n-1))*(exp((-1)*lamda))/(fact(n-1)))*(comb(k-1,n-1))*(theta**n)*((1-theta)**(k-n));
GWPD2=((exp((-1)*lamda)*(lamda**(n+1)))/(((1-exp((-1)*lamda))*(fact(n+1)))))*(comb(k-1,n-1))*
(theta**n)*((1-theta)**(k-n));
Probability=Probability + GPD;
sumgwpd1=sumgwpd1 + GWPD1;
sumgwpd2=sumgwpd2 + GWPD2;
END;
OUTPUT;
end;
run;
proc print data=probmass;
run;
PROC SGPLOT DATA = probmass;
SERIES X = k Y = Probability / lineattrs=(color=blue pattern=dash) LEGENDLABEL = 'GPD';
SERIES X = k Y = sumgwpd1 /lineattrs=(color=PURPLE pattern=DOT) LEGENDLABEL = 'GWPD:
w(n)=n';
SERIES X = k Y = sumgwpd2 / LEGENDLABEL = 'GWPD: w(n)=1/n+1';
TITLE ' ';
RUN;

SAS code for the Fisher Indices.

/*Code to commute the Fisher indices and the graphical representation when λ is increasing.*/
data �sher;
theta=0.5;
gp=0;
gwp1=0;
GWP2=0;
do lamda= 0 to 30 by 0.5;
FisherIndex=(2-theta)/theta;
gwp1=((1-theta)+(2-theta)*lamda)/(theta*(lamda+1));
GWP2=((2-theta)/theta )+(((1-exp(-lamda))**2)-(lamda**2)*exp(-lamda))/((1-exp(-lamda))*
(lamda-1+exp(-lamda)));
OUTPUT;
end;
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run;
proc print data=�sher;
run;
PROC SGPLOT DATA = �sher;
SERIES X = lamda Y = FisherIndex/ lineattrs=(color=blue pattern=dash) LEGENDLABEL = 'GPD';
SERIES X = lamda Y = gwp1 / lineattrs=(color=PURPLE pattern=DOT) LEGENDLABEL = 'GWPD:
w(n)=n';
SERIES X = lamda Y = gwp2 / LEGENDLABEL = 'GWPD: w(n)=1/n+1'; TITLE ' ';
RUN;

/*Code to commute the Fisher indices and the graphical representation. For θ increasing*/
�sher;
LAMDA=3;
gp=0;
gwp1=0;
GWP2=0;
do theta= 0 to 0.5 by 0.02;
FisherIndex=(2-theta)/theta;
gwp1=((1-theta)+(2-theta)*lamda)/(theta*(lamda+1));
GWP2=((2-theta)/theta )+(((1-exp(-lamda))**2)-(lamda**2)*exp(-lamda))/((1-exp(-lamda))*
(lamda-1+exp(-lamda)));
OUTPUT;
end;
run;
proc print data=�sher;
run;
PROC SGPLOT DATA = �sher;
SERIES X = theta Y = FisherIndex/ lineattrs=(color=blue pattern=dash) LEGENDLABEL = 'GPD';
SERIES X = theta Y = gwp1 / lineattrs=(color=PURPLE pattern=DOT) LEGENDLABEL = 'GWPD:
w(n)=n';
SERIES X = theta Y = gwp2 / LEGENDLABEL = 'GWPD: w(n)=1/n+1';
TITLE ' ';
RUN;
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Abstract

Language models are pivotal in the development of many applications such as speech recognition and

translation. Whilst the n-gram model has been the leading algorithm, the following research proposes

the use of gated recurrent neural networks for the training of a German language model. The theory

behind language models and neural networks will be covered, as well as an empirical evaluation of the

long short-term memory architecture and the gated recurrent unit architecture.

We found that the one-layer LSTM performed better than the three other tested models. There was a

noticable gap between the performance of one-layer and two-layer architectures.
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1 Introduction

Already as far back as the 1950s, researchers aspired to allow computers to exhibit intelligence in the way
a human does. Although the problem has not been solved, the past half a century gave rise to several algo-
rithms that represent the stepping stones towards arti�cially intelligent machines. We have seen machines
recognize and caption complex images [18] and even drive cars on public roads [6]. Whilst these are aston-
ishing accomplishments, there is one task for which a solution has been sought-after for decades, that is the
ability of a machine to successfully communicate with a human. Alan Turing devised a test in 1950 that
serves to examine the capacity of a machine to exhibit intelligent human behavior. In this test, a machine
and a human communicate by asking and answering questions. The machine has to fool the human into
thinking that it is also a human. Alan Turing called this test the Imitation Game [12].
In order to build a machine that can communicate in natural language to the extent of passing Turing's test,
we would have to start by giving it a fundamental understanding of the basic patterns and connections within
a human language. A solution to such a representation of a language is the so called language model.
Language models have swiftly gained importance since technologies in �elds such as speech recognition,
machine translation and text-to-speech systems have become integral parts of daily life. Examples of such
technologies include Apple's Siri and Google Translate, both of which rely on powerful language models in
order to approximate the words that make up your recorded speech or text.
We can describe a language model as being a distribution function of the next word in a sentence, given a
previous word or phrase [2]. The model should compute a score, P (word), which can represent the proba-
bility of a sequence of words to be part of a given language. This probability can be interpreted as a score
on how �uent the input was in the given language, detect grammatical inconsistencies and even derive logic
and world knowledge.
Historically, the n-gram model has been the �agship when estimating language models. It has become the
dominant model of use for various reasons such as its simplicity and performance [3]. The undoing of this
seemingly superior language modeling technique lies in the use of grammatically complex languages such as
Czech, Arabic or German [13]. N-gram language models face major di�culties when applied to languages
where word order is challenging and verbs are highly irregular.
We will propose the estimation of language models with an approach that attempts to mimic the human
brain through computer simulation called an arti�cial neural network (ANN). ANNs simulate a network of
biological neurons in form of interconnected nodes that work in unison in order to process information [11].
The downfall of ANNs was that computers were not powerful enough to process the large amounts of data
needed by the neural nets, a situation which has changed. The past few years have shown considerable
progress to the extent that we now have what is called deep learning. This is essentially a set of techniques
for training an ANN with more than one hidden layer of neurons, giving the neural net a deep architecture
and thus bringing us a step closer to true arti�cial intelligence. This research will propose the use of two
deep learning architectures based on recurrent neural networks (RNN) for training a language model specif-
ically for the German language. The di�erence between RNNs and regular feed-forward neural networks is
that RNNs allow signals to travel backwards. Output from earlier computations can be fed back into the
network thus making them exceptionally powerful sequence models. This power comes with a price, they
are notoriously di�cult to train due to the exploding and vanishing gradients problem [15]. The issue of
vanishing gradients was successfully circumvented with the development of the Long Short-Term Memory
(LSTM) architecture [17], a mechanism that controls the amount of memory the neural network retains.
Recently, another recurrent unit was developed called the Gated Recurrent Unit (GRU), which is said to be
more e�cient in terms of processing and data than the LSTM [10]. What makes these two architectures
attractive for language modeling is that they allow the recurrent neural network to retain a longer memory
than usual. This is important when considering in language, how many previous words of a sentence need to
be given thought on when placing the next word. We will empirically evaluate both of these architectures in
order to conclude which is more suitable for language modeling.
The hypothesis in this case is whether both the LSTM RNN and the GRU RNN are good algorithms when
being utilized for the training of a German language model on small data. We will be using a collection of
German works by Franz Kafka from the Gutenberg Project to train our model. In order to evaluate and
compare our models, we will consider two methods, namely perplexity and the rate at which the cross-entropy
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loss is minimized. The structure of this paper is as follows:
In Section 2 we review the literature on what has been done in the �eld of arti�cial neural networks and
language modeling. Section 3 will introduce language models and describe the evaluation techniques that we
will utilize in order to measure the performance of our language models.
Section 4 is dedicated to the conceptualization of arti�cial neural networks and the distinct architectures that
will be implemented for language modeling. The section will start with a general background and description
of an arti�cial neural network and then move on to recurrent neural networks followed by the LSTM and GRU
networks.
Thereafter, Section 5 covers both the methodology and the experiments. This includes a description of
the Python libraries, data used, our experimental design and the results. Two recurrent neural network ar-
chitectures and an n-gram model will be trained and applied in order to objectively compare the performance
of each.
Section 6 evaluates our experimental results and Section 7 concludes if using the two RNN architectures are
feasible in a limited data environment.

2 Literature Review

This section serves to review the research that has already been done in this �eld and on this topic. The
listed articles lay the foundation for the theory in this reseach.

N-gram

Class-based n-gram models of natural language by P. Brown et al. [2]
The article by Brown et al. proposes the use of a class-based n-gram model for the prediction of a word given
previous words. The theory behind language models is discussed and the basics behind n-gram models are
conceptualized before the article goes into too much depth for purposes of our research.

Arti�cial Neural Networks

Machine Learning: A Probabilistic Perspective by K.P. Murphy [14]
Chapter 28 of Murphy's book introduces deep neural networks and describes the di�erent architectures that
these arti�cial neural networks can take on. Importantly, he also describes several applications of deep net-
works.

Arti�cial neural networks: A tutorial by A.K. Jain and J. Mao [9]
The fundamentals of arti�cial neural networks are covered in this article. The basic concepts concerning the
structure of ANN's are depicted both in theory and graphically. The article serves to give a reader with little
knowledge about the topic a good idea of what ANN's are.

Learning Deep Architectures for AI by Y. Bengio [1]
This paper, by one of the world's leading deep learning researchers, Yoshua Bengio, illustrates the principle
behind a deep architecture and also relates the theoretical advantages of these deep architectures.

Recurrent Neural Networks

Statistical Language Models Based on Neural Networks by T. Mikolov [13]
This paper claims that a statistical language model based on a simple recurrent neural network outperforms
other state-of-the-art technologies. This will be the focus of our research. Mikolov mathematically de�nes
language modeling, describes the architecture of recurrent neural networks and empirically evaluates the
results of applying the RNN as a language model. These are the core sections of our research and will serve
as a fundamental paper to our dissertation.

LSTM Neural Networks for Language Modeling by M. Sundermeyer et al. [17]
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This paper describes a special kind of RNN which we will be using in our paper. It is the long short-term
memory network, which is capable of learning long-term dependencies in the data. Whilst RNN's do preserve
previous information, they cannot use a previous result and connect it to the present assignment. LSTM's
have a slightly di�erent structure which allows for exactly this to happen. The paper goes into the theory
behind LSTM's, which we will use to describe the architecture that we want to apply.

An Empirical Exploration of Recurrent Network Architectures by R. Jozefowicz et al. [10]
This paper empirically evaluates di�erent RNN architectures. A theoretical insight into both LSTM's and
GRU's is given which lays the foundation of the mathematical theory in this paper.

3 Background Theory

3.1 Language Models

As mentioned in the introduction, language models have been around for a couple of decades solving problems
in the �elds such as speech recognition, machine translation and automatic spelling correction. The principle
of a language model is based on, given a sequence of words denoted as \emph{X}, the computation of the
probability of the sequence. The most frequently used technique for language modeling is the n-gram model,
in which the chain rule is used to compute the probability of a sequence of words.

P (X) = P (x1, x2, x3...., xn) (1)

= P (x1)P (x2 | x1)P (x3 | x1, x3)...P (xn | x1, .., xn−1) (2)

where P (X) is the joint probability of the individual words and xn are individual words. Once we are able
to compute this probability, we can start predicting words given previous words using conditional probability
theory.
Google consider the same approach. When we type a query into the search bar, it predicts what the most
likely query is, given what has been entered. With these formulas in mind, one of the core issues of language
modeling becomes apparent. That is the problem of data sparsity. There is no data set that encompasses
every combination of every sentence that will ever be constructed in a language. Thus we require ways to
allow the estimation of probabilities concerning words combinations that were not seen in training, which
notably complicates the task.

3.2 Evaluation Techniques

The core concept used when measuring the usefulness of a language model is called entropy. It can represent
the amount of information a language model holds and how well it performs at a certain task [7]. In our
paper this was calculated as cross-entropy loss where p represents our true label and q is the predicted value.
Thus the loss is calculated by this mathematical expression:

H(p, q) = −
∑

pi log qi (3)

This represents a measure of distance between the predicted and true values. Thus, the smaller our
cross-entropy loss, the more accurate our model. This brings us to our next measure, perplexity, which is
nothing more than 2 to the power of the cross-entropy loss, H:

PP = 2H (4)

Perplexity has been the standard for measuring the performance of language models. It can be described
as the average number of decisions a random variable is forced to undergo [7]. We will report both cross-
entropy loss and perplexity for our evaluation.
Although we will not be utilizing this next measure for the purposes of this paper, it is important to mention
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the word error rate as an evaluation technique. Usually there is a stable relationship between perplexity and
word error rate de�ned by T. Hain as:

WER ≈ k ×
√
PP (5)

where k is a constant and PP represents the perplexity.

4 Arti�cial Neural Networks

An Arti�cial Neural Network (ANN) is an algorithm inspired by the way the humans central nervous system
works. Just as biological neurons are connected in a network, ANN's contain layers of nodes that are
interconnected by weighted connection lines [9]. When training the model, these weights are adjusted to
the point at which the network can successfully perform tasks such as classi�cation, clustering and pattern
recognition.

4.1 Activation Functions

Before we dive into the di�erent neural network architectures relevant to this paper, we will look the functions
lying at the hearts of our neurons. Each neuron has the purpose of computing a single output from several
inputs using a linear combination of input weights [19]. Mathematically, this process can be depicted as:

y = f(

n∑
i=1

wixi + b) (6)

where wi is the vector of weights, xi is the vector of inputs and b represents the bias. These variables are
a function of f , a non-linear transformation function. The following subsections will describe a few of the
non-linear transformation functions utilized in this paper.

4.1.1 Logistic Sigmoid Function

The logistic sigmoid function is a special case of the logistic function which introduces non-linearity into our
model. It is mathematically de�ned as follows:

f(x) =
1

(1 + e−x)
(7)

The function follows an �S� shaped curve and transforms numeric input into a value between 0 and 1
which can be interpreted as probabilities. This is especially important during model evaluation.

4.1.2 Hyperbolic Tangent Function

The hyperbolic tangent function (tanh) also serves to relate input and output in a neural network as follows:

f(x) =
ex − e−x

ex + e−x
(8)

= tanh(x) (9)

it outputs a value between -1 and 1, which is in essence a re-scaling of the logistic sigmoid function.

4.1.3 Softmax Function

The softmax function, also called the normalized exponential, is similar to the logistic function in that it
takes a vector of real values and �squashes� them into same-sized vector with values between 0 and 1. This
function is commonly used as the output layer function in neural networks and is mathematically de�ned as:

f(xi) =
exi∑
i e

xi
(10)
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4.2 Architecture

Based on the way the nodes in an ANN are connected, we can identify di�erent categories of ANN's. The
basic structure of an ANN is a feed-forward neural network in which connections only �ow forward. Neurons
are organized in layers where the bottom layer receives the input and the upper layers receive the preceding
layers output [9]. Feed-forward networks do not hold memory, thus their preceding network states do not
in�uence future computations of input [9]. Due to the fact that we need to consider all the preceding words
in our model, this type of neural network would not work as it does not send feedback. The solution to this
problem lies in the recurrent neural network architecture.

4.2.1 Recurrent Neural Networks

A recurrent neural network connects each classi�er to the input at each time step just as the feed-forward
network. The di�erence lies in what is called a recurrent connection, which connects your model to the past
at each time step. Thus, unlike in the feed-forward neural network, we do not assume the input and outputs
to be independent, which makes it optimal for processing sequential data [8].
Figure 1 depicts a basic RNN. On the left side we see the input x running into the node. This node does not
only output data to �o�, but also into a node we call a recurrent unit. When this is unfolded we can see how
the recurrent unit is updated at each time step based on all previous time steps. This unrolled format has
similarities with sequences or lists.

Figure 1: Recurrent Neural Network

In order to compute the parameter updates, we need to backpropagate derivatives through time as far back
as we can computationally a�ord. With so many correlated updates for individual weights, we �nd ourselves
with two notorious issues native to RNN's, namely the exploding gradient and vanishing gradient problems
[17]. Either your gradients grow exponentially to in�nity or they reduce to zero, which results in your model
not learning anything from the information passed through it. Vanishing gradients leave the model with only
a short memory, thus RNNs are only e�ective for a small amount of time steps. Both exploding and vanishing
gradients can be circumvented by limiting and controlling the amount of memory the neural network retains.
This is achieved through the nature of the gated architectures used in this research. These architectures are
in essence RNNs, with the di�erence lying in the recurrent unit, which is replaced by a cell such us the two
explained in the following two subsections.

4.2.1.1 Long Short-Term Memory LSTM's are a type of RNN with the capability of learning long-
term dependencies without encountering the vanishing or exploding gradient problems. The basic architecture
of an LSTM is the same as an RNN, the di�erence lying in the recurrent unit.
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Figure 2: Long Short-Term Memory Cell

Figure 21 illustrates such an LSTM cell. Mathematically, its implementation can is described as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (11)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (12)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (13)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (14)

ht = ot tanh(ct) (15)

σ is the sigmoid function as described in section 3.1.1. i is the input gate, f the forget gate, o the output
gate and c the cell activation vectors [5]. This comes together to calculate the hidden state ht. The input,
forget and output functions are technically identical besides using di�erent parameters. The output of their
respective sigmoid functions lies between 0 and 1, which, when multiplied with another vector, will determine
how much of that vector is passed through. This is why these three components are called gates. The �rst
gate is the input gate, it stipulates how much of the networks most recent state enters the cell. The forget
gate then decides how much of the preceding state is retained and the output gate determines how much of
this state within the memory cell will be carried on to the next time step.
ct represents our actual memory cell. It multiplies the forget gate with the previous memory ct−1and adds
to that what the input gate lets in. This in combination with the output gate is used to compute the new
hidden state ht.

4.2.1.2 Gated Recurrent Unit The Gated Recurrent Unit (GRU) was introduced by Cho et al. in
2014. It is conceptually very similar to the LSTM and several papers have found the GRU to outperform the
LSTM on certain engagements [10]. The equations of the GRU will not look too foreign after the section on
the LSTM.

z = σ(xtU
z + st−1W

z) (16)

r = σ(xtU
r + st−1W

r) (17)

h = tanh(xtU
h + (st−1 � r)Wh) (18)

st = (1− z)� h+ z � st−1 (19)

1Image courtesy of: A. Graves et al. (2013)
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Instead of three gates the GRU only has two, as seen in Figure 32, the reset gate r and the update gate
z. The reset gate computes the way the previous memory and the new input is merged together whereas the
update gate determines how much of that previous memory will be retained [10].

Figure 3: Gated Recurrent Unit

5 Experimental Design

5.1 Data

As training data, several e-books were extracted from the Gutenberg Project. This website has a large
collection of free e-books in German which can be downloaded in text format. Two works of Franz Kafka
were combined to construct the corpus.
Neural networks take numeric vectors as input, which is why some data preprocessing had to be done in
order to embed the words of the corpus into a vector space. Due to memory constraints and exceptionally
long training times, we limited our sentences to those that are under 50 words in length. An extract of our
corpus can be seen below. It depicts the �rst sentence in our corpus before any preprocessing was done:

s ch r e i bwe i s e und in te rpunkt ion des o r i g i n a l t e x t e s
wurden uebernommen ; l e d i g l i c h o f f e n s i c h t l i c h e
d ru ck f eh l e r wurden k o r r i g i e r t .

The sentences were then tokenized, which results in a list of sentences, each with a sub-list of words:

[ u ' s ch re ibwe i s e ' , u ' und ' , u ' interpunkt ion ' , u ' des ' ,
u ' o r i g i n a l t e x t e s ' , u ' wurden ' , u ' uebernommen ' , u ' ; ' ,
u ' l e d i g l i c h ' , u ' o f f e n s i c h t l i c h e ' , u ' d ruck f eh l e r ' ,
u ' wurden ' , u ' k o r r i g i e r t ' ]

In order to improve the accuracy of the model, the tokens �<Start>� and �<End>� were added to the
sentences to demarcate their respective beginning and endings.

[ u'<Start > ' , u ' s ch re ibwe i s e ' , u ' und ' , u ' interpunkt ion ' ,
u ' des ' , u ' o r i g i n a l t e x t e s ' , u ' wurden ' , u ' uebernommen ' ,
u ' ; ' , u ' l e d i g l i c h ' , u ' o f f e n s i c h t l i c h e ' , u ' d ruck f eh l e r ' ,
u ' wurden ' , u ' k o r r i g i e r t ' , u'<End> ']

2Image courtesy of Denny Britz at http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-
a-grulstm-rnn-with-python-and-theano/
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Thereafter, the tokens were indexed in a list and one-hot encoded 3 to create matrices in which each sentence
is represented by a row of 1's and 0's. The matrices X and y were then padded with 0's so that the rows are
all of equal length, this is a requirement when using the Keras package. In Figure 4 we visualize what our
data will look like after preprocessing:

Figure 4: Preprocessed Data

Each row in the X matrix is a vectorized sequence of words where each word is represented by an index.
The y matrix represents the next word in the sequence as a one-hot encoded table of our vocabulary. Our
testing data is compromised of 20% of the full data set.

5.2 Python Library

As we are running all our experiments in Python using the Keras library [4] to construct our neural networks.
It has the capability of running on top of Theano 4, which allowed us to run our models on a Graphics
Processing Unit (GPU), drastically decreasing computation time.

5.3 Models

We keep our models fairly simple in order to make it easier to understand the inner working of the models
during training.

5.3.1 Layers

5.3.1.1 Embedding Layer The embedding layer is that at which our words get mapped into a continuous
vector space. This is the same as what the Word2Vec algorithm does. After the data runs through this layer,
the word indexes in the X matrix will be turned into dense vectors. eg. [[3],[53]] will be turned into [[-
0.56,2],[-9,5]], thus leaving us with words represented in a space similar to Figure 55:

3See http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. OneHotEncoder.html
4See http://deeplearning.net/software/theano/
5Image courtesy of Benjamin Bolte at http://benjaminbolte.com/blog/2016/keras-language-modeling.html
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Figure 5: Words in a vector space

5.3.1.2 GRU and LSTM layers These are as described in the theory section. They take the output of
the embedding layer to learn patterns in the data.

5.3.1.3 Dropout Layer RNN's are notorious for easily over-�tting the data. The dropout layer is a
regularization technique that sets a certain percentage of the nodes to 0 at each batch iteration [16]. This is
a method that was �rst suggested by Geo�rey Hinton in his coursera course.

5.3.1.4 Dense Layer This layer simply serves to connect each neuron to each neuron in the next layer.

5.3.2 One-Layer Architecture

Our one-layer neural network architecture can be visualized as as in Figure 6:

Figure 6: One-Layer architecture

It is apparent that these are very basic models with only one GRU/LSTM layer. This layer will have a
total of 128 hidden nodes and was trained using a batch size of 32.

5.3.3 Two-Layer Architecture

In this architecture each of the two LSTM/GRU layers have 64 hidden nodes, which leaves us with a total
of 128 hidden nodes. In all other aspects the parameters of this architecture are the same as the more basic
models. Figure 7 depicts our two-layer neural network.
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Figure 7: Two-Layer architecture

6 Evaluation

In the following graphics we plotted the minimization of our loss function a number of iterations for both
our LSTM and our GRU architectures. The red line represents our validation loss, this is the loss that was
computed on our test data set. The blue line represents the loss computed during training.
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6.1 Cross-Entropy Loss
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Figure 8: One-Layer architecture evaluation

By Figure 8, it is apparent that the models start over-�t the data starting from approximately the twelfth and
ninth iteration respectively. Over-�tting happens when the model starts modeling the noise in the training
data [16]. We de�ned this the moment as the point at which our loss on our validation set starts increasing
inde�nitely. The green dotted line marks the iteration at which our validation loss was at its minimum. It
seems that both models behaved in a similar fashion, although the GRU over-�tted the data a little quicker
than the LSTM.
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6.1.2 Two-Layer Model
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Figure 9: Two-Layer architecture evaluation

Figure 9 shows that, in terms of over-�tting the data in comparison to the one layer models, two-layer
models perform poorly. Although the LSTM reaches a lower minimum in terms of validation loss, it did not
outperform the GRU model by much.

6.2 Perplexity

The perplexity is reported on all four models in Table 1. To put these into perspective, using an LSTM,
Josefowicz et al (2015) achieved a perplexity of 79.83 training on the Penn Tree-Bank corpus, which has
around one million words in it. This is considerably larger than our corpus. We trained our models using the
number of iterations at which each architecture converged in the previous subsection. Our perplexity scores
were calculated using the values resulting from 10-fold cross-validation, after which we tested whether the
scores are signi�cantly di�erent using several two-sample t-tests. We tested our hypothesis at a 95% level of
signi�cance. The null hypothesis of equal means was rejected for each combination of mean perplexity scores.
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Mean Standard Deviation
One-Layer GRU 79.23 0.069
One-Layer LSTM 77.91 0.044
Two-Layer GRU 85.97 0.187
Two-Layer LSTM 81.84 0.012

Table 1: Perplexity scores

The best performance, although not by far, was achieved by the one-layer LSTM model, with the one-
layer GRU coming in at a close second. The two layer architectures performed relatively poorly, for which
over-�tting is to blame.

7 Conclusion

We have evaluated two recurrent neural network architectures, the LSTM and the GRU, when applied to
modeling a morphologically complex language using a limited text corpus. Our perplexity scores support our
hypothesis, which leads us to the conclusion that, when your vocabulary is limited, these two architectures
still perform fairly well when generalizing on to unseen text. The one-layer LSTM architecture performed
the best, which is in line with the results achieved by Jozefowicz et al. (2015). The next step to this research
would be the application of these models to resource constrained languages, such as those of the Nguni family,
of which isiXhosa and Zulu are members.
A main point of criticism to this research is that the models were not tested on a wider variety of text corpora.
It is safe to assume that, by testing our models only on Kafka's work, we have allowed them to perform better
than they would on totally unrelated text. This is due to the fact that the language of this one author does
not deviate as drastically across his works as, for example, a collection of di�erent works spanning across the
century. Additionally, in future work, optimization of the computational design could allow a more e�cient
hyper-parameter search through reduced training times. For example, using Theano to directly write the
neural networks would leave you with more control over your models. Also, tuning parameters such as the
dropout layer to adjust for over-�tting could improve the results.
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Appendix

Below is the Python code used for the experiments in this research paper.

# −∗− coding : utf−8 −∗−
"""
Created on Fr i Jul 08 22 : 50 : 00 2016

@author : Cedric Oeldor f
"""
from __future__ import pr int_funct ion

MAX_CHARACTERS_FROM_TEXT = 360000

SYMBOLS = '{}()[]. , : ;+−∗/&|<>=~$ '
ENCODING = 'UTF−8−SIG '
MAX_VOCABULARY_SIZE = 15000
HIDDEN_SIZE = 512
MAX_SEQ_LEN = 50 # sentence s with more tokens than MAX_SEQ_LEN are f i l t e r e d
BATCH_SIZE = 52

from keras . models import Sequent i a l
from keras . l a y e r s import Embedding
from keras . l a y e r s . core import Dense , Act ivat ion , Dropout , TimeDistributedDense
from keras . l a y e r s . r e cu r r en t import GRU, LSTM
from keras . p r ep ro c e s s i ng import sequence
from keras . u t i l s . np_uti l s import t o_ca t ego r i c a l
import n l tk
import numpy as np
import sys
import codecs
from nl tk . t oken i z e import sent_tokenize , word_tokenize
import pandas as pd
# taken from : https : // github . com/ f c h o l l e t / keras /blob /master / keras / da ta s e t s /imdb . py
# and modi f i ed
de f convert_sequences ( sequences , max_nb_words=None ,

maxlen=None , seed =113):

start_char=1
end_char=2
oov_char=3

i f maxlen :
new_sequences = [ ]
f o r s in sequences :

i f l en ( s ) + 2 < maxlen :
new_sequences . append ( s )

sequences = new_sequences
i f not sequences :

r a i s e Exception ( ' After f i l t e r i n g f o r sequences sho r t e r than maxlen=' +
s t r (maxlen ) + ' , no sequence was kept . '
' I n c r e a s e maxlen . ' )
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pr in t ( l en ( sequences ) , " s en t ence s remanied a f t e r f i l t e r i n g by MAX_SEQ_LEN")

# Count the word f r e qu en c i e s
word_freq = nl tk . FreqDist ( [w f o r s in sequences f o r w in s ] )
uniq_words = len ( word_freq . i tems ( ) )
p r i n t ("Found %d unique tokens . " % uniq_words )

max_nb_words = min (max_nb_words , uniq_words+4)
p r in t (" Using vocabulary s i z e %d . " % max_nb_words)

# Get the most common words and bu i ld index_to_word and word_to_index vec to r s
vocabulary = [ u"<NULL>", u"<START>", u"<END>", u"<UNK>"] +
[w f o r w, c in word_freq .most_common(max_nb_words−4)] # keep 4 s l o t s f o r :
padding=0, s t a r t =1, end=2 and oov=3
word_indices = d i c t ( (w, i ) f o r i , w in enumerate ( vocabulary ) )
indices_word = d i c t ( ( i , w) f o r i , w in enumerate ( vocabulary ) )

# Convert words to i n d i c e s and pad with s ta r t−end
X = [ [ start_char ] + [ word_indices . get (w, oov_char ) f o r w in s ] +

[ end_char ] f o r s in sequences ]
# c r ea t e subsequences
X = [ x [ : i ] f o r x in X f o r i in range (1 , l en (x )+1)]

np . random . seed ( seed )
np . random . s h u f f l e (X)

y = [ x [−1] f o r x in X]
X = [ x [ : −1 ] f o r x in X]

X = sequence . pad_sequences (X, maxlen=maxlen )
y = to_ca t ego r i c a l (y , l en ( word_indices ) )

re turn X, y , word_indices , indices_word

# 1 . Import t ex t and token i z e in to s en t ence s
path = "C:/ Users /Cedric Oeldor f /Desktop/Un ive r s i ty /Research/Data/
Gutenberg/ kafka . txt "
with codecs . open ( path , ' r ' , ENCODING) as f :

i f MAX_CHARACTERS_FROM_TEXT:
text = f . read ( ) [ :MAX_CHARACTERS_FROM_TEXT] . lower ( )

e l s e :
t ex t = f . read ( ) . lower ( )

s en t_token i z e_ l i s t = sent_tokenize ( t ex t )
p r i n t ( 'Number o f cha ra c t e r s : ' , l en ( t ex t ) )
p r i n t ( 'Number o f s en t ence s : ' , l en ( s en t_token i z e_ l i s t ) )
p r i n t ( ' F i r s t sentence : ' , s en t_token i z e_ l i s t [ 0 ] . encode (ENCODING))
de l t ex t

# 2 . Clean sentence s o f surrounding symbols and token i z e in to l i s t s o f tokens
tokens = [ word_tokenize ( sentence . s t r i p (SYMBOLS) ) f o r sentence in s en t_token i z e_ l i s t ]
p r i n t (" F i r s t sentence tokens : " , tokens [ 0 ] )
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# 3. Convert to inputs X and l a b e l s Y, and pad with s ta r t−end tokens ,
#and r ep l a c e ra r e words with UNK
pr in t ( ' Converting data . . . ' )
X, y , word_indices , indices_word = convert_sequences ( tokens , max_nb_words=MAX_VOCABULARY_SIZE,
maxlen=MAX_SEQ_LEN)
vocab_size = len ( word_indices )
p r i n t ( 'Got %d sequences ' % len (X) )
"""
p r in t ( ' Bui ld model . . . ' )
model = Sequent i a l ( )
model . add (Embedding ( vocab_size , HIDDEN_SIZE, input_length=MAX_SEQ_LEN, mask_zero=True ) )
model . add (GRU(HIDDEN_SIZE/2 , return_sequences=True ) )
model . add (Dropout ( 0 . 2 ) )
model . add (GRU(HIDDEN_SIZE/2 , return_sequences=False ) )
model . add (Dropout ( 0 . 2 ) )
model . add (Dense ( vocab_size , a c t i v a t i o n='softmax ' ) )

model . compi le ( l o s s =' ca t ego r i ca l_cro s s en t ropy ' , opt imize r='rmsprop ' )
"""
p r in t ( ' Bui ld model . . . ' )
model = Sequent i a l ( )
model . add (Embedding ( vocab_size , HIDDEN_SIZE, input_length=MAX_SEQ_LEN, mask_zero=True ) )
model . add (LSTM(HIDDEN_SIZE) )
model . add (Dropout ( 0 . 2 ) )
model . add (Dense ( vocab_size , a c t i v a t i o n='softmax ' ) )

model . compi le ( l o s s =' ca t ego r i ca l_cro s s en t ropy ' , opt imize r='rmsprop ' )

de f sample ( a , temperature =1 .0) :
# he lpe r func t i on to sample an index from a p r obab i l i t y array
a = np . l og ( a ) / temperature
a = np . exp ( a ) / np . sum(np . exp ( a ) )
re turn np . random . cho i c e ( l en ( a ) , p=a )
#return np . argmax (np . random . mult inomial (1 , a , 1 ) )

model . load_weights ( 'C: / Users /Cedric Oeldor f /Desktop/Un ive r s i ty /Research/Code/
MODELS/GRU_final_final_final . h5 ' )

# t r a i n the model , output generated text a f t e r each i t e r a t i o n
from keras . c a l l b a c k s import His tory
h i s t = History ( )
h = [ ]
f o r i t e r a t i o n in range (1 , 5 0 ) :

p r i n t ( )
p r i n t ( '− ' ∗ 50)
p r i n t ( ' I t e r a t i on ' , i t e r a t i o n )

model . f i t (X, y , batch_size=BATCH_SIZE, nb_epoch=1, c a l l b a c k s =[ h i s t ] ,
v a l i d a t i o n_sp l i t =0.1 , show_accuracy=True )

model . save_weights ( 'C: / Users /Cedric Oeldor f /Desktop/Un ive r s i ty /Research/
Code/MODELS/GRU_24June_bigmod . h5 ' , ove rwr i t e=True )

h . append ( h i s t . h i s t o r y )
f o r d i v e r s i t y in [ 1 . 0 , 1 . 2 ] :
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pr in t ( )
p r i n t('−−−−− d i v e r s i t y : ' , d i v e r s i t y )

generated = [ word_indices ["<NULL>"] ] ∗ (MAX_SEQ_LEN − 1) +
[ word_indices ["<START>"] ]

f o r i in range (MAX_SEQ_LEN) :

preds = model . p r ed i c t (np . array ( [ generated ] ) , verbose =0) [0 ]
next_index = sample ( preds , d i v e r s i t y )
next_word = indices_word [ next_index ]

generated . append ( next_index )
generated = generated [−MAX_SEQ_LEN: ]

sys . s tdout . wr i t e ( next_word + " ")
sys . s tdout . f l u s h ( )

i f next_word == "<END>":
break

p r in t ( )

de f save_loss ( f i l ename ) :
l i s t 0 = [ ]
l i s t 0 = [ f [ ' l o s s ' ] f o r f in h ]
l i s t 2 = [ ]
l i s t 2 = [ l [ 0 ] f o r l in l i s t 0 ]
l i s t 0 = [ ]
l i s t 0 = [ f [ ' va l_loss ' ] f o r f in h ]
l i s t 3 = [ ]
l i s t 3 = [ l [ 0 ] f o r l in l i s t 0 ]
import csv

with open ("C:// Users //Cedric Oeldor f //Desktop// Un ive r s i ty //Research //RESULTS//
GRU//300k// loss_model2 . csv " , 'wb ' ) as my f i l e :

wr = csv . wr i t e r ( my f i l e )
wr . writerow ( l i s t 2 )

with open ("C:// Users //Cedric Oeldor f //Desktop// Un ive r s i ty //Research //
RESULTS//GRU//300k// loss_val_model2 . csv " , 'wb ' ) as my f i l e :

wr = csv . wr i t e r ( my f i l e )
wr . writerow ( l i s t 3 )

save_loss ("C:// Users //Cedric Oeldor f //Desktop// Un ive r s i ty // sResearch //
RESULTS//GRU//300k// loss_withval_512bigbatch . csv ")

path_loss = "C:// Users //Cedric Oeldor f //Desktop// Un ive r s i ty //Research //
RESULTS//LSTM//300k//L1 . csv "

path_val_loss = "C:// Users //Cedric Oeldor f //Desktop// Un ive r s i ty //
Research //RESULTS//LSTM//300k//L1_val . csv "

import pandas as pd
l o s s = pd . DataFrame ( )
import csv
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with open ( path_loss , ' rb ' ) as f :
r eader = csv . r eader ( f )
your_l i s t = l i s t ( r eader )

lstm = [ item f o r s u b l i s t in your_l i s t f o r item in s u b l i s t ]
l o s s [ " l o s s " ] = lstm
with open ( path_val_loss , ' rb ' ) as f :

r eader = csv . r eader ( f )
your_l i s t = l i s t ( r eader )

va l = [ item f o r s u b l i s t in your_l i s t f o r item in s u b l i s t ]

l o s s [ " va l " ] = va l

#model . save_weights ( 'C: / Users /Cedric Oeldor f /Desktop/Un ive r s i ty /Research/
Code/MODELS/GRU_19June . h5 ' )

#from keras . u t i l s . v i s u a l i z e_u t i l import p l o t
#p lo t (model , t o_ f i l e ='C: / Users /Cedric Oeldor f /Desktop/Un ive r s i ty /

Research/Resu l t s /LSTM/kafka /LSTMmodel1 . png ' )

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# PLOTTING

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

import matp lo t l i b . pyplot as p l t
import numpy as np

f i g , ax = p l t . subp lo t s (1 , 1 , f i g s i z e =(12 , 14) )

ax . sp i n e s [ ' top ' ] . s e t_v i s i b l e ( Fa l se )
ax . sp i n e s [ ' bottom ' ] . s e t_v i s i b l e ( Fa l se )
ax . sp i n e s [ ' r i ght ' ] . s e t_v i s i b l e ( Fa l se )
ax . sp i n e s [ ' l e f t ' ] . s e t_v i s i b l e ( Fa l se )
ax . get_xaxis ( ) . tick_bottom ( )
ax . get_yaxis ( ) . t i c k_ l e f t ( )
k = len ( l o s s )
#range f o r whole , np arrange f o r decimal
p l t . x t i c k s ( range (0 , k , 1 ) , f o n t s i z e =14)
p l t . y t i c k s (np . arange (0 , 7 , 0 . 2 ) )

f o r y in np . arange (0 , 7 , 0 . 2 ) :
p l t . p l o t ( range (0 , k ) , [ y ] ∗ l en ( range (0 , k ) ) , '−− ' ,

lw=0.5 , c o l o r ='black ' , alpha =0.3)
p l t . tick_params ( ax i s ='both ' , which='both ' , bottom='on ' , top=' o f f ' ,

labe lbottom='on ' , l e f t =' o f f ' , r i g h t =' o f f ' , l a b e l l e f t ='on ' , l a b e l s i z e =30)

p l t . p l o t ( l o s s [ ' l o s s ' ] , c o l o r ='b ' , l i n ew id th=4)
p l t . axv l i n e ( x=12, c o l o r ='g ' , l s ='dashed ' , l i n ew id th=10)

p l t . p l o t ( l o s s [ ' val ' ] , c o l o r ='r ' , l i n ew id th=4)
#p l t . t ex t (1 , 0 . 8 , 'LSTM' , f o n t s i z e =14, c o l o r ='b ' )
#p l t . t ex t (1 , 0 . 8 , 'GRU' , f o n t s i z e =14, c o l o r ='b ' )
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import matp lo t l i b . patches as mpatches

blue_patch = mpatches . Patch ( c o l o r ='b ' , l a b e l ='Train ing Loss ' )
red_patch = mpatches . Patch ( c o l o r ='r ' , l a b e l ='Va l idat i on Loss ' )
p l t . l egend ( bbox_to_anchor=(1 , 1 ) , handles=[blue_patch , red_patch ] , prop={' s i z e ' : 3 5 } )
#p l t . t i t l e (" Minimizat ion o f c r o s s entropy l o s s (GRU model 2)")
#p l t . x l ab e l (" I t e r a t i o n ")
#p l t . y l ab e l (" Cross entropy l o s s ")
ax . s e t_ t i t l e (" Minimizat ion o f c r o s s entropy l o s s (LSTM model 1)" , f o n t s i z e =42)
ax . s e t_x labe l (" I t e r a t i o n " , f o n t s i z e =42)
ax . s e t_y labe l (" Cross entropy l o s s " , f o n t s i z e =42)
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

#Calcu la te p e rp l e x i t y

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
l o s s = l o s s . convert_objects ( convert_numeric=True )

l o s s [ " perp_lstm " ] = 2∗∗( l o s s [ " va l " ] )
l o s s [ " perp_gru " ] = 2∗∗( l o s s [ " gru " ] )

"""
T−t e s t
"""

s t a t s . ttest_ind_from_stats (85 .97135 , 0 .187188 , 10 , 77 .910128 ,0 .0442985 ,
10 , equal_var=True )
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Abstract

The arc length per unit decreases along the density curve of a random variable, and then increase again

after reaching the mode. This is typically the behaviour of a hazard function. This report focusses on

�nding out if hazard functions can be used to model arc lengths.
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1 Introduction

In simple terms, an arc length is the distance along a curved line making up an arc. The determination of an
arc length is called recti�cation of a curve. A curve can be approximated by connecting a number of points
on the curve using line segments to create a path along the curve. The total length is then approximated by
summing the lengths of each of the linear segments [13]. Recti�able curves i.e. curves with �nite length, are
de�ned to have a smallest value L, that acts as an upper bound on the length of any polygonal approximation.
The number L is de�ned as the arc length and is calculated using the formula:

ˆ b

a

√
1 + [f ′(x)]2 (1)

for any �nite interval[a, b]. This report aims at modeling an arc length using hazard functions since these
functions display a similar behaviour. A hazard function, h(t) is de�ned as the ratio between the probability
density function and survival function, f(t) and S(t) respectively. The function h(t) is de�ned is de�ned by
the equation:

h(t) =
f(t)

S(t)
(2)

where S(t) = 1 − F (t), and F (t) represents the cumulative distribution function [4]. The hazard function
is also known as the rate of failure since it is the probability of failure within an almost instantaneous
period of time given the survival of a subject until time t [5]. Therefore a hazard function can be taken
as a measure of risk; the higher the hazard function in a speci�c time period, the greater the failure in
that time period. This report is structured as follows: Section 2 gives background theory and derivations
of hazard functions. Section 3 presents theory and application of the Cox PH, Section 4 and 5 presents an
overview of the Accelerated Failure Time model and Probability model respectively. This will be followed
by a practical example comparing the Cox PH model and Accelerated Failure Time model and concluding
remarks in Sections 6 and 7.

2 Background Theory

Consider the de�nition as given in [4], let T be the continuous survival time, and f(t) the probability density
function of T . The CDF of T is therefore given by:

F (t) = P (T ≤ t) =
ˆ t

0

f(s)ds,

Thus, F (t) denotes the probability of failure by time t.
The survival function is de�ned as:

S(t) = P (T > t) = 1− F (t).

Therefore S(t) is the probability of survival beyond time t.
The hazard function is de�ned as:

h(t) =
f(t)

S(t)
.

h(t) can be thought of as the probability of failure in a very small time period i.e. between t and t+4t given
that the individual has survived until time t.
By de�nition using �rst principle:

f(t) = lim
4t→0

F (t+4t)− F (t)
4t

.
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Therefore from [9], the hazard function can be expressed as:

h(t) = lim
4t→0

F (t+4t)− F (t)
4t·S(t)

= lim
4t→0

P (t < T ≤ t+4t)
4t·S(t)

= lim
4t→0

F (t < T ≤ t+4t|T > t)

4t
.

To determine the relationship between the hazard and survivor functions [7]. We have:

h(t) =
f(t)

S(t)

=
f(t)

1− F (t)

= − d

dt
log[1− F (t)]

= − d

dt
log[S(t)].

Therefore,
S(t) = exp[−H(t)],

where

H(t) =

ˆ t

0

h(s)ds.

H(t) is de�ned as the cumulative hazard function. Similar to the hazard function, H(t) is a risk measure.
Large values of H(t) correspond to an increased risk of failure by time t.

Consider the case when T is a discrete random variable,[11] the probability mass function is given by P (T =
ti) = f(ti), i = 1, 2, .... The survival function is then given by:

S(t) =
∑

j|tj≥t

f(tj)

=
∑

j|tj≥t

f(tj)I(tj≥t),

and the indicator function is de�ned as:

I(tj≥t) =

{
0 if tj < t
1 if tj ≥ t

.

Here the hazard function is de�ned as the conditional probability of failure at time tj conditioned on the fact
that the individuals survived up to time tj ,

hj = h(tj) = P (T = tj |T ≥ tj) = f(tj)
S(tj)

=
S(tj)−S(tj+1)

S(tj)
= 1− S(tj+1)

S(tj)
[7].

2.1 The Weibull distribution

The density function of a Weibull with parameters λ and p, is

f(t) = pλptp−1 exp[−(λt)p].

for λ > 0, p > 0 and t ≥ 0. If the survival times follow a Weibull distribution with these parameters, the
survival function is given by
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S(t) = exp[−(λt)p].

Therefore, using equation (2) the hazard function as in [12]will be:

h(t) =
f(t)

S(t)

= pλptp−1,

with λ, p > 0. The Weibull hazard function can be increasing or decreasing depending on whether the value
of p is less than or greater than 1. Values of p > 1 result in an increase of the hazard function while p < 1
results in a decrease. As speci�ed above the value p = 1 reduces to the special case of the exponential
distribution since the hazard function remains constant [11].

2.2 The Exponential distribution

An Exponential distribution with the parameter λ has density function:

f(t) = λ exp(−λt)

with λ > 0. This is the special case of the Weibull hazard function where p = 1. The survival function is
given as

S(t) = 1− F (t) = exp(−λt).

Therefore, using equation (2) the hazard function will be:

h(t) =
f(t)

S(t)

= λ.

The hazard function for the exponential distribution is a constant with respect to time [11]. This makes
sense since the exponential distribution has the memory-less property. This also means that the probability
of failure at any given time interval does not depend on what has happened before time t.

3 The Cox PH model

3.1 Background Theory

The general formula for the proportional hazard function is given by:
h(t, x) = h0(t)g(x, β),

where g(x, β) is a function of the vector of covariates x and the unknown parameter β [1]. The function h0(t)
is called the baseline hazard and is dependent on t. The baseline function should be estimated when applying
the Cox PH model. An assumption of the model is that the covariates act multiplicatively on the hazard
rate, it also assumed as a consequence that the hazard rates of various individuals should be proportional to
each other. The Cox proportional hazard model (Cox PH model) proposed by Sir David Cox is given by the
formula:

h(t, x) = h0(t) exp(x, β),

where the function h0(t) is a totally unspeci�ed baseline function [1]. The Cox PH model is a multivariate
regression semi-parametric model. The model supports the modeling of continuous covariates, and includes
the assumption of proportional hazards amoungst di�erent groups. Arc length data will be �t to the Cox
PH model to see whether this model can successfully predict the behaviour of an arc length.
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3.2 Application

To demonstrate the standard application of hazard functions we are going to consider an example from the
Worcester Heart Attack Study [3]. The study examines factors that can have an e�ect on the time that an
individual survives after a heart attack. The same data set used in this Section will also be used8 in Section
4.

3.2.1 Probability density function, f(t)

Let T be a random variable that records the time of survival. The likelihood of observing T at a time t
relative to all other times of survival is the function f(t). To get the survival time within an interval we
integrate the PDF over the range of survival times. Figure 1 is the PDF of the survival times for the data
set from the Worcester Heart Attack Study [3].

Figure 1: PDF and histogram of survival times

In both the histogram and PDF we see that for this data, shorter survival times are more likely observed,
which means that there is a higher risk of heart attack initially but it decreases rapidly as time goes on.
(Note that since there is no time that is less than zero, hence on the left of LENFOL=0 there should be no
graph)

3.2.2 Model �t

A simple Cox regression model is �t using PROC PHREG in SAS. We will use the Log-likelihood criterion
(-2LogL), Akaike Information Criterion (AIC) and the Schwarz Bayesian Criterion (SBC)/BIC in Table 1 to
determine if this model �ts data better compared to the AFT model (Table 2) .
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Table 1: Cox PH Model �t statistics

4 Accelerated Failure Time model

4.1 Background Theory

The Accelerated Failure Time model, also known as the AFT model is a parametric model that is mostly
used as a substitute for proportional hazards models (PH models). The di�erence between an AFT model
and a PH model is that the PH model makes the assumption that the covariates have a multiplicative e�ect
on the hazard rate and the AFT model makes the assumption that the covariates have the e�ect to either
decelerate or to accelerate the hazard rate [2].
The general formula for the AFT model is given by:

h(t, θ) = θh0(θt),

where θ is the joint e�ect of the covariates, typically expressed as:

θ = exp(−[β1X1 + · · ·+ βpXp]).

It should be noted that the negative sign in the expression indicates that the survival time is increased by
high values of the covariates, hence if we omit the negative sign, the increase will be on the hazard. The
condition is satis�ed, if the conditional PDF of this event is:

f(t|θ) = θf0(θt),

thus it follows that the survival function is:

S(t|θ) = S0(θt).

The AFT model that is commonly used is the log-logistic distribution [6]. This model can model a hazard
function that is non-monotonic i.e. functions that increase and then decrease as time goes on. It has a shape
that is similar to that of the log-normal distribution but has a simple closed form CDF. This is essential
when �tting censoring data. We need the survival function for observations that are censored, which is given
in section 1 as:

S(t|θ) = 1− F (t|θ).

The only distributions that possess the property of being parameterized as either an AFT or PH model are the
Weibull distribution and the Exponential distribution. We can therefore use either of the models to interpret
the results of �tting the Weibull model. But, the practical application of the Weibull model may be restricted
since it has a monotonic hazard function. There are also other distributions that are suitable for the AFT
model like the gamma, inverse Gaussian and log-normal distributions, even though these distributions are
not as popular as the log-logistic since they do not have closed form CDFs. Lastly, the generalized gamma
distribution has three parameters and the gamma, log-normal and Weibull distributions are special cases
[12].
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4.2 Application

4.2.1 Model �t

The model �t statistics for the AFT model are given in Tabel 2. These results show that the AFT model
�ts the data better than the Cox PH model since the -2LogL, AIC and SBC/BIC are all lower for the AFT
model.

Table 2: AFT Model �t statistics

4.2.2 Hazard function, h(t)

In Section 1, the hazard function was given by equation (2) as:

h(t) =
f(t)

S(t)
.

The Sas PROC LIFETEST procedure used to �t the model also gives a plot of the hazard function which is
shown in Figure 2.

Figure 2: Hazard function for heart failure

The hazard function is higher at the beginning then it declines until reaches a point where it levels o�.
Thus at the start of the study we would be expecting approximately 0.008 failures a day and approximately
0.002 failure a day for the individuals that survived. Bear in mind that in this report we are more interested
in the shape of the hazard function than the interoretation of the graph. The shape of this hazard function
is similar to that of that the �bathtub� hazard function [8].
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5 Probability model

5.1 Background Theory

Consider the modeling of an individual's risk of failure, let the path followed by the individual p be �xed, apart
from its end point. An individual would then follow a potential path until censoring or failure, whichever
happens �rst. This is corresponding to the assumption that is usually made in PH regression which states
that the vector of covariates for every individual is a �xed time dependent function. The probability of
survival of an individual is hence conditional on the potential path p. Now consider the arc length for each
path,l. The most general model would let the integrated hazard log-survival function, say G′′, be a function
of p and l. Therefore

log(P{surviving to l|p}) = −G′′(l, p),

this allows for the de�nition of time scales (a, b) that can be collapsed. Suppose that the function G′(a, b)
exists such that, for all observations of (a, b) and all the paths p that are passing along the points(a, b). Then

G′′(l, p) = G′(a, b),

where l is the arc length of p at the point (a, b). The survival probability for a speci�c point is hence
dependent on where that point is and not dependent on the path taken to reach that point. In this sense
if the we have collapsible time scales, then G′ or any increasing function of G′ can be viewed as univariate
measures of time [10]. Although the theory of this model is presented in this paper, no further application
will be considered since no implementations of the model have been presented in SAS/R thus far. However
this could be an area of interest for future research.

6 Application

This section aims to model the arc length as calculated using equation (1), of a standard normal probability
density function using hazard functions. This process is done as follows:

1. Calculate the quantiles of the standard normal cumulative density function in the interval [0.001, 0.999).
This will give us a vector Q of length 998.

2. Calculate the arc lengths for consecutive points in Q using (1). This results in a vector L of 998 arc
length values.

3. Fit the data generated from 1 and 2 to the di�erent hazard functions

Figure 3 is the plot of the arc lengths L of each interval in Q. The plot has a shape that is similar to that of
a �bathtub� hazard function [8].
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Figure 3: Arc lengths of standard normal PDF

6.1 Cox PH model

The SAS procedure PROC PHREG is used to �t the data to the Cox PH model. Table 3 shows the model
�t statistics for the Cox PH model which will be compared to that of the AFT model (Table 4) to determine
which model �ts the data better using the -2LogL, AIC and SBC/BIC.

Table 3: Cox PH model �t statistics

6.2 Accelerated Failure Time Model

The SAS procedure PROC LIFEREG is used to �t the data to the AFT model and the output is given in the
table in Table 4. The results in Table 3 and Table 4 were compared and it was found that the AFT model is
�ts data better than the Cox PH model since the -2LogL, AIC and SBC/BIC are much lower for the AFT
model.

Table 4: AFT model �t statistics
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The plot of the hazard function in Figure 5 has a similar shape to that of the data generated and plotted
in Figure 4, this shows that this is a viable method of modeling arc length. Note that in this report we are
interested in the shape of the function.

Figure 4: Survival function of arc lengths of standard normal PDF

7 Conclusion

In this report we discussed the modeling of arc lengths using hazard functions. The Cox PH model and the
AFT model were used to model the arc length from the PDF of the standard normal distribution. Other
distributions and other forms of arc lengths can be considered, however in this report only the standard
normal distribution was considered. The data was �t to the Cox PH model and the model �t statistics were
obtained. The data was also �t to the AFT model to obtain the model �t statistics and the plot of the hazard
function. The plot of the hazard function in Figure 5 has a similar shape to that of the data generated and
plotted in Figure 3. The results in Table 3 and Table 4 were compared and it was found that the AFT model
is �ts data better than the Cox PH model since the -2LogL, AIC and SBC/BIC are much lower for the AFT
model. This was also true for the data used in the Worcester Heart Attack Study [3]. Even though the AFT
model is better than the Cox PH model, the model �t is not satisfactory therefore further research is still
required to improve the model �t. We also discussed a model called the Probability model which has not
been used in application yet. This model could be used in future for modeling arc length.
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Appendix

proc iml;
x_=do (0.002,0.999,0.001);
Q=quantile('normal', x_);
start MyFunc(x);
f=pdf('normal', x);
f2=-x*f;
return(sqrt(1+f2##2));
�nish;
free rr;
do i = 0.001 to 0.998 by 0.001;
a=quantile('normal', i);
b=quantile('normal', (i+0.001));
call quad(R, "MyFunc", a||b);
rr=rr//r;
end;
dat1=Q`||rr;
print dat1;
create plot1 from dat1[colname={'x' 'L'}];
append from dat1;
symbol1 value=none color=green i=join;
proc gplot data=plot1;
plot L*x;
run;
proc phreg data=plot1 plots=s;
model L=x;
run;

16



Machine learning ensemble: random decision forest

Philip Owen Randall 12005721

STK795 Research Report

Submitted in partial ful�llment of the degree BCom(Hons) Statistics

Supervisor: Dr A De Waal, Co-supervisor: J Mazarura

Department of Statistics, University of Pretoria

2 November 2016

1



Abstract

The introduction of ensemble learning algorithms in predictive statistics remains relatively undocu-

mented when compared to more established methods. Consideration of the linear regression modeling

approach, ordinary least squares and by extension, weighted least squares, comprises a large part of the

discussion.

This paper employs multiple regression models which are a�ected by heteroscedasticity. This data is

used with the aim of drawing a comparison between the standard linear regression approach, ordinary

least squares and weighted least squares, as well as an ensemble learning algorithm, the random forest

regressor. This comparison deals with each methods predictive ability, the R2value and their respective

ability to detect heteroscedasticity.

Lastly, the random forest regressor makes use of certain tuning parameters. The e�ect of one of these

parameters, the number of estimators, on the predictive ability and generalized error is studied with the

aid of out-of-bag error rates.
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1 Introduction

Ensemble learning methods employ multiple learning algorithms in an attempt to obtain improved predictive
performance that exists in any one given algorithm. Machine learning ensembles only make use of a �nite set
of alternative models unlike their counterpart, statistical ensembles, which are typically an in�nite set [10].
However, the use of a �nite set of alternative models allows machine learning ensemble techniques a certain
�exibility in their structure.

Due to the ease of �tting linearly regression models, as opposed to models which are non-linearly related,
the linear regression model was the �rst type of regression analysis to be both studied punctiliously and used
exhaustively in practice[12]. With the aim to determine the ability of modern machine learning techniques
as suitable methods in statistical computation, it is an obvious choice to �rst make use of linear regression
to act as the comparison.

1.1 Objectives

This research serves to better understand the performance of the random forest regressor in the presence of
heteroscedasticity and to determine the possible e�ects changes to data as well as to speci�c tuning elements
which the model exerts on the overall credibility of the model's predictive ability.
Ultimately the objective of the research is to:

• Comprehensively understand the foundation of the random forest model, taking special note of the
models predictive ability with regard to the addition of additional explanatory variables and adjustment
of the number of estimators (trees) the model may make use of in the forest.

• Compare the predictive ability of the ordinary least squares, weighted least squares and random forest
models.

• Determine the random forest models capability in identifying heteroscedasticity in comparison to the
ordinary least squares and weighted least squares models.

1.2 Literature Review

1.2.1 Random Decision Forests

Author Tin Kam Ho[5], the creator of the random decision forest using the random subspace method provides
insight into the method and fully explains the basic principles that the method is founded on. His unique
view of decision trees, taking into account various tree growing methods, the optimization of those trees and
the creation of multiple trees allows for an elementary introduction to the topic.

The paper can be portioned into two primary sections:

1.2.1.1 Decision Trees Binary decision trees make use of a single feature at each non-terminal (deci-
sion) node. Oblique decision trees are similar to the binary decision trees, but di�er on the use of hyper
planes within the feature space. Oblique decision trees have been studied extensively over the course of the
past two decades; various decision tree classi�ers have been used, primarily due to their ease of use and
fast classi�cation, such as the Hidden Markov model (HMM) and multi-layer perceptions[5]. These oblique
decision trees exist in both regression and classi�cation. Furthermore, two distinct methods of tree growing
and by extension pruning, are discussed with the aim of highlighting their relative strengths and uses. The
central axis projection aims at separating at least two classes at each non-terminal node. Perception training
di�ers by using a �xed-increment perception training algorithm to choose the hyperplane at each of the
non-terminal nodes[5].
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The pitfalls of decision trees, namely the bias of a single classi�er, are addressed by making use of mul-
tiple decision trees. Multiple trees are just another stepping stone to reaching a random forest. It is the �rst
time the reader starts to get a glimpse of the end results through the creation of the forest.

1.2.1.2 Randomization Randomization is a method used in statistics to great a�ect and is certainly a
powerful tool for introducing di�erences in multiple classi�ers[5]. Previously it has been used to initialize
training algorithms with di�erent con�gurations which would in time yield di�erent classi�ers. Though the
use of randomization in selecting components acts primarily as a convenient way to explore possibilities.

Further insight will be added to this process within random forests once the idea of bootstrap aggregat-
ing, an ensemble technique is fully introduced[5].

1.2.2 Machine Learning: A Probabilistic Approach

Where Tin Kam Ho[5] in Random Decision Forests gives an insight to the basic practice of decision trees,
bagging and randomization when creating a random forest, Kevin P. Murphy [9] goes into more detail of
similar principles that surround the topic of random forests. This helps create more con�dence in the random
forest approach through understanding the subtle di�erences in the components of the model.

More speci�cally, the concepts behind growing a tree and pruning it are explained for single trees as well
as multiple trees. Growing trees makes use of a rather greedy procedure which causes over�tting, a typical
drawback to single decision trees when not pruned, is avoided to some extent by averaging the regressors
when creating multiple trees[9].

Lastly, some light is shed on the e�ect these compounding methods have on more general descriptive statis-
tics, the notable takeaway being the reduction in variance, point what is con�rmed later by Mark R. Segal
in Machine Learning Benchmarks and Random Forest Regression[11].

1.2.3 Machine Learning Benchmarks and Random Forest Regression

The use of Machine Learning Benchmarks and Random Forest Regression[11] serves primarily as a mathe-
matical description of the random forest model. De�nitions are given for all the relevant equations which are
used, given that certain assumptions are met, to draw base conclusions about bias, variance and correlation
between the predictors. Knowing the results in theoretical terms allows for a strategy to be employed to
achieve those results empirically. These results are what typically distinguish forests from black-box predic-
tors (e.g. neural nets)[11].

Furthermore, con�rmation is gained about previous accumulations of the non-factor of bias, shifting the
emphasis to lowering the variance for the regressor. This shift in�ates the importance of prediction error
results by means of the out-of-bag estimates[11].

1.2.4 An Introduction to Statistical Learning

An introduction to basic ensemble techniques is critical and is explained in great detail in An Introduction
to Statistical Learning[6]. The idea of bootstrap aggregating, or bagging, which is often referred to in other
literature, forms the basis for many of the results expected to be observed by the random forest classi�er.
This is a part truth as the random forest classi�er does not use bagging by the general de�nition, but makes
slight adjustments to meet its own end.

Bootstrapping takes a standard data set and generates a number of new data sets by means of random
resampling. The new inputs then �t the models by averaging themselves. Bagging essentially builds a num-
ber of decision trees based on the bootstrapped sample, making use of all of the predictor variables available.
In doing so, the meta-algorithm leads to increased accuracy and stability.
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Random forests use much the same technique, but do not use all of the predictors in the creation of the
decision trees, rather it limits the number of predictors to be used. Further discussion in Section 2 will better
describe the reasoning for such a tactic and the outcome thereof.

1.2.5 Understanding the Impact of Heteroscedasticity on the Predictive Ability of the Modern
Regression Methods

Heteroscadisticity is the violation of the assumption of homoscedasticity - a constant variance in response
which is an explicit assumption when using linear regression and thus an implicit assumption with other pre-
dictive tools[4]. The e�ect is widely documented across a variety of statistical techniques, such as ordinary
least squares[4] and must be taken seriously when applied to random forests.

While modern regression methods are growing in sophistication, there seems to be a lack in the developed
literature describing the e�ects of heteroscadasticity on these methods [4]. This research deals primarily
with identifying heteroscadisticity, while quantifying and measuring the e�ect on predictive tools allowing
for conclusions to be made about the robustness of a model. While many regression tools are identi�ed in
this paper the primary concern will be on random forests with some comparisons being drawn to regression
trees and boosted regression tools.

1.3 Terminology

We de�ne the following terms:

• Decision trees are a predictive model which maps observations of an item to their conclusion. It makes
use of leaves, representing class labels, as well as branches and conjunctions of features that lead to
class labels.

• Random forest, or random decision forest, refers to an ensemble learning method for regression and
classi�cation. Random forests are constructed with a multitude of decision trees that make use of
randomization to correct the over-�tting of decision trees.

• Robust statistics models are those that provide good performance for data drawn from a variety of
probability distributions, especially non-normal distributions.

• Bagging, primarily used for the reduction of bias and variance in supervised learning, is a machine
learning ensemble meta-algorithm.

• Heteroscedasticity occurs in the absence of homoscedasticity and is characterized by the variability of
certain sub-populations in comparison to others.

1.4 Research Structure

• Part I serves primarily as a reference to the reader; with the intention to serve as an introduction to
the key concepts that will be discussed in the paper.

• Part II serves primarily to solidify the key theoretical concepts of the random decision forest ensemble
techniques, as well as other techniques used by the method.

• Part III is the core of the research, which involves the evaluation of the random forest method on
three generated data sets. Comparisons will be drawn between the random forest model and the linear
regression models, OLS and WLS, in the accuracy of the predictions and their capability in identifying
heteroscedasticity in the population.

• Part IV will discuss the results obtained in Part III, drawing conclusions about the study and proposing
possible future study.

7



2 Background Theory

2.1 Ensemble Techniques - Bootstrap Aggregating

Bootstrap aggregating, or bagging, is a machine learning ensemble based on the sampling technique, boot-
strapping. Bagging makes use of a standard data set and generates a number of new data sets by uniformly
sampling with replacement from the standard sample. The new data sets are later combined by averaging
results of the regression. Bagging is used as it leads to �improvements for unstable procedures� [8]. Typical
improvements by using this method are a reduction in variance and assisting in avoiding over-�tting of the
model. Both the reduction in variance and the safeguard against over-�tting are results achieved when the
n samples are averaged[8].

2.2 Decision Trees

A classi�cation and regression tree (CART), not to be confused with decision theory, is created through
recursively partitioning the input space, then de�ning a local model at each division within the input space[9].
The outcome of this parallel shift is the splitting of a two dimension space into M regions, each with a mean
response and therefore a piece-wise constant surface. Figure 1 shows the creation of these spaces with their
mean responses[9].

Figure 1: Recursive partitioning of the input space and de�ning a local model at each space. Each surface
indicates one of M regions with an individual mean response[9].

The model can be expressed mathematically as:

f(x) = E[y|x] =

M∑
m=1

wmI(xεRm) (1)

Where Rmis the m
thregion and wmis the mean response in this region.

=⇒
M∑
m=1

wmφ(x;vm) (2)
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vm encodes the choice of the variable that will create the split and the threshold value on the path from the
root to the mth leaf. CART is an adaptive basis function with the basis function de�ning the region and the
weights de�ning the response variable in each region[11].

In computational complexity theory a decision problem is considered NP-complete, where NP refers to
nondeterministic polynomial time, when it is both NP and NP-hard[2]. Essentially this entails that the time
required to solve a known algorithm increases rapidly as the size of the problem grows. A way to circumvent
an NP-complete problem, which is often di�cult to identify, is to make use of heuristic methods or approxi-
mation algorithms[2]. When growing a tree the optimal partitioning is NP-complete, therefore there is need
a to use a split function, which chooses the best function and the best value for the feature[11]. The cost of
using the split, however, is the greed of the function. This greed will become more relevant at a later stage.

The prevention of over-�tting the model is another concern when using decision trees. To avoid over-�tting,
the tree growth needs to be halted at some stage. Naturally, tree growth is ceased if the decrease in error is
not justi�ed by the addition of another subtree. This is a rather myopic approach because if each feature has
little predictive power, individually no splits would occur[9]. A better approach would be to grow a full tree
and prune it. The layman's thinking conclude that if pruning the branch decreases the error then proceed.
Determining just how far back to prune is established by evaluating the cross-validation error on each speci�c
subtree[9].

The discussion of the CART models allows for certain conclusions to be drawn about their use. While
they are considered easy to interpret, have an automatic variable selection and are robust to outliers in the
data, there are also very concerning disadvantages. CART models tend to be inaccurate in prediction, when
compared to alternatives, due to their greedy nature[9]. Furthermore, trees are high variance estimators as
they are unstable to small changes to the input data. These implications have some e�ect in random forests,
where CARTS are used[9].

2.3 Random Forest Regressor

Binary decision trees use a feature at each non-terminal (decision) node[5]. Geometrically, this can be vi-
sualized by assigning a point to one side of a hyperplane, which is parallel to one axis of the feature space.
Oblique decision trees follow a similar principle. The only di�erence being that the hyperplanes are not
necessarily parallel to an axis of the feature space[5]. The result is smaller decision trees that fully split the
data into leaves containing a single class[5].

There exist two primary methods to growing trees which use the above concept of oblique decision trees,
central axis projection and perception training[5]. Neither will be discussed further but the results that both
yield are of importance. Both methods are capable of growing complex trees that fully classify the training
data. Due to the bias in which hyperplanes are chosen, both methods tend to have poor generalization
accuracy[9].

To extenuate the bias in which hyperplanes are chosen, multiple classi�ers can be used[5]. This makes
use of multiple trees, a forest. This method is only successful when the trees are generalized independently.
Randomization will be used to achieve this e�ect. To inject randomness into the trees this paper will focus on
one form of bootstrap aggregating (bagging), a form of random training set sampling[5]. The method which
random forests apply is an improvement over standard bagging. In standard bagging, a number of decision
trees are built on bootstrapped training data but in random forests, there are changes to each split. If there
are p total predictors then m predictors are chosen at random from p, typically the number of predictors
chosen is a function of the total predictors, m ≈ √p[9]. This may seem illogical because each split is not
permitted to consider half of the available predictors. The rationale is actually quite sound in that when
using standard bagging, where all the predictors are considered, each split will look similar if a particularly
strong predictor exists as it will always be chosen to be used at the top of the split. This causes the trees to
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be highly correlated[9]. Averaging a large number of highly correlated predictors does not cause a signi�cant
decrease in variance. Making use of a limited number of predictors at each split gives other predictors a
chance of being selected, resulting in decorrelated trees and a lower variance.

Machine Learning Benchmarks and Random Forest Regression[11], mathematically help the reader under-
stand the calculation of trees, as well as determining what strategies to employ to achieve desirable results.

Random Forests are comprised of multiple trees as seen where there are M di�erent trees on di�erent subsets
of the data, which are chosen randomly to compute the ensemble:

f(x) =

M∑
m=1

1

M
fm(x)

where fm is the mth tree.

As discussed in Machine Learning Benchmarks and Random Forest Regression[9], a random forest is a
collection of individual trees. For the sake of this example we make use of the empirical calculations[9].The
random forest will be de�ned as a collection of tree predictors.

h(x; θp) p = 1, . . . , P

x represents the observed input vector of length P . X and θk are independent and identically distributed
random vectors. The random forest prediction is the (unweighted) average over the collection, such that:

h̄(x) =

(
1

P

) P∑
k=1

h(x; θk)

It is important to note that as k → ∞ the Law of Large Numbers transforms the equation slightly and
designates a prediction error (generalization) PE∗

f . The convergence that takes place implies that random
forests do not over �t. As such we now have:

PE∗
t = EθEX,Y (Y − h(x; θk))2 (3)

where PE∗
t is the average prediction error for the individual trees.

If we were to assume that all individual trees are unbiased i.e. EY = Exh(x; θ) and we de�ne p̄ as the
weighted correlation between the residuals Y − h(x; θ) and independent θ‘,Thus we are left with:

PE∗
f ≤ p̄PE∗

t (4)

Equation 4 details that for accurate random forest regression two requirements must be met. The �rst, is
a low correlation between residuals of di�ering tree members of the forest. The randomness injected strives
for low correlation. The second, is the low prediction error for individual trees. The expectation is that the
random forest will decrease the individual tree error by a factor p̄.

To meet the ends detailed above:

• Trees must be grown to their maximum depth to minimize individual error.

• Grow each tree on a bootstrap sample from the training data.

• m� p - select m covariates and pick the best split at each node of every tree.

Following the strategy outlined will control bias but not variance[11]. Only by averaging many estimates can
the variance be reduced[7]. This is the unfortunate nature of greed by which the tree construction algorithm
works. Variance can also only be reduced to a limited extent due to the highly correlated predictors[3]. There
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is a partial solution to the problem of controlling variance, or more particularly prediction variance. The
expected generalization error of an ensemble corresponds to:

var(x) = ρ(x).σ2
ζ,θ(x) +

(
1− ρ(x)

M
.σ2
ζ,θ(x)

)
(5)

ρ(x) is Pearson's correlation coe�cient between the predictions of two independent, randomized models
trained on the same data. If the number of decision trees (M) in the random forest model increases, the
variance of the ensemble decreases when ρ(x) < 1. Strictly speaking, the variance of the ensemble is smaller
than the variance of the model. Thus increasing the number of individual randomized models (increasing
the number of trees) in an ensemble will never increase the generalization error. This essentially means that
the random forest model shouldn't over �t if more trees are used in each ensemble. However, this would
signi�cantly lower training error but result in a bad prediction error.

2.4 Heteroscedasticity

Homoscedasticity is de�ned as the constant variance in the response and is an explicit assumption made
when using linear regression, thus an implicit one for random forests, as well as other predictive tools [4].
Heteroscadasticity occurs when the assumption of homoscedasticity is violated, or the variance of the response
is non-constant.

2.4.1 Basic Overview of Heteroscedasticity

Simple linear regression allows for the study of relationships between p explanatory variables, X1, X2, . . . , Xp,
and a continuous response variable Y . The model

Y = Xβ + ε

is the matrix form of a simple linear regression where X is an n × (p + 1) matrix of explanatory variables,
Y is an n× 1 vector of responses, β is a (p + 1)× 1 vector of unknown regression coe�cients and that ε is
an n× 1 vector of unobserved errors within the regression that have a normal distribution with parameters
N(0, σ2I)[4]. The method of ordinary least squares (OLS) allows for the estimation of the unknown regression
coe�cients as β̂ = (X‘X)−1X‘Y . Under heteroscedasticity these estimators are still unbiased but become
ine�cient and thus lead to incorrect inferences about the data [4].

Behavior diagnosis of the variance in a data set can make use of the residuals, calculated as e = Y −Xβ
when considering a simple linear regression. Typically residuals (ei on the y-axis) are plotted against the
predicted responses (ŷi on the x-axis). Residuals that are plotted randomly and uniformly around the hor-
izontal line (at 0) represent the presence of homoscedasticity[4], whereas if the residuals create a fan shape
homoscedasticity is not satis�ed, as seen in Figure 2.

The standard residual plot in Figure 2, while the simplest, is not necessarily the best. It may be di�cult
to interpret, especially if the positive and negative residuals do not exhibit the same general pattern. A
proposed change is the square of the residuals, but has the risk of scaling problems when residuals that are
large in magnitude are considered. It seems the best method would be the absolute value of the residuals
which eliminates the scaling problems[4]. However, due to the nature of the data generated for this paper,
this method is not necessary for the identi�cation of heteroscedasticity.

While the above de�nition and attributed results hold for primarily linear regressive models, the same un-
derlying e�ects are present in other predictive models such as Random Forests[4]. Subsequent discussion will
provide more detail on the e�ects of heteroscedasticity on the variance of the Random Forest model as well
as bias.
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Figure 2: Homoscedastic errors (left) where residuals seem to be randomly scattered around 0. Heteroscedas-
tic errors (right) seem to follow a pattern whereby the residuals start to fan out[4].

3 Application

3.1 Introducing the Data

For the purpose of this research three randomly generated data set's have been created. Each of the three
models uses arbitrary coe�cients for their relevant explanatory variables and all make use of the same error
added to the observed values. The only di�erence between the models is the number of explanatory variables
used by each. The models are comprised of one, �ve and ten explanatory variables. The purpose behind the
addition of explanatory variables is to determine the e�ect their addition may have on the accuracy of each
of the three methods used.

The three models used are listed below:

yi = 100 + 10x1i + εi

yi = 100 + 10x1i + 6x2i − 10x3i + 0.5x4i − 2x5i + εi

yi = 100 + 10x1i + 6x2i − 10x3i + 0.5x4i − 2x5i + 0.33x6i + 2x7i − 1.375x8i − 6.67x9i − x10i + εi

εi = (2× j)1.5 × π(s) j = 1 . . . n

Where π(s) is a randomly generated value from a uniform distribution with a seed value of s.

As mentioned above, three methods will be used. They are, namely: ordinary least squares (OLS), weighted
least squares (WLS) and the random forest regressor (RFR) and will be tested on each of the three models.
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Number of Explanatory Variables
One Five Ten

OLS 0.002 0.003 0.037

WLS 0.023 0.015 0.022

RFR (n = 100) 0.764702 0.813499 0.832402

Table 1: Coe�cient of determination (R2) comparison between OLS, WLS and RFR

3.2 Experimental Design

3.2.1 Comparative Ability of the Random Forest Regressor

Table 1 compares the relative coe�cient of determination (R2) between the di�erent models and the methods
used in each. Expectedly, the ordinary least squares method did not achieve a high score for any of the models,
further showcasing its inability to make accurate predictions in the presence of extreme heteroscedasticity,
as showcased in Figure 3. As initially proposed by Alexander Aitken[1], a best linear unbiased estimator
is achieved when the weighted sum of squared residuals is minimized. This is done, ideally, by the weight
being set as the reciprocal of the variance of the measurement. The use of such a weight, though not entirely
accurate, yields a higher coe�cient of determination value for the one variable case of the weighted least
squares method in comparison to the ordinary least squares score obtained for the same model. However,
the weighted function incorrectly calculated which resulted in worsted scores for WLS in both the �ve and
ten variable cases.

In contrast, the random forest regressor seems to present considerably better results. Furthermore, the
scores seem to increase with an increase in the number of explanatory variables. This e�ect corresponds with
the expectations laid down previously in the theory for the model.

Number of Explanatory Variables
One Five Ten

Correlation P-Value Correlation P-Value Correlation P-Value

OLS 0.997737 <0.0001 0.989871 <0.0001 0.946558 <0.0001

WLS 0.996143 <0.0001 0.996378 <0.0001 0.992996 <0.0001

RFR (n = 100) 0.676174 <0.0001 0.715486 <0.0001 0.918688 <0.0001

Table 2: Spearman's rank coe�cient correlation test comparison between OLS, WLS, RFR

Table 2 serves to con�rm the presence of heteroscedasticity in a non-visual way. This is achieved by the use of
Spearman's rank sign test. With the null hypothesis (Ho) of heteroscedasticity, determining the correlation
coe�cient between the residuals and x1, though the correlation coe�cient can be calculated between the
residuals and any of the explanatory variables in this case, due to the overall model heteroscedasticity. Ex-
amination of the p-values provided in Table 2 shows that the p-values are far below any signi�cance level set
(α = 0.01/0.05/0.1). There is, therefore, enough evidence to reject the null hypothesis of homoscedasticity
for all the cases. These results are expected for both the OLS and WLS methods. It was unknown whether
the random forest regressor would be accurate in detecting heteroscedasticity in this fashion, but it seems
very accurate, or at least as accurate at the other two models.
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Figure 3: Residual plots of the three methods for each of the three data sets.
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The use of the arti�cial error used by the models outlined above, creates an extreme case of model wide
heteroscedasticity. As discussed previously, while there are better means of observing heteroscedasticity, for
a case as extreme as this, heteroscedasticity is rather clear. Figure 3 clearly depicts the increasing di�erence
of the residuals over the n = 200 observations. Plotting the residuals against the number of observations, as
opposed to individual predictor variables, shows the overarching heteroscedasticity across the entire model.

3.2.2 Adjusting the Number of Estimators

The random forest regressor has a host of tuning parameters to ensure that the method is fully taken advan-
tage of. Many of these parameters can boost the results quite signi�cantly, though there are consequences
that must be acknowledged.

The n estimators tuning parameters is one such parameter with signi�cant e�ects on the results of the
model, though inappropriate usage of this parameter can not only decrease the accuracy of results, but more
importantly, the faith in the results obtained in their entirely. Figure 4 illustrates the out-of-bag (OOB) error
rates for the random forest regressors used previously in this paper. The OOB error rates in these graphs
depict the prediction error of the random forest method as the number of estimators increases. Typically the
more trees allowed in a forest, the better the prediction results obtained. Due to how estimators are averaged,
it is also important to not add more trees than necessary. Figure 4 allows the user to better identify the
number of trees that should be chosen to gain the best results. Table 3 better shows the e�ect on prediction
gained by the increase of the number estimators. As can be seen, the results in Table 3, an increase in the
number of trees available to the random forest method has a signi�cant e�ect on prediction results.

Figure 4: Out-of-bag errors for the random forest regressor over the three models

Prediction score (R2) change through the increase of the number estimators

Number of Estimators 1 Variable 5 Variables 10 Variables
1 0.561272 0.211825 0.071152
5 0.619072 0.597685 0.575556
10 0.708317 0.742880 0.798325
20 0.747322 0.796158 0.801613
100 0.764702 0.813499 0.832402

Table 3: Increased prediction of the random forest model when the number of estimators is increased.
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4 Final Remarks

4.1 Conclusions

Based on the results obtained from the R2 values, tests for heteroscedasticity, as well as the out-of-bag error
rates there are a number of positive conclusions that can be drawn with respect to the use of the random
forest regressor as a method of estimation for linear regression models. Firstly, while the prediction scores
obtained through the R2 values are certainly in�ated due to both training and testing the model on the same
set of data, the scores are signi�cant improvements from those in the OLS and WLS models, which su�er
from the same in�ated scores. Secondly, the random forest regressor is as capable in identifying heteroscedas-
ticity with the use of Spearman's rank correlation coe�cient. These two events, in conjunction with the
results obtained from the OOB error rates, show the random forest regressor is capable of being a method of
estimation in linear regression, particularly in the presence of heterosecdasticity. It also generates an internal
unbiased estimate of the generalization error as the forest building progresses, a property not always present
when making use of OLS.

However, there are a number of factors to consider when attempting to make use of the random forest
regressor, aside from the fact that there is signi�cantly less documentation for the RFR in contrast to that
of OLS and by extension WLS. Furthermore, OLS has seen extensive practical usage, cementing a certain
degree of trust for the method. The OLS method also provides a large number of descriptive statistics which
are more easily obtained through its use. Most statistical packages or programs, such as: SAS, the statsmodel
package in python, and a variety of packages in R display most of the necessary descriptive statistics as a
default when dealing OLS or WLS. A level of support and intuitive output that is not present with the
random forest ensemble method.

While the RFR is capable of multiple input variables without variable deletion, the internal safeguards
from its derivation may not be e�cient in protecting against over�tting when variables are particularly noisy.
Due to this the random forest regressor must be handled with the utmost care. There are a number of
assumptions that should be met to ensure the validity of the results obtained, these are:

1. A bootstrap sample must be used, not the entire dataset, when growing trees.

2. The data set is split into a training and testing set. Without considering optimization of the training
set, a split of the sets would allow the random forest regressor to accurately learn from the testing set.
This learning would not, however, be biased in that the method is tuned to speci�c parameters. This
tuning no longer makes the testing set independent, thus lowering the credibility of its results.

4.2 Future Studies

Machine learning algorithms are continuously being developed and adjusted to meet the demands for data
analysis. Many of these methods may be incorrectly used to deliver what are perceived desirable results.
These results are not necessarily reliable and could be further a�ected by other statistical phenomena, such
as multicollinearity. Further research could aim to expand on the capabilities of the random forest method
by:

1. Determining what action can be taken by the random forest method in the event of heteroscedastic
data.

2. Estimation of more descriptive statistics which could contribute to various forms of hypothesis testing.

3. Find ways to more easily interpret the results of a random forest model, and how to make use of those
results.
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Appendix

Code

Random Data Generation

The data sets used in the paper were all randomly generated using Statistical Analysis System (SAS) and
make use of arbitrary coe�cients and seed values.

1 proc iml ; n=200;
2 Seedx = j (n , 1 , 5 67567 ) ;
3 x1 = rannor ( seedx )∗10+40;
4 c a l l s o r t ( x1 ) ;
5 s = 2#((1:n) `)##1.5;
6 seedu = j (n , 1 , 3 45345 ) ;
7 u = rannor ( seedu)#s ;
8
9 x2 = rannor ( Seedx )∗1−35;
10 x3 = rannor ( Seedx )∗2+17;
11 x4 = rannor ( Seedx )∗5+11;
12 x5 = rannor ( Seedx )∗6−0.5;
13 x6 = rannor ( seedx )∗2.5+87;
14 x7 = rannor ( seedx )∗7+20;
15 x8 = rannor ( seedx )∗11+5;
16 x9 = rannor ( seedx )∗3−4;
17 x10 = rannor ( seedx )∗1+0;
18
19 y=100+(10∗x1)+(6∗x2)−(10∗x3 )+(0.5∗x4)−(2∗x5 )+(0.33∗x6 )
20 +(2∗x7 )+(1.375∗x8 )−(6.67∗x9)+(1∗x10)+u ;
21 y = 100 + 10∗x1 +6∗x2 −10∗x3 +0.5∗x4 −2∗x5 +u ;∗/ y = 100 + 10∗x1 +u ;
22 FullData=y | | x1 | | x2 | | x3 | | x4 | | x5 | | x6 | | x7 | | x8 | | x9 | | x10 | | s ;
23 FullData=y | | x1 | | x2 | | x3 | | x4 | | x5 | | s ;
24 FullData=y | | x1 | | s ;
25 column_names={"Y" "X1" "X2" "X3" "X4" "X5" "X6" "X7" "X8" "X9" "X10" " s i g "} ;
26 column_names={"Y" "X1" "X2" "X3" "X4" "X5" " s i g "} ;
27 column_names={"Y" "X1" " s i g "} ;
28
29 c r e a t e output from FullData [ colname=column_names ] ;
30 append from FullData ;
31 qu i t ;
32
33 proc export data=output
34 o u t f i l e='C: \ Users \ Ph i l i p \Anaconda3\ Inputs \Research_Honours\TenVariable . csv '
35 o u t f i l e='C: \ Users \ Ph i l i p \Anaconda3\ Inputs \Research_Honours\ FiveVar iab le . csv '
36 o u t f i l e='C: \ Users \ Ph i l i p \Anaconda3\ Inputs \Research_Honours\OneVariable . csv '
37 dbms=csv r ep l a c e ;
38 run ;

Model Estimation

All model estimation used in this paper, and as a result all graphical output, unless referenced otherwise,
made exclusive use of Python and Python packages.

1 # Statsmode l s
2 from __future__ import pr int_funct ion
3 import s ta t smode l s . ap i as sm i
4 mport s ta t smode l s . formula . ap i as smf
5 import s ta t smode l s . s t a t s . ap i as sms
6 import s c ipy as sp from s ta t smode l s . compat
7 import l z i p from s ta t smode l s . sandbox . r e g r e s s i o n . predstd
8 import wls_predict ion_std from s ta t smode l s . g raph i c s . r e g r e s s i o n p l o t s
9 import plot_regress_exog from s c ipy

10 import s t a t s from s c ipy
11 import array , l i n a l g , dot from s c ipy . l i n a l g
12 import t o e p l i t z from s ta t smode l s . formula . ap i
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13 import o l s , wls , g l s from s ta t smode l s . sandbox . r e g r e s s i o n . predstd
14 import wls_predict ion_std from s ta t smode l s . i o l i b . t ab l e import ( SimpleTable , default_txt_fmt )
15 import random
16
17 # pandas import pandas as pd
18 from pandas import Se r i e s , DataFrame
19
20 # numpy , ma t p l o t l i b
21 import numpy as np
22 import matp lo t l i b . pyplot as p l t
23
24 # machine l ea rn ing
25 from s k l e a rn . l inear_model import Log i s t i cReg r e s s i on as l o g r e g
26 from s k l e a rn . ensemble import RandomForestRegressor
27 from c o l l e c t i o n s import OrderedDict
28 from s k l e a rn . da ta s e t s import make_c l a s s i f i c a t i on
29 from s k l e a rn . ensemble import RandomForestRegressor , ExtraTreesRegressor
30 from s k l e a rn . t r e e import Dec i s ionTreeRegres sor
31 from s k l e a rn . met r i c s import roc_curve , auc , confusion_matrix ,
32 \ c l a s s i f i c a t i o n_ r e p o r t , accuracy_score , r e ca l l_sco r e , p rec i s i on_score ,
33 \ f1_score , roc_auc_score
34 from math import l og10
35
36 Dataset = pd . read_csv ( "C:// OneVariable . csv " )
37 #Dataset = pd . read_csv ("C:// FiveVar iab le . csv ")
38 #Dataset = pd . read_csv ("C:// TenVariable . csv ")
39
40 #ONE VARIABLE CASE#
41 Y = Dataset [ 'Y ' ]
42 X1 = Dataset [ 'X1 ' ]
43 S = Dataset [ ' s i g ' ]
44 X = sm . add_constant (X1)
45 #END OF ONE VARIABLE CASE#
46
47 #FIVE VARIABLE CASE#
48 Y = Dataset [ 'Y ' ]
49 X1 = Dataset [ 'X1 ' ]
50 X1 = np . row_stack (X1)
51 X2 = Dataset [ 'X2 ' ]
52 X2 = np . row_stack (X2)
53 X3 = Dataset [ 'X3 ' ]
54 X3 = np . row_stack (X3)
55 X4 = Dataset [ 'X4 ' ]
56 X4 = np . row_stack (X4)
57 X5 = Dataset [ 'X5 ' ] X5 = np . row_stack (X5)
58 S = Dataset [ ' s i g ' ]
59 Xc = np . column_stack ( (X1 ,X2 ,X3 ,X4 ,X5) )
60 X = sm . add_constant (Xc)
61 #END OF FIVE VARIABLE CASE$
62
63 #TEN VARIABLE CASE#
64 Y = Dataset [ 'Y ' ]
65 X1 = Dataset [ 'X1 ' ]
66 X1 = np . row_stack (X1)
67 X2 = Dataset [ 'X2 ' ]
68 X2 = np . row_stack (X2)
69 X3 = Dataset [ 'X3 ' ]
70 X3 = np . row_stack (X3)
71 X4 = Dataset [ 'X4 ' ]
72 X4 = np . row_stack (X4)
73 X5 = Dataset [ 'X5 ' ]
74 X5 = np . row_stack (X5)
75 X6 = Dataset [ 'X6 ' ]
76 X6 = np . row_stack (X6)
77 X7 = Dataset [ 'X7 ' ]
78 X7 = np . row_stack (X7)
79 X8 = Dataset [ 'X8 ' ]
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80 X8 = np . row_stack (X8)
81 X9 = Dataset [ 'X9 ' ]
82 X9 = np . row_stack (X9)
83 X10 = Dataset [ 'X10 ' ]
84 X10 = np . row_stack (X10)
85 S = Dataset [ ' s i g ' ]
86 Xc = np . column_stack ( (X1 ,X2 ,X3 ,X4 ,X5 ,X6 ,X7 ,X8 ,X9 , X10 ) )
87 X = sm . add_constant (Xc)
88 #END OF TEN VARIABLE CASE#
89
90 #OLS MODEL
91 OLSfit = sm .OLS(Y,X) . f i t ( )
92 print ( OLSfit . summary ( ) )
93
94 #SPEARMANRANK CORRELATION COEFFICIENT (OLS)
95 E_ols = OLSfit . r e s i d
96 E_ols = np . row_stack (E_ols )
97 Y_t = np . row_stack (Y)
98 Spear = sp . s t a t s . spearmanr (Y_t, E_ols )
99 Spear
100
101 #RESIDUAL PLOT vs OBS (OLS)
102 p l t . p l o t (E_ols , '#4C72B0 ' , marker = " . " , markers i ze = 10 , l i n e s t y l e = "None" )
103 p l t . x l ab e l ( ' Observation  (n) ' )
104 p l t . y l ab e l ( ' Res idua l s ' )
105
106 #OTHER RESIDUAL PLOTS vs Xi (WLS)
107 #SUBSTITUTE "X1" FOR PREDICTOR OF INTEREST
108 f i g = p l t . f i g u r e ( f i g s i z e =(12 ,8))
109 f i g = sm . g raph i c s . p lot_regress_exog ( OLSfit , "X1" , f i g=f i g )
110
111 #WLS MODEL
112 mod_wls = sm .WLS(Y, X, weights =1./S)
113 WLSfit = mod_wls . f i t ( )
114 print (WLSfit . summary ( ) )
115
116 #SPEARMANRANK CORRELATION COEFFICIENT (WLS)
117 E_wls = WLSfit . r e s i d
118 E_wls = np . row_stack (E_wls )
119 Y_t = np . row_stack (Y)
120 Spear = sp . s t a t s . spearmanr (Y_t, E_wls )
121 Spear
122
123 #RESIDUAL PLOT vs OBS (WLS)
124 p l t . p l o t (E_wls , '#4C72B0 ' , marker = " . " , markers i ze = 10 , l i n e s t y l e = "None" )
125 p l t . x l ab e l ( ' Observation  (n) ' )
126 p l t . y l ab e l ( ' Res idua l s ' )
127
128 #OTHER RESIDUAL PLOTS vs Xi (WLS)
129 #SUBSTITUTE "X1" FOR PREDICTOR OF INTEREST
130 co lour1 = '#cae8dc '
131 f i g = p l t . f i g u r e ( f i g s i z e =(12 ,8))
132 f i g = sm . g raph i c s . p lot_regress_exog (WLSfit , "X1" , f i g=f i g )
133
134 #RANDOM FOREST REGRESSOR
135 model = RandomForestRegressor ( n_estimators=100 , oob_score = 'True ' ,
136 warm_start= 'True ' , max_features = None )
137 model . f i t (X, Y)
138 model . s c o r e (X,Y)
139
140 #SPEARMANRANK CORRELATION COEFFICIENT (RFR)
141 pred i c t ed = model . p r ed i c t (X)
142 pred i c t ed = np . row_stack ( p r ed i c t ed )
143 Y = np . row_stack (Y)
144 Error = Y − pred i c t ed
145 Y_t = np . row_stack (Y)
146 Spear = sp . s t a t s . spearmanr (Y_t, Error )
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147 Spear
148
149 #RESIDUAL PLOT vs OBS (RFR)
150 p l t . p l o t ( Error , '#4C72B0 ' , marker = " . " , markers i ze = 10 , l i n e s t y l e = "None" )
151 p l t . x l ab e l ( ' Observation  (n) ' )
152 p l t . y l ab e l ( ' Res idua l s ' )
153
154 #OTHER RESIDUAL PLOTS vs Xi (RFR)
155 #SUBSTITUTE "X1" FOR PREDICTOR OF INTEREST
156 X1 = np . row_stack (X1)
157 p l t . p l o t (X1 , Error , '#4C72B0 ' , marker = " . " , markers i ze = 10 , l i n e s t y l e = "None" )
158 p l t . x l ab e l ( 'X1 ' )
159 p l t . y l ab e l ( ' Res idua l s ' )
160
161 #OUT−OF−BAG (OOB) ERRORS − RFR
162
163 from c o l l e c t i o n s import OrderedDict
164 ensemble_cl f s = [ ( "Random Forest  Regressor :  max_features= n" ,
165 RandomForestRegressor ( warm_start=True , max_features=" log2 " , oob_score=True , ) ) ]
166 er ror_rate = OrderedDict ( ( l abe l , [ ] ) for l abe l , _ in ensemble_cl f s )
167 min_estimators = 1
168 max_estimators = 100
169 for l abe l , c l f in ensemble_cl f s : for i in range ( min_estimators , max_estimators + 1 ) :
170 c l f . set_params ( n_estimators=i )
171 c l f . f i t (X, Y)
172 oob_error = 1 − c l f . oob_score_ error_rate [ l a b e l ] . append ( ( i , oob_error ) )
173
174 for l abe l , c l f_e r r in e r ror_rate . i tems ( ) : xs , ys = zip (∗ c l f_e r r )
175 p l t . p l o t ( xs , ys , l a b e l=l a b e l )
176 p l t . xl im (min_estimators , max_estimators )
177 p l t . x l ab e l ( " n_estimators " )
178 p l t . y l ab e l ( "OOB e r r o r  ra t e " )
179 p l t . l egend ( l o c="upper r i g h t " )
180 p l t . show ( )
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Abstract

In order to identify the best maximum likelihood estimator for the Gutenberg-Richter b−value, we have
to compare the properties of the two most suitable methods. There are four di�erent methods available
but the maximum likelihood estimate for β, proposed by Kijko-Smit (2012) and Kijko-Sellevoll (1989),
are the main focus of this paper [4, 3]. Both a theoretical and empirical comparison are required, where
the theoretical part will entail the derivations of the maximum likelihood estimator and a full explanation
of all relevant parameters. A hypothetic seismic event catalogue is also provided, using the Monte Carlo
simulation for the comparison of empirical properties. Emphasis is placed on the di�erent properties in
order to identify the best method for the b−value estimate.
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1 Introduction

The occurrence of earthquakes can be represented by a likelihood function of the sample data given a proba-
bility distribution function (PDF), which is derived from the frequency-magnitude Gutenberg-Richter law [4].
The expression contains an unknown parameter b, which is also known as a seismic activity parameter [3],
where the value of this parameter that maximises the sample likelihood is known as the maximum likelihood
estimator (in short, MLE).

Studying the distribution of earthquakes provides a better understanding of the physics and kinetics behind
earthquake processes [7]. The empirical relation between the frequency and magnitude of earthquakes, also
known as the frequency-magnitude Gutenberg-Richter law, can be expressed by the equation:

log(n) = a− bm

where a is a measure of the level of seismicity, parameter b the ratio between the number of small and
large events (also referred to as a size distribution) and m represents magnitude [4]. The estimation of the
parameter b is crucial in seismic hazard studies, as well as in verifying theoretical assertions, since it varies
over space and time [6][7].

In order to identify the best maximum likelihood estimator for the b-value estimate we are considering two
di�erent methods, from the four methods given, where extreme observations are ignored. The �rst method,
proposed by Kijko-Smit (2012), entails a generalized Aki-Utsu β̂-value estimator which measures di�erent
levels of completeness of multiple catalogues where β = b ln(10) [4]. This estimator is known for its simplicity
and the fact that the incomplete catalogues can be divided into sub-catalogues, each with a di�erent level
of completeness [4]. The second method, proposed by Kijko-Sellevoll (1989); consists of a standard method
only used for the complete younger parts of the catalogue, allowing us to derive the maximum likelihood
estimate for β [3]. The properties of these two methods are discussed in depth in order to identify the best
maximum likelihood estimator.

Since we are working with a multivariate distribution, the magnitudes m, of seismic events are independent
and identically distributed random variables, where the probability distribution (or mass) function of each
mj is f(m

i
j , β) [4]. The joint density of the magnitudes, by independence, will then be equal to the product

of the marginal densities which can be used to calculate the log-likelihood function. In order to maximise
this function we need to calculate the �rst order conditions with respect to β[8] .

The Monte Carlo methods are stochastic techniques which are based on the use of random numbers and
probability statistics to simulate problems [5]. The Statistical Analysis Software (SAS®), along with the
Monte Carlo simulation, are used to generate random numbers for the di�erent magnitudes according to the
relevant probability distribution function (PDF). These random numbers then create a hypothetic seismic
event catalogue.

To summarise; given the frequency-magnitude Gutenberg-Richter earthquake distribution we derive the theo-
retical properties of the identi�ed maximum likelihood estimators. These properties are then compared using
the two di�erent methods mentioned above. Both a theoretical and empirical comparison are made through
various statistical procedures before the best method can be selected.
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2 Theoretical Background

The theory and derivations of the �rst method are explained in the article by A. Kijko and A. Smit entitled
Extension of the Aki-Utsu b-Value Estimator for Incomplete catalogues [4] as well as the article by Dieter
H. Weichert entitled Estimation of the earthquake recurrence parameters for unequal observation periods for
di�erent magnitudes [9]. The theory of the second method is explained by A. Kijko and M. A. Sellevoll in
the article; Estimation of earthquake hazard parameters from incomplete data �les. Part I. Utilization of
extreme and complete catalogues with di�erent threshold magnitudes [3]. The theory and derivations of the
maximum likelihood estimators and a full explanation of all relevant parameters will be discussed in the
following sub-sections.

2.1 The generalized Aki-Utsu method

The generalized Aki-Utsu β̂-value estimator measures di�erent levels of completeness of multiple catalogues
m1
min,m

2
min,m

3
min, ...,m

s
min, which is also known for its simplicity and the fact that the incomplete catalogues

can be divided into sub-catalogues, each with a di�erent level of completeness [4]. This estimator is an
extension of the maximum likelihood estimate for the Gutenberg-Richter b−value proposed by Aki [1], where
extreme observations are ignored for simplicity.

Figure 1: A schematic illustration of a seismic event catalogue for s level of completeness [4].

In order for us to derive the maximum likelihood estimator for the b−value estimate we need to create a
likelihood function, given the probability distribution function (PDF) of earthquake magnitudes, also known
as a shifted exponential distribution [1]:

f(m;β) =

{
0 m < mmin

β(exp(−β(m−mmin)) m ≥ mmin

(1)

where m, represents the magnitude of a seismic event which is assumed to be a continuous, independent and
identically distributed random variable [4]. For the derivations we assume that the magnitude will always be
greater or equal than the level of completeness mmin, where β = b ln(10).
The likelihood function of the parameter β is de�ned as the product of the probability distribution function,
but we observe data within the i-th sub-catalogue where i = 1, 2...s, we then de�ne the likelihood function
for the i-th sub-catalogue as follows:

Li(β) =

ni∏
j=1

f(mi
j , β) =

ni∏
j=1

β(exp(−β(mi
j −mi

min))

7



Since the generalized Aki-Utsu β̂-value estimator measures s levels of completeness, we can now de�ne the
joint likelihood function of all earthquakes that occurred within the entire time span of the catalogue (refer
to Figure 1) as follows:

L(β) =

s∏
i=1

ni∏
j=1

f(mi
j , β) =

s∏
i=1

ni∏
j=1

β(exp(−β(mi
j −mi

min))

=

s∑
i=1

ni∑
j=1

β(exp(−β(mi
j −mi

min)) (2)

where mi
j is the sample of ni earthquake magnitudes observed during the time span of the i-th sub-catalogue.

From the above we can now determine the log-likelihood function:

lnL(β) =

s∑
i=1

ni∑
j=1

ln(β) +

s∑
i=1

ni∑
j=1

(−β(mi
j −mi

min))

Now solving the partial derivative with respect to β we obtain the following:

∂ lnL(β)

∂β
=

s∑
i=1

ni∑
j=1

1

β
+

s∑
i=1

ni∑
j=1

[
−(mi

j −mi
min)

]
By setting the above equal to zero we can then obtain the maximum likelihood estimate for β:

∂ lnL(β)

∂β
=

s∑
i=1

ni∑
j=1

1

β
+

s∑
i=1

ni∑
j=1

[
−(mi

j −mi
min)

]
= 0

∴
1

β1
=

ni∑
j=1

m1
j

n1
−m1

min,
1

β2
=

ni∑
j=1

m2
j

n2
−m2

min, ...,
1

βs
=

ni∑
j=1

ms
j

ns
−ms

min

Now let r1 =
n1

n1 + n2
, r2 =

n2
n1 + n2

,...,rs =
ns

n1 + ns
Then we can say that the maximum likelihood estimate for β is equal to the following:

1

β̂
=

(
r1

β̂1
+
r2

β̂2
+ ...+

rs

β̂s

)
Or equivalently:

β̂ =

(
r1

β̂1
+
r2

β̂2
+ ...+

rs

β̂s

)−1

(3)

where ri =
ni

n ; n =

s∑
i=1

ni is the total number of earthquakes occurred with magnitudes equal to or exceeding

the level of completeness. The β̂i's are the Aki-Utsu estimators calculated for the individual sub-catalogues
i [4].

The main feature of the the generalized Aki-Utsu β̂-value estimator is its simplicity which can be seen by
equation 3, this estimator is also a straightforward way to measures di�erent levels of completeness of multiple
catalogues.
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2.2 Kijko-Sellevol (1989) method

The Kijko-Sellevoll (1989) method consists of a standard method, only used for the complete younger parts
of the catalogue [3]. In order for us to derive the maximum likelihood estimate for β, we need to denote
each sub-catalogue with a time span Ti. We also assume that i = 1, ..., s (number of sub-catalogues) and
j = 1, ..., ni(number of events in a sub-catalogue) where mi

j is then the sample of ni magnitudes observed in
a given time span Ti [3]. The cumulative distribution function (CDF) for magnitudes of events larger than
the magnitude of threshold level mmin are de�ned as:

FM (m | mmin) = FM (M > m | mmin) =

{
0 m < mmin

1− exp(−β(m−mmin)) m ≥ mmin

Let mi
min be the level of completeness for the i-th sub-catalogue and m0 = min(mi

min) which denote the
minimum of all the sub-catalogues. We then assume that the number of earthquake occurrences per unit
of time have a Poisson distribution and secondly, we assume that log(n) = a − bm, where β = b ln(10).The
number of earthquakes per unit of time for the i-th level of completeness can be described by the following
CDF :

P (mi, Ti) =
exp(−λiTi)(λiTi)ni

ni!

where λi = λ(mi
min) = λ(m0)[1− FM (mi

min | m0;β)] = λ(m0)[exp(−β(mi
min −m0))] and λ(m0) = λ0. Now

we can derive the maximum likelihood estimate for β and λ0 by de�ning the likelihood function for λ:

L(n1, n2, ..., ns;T1, T2, ..., Ts) = L(λ0, β)

=

s∏
i=1

P (ni, Ti)

=

s∏
i=1

exp(−λiTi)(λiTi)ni

ni!

=
exp(−

∑s
i=1 λiTi)

∏s
i=1(λiTi)

ni∏s
i=1 ni!

where the likelihood function for β follows from 2. We can now de�ne the joint likelihood function for β and
λ as follows:

L = LλLβ

=

exp(−
∑s
i=1 λiTi)

∏s
i=1(λiTi)

ni

s∑
i=1

ni∑
j=1

β(exp(−β(mi
j −mi

min))∏s
i=1 ni!

=

exp(−
∑s
i=1 Tiλ0[exp(−β(mi

min −m0))])
∏s
i=1(Tiλ0[exp(−β(mi

min −m0))])
ni

s∑
i=1

ni∑
j=1

β(exp(−β(mi
j −mi

min))∏s
i=1 ni!

From the equation above we can now determine the log-likelihood function:

ln(L) = −
s∑
i=1

Tiλ0 exp(−β(mi
min −m0)) +

s∑
i=1

ni[ln(Ti) + ln(λ0)− β(mi
min −m0)] +

s∑
i=1

ni∑
j=1

[ln(β)− β(mi
j −mi

min)]

− ln[

s∏
i=1

ni!]
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Now solving the partial derivatives with respect to λ0 we obtain the following:

∂ lnL

∂λ0
= −

s∑
i=1

[
Ti[exp(−β(mi

min −m0))]
]
+

s∑
i=1

ni
1

λ0[exp(−β(mi
min −m0))]Ti

[exp(−β(mi
min −m0))]

= −
s∑
i=1

[
Ti[exp(−β(mi

min −m0))]
]
+

s∑
i=1

ni
1

λ0

By setting the above equal to zero we can then obtain the maximum likelihood estimate for λ0:

λ̂0 =

s∑
i=1

(
ni

Ti exp(−β(mi
min −m0))

)
(4)

We can now substitute 4 into the log-likelihood function to obtain the following:

ln(L) = −
s∑
i=1

Ti exp(−β(mi
min −m0))

s∑
i=1

(
ni

Ti exp(−β(mi
min −m0))

)
+

s∑
i=1

ni ln(Ti)

+

s∑
i=1

ni ln

(
s∑
i=1

(
ni

Ti exp(−β(mi
min −m0))

))
−

s∑
i=1

niβ(m
i
min −m0)

+

s∑
i=1

ni∑
j=1

[ln(β)− β(mi
j −mi

min)]− ln[

s∏
i=1

ni!]

= −
s∑
i=1

Ti exp(−β(mi
min −m0))

s∑
i=1

(
ni

Ti exp(−β(mi
min −m0))

)
+

s∑
i=1

ni ln(Ti)

+ 2

s∑
i=1

ni ln

(
Ti exp(−β(mi

min −m0))

ni

)−1

−
s∑
i=1

niβ(m
i
min −m0)

+

s∑
i=1

ni∑
j=1

[ln(β)− β(mi
j −mi

min)]− ln[

s∏
i=1

ni!]

= −
s∑
i=1

ni +

s∑
i=1

ni ln(Ti)− 2

s∑
i=1

ni ln

((
Ti
ni

)
− β(mi

min −m0)

)
−

s∑
i=1

niβ(m
i
min −m0)

+

s∑
i=1

ni∑
j=1

[ln(β)− β(mi
j −mi

min)]− ln[

s∏
i=1

ni!]

Now we can solve the partial derivatives with respect to β:

∂ lnL

∂β
= 2

s∑
i=1

ni(m
i
min −m0)−

s∑
i=1

ni(m
i
min −m0) +

s∑
i=1

ni∑
j=1

1

β
−

s∑
i=1

ni∑
j=1

(mi
j −mi

min)

By setting the above equal to zero we can then obtain the maximum likelihood estimate for β:

s∑
i=1

ni∑
j=1

1

β
=

s∑
i=1

ni∑
j=1

(mi
j −mi

min)−
s∑
i=1

ni(m
i
min −m0)

1

β̂
=

∑s
i=1

∑ni

j=1(m
i
j −mi

min)−
∑s
i=1 ni(m

i
min −m0)∑s

i=1 ni
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Or equivalently:

β̂ =

∑s
i=1 ni∑s

i=1

∑ni

j=1(m
i
j −mi

min)−
∑s
i=1 ni(m

i
min −m0)

(5)

Although we have another parameter λ̂0, our main focus are the values for β̂.

3 Application

The performance of the two methods are investigated by using Monte Carlo simulation. The Monte Carlo
methods are stochastic techniques which is based on the use of random numbers and probability statistics to
simulate problems [5]. The Statistical Analysis Software (SAS®), along with the Monte Carlo simulation,
are used to generate random numbers for the di�erent magnitudes according to the relevant probability
distribution function (PDF). These random numbers then create a hypothetical seismic event catalogue. The
SAS code used throughout the application can be found in Appendix A and the output in Appendix B.

3.1 Investigation of the generalized Aki-Utsu method

We assume that the hypothetic seismic event catalogue can be divided into two sub-catalogues with level
of completeness m1

min = 4.0 and m2
min = 3.0 respectively [4]. The magnitudes are generated according to

the probability distribution function (PDF) of earthquake magnitudes given in equation 1 ,where β = 2.303.
Equivalently, the Gutenberg-Richter b-value was equal to 1 since β = b ln(10). The simulation was repeated
500 times for the di�erent number of events, which is de�ned as the total number of events in both sub-
catalogues.
It is necessary to calculate the average of the 500 solutions of the Gutenberg-Richter b-value accordingly
to the generalized Aki-Utsu β̂-value estimator, which measures di�erent levels of completeness of multiple
catalogues, in order to investigate how well the estimator performs. We can then determine if the b-value is
overestimated and biased. Con�dence intervals are also an important aspect to consider since it will allow
us to see the relationship between the width of the intervals and the di�erent number of events.

3.1.1 Generating the β̂-values

The magnitudes generated for the �rst level of completeness m1
min = 4.0, contains n1 = 41 number of events,

where we calculate the average of the magnitudes. These values are then used to calculate β̂1in order for
us to generate values for β̂. Similarly we generated values for the second level of completeness m2

min = 3.0,
which contains n2 = 278 number of events. We can now substitute our values in equation 3 to generate the
500 solutions for the generalized Aki-Utsu β̂-value estimator. These values can be shown by the following
scatter plot where we compare the values to β = 2.303:
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Figure 2: The 500 values generated for the generalized Aki-Utsu β̂-value estimator.

From Figure 2 we can clearly see that all the values for β̂ �uctuate around the value β = 2.303 ( demonstrated

by the straight line). Converting the β̂-values to b-values by using the equation b = β̂
ln(10) we get results

which are easier to interpret, since we compare these values to b = 1, which can be seen by the following
�gure:

Figure 3: The 500 generated b-values.
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3.1.2 Distribution of the b-values

By using the PROC TTEST procedure in SAS, we can test the distribution of the b-values based on the Q-Q
plot obtained from the output:

Figure 4: Q-Q Plot based on the b-values.

From Figure 4 we can clearly see that some of the b-values deviate from the 45 deg straight line, indicating
that the b-values can not be �tted by a normal distribution as expected.

Figure 5: Histogram based on the b-values.

Figure 5 shows that Kernel estimation will solve our data smoothing problem, since the data is gathered over
time. It is also a non-parametric way to estimate the probability density function (PDF) [2].
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3.1.3 Using other statistical methods for comparison

Our main focus is to compare our b-values generated with the theoretical value of b = 1. In order for us to
make the best conclusion we need to look at other statistical methods such as observing the mean square error
(MSE) and con�dence intervals. By using the PROC REG procedure in SAS® we determined the MSE as
0.05792, which is a clear indication that there is almost no di�erence between the b-values generated and the
theoretical value. The mean value of our b-values generated is 1.0040 which is very close to the theoretical
value. A 95% con�dence interval for the mean, obtained from the PROC TTEST procedure, is equal to
(0.9989, 1.0090), which clearly indicates that the mean for the b-values falls within this region, indicating
how well the model �ts. The R2value (obtained from PROC REG) is equal to 0.9967, which shows that the
model explains almost 100% of the variability of the response data around its mean. Our �nal measurement
is the bias, which is calculated as the mean of the generated magnitude values minus the theoretical value,
which is equal to 0.0039517 (obtained from PROC IML). A value of almost zero also concludes that this is
indeed an excellent method for obtaining accurate b-values.

3.2 Investigation of the Kijko-Sellevol (1989) method

Similar to the investigation of the generalized Aki-Utsu method we also assume that the hypothetic seismic
event catalogue can be divided into two sub-catalogues with level of completenessm1

min = 4.0 andm2
min = 3.0

respectively [4]. The magnitudes are generated according to the probability distribution function (PDF) of
earthquake magnitudes given in equation 1 as before. The simulation was also repeated 500 times for the
di�erent number of events.

3.2.1 Generating the β̂-values

The magnitudes generated for the �rst level of completeness m1
min = 4.0, contains n1 = 41 number of events,

and the generated values for the second level of completeness m2
min = 3.0, contains n2 = 278 number of

events. We can now substitute the necessary values in equation 5 to generate the 500 solutions for the
β̂-value estimator. These values can be shown by the following scatter plot where we compare the values to
β = 2.303:

Figure 6: The 500 values generated for the Kijko-Sellevol (1989) β̂-value estimator.

From Figure 6 we can clearly see that all the values for β̂ �uctuate around the value β = 2.303 ( demonstrated
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by the straight line). By converting the β̂-values to the b-values we again obtain results which are easier to
interpret, which can be seen by the following �gure:

Figure 7: The 500 generated b-values.

3.2.2 Distribution of the b-values

By using the PROC TTEST procedure in SAS, we test the distribution of the b-values based on the Q-Q
plot obtained from the output:

Figure 8: Q-Q Plot based on the b-values.

Similar to the generalized Aki-Utsu method, we can clearly see form Figure 8 that some of the b-values
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deviate from the 45 deg straight line, indicating that the b-values can not be �tted by a normal distribution,
as expected.

Figure 9: Histogram based on the b-values.

Kernel estimation will again solve our data smoothing problem, as seen by Figure 9.

3.2.3 Using other statistical methods for comparison

In order for us to make the best conclusion we need to look at other statistical methods such as observing the
mean square error (MSE) and con�dence intervals for the Kijko-Sellevoll (1989) method as well. By using
the PROC REG procedure in SAS® we determined the MSE as 0.06528, which is a clear indication that
there is almost no di�erence between the b-values generated and the theoretical value. The mean value of our
b-values generated is 1.0054 which is very close to the theoretical value. A 95% con�dence interval for the
mean, obtained from the PROC TTEST procedure, is equal to (0.9996, 1.0111), which clearly indicates that
the mean for the b-values falls within this region, indicating how well the model �ts. The R2value (obtained
from PROC REG) is equal to 0.9958, which shows that the model explains almost 100% of the variability of
the response data around its mean. Our �nal measurement is the bias, which is calculated as the mean of the
generated magnitude values minus the theoretical value, which is equal to 0.0053648 (obtained from PROC
IML). A value of almost zero concludes that this is also a good method for obtaining accurate b-values.
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3.3 Comparison between the generalized Aki-Utsu and the Kijko-Sellevoll (1989)
method

The following table summarises all the values and statistical conclusions for both the generalized Aki-Utsu
and the Kijko-Sellevoll (1989) method, so that a clear comparison can be made:

The generalized Aki-Utsu method Kijko-Sellevoll (1989) method

First level of completeness 4.0 4.0
Second level of completeness 3.0 3.0
Number of solutions generated 500 500

Q-Q Plot indication p-value< 0.0001 < 0.05 p-value< 0.0001 < 0.05
Decision Reject Normality (as expected) Reject Normality (as expected)

MSE (Mean Square Error) 0.05792 0.06528
Bias 0.0039517 0.0053648
R2 0.9967 0.9958

Mean value of the b-values generated 1.0040 1.0054
95% con�dence interval for the mean (0.9989, 1.0090) (0.9996, 1.0111)

Table 1: Comparison between the generalized Aki-Utsu method and the Kijko-Sellevoll (1989) method

By using the PROC BOXPLOT procedure in SAS® we obtained a boxplot for each method, (as shown in
Figure 10 and Figure 11). This is also a clear indication that the generalized Aki-Utsu method obtain the
most accurate values for b, since the distance between the minimum and the �rst-quartile, as well as the
distance between the third-quartile and the maximum, are smaller than those of the Kijko-Sellevoll (1989)
method.

Figure 10: Boxplot for the generalized Aki-Utsu method.
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Figure 11: Boxplot for the Kijko-Sellevoll (1989) method
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4 Conclusion

This research report investigated how we can identify the best maximum likelihood estimate for the Gutenberg-
Richter b-value through theoretical derivations and application, given the frequency-magnitude Gutenberg-
Richter earthquake distribution. We considered the generalized Aki-Utsu β̂-value estimator which measures
di�erent levels of completeness of multiple catalogues. This model was derived using the method of maximum
likelihood estimation where we then applied it to a hypothetic event catalogue. We found that this method
yields a very low bias which showed that there is almost no di�erence between the mean of the magnitude
values generated and the theoretical value. It was also shown that the model almost �ts perfectly according
to the high value of R2, where we then veri�ed this conclusion with the very low value of the mean square
error.

Thereafter we considered the the Kijko-Sellevoll (1989) method, which is known as a standard method only
used for the complete younger parts of the catalogue. This model was again derived using the method of
maximum likelihood estimation to obtain the equation for β̂ which we also applied to the same hypothetic
event catalogue as before. We then found that this method yields a very low bias but slightly higher than that
of the generalized Aki-Utsu method. With a high value of R2 we could also see this model �ts well, however
the generalized Aki-Utsu method with a slightly higher value will be preferred. Lastly we also calculated the
mean square error which was indeed higher than that of the generalized Aki-Utsu method.

We can therefore conclude that the generalized Aki-Utsu method, proposed by Kijko-Smit (2012) , is indeed
an excellent method for obtaining accurate b-values. Future research can be done to show that maximum
likelihood estimation is not the only appropriate technique, since there is no evidence suggesting that method
of moments estimation (in short, MME) cannot be used.
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Appendix A

*/ the g en e r a l i z e d Aki−Utsu method */ ;
proc iml ;
mmin1=4.0;
mmin2=3.0;
beta =2.303;
b1=1;
T1=39.997;*/ time span */ ;
T2=29.996;
n1=41;
n2=278;
r1=n1/(n1+n2 ) ;
r2=n2/(n1+n2 ) ;
do i=1 to 500 ;
*Monte Carlo Simulat ion f o r mmin=4.0* ;
seed=j (n1 , 1 , 1 ) ;
u1=uniform ( seed )+1;
mc1=u1 [ 1 : n1 , 1 ] ;
l g1=log (mc1−1);
x1=(−1* l g1 /beta)+mmin1 ;
sumx1=x1 [+ ] ;
mean1=x1 [ : , ] ;
bhat1=1/(mean1−mmin1 ) ;
*Monte Carlo Simulat ion f o r mmin=3.0* ;
seed=j (n2 , 1 , 1 ) ;
u2=uniform ( seed )+1;
mc2=u2 [ 1 : n2 , 1 ] ;
l g2=log (mc2−1);
x2=(−1* l g2 /beta)+mmin2 ;
sumx2=x2 [+ ] ;
mean2=x2 [ : , ] ;
bhat2=1/(mean2−mmin2 ) ;
bhat=1/(( r1 /bhat1 )+( r2 /bhat2 ) ) ; *Ca lcu l a t i on f o r Betahat * ;
betava lue=J ( i , 1 , beta ) ;
bvalue=bhat/ log ( 1 0 ) ;
bva lues = bvalues // bvalue ;
b=J ( i , 1 , 1 ) ;
t o t a l n= to t a l n // i ;
a l l b h a t s = a l l bha t s // bhat ;
p r i n t t o t a l n a l l b h a t s betava lue bva lues b ;
end ;
meanb=bvalues [ : , ] ;
b i a s=meanb−b1 ;
p r i n t b i a s ;
nm={"n" "Beta_Values" " bvalue " " bvalues_generated " "bvalue1 "} ;
nbeta = to ta l n | | a l l b h a t s | | betava lue | | bva lues | | b ;
c r e a t e bva lues from nbeta [ colname=nm ] ;
append from nbeta ;
qu i t ;
*Creat ing Histogram f o r 500 Beta va lue s * ;
proc template ;
d e f i n e s tatgraph sgdes i gn ;
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dynamic _BETA_VALUES;
begingraph ;
e n t r y t i t l e ha l i gn=cente r ' Beta Values f o r the g en e r a l i z e d Aki−Utsu method ' ;
layout l a t t i c e / rowdatarange=data columndatarange=data
rowgutter=10 columngutter=10;
layout over l ay ;
histogram _BETA_VALUES / name='histogram ' b inax i s=f a l s e ;
endlayout ;
endlayout ;
endgraph ;
end ;
run ;
proc sgrender data=WORK.BVALUES template=sgdes i gn ;
dynamic _BETA_VALUES="'BETA_VALUES' n " ;
run ;
*Histogram code end * ;
*Creat ing S ca t t e r p l o t f o r 500 Beta va lue s and comparing to Beta=2.303* ;
proc template ;
d e f i n e s tatgraph Graph ;
dynamic _N _BETA_VALUES _N2 _BVALUE;
begingraph ;
e n t r y t i t l e ha l i gn=cente r ' Beta Values f o r the g en e r a l i z e d Aki−Utsu method ' ;
layout l a t t i c e / rowdatarange=data columndatarange=data
rowgutter=10 columngutter=10;
layout over l ay ;
s c a t t e r p l o t x=_N y=_BETA_VALUES / name=' s ca t t e r '
markeratt r s=( c o l o r=CX5A518C ) ;
s e r i e s p l o t x=_N2 y=_BVALUE / name=' s e r i e s ' connectorder=xax i s ;
endlayout ;
endlayout ;
endgraph ;
end ;
run ;
proc sgrender data=WORK.BVALUES template=Graph ;
dynamic _N="N" _BETA_VALUES="'BETA_VALUES' n" _N2="N" _BVALUE="BVALUE" ;
run ;
* Sca t t e r p l o t code end * ;
proc t t e s t data=bvalues ;
var bvalues_generated ;
run ;
proc reg data=bvalues ;
model bvalues_generated=bvalue1 / no int ;
run ;
* Sca t t e r p l o t o f bva lues ;
proc template ;
d e f i n e s tatgraph sgdes i gn ;
dynamic _N _BVALUES_GENERATED _N2 _BVALUE1A;
begingraph ;
e n t r y t i t l e ha l i gn=cente r 'The g en e r a l i z e d Aki−Utsu method : b−va lue s generated
compared to b=1 ' ;
layout l a t t i c e / rowdatarange=data columndatarange=data rowgutter=10
columngutter=10;
layout over l ay ;
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s c a t t e r p l o t x=_N y=_BVALUES_GENERATED / name=' s ca t t e r '
markeratt r s=(symbol=CIRCLEFILLED s i z e=7 ) ;
s e r i e s p l o t x=_N2 y=_BVALUE1A / name=' s e r i e s ' connectorder=xax i s
l i n e a t t r s =( c o l o r=CXFF0000 th i c kne s s=4 ) ;
endlayout ;
endlayout ;
endgraph ;
end ;
run ;
proc sgrender data=WORK.BVALUES template=sgdes i gn ;
dynamic _N="N" _BVALUES_GENERATED="'BVALUES_GENERATED' n"
_N2="N" _BVALUE1A="BVALUE1" ;
run ;
* Sca t t e r p l o t code end * ;
proc boxplot data=bvalues ;
p l o t bvalues_generated *bvalue1 ;
run ;

*/ the Kijko−S e l l e v o l l (1989) method */ ;
proc iml ;
n1=41;
n2=200;
n t o t a l=n1+n2 ;
T1=39.997;*/ time span */ ;
T2=29.996;
T=T1+T2 ;
mmin1=4.0;
mmin2=3.0;
beta =2.303;
b1=1;
do i=1 to 500 ;
*Monte Carlo s imu la t i on f o r f i r s t LOC* ;
seed=j (n1 , 1 , 1 ) ;
u1=uniform ( seed )+1;
mc1=u1 [ 1 : n1 , 1 ] ;
l g1=log (mc1−1);
x1=(−1* l g1 /beta)+mmin1 ;
sumx1=x1 [+ ] ;
mean1=x1 [ : , ] ;
*determine magnitudes g r e a t e r than l o c1 ;
l c i=J (n1 , 1 ,mmin1 ) ;
cnt1=(x1>=l c i ) [+ ] | | ( x1<l c i ) [ + ] ;
c l a s s 1=cnt1 [ <: >];
r e s1 = re s1 // c l a s s 1 ;
* pr in t cnt1 r e s1 ;
*Monte Carlo s imu la t i on f o r second LOC* ;
seed=j (n2 , 1 , 1 ) ;
u2=uniform ( seed )+1;
mc2=u2 [ 1 : n2 , 1 ] ;
l g2=log (mc2−1);
x2=(−1* l g2 /beta)+mmin2 ;
*determine magnitudes g r e a t e r than l o c2 ;
l c i i=J (n2 , 1 ,mmin2 ) ;
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cnt2=(x2>=l c i i ) [+ ] | | ( x2<l c i i ) [ + ] ;
c l a s s 2=cnt2 [ <: >];
r e s2 = re s2 // c l a s s 2 ;
* pr in t cnt2 r e s2 ;
*Ca l cu l a t i on s f o r bhat ;
sumx=x1−mmin2 ;
d=sumx [+ ] ;
sumxx=x2−mmin2 ;
d1=sumxx [+ ] ;
totalsum=d+d1 ;
su2=(n1 *(mmin1−mmin2 ) ) ;
betahat1 = nto ta l /( totalsum−su2 ) ; *Ca lcu l a t ing betahat * ;
bvalue1=betahat1 / log ( 1 0 ) ;
betav=J ( i , 1 , beta ) ;
bv=J ( i , 1 , 1 ) ;
n= n // i ;
abhats1 = abhats1 // betahat1 ;
bvalues1 = bvalues1 // bvalue1 ;
p r i n t n abhats1 betav bvalues1 bv ;
end ;
meanb=bvalues1 [ : , ] ;
b i a s=meanb−b1 ;
p r i n t b i a s ;
nm={"n" "Beta_Values" "Beta" "b_values" "b "} ;
nbeta1= n | | abhats1 | | betav | | bva lues1 | | bv ;
c r e a t e be tava lue s from nbeta1 [ colname=nm ] ;
append from nbeta1 ;
qu i t ;
*end o f 500 bhats generated ;
*Histogram f o r the beta va lue s comparing to beta =2.303;
proc template ;
d e f i n e s tatgraph sgdes i gn ;
dynamic _BETA_VALUES;
begingraph ;
e n t r y t i t l e ha l i gn=cente r ' Beta va lue s f o r Kijko−S e l l e v o l (1989) method ' ;
layout l a t t i c e / rowdatarange=data columndatarange=data
rowgutter=10 columngutter=10;
layout over l ay ;
histogram _BETA_VALUES / name='histogram ' b inax i s=f a l s e ;
endlayout ;
endlayout ;
endgraph ;
end ;
run ;
proc sgrender data=WORK.BVALUES template=sgdes i gn ;
dynamic _BETA_VALUES="'BETA_VALUES' n " ;
run ;
* Sca t t e r p l o t f o r the beta va lue s comparing to beta =2.303;
proc template ;
d e f i n e s tatgraph sgdes i gn ;
dynamic _N _BETA_VALUES _N2 _BETA;
begingraph ;
e n t r y t i t l e ha l i gn=cente r ' Beta va lue s f o r the Kijko−S e l l e v o l (1989) method ' ;
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l ayout l a t t i c e / rowdatarange=data columndatarange=data
rowgutter=10 columngutter=10;
layout over l ay ;
s c a t t e r p l o t x=_N y=_BETA_VALUES / name=' s ca t t e r ' ;
s e r i e s p l o t x=_N2 y=_BETA / name=' s e r i e s ' connectorder=xax i s ;
endlayout ;
endlayout ;
endgraph ;
end ;
run ;
proc sgrender data=WORK.BETAVALUES template=sgdes i gn ;
dynamic _N="N" _BETA_VALUES="'BETA_VALUES' n" _N2="N" _BETA="BETA" ;
run ;
proc t t e s t data=betava lue s ;
var b_values ;
run ;
proc reg data=betava lue s ;* Ca lcu l a t ing the mean square e r r o r and r−square ;
model b_values=b/ noint ;
run ;
* Sca t t e r p l o t f o r the b va lues comparing to b=1*;
proc template ;
d e f i n e s tatgraph Graph ;
dynamic _N _B_VALUES _N2 _B;
begingraph ;
e n t r y t i t l e ha l i gn=cente r ' Kijko−S e l l e v o l l (1989) method : b−va lue s
generated compared to b=1 ';
layout l a t t i c e / rowdatarange=data columndatarange=data rowgutter=10
columngutter=10;
layout over l ay ;
s c a t t e r p l o t x=_N y=_B_VALUES / name=' s ca t t e r '
markeratt r s=(symbol=CIRCLEFILLED s i z e=7 ) ;
s e r i e s p l o t x=_N2 y=_B / name=' s e r i e s ' connectorder=xax i s
l i n e a t t r s =( c o l o r=CXFF0000 th i c kne s s=4 ) ;
endlayout ;
endlayout ;
endgraph ;
end ;
run ;
proc sgrender data=WORK.BETAVALUES template=Graph ;
dynamic _N="N" _B_VALUES="'B_VALUES' n" _N2="N" _B="B" ;
run ;
* Sca t t e r p l o t code ends * ;
proc boxplot data=betava lue s ;
p l o t b_values*b ;
run ;
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Appendix B

(Continues till totaln=500)
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The Kijko-Sellevoll (1989) method:

(Continues till n=500)
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Abstract

Various estimators for the b-value of the Gutenberg-Richter earthquake relation have been derived in
previous literature [8, 14, 6].The identi�cation of the best estimator of the b-value estimator is examined
in the report. Two models are discussed where their properties are analysed and the estimators are
derived which are ultimately rated. The �rst model uses maximum likelihood estimation which is still
the preferred estimator as discussed in [2] and the second model is based on method of moments. Monte
Carlo is used for simulations and the statistical methods used to analyse the estimators include mean
squared error and bias.
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1 Introduction

An important issue of seismological studies is to assess the hazard involved with the event of an earth-
quake. One of the most important equations in seismology, The Gutenberg-Richter magnitude relation [14]
is expressed as

log(N) = a− bm (1)

where N is the number of earthquakes with a magnitude of m or greater, a is the seismic level and b
provides the relationship between large and small events. This equation is of important value since it helps
to analyse tectonic and induced seismic activities and is applicable for unequal time periods, a crucial feature
in seismology. The b-value, a characteristic of the seismic rate, is obtained by plotting the number of
earthquakes against the magnitudes. To estimate the b-value, the relationship β = b ln 10 is used. Theb-value
tends to be close to 1 in seismically active places. Estimating both a and b is of high importance since they
are used in earthquake prediction as well as hazard assessment, etc.The magnitudes follow an exponential
distribution with parameter α while the frequency of the earthquakes follow a Poisson distribution with
parameter λ, which is used to estimate parameter a in equation 1. This paper will speci�cally look at
methods of estimating the seismic activity rate parameter (parameter b from equation 1). If it is assumed
that the magnitudes are independent, identically distributed random variables following equation 1 then the
probability density function of the magnitudes, from [7], is

f(m;β) =

{
0 m ≤ mmin

β exp[−β(m−mmin)] m ≥ mmin

(2)

F (m,β) =

{
0 m ≤ mmin

− exp[β(m−mmin)] + 1 m ≥ mmin

(3)

and the preferred estimator of the b-value, which was derived by [2] is

β̂ =
1

m̄−mmin
. (4)

where m̄ = average magnitude and mmin = lowest magnitude in complete catalogues observations (also
called level of completeness) and mmax =maximum magnitude over the catalogue observations. Equation
(4) was derived �rst by [12] where he used the method of moments and [2] used the maximum likelihood
method instead. There are four methodologies in previous literature from [8, 14, 6, 7], where di�erent and
reliable estimates for β are given, but this paper will assess the accuracy of the estimation of the b-value by
considering only two methodologies namely the �rst from [14] :

1

β̂
= m̄−mmin − (mmax) exp(−β(mmax−mmin))

1−exp(−β(mmax−mmin))
(5)

and the second from [7] :

β̂ =
(2m̄2)

m̄3
(6)

where m̄2 =

n∑
i=1

(Xi−m̄)2

n and m̄3 =

n∑
i=1

(Xi−m̄)3

n .
To test these two methods, the Monte Carlo technique is used to simulate the values and their mean

square errors and their bias are calculated and assessed respectively. A conclusion is given on the better
estimator of the b-value and of its reliability thereof.
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2 Literature Review

The main references used in this project are 'Estimation of the earthquake recurrence parameters for unequal
observation periods for di�erent magnitudes by Weichert from [14]. In this article, the MLE of the earthquake
parameters are taken in the case of events with equal magnitudes but over individual time periods. Next is
'Maximum likelihood estimate of b In the Formula logn = a − bm And its con�dence limits' by Aki from
[2] where Aki[2] derives an estimator for the b-value, which is used extensively for estimation due to its
simplicity.'Estimation of the frequency-magnitude Gutenberg-Richter b-value without making assumptions
on levels of completeness' from [7] is also consulted. In this paper, both the method of moments and the
maximum likelihood estimation are used to derive estimators for the b-value when the level of completeness
is unknown. Lastly,'A method for determining b-value in the formula logn = a− bm showing the magnitude-
frequency relation for earthquakes' from [12] in which an expression is derived by [12] to correct for bias due
to rounding when estimating the b-value.

3 Background Theory

3.1 Mathematical Background

This report will be based on the assumption of rejecting the macro seismic observations which are incomplete
and only consider the complete part of the catalogues as discussed in [6]. Since it is assumed that the seismic
events are independent and identically distributed, the likelihood functions are derived by taking the products
of the likelihood of each sub catalogue. Then the MLE is calculated by maximizing the likelihood function.
For the method of moments, the sample moments are equated to the population moments and we solve the
equations to obtain an estimator.

3.1.1 Weichert(1980)

Our assumptions when dealing with this methodology are that the events are grouped by magnitudes where
each group has individual time periods. Weichert [14] assumes, very realistically, unequal observations pe-
riods for di�erent magnitudes. Figure 1 shows this assumption as the shaded block, which represents the
di�erence between the �rst and second levels of completeness. Another assumption in [14] is that a maximum
magnitude mmax is imposed. Since the chance of possible variability exists because of unequal observations,
the magnitudes are assumed to be independent identically random variables.

Figure 1: An illustration of a seismic event catalogue with di�erent time periods and levels of completeness
as described in [14]. mmin are the levels of completeness and 4m is the di�erence on level of completeness
between two time periods.
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From [10], the frequency distribution n(x) is given as n(x) = Kx−β where we need to �nd the value of β
that maximises the probability of getting n samples of x in the interval [xmin, xmax]. So taking ln, we get

ln(n(x)) = ln(K)− βln(x).

This follows the Gutenberg-Richter equation (1) if we let ln(x) = m. Now the probability that the ith sample
will fall between xiand xi + dx is f(xi)dx , where f(xi) is given by:

fX(xi;β) =
(1− β)x−βi

(xmax)1−β − (xmin)1−β (7)

The likelihood function de�ned as the jointed density which is the product of the marginal densities from
equation(7), becomes

L(β|x) =

n∏
i=1

fX(xi;β)

=

∏n
i=1(1− β)x−βi

(xmax)
∑n

i=1(1−β) − (xmin)
∑n

i=1(1−β)

=
n(1− β)

∑n
i=1 x

−β
i

n((xmax)(1−β) − (xmin)(1−β))

The log-likehood function becomes

lnL(β|x) = n ln(1− β) +

n∑
i=1

−β ln(xi)− ln[n((xmax)1−β − (xmin)1−β)].

Di�erentiating with respect to β gives

δ lnL(β|x)

δβ
=

n

1− β
(−1)−

n∑
i=1

ln(xi)−

1

(xmax)1−β − (xmin)1−β (xmax)1−β ln(xmax)(−1) + (xmin)1−β ln(xmin)(−1)

=
−n

1− β
−

n∑
i=1

ln(xi) +
(xmax)1−β ln(xmax)− (xmin)1−β ln(xmin)

(xmax)1−β − (xmin)1−β .

Setting equal to zero gives

−n
1− β

−
n∑
i=1

ln(xi) +
(xmax)1−β ln(xmax)− (xmin)1−β ln(xmin)

(xmax)1−β − (xmin)1−β = 0.

n∑
i=1

ln(xi) =
−n

1− β
+

(xmax)1−β ln(xmax)− (xmin)1−β ln(xmin)

(mmax)1−β − (mmin)1−β ,

ln(x̄i) =
1

β − 1
+

(xmax)1−β ln(xmax)− (xmin)1−β ln(xmin)

(xmax)1−β − (xmin)1−β .

but since ln(x) = m, we can solve for β̂ as

1

β̂
= m̄−mmin − mmax exp(−β(mmax−mmin))

1−exp(−β(mmax−mmin))
.
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3.1.2 Kijko-Smit(2016)

In [7], the problem of heavy dependence of the level of completeness mmin on the [2, 12] maximum likelihood
estimator of the b-value is addressed. New estimators, which are not dependent on the level of completeness,
are derived which are simpler to use since they are expressed in terms of the sample central moments namely
the mean, standard deviation and skewness. This method works well when the incomplete distribution curves
gradually and has one maximum, represented in �gure (2). Another bene�t of these new estimators is that
they provide more accurate hazard and prediction assessments since they take into account the weaker seismic
events as well. Aki[2] showed in his paper that the Gutenberg equation (1) can be assumed to be in the form
of the probability density function (2) for m ≥ mmin and β = b ln(10).From [12, 2], the b-value estimator is
of the form

β̂ =
1

m̄−mmin
.

For this methodology it is assumed that the level of completeness is unknown and so the catalogue has a
set of independent random missing seismic events. Let Pc(m) be the probability that a catalogue contains
a seismic activity of magnitude m. Then Pc(m) is the probability of completeness of seismic catalogue or
commonly known as the probability of detection. So, in general as the magnitudes get higher, the higher the
probability of detection will be. Now since the frequency magnitude distribution is a�ected by Pc(m), we
de�ne fA(m), the apparent frequency magnitude distibution, as the product of Pc(m) and the PDF of the
seismic event magnitude (2):

fA(m; θ) = c.Pc(m, θ).f(m,β). (8)

where c = 1/
´mmax

m0
Pc(m)fM (m)dm is the normalising coe�cient. By de�nition, the apparent frequency

magnitude distribution after normalization is

fA(m, θ) =
Pc(m, θ)fM (m,β)´mmax

mminPc(m)f)m)dm

A graph of the theoretical Gutenberg-Richter magnitude relation (1) and the apparent frequency magnitude
distibution (8) is depicted in �gure (2). The �gure shows the relationship between the observed(apparent)
distribution and the exponential nature of the Gutenberg-Richter relation.

Figure 2: Histogram with an hypothetical seismic catalogue with the apparent frequency distribution and
the Gutenberg-Richter frequency-magnitude distribution law.

Figure from [7]
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We note that the assessment of the b-value comes from n independent random event magnitudes Mi(i =
1, .., n) where they are all greater than or equal to the detection magnitude mo. These magnitudes are
distributed according to the apparent probability density function (8). In order to e�ectively work out
estimates for the b-value, the functional form of the probability of completeness of the catalog Pc(m) needs
to be obtained. Therefore let Pc(m) ∝ (m − γ)α−1, (α > 0;m > γ) where the shape parameter α > 0 and
the location parameter γ < m from [5]. For convenience, all magnitudes M are replaced with X = M −mo

where mo is the lowest observation in the catalogue. So fA(m) can now be written as

fA(x) ∝ (x− γ)α−1 exp[−β(x)].

So after normalizing,

fA(x) =
(xi − γ)α−1 exp [−β(xi − γ]

βαΓ(α)
, (α > 0, β > 0, X > γ) (9)

where Γ(α) is a gamma function. (This equation is a three-parameter gamma distribution or a Type III of
the Pearson System of Distributions). The population moments are thus de�ned as

µk = E[(X − µX)k]

=

+∞ˆ

−∞

(x− µX)kfA(x)dx.

The second methodology from [7] is derived by method of moments whereby the moment method estimators
(MME) are found by equating the sample moments to the population moments. So the �rst sample moment
is

m̄1 = µ̂1

= X̄

=

n∑
i=1

1

n
Xi

and the central sample moments are

m̄k = µ̂k

=
1

n

n∑
i=1

(Xi − m̄)k.

If equation (9) , the three parameter gamma function is used as a model, then from [3], the system of
equations become

α

β
+ γ = µ̂1,

α

β2
= µ̂2,

2α

β3
= µ̂3.

Solving for β gives

β̂ =
2µ̂2

µ̂3

=
2m̄2

m̄3
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where m̄2 =

n∑
i=1

(Xi−m̄)2

n and m̄3 =

n∑
i=1

(Xi−m̄)3

n .

4 Application

For the application, the Monte Carlo technique is used for simulations. A hypothetical simulated catalogue
was taken from [7] where Equation (2) is used to to simulate the magnitudes with β = 2.303 or where the
b-value is one. The level of completeness is mmin = 4.0. This is done for 500 simulations with 250 magnitudes
each. Then both methodologies are be used to �nd estimators of the b-value, one for each catalogue. Their
results are tested using bias and mean squared error. The data analysis for this essay was performed using
SAS software, Version 9.4 of the SAS System for Windows. Copyright© 2016 SAS Institute Inc., Cary, NC,
USA.

4.1 Weichert(1980)

For Weichert(1980), the data used excludes the curvature part of the distribution since this is one of [14]'s
assumption. The mmin is taken to be 4 and the mmax is 7.5. An iterative process, the Newton Raphson
method, is used to compute the b-values. The mean of the b-values is found to be 0.9894861. In Figure3, it is
shown how the b-values lie with respect to the theoretical value of 1. In terms of analysis, the bias is worked
out to be −0.010514 and the mean squared error is 0.02230.

Figure 3: A line plot of the b-values generated from Weichert(1980)[14]

In Figure 4, a histogram of the b-values is shown and the data seems to be very similar to a normal distribution.
Most of the values are centered around the value of mean value of 0.989 and the variance is 0.0004974.
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Figure 4: A histogram of the b-values from Weichert(1980)[14]

4.2 Kijko-Smit(2016)

For [7], all 500 catalogues are used. The mo is assumed to be 3.5, as required by one of the assumptions
of this method. The mean for the b-values under this method is 1.0161751. The bias is calculated to be
0.0161751. Figure 5 shows how closer the b-values are to the value of 1. However, the spread tends to be
larger for [7].

Figure 5: A line plot of the b-values generated from Kijko-Smit(2016)[7]

In Figure 6 most of the values are around the value of 0.9 with a variance of 0.06827. The data is more skewed
to the right than [14].
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Figure 6: A histogram of the b-values from Kijko-Smit(2016)[7]

5 Conclusion

This paper compares two methods of estimating the b-values from equation (1), namely a Maximum Like-
lihood Estimation approach and a Method of Moments approach. [14] addresses the issue of unequal ob-
servation periods and uses Maximum Likelihood to obtain the estimate. As a result, an iterative process is
required when processing. [7] has the advantage of being una�ected by the mmin. In addition, the de�nition
of the apparent distribution keeps the simplicity of the Aki-Utsu formula(4) while being able to generate a
moment estimate for the b-value.

Bias Mean squared error(MSE) R2

Weichert(1980) −0.010514 0.02230 0.9995
Kijko-Smit(2016) 0.0161751 0.26129 0.9381

Table 1: Table comparing results from the two methods.

From table (1), the results of both methods are shown. The bias of [14] is lower than [7] and so is its MSE.
The R2 for [14] is higher than for [7] which suggests that more of the data is explained by [14]. The Method of
moments is signi�cantly easier to work out however its bias is higher than The Maximum Likelihood approach.
In general, the Method of Moments estimates are less accurate than the Maximum Likehood estimates, but
for a bigger sample, both should provide similar and more accurate results. [7] is also speci�cally e�ective
when the apparent magnitude distribution is gradually curved.(Figure2). Further analysis namely certain
non parametric tests, like a ttest , can be done in the future to improve results obtained.
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Appendix A

Weichert(1980)

opt ions nodate ps=60 l s =80;
proc import d a t a f i l e="C:\ Users \Deeksha\Documents\ Un ive r s i ty \honours \Research
\my re s ea r ch \Research d ra f t \mycatalog . txt "
dbms=dlm
out=ca ta l og
r ep l a c e ;
d e l im i t e r = '& ';
getnames=yes ;
run ;
data mycatalog ;
s e t ca ta l og ; i f _5_25 <= 4 then d e l e t e ; * cu t t i ng o f f the data ; run ;
proc iml ;
use mycatalog ;
read a l l i n to xy ;
n=231;
s t a r t LogLik (b) g l oba l ( x1 ) ;
mean = mean( x1 ) ;
max=7.5;
min=4;
f=−1/b+(mean−min) − ( ( (max*exp(−b*(max−min)))/(1− exp(−b*(max−min ) ) ) ) ;
betava lue= 1/ f ;
bvalue=betava lue / log ( 1 0 ) ;
r e turn bvalue ; f i n i s h ;
do i i = 1 to n ; * d i v i d i ng 250 magnitudes in each cata logue ;
n1=250;

i f i i = 1 then do ;
x1=xy [ 1 : n1 , 1 ] ;
end ;
i f ( i i >1) then do ;
i f ( i i <n) then do ;
g=(n1 *( i i −1)) ;
x1=xy [ g : g+n1 , 1 ] ;
end ;
end ;
i f ( i i=n) then do ;
x1=xy [ 9 3 2 5 0 : 9 3 5 0 0 , 1 ] ;
end ;

num= num // i i ;
b = 0 . 2 ;
opt ={0 ,2};
c a l l n lpnra ( rc , r e s u l t , " LogLik " , b , opt ) ; *Newton raphton method ;
r e s u l t s = r e s u l t s // r e s u l t ;
end ;
bva lues= num | | J (n , 1 , 1 ) ;
p r i n t r e s u l t s ;
mean = mean( r e s u l t s ) ;
p r i n t mean ;
b i a s = mean − 1 ;
p r i n t b i a s ;
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nm={"n" "bvalue "} ;
numbeta= num | | r e s u l t s ;
bbeta= bvalues [ , 2 ] | | numbeta [ , 2 ] ;
c r e a t e bvaluematr ix from numbeta [ colname=nm] ;
append from numbeta ;
c r e a t e bva luestheo from bvalues ;
append from bvalues ;
name={' bvalues ' ' bvaluehats ' } ;
c r e a t e toge the r from bbeta [ colname=name ] ;
append from bbeta ; qu i t ;
ods g raph i c s o f f ;
proc reg data = toge the r ;
model bva luehats=bvalues / no int ; run ;
** l i n e p l o t ;
proc template ;
d e f i n e s tatgraph sgdes i gn ;
dynamic _N _BVALUE; begingraph ;
layout l a t t i c e / rowdatarange=data columndatarange=data
rowgutter=10 columngutter=10;
layout over l ay / yax i sop t s=( l i n e a r o p t s=( viewmin=0.0 viewmax=2 .0 ) ) ;
s e r i e s p l o t x=_N y=_BVALUE / name=' s e r i e s ' connectorder=xax i s ;
r e f e r e n c e l i n e y=1.0 / name='hre f ' yax i s=Y
l i n e a t t r s =( c o l o r=CXFF0000 th i c kne s s=3 ) ;
endlayout ;
endlayout ;
endgraph ; end ; run ;
proc sgrender data=WORK.BVALUEMATRIX template=sgdes i gn ;
dynamic _N="N" _BVALUE="BVALUE" ; run ;
** histogram ;
proc template ;
d e f i n e s tatgraph Graph ;
dynamic _BVALUE; begingraph ;
layout l a t t i c e / rowdatarange=data columndatarange=data rowgutter=10
columngutter=10;
layout over l ay ;
histogram_BVALUE/name='histogram ' b inax i s=f a l s e f i l l a t t r s=GraphDataDefault
( c o l o r=CX8CA6CE) o u t l i n e a t t r s=( c o l o r=CX000000pattern=SOLID th i ckne s s =1);
endlayout ;
endlayout ;
endgraph ;
end ;
run ;
proc sgrender data=WORK.BVALUEMATRIX template=Graph ;
dynamic _BVALUE="BVALUE" ; run ;
proc un i va r i a t e data = bvaluematr ix ;
var bvalue ;
run ;
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Kijko-Smit(2016)

opt ions nodate ps=60 l s =80;
proc import d a t a f i l e="C:\ Users \Deeksha\Documents\ Un ive r s i ty \honours \
Research\my re s ea r ch \Research d ra f t \mycatalog . txt "
dbms=dlm
out=ca ta l og
r ep l a c e ;
d e l im i t e r = '& ';
getnames=yes ;
run ;
proc un i va r i a t e data=ca ta l og ;
var _5_25 ; histogram / normal ;
run ;
proc iml ;
use ca ta l og ; read a l l i n to xy ;
n=500; mo= 3 . 5 ;
do i i = 1 to n ;

n1=250;
i f i i = 1 then do ;
x1=xy [ 1 : n1 , 1 ] ; end ;
i f ( i i >1) then do ;
i f ( i i <500) then do ;
g=(n1 *( i i −1)) ;
x1=xy [ g : g+n1 , 1 ] ;
end ;
end ;
i f ( i i =500) then do ;
x1=xy [ 1 24750 : 1 25000 , 1 ] ;
end ;
x s ta r= x1−mo;
m1= mean( xs ta r ) ;
sumk=0;
suml=0;
do i = 1 to n1 ;
x= xs ta r [ i , ] ;
k=((x−m1)##2);
l =((x−m1)##3);
sumk = sumk + k ;
suml = suml + l ;
end ;
m2 = (sumk)/n1 ;
m3 = ( suml )/n1 ;
beta= (2*m2)/m3;
bvl= beta / log ( 1 0 ) ;
num= num // i i ;
betam = betam// bvl ;
end ;

bva lues= num | | J (n , 1 , 1 ) ;
p r i n t betam ;
mean = mean(betam ) ;
p r i n t mean ;
b i a s = mean − 1 ;
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pr in t b i a s ;
nm={"n" "bvalue "} ;
numbeta= num | | betam ; bbeta= bvalues [ , 2 ] | | numbeta [ , 2 ] ;
c r e a t e betamatr ix from numbeta [ colname=nm] ; append from numbeta ;
c r e a t e be tava lue s from bvalues ; append from bvalues ;
name={' bvalues ' ' betahats ' } ;
c r e a t e bmatrix from bbeta [ colname=name ] ; append from bbeta ;
qu i t ;
proc reg data = bmatrix ;
model betahats=bvalues / no int ; run ;
*** l i n e p l o t *** ;
proc template ; d e f i n e s tatgraph sgdes i gn ;
dynamic _N _BVALUE; begingraph ;
layout l a t t i c e / rowdatarange=data columndatarange=data rowgutter=10
columngutter=10; layout over lay / yax i sopt s=( l i n e a r o p t s=
( viewmin=0.0 viewmax=2 .0 ) ) ;
s e r i e s p l o t x=_N y=_BVALUE / name=' s e r i e s ' connectorder=xax i s ;
r e f e r e n c e l i n e y=1.0 / name='hre f ' yax i s=Y l i n e a t t r s =( c o l o r=CXFF0000
th i c kne s s=3 ) ;
endlayout ; endlayout ; endgraph ; end ; run ;
proc sgrender data=WORK.BETAMATRIX template=sgdes i gn ;
dynamic _N="N" _BVALUE="BVALUE" ; run ;
*** histogram *** ;
proc template ; d e f i n e s tatgraph Graph ; dynamic _BVALUE;
begingraph ;
layout l a t t i c e / rowdatarange=data columndatarange=data rowgutter=10
columngutter=10;
layout over l ay ;
histogram _BVALUE / name='histogram ' b inax i s=f a l s e ;
endlayout ; endlayout ; endgraph ; end ; run ;
proc sgrender data=WORK.BETAMATRIX template=Graph ;
dynamic _BVALUE="BVALUE" ; run ;
proc un i va r i a t e data=betamatr ix ;
var bvalue ; run ;
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Abstract

This research project covers an exploration of statistical thinking models with a focus on the paradigm

shifts and perspectives surrounding the instruction and learning of statistics. Statistical thinking is not

an innate ability yet it is an indispensable tool that is not con�ned to pedagogy but has applications in

several other �elds as well as everyday life. As such, it has become increasingly important to nurture and

develop the way in which statistics is taught and learnt in introductory statistics courses.

In this essay, the literature covering the development and application of statistical thinking models will

be reviewed in conjunction with developments in education research relating to the teaching and learning

of statistics. The statistical thinking models central to the topic will be explored in some detail and

then applied to an introductory statistics course. Speci�cally, the perceptions of students enrolled in

an introductory statistics course at the University of Pretoria will be analysed using quantitative and

qualitative approaches in order to ascertain if the students are able to think statistically upon completion

of the course and if the course is adequate in fostering statistical thinking in the students.
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1 Introduction

In the world we live in, we are inundated with statistics, �gures and charts reported in the media or presented
by private or governmental organisations; the ubiquity and availability of data have increased substantially
over the past years bringing to light the need for statistical literacy. The ability to make decisions given the
data presented in everyday life has become an important skill to add to one's set. Should one �nd oneself in
a career centered on statistics or a �eld that relies on statistical analysis, this ability needs to be sharpened.
The way in which one may become statistically literate and furthermore, highly skilled, is through grasping
statistical concepts and gathering a �rm understanding thereof. Understanding statistics is based on being
able to think statistically and being an e�ective thinker. Statistical thinking models are concerned with map-
ping the process of thinking that is used when solving statistical problems. Statistical thinking is something
that must be taught in order for one to be able to think and reason in a way that will enable one to tackle
problems. In introductory statistics courses, it is, therefore, paramount to instill in students a high level of
statistical thinking and part of the agenda of statistical pedagogy to not only convey statistical concepts but
convey meaning along with these concepts.

In this research project, statistical thinking is de�ned and the models that capture the process are examined;
literature on statistical thinking models, statistical teaching and learning and the practice of statistics will
henceforth be examined extensively. The application of these concepts and models in terms of teaching and
learning statistics, and statistical thinking will be explored and then applied to an introductory statistics
module to ascertain whether statistical thinking is being e�ectively encouraged by lecturers and instilled in
the students. This will be achieved via an analysis incorporating both quantitative and qualitative methods.
For the purpose of this report, an introductory statistics module o�ered at the University of Pretoria, formed
the focus of the analysis. A survey of students enrolled in this course was taken with the aim of gauging
the students' perceptions. The data from the survey was analysed with the aim of determining whether
the students were able to engage in statistical thinking after completion of the module. In addition to this,
interviews were conducted with a few willing students to further explore the perceptions the students have
of the module. Critique of the teaching approach will be given along with recommendations to improve the
module in terms of fostering the development of statistical thinking.

Introductory statistics courses form the foundation of statistical learning. Concepts learned in this envi-
ronment need to be cemented in the minds of the student and, more importantly, the concepts must be
understood and the student should be able to use these concepts to solve problems. The reason for this
analysis is to discover how students learn statistics so as to be able to �nd a way to create understanding.
Examining the way in which students think about statistics and learn these concepts is the �rst building
block in improving the process to ensure that the student has learnt e�ectively.

Statistical literacy, reasoning, and thinking are all fundamental to a thorough understanding of statistics.
The ability to think statistically must be taught and a deep impression of the thinking process should be left
on all students of statistics regardless of the level. In [2], Ben-Zvi and Gar�eld de�ned statistical literacy,
reasoning, and thinking as follows:

De�nition 1. Statistical literacy: The fundamental skills required to understand and analyse results and
information. These skills include being able to organise and represent the data in a sensible way and
being able to work with this data. To be statistically literate is to understand the terminology, notation,
and concepts.

De�nition 2. Statistical reasoning: Statistical reasoning involves being able to understand, interpret, ex-
plain and statistically summarise the data. It also refers to the ability to link several concepts.

De�nition 3. Statistical thinking: To think statistically means to be able to understand the reasons for
statistical investigation and identify the ubiquity of the main concepts of statistics. Statistical thinking
encompasses the process of deciding on an appropriate technique and, furthermore, when to apply the
statistical concepts. The ability to synthesise statistical and contextual knowledge to �nd a solution to
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a problem is imperative in statistical thinking and �nally, to achieve a high level of statistical thinking,
the ability to critically evaluate results is paramount.

The aforementioned de�nitions are not the result of the �rst attempt to give a concise structure to the
thinking process. In [5], Mallows de�ned what he calls the zeroth problem that should precede Fisher's �rst
problem (the problem of speci�cation that involves choosing the mathematical form of the population). The
zeroth problem is given as follows:

Problem (0): �Considering the relevance of the observed data, and other data that might be
observed, to the substantive problem.�

Mallows claimed that statistical thinking is at the core of solving the zeroth problem and with that provided
a de�nition for statistical thinking:

�Statistical thinking concerns the relation of quantitative data to a real world problem, often in
the presence of variability and uncertainty. It attempts to make precise and explicit what the
data has to say about the problem of interest.�

Having de�ned statistical thinking, the models that map the statistical thinking process must be examined.
Pfannkuch and Wild [11] developed the 4-dimensional model of statistical thinking during data-based enquiry.
The authors introduced the following dimensions in the framework which will be explicated in the following
section:

� Dimension 1: The investigative cycle

� Dimension 2: Types of thinking: The �ve types of thinking are modelled and elaborated on by
Pfannkuch and Wild in [8].

1. Recognition of the need for data;

2. Transnumeration;

3. Consideration of variation;

4. Reasoning with statistical models;

5. Integrating the statistical and contextual.

� Dimension 3: Interrogative cycle

� Dimension 4: Dispositions

Given that the �ve types of thinking and the 4-dimensional framework have been modelled, it begs the ques-
tion of how to approach statistical thinking from a pedagogical perspective.

Pfannkuch and Wild [8] traced the origins and progress of statistical thinking to gain insight into the stages of
thinking that a student is required to undergo in order to develop statistical thinking completely as described
by the �ve thinking types. The authors uncovered main factors on which statistical thinking is based: ana-
lysing data to gain knowledge; acknowledging that statistics can be used to map social behaviour; statistical
models can be applied to various �elds; new tools must be developed for analysis.

Statistics is not an isolated �eld and has applications across several disciplines; as such, statistical thinking
and the models that describe it are used in these various �elds. Pfannkuch and Wild [8] then considered
the contributions to statistical thinking from �elds as diverse as epidemiology, psychology, quality manage-
ment, and contributions from statisticians themselves. Each of these �elds uses statistical concepts as part
of the process involved in analysing the real life situations on which judgements need to be made. In most
�elds, the �ve types of thinking are apparent in the approach to solving the problem. It has been seen that
the perceptions of most people are built on experiences that can be limiting. Thus, in order to encourage
sound judgement of a situation, statistical thinking must be taught. Contributions from statistics education
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researchers revealed information about the way in which students learn and the challenges facing both stu-
dents and instructors. The authors concluded their analysis of teaching and learning statistical thinking by
identifying four major challenges in statistical thinking: raising awareness of statistical thinking; recognising
statistical thinking in various situations; developing teaching strategies; and teaching and assessing students
in a way that will encourage statistical thinking.

Other studies relating to the challenges faced by instructors of introductory statistics courses have also
been carried out by Ben-Zvi and Gar�eld in [2] who suggested that instructors of introductory statistics
courses face many challenges due to students viewing these courses and the coursework as di�cult to engage
with.

Much work has gone into �nding solutions to the aforementioned challenges faced by both students and
instructors. The way in which statistics is taught and learnt has constantly evolved and there is now a need
for a focus on the concepts and thinking processes involved in �nding solutions to real-world problems. There
is much to be gained from analysing the methods of practising statisticians who work with real-world prob-
lems in a variety of contexts as �nding a solution requires a high level of statistical thinking. Mimicking the
approach in a classroom environment reveals possible approaches to enhancing statistical learning in students.

Chance [3] examined the promotion of statistical thinking in introductory statistics courses. The main
aim of teaching, in this instance, is to make the student �an informed consumer of statistical information�.
Exposure to the types of thinking used by practising statisticians can enhance the learning of students. Con-
stant repetition of statistical thinking habits will ensure that the student retains these habits and is able
to apply it in other courses and �elds. A similar approach to �nding a solution was taken by Pfannkuch
and Wild [7] who explored the way in which applied statisticians working in di�erent backgrounds approach
problems. Their aim was to investigate thinking processes and form an idea of how to enrich teaching with
the information acquired.

Finding a solution to the challenges faced using a purely pedagogical approach is of utmost importance when
faced with the task of instilling statistical thinking in students enrolled in introductory statistics courses.
Rumsey [9] de�ned the ideal outcome for introductory statistics courses as preparing students for dealing
with data that they would encounter on a daily basis and in their careers. To achieve this, Rumsey sug-
gested that the student should become a good �statistical citizen� meaning one who can critically analyse
data encountered and is essentially statistically literate. As a second goal, students should be imbued with
research skills incorporating the scienti�c method. There is a need for statistical literacy, at any level of
statistical knowledge and reason, in order to understand concepts and language used in everyday statistical
reporting and in the media. The author explored misconceptions about understanding statistical ideas and
gave suggestions to engender understanding.

On the issue of data and the zeroth problem posed by Mallows [5], Rumsey suggested that allowing stu-
dents to produce their own data and yield results based on this data will motivate the student. Students
should also be able to communicate the results and �ndings. Here, tasks aimed at interpreting and e�ectively
communicating results is a useful tool to create understanding. Ben-Zvi and Gar�eld [2] recommended incor-
porating more data and concepts instead of focusing on theory; using real data and not simply realistic data
to develop the students' statistical literacy, reasoning, and thinking. However, when given existing data, as
is often the case, Cobb and Moore [4] suggested that exploratory data analysis should be used as a starting
point as basic methods and concepts can be used on existing data without the need to produce or collect the
data. Students should be asked to engage in interpretation of results from the outset to build a foundation
for interpreting problems stemming from concepts that are of an increased di�culty level.

Technology has resulted in statistics becoming operational and it has created an opportunity for students
to use various resources to aid their studies. Moore [6] explored what makes a student an e�ective learner
and how to enable e�ective learning. He made a case for the integration of technology into the curriculum
in a capacity where the technology enhances teaching but does not replace it. Traditional teaching methods
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should be synthesised with technology-based teaching methods such as the use of multimedia as a teaching
aid and the use of computational technology that will allow for exposure to practical statistics. Statistical
thinking encourages a focus on strategy in statistics. Snee [10] stated that the advancements in technology
require the statistician to assume the role of a strategist in addition to the role of a problem solver using
statistical tools.

Statistical thinking is a complex issue that can be approached from many angles to achieve the common
goal of improving the understanding people have of statistics whether it be in an everyday situation or ap-
plied in one's career. As discussed above, there are numerous challenges to achieving this goal but they are
not without solutions.

2 Background theory

From the literature, it appears that statistical thinking models and the goals of statistical teaching and
learning run parallel. It is the goal of this essay to apply statistical thinking models to statistical pedagogy
and to assess if the outcomes of teaching actually encourage statistical thinking. In this section, statistical
thinking models will be discussed in depth along with ideal teaching and learning outcomes for introductory
statistics modules.

2.1 Statistical thinking models

Pfannkuch and Wild have been the main contributors to the development of statistical thinking models as
can be seen in the previous section. These models will be used in the analysis in the next section.

Pfannkuch and Wild [11] conducted interviews with students and professional statisticians in order to gain
information and build a deeper understanding of the inner workings of statistical thinking. These interviews
led to the construction of the 4-dimensional model which attempts to explain the process of statistical think-
ing during data-based enquiry. The thinker operates in all dimensions simultaneously albeit it with varying
degrees of attention. Pfannkuch and Wild expand on each of the dimensions in the framework:

1. The investigative cycle: This was adapted from the model originally developed by McKay and
Oldford in Pfannkuch and Wild [7]. This investigation cycle is designed to encourage other investigation
cycles with the aim of solving a statistical problem that is part of a real-world problem.

2. Types of thinking: The 5 types of thinking - recognition of the need for data; transnumeration; con-
sideration of variation; reasoning with statistical models, and integrating the statistical and contextual
- the 5 types of thinking will be expanded on in the discussion below.

3. The interrogative cycle: This is the general thinking process followed during problem-solving and
includes the following steps:

(a) Generate: The generation of ideas via brainstorming in groups or individually. This can be applied
to any problem.

(b) Seek: Recalling existing knowledge or acquiring new knowledge relating to the problem.

(c) Interpret: This phase involves making connections between new ideas and the existing information
from the model and then incorporating these ideas into the model.

(d) Criticise: To criticise here is to check the new information against internal reference points and
validate the new information based on these points.

(e) Judge: The judging phase is essentially the decision-making phase. The thinker decides what infor-
mation is important and, conversely, what information is redundant and must hence be trimmed.

4. Dispositions: Personal characteristics of the thinker will have an e�ect on the thinking process.
General characteristics include:
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(a) Curiosity and awareness: Asking the questions �Why?� and �How?� is the basis of idea generation
and discovery.

(b) Engagement: A deep-set interest in the problem will result in higher levels of observation and
provides some motivation.

(c) Imagination: The ability to analyse the model or problem from di�erent points of view requires
an imaginative approach from the thinker.

(d) Scepticism: This characteristic allows one to view the problem critically and with the aim to
evaluate the credibility of a solution.

(e) Being logical: The ability to think and argue logically is important in any problem and is the
surest way to reach a reasonable conclusion.

(f) A propensity to seek deeper meaning: One should not merely accept the solutions presented.
Instead, the desire to understand on a deeper level should be the dominant plan of approach.

From the 4-dimension framework, the second dimension, types of thinking, is the most useful at providing
direction with regards to the paradigms one should become familiar with to be able to think statistically at
a high level. Pfannkuch and Wild [8] built on the 5 types of thinking that are hierarchical in nature, with
one thinking type preceding another that eventually leads to the individual having a holistic understanding
of the statistical and contextual aspects of a problem. The 5 thinking types are stated and de�ned as follows:

1. Recognition of the need for data: In order to analyse real-world problems and make judgements
that are sounds, identifying the need for data and the proper collection thereof is the foremost step
that must be adhered to.

2. Transnumeration: The term �transnumeration�, coined by Pfannkuch and Wild [11], refers to the
stimulation of understanding through changing the representation of the data. Transnumeration occurs
when graphically representing and summarising the data in order to gain knowledge from the data and
to allow for communication of the situation and its analysis.

3. Consideration of variation: Understanding the theory behind variation and its presence and role in
real life situations is critical in developing a thorough grasp of statistics and its applications. Being able
to mitigate the sources of variability is also especially important. Snee [10] has stressed the importance
of variation as a key concept in statistics and in other �elds such as process control. Snee states that
variation is an important concept in statistical thinking as it needs to be recognised that variation is
present in processes whether or not data has been collected or analysed. The idea that variation is
present can still be used in problem-solving if data cannot be collected as even though data is important
to encourage statistical thinking; the thinking can be done without it if necessary.

4. Reasoning with statistical models: Models allow one to engage with the data on an aggregate basis
and detect patterns in the data. The concept of variation comes through when analysing a model as
variation can be detected more e�ciently from a model. These models can then be used to reason with
the data more e�ectively.

5. Integrating the statistical and contextual: The last type of thinking relates to the synthesis of
the contextual knowledge, gained by applying the prior types of thinking, and statistical knowledge,
and is a fundamental element of statistical thinking.

The 4-dimensional framework, illustrated in Figure 1, further explains each of the dimensions and their
respective �ows or components.
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Figure 1: The 4-dimensional framework developed by Pfannkuch and Wild [11]

2.2 The teaching and learning of statistics

The way in which introductory statistics courses are taught is crucial but it is not simple and this fact is
noted in [2] where Ben-Zvi and Gar�eld explored the many challenges faced by instructors, listed as follows:

1. The complexity of statistical concepts and the counter-intuitive nature thereof. Students are not easily
motivated to learn the concepts.

2. Students experience di�culty with the mathematics which hampers their learning of the statistical
concepts.
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3. Students tend to rely on their personal experiences when analysing the context rather than following
the statistical procedure to come to conclusions.

4. Students do not recognise the di�erences between mathematics and statistics and they are unfamiliar
and uncomfortable with the spectrum of interpretations that is common in statistics but uncommon in
mathematics.

From the previous section, Rumsey introduced the idea of a student being a good �statistical citizen� in [9].
The crux of the matter discussed by the author is that students should be critical of results and statistically
literate. This literacy is impeded when emphasis is placed on areas that do not lead a student to understand
the coursework. The author explored the misconceptions about statistical ideas:

1. Calculations demonstrate an understanding of statistical ideas: Emphasis should not be placed on
calculations as the ability to do a calculation is not the same as understanding a calculation.

2. Formulas help students understand the statistical idea: Using a formula to convey a statistical idea is
emphasising the mathematics and not the concept. Statistical ideas should be taught, at �rst, without
a formula and the student should be encouraged to �nd or derive a formula that demonstrates that they
understand the concept and not purely the mathematics. Students should also be able to explain how to
do something in words that demonstrate the meaning of the measurement or statistic. This sentiment
is echoed by Cobb and Moore [4] who discuss teaching statistics from two perspectives, that is, content
and pedagogy. They suggest that introductory statistics courses should focus on statistical ideas instead
of copious amounts of theory and formulas explained using a purely mathematical approach. Statistical
tools common to statisticians should be used �exibly with mathematics to deal with problems; there
should be an emphasis on an intellectual problem-solving method using reasoning to approach the
problem. They then go on to suggest that introductory statistics courses should not contain lessons
on formal probability theory. It is di�cult to develop understanding with the basis in a concept
such as probability theory with deep roots in mathematics. The recommendation is to teach informal
probability instead because it is su�cient for the student to gain an understanding of inference. The
derivation of distributions should be taught to students at a more advanced level. Distributions should
be taught using data analysis tools instead of following mathematical rules to solve the probability
problem.

3. Students who can explain things in statistical language demonstrate their understanding of a statistical
idea: Students should be able to discuss a result using plain and meaningful language in addition
to being able to give a statistical interpretation of the result. There should be an emphasis on why
statistics is done and on what is the thing that must be achieved.

Rumsey goes on to provide suggestions to promote understanding and encourage statistical literacy:

1. Teaching tools and techniques of problem solving should be accompanied by reasons for its use and
examples on how to use it.

2. De�nitions used should be made easy to grasp.

3. Overarching ideas should be communicated rather than simply knowledge learned in a single context.

4. The language and technical terms used should be moderated and supplemented with terms or methods
that convey the bigger picture.

2.3 Applying statistical thinking models to teaching and learning

After expanding on statistical thinking models and exploring the challenges of teaching introductory statistics
courses, it is clear that there is some divergence in the way that statistics is currently taught and the ideal
outcomes of teaching which is to create statistically literate students who can engage in statistical thinking.
From the 4-dimensional framework and the 5 types of thinking, it is clear that statistical thinking would
require a student to develop characteristics that encourage an enquiring and problem-solving mind, learn
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how to approach problems and, furthermore, the student should also be equipped with tools and skills that
would enable them to solve such problems. It is key here to note that the aforementioned attributes must
be learnt and is not innate for most students. This would then put the onus on teachers to transfer such at-
tributes to students and the best time would be when creating a foundation in introductory statistics modules.

Pfannkuch and Wild [8] considered contributions from statistics education researchers and integrated the
5 types of thinking with what they uncovered to ascertain how statistical thinking can be taught:

1. Integrating the statistical and contextual: Students need to assume the role of a �detective� and examine
the data along with the context to discover the reasons for the presentation of the statistics. The data
must be questioned by the student and the student should follow the process to reach a judgement or
decision about the problem.

2. Transnumeration and context knowledge: Statistical thinking is propagated through the critique of
graphs and patterns and not merely the acknowledgement of these representations. Collection and
modelling of the data also employ the use of statistical thinking and can be valuable to the students'
learning.

3. Recognition of the need for data: Students may assume that the data and analysis of the data will
�t their perceptions and experiences of that or a similar situation. This reliance on their opinions
introduce a bias and so a shift in thinking is needed for the student to identify a need for the data.

4. Statistical thinking and interacting with statistically based information: While the inclusion of the crit-
ical evaluation of statistically based reports in teaching curricula places the student in an investigative
position and allows the student to employ high-level thinking; this alone is not su�cient. The teaching
of the evaluation of such reports is required so the student may fully develop their statistical thinking
to synthesise statistical knowledge into the context.

5. Probabilistic and deterministic thinking: These two paradigms in statistics need to be taught together
as using both in models reveal information not available by analysis that treats these concepts as
separate.

6. Variation as fundamental in statistical thinking: Variation is under-represented in curricula. Students
need to develop a proper grasp of the concept of variation as this concept is foreign to the student at
the outset.

Using statistical thinking models and considering the suggestions of statistics educators and researchers, the
following would be required from students enrolled in introductory statistics courses and can be referred to
as teaching outcomes to foster statistical thinking:

1. Students should complete practical projects and assignments that use real-world data or reported
statistics and should be able to critique and provide insight into the problem and further follow steps to
solve the problem using the tools and skills they have learnt in the course. This is the application of the
4-dimensional framework and will encourage statistical thinking and measures their level of statistical
literacy.

2. Students should work with graphs and representations of data. They should be able to model the data
and critique the data.

3. Students should be able to show how they can apply what they have learnt in real-life scenarios and
not simply understand what they have learnt in a purely theoretical context.

4. Students should be able to understand what a formula does and how it works. Less emphasis should
be placed on simply remembering and using formulae. It should be the focus for the student to be able
to convey the idea behind the formula using plain language.

5. Students should be able to evaluate the results of their problems and calculations in context and they
must be able to explain and make sense of this given the results.
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6. Students should show that they understand the importance of variation in data and must be able to
explain the concept of variation, as well as other statistical concepts, in plain language.

7. Students who struggle with mathematics tend to be impeded in their learning of statistics if the teaching
approach is purely mathematical. The course should be structured in a way that allows the student to
use statistical tools and mathematics together to help the student understand.

8. Students should be able to use available technology to enhance their learning, understanding and
application of concepts.

9. Discussion and the use of multimedia should be used to enhance the students' experiences in the course.

If the students can ful�ll the requirements, the students can then be said to be able to think statistically,
based on the models discussed. Teaching outcomes should be directed at equipping the student to think
statistically and to equip the student for dealing with problems outside the con�nes of the classroom � from
statistics reported in the media to working with statistics in their later studies or careers.

In the next section, responses from students will be analysed in order to ascertain whether an introductory
statistics course o�ered at the University of Pretoria, henceforth referred to as STAT 1, produces students
that can think statistically and are statistically literate.

3 Application

STAT 1 is a �rst level statistics course o�ered at the University of Pretoria. The course is taken by students
enrolled in a wide range of degrees and belonging to di�erent faculties. Most students do not continue this
course beyond �rst year level, therefore, STAT 1 serves as the only statistics instruction they receive in an
academic setting. In terms of introductory statistics courses, it has been determined that this course is a good
candidate for this analysis. The main goal of this analysis is to determine whether, after taking the course,
the students are able to think statistically and if they gained meaning from the work covered. To achieve
this end, the analysis was approached using both quantitative and qualitative methods. The perceptions of
the students were the main focus of this analysis as these were used to determine whether students are able
to engage in statistical thinking and if the course encourages statistical thinking.

3.1 Description

The STAT 1 study guide states the course outcome as follows: �The goal of this statistics course is to equip
you with the basic knowledge and skills concerning the most important statistical techniques used daily in
practice�. From this, it is clear that the course is meant to teach students skills that are transferable to their
daily lives. This implies an emphasis on statistical literacy and practicality. The student should be able to
engage in statistical thinking after completing the course if the course content and structure lend itself to
this. The students attend three theory classes, one tutorial, and one optional practical class per week where
each class or session is 50 minutes long. The theory classes follow the usual lecture format where topics such
as probability theory, descriptive statistics and statistical distributions and inference are covered. In the
tutorial session, students are required to have completed an exercise based on current work beforehand so
solutions can be discussed and problems can be addressed during the session. There is one practical session
per week where attendance is not compulsory if students are able to complete the work on their own and
do not require further assistance. The practical exercises must be completed using Microsoft Excel. The
exercises are based on the theory covered in class. In addition to classes, students are required to complete
graded Aplia assignments online before and after a block of classes. Aplia is an online assignment environ-
ment, covering various subjects, designed to link theoretical concepts and real-world examples in the form
of assignments and exercises. Students are also required to make use of a clicker during classes and tests. A
clicker is a device that is linked to the lecturer's computer and is used to measure the responses of questions.
During class, the lecturer may display a question on the screen that should either be discussed in groups or
pondered over individually thus creating an interactive environment. The student then enters their answer

14



and the correct answer, along with a graphical display of the answers given, is displayed on the screen. The
students also use their clickers during tests and examinations, under normal examination conditions, where
the device is used to record their answers. The students are subject to continuous assessment throughout
the semester and they write a �nal examination at the end of the course. The semester assessment includes
two semester tests weighing 25% each, a practical test weighing 10%, clicker tests weighing 10% in total,
and Aplia and a test on hypothesis testing weighing 10% each. The �nal examination weighs 50% or 60% of
the �nal mark and the remainder is the mark received for the semester assessment. A �nal mark of 50% is
required in order to pass the course. The students are able to access resources from the library and are able
to consult with their lecturers and tutors should they require assistance with the coursework.

From the course outline, it is seen that the students are exposed to theory, they practise using examples
and apply the work using technologies such as Excel, and the students also engage with real-world examples
using Aplia. The work is presented using a blended learning - speci�cally �ipped classroom - approach and
there are enough support resources available to them should they run into problems. Blended learning means
that instruction is a combination of face-to-face teaching and online learning. Flipped classroom is a form
of blended learning where the student is required to do online preparation before a face-to-face session. In
STAT 1, students are required to do reading in the Aplia environment before a class and complete a pre-class
Aplia assignment and a post-class Aplia assignment that forms part of online learning. From this point of
view, the course seems to provide a holistic approach. However, the question is whether this approach has
the right mix of components to develop statistical thinking. For the purpose of this analysis, a survey of a
group of students enrolled in the course was taken with the questions designed to measure if the student's
opinions on what they have learnt are in line with the ideal outcomes of teaching and learning to facilitate
and develop statistical thinking. The survey was administered during a practical revision class in the last
week of lectures for the semester. The students were asked to �ll in a survey containing the following 11
statements:

1. What I have learnt thus far in STAT 1 is relevant to my life outside university.

2. I think more critically about reported statistics in the media.

3. I think the work covered is practical.

4. I can see how the distributions I have learnt can be applied to real-world scenarios.

5. When I study, I learn how to use the formula but I do not know what the formula means.

6. I understand the link between hypothesis testing and statistical inference.

7. I gain meaning about the problem context from the conclusions I draw from hypothesis testing.

8. Applying the work in Excel has helped me understand the work better.

9. I �nd the mathematical component of statistics di�cult.

10. Clickers assisted me well to master STAT 1.

11. Aplia assignments assisted me well to master STAT 1.

Students were requested to mark a box that indicated to what extent they agreed with each statement,
anchored from 1 - Strongly disagree to 10 - Strongly agree. The statements were designed to gauge information
about the students' perceptions of the course content and more importantly, the approach of the course.

� Statement 1 was designed to measure if the student believes that what he/she has learnt in the course
has any real-world application and if they think the skills they have acquired are transferable to daily
life. Statement 1 also tests if the student can recognise the need for data - which is the �rst thinking
type. If a student recognises the importance of data in their �eld of study or in real-world scenarios,
then they are able to engage with the �rst thinking type.
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� The response to statement 2 would indicate if the student has learned to critically analyse the data
they come into contact with in media and statistical reports thus also measuring if the student is able
to apply the second thinking type - transnumeration which involves being able to critically analyse
patterns and graphical representations of data.

� Statement 3 would indicate if the student perceives the work as practical enough or if there is, in his/her
opinion, too much emphasis on theory. This statement reveals information about whether the student
can see the applications of the theory thus engaging with thinking type 5 - integrating the statistical
and contextual.

� Statement 4 will allow for gauging if the student can directly see how something speci�c they have
learnt can be used in real life. Similar to the case of statement 3, statement 4 also measures how well
students engage with thinking type 5. In addition to this, statement 4 measures if the student is able
to reason with statistical models which is the essence of thinking type 4 - reasoning with statistical
models.

� Statement 5 is important in that it indicates if the student understands the calculations or if they
simply follow recipes. The response to this statement is a very good indication of whether the student
actually understands the work being presented and while this does not relate to any speci�c type of
thinking, understanding is essential in statistical literacy and statistical thinking as a whole.

� Statements 6 and 7 are both an indication if the student is able to get contextual understanding from
problems they are required to solve. Statements 6 and 7 relate to thinking type 5 - integrating the
statistical and contextual which is a fundamental element of statistical thinking as the application of
the other thinking types is also required.

� The students' responses to statement 8 will serve as an indication of whether the student can e�ectively
use technologies to make sense of the data. This statement will give an indication of whether the student
can engage with thinking types 1 and 2 which are recognition of the need for data and transnumeration.

� Statement 9 was designed in order to ascertain if the student �nds that a mathematical approach would
impede their progress. This statement does not relate to statistical thinking but can be used to explain
the performance of a student and will provide insight into whether the course should be structured to
incorporate a less mathematical approach.

� Statement 10 should provide information as to how the student responded to an interactive approach
during lectures. Statement 10 does not link to a speci�c thinking type but rather gives information on
whether using multimedia and interactive technologies enhance a student's performance.

� Finally, statement 11 should indicate whether students perceived the Aplia assignments as useful in
assisting them to understand the work better. Statement 11 concerns Aplia which, as explained earlier,
requires the student to answer questions posed in the form of real-world problems. The students'
responses to this statement will indicate if they can integrate the statistical and contextual - thinking
type 5 - and also, depending on the question can measure how well they engage with the other thinking
types. The reason for this is that the questions may require students to work with data in Excel, make
graphs, and answer theoretical questions.

The statements in the survey were designed to measure whether the student can engage with the 5 types of
thinking explicated in the literature. The third type of thinking, consideration of variation, was not addressed
in this survey but left to the qualitative study. The reason is that an explanation of variation would be better
suited to the purpose of investigating the students' understanding of the concept. The survey also incorporates
the suggestions and recommendations for the instruction of statistics so as to encourage understanding. The
responses to these statements provide an idea as to whether STAT 1 is structured and taught in a way that
encourages understanding, statistical thinking and literacy.
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3.2 Methodology

From the surveys collected, there were 119 students who granted permission for their marks to be used for the
purpose of this analysis and these surveys will be used for the statistical analysis. The goal of this approach
was to determine if the marks the students have achieved are an indication of their levels of statistical thinking
and further, if the course does develop statistical thinking in the students. The data was �rst summarised
to obtain descriptive statistics. Correlations between the variables were analysed to cast more light on this
issue and to assess if multicollinearity is present. Multiple regression was used to model the progress mark
of the student as the dependent variable and their response to each statement as independent variables. The
question of whether the student was repeating the module was also asked and this served as a qualitative
independent variable.

The survey was based on a Likert scale with an underlying assumption of continuity. This combined with
the fact that a 10-point scale was used means that the responses can be viewed as one would percentages.
Descriptive statistics methods were thus applied to the data collected and the results obtained are explained
below. The mean of each statement was calculated as well as the mean value of each statement for each group
of students with similar marks. The marks referred to henceforth are the students' �nal semester marks for
STAT 1. The groups were divided as follows: Students scoring a distinction, that is with a mark of 75%
or higher, formed the �rst group; students in the second group are those that passed but did not achieve a
distinction with marks ranging from 50% to 74%; students that fell into the last group scored marks below
50%, i.e. failed the module.

There were 5 missing values in total which occurred completely at random. In the cases where values were
missing, the responses were sorted sequentially so as to obtain the most similar results across the statements.
The missing values were then imputed as the average of the value of the response above and below the cell in
question. The mean of each statement, including the imputed values, di�ered only very slightly in the third
or fourth decimal if at all a�ected. Based on this, the dataset with the imputed missing values was the one
used in the analyses conducted.

The analyses were conducted using SASr software1. A bivariate correlation analysis was performed, fol-
lowed by a multiple regression analysis, an analysis of partial correlations, and a stepwise regression analysis.
The output and code can be found in the Appendix of this report.

3.3 Results

Having applied the methods described above, the results of the analyses are henceforth explained.

1The data analysis for this essay was performed using SAS software, Version 9.4 of the SAS System for Windows. Copyright

© 2016 SAS Institute Inc., Cary, NC, USA.
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Statement Overall mean Group 1 (75+) Group 2 (50 - 74) Group 3 (< 50)
n = 119 n1 = 26 n2 = 69 n3 = 24

1 4.42 4.88 4.55 3.54
2 5.38 6.5 5.17 4.75
3 5.54 6.31 5.60 4.63
4 5.72 6.42 5.54 5.5
5 5.22 3.85 5.54 5.79
6 5.06 5.54 5 4.73
7 5.79 6.35 5.62 5.65
8 4.83 5.04 4.99 4.15
9 4.63 3.04 4.90 5.58
10 4.36 4.54 4.74 3.08
11 5.66 6.62 5.64 4.67

Table 1: Mean response to each statement

The mean responses to each statement are summarised in Table 1. Across all divisions, it is clear that
there is no overwhelmingly high or low mean response that indicates extreme polarisation. Looking at the
statements, a positive result will be for the responses to all statements to be as close to 10 as possible barring
statement 5 and 9 where a response close to 1 would be ideal. Overall, students slightly agreed with state-
ments 2, 3, 4, 5, 6, 7 and 11 and slightly disagreed with the remaining statements. None of the mean responses
are very strong. When the statements are examined individually, across mark groups, a pattern emerges.
The mean response for each statement decreases as the achievement group indicates that the students' marks
are decreasing. The opposite is true for statement 5 and 9 where the mean response increases as the mark
group indicates that the students received lower marks. This pattern is indicative that students with higher
marks agreed more with the statements where a positive response would be ideal and they agreed less with
statements where a negative response would be ideal. The converse is true for students with lower marks.
It thus seems as if students who perform better gained more from the course in terms of the objectives of
statistical thinking.

The mean responses to statement 1 indicate that no group strongly perceives the course as being relevant
to real-life. The mean values indicate that students disagree that STAT 1 is relevant to their lives outside
university. The responses to statement 2 show that groups 1 and 2 consider themselves to think more criti-
cally of reported statistics with group 1 agreeing more strongly. Group 3 students moderately disagree with
this statement. Statement 3 required the student to determine if they thought that the work covered was
practical and the responses have the same outcome and pattern as the responses to statement 2. Statement
4 received a positive mean response from all groups with the responses implying that the students in every
group agreeing that they are able to see how the distributions they have learnt can be applied to real life.
From statement 5, a response that indicates disagreement would be the desired outcome as statement 5 stated
that the student knows how to use the formula but the student does not understand the formula. Only group
1 disagreed with statement 5 with groups 2 and 3 falling into the agreement category, however moderately.
This indicates that the students probably perform the calculation mechanically without grasping the concept
fully. The mean responses to statement 6 indicate moderate agreement from group 1 and moderate disagree-
ment from groups 2 and 3 to the statement that the student is able to link hypothesis testing and statistical
inference. There is agreement from all groups on statement 7 that the conclusions the student draws from
hypothesis testing give meaning to the context of the problem. Statement 8 implied that by applying the
work in Excel, the student would understand the work better. The mean responses indicate disagreement
with this statement with only group 1 agreeing although very moderately. If the response to statement 9
were near 10 it would indicate that the student perceives the mathematical component of statistics to be
di�cult. The mean response from group 1 indicates that this group disagrees with this statement. Group
2's responses indicate that this group is only very slightly disagrees while the mean response from group 3
indicates that the students in this group found the mathematical component di�cult on average. From the
mean responses to statement 10, all groups disagree that clickers assisted them well to master the course with
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group 3 disagreeing the most strongly on average. The last statement, statement 11, would be indicative
of whether completing the Aplia assignments assisted the student to master the work. The mean responses
from groups 1 and 2 indicate that these groups agree while group 3 disagrees albeit slightly.

A correlation analysis and regression analysis were performed on the same data; the statistical results can
be found in the Appendix of this report. The results from the correlation analysis indicated that there is
no presence of multicollinearity among the predictor variables. The highest correlation occurred between
the variables for statements 6 and 7 with a Pearson correlation coe�cient of 0.62053. There was also no
strong correlation between the dependent variable and any of the other predictor variables. The highest
Pearson correlation coe�cient was 0.30141 for the dependent variable, Mark, and the independent variable
representing statement 2 (which measures critical thinking). The point biserial correlation coe�cient for the
bivariate correlation between Mark and the dummy variable indicating whether or not a student is repeating
the module was positive. Similarly, the Pearson correlation coe�cients for the bivariate correlations between
Mark and the statement variables were positive except for the variables associated with statement 5 and 9,
as was expected.

From the regression analysis, the model is seen to be signi�cant at a 5% level of signi�cance with an F-
value of 2.12 and a p-value of 0.0212 i.e. a statistically signi�cant amount of variation in the dependent
variable, Mark, can be explained by the combination of independent variables in the model. The R-squared
value of the model was 0.1937, indicating that only 19.37% of the variation in the data can be explained
by the model and the adjusted R-squared value drops to 0.1024 indicating the penalty for the number of
predictors. The output from the analysis of variance in the regression analysis is provided in Figure 2.

Figure 2: Regression procedure output for the analysis of variance

As previously stated, all the statements were taken as independent variables as well as the independent
variable indicating if the student is repeating the module. The output from the regression analysis with the
details of parameter estimates can be found in Figure 3.
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Figure 3: Regression procedure output for parameter estimates

In the regression analysis, when looking at the predictors, the predictors representing statements 4 and
9 were the only predictors that are signi�cant. According to the signi�cance from p-values in Albright et.
al [1], the predictor representing statement 9, s9, shows strong evidence of signi�cance with a p-value of
0.0549. Looking to the regression coe�cient, the parameter estimate for s9 of -0.99599, which indicates
the impact of statement 9 controlling for the other predictors, has a negative sign. Given that the p-value
shows strong evidence of signi�cance, this indicates that, as the students' level of agreement with statement
9 increases, the students' marks decreased. Statement 9 was given as: I �nd the mathematical component of
statistics di�cult. This indicates that, controlling for all other variables, the more the student struggles with
mathematics, the poorer their marks would be. The predictor representing statement 4, s4, was moderately
signi�cant with a p-value of 0.1010. The parameter estimate of s4 was -1.08901 which has a negative sign
despite the bivariate correlation coe�cient between Mark and s4 having a positive sign. Multicollinearity
was investigated earlier and it was shown that there is no multicollinearity present to explain the di�erent
signs. To try and understand this anomaly, the partial correlations were calculated and the sign of the partial
correlation was negative, matching that of the regression coe�cient. The statement for s4 was: I can see how
the distributions I have learnt can be applied to real-world scenarios. Due to the moderate signi�cance of s4,
this can be interpreted as the students' ability to apply the work increases, the students' mark decreases by
more than 1 percentage point, holding the other variables constant. The predictor with the highest p-value
(0.9975) was s7, indicating that it has the least impact on the dependent variable, Mark.

To better evaluate which statements impact on marks, if considering the statements one-by-one, a step-
wise regression analysis was conducted. The stepwise regression was performed at a 5% level of signi�cance.
At this level, s2 entered the model in the �rst step. In the second step, s9 entered the model. These were
the only two variables to meet the 0.05 signi�cance level for entry into the model. The F-value for the test of
model signi�cance was 11.69 accompanied by a p-value of 0.0009 thus indicating that the model is signi�cant.
With a p-value of 0.0067, s2 is signi�cant at a 1% level of signi�cance while s9 is signi�cant at a 5% level of
signi�cance (p-value = 0.018). The predictor s9 was signi�cant in the original regression analysis, however,
s2 was not. Statement 2 was given as: I think more critically about reported statistics in the media. From the
stepwise regression results, as the students' agreement with the statement increases, the students' average
mark increases by 1.48602 percentage points, controlling for s9. As in the original regression analysis, the
sign of the regression coe�cient for s9 is negative. In the stepwise regression, the parameter estimate for s9 is
-1.06957 implying that holding s2 constant, as the students' level of agreement with the statement increases,
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the statement being that they �nd the mathematics component of statistics di�cult, the students' average
mark decreases by 1.06957 percentage points.

These regression results indicate that the students' understanding of statistics plays little part in deter-
mining the marks they are awarded in the course. This is perhaps not unexpected since the bulk of the
assessments, tests, and the examination, are designed to assess students' theoretical knowledge and not their
intuition or their insight into the problem. However, it should also be noted that only the statement responses
were used as independent variables in addition to the dummy variable indicating whether or not the student
was repeating the module. There are many other factors that contribute to students' marks, for example,
the performance of the student in grade 12 mathematics; whether or not the language of instruction is the
student's home language. The model developed in this essay does not perform particularly well and these
factors should be taken into consideration and the survey should be improved on.

3.4 Qualitative study

To get a �rmer grasp on the perceptions of students, interviews were conducted with students with the
purpose of determining their level of understanding after having completed the introductory statistics course,
STAT 1. The interviews were conducted on a voluntary basis with seven students having participated. All
seven students belong to the Faculty of Economics and Management Sciences and are studying �nance and
business related degrees. The interviews were conducted individually and each student was asked the same
core questions and possible follow-up questions that are listed as follows:

1. Do you think what you have learnt thus far in STAT 1 is in any way relevant to your life outside of
university?

(a) Did the way you view reported statistics change in any manner?

2. Do you think the work covered is practical?

(a) Can you give any examples or illustrate how you would apply any of the distributions you learnt
to a real-world scenario?

3. What is statistical variation?

4. When you study, do you simply learn how to use to formula or would you say you understand what the
formula means or represents?

(a) Looking at the following formula 1
n−1

∑
(xi − x̄)2 can you explain what it means?

5. What is the link between hypothesis testing and statistical inference?

(a) Do you feel you gain any meaning from the conclusions that you draw?

6. Has applying the work in the practical classes using Excel helped you with understanding the concepts?

7. Do you �nd the mathematical component of statistics di�cult?

(a) Do you feel that mathematics hampers you or helps you understand the work?

(b) Can you make the distinction between mathematics and statistics?

The questions asked in the interview were linked to the application of the 5 types of thinking to the teaching
and learning of statistics. The interview questions have a similarity to that of the statements in the survey.
The responses to the questions were collected and compared and are summarised below.

None of the students indicated that what they have learnt in the module is relevant to their lives outside of
university. They indicated that they were not able to see how it related to their �elds of study or the degree
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for which they were enrolled. When asked the follow-up question of if the way they viewed reported statistics
changed in any manner, three students agreed that it did. The view of these students was that it matters how
the statistics are reported as it can be manipulated; another student suggested that taking the course made
him more sceptical of the reported statistics he comes across. One student linked the reported statistics to
the �eld of economics where statistics is often employed in analyses and concluded that she was able to better
engage with the statistics in that �eld after completing the module. The other students expressed disinterest
in following current events and media in which statistical reporting is common such as politics and economics.

In response to question 2, all but two of the students agreed that the work covered is practical, mean-
ing that they are given the opportunity to apply the theoretical concepts in examples. The two students
that disagreed explained their response by suggesting that they did not work with real life examples. The
follow-up question required of the student to give an example or illustrate how they would apply any of
the distributions they learnt to a real-world scenario. In the case where they were not able to do so, the
students were asked to give an example of how statistics can be applied in a real-world scenario. The students
gave examples of hypothesis testing; using the normal distribution to check if marks obtained in a course
were normally distributed; using descriptive statistics in market research; applying statistics in economics to
calculate the GDP; keeping track of sales.

One of the 5 types of thinking is 'Consideration of variation'. Question 3 was asked with the aim of gauging
how well students perform in this thinking type. None of the students claimed to understand variation or its
role in the real-world. The students did have inklings of what variation could be. Two students suggested
that it is because everything varies and one cannot say that one situation will be the same as before; this
being a rather vague suggestion that samples will di�er due to variation. Two other students answered with
a formulaic approach describing variance as the distance from the mean. The students could not convey the
concept of variation clearly nor state why variation is important in statistics.

The responses to question 4 should provide an idea of the students' conceptual understanding. As explained
in the literature, students should be able to explain concepts and not simply rote learn formulae as this does
not encourage understanding. Only three of the seven students suggested that they try to understand the
formula but no students suggested that they were taught where a formula comes from or what it means
or measures. The students who indicated that they try to understand the formula stated that they did so
because it is important as if you understand then it makes studying the concepts easier. The responses imply
that students look at a formula and learn how to use it because that is all that is required of them. To
cast more light on the students' ability to understand a formula, the students were shown the formula for
sample variance and asked to explain what it means or measures. The students were all able to identify the
symbols and variables, for example: n is sample size. Two students recognised the formula as sample variance.
From all the students, only one was able to give an adequate description of what the formula measures; two
others implied that it measured the distance between the observations and the mean although not very clearly.

Question 5 and its follow-up question aimed to test if students are able to link the context to a problem
and if they build understanding during the problem-solving process or if they simply follow the steps of
the process. The students were asked if they understand the link between hypothesis testing and statistical
inference. All the students were able to describe the link and further agreed that they gain meaning of the
problem context after completing the hypothesis testing process. This is a good indication that they are able
to analyse a problem in context and use statistical methods in their problem solving.

As part of the course, the students are expected to be able to use Microsoft Excel to apply the work and
make calculations, create tables and charts, and use this to solve problems. The interviewees were asked if
applying the work in Excel helped them with understanding the concepts. Three students agreed that apply-
ing the work in Excel helped them understand the concepts but the others all disagreed. The students that
agreed suggested that applying the work in Excel was helpful as it brought clarity to the concepts and the
calculations. Those who disagreed suggested that they felt that applying the work in Excel was more di�cult.
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Question 7 asked the students if they found the mathematical component of statistics di�cult. None of
the students stated that they found the mathematical component of statistics di�cult and further, they all
stated that mathematical calculations helped them with the work. All but two of the students could make the
distinction between mathematics and statistics. This result is opposite to that generated in the quantitative
analysis.

At the end of the interview, each student was asked if they have any comments about the course or any
suggestions to improve the course. Most of the students requested that the course be made more relatable to
their �elds of study. Further, the students would like the relevance of the content to be covered in addition
to the teaching of the content. One important suggestion was to assign the students a project where they
are able to work with data from their �eld of study.

The responses from the interviews mostly support the results of the quantitative study. It should be noted
that the number of students that participated in the interview was very small compared to the number of
enrolled students. Further, the performance of the participating students was average or higher in compar-
ison to the whole class as all students fell into group 2 meaning they all scored a mark between 50% and
75%. Whilst these responses provide more insight into the perceptions of the students, it is not an accurate
representation of the overall perceptions of the course.

From the quantitative and qualitative analyses, albeit limited, it can be seen that the course is not very
e�ective at conferring statistical thinking. The students' performance in the module is not a good indication
of whether the students are able to think statistically. The module should be revised so that it teaches
students statistical concepts but also conveys the relevance of the concepts as well as how these concepts can
be applied to real-world scenarios and how technology can assist in solving statistical problems. Students
should work with statistical models and not only learn how to develop and use the models but also how to
use the tools learnt to gain valuable insight into problems thus allowing the students to engage in statistical
thinking fully.

4 Conclusion and recommendations

This essay covered the literature pertaining to statistical thinking with speci�c emphasis on statistical think-
ing in pedagogy. It was established that developing statistical thinking is of vital importance in introductory
statistics courses where the foundations of problem solving are developed. The 4-dimensional model which
includes the 5 types of thinking was the central focus in the literature examined in this essay. These models
were then applied to an introductory statistics module o�ered at the University of Pretoria where quantita-
tive and qualitative studies were conducted with the main aim of ascertaining whether or not the course was
successful at fostering statistical thinking in the students enrolled in the course.

It is important to note that both the quantitative and qualitative studies were limited. Regarding the
quantitative study, the multiple regression model that was developed did not perform very well in predicting
the students' �nal marks. To improve on this, variables that can play a large role in in�uencing a student's
performance in the course could be taken into account, for example: the students' aptitude for mathemat-
ics and their performance in mathematics at a secondary education level; whether or not the language of
instruction is the same as the students' home language; the educational resources a student has access to;
and so on. However, the aim of this model was not to predict marks per se, but rather to evaluate the
e�ect of the students' perceptions regarding the course as measured by the 11 statements in the survey. To
this end, the model serves its purpose. Furthermore, the questions included in the survey should be revised
for simplicity and clarity. Statements that were long and those that included terminology or phrases that
the students might not be fully acquainted with may have had an e�ect on the response provided for that
statement. The main shortfall of the qualitative study was the process of selection. It would have been ideal
to interview students whose performance fell into the following categories: 'Top', where the students score
75% or more in the course; 'Middle' which would include students scoring in the range of 50% to 74%; and
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'Bottom' which would include those students who scored lower than 50%. These categories match that of
those used in the quantitative study. The students did not respond to requests for the interviews and so a
volunteer-based approach was taken where interviews were conducted with students who were willing and
thus it was not possible to do a comparison of responses to performance. It can probably be said that the
students that volunteered were those that were enthusiastic about the course (given by their performance)
and so the responses are not representative of the perceptions of the collective group. The qualitative study
can be improved on by conducting interviews with more students and ensuring that the sample is demo-
graphically representative as well as unrestricted in terms of performance of the students.

The results from the quantitative and qualitative studies both indicate that the course does not perform
well with regards to teaching statistical thinking. This is largely due to the traditional assessment structure
of the course where a student is assessed on how well they use the statistical tools available to them but
not necessarily if they understand why such a process is necessary in the larger context of the problem.
The module was not completely unsuccessful in achieving this end, however, but there are clear areas for
improvement. To convey the meaning of concepts, there should be a discussion of the relevance of each of the
topics before the intricacies and methods are presented. This should ensure that the student is aware of why
such a model is being developed or the reason for the calculations. To aid in the understanding of concepts,
formulae should be taught in addition to what the formula is measuring and the conceptual development of
the method or formula. The students should be able to explain important statistical concepts in their own
words as well as in mathematical terms, for example, variation which is a key concept in statistics. The
most important suggestion for improving the course is to include a project in the assessment structure. The
students should go through the process of collecting or using real-world data that is relevant to their speci�c
�elds of study or in a �eld that interests them. They should be required to work with the data and generate
descriptive statistics, represent the data graphically and perhaps model the data or carry out a hypothesis
test. Students should be encouraged to make use of Excel and any other technological resource available to
them. Finally, the students should be able to provide meaningful insights and conclusions to the problem they
have been working on. By completing the project, the students would have had to engage with most of the
processes described in the 4-dimensional model. Further, by using data that is relevant to them, the students
will be able to relate to the problem and hopefully, gain meaning and understanding and ultimately, the
student will be exposed to the process of statistical thinking. In addition to the project, another important
suggestion is to include understanding as one of the main goals for the course.

Statistics is an incredibly broad �eld that can be applied in countless areas from medicine to marketing
and is encountered in daily life and professional life. The students that enroll in introductory statistics
courses must be exposed to the tools that will allow them to analyse data and make calculations but most
importantly, the students must be able to solve problems and think critically - two important skills that
cannot be acquired without understanding.
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Appendix

Code

The regression analysis and correlation analysis was carried out using SASr software. The program used is
given below.

Correlation analysis and regression analysis:

Partial correlation analysis:
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Stepwise regression analysis:

Output

The output from the program is given below.
Descriptive statistics:
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Correlation analysis results:

Regression analysis results - ANOVA:
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Regression analysis results - Parameter estimates:

Partial correlation analysis results:
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Stepwise regression results:
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Abstract

In this paper we focus on the geometric Poisson distribution (also called the Pólya-Aeppli distribution)
which is as a unique case of the compound Poisson distribution. Our main aim in this study is to show
how an explicit expression for the probability function of the Pólya-Aeppli distribution can be derived, to
derive some of the properties of distribution and to demonstrate the practical relevance of the distribution
by �tting it to a tra�c accident database as an example.
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1 Introduction

With the increase of technological advancements, the world is in an era where there is a growth in the reliance
and usage of motor vehicles. As a result, the increase in the number of vehicles has led to a rise in tra�c
accidents and fatalities. Our main objective is to study a special case of the compound Poisson distribution
(CPD) known as the geometric Poisson distribution. We would then like to study the geometric Poisson
distribution (also known as the Pólya-Aeppli distribution) and show that this distribution can be applied to
tra�c accident data which was previously seen in the article presented by Özel and Inal [14]. This distribution
is de�ned by Özel and Inal [14] as follows:

De�nition Let N be a discrete random variable that is Poisson distributed with parameter λ > 0 (i.e.
N ∼ POI(λ)) and let Xi, i = 1, 2, 3 . . ., be independent identically distributed (i.i.d.) random variables from
a geometric distribution with parameter θ (i.e. Xi ∼ GEO(θ)) and independent of N . Then Y is de�ned as

Y =

N∑
i=1

Xi.

that has a geometric Poisson distribution (GPD) denoted as Y ∼ GEOPOI (λ, θ).

This distribution was �rst introduced in 1930 by Pólya [15] with a reference to a thesis by Aeppli [2] in 1924.
The GPD has been studied and applied further in several real-world situations and has been seen to be of
statistical signi�cance as it has practical relevance. For example, in 1992 Johnson et al. [8] developed a
linear formula so that the calculations of probabilities of the CPD could be simply illustrated in the case of
the GPD. Then in 1995, Randolph and Sahinoglu [16] applied the distribution to the controlling of software
defects. Then the geometric Poisson CUSUM control scheme was developed for process control by Chen et
al. [6] in 2005. The following year the geometric Poisson distribution was used for the biological process
of modeling DNA substitutions by Rosychuk et al. [18] whilst the distribution was also modeled for the
overlapping of word occurrences in 2007 by Robin et al. [17].

In other studies, Nuel [13] used Kummer's con�uent geometric function derived the geometric Poisson
distribution recurrence relation in 2008. Subsequently in 2010, Özel and Inal [14] derived the explicit prob-
ability function of the distribution and set up an algorithm to compute these probabilities. Thereafter Ata
and Ozel [4] derived the compound Poisson distribution for the survival functions in 2012.

The article presented by Anwar and Ahmed [3] prove some of the properties of the geometric Poisson
distribution looking particularly at its in�nite divisibility, log-concavity and unimodality. The survival func-
tion is also obtained, the �rst-order negative moment developed and lastly, the computation and proof of the
above mentioned properties is characterized by the use of the recursive formula. Minkova and Balakrishnan
[11] focused on the compound weighted Poisson distribution. In their article the variability of the di�erent
models measured by the Fisher index of dispersion is discussed and the factorial moment of mean measure
is introduced.

The calculation of the exact probabilities remains tedious as there is some di�culty in terms of compu-
tational memory and time, however, Özel and Inal [14] give a forthright derivation and proof of the explicit
probability function of the GPD. They also derive an algorithm to illustrate the usefulness of the distribution
by applying it to the tra�c accident data presented by Meintanis [10]. Furthermore, in the article presented
by Leiter and Hamdan [9], two bivariate models similar to this distribution are studied where the number of
accidents and the number of fatalities or fatal accidents were investigated.

Our primary aim in this study will entail deriving an explicit probability function of the geometric Poisson
distribution and to derive the expected value and variance of the distribution. We will apply the distribution
in a similar way as was done by Özel and Inal [14]. In Section 2, the necessary and preliminary results that
will be used throughout the study will be given. In Section 3, we will present the derivation of the probability
function of the GPD with the use of integer partitions and compute the expected value and variance of the
distribution by using the probability generating function. The algorithm proposed by Özel and Inal [14] will
be discussed and then both the mass function and cumulative distribution function of the distribution for

5



di�erent values of the parameters will be illustrated graphically in Section 4. The distribution will also be
applied to a numerical example from tra�c accident data. Lastly, in Section 5 the conclusion will be given.

2 Preliminary results

The following statistical results given will be used throughout the study.

The following de�nitions given below are as given in Bain and Engelhardt [5].

De�nition 1 The random variable X with a geometric distribution with parameter θ (i.e. X ∼ GEO(θ)),
has a probability mass function (p.m.f.) given by

pj = P (X = j)

= θ (1− θ)j−1 , j = 1, 2, 3, . . . . (1)

De�nition 2 The probability mass function of N , a discrete random variable that is Poisson distributed
with parameter λ > 0 (i.e. N ∼ POI(λ)) is given by

P (N = n) = e−λ
λn

n!
. (2)

De�nition 3 Consider the discrete random variable X taking nonnegative integer values {0, 1, 2, . . .} with
probability P (X = j) = pj . The probability generating function (p.g.f.) of X is de�ned as

gX (z) = E
[
zX
]

=

∞∑
j=0

pjz
j . (3)

where 0 ≤ z ≤ 1.

The probability generating function is a power series that can be duly expanded as well as di�erentiated to
unveil the individual probabilities.

Theorem 1 Let X be a discrete random variable. Di�erentiating the p.g.f. gX (z) will give the probabilities

pj = P (X = j)

=
1

j!

∂j

∂zj
(gX (z)) |z=0. (4)

where j = 0, 1, 2, . . .

Proof. We have that

p0 = P (X = 0) = gX (0) ·
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The �rst derivative is

∂

∂z
(gX (z)) = g

(1)
X (z)

= p1 + 2p2z + 3p3z
2 + 4p4z

3 + . . .

Substituting z = 0 gives g(1)X (0) = p1 = P (X = 1).

From the second derivative:

∂2

∂z2
(gX (z)) = g

(2)
X (z)

= (2) (1) p2 + (3) (2) p3z + (4) (3) p4z
2 + . . .

= 2p2 + 6p3z + 12p4z
2 + . . .

It follows that g(2)X (0) = 2p2 and that 1
2g

(2)
X (0) = p2 = P (X = 2) = 1

2!g
(2)
X (0).

From the third derivative:

∂3

∂z3
(gX (z)) = g

(3)
X (z)

= (3) (2) (1) p3 + (4) (3) (2) p4z + . . .

= 6p3 + 24p4z + . . .

It follows that g(3)X (0) = 6p3 and that 1
6g

(3)
X (0) = p3 = P (X = 3) = 1

3!g
(3)
X (0).

...

Continuing in a similar manner, we get the result in (4). �

Theorem 2 Suppose X ∼ GEO(θ) distributed with p.m.f. P (X = j) = pj = θ (1− θ)j−1 , j = 1, 2, 3, . . .
Then the p.g.f. is given by

E
[
zX
]

= gX (z)

=

∞∑
j=1

pjz
j

=
θz

1− (1− θ) z
· (5)

Proof. From (1) and (3) we have that

gX (z) = p1z + p2z
2 + p3z

3 + . . .

= θ (1− θ)0 z + θ (1− θ) z2 + θ (1− θ)2 z3 + . . . (A)

letting

gX (z) (1− θ) z = θ (1− θ) z2 + θ (1− θ)2 z3 + θ (1− θ)3 z4 + . . . (B)

and calculating (A)− (B) gives
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gX (z)− gY (z) (1− θ) z = θz.

gX (z) [1− (1− θ) z] = θz.

gX (z) =
θz

1− (1− θ) z
.

�

The following results on compound distributions are as given in Sundt and Vernic [19].

De�nition 4 Let N be a discrete random variable and Xi, i = 1, 2, 3 . . ., i.i.d. random variables indepen-
dent of N . Then

Y =

N∑
i=1

Xi. (6)

is referred to as a random variable having a compound distribution.

Theorem 3 The p.m.f. of a random variable Y having a compound distribution is given by

pY (k) = P (Y = k)

=

∞∑
n=0

P (X1 +X2 + . . .+Xn = k|N = n)P (N = n) . (7)

Proof. The p.m.f. of Y =
∑N
i=1Xi is as follows

pY (k) = P (Y = k)

= P

(
N∑
i=1

Xi = k

)

= P

(
N∑
i=1

Xi = k and N = 0

)
+ P

(
N∑
i=1

Xi = k and N = 1

)
+ P

(
N∑
i=1

Xi = k and N = 2

)
+ . . .

=

∞∑
n=0

P

(
N∑
i=1

Xi = k and N = n

)
.

It follows from the de�nition of a conditional probability P (A|B) = P (A
⋂
B)

P (B) i.e. P (A
⋂
B) = P (A|B)P (B)

that

pY (k) =

∞∑
n=0

P

(
N∑
i=1

Xi = k|N = n

)
P (N = n) .

�

We should note that obtaining an explicit formula for the probability function of Y =
∑N
i=1Xi from (7) is

hardly a simple matter and as a result serves as a hindrance in the complete usage of the compound Poisson
distribution (CPD) in [13] and [8] as k is increased.
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Theorem 4 The expected value of a random variable having a compound distribution that is Y =
∑N
i=1Xi

where i = 1, 2, 3, . . ., is given by

E [Y ] = EN [N ]E [X] . (8)

Proof. It follows from the de�nition that

EY [Y ] = EN
[
EY |N [Y ]

]
= EN [NE (X)]

= EN [N ]E [X] .

�

Theorem 5 The variance of a random variable having a compound distribution that is Y =
∑N
i=1Xi where

i = 1, 2, 3, . . ., is given by

V ar [Y ] = EN [N ]V ar [X] + (E [X])
2
V arN [N ] . (9)

Proof. It follows from the de�nition that

V ar [Y ] = EN
[
V arY |N [Y ]

]
+ V arN

[
EY |N [Y ]

]
= EN [N ]V ar [X] + [E (X)]

2
V arN [N ] .

�

3 The geometric Poisson distribution

The geometric Poisson distribution is de�ned in this section and some properties are derived.

3.1 De�nition and probability mass function

The GPD is de�ned by Özel and Inal [14] as follows

De�nition 5 Let N be a discrete random variable that is Poisson distributed with parameter λ > 0
(i.e. N ∼ POI(λ)) and let Xi, i = 1, 2, 3 . . ., be i.i.d. random variables from a geometric distribution with
parameter θ (i.e. Xi ∼ GEO(θ)) and independent of N . Then Y , de�ned as

Y =

N∑
i=1

Xi. (10)

has a geometric Poisson distribution denoted as Y ∼ GEOPOI (λ, θ).

The following Theorem given below is as de�ned by Johnson et al. [8] of the geometric Poisson distribution.
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Theorem 6 Suppose Y ∼ GEOPOI (λ, θ) . Then the probability mass function of Y is given by

pY (k) =

k∑
n=1

e−λ
λn

n!

(
k − 1
n− 1

)
θn (1− θ)k−n , k = 1, 2, 3, . . . (11)

where λ > 0 and 0 < θ < 1.

Due to the di�culties that arise in deriving probabilities obtained from (11) for greater values of k, Nuel [13]
devised a new way of rewriting equation (11) in a much simpler way. This made use of Kummer's con�u-
ent hypergeometric function by expressing it as a recurrence relation. The result is given in Theorem 7 below.

Theorem 7 Suppose Y ∼ GEOPOI (λ, θ) as de�ned in (10). Then it follows that

P (Y = 0) = e−λ.

P (Y = 1) = e−λ (1− θ) s. (12)

and ∀ kεN, k ≥ 2

P (Y = k) =
(2k − 2 + s)

k
(1− θ)P (Y = k − 1) +

(2− k)

k
(1− θ)2 P (Y = k − 2) . (13)

where s = λθ
1−θ .

It should be noted that (13) is a recursive formula and that its computation requires the results of previous
probabilities for k = 0, 1, 2, . . . , k − 1 in order to solve P (Y = k).

3.2 The properties of the geometric Poisson distribution

Theorem 8 If Y ∼ GEOPOI (λ, θ) with p.m.f. given by (11) then the p.g.f. for Y is given as follows

gY (z) =

∞∑
n=0

e−λ
λn

n!
[gX (z)]

n

= eλ[gX(z)−1]. (14)

Proof. The proof is given by

gY (z) =

∞∑
n=0

e−λ
λn

n!
[gX (z)]

n

= e−λ
∞∑
n=0

[λgX (z)]
n

n!

= e−λeλgX(z)

= eλ[gX(z)−1].

By substituting (5) into (14), then the probability generating function of gY (z) is as follows
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gY (z) = e−λeλ[p1z+p2z
2+p3z

3+...]

= e−λeλ[
θz

1−(1−θ)z ]

= eλ[
θz

1−(1−θ)z−1]

= eλ[
z−1

1−(1−θ)z ].

�

Recall from (8) and (9) of a compound distribution. The expected value and variance of the GPD are calcu-
lated in the theorems below.

Theorem 9 The expected value of a random variable having a compound distribution that is Y =
∑N
i=1Xi

where the Xi ∼ GEO(θ), i = 1, 2, 3, . . ., independent of N ∼ POI(λ) is given by

E [Y ] =
λ

θ
. (15)

Proof. Let Xi ∼ GEO (θ) then it follows that E [Xi] = 1
θ and V ar [Xi] = E

[
X2
i

]
− [E (Xi)]

2
= 1−θ

θ2 . Also
given that N ∼ POI(λ), we have that EN [N ] = V arN [N ] = λ.
Then from (8) it follows that the expected value of the GPD is given by

EY [Y ] = EN [N ]E [X]

= λE [X]

=
λ

θ.

�

Theorem 10 The variance of a random variable having a compound distribution that is Y =
∑N
i=1Xi

where the Xi ∼ GEO(θ), i = 1, 2, 3, . . ., independent of N ∼ POI(λ) is given by

V ar [Y ] =
λ (2− θ)

θ2
. (16)

Proof. It follows from (9), the variance of a compound Poisson distribution is calculated as follows:
Since (8) holds and EN [N ] = V arN [N ] = λ because N ∼ POI (λ) then it follows that

V ar [Y ] = EN [N ]V ar [X] + [E (X)]
2
V arN [N ]

= E [N ]
(
V ar [X] + [E (X)]

2
)

= E [N ]
(
E
[
X2
])

= λE
[
X2
]
.

It then follows from above and the proof in (15) that the variance of the GPD is given by

V ar [Y ] = λE
[
X2
]

=
λ (2− θ)

θ2 .

�
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Next we would like perform a variability measure that is commonly used of the random variable Y ∼
GEOPOI (λ, θ). This is known as the Fisher index of dispersion. It is de�ned by Fisher [7] as follows

De�nition 6 The Fisher index of dispersion for the random variable Y is de�ned as

Fisher index = FI (Y ) =
V ar [Y ]

E [Y ]
. (17)

It is stated by Minkova and Balakrishnan [11] that a distribution is said to be equi-dispersed if FI (Y ) = 1,
under-dispersed if FI (Y ) < 1 and over-dispersed if FI (Y ) > 1.

Theorem 11 The Fisher index of dispersion of the random variable Y ∼ GEOPOI (λ, θ) is

FI (Y ) =
2

θ
− 1

= 1 +
2ρ

1− ρ
. (18)

where ρ = 1− θ.

Proof. Recall that Y ∼ GEOPOI (λ, θ), then from (15) and (16) we have E [Y ] = λ
θ and V ar [Y ] = λ(2−θ)

θ2 .
It then follows that the Fisher index of Y is given by

FI (Y ) =
V ar [Y ]

E [Y ]

=

[
λ(2−θ)
θ2

]
[
λ
θ

]
=

(2− θ)
θ

=
2

θ
− 1.

Letting θ = 1− ρ, it follows that

FI (Y ) =
2− (1− ρ)

1− ρ

=
1 + ρ

1− ρ

= 1 +
2ρ

1− ρ
> 1.

�

From (18) it is clear that the random variable Y ∼ GEOPOI (λ, θ) is over-dispersed with respect to the
Poisson distribution which has a Fisher index of 1. It should be noted that the particular feature makes
the Pólya-Aeppli distribution better suited for insurance and �nancial data as mentioned by Minkova and
Balakrishnan [12].
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3.3 Derivation of the GPD

Theorem 12 given below is the explicit formula for the probability generating function of the geometric
Poisson distribution derived by Özel and Inal [14] for the case where j = 1, 2 i.e. m = 2.

Theorem 12 Let Y =
∑N
i=1Xi where N ∼ POI (λ) independent of Xi ∼ GEO(θ), i = 1, 2, 3 . . ., i.i.d.

with pj = P (Xi = j) = θ (1− θ)j−1 and let λj = λpj , j = 1, 2, . . . ,m. Then for m = 2, the explicit formula
for the probability function of Y is given by

pY (k) = P (Y = k)

=

{
e−λ, k = 0

e−λ
∑[k/2]
i=0

λk−2i
1 λi2

(k−2i)!i! , k = 1, 2, 3, . . .
(19)

where the integer part of the number in the brackets is denoted by [ ].

Proof. Refer to [14] for the proof.
�

The next theorem derives the result in Theorem 12 for any m and then the case where m = 3.

Theorem 13 Let Y =
∑N
i=1Xi where N ∼ POI (λ) independent of Xi ∼ GEO(θ), i = 1, 2, 3 . . ., i.i.d.

with pj = P (Xi = j) = θ (1− θ)j−1 and let λj = λpj , j = 1, 2, . . . ,m. Then a general form of the probability
functions of Y given any m are

P (Y = 0) = e−λ,

P (Y = 1) = e−λ
λ1
1!
,

P (Y = 2) = e−λ
[
λ21
2!

+
λ2
1!

]
,

P (Y = 3) = e−λ
[
λ31
3!

+
λ1λ2
1!1!

+
λ3
1!

]
, (20)

P (Y = 4) = e−λ
[
λ41
4!

+
λ21λ2
2!1!

+
λ22
2!

+
λ1λ3
1!1!

+
λ4
1!

]
,

P (Y = 5) = e−λ
[
λ51
5!

+
λ31λ2
3!1!

+
λ1λ

2
2

1!2!
+
λ21λ3
2!1!

+
λ1λ4
1!1!

+
λ2λ3
1!1!

+
λ5
1!

]
,

....

Proof. We start by deriving the p.g.f. of Y for m = 3 by using (5) and (14) and the fact that λj = λpj where
j = 1, 2, 3. This gives

gY (z) = e−λeλ[p1z+p2z
2+p3z

3]

= e−λeλp1z+λp2z
2+λp3z

3

= e−λeλ1z+λ2z
2+λ3z

3

(21)

By using (4) and (21), the individual probabilities of the probability mass function of Y can be found by
calculating the kth derivative of gY (z), given that z = 0 and are
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P (Y = 0) = gY (0) and

P (Y = k) =
∂k/∂zk (gY (z)) |z=0

k!
, k = 1, 2, 3, . . . (22)

Given below are the corresponding probabilities P (Y = k) , k = 0, 1, 2, 3, . . ., of the probability generating
function for m = 3. These are obtained by di�erentiating the p.g.f. in (21) as in (22) as follows

P (Y = 0) = e−λ,

P (Y = 1) = e−λ
λ1
1!
,

P (Y = 2) = e−λ
[
λ21
2!

+
λ2
1!

]
,

P (Y = 3) = e−λ
[
λ31
3!

+
λ1λ2
1!1!

+
λ3
1!

]
, (23)

P (Y = 4) = e−λ
[
λ41
4!

+
λ21λ2
2!1!

+
λ22
2!

+
λ1λ3
1!1!

]
,

P (Y = 5) = e−λ
[
λ51
5!

+
λ31λ2
3!1!

+
λ1λ

2
2

1!2!
+
λ21λ3
2!1!

+
λ2λ3
1!1!

]
,

...

It can be seen from (23) that the nonnegative integers can be expressed in several ways as a sum of these
integers.

So as a result, a general form of the probability functions of Y given that m > 3 can be derived in a similar
manner as we have done above. The result is given as follows

P (Y = 0) = e−λ,

P (Y = 1) = e−λ
λ1
1!
,

P (Y = 2) = e−λ
[
λ21
2!

+
λ2
1!

]
,

P (Y = 3) = e−λ
[
λ31
3!

+
λ1λ2
1!1!

+
λ3
1!

]
,

P (Y = 4) = e−λ
[
λ41
4!

+
λ21λ2
2!1!

+
λ22
2!

+
λ1λ3
1!1!

+
λ4
1!

]
,

P (Y = 5) = e−λ
[
λ51
5!

+
λ31λ2
3!1!

+
λ1λ

2
2

1!2!
+
λ21λ3
2!1!

+
λ1λ4
1!1!

+
λ2λ3
1!1!

+
λ5
1!

]
,

...

This is the result given in (20).
�

Note that the individual probabilities P (Y = k) , k = 1, 2, 3, . . ., can be determined depending on how k is
partitioned for any given integer value m. If we consider k = 5 and m→∞ as an example then there are 7
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types of partitions which are{1, 1, 1, 1, 1}, {2, 1, 1, 1}, {3, 1, 1} , {4, 1} ,{2, 2, 1} , {3, 2} ,{5}. Similarly if k = 6
and m → ∞ there are 11 types of partitions which are {1, 1, 1, 1, 1, 1}, {2, 1, 1, 1, 1}, {3, 1, 1, 1} , {4, 1, 1} ,
{5, 1} , {2, 2, 1, 1} , {2, 2, 2} , {3, 2, 1} , {3, 3} , {4, 2} , {6}. We further note that as performed in (23) where
m = 3, the partitions are also obtained in a similar fashion although tend to have fewer partitions for every
k > m. For example, consider k = 5 again and m = 3 as before then we now have 5 types of partitions
which are {1, 1, 1, 1, 1} , {2, 1, 1, 1} , {3, 1, 1} , {2, 2, 1} , {3, 2}. Since (20) is not recursive, the probabilities
P (Y = k) , k = 1, 2, 3, . . ., can be computed directly.

Given the probabilities derived in (20) and (23), we further go on to prove that they satisfy the following
conditions.

Theorem 14. The probability mass function given in (20) satis�es the following conditions

pY (k) = P (Y = k) ≥ 0 ∀ k →∞ and

∞∑
k=0

pY (k) = 1. (24)

Proof. Since for any event A, 0 ≤ P (A) ≤ 1 we have that

0 ≤ pY (k) ≤ 1, k = 0, 1, 2, . . .

Then it follows that rewriting (23),

∞∑
k=0

pY (k) = P (Y = 0) + P (Y = 1) + P (Y = 3) + P (Y = 4) + . . .

= e−λ
{

1 +

[
λ1
1!

]
+

[
λ21
2!

+
λ2
1!

]
+

[
λ31
3!

+
λ1λ2
1!1!

+
λ3
1!

]
+

[
λ41
4!

+
λ21λ2
2!1!

+
λ22
2!

+
λ1λ3
1!1!

]
+ · · ·

}
= e−λ

{
1 +

λ1
1!

+
λ21
2!

+
λ2
1!

+
λ31
3!

+
λ1λ2
1!1!

+
λ3
1!

+
λ41
4!

+
λ21λ2
2!1!

+
λ22
2!

+
λ1λ3
1!1!

+ · · ·
}

= e−λ
{[

1 + λ1

1! +
λ2
1

2! + · · ·
]

+ λ2

1!

[
1 + λ1

1! +
λ2
1

2! + · · ·
]

+ λ3

1!

[
1 + λ1

1! +
λ2
1

2! + · · ·
]

+ · · ·

+
λ22
2!

[
1 +

λ1
1!

+ · · ·
]

+ · · · }

Since we know that ez =
∑∞
k=0

zk

k! and given that λj = λpj , j = 1, 2, 3, it continues from above that

∞∑
k=0

pY (k) = e−λ
{
eλp1 +

λ2
1!
eλp1 +

λ3
1!
eλp1 +

λ22
2!
eλp1 + · · ·

}
= e−λeλp1

{
1 +

λ2
1!

+
λ22
2!

+ · · ·+ λ3
1!

+ · · ·
}

= e−λeλp1eλp2eλp3

= e−λeλ(p1+p2+p3)

= e−λeλ

= 1.

�

From (23) where j = 1, 2, 3, we have proved that
∑∞
k=0 pY (k) = 1. It then follows that the conditions must

also satisfy the generalized form (20) since the p.g.f. derived in (23) is a distinct case of (20) where m > 3.
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4 Application

4.1 Algorithm

An algorithm is given by Özel and Inal [14] using (19) to draw the probability mass functions of the GPD.
We have used the exact probabilities formula for the GPD given by (11) to draw the graphs illustrated in
the next subsection. We are of the opinion that the complexity of the algorithm proposed by Özel and Inal
[14] does not justify its use in drawing the graphs, because of the short computational time in SAS Software
[1] and the simplicity of the the calculations (i.e. not recursive).

4.2 Graphical displays

Our investigation continues as we compare by illustration the probability mass functions (pmfs) of the GPD
produced from SAS Software [1] graphing capabilities. This is done in two parts:

(i) by keeping the expected value constant and varying the parameters λ and θ;

(ii) secondly by keeping one of the parameters constant and varying the expected value which in turns
varies the other parameter.

Using the expression of the p.m.f. of the geometric Poisson distribution given in (11), the computation time
when using SAS Software [1] is about 0.09s in real time and 0.06s in (Central Processing Unit) CPU time to
run the programs given in the Appendix, which draws the graphs illustrated below.

Suppose Y ∼ GEOPOI (λ, θ).

Part 1: Keeping E [Y ] constant and varying the parameters λ and θ.

Figure 1 shows the pmfs of the GPD when E [Y ] = λ
θ = 10 and θ increases from 0.25, 0.5 to 0.75. The

summary statistics are given in Table 1.

Figure 1: Probability mass functions of the GPD when E [Y ] = 10 and θ increases.
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θ λ E [Y ] V ar [Y ] FI [Y ]

0.25 2.5 10 70 7
0.5 5.0 10 30 3
0.75 7.5 10 16.67 1.667

Table 1: Summary statistics of distribution displayed in Figure 1.

From Figure 1 and Table 1, given a constant central location, increasing θ results in a smaller variance and
smaller dispersion index, FI [Y ] . The latter is also illustrated in Figure 2 which displays the relationship
between the Fisher index of dispersion and θ when E [Y ] = 10. The GPD is over-dispersed relative to the
Poisson distribution which has a Fisher index of 1, but as θ increases whilst E [Y ] remains constant the Fisher
index of the GPD tends to 1.

Figure 2: Graph of FI [Y ] against θ when E [Y ] = 10.

Similarly, Figure 3 shows the pmfs of the GPD when E [Y ] = λ
θ = 5 and λ increases from 0.75, 2.5 to 4.5.

The summary statistics are given in Table 2.
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Figure 3: Probability mass functions of the GPD when E [Y ] = 5 and λ increases.

θ λ E [Y ] V ar [Y ] FI [Y ]

0.15 0.75 5 61.667 12.33
0.5 2.5 5 15 3
0.9 4.5 5 6.111 1.222

Table 2: Summary statistics of distribution displayed in Figure 3.

From Figure 3 and Table 2, given a constant central location, increasing λ results in a smaller variance and
smaller dispersion index, FI [Y ] . The latter is also illustrated in Figure 4 which displays the relationship
between the Fisher index of dispersion and λ when E [Y ] = 5. The GPD is over-dispersed relative to the
Poisson distribution which has a Fisher index of 1, but as λ increases whilst E [Y ] remains constant the
Fisher index of the GPD tends to 1.
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Figure 4: Graph of FI [Y ] against λ when E [Y ] = 5.

Part 2: Keeping one of the parameters constant and varying the expected value.

Figure 5 shows the pmfs of the GPD when the parameter λ = 2 constant and E [Y ] = λ
θ is varied from 5, 10

to 20. The summary statistics are given in Table 3.

Figure 5: Probability mass functions of the GPD when λ = 2 and E [Y ] is increased .
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θ λ E [Y ] V ar [Y ] FI [Y ]

0.4 2 5 20 4
0.2 2 10 90 9
0.1 2 20 380 19

Table 3: Summary statistics of distribution displayed in Figure 5.

From Figure 5 and Table 3, given we keep the parameter λ constant, increasing the central location results
in a larger variance and a larger dispersion index. The latter is also illustrated in Figure 7 when λ = 2 which
displays the relationship between the Fisher index of dispersion and E [Y ]. As E [Y ] increases whilst λ = 2
constant, θ decreases. We then have that from (18) and since 0 < θ < 1, the Fisher index increases in a
linear function. The GPD is therefore always over-dispersed relative to the Poisson distribution which has a
Fisher index of 1.

Figure 6 shows the pmfs of the GPD when the parameter θ = 0.5 constant and E [Y ] = λ
θ is varied from

5, 10 to 20. The summary statistics are given in Table 4.

Figure 6: Probability mass functions of the GPD when θ = 0.5 and E [Y ] is increased.

θ λ E [Y ] V ar [Y ] FI [Y ]

0.5 2.5 5 15 3
0.5 5 10 30 3
0.5 10 20 60 3

Table 4: Summary statistics of distribution displayed in Figure 6.

From Figure 6 and Table 4, given we keep the parameter θ constant, increasing the central location results
in a larger variance but a constant dispersion index greater than one. The latter can also be seen in (18) and
is illustrated in Figure 7 which displays the relationship between the Fisher index of dispersion and E [Y ] for
constant θ. Note that in Figure 6, increasing the central location results in a shift of the pmfs to the right
becoming more symmetric in shape.
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Graphs showing the relationship between the dispersion index and E [Y ] for parameters chosen to be λ = 2
and θ = 0.5 respectively are given in displayed in Figure 7 below.

Figure 7: Graph of FI [Y ] against E [Y ] for constant (i) λ = 2 and (ii) θ = 0.5.

4.3 Fitting the distribution to tra�c accident data

In this part the GPD is �tted to tra�c accident data by following the procedure described by Özel and
Inal [14]. The data presented by Meintanis [10], given in Table 5 is used and gives the total accidents on a
given Sunday and the corresponding number of fatalities that occurred during the years of 1997 − 2004 in
the Groningen region. The data was taken from BRON database recorded by the Transport Ministry in the
Netherlands. The GPD is �tted to Y =

∑N
i=1Xi where

1. N represents the total number of accidents on Sundays that occur during the years of 1997 − 2004 in
the Groningen region,

2. Xi, i = 1, 2, 3, . . ., represents the number of fatalities of the ith accident and

3. Y =
∑N
i=1Xi represents the total number of tra�c accident fatalities.
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1997 1998 1999 2000 2001 2002 2003 2004

month n1 y1 n2 y2 n3 y3 n4 y4 n5 y5 n6 y6 n7 y7 n8 y8
January 6 0 6 0 13 1 11 0 8 0 8 0 11 4 2 0
February 10 0 10 1 7 0 4 0 8 1 8 0 9 0 2 0
March 7 0 13 4 8 0 10 0 6 0 12 0 9 0 3 0
April 11 0 5 0 14 1 15 1 9 0 10 1 7 1 1 1
May 12 0 17 2 13 0 18 0 13 2 11 0 12 1 5 0
June 21 1 19 0 14 0 21 1 12 3 12 1 13 0 7 2
July 15 0 10 0 14 0 11 1 10 2 4 0 8 0 1 0

August 11 1 11 1 10 0 8 0 9 0 14 1 6 0 5 0
September 7 0 11 0 7 0 9 0 22 1 16 1 7 0 8 1
October 11 2 13 1 16 1 14 0 15 1 8 1 6 1 2 0
November 15 1 17 1 13 0 13 0 6 0 9 1 11 1 1 0
December 5 0 7 0 10 1 10 0 10 0 8 0 5 0 2 0

Table 5: Total accidents on a given Sunday, ni and the corresponding total number of fatalities, yi are
recorded for each month during the period 1997− 2004 in the Groningen region.

The total number of fatalities can be modeled by the GPD if the following conditions hold:

1. The distribution of N is POI (λ).
The hypothesis for this condition is

H0 : The total number of accidents, N, have a Poisson distribution.
HA : The total number of accidents, N, is not Poisson distributed.

We use historical data that the total number of accidents on a given Sunday are generally Poisson
distributed over the time interval such that t > 0 [9, 10]. A Poisson distribution was �tted to the
data using the PROC GENMOD procedure in SAS [1] and from this the parameter is estimated to
be λ̂ = 9.833. From the Pearson goodness-of-�t test the null hypothesis is rejected which means the
data does not �t a Poisson distribution. However, to rework the results in the article presented by Özel
and Inal [14] where they state that the Poisson distribution �ts the data well, the Poisson distribution
was used further as in the example. We use the fact that the total number of accidents, N is Poisson
distributed with estimated parameter as given above.

2. The distribution of the random variables Xi, i = 1, 2, 3, . . ., are GEO (θ).
The hypothesis for this condition is

H0 : Thenumber of fatalities, Xi, i = 1, 2, 3, . . . , random variables have a geometric distribution.
HA : Thenumber of fatalities, Xi, i = 1, 2, 3, . . . , do not have a geometric distribution.

The PROC GENMOD procedure in SAS [1] was also used to �t a geometric distribution to the tra�c
accident fatalities. This gave θ̂ = 0.65753 and from Table 6 the Pearson goodness-of-�t statistic is 5.974
which is less than corresponding critical value at a 5% signi�cance level χ2

α (k − p− 1) = χ2
0.05 (3) =

7.815. As a result H0 cannot be rejected and the geometric distribution provides a good �t to the
number of fatalities, Xi, i = 1, 2, 3, . . ., random variables.
The results of the performed the goodness �t test on the number of fatalities on a given Sunday are
given in the following table.
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Number of fatalities, Xi Observed frequency
Expected Frequency

Geometric
0 59 63.12
1 29 21.62
2 5 7.40
3 1 2.54
4 2 0.87

Total 96 95.55
χ2 − statistic 5.974

degrees of freedom, d.o.f. 3

Table 6: The geometric distribution �t of the observed frequency for the number of fatalities.

3. The random variables N and Xi, i = 1, 2, 3, . . ., are independent.
The hypothesis of this condition is

H0 : ρs = 0
HA : ρs 6= 0.

The Spearman's correlation coe�cient was calculated as ρs = 0.23128 with corresponding p− value =
1510. Therefore H0 cannot be rejected at a 5% signi�cance level. Thus the number of fatalities,
Xi, i = 1, 2, 3, . . . and the total number of accidents N are independent.

We have that all the conditions above hold. Therefore we assume N ∼ POI
(
λ̂
)
represents the total number

of accidents on Sundays that occur during the years of 1997− 2004 in the Groningen region and the random

variables Xi ∼ GEO
(
θ̂
)
, i = 1, 2, 3, . . ., represents the number of fatalities of the ith accident. As a result

assuming the valid use of the Poisson distribution, the total number of fatalities Y =
∑N
i=1Xi on a given

Sunday are represented by Y ∼ GEOPOI (λ, θ) where such that for the tra�c accidents can be explained
by the GPD.
The �gure below follows from the probabilities computed in (11) and the parameters estimated from the

tra�c accident data
(
i.e. θ = 0.65753 and λ̂ = 9.833

)
. We have

Figure 8: The p.m.f. of the total number of accident fatalities explained by the GPD with parameters
λ̂ = 9.833 and θ̂ = 0.65753.
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5 Conclusion

In this paper some of the properties of the geometric Poisson distribution (also called the Pólya-Aeppli
distribution) were studied. The GPD is a unique instance of the compound Poisson distribution. The aim
of the study was to show how an explicit probability function of the Pólya-Aeppli distribution could be
derived, to derive some properties of the distribution and then conclude by demonstrating the distributions
practical relevance by �tting the distribution to a tra�c accident database as an example. It is shown that
the probability function is easily derived, although an algorithm similar to that of Özel and İnal [14] was not
computed due to its complexity and rather discussed. The exact formula in (11) was used to create some of
the graphs. The relationships between the parameters and the Fisher index of dispersion were also analyzed
in depth. The paper is concluded with an application on tra�c accident data. In our analysis we found that
the Poisson distribution was not a good �t for the total number of accidents. This can be the focus of further
studies to determine a more appropriate compound distribution for the data given. In Actuarial Statistics,
compound Poisson distributions are commonly �tted to �nancial and insurance data as seen in Sundt and
Vernic [19]. It would be of interest to investigate how well the GPD could be �tted to �nancial data in future.
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Appendix

The code �les listed below use SAS Software [1] to produce the �gures throughout the document.

*SAS code used to produce Figure 1;

ODS GRAPHCS ON;

DATA FIGURE1;

MU = 10;

THETA = 0.25;

THETA1 = 0.5;

THETA2 = 0.75;

LAMBDA = MU*THETA;

LAMBDA1 = MU*THETA1;

LAMBDA2 = MU*THETA2;

CUM = 0;

CUM1 = 0;

CUM2 = 0;

DO k = 1 TO 50;

PROB = 0;

PROB1 = 0;

PROB2 = 0;

DO n = 1 TO k;

TERM = EXP(-LAMBDA)*(LAMBDA**n)/FACT(n)*COMB(k-1,n-1)*(THETA**n)*((1-THETA)**(k-n));

PROB = PROB+TERM;

TERM1 = EXP(-LAMBDA1)*(LAMBDA1**n)/FACT(n)*COMB(k-1,n-1)*(THETA1**n)*((1-THETA1)**(k-n));

PROB1 = PROB1+TERM1;

TERM2 = EXP(-LAMBDA2)*(LAMBDA2**n)/FACT(n)*COMB(k-1,n-1)*(THETA2**n)*((1-THETA2)**(k-n));

PROB2 = PROB2+TERM2;

END;

CUM = CUM+PROB;

CUM1 = CUM1+PROB1;

CUM2 = CUM2+PROB2;

OUTPUT;

END;

PROC PRINT DATA = FIGURE1;

VAR PROB CUM;

VAR PROB1 CUM1;

VAR PROB2 CUM2;

GOPTIONS RESET = ALL;

ODS ESCAPECHAR = "^";

PROC SGPLOT DATA = FIGURE1;

SERIES X=k Y=PROB /LINEATTRS = (COLOR = BLUE THICKNESS = 2) LEGENDLABEL = "^{UNICODE THETA} = 0.25";

SERIES X=k Y=PROB1 /LINEATTRS = (COLOR = RED THICKNESS = 2) LEGENDLABEL = "^{UNICODE THETA} = 0.5";

SERIES X=k Y=PROB2 /LINEATTRS = (COLOR = GREEN THICKNESS = 2) LEGENDLABEL = "^{UNICODE THETA} = 0.75";

XAXIS LABEL = "k";

YAXIS LABEL = "P(X=k)";

KEYLEGEND / ACROSS = 1 BORDER LOCATION = INSIDE POSITION = TOPRIGHT;

RUN;

ODS GRAPHICS OFF;

*SAS code used to produce Figure 2;

ODS GRAPHICS ON;

DATA FI_GEO;

MU = 10;
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DO THETA = 0 TO 1 BY 0.05;

LAMBDA = MU*THETA;

SIGMA_SQ = LAMBDA*(2-THETA)/THETA**2;

FI = SIGMA_SQ/MU;

OUTPUT;

END;

RUN;

ODS ESCAPECHAR = "^";

PROC PRINT DATA = FI_GEO LABEL;

LABEL THETA = "^{UNICODE theta}";

LABEL MU = "^{UNICODE mu}";

LABEL LAMBDA = "^{UNICODE lambda}";

LABEL SIGMA_SQ = "VAR[Y]";

LABEL FI = "FI[Y]";

GOPTIONS RESET = ALL;

ODS ESCAPECHAR = "^";

PROC SGPLOT DATA = FI_GEO;

SERIES X = THETA Y = FI / LINEATTRS = (THICKNESS = 2);

XAXIS LABEL = "^{UNICODE THETA}";

YAXIS LABEL = "Fisher Index of dispersion, FI[Y]";

RUN;

ODS GRAPHICS OFF;

*SAS code used to produce Figure 3;

DATA FIGURE3;

MU = 5;

LAMBDA = 0.75;

LAMBDA1 = 2.5;

LAMBDA2 = 4.5;

THETA = LAMBDA/MU;

THETA1 = LAMBDA1/MU;

THETA2 = LAMBDA2/MU;

CUM = 0;

CUM1 = 0;

CUM2 = 0;

DO k = 1 TO 50;

PROB = 0;

PROB1 = 0;

PROB2 = 0;

DO n = 1 TO k;

TERM = EXP(-LAMBDA)*(LAMBDA**n)/FACT(n)*COMB(k-1,n-1)*(THETA**n)*((1-THETA)**(k-n));

PROB = PROB+TERM;

TERM1 = EXP(-LAMBDA1)*(LAMBDA1**n)/FACT(n)*COMB(k-1,n-1)*(THETA1**n)*((1-THETA1)**(k-n));

PROB1 = PROB1+TERM1;

TERM2 = EXP(-LAMBDA2)*(LAMBDA2**n)/FACT(n)*COMB(k-1,n-1)*(THETA2**n)*((1-THETA2)**(k-n));

PROB2 = PROB2+TERM2;

END;

CUM = CUM+PROB;

CUM1 = CUM1+PROB1;

CUM2 = CUM2+PROB2;

OUTPUT;

END;
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PROC PRINT DATA = FIGURE3;

VAR PROB CUM;

VAR PROB1 CUM1;

VAR PROB2 CUM2;

GOPTIONS RESET = ALL;

ODS ESCAPECHAR = "^";

PROC SGPLOT DATA = FIGURE3;

SERIES X=k Y=PROB /LINEATTRS = (COLOR = BLUE THICKNESS = 2) LEGENDLABEL = "^{UNICODE LAMBDA} = 0.75";

SERIES X=k Y=PROB1 /LINEATTRS = (COLOR = RED THICKNESS = 2) LEGENDLABEL = "^{UNICODE LAMBDA} = 2.5";

SERIES X=k Y=PROB2 /LINEATTRS = (COLOR = GREEN THICKNESS = 2) LEGENDLABEL = "^{UNICODE LAMBDA} = 4.5";

XAXIS LABEL = "k";

YAXIS LABEL = "P(X=k)";

KEYLEGEND / ACROSS = 1 BORDER LOCATION = INSIDE POSITION = TOPRIGHT;

RUN;

ODS GRAPHICS OFF;

*SAS code used to produce Figure 4;

ODS GRAPHICS ON;

DATA FI_POISSON;

MU = 5;

DO LAMBDA = 0 TO 5 BY 0.1;

THETA = LAMBDA/MU;

SIGMA_SQ = LAMBDA*(2-THETA)/THETA**2;

FI = SIGMA_SQ/MU;

OUTPUT;

END;

RUN;

ODS ESCAPECHAR = "^";

PROC PRINT DATA = FI_POISSON LABEL;

LABEL THETA = "^{UNICODE theta}";

LABEL LAMBDA = "^{UNICODE lambda}";

LABEL MU = "^{UNICODE mu}";

LABEL SIGMA_SQ = "VAR[Y]";

LABEL FI = "FI[Y]";

GOPTIONS RESET = ALL;

ODS ESCAPECHAR = "^";

PROC SGPLOT DATA = FI_POISSON;

SERIES X = LAMBDA Y = FI / LINEATTRS = (THICKNESS = 2);

XAXIS LABEL = "^{UNICODE LAMBDA}";

YAXIS LABEL = "Fisher Index of dispersion, FI[Y]";

RUN;

ODS GRAPHICS OFF;

*SAS code used to produce Figure 5;

DATA FIGURE5;

LAMBDA = 2;

THETA = LAMBDA/5;

THETA1 = LAMBDA/10;

THETA2 = LAMBDA/20;

CUM = 0;

CUM1 = 0;

CUM2 = 0;

DO k = 1 TO 50;
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PROB = 0;

PROB1 = 0;

PROB2 = 0;

DO n = 1 TO k;

TERM = EXP(-LAMBDA)*(LAMBDA**n)/FACT(n)*COMB(k-1,n-1)*(THETA**n)*((1-THETA)**(k-n));

PROB = PROB+TERM;

TERM1 = EXP(-LAMBDA)*(LAMBDA**n)/FACT(n)*COMB(k-1,n-1)*(THETA1**n)*((1-THETA1)**(k-n));

PROB1 = PROB1+TERM1;

TERM2 = EXP(-LAMBDA)*(LAMBDA**n)/FACT(n)*COMB(k-1,n-1)*(THETA2**n)*((1-THETA2)**(k-n));

PROB2 = PROB2+TERM2;

END;

CUM = CUM+PROB;

CUM1 = CUM1+PROB1;

CUM2 = CUM2+PROB2;

OUTPUT;

END;

PROC PRINT DATA = FIGURE5;

VAR PROB CUM;

VAR PROB1 CUM1;

VAR PROB2 CUM2;

GOPTIONS RESET = ALL;

ODS ESCAPECHAR = "^";

PROC SGPLOT DATA = FIGURE5;

SERIES X = k Y = PROB / LINEATTRS = (COLOR = BLUE THICKNESS = 2) LEGENDLABEL = "E[Y] = 5";

SERIES X = k Y = PROB1 / LINEATTRS = (COLOR = RED THICKNESS = 2) LEGENDLABEL = "^E[Y] = 10";

SERIES X = k Y = PROB2 / LINEATTRS = (COLOR = GREEN THICKNESS = 2) LEGENDLABEL = "E[Y] = 20";

XAXIS LABEL = "k";

YAXIS LABEL = "P(X=k)";

KEYLEGEND / ACROSS = 1 BORDER LOCATION = INSIDE POSITION = TOPRIGHT;

RUN;

ODS GRAPHICS OFF;

*SAS code used to produce Figure 6;

DATA FIGURE6;

THETA = 0.5;

LAMBDA = THETA*5;

LAMBDA1 = THETA*10;

LAMBDA2 = THETA*20;

CUM = 0;

CUM1 = 0;

CUM2 = 0;

DO k = 1 TO 50;

PROB = 0;

PROB1 = 0;

PROB2 = 0;

DO n = 1 TO k;

TERM = EXP(-LAMBDA)*(LAMBDA**n)/FACT(n)*COMB(k-1,n-1)*(THETA**n)*((1-THETA)**(k-n));

PROB = PROB+TERM;

TERM1 = EXP(-LAMBDA1)*(LAMBDA1**n)/FACT(n)*COMB(k-1,n-1)*(THETA**n)*((1-THETA)**(k-n));

PROB1 = PROB1+TERM1;

TERM2 = EXP(-LAMBDA2)*(LAMBDA2**n)/FACT(n)*COMB(k-1,n-1)*(THETA**n)*((1-THETA)**(k-n));

PROB2 = PROB2+TERM2;

END;
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CUM = CUM+PROB;

CUM1 = CUM1+PROB1;

CUM2 = CUM2+PROB2;

OUTPUT;

END;

PROC PRINT DATA = FIGURE6;

VAR PROB CUM;

VAR PROB1 CUM1;

VAR PROB2 CUM2;

GOPTIONS RESET = ALL;

ODS ESCAPECHAR = "^";

PROC SGPLOT DATA = FIGURE6;

SERIES X = k Y = PROB / LINEATTRS = (COLOR = BLUE THICKNESS = 2) LEGENDLABEL = "E[Y] = 5";

SERIES X = k Y = PROB1 / LINEATTRS = (COLOR = RED THICKNESS = 2) LEGENDLABEL = "^E[Y] = 10";

SERIES X = k Y = PROB2 / LINEATTRS = (COLOR = GREEN THICKNESS = 2) LEGENDLABEL = "E[Y] = 20";

XAXIS LABEL = "k";

YAXIS LABEL = "P(X=k)";

KEYLEGEND / ACROSS = 1 BORDER LOCATION = INSIDE POSITION = TOPRIGHT;

RUN;

ODS GRAPHICS OFF;

*SAS code used to produce Figure 7;

ODS GRAPHICS ON;

DATA THETA_LAMBDA_MU;

THETA = 0.5;

LAMBDA = 2;

INPUT MU;

DATALINES;

5

10

20

30

50

;

RUN;

DATA FI_IND;

SET THETA_LAMBDA_MU;

LAMBDA1 = MU*THETA;

SIGMA_SQ1 = LAMBDA1*(2-THETA)/THETA**2;

FI_1 = SIGMA_SQ1/MU;

THETA1 = LAMBDA/MU;

SIGMA_SQ2 = LAMBDA*(2-THETA1)/THETA1**2;

FI_2 = SIGMA_SQ2/MU;

CHISQ = QUANTILE('CHISQ',0.05,2);

PROC PRINT DATA = FI_IND LABEL;

LABEL THETA = "^{UNICODE theta}";

LABEL MU = "^{UNICODE mu}";

LABEL LAMBDA = "^{UNICODE lambda}";

LABEL SIGMA_SQ = "VAR[Y]";

LABEL FI = "FI[Y]";

GOPTIONS RESET = ALL;

ODS ESCAPECHAR = "^";
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PROC SGPLOT DATA = FI_IND;

SERIES X = MU Y = FI_1 / LINEATTRS = (THICKNESS = 2) LEGENDLABEL = "^{UNICODE THETA} = 0.5";

SERIES X = MU Y = FI_2 / LINEATTRS = (THICKNESS = 2) LEGENDLABEL = "^{UNICODE LAMBDA} = 2";

XAXIS LABEL = "E[Y]";

YAXIS LABEL = "Fisher Index of dispersion, FI[Y]";

KEYLEGEND / ACROSS = 1 BORDER LOCATION = INSIDE POSITION = TOPLEFT TITLE = "Parameters:";

RUN;

ODS GRAPHICS OFF;

*SAS code used on the traffic accident application of GPD;

ODS GRAPHICS ON;

DATA NUMBER;

INPUT MONTH $ YEAR N Y;

LABEL N = 'Total Sunday accidents in year.'

Y = 'Number of fatalities in corresponding year.';

DATALINES;

JANUARY 1997 6 0

JANUARY 1998 6 0

JANUARY 1999 13 1

JANUARY 2000 11 0

JANUARY 2001 8 0

JANUARY 2002 8 0

JANUARY 2003 11 4

JANUARY 2004 2 0

FEBRUARY 1997 10 0

FEBRUARY 1998 10 1

FEBRUARY 1999 7 0

FEBRUARY 2000 4 0

FEBRUARY 2001 8 1

FEBRUARY 2002 8 0

FEBRUARY 2003 9 0

FEBRUARY 2004 2 0

MARCH 1997 7 0

MARCH 1998 13 4

MARCH 1999 8 0

MARCH 2000 10 0

MARCH 2001 6 0

MARCH 2002 12 0

MARCH 2003 9 0

MARCH 2004 3 0

APRIL 1997 11 0

APRIL 1998 5 0

APRIL 1999 14 1

APRIL 2000 15 1

APRIL 2001 9 0

APRIL 2002 10 1

APRIL 2003 7 1

APRIL 2004 1 1

MAY 1997 12 0

MAY 1998 17 2

MAY 1999 13 0
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MAY 2000 18 0

MAY 2001 13 2

MAY 2002 11 0

MAY 2003 12 1

MAY 2004 5 0

JUNE 1997 21 1

JUNE 1998 19 0

JUNE 1999 14 0

JUNE 2000 21 1

JUNE 2001 12 3

JUNE 2002 12 1

JUNE 2003 13 0

JUNE 2004 7 2

JULY 1997 15 0

JULY 1998 10 0

JULY 1999 14 0

JULY 2000 11 1

JULY 2001 10 2

JULY 2002 4 0

JULY 2003 8 0

JULY 2004 1 0

AUGUST 1997 11 1

AUGUST 1998 11 1

AUGUST 1999 10 0

AUGUST 2000 8 0

AUGUST 2001 9 0

AUGUST 2002 14 1

AUGUST 2003 6 0

AUGUST 2004 5 0

SEPTEMBER 1997 7 0

SEPTEMBER 1998 11 0

SEPTEMBER 1999 7 0

SEPTEMBER 2000 9 0

SEPTEMBER 2001 22 1

SEPTEMBER 2002 16 1

SEPTEMBER 2003 7 0

SEPTEMBER 2004 8 1

OCTOBER 1997 11 2

OCTOBER 1998 13 1

OCTOBER 1999 16 1

OCTOBER 2000 14 0

OCTOBER 2001 15 1

OCTOBER 2002 8 1

OCTOBER 2003 6 1

OCTOBER 2004 2 0

NOVEMBER 1997 15 1

NOVEMBER 1998 17 1

NOVEMBER 1999 13 0

NOVEMBER 2000 13 0

NOVEMBER 2001 6 0

NOVEMBER 2002 9 1

NOVEMBER 2003 11 1

NOVEMBER 2004 1 0
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DECEMBER 1997 5 0

DECEMBER 1998 7 0

DECEMBER 1999 10 1

DECEMBER 2000 10 0

DECEMBER 2001 10 0

DECEMBER 2001 8 0

DECEMBER 2003 5 0

DECEMBER 2004 2 0

;

PROC PRINT DATA = NUMBER;

RUN;

PROC FREQ DATA = NUMBER;

TABLES Y / CHISQ EXPECTED OUT = NUMBER1;

RUN;

PROC PRINT DATA = NUMBER1;

RUN;

*2x2 Contigency Table between N and Y;

PROC FREQ DATA = NUMBER;

TABLES N*Y / CHISQ EXPECTED NOCOL NOROW NOPERCENT OUT = NUMBER2;

RUN;

*Spearman Correlation Coefficient Test;

PROC CORR DATA = NUMBER2 SPEARMAN;

VAR N;

WITH Y;

RUN;

*Estimating the Poisson parameter;

PROC GENMOD DATA = NUMBER;

MODEL N = / DIST = POISSON;

ODS OUTPUT PARAMETERESTIMATES = POI_ESTIMATE;

RUN;

DATA POI_ESTIMATE;

SET;

IF _N_ = 1;

LAMBDA = EXP(ESTIMATE);

LOWER = EXP(LOWERWALDCL);

UPPER = EXP(UPPERWALDCL);

RUN;

PROC PRINT DATA = POI_ESTIMATE;

VAR LAMBDA LOWER UPPER;

RUN;

*Estimatiing the geometric parameter;

PROC GENMOD DATA = NUMBER;

MODEL Y = /DIST = NEGBIN SCALE = 1 NOSCALE;

ODS OUTPUT PARAMETERESTIMATES = GEO_ESTIMATE;

RUN;

DATA GEO_ESTIMATE;

SET;

IF _N_=1;
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THETA = 1/(1+EXP(ESTIMATE));

LOWER_P = 1/(1+EXP(LOWERWALDCL));

UPPER_P = 1/(1+EXP(UPPERWALDCL));

RUN;

PROC PRINT DATA = GEO_ESTIMATE;

VAR THETA LOWER_P UPPER_P;

RUN;

*Figure 8;

DATA FIGURE8;

SET GEO_ESTIMATE;

SET POI_ESTIMATE;

CUM = 0;

DO k = 1 TO 50;

PROB = 0;

DO m = 1 TO k;

TERM = EXP(-LAMBDA)*(LAMBDA**m)/FACT(m)*COMB(k-1,m-1)*(THETA**m)*((1-THETA)**(k-m));

PROB = PROB+TERM;

END;

CUM = CUM+PROB;

OUTPUT;

END;

PROC PRINT DATA = FIGURE8;

VAR PROB CUM;

GOPTIONS RESET = ALL;

ODS ESCAPECHAR = "~";

PROC SGPLOT DATA = FIGURE8;

SERIES X = k Y = PROB / LINEATTRS = (COLOR = BLUE THICKNESS = 2)

LEGENDLABEL = "~{UNICODE THETA} = 0.65753 and ~{UNICODE LAMBDA} = 9.833" ;

XAXIS LABEL = "k";

YAXIS LABEL = "P{X=k)";

KEYLEGEND / ACROSS = 1 BORDER LOCATION = INSIDE POSITION = TOPRIGHT TITLE = "Parameters:";

RUN;

ODS GRAPHICS OFF;
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Abstract

There is an increasing demand for modern statistical analysis that brings about an issue of complex; indeter-
minable likelihood functions of the models. Approximate Bayesian Computation (ABC) methods address this
problem by bypassing the evaluation of the likelihood function in order to widen the scope of application for
statistical inference. This report aims at laying out the evolution and extensions of the original ABC algorithm
by applying it to theoretical and real life applications.
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1 Introduction

Approximate Bayesian computation (ABC) methods are comprised of several computational methods [6]. The like-
lihood function of a model is the probability of the observed data being within a statistical model [6]. Although the
likelihood function plays a major role in statistical inference, ABC methods operate by bypassing the evaluation of
the likelihood function in order to widen the scope of application for statistical inference. This allows for models of
all variation to be analyzed and eliminates the challenge of parameter estimation and model selection [6].

One of the most prominent uses of ABC today lies in the biological �eld. During the formulation phase of ABC, the
method was applied to test the genealogy of DNA. It was used to address the problem of determining the posterior
distribution of the time of the most recent common ancestor of individuals [6]. It is also used to make inferences
about evolutionary genetics; population genetics; melanoma cell research; cosmology and biodiversity numbers in
tropical rain forests.

Other areas of application of ABC include forecasting insurance loss payments [2]; smoothing data; goodness-
of-�t statistics; summary statistic weights; linear regression; Gaussian processes and di�erential equations.

This paper aims at laying out the evolution and extensions of the original ABC algorithm by applying it to theo-
retical and real life applications. Firstly, we will use the ABC algorithm against a simulated normally distributed
data set and compare the ABC parameter estimations against the theoretical normal estimates. The Monte-Carlo
algorithm will be tested against the theoretical normal data set to compare the ABC approach to theoretical values.
Secondly, we will also apply the ABC method to a real life data set and test how accurate the algorithm is on real
time data; as well as analyze any pitfalls and remedies that can be developed to improve the algorithm in real life
applications.

2 Literature review

ABC thinking began in the 1980's by a man called Donald Rubin [6]. Rubin was determined to develop a concept
that would allow statisticians to break free from the limitations of only working with analytically controllable mod-
els. The issue in modern day statistics is that, to a large part, the models analyzed are analytically uncontrollable.
Rubin foresaw this issue and created a computational method which measures the posterior distribution of interest
[4].

In 1984, Peter Diggle and Richard Gratton extended the research of approximating the likelihoods of uncontrollable
models [9]. They based their approach on conducting various simulations of likelihoods within a parameter grid [9].
Therefore, Diggle and Gratton managed to extend Rubin's concept by introducing simulations, however they only
approximate the likelihood and not the posterior distribution as seen in today's form of ABC [9].

The preliminary work of considering ABC algorithms for posterior prediction was seen in an article written by
Tavare et al. [10]. They generated a sample from the posterior model parameters by trial and error in comparing
the errors of simulated data versus real data [9]. Jonathan Pritchard re�ned the sample models and ABC methods
were becoming more practically relevant [8].

Rubin's initial approach took on many forms and variations with several algorithms adapting the method to real
time data [9]. The Monte Carlo algorithm is one of the most commonly used algorithms in modern day statistics
[4]. Once the ABC method was developed there was no longer an obstacle to analyze and estimate previously
uncontrollable models. This allowed for a wider spread of models that could be analyzed and is used in several
applications today.

The concept of ABC is introduced by looking at the beginnings of ABC and how it has adapted over time [9, 6].
The basic ABC method and the primary ABC rejection algorithm are understood before the development of more
e�cient inference algorithms for real-time constraints is covered [6]. Research concerning real time inference is
studied by addressing a survey that outlines Bayesian network inference algorithms [4].

The �nal algorithm, the likelihood-free population Monte Carlo sampler, is a commonly used algorithm in modern
day statistical inference [6]. This algorithm is based on a sequence of simulated samples and importance weights.
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A thorough timeline of the evolution of the ABC method is discussed. This outlines the relationship that exists
between these algorithms [11]. Several pressing problems brought about by real-time Bayesian network inference is
outlined to evaluate the practicality of this method [2].

Once the theoretical understanding of the workings of ABC is covered, it is applied and compared to other models
to determine the accuracy of the method. One of the approaches is to use rejection-sampling [3]. A brief account of
the pitfalls and remedies of this method are discussed which include the approximation, and not exact, use of the
posterior distribution [9].

3 ABC algorithms (Methodology)

3.1 Theoretical background

In Bayesian statistics the Bayes rule is de�ned as [9]:

P(θ|D)= P (D|θ)P (θ)
P (D)

(1)

Where θ denotes the observed parameter values; D denotes the data set; P(D|θ) denotes the likelihood function;
P(θ) denotes the prior; P(θ|D) denotes the posterior and P(D) denotes the marginal likelihood.

In common practice, prior distributions are chosen in order to make further anslysis of the prior as simple as
possible [9]. This is sometimes done by factorizing the joint distributions of the observations of the parameter
with regards to a combination of their conditional probabilities [9]. For many practical applications, the likelihood
function, P(D|θ), is unavailable [6] or very costly to evaluate [9]. Hence, in order to overcome this problem ABC
methods will be considered.

The way in which ABC methods avoid the issue of intractable likelihood functions is by approximating the
likelihood functions through simulations [9]. The basic method is achieved through the following steps:

1. Generate a set of parameter observations, θ∗, by sampling from the prior distribution [5].
2. A new data set , D*, is simulated with regards to the parameters in step 1 [5].
3. If the new data set di�ers too much from the original data set the parameter observation is discarded.

The general decision rule is based on evaluating the di�erence between the summary statistics of the original data
set, θ, and the summary statistics of the simulated data set, θ∗ [5].

The �nal result provides a sample of parameter values that are approximately distributed in line with the
posterior distribution without evaluating the likelihood function [9]. The above outlined steps portray a general
Bayesian analysis [3]: De�ne a model, �t the model to data and improve the model by checking the goodness-of-�t
with the posterior distribution [3].

From the �rst ABC applications the method and algorithms used to apply ABC have evolved. By identifying
areas of fault the algorithm has been remodeled to be applicable to the current demand for ABC application. A
brief overview of the evolution of the ABC algorithm will be discussed in the following section.

3.2 ABC algorithms

The initial ABC algorithm by Rubin [9] is called the likelihood-free rejection sampler and takes on the form of an
accept-reject method [6]. A new set of parameters, θ∗, is sampled from the prior, P (θ), and depending on how
similar the simulated value is to the sample value the parameter may be accepted or rejected [6]. Rubin outlined
that this method would not suit cases where the likelihood is unattainable, however the outcome gives a better
understanding of the posterior distributions [6].
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Likelihood-free rejection sampler (Algorithm 1) [6]:

Step 1: Generate a set of parameter observations, θ∗, from the prior distribution.
Step 2: Generate a new data set from the parameter estimates in Step 1. Let D* denote the new data set.
Step 3: Repeat until D*=y, where y is 'true' if the simulated sample is almost identical to the observed sample.
Step 4: Set θi = θ∗.
Step 5: Repeat steps 1-4 N times.

Pritchard extended Rubin's algorithm [9] by adapting the �rst algorithm to continuous cases. This algorithm
is known as the likelihood-free rejection sampler 2. This algorithm was more applicable than Rubin's algorithm but
still had some shortcomings that needed to be addressed. In practice, the algorithm was not adapting well to cases
where the prior distribution was non informative.

Likelihood-free rejection sampler 2 (Algorithm 2) [6]:

Step 1 & 2 are the same as Algorithm 1.
Step 3: Repeat until the distance between the two samples is below a given tolerance level.
Step 4: Set θi = θ∗.
Step 5: Repeat steps 1-4 N times.

Marjoram et al. formulated the likelihood-free MCMC sampler to address the problems faced in Algorithm 2. The
probability to accept in this algorithm is not subject to calculations of the likelihood. Therefore, the likelihood-free
MCMC sampler was the �rst algorithm to operate true to ABC requirements. Majoram et al. developed an e�ective
ABC algorithm that managed to achieve the aim of ABC by bypassing likelihood calculations however the e�ciency
of the algorithm could be improved [7].

Likelihood-free MCMC sampler (Algorithm 3) [6]:

Steps 1 & 2 are the same as algorithm 1.
Step 3: Acceptance probability is calculated with various distance and tolerance levels and excludes any calculation
of the likelihood.
Step 4: Set θi = θ∗.
Step 5: Repeat steps 1-4 N times.

In order to improve the e�ciency of Algorithm 3 the likelihood-free population Monte Carlo sampler was de-
veloped. The algorithm operates in terms of importance sampling by using sequential techniques that increase
the e�ciency of the ABC algorithm by adapting to the target population. From the improvements of the original
algorithm the Monte Carlo sampler is one of the most commonly used algorithms in modern day statistics.

Likelihood-free Monte Carlo sampler (Algorithm 4) [6]:

Steps 1 & 2 are the same as Algorithm 1.
Step 3: Acceptance probability is calculated using random walk scale and decreasing tolerance thresholds.
Step 4: Set θi = θ∗.
Step 5: Repeat steps 1-4 N times.

4 Application

4.1 Practical

ABC algorithms are available in several statistical software [9]. Choosing the appropriate software and package(s)
depends on the individuals type of application and the algorithms that are intended to be used [9]. The most
applicable for statistical inference, and for the practical component of this research is R [3]. The package in R is
called 'abc' and requires the user to provide information regarding summary statistics (both observed and simu-
lated) [3]. The ABC package works in conjunction with the abc.data package which is a real life example data set [1].

The package de�nes the summary statistics and calculates the distances between the corresponding observed and
simulated summary statistics [3]. If the distance is lower than a given value, the corresponding parameter value
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is accepted [3]. This method follows the general approach of the ABC algorithms discussed above. The area of
�exibility with this package is setting the threshold value for acceptance. The user is required to provide a tolerance
rate (ratio of accepted simulations) which then sets the corrected threshold value for the simulation [3]. Setting
the threshold value allows the ABC package to use the MCMC and Monte-Carlo algorithms with more complex
acceptance probability calculations.

The package 'abc' makes use of three ABC algorithms:
1. A rejection method [3]
2. Regression method using local linear regression [3]
3. Regression method using neural networks [3]

Rejection method:
The rejection method algorithm is called by selecting the �rejection� option [3]. This method classi�es the accepted
parameter values as a sample from the posterior distribution [3]. This method aligns with the workings of Algorithm
1 & 2.

Regression method:
The regression method algorithm using local linear regression or neural networks is called by selecting the �loclinear�
or �neralnet� options respectively [3]. These methods correct for the variability in di�erences between the observed
and simulated summary statistics [3]. These two methods work according to Algorithm 3 & 4 and are more thorough
in the acceptance probability calculations.

4.2 Example

In order to portray the ABC method more clearly, a time series example is analyzed. Time series data is character-
ized by tedious likelihoods which dictate the need for ABC methods [9]. When working with a large data set such
as time series data it is often bene�cial to use summary statistics to reduce the burden of a large data set [9]. In
this example the summary statistic illustrates the switches between two states, A and B [9]. Conclusions regarding
posterior parameters can be made through the following 5 steps:

Step 1: Data is assumed to be in the form: AAAABAABBAAAAAABAAAA, which portrays a summary statistic,
the number of switches between the states in the data [9].

Step 2: A uniform distribution will be assumed as the prior in the interval (0,1) [9]. Several parameters are
drawn from the prior in order to build the model [9].

Step 3: The summary statistic is calculated for each combination of sequence data [9].

Step 4: In order to extract the accurate sample statistics the distance between the real and simulated data is
calculated [9].

Step 5: The accurate parameters predict the posterior distribution [9].

4.3 Simulation

In order to test the ABC package �rst we test the algorithms on a simulated data set. The data set is simulated for
three di�erent sample sizes: n=30, n=100 and n=1000. Each data set follows a normal distribution with µ = 5.3
and σ2= 2.7.

In regular statistical analysis there are several methods to estimate population parameters. Due to the normal
distribution having a likelihood function that is workable we will compare parameter estimates calculated by dif-
ferent methods to analyze the accuracy of the ABC method. Estimation methods for comparison include:

1. Sample value: The mean and variance of the sample will be calculated and used as an estimate for the
population parameters.

2. Method of moments: The mean and variance are calculated in terms of moments.
3. Bayes MCMC: The MCMC algorithm is tested against the theoretical methods above.

9



The results of each method for each sample size are summarized in Table 1. It is evident that the Bayes pa-
rameter estimates are larger than the sample and MME estimates for both parameter values. The larger the sample
size gets the more accurate the sample and MME methods are at estimating the true population values however
the Bayes MCMC method is most accurate in samples of size 30 and 100.

n=30 n=100 n=1000

Estimation method µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Population value 5.3 2.7 5.3 2.7 5.3 2.7
Sample value 5.12 2.34 5.18 2.72 5.23 2.77

MME 5.12 2.34 5.18 2.72 5.23 2.77
Bayes MCMC 5.27 2.89 5.12 3.12 5.779 3.79

Table 1: Simulated data: Parameter estimation

Looking at the MCMC method more closely we can see how well this method estimates the population parameters
by looking at the density plots for each parameter. In �gure 1 you will see the density plots for each parameter, µ
and σ2, done for all sample sizes.

Figure 1: Simulated data: MCMC posterior distribution

As can be seen in �gure 1, each density plot more or less follows a normal distribution. The red vertical lines
indicate the true population value. As is evident by the clustering of the parameter points around the red line, the
larger the sample size the more accurate the MCMC estimation is.
The graphical representation shows the overall accuracy of the MCMC method. Even though the tabulated
information suggests that the MCMC method estimates more accurately for n=30 and n=100; the overall
estimation for each sample value is more accurate for n=1000 due to the increased number of clustered data
points around the true population value.

4.4 Real data set: Human demographic history

4.4.1 Background

The biological �eld is one of the more in�uential areas of study regarding ABC analysis. For this reason the real
data set that will be analyzed is the Human demographic history data set built into the abc.data package. The
human data set is a more realistic application as this data set contains real data. The goal is to estimate the human
ancestral population size and di�erentiate between di�erent demographic models [1]. The data set background and
the parameters to be analyzed will be discussed further.
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The human demographic history data set contains 50 independent autosomal non-coding regions from a Hausa
(Africa), a Chinese (Asia), and an Italian (Europe) population [1]. Many population and genetic studies have dis-
covered that African populations continue to expand while other populations have experienced �uctuations between
bottleneck patterns and expansion patterns. This anomaly will be analyzed by looking at the human data set in
the abc.data package and applying ABC principals on it.

The data set is comprised of three summary statistics: the average nucleotide diversity, Π̄, and the mean and
the variance of Tajima's D. Both Tajima's D and Π̄ are used to detect historical changes in population size [1]. A
negative Tajima's D represents an expansion in the population size where as a positive Tajima's D represents a
population bottleneck [1]. When Tajima's D is equal to zero this indicates a constant population size. The data
set is also comprised of objects: stat.voight and stat.3pops.sim which contains the simulated summary statistics.
These objects can be used to predict posterior probabilities within di�erent demographic models in Africa; Asia
and Europe.

4.4.2 Demographic models

Choosing a demographic model to estimate ancestral population size depends on which model is best supported by
the given data. The available models are: constant population size, exponential growth and population bottleneck
[1]. All three models are characterized by several parameters including population size and rate of changes in
population size [1].

4.4.3 Model selection

Before running an ABC analysis on the data we need to determine if ABC can distinguish between the three models.
Figure 2 represents a confusion matrix. The confusion matrix shows how the ABC algorithm classi�ed each model.
If the models were classi�ed correctly every time, each bar would be a di�erent color.

Figure 2: Misclassi�cation proportions for the three models

The confusion matrix con�rms that ABC can distinguish between the three demographic models. It also indicates
that the exponential population expansion model is classi�ed the most correctly with 4 correct classi�cations out
of 5. In the following analysis we only look at the the European data set.

4.4.4 Goodness-of-�t test

Before running analysis on the European data, a goodness-of-�t test must be done to con�rm the correct demo-
graphic model for the data. The European data seems to follow a bottleneck demographic model. This is con�rmed
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by testing this claim under a bottleneck distribution and plotting the densities in Figure 3.

Figure 3: Histogram of the test statistic for goodness of �t assuming a bottleneck model.

4.4.5 Posterior predictive checks

Another test to con�rm the correct demographic model for the European data is to run posterior predictive checks.
Figure 4 shows the posterior distributions of the three parameters plotted using the ABC package. This is done by
estimating the posterior distributions; obtaining a sample of parameters from the posterior distribution and then
simulating new parameter estimates from this sample. The posterior checks use the summary statistics twice, once
for sampling from the posterior distribution and once for predicting the new parameter values. This repetitive
process may take long periods of time when working with larger data sets.

Figure 4: Posterior predictive checks for the European data under the bottleneck model

Figure 4 validates that the bottleneck demographic model is best suited for the European data set as the posterior
distributions �t the data under the model well.

12



4.4.6 Cross-validation

Now that we have identi�ed the European data set as following a bottleneck population growth pattern we can
start making inferences about the ancestral population size in the European population. In order to make these
inferences the data set containing the simulated summary statistics on the European population must be accessed.
This data set contains: the ancestral population size (Na), the ratio of the population sizes before and during the
bottleneck (a), the duration of the bottleneck (duration), and the time since the beginning of the bottleneck (start)
[1].

Testing to see if ABC can estimate the parameter Na, a cross-validation test is performed. Di�erent tolerance rates
are run and the results are given in �gure 5. The rejection and local linear regression methods of ABC are used to
estimate the value of Na under various tolerance rates. Figure 5 compares the two methods ("rejection" and
"loclinear") under three di�erent tolerance rates [1]. Figure 5 indicates the posterior distribution medians of Na
for each cross-validation sample. The points are scattered around the identity line which indicates that Na can we
well estimated using the three summary statistics and ABC [1]. It is important to note that the various tolerance
rates (light to dark colors indicate increasing tolerance rates) do not a�ect the accuracy of the estimates of Na.

Figure 5: Cross-validation for parameter inference.

4.4.7 Parameter inference

Now that all the checks have been approved we can estimate the posterior distribution of Na using the ABC
package. Figure 6 shows the posterior distribution of the variable, Na, from the European data set under a
bottleneck demographic model.
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Figure 6: Histogram of posterior sample of Na

Figure 7 shows ABC regression diagnostics for the estimation of the posterior distribution of Na. The following
three plots are generated: a density plot of the prior distribution (left), a scatter plot of the Euclidean distances as
a function of the parameter values (middle) and a density plot of the posterior distribution (right). The apparent
di�erence in the prior and posterior distribution plots convey that the three summary statistics convey information
about the ancestral population size. The middle panel of Figure 7 shows the distance between the simulated and
observed summary statistics as a function of the prior values of Na [1]. This con�rms once again that the summary
statistics convey information about Na since the distances for the accepted values (red) are clustered together [1].

Figure 7: ABC regression diagnostics for the estimation of the posterior distribution of Na

4.5 Model comparison and application

ABC methods be used as a tool for estimating parameters for deriving the posterior probabilities of various models
[9]. These estimations have numerous practical uses in varying industries. Biologically related areas are one of the
more prominent sectors that ABC has in�uenced. Molecular data can now be analyzed and statistical methods
are providing more insight into �elds such as natural populations and evolutionary genetics [2]. The Markov chain
Monte Carlo technique is the more commonly used method in this area of study [2]. Owing to the exponentially
growing size of data within DNA advancements, ABC methods are used to bypass likelihood calculations to improve
e�ciency [2].

Another sector which largely bene�ts from ABC methods is the insurance sector. Bayesian inference is where
actuarial credibility theory began so the ABC application in the insurance sector is valid and well established.
Other areas of use of ABC methods, according to Worldwide Science include:

1. Functional statistics
2. Goodness-of-�t statistics
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3. Population genetics
4. Di�usion �ltration
5. Forward modeling in cosmology

4.6 Improvements

Although ABC has enabled previously unexplainable models to be evaluated it still contains problem areas and
room for improvements. The risk of using ABC methods will be highlighted here with a focus on the areas where
ABC does not operate well.

Prior distribution and parameter ranges [9]:

In ABC methods the prior distribution and parameter range must be speci�ed. In some cases these values have
been estimated by the user which bring in a space of error and biasedness. Although in some cases it is possible to
estimate these values in accordance with the known properties, there are cases where these estimates are
unattainable. Therefore, in cases where these values are to be estimated by the user, an element of error is
introduced to the ABC method.

Small number of models [9]:

Model-based studies operate within a small model space. There have been several criticisms on the small number
of models studied in the model-based studies. The risk taken here is that the small number of models gives a
limited insight which may cause the conclusions to be biased.

Large data sets [9] :

On the other hand, large data sets can also bring with it some problems. For model-based studies, large data sets
may cause a computational bottleneck. This may cause parts of a data set to be excluded from the analysis which
introduces another element of biasedness.

Curse of dimensionality [9] :

High dimension parameter sets and data sets demand high numbers of parameter simulations. This simply
increases the operating costs and in severe cases my make the analysis intractable.

Although there are many pitfalls with the ABC method, the overall advantages of using a method like this are
immense.

5 Conclusion

In conclusion, ABC consists of a group of e�cient methods for statistical inference. However, when applying ABC
methods additional caution must be taken owing to the level of biasedness introduced with the approximations [9].
At this point in time ABC is very well suited for problems that involve individual parameter inference. In order
to practically use ABC in problems with a multitude of parameters more work and adaptation to the current ABC
methods is required. The ease of using ABC to bypass complex likelihoods should not be blindsided by the fact
that these complex likelihoods may not allow for accurate prediction by ABC methods.
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6 Appendix

6.1 Simulation

6.1.1 Table 1

#TITLE : MME and MLE f o r n=30;100;1000

data_30 = rnorm (30 , mean =5.3 , sd = 2 . 7 )
MMEm_30=mean( data_30 )
frame_30=data . frame ( data_30 , MMEm_30, data_30−MMEm_30, ( data_30−MMEm_30)^2)
MMEv_30=sum( frame_30$X . data_30 . . .MMEm_30. . 2 ) / 3 0
MEAN_30=mean( data_30 )
V_30=sd ( data_30)^2

data_100 = rnorm (100 , mean =5.3 , sd = 2 . 7 )
MMEm_100=mean( data_100 )
frame_100=data . frame ( data_100 , MMEm_100, data_100−MMEm_100, ( data_100−MMEm_100)^2)
MMEv_100=sum( frame_100$X . data_100 . . .MMEm_100. . 2 ) / 1 0 0
MEAN_100=mean( data_100 )
V_100=sd ( data_100 )^2

data_1000 = rnorm (1000 , mean =5.3 , sd = 2 . 7 )
MMEm_1000=mean( data_1000 )
frame_1000=data . frame ( data_1000 , MMEm_1000, data_1000−MMEm_1000, ( data_1000−MMEm_1000)^2)
MMEv_1000=sum( frame_1000$X . data_1000 . . .MMEm_1000. . 2 ) / 1000
MEAN_1000=mean( data_1000 )
V_1000=sd ( data_1000 )^2

6.1.2 Figure 1

# TITLE : A simple Approximate Bayesian Computation MCMC (ABC−MCMC)

l i b r a r y ( coda )

# assuming the data are 10 samples o f a normal d i s t r i b u t i o n
# with mean 0 and sd 1
mcmc_30=data . frame ( data_30 )
mcmc_100=data . frame ( data_100 )
mcmc_1000=data . frame ( data_1000 )

# we want to use ABC to i n f e r the parameters that were used .
# we sample from the same model and use mean and var iance
# as summary s t a t s t i t i c s . We return true f o r ABC acceptance when
# the d i f f e r e n c e to the data i s sma l l e r than a c e r t a i n th r e sho ld

mean_30 <− mean( data_30 )
sd_30 <− sd ( data_30 )
mean_100 <− mean( data_100 )
sd_100 <− sd ( data_100 )
mean_1000 <− mean( data_1000 )
sd_1000 <− sd ( data_1000 )

ABC_acceptance <− f unc t i on ( par , meandata , s tandarddev ia t iondata ){

# pr i o r to avoid negat ive standard dev i a t i on
i f ( par [ 2 ] <= 0) re turn (F)
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# s t o c h a s t i c model gene ra t e s a sample f o r g iven par
samples <− rnorm (10 , mean =par [ 1 ] , sd = par [ 2 ] )

# comparison with the observed summary s t a t i s t i c s
d i f fmean <− abs (mean( samples ) − meandata )
d i f f s d <− abs ( sd ( samples ) − s tandarddev ia t iondata )
i f ( ( d i f fmean < 0 . 1 ) & ( d i f f s d < 0 . 2 ) ) re turn (T) e l s e re turn (F)

}

# we plug t h i s in in a standard met ropo l i s ha s t i ng s MCMC,
# with the met ropo l i s acceptance exchanged f o r the ABC acceptance

run_MCMC_ABC <− f unc t i on ( s t a r tva lue , i t e r a t i o n s , meandata , s tandarddev ia t iondata ){

chain = array (dim = c ( i t e r a t i o n s +1 ,2))
chain [ 1 , ] = s t a r t v a l u e

f o r ( i in 1 : i t e r a t i o n s ){

# propo sa l f unc t i on
proposa l = rnorm (2 ,mean = chain [ i , ] , sd= c ( 0 . 7 , 0 . 7 ) )

i f (ABC_acceptance ( proposal , meandata , s tandarddev ia t iondata ) ){
chain [ i +1 ,] = proposa l

} e l s e {
chain [ i +1 ,] = chain [ i , ]

}
}
re turn (mcmc( chain ) )

}

poster ior_30 <− run_MCMC_ABC( c (4 , 2 . 3 ) , 300000 ,mean_30 , sd_30 )
p l o t ( poster ior_30 )
summary( poster ior_30 )

poster ior_100 <− run_MCMC_ABC( c (4 , 2 . 3 ) , 300000 ,mean_100 , sd_100 )
p l o t ( poster ior_100 )
summary( poster ior_100 )

poster ior_1000 <− run_MCMC_ABC( c (4 , 2 . 3 ) , 300000 ,mean_1000 , sd_1000 )
p l o t ( poster ior_1000 )
summary( poster ior_1000 )

6.2 Real data set: Human demographic history

6.2.1 Figure 2

r e qu i r e ( abc . data )
data (human)
s t a t . vo ight

#Demographic models
par ( mfcol = c (1 , 3 ) , mar=c ( 5 , 3 , 4 , . 5 ) )

#Model s e l e c t i o n
cv . modsel <− cv4postpr (models , s t a t . 3 pops . sim , nval=5, t o l =.01 , method="mn log i s t i c ")
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s <− summary( cv . modsel )

p l o t ( cv . modsel , names . arg=c (" Bott l eneck " , "Constant " , "Exponent ia l " ) )

6.2.2 Figure 3

modsel . ha<−postpr ( s t a t . vo ight [ " hausa " , ] , models , s t a t . 3 pops . sim , t o l =.05 ,method="mn log i s t i c ")
modsel . i t <−postpr ( s t a t . vo ight [ " i t a l i a n " , ] , models , s t a t . 3 pops . sim , t o l =.05 ,method="mn log i s t i c ")
modsel . ch<−postpr ( s t a t . vo ight [ " ch ine s e " , ] , models , s t a t . 3 pops . sim , t o l =.05 ,method="mn log i s t i c ")
summary(modsel . ha )
summary(modsel . i t )
summary(modsel . ch )

#Goodness o f f i t
r e s . g f i t . bott=g f i t ( t a r g e t=s t a t . vo ight [ " i t a l i a n " , ] , sumstat=s t a t . 3 pops . sim [ models=="bott " , ] ,

s t a t i s t i c=mean , nb . r e p l i c a t e =100)
p l o t ( r e s . g f i t . bott , main="Histogram under H0")

6.2.3 Figure 4

#Pos t e r i o r p r e d i c t i v e checks

r e qu i r e ( abc . data )
data ( ppc )
mylabels <− c ("Mean nuc l e o t i d e d i v e r s i t y " ,"Mean Tajima ' s D" , "Var Tajima ' s D")
par (mfrow = c (1 , 3 ) , mar=c (5 , 2 , 4 , 0 ) )
f o r ( i in c ( 1 : 3 ) ) {

h i s t ( post . bott [ , i ] , breaks=40, xlab=mylabels [ i ] , main="")
ab l i n e ( v = s t a t . vo ight [ " i t a l i a n " , i ] , c o l = 2)

}

6.2.4 Figure 5

#Cross v a l i d a t i o n

s t a t . i t a l y . sim <− subset ( s t a t . 3 pops . sim , subset=models=="bott ")
head ( s t a t . i t a l y . sim )
head ( par . i t a l y . sim )

cv . r e s . r e j <− cv4abc ( data . frame (Na=par . i t a l y . sim [ , "Ne " ] ) , s t a t . i t a l y . sim , nval=10,
t o l s=c ( . 0 0 5 , . 0 1 , 0 . 0 5 ) , method="r e j e c t i o n ")

cv . r e s . reg <− cv4abc ( data . frame (Na=par . i t a l y . sim [ , "Ne " ] ) , s t a t . i t a l y . sim , nval=10,
t o l s=c ( . 0 0 5 , . 0 1 , 0 . 0 5 ) , method=" l o c l i n e a r ")

summary( cv . r e s . r e j )
summary( cv . r e s . reg )

par (mfrow=c (1 , 2 ) , mar=c ( 5 , 3 , 4 , . 5 ) , cex=.8)
p l o t ( cv . r e s . r e j , capt ion="Re jec t i on ")
p l o t ( cv . r e s . reg , capt ion="Local l i n e a r r e g r e s s i o n ")

6.2.5 Figure 6

r e s <− abc ( t a r g e t=s t a t . vo ight [ " i t a l i a n " , ] , param=data . frame (Na=par . i t a l y . sim [ , "Ne " ] ) ,
sumstat=s t a t . i t a l y . sim , t o l =0.05 , t r a n s f=c (" log ") , method="neura lne t ")

h i s t ( r e s )

6.2.6 Figure 7

par ( cex=.8)
p l o t ( res , param=par . i t a l y . sim [ , "Ne " ] )
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Abstract

Anomaly detection comprises the identi�cation of observations which do not follow the expected
patterns of the assumed data set. We attempt to simplify the problem of textual anomaly detection
by constructing a Multinomial Naïve Bayes classi�er and enhancing it with an augmented Expectation
Maximization (EM) algorithm. By doing so, we utilize large amounts of unlabelled data and show how
the EM algorithm could increase the accuracy of the Naïve Bayes classi�er. The process is applied to a
binary classi�cation environment in order to detect anomalies in text.
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1 Introduction

In many research areas there exists a requirement to �nd patterns or trends in data which do not conform to
a certain behaviour [1]. Examples of such instances include �nding abnormal tra�c patterns in a computer
network system to detect suspicious data transfers, identifying fraudulent activity in a banking environment
or analyzing streamed twitter data to identify important events.

In a text-analysis problem, consider for example a company that collects text data in order to analyze
the success of a marketing campaign for their client, the �nancial service group Liberty. The company will
require a large corpus containing documents with speci�c keywords such as their client's name, "Liberty".
However, the word "liberty" is used in many contexts and is therefore not only associated with the client.
Consequently, the company's large corpus possibly contains irrelevant documents that need to be identi�ed
and �ltered out.

Anomaly detection relates to �nding a solution to the above problems, for the speci�c domain at hand.
The general problem faced in anomaly detection is that the performance of each algorithm or method largely
depends on the domain it is applied to. One increasingly popular research area relevant to anomaly detection
is text analysis. Web-pages, news articles, social media etc. are examples of instances where text is used to
convey useful information.

Text analysis is a challenging �eld because in many instances it requires both quantitative and qualita-
tive reasoning. To clarify, �nding the number of times a certain word is used in a document falls under
quantitative reasoning whereas �nding the semantic (linguistic) content in the text data relates to qualitative
reasoning. However, despite the complexity of properly using text analysis or �nding anomalies in text, much
bene�t is to be gained from it. Anomalies in text are almost always domain-speci�c phenomena and usually
requires su�cient domain knowledge to detect. For example, when reading nursery rhymes for children the
phrase "gross domestic product" would appear anomalous to an expert with domain knowledge on the sub-
ject. Therefore, the problem of de�ning a clear distinction between normal and abnormal depends on the
domain and usually requires human assistance.

In this paper we start by constructing a Naïve Bayes text classi�er. In order to increase the performance
of our classi�er, we use the augmented Expectation Maximization (EM) algorithm which has been shown in
previous work to perform well with Naïve Bayes [2][9]. In order to implement EM later on, we will need access
the parameter estimates of the model. Therefore, we need to construct the classi�er from �rst principles in
order to preserve important information such as the word-class matrix and the class-prior probabilities. This
process shall be covered extensively in the �Background Theory� section. We then attempt to improve the
accuracy of the Naïve Bayes classi�er by using an augmented form of EM[9].

To demonstrate the performance of the augmented classi�er, we apply it to the well-known 20 Newsgroups
data set [5]. Since the ultimate objective of this research is to identify and eliminate anomalous/irrelevant
text documents from a corpus, we change the classi�er into a binary classi�er. Lastly, we sample from the
20 Newsgroup data in order to create a dataset emulating anomalous items in text data.
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2 Background Theory

2.1 Literature review

Chandola et al. provide an overview of the research done on anomaly detection. In their paper [1] they
group existing techniques into di�erent categories (domains) and structurize the key assumptions made in
the di�erent domains to de�ne �normal� regions. Mahapatra et al. [7] provide insight into using linguistic
(semantic) content of text data for anomaly detection and how it could reduce the number of false positives.
The text data they use is of a more literary nature where they focus on syntax and reading di�culty. In
response, Kumarashwami et al. [6] demonstrate that domain-speci�c feature selection is more important
than linguistic features for anomaly detection in text data.

In his paper [9], Nigam used Expectation-Maximization (EM) to utilize large and inexpensive unlabeled
text data sets in order to improve his supervised learning algorithm. What we aim to achieve in this paper
is similar. We will deploy a hybrid procedure where we use unlabeled and labeled data together to in-
crease the accuracy of a text classi�er by using Nigam's EM method and doing anomaly detection by binary
classi�cation.

2.2 Important assumptions

In order to derive statistical characteristics from text data, we must assume that the data originates from
some generative model. This assumption creates a framework under which we make another two important
assumptions:

1. The data is produced from a mixture model.

2. There is a one-to-one relationship between a class and a mixture component from said mixture model
[9].

Our goal is to classify documents by using a Naïve Bayes Classi�er. With this approach we make one more
simplifying assumption: all words within a document are independent of each other given a class. The classi-
�er is called Naïve because we do not actually expect this assumption to be true in practice, but it has been
proved [3] that the Naïve Bayes Classi�er works well despite having violated its assumptions. This is because
the reduction in parameters due to the word-independence assumption makes the model more immune to
over-�tting [8].

2.3 Model parameters

Let us de�ne C = {c1, c2, ..., c|C|} as the collection of all mixture components (classes) in our model where
|C| is the total amount of mixture components. Then under the above framework we assume that every
document in the corpus has been generated with a certain mixture component cj∈C and a corresponding set
of parameters θ. The probability of some document di being generated by a speci�c mixture component can
be expressed as follows:

P (cj |θ)P (di|cj ;θ), (1)

where di∈D = {d1, ..., d|D|}, |D| being the total amount of documents in the corpus. Therefore, the prob-
ability of a document being generated (by any mixture component) is the sum of total probability over all
mixture components:

P (di|θ) =

|C|∑
j=1

P (cj |θ)P (di|cj ;θ). (2)

Let V be the vocabulary such that V =< w1, w2, ..., w|V | > where |V | is the total amount of unique words in
the vocabulary and each wi represents one unique word. Each document di can be expressed as an ordered
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list of words < wdi,1, wdi,2, ..., wdi,|di| > where wdi,j is the jth word in the document and |di| is the total
amount of words in the document. In this model we assume that the length of a document is independent of
the mixture component that generated it [9]. Keeping the word-independence assumption in mind, we can
now expand the second factor from (1) by writing the probability of a document given a class in terms of its
document length and word probabilities:

P (di|cj ;θ) = P (< wdi,1, wdi,2, ..., wdi,|di| > |cj ;θ) = P (|di|)
|di|∏
k=1

P (wdi,k|cj ;θ). (3)

We now introduce the parameters used in our model, θ. Intuitively, from (3) above we see that the parameters
of a speci�c mixture component cj is a set of word probabilities. We use the notation θwt|cj = P (wt|cj ;θ)
for a single word probability given a mixture component cj .
It is important to note that

|V |∑
t=1

P (wt|cj ;θ) = 1.

Furthermore, we assume that document length is identically and independently distributed and therefore
does not need to be parameterized [9]. The only remaining set of parameters used in the model is called the
class prior distribution, θcj = P (cj |θ). Therefore, the set of parameters in our model is formally de�ned as
follows:

θ = {θwt|cj : wt∈V, cj∈C; θcj : cj∈C}. (4)

2.4 Parameter estimation

The �rst step in building the classi�er is �nding the estimates of the parameters that maximize the probability
P (θ;D). This method is called Maximum a Posteriori (MAP) estimation. In order to classify a document,

we choose the class cj that maximizes the probability P (yi = cj |di; θ̂).

The above probability can be extended by using Bayes' rule:

P (yi = cj |di; θ̂) =
P (cj |θ̂)P (di|cj ; θ̂)

P (di|θ̂)
.

By substituting equations (2) and (3) into the above formula, we obtain the following result:

=
P (cj |θ̂)

∏|di|
k=1 P (wdi,k|cj ; θ̂)∑|C|

h=1 P (ch|θ̂)
∏|di|

k=1 P (wdi,k|ch; θ̂)
. (5)

We calculate the parameter estimates P (cj |θ̂) and P (wdi,k|cj ; θ̂) by using observed frequencies in the training
data. The frequencies are represented by the following notation:

• The label indicator function zij =

{
1 if document i has mixture component j

0 otherwise
.

• The word counting function N(wt, di) = the number of times word wt appears in document di.
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It follows that:

P (cj |θ̂) =
Number of documents with mixture component cj

Number of documents in the training set

=

∑|D|
i=1 zij∑|C|

j=1

∑|D|
i=1 zij

=

∑|D|
i=1 zij
|D|

. (6)

P (wdi,k|cj ; θ̂) =
Number of times the word wdi,k occurs in mixture component cj

Number of words in mixture component cj

=

∑|D|
i=1N(wt, di)zij∑|V |

k=1

∑|D|
i=1N(wk, di)zij

. (7)

A common problem faced when calculating equations (6) and (7) are zero-probabilities. This could occur if
a certain word never appears in a class. Zero probabilities can cause signi�cant damage to the accuracy of
this model since any other evidence in the same product as the zero probability is discarded. A simple way
to prevent this is to use Laplace-smoothing [9], i.e. we add extra counts in the numerator and denominator
as follows:

P (cj |θ̂) =
1 +

∑|D|
i=1 zij∑|C|

j=1

(
1 +

∑|D|
i=1 zij

)
=

1 +
∑|D|

i=1 zij
|C|+ |D|

. (8)

P (wdi,k|cj ; θ̂) =
1 +

∑|D|
i=1N(wt, di)zij∑|V |

k=1

(
1 +

∑|D|
i=1N(wk, di)zij

)

=
1 +

∑|D|
i=1N(wt, di)zij

|V |+
∑|V |

k=1

∑|D|
i=1N(wk, di)zij

. (9)

Results (8) and (9) can now be substituted into result (5) to calculate the probability of a label given a speci�c

document. Finally, the Naïve Bayes classi�er returns the value argmaxcj∈C

{
P (yi = cj |di; θ̂)

}
, which is the

mixture component/class label associated with the highest probability.
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2.5 Expectation maximization

Expectation Maximization (EM) is an iterative algorithm used to estimate parameters when dealing with
incomplete data. By iterating over (E) and (M) steps, the algorithm converges by maximizing the complete
log-likelihood of the model.

For the rest of the paper we shall use a training set that consists of some labelled documents and large
amounts of unlabelled data. De�ne D =

{
Dl, Du

}
as the collection of all our training data. Then D consists

of two partitions, namely Dl which contains all the labelled data and Du which contains the unlabelled data.
Due to the fact that we have missing labels in our training set and therefore have latent parameters in our
model, our data is incomplete. Although this might seem problematic, our aim is to draw information from
the large set of unlabelled data by using EM which accounts for incomplete data.

The log-likelihood of this model can be expressed as follows:

l(θ|D) = log(P (θ)) +
∑

di∈Du

log

|C|∑
j=1

P (cj |θ)P (di|cj ;θ) +
∑

di∈Dl

log(P (yi = cj |θ)P (di|yi = cj ;θ)). (10)

It would be ine�cient to attempt to maximize the above expression since it contains a log of sums.
However, EM provides an alternative approach.

Suppose that we knew the class labels for all the documents. We could then construct a matrix of bi-
nary variables Z =

(
z1, ..., z|D|

)
such that zi =

〈
zi1, ..., zi|C|

〉
and zij remains de�ned as in section 2.3. It

follows that we can express the complete log-likelihood as follows:

lc(θ|D; z) = log(P (θ)) +
∑
di∈D

|C|∑
j=1

zij log(P (cj |θ)P (di|cj ;θ)). (11)

The expected value of zij when i ∈ Du is equal to the probabilistic labels given by equation (5). By replacing

the z
′s
ij in equation (11) with their expected values we can �nd a lower bound for equation (10) with each

iteration [9].

To summarize, the EM iteration process is explained in Algorithm 1:

Algorithm 1 Expectation Maximization

1. As an initial (M)-step, using equations (8) and (9) we determine the MAP estimates, θ̂, of the Naïve
Bayes model given the labelled training data.

2. (E)-step: Determine the expected value of z given the current parameter estimates, θ̂.

3. (M)-step: Using the updated expected value of z, determine new parameter estimates using equations
(8) and (9).

Steps 2 and 3 are repeated until convergence, i.e. until the log-likelihood reaches a local maximum and cannot
increase any further.
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2.6 Augmented EM

We have mentioned in sections 2.2 and 2.3 that certain assumptions need to be made about the nature of the
data in this environment in order to �t a model. As suggested in the name, Naïve Bayes tends to perform
well in practice despite some minor violations of the assumptions. By combining labelled and unlabelled data
to train our model, we risk violating our assumptions to a greater extent and damaging the performance of
our model more than improving it.

Nigam [9] addresses this issue by introducing two separate strategies. The �rst strategy is to multiply
the parameter estimates obtained from the unlabelled data with a scalar λ ∈ [0, 1] in the MAP estimator
function. Intuitively, using a λ-value of 1 would be equal to standard EM as in the previous section. EM
brings unsupervised clustering to the classi�cation process, which is why our algorithm is semi-supervised.
The λ scalar controls the intensity with which EM performs unsupervised clustering in our model [9].

The second strategy is to change our assumption from section 2.2 regarding the one-to-one relationship
between a mixture component and a class label. This is a strong assumption which, if violated, could cause
severe performance issues in the model. The assumption can be manipulated to be less strict by assuming a
many-to-one relationship between mixture components and class labels instead. Therefore, instead of pairing
one label yi with one mixture component cj , the strategy suggests that we model the possibility of multiple
mixture components for any class.

We focus on strategy 1 in this paper, i.e. scaling down the e�ect of the unlabelled data on our model
parameters with a value we de�ne as:

Λ =

{
1 if di ∈ Dl

λ if di ∈ Du
.

Equation (10) illustrates how the log-likelihood consists of log-probabilities from both labelled and unlabelled
data. To scale down the unlabelled data, we rewrite the complete log-likelihood in a similar fashion and
multiply the unlabelled data with λ:

lc(θ|D; z) = log(P (θ)) +
∑

di∈Dl

|C|∑
j=1

zij log(P (cj |θ)P (di|cj ;θ))

+λ
( ∑

di∈Du

|C|∑
j=1

zij log(P (cj |θ)P (di|cj ;θ))
)
. (12)

We also need to scale down the counts from unlabelled data when estimating the parameters in equations
(6) and (7). Equations (13) and (14) are therefore our new parameter estimates under the augmented EM
algorithm:

P (cj |θ̂) =
1 +

∑|D|
i=1 ΛiP (yi = cj |di; θ̂)

|C|+ λ|Du|+ |Dl|
, (13)

P (wdi,k|cj ; θ̂) =
1 +

∑|D|
i=1 ΛiN(wt, di)I(cj , di)

|V |+
∑|V |

k=1

∑|D|
i=1 ΛiN(wk, di)I(cj , di)

. (14)

Algorithm 1 in section 2.5 remains unchanged except for the fact that we now use equation (12) for the
log-likelihood and equations (13) and (14) to �nd the MAP estimates for the model parameters.
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3 Experimental design

3.1 20 Newsgroups data

We use the 20 Newsgroups data to test our algorithm. This data set is a collection of 20000 news-related
articles and emails spread across 20 di�erent topics. In order to use text documents for classi�cation, some
preprocessing is required. This includes removing unimportant words, also known as stop words. Once we
have cleaned the data, we tokenize the text data by separating each word in a document and changing them
to lower case. This enables the next step, which is to represent the text data with numbers. This is achieved
by constructing a vector called a vocabulary, which consists of an ordered list containing each unique word
in the corpus. Every document can then be vectorized by expressing the document as a collection of words
from the vocabulary and their corresponding amounts of occurrences, or counts. We used Scikit-Learn's
CountVectorizer [10] package to vectorize the data.

3.2 The log-sum-exp trick

Both the numerator and denominator in equation (5) contain the product over many small word-probabilities.
For a large enough vocabulary, the resulting product over all the word-probabilities becomes smaller than
the computer can store in memory. This occurrence is known as arithmetic under�ow. A solution to this
problem is to take the log of the formula, which makes the calculation considerably easier to work with on a
computer. We proceed as follows:

log

(
P (cj |θ̂)

∏|di|
k=1 P (wdi,k|cj ; θ̂)∑|C|

h=1 P (ch|θ̂)
∏|di|

k=1 P (wdi,k|ch; θ̂)

)

= logP (cj |θ̂) +

|di|∑
k=1

logP (wdi,k|cj ; θ̂)− log

 |C|∑
h=1

P (ch|θ̂)

|di|∏
k=1

P (wdi,k|ch; θ̂)

 . (15)

Here a new problem presents itself. The log over a product is easy calculable, however the log over a
sum is not. In order to calculate the log over a sum, we use the log-sum-exp trick.
Consider the last term from equation (15):

log

 |C|∑
h=1

P (ch|θ̂)

|di|∏
k=1

P (wdi,k|ch; θ̂)

 .
We start o� by taking the logs and then the exponential of the values inside the summation to get:

= log

 |C|∑
h=1

exp

logP (ch|θ̂) +

|di|∑
k=1

logP (wdi,k|ch; θ̂)

 .
Now, let b be the largest log-probability in the above expression, i.e.

b = max
{
logP (ch|θ̂), logP (wdi,1|ch; θ̂), ..., logP (wdi,|di||ch; θ̂)

}
.
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By factoring out the largest log-probability b, we then get:

= log

eb |C|∑
h=1

exp

logP (ch|θ̂) +

|di|∑
k=1

logP (wdi,k|ch; θ̂)− b



= b+ log

 |C|∑
h=1

exp

logP (ch|θ̂) +

|di|∑
k=1

logP (wdi,k|ch; θ̂)− b

 .
By doing this, we have scaled down the magnitude of the above values which, being the logs of many
small probabilities, had large absolute values. This expression is a more accurate approximation to the log of
a sum since only the maximum value in the summation may cause under�ow instead of several such occur-
rences. The log of equation (5) can now be approximated with higher accuracy. Finally, equation (15) can
be expressed as:

logP (cj |θ̂) +

|di|∑
k=1

logP (wdi,k|cj ; θ̂)− b− log

∑ exp

logP (ch|θ̂) +

|di|∑
k=1

logP (wdi,k|ch; θ̂)− b

 . (16)

4 Practical application

4.1 Naïve Bayes and EM with 10 classes

The training data set consists of 300 labelled documents spread across 10 classes. The data has been struc-
tured into 30 documents per class to maintain class balance. We �rst estimate the model parameters using
equations (8) and (9) and the set of training data. We then calculate probabilistic labels for 1000 unlabelled
documents by using our parameter estimates.

The EM iteration is then initialized by recalculating the parameter estimates by using the labelled data
together with the unlabelled data (equations (13) and (14)), and using a λ-value of 0.6 to scale down the
unsupervised e�ect of the unlabelled data on the model. Figure 1 shows the convergence of the log-likelihood
during the EM iteration process. The ordinary Naïve Bayes scored an accuracy of 69%, whereas the EM
algorithm increased the accuracy to 75%. On the same test set we applied another EM model by using a
λ-value of 1. Here we only scored an accuracy of 72%, showing that the the augmented EM actually improves
prediction accuracy when the correct λ-value is chosen.

4.2 Anomaly Detection with Naïve Bayes and EM

The prospect of �nding an anomalous document inside a large corpus di�ers signi�cantly from the problem in
the previous section. For this paper, we de�ne an anomaly as a document in a corpus that bears no relation
to the other documents, i.e. the document is irrelevant to the rest of the documents in the corpus. That
said, the relevant documents need to be related to each other by having the same class or similar classes. We
therefore need a binary classi�er that distinguishes documents between "normal" and "abnormal".

We continue to use the 20 Newsgroups as the basic data set. We simulate a data set with anomalous
data by combining six overlapping classes that consist of topics such as electronics and science. We de�ne
this as our relevant (negative) data. We create our irrelevant (positive) data by combining the remaining
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Figure 1: EM convergence on 10-class data set

fourteen classes that do not relate to electronics or science. Note that the irrelevant documents do not nec-
essarily need to be relevant to each other.

In the training set, our negative class consists of 300 documents and the positive class contains 100 doc-
uments. An anomaly is, by de�nition, not expected to occur in a corpus as frequently as a "relevant"
document is. This results in a large class imbalance in any real-world supervised anomaly detection environ-
ment. We attempt to replicate this class imbalance to some extent by creating an unlabelled data set with
800 relevant documents and 100 anomalous documents.

The ordinary Naïve Bayes classi�er shows an unusually high accuracy of 89%. It is known that accuracy
cannot be used as the only performance measure in the presence of class imbalance [8]. We therefore require
a di�erent method to measure the performance of our model. The Receiver Operating Characteristic (ROC)
curve re�ects the model's ability to distinguish between two variables with overlapping distributions in a
binary classi�cation environment, making this evaluation technique more appropriate in this instance than a
standard hit-ratio.

Figure 2: ROC curve for augmented binary classi�er on 20 Newsgroups data

Figure 2 illustrates how class imbalance a�ects the model's performance when using di�erent values of λ.
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Here we see a graphical illustration of the damage to the model when adding unlabelled data that violate
assumptions. An optimal value of λ therefore depends on the domain in which the model is applied, and
some trial-and-error approximation. In this case, a small value of λ is preferable since the set of unlabelled
data increases the magnitude of the present class imbalance through EM. With a λ-value of 0.1 we increased
the accuracy to 93%, although the area under the ROC curve has dropped with 0.01. It is clear that the
unlabelled data has worsened the class-inbalance and further skewed the metrics we used to evaluate our
model.

5 Conclusion

Our goal was to �nd a simple solution to the generally complex problem that is textual anomaly detection.
We attempted to use large amounts of unlabelled data to increase the performance of our Naïve Bayes clas-
si�er. As was illustrated in this paper, unlabelled text data can signi�cantly improve a classi�er given the
correct conditions. The classi�er we constructed for the 10-class data set showed a 5% increase in prediction
accuracy once we implemented augmented EM. As shown extensively in [9] and in Figure 2, di�erent values
of the λ-scalar will produce di�erent results. One constraint that we found in this paper is that large amounts
of unlabelled data are required for a sustainable increase in prediction accuracy.

Under the binary classi�er we constructed for anomaly detection, we encountered the problem of class im-
balance. This is problematic for EM since any large amount of unlabelled text data in an anomaly detection
environment could worsen the class imbalance and might even decrease accuracy after EM convergence. We
aim to apply this algorithm to a more realistic data set, similar to the Liberty example mentioned in the
introduction. This would allow us to observe how the semi-supervised model performs under larger violations
of assumptions and class imbalance. A suggested improvement on our algorithm would be to address the class
imbalance by introducing boosting which has been shown to work well with Naïve Bayes and unbalanced
classes in past work [4].

Further research endeavors will involve the use of topic modelling to address anomaly detection in an unsu-
pervised manner. Furthermore, we want to extend our research to combine a topic model such as LDA with
a classi�er. This is not a trivial exercise, since LDA does not have a 'complete data counterpart' in the same
way that the EM algorithm has with Naïve Bayes.
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Appendix: Python Code

Parameter estimation and class prediction module

# −∗− coding : u t f−8 −∗−
"""
Created on Wed May 25 17 :44 :20 2016

@author : Carl Steyn
"""

import numpy as np
from s k l e a rn . da ta s e t s import fetch_20newsgroups
from s k l e a rn . f e a tu r e_ext rac t i on . t ex t import CountVector izer
from gensim . u t i l s import s imple_preprocess
from math import exp , l og
from s c ipy . misc import logsumexp
from s k l e a rn import metr i c s
import matp lo t l i b . pyplot as p l t
from s c ipy . spar s e import f i nd

class MNB:

def t oken i z e ( s e l f , t ex t ) :
tok = [ ]
for i in range ( len ( t ex t ) ) :

tok . append ( '  ' . j o i n ( s imple_preprocess ( t ex t [ i ] ) ) )
return tok

def ROC( s e l f , t e s t_ labe l s , probs , pos=1):
fpr , tpr , t h r e sho ld s = metr i c s . roc_curve ( t e s t_ labe l s , probs [ : , 1 ] ,

pos_label=pos )
roc_auc = metr i c s . auc ( fpr , tpr )
p l t . f i g u r e ( )
p l t . p l o t ( fpr , tpr , l a b e l='ROC curve  ( area  = %0.2 f ) ' % roc_auc )
p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , ' k−− ' )
p l t . xl im ( [ 0 . 0 , 1 . 0 ] )
p l t . yl im ( [ 0 . 0 , 1 . 0 5 ] )
p l t . x l ab e l ( ' Fa l se  Po s i t i v e  Rate ' )
p l t . y l ab e l ( ' True Po s i t i v e  Rate ' )
p l t . t i t l e ( ' Rece iver  operat ing  Cha r a c t e r i s t i c ' )
p l t . l egend ( l o c=" lower  r i gh t " )
p l t . show ( )

def import_data ( s e l f , subset , c a t e go r i e s , s i z e ) :
data se t = fetch_20newsgroups ( subset = subset , c a t e g o r i e s=c a t e g o r i e s )
l a b e l s = np . array ( datase t . t a r g e t ) [ 0 : s i z e ]
datase t = s e l f . t oken i z e ( datase t . data [ 0 : s i z e ] )
unique , counts = np . unique ( l ab e l s , return_counts=True )
l ab e l c oun t s = np . asar ray ( ( unique , counts ) ) .T
return dataset , l ab e l s , l ab e l c oun t s
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def v e c t o r i z e ( s e l f , data ) :
countvect = CountVector izer ( stop_words = ' eng l i s h ' , l owercase = False )
counts = countvect . f i t_trans fo rm ( data )
V = len ( countvect . get_feature_names ( ) )
D = len ( data )
return counts ,D,V

# E−s t ep : Ca l cu l a t e p r o b a b i l i s t i c l a b e l s f o r u n l a b e l l e d data
def po s t e r i o r ( s e l f , counts , wordprior , c l a s s p r i o r ,D_U,C) :

array = counts . toar ray ( )
p r ed i c t = np . z e r o s ( shape=(D_U,C) , dtype=' f l o a t ' )
for index , k in np . ndenumerate ( p r ed i c t ) :

words = [ i for i , x in enumerate( array [ index [ 0 ] ] ) i f x > 0 ]
docprobs = [ ]
for i in words :

docprobs . append ( l og ( wordpr ior [ i , index [ 1 ] ] ) )
docprobs . append ( l og ( c l a s s p r i o r [ index [ 1 ] ] ) )
numerator_product = sum( docprobs )
S = [ ]
for j in range (C) :

L = [ ]
for i in words :

L . append ( l og ( wordpr ior [ i , j ] ) )
L . append ( l og ( c l a s s p r i o r [ j ] ) )
S . append (sum(L) )

denom_product = logsumexp (S)
p r ed i c t [ index ] = exp ( numerator_product−denom_product )

return p r ed i c t

# M−s t ep : Estimate model parameters us ing MAP es t imat ion
def parameters_EM( s e l f , t ra in ing_counts , test_counts , z_L ,z_U,V,C, s c a l a r ) :

training_D = ( tra in ing_counts [ : , 0 ] . shape ) [ 0 ]
test_D = ( test_counts [ : , 0 ] . shape ) [ 0 ]

word_indices_U = np . asar ray ( [ f i nd ( test_counts [ i , : ] ) [ 1 ] for i in

range ( test_D ) ] )
word_indices_L = np . asar ray ( [ f i nd ( t ra in ing_counts [ i , : ] ) [ 1 ] for i in

range ( training_D ) ] )
N_wt_di_L = [ [ ( x , t ra in ing_counts [ i , x ] ) for x in word_indices_L [ i ] ]
for i in range ( len ( word_indices_L ) ) ] :

N_wt_di_U = [ [ ( x , test_counts [ i , x ] ) for x in word_indices_U [ i ] ] for i in

range ( len ( word_indices_U ) ) ]
N_vector_L = [ s e l f . r ep l a c eNu l l ( [ [ x [ 1 ] for x in N_wt_di_L [ i ] i f

x[0]==word ] for i in range ( training_D ) ] ) for word in range (V) ]
N_vector_U = [ s e l f . r ep l a c eNu l l ( [ [ x [ 1 ] for x in N_wt_di_U[ i ] i f

x[0]==word ] for i in range ( test_D ) ] ) for word in range (V) ]
doccount_L = [sum( [ item [ 1 ] for item in N_wt_di_L [ i ] ] ) for i in

range ( len (N_wt_di_L ) ) ]
doccount_U = [sum( [ item [ 1 ] for item in N_wt_di_U[ i ] ] ) for i in

range ( len (N_wt_di_U) ) ]
# M step
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denominator_L = np . z e ro s (C, dtype = f loat )
denominator_U = np . z e ro s (C, dtype = f loat )
for j in range (C) :

denominator_L [ j ] = np . dot ( doccount_L , z_L [ : , j ] )
denominator_U [ j ] = np . dot ( doccount_U ,z_U [ : , j ] )

denominator = V + denominator_L + s c a l a r ∗denominator_U
numerator_L = np . z e r o s ( (V,C) , dtype = f loat )
numerator_U = np . z e ro s ( (V,C) , dtype = f loat )
for i in range (V) :

for j in range (C) :
numerator_L [ i , j ] = np . dot (N_vector_L [ i ] , z_L [ : , j ] )
numerator_U [ i , j ] = np . dot (N_vector_U [ i ] , z_U [ : , j ] )

numerator = 1 + numerator_L + s c a l a r ∗numerator_U

wordprob_EM = np . d iv id e ( numerator , denominator )

classprior_EM = np . z e ro s (C, dtype=' f l o a t ' )
for j in range (C) :

classprior_EM [ j ] = (1 + s c a l a r ∗z_U [ : , j ] . sum( ) +
z_L [ : , j ] . sum( ) ) / (C + training_D + s c a l a r ∗test_D )

d i r i c h l e t = np . l og (wordprob_EM ) .sum( ) + np . l og ( classprior_EM ) .sum( )
sum_U = 0
sum_L = 0
for i in range ( test_D ) :

for j in range (C) :
sum_U += s c a l a r ∗z_U[ i , j ] ∗ ( np . l og ( classprior_EM [ j ] ) − np . l og (V)
+ np . l og (wordprob_EM [ f i nd ( test_counts [ i , : ] ) [ 1 ] , j ] ) . sum( ) )

for i in range ( training_D ) :
for j in range (C) :

sum_L += z_L [ i , j ] ∗ ( np . l og ( classprior_EM [ j ] ) − np . l og (V) +
np . l og (wordprob_EM [ f i nd ( tra in ing_counts [ i , : ] ) [ 1 ] , j ] ) . sum( ) )

l o g_ l i k e l i h ood = d i r i c h l e t + sum_U + sum_L

return wordprob_EM , classprior_EM , l o g_ l i k e l i h ood

def r ep l a c eNu l l ( s e l f , x ) : # Replace empty va l u e s in a vec to r wi th 0 ' s
for i , item in enumerate( x ) :

i f not item :
x [ i ] = 0

else :
x [ i ] = item [ 0 ]

return x
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Application to binary classi�cation

# −∗− coding : u t f−8 −∗−
"""
Created on Fri Ju l 15 11 :56 :03 2016

@author : Carl Steyn
"""
import os
os . chd i r ( 'C:\\ Carl \\Work\\2016\\WST 795\\Binary c l a s s i f i c a t o n  on l i b e r t y  data ' )
import numpy as np
from s k l e a rn . da ta s e t s import fetch_20newsgroups
from class_MNB import MNB
from s k l e a rn . f e a tu r e_ext rac t i on . t ex t import CountVector izer
from s k l e a rn . met r i c s import accuracy_score
from s c ipy . spar s e import f i nd
import matp lo t l i b . pyplot as p l t

# Import and v e c t o r i z e t r a i n i n g data
mnb = MNB()
c a t e g o r i e s = [ ' a l t . atheism ' , ' comp . g raph i c s ' , ' comp . os .ms−windows . misc ' ,
' comp . sys . ibm . pc . hardware ' , ' comp . sys .mac . hardware ' , ' comp . windows . x ' ,
' misc . f o r s a l e ' , ' r e c . autos ' , ' r e c . motorcyc le s ' , ' r e c . spor t . b a s eba l l ' ,
' r e c . spor t . hockey ' , ' s c i . crypt ' , ' s c i . e l e c t r o n i c s ' , ' s c i .med ' , ' s c i . space ' ,
' soc . r e l i g i o n . c h r i s t i a n ' , ' t a l k . p o l i t i c s . guns ' , ' t a l k . p o l i t i c s . mideast ' ,
' t a l k . p o l i t i c s . misc ' , ' t a l k . r e l i g i o n . misc ' ]

neg_category = [ 'comp . g raph i c s ' , ' comp . os .ms−windows . misc ' ,
' comp . sys . ibm . pc . hardware ' , ' comp . sys .mac . hardware ' , ' comp . windows . x ' ,
' s c i . e l e c t r o n i c s ' ]
pos_category = [ x for x in c a t e g o r i e s i f x not in neg_category ]

p o s i t i v e = fetch_20newsgroups ( subset = ' t r a i n ' , remove=( ' headers ' , ' f o o t e r s ' ,
' quotes ' ) , c a t e g o r i e s=pos_category , s h u f f l e=True , random_state=42). data [ 0 : 1 0 0 ]
negat ive = fetch_20newsgroups ( subset = ' t r a i n ' , remove=( ' headers ' , ' f o o t e r s ' ,
' quotes ' ) , c a t e g o r i e s=neg_category , s h u f f l e=True , random_state=42). data [ 0 : 3 0 0 ]

tra in ing_data = po s i t i v e + negat ive
tra in ing_data = mnb. token i z e ( tra in ing_data )
countvect = CountVector izer ( stop_words = ' eng l i s h ' , l owercase = False )
t ra in ing_counts = countvect . f i t_trans fo rm ( tra in ing_data )
training_D = len ( tra in ing_data )
V = len ( countvect . get_feature_names ( ) )

# Create l a b e l s f o r p o s i t i v e and nega t i v e c l a s s e s
pos_label = np . f u l l ( ( len ( p o s i t i v e ) , 1 ) , 1 , dtype=int )
neg_label = np . f u l l ( ( len ( negat ive ) , 1 ) , 0 , dtype=int )
t r a i n i n g_ l ab e l s = np . append ( pos_label , neg_label )

# Z va r i a b l e f o r l a b e l l e d data
z_L = np . array (np . c_ [ ( t r a i n i n g_ l ab e l s == 0) , ( t r a i n i n g_ l ab e l s == 1 ) ] . astype ( int ) )
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# I n i t i a l M−s t ep ( Naive Bayes on l a b e l l e d data on ly )
word_indices_L = np . asar ray ( [ f i nd ( t ra in ing_counts [ i , : ] ) [ 1 ]
for i in range ( training_D ) ] ) :

N_wt_di_L = [ [ ( x , t ra in ing_counts [ i , x ] ) for x in word_indices_L [ i ] ]
for i in range ( len ( word_indices_L ) ) ] #word id ' s and counts in each doc

N_vector_L = [mnb. r ep l a c eNu l l ( [ [ x [ 1 ] for x in N_wt_di_L [ i ] i f x[0]==word ]
for i in range ( training_D ) ] ) for word in range (V) ] #vec to r o f word−doc counts

doccount = [sum( [ item [ 1 ] for item in N_wt_di_L [ i ] ] )
for i in range ( len (N_wt_di_L ) ) ] #t o t a l number o f words in each doc

wordprob = np . z e r o s ( shape=(V, 2 ) , dtype=' f l o a t ' )
for i in range (V) :

numerator = (1 + np . dot (N_vector_L [ i ] , z_L [ : , 0 ] ) ) ,
(1 + np . dot (N_vector_L [ i ] , z_L [ : , 1 ] ) )

denominator = (V + np . dot ( doccount , z_L [ : , 0 ] ) ,V + np . dot ( doccount , z_L [ : , 1 ] ) )
wordprob [ i ] = (np . d i v id e ( numerator , denominator ) )

c l a s s p r i o r = np . array ( (1 + z_L [ : , 0 ] . sum( ) , 1 + z_L [ : , 1 ] . sum( ) ) ) / ( 2 + training_D )
np . save ( ' wordprob1 . npy ' , wordprob )
np . save ( ' c l a s s p r i o r 1 . npy ' , c l a s s p r i o r )
# lo g_ l i k e l i h o o d
sum_L = 0
d i r i c h l e t = (np . l og ( wordprob [ : , 0 ] ) . sum( ) + np . l og ( c l a s s p r i o r [ 0 ] ) ) +
(np . l og ( wordprob [ : , 1 ] ) . sum( ) + np . l og ( c l a s s p r i o r [ 1 ] ) )
for i in range ( training_D ) :

for j in range ( 2 ) :
sum_L += z_L [ i , j ] ∗ ( np . l og ( c l a s s p r i o r [ j ] ) − np . l og (V) +
np . l og ( wordprob [ f i nd ( tra in ing_counts [ i , : ] ) [ 1 ] , j ] ) . sum( ) )

l o g_ l i k e l i h ood = d i r i c h l e t + sum_L

#Import u n l a b e l l e d data
pos_test = fetch_20newsgroups ( subset = ' t e s t ' , remove=( ' headers ' , ' f o o t e r s ' ,
' quotes ' ) , c a t e g o r i e s=pos_category , s h u f f l e=True , random_state=42). data [ 0 : 1 0 0 ]
neg_test = fetch_20newsgroups ( subset = ' t e s t ' , remove=( ' headers ' , ' f o o t e r s ' ,
' quotes ' ) , c a t e g o r i e s=neg_category , s h u f f l e=True , random_state=42). data [ 0 : 8 0 0 ]
pos_label = np . f u l l ( ( len ( pos_test ) , 1 ) , 1 , dtype=int )
neg_label = np . f u l l ( ( len ( neg_test ) , 1 ) , 0 , dtype=int )
t e s t_ l ab e l s = np . append ( pos_label , neg_label )
test_data = pos_test + neg_test
test_data = mnb. token i z e ( test_data )
test_counts = countvect . trans form ( test_data )
test_D = len ( test_data )
unique , counts = np . unique ( t e s t_ labe l s , return_counts=True )
t e s t_ labe l count s = np . asar ray ( ( unique , counts ) ) .T
word_indices_U = np . asar ray ( [ f i nd ( test_counts [ i , : ] ) [ 1 ] for i in range ( test_D ) ] )

# Fi r s t E−s t ep
z_U = mnb. p o s t e r i o r ( test_counts , wordprob , c l a s s p r i o r , test_D , 2 )
mnb.ROC( te s t_ labe l s , z_U) # ROC curve f o r Naive Bayes w/o EM
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# Reconstruct data f o r EM
s c a l a r = 1
new_data = tra in ing_data + test_data
new_counts = countvect . f i t_trans fo rm (new_data )
t ra in ing_counts = countvect . trans form ( tra in ing_data )
test_counts = countvect . trans form ( test_data )
new_D = len ( new_data )
test_D = len ( test_data )
V = len ( countvect . get_feature_names ( ) )

l o g_ l i k e l i h ood = [ ]
accuracy = [ ]
inc = 0
# EM i t e r a t i o n s t a r t s here
# M−s t ep
while True :

wordprob_EM , classprior_EM , l l = mnb. parameters_EM( tra in ing_counts ,
test_counts , z_L ,z_U,V, 2 , s c a l a r )
inc += 1
print ( ' I t e r a t i o n  %d : ' %inc )
l o g_ l i k e l i h ood . append ( l l )

# E−s t ep
z_U = mnb. p o s t e r i o r ( test_counts , wordprob_EM , classprior_EM , test_D , 2 )
MAP = np . z e r o s ( shape=test_D , dtype=' in t64 ' )
for i in enumerate(z_U) :

MAP[ i [ 0 ] ] = np . argmax (z_U[ i [ 0 ] ] , a x i s=0)
acc = accuracy_score ( t e s t_ labe l s ,MAP, normal ize=True )
accuracy . append ( acc )

# output
print ( ' log−l i k e l i h o o d  = %d\n ' %l l )
i f inc >2:

i f l l == log_ l i k e l i h ood [ −2 ] :
break

#
#p l t . s u b p l o t (222)
p l t . f i g u r e ( f i g s i z e =(6 ,6))
x = np . arange (1 , len ( l o g_ l i k e l i h ood )+1)
p l t . p l o t (x , l o g_ l i k e l i h ood )
p l t . y s c a l e ( ' l i n e a r ' )
p l t . t i t l e ( ' log−l i k e l i h o o d ' )
p l t . x t i c k s (np . arange (min( x ) , max( x)+1 , 1 ) )
p l t . g r i d (True )

p l t . f i g u r e ( f i g s i z e =(6 ,6))
x = np . arange (1 , len ( accuracy )+1)
p l t . p l o t (x , accuracy )
p l t . y s c a l e ( ' l i n e a r ' )
p l t . t i t l e ( ' accuracy ' )
p l t . x t i c k s (np . arange (min( x ) , max( x)+1 , 1 ) )
p l t . g r i d (True )

Application to multi-class classi�cation

# −∗− coding : u t f−8 −∗−
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"""
Created on Sun Sep 4 14 :21 :04 2016

@author : Carl Steyn
"""

import os
os . chd i r ( 'C:\\ Carl \\Work\\2016\\WST 795\\NB_augmentedEM_20newsgroups ' )
import numpy as np
from s k l e a rn . da ta s e t s import fetch_20newsgroups
from class_MNB import MNB
from s k l e a rn . f e a tu r e_ext rac t i on . t ex t import CountVector izer
from s k l e a rn . met r i c s import accuracy_score , f1_score
from s c ipy . spar s e import f i nd
import matp lo t l i b . pyplot as p l t

# NAIVE BAYES
# Import and v e c t o r i z e t r a i n i n g data
mnb = MNB()
countvect = CountVector izer ( stop_words = ' eng l i s h ' , l owercase = False )
c a t e g o r i e s = [ ' a l t . atheism ' , ' comp . g raph i c s ' , ' comp . os .ms−windows . misc ' ,
' comp . sys . ibm . pc . hardware ' , ' comp . sys .mac . hardware ' , ' comp . windows . x ' ,
' misc . f o r s a l e ' , ' r e c . autos ' , ' r e c . motorcyc le s ' , ' r e c . spor t . b a s eba l l ' ,
' r e c . spor t . hockey ' , ' s c i . crypt ' , ' s c i . e l e c t r o n i c s ' , ' s c i .med ' , ' s c i . space ' ,
' soc . r e l i g i o n . c h r i s t i a n ' , ' t a l k . p o l i t i c s . guns ' , ' t a l k . p o l i t i c s . mideast ' ,
' t a l k . p o l i t i c s . misc ' , ' t a l k . r e l i g i o n . misc ' ]

t r a i n i n g = fetch_20newsgroups ( subset = ' t r a i n ' , c a t e g o r i e s=ca t e go r i e s , s h u f f l e=True )
c l a s s 1 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == 'comp . g raph i c s ' ] [ 0 : 1 0 ]
c l a s s 2 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == ' t a l k . p o l i t i c s . mideast ' ] [ 0 : 1 0 ]
c l a s s 3 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == ' s c i . e l e c t r o n i c s ' ] [ 0 : 1 0 ]
c l a s s 4 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == ' rec . spor t . b a s eba l l ' ] [ 0 : 1 0 ]
c l a s s 5 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == ' rec . motorcyc le s ' ] [ 0 : 1 0 ]
c l a s s 6 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == ' soc . r e l i g i o n . c h r i s t i a n ' ] [ 0 : 1 0 ]
c l a s s 7 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == 'comp . sys .mac . hardware ' ] [ 0 : 1 0 ]
c l a s s 8 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == ' rec . autos ' ] [ 0 : 1 0 ]
c l a s s 9 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == ' a l t . atheism ' ] [ 0 : 1 0 ]
c l a s s 1 0 = [ t r a i n i n g . data [ i ] for i , x in enumerate( t r a i n i n g . t a r g e t ) i f

t r a i n i n g . target_names [ x ] == ' misc . f o r s a l e ' ] [ 0 : 1 0 ]
training_D = len ( c l a s s 1 ) + len ( c l a s s 2 ) + len ( c l a s s 3 ) + len ( c l a s s 4 ) +
len ( c l a s s 5 ) + len ( c l a s s 6 ) + len ( c l a s s 7 ) + len ( c l a s s 8 ) + len ( c l a s s 9 )
+ len ( c l a s s 1 0 )
tra in ing_data = mnb. token i z e ( c l a s s 1 + c l a s s 2 + c l a s s 3 + c l a s s 4 + c l a s s 5 +
c l a s s 6 + c l a s s 7 + c l a s s 8 + c l a s s 9 + c l a s s 1 0 )
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t r a i n i n g_ l ab e l s = [ ]
C = 10
for i in range (C) :

t r a i n i n g_ l ab e l s . extend ( [ i ]∗ len ( c l a s s 1 ) )
t r a i n i n g_ l ab e l s = np . array ( t r a i n i n g_ l ab e l s )

t ra in ing_counts = countvect . f i t_trans fo rm ( tra in ing_data )
V = len ( countvect . get_feature_names ( ) )
unique , counts = np . unique ( t r a in ing_labe l s , return_counts=True )
t r a in ing_ labe l c ount s = np . asar ray ( ( unique , counts ) ) .T
z_L = np . z e ro s ( ( training_D ,C) , dtype=f loat )
for i in range (C) :

z_L [ : , i ] = ( t r a i n i n g_ l ab e l s == i )
word_indices_L = np . asar ray ( [ f i nd ( t ra in ing_counts [ i , : ] ) [ 1 ]
for i in range ( training_D ) ] )

N_wt_di_L = [ [ ( x , t ra in ing_counts [ i , x ] ) for x in word_indices_L [ i ] ]
for i in range ( len ( word_indices_L ) ) ]
N_vector_L = [mnb. r ep l a c eNu l l ( [ [ x [ 1 ] for x in N_wt_di_L [ i ] i f x[0]==word ]
for i in range ( training_D ) ] ) for word in range (V) ]
doccount = [sum( [ item [ 1 ] for item in N_wt_di_L [ i ] ] )
for i in range ( len (N_wt_di_L ) ) ]

# Find MAP es t ima t e s o f parameters
denominator = np . z e ro s (C, dtype=f loat )
for j in range (C) :

denominator [ j ] = V + np . dot ( doccount , z_L [ : , j ] )
numerator = np . z e r o s ( (V,C) , dtype=f loat )
for i in range (V) :

for j in range (C) :
numerator [ i , j ] = 1 + np . dot (N_vector_L [ i ] , z_L [ : , j ] )

wordprob = np . d i v id e ( numerator , denominator )
c l a s s p r i o r = np . z e ro s (C, dtype=' f l o a t ' )
for j in range (C) :

c l a s s p r i o r [ j ] = (1 + z_L [ : , j ] . sum( ) ) / (C + training_D )

# Import u n l a b e l l e d data
s c a l a r = 0 .3
t e s t = fetch_20newsgroups ( subset = ' t e s t ' , c a t e g o r i e s=ca t e go r i e s , s h u f f l e=True )
#

c l a s s 1 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == 'comp . g raph i c s ' ] [ 0 : 2 0 ]
c l a s s 2 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' t a l k . p o l i t i c s . mideast ' ] [ 0 : 2 0 ]
c l a s s 3 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' s c i . e l e c t r o n i c s ' ] [ 0 : 2 0 ]
c l a s s 4 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' rec . spor t . b a s eba l l ' ] [ 0 : 2 0 ]
c l a s s 5 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' rec . motorcyc le s ' ] [ 0 : 2 0 ]
c l a s s 6 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
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i f t e s t . target_names [ x ] == ' soc . r e l i g i o n . c h r i s t i a n ' ] [ 0 : 2 0 ]
c l a s s 7 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == 'comp . sys .mac . hardware ' ] [ 0 : 2 0 ]
c l a s s 8 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' rec . autos ' ] [ 0 : 2 0 ]
c l a s s 9 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' a l t . atheism ' ] [ 0 : 2 0 ]
c l a s s 1 0 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' misc . f o r s a l e ' ] [ 0 : 2 0 ]
test_D = len ( c l a s s 1 ) + len ( c l a s s 2 ) + len ( c l a s s 3 ) + len ( c l a s s 4 ) + len ( c l a s s 5 ) +
len ( c l a s s 6 ) + len ( c l a s s 7 ) + len ( c l a s s 8 ) + len ( c l a s s 9 ) + len ( c l a s s 1 0 )
test_data = mnb. token i z e ( c l a s s 1 + c l a s s 2 + c l a s s 3 + c l a s s 4 + c l a s s 5 + c l a s s 6 +
c l a s s 7 + c l a s s 8 + c l a s s 9 + c l a s s 1 0 )

t e s t_ l ab e l s = [ ]
for i in range (C) :

t e s t_ l ab e l s . extend ( [ i ]∗ len ( c l a s s 1 ) )
t e s t_ l ab e l s = np . array ( t e s t_ l ab e l s )
test_D = len ( test_data )

test_counts = countvect . trans form ( test_data )
word_indices_U = np . asar ray ( [ f i nd ( test_counts [ i , : ] ) [ 1 ] for i in range ( test_D ) ] )
# Estimate p r o b a b i l i t s t i c l a b e l s f o r u n l a b e l l e d data
z_U = mnb. p o s t e r i o r ( test_counts , wordprob , c l a s s p r i o r , test_D ,C)
MAP = np . z e ro s ( shape=test_D , dtype=' in t64 ' )
for i in enumerate(z_U) :

MAP[ i [ 0 ] ] = np . argmax (z_U[ i [ 0 ] ] , a x i s=0)
print ( accuracy_score ( t e s t_ labe l s ,MAP, normal ize=True ) )
f1_score ( t e s t_ labe l s ,MAP, average=' weighted ' )
# Restruc ture data f o r EM
EM_data = tra in ing_data + test_data ;
EM_counts = countvect . f i t_trans fo rm (EM_data)
EM_D = len (EM_data)
t ra in ing_counts = countvect . trans form ( tra in ing_data )
test_counts = countvect . trans form ( test_data )
V = len ( countvect . get_feature_names ( ) )
inc = 0
l o g_ l i k e l i h ood = [ ]
accuracy = [ ]

c l a s s 1 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == 'comp . g raph i c s ' ] [ 1 0 0 : 2 0 0 ]
c l a s s 2 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' t a l k . p o l i t i c s . mideast ' ] [ 1 0 0 : 2 0 0 ]
c l a s s 3 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' s c i . e l e c t r o n i c s ' ] [ 1 0 0 : 2 0 0 ]
c l a s s 4 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' rec . spor t . b a s eba l l ' ] [ 1 0 0 : 2 0 0 ]
c l a s s 5 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' rec . motorcyc le s ' ] [ 1 0 0 : 2 0 0 ]
c l a s s 6 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' soc . r e l i g i o n . c h r i s t i a n ' ] [ 1 0 0 : 2 0 0 ]
c l a s s 7 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
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i f t e s t . target_names [ x ] == 'comp . sys .mac . hardware ' ] [ 1 0 0 : 2 0 0 ]
c l a s s 8 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' rec . autos ' ] [ 1 0 0 : 2 0 0 ]
c l a s s 9 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' a l t . atheism ' ] [ 1 0 0 : 2 0 0 ]
c l a s s 1 0 = [ t e s t . data [ i ] for i , x in enumerate( t e s t . t a r g e t )
i f t e s t . target_names [ x ] == ' misc . f o r s a l e ' ] [ 1 0 0 : 2 0 0 ]
EM_test_D = len ( c l a s s 1 ) + len ( c l a s s 2 ) + len ( c l a s s 3 ) + len ( c l a s s 4 ) + len ( c l a s s 5 )
+ len ( c l a s s 6 ) + len ( c l a s s 7 ) + len ( c l a s s 8 ) + len ( c l a s s 9 ) + len ( c l a s s 1 0 )
EM_test_data = mnb. token i z e ( c l a s s 1 + c l a s s 2 + c l a s s 3 + c l a s s 4 + c l a s s 5 +
c l a s s 6 + c l a s s 7 + c l a s s 8 + c l a s s 9 + c l a s s 1 0 )
C = 10
EM_test_labels = [ ]
for i in range (C) :

EM_test_labels . extend ( [ i ]∗ len ( c l a s s 1 ) )
EM_test_labels = np . array ( EM_test_labels )
EM_test_counts = countvect . trans form (EM_test_data )

# EM i t e r a t i o n s t a r t s here
while True :
# M−s t ep

i n c += 1
print ( ' I t e r a t i o n  %d : ' %inc )
wordprob_EM , classprior_EM , l l = mnb. parameters_EM( tra in ing_counts ,
test_counts , z_L ,z_U,V,C, s c a l a r )
l o g_ l i k e l i h ood . append ( l l )

# E−s t ep
z_U = mnb. p o s t e r i o r ( test_counts , wordprob_EM , classprior_EM , test_D ,C)
z_EM_test = mnb. p o s t e r i o r (EM_test_counts , wordprob_EM , classprior_EM ,

EM_test_D,C) #t e s t on e x t e r na l t e s t data

EM_MAP = np . z e ro s ( shape=EM_test_D, dtype=' in t64 ' )
for i in enumerate(z_EM_test ) :

EM_MAP[ i [ 0 ] ] = np . argmax (z_EM_test [ i [ 0 ] ] , a x i s=0)
# Model e va l ua t i on and output

acc = accuracy_score ( EM_test_labels ,EM_MAP, normal ize=True )
f 1 = f1_score ( EM_test_labels ,EM_MAP, average=' weighted ' )
accuracy . append ( acc )
print ( ' Accuracy :  %f ' %acc )
print ( ' log−l i k e l i h o o d :  %f ' %l l )
print ( ' f1_score  L %f ' %f1 )

# Convergence checker
i f inc >2:

i f l l == log_ l i k e l i h ood [ −2 ] :

break

#np . save ( ' l o g_ l i ke l i hood_300 t ra in_1000 te s t ' , l o g_ l i k e l i h o o d )
# Plo t log− l i k e l i h o o d a f t e r convergence
p l t . f i g u r e ( f i g s i z e =(6 ,6))
x = np . arange (1 , len ( l o g_ l i k e l i h ood )+1)
p l t . p l o t (x , l o g_ l i k e l i h ood )
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p l t . y s c a l e ( ' l i n e a r ' )
p l t . t i t l e ( ' log−l i k e l i h o o d ' )
p l t . x t i c k s (np . arange (min( x ) , max( x)+1 , 1 ) )
p l t . g r i d (True )

#Plot change in accuracy
p l t . f i g u r e ( f i g s i z e =(6 ,6))
x = np . arange (1 , len ( accuracy )+1)
p l t . p l o t (x , accuracy )
p l t . y s c a l e ( ' l i n e a r ' )
p l t . t i t l e ( ' accuracy ' )
p l t . x t i c k s (np . arange (min( x ) , max( x)+1 , 1 ) )
p l t . g r i d (True )
#%%
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Abstract

In this report we look at the Kalman �lter algorithm, the Markov localisation algorithm and solving

the robot localisation problem in general. We then apply the Markov localisation algorithm, as a solution

to the robot localisation problem, to the EZRobot to �nd its location in a corridor as a simple illustration

of how these algorithms can be used.
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1 Introduction

Visualize trying to �nd an object in the dark. This task could be very challenging, not because you do not
know where the object is but rather because it is very di�cult to know where you are relative to the object.
When designing and building an autonomous robot, one faces the same challenge of enabling the robot to
position itself. You may say that the robot has sensors and can measure how far it moves, but with all these
inputs it is still a challenge for the robot to determine its exact location in an environment using only the
sensor input. This problem is known as the robot localisation problem. One might think that positioning an
autonomous robot is straightforward and that if you program a robot to move 5 cm forward, turn 19° to the
left and then move another 3 cm forward it would end up in the desired position illustrated by the green dot
in Figure 1. However, in reality the outcome may be di�erent with the robot ending up at the red dot due
to bad surface traction.

Figure 1: Illustration of robot movement

The input that a robot receives from its sensors contains noise and cannot be interpreted without applying
some sort of a belief function. By solving the robot localisation problem using a localisation algorithm we can
combine the information from the sensors, the knowledge the robot has about its movement and uncertainty
we have, due to noise, to determine an estimated pose which we are less uncertain about. According to Thrun
in his book Probabilistic Robotics [17] localization is to �nd a connection between the coordinates on a map
and the robots local coordinates. In this report we cover the Kalman �lter algorithm, the Markov localisation
algorithm and solving the robot localisation problem. We also cover exactly what robot localization entails.
We then apply the Markov localisation algorithm, as a solution to the robot localisation problem, to the
EZRobot to �nd its location in a corridor as a simple illustration of how these algorithms can be used.

According to [17] localisation is a problem which can be split into many di�erent subgroups such as
local and global localisation, where in local localisation the initial pose of a robot is known and in global
localisation it is unknown, or single- and multi- robot localisation. In this report we will focus on global
single-robot localisation and also using the Markov assumption, meaning we will assume that our belief of
the pose of the robot is only based on its previous position and no position before that.

In further research attention is also given to state of the art robot localisation techniques such as SLAM
(Simultaneous Localisation and Mapping) and the use of RGB-D cameras (cameras which provides an RGB
image as well as per-pixel depth data) to create a 3D mapped image of the robots environment. These are
the same cameras used in games such as the Microsoft Xbox Kinect to detect where the players are and what
they are doing.

2 Literature Review

2.1 Robot localisation

Localisation is described as one of the most important topics in robotics and arti�cial intelligence by many
resources such as [17, 12, 16]. The localisation problem is the problem of linking a robots pose to a co-
ordinate on a map. Thrun [16] illustrates how a small error in measurements can have a large e�ect on
the pose of a robot after a few times and the importance of using a localisation algorithm. In this source
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di�erent localisation algorithms such as Multi-Planar Maps, expectation maximisation, Bayesian �lters, etc
are also compared and explained. Localisation can be broken up into many di�erent subgroups such as local
and global localisation as well as single and multi-robot localisation. These di�erent types of localisation
are described in Chapter 7 of the book Probabilistic Robotics [17]. In this book the concept of localising
using the Markov assumption is also explained, where the current pose of the robot only depends on current
measurement inputs and its previous position and no positions before that [17]. In [17, 12] explanations are
also given on how the Kalman �lter can be applied to solve the problem of localisation and noisy systems
using the Kalman �lter. In [10, 3] mapping, localisation and path �nding strategies , that can be used
during the application of the Kalman �lter to solve the localisation problem, are discussed. In [4] the Markov
localisation approach is discussed in detail.

2.1.1 State of the art localisation methods

A key area of robotics that corresponds with the localisation problem is environment mapping. According to
[14] these two problems can be solved simultaneously using a procedure called Simultaneous Localisation and
Mapping (SLAM) which as its name suggests localises the robots and maps the surroundings of the robot
simultaneously. The idea of SLAM was �rst discussed at the 1986 IEEE Robotics and Automation Conference
by researchers such as Cheeseman, Crowley and Durrant-Whyte [1]. In this source they also discuss the latest
developments in multi-robot SLAM (where multiple robots communicate to localise more e�ciently and to
create better maps of their surroundings). In [6, 7] the use of RGB-D cameras, such as those used in the
X-box Kinect, to create 3D maps of the robots environment is discussed. These sources also discuss the use
of RGB-D cameras for SLAM with the iterative closest point algorithm (ICP). The disadvantages such as a
lack of robustness of RGB-D 3D maps are also discussed.

2.2 The Kalman �lter

The Kalman �lter algorithm designed by Swerling and Kalman [5] is a method of �ltering and estimating in
linear Gaussian systems. The algorithm is explained in depth in the book Probabilistic Robotics [17]. An
illustration of how the Kalman �lter can be applied to solve the problem of robot localisation is given in [8].
In [18] Tusell discusses and compares di�erent packages in R [13] that applies the Kalman �lter in state space
estimation. In [17] the extended Kalman �lter, a extension of the Kalman �lter which allows for non-linear
systems, is also explained.

2.3 Markov localisation

The Markov localisation algorithm is a localisation algorithm derived from Bayes �lter and it can be used to
solve the global localisation problem given that we have a map input. The Markov localisation algorithm is
discussed in detail in [4, 17].

3 Robot localisation

According to Thrun [17] the robot localisation problem can be de�ned as predicting a robots pose relative
to some external reference system. Localisation can hence be described as the answer to the question by the
robot �Where am I?�. This is seen to be one of the most important problems in the �eld of autonomous
robotics by researchers such as Thrun [17] and Negenborn [12], for example. According to Leonard and
Durrant-Whyte [9] an important aspect in autonomous robotics is the robot's ability to navigate, and the
�rst step in navigation is �nding out where you are (localising) after which the robot can decide where it
wants to go and how to get there. There are many di�erent algorithms which can be used for localisation,
which all have their respective advantages and disadvantages which needs to be considered during application.
As discussed by Filliate and Meyer [3] two of the more di�cult aspects of navigation is learning and mapping
the surroundings of the robot and �nding the position of the robot in that environment (localisation). So
in the state of the art localisation algorithms focus is placed on not only �nding out where the robot is but
also learning its environment and mapping it at the same time, this technique is re�ered to as Simultaneous
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Figure 2: Wall follower illustration

Localisation and Mapping (SLAM). This idea was �rst discussed at the 1986 IEEE Robotics and Automation
Conference by researchers Cheeseman, Crowley and Durrant-Whyte [1].

3.1 Information Sources

In the processes of localisation or learning and mapping the surroundings of a robot, information about the
environment the robot is in is required. Generally this information is extracted from sensors and the move-
ments of the robot. This information is categorized into two categories, idiothetic and allothetic sources [10].
Idiothetic information is information about the motion of the robot such as distance moved or angle turned,
etc. Allothetic information is information about the surroundings of the robot such as sensor information
about where obstacles and targets are, etc. The quality of this information is mainly dependent on the
hardware used to build the robot. With technological advances such as RGB-D cameras three dimentional
maps of an environment can be plotted and used in the localisation process, or with fast wireless commu-
nications between multiple robots informations from all robots can used as an extra information source to
make localisation more e�cient [6, 7, 14].

3.2 Localisation techniques

The problem with most of the information the robot has to use for localisation is that it is not reliable
enough because of natural error in the information. Two of the many algorithms which help eliminate this
error and more accurately estimate the position of the robot is the Kalman �lter and the Markov localisation
algorithm [16, 5, 4]. Later in this report we will discuss the intricate details of the Kalman �lter and the
Markov localisation algorithms and how to apply them, but for now we will discuss how they can be used for
localisation and mapping. It is clear that if we had a prede�ned detailed map of the environment it would
be easy to just use the estimated position from the Kalman �lter as the position of the robot. But in reality
there would possibly be more than one information source in which case we would apply the Kalman �lter
multiple times at a single timestep to implement all of the available information. In the case of an unknown
environment the Kalman �lter can also be used to estimate the position of objects such as walls or a ball or
any other obstacles or targets [5]. In the case of a known environment but an unknown starting position we
can apply the Markov localisation to e�ectively �nd the current position of the robot.

A simple example of where localisation can be used is traversing through a maze. A simple algorithm
which can be used to achieve this is the wall follower algorithm described by Mishra and Bande [11]. To solve
a maze the robot simply keeps driving next to the left/right wall which it started next to and it will reach
the end of the maze as illustrated in Figure 2 .

As it can be seen in this illustration the robot would simply follow the right hand wall until it exits the
maze. This makes the decision making on where to go very simple if the robot can turn right then turn right,
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Figure 3: Kalman �lter process diagram

if the robot can't turn right but can go straight then go straight, if the robot can't turn right or continue
going straight then turn left and if the robot reaches a dead end turn around. So we now have a simple
system the robot can use to answer �Where do I want to go next?�. It can be seen that this is not always the
most e�cient choice though. If the left hand wall was chosen the path would be very long.

4 The Kalman �lter

4.1 Background information

The Kalman �lter algorithm designed by Swerling and Kalman [5] is a method of �ltering and estimating
in linear Gaussian systems. This algorithm recognises that measurement data in a state space model has
an error factor, which would result in direct interpretation of measurement data being unreliable. Thus this
algorithm allows for this error factor by adjusting the e�ect a measurement would have, based on its error
factor, hence it provides a smooth estimate (estimates which like the real world states progresses realistically
and does not jump around) for the state space model. This is important in robotics because it will be hard
to make decisions about which actions to take if the estimated pose jumps around randomly [17, 5].
Assumptions made by the Kalman �lter:

1. Noise terms in model are Gaussian noise with zero mean.

2. Belief function of a state is Gaussian (the current state has a multivariate normal distribution).

3. Markov assumption (the current state depends only on the current measurement information and the
previous state and no states before that).

4. State space model is linear (the relationship between the current state and the previous state and the
current state and the measurement information is linear).

The diagram in Figure 3 illustrates how the Kalman �lter can be used to estimate the current pose of a
robot.
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4.2 Kalman �lter algorithm

We call xt the state vector of dimension n× 1 at time t and it can be expressed as:

xt = Atxt−1 + Btηt + εt

with prior knowledge x0 ∼ N (µ0,
∑

0), where ηt is the control vector (the motion command given to the
robot, for example move a units forward and b units left) at time t, At is a square matrix of size n× n (n is
the dimension of the state vector), Bt is a matrix of size n ×m (m is the dimension of the control vector)
and εt is a n× 1 Gaussian random vector with zero mean and covariance matrix Rt.
We call yt the k × 1 measurement vector (input from sensors, etc.) at time t and it can be expressed as:

yt = Gtxt + δt

where Gt is a matrix of size k×n (k is the dimension of the measurement vector) and δt is a k× 1 Gaussian
random vector with zero mean and covariance matrix Qt.

The Kalman �lter algorithm. [Probabilistic Robotics, Thrun [17]]
Input

(
µt−1,

∑
t−1, ηt,yt

)
1. µ̄t = Atµt−1 + Btηt (Mean of belief b̄el (xt) (Belief after motion command ηt is incorporated))

2.
∑̄

t = At

∑
t−1AT

t + Rt (Covariance of belief b̄el (xt) )

3. Kt =
∑̄

tG
T
t

(
Gt

∑̄
tG

T
t + Qt

)−1
(Kalman gain)

4. µt = µ̄t + Kt (yt −Gtµ̄t)(Note x̂t = µt)

5.
∑

t = (I−KtGt)
∑̄

t

Returns (µt,
∑

t).

Example
To illustrate how the Kalman �lter can be used a simple simulation is done where random measurement

vectors are generated from a multivariate normal distribution with the pose of the robot as the mean of this
distribution. It is also assumed that the measurement is a reading from a sensor which provides the x and y
coordinates and the heading of the robot. The code for this simulation can be found in the appendix. The
results of this simulation are illustrated in Figure 4.

In Figure 4 the Kalman �lter estimates and simlated measurement positions are compared to illustrate how
the Kalman �lter can be applied in autonomous robotics. It can be seen from this illustration that the
Kalman �lter smoothly estimates the current pose. It can also be seen that the Kalman �lter estimate is
more accurate than the measurement position (The position of the robot based on servo input).

4.3 The extended Kalman �lter algorithm

The system that we are using the Kalman �lter in is the positioning of an autonomous robot on a map. One
limitation of the Kalman �lter in this situation is the fact that the relationship between states and motion
commands and between states and meaurements must be linear. This is generally not the case in robotics
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Figure 4: Comparison of Kalman �lter estimates and measurement positions

because the measurements provided by the sensors on a robot do not often have a linear relationship with the
position of the robot [5]. This problem is solved by extending the Kalman �lter to allow these relationships
to be non-linear.
We call xt the state vector of dimension n× 1 at time t and it can be expressed as:

xt = g (xt−1, ηt) + εt

with prior knowledge x0 ∼ N (µ0,
∑

0), where g (x, η) is a function of x and η (which does not have to be
linear) and is a n× 1 vector, ηt is the control vector (motion command) at time t and εt is a n× 1 Gaussian
random vector with zero mean and covariance matrix Rt.
We call yt the k × 1 measurement vector (input from sensors, etc.) at time t and it can be expressed as:

yt = h (xt) + δt

where h (x) is a function of x (which does not have to be linear) and is a k × 1 vector and δt is a k × 1
Gaussian random vector with zero mean and covariance matrix Qt.

The Extended Kalman �lter algorithm. [Probabilistic Robotics, Thrun [17]]
Input

(
µt−1,

∑
t−1, ηt,yt

)
1. µ̄t = g (µt−1, ηt) {Mean of belief b̄el (xt) (Belief after motion command ηt is incorporated)}
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2. Gt = ∂g
∂x |µt−1,ηt

3.
∑̄

t = Gt

∑
t−1GT

t + Rt {Covariance of belief b̄el (xt) }

4. Ht = ∂h
∂x |µ̄t

5. Kt =
∑̄

tH
T
t

(
Ht

∑̄
tH

T
t + Qt

)−1
(Kalman Gain)

6. µt = µ̄t + Kt (yt − h (µ̄t))

7.
∑

t = (I−KtHt)
∑̄

t

Returns (µt,
∑

t).

Example
Suppose a robot is positioned at (3,2) and there is a obstacle at position (8,9) as illustrated by the map

in Figure 5.

Figure 5: Map of the environment in the extended Kalman �lter example

Also suppose this robot has a sensor which can detect the distance d from the object when pointed to the

object at angle θ. This information is given to the robot in the form of a measurement vector y =

(
d
θ

)
.

The theoretical value of this vector is calculated below.

d =

√
(8− 3)

2
+ (9− 2)

2

=
√

74

= 8.602325

and

sin (θ) =
|8− 3|√

(8− 3)
2

+ (9− 2)
2

=
5√
74

∴ θ = sin−1
(

5√
74

)
= 0.620249
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so the theoretical measurement vector in this situation is y =

(
8.602325
0.620249

)
.

Now for the extended Kalman �lter we have the functions:

g(x, η) = x + η =

(
x
y

)
+

(
η1
η2

)
=

(
x+ η1
y + η2

)
=

(
g1 (x, y, η1, η2)
g2 (x, y, η1, η2)

)
and

Gt =
∂g

∂x
|µt−1,ηt

=

(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)
|µt−1,ηt

=

(
1 0
0 1

)
|µt−1,ηt

=

(
1 0
0 1

)
and

h(x) =

(
h1(x, y)
h2(x, y)

)
where

h1(x, y) =

√
(8− x)

2
+ (9− y)

2

h2(x, y) = sin−1

 |8− x|√
(8− x)

2
+ (9− y)

2


and

Ht =
∂h

∂x
|µ̄t

=

(
∂h1

∂x
∂h1

∂y
∂h2

∂x
∂h2

∂y

)
|µ̄t

where
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∂h1
∂x

=
x− 8√

(8− x)
2

+ (9− y)
2

∂h1
∂y

=
y − 9√

(8− x)
2

+ (9− y)
2

∂h2
∂x

=

(8−x)|8−x|

((8−x)2+(9−y)2)
3
2
− 8−x
|8−x|
√

(8−x)2+(9−y)2√
1− (8−x)2

(8−x)2+(9−y)2

∂h2
∂y

=
(9− y)|8− x|(

(8− x)
2

+ (9− y)
2
) 3

2
√

1− (8−x)2
(8−x)2+(9−y)2

The code for the extended Kalman �lter algorithm function in MATLAB [15] in this case is provided in the
appendix.
A simple illustration of the application of the extended Kalman �lter is done by generating a measurement
vector from a multivariate normal distribution with the theoretical measurement vector calculated above as
the mean and then applying the �lter. The code for this application can be found in the appendix. The
results of this example can be seen in Figure 6.
In Figure 6 the distributions of the Kalman �lter estimates for the position of the robot after each iteration
of applying the Kalman �lter is compared. It can be seen that after each iteration the estimate becomes
closer to the actual position at the point 3 on the x1 axis and 2 on the x2 axis. It can also be seen from the
contour plot that the estimates become more reliable after each iteration which illustrates the usefullness of
the Kalman �lter.

5 Markov localisation

Global localisation is the problem of localisation where the robots initial state is not known. The Markov
localisation algorithm is an algorithm which was derived from the Bayes �lter using a map representing the
environment of the robot as an input [4, 17]. The assumption made by the Markov localisation algorithm is
the Markov assumption, namely the current state depends only on the current measurement information and
the previous state and no states before that. The Markov localisation algorithm uses the known information
about the robot's environment and information from its sensors together with a belief function of the robot's
position to iteratively improve the belief function until it eventually knows exactly, or with high certainty
where the robot is. To do this the algorithm �rstly shifts the belief function of the previous time step to
allow for the movement of the robot after which the Bayes �lter is applied using the map input and sensor
observations to re�ne the belief function. This new belief function can then be used to estimate where the
robot could possibly be and then navigate to where it wants to go.
The diagram in Figure 7 illustrates how the Markov localisation algorithm can be used to estimate the current
pose of a robot.

The Markov localisation algorithm. [4]
We call xt the state of the robot, ηt the control command, zt the measurement, bel (xt−1) the belief function
of the previous state at time t and m the map. The belief function represents the belief that a state takes
on a speci�ed value.
Input (bel (xt−1) , ηt, zt,m)

For all possible values xt can take on, say all l, do:

1. Use ηt to appropriately shift the bel (xt−1) function to allow for the movement of the robot.
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Figure 6: Likelihood contour plot for extended Kalman �lter estimates.
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Figure 7: Markov localisation algorithm diagram

2. b̄el (xt) =
∑
l

P (xt = l|xt−1, ηt,m) bel (xt−1) (In this step the belief function is altered to consider pos-

sible position based on the motion command).

3. bel (xt) = κP (observation|xt = l,m) b̄el (xt) where κ is a normalization factor. (In this step the belief
function is altered to consider possible position based on the measurements, e.g. sensor readings, and
then normalised).

Return bel (xt).

Example
Suppose we have a corridor with two landmarks in which the robot can drive up and down as illustrated in
Figure 8. For the purpose of this example we will also assume we know the robot has starting position 5
even though we will apply the algorithm as if it is a global localisation problem.
To initialise the algorithm we will assume bel (x0) = 1

10 .
Now at time step 1 the robot moves one spot forward and does not observe a landmark; at time step 2
moves another step forward and observes a landmark; at time step 3 moves one spot backwards and does
not observe a landmark; at time step 4 moves another step backwards and does not observe a landmark; at
time step 5 moves another step backwards and does not observe a landmark and at time step 6 moves
another step backwards and observes a landmark. The code for this application can be found in the
appendix. The belief probability graphs are shown in Figure 9.

Figure 9 shows the bar plots of the belief funtion of the state of the robot as time progresses. As can be
seen by assigning equal probability to all possible position initially and then applying the Markov localisation
algorithm e�ectively �nds the position of the robot.
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Figure 8: Markov localisation example illustration
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Figure 9: Markov localisation example belief function graphs
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Figure 10: Map of corridor for application

6 Application

For the application section of this report we assemble a simple corridor with two doors similar to the situation
in the Markov localisation example. We use the Markov localisation algorithm to �nd the position given that
the EZRobot does not know its initial location. This application is a very simple maze navigation example
which can be extended in future research.
In Figure 10 we see the map of the corridor that will be used for the application. For simplicity we will

assume that the robot will always be facing towards the red end marker, as indicated by the arrow. The red
and green markers are used as end markers for the robot to know when it has reached the end of the corridor.
The blue markers are the doors in the corridor and these are used as landmarks in the robot's environment
which it uses to localise.

Algorithm

1. Initialise the belief function for the Markov localisation algorithm. This is done by assuming that the
probability of being in a block is uniformly distributed across the �ve blocks.

2. If this is the �rst iteration skip steps 3 and 4.

3. Look right and record the colour observed (This colour observed is not used for localisation but purely
to know when the ends or the corridor is reached).

4. A random number is generated and depending on the random number the robot moves forwards or
backwards and records the direction moved.

5. Look left and record whether a blue door is observed or not.

6. Apply the Markov localisation algorithm explained earlier.

7. Repeat steps 2 - 6 until we are 100 (1− α) % certain of the location of the robot.

8. Say �I am in block *� (where block * is the block we are 100 (1− α) % certain of being in).

Results

In Figure 11 we can see how the belief function converges after each iteration until we are 100 (1− α) %
certain of the location of the robot. Hence the robot has successfully localised and now knows where it is in
the corridor.
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Figure 11: Belief function graphs for the application.

Conclusion

As seen above we successfully apply the Markov localisation algorithm to solve the localisation problem. Al-
though some of the problems that we still experience in the application section are issues such as inconsistency
in the distance and direction the robot walks as well as in the colour recognition process. The inconsitency
with the colour recognition is resulting in the application with the robot only working occasionally since it
does not always recognise colours correctly, most likely due to sensitivity of the robot's camera to lighting
conditions. In further research we can look at applying algorithms such as the Kalman �lter to remove these
inconsistencies, and also look at extending the map to a 2 or even 3-dimensional map and investigate how
e�ciently the Markov localisation algorithm can be applied in these situations to help an autonomous robot
localise and move closer to being arti�cially intelligent.
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Appendix

MATLAB [15] Code for Kalman �lter function:

%Carel van Niekerk

%2016

%Kalman filter function

function [mu,Sig] = Kalman_filter(mu_p,Sig_p,Control,Measure,A,B,G,R,Q)

%mu_p is the mean of the belief function at previous time step

%Sig_p covariance structure of the belief function at previous time step

%Control is the current motion command

%Measure is the current measurement vector

%A and B form function x=A*x_p+B*control+e

%R is covariance structure of e

%G form function y=G*x+d

%Q is covariance structure of d

mu_b=A*mu_p+B*Control; %Mean of the belief function after motion command

Sig_b=A*Sig_p*(A.')+R; %Covariance structure of the belief function after motion command

K=(Sig_b*(G.'))/(G*Sig_b*(G.')+Q); %Kalman gain calculation

mu=mu_b+K*(Measure-G*mu_b); %Updated mean of the belief function at current time step

[n,m]=size(K);

Sig=(eye(n)-K*G)*Sig_b; %Updated covariance structure of the belief function at current time step

end

MATLAB [15] Code for function to plot pose of the robot:

%Carel van Niekerk

%2016

%Position plot function

function Plot_Position(vec,t,colour)

%vec is the 3 dimensional state vector

%t is the timestep number

%colour is the matlab colour code for the plot.

x = vec(1);

y = vec(2);

theta = vec(3);

L=0.2; %lenght of the direction line

xEnd = x+L*cos(theta); %calculation of direction line endpoints

yEnd = y+L*sin(theta);

hold on;

axis([x+[-2 2] y+[-2 2]]); %defining axis

axis equal;

plot([x xEnd],[y yEnd],'Color',colour); %plot direction line

plot(x,y,'*','Color',colour); %plot position

c=num2str(t);

dx = 0.1;

dy = 0.1;

text(x+dx, y+dy, c,'Color',colour); %add time step label

end

MATLAB [15] Code for Kalman �lter example:

clear all;

n=3;
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start=[0;0;0];

eta=[0;0;0];

A=eye(3);

B=eye(3);

G=eye(3);

R=eye(3);

Q=[0.81 0 0;

0 0.73 0;

0 0 0.68];

mu=[1;2;1.5708];

S=Q;

figure1=figure;

hold on;

c=[0 0 1];

Plot_Position(start,0,c);

for i=1:n

y=mvnrnd(mu,S,1)';

if i==1

x=start;

Sig=[0.4 0.3 0.34;

0.3 0.45 0.28;

0.34 0.28 0.41];

end

[x_new,Sig_new]=Kalman_filter(x,Sig,eta,y,A,B,G,R,Q);

x=x_new;

Sig=Sig_new;

c=[0 0 1];

Plot_Position(x,i,c);

c=[1 0 0];

Plot_Position(y,i,c);

end

pos=mu;

c=[0 1 0];

Plot_Position(pos,0,c);

clear all;

MATLAB [15] Code for the extended Kalman �lter function for the example:

function [mu,Sig] = Ext_Kalman_Ex(mu_p,Sig_p,Control,Measure,R,Q)

mu_b=mu_p+Control;

G=eye(2);

Sig_b=G*Sig_p*G'+R;

x=mu_b(1,1);

y=mu_b(2,1);

val1=(x-8)/sqrt((x-8)^2 + (y-9)^2);

val2=(y-9)/sqrt((x-8)^2 + (y-9)^2);

v1=((8-x)*abs(8-x))/(((x-8)^2 + (y-9)^2)^(3/2));

v2=(8-x)/(sqrt((x-8)^2 + (y-9)^2)*abs(8-x));

v3=((8-x)^2)/((8-x)^2 + (9-y)^2);

v4=sqrt(1-v3);

val3=(v1-v2)/v4;

v5=((9-y)*abs(8-x))/(((x-8)^2 + (y-9)^2)^(3/2));

val4=v5/v4;
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H=[val1 val2;

val3 val4];

K=(Sig_b*H')/(H*Sig_b*H'+Q);

val5=sqrt((8-x)^2 + (9-y)^2);

v6=abs(8-x)/val5;

val6=asin(v6);

h_ut=[val5;val6];

mu=mu_b+K*(Measure-h_ut);

[n,m]=size(K);

Sig=(eye(n)-K*H)*Sig_b;

end

MATLAB [15] Code for function to plot contour plot for the pose of the robot:

function Contour_plot(x,Sig)

x1 = -2:.2:8; x2 = -2:.2:8;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf([X1(:) X2(:)],x,Sig);

F = reshape(F,length(x2),length(x1));

figure;

hold on;

surf(x1,x2,F);

caxis([min(F(:))-.5*range(F(:)),max(F(:))]);

axis([-2 8 -2 8 0 1])

xlabel('x1'); ylabel('x2'); zlabel('Probability Density');

end

MATLAB [15] Code for the extended Kalman �lter example:

clear all;

n=3;

R=0.2*eye(2);

Q=[0.4 0;

0 0.52];

x0=[0;0];

Sig0=[0.4 0.3;

0.3 0.45];

Contour_plot(x0',Sig0);

eta=[0;0];

mu=[8.602325;0.620249];

S=Q;

for i=1:n

if i==1

xp=x0;

Sigp=Sig0;

else

xp=xn;

Sigp=Sign;

end

y=mvnrnd(mu,S,1)';

[xn,Sign]=Ext_Kalman_Ex(xp,Sigp,eta,y,R,Q);

Contour_plot(xn',Sign);

end
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clear all;

MATLAB [15] Code for Markov localisation function:

function Bel = Markov_loc(map,A,Z,bel_pr)

zero=0;

if A==1

bel_p=[zero,bel_pr(1:9)];

Prob_matrix=[[zeros(9,1),eye(9)];zeros(1,10)];

else

bel_p=[bel_pr(2:10),zero];

Prob_matrix=[zeros(1,10);[eye(9),zeros(9,1)]];

end;

Bel_bar=zeros(1,10);

for i=1:10;

S=trace(diag(Prob_matrix(:,i)));

Bel_bar(i)=S*bel_p(i);

end;

objects=trace(diag(map(2,:)));

open=10-objects;

P=zeros(1,10);

if Z==1

for l=1:10

prob=1/objects;

if map(2,l)==1

P(l)=prob;

end

end

else

for l=1:10

prob=1/open;

if map(2,l)==0

P(l)=prob;

end

end

end

BelUN=zeros(1,10);

for j=1:10;

BelUN(j)=Bel_bar(j)*P(j);

end;

eta=trace(diag(BelUN));

Bel=zeros(1,10);

for k=1:10;

Bel(k)=BelUN(k)/eta;

end;

end

MATLAB [15] Code for Markov localisation example:

clear all;

map=[[1 2 3 4 5 6 7 8 9 10];

[0 0 1 0 0 0 1 0 0 0]];

bel_x0=[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1];

figure;
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bar(bel_x0);

Z=0;

A=1;

bel_x1=Markov_loc(map,A,Z,bel_x0);

figure;

bar(bel_x1);

Z=1;

A=1;

bel_x2=Markov_loc(map,A,Z,bel_x1);

figure;

bar(bel_x2);

Z=0;

A=-1;

bel_x3=Markov_loc(map,A,Z,bel_x2);

figure;

bar(bel_x3);

Z=0;

A=-1;

bel_x4=Markov_loc(map,A,Z,bel_x3);

figure;

bar(bel_x4);

Z=0;

A=-1;

bel_x5=Markov_loc(map,A,Z,bel_x4);

figure;

bar(bel_x5);

Z=1;

A=-1;

bel_x6=Markov_loc(map,A,Z,bel_x5);

figure;

bar(bel_x6);

clear all;

EZ-Script [2] Code for the Markov localisation algorithm:

$ind0 = $n_blocks - 1

DefineArray($Temp,$n_blocks)

REPEAT ($i,0,$ind0,1)

$Temp[$i] = $Belief[$i]

$i++

ENDREPEAT

IF ($Dir = 1)

$Belief[0] = 0

REPEAT ($i,1,$ind0,1)

$ind = $i - 1

$Belief[$i] = $Temp[$ind]

ENDREPEAT

ENDIF

$ind1 = $n_blocks - 2
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IF ($Dir = -1)

$Belief[4] = 0

REPEAT ($i,0,$ind1,1)

$ind = $i + 1

$Belief[$i] = $Temp[$ind]

ENDREPEAT

ENDIF

DefineArray($Prob,$n_blocks)

IF ($Obs = 0)

$Prob[0] = 1/3

$Prob[1] = 1/3

$Prob[2] = 0

$Prob[3] = 1/3

$Prob[4] = 0

ENDIF

IF ($Obs = 1)

$Prob[0] = 0

$Prob[1] = 0

$Prob[2] = 0.5

$Prob[3] = 0

$Prob[4] = 0.5

ENDIF

DefineArray($Bel_bar,$n_blocks)

REPEAT ($i,0,$ind0,1)

$Bel_bar[$i] = $Prob[$i] * $Belief[$i]

ENDREPEAT

$Sum = $Bel_bar[0] + $Bel_bar[1] + $Bel_bar[2] + $Bel_bar[3] + $Bel_bar[4]

DefineArray($Belief_new,$n_blocks)

REPEAT ($i,0,$ind0,1)

$Belief_new[$i] = $Bel_bar[$i] / $Sum

ENDREPEAT

REPEAT ($i,0,$ind0,1)

$Belief[$i] = $Belief_new[$i]

ENDREPEAT

EZ-Script [2] Code to initialise the belief function:

DefineArray($Belief,$n_blocks)

$indDEF = $n_blocks - 1

REPEAT ($i,0,$indDEF,1)

$Belief[$i] = 1 / $n_blocks

ENDREPEAT

EZ-Script [2] Code to �nd the maximum of the belief function:

$max = 0

$mpos = 0

$ind0 = 4
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REPEAT ($i,0,$ind0,1)

IF ($Belief[$i] > $max)

$max = $Belief[$i]

$mpos = $i + 1

ENDIF

ENDREPEAT

EZ-Script [2] Code for random movement:

$u=GetRandom(0,10000)/10000

IF ($u >= 0.5)

IF ($CameraObjectColor="Red")

ControlCommand("Auto Position", AutoPositionAction, "Walk Back 1")

$Dir = -1

ELSE

ControlCommand("Auto Position", AutoPositionAction, "Walk 1 Block")

$Dir = 1

ENDIF

ENDIF

IF ($u < 0.5)

IF ($CameraObjectColor="Green")

ControlCommand("Auto Position", AutoPositionAction, "Walk 1 Block")

$Dir = 1

ELSE

ControlCommand("Auto Position", AutoPositionAction, "Walk Back 1")

$Dir = -1

ENDIF

ENDIF

EZ-Script [2] Code for the application of the Markov localisation algorithm:

$err = 0.90

$n_blocks = 5

ControlCommand("Initialise Belief Function", ScriptStart)

$max_prob = 0

$position = 0

$int0 = 5000

$k = 0

$int1 = 20000

repeatuntil($max_prob > $err)

if ($k > 0)

Servo(D0,0)

Sleep($int0)

$int = 2000

$CameraObjectColor = ""

ControlCommand("Camera", CameraMultiColorTrackingEnable)

Sleep($int)

ControlCommand("Camera", CameraMultiColorTrackingDisable)

Servo(D0,90)

Sleep($int0)

ControlCommand("Random Movement", ScriptStart)

sleep($int1)
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endif

Servo(D0,180)

Sleep($int0)

$int = 2000

$CameraObjectColor = ""

ControlCommand("Camera", CameraMultiColorTrackingEnable)

Sleep($int)

ControlCommand("Camera", CameraMultiColorTrackingDisable)

Servo(D0,90)

Sleep($int0)

if ($CameraObjectColor = "Blue")

$Obs = 1

ELSE

$Obs = 0

endif

if ($k = 0)

$Dir = 0

endif

ControlCommand("Markov Localisation Algorithm", ScriptStart)

Sleep(2000)

ControlCommand("Find Maximum", ScriptStart)

$max_prob = $max

$position = $mpos

$k++

endrepeatuntil

SayEZB("I am at block " + $position)
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Abstract

This study focuses on the construction of composite fading/shadowing distributions. A group of
distributions all belonging to the regular exponential class are systematically described and its construc-
tion in the composite paradigm is motivated. Statistical properties and results are derived, including
the probability density function, moment generating function, and moments. Novel contributions to the
wireless communications arena are presented with these new distributions. The literature is further en-
riched with derivation of the corresponding signal-to-noise ratio distributions for each of the newly derived
distributions. These distributions are comparatively investigated in terms of their outage probability.
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Abbreviations
PDF: probability density function
CDF: cumulative distribution function
MGF: moment generating function
SNR: signal-to-noise ratio
BEP: bit error probability

Notation
X: random variable
X|λ: conditional random variable X given λ
f (x): probability density function of X
f (x|λ): conditional probability density function of X|λ
MX (t): moment generating function of X
MX|λ (t): moment generating function of X|λ
mr: rth moment of X
mr|λ: rth moment of X|λ
E [X]: expected value of X
var (X): variance of X
Z+: set of positive integers

Concepts
Fading

Multipath fading is an effect caused by the combination of signal paths which have been randomly delayed,
reflected, scattered and/or diffracted. This type of fading results in short-term signal variations, which cause
fluctuations in wave size and position over time. This can have a negative impact on performance of the
wireless communication system, unless the signal receiver has taking these measures into account [13].

Shadowing

The quality of the link between mobile systems is affected by the mean signal level. Shadowing is a result
of obstacles in the signal path such as terrain, buildings and trees, which cause a slow variation in the mean
signal level. Performance of communication systems will only depend on shadowing only if the radio receiver
is able to average out the fast multipath fading or if the effects of multipath fading have been removed by an
efficient transmitter/receiver wireless network system [13].

Signal-to-noise ratio

Random variable that represents the ratio of signal strength to amount of noise at receiver output. The
term noise relates to the electrical fluctuation present from input to receiver. SNR is the best measure in the
context of performance evaluation of a wireless network, indicating overall accuracy of system. In the fading
context, average SNR is a more appropriate measure [13].

Outage probability

Defined as the probability of an error in transmission of information, which occurs when the SNR at the
receiver output falls below a protection threshold. This failure to meet the target SNR is due to signal
interference and results in insufficient performance over the wireless network system [11, 13, 18, 19].
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1 Introduction
In wireless communications theory, statistical distributions are used to model channels between senders and
receivers. A transmitted signal is exposed to two types of interference, namely multipath fading and shad-
owing, both of which are random in nature. This results in a stochastic approach to modelling wireless
systems, where fading follows some distribution, e.g. Rayleigh fading, and in a shadowed environment,
the lognormal distribution is used. Combining the effects of fading and shadowing on a signal results in
a composite fading/shadowing distribution [13]. In section 2, fading distributions and lognormal shadow-
ing proposed in literature are explained. An example of a composite distribution proposed in literature,
and the main theoretical focus of this project, is the Suzuki distribution introduced by Hirofumi Suzuki
in 1977 as a statistical model for urban radio propagation [15]. The Suzuki channel consists of Rayleigh
fading in a lognormally shadowed wireless signal environment. Simply, the Suzuki distribution is derived
by compounding the Rayleigh distribution with the lognormal distribution (illustrated in figure 1.1), i.e. if
X|λ ∼ Rayleigh (λ) and λ ∼ lognormal

(
µ, σ2

)
, then X ∼ Suzuki (µ, σ). The theory of compound distri-

butions is explained in section 3.

Figure 1.1: Components of the Suzuki distribution

The Rayleigh distribution, like all proposed fading distributions, is a member of the exponential family of
distributions. In section 4, the Rayleigh and other distributions related to the exponential class, already
proposed in literature, as well as two new distributions - compound-Weibull and compound-Rayleigh - are
investigated as fading distributions. In section 5, the lognormal distribution as a shadowing distribution and
its properties are briefly discussed. Investigating further into composite distributions, section 6 derives the
PDF, MGF and moments of several distributions within the exponential class. Finally, section 7 applies
this theory to performance evaluation of wireless communication systems using outage probability, which is
obtained by deriving the CDF of the SNR distribution for the composite channel [13].
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2 Composite fading/shadowing distributions
In this section, fading, shadowing and composite distributions relevant to this study are briefly described.

2.1 Fading distributions
2.1.1 Nakagami-q

The Nakagami-q distribution is based on the fading parameter q, with range 0 ≤ q ≤ 1. A special case of
this distribution, when q = 0, is known as the one-sided Gaussian fading distribution, which has the largest
amount of fading out of all the multipath fading distributions. Another is when q = 1, this is the same as
the Rayleigh fading distribution. Nakagami-q fading is normally observed on satellite links, contingent on
signal fluctuation as it passes through the ionosphere (portion of the Earth’s upper atmosphere) [13].

2.1.2 Nakagami-n

The Nakagami-n distribution is based on the fading parameter n, with range 0 ≤ n < ∞, related to the
Rician K factor k = n2. Special cases of this distribution: the Rayleigh distribution (n = 0) and there is no
fading when n =∞. Nakagami-n fading is frequently observed in land-mobile systems, small to large indoor
environments, satellite links and radio communication between ships. It is used to model propagation paths
which consist of the following components: strong direct line-of-sight and many random weaker ones [13].

2.1.3 Nakagami-m

The Nakagami-m distribution is based on the fading parameter m, with range m ≥ 1
2 , and has the widest

amount of fading over all multipath fading distributions. The special cases of this type of fading are: the
one-sided Gaussian distribution

(
m = 1

2

)
and the Rayleigh distribution (m = 1). Nakagami-m fading is used

for land-mobile communications, multipath propagation in indoor-mobile environments and is observed in
ionospheric radio wave fluctuation [13].

Remark: There is a one-to-one relationship between q, n, and m, given by [13]:

m =

(
1 + q2

)2
2 (1 + 2q4)

, m ≤ 1,

m =

(
1 + n2

)2
1 + 2n2

, n ≥ 0

and

n =

√ √
m2 −m

m−
√
m2 −m

, m ≥ 1.

.

2.1.4 Rayleigh

The Rayleigh distribution is used in wireless communication to model multipath fading where there is no
direct line-of-sight path [13], i.e. there are obstacles in the transmission path between transmitter and receiver.
The Rayleigh distribution measures the path strength at any delay in signal transmission [15]. Empirically,
this distribution fits experimental data for mobile systems. It can also be applied to the propagation of
reflected and refracted paths through the troposphere (lowest layer of Earth’s atmosphere) and ionosphere
and radio links between ships [13, 15]. In Suzuki’s original work, the fading component proposed is the
Rayleigh distribution [15].
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2.2 Shadowing distributions
2.2.1 Lognormal

Empirically, it is assumed that the lognormal distribution can be used to model shadowing for various outdoor
and indoor environments; the instantaneous SNR is lognormally distributed [13].

2.3 Composite fading/shadowing distributions
Composite multipath/shadowed fading comprises of multipath fading layed over lognormal shadowing. In
this channel, multipath fading is not averaged out by the signal receiver, instead it reacts to the instantaneous
composite multipath/shadowed signal. Examples of this type of composite fading are; congested urban areas
with slow moving pedestrians and vehicles, or mobile systems in urban areas where shadowing is a result of
trees and buildings [13].

There are several applications of composite distributions, which fall under wireless communication system
performance measures [13]:

• Outage probability;

• Average bit error probability; and

• Average combined output SNR.

2.3.1 Suzuki distribution

The Suzuki distribution is a composite multipath/shadowed fading distribution which consists of Rayleigh
fading and lognormal shadowing [20]. This distribution was developed to model radio propagation in urban
areas. The distribution is based on experimental data which measured the path strength and path arrival
time. Path strength mean and variance were analysed using the path strength data in small geographical
areas and distributions were fitted: Rayleigh, Nakagami-m, Nakagami-n and lognormal [15, 16].

The Rayleigh distribution did not fit the data as well as expected, this is because this distribution only
has one parameter. The Nakagami-m and Nakagami-n distributions include the Rayleigh distribution in
special cases and therefore fit the data better. The next best was the Nakagami-n distribution which fit
most of the data and failed to fit the rest of the data. The Nakagami-m is the preferred distribution as it
approximates the Nakagami-n distribution and fits the data well. The lognormal distribution fit the data the
best in all cases. In conclusion it was established that path strength distribution is that of a Nakagami-m at
initial paths and lognormal at increasing excess delay. Mean path strength decreases as excess delay increases
and path strength variance is almost constant [15].

2.3.2 Other composite distributions

Fading Shadowing Reference
Nakagami-m lognormal [6, 13]

gamma lognormal [12]
Weibull lognormal [8]

Rayleigh/Nakagami-m gamma [2]
gamma gamma [1]

α− µ, κ− µ, η − µ, λ− µ gamma [14]

Table 2.1: A few examples of composite channels in literature
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3 Derivation of compound distributions
This section describes the methodology used to obtain composite distributions.

In general, a compound distribution is one where X has some distribution with parameter λ and this pa-
rameter has its own distribution. F (x|λ) is the conditional distribution function of X|λ and G (λ) is the
distribution function of λ, with the following PDFs, respectively:

f (x|λ) : PDF of the conditional distribution of X|λ; and
g (λ) : PDF of the distribution of λ.

The formula for the PDF of the compound distribution of X, h (x), is the compound of f (x|λ) and g (λ)
over all values of λ and is given by [7]:

h (x) =

ˆ
λ

f (x|λ) g (λ) dλ (3.1)

with properties

E [X] = Eλ [E [X|λ]] (3.2)

and

var (X) = Eλ [var (X|λ)] + varλ (E [X|λ]) . (3.3)

Composite fading/shadowing distributions are derived through the compound distribution process, where:

f (x|λ) : PDF of the fading distribution of X|λ; and
g (λ) : PDF of the shadowing distribution of λ.

This means that multipath fading in a shadowed environment has compound distribution with PDF h (x).
Equation (3.1) is used to find the expected value of any function of random variable X in the following
theorem. The importance of this theorem is that other functions related to the compound distribution can
be derived, namely the MGF and the moments. The following theorem provides a formula with which some
important theoretical results will be obtained, namely the MGF and moments.

Theorem 1

Let X be a random variable with PDF h (x) and let X|λ be the conditional random variable with PDF
f (X|λ) where λ has PDF g (λ). Let z (x) be any Borel measurable function of X. Then

E [z (X)] =

ˆ
λ

E [z (X|λ)] g (λ) dλ (3.4)

Proof. The expected value of z (x) is

E [z (X)] =

ˆ
x

z (x)h (x) dx

=

ˆ
x

z (x)

ˆ
λ

f (x|λ) g (λ) dλdx by equation 3.1

=

ˆ
λ

[ˆ
x

z (x) f (x|λ) dx

]
g (λ) dλ

=

ˆ
λ

E [z (X|λ)] g (λ) dλ

which proves the result. �
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By Theorem 1, the MGF and rth moment of the compound distribution of X are derived.

If z (x) = exp (tx), then

MX (t) =

ˆ
λ

MX|λ (t) g (λ) dλ (3.5)

If z (x) = xr, then

mr =

ˆ
λ

mr|λg (λ) dλ (3.6)

respectively.

4 Fading distributions
In this section, the PDF, MGF and moments of each fading distribution that will be considered in this study,
as well as a graphical illustration of the PDF and CDF.

4.1 Fading distributions from the exponential class
The distributions considered in this section are all contained within the exponential class of distributions.

4.1.1 Exponential distribution

Let X ∼ exponential (λ) with scale parameter λ > 0, the PDF is given by [7]:

f (x) =
1

λ
exp

(
−x
λ

)
, x ≥ 0. (4.1)

Figure 4.1 shows the PDF and CDF with different parameter values.1

The MGF is defined as [7]:

MX (t) =
λ

λ− t
, t < λ. (4.2)

The rth moment is defined as [7]:

mr = r!λr, r ∈ Z+. (4.3)

1The analysis for this essay was performed using SAS software, Version 9.4 of the SAS System for Windows. Copyright ©
2016 SAS Institute Inc., Cary, NC, USA.
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Figure 4.1: PDF (4.1) and CDF, respectively, with varying λ

4.1.2 Gamma distribution

Let X ∼ gamma (k, λ) with shape and scale parameters k > 0 and λ > 0, respectively, the PDF is given by
[7]:

f (x) =
1

Γ (k)λk
xk−1 exp

(
−x
λ

)
, x > 0. (4.4)

Figures 4.2 and 4.3 show the PDF and CDF with different parameter values.

The MGF is defined as [7]:

MX (t) = (1− λt)−k , t < 1

λ
. (4.5)

The rth moment is defined as [7]:

mr =
λrΓ (k + r)

Γ (k)
, r ∈ Z+. (4.6)
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Figure 4.2: PDF (4.4) and CDF, respectively, with k = 2 and varying λ

Figure 4.3: PDF (4.4) and CDF, respectively, with λ = 1 and varying k

4.1.3 Rayleigh distribution

Let X ∼ Rayleigh (λ) with scale parameter λ > 0 , the PDF is given by [13]:

f (x) =
2x

λ
exp

(
−x

2

λ

)
, x ≥ 0. (4.7)

Figure 4.4 shows the PDF and CDF with different parameter values.

The rth moment is defined as [7]:

mr = λ
r
2 Γ
(

1 +
r

2

)
, r ∈ Z+. (4.8)

The MGF is defined as [7]:

MX (t) = 1 +

√
πλt

2
exp

(
λt2

4

)[
1 + erf

(√
λt

2

)]
, t ≥ 0,
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which contains the error function (see Appendix) which may lead to calculation challenges. Alternatively,
the MGF is derived by substituting the rth moment (4.8) into the definition of a MGF in [3] and by the
exponential Taylor series (see Appendix):

MX (t) = E [exp (tX)]

= E

[ ∞∑
i=0

(tx)
i

i!

]

=

∞∑
i=0

ti

i!
E
[
Xi
]

=

∞∑
i=0

tiλ
i
2 Γ
(
1 + i

2

)
i!

, t ≥ 0. (4.9)

Figure 4.4: PDF (4.7) and CDF, respectively, with varying λ

4.1.4 Weibull distribution

Let X ∼Weibull (α, λ) with shape and scale parameters α > 0 and λ > 0, respectively, the PDF is given by
[7]:

f (x) =
α

λ

(x
λ

)α−1

exp
(
−
(x
λ

)α)
, x > 0. (4.10)

Figures 4.5 and 4.6 show the PDF and CDF with different parameter values.

The rth moment is defined as [7]:

mr = λrΓ
(

1 +
r

α

)
, r ∈ Z+. (4.11)

The MGF is derived in a similar way as (4.9) with the rth moment (4.11):

MX (t) =

∞∑
i=0

tiλiΓ
(
1 + i

α

)
i!

, t ≥ 0. (4.12)
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Figure 4.5: PDF (4.10) and CDF, respectively, with α = 3 and varying λ

Figure 4.6: PDF (4.10) and CDF, respectively, with λ = 1 and varying α

4.1.5 Nakagami-m distribution

Let X ∼ Nakagami (m,λ) with shape and scale parameters m ≥ 1
2 and λ > 0, respectively, the PDF is given

by [13]:

f (x) =
2mmx2m−1

Γ (m)λm
exp

(
−mx

2

λ

)
, x > 0. (4.13)

Figures 4.7 and 4.8 show the PDF and CDF with different parameter values.

The rth moment is defined as [17]:

mr =
λ

r
2 Γ
(
m+ r

2

)
m

r
2 Γ (m)

, r ∈ Z+. (4.14)

The MGF is derived in a similar way as (4.9) with the rth moment (4.14):
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MX (t) =

∞∑
i=0

tiλ
i
2 Γ
(
m+ i

2

)
i!m

i
2 Γ (m)

, t ≥ 0. (4.15)

Figure 4.7: PDF (4.13) and CDF, respectively, with m = 2 and varying λ

Figure 4.8: PDF (4.13) and CDF, respectively, with λ = 1 and varying m

4.2 Compound fading distributions
The compound-Weibull and compound-Rayleigh distributions were first introduced as survival models [9].
These distributions were derived by compounding the Weibull and Rayleigh distributions with the gamma
distribution, using equation (3.1), where the scale parameter of the Weibull and Rayleigh distributions is
gamma distributed. In order to investigate whether these would be suitable fading distributions, the shape
of the distribution must be compared with that of the corresponding fading distributions that are already
accepted in practice, namely the Weibull and Rayleigh distributions.
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4.2.1 Compound-Weibull fading

Let X|θ ∼ Weibull (α, θ) and θ ∼ gamma (k, λ), then X ∼ compWeibull (α, k, λ) with shape and scale
parameters α, k > 0 and λ > 0, respectively. The PDF is given by substituting (4.10) and (4.4) into (3.1) [9]:

f (x) =

ˆ
θ

f (x|θ) g (θ) dθ

=

ˆ ∞
0

α

θ

(x
θ

)α−1

exp
(
−
(x
θ

)α) 1

Γ (k)λk
θk−1 exp

(
− θ
λ

)
dθ

= αkλkxα−1 (λ+ xα)
−(k+1)

, x > 0. (4.16)

Figures 4.9, 4.10 and 4.11 show the PDF and CDF with different parameter values.

The MGF is derived using theorem 1, by substituting the MGF of the Weibull distribution (4.12) and
the PDF of the gamma distribution (4.4) into (3.5), and by (4.6):

MX (t) =

ˆ
θ

MX|θ (t) g (θ) dθ

=

ˆ ∞
0

{ ∞∑
i=0

tiθiΓ
(
1 + i

α

)
i!

}
1

Γ (k)λk
θk−1 exp

(
− θ
λ

)
dθ

=

∞∑
i=0

tiΓ
(
1 + i

α

)
i!

ˆ ∞
0

θi
1

Γ (k)λk
θk−1 exp

(
− θ
λ

)
dθ

=

∞∑
i=0

tiΓ
(
1 + i

α

)
i!

E
[
θi
]

=

∞∑
i=0

tiλiΓ
(
1 + i

α

)
Γ (k + i)

i!Γ (k)
, t ≥ 0. (4.17)

The rth moment is derived using theorem 1, by substituting the rth moment of the Weibull distribution (4.11)
and the PDF of the gamma distribution (4.4) into (3.6), and by (4.6):

mr =

ˆ
θ

mr|θg (θ) dθ

=

ˆ ∞
0

θrΓ
(

1 +
r

α

) 1

Γ (k)λk
θk−1 exp

(
− θ
λ

)
dθ

= Γ
(

1 +
r

α

)ˆ ∞
0

θr
1

Γ (k)λk
θk−1 exp

(
− θ
λ

)
dθ

= Γ
(

1 +
r

α

)
E [θr]

= Γ
(

1 +
r

α

) λrΓ (k + r)

Γ (k)
, r ∈ Z+. (4.18)
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Figure 4.9: PDF (4.16) and CDF, respectively, with α = 3, k = 2 and varying λ

Figure 4.10: PDF (4.16) and CDF, respectively, with α = 3, λ = 1 and varying k
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Figure 4.11: PDF (4.16) and CDF, respectively, with k = 2, λ = 1 and varying α

Remark.

Compare figures k α λ Skewness Tails
4.10 and 4.5 Small 3 1 Left Longer
4.10 and 4.5 Large 3 1 Right Shorter
4.11 and 4.6 2 Small 1 Right Shorter
4.11 and 4.6 2 Large 1 Left Longer
4.9 and 4.5 2 3 Small Left Longer
4.9 and 4.5 2 3 Large Right Shorter

Table 4.1: The effect of k on compound-Weibull distribution when compared to the Weibull
distribution

4.2.2 Compound-Rayleigh fading

Let X|θ ∼ Rayleigh (θ) and θ ∼ gamma (k, λ), then X ∼ compRayleigh (k, λ) with shape and scale param-
eters k > 0 and λ > 0, respectively. The PDF is given by substituting (4.7) and (4.4) into (3.1) [9]:

f (x) =

ˆ
θ

f (x|θ) g (θ) dθ

=

ˆ ∞
0

2x

θ
exp

(
−x

2

θ

)
1

Γ (k)λk
θk−1 exp

(
− θ
λ

)
dθ

= 2kλkx
(
λ+ x2

)−(k+1)
, x > 0, (4.19)

which is the PDF of the compound-Weibull distribution with α = 2. Figures 4.12 and 4.13 show the PDF
and CDF with different parameter values.

The MGF is given by letting α = 2 in equation (4.17):

MX (t) =

∞∑
i=0

tiλiΓ
(
1 + i

2

)
Γ (k + i)

i!Γ (k)
, t ≥ 0. (4.20)

Similarly, the rth moment is given by:
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mr = Γ
(

1 +
r

2

) λrΓ (k + r)

Γ (k)
, r ∈ Z+. (4.21)

Figure 4.12: PDF (4.19) and CDF, respectively, with k = 2 and varying λ

Figure 4.13: PDF (4.19) and CDF, respectively, with λ = 1 and varying k

Remark.

Compare figures k λ Skewness Tails
4.13 and 4.4 Small 1 Left Longer
4.13 and 4.4 Large 1 Right Shorter
4.12 and 4.4 2 Small Right Longer
4.12 and 4.4 2 Large Right Shorter

Table 4.2: The effect of k on compound-Rayleigh distribution when compared to the Rayleigh
distribution
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The extra parameter in the compound-Rayleigh may add an extra dimension to modelling wireless
channel fading. This is discussed further in section 7.

4.3 Relationship between fading distributions

Figure 4.14: Relationship between fading distributions

The exponential distribution is a special case of the gamma, Rayleigh, Weibull and Nakagami-m distributions,
as shown in figure 4.14. For the compound distributions, the compound-Rayleigh distribution is a special
case of the compound-Weibull distribution.

4.3.1 Gamma to exponential transformation

Theorem 2 Let X ∼ gamma (k, λ) and let k = 1, then X ∼ exp (λ) .

Proof. Let f (x) be the PDF in (4.4), then if k = 1:

f (x) =
1

Γ (1)λ1
x1−1 exp

(
−x
λ

)
=

1

λ
exp

(
−x
λ

)
, x ≥ 0,

which is the PDF in (4.1). �

4.3.2 Rayleigh to exponential transformation

Theorem 3 Let X ∼ Rayleigh (λ) and let Y = X2 be the transformation from X to Y , then Y ∼ exp(λ).
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Proof. Let f (x) be the PDF in (4.7), then the PDF of Y is given by:

f(y) =
2
√
y

λ
exp

[
−
(√
y
)2

λ

]
|J (x→ y)|

=
2
√
y

λ
exp

(
− y
λ

) ∣∣∣∣ ddy√y
∣∣∣∣

=
2
√
y

λ
exp

(
− y
λ

) 1

2
√
y

=
1

λ
exp

(
− y
λ

)
, y ≥ 0,

which is the PDF in (4.1). �

4.3.3 Weibull to exponential transformation

Theorem 4 Let X ∼Weibull (α, λ) and let α = 1, then X ∼ exp (λ) .

Proof. Let f (x) be the PDF in (4.10), then if α = 1:

f (x) =
1

λ

(x
λ

)1−1

exp

(
−
(x
λ

)1
)

=
1

λ
exp

(
−x
λ

)
, x ≥ 0

which is the PDF in (4.1). �

4.3.4 Nakagami-m to exponential transformation

Theorem 5 Let X ∼ Nakagami (m,λ). Let m = 1 and let Y = X2 be the transformation from X to Y ,
then Y ∼ exp(λ).

Proof. Let f (x) be the PDF in (4.13), then if m = 1:

f (x) =
2× 11x2×1−1

Γ (×)λ1
exp

(
−1× x2

λ

)
=

2x

λ
exp

(
−x

2

λ

)
, x ≥ 0,

which is the PDF of the Rayleigh distribution in (4.7). By Theorem 2, Y ∼ exp(λ). �

4.3.5 Compound-Weibull to compound-Rayleigh

Theorem 6 Let X ∼ compWeibull (α, k, λ)and let α = 2, then X ∼ compRayleigh (k, λ) .

Proof. Let f (x) be the PDF in (4.16), then if α = 2:

f (x) = 2× kλkx2−1
(
λ+ x2

)−(k+1)

= 2kλkx
(
λ+ x2

)−(k+1)
, x ≥ 0,

which is the PDF in (4.19). �
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5 Lognormal shadowing
The PDF of the lognormal distribution with location and scale parameters µ ∈ R and σ2 > 0, respectively,
is given by [7]:

g (λ) =
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
, λ > 0. (5.1)

Figure 5.1 and 5.2 shows the PDF and CDF with different parameter values.

The MGF is undefined for x > 0. The rth moment is defined as [7]:

E [λr] = exp

(
rµ+

r2σ2

2

)
, r ∈ Z+, (5.2)

with mean and variance [7]:

E [λ] = exp

(
µ+

σ2

2

)
, (5.3)

and

var (λ) = exp
(
2µ+ σ2

) [
exp

(
σ2
)
− 1
]
. (5.4)

Figure 5.1: PDF (5.1) and CDF, respectively, with σ = 1 with varying µ

24



Figure 5.2: PDF (5.1) and CDF, respectively, with µ = 0 and varying σ

6 Composite distributions: fading in a lognormally shadowed envi-
ronment

This section explores the theory of composite fading/shadowing distributions, used to model multipath fading
in a shadowed signal environment. As discussed in section 3, this is done by compounding a fading distribution
with lognormal shadowing. Let X|λ have a fading distribution conditioned on its scale parameter λ which
has the shadowing distribution, lognormal with location and scale parameters µ and σ2, respectively.

6.1 Exponential fading with lognormal shadowing
6.1.1 PDF of the composite exponential/lognormal distribution

The PDF of the composite exponential/lognormal distribution with shape parameters µ ∈ R and σ > 0 is
given by substituting (4.1) and (5.1) into (3.1):

h (x) =

ˆ
λ

f (x|λ) g (λ) dλ

=

ˆ ∞
0

1

λ
exp

(
−x
λ

) 1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

ˆ ∞
0

1√
2πλ2σ

exp

(
−x
λ
− (log λ− µ)

2

2σ2

)
dλ, x ≥ 0. (6.1)

Figures 6.1 and 6.2 show the PDF and CDF with different parameter values.
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Figure 6.1: PDF (6.1) and CDF, respectively, with σ = 1 and varying µ

Figure 6.2: PDF (6.1) and CDF, respectively, with µ = 0 and varying σ

6.1.2 MGF of the composite exponential/lognormal distribution

By substituting (4.2) and (5.1) into (3.5) and by (5.2), the MGF is given by:

MX (t) =

ˆ
λ

MX|λ (t) g (λ) dλ

=

ˆ ∞
0

λ

λ− t
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ, t < λ. (6.2)

6.1.3 Moments of the composite exponential/lognormal distribution

By substituting (4.3) and (5.1) into (3.5) and by (5.2), the rth moment is given by:
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mr =

ˆ
λ

mr|λg (λ) dλ

=

ˆ ∞
0

r!λr
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

= r!

ˆ ∞
0

λr
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

= r!E [λr]

= r! exp

(
rµ+

r2σ2

2

)
, r ∈ Z+. (6.3)

By (6.3), the mean and variance can be derived as follows:

E [X] = m1

= 1!× exp

(
1× µ+

12 × σ2

2

)
= exp

(
µ+

σ2

2

)
, (6.4)

and

var (X) = m2 −m2
1

= 2!× exp

(
2× µ+

22 × σ2

2

)
−
[
exp

(
µ+

σ2

2

)]2

= 2 exp
(
2µ+ 2σ2

)
− exp

(
2µ+ σ2

)
= exp

(
2µ+ σ2

) [
2 exp

(
σ2
)
− 1
]
. (6.5)

6.2 Gamma fading with lognormal shadowing
6.2.1 PDF of the composite gamma/lognormal distribution

The PDF of the composite gamma/lognormal distribution with shape parameters k > 0, µ ∈ R and σ > 0 is
given by substituting (4.1) and (5.1) into (3.1):

h (x) =

ˆ
λ

f (x|λ) g (λ) dλ

=

ˆ ∞
0

1

Γ (k)λk
xk−1 exp

(
−x
λ

) 1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

ˆ ∞
0

xk−1

Γ (k)
√

2πλk+1σ
exp

(
−x
λ
− (log λ− µ)

2

2σ2

)
dλ, x > 0, (6.6)

which is the simple case of the generalised gamma fading/shadowing distribution [12]. Figures 6.3, 6.4 and
6.5 show the PDF and CDF with different parameter values.
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Figure 6.3: PDF (6.6) and CDF, respectively, with k = 2, σ = 1 and varying µ

Figure 6.4: PDF (6.6) and CDF, respectively, with k = 2, µ = 0 and varying σ
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Figure 6.5: PDF (6.6) and CDF, respectively, with µ = 0, σ = 1 and varying k

6.2.2 MGF of the composite gamma/lognormal distribution

By substituting (4.5) and (5.1) into (3.5) and by (5.2), the MGF is given by:

MX (t) =

ˆ
λ

MX|λ (t) g (λ) dλ

=

ˆ ∞
0

(1− λt)−k 1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ, t <

1

λ
. (6.7)

6.2.3 Moments of the composite gamma/lognormal distribution

By substituting (4.6) and (5.1) into (3.5) and by (5.2), the rth moment is given by:

mr =

ˆ
λ

mr|λg (λ) dλ

=

ˆ ∞
0

λrΓ (k + r)

Γ (k)

1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

=
Γ (k + r)

Γ (k)

ˆ ∞
0

λr
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=
Γ (k + r)

Γ (k)
E [λr]

=
Γ (k + r)

Γ (k)
exp

(
rµ+

r2σ2

2

)
, r ∈ Z+. (6.8)

By (6.8), the mean and variance can be derived as follows:

E [X] = m1

=
Γ (k + 1)

Γ (k)
exp

(
1× µ+

12 × σ2

2

)
= k exp

(
µ+

σ2

2

)
, (6.9)
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and

var (X) = m2 −m2
1

=
Γ (k + 2)

Γ (k)
exp

(
2× µ+

22 × σ2

2

)
−
[
k exp

(
µ+

σ2

2

)]2

= k (k + 1) exp
(
2µ+ 2σ2

)
− k2 exp

(
2µ+ σ2

)
= exp

(
2µ+ σ2

) [(
k2 + k

)
exp

(
σ2
)
− k2

]
. (6.10)

6.3 Rayleigh fading with lognormal shadowing
6.3.1 PDF of the composite Rayleigh/lognormal distribution

The PDF of the composite Rayleigh/lognormal distribution with shape parameters µ ∈ R and σ > 0 is given
by substituting (4.7) and (5.1) into (3.1):

h (x) =

ˆ
λ

f (x|λ) g (λ) dλ

=

ˆ ∞
0

2x

λ
exp

(
−x

2

λ

)
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

ˆ ∞
0

√
2

π

x

λ2σ
exp

(
−x

2

λ
− (log λ− µ)

2

2σ2

)
dλ, x ≥ 0, (6.11)

which is a reparameterised PDF of the Suzuki distribution given in [15]. Figures 6.6 and 6.7 shows the PDF
and CDF with different parameter values.

Figure 6.6: PDF (6.11) and CDF, respectively, with σ = 1 and varying µ
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Figure 6.7: PDF (6.11) and CDF, respectively, with µ = 0 and varying σ

6.3.2 MGF of the composite Rayleigh/lognormal distribution

By substituting (4.9) and (5.1) into (3.5) and by (5.2), the MGF is given by:

MX (t) =

ˆ
λ

MX|λ (t) g (λ) dλ

=

ˆ ∞
0

{ ∞∑
i=0

tiλ
i
2 Γ
(
1 + i

2

)
i!

}
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

∞∑
i=0

tiΓ
(
1 + i

2

)
i!

ˆ ∞
0

λ
i
2

1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

∞∑
i=0

tiΓ
(
1 + i

2

)
i!

E
[
λ

i
2

]
=

∞∑
i=0

tiΓ
(
1 + i

2

)
i!

exp

(
iµ

2
+
i2σ2

8

)
, t ≥ 0. (6.12)

6.3.3 Moments of the composite Rayleigh/lognormal distribution

By substituting (4.8) and (5.1) into (3.5) and by (5.2), the rth moment is given by:

mr =

ˆ
λ

mr|λg (λ) dλ

=

ˆ ∞
0

λ
r
2 Γ
(

1 +
r

2

) 1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

= Γ
(

1 +
r

2

) ˆ ∞
0

λ
r
2

1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

= Γ
(

1 +
r

2

)
E
[
λ

r
2

]
= Γ

(
1 +

r

2

)
exp

(
rµ

2
+
r2σ2

8

)
, r ∈ Z+. (6.13)
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By (6.13), the mean and variance can be derived as follows:

E [X] = m1

= Γ

(
1 +

1

2

)
exp

(
1× µ

2
+

12 × σ2

8

)
=

√
π

4
exp

(
µ

2
+
σ2

8

)
, (6.14)

and

var (X) = m2 −m2
1

= Γ

(
1 +

2

2

)
exp

(
2× µ

2
+

22 × σ2

8

)
−
[√

π

4
exp

(
µ

2
+
σ2

8

)]2

= exp

(
µ+

σ2

2

)
− π

4
exp

(
µ+

σ2

4

)
= exp

(
µ+

σ2

4

)[
exp

(
σ2

4

)
− π

4

]
. (6.15)

6.4 Weibull fading with lognormal shadowing
6.4.1 PDF of the composite Weibull/lognormal distribution

The PDF of the composite Weibull/lognormal distribution with shape parameters α > 0, µ ∈ R and σ > 0
is given by substituting (4.10) and (5.1) into (3.1):

h (x) =

ˆ
λ

f (x|λ) g (λ) dλ

=

ˆ ∞
0

α

λ

(x
λ

)α−1

exp
(
−
(x
λ

)α) 1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

ˆ ∞
0

αxα−1

√
2πλα+1σ

exp

(
−
(x
λ

)α
− (log λ− µ)

2

2σ2

)
dλ, x > 0, (6.16)

which is similar to the distribution developed in [8]. Figures 6.8, 6.9 and 6.10 show the PDF and CDF with
different parameter values.
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Figure 6.8: PDF (6.16) and CDF, respectively, with α = 3, σ = 1 and varying µ

Figure 6.9: PDF (6.16) and CDF, respectively, with α = 3, µ = 0 and varying σ
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Figure 6.10: PDF (6.16) and CDF, respectively, with µ = 0, σ = 1 and varying α

6.4.2 MGF of the composite Weibull/lognormal distribution

By substituting (4.12) and (5.1) into (3.5) and by (5.2), the MGF is given by:

MX (t) =

ˆ
λ

MX|λ (t) g (λ) dλ

=

ˆ ∞
0

{ ∞∑
i=0

tiλiΓ
(
1 + i

a

)
i!

}
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

∞∑
i=0

tiλiΓ
(
1 + i

a

)
i!

ˆ ∞
0

λi
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

∞∑
i=0

tiλiΓ
(
1 + i

a

)
i!

E
[
λi
]

=

∞∑
i=0

tiλiΓ
(
1 + i

a

)
i!

exp

(
iµ+

i2σ2

2

)
, t ≥ 0. (6.17)

6.4.3 Moments of the composite Weibull/lognormal distribution

By substituting (4.11) and (5.1) into (3.5) and by (5.2), the rth moment is given by:

mr =

ˆ
λ

mr|λg (λ) dλ

=

ˆ ∞
0

λrΓ
(

1 +
r

α

) 1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

= Γ
(

1 +
r

α

)ˆ ∞
0

λr
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

= Γ
(

1 +
r

α

)
E [λr]

= Γ
(

1 +
r

α

)
exp

(
rµ+

r2σ2

2

)
, r ∈ Z+. (6.18)

By (6.18), the mean and variance can be derived as follows:
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E [X] = m1

= Γ

(
1 +

1

α

)
exp

(
1× µ+

12 × σ2

2

)
= Γ

(
1 +

1

α

)
exp

(
µ+

σ2

2

)
, (6.19)

and

var (X) = m2 −m2
1

= Γ

(
1 +

2

α

)
exp

(
2× µ+

22 × σ2

2

)
−
[
Γ

(
1 +

1

α

)
exp

(
µ+

σ2

2

)]2

= Γ

(
1 +

2

α

)
exp

(
2µ+ 2σ2

)
− Γ2

(
1 +

1

α

)
exp

(
2µ+ σ2

)
= exp

(
2µ+ σ2

) [
Γ

(
1 +

2

α

)
exp

(
σ2
)
− Γ2

(
1 +

1

α

)]
. (6.20)

6.5 Nakagami-m fading with lognormal shadowing
6.5.1 PDF of the composite Nakagami-m/lognormal distribution

The PDF of the composite Nakagami-m/lognormal distribution with shape parametersm ≥ 1
2 , µ ∈ R and σ >

0 is given by substituting (4.13) and (5.1) into (3.1):

h (x) =

ˆ
λ

f (x|λ) g (λ) dλ

=

ˆ ∞
0

2mmx2m−1

Γ (m)λm
exp

(
−mx

2

λ

)
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

ˆ ∞
0

2mmx2m−1

√
2πΓ (m)λm+1σ

exp

(
−mx

2

λ
− (log λ− µ)

2

2σ2

)
dλ, x > 0, (6.21)

which is the PDF of the composite Nakagami-m/lognormal channel in [6, 13]. Figures 6.11, 6.12 and 6.13
show the PDF and CDF with different parameter values.

Figure 6.11: PDF (6.21) and CDF, respectively, with m = 2, σ = 1 and varying µ
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Figure 6.12: PDF (6.21) and CDF, respectively, with m = 2, µ = 0 and varying σ

Figure 6.13: PDF (6.21) and CDF, respectively, with µ = 0, σ = 1 and varying m

6.5.2 MGF of the composite Nakagami-m/lognormal distribution

By substituting (4.15) and (5.1) into (3.5) and by (5.2), the MGF is given by:

MX (t) =

ˆ
λ

MX|λ (t) g (λ) dλ

=

ˆ ∞
0

{ ∞∑
i=0

tiλ
i
2 Γ
(
m+ i

2

)
i!m

i
2 Γ (m)

}
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

∞∑
i=0

tiΓ
(
m+ i

2

)
i!m

i
2 Γ (m)

ˆ ∞
0

λ
i
2

1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

∞∑
i=0

tiΓ
(
m+ i

2

)
i!m

i
2 Γ (m)

E
[
λ

i
2

]
=

∞∑
i=0

tiΓ
(
m+ i

2

)
i!m

i
2 Γ (m)

exp

(
iµ

2
+
i2σ2

8

)
, t ≥ 0. (6.22)
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6.5.3 Moments of the composite Nakagami-m/lognormal distribution

By substituting (4.14) and (5.1) into (3.5) and by (5.2), the rth moment is given by:

mr =

ˆ
λ

mr|λg (λ) dλ

=

ˆ ∞
0

λ
r
2 Γ
(
m+ r

2

)
m

r
2 Γ (m)

1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

=
Γ
(
m+ r

2

)
m

r
2 Γ (m)

ˆ ∞
0

λ
r
2

1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

=
Γ
(
m+ r

2

)
m

r
2 Γ (m)

E
[
λ

r
2

]
=

Γ
(
m+ r

2

)
m

r
2 Γ (m)

exp

(
rµ

2
+
r2σ2

8

)
, r ∈ Z+. (6.23)

By (6.23), the mean and variance can be derived as follows:

E [X] = m1

=
Γ
(
m+ 1

2

)
√
mΓ (m)

exp

(
1× µ

2
+

12 × σ2

8

)
=

Γ
(
m+ 1

2

)
√
mΓ (m)

exp

(
µ

2
+
σ2

8

)
, (6.24)

and

var (X) = m2 −m2
1

=
Γ
(
m+ 2

2

)
mΓ (m)

exp

(
2× µ

2
+

22 × σ2

8

)
−

[
Γ
(
m+ 1

2

)
√
mΓ (m)

exp

(
µ

2
+
σ2

8

)]2

=
m!

m× (m− 1)!
exp

(
µ+

σ2

2

)
−

Γ2
(
m+ 1

2

)
mΓ2 (m)

exp

(
µ+

σ2

4

)
= exp

(
µ+

σ2

4

)[
exp

(
σ2

4

)
−

Γ2
(
m+ 1

2

)
mΓ2 (m)

]
. (6.25)

6.6 Compound-Weibull fading with lognormal shadowing
6.6.1 PDF of the composite compound-Weibull/lognormal distribution

The PDF of the composite compound-Weibull/lognormal distribution with shape parameters α, k > 0, µ ∈
R and σ > 0 is given by substituting (4.16) and (5.1) into (3.1):

h (x) =

ˆ
λ

f (x|λ) g (λ) dλ

=

ˆ ∞
0

αkλkxα−1 (λ+ xα)
−(k+1) 1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

ˆ ∞
0

αkλk−1x
(
λ+ x2

)−(k+1)

√
2πσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ, x ≥ 0. (6.26)
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Figures 6.14, 6.15 and 6.16 show the PDF and CDF with different parameter values.

Figure 6.14: PDF (6.26) and CDF, respectively, with α = 3, k = 2, σ = 1 and varying µ

Figure 6.15: PDF (6.26) and CDF, respectively, with α = 3, k = 2, µ = 0 and varying σ
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Figure 6.16: PDF (6.26) and CDF, respectively, with α = 3, µ = 0, σ = 1 and varying k

Figure 6.17: PDF (6.26) and CDF, respectively, with k = 2, µ = 0, σ = 1 and varying α

6.6.2 MGF of the composite compound-Weibull/lognormal distribution

By substituting (4.17) and (5.1) into (3.5) and by (5.2), the MGF is given by:

MX (t) =

ˆ
λ

MX|λ (t) g (λ) dλ

=

ˆ ∞
0

{ ∞∑
i=0

tiλiΓ
(
1 + i

α

)
Γ (k + i)

i!Γ (k)

}
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

∞∑
i=0

tiΓ
(
1 + i

α

)
Γ (k + i)

i!Γ (k)

ˆ ∞
0

λi
1√

2πλσ
exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

∞∑
i=0

tiΓ
(
1 + i

α

)
Γ (k + i)

i!Γ (k)
E
[
λi
]

=

∞∑
i=0

tiΓ
(
1 + i

α

)
Γ (k + i)

i!Γ (k)
exp

(
iµ+

i2σ2

2

)
, t ≥ 0. (6.27)
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6.6.3 Moments of the composite compound-Weibull/lognormal distribution

By substituting (4.18) and (5.1) into (3.5) and by (5.2), the rth moment is given by:

mr =

ˆ
λ

mr|λg (λ) dλ

=

ˆ
λ

Γ
(

1 +
r

α

) λrΓ (k + r)

Γ (k)

1√
2πλσ

exp

(
− (logλ− µ)

2

2σ2

)
dλ

= Γ
(

1 +
r

α

) Γ (k + r)

Γ (k)

ˆ
λ

λr
1√

2πλσ
exp

(
− (logλ− µ)

2

2σ2

)
dλ

= Γ
(

1 +
r

α

) Γ (k + r)

Γ (k)
E [λr]

= Γ
(

1 +
r

α

) Γ (k + r)

Γ (k)
exp

(
rµ+

r2σ2

2

)
, r ∈ Z+. (6.28)

By (6.28), the mean and variance can be derived as follows:

E [X] = m1

= Γ

(
1 +

1

α

)
Γ (k + 1)

Γ (k)
exp

(
1× µ+

12 × σ2

2

)
= kΓ

(
1 +

1

α

)
exp

(
µ+

σ2

2

)
, (6.29)

and

var (X) = m2 −m2
1

= Γ

(
1 +

2

α

)
Γ (k + 2)

Γ (k)
exp

(
2× µ+

22 × σ2

2

)
−
[
kΓ

(
1 +

1

α

)
exp

(
µ+

σ2

2

)]2

= k (k + 1) Γ

(
1 +

2

α

)
exp

(
2µ+ 2σ2

)
− k2Γ2

(
1 +

1

α

)
exp

(
2µ+ σ2

)
= exp

(
2µ+ σ2

) [(
k2 + k

)
Γ

(
1 +

2

α

)
exp

(
σ2
)
− k2Γ2

(
1 +

1

α

)]
. (6.30)

6.7 Compound-Rayleigh fading with lognormal shadowing
6.7.1 PDF of the composite compound-Rayleigh/lognormal distribution

The PDF of the composite compound-Rayleigh/lognormal distribution with shape parameters k > 0, µ ∈
R and σ > 0 is given by substituting (4.19) and (5.1) into (3.1):

h (x) =

ˆ
λ

f (x|λ) g (λ) dλ

=

ˆ ∞
0

2kλkx
(
λ+ x2

)−(k+1) 1√
2πλσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ

=

ˆ ∞
0

√
2kλk−1x

(
λ+ x2

)−(k+1)

√
πσ

exp

(
− (log λ− µ)

2

2σ2

)
dλ, x ≥ 0, (6.31)

which is the PDF of the composite compound-Weibull/lognormal distribution with α = 2. Figures 6.18, 6.19
and 6.20 show the PDF and CDF with different parameter values.
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Figure 6.18: PDF (6.31) and CDF, respectively, with k = 2, σ = 1 and varying µ

Figure 6.19: PDF (6.31) and CDF, respectively, with k = 2, µ = 0 and varying σ
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Figure 6.20: PDF (6.31) and CDF, respectively, with µ = 0, σ = 1 and varying k

6.7.2 MGF of the composite compound-Rayleigh/lognormal distribution

The MGF is given by letting α = 2 in equation (6.27):

MX (t) =

∞∑
i=0

tiΓ
(
1 + i

2

)
Γ (k + i)

i!Γ (k)
exp

(
iµ+

i2σ2

2

)
, t ≥ 0. (6.32)

6.7.3 Moments of the composite compound-Rayleigh/lognormal distribution

The rth moment is given by letting α = 2 in equation (6.28):

mr = Γ
(

1 +
r

2

) Γ (k + r)

Γ (k)
exp

(
rµ+

r2σ2

2

)
, r ∈ Z+. (6.33)

By (6.33), the mean and variance can be derived as follows:

E [X] = m1

= Γ

(
1 +

1

2

)
Γ (k + 1)

Γ (k)
exp

(
1× µ+

12 × σ2

2

)
=

√
π

4
k exp

(
µ+

σ2

2

)
, (6.34)

and

var (X) = m2 −m2
1

= Γ

(
1 +

2

2

)
Γ (k + 2)

Γ (k)
exp

(
2× µ+

22 × σ2

2

)
−
[√

π

4
k exp

(
µ+

σ2

2

)]2

= k (k + 1) exp
(
2µ+ 2σ2

)
− π

4
k2 exp

(
2µ+ σ2

)
= exp

(
2µ+ σ2

) [(
k2 + k

)
exp

(
σ2
)
− π

4
k2
]
. (6.35)
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7 Application to wireless communication systems

7.1 Amplitude of of composite fading/shadowing channels
In the context of wireless communications, amplitude is defined as the wave deviation from the mean level of
a signal [4]. The distributions discussed in section 4 are used to model the amplitude of the signal, exposed
to fading, in a wireless communication system [13]. In a system exposed to fading and shadowing, amplitude
is modelled using the composite distributions discussed in section 6.

7.2 Signal-to-noise ratio of composite fading/shadowing channels
The SNR of a fading signal in a shadowed environment is modelled by the composite fading/shadowing
distributions discussed in section 6, whereby SNR, denoted by ω, has the fading distribution and average
SNR, denoted by ω̄, has the shadowing distribution [13]. Table 7.2 shows how the SNR distribution of the
composite channel is formulated.

7.2.1 Appropriateness of SNR distribution

In order to assess whether the distributions discussed in this section are good SNR distributions, each must
meet the following requirement: the fading (scale) parameter λ must be equal to the mean-square value of
the amplitude, i.e. λ = E

[
X2
]

= m2, where X is the fading amplitude with PDF f (x) [13]. Table 7.1 gives
the results of this test. The m2 for each fading distribution was obtained using the rth moments defined in
section 4.

Fading distribution m2 SNR distribution
Exponential 2λ2 No
Gamma

(
k2 + k

)
λ2 No

Rayleigh λ Yes
Weibull Γ

(
1 + 2

α

)
λ2 No

Nakagami-m λ Yes
Compound-Weibull

(
k2 + k

)
Γ
(
1 + 2

α

)
λ2 No

Compound-Rayleigh
(
k2 + k

)
λ2 or kλ (reparameterised) Possibly

Table 7.1: Testing appropriateness of SNR distributions

The Rayleigh and Nakagami-m distributions fit the requirement (as suggested in [13]) and the result for the
compound-Rayleigh distribution gives speculative suggestion that this may be a suitable fading distribution.
Therefore, only the SNR distributions of the Rayleigh/lognormal, Nakagami-m/lognormal and compound-
Rayleigh/lognormal distributions are investigated.

7.2.2 Mean SNR (ω̄) distribution

s (ω|ω̄) PDF of the conditional fading SNR distribution of ω|ω̄
g (ω̄) PDF of the shadowing SNR distribution of ω̄
p (ω) PDF of the composite SNR distribution of ω

Table 7.2: Construction of the composite SNR distribution

The SNR is measured in decibels, therefore the lognormal shadowing distribution must be formulated in
terms of decibels. The PDF of the average SNR distribution is given by [13]:

g (ω̄) =
ξ√

2πω̄σ
exp

(
− (10 log10 ω̄ − µ)

2

2σ2

)
, ω̄ > 0, (7.1)

43



where ξ = 10
log 10 = 4.3429, and µ ∈ R and σ2 > 0 are the mean and variance of 10 log10 ω̄, respectively [13].

The rth moment of this lognormal distribution is given by [13]:

E [ω̄r] = exp

(
rµ

ξ
+
r2σ2

2ξ2

)
, r ∈ Z+,

and therefore with mean and variance (by substitution of r and since var (ω̄) = E
[
ω̄2
]
− (E [ω̄])

2):

E [ω̄] = exp

(
µ

ξ
+

σ2

2ξ2

)
, (7.2)

and

var (ω̄) = exp

(
2µ

ξ
+
σ2

ξ2

)[
exp

(
σ2

ξ2

)
− 1

]
. (7.3)

The PDF of the SNR, ω, distribution of any fading channel X with PDF f (x) is derived using the transfor-
mation, ω = ω̄X2

λ [13]. Therefore:

s (ω) =

fX

(√
λω
ω̄

)
2
√

ωω̄
λ

(7.4)

The mean and variance of the SNR can also be derived using this transformation and the following theorem:

Theorem 7

LetX be a random variable with PDF h (x) and let ω be SNR random variable with PDF h (ω). Let ω = ω̄X2

λ .
Then

E [ω] =
m2

λ
exp

(
µ

ξ
+

σ2

2ξ2

)
(7.5)

and

var (ω) =
1

λ2
exp

(
2µ

ξ
+
σ2

ξ2

)[
m4 exp

(
2µ

ξ
+
σ2

ξ2

)
−m2

2

]
(7.6)

Proof. The expected value of ω is

E [ω] = E
[
ω̄X2

λ

]
=

ˆ
ω̄

E
[
ω̄X2

λ
|ω̄
]
g (ω̄) dω̄, by Theorem 1,

=

ˆ
ω̄

1

λ
E
[
X2
]
ω̄g (ω̄) dω̄

=
m2

λ

ˆ
ω̄

ω̄g (ω̄) dω̄

=
m2

λ
E [ω̄]

=
m2

λ
exp

(
µ

ξ
+

σ2

2ξ2

)
, by equation 7.2,
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and the variance of ω is

var (ω) = E
[
ω2
]
− (E [ω])

2

= E

[(
ω̄X2

λ

)2
]
−
(
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λ
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(
µ

ξ
+
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))2

=
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λ

)2

|ω̄

]
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2
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(
2µ

ξ
+
σ2

ξ2

)
, by Theorem 1,

=

ˆ
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m4

λ2
ω̄2g (ω̄) dω̄ − m2

2

λ2
exp

(
2µ

ξ
+
σ2

ξ2

)
=

m4

λ2

ˆ
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2

λ2
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(
2µ

ξ
+
σ2

ξ2

)
=

1

λ2

[
m4E

[
ω̄2
]
−m2

2 exp

(
2µ

ξ
+
σ2

ξ2

)]
=

1

λ2

[
m4 exp

(
2µ

ξ
+

2σ2

ξ2

)
−m2

2 exp

(
2µ

ξ
+
σ2

ξ2

)]
, by equation 7.3,

=
1

λ2
exp

(
2µ

ξ
+
σ2

ξ2

)[
m4 exp

(
σ2

ξ2

)
−m2

2

]
,

which proves the result. �

7.2.3 SNR distribution of the composite Rayleigh/lognormal channel

By (7.4), the PDF of the SNR of the Rayleigh fading component is given by:

s (ω) =

fX

(√
λω
ω̄

)
2
√

ωω̄
λ

=
2
√

λω
ω̄

λ
exp

−
(√

λω
ω̄

)2

λ


√
λ

2
√
ωω̄

=
2
√
ω√
λω̄

exp

−
(√

λω
ω̄

)2

λ


√
λ

2
√
ωω̄

=
1

ω̄
exp

(
−ω
ω̄

)
, ω > 0. (7.7)

Therefore the SNR distribution of Rayleigh fading is exponential with scale parameter ω̄ > 0. This is the
result obtained in [13].

The PDF of the composite Rayleigh/lognormal SNR distribution is given by substituting (7.7) and (7.1)
into (3.1):
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p (ω) =

ˆ
ω̄

f (ω|ω̄) g (ω̄) dω̄

=

ˆ ∞
0

1

ω̄
exp

(
−ω
ω̄

) ξ√
2πω̄σ

exp

(
− (10 log10 ω̄ − µ)

2

2σ2

)
dω̄

=

ˆ ∞
0

ξ√
2πω̄2σ

exp

(
−ω
ω̄
− (10 log10 ω̄ − µ)

2

2σ2

)
dω̄, ω̄ > 0, (7.8)

which shows that the SNR distribution is composite exponential/lognormal with shape parameters µ ∈
R and σ > 0 (in decibels). This distribution is described in [13].

The mean and variance of the SNR is given by substituting (4.8) into (7.5) and (7.6), respectively:

E [ω] =
m2

λ
exp

(
µ

ξ
+

σ2

2ξ2

)
=

1

λ
λ

2
2 Γ

(
1 +

2

2

)
exp

(
µ

ξ
+

σ2

2ξ2

)
= exp

(
µ

ξ
+

σ2

2ξ2

)
,

and

var (ω) =
1
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exp

(
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ξ
+
σ2

ξ2

)[
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(
σ2
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)
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2

]
=

1
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(
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ξ
+
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λ

4
2 Γ

(
1 +

4

2

)
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(
σ2
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)
−
(
λ

2
2 Γ

(
1 +

2

2

))2
]

= exp

(
2µ

ξ
+
σ2

ξ2

)[
2 exp

(
σ2

ξ2

)
− 1

]
.

7.2.4 SNR distribution of the composite Nakagami-m/lognormal channel

By (7.4), the PDF of the SNR of the Nakagami-m fading component is given by:
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s (ω) =

fX
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)
2
√

ωω̄
λ

=

2mm

(√
λω
ω̄

)2m−1

Γ (m)λm
exp

−
m

(√
λω
ω̄

)2

λ


√
λ

2
√
ωω̄

=
2mmλmωm

√
ω̄

Γ (m)λmω̄m
√
λω

exp

−
m

(√
λω
ω̄

)2

λ


√
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−
m

(√
λω
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)2

λ
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mmωm−1

Γ (m) ω̄m
exp

(
−mω

ω̄

)
, ω > 0. (7.9)

Therefore the SNR distribution of Nakagami-m fading is gamma with shape and scale parameter m > 0 and
ω̄
m > 0. This is the result obtained in [13].

The PDF of the composite Nakagami-m/lognormal SNR distribution is given by substituting (7.9) and
(7.1) into (3.1):

p (ω) =

ˆ
ω̄

f (ω|ω̄) g (ω̄) dω̄

=

ˆ ∞
0

mmωm−1

Γ (m) ω̄m
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(
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2πω̄σ
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(
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2
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)
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=

ˆ ∞
0

ξmmωm−1

√
2πΓ (m) ω̄m+1σ
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(
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2

2σ2

)
dω̄, ω̄ > 0, (7.10)

which shows that the SNR distribution is composite gamma/lognormal with shape parameters m > 0, µ ∈
R and σ > 0 (in decibels). This distribution is described in [13].

The mean and variance of the SNR is given by substituting (4.14) into (7.5) and (7.6), respectively:

E [ω] =
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λ
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µ

ξ
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(
µ

ξ
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)
= exp

(
µ

ξ
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)
,
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and

var (ω) =
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ξ
+
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4
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2
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(
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= exp
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(
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)
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]
= exp

(
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ξ
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m
exp

(
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)
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]
.

7.2.5 SNR distribution of the composite compound-Rayleigh/lognormal channel

By (7.4), the PDF of the SNR of the compound-Rayleigh fading component is given by:

s (ω) =

fX

(√
λω
ω̄

)
2
√

ωω̄
λ

= 2kλk
√
λω

ω̄

λ+
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√
ωω̄

=
k
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(
1 +

ω

ω̄

)−(k+1)

, ω > 0, (7.11)

with shape and scale parameters k > 0 and ω̄ > 0, respectively.

The PDF of the composite compound-Rayleigh/lognormal SNR distribution is given by substituting (7.11)
and (7.1) into (3.1):

p (ω) =

ˆ
ω̄

f (ω|ω̄) g (ω̄) dω̄

=

ˆ ∞
0

k

ω̄

(
1 +

ω

ω̄

)−(k+1) ξ√
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(
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(
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ω

ω̄
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exp

(
− (10 log10 ω̄ − µ)

2

2σ2

)
dω̄, ω̄ > 0, (7.12)

with shape parameters k > 0, µ ∈ R and σ > 0 (in decibels).
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The mean and variance of the SNR is given by substituting (4.21) into (7.5) and (7.6), respectively:

E [ω] =
m2
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µ
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=
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1 +
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, (7.13)

and
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. (7.14)

The expressions in (7.13) and (7.14) contradict the requirement for this to be a good SNR distribution. After
reparameterisation the rth moment of the compound-Rayleigh is derived similarly to (4.21), using (4.8):
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, r ∈ Z+. (7.15)

The mean and variance of the SNR of the reparameterised compound-Rayleigh/lognormal are derived simi-
larly to (7.13) and (7.14):
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,
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and
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7.3 Outage probability (Pout)

The SNR distribution of the composite distribution is used to find the outage probability of the corresponding
channel. The outage probability is equal to the CDF of the target SNR [11, 13, 18, 19]:

Pout = P (ω0)

where ω0 is the threshold SNR value.

The rest of this section shows the behaviour of the SNR distributions in section 7.2 from the outage proba-
bility. For a given threshold ω0, the parameter choice which results in a lower outage probability is deemed
preferable.

7.3.1 Pout of the composite Rayleigh/lognormal channel (7.8)

Figure 7.1: Outage probability with σ = 1 and varying µ
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Figure 7.2: Outage probability with µ = 0 and varying σ

7.3.2 Pout of the composite Nakagami-m/lognormal channel (7.10)

Figure 7.3: Outage probability with m = 2, σ = 1 and varying µ
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Figure 7.4: Outage probability with m = 2, µ = 0 and varying σ

Figure 7.5: Outage probability with µ = 0, σ = 1 and varying m
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7.3.3 Pout of the composite compound-Rayleigh/lognormal channel (7.12)

Figure 7.6: Outage probability with k = 2, σ = 1 and varying µ

Figure 7.7: Outage probability with k = 2, µ = 0 and varying σ
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Figure 7.8: Outage probability with µ = 0, σ = 1 and varying k

7.3.4 Appropriateness of the compound-Rayleigh distribution to assess outage probability

Figure 7.9: Outage probability with µ = 0, σ = 1 and varying k

The outage probability of the compound-Rayleigh/lognormal distribution is lower than that of the Rayleigh/lognormal
distribution for values of k < 1.5. This distribution may be suitable with an appropriate choice of k.
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8 Conclusion
This study gave a full breakdown of the construction of composite fading/shadowing distributions. Distribu-
tions belonging to the regular exponential class and two new distributions were described and construction
in the composite paradigm were motivated. The PDF, MGF and moments were derived for each of these
composite fading/shadowing distributions. The theory and application of these new distributions have made
contributions to the wireless communications arena. The literature was further enriched with derivation of
the corresponding signal-to-noise ratio distributions for some of these distributions, namely the composite
Rayleigh/lognormal, Nakagami-m/lognormal and compound-Rayleigh/lognormal distributions. These dis-
tributions have been comparatively investigated in terms of their outage probability. It is recommended
that the compound-Rayleigh/lognormal distribution can be investigated further as a viable composite fad-
ing/shadowing distribution to model wireless channels and evaluate their performance through outage prob-
ability.
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Appendix

Formulas
Error function [10]

erf (y) =
2√
π

ˆ y

0

exp
(
−u2

)
du

Taylor series for exponential function [5]

exp (tx) = 1 + tx+
(tx)

2

2!
+

(tx)
3

3!
+ · · ·

=

∞∑
i=0

(tx)
i

i!
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SAS Code
This appendix gives the code for graphing the PDFs and CDFs of the compound-Weibull and compound-
Weibull/lognormal distributions since these have the largest number of parameters out of all the fading and
composite distributions, respectively. This code can be adapted to all the distributions in this study. The
code is for varying values of λ and µ, respectively, and can be adapted to all parameters.

Compound-Weibull distribution

*Varying values of lambda;

proc iml;

start f(x, alpha, k, lambda); *Define function;
v = alpha*k*lambda**k*x**(alpha-1)*(lambda+x**alpha)**(-k-1); *Fading distribution PDF;
return(v);
finish;

alpha = 3; *Set parameter values;
k = 2;
lambda_v = {0.5,1,2,5,10}; *Varying parameter values;
do i = 1 to nrow(lambda_v);
lambda = lambda_v[i];
do x = 0 to 5 by 0.01;
z = f(x, alpha, k, lambda);
z_vec = z_vec//z; *Creates PDF values;
x_vec = x_vec//x; *Vector of X values;
end;
cdf = cusum(z_vec)/max(cusum(z_vec)); *Creates CDF values;
density = x_vec||z_vec||cdf; *Creates matrix with X, PDF and CDF values;
density1 = density1||density; *Creates matrix with X, PDF and CDF values for all lambda;
free density;
free z_vec;
free x_vec;
free cdf;
end;

create plot1 from density1[colname = {’x1’ ’fx1’ ’CDF1’ ’x2’ ’fx2’ ’CDF2’
’x3’ ’fx3’ ’CDF3’ ’x4’ ’fx4’ ’CDF4’ ’x5’ ’fx5’ ’CDF5’}];
append from density1;
close;
quit;

goptions reset = all;
ods escapechar="~";
proc sgplot data = plot1; *Plot of PDF;
series x=x1 y=fx1 / lineattrs=(thickness=2) legendlabel="0.5";
series x=x2 y=fx2 / lineattrs=(thickness=2) legendlabel="1";
series x=x3 y=fx3 / lineattrs=(thickness=2) legendlabel="2";
series x=x4 y=fx4 / lineattrs=(thickness=2) legendlabel="5";
series x=x5 y=fx5 / lineattrs=(thickness=2) legendlabel="10";
xaxis min=0 max=5 label="x";
yaxis min=0 max=2 label="Probability density function, f(x)";
keylegend /
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across=1 border location=inside position=topright title="~{unicode lambda}";
run;
proc sgplot data = plot1; *Plot of CDF;
series x=x1 y=cdf1 / lineattrs=(thickness=2) legendlabel="0.5";
series x=x2 y=cdf2 / lineattrs=(thickness=2) legendlabel="1";
series x=x3 y=cdf3 / lineattrs=(thickness=2) legendlabel="2";
series x=x4 y=cdf4 / lineattrs=(thickness=2) legendlabel="5";
series x=x5 y=cdf5 / lineattrs=(thickness=2) legendlabel="10";
xaxis min=0 max=5 label="x";
yaxis min=0 max=1 label="Cumulative distribution function, F(x)";
keylegend / across=1 border location=inside position=bottomright title="~{unicode lambda}";
run;

Compound-Weibull/lognormal distribution

*Varying values of mu;

proc iml;
*Define function with global variable since;
start f(lambda) global(x_, alpha_, k_, mu_, sigma_);
p = constant("Pi");
x = x_;
alpha = alpha_;
k = k_;
mu = mu_;
sigma = sigma_;
v = alpha*k*lambda**k*x**(alpha-1)*(lambda+x**alpha)**(-k-1)/(sqrt(2*p)*sigma*lambda)
*exp(-0.5*((log(lambda)-mu)/sigma)**2); *Composite PDF without integral;
return (v);
finish;

alpha_ = 3; *Set parameter values;
k_ = 2;
sigma_ = 1;
mu = {-5,-1,0,1,5}; *Varying parameter values;
do i = 1 to nrow(mu);
mu_ = mu[i];
a = {0 .P}; *Set integral bounds;
z_vec = J(1,1,.);
x_vec = J(1,1,0);
do x_ = 0.001 to 5 by 0.01;
call quad(z, "f", a); *Integrate over lambda to obtain the composite PDF;
z_vec = z_vec//z; *Creates PDF values;
x_vec = x_vec//x_; *Vector of X values;
end;
cdf = cusum(z_vec)/max(cusum(z_vec)); *Creates CDF values;
density = x_vec||z_vec||cdf; *Creates matrix with X, PDF and CDF values;
density1 = density1||density; *Creates matrix with X, PDF and CDF values for all mu;
free density;
free z_vec;
free x_vec;
free cdf;
end;
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create plot1 from density1[colname = {’x1’ ’fx1’ ’CDF1’ ’x2’ ’fx2’ ’CDF2’
’x3’ ’fx3’ ’CDF3’ ’x4’ ’fx4’ ’CDF4’ ’x5’ ’fx5’ ’CDF5’}];
append from density1;
close;
quit;

goptions reset = all;
ods escapechar=’~’;
proc sgplot data = plot1; *Plot of PDF;
series x=x1 y=fx1 / lineattrs=(thickness=2) legendlabel="-5";
series x=x2 y=fx2 / lineattrs=(thickness=2) legendlabel="-1";
series x=x3 y=fx3 / lineattrs=(thickness=2) legendlabel="0";
series x=x4 y=fx4 / lineattrs=(thickness=2) legendlabel="1";
series x=x5 y=fx5 / lineattrs=(thickness=2) legendlabel="5";
xaxis min=0 max=5 label="x";
yaxis min=0 max=2 label="Probability density function, f(x)";
keylegend /
across=1 border location=inside position=topright title="~{unicode mu}";
run;
proc sgplot data = plot1; *Plot of CDF;
series x=x1 y=cdf1 / lineattrs=(thickness=2) legendlabel="-5";
series x=x2 y=cdf2 / lineattrs=(thickness=2) legendlabel="-1";
series x=x3 y=cdf3 / lineattrs=(thickness=2) legendlabel="0";
series x=x4 y=cdf4 / lineattrs=(thickness=2) legendlabel="1";
series x=x5 y=cdf5 / lineattrs=(thickness=2) legendlabel="5";
xaxis min=0 max=5 label="x";
yaxis min=0 max=1 label="Cumulative distribution function, F(x)";
keylegend / across=1 border location=inside position=bottomright title="~{unicode mu}";
run;
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