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Abstract

To measure the performance of a country's economy, it is preferred to use the gross domestic product
(GDP) index. The analysis of GDP is carried out by adopting a relevant time series model. However,
the stationarity of this model plays an important role in forecasting. For the purpose of identifying an
accurate time series model to analyse the Real GDP of South Africa, we will be testing whether the time
series model for the Real GDP is stationary for the period of 19 years, i.e from 1995 to 2014. In this
respect, we brie�y review some methods of measuring the stationarity of a time series model and apply
relevant methods to the data set.

2



Declaration

I, Larúchelle de Almeida, declare that this essay, submitted in partial ful�lment of the degree BCom(Hons)
Statistics at the University of Pretoria, is my own work and has not been previously submitted at this or any
other tertiary institution.

_____________________________
Larúchelle de Almeida

_____________________________
Janet van Niekerk

_____________________________
Date

3



Contents

1 Introduction 6

2 Background Theories 6
2.1 Gross Domestic Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Stochastic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Linear Time Trend vs. Exponential Time Trends . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 ARMA(p, q) Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Implications of external shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.6 Stationarity tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.7 ARCH(q) and GARCH(q,p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.8 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Application 15
3.1 Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Time plot of Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Seasonal-trend Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Testing for stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 ADF test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 KPSS test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Testing for Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Tentative Order Selection tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5 ACF and PACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.6 The model and Residual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.7 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Conclusion 25

5 Appendix 27

List of Figures

1 Quarterly South Africa Real GDP from 1995 to 2014 . . . . . . . . . . . . . . . . . . . . . . 16
2 Seasonal-trend decomposition by loess smoothing . . . . . . . . . . . . . . . . . . . . . . . . 16
3 QQ-Plot of Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 QQ-Plot of ∆Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Correlation plots of ∆Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 South Africa Quarterly 4Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Diagnostics of Residuals for 4Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8 Forecasting ∆Real GDP with AR(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9 Forecasting ∆Real GDP with ARCH(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10 Comparison of AR(1) and ARCH(1) forecasting of Real GDP . . . . . . . . . . . . . . . . . . 24
11 Magni�ed Window of Forecasted AR(1) and ARCH(1) for t=30 . . . . . . . . . . . . . . . . . 25

List of Tables

1 Calculating Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 SCAN method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 ESACF method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Results of regression coe�cient-based test and the studentised test . . . . . . . . . . . . . . . 18

4



5 Results of �rst di�erence of regression coe�cient-based test and the studentised test . . . . . 18
6 KPSS test - Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 KPSS test - 4Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Normality test of Real GDP and 4Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9 SCAN method of ∆Real GDP-Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10 SCAN method of ∆Real GDP-Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11 ESACF method - ∆Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
12 MINIC method-∆Real GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5



1 Introduction

Gross domestic product (GDP) is a measure to describe how well a country's economy is performing. The
main purpose of GDP is to summarize di�erent types of data into one single monetary value to represent
economic activity for a given period of time [12]. GDP can be calculated by three methods namely: the income
method, production method and the expenditure method. The expenditure method is most frequently used,
as it is the summation of all spending on �nal goods and services by households, businesses and government
that have occurred in a given year [22].

The GDP will be analysed through time series analysis, primarily focusing on whether GDP is a stationary
time series model and the consequence thereof. Modelling the GDP correctly whether stationary or non-
stationary will have important implications on forecasting, testing and macroeconomic policy [7]. One such
important implication is in correctly determining business cycles, as portfolio managers and investors use
business cycles to position their investments correctly [11].

Various statistical and mathematical procedures will be used to determine whether South African GDP
exhibits stationary or non-stationary characteristics. The Dickey-Fuller test will be applied to see if the GDP
process possesses any unit roots, if the process has a unit root then it is a non-stationary process [8]. Further
analysis will depend on the �ndings of stationarity.

Based on �ndings the appropriate autoregressive-moving average (ARMA) model will be applied (in case
of a stationary process). Should it otherwise be observed that the GDP process is non-stationary, it will be
determined if the trend or di�erence stationary model best �ts.

In the following section certain concepts about the GDP and time series will be explained and the ap-
plication will follow to determine the time series characteristics of the South African GDP. There has not
been su�cient research especially on the South African GDP regarding stationarity. However, there has been
in-depth research on numerous other countries' GDP, which has found that their GDP is non-stationary. In
this research report it will be concluded whether the South African GDP exhibits stationarity.

2 Background Theories

In this section certain key concepts will be explained and reviewed to better understand the background of
GDP and time series.

2.1 Gross Domestic Product

The GDP is a very important �nancial indicator when analysing a country's economic output. Below it will
be explained what GDP is, how to calculate it and the importance thereof.

De�nition 1. The GDP is de�ned as the total market value of all �nal goods and services produced annually
within the boundaries of a country, whether by the country itself or foreign-supplied resources [22].

The expenditure method will be used in the analysis and is the most widely used method for calculating
GDP and can be formulated as follows:

GDP (E) = C + I +G+ (X − Z) , (2.1)

where

� C = Final consumption expenditure by households

� I = Gross capital formation

� G =Final consumption expenditure by general government

� X = Exports of goods and services
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� Z = Imports of goods and services

There are however two di�erent categories in reporting GDP, namely nominal GDP and real GDP. Nominal
GDP is based on the prices that prevailed when the output was produced [14], whereas real GDP re�ects
changes in price levels. GDP is de�ated or in�ated to re�ect changes in price levels. The relationship between
nominal and real GDP is best explained by (2.2).

Real GDP =
Nominal GDP

GDP Deflator
(2.2)

Nominal GDP (R millions) GDP De�ator (2005=100) Real GDP (R millions) (constant 2005 prices)
2003 1 272 537 89.15 1 427 332
2004 1 415 273 94.84 1 492 330
2005 1 571 082 100.00 1 571 082
2006 1 767 422 106.53 1 659 121

Table 1: Calculating Real GDP

Source: SARB Quarterly Bulletin, March 2010

When calculating the Real GDP using (2.2), it is necessary to select a base year. In table [1] , 2005 was
chosen as the base year and the GDP de�ator for the base year will always be 100 [14]. Real GDP provides a
better picture of the actual economic activity in a country as prices of goods are adjusted for in�ation. Once
a series of �gures is collected over time, the �gures can be compared and economists can determine business
cycles. Business cycles play a key part in establishing when an economy is expanding or contracting. Business
cycles are usually associated with economic instability and have four stages; peaks, recessions, troughs and
expansions which usually proceed in that order [12]. With this information the country's economic status can
be determined. To know whether a country is economically stable and has a positive growth rate is especially
important for domestic and foreign investors. Any investor would want to know if the country he or she is
investing in will deliver positive real returns.

2.2 Time series

A time series is broadly de�ned as a record of values of any sporadic variable measured at di�erent time
points. An important feature of time series is that in a majority of time series there are values recorded
at di�erent points in time that are partly in�uenced by some random mechanism [8]. There are two widely
known fundamental assumptions for statistical analysis of time series; namely that (i) a series is stationary,
if not it can be transformed into a stationary series and (ii) the series converges to a linear model [18].

2.2.1 Stochastic Process

A stochastic process is de�ned as a collection of random variables{Wt : t ε T} where t is the indexing parameter
and some element of the set T , the parameter space. Now suppose we have some random variable Wt, of
which we have an observed sample of size T , then the sample is given by:

{w1, w2, w3, . . . , wT } (2.3)

For example, consider a collection of T independent and identically distributed (i.i.d) variables εt,

{ε1, ε2, ε3, . . . , εT } , (2.4)

with

εt ∼ N
(
0, σ2

)
.
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Representation (2.4) is referred to as a sample of size T from a Gaussian white noise process, which is
de�ned as

E(εt) = 0 (2.5)

E(ε2
t ) = σ2 (2.6)

E(εtει) = 0 for t 6= ι (2.7)

The observed sample (2.3) represents only one possible outcome of the underlying stochastic process that
generated data. The observed sample can be observed for an in�nite period of time and can be displayed in
sequence

{wt}∞t=−∞ = {..., w−t, w0, w1, ..., wT , wT+1, wT+2, ...} .

The random variable, wt, also has some density function, denoted fWt(wt), which is called the uncondi-
tional density function of Wt, is given by

fWt (wt) =
1

σ»2π
exp

[
−w2

t

2σ2

]
.

For example, if {Wt}∞t=−∞ represents the sum of a constant µ plus a Gaussian white noise process
{εt}∞t=−∞ [8], then

Wt = µ+ εt, (2.8)

with expected value

E (Wt) = µ, E (εt) = µ. (2.9)

If Wt is a time trend plus a Gaussian white noise, it follows

Wt = βt+ εt (2.10)

and the expected value is

E (Wt) = βt. (2.11)

For emphasis the expectation E (Wt) is called the unconditional mean of Wt to allow for the possibility
that the mean can be a function of time t. The unconditional mean is denoted by µt:

E (Wt) = µt (2.12)

The constant mean, µ (2.9) , is not a function of time, while the time varying mean, µt (2.12), is a function
of time.

2.2.2 Stationarity

Many time series in macroeconomics and �nance are non-stationary, the precise form of the non-stationarity
is a widely debated topic [9].

De�nition 2. The jth autocovariance, γjt, of a stochastic process Wt is the covariance between the value at
time t and t− j, where j < t. The stochastic process Wt is said to be stationary if neither the mean µt, nor
the autocovariance γjt depend on time t, then the process Wt is said to be covariance-stationary or weakly
stationary [8] :
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E(Wt) = µ for all t

E(Wt − µ)(Wt−j − µ) = γj for all t and any j

Thus (2.8) is stationary whereas the process (2.10) is non-stationary since its mean, βt, is a function of
time. Note that if a process is covariance-stationary, the covariance between Wt and Wt−j depends only on
j, the length of the interval. A process is only weakly stationary if all the Wt's have the same mean values
and if the process is covariance stationary. Another concept to take note of is strict stationarity.

De�nition 3. A process is said to be strictly stationary if, for any values of j1, j2, . . . , jn the joint distribution
of (Wt,Wt+j1 ,Wt+j2 , . . . ,Wt+jn) depends only on the intervals separating the dates (j1, j2, . . . , jn) and not
the date itself (t).

In this article when it is said a process is stationary it is taken to mean a covariance-stationary process.
The simplest generated time series is a white noise process, denoted by wt which consists of independent
random variables. The Gaussian white noise process (2.8) is said to be covariance-stationary when

E(Wt) = µ

E(Wt − µ)(Wt−j − µ) =

{
σ2 for j = 0

0 for j 6= 0

By contrast the process of (2.10) is not covariance stationary, since it is a function of time.

A non-stationary time series arises more than one would expect. To explain non-stationarity, a univariate
time series model will be used that can be written in the following form:

wt = µ+ εt + ψ1εt−1 + ψ2εt−2 + · · · = µ+ ψ (L) εt (2.13)

where
∑∞
j=0 |ψj | <∞, the roots of ψ (L) = 0 are outside the unit circle, and {εt} is a Gaussian white noise

sequence with mean zero and variance σ2. The expected value of wt is constant and the forecast converges to
the unconditional mean, µ. These are unappealing assumptions for many economic time series encountered
in the real world [8]. There are two approaches to trends:

The �rst is the unit root process,

(1− L)wt = δ + ψ(L)εt (2.14)

where ψ (1) 6= 0 and (1− L) is the �rst-di�erence operator. The �rst-di�erence operator will further be
indicated by the Greek symbol ∆.

∆wt ≡ wt − wt−1.

A stationary representation of the univariate time series (2.13) for a unit root process describes changes
in the series. The classical example of a unit root process is achieved when setting ψ (L) equal to 1 in (2.14):

wt = wt−1 + δ + εt (2.15)

where the mean of ∆wt is denoted by δ rather than µ. The process (2.15) is known as a random walk
with drift δ. A unit root process is also widely known as a di�erence-stationary process.

The second type of approach in describing a trend is to include a deterministic time trend, in (2.13):

wt = α+ δt+ ψ (L) εt. (2.16)

The mean µ of the stationary process (2.13) is replaced by a linear function of the time t. This process is
also known as trend stationary. When the trend δt is subtracted from (2.16) the result is a stationary process
[8].
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2.2.3 Linear Time Trend vs. Exponential Time Trends

The deterministic time trend (2.16) is speci�ed as a linear function of time (δt) rather than a quadratic
(δt+γt2) or exponential (eδt) function of time. This is in contrast to time trends seen in economic and �nancial
time series. It is widely noted that economic and �nancial time series trends will be better characterised by
exponential trends than linear trends. A key characteristic of exponential growth is that it exhibits constant
proportional growth, if

wt = eδt (2.17)

dw/dt = δ.wt .

Economists simply assume growth as exponential growth, as it is often con�rmed by visual inspection of the
time series. By taking the natural logarithm of the exponential trend, it reduces to a linear trend (2.17),

log(wt) = δt .

Thus, it is common to take the natural logarithms of the data before attempting to describe them [8].

2.2.4 ARMA(p, q) Process

In this section a more general class of ARMA(p, q) processes is investigated. Note that the ARMA(p, q) process
is found by joining two time series processes AR(p) and MA(q). It is complex to detect a pure AR(p)- or
MA(q) process by the behaviour of its observed autocorrelation and partial autocorrelation functions, because
neither decreases with increasing lag order [17]. First the ARMA(p, q) process will be explained separately
by the two time series processes of which it is created.

AR models are based on the idea that the current value , wt, of the series can be explained as a function of
p past values, wt−1, wt−2, . . . , wt−p[21]. The degree to which it might be feasible to forecast a data series can
be assessed by analysing the autocorrelation function (ACF) and partial autocorrelation function (PACF).
The preceding section motivates the following de�nition.

De�nition 4. An autoregressive model of order p, abbreviated AR(p), is of the form

wt = Φ1wt−1 + Φ2wt−2 + · · ·+ Φpwt−p + εt (2.18)

where wt is stationary, Φ1, Φ2, . . . , Φpare constants (Φp 6= 0) and εt is a Gaussian white noise process with
a mean of 0 and variance of σ2. If the mean of wtis not 0, the process can be rewritten as

wt = α+ Φ1wt−1 + Φ2wt−2 + · · ·+ Φpwt−p + εt (2.19)

where α = µ(1− Φ1 − · · · − Φp).

To explain the requirements for the AR(p) process to be stationary, (2.19) with the lag operator L, is
rewritten as

(1− Φ1L− Φ2L
2 − · · · − ΦpLp)wt = α+ εt (2.20)

It can then be shown that an AR(p) process as in (2.19) is stationary if all roots z0of the polynomial

Φp(z) = 1− Φ1z − Φ2z
2 − · · · − Φpzp

have a modulus greater than one. Theoretical partial autocorrelation, Φkk, can be used to determine
whether the AR process is appropriate for the observed series and to select the order of the process, in e�ect
the value of p. This can be done by testing

H0: Φkk = 0
H1 : Φkk 6= 0

for k=1,2, . . .
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and that for any AR(p) process it can be shown that Φkk = 0 for k > p where the lags are indicated by
k [4].

As an alternative to the AR representation where wt, in (2.18), is assumed to be linearly combined,
whereas with the MA(q) process, it is assumed that the white noise εt is linearly combined to form the
following de�nition.

De�nition 5. The moving average model of order q, MA(q) model, is de�ned to be

wt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q (2.21)

where there are q lags in the moving average and θ1, θ2, . . . θq (θq 6= 0) are parameters. The noise εt is
assumed to be Gaussian white noise.

Again (2.21) can be rewritten to include its mean, giving the general representation of MA(q) as

wt = µ+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q. (2.22)

With the lag operator L, this process can be rewritten as

wt − µ = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q
= (1 + θ1L+ θ2L

2 + · · ·+ θqL
q)εt.

(2.23)

Theoretical autocorrelation, θk, can be used to determine whether the MA process is appropriate for the
observed series and to select the order of the process, in e�ect the value of q. This can be done by testing

H0: θk = 0
H1 : θk 6= 0

for k=1,2, . . .

and that for any MA(q) process it can be shown that θk = 0 for k > q [4].

Combining (2.18) and (2.21), the general form of a ARMA(p, q) process can be illustrated as

wt = µ+ Φ1wt−1 + Φ2wt−2 + · · ·+ Φpwt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q. (2.24)

The �rst step in model building is to determine the order of p and q. The sample autocorrelation function
and partial sample autocorrelation function are used as indicators of the values p and q.

2.2.5 Implications of external shocks

The one key di�erence between trend-stationary and di�erence-stationary processes is in the impact of a
shock, both in its persistence and magnitude [16]. In a trend-stationary process, an external shock has a
transient e�ect meaning the series will return to its mean (mean reverting) after a su�cient period of time
has passed. In contrast, when the di�erence-stationary process experiences a shock, the shock is permanently
incorporated into the time series, thus it has a permanent e�ect. The e�ects can easily be indicated by
rewriting (2.14) in the following form,

(1− ρL)wt = εt. (2.25)

If |ρ| < 1, then wt comprises a linear trend subject to deviations that are transient in their impact; this
is a simple form of a trend-stationary model in which deviations about the trend are stationary. The closerρ
is to positive 1, the more long-lasting are the shocks [18].
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2.2.6 Stationarity tests

As mentioned above and argued by Nelson and Plosser [15], many macroeconomic time series are non-
stationary and are more appropriately described by unit root non-stationarity than by deterministic trends.
When determining whether the process is stationary or not, the order of integration must also be determined.
Once it is determined if the process does indeed have a unit root, indicating it is a non-stationary process,
the process can be reduced to stationarity by di�erencing. There are numerous tests that can be used to
determine if a process is stationary or not, however, only the Augmented Dickey-Fuller (ADF) test and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test will be used to test for unit roots and stationarity. The
Phillips & Perron (PP) test and other tests can also be used, but The ADF and KPSS tests have been found
to be more e�ective.

The ADF test was proposed by Said & Dickey [20] to determine if any unit roots in ARMA models of
unknown orders p and q exist. The Dickey-Fuller test controls for serial correlation by including higher-order
autoregressive terms in the regression [5] and the ADF test statistic is a t-statistic. The null and alternative
hypotheses for ADF are as follows, where the integrated order is denoted by I:

H0 : The process is stationary

H1 : The process is non− stationary

Hence, the null hypothesis states that the process is non-stationary (since it has a unit root) is tested
against the alternative hypothesis that the process is stationary (no unit root). There are three cases which
are considered for the Dickey-Fuller tests [8],

� Case 1 - An ARMA process with a zero mean

� Case 2 - An ARMA process with a single mean

� Case 3 - An ARMA process with a trend.

Recall that Wt is a stochastic process and is only stationary if it satis�es the conditions of de�nition 2.
Consider an AR(1) model with the �rst ordinary least squares (OLS ) estimation of Φ,

wt = Φwt−1 + εt, (2.26)

where εt is i.i.d with mean 0 and variance σ2. The OLS estimate is given by

Φ̂T =

T∑
t=1

wt−1wt

T∑
t=1

w2
t−1

. (2.27)

There are two possible test statistics that can be used [17]. The �rst test statistic is the regression coe�cient-
based test statistic:

Φ = T (Φ̂T − 1) (2.28)

where n is the sample size. The second test statistic is the studentised test statistic:

τT =
Φ̂T − 1

σ̂Φ̂T

=
Φ̂T − 1{

s2
T ÷

T∑
t=1

w2
t−1

} 1
2

, (2.29)

where σ̂Φ̂T
is the OLS standard error for the estimated coe�cient,
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σ̂Φ̂T
=

{
s2
T ÷

T∑
t=1

w2
t−1

} 1
2

,

and s2
T denotes the OLS estimate of the residual variance [8]:

s2
T =

∑T
t=1(wt − Φ̂Twt−1)2

(T − 1)
.

The ADF test however fails in rejecting the null hypothesis of di�erence stationary processes. This could
be due to the low power of such a test against the actual (non-stationary) data generating process rather
than the acceptability of the presence of the unit root [13].

The KPSS test is used to test the null hypothesis that an observed time series is stationary around the
deterministic trend. The KPSS test is intended to harmonise unit root tests, by testing both the unit root
hypothesis and the stationarity hypothesis [1]. The null and alternative hypotheses for the KPSS test are as
follows,

H0 : The process is stationary

H1 : The process is non− stationary

which states the null hypothesis is a stationary process around a linear trend and the alternative assumes
the process is non-stationary due to the presence of a unit root [10]. The KPSS and the ADF hypotheses
are direct opposites, as it can be seen above. Testing both stationarity and the presence of a unit root
helps distinguish between a process that appears to be stationary, has unit roots or is insu�cient to con�rm
stationarity or not.

2.2.7 ARCH(q) and GARCH(q,p)

Heteroskedasticity means that the error terms are mutually uncorrelated, while the variance is non-constant.
In �nancial time series volatility clustering is often observed, volatility clustering can be de�ned as periods
of stability and instability tend to cluster together.An example of this would be stock markets which are
typically characterised by periods of high and low volatility.

The Autoregressive Conditional Heteroskedasticity (ARCH) model was introduced almost 30 years ago
by Engle [6]. ARCH can be simply explained by the variance of the error term at time t, which depends upon
the squared error terms from preceding periods [23]. If a random variable yt is drawn from the conditional
density function f(yt|yt−1), the forecast of today's value is based upon the past information [6] and the
variance of this one period forecast is given by σ2(yt|yt−1). While the ARCH process allows for variance to
�uctuate over time as a function of past errors, the traditional time series and econometric models operate
under the assumption of constant variance, meaning the conditional variance does not depend on preceding
periods [2].

Engle [6] , however, proved the usefulness of conditional variance dependent on yt−1 in economics and also
stated that heteroskedasticity corrections are di�cult and are rarely used in time series data. The preferred
model for explaining ARCH(q) can be expressed in terms of yt−1, the information set available (consisting of
all information available) at time t− 1 with the assumption of normality,

yt|yt−1 ∼ N(0, ht), (2.30)

yt = εth
1
2
t

ht = α0 +

q∑
i=1

αiy
2
t−i (2.31)
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where εt denotes a real-valued discrete-time stochastic process with σ2(εt) = 1.

In applications, the ARCH model has been replaced by the generalised ARCH (GARCH) model proposed
by Bollerslev [2], allowing for a more adaptable lag structure. The ARCH process was extended to GARCH
to also include a prolonged memory. To avoid negative variance parameter estimates, a �xed lag is imposed
[2]. The GARCH(p, q) process is then given by

εt|ψt−1 ∼ N(0, ht) (2.32)

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i (2.33)

where

p ≥ 0, q > 0

α0 > 0, αi ≥ 0, i = 1, . . . , q,

βi ≥ 0, i = 1, . . . , p.

For p = 0 the process reduces to the ARCH(q) process which is similar to an AR(p) process, and for
p = q = 0, εt is simply white noise. In the GARCH(p, q) process lagged conditional variances are allowed to
enter, whereas the conditional variance of an ARCH(q) process only speci�es a linear function of past sample
variance [2].

2.2.8 Forecasting

The primary objective of constructing a time series model is to enable future forecasting of the speci�ed
series. It is also important to assess the precision of those forecasts. We will assume that wt, the observed
data, is stationary and that the parameters are known [21]. There are numerous forecasting methods that
apply to deterministic trends and ARIMA models. To understand forecasting in depth one can refer to [4]
or [21]. However the basic concepts of forecasting will be explained in this section by using a basic AR(1)
model, rewriting (2.19) with p = 1. Forecasting can be illustrated and expanded in many ways with the
simple AR(1) process with a non-zero mean that satis�es

wt − µ = Φ(wt−1 − µ) + εt (2.34)

Consider the basic problem of forecasting one time unit into the future, by replacing t with t+1 in (2.34),

wt+1 − µ = Φ(wt − µ) + εt+1 . (2.35)

The conditional expectations are then taken on both sides of (2.35), given w1, w2, . . . , wt−1, wt, to obtain

ŵt(1)− µ = Φ[E(wt|w1, w2, . . . , wt−1, wt)− µ] + E(εt+1|w1, w2, . . . , wt−1, wt) . (2.36)

From the properties of conditional expectation [4], we have

E(wt|w1, w2, . . . , wt−1, wt) = wt

and since εt+1 is independent of w1, w2, . . . , wt−1, wt, we obtain

E(εt+1|w1, w2, . . . , wt−1, wt) = E(εt+1) = 0 .

Thus, (2.36) can be written as

ŵt(1) = µ+ Φ(wt − µ) . (2.37)

14



In other words, a proportion Φ of the current deviation from the process mean is added to the process
mean to forecast the next process value. This simple forecasting illustration can be expanded for a general
lead time l. Replacing t with t+ l in (2.34) and repeating the above steps, we have

ŵt(l) = µ+ Φl(wt − µ) . (2.38)

Now consider the forecasting error for AR(1) for one unit into the future,

et(1) = wt+1 − ŵt(1) (2.39)

= [µ+ Φ(wt − µ) + εt+1]− [µ+ Φ(wt − µ)]

= εt+1 (2.40)

where the variance of (2.40) at time t is

var [et(1)] = var (εt+1)

= σ2
εt .

The forecast error can also be generalised for a general lead time of l, by replacing the one in (2.39) with
l, we then have

et(l) = wt+1 − ŵt(l)

where l ≥ 1, 2, . . . . For stationary models, if l → ∞, then ŵt(l) → µ. The forecasts converge to the
process mean [3]. However for non-stationary models if α 6= 0 in (2.16), then ŵt(l) will not converge to the
process mean, for large l.

3 Application

In this section we apply the proposed methods of time series. The coding for this section can be found in the
appendix.

3.1 Real GDP

The �rst step in time series modelling is to plot the data against time and analyse the graph. The second
step is to determine if the data exhibits a trend, seasonal or remainder component. These steps are applied
in this section.

3.1.1 Time plot of Real GDP

Since South Africa only became a democracy in 1994, only data from 1995 will be analysed to avoid any
misreading. As explained in section 2.2.3 the natural logarithm of Real GDP is taken, which gives the
following time plot of Real GDP, GDPt.
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Figure 1: Quarterly South Africa Real GDP from 1995 to 2014

From �gure [1], it is clear that Real GDP is upward trending, as indicated with the upward plotted
regression line. There are two points on the �gure that show a decrease, the �rst one is in 1999 and this is
due to numerous reasons, one being the Asian �nancial crisis. The second decline in Real GDP is just before
the 2010 marker, this was the result of the global �nancial crisis that occurred in 2008. The Financial Crisis
Inquiry Commission concluded that the crisis was caused by failure in �nancial regulation and supervision,
and excessive unregulated borrowing.

3.1.2 Seasonal-trend Decomposition

Figure 2: Seasonal-trend decomposition by loess smoothing
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Figure [2] was obtained by using the seasonal-trend decomposition approach in R [19], which uses loess
(local polynomial regression �tting - STL) smoothing, is an algorithm that divides the data set into three
components namely: seasonality, trend and remainder. Neither the remainder nor the seasonal components
show any signi�cant signs that the model has remainder or seasonal characteristics. Figure [2] clearly indicates
that the data has trend characteristics.

3.2 Testing for stationarity

There are numerous tests that will be performed in this section as mentioned in section 2. It has to be noted
that a 5% signi�cance level will be used throughout this section. Before it can be determined whether the
process possesses stationarity, the tentative order selection tests are used. Three tests of the tentative order
selection tests are used, namely:

1. Smallest canonical correlation method (SCAN)

2. Extended sample autocorrelation function method (ESACF)

3. Minimum information criterion method (MINIC)

Only the �rst two tests can be used for either stationary or non-stationary data. The Minimum information
criterion method can only be used for stationary data and since it has not been determined whether the
model is stationary, only the �rst two methods are used to determine the parameters of the ARMA model.
The results are achieved using the Arima procedure method in SAS©.

MA 0 MA 1 MA 2 MA 3 MA 4
AR 0 <.0001 <.0001 <.0001 0.0003 0.0017
AR 1 <.0001 <.0001 <.0001 <.0001 0.0001
AR 2 0.0145 0.3277 0.3537 0.9978 0.2970
AR 3 0.7501 0.4751 0.5266 0.6786 0.5194
AR 4 0.4676 0.8268 0.9799 0.4794 0.5355

Table 2: SCAN method

MA 0 MA 1 MA 2 MA 3 MA 4
AR 0 <.0001 <.0001 0.0002 0.0019 0.0074
AR 1 <.0001 0.0051 0.3065 0.6403 0.7953
AR 2 0.0042 0.3933 0.3126 0.9308 0.3610
AR 3 0.4334 0.1124 0.3204 0.7207 0.2187
AR 4 0.0065 0.1076 0.6331 0.5369 0.1704

Table 3: ESACF method

From the results displayed in tables 2 and 3, both the SCAN and ESACF methods suggest an ARMA
(2,1) or an ARMA (3,0). For e�ectiveness the �rst model will be used until tested otherwise.

3.2.1 ADF test

From the results obtained using theARIMA procedure in SAS are represented in table 4. The autocorrelations
lie outside the bounds and this is the �rst indication that the process is non-stationary. The ADF test before
di�erencing yields the following:

17



Lags τ p-value of τ Φ p-value of Φ F Pr>F

0 -0.51 0.9814 -1.0865 0.9860 0.48 0.9900
1 -1.68 0.7497 -7.1729 0.6332 1.59 0.8590
2 -2.10 0.5388 -12.0048 0.2853 2.32 0.7162

Table 4: Results of regression coe�cient-based test and the studentised test

Both the regression coe�cient-based test and the studentised tests are rejected at a 5% and 10% sig-
ni�cance level at lag 0, thus the null hypothesis of the ADF cannot be rejected. Lag 0 is used since the
autocorrelations and partial autocorrelations also clearly shows non-stationarity, indicating that the process
has a unit root, I(1).

The following step is to take the �rst di�erence of the log of the Real GDP once and then analyse the
results. As mentioned the ADF test will be used �rst. An ARMA (2,1) is suggested before di�erencing the
model so the results will be analysed at lag 1. Di�erencing the Real GDP once yields the following ADF test
results in table 5.

Lags τ p-value of τ Φ p-value of Φ F Pr>F

0 -4.70 0.0003 -34.87 0.0008 11.04 0.0010
1 -3.53 0.0096 -25.84 0.0014 6.23 0.0110
2 -3.84 0.0039 -38.75 0.0007 7.37 0.0010

Table 5: Results of �rst di�erence of regression coe�cient-based test and the studentised test

Analysing the results at lag 1, the null hypothesis is rejected at a 5% and 10% signi�cance level signifying
that there is no unit root present after di�erencing. According to the results, the best suited model to explain
Real GDP is an IMA (1,1) model.

3.2.2 KPSS test

In this section we will test whether Real GDP exhibits trend or level stationarity. We �rst do a KPSS test on
the original Real GDP to con�rm that it does indeed have a unit root. The KPSS test is preformed in SAS,
making use of the SAS Autoreg procedure, yields results showed in table 6. The output gives two possible
trends, for the �rst test the Type=Trend is used, as the time series has an upward trend as shown in �gure
[1].

Critical values
Test statistic value (t∗) 10% signi�cance level 5% signi�cance level 1% signi�cance level

0.2356 0.1190 0.1460 0.2160

Table 6: KPSS test - Real GDP

The null hypothesis is rejected at a 5% signi�cance level since 0.2356 (t∗) > 0.1460 (critical value). Real
GDP does in fact exhibit a unit root and is thus non-stationary. Real GDP is then di�erenced and again
tested using the KPSS test, in this case the Type=Single Mean will be looked at, and yields the results in
table 7.

Critical values
Test statistic value (t∗) 10% signi�cance level 5% signi�cance level 1% signi�cance level

0.1332 0.3470 0.4630 0.7390

Table 7: KPSS test - 4Real GDP

The null hypothesis is not rejected at a 5% signi�cance level since 0.1332 (t∗) < 0.4630 (critical value).
Concluding that 4Real GDP is stationary around a linear trend.
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3.2.3 Testing for Normality

The results on whether a data set is well-modelled by the normal distribution can be used for model selection
in several ways depending on the interpretations of probability. Normality tests are used to determine whether
a normal distribution accurately describes the data set and to determine how likely the random variable is
normally distributed. This test is not necessary to compute in determining stationarity, but it is necessary
when analysing any random variable in time series. Normality tests provide a better understanding of how the
random variable Real GDP is distributed. Normality is �rst tested using the Kolmogorv-Smirnov normality
test. The null hypothesis for normality is rejected at a 5% signi�cance level against a p-value of <0.0100 in
table 8 for Real GDP, whereas the null hypothesis for normality is not rejected at a 5% signi�cance level in
table8 for 4Real GDP.

Kolmogorov-Smirnov (D) Statistic p-value
Real GDP 0.142177 <0.0100
4Real GDP 0.068315 >0.1500

Table 8: Normality test of Real GDP and 4Real GDP

There are three main graphical methods for normality testing namely: normal probability plot, quantile-
quantile plot (QQ-plot) and �tting a normal curve to a histogram of the data. For simplicity only the QQ-plot
will be used. Both the Real GDP and the �rst di�erence of Real GDP will be analysed to see if there are
any signi�cant changes to the distribution of the Real GDP. For any QQ-plot one would like to see that the
data is well aligned on the black line, but as seen in �gure [3], this does not occur. This concludes that the
distribution of Real GDP is not normal.

Figure 3: QQ-Plot of Real GDP Figure 4: QQ-Plot of ∆Real GDP

When taking the �rst di�erence of Real GDP, the data is more aligned to the normality line as seen in
�gure [4]. However, ∆Real GDP does not perfectly �t on the normality line; this could be due to external
factors in�uencing the Real GDP, for example the �nancial crisis in 2008.

3.2.4 Tentative Order Selection tests

Tentative order selection tests were used in a previous section; this was only done to roughly establish the
parameters of the ARMA process. These tests will be preformed again, but with the MINIC method. It has
been determined that Real GDP is in fact non-stationary and has been di�erenced. Using this newly founded
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information and newly calculated variable, ∆Real GDP, the tentative order selection tests SCAN, ESACF
and MINIC will be used in determining the ARMA parameters p and q.

MA 0 MA 1 MA 2 MA 3 MA 4
AR 0 <.0001 0.0037 0.2994 0.6675 0.7687
AR 1 0.2125 0.1093 0.8938 0.4060 0.7846
AR 2 0.1494 0.3896 0.5142 0.5383 0.6588
AR 3 0.7077 0.8484 0.6280 0.9150 0.5598
AR 4 0.5749 0.6020 0.7491 0.5885 0.5969

Table 9: SCAN method of ∆Real GDP-Model 1

MA 0 MA 1 MA 2 MA 3 MA 4
AR 0 <.0001 0.0037 0.2994 0.6675 0.7687
AR 1 0.2125 0.1093 0.8938 0.4060 0.7846
AR 2 0.1494 0.3896 0.5142 0.5383 0.6588
AR 3 0.7077 0.8484 0.6280 0.9150 0.5598
AR 4 0.5749 0.6020 0.7491 0.5885 0.5969

Table 10: SCAN method of ∆Real GDP-Model
2

MA 0 MA 1 MA 2 MA 3 MA 4
AR 0 <.0001 0.0047 0.3027 0.6755 0.7735
AR 1 0.0342 0.0270 0.6323 0.6411 0.3654
AR 2 <.0001 0.0294 0.8632 0.3038 0.3588
AR 3 0.0307 0.1496 0.1091 0.8444 0.3519
AR 4 0.0002 0.0376 0.2222 0.8505 0.5900

Table 11: ESACF method - ∆Real GDP

MA 0 MA 1 MA 2 MA 3 MA 4
AR 0 -10.375 -10.5299 -10.6601 -10.661 -10.6287
AR 1 -10.7467 -10.6995 -10.6601 -10.613 -10.5746
AR 2 -10.7066 -10.6543 -10.6125 -10.5583 -10.5196
AR 3 -10.6722 -10.6199 -10.5677 -10.5145 -10.4781
AR 4 -10.628 -10.5823 -10.5292 -10.4766 -10.4302

Table 12: MINIC method-∆Real GDP

The SCAN method suggests two models, ARMA(1,0) and an ARMA(0,2) in tables 9 and 10. The MINIC
method in table 12 suggests an ARMA(1,0) which coincides with one of the SCAN suggested models. There
is however now two equally weighted suggested models, ARMA(1,0) and ARMA(0,2). The SCAN method
suggests both an ARMA(1,0) model in table 9, and an ARMA(0,2) model in table 10. There is no I(1), as
the unit root has been taken out with di�erencing. Since it has now occurred that the three models suggest
the ARMA(1,0) and ARMA(0,2) model. It should be known that the MINIC method carries more weight
when analysing the parameters of the ARMA model. We will then use the ARMA(1,0) model to further
analyse the data and plot autocorrelation functions in the next section to con�rm the suggested parameters.

3.2.5 ACF and PACF

As mentioned in section 2.2.3, autocorrelation and partial autocorrelation functions can be used to determine
the parameters of the ARMA model. The ARIMA SAS function was used with a lag of 12 to graphically
represent the autocorrelations. Looking at �gure [5], the autocorrelation plots suggests an ARMA(1,2) model
as the null hypothesis, H0 : Φ22 = 0 and H0 : θ3 = 0 is not rejected. Coincidently, this is exactly the opposite
model proposed in the introduction of section 3.2, the Real GDP before di�erencing. Since the MINIC method
suggests an ARMA(1,0) model and the partial autocorrelations align with this suggested parameters, it is
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concluded that the Real GDP is an AR(1) model, after taking the �rst di�erence. We do not use inverse
correlations for analysing this data set.

Figure 5: Correlation plots of ∆Real GDP

3.2.6 The model and Residual analysis

As explained in section 2.2.3 we take the log of the GDP to have a linear trend and then have a time
plot shown in �gure [1]. However, the Real GDP is non-stationary. As mentioned above, we took the �rst
di�erence of Real GDP and then applied the model in Proc Autoreg. The model is then transformed and µ
is replaced by a constant c in (2.22):

GDPt = c+ ΦGDPt−1 + εt

4GDPt = c+ ΦGDPt−1 + εt −GDPt−1

= c+ (Φ− 1)GDPt−1 + εt. (3.1)

Then add the estimated parameters to (3.1),

4GDPt = 0.00738 + (0.55014− 1)GDPt−1 + εt

= 0.00738− 0.44986GDPt−1 + εt (3.2)

where estimated var(εt) = 0.0000236. The residuals of any model should be analysed to determine if
volatility is present.
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Figure 6: South Africa Quarterly 4Real GDP

An AR(1) model is �tted to 4Real GDP and we conclude that the residuals resemble a white noise. It
has been suggested that some �nancial time series have ARCH errors, so we will investigate this possibility
by analysing the residuals. Note that the residuals of 4Real GDP do have a normal distribution in �gure [7].
Ideally we would like to see residuals scattered rectangularly around a zero horizontal level with no trends
in the �rst graph in �gure [7], this is however not the case. The graph does not support the AR(1) model as
there is reduced variation from observation 10 to 40 and then increased variation from observation 40 to 60.

Figure 7: Diagnostics of Residuals for 4Real GDP

Our model is thus not accurate enough to forecast yet. Since there seems to be a pattern still present
in the data, we will need to incorporate this into the model by making use of ARCH(1). The model is then
given by adjusting the parameters of (3.1),

4GDPt = 0.00829− 0.5185GDPt−1 −GDPt−1 + εt

= 0.00829− 1.5185GDPt−1 + εt (3.3)

where εt ∼ N(0, ht), which is proven to be normally distributed by the output where the null hypothesis
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of normality is not rejected and

ht = 0.0000121 + 0.5930y2
t−1 .

The model in (3.3) is a better quality model than the model in (3.2) according to the Akaike information
criterion (AIC). The AIC for (3.2) is -588.53 and -615.15 for (3.3), thus (3.3) is the preferred model and will
be used to forecast the Real GDP.

3.2.7 Forecasting

Before forecasting the Real GDP model with ARCH(1) (3.3), we �rst forecast the Real GDP model with
AR(1) (3.2), to allow us to compare the accuracy of the models. Consider the Real GDP model (3.2 with the
�rst di�erence with the simulated data using MLE (maximum likelihood estimation) and with a 95% interval
on the prediction, illustrated in �gure [8].

Figure 8: Forecasting ∆Real GDP with AR(1)

Due to the non-stationarity of Real GDP, the forecasts and the prediction intervals do not converge and
with an AR(1) forecasting it is a predicted upward trending Real GDP in �gure [8]. The forecasting of Real
GDP using ARCH(1) in �gure [9] does not resemble a perfect upward trending prediction.
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Figure 9: Forecasting ∆Real GDP with ARCH(1)

In �gure [10] a clear comparison can be drawn from the AR(1) forecast and the ARCH(1) forecast. Both
the AR(1) and ARCH(1) forecasts lie within the 95% prediction limit.

Figure 10: Comparison of AR(1) and ARCH(1) forecasting of Real GDP

Looking at a small window, drawn from �gure [10] without the prediction limits, the predicted ARCH(1)
model is clearly below the predicted AR(1) model predictions. The ARCH(1) model predictions also resemble
a more natural time series trend.
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Figure 11: Magni�ed Window of Forecasted AR(1) and ARCH(1) for t=30

In �gure [11] the AR(1) predicted values vary a little from the observed values, whereas the ARCH(1)
model better �ts the observed model.

4 Conclusion

The central idea of this paper was to determine whether South African Real GDP exhibits stationarity.
Although there are many external factors that can in�uence the Real GDP, it is still a good measure of an
economy's performance. The Real GDP is upward trending which is the �rst indication that Real GDP is
not stationary.

The null hypothesis of the ADF test for Real GDP was rejected at a 5% con�dence level indicating non-
stationarity. However, after taking the �rst di�erence of Real GDP the null hypothesis could not be rejected,
indicating that by di�erencing the model, Real GDP became stationary. This assumption was supported
by the non-rejection of the null hypothesis of the KPSS test of 4Real GDP. Concluding that 4Real GDP
is stationary around a linear trend. The model identi�cation of Real GDP had many suggestions, however,
through careful analysis it can be concluded that Real GDP can be represented as an ARIMA(1,1,0) model,
or better known as an ARI(1,1) model. Furthermore, Real GDP residuals do not have constant variance;
hence the ARCH model is applied to compensate for this variation. Through regression of 4Real GDP, it is
found that an ARCH(1) model is the best suited model according to AIC. With forecasting it is discovered
that the ARCH model also forecasts better as it acknowledges the variation in the residuals of Real GDP.

To conclude South Africa Real GDP is not stationary. Real GDP can either be modelled by AR(1) or
ARCH(1) models, but in this paper it is tested and found that the ARCH(1) model yields more accurate
results. South Africa is an emerging economy which implies a higher Real GDP growth rate. However,
the forecasting of Real GDP shows us that Real GDP will increase, but not as rapid as expected from an
emerging market.
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5 Appendix

Code

All coding was done using SAS© Procedures, except the seasonal trend decomposition was done in R [19].

Timeplot

data a;

set sasuser.gdp_test;

d1=dif(log(rgdp));

run;

goptions reset=all;

title1 'Real GDP from 1995 to 2014 with d=1';

axis1 label=(angle=90 'Natural logarithm of Real GDP with d=1');

axis2 label=('Time') minor=(number=7) order=('March95'd to 'December14'd by qtr);

symbol1 color=black i=join value=dot width=1;

proc gplot data=a;

plot d1*date / vaxis=axis1 haxis=axis2;

run;

Season Trend Decomposition

RGDP<-ts(gdp,start=1993,freq=4)

plot(stl(RGDP,s.window="periodic"))

plot(stl(log(RGDP),s.window="periodic"))

ADF test

proc arima data=use;

identify var=lnrgdp nlag=6;

run;

proc arima data=new;

identify var=delta_lnregdp stationarity=(adf=(0,1,2,3,4));

run;

KPSS test

data hh;

set sasuser.Gdp_test;

lnrgdp = log(RGDP);

diff_lnrdgp = dif(lnrgdp);

run;

proc autoreg data=hh;

model lnrgdp=date / stationarity = (KPSS);

run;

proc autoreg data=hh;

model diff_lnrdgp=date / stationarity = (KPSS);

run;
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Testing for normality

goptions reset=all;

title1 'Testing for normality';

axis1 label=(angle=90 'ln( Real GDP)') order=14 to 15 by 0.1;

proc univariate data=use normal;

var lnrgdp;

histogram lnrgdp / normal (mu=est sigma=est color=black w=2);

qqplot lnrgdp /normal (mu=est sigma=est color=black w=2) square;

probplot lnrgdp /normal (mu=est sigma=est color=black w=2) square;

run;

proc univariate data=new normal;

var delta_lnregdp;

histogram delta_lnregdp / normal (mu=est sigma=est color=black w=2);

qqplot delta_lnregdp /normal (mu=est sigma=est color=black w=2) square;

probplot delta_lnregdp /normal (mu=est sigma=est color=black w=2) square;

run;

Tentative Order Selection tests

proc arima data=new;

identify var=delta_lnregdp scan esacf minic p=(0:4) q=(0:4);

run;

The model and residual analysis

data a;

set sasuser.gdp_test;

d1=log(rgdp);

run;

proc arima data=A out=ima_out;

identify var=d1(1) noprint;

estimate p=1 method=ml;

forecast lead=50;

run;

data graph;

set ima_out;

t=_n_;

run;

proc autoreg data=gdp1;

model differenced_Real_GDP = / nlag=1 method=ml garch=(p=1);

output out=a cev=v r=resid;

run;
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Forecasting

proc autoreg data=gdp1;

model differenced_Real_GDP = / nlag=1 method=ml garch=(q=1) ;

output out=ab cev=v r=resid;

run;

Proc iml;

use ab; read all var{v RGDP time differenced_real_gdp} into matrix;

use SASUSER.forecast3; read all var{Forecast} into forecastmatrix;

n=nrow(matrix);

error = matrix[,1];

realGDP = log(matrix[,2]);

difflog_rgdp=matrix[,4];

time = matrix[,3];

sigma=0.5930;

ht = J(n,1,.);

yt = J(n,1,.);

x=J(n,1,.);

yt[1,]=error[1,]*sqrt(ht[1,]) ;

do i=2 to n;

ht[i,]=0.0000121+0.5930*(yt[i-1,]##2);

yt[i,]=error[i,]*sqrt(ht[i,]) ;

x[i,]=0+ht[i,]*rannor(1);

end;

test = difflog_rgdp;

mu = J(n,1,0.00829);

phi_min_one=J(n,1,-1.5185);

gdp_forgraph = J(n,1,.);

gdp_forgraph = RealGDP[1:80,];

do o=81 to n;

test[o,] = mu[o,] + phi_min_one[o,]*test[o-1,]+x[o,];

test = test//test[o,];

end;

print test;

GDP = RealGDP[1:80,]//forecastmatrix[1:50,];

newmatrix = time||GDP;

varlist = {'time' 'GDP'};

create newset from newmatrix[colname=varlist];

append from newmatrix;

quit;

goptions reset=all i=join;

axis1 label=(angle=90 'Real GDP');

symbol1 color=purple line=1 width=2;

title1 'Forecasted Real GDP with ARCH(1)';

proc gplot data=newset;

plot GDP*time / vaxis=axis1;

run;

proc iml;

use ima_out; read all var{forecast u95 l95 d1} into jj;

use newset; read all var{GDP} into kk;

n=nrow(jj);

nn=nrow(kk);

wholedata = jj[1:130,]||kk[1:130,];

varlist = {'Forecast with AR(1)' 'U95' 'L95' 'Observed data' 'Forecast with GARCH(1)'};

create cmpare from wholedata[colname=varlist];

append from wholedata;

quit;

goptions reset=all i=join;

axis1 label=(angle=90 'Observed and Predicted Values for AR(1) and ARCH(1)');

legend1 label=('Series:')

value=('Predicted Values with AR(1)' 'Upper 95% Prediction Limit'

'Lower 95% Prediction Limit' 'Observed Values' 'Predicted Values with ARCH(1)');

symbol1 color=red line=2 width=1;

symbol2 color=brown line=42 width=1;

symbol3 color=brown line=42 width=1;

symbol4 color=purple value=dot width=2;

symbol5 color=blue line=4 width=1;

title1 'Forecasting of AR(1) and ARCH(1)';

run;

data graph;

set cmpare;

t=_n_;

run;

proc gplot data=graph;

plot (Forecast_with_AR_1_ U95 L95 Observed_data Forecast_with_GARCH_1_ )*t / overlay

legend=legend1

vaxis=axis1 ;

where t>=1;

run;

goptions reset=all i=join;

axis1 label=(angle=90 'Observed and Predicted Values for AR(1) and ARCH(1)');

legend1 label=('Series:')

value=('Predicted Values with AR(1)' 'Observed Values' 'Predicted Values with ARCH(1)');

symbol1 color=red line=2 width=1.5;

symbol2 color=purple value=dot width=3;

symbol3 color=blue line=4 width=1.5;

title1 'Magnified window t=30: Forecasting of AR(1) and ARCH(1)';

proc gplot data=graph;

plot (Forecast_with_AR_1_ Observed_data Forecast_with_GARCH_1_ )*t / overlay

legend=legend1

vaxis=axis1 ;

where t>=60 &t<=90;

run;
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Abstract

The objective of this research report is to predict using among others regression analysis, if any of
the enrolment streams as experienced by the Economic and Management Sciences (EMS) Faculty at
the University of Pretoria produce students that are more successful than others. The main variable of
measure will be that of Grade Point Average (GPA), which is computed using a credits system. The use
of basic descriptive statistics such as averages will give a broad overview on the trends experienced by the
enrolment streams. Due to averages being analysed with caution further investigation will be evaluated
to see if there are de�nite di�erences in the performance of students at the First-year level in the di�erent
streams.

Furthermore, emphasis will be placed on measuring numerous variables to determine performance of
students within the Faculty of Economic and Management Sciences. Such variables include examining the
performance of students according to their gender irrespective of what stream they fall under. In addition,
the Kruskal-Wallis test will be applied to matric authority description to analyse whether students who
attended di�erent schooling types lead to a more accurate re�ection of First-year GPA scores and level
of performance. The population distribution functions of the four leveled independent matric authority
description will also be estimated to try and reduce the assumptions that are made.

Classical linear regression analysis will be applied to possibly �nd which predictor, if any, using the
three NBT categories, the Grade 11 and 12 APS scores, nationality and gender to determine which is the
most e�ective to base acceptance on. This will be useful to enlighten the Faculty of EMS as to which
predictor to base their decision on in accepting potential students in order to improve the throughput
rate. Along with this, the di�erent streams were compared in a between group manner to evaluate if
any stream does indeed have higher First-year GPA scores. This will once again be of assistance to the
Faculty in the number of places that are reserved for the di�erent streams.
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1 Introduction

Faculties at tertiary institutions strive for the best possible level of success, none more so than the Faculty of
Economic and Management Sciences (EMS) at the University of Pretoria (UP). Furthermore, in this context
the main aim is to analyse which student enrolment group (simply referred to as streams) at the tertiary level
performs the best in order to enrol the best students. The results of the analysis can be used to develop an
optimal enrolment strategy which can be used to forecast student success in order to improve the throughput
rate. Several student streams are employed by the Faculty of EMS including: New students (students enrolled
for the �rst time at UP), Readmitted students, Transferring students and students enrolled for the Extended
Programme. Thorough analysis will be conducted amongst these streams to conclude whether a certain
stream is indicative of students from that stream being more successful.

One of the main questions asked is: how can one measure success? Measuring success is not as straight-
forward as computing a calculation as there are other external factors that contribute to a student's level of
success.

Firstly, what is considered to be a measure of success? Camara et al. in [4] suggests that by calculating
a correlation coe�cient between di�erent variables will result in success. These variables may include among
others secondary school averages, Grade Point Averages (GPA) computed after each round of examination
marks in the case of this study. Hence, a higher level of correlation (where the coe�cient value is close to one)
will re�ect an increased or higher level of achievement i.e. success [4]. Furthermore, Camara et al. in [4] went
on to discuss the di�erent methods that can be used to determine student success; these include SAT scores,
this correlates to the National Benchmark Test (NBT) scores in a South African context; graduation rates;
cumulative weighted average; secondary school grades and �nally whether a student receives a scholarship
based on athletic or artistic abilities.

A good measure and one that will be a constant focus point throughout this research report is GPA. A
detailed description regarding GPA will be discussed in the next section.

A study done by le Roux et al. in [8] concluded that an access test (with respect to this research report
access tests would equate to the NBT) provides a more accurate indication of success rates amongst students
in comparison to the averages that students achieve in Grade 12. For instance when the 2014 study of the
same title was conducted by Pretorius [13], the results revealed that for First-year students the weighted
average was 60 percent (only using June data as that was the available data at the time), the NBT average
equaled 55 percent and Grade 12 averages were equal to 71 percent, hence, NBT scores are a little bit
conservative (under estimating), but closer, in predicting student performance at tertiary level as opposed to
Grade 12 marks which is over estimating the tertiary performance.

Success is however, not solely based on marks. A student's interaction with the tertiary institution [15],
commitment and persistence to completing the chosen degree [16], student retention [14], degree choices and
a student's ability to work with other individuals [16] are a few factors that also contribute to student success.

The approach of student success is not the only variable of signi�cance as throughput rates should also be
investigated. Throughput rates are per de�nition, whether a student obtains and thus, graduates from UP (or
any other tertiary institution) having completed their degree in the quanti�ed time period as stipulated by
UP (or any other tertiary institution). Furthermore, if the �ndings (upon completion of evaluating the data)
disclose that a certain stream of students are indeed considered to be more successful, consideration must
be given to the number of students allowed into the Faculty via the di�erent streams in order to maximise
throughput.

As aforementioned, throughput rates refers to the time that it takes a student to graduate from their
respective tertiary institutions. Students enrolled at South African tertiary institutions, that graduate in the
prescribed time-period is approximately 15 percent [9], which is regarded as being one of the lowest on an
international scale.

In addition, the National Planning Committee (NPC) have mentioned that even though there has been
substantial improvements in the number of students that are enrolled in tertiary institutions [3], there are still
numerous challenges. One of these challenges is that of resources [9]. Even with various shortcomings (for
example �nancial) that are present in tertiary institutions at a national level, there is a need for improving
opportunities for students as well as the success of students [2].

Diverse enrolment in tertiary institutions should also be examined. According to Akojee and Nkomo [1],
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approximately 53 percent of students enrolled at tertiary institutions across South Africa in the year 2002
were female. In the �ndings of the research report done last year (2014), 55 percent of First-year students
enrolled at UP are female [13].

The current enrolment strategies (streams) that are used by the Faculty of EMS at UP can also be
compared to those used at other national as well as international tertiary institutions.

This research report will try and emulate these approaches in order to predict student success at UP.
Furthermore, section 2 (background theory) will explain GPA in detail and the techniques that will be
applied. Application and models used to try and predict student success will be explained in section 3. A
short summary of the results will form section 4. Finally, a conclusion (section 5) will be given that will
summarise and highlight the main �ndings and conclusions in the research report. Moreover, further research
and other applications that can be pursued to achieve maximum student success for the di�erent streams,
the �ndings and deduces which streams lead to student success (if any).

2 Brief summary of the Background Theory

A good measure and variable that will be focused on in this research report is that of GPA. This is due
to the fact that some other measures do not take the di�culty of modules into consideration. GPA makes
provision for di�culty by using a credits system. The credits system is based on the idea of notional hours.
Credits per de�nition is a way of computing several attainable learning outcomes, at any one of ten levels
as speci�ed by the National Quali�cations Framework (NQF), in terms of notional hours [5]. Notional hours
can be de�ned as the estimated learning time that it takes an average student to achieve 50 percent for
a module [5]. For example EKN 110 (course code for economics at the 100 level at UP) comprises of ten
credits which means that an average student needs to spend 100 (ten credits multiplied by notional hours,
equivalent to ten hours, i.e. 10 x 10 = 100) hours in order to pass the module with a mark of 50 percent.
This includes contact lectures, practicals, tutorials and all assessments as well as the time the student spent
on preparation for all activities within the module. One credit equates to ten notional hours. Furthermore,
di�erent year levels have di�erent credit values, thus, as mentioned previously EKN 110 carries ten credits
whereas EKN 214 (Economics presented at the 200 level) comprises of 16 credits and lastly, EKN 310 (300
level economics) has a weight of 20 credits. All these values are based on the credit system as implemented by
UP. Therefore, it is deduced that the credits for a particular module �eld increases as the year level increases,
thus, it compensates for the increase in di�culty as well as volume within modules.

UP takes the aforementioned method into account, for all modules when computing a student's GPA.
Along with this, when a student is awarded a supplementary exam, provision is made when a student's GPA
is calculated.

GPA will be compared to various other variables such as that of the NBT, as to where First-year marks
are over-or under-estimated. Scholars within the South African schooling system are required to write these
NBT's which comprise of a mathematical, academic literacy and �nally, a quantitative literacy component.
Even though the NBT's were a directive of the Higher Education of South Africa, the NBT's are conducted by
an independent advisory panel [10]. The advisory panel ensures that the quality of the tests that are written
by scholars are in line with an international level, more speci�cally that of the United States of America, as
the tests are revised with a quality guarantee from the Assessment Systems Corporation in Michigan as well
as the Educational Testing Services at Princeton [10]. As opposed to just using a student's school average,
the NBT's could potentially provide a more accurate re�ection of a student's academic abilities for tertiary
institutions. Furthermore, according to MacGregor [10], the purpose of these benchmark tests is to evaluate
the pro�ciency of students at the First-year level (leaving school and entering the university environment)
in academic aspects such as mathematics and literacy, in order to compare the standards between �nal year
secondary schooling outcomes (�nal Grade 12 marks) and the minimum admission requirements of a university
degree. Hence, these tests are supposed to provide tertiary institutions with the necessary information to be
of assistance in the improvement of curriculum's [10] as well as encouraging faculties to accommodate the
educational requirements of students. In section 3 of this research project, the NBT averages will be computed
and examined to measure student success using the data of UP students. On a larger scale, throughout South
African institutions, the results of the NBT's have been concerning, extremely low mathematics abilities (only
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seven percent of scholars have the necessary skills to be able to register for a mathematics degree), with the
other two components of the tests fairing slightly better [10], raises the question of the schooling system in
South Africa. Stellenbosch University has its own unique test, known as the Access Test (AT) and have
required all potential students to write the respective tests depending on module selections, to determine the
readiness of a student to study at the institution, based on numeracy, language and thinking skills as well
as subject speci�c areas including mathematics and physical science [12]. In terms of a prediction model
used at Stellenbosch University constitutes the performance of both quantitative and qualitative factors in
determining whether a student would pass or fail [12]. Thus, perhaps it might be more re�ective if tertiary
institutions imposed their own entry level tests.

Various approaches will be used to determine the success of students, such as regression analysis and paired
t-tests. Regression analysis, in general, can be de�ned as the dependence of a single variable (also known as
the dependent variable) on other variables (which could equate to one or more variables, these are also known
as the independent or explanatory variables) in order to attempt making a prediction of the mean value of the
dependent variable based on the values of the known independent variables, usually with regards to repeated
sampling [6]. Furthermore, Kutner et al. in [7], go on to discuss regression analysis in terms of a statistical
relation, �rstly, where there is an inclination of the dependent variable to contrast to that of the independent
variable in a systematic way. Secondly, there is a scattering of various points around a curve that has a
statistical relation [7]. An assumption made is that for every level of the independent variable it is possible
to compute a corresponding probability distribution of the dependent variable [7]. Hence, in regression
analysis the focus is on using statistical dependence amongst variables, simply a statistical relation, which
is indicative of stochastic variables [6], meaning that there is not a perfect relation between these variables,
thus, concluding that the observations of these variables would not lie directly on the regression curve or
line (which ever turns out to be more appropriate) [7]. Therefore, regression analysis will give assistance to
the main three purposes thereof, namely, control, description and prediction or estimation [6]. Regression
parameters and the dependent variable will be determined in order to perform regression analysis using the
data that has been provided.

Correlation analysis will also be examined which is broadly used as a measure of the linear relationship
between any two variables, be it between the independent variable and the dependent variable or between any
two dependent variables [6]. When using correlation analysis there is no discrepancy between the dependent
and the independent variables, hence, they are symmetric and the assumption that is made is that they
are both stochastic variables [6]. In addition, the correlation coe�cient, represented by the symbol r, is as
mentioned indicative of the strength of the linear relationship between variables. The coe�cient can take on
any value between -1 and 1, where for instance, -1 represents a perfect negative linear relationship, -0.9 a
strong negative linear relationship, -0.1 a weak negative linear relationship, a r value equal to zero equates
to no linear relationship between the variables. The opposite becomes true for the positive values. Hence,
0.1 is a weak positive linear relationship, 0.9 a strong positive linear relationship and �nally a r value equal
to 1 represents a perfect positive linear relationship.

Finally, paired t-tests will also be used in the analysis when doing hypothesis testing. It will be used to
determine the di�erence between means and variances of the grouped data. An assumption made is that
the di�erences are normally distributed [11]. Once the di�erence of the means have been computed, usually
denoted by Di, then a normal one sample t-test can be performed to test the various hypotheses [11].

The reader is referred to Pretorius [13], research entitled �Improving the enrolment strategy in the Faculty
of Economic and Management Sciences through an inquiry into the throughput rates of diverse enrolment
and transfer streams� for more information regarding the background theory, for instance the scale at which
APS scores are calculated, subjects o�ered at schooling level etc.

3 Application

The application will be applied to First-year data of students that are enrolled at UP as second years in 2015
and is similar to the 2014 study when they were �rst years. The percentage of students in the Faculty of EMS
enrolled across the four streams are given in Figure 1. The four admittance types are as follows: New (2014
was the �rst year of study at UP), Readmitted, Returning and �nally Transferring students. From Figure
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Figure 1: Admittance Type Description of Students enrolled at UP

1 it can be seen that the majority of enrolments are those of New students, followed by Returning students
(a percentage of 17.76). Transferring students into the Faculty of EMS (having previously been enrolled in
another Faculty within UP) are classi�ed third in terms of number of students. Finally, the Readmitted
students represents a mere 0.13 percent of all the students. Upon further investigation it was revealed that
the students enrolled for the Extended Programme (where students complete their degree in a period of
four years) were embedded under the main stream category headings of New, Readmitted, Returning and
Transferring. Hence, the analysis shows that 104 of 1 812 of New students were actually enrolled for the
Extended (Four-year) Programme. Furthermore, no students who were readmitted into the Faculty of EMS
then re-enrolled for the Extended Programme, since any student is only allowed to enrol once for the Extended
Programme. One Extended Programme student was a Returning stream student and �nally, two students of
91 from the Transferring stream applied for the Extended Programme. It should be noted that, with reference
to Figure 1 that from this point onwards for the purpose of statistical analysis provision will be made for the
stream entitled Extended Programme, i.e. separate analysis will be performed for this respective stream. In
addition, �ve streams (New, Readmitted, Returning, Transferring and Extended Programme) will now be
used as opposed to the original four main streams (New, Readmitted, Returning and Transferring) in order
to provide the most accurate results.

One of the techniques that will be used in the application is that of regression analysis along with
performing a Kruskal-Wallis test. ANOVA (Analysis of Variance) tables will also be used with regard to
comparing the various streams in an attempt to distinguish whether a certain stream, if any, does indeed lead
to success. These approaches will be helpful in determining whether the respective hypotheses, speci�cally
whether the null hypothesis (H0) stating that the performance of students in the di�erent streams are equal,
can be rejected or not.

Note: due to missing data under certain headings (for instance, Grade 11 averages etc.) within the study,
certain streams maybe excluded in a speci�c set of analysis as a result of this reason. On a larger scale it is
di�cult to account for all the data values as well as categorical data (such as degree choice) attributed to
every single student. The reader will be informed when and if there is a possibility that a certain stream was
excluded.

Additional note: Figures 3 through 19 were generated using SAS® software1. The corresponding SAS®

1The [output/code/data analysis] for this paper was generated using SAS software. Copyright, SAS Institute Inc. SAS and
all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC,
USA
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software code can be found in the Appendix and the �gures are of SAS® software output for the applicable
data analysis.

3.1 Basic descriptive statistics

3.1.1 Enrolment streams

In applying basic descriptive statistics, namely averages, to First-year data, GPA, Grade 11 and Grade 12
together with the NBT averages, will be indicative as to the performance of the various streams. This however,
will not be indicative as to whether or not a speci�c stream leads to more success amongst students. With
regards to averages, see Table 1 below, the students in the category entitled New performed the best in Grade
11 as well as having the highest GPA average (58.2 which is slightly greater than the GPA average of 57.06 as
achieved in the Readmitted category). The worst GPA performance was an average of 45.46 for the Extended
Programme stream whilst the Returning and Transferring streams had a GPA average of 47.82 and 52.91,
respectively. Furthermore, across the various streams the averages for Grade 11 were very similar to that
of the mean of the respective streams' Grade 12 performance. For instance, when examining the Returning
stream, the Grade 11 average was 66.93 whereas the average for the student's Grade 12 performance was
67.19. It can be seen that the trend is similar when comparing the Grade 11 and Grade 12 performance across
the di�erent streams, with the exception of the Readmitted students because several values for students are
missing or not made available. Thus, it was not possible to derive an average for the Readmitted students
for Grade 11 and NBT, hence, in the case of examining these averages this group of students were not
part of the analysis. One important conclusion that can be drawn from Table 1 is that of GPA and NBT
when comparing the averages. It can be established that the NBT average is more accurate (consistent) in
determining how a student will perform at tertiary level, in particular at UP, than using either the averages of
Grade 11 or Grade 12 since these averages could possibly over-estimate a student's performance at university.
Consequently, the GPA measure maybe conservative and under-estimates a student's success level but is more
accurate in predicting the First-year performance that students can expect. There will be exceptions and
external factors cannot be ignored entirely. Averages should be treated with caution as it could potentially
lead to inaccurate interpretation of the main objective of this study. A more in-depth analysis will take place
in the proceeding sections.

New Readmitted Returning Transferring Extended

Pro-

gramme

Grade 11 72.35 Not available 66.93 65.00 63.07

Grade 12 72.56 76.25 67.19 62.89 63.46

NBT 56.87 Not available 53.15 57.95 49.79

GPA 58.20 57.06 47.82 52.91 45.46

Table 1: Averages across the di�erent streams

3.1.2 GPA Scores Compared

The GPA averages across the �ve main streams have been calculated for the �rst semester as well as for the
�rst year. Both these methods are for the year 2014, hence, it re�ects the marks achieved by the First-year
students. The GPA for the �rst semester was calculated using a weighted average method. The reader is
referred to Pretorius [13] for the method of calculation. The �rst year GPA scores for this study were provided
by BIRAP and were calculated using a similar approach to that done by Pretorius. A slight di�erence in the
GPA scores that were provided is when a student is awarded a supplementary examination. For instance, if
a student is awarded a supplementary exam after achieving a semester mark of 45 percent and then achieves
a lower mark in the supplementary examination, say, 42 percent, the GPA score is then calculated using the
higher of the two marks. In the case of this particular student it will be the semester mark and not the
supplementary examination mark which will be used. In addition, GPA scores are calculated on an annual
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Figure 2: GPA Scores Compared

basis, i.e. all modules, taken over both semesters, enrolled for by a student will comprise the student's
GPA score. Moreover, a cumulative weighted GPA is also computed. This means that (as an example)
the academic record of a student enrolled for a BCom Statistics degree, where the prescribed period of
completion is three years, will after the �rst year have a weighted average % for the term and a cumulative
weighted average. After the second year of study, a new weighted average % for the term is calculated (using
the modules enrolled for in the year of study). The cumulative weighted average will now comprise of the
weighted average over both years of study. This procedure will then be used for the third year of study and
so forth. At UP the weighted average is computed for a year and is thus, unavailable for semesters. A term
(year) at UP comprises of two semesters. The use of the word 'term' makes reference to the year of study.
The terminology used is speci�c to UP. In order to avoid confusion, the terminology used by UP for 'weighted
average % for the term' equates to the terminology 'GPA scores' used in this report.

Figure 2, shows that when the comparison of GPA scores is made for the di�erent streams there is
minimal di�erence in the averages. Hence, the performance of students was relatively similar between the
two semesters. The average from �rst semester to �rst year actually improved in the Extended Programme
stream. Conversely, there was a slight decrease in the average of the other four streams. The biggest variation
in averages was observed in the Transferring stream.

The reader should remain aware of the di�erence in the calculation methodology used. This may play a
role in the obtained averages when making comparisons.

3.2 Enrolment Streams Compared

The di�erent streams are compared to one another by setting up a simple one-way ANOVA table using SAS®

software. This analysis will be conducive to see if any stream performs better than the other. The streams
will be compared in a between group fashion. The null and alternate hypotheses for all the between group
options will be similar. The enrolment streams that are compared are classi�ed into �ve levels, namely the
admittance types.

Note, due to missing observations it is possible that a few students were left out when modeling the
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provided data. In other words, not the full set of data provided was utilised.
Before the between group enrolment stream analysis is evaluated, further investigation into the procedure

that was applied will be provided. Results will be given regarding the goodness of �t of the model, the
variation exposure of the model and if the overall model is of any statistical signi�cance. This information is
provided in the form of an ANOVA table using SAS® software. This procedure makes use of ordinary least
squares (OLS) as a method in order to �t general linear models.

The observed R2 between GPA scores and Admittance type is equal to 0.058204. Hence, this is indicative
that 5.8204 percent of the variation in the dependent variable (GPA) is explained by the model (i.e. the
independent variable, Admittance type). R2 is also an indication of the goodness of �t of the model. The
R2 value for this model would suggest that it is by no means a good �t, however, R2 should be treated with
caution along with the interpretations thereof.

The overall statistical signi�cance of the model can be evaluated by computing the F statistic from the
F-test. The null hypothesis therefore, would be as follows:

H0: the overall model is not statistically signi�cant against the alternate hypothesis,
Ha: the overall model is statistically signi�cant. The F-value for this model is 35.98 with a corresponding

p-value < 0.0001. Hence, since the (p-value < 0.0001) < (α = 0.05), it means that the null hypothesis is
rejected at the 5 percent level of signi�cance. Thus, concluding that the overall model is signi�cant. If the
test was done on a 1 percent level of signi�cance (α = 0.01), the null hypothesis would still be rejected in
favour of the alternate hypothesis, resulting in the overall model being highly statistically signi�cant, due to
the very small p-value. The reader is referred to Figure 3.

In comparing the enrolment streams both the Tukey and Sche�e methods will be evaluated, since the
means are being compared and the test is done to see whether the means of the di�erent classes of the inde-
pendent variable (Admittance type) are in fact similar. The Sche�e method is that of a multiple comparison
procedure where Tukey refers to a studentised range test. As Figures 6 and 7 alludes to warnings it should
be noted that both these methods control for Type I (type 1) errors in an experimentwise solution. However,
the Sche�e method leads to a higher Type II (type 2) error rate than the Tukey method for all between
group assessments. Type I errors can be de�ned as rejecting the null hypothesis when in actual fact the null
hypothesis is correct. A Type II error is committed when the null hypothesis is not rejected while in fact
the null hypothesis is not correct. The reason for using both Tukey and Sche�e is that the Tukey approach
is more accurate in determining con�dence intervals, due to the elimination of committing a Type II error.
However, when evaluating the grouping (given by alphabetic letters in SAS® software), Sche�e leads to
better results. The level of signi�cance or α level for all the between group comparisons is 0.05, this is the
same level used to calculate the con�dence intervals/limits. The simulated data also provides information
regarding the con�dence level as well as the di�erence between the means. Note, the di�erence in means of
the two methods result in the exact same values, the exception is that of the con�dence intervals. Con�dence
intervals can be interpreted as upon repeated samples, 95 percent of the intervals will include the true mean
value (zero, in this case).

All the proceeding analysis and evaluation (in section 3.2.1 to 3.2.10) refers to the following Figures:

� 4 (analysis relating to Tukey's Studentised Range test)

� 5 (evaluation of data with regards to Sche�e's test)

� 6 (Tukey's Grouping method of GPA scores)

� 7 (Sche�e's Grouping method of GPA scores)

3.2.1 New students vs Extended Programme students

The between group comparison of New students versus the students enrolled for the Extended Programme
will be evaluated. The null hypothesis is described as follows:

H0 : µnew − µextended = 0 (New students' average performance is statistically the same as the average
performance of Extended Programme students) whereas the alternate hypothesis (Ha) is: not all the mean
di�erences (µnew − µextended) are equal to zero. Note: µ refers to the mean; extended makes reference to
the Extended Programme. From Figure 4 it can be concluded, using the Tukey method that the di�erence
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Figure 3: Admittance types compared
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between the means is 12.7417 with a con�dence interval of (7.7187 ; 17.7647). Hence, because zero does not
fall within the interval it means that the null hypothesis is rejected at the 5 percent level of signi�cance.
Thus, this between group comparison between these two streams deems to be signi�cant and indicates that the
average performance of New students is in actual fact better than those enrolled in the Extended Programme,
since the di�erence yielded a positive answer. Sche�e's multi comparisons yields the following results (using
the same null and alternate hypotheses): di�erence of means is the exact same as the Tukey method with a
slight di�erence being observed with regards to the con�dence interval which is (7.0696 ; 18.4138). Thus, the
null hypothesis will still be rejected.

3.2.2 New students vs Transferring students

New students' performance for First-year will be compared to that of Transferring students. This will
distinguish if there is an apparent better level of success within one of these streams or not. Once again the
null and alternate hypotheses are:

H0 : µnew−µtransferring = 0 (New students' average performance is the same as the average performance
of Transferring students)

Ha : not all the mean di�erences are equal
According to the Tukey method, the di�erence of means between these two streams is 5.2896. The 95

percent con�dence interval of this between group comparison is (-0.1906 ; 10.7698). Since the value of zero
falls within this con�dence interval, it results in the null hypothesis not being rejected at the 5 percent level
of signi�cance. Hence, the comparison of the two streams is not statistically signi�cant and can in essence be
left out of the model. It also provides the reasoning that New students do not tend to perform better than
Transferring students at a First-year level when using the variable GPA. Sche�e's method leads to con�dence
intervals equal to (-0.8987 ; 11.4780). A wider interval means that there is more acceptance to an error being
made. The between group comparison is still statistically insigni�cant.

3.2.3 New students vs Readmitted students

The third between group comparison is that of New students versus students that were Readmitted into the
Faculty of EMS. The Readmitted students account for the lowest entrant numbers as in this study, only 3
students that are part of the study are in this category. The hypotheses can be described as follows:

H0 : µnew − µreadmitted = 0 (New students' average performance is the same as the average performance
of Readmitted students)

Ha : not all the mean di�erences are equal
Tukey's and Sche�e's methods reveals a di�erence in means of 1.1407, with a con�dence interval of (-

27.9853 ; 30.2667) and (-31.7492 ; 34.0306) for the methods, respectively. Since the value of zero falls inside
both of these con�dence intervals, the outcome is that the null hypothesis is not rejected. Therefore, the
streams entitled New and Readmitted are not statistically signi�cantly di�erent. This suggests that New
students do not necessarily perform better than Readmitted students and vice versa.

3.2.4 New students vs Returning students

Finally, the last between group comparison that involves New students is that with Returning students. The
analysis done will assess whether there are higher GPA scores, if any, amongst these two streams. The null
and alternate can be given as:

H0 : µnew − µreturning = 0 (New students' average performance is the same as the average performance
of Returning students)

Ha : not all the mean di�erences are equal
The con�dence intervals for the Tukey and Sche�e methods are respectively given by the following in-

tervals, (7.6585 ; 13.1127) and (7.3061 ; 13.4651). The di�erence of means between the New students and
Returning students grouping equals 10.3856. It can be seen that the mean value level of zero does not fall
within both the con�dence intervals which leads to the conclusion that the null hypothesis is rejected in
favour of the alternate hypothesis at the 5 percent level of signi�cance. The between group comparison is
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statistically signi�cant. Hence, New students perform better than Returning students, in other words they
have higher GPA scores than Returning students.

3.2.5 Readmitted students vs Returning students

When the Readmitted students are compared to those that are Returning to UP and more speci�cally to the
Faculty of EMS the following results were observed, a di�erence in means level of 9.2449. The con�dence
interval when the Tukey method was performed is (-19.9576 ; 38.4474) whilst the Sche�e method yields a
con�dence interval of (-23.7314 ; 42.2211). The above was achieved using the following hypotheses:

H0 : µreadmitted − µreturning = 0 (Readmitted students' average performance is the same as the average
of Returning students)

Ha : not all the mean di�erences are equal
The mean value equal to zero falls within the intervals thus, meaning that the null hypothesis is not

rejected. Therefore, the between group comparison reveals that the streams are indeed statistically insignif-
icant and that Readmitted students do not have statistically better GPA scores than Returning students.
The opposite also holds true, meaning if the null hypothesis now read: H0 : µreturning − µreadmitted = 0
(Returning students' average performance is the same as the average of Readmitted students), the same
conclusion can be made.

3.2.6 Readmitted students vs Transferring students

The next between group comparison will detect whether Readmitted students or students that are Transfer-
ring to the Faculty of EMS from another faculty within UP do indeed have statistically higher GPA scores
than one another. This will be analysed using con�dence intervals (both Tukey and Sche�e), where the
hypotheses are:

H0 : µreadmitted−µtransferring = 0 (Readmitted students' average performance is the same as the average
performance of Transferring students)

Ha : not all the mean di�erences are equal
The con�dence intervals are (-25.4380 ; 33.7358) and (-29.2614 ; 37.5592). The analysis reveals three

important notions, �rstly that the null hypothesis is not rejected at the 5 percent level of signi�cance.
Secondly, that the comparison between these two streams is statistically insigni�cant and lastly, it can be
concluded that Readmitted students do not have a better performance than Transferring students with
respect to GPA scores.

3.2.7 Readmitted students vs Extended Programme students

The last between group comparison involving Readmitted students is this stream versus students that are
enrolled for the four-year Extended Programme. The variable of interest is GPA scores. The null and
alternate hypotheses can be described as follows:

H0 : µreadmitted − µextended = 0 (Readmitted students' average performance is the same as the average
performance of Extended Programme students)

Ha : not all the mean di�erences are equal
Note: extended in this context refers to the Extended Programme. The con�dence interval using Tukey's

method is (-17.9046 ; 41.1066) whereas (-21.7176 ; 44.9195) are the lower and upper limits, respectively using
Sche�e's method. The di�erence between the mean levels for these two streams is 11.601. The con�dence
intervals can be used to not reject the null hypothesis as the mean value under consideration (that is, a mean
value = 0) falls within the intervals. Hence, the comparison is statistically insigni�cant and could in essence
be left out of model comparisons. Therefore, Readmitted students do not statistically perform better than
those students who are enrolled in the Extended Programme.

3.2.8 Returning students vs Transferring students

In this subsection, analysis will be evaluated to determine whether the between group comparison between
Returning students and Transferring students does indeed lead to higher First-year GPA scores or not. The
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hypotheses that are used are given by the following null and alternate hypotheses:
H0 : µreturning − µtransferring = 0 (Returning students' average performance is the same as the average

performance of Transferring students)
Ha : not all the mean di�erences are equal
In applying Tukey's method to con�dence intervals the following is obtained (-5.096 ; 0.7773) whilst (-

11.7282 ; 1.5362) is obtained using Sche�e's method. As can be seen the mean value = 0 just falls into the
con�dence interval limits. Concluding, the null hypothesis is not rejected at the 5 percent level of signi�cance.
Thus, the comparison is in actual fact statistically insigni�cant. Hence, Returning students do not have higher
First-year GPA scores than Transferring students and vice versa.

3.2.9 Returning students vs Extended Programme students

The performance level of First-year students who are Returning versus students that are part of the Faculty
of EMS's Extended Programme will be investigated. This is to determine and give guidance to the Faculty
of EMS if there is higher GPA scores between these two streams. The results when simulated using SAS®

software were as follows:

� Di�erence between means: 2.3561

� Tukey con�dence interval: (-3.093 ; 7.8052)

� Sche�e con�dence interval: (-3.7972 ; 8.5094)

Therefore, the null and alternate hypotheses are as follows:
H0 : µreturning − µextended = 0 (Returning students' average performance is the same as the average

performance of Extended Programme students)
Ha : not all the mean di�erences are equal
Note: extended makes reference to the Extended Programme. The mean value equal to zero falls within

the above con�dence intervals and thus, do not reject the null hypothesis at the 5 percent level of signi�cance.
It appears that the comparison is of no statistical signi�cance. Hence, Returning students do not necessarily
perform better than the Extended Programme students.

3.2.10 Transferring students vs Extended Programme students

Finally, the last between group comparison that will be done in this report is that of the performance of
Transferring students versus the performance of the Extended Programme students at a First-year level. The
null and alternate hypotheses are similar to those used previously with:

H0 : µtransferring − µextended = 0 (Transferring students' average performance is the same as the average
performance of Extended Programme students)

Ha : not all the mean di�erences are equal
Note: extended makes reference to the Extended Programme. The lower limit of the con�dence interval

equals 0.2210 with a corresponding upper limit equaling 14.6831. Results refer to the Tukey method. The
Sche�e method yields a lower con�dence limit of -0.7134 and an upper limit of 15.6176. Depending on which
method is applied, the rejection of the null hypothesis and conclusion will di�er somewhat. This is due to
the Type II errors that play a role (in the Sche�e method). Therefore, the Tukey method explained: the
mean value of zero does not fall in the con�dence interval, thus, the comparison is statistically signi�cant
and reveals that Transferring students do indeed perform better than the Extended Programme students at
a First-year level, with GPA scores as the dependent variable of interest. Conversely, The Sche�e method
yields results in which the null hypothesis is not rejected at the 5 percent level of signi�cance, meaning
that the comparison between these two streams is statistically insigni�cant, hence, there is no di�erence in
performance from either of these groups.
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Figure 4: Tukey's Studentised Range Test for GPA score
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Figure 5: Sche�e's Test for GPA scores

Figure 6: Tukey Grouping of GPA scores
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Figure 7: Sche�e Grouping of GPA scores
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3.3 Independent samples

This section will evaluate whether or not a certain matric authority description or simply put, school type
plays a role in determining student success at the tertiary level. Students will be divided into four groups;
Cambridge, State School, IEB and Foreign Country, in accordance with the school that they attended. State
School refers to students who attended public schools in South Africa, i.e. the nine provincial education
departments. Secondly, IEB (Independent Examinations Board) refers to private schools within the South
African schooling system. Certain assumptions are made, such as if a student attended 'School of Tomorrow'
or 'International Bacalaureat', are considered to be IEB. Foreign Country makes reference to students who
did not attend school in South Africa.

The application done uses the Kruskal-Wallis test, this is due to the fact that the analysis of matric
authority description contains a single independent variable with two or more levels and a dependent variable
with a non-normal distribution. In the study and the aforementioned paragraph, the independent variable
is thus, the matric authority description, with four levels, namely, Cambridge, State School, IEB and �nally
Foreign Country. Furthermore, the dependent variable of choice is the GPA scores, this is in accordance with
what this report is aiming to achieve. Hence, the Kruskal-Wallis test is the best option. The Kruskal-Wallis
test is a nonparametric (or distribution free) version of a one-way ANOVA table. In addition the Kruskal-
Wallis is a generalised form of the Wilcoxon-Mann-Whitney. Assumptions that are made include that the
data (divided data) comes from the same distribution with each having a di�erent mean value. This is
apparent from section 3.1.1. Secondly, it is assumed that the variable GPA is not normally distributed. The
Kruskal-Wallis test is based on ranking the data. It should be noted that due to certain information being
unavailable, such as the matric authority description, a few students have been left out of this particular
analysis.

3.3.1 Krsukal - Wallis Test

The following hypothesis will be tested with reference to the main objective of this section (Kruskal-Wallis,
see Figure 8):

H0: there is no statistical di�erence between the di�erent matric authority description against the alter-
nate hypothesis (Ha) there is statistical signi�cance between the di�erent matric authority description. The
test will be performed at a 5 percent level of signi�cance, in other words, α = 0.05. The Kruskal-Wallis test
has a χ2 (Chi-Square) value equal to 9.6232. The degrees of freedom equates to three, this is computed as
the number of parameters less one. In this case, the parameters are the four classi�ed group types, i.e. the
matric authority description. The corresponding p-value of the Kruskal-Wallis test is 0.0221. Hence, since
the (p-value = 0.0221) < (α = 0.05), it means that the null hypothesis (H0) is rejected at the 5 percent
level of signi�cance. It can therefore, be concluded that there is statistical signi�cance amongst the matric
authority description, meaning that based on a certain school type a student attended could lead to those
students being more successful at a tertiary level. This analysis is all based upon Figure 8.

Further analysis can be of interest. The ANOVA table classi�ed by matric authority description for the
variable GPA is provided and it can be concluded that students who attended Cambridge had the highest
mean, equal to 62.13. The lowest mean GPA value was 52.85, students who attended school outside South
Africa. Once again averages (mean levels) should be treated with caution.

The overall model, where the null and alternate hypotheses are as follows:
H0: the overall model is not statistically signi�cant;
Ha: the overall model is statistically signi�cant.
This test is computed using an F-test with a 5 percent level of signi�cance. The F-value = 3.1775 with a

corresponding p-value = 0.0232 (See Figure 8). Hence, since the (p-value = 0.0232) < (α = 0.05), it means
that the null hypothesis is rejected at the 5 percent level of signi�cance. Thus, the overall model is signi�cant.

Figure 8 also identi�es the Wilcoxon, Rank Sums, where information is provided for the di�erent matric
authority descriptions in terms of what the expected value and standard deviations are under the null
hypothesis (no statistical di�erence between the matric authority description). It should be noted (alluded
to using SAS® software) that if there is a tie in the ranks, when ranking the GPA scores, ties would mean
that average scores are applied. From looking at the observed mean scores of the Wilcoxon Scores (Rank
Sums) for GPA, the rankings would be:
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1. Cambridge (1409.875)

2. IEB (1169.93548)

3. State School (1141.60438)

4. Foreign country (1072.375)

Rankings are based on the mean scores in ascending order, i.e from largest to smallest. From the outset
it would seem that there is a possible di�erence in performance between students who attended Cambridge
and those that attended school outside the South African boarders. Comparison of mean di�erences will be
performed to determine if the matric authority description di�ers.

Figure 8: Wilcoxon Scores and the Kruskal - Wallis test

3.3.2 van der Waerden normal scores

From Figure 9, the van der Waerden normal scores are also provided. This test shows whether or not the
distribution of the population functions are equal. Hence, in the context of this report this would correlate
to whether the matric authority description populations come from the same distribution. In other words, do
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Figure 9: van der Waerden Normal Scores

Cambridge, State Schools, IEB and Foreign schooling all follow the same distribution, irrespective of whether
that distribution is known or unknown. However, the Kruskal-Wallis test was performed which makes the
assumption that the distributions are not normally distributed, whereas the van der Waerden makes use of
a normal distribution. The van der Waerden test converts the ranks as determined by the Kruskal-Wallis
test into quantiles. These quantiles follow a normal distribution. The hypotheses for this test can be given
as follows:

H0: all the population distribution functions are the same
Ha: at least one of the population distribution functions has larger observations than at least one of the

other population distribution functions.
An explanation of the alternate hypothesis is for instance, the matric authority description labeled Cam-

bridge may yield higher GPA scores (in normally distributed quantiles) than say the IEB category. Continuing
the example using numerical values, perhaps Cambridge yields a value that is equal to it's rank (say one)
whereas IEB might be ranked fourth thus, having the lowest GPA scores.

In evaluating the hypotheses, the van der Waerden test statistic equals 10.1659 with three degrees of
freedom. The degrees of freedom are calculated as the number of parameters (Cambridge, State School, IEB
and �nally, Foreign Country schooling) less one. The test statistic is given by a χ2 (Chi-Square) value. The
corresponding p-value is equal to 0.038. The p-value is evaluated against a 5 percent level of signi�cance
(α = 0.05). Since, the (p-value = 0.0380) < (α = 0.05), it leads to the conclusion that the null hypothesis
is rejected at the 5 percent level of signi�cance in favour of the alternate hypothesis. This means that the
four di�erent matric authority descriptions are indeed from population functions that come from di�erent
distributions. Thus, there is an indication that at least one population yields di�erent (possibly higher) GPA
scores than at least one of the remaining three populations.

3.3.3 Wilcoxon scores

The interpretation of the boxplot of Wilcoxon scores for GPA scores given in Figure 10 will be discussed.
As can be seen, the boxplot of Foreign Country is expanded, in other words is quite stretched out, this
is an indication that within the category there is a wide di�erence in GPA scores obtained by students.
Furthermore, it can be seen that the boxplot of State School is slightly lower than that of Cambridge, this
advocates that there maybe a di�erence in GPA scores between the two groups, however, this may not
hold true as there is only a slight di�erence in the placing of the boxplot. In addition, there are obvious
di�erences in the boxplots of Cambridge and Foreign Country. In other words, the length of the whiskers of
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Figure 10: Boxplot of Wilcoxon scores for GPA

the respective boxplots as well as the box itself. Due to this obvious di�erence, further investigation will be
explored in order to see if there is in fact a di�erence between the GPA scores of those two groups. It can
also be seen that State Schools and IEB have very similar median values (50th percentile) for the Wilcoxon
scores of GPA, this could be indicative that these are roughly the same as the overall median level, but these
independent variables maybe from di�erent population distributions. This will also be investigated further
to �gure out if the population distributions are indeed di�erent. Finally, none of the boxplots reveal that the
four sections are uneven in size. What is meant by this is that from the 5th percentile to the 25th percentile
is not all that unequal to the next section (25th percentile to the 50th percentile) and so forth. The exception
being that of Cambridge but further investigation reveals that the sections of the 25th percentile to the 50th
percentile and between the 50th - 75th percentiles are relatively equal in size. The p-value is also given which
is 0.0221.

Knowing that di�erences were detected, further investigation was conducted to evaluate which populations
of matric authority description are contrasting.

3.3.4 Matric authority descriptions compared

Using Figure 11, it can be seen that there is a distinct di�erence between the GPA score performance of
students that attended Cambridge as opposed to those that attended school elsewhere. This can be seen from
the Sche�e grouping which indicates Cambridge is assigned a letter 'A' whilst Foreign Country is assigned
the letter 'B'. This shows that they are statistically signi�cantly di�erent. Furthermore, there is no statistical
signi�cance between the following matric authority descriptions:

� Cambridge, IEB and State School (all grouped with the alphabetic letter 'A')
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Figure 11: Matric Authority descriptions compared

� IEB, State School and Foreign Country (all grouped with the alphabetic letter 'B')

Hence, it can be concluded that the First-year performance of students that attended Cambridge is indeed
better than the performance of students that did not attend the South African schooling systems (i.e Foreign
Country students).

3.4 Success prediction

This section consists of various procedures that were performed to determine the best level of success amongst
the streams, if any. The dependent variable used in this analysis is GPA. Categorical variables that were used
in the models is the admittance type descriptions (i.e. the streams), gender description (i.e. female or male)
and �nally, citizenship country description type (i.e. South Africa or International). International comprises
of all students who are not South African. In Pretorius [13], a graphical representation of the citizenship
country description is provided. Along with these independent variables others include, NBT mathematics,
NBT academic literacy, NBT quantitative literacy as well as Grade 11 APS and Grade 12 APS. Provisional
admittance into UP is based on the APS score achieved by potential students in Grade 11. The �nal decision
made is based on Grade 12 APS scores. For these reasons these variables were included. It should be noted
that the proceeding models are built only using information that was available for all the aforementioned
variables. In other words, due to non-response in certain �elds only 845 students out of the study total of
2 359 students were eligible. Furthermore, due to information regarding the Readmitted stream also being
unavailable, the stream was thus, also excluded.

Note: the level of signi�cance (α) used in all the models is 5 percent, unless otherwise stated.
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3.4.1 Complete model

This model makes use of the variables de�ned above, where the independent variables consists of the cat-
egorical variables as well as the three NBT categories and the two APS groups. In the overall model (not
taking dummy variables into account), with reference to Figure 12, it can be deduced that the categorical
variables have di�erent levels. The following hypotheses can be used to describe the overall model:

H0: the overall model is not statistically signi�cant
Ha: the overall model is statistically signi�cant
The p-value obtained is < 0.0001. Hence, the following two important notions can be made:

1. The null hypothesis (H0) is rejected in favour of the alternate hypothesis. This decision is made on the
basis that the p-value < 0.001 is less than the level of signi�cance (α < 0.05).

2. The overall model is indeed statistically signi�cant.

The R2 value equals 0.285860, meaning that 28.59 percent of the variation in GPA scores can be explained
by the model (i.e. all the independent variables). R2 is also used as a measure for goodness of �t. This
means how well does a model �t, hence, the goodness of �t should be interpreted with caution.

Figure 12: Overall Model

Furthermore, dummy variables are used due to categorical variables being included in the model. The
number of dummy variables is calculated as the number of levels for a certain categorical value less one. For
example, in this model there are four levels under the categorical variable of admittance type, hence three
dummy variables will be used. The same applies to the other categorical variables. SAS® software refers to
these as 'class' (see Figure 12).

The following are used as the base dummy variable under the respective class of admittance type, gender
description and citizenship country description:

� Transferring

� Male
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� South Africa

A base dummy variable implies that the parameter is set equal to zero in the matrix. For example, the
representation of the admittance type using dummy variables is given in Table 2:

x1 x2 x3

New 1 0 0
Returning 0 1 0
Readmitted 0 0 1
Transferring 0 0 0

Table 2: Example of Dummy variables

An identical process will be applied when using dummy variables for gender description as well as citizen-
ship country description. In the case of gender, as mentioned, the base dummy variable is male hence, male
will be represented by a zero whereas female will be a one. Similarly, South African students are considered
to be the based variable, thus, equals zero whilst International students are assigned a one value.

By making use of using SAS® software (see Figure 13), the choice of base dummy variables was made
automatically. This allows for obtaining parameters that are unbiased and not linear combinations of each
other. Furthermore, in order to perform regression analysis on the data, a full-rank parameterisation is
needed. Full-rank parameterisation can be described as being able to estimate parameters even when cate-
gorical variables are included in the model. Hence, a standard regression procedure was not applied because
there are categorical variables included in the model. Certain interactions between the variables can also be
analysed. Interactions refers to for example, a student that is female, enrolled for the Extended Programme
and citizenship is International etc.

The null and alternate hypotheses for all the parameters in general, excluding the interaction terms, can
be described as:

H0: The variable is not statistically signi�cant; against the alternate hypothesis of,
Ha: The variable is statistically signi�cant
In order to be able to interpret the individual p-values, the other variables have to already be included

in the model and remain constant.
Referring to Figure 13, it shows that the p-values for all the streams are less than the level of signi�cance

(α = 0.05). The p-values of 0.0017, 0.0122 and 0.0053 are for the Extended Programme, New and Returning
streams, respectively. This means that the null hypothesis is rejected at the 5 percent level of signi�cance.
Hence, the variables are statistically signi�cant and need to be included in the model. Furthermore, it can
be concluded (using p-values) that the gender description variable is statistically signi�cant. The citizenship
country description (p-value = 0.2221) of students is not statistically signi�cant and can in essence be left
out of the model. Hence, it means that whether students are from South Africa or are International students
is of no signi�cance. Thus, this would not lead to higher levels of success amongst students.

When the three NBT categories are analysed, namely academic literacy, quantitative literacy and mathe-
matics, none of them are statistically signi�cant. This is as a result of the null hypothesis not being rejected
at the 5 percent level of signi�cance. The p-values are thus, in excess of the level of signi�cance. These
variables can also be left out of the model.

Furthermore, using the above null and alternate hypotheses, the Grade 12 APS score is statistically
signi�cance. This is since the (p-value = 0.0122) < (α = 0.05). Hence, the null hypothesis is rejected in
favour of the alternate hypothesis. Conversely, the Grade 11 APS is not statistically signi�cant.

The interaction terms, generally speaking, have the following null and alternate hypotheses:
H0: The interaction between the variables is not statistically signi�cant
Ha: The interaction between the variables is statistically signi�cant
The following interaction terms (with reference to Figure 13) are statistically signi�cant:

� Extended Programme, Female, International (p-value = 0.0207)

� New, Female, International (p-value = 0.0268)
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Figure 13: Overall Model including interaction terms
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� NBT academic literacy, Extended Programme, International (p-value = 0.0498)

� APS Grade 12, Extended Programme, International (p-value = 0.034)

� APS Grade 12, New, International (p-value = 0.0284)

These interactions are statistically signi�cant because the p-values are less than the level of signi�cance.
Hence, the null hypothesis is rejected in favour of the alternate hypothesis. It can furthermore, be concluded
that the rest of the interaction terms are not statistically signi�cant.

3.4.2 Regression of numeric data

A classical linear regression analysis was performed on the data under the assumption of no streams. Thus, if
streams were to be ignored the analysis that is evaluated is to try and answer the question of which variable
can be the used as the best predictor of student success at tertiary institutions, speci�cally UP. Similar
analysis as done previously will now be evaluated. With regards to testing whether or not the overall model
is signi�cant, it is computed using the F-test (F ∗) and the corresponding p-value. The null and alternate
hypotheses for the overall model is as follows:

Null hypothesis, H0: the overall model is not statistically signi�cant
Alternate hypothesis, Ha: the overall model is statistically signi�cant
The regression model's F-value (F ∗) = 33.58 and has a corresponding p-value < 0.0001 (See Figure 14).

It can thus, be concluded that since the (p-value < 0.0001) < (α = 0.05), the null hypothesis is rejected
at the 5 percent level of signi�cance. This is indicative of the overall model being statistically signi�cant.
Furthermore, the R2= 0.1667, which means that 16.7 percent of the variation in the dependent variable,
GPA scores, is explained by the model (i.e. the independent variables). The independent variables in this
regression model include, NBT academic literacy, NBT quantitative literacy, NBT mathematics and then the
Grade 11 and Grade 12 APS scores.

For simplicity the various parameters will be de�ned:

� β0 is the intercept term in simple regression analysis

� β1 corresponds to be a representation of NBT academic literacy (X1)

� β2 corresponds to be a representation of NBT quantitative literacy (X2)

� β3 corresponds to be a representation of NBT mathematics (X3)

� β4 corresponds to be a representation of Grade 11 APS (X4)

� β5 corresponds to be a representation of Grade 12 APS (X5)

Therefore, the Population Regression Function (PRF) using the parameters as given in the model using the
parameters de�ned above (not in general Y and X formation) is:

GPA = β0 + β1NBTacademicliteracy + β2NBTquantitativeliteracy + β3NBTmathematics

+β4APSgrade11 + β5APSgrade12 + µi

where µi is the residuals in the model.
The Sample Regression Function (SRF) is then given by:

ˆGPA = β̂0 + β̂1NBTacademicliteracy + β̂2NBTquantitativeliteracy + β̂3NBTmathematics

+β̂4APSgrade11 + β̂5APSgrade12

29



The estimated regression model for the complete model can be written as follows (see Figure 14):

ˆGPA = 5.50029 + 0.09526NBTacademicliteracy − 0.18966NBTquantitativeliteracy

+0.13285NBTmathematics− 0.04845APSgrade11 + 1.52781APSgrade12

A simple interpretation for NBT mathematics is: for a unit increase in GPA score, there will be a 0.13285
unit increase in NBT mathematics, provided that the other variables are in the model and remain constant.
Similarly, the interpretation of APS Grade 12 is: for a unit increase in the GPA score, Grade 12 APS will
increase by 1.52781 units, given the other variables are in the model and remain constant. This could also
be stated from the side of the independent variables namely: provided all the variables in the model remain
constant an increase of one unit in the NBT mathematics will result in an increase of 0.13285 units in the
GPA score etc. The interpretation for the other variables will be the same with just the parameter estimate
changing (see Figure 14).

To test whether the individual variables are statistically signi�cant or not a t-test is performed. The
corresponding p-value will help reject or not reject the null hypothesis. Therefore, in general, the null and
alternate hypothesis can be de�ned as:

H0: β = 0
Ha: β 6= 0
Hence, for the NBT academic literacy variable the null and alternate hypothesis is:
H0: β1 = 0
Ha: β1 6= 0
From Figure 14, the p-value for β̂1 = 0.1371, this p-value is greater than the 5 percent level of signi�cance.

Therefore, since this is true, the null hypothesis is not rejected. Hence, the academic literacy parameter is
not signi�cant and can be left out of the model.

Similarly, the null and alternate hypothesis for the Grade 11 APS is as follows:
H0: β4 = 0
Ha: β4 6= 0
With reference to Figure 14, the observed p-value for β̂4 = 0.7903, where the p-value is greater than

α = 0.05. Thus, the null hypothesis cannot be rejected at the 5 percent level of signi�cance. Therefore, β̂4
(Grade 11 APS) is not a statistically signi�cant parameter and can be left out of the model.

The same approach can be used for all the parameters. A summary of the variables would be that the
aforementioned two parameters are not statistically signi�cant and can be left out of the model. On the
other hand, the rest of the variables are signi�cant. This is because the respective p-values are less than the
5 percent level of signi�cance. Hence, the null hypothesis is rejected in favour of the alternate hypothesis.

The smallest p-value (< 0.0001) corresponds to the Grade 12 APS.
Further regression analysis was performed on the separate streams, in order to determine which parameter

could potentially lead to higher success rates. This could help the Faculty of EMS make an informed decision
based on which variable (Grade 11 APS, Grade 12 APS or the individual NBT groups) could produce more
successful students within the various streams. It was however, not possible to perform regression models on
two of the �ve streams. The reasons are that due to missing data, the Readmitted stream was excluded (as
mentioned earlier in this section). Linear combinations were picked up with the Transferring stream. Linear
combinations means that in matrix form, mathematical operations (for example, addition, multiplication
etc.) performed on one column will lead to the same values in another column. A numerical example in
matrix form follows: 

col(A) col(B) col(C)
1 3 2
2 1 4
5 7 10


From the above matrix, column A and column C are linear combinations of one another. This is because

if every element in column A is multiplied by a constant equal to two then the resulting column would
correspond to the elements in column C, i.e. 1 x 2 = 2; 2 x 2 = 4 and 5 x 2 = 10.
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Figure 14: Regression of the Numerical variables

The above holds true for students in the Transferring stream. The linear combinations are speci�c to
NBT mathematics, Grade 11 APS and Grade 12 APS. Certain estimates are also considered to be biased.
The output is not given in the report but the coding in the Appendix can be used to simulate the results.

Regression analysis performed on the New stream resulted in the following (see Figure 15). Firstly, the R2

(goodness of �t) value equals 0.1844, meaning that 18.44 percent of the variation in the dependent variable
(GPA score) is explained by the model (i.e. the independent variables).

To assess the overall signi�cance of the model the following hypotheses need to be tested:
H0: the overall model is not statistically signi�cant
Ha: the overall model is statistically signi�cant
The respective p-value of the F-test statistic (F = 24.37) is < 0.0001. Concluding, the null hypothesis is

rejected at the 5 percent level of signi�cance, meaning that the overall model is highly statistically signi�cant.
Furthermore, the evaluation of the parameters yields the following results:

� The variables, namely, Grade 11 APS, NBT academic literacy and NBT quantitative literacy are not
statistically signi�cant and it would be of no di�erence to the model if they were left out

� APS Grade 12 and NBT mathematics are parameters that are statistically signi�cant

The above was tested using the following hypotheses (in general):
H0: β = 0 (β, any parameter is equal to zero)
Ha: β 6= 0
Hence, testing whether or not NBT quantitative literacy (β̂2) is statistically signi�cant or not, the hy-

potheses are:
H0: β2 = 0
Ha: β2 6= 0
Evaluating the appropriate parameter (i.e. β̂2), the t-test value equals -0.79, with a corresponding p-value

= 0.4326. The t-test statistic is computed using the following formula:

t∗ =
β̂2 − β2
se
(
β̂2

)
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Figure 15: Regression Analysis for the New stream

where se refers to the standard error. For β̂2 using the formula and the relevant output the t-test statistic
is:

t∗ =
−0.0495− 0

0.06302
= −0.79

Similarly, the t-test statistic can be computed in this fashion for all the parameters.
Evaluating β̂2, since the (p-value = 0.4326) ≮(α = 0.05), the null hypothesis is not rejected at the 5

percent level of signi�cance. Hence, it can be concluded that NBT quantitative literacy is not a statistically
signi�cant parameter and can be left out of the model.

In the same way, the parameter (Grade 12 APS) can be tested. The corresponding null and alternate
hypotheses are as follows:

H0: β5 = 0
Ha: β5 6= 0
From Figure 15, one can see that the t-test statistic (t∗) = 6.41. Due to a relatively large t∗ and small

standard error, the expectation is that the p-value will be small. Upon evaluation the p-value for β̂5 is less
than 0.0001. Hence, because the p-value is less than the 5 percent level of signi�cance, the null hypothesis
is rejected in favour of the alternate hypothesis. Meaning that the Grade 12 APS is statistically signi�cant
and therefore, plays a role in the model.

Evaluation of the regression analysis in determining which parameter is more accurate in shaping GPA
scores at tertiary level for students enrolled for the Extended Programme will now take place.

An overview of the model is provided in Figure 16. It shows that the F-statistic value of the model is
equal to 2.3, this is a relatively small number that is obtained. The corresponding p-value is equal to 0.0539.
If the test is evaluated against a 5 percent level of signi�cance (i.e α = 0.05) this would imply that the
overall model is in actual fact not statistically signi�cant. Furthermore, the model has a R2 value equal to
0.143, which can be interpreted as 14.3 percent of the variation in GPA scores is explained by the model (the
independent variables).

In the interest of the aim of this section, to determine which parameter may lead to enhanced performance
at UP the independent parameters (the three individual NBT components as well as the two APS scores) will
be assessed. Two of the six parameters will be investigated, one showing a parameter that is insigni�cant and
one where the variable is statistically signi�cant and is thus, crucial to the importance of the model. It should
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Figure 16: Regression Analysis for the Extended Programme stream

be noted that the same setting up of hypotheses and conclusions can be made for the remaining parameters.
Firstly, if NBT mathematics is used as an example, upon �rst inspection, intuition would suggest that the
parameter is statistically insigni�cant due to the high p-value that is observed. Hence, the �rst step is to set
up the null and alternate hypotheses. These are given below:

H0: β3 = 0
Ha: β3 6= 0
The p-value for β̂3 equals 0.8492, leads to the null hypothesis being rejected at the 5 percent level of

signi�cance. Concluding, that the parameter (NBT mathematics) is indeed not statistically signi�cant and
can be left out of the model. Other parameters that are statistically insigni�cant (same procedure applied)
include, NBT academic literacy, NBT quantitative literacy as well as Grade 11 APS scores. The conclusion
can be made due to all these parameters experiencing high p-values upon visual review.

Conversely, a parameter that is statistically signi�cant is the Grade 12 APS scores. The parameter is
symbolised by β̂5. The null and alternate hypotheses are given by:

H0: β5 = 0
Ha: β5 6= 0
Hence, the respective t-test value = 2.39 with a corresponding p-value = 0.0194. Since (p-value = 0.0194)

< (α = 0.05), the null hypothesis is rejected at the 5 percent level of signi�cance. This results in Grade 12
APS being statistically signi�cant.

Finally, the last stream where classical linear regression analysis was performed was on the Returning
students. The estimated regression model (SRF) can be written as (see Figure 17):

ˆGPA = 38.26175 + 0.15531NBTacademicliteracy − 0.2665NBTquantitativeliteracy

+0.15401NBTmathematics− 0.04505APSgrade11 + 0.40795APSgrade12

Furthermore, if NBT mathematics is to be interpreted, it means that for a unit increase in GPA, NBT
mathematics will increase by 0.15401 units where all the other parameters are in the model but also remain
constant. Another example is for a unit increase in the GPA scores, Grade 11 APS will decline by 0.04505
units whilst the other parameters are already in the model and held constant.

The null and alternate hypotheses for the signi�cance for the overall model is as follows:
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Figure 17: Regression Analysis for the Returning Stream

H0: the overall model is not statistically signi�cant
Ha: the overall model is statistically signi�cant
Thus, from Figure 17, it is shown that the p-value for the F-test statistic is equal to 0.1392. This means

that since the (p-value = 0.1392) ≮(α = 0.05), the null hypothesis is not rejected at the 5 percent level of
signi�cance. It can then be concluded that the overall model is highly insigni�cant. Further analysis, ex-
cluding the intercept term, NBT academic literacy (p-value = 0.2789), NBT mathematics (p-value =0.1689),
Grade 11 APS (p-value = 0.9018) and Grade 12 APS (p-value = 0.3341) are all in excess of the 5 percent
level of signi�cance. Hence, all these parameters are statistically insigni�cant. The only parameter that is
statistically signi�cant and cannot be removed from the model is that of NBT quantitative literacy. The null
and alternate hypotheses for β2 are:

H0: β2 = 0
Ha: β2 6= 0
The appropriate p-value is equal to 0.0158, with the value being less than α = 0.05 (5 percent level of

signi�cance), the null hypothesis is rejected in favour of the alternate hypothesis. Thus, NBT quantitative
literacy is statistically signi�cant.

3.4.3 South African students vs International students

Further analysis was conducted based on the results in section 3.4.1 with regards to the performance of South
African students versus their International counterparts. The same procedure that was done in section 3.2
was applied. The model included the citizenship country description (discussed in this subsection) and the
gender description (discussed in subsection 3.4.4).

The null and alternate hypothesis can be described as follows:
H0 : µsa−µint = 0 (the mean GPA scores of South African students is the same as the mean GPA scores

of International students)
Ha : µsa − µint 6= 0
Note: SA makes reference to South African students and int refers to International students.
Figure 18 reveals that the con�dence interval using the Tukey method is (-4.6814 ; 5.5876). The mean

value equal to zero falls within the con�dence interval which means that the between group comparison is
insigni�cant as the null hypothesis is rejected at the 5 percent level of signi�cance. Another measure to show
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that the comparison is insigni�cant is due to a positive di�erence between means value. Hence, South African
students do not necessarily perform better than international students.

Furthermore, the Sche�e grouping leads to the same conclusion as the variables are not signi�cant at the
5 percent level of signi�cance since they are grouped using the same alphabetical letter.

3.4.4 Gender: female vs male students

When gender of the students in the study were evaluated the following became apparent. The null and
alternate hypothesis are:

H0 : µfemale − µmale = 0 (the mean GPA scores of female students is the same as the mean GPA scores
of male students)

Ha : µfemale − µmale 6= 0
With reference to Figure 19, the con�dence interval is (8.2024 ; 13.6022) with a di�erence between means

equal to 10.9023. Therefore, four main conclusions can be made:

1. The mean value of zero does not fall within the interval

2. The null hypothesis is rejected at the 5 percent level of signi�cance

3. The between group comparison is statistically signi�cant

4. Female students perform better than male students when GPA score is used as the dependent variable.

The above refers to the Tukey Studentised Range Test. The Sche�e grouping reveals that the two variables
(male and female) are assigned di�erent alphabetic letters. This is indicative of the variables being statistically
signi�cant at the 5 percent level of signi�cance.

4 Results

A brief summary of the results as seen in the application will follow in this section.
Taking averages into account (with caution of course) it seems as if the better First-year performance

would be those students that are classi�ed in the New students group. This is based on the comparison of the
GPA scores, which is of importance as it ties in with the main objective of this research report. The averages
for GPA scores (for the �rst year) amongst the streams were also compared to the average GPA scores
achieved in the �rst semester. Even though there were in some instances slight improvements (Extended
Programme) and declines for the other four streams (New, Transferring, Readmitted and Returning), the
performance of First-year students remained relatively constant over the �rst year.

When the various streams are compared in a between group manner, the following becomes apparent.
Firstly, the performance of New students is better than the performance of both the Returning stream as
well as the Extended Programme stream at a First-year level with the variable of interest being the First-
year GPA scores. These results were achieved with performing di�erence between means with the option
of examining both the Tukey and Sche�e methods. Furthermore, when the Tukey method was applied, it
revealed that Transferring students performed better than students enrolled in the Faculty of EMS's four-year
Extended Programme. SAS® software output (see Figures 7 or 6) makes use of *** for a visualisation of the
streams where between group comparisons are statistically signi�cant at the 5 percent level of signi�cance.
In addition, both the Tukey and Sche�e methods provide a grouping of the means with alphabetic letters.
From Figure 7, all the admittance types are grouped using the letter 'A', this suggests that the means are
not statistically di�erent from one another.

The Kruskal-Wallis test identi�ed that students who matriculated under the di�erent matric authorities
(Cambridge, IEB, State School and Foreign Country) performed di�erently from one another in terms of
GPA scores in the First-year. This was due to the fact that the null hypothesis was rejected in favour of
the alternate hypothesis as the p-value when the test was performed was less than the level of signi�cance
which was set at 5 percent (i.e. α = 0.05). Rankings were also determined in terms of Wilcoxon scores, more
speci�cally the ranking of mean scores. Cambridge was ranked �rst, followed by IEB, State School was ranked
in third place and the �nal ranking was that of Foreign Country. Further investigation revealed that students
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Figure 18: Country Citizenship Compared
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Figure 19: Gender Compared
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who attended Cambridge had a signi�cant better First-year performance than students that attended schools
in Foreign Countries. The variable of interest was once again the GPA score. Hence, Cambridge educated
students have a more accurate measure of performance at the tertiary level at UP (this is based solely on mean
scores). The visualisation interpretation of this is given by the di�erent alphabetic letters in Figure 11. Same
letter descriptions like only 'A' or 'B' implies that the comparisons are not statistically signi�cantly di�erent
from one another but di�erent letter descriptions like 'A' or 'B' implies that the comparisons are statistically
signi�cantly di�erent from one another. In other words, matric authority descriptions (Cambridge, IEB,
State School and Foreign Country) that have the same grouping letter are not statistically signi�cant from
one another. As was seen in subsection 3.3.4, Cambridge, IEB and State Schools are not signi�cantly di�erent
from each other. Likewise, IEB, State School and Foreign Country are not signi�cantly di�erent from one
another. Hence, the only lettering that is di�erent is that observed between Cambridge and Foreign Country.

The van der Waerden normal scores were also tested. The conclusion is that the four independent levels
(Cambridge, IEB, State School and Foreign Country) encompassed under the matric authority descriptions
is that at least one of the population distribution functions yield higher observation values (GPA scores)
than at least one of the three remaining distributions. Hence, the population distribution for Cambridge
possibly yields higher GPA scores than the population distribution function of Foreign Country. It has also
been shown that these population distribution functions follow di�erent distributions.

Classical linear regression was performed to determine which parameter (NBT academic literacy, NBT
quantitative literacy, NBT mathematics, Grade 11 APS or Grade 12 APS) would be the best predictor of
student performance at UP, especially at a First-year level. The �rst regression that was evaluated was if
student streams were ignored and students were pooled into a single category, then the three parameters
that were signi�cant included NBT mathematics, NBT quantitative literacy and Grade 12 APS. The best
predictor however, would be Grade 12 APS as this parameter had the lowest p-value (< 0.0001). Hence, if a
decision has to be made as to what the best way is in accepting students into the Faculty of EMS it would be
on the performance of Grade 12 marks that are converted into an APS score. Furthermore, when the analysis
was done on the separate streams, namely, New students, students enrolled for the Extended Programme
and students that are Returning to the Faculty of EMS at UP the following was observed: New students'
most accurate predictor of First-year performance is Grade 12 APS scores (p-value < 0.0001). Grade 12 APS
scores and NBT quantitative literacy are the best predictors for the Extended Programme and Returning
streams, respectively. Hence, if an overall consensus is made the best predictor and most accurate re�ection
of a student's First-year performance is then likely to be the Grade 12 APS.

Comparisons were also done on whether there is a di�erence in the performance of South African students
versus International students however, no signi�cant di�erences were found. Furthermore, analysis revealed
that female students perform better than male students at a First-year level when analysing GPA scores.

5 Conclusion

In concluding, in order to improve the throughput rates with students graduating in the speci�ed time period
(usually three years at the undergraduate level) from the Faculty of EMS at UP the following evidence should
be taken into account. Firstly, Grade 11 APS scores in any stream do not play a vital role in determining
potential success among students, the analysis showed that this parameter is highly insigni�cant in the
majority of the models. Hence, other possible ways to provisionally accept students should be considered.
A recommendation could be having an entrance examination that is set up by UP sta�. This will provide
a more accurate re�ection as to how students might perform in their First-year as well as subsequent years
of study. As in many cases, irrespective of the enrolment streams and when streams were considered, Grade
12 APS still provides the ultimate decision on acceptance of students as this parameter proved to be highly
signi�cant. Currently, at UP the �nal decision is based on a student's matric results that are converted into
an APS score. Concerning is the writing of the NBT tests, in all three categories, with the exception of NBT
quantitative literacy (Returning stream) the parameter is insigni�cant and does not impact on the model at
all. Hence, these parameters could even in essence be left out of the model. Thus, evaluating averages should
be done so with caution as when the averages were calculated, it suggested that the NBT marks are the best
predictor to estimate a students performance at tertiary level. Further analysis then proved that this was in
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actual fact not the case and could lead to an under-or-over-estimation of student performance. What was
evident is that students performed relatively identically between the two semesters when the averages for the
GPA scores were computed, with the only slight increase between the two semesters being observed in the
Extended Programme stream. The changes were however, minimal irrespective of whether it was an increase
or a decrease.

Between group comparisons were performed and when analysed the results were not clear cut as to
say a certain stream is head and shoulders above the rest. There was an indication that New students
have a slight advantage in First-year performance as they did perform better than both the Returning and
Extended Programme students. Furthermore, Transferring students also had higher GPA scores than those
students enrolled for the Extended Programme. This is by no means an indication that the weakest stream
is the Extended Programme. For a conclusive answer to be made regarding this further tests will have
to be performed such as how these students then adjust when they continue with their studies in a more
mainstream environment. Further investigation and recommendations will be to assess their Second-year
GPA performance as well as seeing what the throughput rate is for this speci�c stream. Subsequently, this
can be evaluated across all the streams. Hence, the Faculty of EMS can perhaps reserve a few more places
for New students than for the other streams.

One of the major shortfalls of this research report is that the models did not �t the data well with low
R2 values. This questions the reliability of the models. Another shortfall that was experienced when trying
to compute a more complete model was that not all the information for the variables was available for every
student. Hence, less than 50 percent of the observations could be used to make predictions to help improve
the enrolment strategies within the Faculty. This might have also been a factor contributing to the poor
model �t. Even though the �t of models should be treated with caution, this still remains a concern.

Furthermore, this research report evaluated the matric type authority and found that Cambridge schooled
students do perform slightly better than students that had other schooling backgrounds. It also came to light
that these independent variables (Cambridge, IEB, State School and Foreign Country) come from di�erent
population distributions. It might be of worth to investigate just what population distributions these variables
follow in order to do future research on these populations. In fact it might be of signi�cance to test what
distribution various variables (for instance, Grade 12 APS, Grade 11 APS, the NBT categories etc) follow,
if the appropriate distribution can be identi�ed it might have a signi�cant bearing on the analysis technique
applied to the data. The Faulty of EMS however, cannot make a decision on whether or not to accept
students based on this as this would not be in line with social responsibilities. Moreover, the same could
be said about basing a decision of acceptance on gender. Even though it was clear from the analysis that
female students yield higher GPA scores than male students. Similarly, it should be noted that there was no
signi�cance in the performance of South African students versus International students.

Future progress of this study will make allowance to determine the exact throughput rate of students.
Hence, a better prediction will be readily available to see exactly what the graduation rate, within the speci�ed
time period, is observed within the Faculty of EMS. The procedure will be applied on a much smaller scale,
but this would give a representative sample of the population (all students enrolled in the Faculty). This
however, will only be able to come to fruition in 2016, as this is when the current group of students in this
study will be in their �nal year, provided that all modules (including third year modules) are passed.
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6 Appendix

The appendix contains SAS® software code.2

SAS® software code for Figures 3-7

opt ions nodate nodate pageno = 1 ;

**** Importing Admittance Type in to SAS*** ;
proc import out = admit

d a t a f i l e = 'C: \ Users \Claudia \Desktop\Vars i ty Modules−2015\
STK 795\Data\Admit_type . x l s '

dbms = exc e l r ep l a c e ;
getnames = yes ;
shee t = 'Admit ' ;

run ;

t i t l e 1 ' Comparing the Admittance type o f f i r s t year students ' ;
t i t l e 2 ' Ana lys i s o f Variance Table us ing the glm ' ;
****Performing the GLM procedure **** ;

proc glm data = admit ; ***glm uses ord inary l e a s t squares in order to
f i t g ene ra l l i n e a r models *** ;

c l a s s admittance_type ;
model gpa = admittance_type ;
means admittance_type / s c h e f f e l i n e s c l d i f f tukey ;

***Both the Sche f f e and Tukey comparisons o f
mean d i f f e r e n c e s w i l l be app l i ed *** ;

run ;

SAS® software code for Figures 8-11

opt ions nodate ps = 10000 ;

**** Importing data **** ;
proc import out = schoo l

d a t a f i l e = 'C: \ Users \Claudia \Desktop\Vars i ty Modules−2015\
STK 795\Data\Matric_Authority_Description . x l s '

dbms = exc e l r ep l a c e ;
getnames = yes ;
shee t = 'Matric ' ;

run ;
t i t l e 1 ' Nonparametric t e s t f o r Matric Authority ' ;

ods g raph i c s on ;
proc npar1way data = schoo l p l o t s ( only)=wi lcoxonboxplot ;

c l a s s matr i c_author i ty_descr ipt ion ;
var gpa ;

run ;
ods g raph i c s o f f ;

proc glm data = schoo l ;
c l a s s matr i c_author i ty_descr ipt ion ;

2The [output/code/data analysis] for this paper was generated using SAS software. Copyright, SAS Institute Inc. SAS and
all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC,
USA
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model gpa = matr i c_author i ty_descr ipt ion ;
means matr i c_author i ty_descr ipt ion / s c h e f f e

l i n e s tukey c l d i f f ;
run ;

SAS® software code for Figures 12-13

opt ions pageno = 1 nodate ;

data r e g r e s s i o n ;
s e t reg ;
****Computing the ANOVA se c t i o n o f the model **** ;
proc glm data = r e g r e s s i o n ;
c l a s s admit_type gender_descr ipt ion c i t i z en sh ip_count ry_desc r ip t i on ;
model gpa = admit_type gender_descr ipt ion c i t i z en sh ip_count ry_desc r ip t i on
nbt_academic_literacy nbt_quant i ta t ive_l i t e racy nbt_maths
aps_grade_11 aps_grade_12
admit_type* gender_descr ipt ion * c i t i z en sh ip_count ry_desc r ip t i on
admit_type* gender_descr ipt ion *nbt_academic_literacy
admit_type* gender_descr ipt ion * nbt_quant i ta t ive_l i t e racy
admit_type* gender_descr ipt ion *nbt_maths
admit_type* gender_descr ipt ion *aps_grade_11
admit_type* gender_descr ipt ion *aps_grade_12
admit_type* c i t i z en sh ip_count ry_desc r ip t i on *nbt_academic_literacy
admit_type* c i t i z en sh ip_count ry_desc r ip t i on * nbt_quant i ta t ive_l i t e racy
admit_type* c i t i z en sh ip_count ry_desc r ip t i on *nbt_maths
admit_type* c i t i z en sh ip_count ry_desc r ip t i on *aps_grade_11
admit_type* c i t i z en sh ip_count ry_desc r ip t i on *aps_grade_12 ;
run ;

***Using dummy va r i a b l e s to eva luate s i g n i f i c a n c e o f the parameters
and to see which i s the bes t e s t imate o f su c c e s s *** ;
ods g raph i c s on ;
proc g lmse l e c t data = r e g r e s s i o n ;

ods s e l e c t parameterest imates ;
c l a s s admit_type gender_descr ipt ion c i t i z en sh ip_count ry_desc r ip t i on

/ param = r e f ;
**most o f the p o s s i b l e ** ;
model gpa = admit_type gender_descr ipt ion c i t i z en sh ip_count ry_desc r ip t i on
nbt_academic_literacy nbt_quant i ta t ive_l i t e racy
nbt_maths aps_grade_11 aps_grade_12
admit_type* gender_descr ipt ion * c i t i z en sh ip_count ry_desc r ip t i on
admit_type* gender_descr ipt ion *nbt_academic_literacy
admit_type* gender_descr ipt ion * nbt_quant i ta t ive_l i t e racy
admit_type* gender_descr ipt ion *nbt_maths
admit_type* gender_descr ipt ion *aps_grade_11
admit_type* gender_descr ipt ion *aps_grade_12
admit_type* c i t i z en sh ip_count ry_desc r ip t i on *nbt_academic_literacy
admit_type* c i t i z en sh ip_count ry_desc r ip t i on * nbt_quant i ta t ive_l i t e racy
admit_type* c i t i z en sh ip_count ry_desc r ip t i on *nbt_maths
admit_type* c i t i z en sh ip_count ry_desc r ip t i on *aps_grade_11
admit_type* c i t i z en sh ip_count ry_desc r ip t i on *aps_grade_12
/ s e l e c t i o n = none ;
run ;
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ods g raph i c s o f f ;

SAS® software code for Figures 14-17. Note: the �nal set of SAS® software coding within this subsection
does not have a corresponding Figure.

data r e g r e s s i o n ;
s e t reg ;

proc reg data = r e g r e s s i o n ;
model gpa = nbt_academic_literacy nbt_quant i ta t ive_l i t e racy nbt_maths

aps_grade_11 aps_grade_12 ;
run ;

opt ions nodate pageno = 1 l s = 115 ;

****New**** ;
proc import out = new

d a t a f i l e = 'C: \ Users \Claudia \Desktop\Vars i ty Modules−2015\STK 795\
Data\ r e g r e s s i o n . x l s '

dbms = exc e l r ep l a c e ;
getnames = yes ;
shee t = 'New ' ;

run ;
t i t l e ' Regres s ion ana l y s i s f o r the New stream ' ;

proc reg data = new ;
model gpa = nbt_academic_literacy nbt_quant i ta t ive_l i t e racy nbt_maths

aps_grade_11 aps_grade_12 ;
run ;

****Extended Programme **** ;

opt ion nodate ps = 10000 pageno = 1 l s = 136 ;

data extended_programme ;
s e t reg ;

t i t l e ' Regres s ion Ana lys i s f o r the Extended Programme stream ' ;

proc reg data = extended_programme ;
model gpa = nbt_academic_literacy nbt_quant i ta t ive_l i t e racy nbt_maths

aps_grade_11 aps_grade_12 ;
run ;

opt ions nodate ps = 10000 pageno = 1 l s = 136 ;

data r e tu rn ing ;
s e t reg ;

t i t l e ' Regres s ion Ana lys i s f o r the Returning stream ' ;
proc reg data = re tu rn ing ;

model gpa = nbt_academic_literacy nbt_quant i ta t ive_l i t e racy nbt_maths
aps_grade_11 aps_grade_12 ;
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run ;

****Trans f e r r i ng **** ;
/* proc import out = t r a n s f e r r i n g ;

d a t a f i l e = 'C: \ Users \Claudia \Desktop\Vars i ty Modules−2015\STK 795\
Data\ r eg_t ran s f e r r i ng . x l s '

dbms = exc e l r ep l a c e ;
getnames = yes ;
shee t = ' Trans f e r r ing ' ;

run ;
*/
data t r a n s f e r r i n g ;
s e t reg ;

proc reg data = t r a n s f e r r i n g ;
model gpa = nbt_academic_literacy nbt_quant i ta t ive_l i t e racy nbt_maths

aps_grade_11 aps_grade_12 ;
run ;

SAS® software code for Figure 18

opt ions nodate pageno = 1 ;

data c i t i z e n s h i p ;
s e t reg ;

proc glm data = c i t i z e n s h i p ;
c l a s s c i t i z en sh ip_count ry_desc r ip t i on ;
model gpa = c i t i z en sh ip_count ry_desc r ip t i on ;
means c i t i z en sh ip_count ry_desc r ip t i on / s c h e f f e l i n e s tukey c l d i f f ;
run ;

SAS® software code for Figure 19

opt ions nodate pageno = 1 ;

data gender ;
s e t reg ;

proc glm data = gender ;
c l a s s gender_descr ipt ion ;
model gpa = gender_descr ipt ion ;
means gender_descr ipt ion / s c h e f f e tukey c l d i f f l i n e s ;
run ;
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Abstract

The main problem in calculating an optimum design for a nonlinear response model is that, the

information matrix and so the optimality criterion are functions of unknown parameters in the model. In

this essay the subject of optimum design is �rst covered for linear models, noting important optimality

criteria that can also be used on nonlinear models. The concept of optimum designs for linear models is

somewhat also applicable for nonlinear models, however, with changes in some intrinsic part of nonlinear

models. Locally optimum design approach is used to calculate the designs by introducing the best guess

for the unknown parameters.
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1 Introduction

It is well known in general that anything pertaining to nature is subject to the theory of complex adaptive
system. As times change, things tend to change with their bionomics, that is why pattern, relationship and
iteration have a curvature element to suite the change in their ecological system. We can then note that very
few things are linear by nature, in reality, the theory of non-linearity dominates the sphere of science.

In this essay we study nonlinear models considering optimum designs for e�cient estimation of parameters.
In practice, this �eld of research is particularly important to pharmaceutical companies who are involved in
various clinical trial experiments, for example, they may do experimental trials on dose modi�cation tests or
clinical trials on patience with a certain infection. Consider for example a design space denoted by χ, with
the response being to know the main cause of breast cancer. Some parameters that may be of interest in this
model could be regression coe�cients that associate estrogen exposure, genetics, alcohol abuse etc with the
response variable. It would rather be di�cult to formulate the best active drug to cure the infection if such
a fundamental problem of unknown parameter estimates arises as we see in most nonlinear models.

The objective of this study therefore is to calculate optimum designs for e�cient estimation of unknown
parameters in nonlinear models. As the information matrix for parameters and so the optimality criteria are
functions of the unknown parameters, optimum designs are calculated numerically for a given set of values
of parameters, optimum designs are therefore locally optimum. In Section 2, we introduce estimation of
parameters and information matrix under the nonlinear model setting. We illustrate how the information
matrix is a function of the unknown parameter(s) using the maximum likelihood estimate. In Section 3, we
then introduce the theory of optimum design where we consider all the aspects that quali�es a design to be
optimum, noting that some conditions may not always apply to nonlinear model. An application where the
local approach is applied to solve the problem of unknown parameters as well as optimum design points is
considered in Section 4. Section 5, will then be conclusion where we summarize the essay, state the problem
areas and note alternative methods for solving optimum designs.

2 Estimation of parameters

Before building on the concept of optimum designs for nonlinear models, we �rst need to explain the problem
arising from estimating the parameters. By considering the maximum likelihood (ML) estimation, it will
then be easy to see that parameters can easily be estimated for linear, or nonlinear transformed models,
rather than for intrinsically nonlinear models.

Suppose our nonlinear regression model at each time point t observes a response yi,

yi = η(ti, θ) + εi (1)

where η is a nonlinear function, θ is a (p × 1) vector of unknown parameters, and ε is a random error such
that ε ∼ N(0, σ2).

Since we are interested in estimating the parameter θ, we consider the ML estimation when considering
optimum designs for nonlinear models, this is mainly because of the convenience of the likelihood function
that can be maximized as a log likelihood function. Consider the following expression of the ML estimation.

Let t = (t1, ..., tn)T be a vector of independent, identically distributed random sample with a probability
density function (pdf) f(ti; θ). The likelihood function of θ is then given by

L(θ|t) =

n∏
i=1

f(ti|θ). (2)

The log-likelihood function of expression (2) is given by,

log L(θ|t) =

n∑
i=1

log (f(ti|θ)). (3)

As a natural logarithm is monotonically increasing, maximizing L(θ) is equivalent to maximizing log L(θ).

6



The pdf f(t; θ) is a regular, the �rst derivative of the log-likelihood function results in what is known as
the score vector, denoted

s(θ|t) =
∂log L(θ|t)

∂θ
. (4)

The second derivatives of the log-likelihood is called the Hessian matrix

H(θ|t) =
∂log L(θ|t)

∂θ

∂log L(θ|t)
∂θT

=

∣∣∣∣∣∣∣∣∣
∂2log L(θ|t)

∂θ21
· · · ∂2log L(θ|t)

∂θ1∂θp
...

. . .
...

∂2log L(θ|t)
∂θp∂θ1

· · · ∂2log L(θ|t)
∂θ2p

∣∣∣∣∣∣∣∣∣ . (5)

Two identities therefore are satis�ed by the moments of the score vector, that is:

1. The ML estimator of θ can be found by solving the equation s(θ̂|t) = 0. In practice, for nonlinear models
this equation is solved by numerical iteration using, for example, the Newton Raphson method[3].

2. �The information matrix for the parameters is equal to minus the expected value of the matrix of
second-order derivatives of the log-likelihood function, where the derivatives are with respect to the
parameters�[3]. Since the variance is the inverse of the information matrix we can therefor express

Var(s(θ|t)) = E
{
s(θ|t) s(θ|t)T

}
= −E

{(
∂log L(θ|t)

∂θ
∂log L(θ|t)

∂θT

)}
.

The p× p matrix −E
{(

∂log L(θ|t)
∂θ

∂log L(θ|t)
∂θT

)}
is called the expected Fisher information matrix[3]. Note that

the information matrix is a function of the unknown parameter(s).

3 Theory of optimum design

3.1 Optimum design

Continuous vs exact designs

It is important to note the di�erence between exact and continuous design and their corresponding notation
since this theory lays a fundamental concept in optimum design. If we have n distinct design points in a design
space, denoted χ, with a weight also called design weight, wi, associated to observations at xi, i = 1, 2, . . . ,m
then this design can be viewed as a measure ξ on the design space χ and can be described as:

ξ =

(
x1, x2, ..., xm
w1, w2, ..., wm

)
. (6)

If wi = ri/n where ri is a replication at xi and
∑m
i=1 ri = n, then ξ is called an exact design on χ. Thus

for exact design, ξ takes on values of wi which are multiples of 1/n, and de�nes an exact design on χ. On
the other hand, if we remove the restriction that wi be a multiple of 1/n, we can extend this idea to a design
measure which satis�es ξ(x) ≥ 0, x ∈ χ and

´
χ
ξ(dx) = 1[2]. Furthermore, expression (6) has conditions

0 ≤ wi ≤ 1 and
∑n
i=1 wi = 1. Hence the measure ξ is referred to as the continuous design on χ. This concept

of continuous design, pioneered by Kiefer (1959), is very popular, mainly because of the the continuity, and
comfort of convexity it o�ers [11]. The nature of designs that will be considered furthermore are mostly
continuous designs, and hence more emphases will be given to it. One should note that it is sometimes
possible to obtain an exact design from an continuous design set by rounding[18], thus, it is possible to
theoretically compute an continuous design and practically present an exact design.

The information matrix for the continuous design is given by[2]
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M(ξ) =

ˆ
χ

f(x) fT (x) ξ(dx)

≈
n∑
i=1

wiM(ξ̄i)

≈
n∑
i=1

wi f(xi) f
T (xi). (7)

3.2 Experimental design

In the �eld of experimental design, we are generally interested and concerned with the analysis of data
generated from an experiment. It would be desirable to select optimum points that best describe the ex-
perimental outcome at reliable and reproducible conclusions[19]. An optimum design would be that which
minimize costs, accommodate di�erent factors, and enable designs to be optimized when the design-space is
contained[2]. Generally an experiment is formulated to answer certain questions which must be derived from
an observed data. A model must then be formulated to best explain the answer from limited points which
we refer to them as design points.

One of the processes of obtaining optimum design points is through observing applications that will
eventually result in a minimum variance. The smaller the variance the more precise the estimate of parameter
is [5]. Minimizing the variance can be achieved through several letter optimality criterion such as A-, D- and
E-optimality, which is a subject of the following section.

3.3 Optimality criteria

Optimality criterion is represented by a solitary value that encapsulate the performance of a design in terms
of how good it is. It is also minimized by an optimum design[10]. In programming terminology there are
namely two types of criteria, however, we are only going to focus on one, which is the information-based
criteria. Although there are numerous letter optimality criteria, one may desire to use A-, D- or E-optimality
which can be statistically interpreted in terms of the information matrix M(ξ). These optimality criteria
di�er in terms of how they minimized the variance.

A-optimality - minimizes the trace of the information matrix M−1(ξ). It can also be de�ned using a
non-zero eigenvalue, λ1, ..., λp of M(ξ), where the eigenvalue of M−1(ξ) is 1

λ1
, ..., 1

λp
[2]. Thus the sum of the

variance is minimized through:

min

p∑
i=1

1

λi
. (8)

E-optimality - is utilized when one is interested in estimating normalized linear functions of the parameter.
The variance of the least well-estimated linear combination of aT θ̂ with aTa = 1 is minimized[2]:

minmax
1

λi
. (9)

D-optimality - is one of the commonly used criterion, mainly because of the properties it holds. It can be
extended to several useful extensions such as the DA-optimality and the DS-optimality criterion.

Basically it maximizes the determinant of the information matrix, that is equivalent to minimizing the
determinant of the variance-covariance matrix of the parameter estimates[2]. The determinant can thus be
regarded as a general measure of the size of the information matrix[10]. Maximization of M(ξ) is equivalent
to maximizing the logM(ξ), and the design ξ∗ is said to be D-optimum if it maximizes the function logM(ξ).
This is also equivalent to minimizing the generalized variance of the parameter estimates[2], that is

min

p∏
i=1

1

λi
. (10)
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The DS-optimality is appropriate when there are only a subset of parameters which are of interest, they
ought to be estimated as precisely as possible with the other parameters treated as nuisance[2]. The only
di�culty one may encounter with DS-optimum designs is that M(ξ∗) can be a singular.

It would also be worthwhile to mention the D-e�ciency under the D-optimality criterion. D-e�ciency
basically compares an arbitrary design ξ with that of an optimum design ξ∗. E�ciencies are a way in which
we can quantify the goodness of designs[12]. If the ratio is 100%, this means that an arbitrary design is no
di�erent to an optimum design, however, in practice this is usually not the case. D-e�ciency of any arbitrary
design ξ is de�ned as[2]

Deff =

{
|M(ξ)|
|M(ξ∗)|

} 1
p

(11)

with p being the number of parameters in the model. An e�cient design will have the smallest variance, thus
outperform any design with a variance that is not smaller. This comparison would then put to conclusion the
subject of optimum design, because after this comparison we would now know which design is an optimum
design by reviewing it with the conditions in the General Equivalence Theorem if possible, otherwise review
an optimum design by observing its graphical presentation.

3.4 General Equivalence Theorem

The General Equivalence Theorem lists very important conditions which are used to inquire if a design is
optimum. In continuous designs we consider minimization or maximization of the general measure of the
information matrix Ψ{M(ξ)} which is under assumptions of continuity, compactness of the design space χ
and convexity and di�erentiability of Ψ [2]. The assumption of convexity alone is of great importance as
it is known that well known examples of convex functions are quadratic and exponential for t, y ε Rn[14].
Other important properties of convexity is that local optimality guarantees global optimality, thus, for convex
problems, any locally optimum point is globally optimum[14].

The General Equivalence Theorem can be observed as an e�ect of the evident that derivatives are zero at
a minimum of a function[17], of which that function depends on the design measure ξ through the information
matrix M(ξ) [2]. We then let the measure ξ̄ put mass at the point x and let the measure ξ

′
be given by

ξ
′

= (1− α)ξ + αξ̄. (12)

Then from equation (12), we can express

M(ξ
′
) = (1− α)M(ξ) + αM(ξ̄). (13)

The derivative of Ψ in the direction ξ̄ is

φ(x, ξ) = lim
α→0

1

α
[Ψ{(1− α)M(ξ) +M(ξ̄)} − Ψ{M(ξ)}]. (14)

We refer to the above equation as the directional derivative.
The conditions of the optimum design ξ∗, are then stated by the General Equivalence Theorem[17]:

1. The design ξ∗ minimizes Ψ{M(ξ)}

2. The minimum of φ(x, ξ∗) ≥ 0

3. The derivative φ(x, ξ∗) achieves its minimum at the points of the design.

With this theorem one can now check if designs are optimum or not, noting that if one condition is met by
a speci�c design in question, other condition ought to be satis�ed as well. This theorem however does not
mention anything about the number of support points in a design. A speci�c bound number can however be
found from the nature of the information matrixM(ξ), which is a symmetric p×p matrix[2]. The information
matrix is additive by nature, it can be represented as a weighted sum, of at most, p(p+1)

2 information matrices

m(ξi), where ξi puts unit weight at the support point xi[2]. It is usual for optimum designs to contain
fewer points. D-optimum designs contain p points, each with weight 1

p [17] if the parameters are subject to
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linearity, however, for nonlinear models this may not always be the case as Figure 5 and 6 will illustrate in
the proceeding section.

4 Application using the local optimum approach

4.1 Model speci�cation

Consecutive �rst-order reaction model. Consecutive reaction can be seen as a chain reaction in which,
for example, considering the food chain in an ecosystem, the end product of what the earth produces is the
initial material that herbivorous animals depend on for life, herbivorous animals will then be the initial
material that carnivorous animals feed on, and so the chain goes on. Consecutive reaction is a chemical
process undergo a similar reaction process as the ecosystem, however, only considering chemical reactions.
One may now understand that the end product of a chemical reaction is only the initial material for another
chemical reaction.

If we consider an irreversible two consecutive �rst order reaction, we may illustrate it as: A
θ1→ B

θ2→ C,
whereA, B and C are certain initial chemical substances. If one desires to calculate the chemical concentration
of B at time t, given that the concentration of A is 1, and θ1>θ2 > 0, we may present the following model:

η(t, θ) = [B] =
θ1

θ1 − θ2
(exp(−θ2t)− exp(−θ1t)) , (15)

of which the ML function is:

L(θ|t) =

n∏
i=1

θ1
θ1 − θ2

(exp(−θ2t)− exp(−θ1t))

log L(θ|t) = n log (
θ1

θ1 − θ2
) +

∑
log (exp(−θ2t)− exp(−θ1t))

with the score vector of θ1 and θ2:

∂log L(θ|t)
∂θ1

=
n

θ1
− n

θ1 − θ2
+
∑ t exp(−θ1t)

exp(−θ2t)− exp(−θ1t)
, (16)

and
∂log L(θ|t)

∂θ2
=

n

θ1 − θ2
−
∑ t exp(−θ2t)

exp(−θ2t)− exp(−θ1t)
. (17)

From the above score vector, a 2 × 2 hessian matrix can now be derived through the second derivatives of
the above equations,

η(θ|t) =
∂log L(θ|t)

∂θ

∂log L(θ|t)
∂θT

=


∂2log L(θ|t)

∂θ21

∂2log L(θ|t)
∂θ1∂θ2

∂2log L(θ|t)
∂θ2∂θ1

∂2log L(θ|t)
∂θ22


where

∂2log L(θ|t)
∂θ21

=
n

(θ1 − θ2)2
− n

θ21
−
∑ t2

exp(−θ2t)− exp(−θ1t)

(
exp(−θ1t)−

exp(−2θ1t)

exp(−θ2t)− exp(−θ1t)

)
,

∂2log L(θ|t)
∂θ1∂θ2

=
−n

(θ1 − θ2)2
+
∑(

t2 exp(−θ2t− θ1t)
(exp(−θ2t)− exp(−θ1t))2

)
,

∂2log L(θ|t)
∂θ2∂θ1

=
−n

(θ1 − θ2)2
+
∑(

t2 exp(−θ1t− θ2t)
(exp(−θ2t)− exp(−θ1t))2

)
,
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and

∂2log L(θ|t)
∂θ22

=
n

(θ1 − θ2)2
−
∑ t2

exp(−θ2t)− exp(−θ1t)

(
exp(−θ1t)−

exp(−2θ2t)

exp(−θ2t)− exp(−θ1t)

)
.

The parameter θ1 in this model is considered a constant absorption rate, while parameter θ2 is a constant
elimination rate[16]. Depending on what kind of two consecutive �rst order reaction is of question, the
parameter values will be exponentially distributed di�erently over time for every di�erent model. It is than
important to accurately estimate the parameters for the model to be as e�cient as possible.

John W. Mauger[13] studies the degradation of hydro-cortisone sodium succinate which is followed in
aqueous systems bu�ered at pH values of 6.9, 7.2 and 7.6 at 70 degrees Celsius. Figure 1 illustrates the
reaction occurrence of material [A], [B] and [C] at a pH value of 6.9 at 70 degrees Celsius. Mauger described
the decomposition pathway using a two-step irreversible consecutive �rst order reaction where a percent
concentration of steroid ester is the �rst initial material [A], steroid alcohol is the second material [B], and
products devoid of the 17-dihydroxyacetone side chain being the third material [C]. The two-step sequence is

presented as ester
θ1→ alcohol

θ2→ degradation products, with their time course measured at a pH value of 6.9
at 70 degrees Celsius. The main aim of Mauger was to use reaction rates as predictive tools for evaluating
the stability of therapeutically e�ective drugs in solution.

Figure 1: Two consecutive �rst order reaction

We can see that when material [B] is introduced, material [A] starts to deteriorate, this reaction forming
other products which are referred to in the text as moieties devoid of the 17-dihydroxyacetone side chain
which are represented by symbol [C]. The decomposition of [B] further causes the formation of [C] to a level
of about 75%. The e�ect of the parameters are of paramount signi�cance in determining the mechanisms
and magnitude of the rate[13].

Compartmental model. In pharmacokinetics, compartmental models are considered for theoretical pur-
poses to better understand how and what the body does with dose of drugs. When a drug enters a body
it leaves the administration site to enter the central compartment, the drug is then digested to peripheral
compartments until it is fully absorbed or until it leaves the body, this process is illustrated by Figure 2. Com-
partmental modeling can help scientists understand mathematically how the body processes dose of drugs
and which drug regimens are e�ective. Although the mathematical approach only gives approximations, it
helps one understand pharmacokinetics, pharmacodynamics, and other biological systems to a greater extent
in practice.
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Figure 2: Compartmental model [15] (modi�ed)

Consider the following compartmental model for optimum design,

η(t, θ) = θ3 (exp(−θ2t)− exp(−θ1t)) , (18)

which has a maximum likelihood function of:

L(θ|t) =

n∏
i=1

θ3 (exp(−θ2t)− exp(−θ1t))

log L(θ|t) = n log θ3 +
∑

log (exp(−θ2t)− exp(−θ1t))

with score vectors:
∂log L(θ|t)

∂θ1
=
∑ t exp(−θ1t)

exp(−θ2t)− exp(−θ1t)
, (19)

∂log L(θ|t)
∂θ2

= −
∑ t exp(−θ2t)

exp(−θ2t)− exp(−θ1t)
, (20)

and
∂log L(θ|t)

∂θ3
=

n

θ3
. (21)

A 3× 3 hessian matrix is expressed as:

η(θ|t) =
∂log L(θ|t)

∂θ

∂log L(θ|t)
∂θT

=



∂2log L(θ|t)
∂θ21

∂2log L(θ|t)
∂θ1∂θ2

∂2log L(θ|t)
∂θ1∂θ3

∂2log L(θ|t)
∂θ2∂θ1

∂2log L(θ|t)
∂θ22

∂2log L(θ|t)
∂θ2∂θ3

∂2log L(θ|t)
∂θ3∂θ1

∂2log L(θ|t)
∂θ3∂θ2

∂2log L(θ|t)
∂θ23

 ,

where
∂2log L(θ|t)

∂θ21
=
∑ t2

exp(−θ2t)− exp(−θ1t)

(
exp(−2θ1t)

exp(−θ2t)− exp(−θ1t)
− exp(−θ1t)

)
,

12



∂2log L(θ|t)
∂θ1∂θ2

=
∑ t2 exp(−θ1t− θ2t)

(exp(−θ2t)− exp(−θ1t))2
,

∂2log L(θ|t)
∂θ1∂θ3

= 0,

∂2log L(θ|t)
∂θ2∂θ1

=
∑ t2 exp(−θ1t− θ2t)

(exp(−θ2t)− exp(−θ1t))2
,

∂2log L(θ|t)
∂θ22

=
∑ −t2

exp(−θ2t)− exp(−θ1t)

(
exp(−θ2t) +

exp(−2θ2t)

exp(−θ2t)− exp(−θ1t)

)
,

∂2log L(θ|t)
∂θ2∂θ3

= 0,

∂2log L(θ|t)
∂θ3∂θ1

= 0,

∂2log L(θ|t)
∂θ3∂θ2

= 0,

and

∂2log L(θ|t)
∂θ23

=
−n
θ23
.

The parameters for this model can be de�ned as rates of change from one compartment to another.
How the body decomposes the drug from one compartment to another is usually due to the exponential
relationship with the rates of change over time.

For further reading, Mauger (1968)[13] gives an extensive explanation for the two consecutive �rst order
reaction, and Fresen's (1984)[7] explains the compartmental model to a greater extent.

4.2 Parameter sensitivity

A fundamental technique for parameter sensitivity that was applied for both of the above models in this essay
is partial di�erentiation. Using the SASr software1, one can apply the PROC NLIN procedure which uses
the Taylor expansion series to generate estimated values for the parameters. With the estimated parameters
we apply partial di�erentiation for all the θ values in question, then plot a graph that illustrates the partially
di�erentiated equation over time. Figure 3 illustrates the plot against time for the di�erentiated equation.
Note how both the plotted lines decrease over time in Figure 3, this illustrates that for very large values of
time, the experiment will not be informative since the lines decrease over time [2].

The design points as well as the D-optimum criteria may be obtained by a PROC OPTEX procedure in
the SAS. The search method that was speci�ed in the OPTEX procedure was the modi�ed Federov algorithm.
Out of all the other search methods, this algorithm usually �nds better design points, however, for the two
models, all the search algorithm methods resulted in the same design points. Figure 4 illustrates the design
points at time 3 and 9.275 at which measurements may be taken since these points yield optimum designs.
These design points are also D-optimum as illustrated by the black line tangent to the curve at the black
dots, this means that at these time points, a minimum variance-covariance is obtained over all other time
points.

obs d1 d2 time
1 0.08064 −1.61627 3.000
2 −0.04785 −3.58807 9.275

Table 1: design point for a two consecutive �rst order reaction

1The [output/code/data analysis] for this paper was generated using SAS software. Copyright, SAS Institute Inc. product
or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NYC, USA.
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Figure 3: two consecutive �rst-order reaction,
sensitivity against time.

Figure 4: two consecutive �rst-order reac-
tion, variance function d(x, ξ∗, θ), and local D-
optimum design. Maximum value of 2 occurs at
design point with time 3 and 9.275.

The compartmental model in Figure 5 and 6 posed a great challenged in estimating. This is a common
challenge to all models with three parameters or more. Partial di�erentiation is applied for the three pa-
rameters and plotted in Figure 5 over time. Di�erentiation of the �rst parameter denoted by an orange line
can be observed as increasing at a decreasing rate bound to reach a maximum then eventually decreasing at
a later time period. The other di�erentiation plots can be observed as increasing at a decreasing rate to a
maximum, then decreases towards zero. The third parameter, although it can not be observed clearly in the
graph, it increases to a maximum below 1 then decreases towards zero as time increases. We can therefore
note once again that it would not be ideal to perform the experiments at very small or very large values of
time, since the experiment may be informative.

With the graphic illustration of Figure 6, it could be possible to assume one of the parameter to be
nuisance in the model, since there are three design points as illustrated in Table 2, but only two design
points are optimal as Figure 6 visually illustrates. It is unfortunate that we can not always use the General
Equivalence Theorem to con�rm the optimum designs for a nonlinear model since it is numerically di�cult
to derive. We can conclude this problem as one that is uncertain, since we �nd near optimum points but do
not see three design points corresponding with three D-optimum points at a standardized variance of 3, as
would be the case for a linear model. One possible solution to such a problem would be to obtain prior point
estimates θ0 or prior distribution for θ based on past experience[2]. Another approach could be to use the
locally c-optimum design approach where the area under the curve, time to maximum concentration, and
maximum concentration give an in-depth approach to solving for optimum designs.

obs d1 d2 d3 time
1 6.7767 4.37441 −0.31775 1.250
2 17.2518 4.14104 −0.53195 4.075
3 22.9405 1.97717 −0.49514 7.000

Table 2: design points for a compartmental model.
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Figure 5: compartmental model, sensitivity
against time.

Figure 6: compartmental model, variance
d(x, ξ∗, θ), and local D-optimum design.

5 Discussion

The importance of optimum design cannot be disputed in scienti�c studies, its results have been found to
be useful in solving practical experimental problems in experimental designs. The main aim of this essay
has been to review local optimum designs for nonlinear response models, of which the D-optimality criteria
has been used. The statistical approach seeks to �nd optimum designs through observing points that have
minimum variance given a design region χ. Since one cannot avoid random error in experimental designs,
statistical methods are then essential for e�cient design and analysis[2]. Not only do we have a problem of
random errors, but nonlinear models have a problem of unknown parameter estimates. A method that was of
use in this essay was the local approach which was executed using PROC NLIN in SAS, alternative and more
e�cient methods that can be of use are the Bayesian optimum design and sequential experimental design.

Optimum designs for nonlinear models may pose a challenge of not only unknown parameter estimates but
also verifying if designs are optimum since the General Equivalence Theorem can be sometimes challenging to
mathematically prove. Biologist on the other hand may require reasoning that cannot be explained by simple
statistical approaches, therefor this may require one to diverge from the simple optimum design calculation
process and use other mathematical applications such as those used by Anthony Atkinson (1993)[1]. Further
research avenue that are possible in this niche research environment can possibly be application of optimal
designs for models with three or more unknown parameter estimates.
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Appendix

SASr software used to obtain all relevant results:

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Model1 Two conse cu t i v e f i r s t order r e a c t i on

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
data ccc ;

s e t cons ;

gopt ions r e s e t=a l l ;
ax i s 1 l a b e l=(ang le=90 ' Percentage o f mate r i a l A, B & C' ) ;
ax i s 2 l a b e l =( 'Time ' ) ;
symbol1 i=j o i n width=2 co l o r=blue ;
symbol2 i=j o i n l i n e=2 width=2 co l o r=red ;
symbol3 i=j o i n l i n e=42 width=2 co l o r=black ;
t i t l e 2 "Two Consecut ive F i r s t Order Reaction " ;
proc gp lo t data=ccc ;

p l o t (A B C)∗ time / over l ay hax i s=ax i s2 legend vax i s=ax i s1 ;
run ;
t i t l e 2 ;

proc n l i n data=ccc ;
parameters b1=1 b2=0.1;
model b=(b1/b1−b2 )∗ ( exp(−b2∗ time)−exp(−b1∗ time ) ) ;

run ;

proc iml ;
/∗ c a l c u l a t i o n ∗/
p_b1=1; p_b2=0.1;

do t=3 to 10 by 0 . 0 2 5 ;
d1 = d1 //(( t ∗p_b1∗exp(−t ∗p_b1))−exp(−t ∗p_b1)+exp(−t ∗p_b2 ) ) / ( p_b1−p_b2)

−(p_b1∗( exp(−t ∗p_b2)−exp(−t ∗p_b1 ) ) ) / ( p_b1−p_b2)∗∗2 ;
d2 = d2 //(p_b1∗( exp(−t ∗p_b2)−exp(−t ∗p_b1 ) ) ) / ( (p_b1−p_b2)∗∗2)

−(t ∗p_b1∗exp(−t ∗p_b2 ) ) / ( p_b1−p_b2 ) ;

t i=t i // t ∗1 ;
end ;

q=d1 | | d2 | | t i ;
c r e a t e wanda from q [ colname={'d1 ' ' d2 ' ' time ' } ] ;
append from q ;
/∗∗∗∗∗ S e n s i t i v i t y Plot ∗∗∗∗∗/
gopt ions r e s e t=a l l i=j o i n ;
ax i s1 l a b e l=(ang le=90 ' s e n s i t i v i t y ' ) ;
ax i s 2 l a b e l =( ' time ' ) minor=(number=0.9) order=3 to 10 by 1 ;
symbol1 c o l o r=red width=2 ;
symbol2 c o l o r=black width=2 l i n e =2;
t i t l e 2 " S e n s i t i v i t i e s aga in s t time " ;
proc gp lo t data=wanda ;

p l o t ( d1 d2 )∗Time / over l ay legend vax i s=ax i s1 hax i s=ax i s2 ;
run ;
t i t l e 2 ;
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t i t l e 2 "Optimum Design C r i t e r i a " ;
proc optex data=wanda coding=none ;

model d1 d2 / no int ;
id Time ;
generate n=2 method=m_fedorov n i t e r =1000 keep=10;
output out=Design ;

run ;
t i t l e 2 ;

t i t l e 2 "Design Points " ;
proc s o r t data=Design ;

by time ;
proc p r i n t data=Design ; /∗ 3 , 9 .275 are my two des ign po in t s ∗/
run ;
t i t l e 2 ;

data haha ;
s e t Design ;
y = rannor ( 1 ) ;

data haha ;
s e t haha wanda ;

proc reg data=haha nopr int ;
model y = d1 d2 / no int ;
output out=d h=h ;/∗h i s the hat matrix or p r o j e c t i o n matrix ∗/
run ;

data d ;
s e t d ;

d = 2 ∗ h ; /∗ 2 = NObs in Design ∗/
gopt ions r e s e t=a l l i=j o i n ;
ax i s1 l a b e l=(ang le=90 ' Standardized var iance ' ) ;
ax i s 2 l a b e l =( 'Time ' ) ;
symbol1 c o l o r=darkred width=2;
t i t l e 2 " Standardized var iance " ;
proc gp lo t data=d ;

where ( y = . ) ;
p l o t d∗Time / vax i s=ax i s1 ;

run ;
t i t l e 2 ; t i t l e 1 ;

18



/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Model2 Compartmental model

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
data ddd ;
s e t comp ;
proc n l i n data=ddd nopr int ;

parameters b1=0.08754 b2=0.437717 b3=6.048279;
model CONCENTRATION=b3 ∗( exp(−b1∗ time)−exp(−b2∗ time ) ) ;
run ;

proc iml ;
/∗ c a l c u l a t i o n ∗/
p_b1=0.08754; p_b2=0.437717; p_b3=6.048279;

do t=0 to 7 by 0 . 0 2 5 ;
d1 = d1 // (p_b3∗ t ∗exp(−t ∗ p_b1 ) ) ;
d2 = d2 // (p_b3∗ t ∗exp(−t ∗ p_b2 ) ) ;
d3 = d3 // ( exp(−t ∗ p_b2)−exp(−t ∗ p_b1 ) ) ;
t i=t i //1∗ t ;

end ;
dd1=d1##2|| t ;
dd2=d2##2|| t ;
dd3=d3##2|| t ;
c a l l s o r t ( dd1 , 1 ) ;
max_timedd1=dd1 [ 2 8 1 , ] ;
c a l l s o r t ( dd2 , 1 ) ;
max_timedd2=dd2 [ 2 8 1 , ] ;
c a l l s o r t ( dd3 , 1 ) ;
max_timedd3=dd3 [ 2 8 1 , ] ;
∗∗ pr in t max_timedd1 max_timedd2 max_timedd3 , dd1 , dd2 , dd3 ;
q=d1 | | d2 | | d3 | | t i ;
c r e a t e wanda from q [ colname={'d1 ' ' d2 ' ' d3 ' ' time ' } ] ;
append from q ;

gopt ions r e s e t=a l l i=j o i n ;
ax i s1 l a b e l=(ang le=90 ' s e n s i t i v i t y ' ) ;
ax i s 2 l a b e l =( ' time ' ) minor=(number=0.9) order=0 to 7 by 1 ;
symbol1 c o l o r=orange l i n e=1 width=2 ;
symbol2 c o l o r=darkred l i n e=2 width=2 ;
symbol3 c o l o r=blue l i n e=42 width=2;
t i t l e 2 " S e n s i t i v i t i e s aga in s t time " ;
proc gp lo t data=wanda ;

p l o t ( d1 d2 d3 )∗ time / over l ay legend vax i s=ax i s1 hax i s=ax i s2 ;
run ;
t i t l e 2 ;

t i t l e 2 "Optimum Design C r i t e r i a " ;
proc optex data=wanda coding=none ;

model d1 d2 d3 / no int ;
id time ;
generate n=3 method=m_fedorov n i t e r =1000 keep=10;
output out=Design ;

run ;
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t i t l e 2 ;

t i t l e 2 "Design Points " ;
proc s o r t data=Design ;

by time ;
proc p r i n t data=Design ; /∗Design po in t s at time ()∗/
run ;
t i t l e 2 ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
data jabu ;

s e t Design ;
y = rannor ( 1 ) ;

data jabu ;
s e t jabu wanda ;

proc reg data=jabu nopr int ;
model y = d1 d2 / no int ;
output out=d h=h ;
run ;

data d ;
s e t d ;
d = 3 ∗ h ;

/∗ 3 = NObs in Design ∗/
proc p r i n t data=d nopr int ;
run ;
gopt ions r e s e t=a l l i=j o i n ;
ax i s1 l a b e l=(ang le=90 ' Standardized var iance ' ) ;
ax i s 2 l a b e l =( 'Time ' ) ;
symbol1 c o l o r=darkred width=2;
t i t l e 2 " Standardized var iance " ;
proc gp lo t data=d ;

where ( y = . ) ;
p l o t d∗Time / vax i s=ax i s1 hax i s=ax i s2 ;

run ;
t i t l e 2 ; t i t l e 1 ;
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Abstract

In this paper research is done in the �eld of Functional Magnetic Resonance Imaging (fMRI). The
statistical methods used to the adjust the sequences of fMRI images accumulated during such a study
are investigated and explained. Sparsity is assumed for these images and compressive sensing applica-
tions investigated. Finally an application is done where a limited number of measurements are sampled
from such an assumed sparse image and a reconstruction done with enlightening results, which can be
implemented in future MRI data.
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Figure 1: The components of a MRI scanner.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a method of visualizing how physical - and neuronal1

processes are related. This can be performed without safety concerns on a wide group of individuals and is
a popular method because of its non-invasive nature. [20]

fMRI stems from magnetic resonance imaging (MRI). MRI is a safe an non-invasive method to obtain
high quality medical images of tissues and organs in the human body [17]. A MRI scanner is a tube-like
structure with a very strong magnet. An electric current is passed through this magnet which produces a
strong magnetic �eld causing the various nuclei present in the human body of the subject under observation
to align. Magnetic pulses, called radio frequency (RF) pulses, are omitted by the scanner that penetrates
these areas of aligned nuclei, known as slices, and causes the aligned nuclei to deviate from their aligned
state. Removal of this RF pulse causes an incentive for these nuclei to return to their aligned positions,
inducing a current picked up by a receiver coil placed over the area under consideration, providing the MR
signal. Using mathematical procedures this MR signal is processed to ultimately produce high quality images
of the human body, which are combined to obtain an overall image sequence of the area under consideration.
[17, 20] Figure2 1 shows the basic components in a MRI scanner.

There are various neuroimaging methods that aid in the research of neuronal activity [17]. This paper
will focus on the method of fMRI.

During an fMRI procedure the subject is placed inside a MRI scanner and instructed to perform mental
tasks purposed to manipulate mental processes [20]. When the neurons in the brain become active as result
of these exercises, they consume oxygen provided by blood �ow. Blood �ow to the area of neuronal activity
is increased, known as hemodynamic response, beyond what is needed to replenish the neurons of oxygen
[20]. An excess of oxygen-rich blood is formed relative to non-active areas of the brain [20]. Oxygenated -
and DE-oxygenated blood each have di�erent magnetic properties, known respectively as diamagnetic and
paramagnetic [17]. Neuronal activity is followed by an increase in oxygenated blood �ow through that area
[20]. This increase in blood �ow is greater than is needed to replenish the activated cells of oxygen. Due
to its magnetic property this excess oxygen rich blood increases the MR signal, while DE-oxygenated blood
does the opposite [17]. This phenomenon can be viewed better by looking at Figure3 2. This is known as
Blood Oxygen Level Dependent (BOLD) signal [20].

As result the series of acquired MR images display the di�erences in the measured MR signal, which
is then used by specialists to pinpoint areas of brain activity [17, 20]. This signal produces images of the
subject's brain where oxygen-rich and oxygen-poor areas show up in di�erent colours. Figure4 3 shows how
this di�erence in signal produces blue and red areas, that represents the di�erent levels of blood oxygen.

The wealth of data collected by a fMRI procedure have to be analyzed before conclusions are made.

1Relating to a nerve cell or neuron, by Cambridge Dictionaries Online
2Image courtesy of www.howtolearn.com
3Image courtesy of www.nature.com
4Image courtesy of www.tm-ireland.org
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Figure 2: Change in MRI signal caused by a change in neuronal blood �ow.

Figure 3: Colours on fMRI scan showing the presence or absence of neuronal activity.
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Preprocessing techniques have to be performed on this data to make it more suitable for the analysis process.
There is great variability present in the data that can easily swamp the small changes in BOLD signal
originating from neuronal activity. This variability can be classi�ed into controllable - and non-controllable
variation. Preprocessing steps remove as much controllable variation as possible form the raw fMRI data
before analysis can be done. [4, 20]

This paper focuses on the preprocessing steps implemented on fMRI data.

2 Preprocessing theory in fMRI

Functional magnetic resonance imaging is a revolutionary technique that is used to capture brain activity
[20] in patients performing mental tasks the purpose of which to elicit mental responses. Brain nuclei are
energized by the strong magnetic �eld produced by an electromagnet in a MR scanner and a MR signal is
measured, strengthened by the presence of oxygen-rich blood following neuronal activity. As a result areas
of brain activity can be identi�ed on the sequence images obtained from such a procedure. Analysis has to
be done on the large amount of complex data produced by such an experiment and a number of software
packages are used for this process.

Statistical Parametric Mapping (SPM)

This was the �rst software package widely used in fMRI analysis. It has a MATLAB command line interface
with scripting abilities [18] and source code is available for use. With limited visualization capabilities it
remains one of the most popular packages to use today since it is freely provided online and easy to interpret.

FMRIB Software Library (FSL)

A software package developed at Oxford University with powerful visualization capabilities and a fast analysis
process by using computing clusters5. Commands are executed via a command line or via a Graphical User
Interface (GUI).

Analysis of Functional NeuroImages (AFNI)

A powerful software package in terms of its visualization capabilities. Command line prompts [18] or a GUI
is used in the implementation of this software on fMRI sequences and source code is provided for use.

BrainVoyager

This software package was developed at Brain Innovation and is the mainly used package in the commercial
environment. It provides a fully GUI with some scripting [18] abilities. It is known for its user friendliness
and re�ned user interface.

Freesurfer

This is a freely provided toolbox [9] used in the analysis process of fMRI data. It can be run on various
software platforms and is an open-source software package.

The rapid development of medical technology and the increasing demand to relate biological structure
to function [1] has led to an ever increasing demand for imaging capabilities in the �elds of medicine and
psychology. An image is a graphical representation of a matrix, X, of numbers that represents di�erent
greyscale values as shown in Figures 56 and 47 and de�ned in the de�nition below.

De�nition 1. A greyscale image is a function on a pixel domain X ⊆ Z2 : f(x, y) : X → {0, 1, · · · , 255}.
5A collection of computers connected to function as a single unit on a single task
6Image courtesy of www.tutorialspoint.com
7Image courtesy of py.processing.org
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Figure 4: An indication of the the greyscale intensities adopted by the pixel domain X.

Figure 5: A greyscale image where the indicated region is represented in a matrix with values ranging from
0 to 255, representing di�erent greyscale intensities.

X1 =



235 215 193 191 201 206 202 203 204
180 236 209 210 196 199 199 214 205
114 218 202 198 189 197 213 218 195
12 120 255 235 202 207 200 204 195
25 40 120 174 242 228 208 202 194
46 61 52 62 163 217 218 220 215
36 51 69 72 102 141 146 166 185
37 45 51 54 93 126 115 109 123
44 43 29 50 108 143 139 126 116
48 51 39 55 105 136 136 129 110
51 55 44 57 102 131 135 132 124
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Figure 6: The axes assigned to MR images in the neurological environment.

The visual quality of captured images can be enhanced by performing image sharpening on it. Captured
images often show a loss of quality along the edges and which can be corrected using image sharpening. In
[16] it is assumed that pixels in a �xed neighbourhood of an image have a common mean, µ0, and variance,
σ2
0 . The pixels in areas of low contrast within the image tend to be more or less the same as µ0, whereas

pixels in high contrast areas, which is along the edges of an image, deviates from µ0 and this causes the loss
of quality along the edges of an image. To sharpen the edges of an image di�erent �lters are passed over the
image to extract information which is then again applied to the original image to obtain an enhanced image.

2.1 Spatial Transformations

The area occupied by an image itself is referred to as the spatial domain and the methods applied in this
domain work by manipulating the pixels or voxels of an image [12]. A transformed image is obtained that is
corrected of some anomalies borne by the original image. During fMRI studies a sequence of brain images
are captured of individuals. A spatial transformation is then applied to realign this sequence of images in
the best possible way to correct for motion related artifacts and the various shapes of human brains [8] to
aid in the comparing and statistical analysis of such data across individuals. Its major advantage is rooted
in concluding an overall result [2] after being applied to images from multiple individuals. fMRI images
are registered in two steps. Registration is the �rst step involving determining the parameters to be used
in the transformation through a transformation model. Secondly a transformation is applied based on the
determined parameters. The number of parameters determines the complexity [20] of a transformation. A
manipulation to an image is made by each parameter and a model with many parameters would result in
a more complex transformation. Once the parameters are determined a resampling of the image should be
done to apply the transformation [2]. Voxel coordinates of the original image are transformed into a new
space called a standard space and various forms of interpolation are then used to determine the intensity of
the transformed voxels from the original voxels. In this standard space it is possible to cross-examine fMRI
images from di�erent individuals and studies to add to the value of the analysis process.

MRI images are captured as three-dimensional representations of physical objects. To universally distin-
guish locations in such an image, it is assigned a X, Y andZ−axis respectively, as in Figure 68, indicating left
to right, anterior(forward) to posterior(backward) and superior(upward) to inferior(downward) directions.

2.1.1 Transformation models

A�ne transformation model This model focuses on linearly manipulating fMRI images. It is a simple
transformation model and transformations such as rotations, scaling, shearing and translation are possible as
shown in Figure 79. It may occur that all the transformations are performed but this is not always the case.
It can be naturally assumed that the shape and size of a subject's head remains constant during the duration
of a fMRI study. Following this assumption motion defects can be corrected by applying translations and
rotations to the sequence of images as in Figure 7.

8Image courtesy of [20]
9Image courtesy of [20]
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The original coordinates are linearly transformed to new coordinates. A transformation matrix is applied
to the original coordinates which makes it possible.

Consider a two-dimensional coordinate system (x, y) ∈ X ⊆ Z2, i.e. x and y denotes the row - and
column coordinates of an image in matrix notation. Let C1 and C2 denoted the original - and transformed
coordinates respectively and T the transformation matrix, so that,

c2 = Tc1

with,

c1 =

 xi
yi
1


for (xi, yi) ∈ X.
The transformation matrix, T, varies according to the transformation to be done, for example,

• translation

Ttrans =

 1 0 Tx

0 1 Ty

0 0 1


with Tx and Ty denoting the translation in the x - and y direction.

• rotation

Trot =

 cos(θ) -sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


with θ denoting the angle of rotation.

• scaling

T =

 sx 0 0
0 sy 0
0 0 1


with sx and sy denoting the scale of magni�cation in the x - and y direction.

• shearing:

T =

 1 Shx 0
Shy 1 0
0 0 1


with Shx and Shy denoting the shearing in the x - and y direction.

Piecewise linear transformations fMRI images are decomposed into smaller sections where-after linear
transformations are applied to each section as necessary. It is therefore a generalization of a�ne transforma-
tions.
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Figure 7: The linear transformations possible when an a�ne transformation model is used.

Rigid body transformations Rigid body transformations are used in images from a single subject and
is also a subset of a�ne transformations. This typically involves a translation and rotation about orthogonal
axes. The order in which this is carried out is important.

A translation is done by matrix,


1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1


with Tx, Ty and Tz denoting a translation in the x -, y - and z direction respectively.

A rotation is done by matrices,

A =


1 0 0 0
0 cos(θ) sin(θ) 0
0 -sin(θ) cos(θ) 0
0 0 0 1

 , B =


cos(θ) 0 sin(θ) 0

0 1 0 0
-sin(θ) 0 cos(θ) 0

0 0 0 1

 andC =


cos(θ) sin(θ) 0 0
-sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1


with A, B and C denoting rotations of θ radians in the x -, y - and z direction respectively.

Nonlinear transformations Nonlinear transformations allow much greater manipulation capabilities than
a�ne transformations. With nonlinear transformations it is possible to achieve any transformation of image
voxels instead of only transformation in a linear fashion as with a�ne transformation. Transformed images
can be viewed in a higher dimensional form adding to the complexity of such a procedure.

In general linear transformations are much more �t to transform whole images while nonlinear transfor-
mations focuses more on local transformations within an image.
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Figure 8: MR images with di�erent contrasts as a result of brain matter responding di�erently to varying
intensities of the scanner.

2.1.2 Cost functions

Cost functions as described in [20] emphasize degree of similarity between fMRI images, to assist in de-
termining the transformation resulting in the best alignment between these images and is indicated by C.
Well-aligned images are inferred by a small cost function with the inverse applying to badly aligned images.
Alignment refers to two image's similarities and the degree to which they can be compared in a typical study.
A reference image is chosen from the sequence taken and comparisons are made to it. Registering images,
as de�ned before, plays an important role in the choice of cost function. Naturally with neural images of
the same subject, defects concerning di�erent shapes and sizes of the brain do not occur and the cost func-
tions should only determine the similarity between the intensities of two images. Registering such images
are referred to as within-modality registration. Between-modality registration on the other hand refers to
registering fMRI images that are not from the same subject and have di�erent contrasts as shown in Figure
810. Images are registered in a geometrical way as stated in [14]. A cost function should be chosen to identify
the degree of similarities across these di�erent images. Jenkinson et al. con�rms in [14] that a study done
by West et al. in [23] showed that cost functions focusing on intensities rather than the geometrics of images
are more e�ective. A list of cost functions follow.

Least squares This cost function is very commonly used in within-modality registration. It measures the
squared deviation of voxel intensities from two images.

A formula is given by,

C =

n∑
i=1

(Vi −Wi)
2

with Viand Wi denoting the intensity of the ith voxel in images V and W. C can take on any value greater
than zero [20], excluded.

Normalized correlation Correlation identi�es the linear relationship between two variables. As suggested
by the name, normalized correlation measures the linear relationship between the intensities of voxels within
the compared images.

A formula is given by,

C =

∑n
i=1 (ViWi)√∑n

i=1 V
2
i

√∑n
i=1W

2
i

with Viand Wi denoting the intensity of the i'th voxel in images V and W. C can take on any value in the
range of -1 to 1 [2, 20], both excluded.

10Image courtesy of www.dzne.de
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Figure 9: A pictorial representation of local minima: a local minimum is determined rather than the preferred
global minimum.

Mutual information This cost function is based on the concept of entropy. Entropy describes the un-
certainty inherent in a signal and should be minimized as far as possible. The use of this cost function is
not restricted to within - or between modality registration, although it is more useful for between modality
registration. Mutual information measures the similarity between images and it reaches a maximum when
the entropy between images are at a minimum. This is used in software packages such as FSL, AFNI and
and SPM. [20]

Correlation ratio The correlation ratio is a measure of the relationship between the variances of images.
Ideally this should be zero. It can be used in both within - and between modality registration, and is
implemented in the software package FSL. [20]

2.1.3 Resolving the parameters for the transformation

In order to determine the best transformation the parameters need to be estimated. For this an optimization
technique is implemented. In [3] optimization is described as a method whereby an iterative procedure is used
after choosing an initial estimate. For more information on optimization methods refer to [22]. Parameters
are to be determined that would result in the minimal cost function. Using optimization methods can lead
to a problem known as local minima. Local minima describes the problem, shortly illustrated in Figure 911,
that suboptimal parameters can be determined as a result of the optimization method getting caught in the
di�erent local minima existing in a high dimensional case [20]. By working with smooth images the number
of local minima are decreased as reported in [3].

Regularization

Most real world problems that involve solving some subset of parameters x ∈ RN from measured data y ∈ Rm,
also known as inverse problems [7], can be formulated as

Ax = ywhereA ∈ RmN (1)

and could be ill-posed. An inverse problem, such as (1), is said to be ill-posed if any of the following conditions
are not met [13, 19] :

• There exists a solution.

• This solution is idiomatic.

• There exists a continuous dependence between the data and this solution.

11Image courtesy of blog.demofox.org
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Ill-posed problems lead to solutions of (1) that are unstable and non-unique. Regularization techniques aim
to convert problems that are ill-posed to well-posed problems, satisfying the three conditions above, which
would address the issues of existence, uniqueness and continuity at hand.

Sparse Optimization

During an experiment data is sampled [11] from x ∈ RN and is represented in the vector y ∈ Rm. It can be
of interest to extract the original, unknown signal from the measured data and this problem can be written
as a well-known linear system,

Ax = ywithA∈ RmN (2)

which needs to be solved for x [21].

CASE 1 If m = N :

An exact solution of the form x = A−1y can be determined, since the inverse of A exists.

CASE 2 If m > N :

The linear system is over-determined, the columns of A are of full rank [15] and a solution of the form
x = (ATA)−1ATy is obtained.

CASE 3 If m < N :

The linear system is now said to be under-determined, and has in�nitely many solutions. Normally it is not
possible to get a unique solution, x, using conventional methods if no extra information is available. Clearly
other methods needs to be sought in order to guarantee a unique solution.

Now consider a signal x = (x1, x2, · · · , xN ) ∈ RN . This signal x can be expressed as

x =

N∑
i=1

wiψi (3)

where Ψ := [ψ1, ψ2, · · ·ψN ] is a N × N basis matrix [5], with each ψi representing a N × 1 orthonormal
basis of x ∈ RN and w : N × 1 consisting of weighting coe�cients wi = 〈x, ψi〉 : i = 1, 2, · · · , N . The
signal can be represented by x or w, each in the time - and Ψ domain respectively. The assumption that
x is sparse implies the existence of a basis Ψ, such that (3) can represented by only a small number of
signi�cant coe�cients, meaning a small number of non-zero/large coe�cients. Assuming that there are S
of these signi�cant coe�cients, results in the other N − S coe�cients being negligible. Therefore it is now
possible to express this signal as a linear combination of S � N basis vectors, since only S of the wi's in (3)
are su�ciently large, so that x is now approximately,

x̃ =

S∑
i=1

wiψi (4)

which is known as the sparse representation of x. It is clear that the most salient/useful information in x is
expressed by x̃.

Extracting an unknown signal [11] from measured data as explained by (2) when the number of measure-
ments, m, is less than the required size N of the signal, seems to contradict logical reasoning, however this
is indeed possible when it is assumed that x is sparse and can be done using several competent algorithms.
Designing the m×N measurement - or sensing matrix A, is also very important and complex [5], as it needs
to preserve all the salient information present in the sparse signal during the dimensionality reduction from
RN to Rm. This process of extracting an unknown, sparse signal from measurements made is known as sparse
optimization.

To obtain a sparse representation, x̃, of a vector x, intuitively requires �nding the minimum number of
nonzero entries in x so that Ax = b is true. That is �nding as in [24],
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Figure 10: A pictorial illustration of a sparse signal. As indicated this signal is sparse with K = 4 and the
measurement matrix is represented by Φ in this case.

min
x∈RN

{‖x‖0 : Ax = b} (5)

where ‖.‖0 is a metric that indicates the number of non-zero entries is x. It can be problematic to solve (5)
and Candes et al. [6] propose the following alternative problem, know as the Basis Pursuit problem,

min
x∈RN

{‖x‖1 : Ax = b} (6)

where ‖.‖1 is a metric that returns the sum of the absolute entry values of x, a good alternative to (5) since
it will give an accurate representation of the non-zero entries present. This is a convex optimization problem
and allows a sparse x to be uniquely obtained from y.

Magnetic Resonance Imaging (MRI) and Sparsity

MR images of high resolution are obtained by a costly, lengthy and uncomfortable measurement procedure
[10, 11]. Patients undergoing such a procedure are required to lie completely still in a cramped and noisy
environment, which can not always be expected. Sparsity can prove to be invaluable for MRI, as this could
curb the time necessary [24] for such a procedure by only taking the least required amount measurements [10]
from the patients involved, which may result in images of su�cient quality. It is important to note that MR
images can be represented sparsely in the wavelet domain [24], meaning a linear combination of the wavelet
basis, W , and its sparse representation [11] can be constructed. It is now possible to reconstruct an image
of much better quality from the images of poor quality with a well-designed measurement matrix A, which
can be done algorithmically. This can be related in a problem such as (2) where,

A = LF

with,

• L a linear mapping, and,

• F a discrete Fourier transform.

It is important to note that the above theory is also applicable to fMRI data, which is investigated in this
research paper.

3 Application

A MATLAB program12 was used to reconstruct a brain MR image using a sample (S%) of the original image
values, sampled via a �nite number of radial lines (L) in the Fourier domain of that image. The original

12Justin Romberg: l1−magic from statweb.stanford.edu/~candes/l1magic/
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Original

L = 20, S = 3.5% L = 30, S = 5.3% L = 40, S = 7%

L = 50, S = 8.7% L = 60, S = 3.5% L = 70, S = 10.4%

L = 80, S = 13.7% L = 90, S = 15.4% L = 100, S = 17%

Figure 11: The original brain MR image (top), followed by 9 images where L is increased from 20 to 100 in
increments of 10. The percentage of sampled points S, to the original number of pixels, is also indicated.

image13 is assumed sparse in the Fourier domain. This is done for L = 20, 30, 40, ..., 100. It is interesting
to view the reconstructed image quality as the number of radial lines taken - which are relatively small -
increases. This is a property that can be very useful in MRI and fMRI data. See Figure 11. It can be seen
that the quality is almost identical to that of the original image from L = 70. The results of this procedure
are shown in Figure 11.

13This image was provided by Dr Colin Turner, Radiologist at Mediclinic Nelspruit.
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4 Conclusion

In this report research was done in the �eld of fMRI. Attention was given to the possibility of improving
the e�ciency the process of obtaining MRI images, whilst still maintaining image quality. Sparsity was
investigated which can be seen as a building block for reaching the before-mentioned goal. An application
was done where a limited number of measurements taken from a brain MR image, assuming a certain level
of sparsity of the original, are used to reconstruct the full-size original image with very good results. This is
a very applicable to the �eld in question and as such it is much needed to do further research into this and
develop a much needed, sound application using the assumption of sparsity.
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Abstract

Credit scoring is used to discern good debtors from bad debtors. This paper investigates the accuracy
of one-class and two-class Gaussian Mixture Model (GMM) classi�ers. We also compare the accuracy of
two-class GMM classi�ers that make use of Bayes' rule to two-class GMM's that do not have Bayesian
priors. The comparison is done by comparing the Area under the ROC curves (AUC) for GMM's with
one to 20 mixtures over four di�erent covariance structures (diagonal, spherical, tied and full) on the
German Credit Data set. We also take note of the comparative accuracy between the parametric GMM
(a GMM with one mixture) and the non-parametric GMM (a GMM with more than one mixture).
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1 Introduction

Forecasting �nancial risk has become one of the seminal research topics in statistics. Credit scoring is the
speci�c application of forecasting �nancial risk with regards to consumer lending. Credit scoring is impor-
tant in so far as it attempts to predict the behavioural patterns of consumers and speci�cally whether or
not a�ording debt to a customer will lead to a delinquency. A statistical credit scoring model is trained by
applying statistical techniques to large amounts of historical debtor data. Training statistical models from
data also makes credit scoring an ideal application of data mining techniques [3].

There typically exist two types of credit scoring models, namely application scoring and behavioural scoring.
Application scoring attempts to assign a score to a new loan applicant based on historical data and existing
credit records. Behavioural scoring attempts to determine the treatment of existing debtors by analysing the
debtor's latest spending patterns [29].

Credit scoring is an important device for various types of institutions such as banks, insurance companies and
government departments and may even extend to landlords and general retailers. These institutions use credit
scores to set limits on the amount of debt a�orded as well as determining the interest rate at which the debtor
is most likely not to default [29]. Thereby allowing them to better manage risk and simultaneously max-
imise pro�ts.The ultimate goal of credit scoring, however, is to group individuals together who show a high
propensity to repay their debt and separate them from the individuals with a high probability of default (PD).

This requires lenders to use a classi�cation approach in trying to model the PD. The standard approach
to classi�cation is to estimate the class-conditional probability density function (pdf) of every class in a data
set and to a.) assign a new data sample to the class with the highest probability or to b.) �nd thresholds
that distinguish the separate classes from each other. This approach is known as two-class classi�cation.
Thereby debtors below a certain threshold PD are to be classi�ed positively and the rest that are above this
threshold, which is determined by means of cross-validation, to be classi�ed negatively.

There are three main approaches to one-class classi�cation (OCC), namely density estimation, the boundary
method and the reconstruction method [28]. One can use OCC methods to estimate a class-conditional pdf
for only the positive data (the non-default data) and, consequently, decide whether a new sample should be
added to this class based on its likelihood score. A common problem facing modellers is the imbalance in
debtor data due to the low percentage of debtors that default on debt compared to those who do not. This
is formally known as the low-default portfolio (LDP) problem. In the context of credit scoring, the accuracy
of two-class classi�cation methods decrease, due to the LDP problem. It has been shown by [18] that OCC
obtains better results than two-class classi�cation in the presence of data with a high imbalance ratio.

We aim to investigate whether the form of the underlying class-conditional pdf has an impact on the ef-
fectivity of the estimation of the PD if we use a non-parametric Gaussian Mixture Model (GMM) approach
(two-class classi�cation) as opposed to a standard Gaussian approach (OCC). We also aim to determine
whether the use of Bayes' rule (where the class prior is the proportion of samples belonging to a class)
combined with the standard approach to classi�cation can lead to two-class classi�cation methods obtain-
ing better results than if no prior is used for four di�erent covariance structures in the German Credit data set.

Chapter 2 presents a review of the LDP problem, the classical approach to Gaussian classi�cation and
GMM's. We also elaborate on some problems that arise when initialising the parameters of GMM's. Chapter
3 presents an introduction on the German Credit data set, how the proposed experiment is to be executed.
Chapter 4 presents the consequent results. Finally, conclusions are given and discussed, along with recom-
mendations for further research.
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2 Background Theory

2.1 The LDP problem: prior research

There exist various examples in the literature of classi�cation techniques and algorithms that have been
adapted to build models speci�cally focused on credit scoring including, among others, [10], [2], [21] and [15].
Very few examples, where the LDP problem is assessed, focus on comparing the predictive performance of
di�erent methods of classi�cation. These papers, such as [25] - who used a most prudent estimation principle
- instead focused on whether the models suggested were valid for addressing the LDP problem.

Due to the prevalence of the LDP problem it is very di�cult to choose a standard classi�cation technique to
use for credit scoring. Furthermore, no de�nitive benchmarking study on the performance of classi�cation
techniques is said to currently exist in the literature for a general data set. The issues surrounding the
LDP problem are further exacerbated by the various con�icting �ndings that are being made on the subject.
Baesens et al. [3], for example, found that for some speci�c data sets, the di�erence in the performance of
complex state-of-the-art classi�ers and traditional simpler classi�ers not to be statistically signi�cant. Brown
and Mues [9] on the other hand, found that the traditional classi�ers fared considerably worse than the
modern classi�ers in instances where the data was more unbalanced.

Kennedy et al. [18] and Lee and Cho [19] found that the LDP problem can best be addressed by only
using OCC methods in cases of extreme data imbalance. That is, when less than 1% of debtor data indicates
default.

Another potential solution to the LDP problem, is oversampling, which would be done to correct for bias
in a data set. Kennedy et al. [18] duplicated the results of Bellotti and Crook [5] when they found that
oversampling does not lead to an improvement of the performance of the best classi�ers. They did, however,
�nd that the adjustment of the threshold that separates two classes or serves as an upper bound for an OCC
method, led to much improved results. The selection of an optimised threshold has been discussed at length
[3], but the impact that it has on the predictive power of classi�ers is strangely neglected.

It was also shown by Juszczak et al. [16] that OCC methods are much more consistent than two class
classi�ers in cases where population shift occur. This will typically occur when debtor behaviour changes
over long time periods and also in volatile market segments, such as microcredit.

2.2 Alternative �elds of application for classi�cation methods

Classi�cation methods have many and varied applications. An ensemble of classi�ers can typically be used
in the insurance industry to monitor and update the underwriting of life-insurance policies [8]. Pattern
recognition can be used to identify fraudulent behaviour and has various modern applications of which fa-
cial recognition on social media platforms is one of many growing research topics [27]. Classi�cation is also
encountered in daily interactions such as whether a new e-mail ought to be labelled as spam and also in
�ltering the relevance of internet search results. Classi�cation can also perform highly specialised scienti�c
tasks, including the clustering of genes in biology and the classi�cation of brain tissue in MRI scans [30].

Gaussian Mixture Models, in particular, have been applied to classifying skin colour by means of the EM al-
gorithm (similarly to this paper) [33] and in speech recognition by using Hidden Markov Models (HMM's) [11].

2.3 The classical Gaussian approach to classi�cation

The classical Gaussian approach to classi�cation is a density estimation method which makes use of the
fact that the underlying data is generated from a unimodal d-dimensional multivariate normal/ Gaussian
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distribution.

f(y) = (2π)−
d
2 |Σ|− 1

2 exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
,−∞ < y <∞

The classi�cation of an object z is dependent on a certain threshold valueθ. The Mahalanobis distance of z
to the training data set distribution,

f(z) = (z − µ)TΣ−1(z − µ)

where µ is the mean and Σ the covariance matrix of the training data set (obtained through an EM approach),
is compared to θ. A classi�cation decision is made based on this comparison. Despite being one of the simplest
OCC methods available, the performance of this method is severely lacking when the normality assumption
is not met, since it introduces a large bias [28].

2.4 Gaussian Mixture Models

GMM's are used primarily for density estimation. A GMM is a density function represented as the weighted
sum of a number of individual Gaussian densities. GMM's are, consequently, highly e�ective for representing
multi-modal data. The number of individual Gaussians are chosen by looking at a graphical representation
of your data and estimating the number of clusters of data. The density function of a GMM that consists of
n i.i.d. Gaussian densities, φ(.), is given by

f(x) =

n∑
i=1

k∑
j=1

ωjφ(yi|µj ,Σj)

where ωi, µi and Σi are the mixing coe�cient, mean and covariance of each individual Gaussian density,
respectively [7]. It is important to note that a GMM with only one mixture reduces to a unimodal d-
dimensional multivariate normal/ Gaussian distribution and is also known as a parametric GMM, while a
GMM with more than one mixture is known as a non-parametric GMM. The parameters of a GMM are
estimated by training data with a number of algorithms. One must, however, take note of the fact that
GMM's require a large amounts of data for e�ective and e�cient training [28]. Quite often, initial values are
obtained using K-means and K-means++ clustering.

2.5 Initial values with K-means

Finding optimal initial values for a GMM is an age-old chicken-egg conundrum that has been discussed in the
literature by[22], [20], [23] and [6]. GMM's are normally initialised with K-means clustering since K-means
and GMM are both unsupervised classi�cation methods. K-means can be considered a special case of the
Expectation Maximisation (EM) algorithm since it proceeds in two steps which correspond to the E and M
steps of the EM algorithm. K-means can easily be optimised by making use of Lloyd's algorithm [17] and
despite having been developed in 1957, it is still being widely used in practice today due to it achieving EM
accuracy of up to 99.91% and delivering computational performance comparable to modern techniques at the
fraction of the cost [26].

2.6 The EM algorithm and Gaussian Mixture Models

Once we have obtained initial parameter values, say ω(0), µ(0) and Σ(0) we calculate the initial log-likelihood

L(0) =
n∑
i=1

log

(
k∑
j=1

ω
(0)
j φ(yi|µ(0)

j ,Σ
(0)
j )

)
. The EM algorithm can be used iteratively to train the GMM to
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the data by maximising the log-likelihood functions of the pdf of the GMM with respect to each parameter.
Where after the initial value of the log likelihood is evaluated. In the Expectation (E) step of EM, the current
parameter values are used to determine the posterior probability of each individual data point. That is, we

calculate γ
(m)
ij =

ω
(m)
j φ(yi|µ(m)

j ,Σ
(m)
j )

k∑
l=1

ω
(m)
l φ(yi|µ(m)

l ,Σ
(m)
l )

and n
(m)
j =

n∑
i=1

γ
(m)
ij . In other words, we evaluate the responsibilty that

each individual Gaussian assumes to explain that data point. In the Maximisation (M) step, these probabil-
ities are used in updating formulae to give better estimates for the parameters. The updating formulae for
the parameters are

ω
(m+1)
j =

n
(m)
j

k∑
j=1

n
(m)
j

=
n

(m)
j

n

µ
(m+1)
j =

1

n
(m)
j

n∑
i=1

γ
(m)
ij yi

Σ
(m+1)
j =

1

n
(m)
j

n∑
i=1

γ
(m)
ij (yi − µ(m+1)

j )(yi − µ(m+1)
j )T

After each iteration, the log-likelihood is again evaluated, L(m) =
n∑
i=1

log

(
k∑
j=1

ω
(m)
j φ(yi|µ(m)

j ,Σ
(m)
j )

)
Once

the di�erence between the log-likelihood of two iterations are below a su�cient threshold, |L(m+1)−L(m)| < δ
, for some δ, the algorithm is said to have converged and is ended [7]. (See Appendix A for a proof of how
these updating formulae are obtained) EM does, however, only converge to local optima and has been shown
to be less e�ective when data is multi-modal [31]. Research has been conducted by [1], [30] and [31] exploring
other methods that estimate the true values of the parameters for such higher dimensional cases. For our
purposes, however, the EM algorithm will be su�cient for training the GMM to the data set.

2.7 Bayes' Rule

Given the events A and B, Bayes' theorem/ rule can be stated as

P (A|B) =
P (A)P (B|A)

P (B)

This means that the conditional probability of an event A occuring, given that another event B is true, can
be calculated from prior knowledge of the probability of each event occurring (A and B) and the conditional
probability that the event B occurs, given that A is true [4]. We know that the German Credit data set
consists of 700 positive observations and 300 negative observations. We hope that by incorporating these
weights of 0.7 and 0.3 into a two-class GMM classi�er we will be able to show a signi�cant improvement in
the classi�cation performance thereof.

3 Application

3.1 Description of German Credit data set

We will be using the German Credit data set1. There currently exist two formats of this dataset. An orig-
inal data set - containing only categorical/ symbolic attributes - that has been available for use since 1994.

1The data set is obtained from: https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
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Strathclyde University adapted the original data set for algorithms that require numerical attributes. We
will be using this altered data set. This set consists of qualitative (credit history, purpose of debt applica-
tion, present employment status, gender, properties owned and housing status) as well as the new numerical
attributes (credit amount, instalment rate as percentage of income, age in years, number of dependants and
number of existing credit) which include various indicator variables. These indicator variables have been
changed from categorical variables to integer values in order to facilitate its use in the EM algorithm, since
EM requires numerical values. An important aspect of this data set is that it requires the use of a speci�c
confusion matrix. In a confusion matrix, the ij'th element is the penalty for classifying an instance of class
j as class i. In the credit scoring context, it is the cost incurred by a lender for wrongly classifying a solvent
debtor as a possible debtor and vice versa.

3.2 Previous papers on the German Credit data set

The German Credit data set is popular with experiments that aim to showcase how a particular classi�cation
method can be re�ned. Eggermont et al.[12], for example, used the decision tree construction algorithm
C4.5 to re�ne and reduce the sizes of search spaces. O' Dea et al. [24] presented a possible solution to
classi�cation problems through a combination of feature selection and neural networks and Ekin et al. [13]
compared classic distance-based classi�cation methods (such as K-means clustering) to other modern meth-
ods. Interestingly, they found that distance-based methods performed on similar and higher levels than
other classi�cation methods and were much easier to implement. Most signi�cantly, though, they found that
distance-based classifying methods were particularly robust. Wang et al. [32] used the German Credit data
set to test a proposed method by which changes in behavioural patterns could be detected. An old classi�er
representing historical knowledge was compared to a new classi�er that kept track of the latest behaviour.
All these papers utilised the German Credit data set to compare and re�ne their chosen classi�cation method.

3.3 Description of Experimental Design

The experiments proposed will be implemented in the Scienti�c PYthon Development EnviRonment, or Spy-
der, due to its user-friendly interface, powerful interactive development environment (IDE) for the Python
language and its advanced editing, testing, debugging and introspection abilities.

As stated previously, we want to determine whether a two-class GMM classi�er, can perform better than
a one-class GMM classi�er over di�erent class imbalances and also compare the classi�cation accuracy of
two-class GMM's that utilise a Bayesian prior with two-class GMM's that do not use a Bayesian prior. In
order to achieve this comparison, we will perform two experiments.

3.3.1 Initialisation of GMM

As discussed above, the weight, mean and covariance parameters of a GMM are regularly initialised by making
use of k-means and k-means++ clustering. For simplicity sake we will be making use of random initialisations
of the parameters. The Python scienti�c package, sklearn, which provides relevant tools for machine learning,
data mining and data analysis, contains a module called mixture.GMM. This module provides an argument
for the number of initialisations that should be done, before starting EM for the GMM. We will be using ten
initialisations.

3.3.2 Experiment 1: Comparison of one and two-class GMM classi�ers

Firstly, we will compare one-class and two-class GMM classi�ers over di�erent covariance structures for one
to 20 mixtures. The module will be used to repeatedly �t the relevant GMM's with the di�erent amount of
mixtures and also requires an argument that speci�es the type of covariance structure to use. The options
are diagonal, spherical, tied and full covariances.
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• Diagonal covariance structure - assigns a diagonal matrix to each component of the GMM. This means
that the predictors in the model are uncorrelated.

• Spherical covariance structure - this is the most parsimonious covariance speci�cation, as it reduces the
entire covariance structure of a component to one single variable parameter.

• Tied covariance structure - assigns identical covariance structures to all components of the GMM.

• Full covariance structure - assigns a full matrix for each component to each component of the GMM
and allow for correlated predictors. This speci�cation can lead to over�tting of a model.

3.3.3 Experiment 2: Comparison of two-class GMM classi�ers with and without Bayesian

priors

The second experiment will compare the performance of a two-class GMM classi�er with a Bayesian prior
versus a two-class GMM classi�er without a Bayesian prior. In Python, we will provide a condition in the
code by means of a boolean operator which will execute two-class classi�cation with the Bayesian prior if the
operator is set to "True" and will execute two-class classi�cation without the Bayesian prior if the operator
is set to "False". Thereby, we will answer the question as to whether the Bayesian prior has an impact on
two-class classi�er performance.

3.4 Methods of comparison

We have mentioned the concept of classi�er performance and comparison at length and will now elaborate
on how this is done by means of Receiver Operating Characteristic (ROC) curves and the area under the
ROC curve (AUROC or AUC).

3.4.1 ROC curves and AUC

ROC is a metric that is used to evaluate the quality of classi�er output and is typically used in analysing
dichotomous classi�cation, such as credit scoring. A ROC curve is a graphical representation of the ROC of a
classi�er for di�erent threshold values and is of particular use where algorithms, such as EM for GMM's, are
evaluated. This means that a ROC curve will be an ideal measure to evaluate the output of our experiments
de�ned previously.

In dichotomous classi�cation, there are four possible outcomes, namely true positive (TP), false positive
(FP), false negative (FN) and true negative (TN). A true positive classi�cation occurs when an element of
the positive class (in an OCC example) is correctly classi�ed in the positive class. The TPR (also known as
sensitivity or recall, as it is referred to in machine learning nomenclature) is then the ratio of the positive class
elements correctly classi�ed to the total number of positive elements. A false positive classi�cation occurs
when an element of the negative class is incorrectly classi�ed in the positive class. The FPR (or false alarm
rate) is then the ratio of the negative class elements incorrectly classi�ed to the total number of negative
elements. ROC curves typically feature the true positive rate (TPR) of classi�cation on the Y axis and the
false positive rate (FPR) of classi�cation on the X axis .

Figure(1) shows a summary of the important measures obtained from a ROC curve by means of a con-
fusion matrix.

The optimal point of classi�cation is where the TPR is equal to 1 and the FPR is equal to 0. While this is
not a very realistic outcome in practice, the severity of the slope of the ROC curve is a very good indication
of classi�er performance, since a steep ROC curve indicates a greater TPR and a lower FPR.

As we have seen, the ROC curve contains many metrics to evaluate classi�er output quality, but in order
to compare classi�ers it would be desirable to reduce ROC performance from a two-dimensional portrayal
of classi�er performance into a single numerical value that describes the expected performance. A common
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TPR =
TP

P

FPR =
FP

N
specificity = 1− FPR

precision =
TP

TP + FP
= (positive− predictive− value)

accuracy =
TP + TN

P +N

F −measure =
2

1
precision −

1
recall

Figure 1: Confusion matrix/ contingency table and metrics used with ROC curves

scalar value which will provide this information, is the area under the ROC curve (AUC). AUC is a useful and
easy value to obtain and possesses a vital statistical property in that the AUC of a classi�er is approximately
equal to the probability that the classi�er will rank a random positive element higher than a corresponding
negative element[14].

For our experiments we will calculate the AUC of the one-class GMM classi�ers and two-class GMM classi-
�ers for all the mixtures over each covariance structure.

Since FPR and TPR return values between 0 and 1, AUC will also be a scalar value between 0 and 1.
An AUC of 1 represents a perfect test, while 0.5 indicates a worthless test. A general guide to classifying the
accuracy of a classi�er, is the conventional academic point system:

• 0.9 < AUC ≤ 1 : Excellent classi�er

• 0.8 < AUC ≤ 0.9 : Good classi�er

• 0.7 < AUC ≤ 0.8 : Moderate classi�er

• 0.6 < AUC ≤ 0.7 : Poor classi�er

• 0.5 < AUC < 0.6 : Fail, very bad classi�er, it would not make practical sense to use this classi�er.
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4 Results

4.1 Experiment 1: Comparison of one and two-class GMM classi�ers

4.1.1 Diagonal covariance

Figure 2: Comparison of AUC's for varying mixtures with Diagonal covariance structure

The two-class GMM classi�er has very volatile performance when a diagonal covariance structure is assigned.
While it outperforms the one-class GMM classi�er for almost all mixtures, its overall performance is mediocre.
We do, however, observe that a two-class GMM classi�er with one mixture and a diagonal covariance structure
achieves classi�er performance in excess of 0.75 and can conclude that it performs admirably. It is important
to note that a two-class GMM classi�er with one mixture, a diagonal covariance structure and a Bayesian
prior, is equivalent to a Naive Bayes classi�er. The improved performance of this classi�er echoes the �ndings
of Kennedy et al. [18] that the Parzen classi�er, which is similar to the Naive Bayesian classi�er and is hence
an extension of a GMM classi�er, achieves higher harmonic mean performance than the GMM classi�er.

4.1.2 Spherical covariance

Figure 3: Comparison of AUC's for varying mixtures with Spherical covariance structure
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It is again evident that the two-class GMM classi�er outperforms the one-class GMM classi�er and that
it performs consistently in a moderate area of classi�cation accuracy. It can additionally be observed that
the two-class GMM classi�er has much less volatile performance when a spherical covariance structure is
assigned rather than a diagonal structure covariance structure. The performance of the one-class GMM is
again abysmal to poor, although a slight improvement is evident as the number of mixtures increase.

4.1.3 Tied covariance

Figure 4: Comparison of AUC's for varying mixtures with Tied covariance structure

A similar pattern to the previous covariance structures follow for Tied covariances. We also see a steady
decrease in two-class GMM classi�er performance as the number of mixtures increase.

4.1.4 Full covariance

Figure 5: Comparison of AUC's for varying mixtures with Full covariance structure

Figure 5 clearly shows that two-class GMM performance deteriorates profoundly as the number of mixtures
increase. We also observe one extreme classi�er performance in excess of 0.75 for a two-class GMM with
one mixture. A two-class GMM classi�er with one mixture and a full covariance structure is equivalent to a
simple Gaussian classi�er. Kennedy et al. [18] also found that the simple Gaussian classi�er achieves better
results than GMM's with more mixtures.
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4.1.5 Summary of optimal AUC's

Covariance structure One-class Two-class

Diagonal 0.595 0.75
Spherical 0.62 0.78
Tied 0.61 0.75
Full 0.605 0.76

Table 1: Optimal AUC of one-class and two-class GMM classi�ers for each covariance structure
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4.2 Experiment 2: Comparison of two-class GMM classi�ers with and without

Bayesian priors

4.2.1 Diagonal covariance

(I) (II)

Figure 6: Classi�cation accuracy of two-class GMM classi�ers with (Prior=True) and without (Prior=False)
Bayesian priors with Diagonal covariance structure

We observe a volatile similar pattern between the two classi�ers in Figure 6 where the performance of the
classi�er with the Bayesian prior (I) is at a slightly higher level than that of the classi�er without a prior (II)
across all mixtures.

4.2.2 Spherical covariance

(I) (II)

Figure 7: Classi�cation accuracy of two-class GMM classi�ers with (Prior=True) and without (Prior=False)
Bayesian priors with Spherical covariance structure

Again we observe an e�ect where the pattern of performance for the two classi�ers are similar, but the best
performance of the classi�er with the Bayesian prior (I) is approximately 0.02 points higher than the classi�er
without the Bayesian prior(II). The performance seen in (II) is somewhat less volatile than (I).
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4.2.3 Tied covariance

(I) (II)

Figure 8: Classi�cation accuracy of two-class GMM classi�ers with (Prior=True) and without (Prior=False)
Bayesian priors with Tied covariance structure

The same level e�ect is again observed for tied covariance structures. We do, however, also observe a severe
deterioration in classi�er performance as the number of mixtures increase.

4.2.4 Full covariance

(I) (II)

Figure 9: Classi�cation accuracy of two-class GMM classi�ers with (Prior=True) and without (Prior=False)
Bayesian priors with Full covariance structure

For a full covariance structure, the performance of two-class GMM classi�ers is at a consistently higher level
than for all the other covariance structures and the classi�er performance does not deteriorate as the number
of mixtures increase.
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4.2.5 Summary of optimal AUC's for two-class GMM classi�ers

Covariance structure Prior No Prior

Diagonal 0.708 0.679
Spherical 0.745 0.718
Tied 0.705 0.698
Full 0.695 0.685

Table 2: Optimal accuracy (AUC) of two-class GMM classi�ers with and without Bayesian priors for each
covariance structure

5 Conclusion

We wanted to know whether two-class GMM classi�ers can perform better than one-class GMM classi�ers.
It was con�rmed that for almost all number of mixtures across the four covariance structures studied, the
two-class GMM classi�er performed much better than the one-class GMM classi�er. The best two-class GMM
classi�ers were equivalent to a Naive Bayes classi�er and a simple Gaussian classi�ers (both of which are
parametric GMM's). The best covariance structure for consistent classi�er performance, was the spherical
covariance structure, which is by far the most parsimonious. In a credit scoring context, this is a useful
�nding, since the computational e�ort required in practice will always need to be minimised. It is also worth
noting that the covariance structure which delivered the worst classi�er performance, was the tied covariance
structure. This seems to make intuitive sense in a credit scoring context, since no two loan applicants will
have identical attributes and that to assume equal variances negates this individuality of applicants. The
full covariance structure delivered very volatile results, which again con�rms that allowing for correlation in
data leads to results that are di�cult to interpret.

We also wanted to know whether the introduction of a Bayesian prior can improve the performance of a
two-class GMM classi�er. We observed a very small improvement of approximately 0.02 points in the perfor-
mance of the classifer when the prior was added over all mixtures for all the covariance structures studied.
In a credit scoring context, the implementation of a Bayesian prior will mean that two more applicants out
of every 100 will be correctly a�orded credit.While this might seem relatively insigni�cant, the �nancial and
economic implications of two more correct classi�cations could be immense.

The performance of the non-parametric GMM classi�ers are, however, not very accurate in classifying the
German credit data set. The performance of the non-parametric GMM classi�ers can be improved in further
studies by initialising the parameters with k-means clustering (as discussed previously), increasing the num-
ber of EM iterations (Python defaults to 100 iterations) or selecting appropriate parameters by tuning the
GMM through information criteria comparison. Two prevalent information criteria are Bayes Information
Criteria and Akaike's Information Criteria. Lower AIC and BIC values indicate models that are a better �t
for the data. The literature suggests that with greater amounts of data, GMM classi�ers can be trained more
e�ectively, but unless the data is normally distributed, the performance of the GMM classi�er is unlikely to
improve.

The underlying distribution of the German credit data set presents a �nal interesting �nding in so far
as the improved classi�er performance of parametric GMM's (GMM's with one mixture) in comparison with
non-parametric GMM's (GMM's with more than one mixture) is concerned. This would suggest that a single
Gaussian density �ts the data su�ciently well. It can be shown relatively easily whether the data is normally
distributed, and the good performance of the parametric GMM classi�ers in this paper suggest that the data
might be distributed as such.
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Appendices

Appendix A: The EM algorithm for Gaussian Mixture Models

Before we start, we derive a useful result that will be used later

Result 1

Let the complete data X consist of n i.i.d. samples X1, ..., Xnsuch that p(x|θ) =
n∏
i=1

p(xi|θ) for all xεX for all

. Also, let yi = T (xi), i = 1, ..., n then

Q(θ|θ(m)) =

n∑
i=1

Qi(θ|θ(m))

where

Qi(θ|θ(m)) = EXi|yi,θ(m) [log p(Xi|θ)], i = 1, ..., n

Since

Q(θ|θ(m)) = EX|y,θ(m) [log p(X|θ)]

= EX|y,θ(m) [log

(
n∏
i=1

p(Xi|θ)

)
]

= EX|y,θ(m) [

n∑
i=1

log p(Xi|θ)]

=

n∑
i=1

EXi|y,θ(m) [

n∑
i=1

log p(Xi|θ)]

=

n∑
i=1

EXi|yi,θ(m) [

n∑
i=1

log p(Xi|θ)]

because p(xi|y, θ(m)) = p(xi|yi, θ(m)) due to the assumption of i.i.d samples and since yi = T (xi), i =
1, ..., n and Bayes' Rule. �

Now, we proceed to prove EM for GMM's:

Given n i.i.d samples y1, ..., ynεRdfrom a Gaussian Mixture Model (GMM) with k components, consider
the problem of estimating the set of its parameters θ = {ωj , µj ,Σj ; j = 1, ..., k}.Let the density of each
Gaussian be

φ(y|µ,Σ) , (2π)−
d
2 |Σ|− 1

2 exp{−1

2
(y − µ)TΣ−1(y − µ)}

and de�ne γ
(m)
ij to be your "guesstimate"of the probability that the i'th sample belongs to the j'th Gaussian

component at the m'th iteration, that is,

γ
(m)
ij , P (Zi = j|Yi = yi, θ

(m))

γ
(m)
ij =

ω
(m)
j φ(yi|µ(m)

j ,Σ
(m)
j )

k∑
l=1

ω
(m)
l φ(yi|µ(m)

l ,Σ
(m)
l )

such that
k∑
j=1

γ
(m)
ij = 1.
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Firstly, we have that

Qi(θ|θ(m)) = EZi|yi,θ(m) [log pX(yi, Zi|θ)]

=

k∑
j=1

γ
(m)
ij log pX(yi, j|θ)

=

k∑
j=1

γ
(m)
ij logωjφ(yi|µj ,Σj)

=

k∑
j=1

γ
(m)
ij

(
logωj −

1

2
log |Σj | −

1

2
(yi − µj)TΣ−1

j (yi − µj)
)

+ constant

From Result 1and by dropping the constant term, it then follows that

Q(θ|θ(m)) =
n∑
i=1

k∑
j=1

γ
(m)
ij

(
logωj −

1

2
log |Σj | −

1

2
(yi − µj)TΣ−1

j (yi − µj)
)

This completes the Expectation (E) step of EM.

Now, let n
(m)
j =

n∑
i=1

γ
(m)
ij , which means that we can rewrite Q(θ|θ(m)) as

Q(θ|θ(m)) =

k∑
j=1

n
(m)
j

(
logωj −

1

2
log |Σj |

)
− 1

2

 n∑
i=1

k∑
j=1

γ
(m)
ij (yi − µj)TΣ−1

j (yi − µj)


To complete the Maximisation (M) step, we need to maximise Q(θ|θ(m)) over all values of θ, subject to

the constraints of
k∑
j=1

ωj = 1, ωj ≥ 0, j = 1, ..., k and Σj � 0, j = 1, ..., k (which means that Σj is positive

de�nite). Rather than maximising the log-likelihood function

L(θ) =

n∑
i=1

log

 k∑
j=1

ωjφ(yi|µj ,Σj)


we form a Lagrange multiplier, to solve for the optimal weights, that is ωj .

J(ω, λ) =

k∑
j=1

n
(m)
j (logωj) + λ

 k∑
j=1

ωj − 1


The optimal weights satisfy

∂J

∂ωj
=

n
(m)
j

n
+ λ = 0, j = 1, ..., k

Combining the above with the constraint of
k∑
j=1

ωj = 1 it follows that

ω
(m+1)
j =

n
(m)
j

k∑
j=1

n
(m)
j

=
n

(m)
j

n
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To solve for the mean vectors, that is, µj , we let

∂Q(θ|θ(m))

∂µj
= Σ−1

j

(
n∑
i=1

γ
(m)
ij yi − n(m)

j µj

)
= 0

which gives

µ
(m+1)
j =

1

n
(m)
j

n∑
i=1

γ
(m)
ij yi

To solve for the covariance matrices, that is, Σj , we let

∂Q(θ|θ(m))

∂Σj
= −1

2
n

(m)
j

∂

∂Σj
log |Σj | −

1

2

n∑
i=1

γ
(m)
ij

∂

∂Σj
(yi − µj)TΣ−1

j (yi − µj)

= −1

2
n

(m)
j Σ−1

j +
1

2

n∑
i=1

γ
(m)
ij Σ−1

j (yi − µj)(yi − µj)TΣ−1
j

= 0, j = 1, ..., k

which gives

Σ
(m+1)
j =

1

n
(m)
j

n∑
i=1

γ
(m)
ij (yi − µ(m+1)

j )(yi − µ(m+1)
j )T
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Appendix B: Code

1 # −∗− coding : utf−8 −∗−
2 """
3
4 """
5 import numpy as np
6 from sk l e a rn . c r o s s_va l i da t i on import S t ra t i f i edKFo ld
7 from sk l e a rn import mixture
8 from sk l e a rn . met r i c s import confusion_matrix
9 from sk l e a rn import metr i c s
10 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler
11 import matp lo t l i b . pyplot as p l t
12
13 #Se t t i n g s
14
15 #TODO: run for a l l cov_types
16 #run for DO_PRIOR=True and DO_PRIOR=False
17 MAX_MIXTURES=20
18 mixtures=range (1 ,1+MAX_MIXTURES, 1 )
19
20 #cov_types=[ ' d iag ' , ' s p h e r i c a l ' , ' f u l l ' , ' t i e d ' ]
21 COV_TYPE=' t i e d '
22 NINIT=10 #number o f i n i t i a l i s a t i o n s to t e s t for GMM
23 DO_AUC=True #p lo t AUC curve
24 DO_ROC=False #p lo t ROC curve for each mixture
25 DO_CLASSIFICATION=True #do two c l a s s c l a s s i f i c a t i o n
26 DO_PRIOR=False #use p r i o r on two c l a s s c l a s s i f i c a t i o n l i k e l i h o o d s
27 #

______________________________________________________________________________

28
29 #Import German Credit Data
30 fnm='C:\ Users \Charl Cowley\Desktop\gmm\german . data−numeric . csv '
31
32 data=np . genfromtxt ( fnm , d e l im i t e r=' , ' )
33 #c l a s s 1 = po s i t i v e ( approve app l i c a t i o n )
34 #c l a s s 2 = negat ive ( r e j e c t app l i c a t i o n )
35
36 X=data [ : , 0 : −1 ]
37 i f 1:#z−s co r e data
38 X=StandardSca ler ( ) . f i t_trans fo rm (X)
39 y=data [ : , −1 ]
40 n1=len (np . where ( y==1) [ 0 ] )
41 n2=len (np . where ( y==2) [ 0 ] )
42 N=len (y )
43 sk f=St ra t i f i edKFo ld (y , n_folds=10, s h u f f l e=True , random_state=0)
44
45 auc_one_class =[ ]
46 auc_two_class =[ ]
47 acc_two_class =[ ]
48
49 for M in mixtures :
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50 p r in t ' mixtures=%g '%M
51
52 lh1 =[ ]
53 lh2 =[ ]
54 log_lh1 =[ ]
55 log_lh2 =[ ]
56 c l ab s =[ ]
57 for train_index , test_index in sk f :# c r o s s v a l i d a t i o n
58 X_train , X_test = X[ tra in_index ] , X[ test_index ]
59 y_train , y_test = y [ tra in_index ] , y [ test_index ]
60
61 #Sp l i t data by c l a s s e s
62 train_index_c1=np . where ( y_train==1) [ 0 ]
63 train_index_c2=np . where ( y_train==2) [ 0 ]
64
65 X_train_c1=X_train [ train_index_c1 , : ]
66 X_train_c2=X_train [ train_index_c2 , : ]
67 y_train_c1=y_train [ train_index_c1 ]
68 y_train_c2=y_train [ train_index_c2 ]
69
70 #Fit a GMM with M mixtures
71 #for c l a s s 1
72 #TODO: t r a i n GMM with mixture .GMM on X_train_c1 for each covar iance

type
73 gmm1=mixture .GMM(n_components=M, covariance_type=COV_TYPE, n_init=

NINIT)
74 gmm1. f i t (X_train_c1 )
75 #Change n_iter ?
76
77 #for c l a s s 2
78 #TODO: t r a i n GMM with mixture .GMM on X_train_c2 for each covar iance

type
79 gmm2=mixture .GMM(n_components=M, covariance_type=COV_TYPE, n_init=

NINIT)
80 gmm2. f i t (X_train_c2 )
81
82 #L ike l i hood s for each c l a s s
83 lh_c1=np . power (10 ,gmm1. score_samples (X_test ) [ 0 ] )
84 lh_c2=np . power (10 ,gmm2. score_samples (X_test ) [ 0 ] )
85
86 #Log l i k e l i h o o d s for each c l a s s
87 log_lh_c1=gmm1. score_samples (X_test ) [ 0 ]
88 log_lh_c2=gmm2. score_samples (X_test ) [ 0 ]
89
90 #Append a l l l i k e l i h o o d s c o r e s
91 lh1=lh1+lh_c1 . t o l i s t ( )
92 lh2=lh2+lh_c2 . t o l i s t ( )
93 log_lh1=log_lh1+log_lh_c1 . t o l i s t ( )
94 log_lh2=log_lh2+log_lh_c2 . t o l i s t ( )
95
96 c l ab s=c l ab s+y_test . t o l i s t ( )
97
98

26



99
100 #1−c l a s s c l a s s i f i c a t i o n
101
102 #Use c l a s s 1 ( Po s i t i v e c l a s s ) in model
103 #Calcu la te AUC for each number o f mixtures
104 i f DO_AUC:#AUC
105 #ca l c u l a t e ROC curve from lh1 − thus use model 1 ( major i ty c l a s s model

) as under ly ing model
106 #TODO: c a l c u l a t e ROC curve with metr i c s . roc_curve , h int : pos_label=1

s i n c e the l i k e l i h o o d s o f model 1 are used
107 fpr , tpr , t h r e sho ld s=metr i c s . roc_curve ( c labs , log_lh1 , pos_label=1)
108
109 #ca l c u l a t e AUC from ROC curve
110 auc=metr i c s . auc ( fpr , tpr )
111 auc_one_class . append ( auc )
112
113 i f DO_ROC:#ROC
114 p l t . f i g u r e ( )
115 p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , ' k−− ' )#base l i n e
116 p l t . p l o t ( fpr , tpr )
117
118 p l t . xl im ( [ 0 . 0 , 1 . 0 ] )
119 p l t . yl im ( [ 0 . 0 , 1 . 0 5 ] )
120 p l t . x l ab e l ( ' Fa l se Po s i t i v e Rate ' )
121 p l t . y l ab e l ( ' True Po s i t i v e Rate ' )
122 p l t . t i t l e ( 'ROC curve − 1− c l a s s GMM (M=%g ) ( covar iance=%s ) '%(M,COV_TYPE)

)
123 p l t . l egend ( )
124 p l t . g r i d ( )
125 p l t . s a v e f i g ( ' . / r e s u l t s /ROC_1class_M%g_cov%s . png '%(M,COV_TYPE) )
126
127
128 #2−c l a s s c l a s s i f i c a t i o n
129
130 i f DO_PRIOR:#only app l i c ab l e to two c l a s s c l a s s i f i c a t i o n
131 p1=f loat ( n1 ) /N
132 p2=f loat ( n2 ) /N
133 for i t r in range ( l en ( lh1 ) ) :
134 lh1 [ i t r ]=p1∗ lh1 [ i t r ]
135 lh2 [ i t r ]=p2∗ lh2 [ i t r ]
136
137 i f DO_CLASSIFICATION:# c l a s s i f i c a t i o n
138 plabs=[]# pred i c t ed l a b e l s
139 for i t r in range ( l en ( c l ab s ) ) :
140 i f lh1 [ i t r ]> lh2 [ i t r ] :
141 p labs . append (1)#c l a s s i f y as c l a s s 1
142 else :
143 p labs . append (2)#c l a s s i f y as c l a s s 2
144 cfm=confusion_matrix ( c labs , p labs )
145 p r in t cfm
146
147 acc=f loat ( cfm [0 ,0 ]+ cfm [ 1 , 1 ] ) / l en ( c l ab s )
148 acc_two_class . append ( acc )
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149
150
151 i f DO_AUC:#AUC
152 #to generate an ROC curve for the two c l a s s c l a s s i f i e r , use the
153 #l i k e l i h o o d s o f both models and make each row sum to 1
154 l h s=np . vstack ( [ lh1 , lh2 ] ) . t ranspose ( )#stack l i k e l i h o o d s o f two models
155 lhs_row_sum=np . sum( lhs , ax i s=1)
156 l h s [ : , 0 ]= np . d i v id e ( l h s [ : , 0 ] , lhs_row_sum)
157 l h s [ : , 1 ]= np . d i v id e ( l h s [ : , 1 ] , lhs_row_sum)
158 i f 0 :
159 lhs_row_sum=np . sum( lhs , ax i s=1)#t e s t that a l l row now sum to 1
160
161 #ca l c u l a t e ROC curve from lh s [ : , 0 ] − thus use model 1 ( major i ty c l a s s

model ) as under ly ing model
162 #TODO: c a l c u l a t e ROC curve with metr i c s . roc_curve , h int : pos_label=1

s i n c e the normal i sed l i k e l i h o o d s o f model 1 are used
163 fpr , tpr , t h r e sho ld s=metr i c s . roc_curve ( c labs , l h s [ : , 0 ] , pos_label=1)
164
165 #ca l c u l a t e AUC from ROC curve
166 auc=metr i c s . auc ( fpr , tpr )
167 auc_two_class . append ( auc )
168
169 i f DO_ROC:#ROC
170 p l t . f i g u r e ( )
171 p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , ' k−− ' )#base l i n e
172 p l t . p l o t ( fpr , tpr )
173
174 p l t . xl im ( [ 0 . 0 , 1 . 0 ] )
175 p l t . yl im ( [ 0 . 0 , 1 . 0 5 ] )
176 p l t . x l ab e l ( ' Fa l se Po s i t i v e Rate ' )
177 p l t . y l ab e l ( ' True Po s i t i v e Rate ' )
178 p l t . t i t l e ( 'ROC curve − 1− c l a s s GMM ( covar iance=%s ) '%COV_TYPE)
179 p l t . l egend ( )
180 #p l t . show ( )
181 p l t . g r i d ( )
182 p l t . s a v e f i g ( ' . / r e s u l t s /ROC_2class_M%g_cov%s . png '%(M,COV_TYPE) )
183
184 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

185 #AUC comparison
186 i f DO_AUC:
187 p l t . f i g u r e ( )
188 p l t . p l o t ( mixtures , auc_one_class , l a b e l='1− c l a s s GMM' )#, 'k− '
189 p l t . p l o t ( mixtures , auc_two_class , l a b e l='2− c l a s s GMM' )#, ' r− '
190 p l t . x l ab e l ( ' Mixtures ' )
191 p l t . y l ab e l ( 'AUC' )
192 p l t . t i t l e ( ' Comparison o f AUCs f o r vary ing mixtures ( covar iance=%s ) '%

COV_TYPE)
193 p l t . l egend ( )
194 p l t . g r i d ( )
195 p l t . s a v e f i g ( ' . / r e s u l t s /AUC_mixtures%g−%g_cov%s . png '%(mixtures [ 0 ] , mixtures

[−1] ,COV_TYPE) )
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196
197 i f DO_CLASSIFICATION:
198 p l t . f i g u r e ( )
199 p l t . p l o t ( mixtures , acc_two_class , l a b e l='2− c l a s s GMM' )#, 'k− '
200
201 p l t . x l ab e l ( ' Mixtures ' )
202 p l t . y l ab e l ( 'AUC' )
203 p l t . t i t l e ( ' C l a s s i f i c a t i o n accuracy ( p r i o r=%s ) ( covar iance=%s ) '%(DO_PRIOR,

COV_TYPE) )
204 p l t . l egend ( )
205 p l t . g r i d ( )
206 p l t . s a v e f i g ( ' . / r e s u l t s / acc_mixtures%g−%g_DO_PRIOR%g_cov%s . png '%(mixtures

[ 0 ] , mixtures [−1] ,DO_PRIOR,COV_TYPE) )
207
208 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Abstract

In generalised fading models, the κ − µ and η − µ distribution is known for their encompassing nature,
having many well-known distributions as special cases. In this study, the κ− µ and η − µ distribution is
investigated, taking a particular interest in their moment generating functions (mgf) and the derivation
thereof in closed form. The use of the mgf in the calculation of the average bit error rate (a popular
performance metric in fading models) is highlighted, with emphasis on the ease of computation with these
closed form mgfs.

Keywords: average bit error rate, fading channel, η−µ distribution, κ−µ distribution, signal-to-noise
ratio
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1 Introduction

1.1 Background

A fading channel is a type of channel that experiences signal degradation from the transmitter to the receiver
in a communication environment. In wireless systems speci�cally, fading stems from multipath induced fad-
ing or shadow fading. Multipath induced fading refers to the generated signals from the transmitter that
reach the receiver by two or more paths. Shadow fading, however, is caused by the obstruction of objects in
the propagation path between receiver and transmitter. In wireless systems, multipath fading and shadow
fading occur simultaneously leading to the phenomenon referred to as composite fading [3].

The use of system performance measures such as the Signal-to-Noise Ratio (SNR) and the average bit error
rate (ABER) assist in the identi�cation of the behaviour of the signal over the propagation path between
transmitter and the receiver. The SNR is measured at the output of the receiver [8]. A high SNR can indicate
either a high level of signal strength or the absence of noise in the propagation path, or both. A low SNR
could be interpreted as a weakness of the signal being transmitted or a high level of noise present in the
propagation path, or both. The latter performance measure, ABER, is the most descriptive about the nature
of the fading channel [8]. The ABER refers to the expected value of the bit error rate. Bit errors are pieces
of data that have been altered from their original state upon arrival at the receiver.

There are known models that have been previously explored in literature which best characterize a fading
channel. These models include: 1) Rayleigh Fading model, 2) Rician Fading model, 3) Nakagami Fading
model, 4) Weibull Fading model, and 5) Log-Normal Shadowing model. Some of these models will be ex-
plored in this project. We will focus particularly on the appropriaten use of the κ− µ distribution and η− µ
distribution in a fading environment. The η−µ distribution's advantage above the κ−µ distribution is that
it better represents the small-scale variation of the fading signal in a non-line-of-sight environment [9]. Line-
of-sight (LOS) refers to the path the signal travels from transmitter to receiver, this path is not obstructed by
any objects that may cause interference. On the other hand, non-line-of-sight (NLOS) suggests the alterna-
tive, that is the partial or full presence of objects that can cause interruptions of signal projection in the path.

Common attributes shared among the mentioned existing fading models are a positive domain, a heavy
tail and a positively skewed curve. The domain of a fading model represents the instantaneous SNR. The
SNR value comprises of a signal strength value and a noise value. Neither value can be negative since the
absence of strength implies a strength value of zero, similarly for the value of noise. [8] illustrates how the pdf
of the SNR distribution can be derived via a simple transformation. Thus; it is important to take note that
the pdf of the SNR of a model may not necessarily be the same pdf as that of the fading channel. The κ−µ
and η − µ distributions are di�erent generalizations of SNR distributions which contains many well-known
fading channels' SNR distributions. The table below summarizes common SNR distributions for di�erent
fading channels.

Fading Channel Fading parameter Pdf (fγ(γ))

Rayleigh 1
γ̄ exp

(
−γγ̄
)

Nakagami-m 1
2 ≤ m

mmγm−1

γ̄m+1Γ(m) exp
(
−mγγ̄

)
Hoyt 0 ≤ q ≤ 1

(
1+q2

2qγ̄

)
exp

(
− (1+q2)2γ

4q2γ̄

)
I0

(
(1−q4)γ

4q2γ̄

)
Rice 0 ≤ n (1+n2)

exp(n2)γ̄ exp
(
− (1+n2)γ

γ̄

)
I0

(
2
√

n2(1+n2)γ
γ̄

)
Table 1: Probability density functions (pdf) of the SNR per symbol γ for some well-known fading channels
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1.2 Literature Review

The κ−µ distribution and the η−µ distribution were presented in [9]. It was shown that special cases of the
κ− µ distribution include the Rice distribution, the Nakagami-m distribution and the Rayleigh distribution,
and special cases of the η−µ distribution are the Hoyt distribution and also the Nakagami-m distribution and
the Rayleigh distribution. The objective of this paper was to produce a general fading model, and to describe,
parametrize and fully characterize the corresponding signal in terms of measurable physical parameters. [9]
also contributed to the attainment of exact and closed-form moment-based estimators for the parameters of
the κ− µ and η − µ distribution and a proposal for practical procedures to apply the distributions.

[6] proposed the existence of the moment generating functions (mgf) of the κ − µ and η − µ distributions
in closed form. The need to obtain mgfs in terms of elementary functions stems directly from the need to
calculate the average bit error rates (ABER) in fading channels. In this article, the relation between the
modi�ed Bessel function and the modi�ed Bessel function of the �rst kind was used to derive said expressions
(see Appendix: De�nition 2). It was shown that for a large variety of practical applications, ABER formulas
for systems operating in κ − µ and η − µ radio channels can be expressed either in terms of elementary
functions or in terms of �nite-range integrals of elementary functions, which is highly desirable because it is
computationally simple to calculate.

[5] similarly proposed novel expressions for the mgfs of the generalized κ − µ and η − µ distribution. The
motivation similarly comes from the applicability in the derivation of several performance measures such as
the average error rate (AER). Well-known Meijer's G-functions were used to derive these new expressions
as opposed to the Bessel function relation used by [6]. Meijer's G-functions are easily implemented by us-
ing appropriate computing software. When plotting the AER against the average SNR, it was observed
that by keeping µ constant, an increase of κ and η implies in an improvement of the system performance. In
a similar fashion, having kept η or κ constant, the performance improves as µ increases, as the AER decreases.

Al-Ahmadi and Yanikomeroglu [3] proposed an adjusted form of the expressions of the parameters of the
approximating gamma distribution for modeling composite fading channels. Modeling composite fading
channels is an important part of the analysis of several wireless communication problem such as interference
analysis in cellular systems and performance analysis of network. It was shown in [3] that the generalized K
probability density function (pdf) is approximated by the gamma pdf. The moment matching method was
used to obtain the desired results, an adjustable form of the expressions. It is done by matching the �rst two
positive moments, to overcome the arising numerical and/or analytical limitations of higher order moment
matching. The results indicated that the introduction of the adjusted results in gamma pdf closely approx-
imate the generalized-K distribution in both the lower and upper tail regions and can further approximate
the distribution of the sum of independent generalized-K random variables in these regions.

The utility of the gamma distribution for shadow fading, in both terrestrial and satellite channels, using
empirical data has been shown in [1]. The authors investigated this area because the mathematical form
of the lognormal pdf is not convenient for the analytic calculations that arise in connection with shadow
fading in wireless channels. The lognormal model of shadow fading cannot produce easy-to-use expressions
for many performance measures such as average symbol error rate. The paper �rst demonstrates the utility
of the gamma pdf for shadow fading in terrestrial and satellite channels using empirical data. For terrestrial
channels, the data collected in the urban and suburban areas were employed. For the satellite channels,
extensive empirical information that had been previously published was used. Secondly, it was shown how
the application of the gamma pdf, in conjunction with the Rayleigh model of multipath fading, resulted in
closed-form expressions for key system performance measures in the interested channels.

1.3 Objective and aims

The objective and aims of this study is to su�ciently:
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• illustrate the pdf of the κ− µ and η − µ distribution for di�erent values of κ and di�erent values of η,
respectively;

• derive the mgf of the κ− µ and η − µ distribution in closed form;

• evaluate the ABERs as an expression of the mgf of the κ− µ and η − µ distribution, respectively, and

• illustrate the relationship between the ABER and the SNR, using the κ− µ and η − µ distribution as
the underlying fading models.
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1.4 Outline of this study

Figure 1: Outline of study
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2 Fading Distributions

2.1 The κ− µ distribution

This section covers some important theoretical results regarding the κ−µ distribution. Yacoub (2007) derived
this distribution from two mutually independent Gaussian random variables; each describing in-phase - and
quadrature components of the fading channel. See Yacoub (2007) [9] for more detail.

2.1.1 Probability density function

A random variable γ is said to have the κ− µ distribution if it has the following pdf:

fγκ−µ(γ) =
µ(1 + κ)

µ+1
2 γ

µ−1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

exp

(
−µ(1 + κ)γ

γ̄

)
Iµ−1

(
2µ

√
κ(1 + κ)γ

γ̄

)
; γ > 0 (1)

where µ = E2[γ]
2var[γ]

[
1+2κ

(1+κ)2

]
, and κ > 0 is the ratio of the total power of the dominant components to that

of scattered waves. γ denotes the signal-to-noise ratio, and γ̄ = E (γ) denotes the average SNR. Iα(.) is the
modi�ed Bessel function of the �rst kind of order α (see Appendix: De�nition 2).
Using the relation [9]:

Iv−1(z) ≈
(
z
2

)v−1

Γ(v)
, (2)

for small z.
The pdf (1) can also be written as:

fγκ−µ(γ) =
µ(1 + κ)

µ+1
2 γ

µ−1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

exp

(
−µ(1 + κ)γ

γ̄

)
1

Γ (µ)

(
µ

√
κ(1 + κ)γ

γ̄

)µ−1

=
µµµ−1(1 + κ)

µ+1
2 (1 + κ)

µ−1
2 κ

µ−1
2 γ

µ−1
2 γ

µ−1
2

κ
µ−1
2 exp(µκ)γ̄µ+1Γ (µ)

exp

(
−µ(1 + κ)γ

γ̄

)
=

µµ(1 + κ)µγµ−1

exp(µκ)γ̄µ+1Γ (µ)
exp

(
−µ(1 + κ)γ

γ̄

)
. (3)

Some special cases of this distribution is presented next.

Corollary 1: By setting µ = 1 in (1), the pdf reduces to the Rice channel's SNR distribution with pdf

fγRice(γ) =
(1 + κ)

exp(κ)γ̄
exp

(
− (1 + κ)γ

γ̄

)
I0

(
2

√
κ(1 + k)γ

γ̄

)
, γ > 0 (4)

with κ = n2 > 0 as the Rice parameter [8] and γ̄ = E (γ) denotes the average SNR.

Corollary 2: By setting κ = 0 and µ = m in (3); the pdf in (3) reduces to the Nakagami-m channel's SNR
distribution with pdf

fγNakagami−m(γ) =
µµγµ−1

γ̄µ+1Γ (µ)
exp

(
−µγ
γ̄

)
, γ > 0 (5)

which is a gamma distribution with parameters µ and µ
γ̄ and γ̄ = E (γ) denotes the average SNR [8].
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Corollary 3: By setting κ = 0 and µ = 1 in (3), then the pdf in (3) reduces to the Rayleigh channel's SNR
distribution with pdf

fγRayleigh(γ) =
1

γ̄
exp

(
−γ
γ̄

)
, γ > 0 (6)

which is an exponential distribution with parameter 1
γ̄ and γ̄ = E (γ) denotes the average SNR [8].

An illustration of the pdf (1) for di�erent arbitrary parameter values is given below.

Figure 2: The κ− µ pdf (1) for �xed value of µ = 1.5 and di�erent values of κ
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Figure 3: The κ− µ pdf (1) for �xed value of κ = 1 and di�erent values of µ

2.1.2 Moment generating function

The following theorem gives the moment generating function of the κ− µ distribution.

Theorem: Suppose γ follows the κ− µ distribution with pdf (1). Then the moment generating function of
γ is given by

Mγκ−µ(s) =

[
µ(1 + κ)

sγ̄ + µ(1 + κ)

]µ
exp

[
µ2 κ(1 + k)

sγ̄ + µ(1 + κ)
− µκ

]
(7)

where µ = E2[γ]
2var[γ]

[
1+2κ

(1+κ)2

]
, and κ > 0 is the ratio of the total power of the dominant components to that of

scattered waves. γ denotes the signal-to-noise ratio, and γ̄ = E (γ) denotes the average SNR.

Proof:

Consider

Mγκ−µ(s) = E{exp(−sγ)}

Using the de�nition of a mgf (see Appendix: De�nition 1), we obtain:

=

∞̂

0

exp(−sγ)fγκ−µ(γ)dγ

Using the pdf of the κ− µ distribution given by (1), it follows that Mγκ−µ(s) is equal to

12



=

∞̂

0

exp(−sγ)
µ(1 + κ)

µ+1
2 γ

µ−1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

exp

(
−µ(1 + κ)γ

γ̄

)
Iµ−1

(
2µ

√
κ(1 + κ)γ

γ̄

)
dγ

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

∞̂

0

exp(−sγ)γ
µ−1
2 exp

(
−µ(1 + κ)γ

γ̄

)
Iµ−1

(
2µ

√
κ(1 + κ)γ

γ̄

)
dγ

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

∞̂

0

exp

[
−γ
(
s+

µ(1 + κ)

γ̄

)]
γ
µ−1
2 Iµ−1

(
2µ

√
κ(1 + κ)γ

γ̄

)
dγ.

Using the series expansion of the modi�ed Bessel function of the �rst kind (see Appendix: De�nition 2), we
obtain:

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

∞̂

0

exp

[
−γ
(
s+

µ(1 + κ)

γ̄

)]
γ
µ−1
2

∞∑
j=0

1

j!Γ(µ+ j)

2µ
√

κ(1+κ)γ
γ̄

2

µ−1+2j

dγ

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

∞̂

0

exp

[
−γ
(
s+

µ(1 + κ)

γ̄

)]
γ
µ−1
2

∞∑
j=0

[
µ
√

κ(1+κ)γ
γ̄

]µ−1+2j

j!Γ (µ+ j)
dγ

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

∞̂

0

exp

[
−γ
(
s+

µ(1 + κ)

γ̄

)]
γ
µ−1
2

[
µ

√
κ(1 + κ)γ

γ̄

]µ−1 ∞∑
j=0

[
µ
√

κ(1+κ)γ
γ̄

]2j

j!Γ (µ+ j)
dγ

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

∞̂

0

exp

[
−γ
(
s+

µ(1 + κ)

γ̄

)]
γ
µ−1
2

[
µµ−1κ

µ−1
2 (1 + κ)

µ−1
2 γ

µ−1
2

γ̄
µ−1
2

] ∞∑
j=0

[
µ2j κ

j(1+κ)jγj

γ̄j

]
j!Γ (µ+ j)

dγ

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

µµ−1κ
µ−1
2 (1 + κ)

µ−1
2

γ̄
µ−1
2

∞̂

0

exp

[
−γ
(
s+

µ(1 + κ)

γ̄

)]
γ
µ−1
2 γ

µ−1
2

∞∑
j=0

[
µ2j κ

j(1+κ)jγj

γ̄j

]
j!Γ (µ+ j)

dγ

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

µµ−1κ
µ−1
2 (1 + κ)

µ−1
2

γ̄
µ−1
2

∞∑
j=0

[
µ2j κ

j(1+κ)j

γ̄j

]
j!Γ (µ+ j)

∞̂

0

exp

[
−γ
(
s+

µ(1 + κ)

γ̄

)]
γµ−1+jdγ.

Using the de�nition of the gamma integral (see Appendix: De�nition 4), we obtain:

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

µµ−1κ
µ−1
2 (1 + κ)

µ−1
2

γ̄
µ−1
2

∞∑
j=0

[
µ2j κ

j(1+κ)j

γ̄j

]
j!Γ (µ+ j)

[
1

s+ µ(1+κ)
γ̄

]µ+j

Γ(µ+ j)

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

µµ−1κ
µ−1
2 (1 + κ)

µ−1
2

γ̄
µ−1
2

∞∑
j=0

[
µ2j κ

j(1+κ)j

γ̄j

]
j!

[
γ̄

sγ̄ + µ(1 + κ)

]µ+j

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

µµ−1κ
µ−1
2 (1 + κ)

µ−1
2

γ̄
µ−1
2

[
γ̄

sγ̄ + µ(1 + κ)

]µ ∞∑
j=0

[
µ2 κ(1+κ)

γ̄

]j
j!

[
γ̄

sγ̄ + µ(1 + κ)

]j

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

µµ−1κ
µ−1
2 (1 + κ)

µ−1
2

γ̄
µ−1
2

[
γ̄

sγ̄ + µ(1 + κ)

]µ ∞∑
j=0

[
µ2 κ(1+κ)

sγ̄+µ(1+κ)

]j
j!

.
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Using the series expansion of e (.) (see Appendix: De�nition 5), we obtain:

=
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)γ̄µ+1

µµ−1κ
µ−1
2 (1 + κ)

µ−1
2

γ̄
µ−1
2

[
γ̄

sγ̄ + µ(1 + κ)

]µ
exp

[
µ2 κ(1 + κ)

sγ̄ + µ(1 + κ)

]
= µ1+µ−1κ

µ−1
2 −

µ−1
2 (1 + κ)

µ+1
2 +µ−1

2 γ̄−
µ+1
2 −

µ−1
2

[
γ̄

sγ̄ + µ(1 + κ)

]µ
exp

[
µ2 κ(1 + κ)

sγ̄ + µ(1 + κ)

]
exp(−µκ)

= µµ(1 + κ)µγ̄−µ
[

γ̄

sγ̄ + µ(1 + κ)

]µ
exp

[
µ2 κ(1 + κ)

sγ̄ + µ(1 + κ)

]
exp(−µκ)

=

[
µ(1 + κ)

sγ̄ + µ(1 + κ)

]µ
exp

[
µ2 κ(1 + k)

sγ̄ + µ(1 + κ)
− µκ

]
which leaves the �nal result.

Next, some special cases of the mgf in (7) is considered.

Corollary 4: Suppose γ follows the Rice channel's SNR distribution with pdf (4). Then the mgf of γ is
given by

Mγ(s) =

[
(1 + κ)

sγ̄ + (1 + κ)

]
exp

[
κ(1 + k)

sγ̄ + (1 + κ)
− κ
]

(8)

with κ = n2 > 0 as the Rice parameter and γ̄ = E (γ) denotes the average SNR..

Corollary 5: Suppose γ follows the Nakagami-m channel's SNR distribution with pdf (5). Then the moment
generating function of γ is given by

Mγ(s) =

[
µ

sγ̄ + µ

]µ
(9)

where µ = m > 0 as the Nakagami-m parameter.

Corollary 6: Suppose γ follows the Rayleigh channel's SNR distribution with pdf (6). Then the mgf of γ is
given by

Mγ(s) =
1

1− γ̄s
. (10)
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2.2 The η − µ distribution

2.2.1 Probability density function

A random variable γ is said to have the η − µ distribution if it has the pdf given by [6]

fγη−µ(γ) =
2
√
πµµ+ 1

2hµγµ−
1
2

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

exp

(
−2µγh

γ̄

)
Iµ− 1

2

(
2µHγ

γ̄

)
γ > 0 (11)

where γ denotes the signal-to-noise ratio, γ̄ = E (γ) is the average SNR, Γ (.) is the gamma function, Iα (.)is

the modi�ed Bessel function of the �rst kind of order α and µ = E2[γ]
2var[γ]

[
1 +

(
H
h

)2]
. The parameters h and

H have di�erent structures depending on the real-life scenario, and brie�y set-out below.
Format 1:

H =
(η−1−η)

4 and h =
(2+η−1+η)

4 where 0 < η < ∞ is the power ratio of the in-phase and quadrature
scattered waves in each multipath cluster.
Format 2:

H = η
(1−η2) and h = 1

(1−η2) where −1 < η < 1 is the correlation between the in-phase and quadrature

scattered waves in each mulitpath cluster.
Using the relation as in (2):

Iµ− 1
2

(
2µ1+γ

γ̄

)
=

(
µµ−

1
2Hµ− 1

2 γµ−
1
2

γ̄

)
1

Γ
(
µ+ 1

2

) , γ > 0

the pdf (11) can also be written as:

fγη−µ(γ) =
2
√
πµµ+ 1

2hµγµ−
1
2

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

exp

(
−2µγh

γ̄

)
Iµ− 1

2

(
2µHγ

γ̄

)
=

2
√
πµµ+ 1

2hµγµ−
1
2µµ−

1
2Hµ− 1

2 γµ−
1
2

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2 γ̄µ−
1
2 Γ
(
µ+ 1

2

) exp

(
−2µγh

γ̄

)
=

2
√
πµ2µhµγ2µ−1

Γ(µ)Γ
(
µ+ 1

2

)
γ̄2µ

exp

(
−2µγh

γ̄

)
. (12)

Some special cases of this distribution is presented next.

Corollary 7: By setting µ = 1
2 in (12), the pdf reduces to the Hoyt channel's SNR distribution with pdf

fγHoyt(γ) =
2
√
π
(

1
2

)
h

1
2

Γ
(

1
2

)
Γ
(

1
2 + 1

2

)
γ̄

exp

(
−γh
γ̄

)
=

h
1
2

γ̄
exp

(
−γh
γ̄

)
, γ > 0 (13)

with the Hoyt parameter given by − 1−η
1+η in format 1 or −η in format 2 and γ̄ = E (γ) is the average SNR.

Corollary 8: By setting h = 1 and H = 1 in (13), the pdf reduces to the Rayleigh channel's SNR distribution
with pdf

fγRayleigh(γ) =
1

γ̄
exp

(
−γ
γ̄

)
, γ > 0 (14)
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which is an exponential distribution with parameter 1
γ̄ and γ̄ = E (γ) is the average SNR.

An illustration of the pdf (11) for di�erent arbitrary parameter values are given below.

Figure 4: The η − µ pdf (11) for �xed value of µ = 0.6 and di�erent values of η; format 1
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Figure 5: The η − µ pdf (11) for �xed value of η = 0.5 and di�erent values of µ; format 1

Figure 6: The η − µ pdf (11) for �xed value of µ = 0.6 and di�erent values for η; format 2
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Figure 7: The η − µ pdf (11) for �xed value of η = 0.5 and di�erent values of µ; format 2

2.2.2 Moment generating function

The following theorem gives the mgf of the η − µ distribution.

Theorem: Suppose γ follows the η − µ distribution with pdf (11). Then the mgf of γ is given by

Mγη−µ(s) =
4µ2h

(2(h−H)µ+ sγ̄)(2(h+H)µ+ sγ̄)
(15)

where γ denotes the signal-to-noise ratio, γ̄ = E (γ) is the average SNR, Γ (.) is the gamma function, Iα (.)is

the modi�ed Bessel function of the �rst kind of order α and µ = E2[γ]
2var[γ]

[
1 +

(
H
h

)2]
. The parameters h and

H have di�erent structures depending on the real-life scenario, and brie�y set-out below.
Format 1:

H =
(η−1−η)

4 and h =
(2+η−1+η)

4 where 0 < η < ∞ is the power ratio of the in-phase and quadrature
scattered waves in each multipath cluster.
Format 2:

H = η
(1−η2) and h = 1

(1−η2) where −1 < η < 1 is the correlation between the in-phase and quadrature

scattered waves in each mulitpath cluster.

Proof:

Consider

Mγκ−µ(s) = E{exp(−sγ)}.

Using the de�nition of a mgf (see Appendix: De�nition 1) we obtain:
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=

∞̂

0

exp(−sγ)fγη−µ(γ)dγ

and using the pdf of the η − µ distribution given by (11), it follows that the mgf equals

=

∞̂

0

exp(−sγ)
2
√
πµµ+ 1

2hµγµ−
1
2

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

exp

(
−2µγh

γ̄

)
Iµ− 1

2

(
2µHγ

γ̄

)
dγ.

Using the series expansion of the modi�ed Bessel function of the �rst kind (see Appendix: De�nition 2), we
obtain:

=

∞̂

0

2
√
πµµ+ 1

2hµγµ−
1
2

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

exp

[
−γ
(
s+

2µh

γ̄

)] ∞∑
k=0

1

k!Γ(µ+ 1
2 + k)

(
2µHγ
γ̄

2

)µ− 1
2 +2k

dγ

Assuming (µ+ 1
2 + k) ∈ N , we obtain

=
2
√
πµµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

∞̂

0

γµ−
1
2 exp

[
−γ
(
sγ̄ + 2µh

γ̄

)](
µHγ

γ̄

)µ− 1
2
∞∑
k=0

1

k!(µ− 1
2 + k)!

(
µHγ

γ̄

)2k

dγ

=
2
√
πµµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

∞∑
k=0

1

k!(µ− 1
2 + k)!

∞̂

0

γµ−
1
2 exp

[
−γ
(
sγ̄ + 2µh

γ̄

)](
µHγ

γ̄

)µ− 1
2
(
µHγ

γ̄

)2k

dγ

=
2
√
πµµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

(
µH

γ̄

)µ− 1
2
∞∑
k=0

1

k!(µ− 1
2 + k)!

(
µH

γ̄

)2k
∞̂

0

γµ−
1
2 exp

[
−γ
(
sγ̄ + 2µh

γ̄

)]
γµ−

1
2 γ2kdγ

=
2
√
πµµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

(
µH

γ̄

)µ− 1
2
∞∑
k=0

1

k!(µ− 1
2 + k)!

(
µH

γ̄

)2k
∞̂

0

γ2µ−1+2k exp

[
−γ
(
sγ̄ + 2µh

γ̄

)]
dγ

Using the de�nition of the gamma integral (see Appendix: De�nition 4), we obtain:

=
2
√
πµµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

(
µH

γ̄

)µ− 1
2
∞∑
k=0

1

k!(µ− 1
2 + k)!

(
µH

γ̄

)2k (
γ̄

sγ̄ + 2µh

)2µ+2k

Γ (2µ+ 2k)

=
µµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

(
µH

γ̄

)µ− 1
2
∞∑
k=0

1

k!(µ− 1
2 + k)!

(
µH

γ̄

)2k (
γ̄

sγ̄ + 2µh

)2µ+2k

2
√
πΓ (2(µ+ k)) .

Using Legendre's duplication formula (see Appendix: De�nition 6), we obtain:
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=
µµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

(
µH

γ̄

)µ− 1
2
∞∑
k=0

1

k!(µ+ k − 1
2 )!

(
µH

γ̄

)2k (
γ̄

sγ̄ + 2µh

)2µ+2k

22(µ+k)Γ(µ+ k)Γ

(
µ+ k +

1

2

)

=
µµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γ̄µ+ 1

2

(
µH

γ̄

)µ− 1
2
∞∑
k=0

(
µH

γ̄

)2k (
γ̄

sγ̄ + 2µh

)2µ+2k

22(µ+k)

[
Γ(µ+ k)

1

Γ(µ)

1

k!

]

=

[
4µ2h

(sγ̄ + 2µh)2

]µ ∞∑
k=0

[
2µH

(sγ̄ + 2µh)

]2k (
(k + µ− 1)!

k!(µ− 1)!

)

=

[
4µ2h

(sγ̄ + 2µh)2

]µ [
(sγ̄ + 2µh)2

(sγ̄ + 2µh)2 − 42µ2H2

]µ ∞∑
k=0

[
k + µ− 1
µ− 1

] [
4µ2H2

(sγ̄ + 2µh)2

]k [
(sγ̄ + 2µh)2 + 4µH2

(sγ̄ + 2µh)2

]µ
.

Using the de�nition of the pmf of a negative binomial distribution (see Appendix: De�nition 3), we obtain

=

[
4µ2h

(sγ̄ + 2µh)2

]µ [
(sγ̄ + 2µh)2

(sγ̄ + 2µh)2 − 4µ2H2

]µ
=

(
4µ2h

(sγ̄ + 2µh)2 − 4H2µ2

)µ
=

(
4µ2h

4h2µ2 − 4H2µ2 + 4hµsγ̄ + s2γ̄2

)µ
=

(
4µ2h

4h2µ2 − 4H2µ2 + 2hµsγ̄ − 2Hµsγ̄ + 2hµsγ̄ + 2Hµsγ̄ + s2γ̄2

)µ
=

(
4µ2h

(2hµ− 2Hµ)(2hµ+ 2Hµ) + sγ̄(2hµ− 2Hµ) + sγ̄(2hµ+ 2Hµ) + s2γ̄2

)µ
=

(
4µ2h

(2hµ− 2Hµ+ sγ̄)(2hµ+ 2Hµ+ sγ̄)

)µ
=

(
4µ2h

(2(h−H)µ+ sγ̄)(2(h+H)µ+ sγ̄)

)µ
Which leaves the �nal result.

Corollary 9: Suppose γ follows the Hoyt channel's SNR distribution with pdf (13). Then the moment
generating function of γ is given by

Mγ(s) =

(
h

((h−H) + sγ̄)((h+H) + sγ̄)

)
(16)

with the Hoyt parameter given by − 1−η
1+η in format 1 or −η in format 2 and γ̄ = E (γ) is the average SNR.

Corollary 10: Suppose γ follows the Rayleigh channels's SNR distribution with pdf (14). Then the moment
generating function of γ is given by

Mγ(s) =
1

1− γ̄s
.

where γ̄ = E (γ) is the average SNR.
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3 Application

The basic unit of data in a communication environment is called a bit. The word 'bit' is derived from the
combination of the words 'binary' and 'unit' indicating that a bit can only take on one of two values, usually
1 or 0. Bit errors are bits of a data stream that are received over a communication channel from a transmitter
but have been altered due to some kind of interference.

A bit error test can be simply illustrated as:
Transmitted bit sequence:
0 1 1 0 0 0 1 0 1,
Received bit sequence:
1 1 1 1 0 1 0 0 1,
the number of bit errors (those indicated) is in this illustration is four (4). The BER is 4 incorrect bits
divided by ten (10) total transferred bits, results in 4

10 = 0.4 or 40.

ABERs measure how e�ectively the receiver is able to decode the transmitted data. The ABERs can be
evaluated as [8]:

Paver =
1

2
Mγ

(
C
Eb
No

)
(17)

where the ratio of the energy per bit to the noise spectral density Eb

No
de�nes the transmit SNR.

For a large variety of applications, the conditional bit error probability Pb (E|γ) is expressed as [8]:

Pb (E|γ) = amQ (bm
√
γ) (18)

where Q is the Gaussian Q-function, am and bm are parameters that depend on the speci�c modulation-
detection combination and transmit SNR. However, a more accurate and representative form of the ABER is
given by utilizing a �nite integral representation of Q (.). Thus on the basis of a �nite integral representation
of Q (.) the ABER can also be evaluated as [8]:

Paver =
am
π

ˆ π
2

0

Mγ

(
b2m

2sin2θ

)
dθ (19)

where Mγ (.) represents the mgf of the SNR distribution of the fading channel.
In �gures 4 - 6, we present numerical estimates obtained by using (7), (15), (with γ̄ =1) and (19) for the case
of coherent detection of binary phase shift keying (BPSK) [6]. Under these conditions, am = 1 and b2m = 2Eb

No

[8]. The curves in �gure 4 and �gure 5 are given for con�rmation of correctness of our derivations since they
represent results that have been already reported [5]. Using the closed form expression of the mgf, as in
(7) and (15), is both computationally and analytically advantageous. The investigation here yields similar
results compared to that of [5].
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Figure 8: ABERs (19) of coherently detected BPSK in κ− µ radio channels

Figure 9: ABERs (19) of coherently detected BPSK in η − µ radio channels; format 1
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Figure 10: ABERs (19) of coherently detected BPSK in η − µ radio channels; format 2

The ABER decreases as the SNR increases. For a �xed value of κ, as µ increases the slope of the graph
becomes steeper. The e�ects of η on the average error rates in radio channels modeled by two formats also
di�er. In contrast with the format 1, we observe that the error rate performance of the coherently detected
BPSK in a η − µ radio channel of the format 2 improves as η decreases.

4 Conclusion

This project saw the systematic description of the κ− µ and η − µ distribution as generalised distributions
of some well-known fading models. By deriving the mgfs of these distributions, their use to evaluate an
important performance measure, namely ABER, was highlighted due to the ease of use. Some special cases
of the distributions as well as their mgfs were discussed, and the ABER investigated.

5 Future work

There is plentiful scope to extend the research of this project to that of noncentral-type SNR distributions-
and fading channels. Furthermore, composite fading model - where the model incorporates both fading - and
shadowing, and the evaluation of the ABER of these models via their respective mgfs can also be investigated.
In addition, other performance measures such as the outage probability of the model, can also be investigated.
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Appendix

De�nition 1: [8]
Let γ be a random variable with pdf fγ(γ), then the expected value

Mγ(s) = E{exp(−sγ)}

=

∞̂

0

exp(−sγ)fγ(γ)dγ

is called the moment generating function (mgf) of γ if this expected value exists for all values of s in some
interval of the form -g < s < g for some g > 0.
Remark: This de�nition of a mgf di�ers from the traditional context of a mgf which does not include the
negative in it's expression.

De�nition 2: [7]
The modi�ed Bessel function of the �rst kind is de�ned b

Iv (γ) =

∞∑
k=0

(
γ
2

)v+2k

k!Γ (v + k + 1)

=
(γ

2

)v ∞∑
k=0

1

k! (v + k)!

(γ
2

)2k

where v ∈ R and Γ(.) is the gamma function.

De�nition 3: [4]
A random variable γ is said to follow a negative binomial distribution denoted γ:NB(p, r), if γ has proba-
bility mass function (pmf)

fγκ−µ(γ) =

(
k + r − 1

k

)
(1− p)rpk

where k = 0, 1, 2, 3, . . . , 0 ≤ p ≤ 1, 0 < r and

(
k + r − 1

k

)
= (k+r−1)!

(k)!(r−1)!

De�nition 4: [4]

ˆ ∞
0

xβ−1 exp (−αx) dx =
1

αβ
Γ (β)

for α, β > 0.
De�nition 5: [4]
The series expansion of e can be written as

ex =

∞∑
j=0

xj

j!

De�nition 6: [2]
The Legendre's duplication formula is de�ned as
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2
√
πΓ(2z)

1

22z
= Γ(z)Γ(z +

1

2
)

where Γ(.) is the gamma function.
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SAS Code:

The η − µ pdf for �xed value of η = 0.5 and di�erent values of µ; format 1

∗pdf o f eta−mu d i s t r i b u t i o n ;
∗ f i x e d mu;
∗ format 1 ;
proc iml ;
exp_gamsq = 2 ;
var_gam = 1 ;
gamb=1;

x_range = 1 . 5 ;
x_vec = do (0 , x_range , 0 . 0 1 ) ` ;
complete_dens = j ( nrow (x_vec ) , 1 , 0 ) ;

do mu=1 to 1 .6 by 0 . 3 ;
eta = 0 . 5 ;

∗ format 1 ;
big_h = (1/ eta − eta ) / 4 ;
small_h = (2+1/ eta+eta ) / 4 ;

v1 = mu+0.5;
v2 = mu−0.5 ;
dens = 0 ;

do i = 1 to nrow (x_vec ) ;
x = x_vec [ i ] ;

p i = constant ( ' pi ' ) ;
f 1 = 2 ∗ pi ∗ mu∗∗v1 ∗ small_h∗∗mu / (gamma(mu)∗big_h∗∗v2 ∗ gamb∗∗v1 ) ;
f 2 = exp(−2∗mu∗ small_h∗x/gamb)∗ x∗∗v2 ;
f 3 = IBESSEL(mu−0.5 ,2∗mu∗big_h∗x/gamb , 0 ) ;
dens_val = f1 ∗ f 2 ∗ f 3 ;

dens = dens // dens_val ;
end ; ∗ i ;

dens = dens [ 2 : nrow ( dens ) , ] ;
complete_dens = complete_dens | | dens ;

end ; ∗k ;

x_vec = x_vec [ 2 : nrow (x_vec ) , ] ;
complete_dens = complete_dens [ 2 : nrow ( complete_dens ) , 2 : nco l ( complete_dens ) ] | | x_vec ;

varnames = ' fx1 ' | | ' fx2 ' | | ' fx3 ' | | ' x ' ;
c r e a t e graph from complete_dens [ colname=varnames ] ;
append from complete_dens ;
qu i t ;

gopt ions r e s e t=a l l i=j o i n f t e x t=c a l i b r i ;
t i t l e h=2.5 c=black ' Pdf o f ' f=greek 'h−m' f=c a l i b r i ' d i s t r i bu t i o n ' ;
symbol1 c=red width=3;
symbol2 c=orange width=3;
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symbol3 c=blue width=3;

ax i s1 l a b e l=( f=c a l i b r i h=2 "x") va lue=(h=1.5) minor = none ;
ax i s2 l a b e l=( f=c a l i b r i a=90 h=2 " f ( x )" ) va lue=(h=1.5) minor=none ;
legend1 l a b e l=none value=(h=1.5 f=greek "m=1" "m=1.3" "m=1.6")
p o s i t i o n = ( bottom cente r ou t s id e ) ;
proc gp lo t data=graph ;
p l o t fx1 ∗x fx2 ∗x fx3 ∗x/ over l ay vax i s=ax i s2 hax i s=ax i s1 legend=legend1 ;
run ;
qu i t ;

The η − µ pdf for �xed value of η = 0.5 and di�erent values of µ; format 2

∗pdf o f eta−mu d i s t r i b u t i o n ;
∗ f i x e d eta ;
∗ format 2 ;
proc iml ;
exp_gamsq = 2 ;
var_gam = 1 ;
gamb=1;

x_range = 1 . 5 ;
x_vec = do (0 , x_range , 0 . 0 1 ) ` ;
complete_dens = j ( nrow (x_vec ) , 1 , 0 ) ;

do mu=1 to 1 .6 by 0 . 3 ;
eta = 0 . 5 ;

∗ format 2 ;
big_h = eta /(1− eta ∗∗2 ) ;
small_h = 1/(1− eta ∗∗2 ) ;

v1 = mu+0.5;
v2 = mu−0.5 ;
dens = 0 ;

do i = 1 to nrow (x_vec ) ;
x = x_vec [ i ] ;

p i = constant ( ' pi ' ) ;
f 1 = 2 ∗ pi ∗ mu∗∗v1 ∗ small_h∗∗mu / (gamma(mu)∗big_h∗∗v2 ∗ gamb∗∗v1 ) ;
f 2 = exp(−2∗mu∗ small_h∗x/gamb)∗ x∗∗v2 ;
f 3 = IBESSEL(mu−0.5 ,2∗mu∗big_h∗x/gamb , 0 ) ;
dens_val = f1 ∗ f 2 ∗ f 3 ;

dens = dens // dens_val ;
end ; ∗ i ;

dens = dens [ 2 : nrow ( dens ) , ] ;
complete_dens = complete_dens | | dens ;

end ; ∗k ;

x_vec = x_vec [ 2 : nrow (x_vec ) , ] ;
complete_dens = complete_dens [ 2 : nrow ( complete_dens ) , 2 : nco l ( complete_dens ) ] | | x_vec ;
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varnames = ' fx1 ' | | ' fx2 ' | | ' fx3 ' | | ' x ' ;
c r e a t e graph from complete_dens [ colname=varnames ] ;
append from complete_dens ;
qu i t ;

gopt ions r e s e t=a l l i=j o i n f t e x t=c a l i b r i ;
t i t l e h=2.5 c=black ' Pdf o f ' f=greek 'h−m' f=c a l i b r i ' d i s t r i bu t i o n ' ;
symbol1 c=red width=3;
symbol2 c=orange width=3;
symbol3 c=blue width=3;

ax i s1 l a b e l=( f=c a l i b r i h=2 "x") va lue=(h=1.5) minor = none ;
ax i s2 l a b e l=( f=c a l i b r i a=90 h=2 " f ( x )" ) va lue=(h=1.5) minor=none ;
legend1 l a b e l=none value=(h=1.5 f=greek "m=1" "m=1.3" "m=1.6")
p o s i t i o n = ( bottom cente r ou t s id e ) ;
proc gp lo t data=graph ;
p l o t fx1 ∗x fx2 ∗x fx3 ∗x/ over l ay vax i s=ax i s2 hax i s=ax i s1 legend=legend1 ;
run ;
qu i t ;

The η − µ pdf for �xed value of µ = 0.6 and di�erent values of η; format 1

∗pdf o f eta−mu d i s t r i b u t i o n ;
∗ f i x e d mu;
∗ format 1 ;
proc iml ;
exp_gamsq = 2 ;
var_gam = 1 ;
gamb=1;

x_range = 1 . 5 ;
x_vec = do (0 , x_range , 0 . 0 1 ) ` ;
complete_dens = j ( nrow (x_vec ) , 1 , 0 ) ;

do eta = 0 .1 to 0 .9 by 0 . 4 ;

∗ format 1 ;
big_h = (1/ eta − eta ) / 4 ;
small_h = (2+1/ eta+eta ) / 4 ;

mu=0.6;
v1 = mu+0.5;
v2 = mu−0.5 ;
dens = 0 ;

do i = 1 to nrow (x_vec ) ;
x = x_vec [ i ] ;

p i = constant ( ' pi ' ) ;
f 1 = 2 ∗ pi ∗ mu∗∗v1 ∗ small_h∗∗mu / (gamma(mu)∗big_h∗∗v2 ∗ gamb∗∗v1 ) ;
f 2 = exp(−2∗mu∗ small_h∗x/gamb)∗ x∗∗v2 ;
f 3 = IBESSEL(mu−0.5 ,2∗mu∗big_h∗x/gamb , 0 ) ;
dens_val = f1 ∗ f 2 ∗ f 3 ;
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dens = dens // dens_val ;
end ; ∗ i ;

dens = dens [ 2 : nrow ( dens ) , ] ;
complete_dens = complete_dens | | dens ;

end ; ∗k ;

x_vec = x_vec [ 2 : nrow (x_vec ) , ] ;
complete_dens = complete_dens [ 2 : nrow ( complete_dens ) , 2 : nco l ( complete_dens ) ] | | x_vec ;

varnames = ' fx1 ' | | ' fx2 ' | | ' fx3 ' | | ' x ' ;
c r e a t e graph from complete_dens [ colname=varnames ] ;
append from complete_dens ;
qu i t ;

gopt ions r e s e t=a l l i=j o i n f t e x t=c a l i b r i ;
t i t l e h=2.5 c=black ' Pdf o f ' f=greek 'h−m' f=c a l i b r i ' d i s t r i bu t i o n ' ;
symbol1 c=red width=3;
symbol2 c=orange width=3;
symbol3 c=blue width=3;

ax i s1 l a b e l=( f=c a l i b r i h=2 "x") va lue=(h=1.5) minor = none ;
ax i s2 l a b e l=( f=c a l i b r i a=90 h=2 " f ( x )" ) va lue=(h=1.5) minor=none ;
legend1 l a b e l=none value=(h=1.5 f=greek "h=0.1" "h=0.5" "h=0.9")
p o s i t i o n = ( bottom cente r ou t s id e ) ;
proc gp lo t data=graph ;
p l o t fx1 ∗x fx2 ∗x fx3 ∗x/ over l ay vax i s=ax i s2 hax i s=ax i s1 legend=legend1 ;
run ;
qu i t ;

The η − µ pdf for �xed value of µ = 0.6 and di�erent values of η; format 2

∗pdf o f eta−mu d i s t r i b u t i o n ;
∗ f i x e d mu;
∗ format 2 ;
proc iml ;
exp_gamsq = 2 ;
var_gam = 1 ;
gamb=1;

x_range = 1 . 5 ;
x_vec = do (0 , x_range , 0 . 0 1 ) ` ;
complete_dens = j ( nrow (x_vec ) , 1 , 0 ) ;

do eta = 0 .1 to 0 .9 by 0 . 4 ;

∗ format 2 ;
big_h = eta /(1− eta ∗∗2 ) ;
small_h = 1/(1− eta ∗∗2 ) ;

mu=0.6;
v1 = mu+0.5;
v2 = mu−0.5 ;
dens = 0 ;
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do i = 1 to nrow (x_vec ) ;
x = x_vec [ i ] ;

p i = constant ( ' pi ' ) ;
f 1 = 2 ∗ pi ∗ mu∗∗v1 ∗ small_h∗∗mu / (gamma(mu)∗big_h∗∗v2 ∗ gamb∗∗v1 ) ;
f 2 = exp(−2∗mu∗ small_h∗x/gamb)∗ x∗∗v2 ;
f 3 = IBESSEL(mu−0.5 ,2∗mu∗big_h∗x/gamb , 0 ) ;
dens_val = f1 ∗ f 2 ∗ f 3 ;

dens = dens // dens_val ;
end ; ∗ i ;

dens = dens [ 2 : nrow ( dens ) , ] ;
complete_dens = complete_dens | | dens ;

end ; ∗k ;

x_vec = x_vec [ 2 : nrow (x_vec ) , ] ;
complete_dens = complete_dens [ 2 : nrow ( complete_dens ) , 2 : nco l ( complete_dens ) ] | | x_vec ;

varnames = ' fx1 ' | | ' fx2 ' | | ' fx3 ' | | ' x ' ;
c r e a t e graph from complete_dens [ colname=varnames ] ;
append from complete_dens ;
qu i t ;

gopt ions r e s e t=a l l i=j o i n f t e x t=c a l i b r i ;
t i t l e h=2.5 c=black ' Pdf o f ' f=greek 'h−m' f=c a l i b r i ' d i s t r i bu t i o n ' ;
symbol1 c=red width=3;
symbol2 c=orange width=3;
symbol3 c=blue width=3;

ax i s1 l a b e l=( f=c a l i b r i h=2 "x") va lue=(h=1.5) minor = none ;
ax i s2 l a b e l=( f=c a l i b r i a=90 h=2 " f ( x )" ) va lue=(h=1.5) minor=none ;
legend1 l a b e l=none value=(h=1.5 f=greek "h=0.1" "h=0.5" "h=0.9")
p o s i t i o n = ( bottom cente r ou t s id e ) ;
proc gp lo t data=graph ;
p l o t fx1 ∗x fx2 ∗x fx3 ∗x/ over l ay vax i s=ax i s2 hax i s=ax i s1 legend=legend1 ;
run ;
qu i t ;

The κ− µ pdf for �xed value of µ = 1.5 and di�erent values of κ

∗pdf o f kappa−mu d i s t r i b u t i o n ;
∗For f i x ed mu;
proc iml ;
exp_gamsq = 2 ;
var_gam = 1 ;
gamb=1;
kappa = 0 . 1 ;

x_range = 3 ;
x_vec = do (0 . 0 1 , x_range , 0 . 0 1 ) ` ;
complete_dens = j ( nrow (x_vec ) , 1 , 0 ) ;

do kappa =1 to 7 by 3 ;

mu = 1 . 5 ;
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v1 = (mu+1)/2;
v2 = (mu−1)/2;
dens = 0 ;

do i = 1 to nrow (x_vec ) ;
x = x_vec [ i ] ;
f 1 = mu ∗ (1+kappa )∗∗ v1 / ( kappa∗∗v2∗exp (mu∗kappa )∗gamb∗∗v1 ) ;
f 2 = exp(−mu∗(1+kappa )∗x/gamb)∗ x∗∗v2 ;
f 3 = IBESSEL(mu−1 ,2∗mu∗ s q r t ( kappa∗(1+kappa )∗x/gamb ) , 0 ) ;
dens_val = f1 ∗ f 2 ∗ f 3 ;

dens = dens // dens_val ;
end ; ∗ i ;

dens = dens [ 2 : nrow ( dens ) , ] ;
complete_dens = complete_dens | | dens ;

end ; ∗k ;

x_vec = x_vec [ 2 : nrow (x_vec ) , ] ;
complete_dens = complete_dens [ 2 : nrow ( complete_dens ) , 2 : nco l ( complete_dens ) ] | | x_vec ;

varnames = ' fx1 ' | | ' fx2 ' | | ' fx3 ' | | ' x ' ;
c r e a t e graph from complete_dens [ colname=varnames ] ;
append from complete_dens ;
qu i t ;

gopt ions r e s e t=a l l i=j o i n f t e x t=c a l i b r i ;
t i t l e h=2.5 c=black ' Pdf o f ' f=greek 'k−m' f=c a l i b r i ' d i s t r i bu t i o n ' ;
symbol1 c=red width=3;
symbol2 c=orange width=3;
symbol3 c=blue width=3;

ax i s1 l a b e l=( f=c a l i b r i h=2 "x") va lue=(h=1.5) minor = none ;
ax i s2 l a b e l=( f=c a l i b r i a=90 h=2 " f ( x )" ) va lue=(h=1.5) minor=none ;
legend1 l a b e l=none value=(h=1.5 f=greek "k=1" "k=4" "k=7")
po s i t i o n = ( top r i gh t i n s i d e ) ;
proc gp lo t data=graph ;
p l o t fx1 ∗x fx2 ∗x fx3 ∗x/ over l ay vax i s=ax i s2 hax i s=ax i s1 legend=legend1 ;
run ;
qu i t ;

The κ− µ pdf for �xed value of κ = 1 and di�erent values of µ

∗pdf o f kappa−mu d i s t r i b u t i o n ;
proc iml ;
exp_gamsq = 2 ;
var_gam = 1 ;
gamb=1;
kappa = 1 ;

x_range = 3 ;
x_vec = do (0 . 0 1 , x_range , 0 . 0 1 ) ` ;
complete_dens = j ( nrow (x_vec ) , 1 , 0 ) ;

do mu =1 to 3 by 1 ;
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v1 = (mu+1)/2;
v2 = (mu−1)/2;
dens = 0 ;

do i = 1 to nrow (x_vec ) ;
x = x_vec [ i ] ;
f 1 = mu ∗ (1+kappa )∗∗ v1 / ( kappa∗∗v2∗exp (mu∗kappa )∗gamb∗∗v1 ) ;
f 2 = exp(−mu∗(1+kappa )∗x/gamb)∗ x∗∗v2 ;
f 3 = IBESSEL(mu−1 ,2∗mu∗ s q r t ( kappa∗(1+kappa )∗x/gamb ) , 0 ) ;
dens_val = f1 ∗ f 2 ∗ f 3 ;

dens = dens // dens_val ;
end ; ∗ i ;

dens = dens [ 2 : nrow ( dens ) , ] ;
complete_dens = complete_dens | | dens ;

end ; ∗k ;

x_vec = x_vec [ 2 : nrow (x_vec ) , ] ;
complete_dens = complete_dens [ 2 : nrow ( complete_dens ) , 2 : nco l ( complete_dens ) ] | | x_vec ;

varnames = ' fx1 ' | | ' fx2 ' | | ' fx3 ' | | ' x ' ;
c r e a t e graph from complete_dens [ colname=varnames ] ;
append from complete_dens ;
qu i t ;

gopt ions r e s e t=a l l i=j o i n f t e x t=c a l i b r i ;
t i t l e h=2.5 c=black ' Pdf o f ' f=greek 'k−m' f=c a l i b r i ' d i s t r i bu t i o n ' ;
symbol1 c=red width=3;
symbol2 c=orange width=3;
symbol3 c=blue width=3;

ax i s1 l a b e l=( f=c a l i b r i h=2 "x") va lue=(h=1.5) minor = none ;
ax i s2 l a b e l=( f=c a l i b r i a=90 h=2 " f ( x )" ) va lue=(h=1.5) minor=none ;
legend1 l a b e l=none value=(h=1.5 f=greek "m=1" "m=2" "m=3")
po s i t i o n = ( top r i gh t i n s i d e ) ;
proc gp lo t data=graph ;
p l o t fx1 ∗x fx2 ∗x fx3 ∗x/ over l ay vax i s=ax i s2 hax i s=ax i s1 legend=legend1 ;
run ;
qu i t ;

ABERs of coherently detected BPSK in κ− µ radio channels

∗mgf o f kappa mu d i s t r i b u t i o n ;
proc iml ;
gamb = 1 ;

am = 1 ;
p i = constant ( ' pi ' ) ;
s t ep = 0 . 0 0 1 ;

kappa_range = do ( 0 . 5 , 2 . 5 , 2 ) ` ;
mu_range = do ( 1 . 5 , 3 . 5 , 2 ) ` ;
s_range = do ( 1 , 2 5 , 0 . 5 ) ` ;
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mgf = j ( nrow ( s_range ) , 1 , 0 ) ;

do m = 1 to nrow (mu_range ) ;
mu = mu_range [m] ;
do k = 1 to nrow ( kappa_range ) ;
kappa = kappa_range [ k ] ;
do s = 1 to nrow ( s_range ) ;
va l1 = 0 ;
do paai = 0.001 to ( p i /2) by step ;

SNR=10∗∗( s_range [ s ] / 1 0 ) ;
s va l = SNR/ s i n ( paai )∗∗2 ;
A = (mu∗(1+kappa )/ (mu∗(1+kappa)+sva l ∗gamb) )∗∗mu;
B = exp ( (mu∗∗2)∗ kappa∗(1+kappa )/ (mu∗(1+kappa)+sva l ∗gamb) −mu∗kappa ) ;
p = A∗B;

va l1 = val1 + step ∗p ;
end ; ∗paai ;

mgf [ s , 1 ] = am/ pi ∗ va l1 ;
end ; ∗ s ;

compl_mgf = compl_mgf | | mgf ;
end ; ∗m;

end ; ∗k ;

compl_mgf = compl_mgf | | s_range ;

varnames = 'mk1 ' | | 'mk2 ' | | 'mk3 ' | | 'mk4 ' | | ' snr ' ;
c r e a t e graph from compl_mgf [ colname=varnames ] ;
append from compl_mgf ;
qu i t ;

gopt ions r e s e t=a l l i=j o i n f t e x t=c a l i b r i ;
t i t l e h=2.5 c=black f=c a l i b r i 'ABER of ' f=greek 'k−m' f=c a l i b r i ' d i s t r i bu t i o n ' ;
symbol1 c=" l i g h t red " width=3;
symbol2 c="dark red " width=3;
symbol3 c=" l i g h t blue " width=3;
symbol4 c="dark blue " width=3;

ax i s1 l a b e l=( f=c a l i b r i h=2 "Transmit SNR, db") order=0 to 25 by 5
value=( f=cmr10 h=1.5) ;

ax i s 2 logbase=10 l o g s t y l e=expand l a b e l=( f=c a l i b r i a=90 h=2 "ABER")
minor=none ;
legend1 l a b e l=none value=(h=1.5 f=greek "k=0.5 , m=1.5" "k=2.5 , m=1.5"
"k=0.5 , m=3.5" "k=2.5 , m=3.5")
p o s i t i o n = ( bottom cente r ou t s id e ) ;
proc gp lo t data=graph ;
p l o t mk1∗ snr mk2∗ snr mk3∗ snr mk4∗ snr / over lay vax i s=ax i s2 hax i s=ax i s1
legend=legend1 ;
run ;
qu i t ;

ABERs of coherently detected BPSK in η − µ radio channels; format 1

∗mgf o f eta mu d i s t r i b u t i o n ;
proc iml ;
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gamb = 1 ;

am = 1 ;
p i = constant ( ' pi ' ) ;
s t ep = 0 . 0 1 ;

eta_range = do ( 0 . 1 , 0 . 8 , 0 . 7 ) ` ;
mu_range = do ( 1 . 5 , 2 . 5 , 1 ) ` ;
s_range = do ( 1 , 2 5 , 0 . 5 ) ` ;
mgf = j ( nrow ( s_range ) , 1 , 0 ) ;

do m = 1 to nrow (mu_range ) ;
mu = mu_range [m] ;
do e = 1 to nrow ( eta_range ) ;
eta = eta_range [ e ] ;
big_h = (1/ eta − eta ) / 4 ;
small_h = (2+1/ eta+eta ) / 4 ;
do s = 1 to nrow ( s_range ) ;
va l1 = 0 ;
do paai = 0.001 to ( p i /2) by step ;

SNR=10∗∗( s_range [ s ] / 1 0 ) ;
s va l = SNR/ s i n ( paai )∗∗2 ;
A = ( 4∗mu∗∗2∗ small_h

/( (2∗ ( small_h−big_h )∗mu + sva l ∗gamb) ∗ (2∗ ( small_h+big_h )∗mu+sva l ∗gamb) ) )∗∗mu;

va l1 = val1 + step ∗A;
end ; ∗paai ;

mgf [ s , 1 ] = am/ pi ∗ va l1 ;
end ; ∗ s ;

compl_mgf = compl_mgf | | mgf ;
end ; ∗m;

end ; ∗k ;

compl_mgf = compl_mgf | | s_range ;

varnames = 'mk1 ' | | 'mk2 ' | | 'mk3 ' | | 'mk4 ' | | ' snr ' ;
c r e a t e graph from compl_mgf [ colname=varnames ] ;
append from compl_mgf ;
qu i t ;

gopt ions r e s e t=a l l i=j o i n f t e x t=c a l i b r i ;
t i t l e h=2.5 c=black f=c a l i b r i 'ABER of ' f=greek 'h−m' f=c a l i b r i ' d i s t r i bu t i o n ' ;
symbol1 c=" l i g h t red " width=3;
symbol2 c="dark red " width=3;
symbol3 c=" l i g h t green " width=3;
symbol4 c="dark green " width=3;

ax i s1 l a b e l=( f=c a l i b r i h=2 "Transmit SNR, db") order=0 to 25 by 5
value=( f=cmr10 h=1.5) ;
ax i s 2 logbase=10 l o g s t y l e=expand l a b e l=( f=c a l i b r i a=90 h=2 "ABER")
minor=none ;
legend1 l a b e l=none value=(h=1.5 f=greek "h=0.5 , m=1.5" "h=2.5 , m=1.5"
"h=0.5 , m=3.5" "h=2.5 , m=3.5")
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po s i t i o n = ( bottom cente r ou t s id e ) ;
proc gp lo t data=graph ;
p l o t mk1∗ snr mk2∗ snr mk3∗ snr mk4∗ snr / over lay vax i s=ax i s2 hax i s=ax i s1
legend=legend1 ;
run ;
qu i t ;

ABERs of coherently detected BPSK in η − µ radio channels; format 2

∗mgf o f eta mu d i s t r i b u t i o n ;
proc iml ;
gamb = 1 ;

am = 1 ;
p i = constant ( ' pi ' ) ;
s t ep = 0 . 0 0 1 ;

eta_range = do ( 0 . 1 , 0 . 8 , 0 . 7 ) ` ;
mu_range = do ( 1 . 5 , 2 . 5 , 1 ) ` ;
s_range = do ( 1 , 2 5 , 0 . 5 ) ` ;
mgf = j ( nrow ( s_range ) , 1 , 0 ) ;

do m = 1 to nrow (mu_range ) ;
mu = mu_range [m] ;
do e = 1 to nrow ( eta_range ) ;
eta = eta_range [ e ] ;
big_h = eta /(1− eta ∗∗2 ) ;
small_h = 1/(1− eta ∗∗2 ) ;
do s = 1 to nrow ( s_range ) ;
va l1 = 0 ;
do paai = 0.001 to ( p i /2) by step ;

SNR=10∗∗( s_range [ s ] / 1 0 ) ;
s va l = SNR/ s i n ( paai )∗∗2 ;
A = ( 4∗mu∗∗2∗ small_h

/( (2∗ ( small_h−big_h )∗mu+sva l ∗gamb) ∗ (2∗ ( small_h+big_h )∗mu+sva l ∗gamb) ) )∗∗mu;

va l1 = val1 + step ∗A;
end ; ∗paai ;

mgf [ s , 1 ] = am/ pi ∗ va l1 ;
end ; ∗ s ;

compl_mgf = compl_mgf | | mgf ;
end ; ∗m;

end ; ∗k ;

compl_mgf = compl_mgf | | s_range ;

varnames = 'mk1 ' | | 'mk2 ' | | 'mk3 ' | | 'mk4 ' | | ' snr ' ;
c r e a t e graph from compl_mgf [ colname=varnames ] ;
append from compl_mgf ;
qu i t ;

gopt ions r e s e t=a l l i=j o i n f t e x t=c a l i b r i ;
t i t l e h=2.5 c=black f=c a l i b r i 'ABER of ' f=greek 'h−m' f=c a l i b r i ' d i s t r i bu t i o n ' ;
symbol1 c=" l i g h t red " width=3;
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symbol2 c="dark red " width=3;
symbol3 c=" l i g h t green " width=3;
symbol4 c="dark green " width=3;

ax i s1 l a b e l=( f=c a l i b r i h=2 "Transmit SNR, db") order=0 to 25 by 5
value=( f=cmr10 h=1.5) ;
ax i s 2 logbase=10 l o g s t y l e=expand l a b e l=( f=c a l i b r i a=90 h=2 "ABER")
minor=none ;
legend1 l a b e l=none value=(h=1.5 f=greek "h=0.5 , m=1.5" "h=2.5 , m=1.5"
"h=0.5 , m=3.5" "h=2.5 , m=3.5")
p o s i t i o n = ( bottom cente r ou t s id e ) ;
proc gp lo t data=graph ;
p l o t mk1∗ snr mk2∗ snr mk3∗ snr mk4∗ snr / over lay vax i s=ax i s2 hax i s=ax i s1
legend=legend1 ;
run ;
qu i t ;
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Abstract

No current system exists to rank rugby teams across multiple leagues. In this report a ranking system
to rate rugby teams in multiple rugby leagues, with the intention to measure their relative strength toward
each other, was set up. Applying it to past results to get a current rating for the rugby teams can also
lead to predicting the winner of a match before the match is played. This system will be applied on
past results for teams from three di�erent rugby leagues. An interactive and automated program was
developed in SAS/IML for this purpose. A sensitivity analysis was also conducted.
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1 Introduction

Creating a consistent, objective and fair rating system in rugby has many advantages when measuring the
strength of di�erent teams relative to each other and predicting future outcome of matches yet to take place.
The rating system discussed in this report will assign a numerical value to each rugby team in a league,
across di�erent leagues, based on their past performances and recent results obtained, rating them from the
best team to the worst team with higher ratings re�ecting a better performing rugby team than a team with
a lower rating.

In rugby, as in many sports, the resulting outcome of a match can be a win, draw or a loss for the each
of the two teams. If say, team A wins, team B will automatically lose the match and visa versa, and a draw
is an outcome where both teams end up on the same number of points at the end of the match. In a sport
with a very low percentage of matches resulting in draws, such as rugby, the chances of predicting a result
beforehand, at random, results in a 50/50 chance of guessing the outcome right. With the inclusion of a fair
rating system for the rugby teams, the higher rated team should stand a higher chance of winning a match
against a lower ranked team and thus, in turn, break the 50/50 chance of being right, and give the predictor
a better chance of guessing the correct outcome [7].

In this report, background theory will �rst be discussed in section 2 to establish a footing for the rest of
the paper. The rating system will be constructed in section 3 making use of techniques like standardizing
the scores of the matches and exponential smoothing. After that the coding algorithm is explained in section
4 and then the results will be reported on in section 5 with a conclusion following in section 6.

2 Literature Review

Existing Ranking Systems for Rugby

An existing rating system1 that has been used since 2003 by World Rugby, previously known as the Inter-
national Rugby Board (IRB), to measure the strength of men's national rugby teams playing international
rugby Tests in Rugby Union. The system rewards (or deducts) points for winning (or losing) a Test match2

in a system that exchanges points between the two nations playing. The system takes into account four
di�erent factors based on:

• Where the Test match takes place (home, away or neutral ground),

• The di�erence in the rating of the two teams before the Test match,

• The �nal score result of the Test match,

• The importance of the match (e.g. Rugby World Cup �nals will result in double point exchanges).

A Test match in which either side wins (or loses) by more than 15 points will result in a higher exchange of
rating points. The range of values a team's rating can take on is from 0 up to 100. This system also gives
more weight to more recent results, so past results will be superseded by the most recent outcomes, giving
a more accurate depiction of a team's current strength. Currently there are 102 national teams that are
recognized by the system as Member Unions. If a new country becomes a World Rugby Full Member Union
they start o� with a ranking of 30 points. One attribute of the system is that countries can fall from the
top to the bottom in less than 20 matches. Countries that don't compete for a while will have their ratings
removed from the system but as soon as they start playing again they will continue from their previous
ranking. When countries merge to create a new rugby team they will automatically receive the higher of the
applicable ratings. When countries split the new teams will have a lower rating than the original country's
rating, decided based on a range of factors. One major shortfall of the system is that there is no credit given
to say a lower rated team, narrowly losing to a much higher rated team, thus not giving a true re�ection of
a team's relative strength.

1http://www.worldrugby.org/rankings/explanation
2A Test match in rugby union is an international match, where the two teams are recognized by those countries' national

governing bodies. These teams are usually the national senior rugby teams.
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Within a league they utilize a log system where, at the start of the season, every team starts over on a
score of zero. The teams accumulate points based on their performance throughout the season. No points
are deducted for a loss. At the end of the season, either playo�s are played and a winner for the season is
decided in a �nal, or in some leagues the team at the top of the log will be crowned the champions. This
current system does not re�ect the strength of a team in the early stages of the competition, and also does not
give a perspective of whether the accumulated points were obtained a long while back and that the team is
currently struggling to get a win. Another shortfall of this system is that it also does not have any predictive
value of future outcomes, hence leading to the reason for the rating system constructed in this report.

Ranking Systems in Other Sports

Almost all sports take interest in rating competitors and take on varying techniques and have di�erent
underlying assumptions. In Australian Rules football (a sport with some of the same characteristics as
rugby) approximately two months before the start of the 1981 season, a simple rating model was constructed
that was based on an adjustive scheme [5], similar to the ELO system used by the World Chess Federation
at the time, developed by chess Master Arpad Elo [1]. The Australian Rules football model uses exponential
smoothing to adjust the ratings [5]. This technique has been used in rating participants of other sports like
rating tennis players [? ].

Exponential Smoothing

Exponential smoothing has also been used in time series analysis, which is the study of a sequence of ob-
servations, arranged in the order of the time of their outcome3. Exponential Smoothing has been used as a
forecasting method to create prediction intervals. Another very important property of exponential smooth-
ing is robustness [6]. Exponential smoothing is a technique which originated in the 1950s from the work of
Robert G. Brown. He originally started his work on exponential smoothing working as an analyst for the
United States Navy during World War II, where he was assigned the task of developing a tracking model
for �re-control information on the location of submarines. This tracking model was a simple exponential
smoothing model of continuous data. The model was later extended to �t more complex cases like trends
and seasonality and also to work on discrete data [8]. He later went on to publish [4] in the Journal of
Operations Research where many important results are described. There are many advantages gained by
using these techniques. For example one can shorten the �les on historical data, and also simplify the number
of calculations [3]. Exponentially weighted moving average (EWMA) control charts are used in statistical
process control, and takes into account all prior information available on the variables through a type of
exponential smoothing. EWMA charts are very useful in monitoring the process mean [8]. EWMA charts
are also robust under certain conditions [2].

This technique of smoothing will be used in our rating system where we assume a simple case with no
trend or seasonality of the data hence giving rise to the following equation:

Rt = αMt + (1− α)Rt−1

where Rt is the new rating after a match has taken place for a team, Mt is the score obtained, using the
system, for the match played at time t, Rt−1 is the team's rating before the match has taken place, and
�nally α ∈ [0, 1] is the constant smoothing parameter for the system. Other factors and assumptions used in
the model will be discussed later in the report.

3 The Rating System

The aim of the system proposed in this report is to rate all the teams playing in the Pro 12, Top 14 and
Premiership league in Europe in a fair manner. We will refer to these three leagues as our three main
leagues. Results from the Anglo Welsh cup, Rugby Challenge Cup, Rugby Championship Cup and also
the Euro Rugby Championship Playo�s will be used together with the results from the Pro 12, Top 14 and

3http://www.investopedia.com/terms/t/timeseries.asp
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Premiership to rank the teams. The reason is to take into account as many matches as possible, and also take
advantage from the matches being played where teams from di�erent leagues play each other. The algorithm
constructed will �rst rate the teams and then they will be ranked after that from the highest rating, being the
best team, to the lowest rating, being the worst team. The system will make use of the following parameters:

• The home team of the match will be referred to as HT, and the away team as AT.

• The home team's score will be called the HTS and the away team's score will be called ATS.

• A maximum Points di�erence MPD = 50 which will be used to alter the scores where the one team
beats another team by more than 50 points. This is only to make sure that some �freak� results don't
have too high of an impact on ratings. In some cases a team might lose by a large nmber of points not
because of their lack of skill or strength but rather because of some other factor like they are resting
all their best players before more important games in the coming weeks. For example a team that is
assured of a home semi-�nal spot might not play a full strength team because of the risk of injury to
key players and also wanting to rest certain players. This might result in the other team beating them
by a large amount of points. For these kinds of reasons we do not want these results to have too high
impact on the ratings thus the maximum point di�erence will be set at 50.

• An average AV E = 50 around which all the scores and ratings will be centered.

• An upper limit UL = 100 which is used when standardizing the scores of the home and away team for
a match.

• A multiplier M = 5 which will be used when calculating the initial ratings of the teams.

• Exponential weight α = 0.1 that will be utilized when updating the ratings after a match for the
exponential smoothing step.

• Average values for new clubs AV Enew = 40. The reason for the value of 40 is that if a new team enters
a league (because of say relegation of a team or teams, or the expansion of the league) it would be
unfair to the established teams who have prior ratings that averaging around 50 to start the new team
on the average value of 50 because they will most probably be a weaker team if they are a new team
due to the nature of the sport. Thus we now start them on a slightly lower value of 40.

The algorithm will now be constructed that is used to rate the teams, using Figure 1: Calculating Initial
Ratings, and Figure 2: Rating Throughout the Season, to aid in the understanding of the steps.

Figure 1: Calculating initial ratings
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1. To calculate the initial ratings for the season we �rst need to calculate our average value for established
teams AV Eest. This will be the readjusted scores of the teams who were playing in one of the three
main leagues in the previous season and who are also playing in the current season. We need to know
the number of new clubs joining the league without a prior rating, say Nnew, that are starting on
AV Enew = 40 points. We also need to know the number of established clubs in the league, say Nest

and also the total number of teams in the league, sayNtotal. To calculate AV Eest:

AV Eest = [(Ntotal)(AV E)− (Nnew)(AV Enew)]/Nest

2. Now we will standardize the ratings obtained in the previous season (this only applies to the teams
who have a prior rating). This is calculated as:

RatingInitial = M × (RatingPrior − ¯Ratings)

Stddev(Ratings)
+AV Eest

where ¯Ratings is the average of the ratings of all the teams with a known prior rating from the previous
season, and Stddev(ratings) is the Standard deviation of the ratings of all the teams who had a known
rating in the previous year. If a team does not have a known rating obtained from the previous year, for
example the team is a new entry to the league, then they will receive an initial rating of AV Enew = 40
points.

Figure 2: Rating throughout the season

3. Now each match's scores will be standardized but �rst we check to see if the total points di�erence
|HTS − ATS| is not more than our MPD = 50. For the home team: If HTS − ATS is larger than
MPD, then HTS = ATS + MPD, otherwise the home team's score stays the same. For the away
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team: If ATS − HTS is larger than MPD, then ATS = HTS + MPD, otherwise the away team's
score stays the same.

To aid in the understanding of the system, we will use the �nal of the Anglo-Welsh Cup 2014/15. The two
teams that played in the �nal on the22nd of March 2015, at Franklin's Gardens, Northampton, were the
Exeter Chiefs and Saracens. The venue was a neutral venue since it was not played at either of the team's
home stadiums. For illustration purposes we assume that Saracens were the home team and Exeter Chiefs
the away team. The �nal score was Saracens 23 - 20 Exeter Chiefs. We also need the ratings of the two
teams before the match as this is used in a later calculation. We now use ratings of 59.01 and 59.59 for the
Exeter Chiefs and Saracens respectively (these values have been calculated by our proposed system). For
this game the points di�erence was a mere 3 points, so this calculation would only show that the two team's
scores stay the same, since the points di�erence was not more than 50.

4. At the end of every match played, after the points di�erence calculation has been completed, the home
team score and away team score will be adjusted in the following manner.

For the home teams we have HTSAdjusted = UL−(HTS+ATS)
2 +HTS ,

and for the away teams we have ATSAdjusted = UL−(HTS+ATS)
2 +ATS.

This means that the match scores for the example that we are considering would be adjusted in the
following manner:

HTSAdjusted =
100− (23 + 20)

2
+ 23 = 51.5,

ATSAdjusted =
100− (23 + 20)

2
+ 20 = 48.5.

5. Next the scores will again be adjusted to take into account the strength of the two teams playing
against each other. We will make use of the latest rating of the two teams prior to the match. The
home team rating will be referred to as Rating(HT )Prior, and the away team rating will be referred to
as Rating(AT )Prior. We will now de�ne a match strength variable as

MS =
Rating(HT )Prior +Rating(AT )Prior

UL

The match strength for the match being considered will then be

MS =
59.01 + 59.59

100
= 1.186

6. Now we multiply the adjusted scores of the two teams which we calculated in step 4, with the MS
that we calculated in step 5, to create two new temporary variables which will be used to update our
ratings:

HTSTemp = (HTSAdjusted)(MS),

ATSTemp = (ATSAdjusted)(MS).

For the match in consideration we now have:

HTSTemp = 51.5× 1.186 = 61.079,

ATSTemp = 48.5× 1.186 = 57.521.
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7. To update the ratings after the match for the two teams, we �nally make use of exponential smoothing
and obtain, for the home team:

Rating(HT )New = α(HTSTemp) + (1− α)(Rating(HT )Prior).

For the away team the calculation yields:

Rating(AT )New = α(ATSTemp) + (1− α)(Rating(AT )Prior).

Now after the match we will need to update the ratings of the two teams.

Rating(HT )New = 0.1(61.079) + (0.9)(59.59) = 59.7389,

Rating(AT )New = 0.1(57.521) + (0.9)(59.01) = 58.8611.

8. Finally, at the end of each week in the competition we take these ratings for all the matches played and
rank them from largest to smallest to get our team ranking list.

Steps 3 to 7 will be repeated after every match. This will make sure that the ratings of the teams playing
are up to date after every match played by doing the calculations directly after the match and not say at the
end of the week. This is important because if a team plays more than one match per week, the rating prior
to say the second match in that week needs to be the latest re�ection of their strength. So say for example a
team plays two matches in a week, their rating prior to the second match should already take into account
the result of the �rst match of the week.

4 Programming

In this chapter the programming and the data collection will be explained thoroughly. The results from the
2009/2010 season, up to the 2014/2015 season for the following leagues will be used:

• Premiership Rugby

• Pro 12

• Top 14

• Anglo-Welsh Cup

• European Rugby Challenge Cup

• European Rugby Champions Cup Play-o�s (the matches only date back to 2014 so only those will be
used)

• European Rugby Champions Cup

The goal is to rate the teams from the three main leagues, those are the twelve teams currently playing
in Premiership Rugby, the twelve teams currently playing in the Pro 12 and the fourteen teams currently
playing in the Top 14. The results of the seven leagues and play-o�s were obtained from the ESPN website4.
The matches of the other four leagues that are being utilized will only be taken into consideration when
any two teams who play in one of the three main leagues, play against each other. A data set was created
containing the dates of the matches played, the home team's name and their score, the away team's name
and their score, and also the league from which the result came from.

The program was coded in Statistical Analysis Software (SAS), in iterative matrix language (IML). The
following steps describe the program code:

4http://www.espn.co.uk/rugby/
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1. Read in all the match data. Create a variable say C which is equal to the number of matches that we
are taking into account.

2. All the parameters of the model are now speci�ed as follows:

The maximum points di�erence per match score will be mDiff = 50.
The upper limit is UL = 100.
Exponential Weight is EW = 10.
The average rating points of all clubs is AvP = 50.
The multiplier is Mul = 5.
The number of teams being ranked is nTeam = 38.
Alpha the is α = EW/100.

1. In this step we assign rating values to the teams who had a rating in the previous year.

2. To determine the established team's average we have -

EstCAvp =
(nTeam×AvP − nNewTeam×NewCAvp)

nEstTeam

3. After the amount of new teams have been determined, the remainder (nTeam − nNewTeam = 38 −
nNewTeam) teams will be seen as established teams. Then the initial rating scores for the established
teams will be standardized by

StartRank = Mul
(StartTemp−Ave)

Stddev
+ EstCAvp

where Stddev is the standard deviation of the values in StartTemp, if this value is zero then we set it
equal to one.

4. Standardizing the match scores around the average point. See Algorithm 1 : Standardizing

Algorithm 1 Standardizing

(a) To determine the established team's average we have -

EstCAvp =
(nTeam×AvP − nNewTeam×NewCAvp)

nEstTeam

if (pDiff) ≥ (mDiff) then HPADJ = (AP +mDiff), or
if (pDiff) ≤ (−1)× (mDiff) then HPADJ = (HP +mDiff).

(b) Let the match points total be MPT = (HPADJ +APADJ).

ScoreTempA =
UL−MPT

2
+HPADJ

ScoreTempA =
UL−MPT

2
+APADJ

5. Move the standardized scores of each match into a matrix with the row being equal to the match number
(sorted chronologically from oldest to newest) and the columns corresponding to the two team's position
in the matrix (sorted alphabetically)

6. To determine the ranking update dates �nd the �rst Sunday before the �rst match is played and also
the next Sunday after the �nal match of interest. The reason for the Sundays is that the new rating
scores and rankings will be published each Sunday after all the matches on that Sunday is completed.
Next we determine what the number of weeks is that the results span over.
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7. Next we �nd out which match is in which week

8. In this step we count many matches have been played up to the corresponding week

9. In step twelve, steps �ve to seven as mentioned in section 3 in this report, will be used. See Algorithm
2: Exponential Smoothing

Algorithm 2 Exponential Smoothing

do {i = 1 to the total number of matches}
{set Ranktemp1 and ranktemp as the ratings of all the teams before the match}
{calculate the match strength variable}
{create scoretemp as the standardized scores multiplied by the match strength}
{put the two scoretemp values in their places inside the ranktemp1 vector corresponding to the columns of
the two teams}
{let

Ranktemp3 = α× Scoretemp+ (1− α)×Ranktemp2

and let Ranktemp3 be added as a new line beneath Ranktemp1}
end do

10. To calculate the ratings at the end of each Sunday, we go through the total number of weeks that this
season has continued for and only select the rows of Ranktemp1 that are the last of the week and put
it into the Rating matrix.

11. Finally create a matrix Rank used to rank the ratings in the matrix Rating in each row. This will be
the ranks of all the teams after each week.

5 Application and Findings

Sensitivity Analysis

Now we will consider the e�ects that di�erent α and AV Enew values for new teams have on the system. First
we shall make use of a win percentage test. This test is used to tell us what percentage of the time a team
wins, given that they are rated higher than the other team. The test works as follows:

First we calculate the home team's net rank and net score. We focus on the home team only since
the test will show the exact same result if the focus was on the away team. Let HomeTeamRatingNet =
Rating(HT )−Rating(AT ) and let HTScoreNet = Score(HT )− Score(AT ). Secondly we let

Outcome =


1 if (HomeTeamRatingNet > 0&HTScoreNet > 0)

or (HomeTeamRatingNet < 0&HTRankNet < 0)

0 otherwise

.

We calculate this after each match and let CountOutcome be the sum of the Outcome variable for each
match. Finally we divide CountOutcome by the total number of matches and multiply that by 100 to obtain
a percentage.

Another test that was applied is to measure Pearson's correlation coe�cient between the HTRankNet
and HTScoreNet with the formula

r =

∑
HomeTeamRatingNet×HTScoreNet√∑

(HomeTeamRatingNet2)×
∑

(HTScoreNet2)
.

This test will be used to see if we �nd a correlation between the net di�erence in the ratings prior to the
match of the teams and the standardized scores obtained in the match. If there is a positive correlation we

12



can see that higher rated teams also tend to score more when playing lower rated teams, proportionate to
the di�erence in their ratings.

We will examine the win percentages for di�erent combinations of α and starting values for new teams
that we apply from the 2009/10 season up to the 2014/15 season for all of these combinations.

In Table 1 the win percentage test is conducted and in Table 2 the Pearson's correlation coe�cient is
calculated for the 2014/15 season.

Starting values for new teams
30 35 40 45 50

0.05 63.68 64.01 63.84 63.52 62.70
α 0.1 64.33 64.66 63.84 63.52 63.52

0.15 62.38 62.38 62.05 61.89 62.05
0.2 62.05 61.73 61.88 62.05 61.56

Table 1: Win percentages sensitivity analysis

Starting values for new teams
30 35 40 45 50

0.05 0.503 0.510 0.508 0.494 0.460
α 0.1 0.511 0.513 0.509 0.499 0.479

0.15 0.502 0.501 0.496 0.487 0.472
0.2 0.486 0.484 0.479 0.471 0.459

Table 2: Correlation sensitivity analysis

In this analysis we see that the value of α = 0.1 and a AV Enew = 35 for new teams perform the best
because the accuracy and the correlation is the highest for this combination out of all the combinations. We
will however not start new teams on an initial value of 35 because this might make it harder for a good new
team to reach a high rating really quickly. So a starting value of 40 will be used for new teams so that they
might see progress much more quickly and not be demotivated from being on a lower rating.

Findings

When applying the model to the data, with α = 0.1 and the AV Enew for new teams as 40, on the 38 teams
from the 2010/11 season (36 teams in the 2009/10 season), we make use of the three �nals played on the 31st
of May 2014.

The �rst �nal, that of the Aviva Premiership, was played between the Northampton Saints (NSA) and
Saracens (SAR), with ratings prior to the game of 62.16 and 62.31 respectively. The �nal score of the match
was NSA 24− 20 SAR so the lower rated team won the match but we see that the two team's ratings were
very close to each other so it is hard to really tell who is a better team. After the match the ratings were
adjusted and the Northampton Saints moved up to a rating of 62.41 and Saracens dropped down to 62.05.

In the second �nal, the Pro 12 Grand Final, Leinster (LEI) faced o� against the Glasgow Warriors
(GLA) and the two teams had ratings of 59.38 and 55.83 before the match respectively. The �nal score was
LEI 34− 12 GLA and we see that the higher rated team won the match. After the match the ratings were
updated and Leinster's rank jumped up to 60.47 and Glasgow's rank fell down to 54.74.

In the Top 14 �nal, Toulon (TOU) played Castres (CAS) and both teams had ratings before the match
of 59.76 and 53.98 respectively. The �nal score was TOU 18− 10 CAS so once again the higher rated team
won the match. The ratings adjusted to become 59.92 and 53.81 for Toulon and Castres respectively.

The win percentage test was conducted again but this time it was elaborated a bit to test di�erent
strengths of teams. The seasons used were those from 2010/11 up to the 2014/15 season, since in the
2009/10 season, all the teams started the season on a rating score of 50 points so no real useful information
would be acquired when conducting this test in the season.

The test now works as follows:
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• Again we letHomeTeamRatingNet = Rating(HT )−Rating(AT ) and letHTScoreNet = Score(HT )−
Score(AT ) .

• Now let CountOutcome be the number of times thatHomeTeamRatingNet > i where i = 0, 3, 6, 9, 12, 15
andHTScoreNet > 0, or ifHomeTeamRatingNet < −i where i = 0, 3, 6, 9, 12, 15 andHTScoreNet <
0 for all the games played. Again we divide CountOutcome by the total number of matches that had
HomeTeamRatingNet > i or HomeTeamRatingNet < −i and multiply that by 100 to obtain a
percentage.

The results of the elaborated win percentage test is summarized in Table 3

Season

Home Team Rating Net(+/-) di�erence 2010/11 2011/12 2012/13 2013/14 2014/15
0 65.18 62.58 71.74 65.30 63.84
3 68.27 67.44 75.43 70.68 66.16
6 70.82 72.22 79.81 73.63 72.64
9 70.65 75.64 80 77.59 77.30
12 75.61 83.75 80.53 78.57 86.02
15 84.85 90 85.45 82.93 87.27

Table 3: Win Percentages

Now we will apply the Pearson's correlation coe�cient on HTRankNet and HTScoreNet again with
α = 0.1 and AV Enew = 40.

The results obtained are tabulated in Table 4.

Season 2010/11 2011/12 2012/13 2013/14 2014/15

r 0.4000247 0.4216834 0.5104757 0.4641594 0.509069

Table 4: Correlation

To illustrate the e�ect the system has on a particular team's rating and ranks throughout a season, we can
look at a few matches played, involving the Irish team Munster who played in the Pro 12 and the European
Rugby Champions Cup. Their progress is summed up in Table 5.

Date of Match 16-08-14 05-09-14 12-09-14 19-09-14

Munster- Rank (Ranting) 6 (56.40) 8 (55.68) 10 (55.50) 9 (56.06)
Opponent Sale Sharks Edinburgh Benetton Treviso Zebre

Opponent's Rank (Rating) - before the match 16 (51.97) 29 (46.04) 36 (41.44) 36 (41.50)
Score: Munster - Opponent 27 - 26 13 - 14 21 - 10 31 - 5

Date of Match 23-09-14 10-10-14 23-05-15 30-05-15

Munster- Rank (Ranting) 8 (55.72) 7 (56.51) 3 (59.40) 4 (59.31)
Opponent Ospreys Scarlets Ospreys (semi-�nal) Glasgow (�nal)

Opponent's Rank (Rating) - before the match 11 (54.92) 1 (61.2) 13 (54.18) 8 (56.83)
Score: Munster - Opponent 14 - 19 17 - 6 21 - 18 13 - 31

Table 5: Munster Progress

In Figure 3 and 4 the progress of all the teams playing in the PRO 12 can be seen by looking at their
ratings and rankings (in the rankings a lower ranked team is seen as a better team) throughout the duration
of the 2014/15 season.
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Figure 3: Ratings of teams playing in the 2015 PRO 12

Figure 4: Rankings of teams playing in the 2015 PRO 12

15



6 Conclusion

In this report an accurate, unbiased and consistent rating system for rugby teams across multiple leagues was
constructed and tested by calculating win percentages and correlations for the home team. The system has
a good accuracy, which is around 66%, as seen from table 3, and the accuracy is even higher when a team
has a bigger rating gap over the other team when predicting a winner for the match. There are also more
possible ways to improve the system in the future and to enhance the prediction capabilities of the system.
For example allowing an adjustment for a team touring far away from home and for a long duration, or even
looking at upwards and downwards trends when examining the movement of a particular teams rating points.
This can lead to a system with more capabilities in the future.
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Appendix

When running the program, all the consecutive seasons have to be run in the correct order since any initial
ratings are dependent on the last ratings of the preceding season. For this program only the input data set
has to be changed each time, in order to calculate all the ratings.

proc iml;
*/***********************************************************************/;
*/***** Step 1 *****/*;
*/ Reading In */;
use RATING.S14152 ;
read all var {MatchNo} into MNo;
read all var {Date} into DATE;
read all var {Matchtype} into Matchtype;
read all var {HomeTeam} into HT;
read all var {AwayTeam} into AT;
read all var {HomeTeamScore} into HP;
read all var {AwayTeamScore} into AP;
read all var {League} into League;
C = nrow(DATE); */ Total Number Of Matches Played */;
*/***********************************************************************/;
*/ Sorting out unwanted teams */;
*/***********************************************************************/;
*/***** Step 2 *****/*;
*/ Values */;
mdi� = 50;
UL = 100; */ Upper Limit */;
EW = 10; */ Exponental Weight */;
DB = 10; */ Devide by (LEAGUE POINT = -1 TO 1: DIVIDE BY 10) */;
AdP = 1; */ Add Point (LEAGUE POINT = 0 TO 2: ADD 1) */;
ADJ = DB/10; */ To rebalance ratios */;
AvP = 50; */ Average Point (all clubs) */;
Mul = 5; */ Multiplier */;
nTeam = 38; */ Number of Teams */;
Check= 'y'; */ To check if we incorparate the teams
relative strength while rating (y/n) */;
Alpha = EW/100;
res = 1-alpha;
NewCAvp = 40;
*/***********************************************************************/;
Allteams = HT//AT;
u = unique(Allteams);
Heading = { 'DATE' };
Heading = Heading||u;
*/***********************************************************************/;
*/***** Step 3 *****/*;
*/ Starting Values */;
StartTemp = J(1,nteam,.);
use RATING.rating14 ;
read all into RatingOLD;
close RATING.rating14;
use Rating.TEAMS14 ;
read ALL VAR _CHAR_ into headingOLD;
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close Rating.TEAMS14;
headingOLD = "DATE"|| headingOLD;
lastrating = RatingOLD[nrow(RatingOLD),];
do i=2 to ncol(heading);
do j=1 to ncol(HeadingOLD);
tempName1 = Heading[1,i];
tempName2 = HeadingOld[1,j];
if tempName1=tempName2
then Starttemp[1,i-1]=lastRating[1,j];
end;
end;
*/Print lastrating[colname=headingOLD];
*/print starttemp[colname=u];
*/***********************************************************************/;
nNewTeam = 0;
do i = 1 to nteam;
if StartTemp[1,i] = . then nNewTeam=nNewTeam +1;
end;
nEstTeam= nTeam - nNewTeam;
*/***** Step 4 *****/*;
EstCAvp = (nTeam*AVP-nNewTeam*NewCAvp)/nEstTeam;
*/***********************************************************************/;
*/***** Step 5 *****/*;
*/ CALCULATION (Standerdizing Starting Values around Average Point)*/;
ave = StartTEMP[,:];
varsum = 0;
ncount = 0;
do i = 1 to nTeam;
if StartTemp[1,i] ^= . then;
do;
varsum = varsum + ((StartTemp[1,i]-ave)*(StartTemp[1,i]-ave));
ncount = ncount+1;
end;
end;
if ncount = 0 then;
do;
ncount=nteam;
stddev = 1;
end;
else;
do;
var = varsum/(ncount-1);
stddev = sqrt(var);
end;
StartRank = J(1,nTeam,0);
if stddev = 0 then;
stddev = 1;
else;
do i=1 to nTeam;
StartRank[1,i] = MUL*(StartTemp[1,i]-Ave)/stddev +EstCAvp;
end;
do i = 1 to nteam;
if StartTemp[1,i] = . then StartRank[1,i]= NewCAvp;
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end;
*/***********************************************************************/;
*/***** Step 6 Part a *****/*;
*/ CALCULATION (Standerdizing Match SCORES around Average Point)*/;
pDi� = J(c,1,.);
pDi� = HP-AP;
HPADJ = J(c,1,.);
HPADJ = HP;
APADJ = J(c,1,.);
APADJ = AP;
do i = 1 to c;
if pDi�[i,1]> Mdi� then HPADJ[i,1] = AP[i,1]+Mdi�;
if pDi�[i,1]< (-1)*(Mdi�) then APADJ[i,1] = HP[i,1]+Mdi�;
end;
*/***** Step 6 Part b *****/*;
ScoreTempa=J(c,2,.);
MPT = HPADJ+APADJ; */ Match Points Total */;
do i=1 to c;
ScoreTempa[i,1] = ((UL-MPT[i,1])/2)+HPADJ[i,1];
ScoreTempa[i,2] = ((UL-MPT[i,1])/2)+APADJ[i,1];
end;
*/***********************************************************************/;
*/***** Step 7 *****/*;
SCORES = J(c,nTeam,0);
NAME = J(c,2,.);
d = 2*c+1;
Playing = J(d,2,.);
do i = 1 to c;
t1 = 0;
t2 = 0;
do j = 1 to ncol(U);
if HT[i,1] = u[1,j] then t1=j;
end;
do k = 1 to ncol(U);
if AT[i,1] = u[1,k] then t2=k;
end;
SCORES[i,t1]=ScoreTempa[i,1];
SCORES[i,t2]=ScoreTempa[i,2]; */ Note: using standerdized scores */;
NAME[i,1] = t1;
NAME[i,2] = t2;
Playing[2*i-1,1]= name[i,1];
Playing[2*i,1] = name[i,2];
Playing[2*i-1,2]= League[i,1];
Playing[2*i,2] = League[i,1];
end;
*/***********************************************************************/;
*/***** Step 8 *****/*;
*/ Ranking Update Dates */;
aDate = Date[1,1];
eDate = Date[c,1];
bDate = intnx('week', aDate, 0,'same');
*/ ddate = last Sunday before the �rst Matches */;
dDate = intnx('week', bDate, 0,'B');
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if aDate=dDate then dDate = intnx('week', bDate, -1,'B');
*/ gdate = �rst Sunday after the last Matches */;
gDate = intnx('week', eDate, +1,'B');
*/ fdate = total number of weeks */;
fDate = (gDate-dDate)/7;
RankDates=dDate;
do i=1 to fdate;
date1 = intnx('week', dDate , i,'same');
RankDates = RankDates//date1;
end;
/*print adate[format=date9.] edate[format=date9.] RankDates[format=date9.];*/
**/***********************************************************************/;
*/***** Step 9 *****/*;
*/ Find out which match is in which week */;
WD = J(c,fdate+1,.);
do i=1 to fdate+1;
do j=1 to c;
WD[j,i] = RankDates[i,1];
end;
end;
MD = Date;
Do i=2 to fdate+1;
MD = MD||date;
end;
DateTemp = MD-WD;
WeekFit =J(c,1,.);
do i=1 to fdate+1;
do k = 1 to c;
if DateTemp[k,i] <= 0 & DateTemp[k,i] > -7
then weekFit[k,1]= i-1;
end;
end;
nWeeks=max(WeekFit); */ CALCULATING THE NUMBER OF WEEKS
THAT WE ARE CALCULATING RATINGS FOR */;
*/***********************************************************************/;
*/***** Step 10 *****/*;
t = gdate-ddate; */ Last Rank Date Up To First */;
tempD= J(t+1,1,.);
indD = J(t+1,1,.);
DMC = 0; */ Daily Match Count */;
do i = 1 to t+1;
tempd[i,1]= dDate+i-1; */ ddate - �rst ranking sunday */;
end;
do i = 1 to t+1;
DMC = 0;
do j = 1 to c;
if tempD[i,1]= date[j,1] then DMC= DMC +1;
end;
indD[i,1]= DMC; */ Number of matches on every date,
from the �rst rank date up to the last */;
end;
*/***********************************************************************/;
count = 1;
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vec1 = J(nWeeks+1,1,.);
do i=1 to nWeeks+1;
aa1 = dDate;
bb1 = RankDates[i,1];
do j = 1 to c;
cc1 = Date[j,1];
dif1 = bb1-cc1;
*/ * * * * * * * * * * /*;
if (dif1 >=0) & (dif1<7) then count = count+1;
end;
vec1[i,1] = count;
end;
*/***********************************************************************/;
*/***********************************************************************/;
*/***** Step 11 *****/*;
RANKtemp1 = J(c,nTeam,.);
RANKtemp2 = J(1,nTeam,.);
RANKtemp3 = J(1,nTeam,.);
ScoreTemp1 = J(1,nTeam,.);
ScoreTemp2 = J(1,nTeam,0);
ScoreTemp = J(1,nTeam,0);
GameSt = J(1,2,.);
Rank1 = J(t+1,nTeam,.);
RankTemp1 = StartRank//RankTemp1;
Countout=0;
sumprod=0;
sum1=0;
sum2=0;
testv = 16;
countmatrix = J((testv+1),3,0);
do i = 0 to (testv);
countmatrix[i+1,1]=i;
end;
do i = 1 to c;
RankTemp2[1,] = RankTemp1[i,];
*/ * * * * * * * * * * /*;
ScoreTemp1[1,] = RankTemp1[i,];
ScoreTemp1[1,NAME[i,1]] = 0;
ScoreTemp1[1,NAME[i,2]] = 0;
MatchSt = 1;
If Check = 'y' then;
do;
GameSt[1,1] = RankTemp2[1,NAME[i,1]];
GameSt[1,2] = RankTemp2[1,NAME[i,2]];
MatchSt = (GameSt[1,1]+GameSt[1,2])/UL;
end;
else;
if Check = 'n' then MatchSt=1;
ScoreTemp2[1,] = SCORES[i,]*MatchSt;
ScoreTemp[1,] = ScoreTemp1[1,]+ScoreTemp2[1,];
*/ * * * * * * * * * * /*;
RankTemp3[1,] = Alpha*ScoreTemp[1,] + (1-Alpha)*RankTemp2[1,];
RankTemp1[i+1,] = RankTemp3;
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*/***********************************************************************/;
*/* Outcome Measure */*;
HTRankNet = GameSt[1,1]-GameSt[1,2];
HTScoreNet = Scores[i,Name[i,1]]-Scores[i,Name[i,2]];
if HTRankNet >=0 && HTScoreNet >=0 then Countout=Countout+1;
if HTRankNet <0 && HTScoreNet <0 then Countout=Countout+1;
do j=0 to testv;
if HTRankNet >= j then countmatrix[j+1,2]=countmatrix[j+1,2]+1 ;
if HTRankNet <(-1)*j then countmatrix[j+1,2]=countmatrix[j+1,2]+1;
if HTRankNet >= j && HTScoreNet >=0 then countmatrix[j+1,3]=countmatrix[j+1,3]+1;
if HTRankNet <(-1)*j && HTScoreNet <0 then countmatrix[j+1,3]=countmatrix[j+1,3]+1;
end;
sumprod = sumprod + HTRankNet*HTScoreNet;
sum1 = sum1+ HTRankNet*HtRankNet;
sum2 = sum2+ HTScoreNet*HtScoreNet;
*/***********************************************************************/;
end;
ratio1415 = J(testv,2,.);
do i = 1 to testv;
ratio1415[i,1] = i-1;
ratio1415[i,2] = countmatrix[i,3]*(100/(countmatrix[i,2]));
end;
corr1415 = sumprod/(sqrt(sum1)*sqrt(sum2));
/*PRINT ALPHA NewCAvp;*/
/*print ratio1415 corr1415;*/
*/***********************************************************************/;
*/***** Step 12 *****/*;
Rating = J(nWeeks,nTeam,.);
Rating = StartRank//Rating;
Do k = 2 to nWeeks+1;
a = vec1[k,1];
Rating[k,]= ranktemp1[a,];
end;
ave = Rating[,:];
*/ print RankDates[format=date9.] Rating[colname=u];
*/***********************************************************************/;
*/***** Step 13 *****/*;
*/ Ranking */;
RANKS = RANKtie(-Rating[1,]);
do i = 2 to nWeeks+1;
RANKSweek = ranktie(-Rating[i,]);
RankS = Ranks//RANKSweek;
end;
RankS = RankDates||RankS;
Rating = RankDates||Rating;
*/ print RankDates[format=date9.] RANKS[colname=Heading];
*/***********************************************************************/;
create Rating.Rating15 from Rating [colname=Heading];
Append from Rating;
close Rating.Rating15;
create Rating.TEAMS15 from U[colname=U];
Append from U;
close Rating.TEAMS15;
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create Rating.Ranks15 from Ranks [colname=Heading];
Append from Ranks;
close Rating.Ranks15;
quit;
PROC EXPORT DATA= RATING.RATING15
OUTFILE= "C:\Users\Rion\Google Drive\Hons\Research Report\DA
TA\Ratings Out 15.xls"
DBMS=EXCEL LABEL REPLACE;
NEWFILE=YES;
RUN;
PROC EXPORT DATA= RATING.Ranks15
OUTFILE= "C:\Users\Rion\Google Drive\Hons\Research Report\DA
TA\Ranks Out 15.xls"
DBMS=EXCEL LABEL REPLACE;
NEWFILE=YES;
RUN;
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Abstract

This report is based on the study of a random walk on a clock, with the aim of answering the

following questions. How long it will take this random walk to occupy each state at least once. As well

as identifying which of these states will be visited the most on average. The states are denoted by the

numbers 1, 2, . . . , 12 representing the position on the clock. In this report a number of methods will be

proposed to obtain a solution to the two questions posed.
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1 Introduction

The random walk model can be used to model a variety of real-world problems. Examples of these include
the modelling of gambling problems, stock prices and migration of animals. In particular this report will
investigate the study of random walks on a clock. A number of questions could be posed in this study,
examples of these can be found in the following blog: [8]. These questions assist us in understanding the
behaviour of the particular random walk process. From [1] the following question was posed. �Stand on a
large clock, say on 1. Now �ip a coin and move ahead one hour if the coin turns up heads, and back one
hour otherwise. Keep repeating the process until you have stood on all 12 numbers. (1) How long on average
did this random walk take? Furthermore, (2) which state(s) will be visited the most? Now if we generalize
to clocks with p positions, how does the expected time vary?� A number of methods will be presented as
possible ways to answer both of the questions posed. This process could be simply interpreted as a game
with p equally spaced points around a circle. Now suppose there are �ve players. Each player should place
a chip on this clock, after 50 steps the player whose point was visited the most within those 50 steps wins a
prize of R1. How would a player choose which point to place his/her chip given a speci�ed starting point?
Would this starting point even have an e�ect on what value is observed the most? This research report aims
to come up with solutions to those questions, with the relevant mathematical and/or theoretical backing. In
some instances theoretical results will be used and other cases simulations will be used to model the given
process as well as combinations of these. The reader should note that in the case of this report we will focus
on a 12 state clock. This report will look into simulations of the random walk, Markov chains as well as
directional statistics to answer both questions.

2 Simple random walk

2.1 Background Theory

According to [7] a random walk process is a non-stationary time-series process de�ned by

Zt = Zt−1 + εt

where εt denotes a white noise process with mean, µε = 0 and variance σ2
ε = 1 and Zt denotes the position

on the clock at time t. The value of the error terms is given by εt = 1 or εt = −1, depending on whether the
clock is moving clockwise or anti-clockwise. This process can be simpli�ed to

Zt = Z0 +

n∑
t=1

εt

i.e. the position of the clock at time t is given by the sum of the starting position and a simple random walk.
From this it is clear that the expected value of Zt is given by Z0. This process will generate the described
clock setting. In order answer (1) proofs from [1] and [5] were considered. From [1] the following result was
given:

Let S0 = 0 and let Sk = X1 + . . . + Xk for k > 0 where Xi are independent, identically distributed
variables with Xi = 1 and Xi = −1 each with probability 1

2 . Let tn = min{k : N = n, n ≤ p} be the �rst
time that we have visited n distinct states then

E(tp) =
p(p− 1)

2

Proof
Let t =min{k : Sk = −A or Sk = B} for some �xed integers A,B > 0. Let Vk = the collection of all

visited states up to time k. Let N =the number of elements in Vk. It can be seen that t1 = 0, and t2 = 1.
A key realisation is that one can easily get from tn to tn+1. Now consider the situation at time tn for n < p.
Suppose that n states have been visited and we are at one extreme of Vt(n). If we consider the case where
say we are at 0 and have visited positions1, 2, . . . , n− 1. In order to calculate tn+1�tn we want to know the
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�rst time we hit either −1 or n (for n = p, these are the same vertex). Therefore from fact stated above, it
follows that: E(tn+1�tn) = n for n < p

This yields the following: E(tn) = 1 + . . .+ (n− 1) = n(n− 1)/2 for n ≤ p
In particular: E(tp) = p(p− 1)/2
From this proof it can be said that the average time it takes to occupy each state at least once is given

by where p denotes the number of �nite states. The aim is to back up this theoretical result with the use of
simulations. In a similar manner the second question will also be answered. The e�ect that di�erent starting
times has on which state is visited the most will be investigated as well as whether that e�ect will a�ect the
behaviour of the process in the long run.

2.2 Application

Firstly we will look at the 12 step clock starting at position 12. A thousand random values are generated to
model the process. A histogram is plotted and compared with a normal curve to try and �t an appropriate
distribution. The sample size is then made large. It is found that the process converges to a uniform
distribution i.e. if the process is performed for long enough it is equally likely to observe each of the 12
states. The e�ect of the starting point wears o�. In this section both (1) and (2) will be answered through
simulations. Let us consider (1), for this the random walk is generated as well as a counter vector for each
position on the clock. The counter counts how many times each of points on the clock are visited. The
counter will stop when the counter value for each state is greater than one. The sum of the elements of the
counter vector gives the number steps it took for all 12 states to be visited. This process can be repeated
1000 times each time recording the number of steps taken to visit all the states. An estimate of the average
number of steps can be found from this. The result of this is given below. Secondly one must investigate
which of the states will be observed the most for a �xed n steps. A Program_2 was written to �nd the state
that is most frequently visited for n = 150 at three di�erent starting points. The results from the seed value
of 10 are presented below.

State Z0 = 3 Z0 = 6 Z0 = 12

Frequency Frequency Frequency

1 10 8 22

2 20 6 21

3 21 5 16

4 22 10 10

5 21 20 4

6 16 21 7

7 10 22 8

8 4 21 6

9 7 16 5

10 8 10 10

11 6 4 20

12 5 7 21

Table 1: Frequencies of all 12 states for di�erent starting values
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From the table above it was observed that for Z0 = 3 and Z0 = 12 that the states the 2 states above
and below the starting value occurs the most. However for Z0 = 6 this is not the case, in this instance the
values 10 and 11 occur the most. These values are not 2 states from the starting value Z0, the same result
was found for other simulations with starting points 3 and 12. So which state(s) will be visited the most?
In order to �nd the state(s) visited the most a histogram was �tted to the given frequency distributions and
compared with the normal, exponential, gamma, weibull and lognormal distribution curves with the aim of
�tting a known distribution to the frequency distribution. The result of this is given below:

Figure 1: Frequency distribution for Z0 = 3

Figure 2: Frequency distribution for Z0 = 6
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Figure 3: Frequency distribution for Z0 = 12

The histograms show that the distribution of the frequency does not follow any of the known distributions
well enough for n = 150. Therefore an alternative method could be used to �t a distribution to the frequencies.

3 Markov chain approach

3.1 Background Theory

Markov chains are stochastic models which describe a sequence of probable events, which depend only on
the previous event attained. For some discrete state space S, the transition probability matrix is de�ned as
follows

P (i, j) = P [Z = j|Zn−1 = i], i, j ∈ S
The random walk on a clock can be described by a transition probability matrix with state space S =

{1, 2, 3, . . . , 12}. We will consider the transition probability matrix generated by this random walk. The
described matrix is dependent only on the previous state visited. Markov chain theory presented in [5] will
be used to determine the behaviour of this process. The study of �rst passage times as well as limiting
distributions will be considered to determine the long and short term behaviour of the Markov chain. The
�rst passage time can be de�ned as the number of steps taken for a process to go from state i to state j. Let

Fij denote the �rst passage time of the transition from i to j then its distribution is denoted by f
(n)
ij where

f
(n)
ij = P [Zn = j,Xr 6= j, r = 1, 2, . . . , n− 1|Z0 = i] = P [Fij = n]

where n denotes the number of steps taken. This de�nition can be used to answer (1). As the average
amount of time taken to visit each state at least once can be viewed as a sum of �rst passage times for a
given �xed value of the state space S. Moving to the second question, limiting distributions will be used to
see which state is visited the most in the long run. The following condition should be met to �nd the limiting
distribution of a Markov chain. The transition probability matrix P must be as follows:

1. Aperiodic i.e. have a period of one where the period is de�ned as di = gcd{n : n ≥ 1, p
(n)
ij > 0} where

p
(n)
ij is the ij − th term of Pn and n ∈ Z.

2. Irreducible i.e have one equivalence class.

3. Have a �nite number of states.
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3.2 Application

The 12-state random walk on a clock is represented by the following transition probability matrix

P =



0 0.5 0 0 0 0 0 0 0 0 0 0.5
0.5 0 0.5 0 0 0 0 0 0 0 0 0
0 0.5 0 0.5 0 0 0 0 0 0 0 0
0 0 0.5 0 0.5 0 0 0 0 0 0 0
0 0 0 0.5 0 0.5 0 0 0 0 0 0
0 0 0 0 0.5 0 0.5 0 0 0 0 0
0 0 0 0 0 0.5 0 0.5 0 0 0 0
0 0 0 0 0 0 0.5 0 0.5 0 0 0
0 0 0 0 0 0 0 0.5 0 0.5 0 0
0 0 0 0 0 0 0 0 0.5 0 0.5 0
0 0 0 0 0 0 0 0 0 0.5 0 0.5

0.5 0 0 0 0 0 0 0 0 0 0.5 0


The transition probability matrix has a �nite number of states , is irreducible but has a period of 2 and

hence is not aperiodic. Therefore a limiting distribution cannot be found for this Markov chain. Thus this
method cannot be used to answer (2). However [2] developed theory that P should be constructed in a
di�erent manner based on the fact that the probability of observing a head or tail in a balanced coin toss is
not exactly 0.5. The argument is based on an element of randomness that a�ects the coin toss. For example
one could toss a coin and it lands right on the side and neither a head or tail will be observed, hence there
arguably does exist a very small probability of remaining in the same state based on this argument. The new
transition probability matrix of this process is now de�ned by:

Pnew =



0.001 0.4995 0 0 0 0 0 0 0 0 0 0.4995
0.4995 0.001 0.4995 0 0 0 0 0 0 0 0 0

0 0.4995 0.001 0.4995 0 0 0 0 0 0 0 0
0 0 0.4995 0.001 0.4995 0 0 0 0 0 0 0
0 0 0 0.4995 0.001 0.4995 0 0 0 0 0 0
0 0 0 0 0.4995 0.001 0.4995 0 0 0 0 0
0 0 0 0 0 0.4995 0.001 0.4995 0 0 0 0
0 0 0 0 0 0 0.4995 0.001 0.4995 0 0 0
0 0 0 0 0 0 0 0.4995 0.001 0.4995 0 0
0 0 0 0 0 0 0 0 0.4995 0.001 0.4995 0
0 0 0 0 0 0 0 0 0 0.4995 0.001 0.4995

0.4995 0 0 0 0 0 0 0 0 0 0.4995 0.001


This new transition probability matrix is aperiodic, irreducible and has a �nite number of states thus a

limiting distribution can be calculated for the newly de�ned process. The limiting distribution,Π is de�ned
as Π = limn→∞ Pn. Using the SAS simulation provided in Program_1 the limiting distribution was found
to be as follows:

Π =
[

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

]
where 1

12 : 12×1 vector with all elements equal to 1
12 . The limiting distribution says that as the process is

performed an in�nite number of times each state will be equally likely to occur. This in e�ect means that the
process converges to a discrete uniform distribution over the interval [1, 12] , hence the limiting distribution
has a discrete uniform distribution.

4 Directional Statistics

4.1 Background Theory

According to [6], directional statistics is mainly concerned with statistics on a unit vectors in a plane or
three dimensional spaces. Thus samples are usually taken from circles or spheres. Circular data is usually
collected from a clock or compass. This data is analysed di�erently than data on a real line. For instance,
if two boats are traveling at 350 and 10 degrees respectively. What is the average direction these boats are
traveling? When calculating this mean arithmetically, it is found that on average these boats are traveling
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Figure 4: Orientation of 76 female turtles after laying eggs

at 180 degrees which intuitively doesn't make sense. Why would two forward directions result in a backward
direction? Directional statistics assists in solving questions of this nature by considering the impact the
circular shape has on data. This section only looks at question (2), we will be considering the forms of
frequency distributions and the properties of these.

4.1.1 Frequency Distributions

Unimodal Distributions In answering (2) one is basically looking at the number which occurs most
frequently, this is also known as the mode. In directional statistics the mode is seen as the direction visited
the most. Unimodal distributions refer to distributions with only a single mode.

Multimodal Distributions Multimodal distributions occur when a distribution has two or more modes.
However it is rare to �nd more than two modes. An example of such is found 4 of [6]. It shows the direction
that 76 female turtles moved after laying their eggs on the beach. The circular plot of this shows that there
is a dominant mode and a subsidiary mode. That shows the turtles have a preferred direction but a minority
of the group prefers another direction. Determining whether the distribution on the clock is unimodal or
multimodal can be used to give direction on whether the process can be �tted to a known discrete circular
distribution.

4.1.2 Discrete Circular Distributions

Lattice distribution From [6] consider a discrete distribution with

P [θ = v +
2πr

m
] = pr, r = 0, 1, . . . ,m− 1

and

pr ≥ 0,

m−1∑
r=0

pr = 1.

The points v + 2πr
m are the vertices of an m sided regular polygon inscribed in the unit circle. If all the

weights are equal then

pr =
1

m
.

This is referred to as the discrete uniform distribution. Ifm = 37 this represents a roulette table described
in [3].
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Wrapped distributions As de�ned in [6] a wrapped distribution is given by wrapping a given distribution
on a line onto a circle of unit radius. That is for a random variable Z on a line, the corresponding wrapped
distribution is given by

Zw = Z(mod2π).

Therefore if Z has a distribution function F then distribution function of Zw is given by Fw where

FW (θ) =

∞∑
k=−∞

{F (θ + 2πk)− F (2πk)},

for 0 ≤ θ ≤ 2π.

In particular if Z has a density function f then the corresponding probability density function fwof Zwis
given by

fw(θ) =

∞∑
k=−∞

f(θ + 2τk).

The results above hold for discrete random variables.

4.2 Application

The random walk process will be generated in the same way described previously, but in this case the state
numbers will be replaced by equally spaced angles, spaced π

6 radians apart. The clock is given in the �gure
below

Figure 5: Clock in radians

In order to answer the �rst question we consider the same random walk process just with the states
replaced by radians. In the case of Program_3 degrees were used instead of radians for interpretation
purposes. The aim of this section is to represent the data as circular data and �t the appropriate distribution
as well as explain the convergence to a discrete uniform distribution found in the initial simulation of the
process. Program_3 generates the same frequency distributions as those given in 12 and 3 as the same data
is used just relabeled. Hence results similar as 1 are obtained .

5 Conclusion

In this report the following topics: Markov chains, random walk simulations and directional statistics were
discussed in order to solve the two questions posed in the introduction. The Markov chain method proved
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to be successful in doing this for (1) but presented limitations in answering (2) as a limiting distribution
could not be found for the transition probability matrix that represents the process. However through the
adaptation of the initial transition probability matrix it was found that the process converges to a discrete
uniform distribution. Simulations of the random walk process resulted in the same realisation . Hence it can
be concluded that as the process is repeated an in�nite amount of times the e�ect of the starting point dies
out and the probability of visiting each state is equal. To answer question (1) the generated simulations were
compared to theoretical results given from [4] as well as the proofs presented on [1]. Simulations show that

the average amount of steps it takes to visit each state at least once tends to p(p−1)
2 which was the result

obtained theoretically. In the case of this report the average amount of steps to visit all the states at least

once is approximately given by 12(11)
2 = 66. Through simulations it was found that the average numbers of

steps ranges in the interval [68, 75]. This di�ers slightly from the theoretical result of 66 but is still close to

the lower limit of the interval hence the average number of steps taken could be represented as p(p−1)
2 + r,

where r ∈ (0, 10) and is due to the randomness of generating the process. Although this report has managed
to answer (1) successfully, (2) was not answered fully and additional methods could be investigated to fully
answer (2). The reader could also consider a clock with an arbitrary k number of states and the e�ect of this
on the process.
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Appendix

Program_1

/*Calculating the limiting distribution*/

proc iml;

n=1000000;

/*transition probability matrix*/

p={ 0.001 .4995 0 0 0 0 0 0 0 0 0 .4995,

.4995 0.001 .4995 0 0 0 0 0 0 0 0 0,

0 .4995 0.001 .4995 0 0 0 0 0 0 0 0,

0 0 .4995 0.001 .4995 0 0 0 0 0 0 0,

0 0 0 .4995 0.001 .4995 0 0 0 0 0 0,

0 0 0 0 .4995 0.001 .4995 0 0 0 0 0,

0 0 0 0 0 .4995 0.001 .4995 0 0 0 0,

0 0 0 0 0 0 .4995 0.001 .4995 0 0 0,

0 0 0 0 0 0 0 .4995 0.001 .4995 0 0,

0 0 0 0 0 0 0 0 .4995 0.001 .4995 0,

0 0 0 0 0 0 0 0 0 .4995 0.001 .4995,

.4995 0 0 0 0 0 0 0 0 0 .4995 0.001}

;

/*Formula for limiting distribution*/

Pn=p**n;

print Pn;

quit;

Program_2

/*Finding the frequency distribution*/

proc iml;

n=150;

p=0.5;

seed=0;

b= j(n, 1, .);

w=j(n,1 ,.);

x=3;

do i=1 to n;

b[i]=ranuni(seed);

if b[i]<0.5 then w[i]=x-1;

if b[i]>0.5 then w[i]=x+1;

if w[i] > 12 then w[i]=1;

if w[i]<1 then w[i]=12;

x=w[i] ;

end;

/*reading data from a vector into a data set*/

create new var{'w'};

append ;

close new;

quit;

proc univariate data=new;

var w;
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histogram w/ normal

exponential

gamma

weibull

lognormal;

run;

proc freq data =new;

run;

Program_3

/*Calculating the average number of steps taken to visit each state at least once*/

proc iml;

it=10000;/*number of iterations*/

n=150;/*maximum number of random walk components*/

p=0.5;/*probability of moving either clockwise or anti-clockwise*/

b=j(n,1,.);

rw=j(n,1,.);/*random walk component*/

seed=0;

x=10; /*starting point*/

do i = 1 to it;

counter=j(12,1,0); /*generating points on the clock*/

do j=1 to n;

b[j]=ranuni(seed);

if b[j]<0.5 then rw[j]=x-1;

if b[j]>0.5 then rw[j]=x+1;

if rw[j]<1 then rw[j]=12;

if rw[j]>12 then rw[j]=1;

/*calculating frequency distribution*/

do k = 1 to 12 until(freq>=j(12,1,1));

count = j(12,1,0);

if rw[j]=k then count[k]=1;

counter=counter||count;

freq=counter[,+];

end;

x=rw[j];

end;

freq1=counter[,+];

sum=freq1[+];

sums=sums//sum;

average=(1/it)*sums[+];

end;

print average;

Program_4

proc iml;

n=150;

p=0.5;

b= j(n, 1, .);

w=j(n,1 ,.);

x=30;
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do i=1 to n;

b[i]=ranuni(10);

if b[i]<0.5 then w[i]=x-30;

if b[i]>0.5 then w[i]=x+30;

if w[i] > 360 then w[i]=30;

if w[i]<30 then w[i]=360;

x=w[i] ;

end ;

print w;

create new var{'w'};

append ;

close new;

quit;

proc univariate data=new;

var w;

histogram w/ normal

exponential

gamma

weibull

lognormal;

run;

proc freq data =new;

run;
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Abstract

In exponential families, it has been shown that the likelihood function may be penalized by Je�reys

invariant prior in reducing the bias of maximum likelihood estimators. This method will be described and

then applied to the maximum likelihood bandwidth estimator assuming a Gaussian kernel, in a kernel

density estimation setting.
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1 Introduction

Penalized maximum likelihood estimation was developed by Firth in 1992 through to 1993, as a bias reduction
method for maximum likelihood estimates in generalized linear models [7, 4]. In this report the properties
of this method will be explored, to obtain �nite estimates for θ using a modi�cation of the score function
[6]. In normal parametric problems, to modify the score function the �rst order term is removed from the
asymptotic bias of the maximum likelihood estimates [4]. For smoothing curves this method is introduced
and therefore the penalized maximum likelihood estimator is a smoothing parameter that approaches zero
[3]. Penalization can be thought of as a technique that introduces some degree of tolerable bias, to achieve
a smaller variability of parameter estimates, thus a smaller variance is achieved by introducing a degree of
bias to the model [2].

For models with categorical predictors, penalization can be used as another way for �nding estimates
of these regression coe�cients without �tting noise. This is a technique used for predicting models where
adjustments for over �tting are directly incorporated into the model as opposed to shrinking it afterward
[9]. Up until now the penalization approach has not often been used for empirical data, but does however
lead to reduced prediction errors and may also cause shrinkage in individual predictors to di�er for over opti-
mism without forfeiting substantial discriminative precision of the model [9]. Penalized maximum likelihood
estimation should not be confused with weighted maximum likelihood estimation, the reason being that for
weighted maximum likelihood estimation every observation and not the individual predictors, are weighted
depending on some available characteristics [5].

A direct relationship can be seen between the kernel density estimation and a speci�c penalization method
of density estimation, for example roughness penalties [8]. For this speci�c penalty method the average is
taken with respect to the bandwidth parameter and solutions can be categorised as weighted average Gaussian
kernel density estimates [8]. As the degrees of freedom in a model get smaller the penalty factor increases,
therefore the regression �t gets �atter and the con�dence boundaries become narrower [5]. Penalization is a
technique for avoiding complications with the stability of parameter estimates occurring when likelihood is
reasonably �at. This therefore makes �nding the maximum likelihood estimate di�cult when using standard
approaches [2].

The method of penalized maximum likelihood estimation is extensively used in epidemiology (where
incidence, distribution and possible control of diseases and other factors relating to health are studied) [2].
In realistically sized epidemiological studies, sparse-data complications can be a result if data is classi�ed as
being �exible enough, which therefore requires the use of penalization, semi-parametric modelling or some
blend of these methods which are more involved than standard maximum likelihood [2].

2 Basic Idea

A comparison of the standard maximum likelihood and penalized maximum likelihood estimation will be
looked at here. With the standard maximum likelihood estimation procedure the joint density function is
�rst speci�ed for all observations, which is given by:

f(x1, x2, .....xn|θ) =f(x1|θ)× f(x2|θ)× ......× f(xn|θ)·

The observed values x1, x2, . . . , xn can be considered �xed parameters of this function where θ will be the
functions parameter(s) and is to be estimated. The likelihood function is then given by:

L(θ;x1, .....xn) =f(x1, xn, .....xn|θ)

=

n∏
i=1

f(xi|θ)

The derivative of this likelihood function is calculated and set equal to zero to calculate the maximum
likelihood estimator i.e. ∂

∂θL(θ) = 0. Any value of θ that maximises L(θ) will also maximise the log-likelihood,
lnL(θ) = l(θ) also known as the score function. Therefore maximum likelihood estimates are obtained by
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solving the following score equation
∂l(θ)

∂θ
≡ U(θ) = 0

This approach is used as it is usually the desired method of calculating. The small bias of these estimates is
as a result of the combined e�ect of curvature and unbiasedness of the score function [6].

In penalized maximum likelihood, involving parameters of the exponential family, the penalized likelihood
function is given by:

L(θ)∗ = L(θ)|I(θ)|0.5·

Therefore the penalized log likelihood is equal to

l∗(θ) =l(θ) + 0.5 ln |I(θ)| (1)

where the penalty function is |I(θ)|0.5 and is known as Je�reys invariant prior, where I(θ) is the Fisher
information matrix which can be calculated as the variance of the score function. As an example the Fisher
information matrix will be derived for the normal distribution. The PDF of the normal distribution is given
by

f(x|µ, σ2) =
1

σ
√
2π
e−

(x−µ)2

2σ2 ·

To be able to calculate the Fisher information matrix for a univariate distribution we �rst need to �nd the
logarithm which is

ln f(x|µ, σ2)) = −1

2
ln(2π)− 1

2
lnσ2 − 1

2σ2
(x− µ)2

then the partial derivatives need to be calculated

∂

∂µ
ln f(x|µ, σ2) =

1

σ2
(x− µ),

∂

∂σ2
ln f(x|µ, σ2) =− 1

2σ2
+

1

2σ4
(x− µ)2·

The Fisher score is de�ned as

U(µ) =
∂ lnL(µ, σ2;x)

∂µ

U(σ2) =
∂ lnL(µ, σ2;x)

∂σ2

for the normal distribution, this becomes

g(µ, σ2;x) =

( 1
σ2 (x− µ)

− 1
2σ2 + 1

2σ4 (x− µ)2

)
·

The product of the Fisher score and its transposition is given as( 1
σ2 (x− µ)

− 1
2σ2 + 1

2σ4 (x− µ)2

)(
1

σ2
(x− µ)− 1

2σ2
+

1

2σ4
(x− µ)2

)
=(

1
σ4 (x− µ) − 1

2σ4 (x− µ) + 1
2σ6 (x− µ)3

− 1
2σ4 (x− µ) + 1

2σ6 (x− µ)3 1
4σ4 − 1

2σ6 (x− µ)2 + 1
4σ8 (x− µ)4

)
=

(
g11 g12
g21 g22

)
where g12 = g21. To calculate the Fisher information matrix the expected values of all gij need to be
determined [1]. Therefore in this case
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E [g11] = E(
1

σ4
(x− µ)2) = 1

σ2
,

E [g12] = E(− 1

2σ4
(x− µ) + 1

2σ6
(x− µ)3) = 0,

E [g22] = E

(
1

4σ4
− 1

2σ6
(x− µ)2 + 1

4σ8
(x− µ)4

)
=

1

2σ4
·

Therefore the Fisher information matrix for the normal distribution is[
1
σ2 0
0 1

2σ4

]
·

Firth suggested to base estimation on the modi�ed score equation [4]. He showed that by using this
modi�cation the O(n−1) bias of maximum likelihood estimates is removed [6]. The modi�ed score function
is related to both the penalized log likelihood, lnL(θ)∗ = lnL(θ) + 0.5 ln |I(θ)| and likelihood function,
L(θ)∗ = L(θ)|I(θ)|0.5. In exponential families with canonical parametrization the idea is to penalize the
likelihood by the Je�reys invariant prior. However the approach to binomial logistic models, Poisson log
linear models and certain other generalized linear models is di�erent, for these models the Je�reys prior
penalty is applied in typical regression software where a system of iterative modi�cations are made to the
data [4].

3 Application

Kernel density estimation (KDE) is a non-parametric approach to approximating the probability density
function of a random variable. In statistics, this is an imperative data smoothing problem where implications
about the population are established from a �nite data sample. The kernel density estimator is given by

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K

(
x− xi
h

)
·

where K(·) is the kernel which is a non-negative function that integrates to 1 and has a mean of 0 and h is a
smoothing parameter called the bandwidth. For this application we assume the Gaussian kernel, so that the
estimator becomes

f̂h(x) =
1√
2πnh

n∑
i=1

e−
(x−xi)

2

2h2 ·

The only parameter in this model is the bandwidth h. The likelihood and log-likelihood functions, are
respectively given by

L(h) =

n∏
j=1

f̂h(xj)

=
1

(2π)
n
2 (nh)n

n∏
j=1

n∑
i=1

e−
(xj−xi)

2

2h2 ,

l(h) = lnL(h) = ln
1

(2π)
n
2 (nh)n

+

n∑
j=1

ln
n∑
i=1

e−
(xj−xi)

2

2h2

=− n

2
ln(2π)− n lnn− n lnh+

n∑
j=1

ln

n∑
i=1

e−
(xj−xi)

2

2h2 · (2)
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To calculate h that will maximise the likelihood function, the derivative of the log-likelihood function needs
to be found with respect to h.

∂

∂h
l(h) =

∂

∂h

−n
2
ln(2π)− n lnn− n lnh+

n∑
j=1

ln

n∑
i=1

e−
(xj−xi)

2

2h2


= −n

h
+

n∑
j=1

∑n
i=1

xj−xi
h2 e

− 1
2

(
xj−xi
h

)2

∑n
i=1 e

− 1
2

(
xj−xi
h

)2

∴ h =
1

n

n∑
j=1

∑n
i=1 (xj − xi) e

− 1
2

(
xj−xi
h

)2

∑n
i=1 e

− 1
2

(
xj−xi
h

)2

since h cannot be solved explicitly this solution is not very useful. Therefore a search optimisation approach
needs to be used when �nding the h value that maximises the log-likelihood function. When calculating the
values of the log-likelihood function it is important to note, that the leave-one-out approach needs to be used
in order to avoid h converging to zero. The steps involved in this search optimisation approach are as follows:

1. Choose an interval i.e [a, b] where a is the lower limit and b is the upper limit.

2. Divide this interval into 10 equal parts.

3. Calculate the value of the log-likelihood function at each of these 10 points.

4. Save the maximum value and its index, at position i in the vector of calculated log-likelihood values.

5. Create a new interval [a∗, b∗] so that the indices of a∗ and b∗ are i− 1 and i+1 respectively (given that
i wasn't on either end-point of the vector). If it was on the end point, set a∗ and b∗equal to that end
point.

6. Repeat these steps from 2 until desired accuracy is achieved.

To obtain the Fisher information matrix given by I(h) = Eh

[[
∂ ln f̂h(x)

∂h

]2]
, the procedure outlined in section

2 needs to be applied. The logarithm of the kernel density estimator is

ln f̂h(x) = ln

n∑
i=1

1√
2πnh

e−
1
2 (

x−xi
h )

2

.

The partial derivative with respect to h, is then given by,

∂ ln f̂h(x)

∂h
=

∂

∂h
ln

n∑
i=1

1√
2πnh

e−
1
2 (

x−xi
h )

2

=

∑n
i=1

1√
2πnh2

e−
1
2 (

x−xi
h )

2 (
x−xi
h − 1

)
∑n
i=1

1√
2πnh

e−
1
2 (

x−xi
h )

2

=
1

h

∑n
i=1 e

− 1
2 (

x−xi
h )

2
x−xi
h∑n

i=1 e
− 1

2 (
x−xi
h )

2 − 1

 ·
Therefore [

∂ ln f̂h(x)

∂h

]2
=

1

h2

∑n
i=1 e

− 1
2 (

x−xi
h )

2
x−xi
h∑n

i=1 e
− 1

2 (
x−xi
h )

2 − 1

2

=
1

h2


∑n

i=1 e
− 1

2 (
x−xi
h )

2
x−xi
h∑n

i=1 e
− 1

2 (
x−xi
h )

2

2

− 2

∑n
i=1 e

− 1
2 (

x−xi
h )

2
x−xi
h∑n

i=1 e
− 1

2 (
x−xi
h )

2 + 1
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so that

Eh

[∂ ln f̂h(x)
∂h

]2 =

ˆ ∞
−∞

f̂h(x)

[
∂ ln f̂h(x)

∂h

]2
dx

=
1

h2

 1√
2πh

ˆ ∞
−∞

(∑n
i=1 e

− 1
2 (

x−xi
h )

2
x−xi
h

)2
∑n
i=1 e

− 1
2 (

x−xi
h )

2 dx

−2
ˆ ∞
−∞

n∑
i=1

1√
2πh

e−
1
2 (

x−xi
h )

2 x− xi
h

dx+ 1

]

=
1

h2

 1√
2πh

ˆ ∞
−∞

(∑n
i=1 e

− 1
2 (

x−xi
h )

2
x−xi
h

)2
∑n
i=1 e

− 1
2 (

x−xi
h )

2 dx+ 1

 . (3)

This therefore is the Fisher information matrix for the Gaussian kernel density estimator. Recall from (1)
that the penalized log likelihood is given by l∗(θ) = l(θ)+0.5 ln |I(θ)|. The penalized log-likelihood using (2)
and (3) is therefore,

l∗(h) = l(h) +
1

2
lnEh

[∂ ln f̂h(x)
∂h

]2
= −n

(
ln(2π)

2
+ lnn+ lnh

)
+

n∑
j=1

ln

n∑
i=1

e
− 1

2

(
(x−xi
h

)2

+
1

2
ln

1

h2
+

1

2
ln

 1√
2πh

ˆ ∞
−∞

(∑n
i=1 e

− 1
2 (

x−xi
h )

2
x−xi
h

)2
∑n
i=1 e

− 1
2 (

x−xi
h )

2 dx+ 1

 ·
The above procedure has been applied using SASr software1( all relevant SASr software programs used in
this report can be found in the appendix and the output from these programs will be shown and discussed in
this section). The log-likelihood function was optimised and a penalized log-likelihood function calculated,
in order to �nd optimal bandwidth values for both standard and penalized kernel density estimation. The
data found in table 1 was generated using program 1 (see appendix) that makes use of a search optimisation
algorithm in order to �nd the optimal bandwidth values. The convergence of these values that can be noticed
in table 1, is the approach that was used in selecting a bandwidth value that will be applied in further
application.

1The [output/code/data analysis] for this paper was generated using SAS software. Copyright, SAS Institute Inc. SAS and
all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC,
USA.
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Search Optimisation of Log-Likelihood
Function.

Search Optimisation of Penalized
Log-Likelihood Function

Bandwidth
Value of Log-Likelihood

Function
Bandwidth

Value of Penalized
Log-Likelihood Function

0.300000000000000 -1445.6622227393300 0.300000000000000 -1442.2472022728500

0.300000000000000 -1445.6622227393300 0.300000000000000 -1442.2472022728500

0.300000000000000 -1445.6622227393300 0.298000000000000 -1442.2468239776500

0.299600000000000 -1445.6622172759400 0.298400000000000 -1442.2467950127400

0.299760000000000 -1445.6622131760800 0.298400000000000 -1442.2467950127400

0.299760000000000 -1445.6622131760800 0.298416000000000 -1442.2467949434200

0.299756800000000 -1445.6622131759400 0.298422400000000 -1442.2467949391600

0.299758080000000 -1445.6622131755900 0.298421120000000 -1442.2467949389500

0.299758336000000 -1445.6622131755800 0.298421376000000 -1442.2467949389400

0.299758233600000 -1445.6622131755800 0.298421273600000 -1442.2467949389300

0.299758236160000 -1445.6622131755800 0.298421299200000 -1442.2467949389400

0.299758238208000 -1445.6622131755800 0.298421298432000 -1442.2467949389300

0.299758238412800 -1445.6622131755800 0.298421298432000 -1442.2467949389300

0.299758238412800 -1445.6622131755800 0.298421298401280 -1442.2467949389300

0.299758238412800 -1445.6622131755800 0.298421298401280 -1442.2467949389300

0.299758238412800 -1445.6622131755800 0.298421298401280 -1442.2467949389300

0.299758238412800 -1445.6622131755800 0.298421298401280 -1442.2467949389300

0.299758238412800 -1445.6622131755800 0.298421298401280 -1442.2467949389300

0.299758238412800 -1445.6622131755800 0.298421298401280 -1442.2467949389300

0.299758238412790 -1445.6622131755800 0.298421298401280 -1442.2467949389300

Table 1: Log-Likelihood vs Penalized Log-Likelihood Search Optimisation

In table 2 comparisons have been made between the log-likelihood and penalized log-likelihood function
values for a range of bandwidth estimates. From this table it can clearly be observed that the penalized log-
likelihood function is greater than the log-likelihood function. This should be the expected result when taking
previously discussed theoretical aspects of this topic into consideration, since the penalized log-likelihood
function is calculated by summing the penalty and log-likelihood function. In �gure 1 these values have been
plotted and this result can again be observed.
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Comparison Between Log-Likelihood and Penalized Log-Likelihood

Bandwidth Value of Log-Likelihood
Function

Penalty Value of Penalized
Log-Likelihood Function

0.025000000000000 -1560.8959532813500 5.560910674228800 -1555.3350426071200

0.050000000000000 -1478.1012405926600 4.544067210305000 -1473.5571733823600

0.075000000000000 -1463.0553982245000 3.990741522740560 -1459.0646567017600

0.100000000000000 -1456.7095274932200 3.722076229416410 -1452.9874512638100

0.125000000000000 -1453.0828745112900 3.594758533837190 -1449.4881159774500

0.150000000000000 -1450.6267562140200 3.532014455730630 -1447.0947417582900

0.175000000000000 -1448.8492534948500 3.495885047159390 -1445.3533684476900

0.200000000000000 -1447.5662423665600 3.471602899933940 -1444.0946394666300

0.225000000000000 -1446.6723734796500 3.453480876888990 -1443.2188926027600

0.250000000000000 -1446.0901770181600 3.438878126826010 -1442.6512988913300

0.275000000000000 -1445.7647671921700 3.426345052486790 -1442.3384221396900

0.300000000000000 -1445.6622227393300 3.415020466484520 -1442.2472022728500

0.325000000000000 -1445.7650839588900 3.404380051235420 -1442.3607039076600

0.350000000000000 -1446.0668320652600 3.394102993119300 -1442.6727290721500

0.375000000000000 -1446.5672149694600 3.383991927412580 -1443.1832230420500

0.400000000000000 -1447.2690858117500 3.373923852260300 -1443.8951619594900

0.425000000000000 -1448.1766160213300 3.363820734132330 -1444.8127952872000

0.450000000000000 -1449.2944296352600 3.353632359560380 -1445.9407972757000

0.475000000000000 -1450.6272193247200 3.343326414501230 -1447.2838929102200

0.500000000000000 -1452.1795528063500 3.332882648970780 -1448.8466701573800

Table 2: Comparison between Log-likelihood and Penalized log-likelihood

Figure 1: Log-likelihood vs Penalized log-likelihood

The graph in �gure 2 was generated using program 2(see appendix). From this graph it is observed that
the penalization approach to bandwidth estimation seems to have no e�ect on kernel density estimation, as
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these two density plots overlap exactly. The normal distribution curve in this case was simply used as a
reference point.

Figure 2: Normal distribution vs Standard KDE vs Penalized KDE

4 Conclusion

In this report the method of penalized maximum likelihood estimation was applied to estimate the kernel
density bandwidth. The results observed throughout this report have shown that the penalized maximum
likelihood approach to bandwidth estimation does in fact yield approximately the same curve as what the
standard maximum likelihood approach did. In conclusion suggesting that using the penalization approach
for bandwidth estimation in kernel density had no e�ect on the smoothness of the curve. These results are
not those which had been expected however research can be continued using di�erent data. This conclusion
however does not necessarily indicate that the penalization approach does not yield better results than the
usual approach, however this comparison has not been investigated in this report and can be explored further
in future research.
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5 Appendix

Program 1 :

proc iml ;
r e s e t noautoname ;

x = rannor ( j ( 1 0 00 , 1 , 1 ) ) ;

Si lverman = std (x ) ∗ (4/(3∗ nrow (x ) ) ) ∗ ∗ ( 1 / 5 ) ;

s t a r t LogLike l ihood (h) g l oba l ( x ) ;
n = nrow (x ) ;
l o g l i k e = −n∗ l og ( sq r t (2∗ constant ( ' PI ' ) ) ∗ n∗h ) ;

do j = 1 to n ;
l l temp = 0 ;
do i = 1 to n ;
i f i = j then l l temp = l l temp+0;
e l s e l l temp = l l temp+exp ( −(1/2)∗(( x [ j ]−x [ i ] ) / h ) ∗∗2 ) ;
end ;
l o g l i k e = l o g l i k e+log ( l l temp ) ;
end ;
re turn ( l o g l i k e ) ;
f i n i s h LogLike l ihood ;

/∗Find the maximum with a s imple search a lgor i thm ∗/
r e s u l t = j ( 2 0 , 2 ) ;
y = j (10 , 2 ) ;
a = 0 ;
b = 0 . 5 ;
do j = 1 to nrow ( r e s u l t ) ;
do i = 1 to nrow (y ) ;
y [ i , 1 ] = a+(b−a )∗ ( i /nrow (y ) ) ;
y [ i , 2 ] = LogLike l ihood (y [ i , 1 ] ) ;
end ;

i f y [ <: > ,2] = 1 then do ;
a = y [ y [ < : > ,2 ] , 1 ] ;
b = y [ y [ <: > ,2 ]+1 ,1 ] ;
end ;
e l s e i f y [ <: > ,2] = nrow (y ) then do ;
a = y [ y [ <: > ,2]−1 ,1] ;
b = y [ y [ < : > ,2 ] , 1 ] ;
end ;
e l s e do ;
a = y [ y [ <: > ,2]−1 ,1] ;
b = y [ y [ <: > ,2 ]+1 ,1 ] ;
end ;
r e s u l t [ j , ] = y [ y [ < : > ,2 ] , ] ;
end ;
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c = {"Bandwidth" "Value o f Log−Like l i hood Function "} ;

p r i n t r e s u l t [ l a b e l="Search Optimisat ion o f the Log−Like l i hood Function"
colname=c format =19 .15 ] ;

p r i n t Si lverman [ l a b e l="Silverman ' s Rule o f Thumb" ] ;

s t a r t mLogLikelihood ;
/∗Calcu la t e F i sher In format ion ∗/
s t a r t F i sh e r In t ( x i ) g l oba l (x , h ) ;
n = nrow (x ) ;
numerator = 0 ;
denominator = 0 ;
do i = 1 to n ;
numerator = numerator+exp ( −(1/2)∗(( xi−x [ i ] ) / h )∗∗2)∗ ( xi−x [ i ] ) / h ;
denominator = denominator+exp ( −(1/2)∗(( xi−x [ i ] ) / h ) ∗∗2 ) ;
end ;
re turn ( ( numerator ∗∗2)/ denominator ) ;
f i n i s h F i she r In t ;

z = { .M .P} ;
c a l l quad ( r , " F i sh e r In t " , z ) s c a l e=h ;

mll = LogLike l ihood (h)+(1/2)∗ l og (1/h∗∗2)+(1/2)∗ l og ( ( 1/ ( sq r t (2∗ constant ( ' PI ' ) ) ∗ h ) )
∗ r +1);
f i n i s h mLogLikelihood ;

/∗Find the maximum with a s imple search a lgor i thm ∗/
r e s u l t = j ( 2 0 , 2 ) ;
y = j (10 , 2 ) ;
a = 0 ;
b = 0 . 5 ;
do j = 1 to nrow ( r e s u l t ) ;
do i = 1 to nrow (y ) ;
h = a+(b−a )∗ ( i /nrow (y ) ) ;
y [ i , 1 ] = h ;
run mLogLikelihood ;
y [ i , 2 ] = mll ;
end ;
i f y [ <: > ,2] = 1 then do ;
a = y [ y [ < : > ,2 ] , 1 ] ;
b = y [ y [ <: > ,2 ]+1 ,1 ] ;
end ;
e l s e i f y [ <: > ,2] = nrow (y ) then do ;
a = y [ y [ <: > ,2]−1 ,1] ;
b = y [ y [ < : > ,2 ] , 1 ] ;
end ;
e l s e do ;
a = y [ y [ <: > ,2]−1 ,1] ;
b = y [ y [ <: > ,2 ]+1 ,1 ] ;
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end ;
r e s u l t [ j , ] = y [ y [ < : > ,2 ] , ] ;
end ;

c = {"Bandwidth" "Value o f Pena l i zed Log−Like l i hood Function "} ;

p r i n t r e s u l t [ l a b e l="Search Optimisat ion o f the Pena l i zed Log−Like l i hood
Function" colname=c format =19 .15 ] ;

/∗Compare the p en a l i s a t i o n approach ∗/
compare = j (20 , 4 ) ;
do i i = 1 to nrow ( compare ) ;
h = 0 . 5∗ ( i i /nrow ( compare ) ) ;
run mLogLikelihood ;
compare [ i i , 1 ] = h ;
compare [ i i , 2 ] = LogLike l ihood (h ) ;
compare [ i i , 4 ] = mll ;
compare [ i i , 3 ] = compare [ i i ,4]− compare [ i i , 2 ] ;
end ;

c = {"Bandwidth" "Value o f Log−Like l i hood Function" "Penalty "
"Value o f Pena l i zed Log−Like l i hood Function "} ;
gopt ions nobs
p r i n t compare [ l a b e l="Comparison Between Log−Like l i hood and Pena l i zed
Log−Like l i hood Functions " colname=c format =19 .15 ] ;

c r e a t e compare from compare [ colname={"Bandwidth" "LogLike l ihood "
"Penalty " "Pena l i zedLogLike l ihood " } ] ;
append from compare ;
c l o s e compare ;

qu i t ;

t i t l e ' Log−l i k e l i h o o d vs Pena l i zed log−l i k e l i h o od ' ;
proc s gp l o t data=compare ;
s e r i e s x = bandwidth y=LogLike l ihood ;
s e r i e s x = bandwidth y=Pena l i zedLogLike l ihood ;
run ;
ods _all_ c l o s e ;

Program 2 :

proc iml ;
n=1000;
mu = rannor ( j (n , 1 , 1 ) ) ;
h=0.299758238412790;
hp=0.298421298401280;∗ pena l i z ed ;

∗normal d i s t r i b u t i o n ;
s t a r t std_norm(x ) ;
fx =(1/( sq r t (2∗ constant ( ' pi ' ) ) ) ∗ exp (−(1/2)∗(x)##2));
r e turn ( fx ) ;
f i n i s h std_norm ;
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∗ ke rne l dens i ty e s t imat i on ;
s t a r t kde_norm(x ) g l oba l (n , h ,mu) ;
f =0;
do i =1 to n ;
f=f +(1/( sq r t (2∗ constant ( ' pi ' ) ) ∗ n∗h)∗ exp (−(1/2)∗((x−mu[ i ] ) / h)##2));
end ;
re turn ( f ) ;
f i n i s h kde_norm ;

∗ apply ing pena l i z ed bandwidth es t imator ;
s t a r t kde_pen (x ) g l oba l (n , hp ,mu) ;
fp=0;
do k=1 to n ;
fp=fp+(1/( sq r t (2∗ constant ( ' pi ' ) ) ∗ n∗hp)∗ exp (−(1/2)∗((x−mu[ k ] ) / hp)##2));
end ;
re turn ( fp ) ;
f i n i s h kde_pen ;

do j=−3 to 3 by 0 . 0 1 ;
x=x// j ;
fx=fx //std_norm( j ) ;
f=f //kde_norm( j ) ;
fp=fp //kde_pen ( j ) ;
end ;

x_kde_y=x | | fx | | f | | fp ;

c r e a t e s e t from x_kde_y [ colname={x fx f fp } ] ;
append from x_kde_y ;
qu i t ;

t i t l e ' Normal d i s t r i b u t i o n ( fx ) vs Standard KDE( f ) vs Pena l i zed KDE( fp ) ' ;
proc s gp l o t data=s e t ;
yax i s l a b e l=" Y " ;
s e r i e s x=x y=fx / l e g end l ab e l="Normal D i s t r i bu t i on "
l i n e a t t r s =(pattern=s o l i d th i c kne s s =0.2 c o l o r=Green ) ;
s e r i e s x=x y=f / l e g end l ab e l="Standard KDE"
L in ea t t r s=(pattern=dash th i c kne s s =0.2 c o l o r=blue ) ;
s e r i e s x=x y=fp / l e g end l ab e l="Pena l i zed KDE"
L in ea t t r s=(pattern=dot th i c kne s s =0.2 c o l o r=red ) ;
run ;
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Abstract

This report outlines image processing techniques for image comparison which provides e�ective approxi-
mations between the true/original image and a processed image. The development and improvement of
quality assessment techniques that attempt to replicate the characteristics of the human visual system is
essential for the �eld of image processing.
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1 Introduction

A greyscale image is an image that has various ranges of monochromatic shades i.e. shades from black to
white. Furthermore the pixels of greyscale images contain information because each and every pixel has a
speci�c luminance value. An image can be regarded as a function, f : S ⊆ Z2 → {0, ..., 255} for greyscale
images and f : S ⊆ Z2 → {0, 1} for binary images. The luminance value of a pixel refers to the degree of
brightness or intensity that is determined using a scale from black (0 intensity) to white (full intensity i.e.
255 for greyscale images and 1 for binary images). We represent an image as a matrix, see Figure 1. Figure
2 is a typical graphical repersentation of the surface of an image.

Figure 1: A matrix representing an image f : S ⊆ Z2 of the size N ×M pixels

Figure 2: Surface representation of an image

It should be noted that this report will focus on image comparison/error measures. Error measures are
used to assess the di�erence between two images by calculating the distance between the two images' object
pixels or picture functions. An image metric will measure the `distance' between two images f and g, that is
d(f, g). Hence error measures can be regarded as an approach in order to evaluate the numerical di�erence
between two images for comparison purposes. There exist objective and subjective methods that are used
to assess the image quality that mimic characteristics of the human visual system. The main goal of the
methods is to account for the visible errors that are present in the images, a reference image and a distorted
image, that are under comparison. Subjective methods for evaluation are considered time-consuming, costly
and inconvenient since it requires human involvement either through opinion or a ranking scale marked with
adjectives such as `Bad', `Poor', `Neutral', `Good' and `Excellent'. Objective methods are usually computer
algorithm based which requires input data to automatically calculate numerical values based on complex
formulae since computations become straightforward. The algorithm or model can be monitored, optimized
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and adjusted accordingly until satisfactory results are obtained. Therefore objective methods will be used to
determine the visual di�erences for image comparison metrics.

In the past research has been invested in binary error measures ∆b by Baddeley et al[3, 4, 57]. However a
greyscale measure ∆g that allows for an innovative metric for greyscale image comparison, aims to improve
the commonly used greyscale comparison measure and the root-mean-square error [57]. Since the focus of
this report is ∆g of Baddeley et al [57], a greyscale measure, the images used for comparison purposes are
hence greyscale images. Another metric, the Structural SIMilarity (SSIM) Index is a structural similarity
quality measure that is based on the formation of an image that is utilized in image quality assessment [53].
In this report both the ∆g and the SSIM metric will be analyzed with respect to implementation, application
and error sensitivity for certain types of distortions using di�erent image processing techniques. In this
report the results of applications of mainly the metrics ∆g and SSIM will be discussed with regard to the
comparison of di�erent images using di�erent image comparison processes. It is important to note that there
are a variety of image processing techniques. Image processing techniques include, for example, dilation and
erosion [30, 14, 23] , smoothing [32, 33, 13, 60, 36], compression [29, 51, 25], segmentation [63, 22, 59] and
sharpening [44, 49]. Image processing techniques have global e�ects on images and in greyscale images create
unrestricted errors since all the grey levels of the greyscale image may be a�ected. However segmentation
techniques in image processing that isolate a greyscale image into numerous segments in order to reduce the
information for straightforward pixel analysis will be integrated into the application of the metric ∆g for
greyscale image comparison. Segmentation can be classi�ed into �ve subcategories namely - region based,
edge based, threshold, feature based clustering and model based [22].

In this report image comparison techniques will be analyzed over the ICM segmentation techniques [12].

2 Literature Review

2.1 Image Metrics

BINARY METRICS

In the past image comparison was performed by calculating the correlation function, the root of the mean
square (RMS) or the signal to noise ratio until binary error measures were established [57]. The application
of binary error metrics requires the calculation of numeric measure (i.e. value) between two binary images
in order to determine the discrepancies. Binary error metrics have proved to be important in the quality of
image processing algorithms especially in the edge detection and classi�cation or segmentation. Furthermore
binary metrics have been compared with the misclassi�cation error rate [3, 57], Pratts �gure of merit [3] and
the Sobolev norm [57].

A GREYSCALE METRIC

We consider the greyscale metric introduced by Wilson et al [57] and Baddeley et al [57]. Although a
greyscale error metric is an extension of a binary error metric the main aim of metrics in applications for
image comparison is to use a metric that generates the optimal topology when working with images [57].
The greyscale metric of Wilson et al [57] has furthermore been tailored to reduce sensitivity due to changes
of pixels at large distances. Image processing techniques that result in global e�ects on the image such
as dilation/erosion, smoothing, compression and added noise have been applied to images and their e�ect
on the greyscale metric's e�ectiveness has been observed [57]. It has been documented that the global
distortions of images that had compression/dilation techniques applied, image comparison veri�ed that there
was hardly any di�erence between the errors detected by ∆g and those detected by both the RMS and Sobolev
norm. Nonetheless ∆g's response is considered as more optimal than the RMS response for certain types of
distortions. It is also important to note that ∆b and Δg metrics yield di�erent results for the comparison of
two binary images, however when both ∆b and Δg measure are normalized the results for the comparisons are
similar. Also di�erent distance measures, including ∆g, for points in an image grid have been tested to show
the relevance of the relationship between changes in grey levels with respect to changes in pixel positioning.
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The measure Δg has also had the potential possible application in image restoration algorithms to determine
the maximum number of cycles and highlight changes in a series of medical images [57].

THE SSIM METRIC

The goal in image processing applications is to essentially use a metric that, according to [53], optimizes
speci�cally the algorithms and parameter settings of image processing systems by e�ciently monitoring and
adjusting simultaneously the image quality. Thus image processing applications require a metric that is ideal
for benchmarking image processing algorithms and methods. This metric is based on the ability of the HVS
to extract structural information from an image or scene and is thus an excellent objective measure of the
perceived image quality. SSIM components such as the mean, variance, and cross-correlation between the
reference and the test image contribute to SSIM's quality evaluation of images. Simulation results verify
that the SSIM index is better than peak signal-to-noise ratio (PSNR) and mean square error (MSE). Image
quality assessment uses the SSIM index and for the overall quality evaluation of the image in comparison
use the measure de�ned as the mean SSIM (MSSIM) and is known to produce values that have uniformity
with the qualitative visual appearance. It essential to note that numerous advancements and modi�cations
have been made to the SSIM index to account for di�erent image comparison purposes and applications for
example:

• ESSIM and GSSIM [9, 10]: Although it has been proven that the SSIM index fails in yielding useful
results for images that are badly blurred, improved methods were developed: the Edge-based Structural
Similarity Index (ESSIM) and the Gradient-Based Structural Similarity (GSSIM). Both the ESSIM and
the GSSIM incorporate the characteristics of the HVS to extract structural information i.e. for the
human to `capture' a scene. Hence ESSIM and GSSIM regard edge information as the most important
structural information of an image. The structure comparison in the SSIM equation is replaced by an
edge based structure comparison equation for ESSIM. The contrast and structure comparison equations
are replaced in the SSIM formula with a gradient-based contrast and structure comparison equation
for GSSIM. Both ESSIM and GSSIM are useful for the image quality assessment especially for blurred
images since both are more consistent with HVS in comparison to the SSIM and PSNR. ESSIM and
the GSSIM have proven to have an optimal performance in image comparison for Gaussian blurred
images, compared to the PSNR and the SSIM.

• The SSIM Index Map for image enhancement [54]: The HVS is attracted to the image regions that are
low quality and that can potentially a�ect the quality evaluation of the entire image. The SSIM index
map can be used as a local perceptual quality indicator. The maximum of minimal structural similarity
criterion scheme is introduced to enhance the quality at the lowest quality region present in the image,
therefore improving the worst case scenario. Hence using this approach the coded image has a uniform
quality over the image space.

• MSSIM [55]: Disadvantages regarding the SSIM index exist since it is single scale method; hence
Multi-Scale Structural Similarity (MSSIM) has been introduced as it provides �exibility by allowing
for variations of the viewing conditions. One such variation that MSSIM allows for is the image
synthesis tactic that essentially calibrates parameters that assess and measure the relative importance
between di�erent scales, to obtain results closer to HVS than what the SSIM yields. Experimental tests
have con�rmed that the MSSIM index with the appropriate parameter settings outperforms numerous
metrics previously discussed including the SSIM index. The MSSIM component for cross correlation
that speci�cally evaluates pixel values across image scale to provide an indication of how well the edges
of images selected for comparison match. Hence for both the SSIM and the MSSIM index it has been
veri�ed that the image that maximized the cross correlation component with respect to a reference
image has similar (identical) edge information. It has also been noted that MSSIM is crude measure
that requires further development to obtain a more systematic approach which will produce a wider
range of applications.

• PIQA [16]: The PSNR, SNR and MSE display changes in the image quality and hence are not an
accurate representation of Human Visual System (HVS). The Perceptual Image Quality Assessment
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(PIQA) combined with visual perceptual masking was introduced to provide a possible solution to
the problem. PIQA has three similarity comparision measures namely: the luminance , the structure
and the contrast comparison measure (same as in SSIM) which assists in detecting �at or edge region
changes. PIQA aims to re�ne and enhance the ability of identifying the structural information in
both blurred and noisy images by using a structural tensor to encode the structural information. The
performance of the PIQA in image databases can be considered more superior to MSSIM, in speci�c
applications.

2.2 Image Processing Techniques

We introduce the basics of image segmentation which will be used for the comparison of the image metrics
in the application section.

Segmentation can be regarded as an essential modern day image processing tool that allows for automatic
image analysis and is regarded as an essential step of low-level vision of the image processing area [63]. Image
segmentation creates objects from grouped individual pixels to essentially obtain more information from an
image which can be regarded as a form of data mining. Segmentation methods are classi�ed into three groups
according to their ability to segment e�ectively, namely [63, 61]:

• Analytical (applicable only for evaluating segmentation properties that are algorithmic or implementa-
tion based)

• Empirical goodness

• Empirical discrepancy

Experimental results regarding these three groups for image comparison provide a ranking system of each
segmentation method's evaluation ability. It is important to note that irrespective of the numerous survey pa-
pers published regarding segmentation techniques, a single algorithm is not applicable to a broad spectrum of
images [63]. Furthermore it should also be noted that speci�c applications of segmentation techniques require
unique algorithms depending on the application and the goals/intention of the researcher/s. The performance
evaluation of segmentation algorithms is a crucial topic in ongoing segmentation research. Few research ef-
forts that focus on evaluation methods concentrate mainly on designing innovative evaluation methods and
seldom attempt to classify the existence of the di�erent evaluation methods [62, 61]. The performance of
the segmentation algorithms are usually assessed according to discrepancy measures or comparison with ex-
isting references or measured by goodness parameters. The empirical method is regarded as appropriate in
comparison to the analytical method for assessing the performance evaluation and the discrepancy method
(a subcategory of the empirical methods) is preferred, to the goodness methods, for the objective assessment
of the segmentation algorithms. However all the properties of segmentation algorithms cannot be obtained
from analytical studies. This is due to the general lack of theory for image segmentation [24]. A potential
classi�cation scheme for segmentation algorithms has been introduced [63, 61].

K-means segmentation obtains cluster centers that essentially minimize the sum of squares (SSE) distances
from each individual data point clustered to its cluster center [26] i.e. the center that is closest to it. Each
observation in the k clusters can then be regarded as being associated with the nearest mean of a certain
cluster. The disadvantages of the k−means algorithm are that it is dependent on the initialization, it is
extremely sensitive to outliers and can ideally only deal with clusters that have a spherical symmetrical point
distribution. Hence the adaptive k−means algorithm was proposed [58]. Lloyd's algorithm for k−means pro-
vides an e�cient implementation. The adaptive k−means clustering algorithm is regarded useful for image
segmentation since it has the ability of further segmenting the regions of intensity distributions that vary
in smoothness. The alternative hard k−means (AHKM) is a robust metric that can be used to replace the
classical Euclidean norm in the k−means clustering [58]. The AHKM metric in comparison to the Euclidean
norm has been proven in research to be more robust to noise and outliers and furthermore tolerate clusters
of unequal sizes [58, 19]. Experimental results based on numerical calculations have also noted that the
AHKM has a more favorable performance compared to the hard k−means. Therefore the AKHM metric
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in conjunction with the AHKM algorithm have been noted and recommended for applications that involve
cluster algorithms to image segmentation (especially MRI) [58].

The Iterated Conditional Modes (ICM) algorithm has been used for applications of segmentation and con-
sequently simulation annealing within the various segmentation categories. The ICM algorithm has initially
been used for image segmentation since it is both reliable and not computation intensive. Furthermore simu-
lated annealing optimizes sampling within segmented categories. The results obtained for optimized sampling
from using the ICM algorithm in conjunction with simulated annealing have proved to produce more powerful
optimal prospective sampling schemes designs [12].

Other examples of segmentation techniques are simulated annealing [27, 7, 18], thresholding [59, 45, 47], wa-
tershed transform [20, 14, 48, 31, 43, 50], model based segmentation [52, 28, 37] and multi-scale segmentation
[39, 6, 11, 34].

3 Image Metrics

One of the main aims of image processing is to obtain a visually smoother image by removing the noise
element present. The noise element may be due to numerous factors noted in Wang et al [53] for example
acquisition, processing, compression, storage, transmission and reproduction of the image. A subjective
evaluation approach is the referred to as the human visual investigation. However in order for the evaluation
approach to be objective qualitative methods are preferred and thus used instead. Furthermore the qualitative
evaluation approach can be subdivided into three categories [53]:

• Full reference, when there is a complete reference image that is undistorted available with known
certainty.

• Reduced-reference, where only a portion of the reference image can be accounted for as known and

• No-reference, where the reference image is unknown.

3.1 Binary Metric

Wilson et al [57] noted that comparisons between binary images were numerically made using one of two
techniques, which have been noted to originate from the study of edge detection algorithms, namely:

• Counting the number of pixels that are incorrectly present in the image considered for comparison
purposes i.e. the number of false positives with respect to an edge and the number of missed edges, are
counted and recorded, and

• Measuring the localization of these errors that were recorded by obtaining the di�erence i.e. how close
the response to the edge was in the comparison.

However numerous complications regarding these methods and their disadvantages were presented in [3] which
noted that although these methods presented reasonable measures of errors, the errors that were calculated
using the binary error measures were not accurate. The ∆b metric presented and discussed in Wilson et al
[57] is the Baddeley's ∆b presented in [3]. The Baddeley's ∆b metric derived is a measure that has been
noted to satisfy the necessary axioms of a metric [5] and in essence calculates the distance between the two
sets of pixels in images f and g, that is d(f, g). Note that d(f, g) can be regarded as the measure required
to evaluate the numerical di�erence between the two images f and g respectively. Both Matheron and Serra
[46, 38] propose that myopic topology is ideally the best topology for the study of binary images. The
myopic typology established by Matheron and Serra is generated by implementing the Hausdor� metric on
K ′, where K ′ denotes the class of all nonempty compact sets present in R2 [5]. The Hausdor� metric is
de�ned as follows:
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Figure 3: An illustration of 4− connectivity for pixel x

De�nition 1. For the metric space (X, d) and any two sets A, B ∈ K ′ the Hausdor� metric is:

H(A,B) = sup x∈X |d(x,A)− d(x,B)|

where d(x,A) = inf{d(x, a) : x ∈ X, a ∈ A} and for 4 − connectivity (see Figure 3) we use the cityblock
metric where d (x, a) is de�ned as d (x, a) = |x1 − a1|+ |x2 − a2| for x = (x1, x2) and a = (a1, a2). The dis-
crete version of the Hausdor� metric, namely Baddeley's ∆b metric introduced in Wilson et al [57], has been
implemented in applications for the comparison of binary images, to provide an improvement and resolve the
complications associated with existing metrics that have been previously used for binary image comparison
purposes. Let X ⊆ Z2 be a binary image with A, B ⊆ X now discrete sets of Z2. Baddeley's ∆b metric is
de�ned as follows:

∆b(A,B) =

[
1

card(X)× cp
∑
x∈X
|d∗(x,A)− d∗(x,B)|p

] 1
p

for 1 ≤ p ≤ ∞,

∆b(f1, f2) =

[
1

card(X)× cp

(∑
x∈X
|d∗(x,A1)− d∗(x,A2)|p +

∑
x∈X
|d∗(x,B1)− d∗(x,B2)|p

)] 1
p

where card(X) is the number of elements in X, d∗(x,A) = min{{d(x, a) : a ∈ A}, c}} on (X ⊆ Z2, d),
d(x1, x2) = min{k : k = card(P )} where P is a path (see Figure 4) between x1 and x2 via 4-connectivity, c
is a bounding constant ensuring no points further than paths of length c contribute to the metric and where
A1 be the set of black pixels in f1 and B1 be the set of white pixels in f1 and respectively let A2 be the set
of black pixels in f2 and B2 be the set of white pixels in f2. The parameters p and c are used to denote the
tradeo� between the localization error and misclassi�cation error respectively. For p = 1, ∆b results in the
average of the errors i.e. the distance transform discrepancies at each pixel in the image. Whereas p = 2
results in the root mean square (RMS) error. It is important to note that there is a direct relationship between
larger errors and the value of p, since larger values of p emphasize greater errors since ∆b is equivalent to the
Hausdor� metric as p→∞. In summary ∆b evaluates the shortest distance between every pixel x ∈ X with
respect to the two sets A, B ⊆ X. For example consider some possible paths for 4-connectivity of d(x1, x2)
within Figure 4. In Figure 4, the purple path illustrated represents a possible path. The red path is the
shortest possible path and is regarded as the path with the shortest distance that is included in the metric
calculations, d(x1, x2) = min{k : k = card(P )}.

Example

The following example illustrates an application of Baddeley's ∆b metric.
Consider two binary images f1 and f2 shown in Figures 5 and 6 respectively, each a 10× 10 matrix with do-
main X = {(i, j) : i, j = 1, 2 . . . 10}. Let A1 be the set of black pixels in f1 and B1 be the set of white pixels
in f1 and respectivelworst casey let A2 be the set of black pixels in f2 and B2 be the set of white pixels in f2.
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Figure 4: Some possible paths using 4-connectivity between x1 and x2

Figure 5: Image f1 with the set of black pixels A1 and white pixels B1
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Figure 6: Image f2 with the set of black pixels A2 and white pixels B2

Note that for binary images f1 : S ⊆ Z2 → {0, 1} and f2 : S ⊆ Z2 → {0, 1} to calculate ∆b(A1, A2) we set
p = 1 and c = 3:

∆b(A1, A2) =

[
1

100× 31

∑
x∈X
|d∗(x,A1)− d∗(x,A2)|

]
where

d∗(x,Ai) = min{d(x,Ai}, c = 3} = min{min{d(x, a) : a ∈ Ai}, c = 3}}, i = 1, 2.

Then

• For x11 = (1, 1) :
d∗(x11, A1) = min{min{d(x11, a) : a ∈ A1}, c = 3}} = min{0, 3} = 0
d∗(x11, A2) = min{min{d(x11, a) : a ∈ A2}, c = 3}} = min{1, 3} = 1 and
|d∗(x,A1)− d∗(x,A2)| = |0− 1| = 1

• For x21 = (2, 1) :
d∗(x21, A1) = min{min{d(x21, a) : a ∈ A1}, c = 3}} = min{0, 3} = 0
d∗(x11, A2) = min{min{d(x21, a) : a ∈ A2}, c = 3}} = min{0, 3} = 0 and
|d∗(x,A1)− d∗(x,A2)| = |0− 0| = 0

• For x36 = (3, 6) :
d∗(x36, A1) = min{min{d(x36, a) : a ∈ A1}, c = 3}} = min{4, 3} = 3
d∗(x36, A2) = min{min{d(x36, a) : a ∈ A2}, c = 3}} = min{5, 3} = 3 and
|d∗(x,A1)− d∗(x,A2)| = |3− 3| = 0

Therefore, continuing in this manner

∆b(A1, A2) =
[

1
100×31

∑
x∈X |d∗(x,A1)− d∗(x,A2)|

]
= 1

100×31 [(1 + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0) + (0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0)+
(1 + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0) + (0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0)+
(1 + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0) + (0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0)+
(1 + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0) + (0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 0)+
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(0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 0) + (0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 0)]
= 19

300
=0.0633

Similarly to calculate to calculate ∆b(B1, B2)

• For x11 = (1, 1) :
d∗(x11, B1) = min{min{d(x11, b) : b ∈ B1}, c = 3}} = min{2, 3} = 2
d∗(x11, B2) = min{min{d(x11, b) : b ∈ B2}, c = 3}} = min{0, 3} = 0 and
|d∗(x,B1)− d∗(x,B2)| = |2− 0| = 2

• For x21 = (2, 1) :
d∗(x21, B1) = min{min{d(x21, b) : b ∈ B1}, c = 3}} = min{2, 3} = 2
d∗(x11, B2) = min{min{d(x21, b) : b ∈ B2}, c = 3}} = min{1, 3} = 1 and
|d∗(x,B1)− d∗(x,B2)| = |2− 1| = 1

• For x36 = (3, 6) :
d∗(x36, B1) = min{min{d(x36, b) : b ∈ B1}, c = 3}} = min{0, 3} = 0
d∗(x36, B2) = min{min{d(x36, b) : b ∈ B2}, c = 3}} = min{0, 3} = 0 and
|d∗(x,B1)− d∗(x,B2)| = |0− 0| = 0

Therefore, continuing in this manner

∆b(B1, B2) =
[

1
100×31

∑
x∈X |d∗(x,B1)− d∗(x,B2)|

]
= 1

100×31 [(2 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0) + (1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0)+
(2 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0) + (1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0)
(2 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0) + (1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0)
(2 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0) + (2 + 1 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 0)
(1 + 1 + 0 + 0 + 0 + 0 + 1 + 2 + 1 + 0) + (0 + 0 + 0 + 0 + 0 + 1 + 2 + 3 + 2 + 1)
= 34

300
=0.1133

Therefore,

∆b(f1, f2) =
[

1
100×31

(∑
x∈X |d∗(x,A1)− d∗(x,A2)|1 +

∑
x∈X |d∗(x,B1)− d∗(x,B2)|1

)] 1
1

=
[

1
100×31

∑
x∈X |d∗(x,A1)− d∗(x,A2)|1 + 1

100×31
∑
x∈X |d∗(x,B1)− d∗(x,B2)|1

] 1
1

= 19
300+ 34

300
=0.1767
The smaller the values of ∆b(A1, A1) and ∆b(B1, B1) concurrently the closer the binary image similarity.

Note it can be shown similarly that ∆b(A1, A1) = 0 and ∆b(B1, B1) = 0 . This property is essential for any
valid metric.

Results of ∆b applications

Example 1. Considering the images f1 and f2 depicted in Figures 5 and 6 respectively by applying the
Matlab code provided in the Appendix we obtain ∆b(f1, f2) = 0.1767 as calculated previously using the
de�nition de�ned for Baddeley's ∆b metric.
Example 2. However considering the case where the image in Figure 5 is compared to itself, applying the
Matlab code provided in the Appendix we obtain that the ∆b metric for the black pixels when f1 is compared
with f1 is calculated as ∆b(f1, f2) = 0. The results obtained indicate that the images compared are identical
and furthermore veri�es that ∆b metric is a valid metric.
Example 3. Similarly when the image in Figure 6 is compared with itself the results obtained for the ∆b

metric are given as ∆b(f1, f2) = 0. The results once again indicate that the images compared are identical
and veri�es that Baddeley's ∆b metric is a valid metric.
Example 4. The following conditions are assumed when comparing a pure black image and a pure
white image. Suppose that B is a black image and A is a white image. Therefore it is clear that d∗ (x,A) =
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0 , since x ∈ A and we need to de�ne d∗ (x,Ac) = 1 since Ac = ∅. Thus when a f1 and f2 are de�ned to be
a 10 × 10 white matrix (i.e. matrix of ones, full intensity) and a 10 × 10 black matrix (i.e. matrix of zeros,
zero intensity). The following result is obtained for Baddeley's ∆b metric, ∆b (f1, f2) = 0.6667. The result
is approximately similar to the results obtained in [3]. Since the calculated ∆b (f1, f2) can be regarded as
closer to 1 than 0 and since it follows that when Baddeley's ∆b metric is equal to one is indicative of the fact
that each and every pixel in the respective images f1 and f2 di�er signi�cantly.

3.2 Greyscale Metric

The greyscale metric ∆g established by Wilson et al [57] is an extension of Baddeley's ∆b metric [57]. The
metric ∆b was extended to greyscale images in Wilson et al in order to preserve the theoretical basis that
∆b was de�ned for and hence establish the greyscale metric ∆g which generates the optimal topology that is
appropriate especially for dealing with a variety of images.
Wlison et al [57] consider two greyscale images f and g and de�ne the distance between the subgraphs as
follows:

De�nition 2. For a greyscale image f : X → Y = {0, 1, . . . , 255}, the subgraph Γf of f is de�ned as the
set of all points in Z3 that lie between the graph of f and the plane:

Γf =
{

(x, y) : x ∈ X ⊂ Z2, y ∈ Y and y ≤ f (x)
}
.

We then de�ne the distance between points in a subgraph as:

d ((x, y) , (x′, y′)) = max {d (x, x′) , |y − y′|} (1)

where d (x, x′) is the same path de�nition as before.

We further de�ne the upper level for a greyscale image:

De�nition 3. The upper level at y for a greyscale image f , is denoted as

Xy (f) = {x : f(x) ≥ y }

so that Xy (f) is a subset of the domain X that is formed by thresholding f at y.

We now de�ne the distance from a point in X to the set Xy (f).

De�nition 4. The distance from a point x ∈ X to the set Xy (f) for a chosen y is de�ned as follows:

d (x, Xy (f)) = min {d (x, x′) , x′ ∈ Xy (f)} . (2)

The next distance we de�ne establishes a function that yields the distance between a point (x, y) ∈ X×Y
i.e. the whole volume X × {0, 1, . . . , 255} , and the subgraph Γf ⊆ X × Y :

d ((x, y) , Γf ) = min {d ((x, y) , (x,′ y′)) : (x′, y′) ∈ Γf} = min
y′∈Y

{
min

x′∈Xy′ (f)
[max {d (x, x′) , |y − y′|}]

}
= min

y′∈Y

{
max

[
min

x′∈Xy′ (f)
{d (x, x′) , |y − y′|}

]}
= min
y′∈Y

{max [d (x, Xy′ (f)) , |y − y′|]} .
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Wilson et al [57] continue to establish the greyscale metric by reducing the number of intensity levels that are
investigated to determine the minimum, by bounding d((x, y),Γf ) with a constant c > 0, therefore reducing
the sensitivity of ∆g. The mathematical formula involved with reducing the number of intensity levels to
establish ∆g is:

d∗ ((x, y) , Γf ) = min {d ((x, y) ,Γf ) , c} = min

{
min
y′∈Y

{
max

{
d
((
x, X ′y (f )

))
, |y − y′|

}}
, c

}
. (3)

Therefore reducing the number of intensity levels that need to be checked to determine the minimum in
equation (3) by additionally letting:

d∗ ((x, y) , Γf ) = min
y′:|y−y′|≤c

(
max

{
d
(
x, X ′y (f )

)
, |y − y′|

}
, c
)
.

The bounded distance between the subgraphs of two images f and g at the point (x, y) is then denoted as:

|d∗ ((x, y) , Γf )− d∗ ((x, y) , Γg)| .

De�nition 5. Suppose that two images f and g are de�ned on the pixel matrix X that have the same
number of possible greylevels. De�ne Γf and Γg as the subgraphs of the respective images f and g, then the
greyscale metric, ∆g is de�ned as:

∆g(Γf , Γg) =

 1

n(X)× n(Y )× 256× cp
∑
x∈X

∑
y∈Y
|d∗ ((x, y) , Γf )− d∗ ((x, y) , Γg)|p

 1
p

for 1 ≤ p <∞.

The formula established for ∆g is applicable to all greyscale images and but is only applicable to special
cases of binary images. Wilson et al [57] stresses that the converse is not true for the binary image metric,
∆b.

Results of ∆g applications with comparison to Baddeley's ∆b metric

Example 5. Considering a similar example in the application section of [3] we use two greyscale images
f and g depicted in the respective Figures 7 and 8. Notably f and g are referred to as chessboard images.
The ∆g metric calculated by implementing the Matlab code in the Appendix yielded ∆g (Γf ,Γg) = 0.0013
indicating that images f and g are similar since the volumes under the subgraphs of the images f and g are
similar. However applying the Matlab code for Baddeley's ∆b metric to the images the results obtained are
∆b (f, g) = 0.6667, since the calculated Baddeley's ∆b metric is close to 1, it indicates that the images are
structurally di�erent.
Example 6. However considering the case where image f is compared to itself, applying the Matlab code
provided in the Appendix the ∆g metric is calculated to be ∆g (Γf ,Γf ) = 0. Hence this result emphasizes,
as in the case with Baddeley's ∆b metric, that the images compared are identical since there is no structural
di�erence present in the images compared and that ∆g is therefore a valid metric.
Example 7. Similarly as in Example 6 when image g is compared to itself, the ∆g metric is computed as
∆g (Γg,Γg) = 0. Once again the result con�rms that ∆g is a valid metric and that the images compared are
identical i.e. no structural di�erence.
Example 8. The results obtained when comparing �rstly images f , a 10 × 10 matrix of zeros with g, a
10 × 10 matrix of ones was ∆g = 0.0039. However when comparing f with a 10 × 10 greyscale image g
where the intensity at each pixel position is 255 i.e. full intensity (a matrix of elements with intensity value
of 255 for each pixel position) ∆g = 0.9922. Thus the more similar the volumes of the subgraphs of the
compared images are, the closer the calculated ∆g metric is to zero. Hence indicating that the images are
not structurally di�erent.
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Figure 7: Image f with a checkerboard of pixel intensities of 0's and 1's.

Figure 8: Image g with a checkerboard of pixel intensities of 1's and 0's.
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3.3 Structural similarity icalculated tends to be a value is not signi�cantly dif-
ferent from ndex (SSIM)

The structural similarity index (SSIM) is introduced in order to provide a framework for image quality
measure and assessment based primarily on the adaptive capabilities of the human visual system (HVS) to
extract structural information from an image or viewing �eld, providing a measure for the change in the
structural information present in the image and hence is an optimal approximation to the perceived image
distortion [53].

The structural similarity (SSIM) index de�ned in Wang et al [53] focuses predominantly on the luminance
of the surface of an object that is observed. The surface luminance of the observed object is de�ned as the
product of the illumination and the re�ectance, however the object structures present in the image are
regarded as independent of the illumination. Since the aim of the SSIM index is to investigate speci�cally
the structural information present in the image, the in�uence of the illumination within the image needs
to separated. Wang et al [53] consider image structural information as the qualities or characteristics that
represent the structure of the object within image, that are independent from the average luminance and
contrast. Local luminance and local contrast need to be de�ned for application purposes since the luminance
and contrast present in an image vary considerably.

In order to introduce the structural similarity index it is important to note that images are regarded as
highly structured since the pixels of an image usually have strong dependencies. The dependencies contain
essential information regarding the structure of the image i.e. information regarding the objects that are
present with the image. The SSIM algorithm approach emphasizes that SSIM has three elementary com-
parisons namely luminance, contrast and structure that is required for the task of computing the similarity
measurement. Suppose that f and g are two images, with one of the images, f is considered to have �awless
or ideal quality, so that the similarity measure acts as a quality measurement of image g [53]. The SSIM
algorithm is applied locally to the image. The algorithm requires for the image quality assessment image
statistical features, image distortions and the localized quality measurement that yield relevant information
regarding the quality degradation of the image. The application of the SSIM algorithm incorporates the cal-
culation of the local statistics µf8 , σf8 and σf8g8 (de�ned below). The local statistics are computed using an
8× 8 matrix that moves over the entire image pixel by pixel. At each step i.e. each pixel by pixel movement,
the SSIM index is calculated. The SSIM is de�ned and obtained as follows in Wang et al [53]:

• Firstly the luminance of each 8× 8 image block, the mean intensity is calculated:

µf8 =
1

N

N∑
i=1

f8 (xi).

The luminance comparison function is then denoted as l(f8, g8) and is regarded as a function of
µf8 and µg8 .

• Remove the mean intensity from the image. The resultant image is de�ned as f−uf8

• The image contrast unbiased estimate is de�ned as

σf8 =

(
1

N − 1

N∑
i=1

(f (xi)− µf8)
2

) 1
2

.

The function c(f8, g8) is then de�ned as the contrast comparison between f and g and is a function of
σf8 and σg8 .

• Furthermore the image is normalized by dividing by the standard deviation of the particular image
considered, in order to obtain a unit standard deviation. Thereafter the structure comparison function

s(f8, g8) is conducted on the normalized images, namely
(f8−µf8)

2 and
(g8−µg

8
)

2 .
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• The overall similarity measure is obtained by combing the independent results as follows

S (f8, g8) = f (l (f8, g8) , c (f8, g8) , s (f8, g8)) .

The luminance comparison l (f8, g8) , is explicitly de�ned as

l (f8, g8) =
2µf8µg8 + C1

µ2
f8

+ µ2
g8 + C1

where C1 = (K1L) is included to avoid instability when the term µ2
f8

+µ2
g8 is close to zero. Note that L

is the range of the pixel values i.e. for greyscale images the range is 255 and 1 for binary images, and
K1 � 1 is a constant. Another formulation of l (f8, g8) taking into account the sensitivity of the HVS
to changes in the relative luminance is established by de�ning R as the luminance change that is relative
to the background luminance. The luminance of the distorted image is de�ned as µg8 = (1 +R)µf8 ,
substituting this into l (f8, g8) obtain the luminance comparison as

l (f8, g8) =
2 (1 +R)

1 + (1 +R)
2

+ C1

µ2
f8

.

• The contrast comparison function is similarly de�ned as

c (f8, g8) =
2σf8σg8 + C2

σ2
f8

+ σ2
g8 + C2

where C2 = (K2L)
2
and K2 � 1. The function c (f8, g8) has a feature that is regarded as consistent

with the human visual system (HVS) being less sensitive to contrast change.
Finally the structure comparison s (f8, g8) is calculated.

s (f8, g8) =
σf8g8 + C3

σf8σg8 + C3

where C3 is a constant and σf8g8 is the correlation between f8 and g8 and is de�ned as

σf8g8 =
1

N − 1

N∑
i=1

(f (xi)− µf8) (g (xi)− µg8) .

The structure comparison s (f8, g8) can take on negative values.

• The comparisons de�ned as the functions l (f8, g8) , c (f8, g8) and s (f8, g8) establish the similarity
measure, the structural similarity measure (SSIM), between the 8× 8 image blocks in f and g,

SSIM (f8, g8) = [l (f8, g8)]
α · [c (f8, g8)]

β · [s (f8, g8)]
γ

(4)

where α > 0 , β > 0 and γ > 0. The parameters α, β and γ are used to adjust the relative importance
of the functions.

• The functions l (f8, g8) , c (f8, g8) and s (f8, g8) satisfy the three properties required by the structural
similarity index (SSIM) - symmetry, boundedness and the unique maximum [53].
The SSIM is de�ned speci�cally as in [53] the simpli�ed form with α = β = γ = 1 and C3 = C2

2 for each
8× 8 image block

SSIM (f8, g8) =
(2µf8µg8 + C1) (2σf8g8 + C2)(

µ2
f8

+ µ2
g8 + C1

)(
σ2
f8

+ σ2
g8 + C2

) .
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• However in practice an overall quality measure for the whole image is needed, thus the mean of the
SSIM index is used, the MSSIM

MSSIM (f, g) =
1

N

L∑
j=1

SSIM
(
f8j , g8j

)
where f and g are the reference (perfect quality) and distorted image respectively and f8j and g8j are
the contents of the image at the jth 8× 8 image block and L is the number of 8× 8 image blocks that
are present in the image.
The SSIM measure is applied to each pixel in the image using an 8× 8 image blocks and the average of
the SSIM values is computed as the MSSIM, the mean structural similarity index. Notably the closer
the MSSIM value is to 1 is representative of a stronger similarity. Depending on the application it is
possible to calculate the weighted average of the di�erent samples in the SSIM map.

Wang et al [53] introduce the SSIM measure in order to penalize the errors present in the image based on
the visibility of the particular error, in order to emulate the human visual system as close as possible.

3.3.1 Advances on the SSIM Measure

Edge based structural similarity

Chen et al [9] acknowledged that numerous researchers have concluded that the HVS i.e. the human eye is
highly sensitive to an image's edge and contour information since the edge and contour information of the
image can be regarded as essential information regarding the image's structure that the human eye requires
in order to capture the scene. The edge based structural similarity (ESSIM) is an improvement of the SSIM
algorithm. The ESSIM compares the edge information of the distorted image block with the original perfect
quality image block, thus replacing s (f8, g8) in the SSIM de�ned in equation (4) by e (f8, g8), the edge based
structure comparison which takes into account edge distortion. The ESSIM is de�ned as:

ESSIM (f8, g8) = [l (f8, g8)]
α · [c (f8, g8)]

β · [e (f8, g8)]
γ
.

Gradient based structural similarity

Chen et al [10] emphasize that the human visual system is very sensitive to an image's edge and contour
information since important structural information for the image can be obtained from the edge and contour
information which enables the human visual system to capture the scene. The gradient based structural
similarity (GSSIM) compares the distorted image block and the perfect quality image's edge information. It
replaces both c (f8, g8), the contrast comparison, and s (f8, g8), the structure comparison, in the SSIM index
de�ned in equation (4). The functions cg (f8, g8) and sg (f8, g8) are the gradient contrast comparison and
gradient structure comparison that replace c (f8, g8) and s (f8, g8) respectively. The GSSIM is de�ned as:

GSSIM (f8, g8) = [l (f8, g8)]
α · [cg (f8, g8)]

β · [eg (f8, g8)]
γ
.

4 Segmentation

Segmentation is simply the process that partitions the domain of an image into systematically interpretable
regions. These non-overlapping regions are regarded as a set, thus the union of the non-overlapping regions
is the entire true image[61]. Optimal image segmentation implies that the regions of an image segmentation
application need to be uniform and homogeneous with regard to any image characteristic consideration such
as grey tone or texture. The main goal of segmentation is to decompose the image into partitions that
are essentially meaningful with regard to a speci�c application. Currently there exists a comprehensive and
innovative variety of image segmentation techniques that have emerged in the �eld of image processing. Image
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segmentation techniques are considered to be classi�ed for either broad/general purpose image comparison
applications or speci�cally designed specialized categories of images. Therefore segmentation is application
speci�c since the task required determines the models.
Image segmentation techniques can be regarded as either edge based detection, region or model based or
feature based clustering [22].

Image segmentation can be referred to as a clustering process, however there is a distinct di�erence
between image segmentation and clustering. Clustering is de�ned in [22]. Clustering with respect to image
pixels is de�ned as the grouping or dividing an image consisting of a �nite number of pixels into smaller
groups or sets of pixels based on distinguishable characteristics.
Segmentation that implements clustering has two distinct approaches:

• Approach 1: The steps involved include �rstly divisive clustering i.e. top-down clustering [17], par-
titioning and splitting of the image. Thus the image is recursively partitioned into numerous re-
gions/components

• Approach 2: The steps involved include agglomerative clustering [2, 40], grouping and merging. There-
fore beginning with small regions/components i.e a small partition of image pixels and recursively
merging the existing clusters.

Image segmentation techniques for edge based segmentation evaluation is classi�ed in [61] based on the
method implemented namely:

• Pixel based methods:
Is a method whereby pixels with similar characteristics for instance colour or texture are grouped into
an interpretable region. Examples of pixel based methods include clustering, adaptive k-means[19] and
histogram thresholding[22].

• Region based methods:
This method de�nes objects present within the image into pixel regions that display homogeneous
features/characteristics. Examples of region based methods that group pixels based on pixel similarities
are the split-and-merge and the region growing technique[22].

• Boundary based methods:
Are distinctly di�erent compared to the pixel based methods and region based methods since inter-
pretable regions are de�ned as pixels that are surrounded by closed boundaries which are present within
the image. Boundary based methods are advantageous since it allows for the occurrence of signi�cant
characteristic variations of pixels within a closed boundary, examples include edge �ow[35].

Segmentation is regarded as a critical in image processing since segmentation in e�ect is an image processing
technique that considers interpretable regions of pixels classi�ed according homogeneous image characteris-
tics instead of evaluating each and every pixel present within the evaluated image. Segmentation is typically
implemented in image processing applications in order to locate objects and boundaries present within an
image. The various image segmentation techniques listed have advantages and disadvantages noted and dis-
cussed in detail in [22, 61]. Segmentation techniques have applications predominately involved in medical
diagnosis [22, 21]. First we introduce the simplest segmentation algorithm namely the k-means. We need the
de�nition of the Euclidean norm therein and thus de�ne it below.

In order to de�ne the various metrics and image processing techniques referred to in this report an appro-
priate distance measure needs to be chosen. The Euclidean norm is a widely used distance measure. On the
p -dimensional Euclidean space, Rp the of length of the vector x = (x1, x2, . . . , xp) is de�ned as

‖x ‖2 =
√
x21 + x22 + . . .+ x2p.

The formula gives the distance from the origin to the point x [5]. However for image processing metrics
and techniques since the distance will be measured between pixels from di�erent images the formula is altered
accordingly:
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∆(zi−z) = ‖ zi−z ‖2 =
√

(zi1−z1)2 + (zi2−z2)2 + . . .+ (zip−zp)2.

4.1 k-means algorithm

The k-means algorithm, also referred to as the k-means clustering algorithm, is an essential algorithm that
has been implemented in image processing. The k-means algorithm considers a set of pixels, with an integer
k representing the number of groups that is required to classify each pixel in an image into an appropriate
cluster. The k-means algorithm therefore determines a set of k points in Rp, referred to as cluster centers,
that minimize the Euclidean distance between each image pixel to the nearest cluster center. The main aim
of the k-means is to minimize the maximum distance from each image pixel to its closest cluster center. It
is important to note that the k-means algorithm is sensitive to noise and outliers. Furthermore the k-means
algorithm ultimately aims to minimize the within cluster variability given that there exists k clusters.

• Step 1: Initialization
If given p pixels x1, x2, . . . , xp partition the pixels into k clusters de�ned as S = {S1, S2, . . . , Sk}.
Determine and de�ne the k cluster centers for each cluster partitioned (initial centers can be chosen
randomly but a�ect the convergence of the algorithm). Denote the k clusters as ω1, ω2, . . . ωk and the
mean of each cluster as µ1, µ2, . . . , µk.

• Step 2: Classi�cation
For each of the image pixels represented in the image calculate the Euclidean distance between each
image pixel and the mean of the respective cluster centers. From these calculations the nearest cluster
center is determined and thus each image pixel is included in the cluster that related to the nearest
cluster center. The within cluster variability is measured by the sum of square errors (SSE) de�ned as

SSE =

k∑
i=1

ni∑
j=1

∥∥∥x(i)
j −µi

∥∥∥2
2
.

The notation ni represents the number of pixels in the ith cluster and x
(i)
j

(
i.e. x

(i)
1 , x

(i)
2 , . . . , x

(i)
ni

)
the

jth pixel in the ith cluster. In order to achieve minimizing the SSE the problem therefore reduces in

order to minimize the each and every individual term for each x
(i)
j , the jth pixel in the ith cluster:∥∥∥x(i)

j −µi

∥∥∥2
2

=
(
x
(i)
j −µi

)
•
(
x
(i)
j −µi

)
.

Since the SSE is the Euclidean distance assign each pixel to the cluster whose mean yields the smallest
term in the SSE, that is, cluster i at iteration t is such that:

S
(t)
i =

{
xj :

∥∥∥x(i)
j −µi

∥∥∥2
2
≤
∥∥∥x(i)

j −µp

∥∥∥2
2
, p = 1, 2, . . . k

}
• Step 3: Cluster center calculation
For each cluster created in step 2, the cluster center is recalculated i.e. update the cluster center for
each cluster:

µupdatedi =
1

card
(
S
(t)
i

) ∑
xj∈S(t)

i

xj

• Step 4: Convergence condition
Steps 2 and 3 of the algorithm are repeated until the convergence condition is satis�ed. The convergence
condition dictates that the number iterations, repeating steps 2 and 3, are stopped only once there exists
no observable change between the image pixels present in the various clusters or when the di�erence
between the cluster centers at consecutive iterations is smaller than a given threshold.
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4.2 Fuzzy k-means

The k-means algorithm has been noted to be an image segmentation process that is also referred to as hard
clustering since the partitioning of the pixels into k mutually exclusive clusters is implemented so that the
pixels in each cluster simultaneously remain as close as possible to the other surrounding pixels, however a
substantially far distance apart from pixels in di�erent clusters [19]. The k-means algorithm is referred to as
hard clustering since each pixel can only belong to one cluster. The fuzzy k-means (FKM), based on Ruspini
Fuzzy clustering theory which was proposed in 1980's [19] is an alternative to the standard k-means algorithm
that incorporates a parameter that represents the degree of fuzziness with respect to the cluster assignments.
The fuzzy parameter is denoted as m. The clusters in FKM algorithm are constructed according to the
distance between the pixels and the cluster centers that are present in each cluster. FKM is referred to as a
data clustering technique whereby the data set of pixels are grouped into k clusters, where every data point
in the dataset is associated with every single cluster and therefore every data point has simultaneously a
degree of belonging to every cluster. Although the FKM clustering techniques is mainly based on the fuzzy
parameter m that represents the fuzzy behavior present in the data set of pixels, the algorithm provides a
technique which can be considered as natural since it yields a clustering whereby the weights have a natural
interpretation that is not probabilistic. It has been noted that the FKM algorithm is similar in structure,
behavior and comparably similar results to the k-means algorithm, and [19] concludes that the k-means
algorithm is superior to the FKM algorithm due to the additional computational time required to determine
the fuzzy measures that are involved in the algorithm.

• Step 1: Initialization
Assign each pixel xp a fuzzy coe�cient, ωi(xp) that represents the degree of association of xp with

cluster i such that
∑k
i=1 ωi(xp) = 1 holds for each xp. A large coe�cient ωi(xp) is indicative of a

stronger association with the respective cluster. Initially uniform weights are assigned.

• Step 2: Cluster center calculation
The cluster centers are computed using the formula

µi =

∑
xp
ωi(xp)

mxp∑
xp
ωi(xp)m

where the notation m represents the fuzzy exponent. The fuzzy exponent is usually set to m = 2.

• Step 3: Updating the coe�cients
The fuzzy coe�cients are then updated. The formula for updating the fuzzy coe�cients for each pixel
xp and i = 1, 2, . . . , k can be regarded as the inverse distance from the pixel to the cluster

wi(xp) =

 K∑
j=1

(
‖µi − xp‖2
‖µj − xp‖2

) 2
(m−1)

−1 .
• Step 4: Convergence condition
If the condition for convergence is satis�ed when the coe�cients no longer change signi�cantly, that is
the Euclidean is less than some ε, the algorithm will stop. The ε > 0 is an arbitrarily small positive
number often referred to as the threshold. If the condition for convergence is not satis�ed then the
algorithm will repeat steps 2 to 3 until the convergence criteria is satis�ed [8].

4.3 Thresholding

Thresholding is an image processing technique that is regarded as one of the simplest techniques of image
segmentation. Thresholding is essentially a method by which a greyscale image is converted into a binary
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image [1, 41]. In the simplest application of thresholding the individual pixels present in an image with an
pixel intensity value that is greater than a chosen threshold value are labeled as �object� or foreground pixels,
[41]. Since thresholding creates a binary image from a greyscale image all the pixels that have intensities
below the speci�ed threshold level, the background pixels, are represented by a black pixel and similarly
all the pixels that are considered as the foreground of the image, are represented by a white pixel. This
allocation is de�ned as threshold above. Threshold below considers pixels that are below the threshold to be
the foreground, essentially the opposite of threshold above. Note that since the greyscale image is converted to
a binary image, using the threshold above allocation each background pixel which is a black pixel is assigned
a value of 0 and all the �object� pixels which are white are assigned a value of 1. Therefore the binary image
is �nally created from the greyscale image by colouring each pixel either black or white depending on the
image pixel's labels [41].
A variety of thresholding techniques are highlighted in [21] and include:

• Band thresholding:
The band thresholding technique is a technique in which the foreground intensities are between two
threshold values.

• P -tile thresholding:
This method involves the percentage of the image pixels which originate from the objects. The threshold
value is thus chosen as a percentile of the cumulative sum of the pixel intensities.

• Optimal thresholding:
The threshold value is chosen to be statistically optimal.

• Adaptive thresholding:
The image is partitioned into sub-images and the threshold value for each sub-image is selected. There-
fore the threshold value will vary depending on the location in the image.

A problem that arises for the various thresholding techniques discussed is determining an appropriate thresh-
old value. The examination of the image's histogram is regarded as the simplest approach to determining the
threshold value and is based on the grey level frequency distribution of the grey level image f and assigning
the threshold a position in a valley that is situated between two modes/peaks of the resultant histogram [22].
Due to the simplicity of this thresholding technique, it is only e�ective for simple images.

Since determining the optimal threshold value is problematic an iterative method called iterative threshold
selection was suggested by Ridler and Calvard in order to �nd the optimal threshold [42]. The iterative
threshold selection is a simplistic technique which can be regarded as a special case of the k-means clustering.
The iterative threshold selection supposes an object is present within the image, without any prior knowledge
of the object's position in the image. Firstly it is important to note that the image is assumed to have two
sections. The two sections are referred to as the background and the foreground, which contains the object.
The iterative threshold selection algorithm then iteratively calculates the optimal threshold as follows:

• Step 1
Assume that the four corners of the image represent the background b = {x : xi is the background pixel } ={
x
(b)
i

}
and the rest of the image is the foreground f = {x : xi is the foreground pixel } =

{
x
(f)
i

}
. For

example the corners of width and height that are 10% of the image width and height could be used.

• Step 2

The mean intensity of the background is computed, denoted as µ
(0)
b = 1

card(b)

∑
x
(b)
i . Similarly the

mean intensity for the foreground is computed and denoted as µ
(0)
f = 1

card(f)

∑
x
(f)
i .

• Step 3
The threshold is calculated as the average of the background and foreground intensities, determined in
step 2 i.e.

T (0) =
µ
(0)
b + µ

(0)
f

2
.
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• Step 4
The true image is segmented using the threshold calculated in step 3.

• Step 5

Steps 2 to 4 are repeated. However note that µ
(t)
b and µ

(t)
f are the mean intensities of the background

and foreground respectively as a result of the tth iteration and T (t) is de�ned as the threshold value as
a consequence of the occurrence of the tth iteration.

• Step 6
The process is continued for either a predetermined number of iterations or until the threshold value
calculated in step 3 changes by only a negligible amount for instance less than 0.5.

Although the iterative selection method initially commences with step 1, it can be replaced by a variety of
di�erent initializations for example threshold the true image using the value for the mean intensity or any
other appropriate value or a random value that is left to the discretion of the statistician.

4.3.1 Adaptive thresholding

Extensive research has been done in order to resolve the problem of the uneven illumination present in
an image. Adaptive thresholding is more sophisticated than conventional thresholding since it provides a
possible solution to the uneven illumination that is present across an image that usually arises from strong
illumination [56].
Conventional thresholding segments the true image incorporates a speci�c threshold operator de�ned as the
average of the background and foreground intensities which is regarded as a global threshold for all pixels
since it uses a �xed threshold for all pixels. Whereas in adaptive thresholding the threshold value is referred
to as changing dynamically over the image since adaptive thresholding selects a unique threshold for each
pixel based on the range of intensity values that is associated with the pixel's local neighborhood. More
simply adaptive thresholding is de�ned as a thresholding technique in which the thresholding value di�ers, as
a result of the position of the pixel in the image which is being thresholded. The threshold value may change
for each and every individual pixel or remain constant over a sub-region of the image. Adaptive thresholding
is similar to conventional thresholding since a binary image is created from a greyscale or colour image that
represents the segmentation.

4.3.1.1 The Wellner Algorithm

The text and �gures provided in this section were adapted from [21].

Wellner suggests a simple algorithm for adaptive thresholding which is founded on the moving average of the
pixel intensities [56].

De�ne s ∈ N as the parameter that speci�es the local window size and de�ne t ∈ (0, 1) as the parameter
that speci�es the relative threshold value. Furthermore let Λ(i, j, s) be the pixel intensities' moving average
present in the local window that has a size of s around pixel (i, j) 1. A greyscale image is then transformed
into a binary image, β, by considering the following function:

β(i, j) =

{
1 if I(i, j) < (1− t)Λ(i, j, s)

0 otherwise.

The basic structure of the algorithm is to run through the image while simultaneously computing the moving
average of the last s pixels that are observed. However when the pixel in the image has a value that is
signi�cantly less than the computed average it is immediately set to black, otherwise it is left white [56].
Note that usually in practice only one pass through the image is usually su�cient and the simplicity of the
algorithm condenses the computational time.

1Note that in Sections 1.1- 1.2 a pixel was denoted as xi for simplicity.
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Figure 9: The Wellner algorithm utilizing the last s observations in order to compute the moving average of
the pixel intensities obtained from [21].

Choices of Λ(i, j, s)

Wellner discusses a few appropriate choices for the function de�ned as Λ(i, j, s) [56]. Wellner �rstly suggests
that the true image is treated as a single row of pixels. Essentially if the image is of size n ×m then each
row of the true image is taken and appended to the previous row, thereby creating an 1×nm vector denoted
as I ′. Thereafter the moving average is de�ned as

Λ1 (i, j, s) =

∑s−1
k=0 I

′ ((n− 1) i + j − k)

s

this formulation of Λ1 (i, j, s) represents the average of the last s observations. Figure 9 gives an indication
of how Λ1 is calculated.

In order to improve the computational time of the algorithm Wellner suggested using an approximation of
Λ1. The approximation requires that the subtraction of an sth of the cumulative sum of the pixel intensities
and after the subtraction adds the value of the current pixel intensity. The computational time is reduced
since for every pixel the moving average is not required to be recalculated. In [56] Wellner also demonstrates
that this approach is equivalent to the exponential weighted average of all the pixels up to and including the
current pixel. Consider:

Λ2 (i, j, s) =

(n−1)i+j−1∑
k=0

(
1− 1

s

)
I ′ ((n− 1) i+ j − k) ,

Λ1 andΛ2 only take into consideration the pixels that are referred to as trailing pixels, when thresholding
the current pixel. Wellner modi�ed A1 to include the pixels located on either side of the pixel that is being
thresholded. The inclusion of the surrounding pixels ensures that the edges of the objects present in the
image are more accurately detected. The moving average centered around the (i, j)th pixel in image I i.e.
I(i, j) is de�ned by Wellner as:

Λ3 (i, j, s) =

∑s
k=0 I

′ ((n− 1) i+ j + s
2 − k

)
s

.

The de�nition de�ning Λ3 is not perfectly centered around the threshold pixel. However it is important to
note that the value of s needs to be even, since the pixel indies are whole numbers. For example the pixel with
the notation I (33.5, 6) is illogical. Since the de�nition of Λ3 is not perfectly centered around the threshold
pixel, Λ3 is rede�ned to center the average of the moving pixels around the threshold pixel as:
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Figure 10: The Wellner algorithm utilizing the s observations that are located around the thresholded pixel
in order to calculate the moving average of the pixel intensities obtained from [21].

Λ3 (i, j, s) =

(∑s
k=0 I

′ ((n− 1) i+ j + s
2 − k

)
s+ 1

)
.

After the implementation of this formula, s+ 1 pixels are contained in the window. Figure 10 indicates how
Λ3is calculated.

A problem associated with the Wellner algorithm is that each row is treated separately. Furthermore the
moving average does not consider the pixels that are located above or below the thresholded pixel. The
problem is resolved by Wellner by introducing a proposed formulation of the moving average:

Λ4 (i, j, s) =
Λ (i, j, s) + Λ (i− 1, j, s)

2
.

In the formula the notation Λ refers to any of the moving averages de�ned. Wellner speci�cally chooses
the moving average de�ned in Λ2. Although the Wellner algorithm improves the results, it is regarded as a
computational intensive technique since the algorithm requires that previous Λ values are kept and stored.

Problem of the line-end

During the initialization of the Wellner algorithm, the image represented as a matrix is reshaped in order to
create a vector that appends the rows to the prior rows which may yield inferior or unsatisfactory results near
the image's edges. Referring to Figure 11 it has been noted that the there are two pixels that are marked
by the stars. Furthermore note that these pixels marked by stars have no relation to each other. Therefore
it is not recommended nor sensible to use the information from the one pixel in order to make a decision
regarding the other pixel's threshold value. The application of the Ox Plough method which is usually used
to transverse through an image is suggested in an attempt to resolve the problem discussed. The Ox Plough
method assures that pixels that are located nearby the image's edges can be more accurately thresholded.
The Ox Plough method is illustrated in Figure 11.

Choosing s and t

Wellner established through empirical studies that the optimal results over a range of images required for an
image of size n×m set the parameters:
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Figure 11: The line-end problem solved by applying the Ox Plough method. In the initialization of the Ox
Plough method, �rstly move from the left to the right and thereafter from the right to the left when the
end of a pixel row is reached. Therefore only neighbouring pixels are used to compute the required moving
averages of the intensities obtained from [21]..

• s = m
8 and

• t = 0.15

4.4 Spatial Clustering

The spatial clustering procedure takes into consideration simultaneously the spatial distribution of both the
measurements and the distribution of the measurements present in the measurement space. The Iterated
Conditional Mode (ICM) algorithm allows for the spectral features and the spatial information of an image
are taken into consideration in adequate image segmentation [12]. The ICM algorithm can be regarded
as an image restoration technique since the condition of an image may be corrupted as a result of noisy
transmissions or due to human negligence. For example a dirty camera lens. The main aim of the ICM
algorithm is thus to restore the image to its true state. Assumptions made when implementing the ICM
algorithm include �rstly that neighboring pixels tend to have the same pixel value and secondly that every
pixel is independently corrupted with an associated probability [12]. The ICM algorithm that was presented
in [12] is regarded as simplistic enough to simultaneously illustrate improved segmentation and applies the
k-means algorithm in the initialization step of the ICM algorithm. Before the ICM algorithm is de�ned
it is fundamental to note the following notation, for a segmented image I with N pixels where the pixels

are represented by xij the image is segmented into K clusters denoted as C
(α)
1 , C

(α)
2 , . . . , C

(α)
K , where α is

de�ned as the number of iterations. The ICM algorithm is de�ned as follows:
Step 1

Apply the k-means algorithm in order to determine the initial cluster mean vectors µ
(0)
k for the k clusters

k = 1, 2, . . . ,K.
Step 2

For each of the k clusters assign pixel xij to the minimum of(
xij − µ(α)

k

)T (
xij − µ(α)

k

)
− βν(α)N (α)

ij (k)

where

• β represents the spatial penalization or correction parameter, as de�ned in equation (1.5) of [12] ,

• ν(α) is the within cluster variance formulated as:
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ν(α) =
1

N

N∑
k=1

∑
(i,j)∈C(α)

k

(
fij − µ(α)

k

)T (
fij − µ(α)

k

)

• N (α)
ij (k) is de�ned as the number of neighbours of pixel xij that are presently classi�ed in cluster k at

the αth iteration.

Step 3
Recalculate and update the mean cluster vectors

µ
(α)
k =

1

N
(α)
k

∑
(i,j)∈C(α)

k

xij .

Step 4
Steps 2 and 3 are repeated until convergence i.e. little or no change occurs.

The optimum value of β is chosen as 2.5 [15].
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5 Application

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 12: Greyscale Magnetic Resonance Imaging (MRI) images
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5.1 Applications using standard thresholding and the Wellner's algorithm

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 13: MRI images with standard thresholding
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 14: MRI images with Wellner
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Figure 15: Surface representation of image (a) applying standard thresholding and the Wellner algorithm
respectively
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Images compared ∆b with
standard

thresholding

SSIM with
standard

thresholding

∆b with Wellner SSIM with
Wellner

1. (a) and (b) 0.3338 0.3173 0.3977 0.2069
2. (b) and (c) 0.3671 0.2624 0.4048 0.1936
3. (c) and (d) 0.4217 0.2092 0.4371 0.1551
4. (d) and (e) 0.3757 0.2605 0.4547 0.1377
5. (e) and (f) 0.3499 0.2751 0.4217 0.1603
6. (f) and (g) 0.3344 0.3023 0.3959 0.2027
7. (g) and (h) 0.3194 0.3309 0.3858 0.2176
8. (h) and (i) 0.3036 0.3645 0.3667 0.2545
9. (i) and (j) 0.2817 0.4141 0.3354 0.3060
10. (j) and (k) 0.2839 0.4305 0.3480 0.2874
11. (k) and (l) 0.2848 0.4244 0.3311 0.3037
12. (l) and (m) 0.3088 0.3915 0.3611 0.2715
13. (m) and (n) 0.3176 0.3767 0.3420 0.3035
14. (n) and (o) 0.3381 0.3514 0.3687 0.2621
15. (o) and (p) 0.3470 0.3232 0.3593 0.2682
16. (p) and (q) 0.3411 0.2987 0.3495 0.2644
17. (q) and (r) 0.3407 0.2880 0.3256 0.2775
18. (r) and (s) 0.3316 0.3141 0.3606 0.2364
19. (s) and (t) 0.3214 0.3112 0.3972 0.1977
20. (t) and (u) 0.3115 0.3284 0.4000 0.1867
21. (u) and (v) 0.3838 0.2601 0.4535 0.1431
22. (v) and (w) 0.4299 0.2257 0.4401 0.1641
23. (w) and (x) 0.3732 0.2925 0.4048 0.2042

Table 1: Results of standard thresholding and the Wellner Algorithm

• We apply standard thresholding and the Wellner algorithm to the greyscale MRI images represented
in Figure 12.The results are shown in Figure 13 and Figure 14, we then compare the ∆b and SSIM
metric for the thresholded images. The application results for the values of the ∆b metric for the
thresholding technique are shown in Table 1 and Figure 16. The measures increase signi�cantly at
comparisions 1, 2 and 3. The increase in the value of the ∆b metric in Comparison 1 is arguably due to
the in�uence of the structure of image (b) in Figure 13 especially since a larger number of white pixel
areas surround the round joint object in image (b) than in image (a). The increase in the ∆b metric in
Comparison 2 is as a result of a decrease in the number of white pixel areas and subsequent increase
in black pixels around the joint object that is a signi�cantly less prominent structure in image (c),
irrespective of the relative increase in the structural size of various muscle tissue regions in image (c),
that have a signi�cantly more white pixels present in the regions of increase. The ∆b value of the metric
for comparisons 1 and 2 increased due to the change in the image structure as a result of signi�cant
changes in the proportion of black and white pixel regions within the consecutive images. Notably the
images are relatively similar in structure and the object position of the respective joint/muscle objects
present within the consecutive sequence of the standard thresholded MRI images in Figure 13. The
graph for the application of standard thresholding in Figure 16 indicates that for Comparison 1 and 2
there is a relatively small increase in the value of the ∆b metric. Considering the images in Comparison
1 and 2 in Figure 13 it can be visually seen that the proportion of white pixels increases in certain areas,
justifying the resultant increase in the value of the ∆b metric between Comparison 1 and 2. However
considering the graph in Figure 16 and the results in Table 1 for standard thresholding and referring to
image Comparison 3. (c) and (d) indicates that there is a signi�cant increase in the metric value for ∆b.
This signi�cant increase is due the sudden increase in the proportion of black pixels and consequent
decrease in the proportion of white pixels that in�uence the structure of the image.
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Figure 16: Measure values for the metrics using standard thresholding

Figure 17: Measure values for the metrics using the Wellner algorithm
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Figure 18: Measure values for the ∆b metric applying thresholding segmenation techniques

Figure 19: Measure values for the SSIM metric applying thresholding segmentation techniques
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• The graphs representing the ∆b and SSIM metric results for the standard thresholding and Wellner's
algorithm in Figures 16 and 17 are mirror graphs or alternatively the lines representing the ∆b and SSIM
metric in each respective graph are symmetric to each other. The symmetry of the lines representing the
∆b and SSIM metric is due to the objective of the metrics under consideration. Since the main objective
of metrics is to account for visible errors that are present in images, a reference image and the distorted
image that are under comparison. Baddeley's ∆b metric is a numerical measure between binary images
to determine discrepancies i.e. errors. The SSIM metric is however a measure of the luminance of
the surface of an object that is observed and predominantly aims to assess the structural information
present within the image. The symmetry of the lines representing the results for Baddeley's ∆b and
SSIM metric is due to the proportion of the black and white pixels within the image, that a�ect the
luminance present within an image and hence the value of the SSIM metric. The greater the proportion
of white pixels compared to black pixels results in a greater SSIM value, and the position or location of
the black and white pixels present in�uences the structure of an image i.e. the appearance of the image
to the HVS, thus in�uencing the numerical value of Baddeley's ∆b metric since the greater the structural
di�erence between compared images, the greater the numerical value obtained for the ∆b metric. This
is furthermore illustrated by the surface representation of the image under the thresholding techniques
as shown in Figure 15. Hence there is an inverse relationship between Baddeley's ∆b metric and the
SSIM metric, since a greater variation in luminance between compared images (i.e. the proportion of
white pixels present in the images, signi�cantly in�uences the structural information of the images)
yields a greater ∆b value and a lesser associated SSIM value.

• Referring to Figures 16 and 17 the peaks present in the respective standard and Wellner's algorithm are
discussed. In Figure 16 the peaks occur at image Comparison 3 and 22 for Baddeley's ∆b metric and
for the SSIM metric at image Comparison 10. Corresponding to the peaks in image comparisons 3 and
22 an observable similarity of the consecutive images that are compared is that the proportion of black
pixels is greater than the proportion of white pixels. Whereas for image Comparison 10 it is observed
that a greater proportion of the consecutive images are regions of white pixels. Furthermore considering
image comparisons 3 and 22 for standard thresholding, the consecutive images have signi�cant variation
in the location and regions of black pixels that directly in�uence the structure of the image, since the
consecutive images are observably di�erent. Thus the signi�cant change in the structural information
for the consecutive standard thresholding images is due to the increase in the proportion of the black
pixels and subsequently their location which in�uences the intricate details of the image's structure
contributing to a signi�cantly higher ∆b value. However the peak located at Comparison 10 for the
SSIM metric in Figure 16 is irrespective of the proportion of black pixels which is signi�cant even
though the consecutive images have a greater portion of white pixels, the structural information of
the image remains unchanged hence resulting in a higher SSIM. The greater SSIM metric value is due
to the observable luminance i.e. white pixels that are predominantly focused on the surface of the
observed joint object present in the consecutive images. The application of the Wellner's algorithm to
the greyscale images, in Figure 14, results in converted images that have a signi�cant proportion of
white pixels and greater details highlighted in comparison to images with the standard thresholding
applied as in Figure 13. Figure 17 has peaks observed at image comparisons 4 and 21 for Baddeley's
∆b metric when considering the Wellner's algorithm. Referring to Figure 14 the consecutive images in
image comparisons 4 and 21 have a signi�cant proportion white pixels as opposed to black pixels. The
peaks in the ∆b metric values are due to a signi�cant change in the structure of the consecutive images
since there are greater regions of white pixels that alter the structural information present within the
compared images.

• Figures 18 and 19 indicate that the respective ∆b and SSIM metrics display a similar trend for the
sequence of image comparisons for both the standard thresholding and the Wellner's algorithm. In
Figure 18, the Wellner's algorithm displays slightly greater values for the ∆b metric than standard
thresholding, since referring to Figure 13 the images as a result of standard thresholding have a greater
proportion of black pixels in comparison to the images obtained by implementing theWellner's algorithm
which have a greater proportion of white pixels - see Figure 14. The image comparisons for the Wellner's
algorithm yield greater ∆b values due to a greater variation in the structural information present in
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the consecutive images. The structural information is in�uenced by the greater proportion of white
pixel regions and intricate details present in the consecutive Wellner's algorithm images, see Figure 14.
Whereas in Figure 13, the sequence of standard thresholding images obtained have considerably greater
black pixel regions and minimal object structure detail. The SSIM metric values display a similar trend
for the sequence of image comparisons for both the standard thresholding and the Wellner's algorithm,
however some di�erences are noted refer to Table 1. In Figure 14 the surface of the joints/objects
observed have a greater luminance, since there are greater regions of white pixels providing luminance
to the surface of the observed object in comparison to the consecutive images in Figure 13. Hence the
values for the SSIM metric are greater for the standard thresholding technique.

5.2 Applications using the ICM

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 20: MRI images with ICM
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Figure 21: Surface representation of (a) for the greyscale and ICM algorithm respectively

Images compared ∆g for greyscale

images

SSIM for

greyscale images

∆g for ICM

images

SSIM for ICM

images

1. (a) and (f) 0.1960 0.2128 0.3378 0.2656

2. (k) and (l) 0.0846 0.9857 0.1991 0.3198

3. (m) and (n) 0.0702 0.4780 0.4741 0.0911

4. (a) and (x) 0.1213 0.3129 0.2481 0.1608

Table 2: Results for greyscale images and ICM images
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Figure 22: Measure values for the ∆g metric

Figure 23: Measure values for the SSIM metric

• The metric results ∆g and the SSIM, obtained for greyscale and ICM images are represented in Table 2.
The ∆g metric requires extensive computational time due to the theoretical complexity implemented in
the Matlab algorithm which a disadvantage to implementing the ∆g metric. Thus alternative metrics
that are more e�cient should be considered for application purposes. An e�cient metric that yields
instantaneous results (and is thus regarded as optimal) and has an objective that focuses on evaluating
the overall quality of compared images is the SSIM metric.
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• The results indicate for ∆g that the closer the metric value is to 0 the more similar the images. However
a ∆g value close to 1 indicates that the compared images are di�erent. The ICM algorithm is an image
processing technique that is used for image segmentation and implements the k−means algorithm.
Referring to Table 2 , the values obtained for the ∆g metric, in the case of image Comparison 1, indicate
that the images compared are relatively similar since the value of ∆g is close to 0 as apposed to 1.
Notably the ∆g metric value obtained for the ICM image comparison is greater than the numerical value
obtained for greyscale images since the ICM converted images in Figure 20 are observed as signi�cantly
di�erent. This is illustrated in the surface representation of the image as shown in Figure 21.

• Referring to the results obtained by comparing the results of ∆g for greyscale MRI images and ∆g

for ICM images, the results obtained for ∆g are greater for the ICM thresholded images in Figure 20
than the greyscale MRI images in Figure 12. This is due to the fact that the greyscale MRI images
converted using the ICM algorithm are no longer structurally identical to the initial greyscale images.
The ICM algorithm has a clustering characteristic due to the application of the the k−means algorithm
which in�uences how various regions present in the resultant ICM images are represented. Since the
ICM algorithm represents regions that have similar pixel intensities as speci�c monochromatic shades
of black, grey and white; causing the resultant ICM images to be signi�cantly di�erent to the initial
greyscale images presented in Figure 12. The ICM algorithm yields greater ∆g numeric values since
the images compared tend to be signi�cantly di�erent due to the pixel intensity classi�cation of the
various regions present in the images. This indicates that the compared ICM images are signi�cantly
di�erent as the values of ∆g are closer to 1 whereas the greyscale images are relatively similar, since the
∆g values are relatively close to 0 as seen in Table 2 and Figure 22. The peak in Figure 22 is due the
classi�cation of the pixel intensities from implementing the ICM algorithm, since the ICM images in
Comparison 3 for Figure 20 di�er greatly with respect to the pixel intensity classi�cation even though
the images are sequential.

• The SSIM metric measures the luminance of the surface of the observed object and investigates the
structural information present within the image. The SSIM metric value for the ICM images is generally
lower than the SSIM value for the greyscale images as the luminance of the observed object in Figure
20 is less than that observed in Figure 12, justifying the SSIM values in Table 2. The signi�cant
di�erence in the SSIM values is due to the ICM algorithm's pixel intensity classi�cation for various
regions present in the image. Images with the same pixel intensities are represented with the same
monochromatic shade which reduces the variety of luminance values present in the image, altering the
structural information that the SSIM metric requires for calculations. The peak represented in Figure
23 for image Comparison 2 emphasizes this fact.

6 Conclusion

The greyscale metric ∆g introduced and established by Wilson et al [57] is regarded as an error metric
that is an extension of the binary metric, ∆b that yields similar results when both the ∆b and ∆g metric
are normalized. However the disadvantages associated with implementing the ∆g metric disrepute it as an
optimal error sensitivity metric. The disadvantages associated with Wilson et al's [57] ∆g metric are the
theoretical complexities involved in the algorithm and the computational time required to obtain the desired
output. Due to the intensive computational time involved when implementing the ∆g metric, the applications
presented in Section 5 selected only speci�c corresponding greyscale and ICM images instead of implementing
the ∆g algorithm on the consecutive sequence of greyscale and ICM images represented in Figures 12 and
20 respectively. The intense computational time of the ∆g metric is due to the aim of this error metric,
which is to show the relevance of the relationship between the changes in grey levels with respect to the
pixel positioning. This is accounted for when the subgraphs Γf and Γg are computed for the comparison
of images f and g, de�ned in Subsection 3.2. However the ∆g metric is appropriate for applications that
involve binary and greyscale images whereas Baddeley's ∆b metric is only applicable for binary images. The
error metric that is regarded as optimal throughout the applications presented in Section 5 is the SSIM
metric. The SSIM metric yielded instantaneous results irrespective of applying the standard thresholding,
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Wellner's algorithm and ICM thresholding techniques. The SSIM metric is an error metric implemented in
the image quality assessment to obtain an overall quality evaluation of the compared images and is regarded
as an optimal error metric since it satis�es the requirements given in [53]. That is the ability to monitor
and adjust the image quality, optimize speci�cally the algorithms and parameter settings of image processing
systems and also to benchmark the image processing algorithms and methods. Thus the SSIM metric is
arguably an ideal, optimal and unsurpassed error metric in comparison to Baddeley's ∆b and Wilson et al's
∆g metric. Further creative exploration of the Edge-Based Structural Similarity Index (ESSIM), Gradient-
Based Structural Similarity Index (GSSIM) and Muli-Scale Structural Similarity (MSSIM) that focus on the
concepts of error metrics, image processing techniques and the structural information present in an image,
that drive innovative success, should be investigated.
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Appendix

Metric code

Baddeley's binary code

Main Program

The function baddeley calculates Baddeley's ∆b metric as de�ned in Section 3.1.

∆b(f1, f2) =

[
1

card(X)× cp

(∑
x∈X
|d∗(x,A1)− d∗(x,A2)|p +

∑
x∈X
|d∗(x,B1)− d∗(x,B2)|p

)] 1
p

1 ≤ p ≤ ∞.

The Matlab code requires that c and p are speci�ed before the function Baddeley is initialized. The research
report's results have been computed for c = 3 and p = 1.

function d = baddeley(f1, f2, c, p)

%Input variables:

%f1: image f

%f2: image g

%c=3, c is the bounding constant ensuring no points further than the paths

% of length c contribute to the metric.

%p=1, p controls the relative weight of errors of different magnitudes

%Output Variables:

%baddeley: Baddeley's binary metric which is a measure that evaluates the

% numerical distance between f1 and f2 i.e.the function calculates

% Baddeley's metric for the two images being compared.

% This is between the white and black of the respective images

[W1, B1] = setblackorwhite(f1); %See Above for set...white function description.

[W2, B2] = setblackorwhite(f2);

ww1 = size(W1); %number of white pixels in image f1, which is a matrix

ww2 = size(W2); %number of white pixels in image f2

bb1 = size(B1); %number of black pixels in image f1

bb2 = size(B2); %number of black pixels in image f2

[n1,m1] = size(f1); %the number of rows and col in image f1

[n2,m2] = size(f2); %the number of rows and col in image f2

%Checking images sizes are the same

if size(f1) == size(f2)

%For the comparision of the white pixels of image f1 and f2

dw = 0; %initialize dw=0

db = 0;

for i = 1 : n1

for j = 1 : m1

x = [i j]; %pixel position

%Applying Baddeley's metric for white pixels

if isempty(W1) == 1

distx_W1 = 1;
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else [ distx_W1 ] = min_dist (x , W1);

end

if isempty(W2) == 1

distx_W2 = 1;

else [ distx_W2 ] = min_dist (x , W2);

end

star_W1 = min(distx_W1 ,c);

star_W2 = min(distx_W2 ,c);

dw = dw + (abs(star_W1 - star_W2))^(p);

%Applying Baddeley's metric for black pixels

if isempty(B1) == 1

distx_B1 = 1;

else [ distx_B1 ] = min_dist (x , B1);

end

if isempty(B2) == 1

distx_B2 = 1;

else [ distx_B2 ] = min_dist (x , B2);

end

star_B1 = min(distx_B1 ,c);

star_B2 = min(distx_B2 ,c);

db = db + (abs(star_B1 - star_B2))^(p); %loop for the sum

end

end

d = ((dw+db)/(n1*m1*c^p))^(1/p);

else disp('Please check the matrix sizes: f1 and f2 must be the same size');

end

The function setblackorwhite which is called in the function baddeley determines the set of black and white
pixel positions present in the respective images for which the Baddeley's ∆b metric is calculated.

function [W, B] = setblackorwhite(f)

%Input variable

%f: an image

%Output variable

%setblackorwhite: determines the set of black and white pixels present in

% the image i.e. extracts all the black and white pixel

% positions

ind_b = find(f == 0);

ind_w = find(f == 1);

[ B1 , B2 ] = ind2sub([n,m],ind_b);

[ W1 , W2 ] = ind2sub([n,m],ind_w);

B = [ B1 , B2 ];

W = [ W1 , W2 ];
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Lastly the function min_dist is required to be computed in order to determine ∆b. The function min_dist

determines d∗(x,A) = min{d(x, a) : a ∈ A} where d (x, a) = |x1 − a1| + |x2 − a2| and x = (x1, x2)and
a = (a1, a2).

function [ distx_A ] = min_dist ( x , A )

%Input variables:

%x: all the pixels present in the image, x=(x_1, x_2)

%A: the set of pixel positions, depending on prior code,

% it is the set of black or set of white pixel positions

%Output variable:

%min_dist: calculates the minimum distance from the current pixel posistion x

% to A- the set of black or white pixel positions

% and determines the minimum calculated distance

x_dist = abs(x(1) - A(:,1)) + abs(x(2) - A(:,2));

distx_A = min(x_dist);

end

Wilson et al's greyscale code

Main program

The function delta_g_subf_g determines Wilson's ∆g metric as de�ned in Section 3.2 .

∆g(Γf , Γg) =

 1

n(X)× n(Y )× 256× cp
∑
x∈X

∑
y∈Y
|d∗ ((x, y) , Γf )− d∗ ((x, y) , Γg)|p

 1
p

for 1 ≤ p <∞.

In essence the function delta_g_subf_g determines the ∆g metric for di�erent subgraphs for images f and g.

function metric_g = delta_g_subf_g( f, g, c, p)

%Function determines the greyscale metric for the different subgraphs for f and g

%Input variables:

%f: image f

%g: image g

%c=3, c is the bounding constant ensuring no points further than the paths

% of length c contribute to the metric.

%p=1, p controls the relative weight of errors of different magnitudes

%Output variables:

%delta_g_subf_g: determines the greyscale metric which is the distance between two

% greyscale images f and g, which is further defined as the

% distance between the respective subgraphs of f and g

sum=0;
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test=0;

gammaf=Gamma_f(f,(0:255));

gammag=Gamma_f(g,(0:255));

message = 'Finished with the Gammas'

map_in = Map_Maker(c);

s_map = size(map_in);

cen = s_map(1) - (s_map(1) - 1)/2;

[I,J] = find(map_in == 1);

M_full = transpose([I-cen,J-cen]);

if size(f) == size(g)

for i = 1 : size(f,1)

i

for j = 1 : size(f,2)

j

for y = 0 : 255

df_star = min(wholevolsub_g(i, j, y, M_full, size(f), gammaf),c)

dg_star = min(wholevolsub_g(i, j, y, M_full, size(g), gammag),c)

abs(df_star-dg_star)

sum = sum + (abs(df_star-dg_star))^p

test= test + 1;

end

end

end

metric_g=(1/(size(f,1)*size(f,2)*(256)*c)*sum)^(1/p)

else disp('Please check the matrix sizes: f and g must be the same size');

end

The function Gamma_f is required by the function delta_g_subf_g in order to determine the subgraph Γf and
Γg for images f and g.

function [ Gam_f ] = Gamma_f( f , Y )

%Input variables:

%f: an image

%Y: is the range of greyscale luminance values i.e. Y={0,1,2...,255}

%Output variables:

%Gamma_f: determines the subgraphs for the respective images compared i.e.

% Gamma_f determines a subgraph for image f and image g

size_f = size(f);

Gam_f = zeros(size_f(1)*size_f(2)*numel(Y),3);

g = 1;

for k = 1 : numel(Y);

ind = find( f >= Y(k) );

[I,J] = ind2sub(size_f,ind);

Gam_f(g:g+numel(ind)-1,:) = [ [I,J] , ones(numel(ind),1)*Y(k) ];
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g = g + numel(ind);

end

Gam_f = Gam_f(1:sum(Gam_f(:,1) > 0),:);

end

The function Map_Maker creates representative design of a c -connectivity structure, in the report's case since
c = 3. The 3-connectivity structure moves through every pixel within the image to decrease the amount of
computations.

function [ map ] = Map_Maker( lim )

%Input variable:

%lim: parameter that determines the size of the the c-connectivity structure that

% moves through every pixel within the image

%Output variable:

%Map_Maker: creates c-connectivity structure that moves through every pixel

% present in the image, essentially to decrease computations

n = 2*lim+1;

map = zeros(n,n);

for i = 1 : n

if i < lim + 1

map(i,(lim+2-i:lim+i)) = 1;

elseif i > lim + 1

k = n - i + 1;

map(i,(lim+2-k:lim+k)) = 1;

else

map(i,(1:n)) = 1;

end

end

end

The function wholevolsub_g determines the distance between a point (x, y) ∈ X × Y i.e. the whole volume
X × {0, 1, . . . , 255} , and the subgraph Γf ⊆ X × Y :

function dis_0=wholevolsub_g(i1, j1, y1, M_full, size_f, gammaf)

%Input variables:

%Note that x=(x1,x2) the pixel positions present in an image

%i1: x1

%j1: x2

%y1: the greyscale luminance value for pixel position x=(x1,x2)

%M_full:

%size_f: the dimensions of the considered image

%gammaf: subgraph of image

%Output variables:

%wholevolsub: determines the distance between a point (x,y) i.e. (i1, j1)

% the subgraph
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%Determining the values at which the frame can take for incomplete maps.

D_H = (1 : size_f(2));

D_V = (1 : size_f(1));

TestM = M_full + repmat([i1;j1],1,size(M_full,2));

loc_i = unique(intersect(TestM(1,:),D_V));

loc_j = unique(intersect(TestM(2,:),D_H));

gammaf_new = gammaf( (gammaf(:,1) <= max(loc_i)) & (gammaf(:,1) >= min(loc_i))

& (gammaf(:,2) <= max(loc_j)) & (gammaf(:,2) >= min(loc_j)), : );

y_diff = abs(gammaf_new(:,3)-y1);

dx_x_dash = abs(i1 - gammaf_new(:,1)) + abs(j1 - gammaf_new(:,2));

true_dis = (dx_x_dash > y_diff).*dx_x_dash + (dx_x_dash <= y_diff).*y_diff;

dis_0 = min(true_dis);

end

The function subgdist calculates the distance between the points in a subgraph de�ned by the formula
d ((x, y) , (x′, y′)) = max {d (x, x′) , |y − y′|}.

%STEP 3

function subgdist = subgraphdist( i1, j1, y1, i2, j2, y2)

%Input variables:

%Note that x=(x1,x2) the pixel positions present in an image 1 and x'=(x1',x2')

%i1: x1 in image f

%i2: x1 in image f

%y1: the greyscale luminance value for pixel position x=(x1,x2)

%i1: x1 in image g

%i2: x1 in image g

%y2: the greyscale luminance value for pixel position x'=(x1',x2')

%Output variables:

%subgdist: determines the distance between points in a subgraph

% i.e. The function subgdist defines the distance between points in

% a subgraph def2

ydis=abs(y1-y2);

d=fourconnecdistgrey([i1,j1],[i2,j2]);

subgdist = max(d , ydis);

The function fourconnecdisgrey determines the distance between pixels within an image utilizing the c-
connectivity, where c = 3.

function d = fourconnecdistgrey(x,a)

%Input variables:

%x: all the pixels present in the image, x=(x_1, x_2)

%a: the set of pixel positions
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%Output variables

%d: is the distance between two pixels using 4 connectivity

%d is the istance between two pixels using 4 connectivity

%x = (x_1,x_2), a = (a_1,a_2)

d = abs(x(1)-a(1)) + abs(x(2)-a(2));

end

SSIM code

The function mssim determines the SSIM index de�ned in Wang et al [53] as de�ned in Section 3.3

SSIM (f8, g8) =
(2µf8µg8 + C1) (2σf8g8 + C2)(

µ2
f8

+ µ2
g8 + C1

)(
σ2
f8

+ σ2
g8 + C2

) .
Main program

function [mssim, ssim_map] = ssim(img1, img2, K, window, L)

% ========================================================================

% SSIM Index with automatic downsampling, Version 1.0

% Copyright(c) 2009 Zhou Wang

% All Rights Reserved.

%

% ----------------------------------------------------------------------

% Permission to use, copy, or modify this software and its documentation

% for educational and research purposes only and without fee is hereby

% granted, provided that this copyright notice and the original authors'

% names appear on all copies and supporting documentation. This program

% shall not be used, rewritten, or adapted as the basis of a commercial

% software or hardware product without first obtaining permission of the

% authors. The authors make no representations about the suitability of

% this software for any purpose. It is provided "as is" without express

% or implied warranty.

%----------------------------------------------------------------------

%

% This is an implementation of the algorithm for calculating the

% Structural SIMilarity (SSIM) index between two images

%

% Please refer to the following paper and the website with suggested usage

%

% Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image

% quality assessment: From error visibility to structural similarity,"

% IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,

% Apr. 2004.

%

% http://www.ece.uwaterloo.ca/~z70wang/research/ssim/

%

% Note: This program is different from ssim_index.m, where no automatic

% downsampling is performed. (downsampling was done in the above paper
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% and was described as suggested usage in the above website.)

%

% Kindly report any suggestions or corrections to zhouwang@ieee.org

%

%----------------------------------------------------------------------

%

%Input : (1) img1: the first image being compared

% (2) img2: the second image being compared

% (3) K: constants in the SSIM index formula (see the above

% reference). default value: K = [0.01 0.03]

% (4) window: local window for statistics (see the above

% reference). default window is Gaussian given by

% window = fspecial('gaussian', 11, 1.5);

% (5) L: dynamic range of the images. default: L = 255

%

%Output: (1) mssim: the mean SSIM index value between 2 images.

% If one of the images being compared is regarded as

% perfect quality, then mssim can be considered as the

% quality measure of the other image.

% If img1 = img2, then mssim = 1.

% (2) ssim_map: the SSIM index map of the test image. The map

% has a smaller size than the input images. The actual size

% depends on the window size and the downsampling factor.

%

%Basic Usage:

% Given 2 test images img1 and img2, whose dynamic range is 0-255

%

% [mssim, ssim_map] = ssim(img1, img2);

%

%Advanced Usage:

% User defined parameters. For example

%

% K = [0.05 0.05];

% window = ones(8);

% L = 100;

% [mssim, ssim_map] = ssim(img1, img2, K, window, L);

%

%Visualize the results:

%

% mssim %Gives the mssim value

% imshow(max(0, ssim_map).^4) %Shows the SSIM index map

%========================================================================

if (nargin < 2 || nargin > 5)

mssim = -Inf;

ssim_map = -Inf;

return;

end

if (size(img1) ~= size(img2))

mssim = -Inf;

ssim_map = -Inf;
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return;

end

[M N] = size(img1);

if (nargin == 2)

if ((M < 11) || (N < 11))

mssim = -Inf;

ssim_map = -Inf;

return

end

window = fspecial('gaussian', 11, 1.5); %

K(1) = 0.01; % default settings

K(2) = 0.03; %

L = 255; %

end

if (nargin == 3)

if ((M < 11) || (N < 11))

mssim = -Inf;

ssim_map = -Inf;

return

end

window = fspecial('gaussian', 11, 1.5);

L = 255;

if (length(K) == 2)

if (K(1) < 0 || K(2) < 0)

mssim = -Inf;

ssim_map = -Inf;

return;

end

else

mssim = -Inf;

ssim_map = -Inf;

return;

end

end

if (nargin == 4)

[H W] = size(window);

if ((H*W) < 4 || (H > M) || (W > N))

mssim = -Inf;

ssim_map = -Inf;

return

end

L = 255;

if (length(K) == 2)

if (K(1) < 0 || K(2) < 0)

mssim = -Inf;

ssim_map = -Inf;

return;

end

else
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mssim = -Inf;

ssim_map = -Inf;

return;

end

end

if (nargin == 5)

[H W] = size(window);

if ((H*W) < 4 || (H > M) || (W > N))

mssim = -Inf;

ssim_map = -Inf;

return

end

if (length(K) == 2)

if (K(1) < 0 || K(2) < 0)

mssim = -Inf;

ssim_map = -Inf;

return;

end

else

mssim = -Inf;

ssim_map = -Inf;

return;

end

end

img1 = double(img1);

img2 = double(img2);

% automatic downsampling

f = max(1,round(min(M,N)/256));

%downsampling by f

%use a simple low-pass filter

if(f>1)

lpf = ones(f,f);

lpf = lpf/sum(lpf(:));

img1 = imfilter(img1,lpf,'symmetric','same');

img2 = imfilter(img2,lpf,'symmetric','same');

img1 = img1(1:f:end,1:f:end);

img2 = img2(1:f:end,1:f:end);

end

C1 = (K(1)*L)^2;

C2 = (K(2)*L)^2;

window = window/sum(sum(window));

mu1 = filter2(window, img1, 'valid');

mu2 = filter2(window, img2, 'valid');

mu1_sq = mu1.*mu1;

mu2_sq = mu2.*mu2;

mu1_mu2 = mu1.*mu2;
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sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;

sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;

sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 && C2 > 0)

ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./

((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));

else

numerator1 = 2*mu1_mu2 + C1;

numerator2 = 2*sigma12 + C2;

denominator1 = mu1_sq + mu2_sq + C1;

denominator2 = sigma1_sq + sigma2_sq + C2;

ssim_map = ones(size(mu1));

index = (denominator1.*denominator2 > 0);

ssim_map(index) = (numerator1(index).*numerator2(index))./

(denominator1(index).*denominator2(index));

index = (denominator1 ~= 0) & (denominator2 == 0);

ssim_map(index) = numerator1(index)./denominator1(index);

end

mssim = mean2(ssim_map);

return

Thresholding code

Standard thresholding and Wellner's algorithm

Code courtesy of [21].

Main program

The function wellner outputs segmentation images that are result from the standard thresholding and Well-
ner's algorithm de�ned in Section 4.3. The image outputted from the the Matlab code de�ned as img yields
a resultant Wellner algorithm image. Similarly img3 in the Matlab code produces the segmented image from
the standard thresholding technique.

%Input variable:

%img: the image

%Output variable:

%wellner: outputs an image that has been segmented that results from the

% Wellner algorithm

%If img is requested as the output for Wellner, obtain the Wellner algorithm segmented image

%and if img3 is requested as the output for Wellner obtain the segmented image with

%standard thresholding

%% import image

out=wellner(img)

if size(size(img)) ~= 2

img = rgb2gray(img);

end
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img = double(img);

ws = round(size(img,2)/8); %%must be even

if mod(ws,2) ~= 0

ws = ws + 1;

end

t = 15; %%percentage

%% threshold

n = size(img,1);

m = size(img,2);

bw = zeros(n,m);

for i = 1:n

if mod(i,2) ~=0

jStart = 1;

jEnd = m;

jBy = 1;

else

jStart = m;

jEnd = 1;

jBy = -1;

end

for j = jStart:jBy:jEnd

l = j-ws/2;

u = j+ws/2;

gs = img(i,max(1,l):min(m,u));

aveGs = sum(gs) / size(gs,2);

if img(i,j) > aveGs * (100-t)/100

bw(i,j) = 1;

end

end

end

%%

tt = graythresh(uint8(img));

tt = tt*255;

img2 = img;

img3 = img2;
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for i = 1:size(img2,1)

for j = 1:size(img2,2)

if img2(i,j) < tt

img3(i,j) = 0;

else

img3(i,j) = 255;

end

end

end

subplot(131)

imshow(uint8(img))

subplot(132)

imshow(uint8(img3))

subplot(133)

imshow(bw)

ICM algorithm code

Main program

The function U outputs an image that results from the ICM thresholding technique de�ned in Section 4.4.
Code courtesy of Dr. Fabris-Rotelli.

function U = main(images,c,beta)

%Input variables:

%images: array of images at specific scales/values

%c: number of classes

%beta: smoothing parameter

%Output variables:

%main

[s1,s2,n] = size(images);

%s1: number of rows in each image

%s2: number of columns in each image

%n: number of images in scale space

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%colours for each class%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

colourdiff = 256/c;

colour = zeros(c,1);

for g = 1 : c % significantly different colours for each class;

colour(g,1) = colourdiff*g;

end

colour

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initial cluster centres: as pixel positions;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%initially random cluster centres: placed proportionally on the image left diagonal;

mu = zeros(c,2); %rows = clusters;

for k = 1 : c

mu(k,:) = [floor(s1/(2*c))*(2*(k-1)+1), floor(s2/(2*c))*(2*(k-1)+1)];

end

mu = KMC(images,c,mu); %update the initial cluster centres using k-means

%clustering algorithm;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%cluster centres: as images values;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

newmu = zeros(n,c); %columns = cluster centres;

for k = 1 : c

newmu(:,k) = images(mu(k,1),mu(k,2),:);

end

mu = newmu;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%First minimization%%second term not included since N_ij^\alpha(k) = 0%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

U = zeros(s1,s2);

for i = 1 : s1

for j = 1 : s2

cluster = 1; %initially cluster 1 gives the minimum for pixel (i,j);

for k = 1 : n

vec(k) = images(i,j,k) - mu(k,cluster); %#ok<AGROW>

end

value = transpose(vec')*vec';

for k = 2 : c

for h = 1 : n

newvec(h) = images(i,j,h) - mu(h,k); %#ok<AGROW>

end

newvalue = transpose(newvec')*newvec';

if newvalue < value

cluster = k;

value = newvalue;

end

end

U(i,j) = cluster;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

diff = norm(mu,2) %inital stop criterion;

v = variance(s1,s2,images,mu,U,n); %initial variance;

Nij = count(U,c,s1,s2); %initial count;

total = 0;

while diff > 1.004 && total < 30

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%Minimization Step%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i = 1 : s1

for j = 1 : s2

cluster = 1; %initially cluster 1 does the minimizing for pixel (i,j);

for k = 1 : n

vec(k) = images(i,j,k) - mu(k,cluster);

end

vvalue = transpose(vec')*vec';

value = vvalue - beta*v*Nij(i,j,cluster);

for k = 2 : c

for h = 1 : n

vec(h) = images(i,j,h) - mu(h,k);

end

vvalue = transpose(vec')*vec';

newvalue = vvalue - beta*v*Nij(i,j,k);

if newvalue < value

cluster = k;

value = newvalue;

end

end

U(i,j) = cluster;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%updating centroids%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

newmu = updatecentre(images,U,c,s1,s2,n);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%updating the variance%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

v = variance(s1,s2,images,mu,U,n);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%updating count%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Nij = count(U,c,s1,s2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

newdiff = norm(newmu - mu,2)

mu = newmu;

total = total + 1;

if newdiff == diff

total = 20;

end

diff = newdiff;

end

U = finalclassify(U,colour,s1,s2);

% for i = 1 : s1

% for j = 1 : s2

% if i == 1 || i == s1 || j == 1 || j == s2
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% U(i,j) = colour(1);

% end

% end

% end

mmshow(U);

The function KMC:

function cen = KMC(images,c,cen)

%Input variables:

%images: array of images at specific scales/values

%c: number of clusters

%cen : cluster centers - Initially chosen proportionally along the left

%diagonal;

%Output variables:

%KMC

[s1,s2,n] = size(images);

%s1: number of rows in each image

%s2: number of columns in each image

%n: number of images in scale space

N = 0;

d0 = distance(images,cen,c,s1,s2); %s1 x s2 x c matrix, third dimension

%indicates distance to which centroid;

U0 = classify(d0,s1,s2,c);

v = 0;

while (N < 100) && (v < c)

newcen = centroids(U0,c,cen);

d = distance(images,newcen,c,s1,s2);

U = classify(d,s1,s2,c);

v = movement(newcen,cen,c) %v = c implies no movement of centroids

%i.e. convergence;

U0 = U;

N = N + 1;

cen = newcen;

end

figure

UU = colour(U,s1,s2,c);

mmshow(UU);

The function distance:

function d = distance(images,cen,c,s1,s2)

%distance is caluclated as an absolute sum;

%Input variables:

%images: array of images at specific scales/values

%cen: centroid centres c x 2 as pixel positions

%c: number of clusters

%s1: number of rows in each image
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%s2: number of columns in each image

%Output variables:

%distance is caluclated as an absolute sum;

d = zeros(s1,s2,c); %3D matrix with distances to each centroid in the third dimension;

for i = 1 : s1

for j = 1 : s2

for k = 1 : c

d(i,j,k) = sum(abs(images(i,j,:) - images(cen(k,1),cen(k,2),:)));

end

end

end

The function classify:

function U = classify(d,s1,s2,c)

%Input variables:

%d: distance matrix s1 x s2 x c

%s1: number of rows in each image

%s2: number of columns in each image

%c: number of clusters

%Output variables:

%classify

U = zeros(s1,s2,c);

for i = 1 : s1

for j = 1 : s2

[m,mm] = min(d(i,j,:));%m: min values; mm: min indices;

U(i,j,mm) = 1;%indicates which centroid (i,j) is closest too;

end

end

The function centroids:

function newcen = centroids(U,c,cen)

%Input variables:

%U: current clustering

%c: number of clusters

%cen: centroid centres c x 2 as pixel positions

%Output variables:

%newcen: calculates centroids of the clusters

newcen = zeros(c,2);%pixel positions of the new centroids;

for k = 1 : c

if sum(sum(U(:,:,k))) ~= 0 %if there are pixels in the cluster;

newcen(k,:) = mmblob(U(:,:,k),'centroid', 'data');

else %leave the center as is
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newcen(k,:) = cen(k,:);

end

end

The function movement:

function v = movement(cen,newcen,c)

%how many centers do not change;

Input variables:

%cen: centroid centres c x 2 as pixel positions

%newcen: calculates centroids of the clusters

%c: number of clusters

%Output variables:

%movement: determines how many centers do not change

v = zeros(c,1);

for k = 1 : c

v(k,1) = isequal(cen(k,:),newcen(k,:));

end

v = sum(v);

The function colour:

function UU = colour(U,s1,s2,c)

%Input variables:

%U: current clustering

%s1: number of rows in each image

%s2: number of columns in each image

%c: number of clusters

%Output variables:

%colour

UU = zeros(s1,s2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%colours for each class%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

colourdiff = 256/c;

colour = zeros(c,1);

for g = 1 : c % significantly different colours for each class;

colour(g,1) = colourdiff*g;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%assigning colours to each class

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i = 1 : s1

for j = 1 : s2

for k = 1 : c

if U(i,j,k) == 1

UU(i,j) = colour(k,1);

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The function variance:

function v = variance(s1,s2,images,mu,U,nn)

%Input variables:

%s1: number of rows in each image

%s2: number of columns in each image

%images: array of images at specific scales/values

%mu: c cluster means of dimension n each;

%U: current clustering;

%nn: number of clusters;

%Output variables:

%variance

N = s1*s2; %total number of pixels;

v = 0;

for i = 1 : s1

for j = 1 : s2

for k = 1 : nn

vec(k) = images(i,j,k) - mu(k,U(i,j));

end

value = transpose(vec')*vec';

v = v + value;

end

end

v = v/N;

The function count:

function Nij = count(U,c,s1,s2)

%Input variables:

%U: current clustering

%c: number of clusters

%s1: number of rows in each image

%s2: number of columns in each image

%Output variables:
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%count

Nij = zeros(s1,s2,c); %number of neighbours of each pixel in cluster c;

for i = 1 : s1

for j = 1 : s2

y = ICMnbr(i,j,s1,s2); %neighbours of pixel (i,j) via 4- or 8-connectivity;

for k = 1 : size(y,1)

Nij(i,j,U(y(k,1),y(k,2))) = Nij(i,j,U(y(k,1),y(k,2)))+1;

end

end

end

The function ICMnbr:

function y = ICMnbr(i,j,N,M)

%Input variables:

%pixel (i,j)

%N: number of rows in the image

%M: number of columns in the image

%y: neighbours of pixel (i,j) (4-connectivity)

%Output variables:

%ICMnbr

k=0;

if i>1

k=k+1;

y(k,1)=i-1;y(k,2)=j;

end

if j>1

k=k+1;

y(k,1)=i;y(k,2)=j-1;

end

if i<N

k=k+1;

y(k,1)=i+1;y(k,2)=j;

end

if j<M

k=k+1;

y(k,1)=i;y(k,2)=j+1;

end

% %Include these as well for 8-connectivity%

% if i > 1 && j > 1

% k = k+1;

% y(k,1) = i-1; y(k,2) = j-1;

% end

% if i > 1 && j < M

% k = k+1;img3

% y(k,1) = i-1; y(k,2) = j+1;

% end

% if j > 1 && i < N
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% k = k+1;

% y(k,1) = i+1; y(k,2) = j-1;

% end

% if i < N && j < M

% k = k+1;

% y(k,1) = i+1; y(k,2) = j+1;

% end

The function updatecenter:

function newmu = updatecentre(images,U,c,s1,s2,n)

%Input variables:

%images: scale space

%U: current clustering

%c: number of clusters

%s1: number of rows in each image

%s2: number of columns in each image

%n: number of images in scale space

img3

%Output variables:

%updatecentre

newmu = zeros(n,c);

totals = zeros(c,1); %number of pixels in each cluster;

for i = 1 : s1

for j = 1 : s2

totals(U(i,j)) = totals(U(i,j)) +1;

for h = 1 : n

newmu(h,U(i,j)) = newmu(h,U(i,j)) + images(i,j,h);

end

end

end

for k = 1 : c

if totals(k) ~= 0

newmu(:,k) = newmu(:,k)/totals(k);

end

end

The function finalclassify:

function U = finalclassify(U,colour,s1,s2)

%Input variables:

%U: current clustering

%colour

%s1: number of rows in each image

%s2: number of columns in each image

%Output variables:

%finalclassify;
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for i = 1 : s1

for j = 1 : s2

U(i,j) = colour(U(i,j));

end

end
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Abstract

Directional statistics is another avenue of statistics which caters for directional random variables.

Directional random variables are variables which rotates in circles of unit radius. Directional random

variables are also those variables measured with both magnitude and direction from the point of origin.

Wrapped distributions are the transformed distributions from our ordinary distributions to cater for

directional random variables. Some of the stipulated instruments used to measure these variables are,

the compass and the clock. In this report, an analysis and overview of wrapped distributions are done.
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1 Introduction

Studies of directional statistics started in the mid 18th century. The proposition to test for the uniformity of
unit vectors on circles using normal vectors was established in 1743 by D. Bernoulli [9]. The distribution of
variables on the sphere using a characterization of the normal distribution of the variable x on the real line
was established by Von Mises in 1918 [9]. The resulting probability density function is given below

g(θ, µ, κ) = (1/(2πI(κ))) ∗ exp(cos(θ − µ))

where I is the initial caliber of the Bessel function which denotes the modi�ed Bessel function of the �rst
kind and order 0, which is given by

I = (1/2π)(

ˆ 2π

0

exp(kcos(θ)))dθ.

This is the probability density function of the Von Mises M(µ,κ) with parameters µ and κ [9].
Directional or circular data comes from various arenas. The compass and the clock are the main primary

instruments for measuring directional statistics. Directions of birds moving from one place to another,
Protractor and spirit level readings are other examples of directional statistics. Arrival times of presidents at
a summit, or times of the year or month of certain events is an example of clock measurements. Directional
data can be regarded as any part of a circle with a radius equal to one or of a vector with length equal to one
[5]. It is important to set the starting point and direction of the circle, from which all directional observations
can then be attained by measuring the angle from the starting point to any point on the circle [5]. Directional
or circular data is usually measured in degrees. However, it is sometimes important to measure in radians.

Since the surface of our planet is almost in a shape of a sphere, spherical statistics emanates in massive
proportions in the sciences of our planet earth. Take for example, a very delicate part of an earthquake, the
epicenter, which is found on our planet's surface, vertically above the emanating point of the quake [8]. Some
spherical/circular statistical data where the results are distinct points on the earth's surface, evolves in the
approximation of the relative rotations of tectonic plates [8].

Directional statistics data results are also implemented to hypothesize where palaeomagnetic �elds will
be accelerating towards [2]. The foundation of analysis of palaeomagnetic was a massive accelerator in the
growth of the study of directional/circular observation [2]. Directional data emanates in the invention of
di�erent geological procedures, since these encompasses maneuvering matter from one designated destination
to another [2].

Wind directions brings to the fore a real or basic sense of directional or circular statistical data [3]. A
distribution of wind direction may emanate either as a marginal distribution of the wind speed and direction,
or as a conditional distribution for a given speed [3]. Some directional or circular data which comes from
meteorology encompasses the times of hurricane occurrence in a day [3].

The study of animal migrations has led to the study of directional or circular statistics [1]. Usual questions
are (i) whether the animals actually maneuver in a designated direction and (ii) whether there exists a uniform
distribution in the directions of travel [1]. Solutions to the concluding questions are very important in e�orts
to see if the animals use any clues, such as the moon's direction.

Circular statistics data spearheaded the evolution of one of the most important distributions in fractional
parts of atomic weights [9]. Prior to the innovation of isotopes, it was trialed that measured atomic weights
are integers subject to error [9]. Von Mises (1918) suggested examining the inference by testing whether or
not the complementary distributions on the circle has a mode at 0 degrees [9]. Circular data is also used in
the development of mental maps which human beings implement to present their surroundings [9].

Unfortunate events of a certain disease such as deaths (or stroke because of the disease) at di�erent periods
of year gives directional data. Directional statistical data can also emanate from vector cardiology [8]. In
the context of vector cardiograms arenas, data concerning electrical activity in a heart beat is explained in
terms of near-planar orbit in three dimensional space [8].

Information on distance is not readily available for astronomical objects. A lot of observations are of
points on the celestial sphere, and so provide directional data [9]. Orbits of planets, with a speci�ed order
of rotation, can be seen as points on the sphere [9]. This further enhances the importance of directional
statistics.
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2 Background theory

The wrapping method is one of the many ways used to study directional data. If a known distribution on
the real line is given then, it is possible to wrap that distribution on the circumference of a circle with radius
equal to one. Literally, it implies that if the random variable X has distribution function F (x), then Xw will
be the wrapped random variable of the wrapped distribution de�ned by

Xw = X(mod(2π))

with the distribution function of Xw as

Fw(θ) =

∞∑
k=1

[F (θ + 2πk)− F (2πk)], k = 0,±1,±2,±3, ...

We are accumulating probability over all the overlapping points x = θ, θ ± 2π, θ ± 4π, ..., using the above
approach [6]. So if g(θ) represents a density function which is circular and f(x) is the density function of the
random variable X, we have

g(θ) =

∞∑
k=1

f(θ + 2πk)

All wrapped distributions can be built by the given technique. In particular, if a random variable, X, attains
a concentrated distribution on the points

x = k/(2πm), k = 0,±1,±2,±3....

and m is an integer, the probability function of Xw is as follows

P (Xw = ((2πrk)/m) =

∞∑
k=1

p(r + km) k = 0, 1, 2, 3.....m− 1,

where p is a function of the probability of the random variable X [6]. Since there is no general way of
calculating moments, speci�c distributions are going to be used to explain how we attain those methods of
moments.

3 Wrapped distributions

Three wrapped distributions will be investigated speci�cally wrapped geometric, wrapped discrete skew
Laplace and wrapped t-distribution.

3.1 Wrapped geometric distribution

Take into consideration the geometric distribution on positive integers with parameter ξ [4]. The probability
mass function of the geometric distribution is given by

p(x; ξ) = (1− ξ)xξ, x = 0, 1, 2, ....; ξ > 0.

Now, the probability function of Xw is set as

P (Xw =
2πr

m
) =

∞∑
k=−∞

p(r + km; ξ), r = 0, 1, 2, 3, ....,m− 1

This implies that,

P (Xw =
2πr

m
) =

∞∑
k=0

(1− ξ)r+kmξ =
ξ(1− ξ)r

1− (1− ξ)m

7



whereas m is an element of natural numbers and r = 0, 1, 2, 3, ......,m− 1 [4]. Repeatedly,

m−1∑
k=0

ξ(1− ξ)r

1− (1− ξ)m
= 1.

Indeed, therefore, P (·) is a probability mass function.
Lets say ϕ(t) is the characteristic function of a random variable X, which is linear, thus the characteristic

function of Xw will be given as ϕ(p) [4]. This then, implies that, for a wrapped distribution, we ought to
attain

ϕ(p) =

m−1∑
r=0

ξ(1− ξ)rei2π
rp
m

1− (1− ξ)m
p = 0,±1,±2,±3, ....

=
ξ

1− (1− ξ)e i2πpm

=
ξ

y − iz
,

where y = 1− (1− ξ)cos( 2πp
m ) and z = (1− ξ)sin( 2πp

m ), where p is not equal to 0(modm) [4].
By explaining further, ϕ(p), we will attain

ϕ(p) = ξ{(1− (1− ξ)cos(2πp

m
))2 + ((1− ξ)sin(

2πp

m
))2}

−1
2 e

iarctan{
(1−ξ)sin(

2πp
m

)

1−(1−ξ)cos( 2πp
m

)
}

= φpe
iγp ,

wher

φp = ξ{(1− (1− ξ)cos(2πp

m
))2 + ((1− ξ)sin(

2πp

m
))2}

−1
2

and

γp = arctan{
(1− ξ)sin( 2πp

m )

1− (1− ξ)cos( 2πp
m )
}.

With the above equation we get the pth trigonometric moment of the wrapped geometric distribution as
follows

ϕp = αp + iβp,

where
αp = E(cospθ) = φpcosγp

and
βp = E(sinpθ) = φpsinγp.

Central trigonometric moments are as follows

αbarp = φpcos(γp − pγ1),

βbarp = φpsin(γp − pγ1)

The distance of the resultant vector, φ = φ1 is

φ =
√
α2

1 + β2
1

=
ξ

(1 + (1− ξ)2 − 2(1− ξ)cos 2π
m )

1
2

=
ξ

((ξ)2 + 2(1− ξ)(1− cos 2π
m ))

1
2

.
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The average direction is

γ = arctan
(1− ξ)sin( 2π

m )

1− (1− ξ)cos( 2π
m )

.

The circular square of deviations, V1 is as follows

V1 = 1− φ

= 1− ξ

(1 + (1− ξ)2 − 2(1− ξ)cos( 2π
m ))

1
2

.

The circular standard deviation is given below

σ0 =
√
−2lnp

=

√
ln

(ξ)2 + 2(1− ξ)(1− cos 2π
m )

(ξ)2
.

Skewness is measured as follows

µ0
1 =

βbar2

V 1.5
1

=
φ2sin(γ2 − 2γ1)

(1− ξ

((ξ)2+2(1−ξ)(1−cos 2π
m ))

1
2

)1.5
.

Kurtosis is measured by

µ0
2 =

φ2cos(γ2 − 2γ1)− φ4

V 2
0

.

3.1.1 Method of moments

Allow Θ = (Θ1, Θ2, Θ3,.......Θn) to be a sample which is random and has n elements. Let the sample come
from a wrapped geometric distribution with parameters ξ and m [4]. Parameter estimates are attained by
setting sample moments equal to the corresponding population moments. We already have ascertained the
pth sample trigonometric moment about the zero direction, m

′

p = αp + ibp, where

αp =
1

n

n∑
j=1

cos(pΘj),

bp =
1

n

n∑
j=1

sin(pΘj).

Equating ap to αpand bp to βp, gives

ap =
ξ

((ξ)2 + 2(1− ξ)(1− cos 2π
m ))0.5

∗ cos{tan−1 (1− ξ)sin( 2πp
m )

1− (1− ξ)cos( 2πp
m )
}

and

bp =
ξ

((ξ)2 + 2(1− ξ)(1− cos 2πp
m ))0.5

∗ sin{tan−1 (1− ξ)sin( 2πp
m )

1− (1− ξ)cos( 2πp
m )
}.

where p 6=0 (modm) [4]. Solving these two equations for set values of m and p, which we can equate to 1, we
obtain

ξ̂ =
R̂2cos( 2π

m )± R̂
√
R̂2cos( 2π

m )− 2(R̂2 − 1)cos( 2π
m )

R̂2 − 1

where R =
√
a2

1 + b21, is the average of the resultant length of the sample [4].
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3.2 Wrapped Laplace distribution on integers

The discrete Laplace distribution was invented by Jupp and Mardia in 1999, who managed to come up with
a discrete analogue of the normal distribution [6]. The discrete normal random variable X has a probability
mass function which can be written as

P (X = s) =
f(s)

f(l)
s = 0,±1,±2, ....

The f in the equation above represents the probability density function of the general normal distribution
with parameters µ and σ2. For any random variable that is continuous, W on the real number line, we can
attain a random variable X that belongs to the set of integers. This is done using the equation above. If the
skew Laplace density functions given below

f(w) =
1

σ

κ

1 + κ2
e−
|x|
κσ , w < 0

or

f(w) =
1

σ

κ

1 + κ2
e−

κ|x|
σ , w > 0.

for κ greater than zero, are inserted into the equation above, the resulting probability mass function of the
attained discrete distribution takes an explicit form in terms of the parameters p1 = e−

κ
σ and another one

q1 = e−
1
κσ [6].

A variable X which is random, has a distribution that is called discrete skew Laplace with parameters q1

an element of the set (0,1) and p1 an element of the set (0,1), if and only if

f(s) = P [X = s]

=
(1− p1)(1− q1)

1− p1q1
pκ1

for s = 0, 1, 2, 3, ..., or

f(s) = P [X = s]

=
(1− p1)(1− q1)

1− p1q1
q
|κ|
1

for s = 0,−1,−2,−3, ... [6].
The random variable X has a characteristic function written as follows

ϕ(r) =
(1− p1)(1− q1)

(1− p1eir)(1− q1eir)
,

where r is an element or real numbers [6].
As said earlier on, we are going to concentrate on wrapping the discrete skew Laplace distribution on

integers values, thus for Z = 0,±1,±2,±3.... This is done on a circle with radius equal to one. From the
introduction, it is known that the reduction modulo 2π does the job of wrapping the straight line onto the
circle [6]. The reduction modulo 2πc (given that c is an integer greater than zero) does also the job of
wrapping the integers onto the family of cth root of 1, which is seen as a subgroup of the circle. This implies
that, if W is a random variable which belongs to the integers set, then Θ, de�ned by

Θ = 2πW (mod2πc),

is a variable, which is random, on the lattice 2πt
c , for t = 0, 1, 2, 3, ...., c− 1, on the circle [6].

Now, if W attains a discrete skew laplace distribution that has parameters p1 and q1, then the wrapped
variable (random) Θ = 2πt

c has the probability distribution function that is given as follows

P (Θ =
2πt

c
) =

∞∑
s=−∞

p(t+ sc)

=

∞∑
s=−∞

(1− p∗)(1− q∗)q∗|t+sc|

1− p∗q∗
+

(1− p∗)(1− q∗)
1− p∗q∗

p∗t +

∞∑
s=−∞

(1− p∗)(1− q∗)p∗(t+sc)

1− p∗q∗
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for t = 0, 1, 2, 3, ...., c− 1, where p∗ = p1(mod 2πc) and q∗ = q1(mod 2πc)

=
(1− p∗)(1− q∗)

1− p∗q∗
[

−1∑
s=−∞

q∗−(t+sc) + p∗ +

∞∑
s=1

p∗(t+sc)]

=
(1− p∗)(1− q∗)

1− p∗q∗
[(1− p∗c) + p∗t(1− p∗c)(1− q∗c) + p∗(t+c)(1− q∗c)]

=
(1− p∗)(1− q∗)

1− p∗q∗
[
q∗(c−t)(1− p∗c) + p∗t(1− q∗c)

(1− p∗c)(1− q∗c)
],

for t = 0, 1, 2, 3, ...., c− 1 and p∗, q∗ being elements of the set (0,1) [6].
We also have

∞∑
t=0

pv(Θ) = 1.

This means that Pv(·) is de�ned as a probability distribution.
A random variable Θ, which is angular, follows a wrapped skew laplace distribution on integers with

p∗, q∗and c as parameters, and its probability mass function is given as

pv(Θ) =
(1− p∗)(1− q∗)

1− p∗q∗
[
q∗c−t(1− p∗c) + p∗t(1− q∗c)

(1− p∗c)(1− q∗c)
]

for t = 0, 1, 2, 3, ....c − 1 and p∗, q∗ being elements of the set (0,1) and it is represented as WDSL(p∗, q∗, c)
[6].

3.2.1 Special scenarios

Two special cases do materialize if either p∗ or q∗ approaches zero. The �rst one is Θ∼WDSL(p∗, 0, c) which
is a wrapped geometric distribution with the probability mass function given below

P (Θ =
2πt

c
) =

(1− p∗)p∗t

1− p∗c
,

where p∗an element of the set (0,1) and t = 0, 1, 2, 3......., c− 1 [6].
The second special case is Θ∼ WDSL(0, q∗, c) which also, is a wrapped geometric distribution with the

probability mass function

P (Θ =
2πt

c
) =

(1− q∗)q∗−t

1− q∗c
,

for q∗ ∈ (0,1) and t = 0, 1, 2, 3, ...., c− 1 [6].
If it happens that p∗ = q∗ then we attained a probability mass function of a wrapped discrete Laplace

distribution which is given below

P (Θ =
2πt

c
) =

(1− p∗)(p∗c−t + p∗t)

(1 + p∗)(1− p∗c)
,

for t = 0, 1, 2, 3, ......c− 1 [6].

3.2.2 The characteristic function and the trigonometric moments

F (Θ), the distribution function of the wrapped discrete skew Laplace distribution with p∗, q∗ and c as
parameters, is given as follows

P (k) =
(1− p∗)(1− q∗)

(1− p∗q∗)(1− p∗c)(1− q∗c )

c−1∑
t=0

[q∗c(1− p∗c)( k
q∗

)t + {(1− p∗c)(1− q∗c) + p∗c(1− q∗c)}(kp∗)t]

=
(1− p∗)(1− q∗)

(1− p∗q∗)(1− p∗c)(1− q∗c)
[
(1− p∗c)(q∗c − kc)q∗

q∗ − k
+

(1− (kp∗)c)(1− q∗c)
1− kp∗

]
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The above equation is also the probability generating function of WDSL(p∗, q∗, c). We also have P (1) = 1,

when k = ei
2πn
c we have

P (e
i2πn
c ) =

(1− p∗)(1− q∗)
(1− pe i2πnc )(1− qe− i2πnc )

.

If a linear random variable Y, has a characteristic function ϕ(r), then ϕ(n), is the characteristic function
of a wrapped random variable, Yw, for n = 0,±1,±2,±3.... [6]. For the wrapped discrete skew Laplace
distribution, we attain

ϕ(n) = E(einΘ), n = 0,±1,±2,±3, .....

= E(e
in2πt
c ), t = 0, 1, 2, 3, ....., c− 1

=

c−1∑
t=0

(1− p∗)(1− q∗)
(1− p∗q∗)(1− p∗c)(1− q∗c)

[q∗c−t(1− p∗c) + p∗t(1− p∗c)(1− q∗c) + p∗c+t(1− q∗c)]e in2πt
c

which simpli�es to

ϕ(n) =
(1− p∗)(1− q∗)

(1− p∗e i2πnc )(1− q∗e i2πnc )
,

for n = 0,±1,±2,±3, .......,n 6=0 (modm) [6].
We also have that

ϕ(n) =
(1− p∗)(1− q∗)

1− p∗e i2πnc − q∗e i2πnc + p∗q∗

=
(1− p∗)(1− q∗)[1 + p∗q∗ − (p∗ + q∗)cos( 2πn

c ) + i(p∗ − q∗)sin( 2πn
c )]

[1 + p∗q∗ − (p∗ + q∗)cos( 2πn
c )]2 + [(p∗ − q∗)sin( 2πn

c )]2
,

the above equation boils down to
ϕ(n) = αn + iβn,

for

αn =
(1− p∗)(1− q∗)[1 + p∗q∗ − (p∗ + q∗)cos( 2πn

c )]

[1 + p∗q∗ − (p∗ + q∗)cos( 2πn
c )]2 + [(p∗ − q∗)sin( 2πn

c )]2

and

βn =
(1− p∗)(1− q∗)(p∗ − q∗)sin( 2πn

c )

[1 + p∗q∗ − (p∗ + q∗)cos( 2πn
c )]2 + [(p∗ − q∗)sin( 2πn

c )]2
.

The nth trigonometric moment of the wrapped discrete skew laplace distribution with parameters p∗, q∗

and c, is given by

ϕΘ(n) =
(1− p∗)(1− q∗)

(1− p∗e i2πnc )(1− q∗e i2τnc )
.

The equation above can also be written in this context,

ϕΘ(n) = (1− p∗)(1− q∗){[1 + p∗q∗ − (p∗ + q∗)cos(
2πn

c
)]2 + [(p∗ − q∗)sin(

2πn

c
)]2}− 1

2 e
itan−1(

(p∗−q∗)sin( 2πn
c

)

1+p∗q∗−(p∗+q∗)cos( 2πn
c

)
),

= τne
iυn

where τn ∈ (0, 1) is called the pth average resultant length and υn ∈ [0, 2π) is called the pth average direction
for n=1,2,3,...,

τn = (1− p∗)(1− q∗){[1 + p∗q∗ − (p∗ + q∗)cos(
2πn

c
)]2 + [(p∗ − q∗)sin(

2πn

c
)]2}− 1

2

and

υn = tan−1(
(p∗ − q∗)sin( 2πn

c )

1 + p∗q∗ − (p∗ + q∗)cos( 2πn
c )

).
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The length of the average resultant vector is given a

τ = τ1

=
√
α2

1 + β2
1

=
(1− p∗)(1− q∗)√

[1 + p∗q∗ − (p∗ + q∗)cos( 2πn
c )]2 + [(p∗ − q∗)sin( 2πn

c )]2
,

the average direction is given by

υn = υ1

= tan−1(
β1

α1
)

= tan−1(
(p∗ − q∗)sin( 2π

n )

1 + p∗q∗ − (p∗ + q∗)cos( 2π
c )

).

We can also attain the circular variance which is

V0 = 1− τ

= 1− (1− p∗)(1− q∗)√
[1 + p∗q∗ − (p∗ + q∗)cos( 2πn

c )]2 + [(p∗ − q∗)sin( 2πn
c )]2

,

and the circular standard deviation is attained as follows

σ0 =
√
−2lnτ

=

√
ln[

[1 + p∗q∗ − (p∗ + q∗)cos( 2πn
c )]2 + [(p∗ − q∗)sin( 2πn

c )]2

[(1− p∗)(1− q∗)]2
].

Skewness is measured by

η0
1 =

β2bar

V
3
2

0

,

given that β2bar = e = E[sin2(Θ − υ)] [6].
Kurtosis is also measured by

η0
2 =

α2bar − (1− V0)4

V 2
0

,

given that α2bar = E[cos2(Θ − υ)] [6].

3.2.3 Method of moments

Allow Θ1, ............,Θl to represent a sample of size n, the sample should be random. The random sample is
taken from the wrapped discrete skew Laplace distribution with the parameters p∗, q∗and c. It follows that
the nth sample trigonometric moment about the zero direction is

t′n = an + ibn

where

an =
1

l

l∑
i=1

cos(nΘi)

and

bn =
1

l

l∑
i=1

sin(nΘi).
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The population moments that corresponds to the sample moments above is

ϕ(n) = αn + iβn.

Matching the population moments to the sample moments, we attain αn = anand βn = bn for n = 1, 2, 3, ...[6].
We then, have that

a1 =
(1− p∗)(1− q∗)[1 + p∗q∗ − (p∗ + q∗)cos( 2π

c )]

[1 + p∗q∗ − (p∗ + q∗)cos( 2π
c )]2 + [(p∗ − q∗)sin( 2π

c )]2

and

b1 =
(1− p∗)(1− q∗)(p∗ − q∗)sin( 2π

c )

[1 + p∗q∗ − (p∗ + q∗)cos( 2πn
c )]2 + [(p∗ − q∗)sin( 2πn

c )]2

Exploiting the equations above, and for a constant value of t we can ascertain the estimates for p∗ and q [6].
Through the division of a1 by b1 we get

a1

b1
=

1 + p∗q∗ − (p∗ + q∗)cos( 2π
c )

(p∗ − q∗)sin( 2π
c )

which gives

a1(p∗ − q∗)sin(
2π

c
) = b1[1 + p∗q∗ − (p∗ + q∗)cos(

2π

c
)]

which �nally gives

p =
b1q
∗cos( 2π

c )− a1q
∗sin( 2π

c )− b1
b1q∗ − b1cos( 2π

c )− a1sin( 2π
c )

By substituting the �p∗� value in terms of �q∗� in the equation for a1 will make us attain an equation in
terms of �q∗� and thus �p� [6].

3.3 Wrapped t-distribution

Allow the random variable Y∼t(s). This means that Y is a random variable which is linear in nature and
it follows a Student`s t distribution with s degrees of freedom. Under normal circumstances the degrees of
freedom s is greater than zero and more often than not, it is in integer form. The random variable Y has the
density function which is as follows:

f(y; s) = c(1 +
y2

s
)−

s+1
2 ,

where y is an element of the real numbers and c =
Γ( s+1

2 )

(Γ( s2 )
√
πs)

[10].

Now, consider Z = µ+ δY [10]. The random variable Z is scaled and re-centered with new center µ and
scaled δ times, where µ is an element of real numbers and δ is any number greater than zero. The random
variable Z is wrapped onto the circle of radius equal to one as follows:

θ = Z(mod(2π)).

Thus, θ is a circular random variable that is called the wrapped random variable which follows the wrapped
t-distribution with the density function given as

f(Θ;µ0, δ, s) =
c

δ

∞∑
p=−∞

(1 +
(Θ + 2πp− µ0)2

δ2s
),

where Θ is between 0 and 2π. The density of θ is symmetric about the average direction µ0 since the density
function above consist of the in�nite summation which is symmetrically monotonic decreasing function about
its mean µ0.[10]
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3.3.1 Special scenarios

The amazing feature of the wrapped t-distribution is that the degrees of freedom, s, is interpreted in many
di�erent ways. Particularly, when s=1, the density function given above will reduce to the density of the
heavy-tailed wrapped Cauchy distribution [10]. If s turns to in�nity, the limiting distribution is the light-
tailed normal distribution. If s is between 0 and 1, we will have a more heavier-tailed Cauchy distribution
since the density function given above will be more peaked than normal [10].

The density function of a wrapped t random variable, θ, can only be stated as an in�nite summation.
This means that there are no certain scenarios where the density function of the wrapped random variable
can be manipulated to a �nite summation [10]. If s approaches zero and δ approaches in�nity, the estimation
of the density given above will become increasingly di�cult because of the large numbers of the central terms
in the in�nite summation that be must included. In the events of smaller values of s and δ greater than one,
only a few number terms are needed which makes the estimation much easier [10].

3.3.2 The characteristic function and trigonometric moments

Lebedev and Hurst studied the characteristic function of the random variable Y which belongs to the t-
distribution and it is linear [10]. Implementing how Hurst presented his work, for v > 0,

ΦY (v) = E(eivY )

=
KS/2(v

√
s)(v
√
s)(s/2)

Γ(s/2)2(s/2)−1
,

where

Kω(y) =
1

2
(

∞̂

0

tω−1e{−
y
2 (t+ 1

t )}dt),

ω is an element of a real number set, y > 0, is an integral of the third type and order ω [10]. Putting to use
the idea of Mardia & Jupp, the members of the characteristic function [φθ(m) : p = 0,±1,±2, ...] of θare as
follows, when µ0 = 0, by

φθ(m) =
Ks/2(mδ

√
s)(mδ

√
s)s/2

Γ(s/2)2(s/2)−1
.

The distribution is symmetric about µ0 = 0, which then leads to the trigonometric moments

βm = E(sin(mθ)) = 0

and
αm = E(cos(mθ)) = φθ(m).

Particularly, the two �rst cosine moments are given below as

α1 = ρ

=
Ks/2(δ

√
s)(δ
√
s)s/2

Γ(s/2)2(s/2)−1

and

α2 =
Ks/2(2δ

√
s)(2δ

√
s)s/2

Γ(s/2)2(s/2)−1
.

Kato and Shimizu presents the trigonometric moments, characteristic function and the density function of
a wrapped t variable with integer degrees of freedom, which is correct but is not always the case. This is
because there are some instances where the degrees of freedom are not strictly integers.
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3.3.3 Method of moments

Allow Θ = (Θ1, ......,Θn) to represent a random sample of magnitude n from the wrapped distribution with
parameters µ, δ, s distribution. Bluntly speaking, for the method of moments approximates of the parameters
are attained by solving the system of equations which comes from equating µ0to the sample mean direction,
Θ−, α1to the resultant length, R−, and α2 to

α−2 =
1

n

n∑
i=1

cos2(Θi −Θ−).

If, by any chance, α−2 is negative, then no solution will exists for the last equation [10]. Observations from
simulations, for n �xed, the percentage of samples with negative α−2 values, m �uctuates with �uctuating
dispersion (δ) . In actual sense, when δ = 10, m is greater than 0.37 for n greater than or equal to 5. For
small samples sizes like n less than 10 less dispersed populations, δ less than 1, m increases as s turns to zero.
In another context, for large samples, negative values of α−2 are not easily attained from samples taken from
populations with δ less than 1. With this potential problem of attaining negative α−2 - values, the method of
moments estimation cannot, in general be recommended [10].

3.3.4 Maximum likelihood estimation

Estimation using maximum likelihood shrinks to the numerical optimization of the log-likelihood function

l(µ0, δ, s, Θ) = −n(log(δ) +
1

2
log(s) + log(B(

v

2
,

1

2
)) +

n∑
i=1

log(

∞∑
m=−1

(1 +
(Θi + 2πm− µ0)2

δ2s
)−

s+1
2 ).

The gradient based method of maximizing the equation above is rather cumbersome but possible [10]. In
order to estimate the parameters, we �nd the partial derivative with respect to the parameter needed to be
estimated. Equate that partial derivative to zero and then solve for the parameter to be estimated.

4 Conclusion

In this research report, analysis and an overview of directional statistics under the subtopic, wrapped distribu-
tions, was done. Transformations of usual distributions to wrapped ones was illustrated for three distributions
namely geometric, Laplace and t distribution. All steps of changing these distributions to wrapped ones was
shown in detail. There is no general way of wrapping the usual distributions, so each distribution has its
unique way of being wrapped. Parameter estimation for the wrapped distributions was also done in this re-
search report. It was noted that generally, the method of moments estimation estimates the parameters easily.
Unfortunately there are some other instances where method of moments estimation is not recommended. It
is seen that for a wrapped t distribution, method of moments estimation does not yield estimates. In this
circumstance maximum likelihood estimation will then be employed.

Even though it is a cumbersome task, future endeavours in this arena of wrapping distributions should
derive the maximum likelihood functions for almost all wrapped distributions so that comparison of estimates
could be done in order to get the best estimates. This is because as it stands, we only base with one source
of parameter estimation and it is not known if it is the best one or not.
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Abstract

In this essay a special case of random sum distributions is considered. We use the weighted Poisson
distribution as the count distribution together with the geometric distribution as the compounding dis-
tribution. The extent of variability of the compound weighted distribution obtained for di�erent weight
functions is discussed using common measures of variability like the Fisher index of dispersion as well as
the factorial moment to mean measure.
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1 Introduction

In this section a brief explanation of the underlying theory needed for compound weighted Poisson distribution
and the study of its properties is given.

1.1 Random sum distribution

A random sum distribution is a special case of mixture distributions. It is de�ned by considering a sequence
of independently identically distributed random variables Xi, i = 1,2,... with probability mass function

pi=P [Xi= i ]. Consider the sum S=
N∑
i=1

Xi where N is a non-negative integer random variable independent

of the sequence {Xi}. The distribution of S is known as the random sum distribution. A practical example
of the random sum model is the collective risk model in insurance, where the random sum S is used to
denote aggregate claim amount with N being the number of claims and the Xi's denoting the individual
claim amounts. Another example is found in entomology where N denotes the number of female insects in
a speci�c region and the random variable Xi denotes the number of eggs laid by the ith female, so that S
is the total number of eggs laid in this region. For the random sum we can �nd a general expression for its
expected value and variance by making use of some identities of conditional expectation given in [4]. To �nd
E[S], apply the following identity

E[S] = EN [E[S | N ]].

From this it follows that

E[S | N = n] = E[

n∑
i=1

Xi] =

n∑
i=1

E[ Xi] = nE[Xi].

Therefore,
E[S] = E[NE[Xi] = E[N ]E[Xi]. (1)

Similarly for var[S], we use the identity:

var[S] = EN [var[S | N ]] + var[E[S | N ]].

Since Xi, i = 1,2,...,N are independent consider

var[S | N = n] = var[

n∑
i=1

Xi] = n

n∑
i=1

var[Xi]

and so
var[S] = E[N(var[Xi])] + var[NE[Xi]].

i.e.
var[S] = E[N ][var[Xi]] + var[N ][E[Xi]]

2. (2)

1.2 Weighted distributions

In this subsection we give a brief account on weighted distributions. The idea of weighted distributions is
discussed in detail in [9, 4]. Suppose Y is a non-negative random variable with probability density function
(pdf) f(y). Suppose y is a realization of Y under f(y)and is observed with probability proportional to the
weight function w(y). Then the distribution of the observed sample is given by

fw(y) =
w(y)f(y)

E[w(Y )]
(3)

where E[w(Y )] is a normalizing factor. The random variable Yw with pdf fw(y) is the weighted version of
Y . Consider the simple weight function w(y) = y, where Y ∼ POI(λ). It follows that

f(y) =
e−λλy

y!
,
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and

E(Y ) = λ.

For the given weight function w(y) = y and from (3) it follows that

fw(y) =
w(y)f(y)

E[w(Y )]
=

ye−λλy

y!E(Y )
=
e−λλy−1

(y − 1)!
,

where (Y w − 1) ∼ POI(λ).
The weighted random variable Y w is stochastically greater than the variable Y if the weight function w(y) is a
monotone increasing function, and smaller than the variable Y if the weight function is monotone decreasing.
Consequently the expected value of the weighted version is greater on smaller than that of the original if the
weight function is monotone increasing or decreasing respectively (see[11, 10]).

1.3 Dispersion and measures of dispersion

Dispersion (also known as variability or spread) is a very important study in distribution theory, be it
in theoretical aspects or in the context of an underlying statistical sample. Dispersion enables us to get
information about data or a certain distribution. Many problems arise from variability being large. Thus
an evident extent of variability helps in being able to handle the problem properly. Moreover, dispersion is
a good measure of randomness of a data. In this paper we consider two measures of dispersion, namely the
Fisher index and factorial moment to mean measure.

1.3.1 Fisher index of dispersion

A prominent measure of variability is the Fisher index of dispersion given in detail by [5]. The Fisher index
of dispersion is de�ned as follows:

FI(X) =
V ar(X)

E(X)
. (4)

It is loosely termed, the variance to mean ratio, which is a normalized measure of dispersion. It is clear that
the Fisher index of dispersion is only de�ned when the E[X] is non-zero. A distribution is over-dispersed if
FI[X] > 1. Conversely we say it is under-dispersed if FI[X] < 1 and equi-dispersed if FI[X] = 1. The ideas
behind over-dispersion and under dispersion is also discussed in length in [12].

1.3.2 Factorial moment to mean measure

Another prominent measure of dispersion outlined in [3] and is used in this paper is the factorial moment to
mean measure which measures variability like the Fisher index. The factorial moment to mean of order r is
de�ned as follows:

Ir(X) =
E[X(X − 1)...(X − r + 1)]

[E(X)]r
for r = 2, 3, ... (5)

In the case of count data, for example where X is a Poisson distributed random variable, I2(X) is non-
negative. The theorem below shows how the factorial moment to mean measure is related to the Fisher index
measure of dispersion in the case of count data.

Theorem 1.1

For r = 2 in and X a random variable for count data i) FI(X ) > 1 if and only if I2(X )> 1,
ii)FI(X ) = 1 if and only if I2(X ) = 1,
iii)FI(X ) < 1 if and only if I2(X ) < 1.

Proof

It follows from (4), (5) and the fact that var(X) = E(X2)− [E(X)]2 that
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FI(X) =
V ar(X)

E(X)

=
E[X(X − 1)] + E(X)− [E(X)]2

E(X)

= I2(X)E(X) + 1− E(X)

= 1 + E(X)[I2(X)− 1].

The result follows from this and the fact that E(X) ≥ 0.

�

1.4 Probability generating function

De�nition 1.4.1
If X is a discrete random variable with values in the non negative integers with probability mass function
pi=P [Xi= i ]. The probability generating function of X is de�ned as:

u(z) = E[zX ] =

∞∑
i=0

piz
i . (6)

In this paper we make use of probability generating functions to calculate moments for di�erent distributions
(See [1]). Below is a result (that we prove informally) for moments calculated from a probability generating
function.

Theorem 1.4.1

For X a random variable with u(r)(1) the rth derivative of its probability generating function at z=1 it follows
that
u(r)(1) = E[X(X − 1)...(X − r + 1)]

Proof

From (6)

u(r)(z) =
dr

dzr
u(z)

=
dr

dzr
[

∞∑
i=0

piz
i]

=

∞∑
i=0

dr

dzr
piz

i

=

∞∑
i=0

pii(i− 1)...(i− r + 1)zi−r.

For z = 1 it follows that

u(r)(1) =

∞∑
i=0

pii(i− 1)...(i− r + 1)

= E[X(X − 1)...(X − r + 1)].
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The consequence of this result is that
u′(1) = E[X] (7)

and
u′′(1) = E[X(X − 1)] = E[X2]− E[X].

Thus it follows that
E[X2] = u′′(1) + u′(1). (8)

From (7) and (8) and the fact that var(X) = E(X2) − [E(X)]2 we can calculate the expected value and
variance of a random variable.

1.5 Outline of study

The Poisson distribution is used in practice as a standard model for count data, for example in the random

sum S =
Nλ∑
i=1

Xi, Nλ ∼ POI(λ) and Xi, i = 1, 2, ...Nλ a sequence of independently identically distributed

random variable. However it is an equi-dispersed model. For example, for Nλ, E(Nλ) = V ar(Nλ) = λ and

the Fisher index of dispersion is FI(Nλ) =
V ar(Nλ)
E(Nλ)

= 1. In this research two generalizations of the Poisson

distribution, namely the compound Poisson distribution and the weighted Poisson distribution are combined
to construct the more �exible compound weighted Poisson distribution. The Fisher index of dispersion [5] and
factorial to mean measure [3] are derived for this distribution, and compared for cases when using di�erent
weight function and the geometric compounding distribution.

2 Compound weighted Poisson distribution

In this section two generalizations of the Poisson distribution namely the compound Poisson and weighted
Poisson distribution are discussed and then combined to construct the more �exible compound weighted
Poisson distribution. Measures of dispersion as derived in Section 1.3 are calculated for each of these distri-
butions.

2.1 Compound Poisson distribution

One of the generalizations of the Poisson distribution is the compound Poisson distribution. This is a special
case of the random sum distributions which was described in Section 1.1 and is given in much detail in [4].

Consider S =
Nλ∑
i=1

Xi, and let Xi, i = 1,2,...,Nλ be a sequence of independently identically distributed random

variable and Nλ is a non-negative integer random variable independent of the sequence {Xi}. Suppose that
Nλ follows a Poisson distribution with parameter λ. Then S follows a compound Poisson distribution with
parameter λ and F (x). F (x) represents a general distribution for Xi. The distribution of the Xis is referred
to as the compounding distribution, and just like every random variable, we can calculate its moments. To
calculate the moments of S, conditional expectation results are used. From (1) and the fact that Nλ∼ POI(λ)
it follows that

E[S] = E[Nλ]E[Xi] = λE[Xi]. (9)

Similarly from (2)

var[S] = E[N ][var[Xi]] + var[N ][E[Xi]]
2

= λE[X2
i ]. (10)

From (4), (9) and (10) the Fisher index for the compound Poisson distribution is given by
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FI[S] =
V ar[S]

E[X]

=
E[X2]

E[X]
.

Since I2[X] ≥ 0 it can be seen from the Fisher index above that the compound Poisson distribution is over-
dispersed (FI(S) > 1) and will be equi-dispersed if (FI(S) = 1) that is if and only if I2[X] = 0 that is if and
only if E[X2] = E[X].
Also from (5), (9) and (10) the factorial moment to mean measure for the compound Poisson distribution is

I2[S] =
E[S2]− E[S]

[E[S]]2

=
var[S] + [E[S]]2 − E[S]

[E[S]]2

=
λE[X2

i ] + [λE[Xi]]
2 − λE[Xi]

[λE[Xi]]
2

=
E[X2

i ]

λ[E[Xi]]2
+ 1− 1

λE[Xi]
.

From I2[S] above and Theorem 1.1, I2[S] = 1 that is the distribution of S is equi-dispersed if and only if
E[X2] = E[X].

2.2 Weighted Poisson distribution

Another commonly used generalization of the Poisson distribution is the weighted Poisson distribution. In
Section 1.2 the general case for weighted distributions was discussed. Consider the random variable Nλ
following a Poisson distribution with Poisson parameter λ and a non-negative weight function w(n). Then
from (3) Nw

λ is the weighted version of the Poisson random variable Nλ with probability mass function (pmf)
given by

P [Nw
λ = n] =

w(n)

E[w(Nλ)]

λne−λ

n!
, (11)

where E [w(Nλ)] =
∞∑
n=0

w(n)λ
ne−λ

n! <∞ is a normalizing constant. The weighted Poisson distribution and its

properties is discussed in [2].
To measure the extent of variability for the weighted Poisson distribution FI(Nw

λ ), the Fisher index and
I2(N

w
λ ), the factorial moment to mean measure are calculated by �nding moments for Nw

λ using the proba-
bility generating function given in (6) together with (7) and (8).

From (6) and (9)
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uNwλ (z) =

∞∑
n=0

zn
[

w(n)

E[w(Nλ)]

λne−λ

n!

]

=
1

E[w(Nλ)]

∞∑
n=0

w(n)
(λz)ne−λ

n!
e−λzeλz

=
1

E[w(Nλ)]

∞∑
n=0

w(n)
(λz)ne−λ(1−z)

n!
e−λz

=
e−λ(1−z)

E[w(Nλ)]

∞∑
n=0

w(n)
(λz)n

n!
e−λz

=
E[w(Nλz]

E[w(Nλ)]
e−λ(1−z), (12)

where Nλz:Poisson(λz).

From (7) and (12) it follows that

E[Nw
λ ] = λ

E[w(Nλ + 1)]

E[w(Nλ)]
. (13)

Similarly it follows from (8) and (12) that

E[(Nw
λ )

2] = u′′Nwλ (1) + u′Nwλ (1)

= E[Nw
λ ] +

1

E[w(Nλ)]

∞∑
n=o

w(n)
n(n− 1)(λz)n−2e−λ

n!
λ2 |z=1

= E[Nw
λ ] +

1

E[w(Nλ)]

∞∑
n=o

w(n)
λe−λ

(n− 2)!
λ2

= λ
E[w(Nλ + 1)]

E[w(Nλ)]
+ λ2

E[w(Nλ + 2)]

E[w(Nλ)]
. (14)

Consequently the variance of Nwλ is given by the identity

V ar[Nw
λ ] = λ

E[w(Nλ + 1)]

E[w(Nλ)]
+ λ2

E[w(Nλ + 2)]

E[w(Nλ)]
− λ2[E[w(Nλ + 1)]

E[w(Nλ)]
]2. (15)

Thus the Fisher index for the weighted Poisson distribution is given by

FI[Nw
λ ] =

V ar[Nw
λ ]

E[Nw
λ ]

= 1 + λ

[
E[w(Nλ + 2)]

E[w(Nλ + 1)]
− E[w(Nλ + 1)]

E[w(Nλ)]

]
. (16)

From [7] we read that the weighted Poisson distribution accounts for both over-dispersion and under-
dispersion in this case.
Now the factorial to mean measure of order 2 can be calculated as:
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I2[N
w
λ ] =

E[(Nw
λ )

2]− E[Nw
λ ]

[E[Nw
λ ]]

2

=
E[w(Nλ + 2)]

[E(w(Nλ + 1))]2
E[w(Nλ)].

2.3 Compound weighted Poisson distribution

Two of the most prominent generalizations of the Poisson distribution namely the compound Poisson dis-
tribution and the weighted Poisson distribution were discussed in the previous sections. In this section we
combine the two generalizations to obtain an optimal and �exible family of distributions, the compound

weighted Poisson distribution. Let Sw =
Nwλ∑
i=1

Xi, with a given weight function w(n), n = 0, 1, ... be a random

sum, where Nw
λ is a non-negative random variable which has a weighted Poisson distribution, independent

of the sequence of independently identically distributed random variables Xi. Then the distribution of the
random sum Sw is called a compound weighted Poisson distribution. In this section we continue to make
use of probability generating functions to calculate the moments of the random variable Sw, which are use
to measure the extent of variability of the distribution of Sw.

Consider again the sequence of independently identically distributed random variables Xi, i = 1,2,... with
probability mass function pi=P [Xi= i ] and probability generating function given by:

u1(z) = E[zX ]. (17)

The probability generating function of Sw is given by

uSw(z) = E[zS
w

]

=

∞∑
n=0

E[zX1+X2+...+Xn | Nw
λ = n]P [Nw

λ = n]

=

∞∑
n=0

E[zX1 ]E[zX2 ]...E[zXn ] P [Nw
λ = n]

=

∞∑
n=0

[E(zX1)]n P [Nw
λ = n].

From the above, (11) and (17) it follows that

11



uSw(z) =

∞∑
n=0

[u1(z)]
n P [Nw

λ = n]

=

∞∑
n=0

[u1(z)]
n

[
w(n)

E[w(Nλ)]

λne−λ

n!

]

=

∞∑
n=0

[
w(n)

E[w(Nλ)]

[λu1(z)]
ne−λ

n!

]

=

∞∑
n=0

[
w(n)

E[w(Nλ)]

[λu1(z)]
ne−λ

n!

]
e−λu1(z)

e−λu1(z)

=
e−λ(1−u1(z))

E[w(Nλ)]

∞∑
n=0

[
w(n)

[λu1(z)]
ne−λu1(z)

n!

]
=
E[w(Nλu1(z))]

E[w(Nλ)]
e−λ(1−u1(z)), (18)

where Nλu1(z) ∼ POI(λu1(z)).

In order to measure variability we calculate from (18) the expected value and variance of this weighted
random variable Sw. By di�erentiating the pgf given by (18) above we get:

u′Sw (z) =
d

dz

{
∞∑
n=0

[
w(n)

E[w(Nλ)]

[λu1(z)]
ne−λ

n!

]}

=
λe−λ

E[w(Nλ)]

∞∑
n=0

[
w(n)

[λu1(z)]
n−1n

n!
u′1(z)

]

=
λe−λ

E[w(Nλ)]

∞∑
n=0

[
w(n)

[λu1(z)]
n−1

(n− 1)!
u′1(z)

]
. (19)

The expected value of Sw follows from the above by substituting of z = 1 as derived in (7) . From (7) and
(17) we also know u′1(1) = E[X] and u1(1) = 1 thus it follows that

E[Sw] =
λE[X]

E[w(Nλ)]

∞∑
n=0

[
w(n)

λn−1e−λ

(n− 1)!

]
= λE(X)

E[w(Nλ + 1)]

E[w(Nλ)]
. (20)

Similarly the second derivative of the pgf in (18) is given by

u′′Sw(z) =
λ2e−λ

E[w(Nλ)]

∞∑
n=0

[
w(n)

[λu1(z)]
n−2

(n− 2)!
[u′1(z)]

2

]
+

λe−λ

E[w(Nλ)]

∞∑
n=0

[
w(n)

[λu1(z)]
n−1

(n− 1)!
u′′1(z)

]
.

Substituting z = 1 into the above expression and making use of (6), (7) and (8) we have that

u′′Sw(1) =
λ2e−λ

E[w(Nλ)]

∞∑
n=0

[
w(n)

λn−2

(n− 2)!
[E(X)]2

]
+

λe−λ

E[w(Nλ)]

∞∑
n=0

[
w(n)

λn−1

(n− 1)!

[
E(X2)− E(X)

]]
= λ2[E(X)]2

E[w(Nλ + 2)]

E[w(Nλ)]
+ λ[E(X2)− E(X)]

E[w(Nλ + 1)]

E[w(Nλ)]
. (21)

From (8), (19) and (21) it follows that

E[(Sw)2] = u′′Sw(1) + u′Sw(1)

= λ2[E(X)]2
E[w(Nλ + 2)]

E[w(Nλ)]
+ λE(X2)

E[w(Nλ + 1)]

E[w(Nλ)]
.
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For the variance, we obtain

V ar(Sw) = λE(X2)
E[w(Nλ + 1)]

E[w(Nλ)]
+ λ2[E(X)]2

{
E[w(Nλ + 2)]

E[w(Nλ)]
−
[
E[w(Nλ + 1)]

E[w(Nλ)]

]2}
.

From (20) we know that λE[w(Nλ+1)]
E[w(Nλ)]

= E(Sw)
E(X) , then variance of Sw simpli�es to

V ar(Sw) =
E(X2)

E(X)
E(Sw) + λ2[E(X)]2

{
E[w(Nλ + 2)]

E[w(Nλ)]
−
[
E[w(Nλ + 1)]

E[w(Nλ)]

]2}
. (22)

The Fisher index for the distribution of Sw becomes

FI(Sw) =
V ar(Sw)

E(Sw)
=
E(X2)

E(X)
+ λ[E(X)]

{
E[w(Nλ + 2)]

E[w(Nλ + 1)]
− E[w(Nλ + 1)]

E[w(Nλ)]

}
. (23)

Substitution (16) into (23) gives

FI(Sw) =
V ar(Sw)

E(Sw)
=
E(X2)

E(X)
+ [E(X)]

[
V ar[Nw

λ ]

E[Nw
λ ]
− 1

]
. (24)

From (24) above we see that

FI(Sw) = FI(S) + E(X)[FI(Nw
λ )− 1].

Where S has a compound Poisson distribution discussed in Section 3.1 and Nw
λ has the weighted Poisson

distribution discussed in Section 3.2.

From (5), (23) and (24) it follows that the factorial moment to mean measure for Sw is given by

I2(S
w) =

λ[E(X)]2E[w(Nλ+2)]
E[w(Nλ)]

+ λ[E(X2)− E(X)]E[w(Nλ+1)]
E[w(Nλ)][

λE(X)E[w(Nλ+1)]
E[w(Nλ)]

]2 .

Next we prove a result that is given in [8], which gives a necessary and su�cient condition for over-dispersion
and under-dispersion of Sw in terms of the compounding distribution. This is a useful result in the next
section, where we consider a speci�c compounding distribution and derive its properties.

Theorem 2.3.1

The Let Sw be a compound weighted Poisson variable. Then FI(Sw) > 1 or FI(Sw) < 1 if and only if

V ar[Nw
λ ]

E[Nw
λ ]
≶ 1− I2(X). (25)

Proof

Suppose the variable Sw is over-dispersed, that is V ar(Sw)
E(Sw) >1. From (24) we have that

FI[Sw] =
E(X2)

E(X)
+ [E(X)]

[
V ar[Nw

λ ]

E[Nw
λ ]
− 1

]
> 1.

Simplifying the above inequality we get

FI[Nw
λ ] =

V ar[Nw
λ ]

E[Nw
λ ]

> 1− E(X2)−E(X)
[E(X)]2 = 1− I2(X).

13



The result for under-dispersion follows in a similar way.

Conversely if we suppose that the inequalities given in (25) hold, substitution of I2(X) and algebraic simpli-
�cation lead back (24) giving inequalities that prove for over-dispersion or under dispersion of Sw.

�

2.4 Summary of results

The table below gives a summary of the results describing di�erent measures of dispersion calculated in
Section 2.1 to 2.3.

Variable Fisher index Factorial moment to mean measure

S E[X2]
E[X]

E[X2
i ]

λ[E[Xi]]2
+ 1− 1

λE[Xi]

Nw
λ 1 + λ

[
E[w(Nλ+2)]
E[w(Nλ+1)] −

E[w(Nλ+1)]
E[w(Nλ)]

]
E[w(Nλ+2)]

[E(w(Nλ+1))]2E[w(Nλ)]

Sw E(X2)
E(X) + λ[E(X)]

{
E[w(Nλ+2)]
E[w(Nλ+1)] −

E[w(Nλ+1)]
E[w(Nλ)]

}
λ[E(X)]2

E[w(Nλ+2)]

E[w(Nλ)]
+λ[E(X2)−E(X)]

E[w(Nλ+1)]

E[w(Nλ)][
λE(X)

E[w(Nλ+1)]

E[w(Nλ)]

]2
Table 1: Results: Fisher index and factorial to mean measure for S, Nw

λ and S
w
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3 Application to special cases

In Section 2.3 the weighted Poisson distribution was used as the count distribution in the random sum. In
this section we expand this theory by focusing on the geometric distribution as the compounding distribution.
Di�erent cases of weight functions for the weighted Poisson distribution are also studied and the measures of
dispersion discussed in Section 1.3 are calculated.

3.1 Geometric compounding distribution

Consider the compound weighted Poisson distribution Sw =
Nwλ∑
i=1

Xi, where the sequence of random variables

Xi, i = 1,2,...,Nw
λ are geometrically distributed with parameter (1 − µ) and Nw

λ has the weighted Poisson
distribution. The purpose here is to investigate the variability of the distribution of Sw for di�erent weight
functions w(n) ofNw

λ . Three weight functions will be considered, namely w(n) = C, w(n) = n and w(n) = 1
1+n

. For each case the Fisher index in (24) will be calculated and results will be compared graphically.
The probability mass function is given by

pi = P [Xi = i] = µi−1(1− µ), i = 1, 2, ... (26)

The probability generating function for the geometric distribution is given by

u1(z) =
∑
∀i

ziµi−1(1− µ)

= z(1− µ)
∑
∀i

(zµ)i−1

=
z(1− µ)
1− µz

. (27)

From (7), (8) and (27)

E[X] = u′1(1) =

[
1− µ
1− zµ

+
(1− µ)µz
(1− zµ)2

]
|z=1

=
1

1− µ
.

and

E[X2] = u′′(1) + u′(1)

=

[
µ(1− µ)
(1− zµ)2

+
µ(1− µ)
(1− zµ)2

+
2µ2z(1− µ)
(1− zµ)3

]
|z=1 +

1

1− µ

=
1 + µ

(1− µ)2
. (28)

From the above and (5) we have that the factorial moment to mean measure for the geometric distribution

I2(X) = E[X(X−1)]
[E(X)2] = 2µ. Applying the result in Theorem 2.3.1 (see (19)), it follows that FI(Sw)≶ 1 if and

only if FI[Nw
λ ] ≶ 1− 2µ.

Below we derive properties of the distributions that arise when using the weight functions w(n) = C, w(n) = n
and w(n) = 1

1+n , in the compound weighted Poisson distribution with geometric compounding distribution.
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3.1.1 Case 1 : constant weight function w(n) = C.

It follows from (11) that

P [Nw
λ = n] =

w(n)

E[w(Nλ)]

λne−λ

n!
=
λne−λ

n!
.

Thus the random variable Nw
λ has a Poisson distribution with parameter λ. The distribution of Sw is a

compound weighted Poisson with geometric compounding distribution and is known as the Pólya�Aeppli
distribution with parameters λ and µµdenoted as PA(λ, µ) (see [6]).
The probability generating function for Swas given by (18). It follows that for the constant weight function
it simpli�es to,

uSw(z) = e−λ(1−u1(z)),

where u1(z) given by (27) is the probability generating function of the geometric distribution.
From (20) and (22)

E[Sw] = λE(X) =
λ

1− µ
.

and

V ar(Sw) =
E(X2)

E(X)
E(Sw) =

λ(1 + µ)

(1− µ)2
.

Thus for the Pólya�Aeppli distribution the Fisher index is given by

FI(Sw) =
V ar(Sw)

E(Sw)
=

1 + µ

1− µ
= 1 +

2µ

1− µ
> 1, (29)

which implies that the Pólya�Aeppli distribution is over-dispersed.

3.1.2 Case 2 : weight function w(n) = n.

It follows from (1) that

P [Nw
λ = n] =

w(n)

E[w(Nλ)]

λne−λ

n!
=
λn−1e−λ

(n− 1)!
.

The random variable Nw
λ has a size-biased distribution (see [10]) and Nw

λ = 1 + Nλ where Nλ ∼ POI(λ).
Thus the mean and variance for the weighted Poisson distribution are given by

E(Nw
λ ) = λ+ 1 V ar(Nw

λ ) = λ

The probability generating function for Sw is given by (18) simpli�es to
uSw(z) = e−λ(1−u1(z)),

where u1(z) is given by (27).
From (20)

E[Sw]=λE(X)λ+1
λ =1+λ

1−µ .

The variance follows from (22)

V ar(Sw) =
E(X2)

E(X)
E(Sw) + λ2[E(X)]2

{
E[w(Nλ + 2)]

E[w(Nλ)]
−
[
E[w(Nλ + 1)]

E[w(Nλ)]

]2}
=
µ+ λ(1 + µ)

(1− µ)2
.
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Thus for the size biased distribution the Fisher index is given by

FI(Sw) =
V ar(Sw)

E(Sw)
=

µ+ (1 + µ)λ

(1− µ)(1 + λ)
=

1 + µ

1− µ
− 1

(1− µ)(1 + λ)
<

1 + µ

1− µ
. (30)

From (29) and (30) we see that the compound size based Poisson distribution with geometric compounding
distribution is under-dispersed with respect to the Pólya�Aeppli distribution.

3.1.3 Case 3: weight function w(n) = 1
n+1 .

For the weight function w(n) = 1
n+1 , n = 0, 1, ... it follows that

E(w(Nλ)) = E

(
1

Nλ + 1

)
=

∞∑
n=0

1

n+ 1

λne−λ

n!

=
1

λ

∞∑
n=0

λn+1e−λ

(n+ 1)!

=
1

λ
[1− e−λ]. (31)

From (11)

P [Nw
λ = n] =

w(n)

E[w(Nλ)]

λne−λ

n!
=

e−λ

1− e−λ
λn+1

(n+ 1)!
.

From (20)

E(Nw
λ ) = λ

E[w(Nλ + 1)]

E[w(Nλ)]
,

where the expression for E[w(Nλ)] is given in (31).

To �nd an explicit expression for this expected value we �rst �nd the E[w(Nλ + 1)] = E
[

1
N+1

]
.

E[w(Nλ + 1)] = E

[
1

N + 1

]
=

∞∑
n=0

1

n+ 1

λne−λ

n!

n+ 1

n+ 1

=
e−λ

λ

∞∑
n=0

(n+ 1)λn+2

(n+ 2)!

=
e−λ

λ

[ ∞∑
n=0

λn+2

(n+ 2)!
+

∞∑
n=0

nλn+2

(n+ 2)!

]
. (32)

Since

∞∑
n=0

e−λλn

n!
= 1 = e−λ(1 +

λ

1
+
λ2

2!
+
λ3

3!
+ ...).

We have that

∞∑
n=0

λn+2

(n+ 2)!
= eλ − 1− λ. (33)
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Since

E(N − 2) =

∞∑
n=0

(n− 2)e−λλn

n!

= e−λ(−2− λ

1
+ 0 +

λ3

3!
+

2λ4

4!
+ ...)

= e−λ(−2− λ+
∞∑
n=0

nλn+2

(n+ 2)!
).

It follows that

∞∑
n=0

nλn+2

(n+ 2)!
= (λ− 2)eλ + 2 + λ. (34)

Substituting (33) and (34) into (32) we then have that

E[w(Nλ + 1)] =
e−λ

λ

[
e−λ − 1− λ+ (λ− 2)eλ + 2 + λ

]
=
e−λ

λ

[
1− eλ + λeλ

]
. (35)

From (14), (31) and (35) it follows that

E(Nw
λ ) = λ

E[w(Nλ + 1)]

E[w(Nλ)]

= λ
e−λ

λ

[
1− eλ + λeλ

] λ

1− e−λ

=
e−λ + λ− 1

1− e−λ
.

In a similar way the variance of Nw
λ can be derived and found to be

V ar(Nw
λ ) =

λ[1− (1 + λ)e−λ]

(1− e−λ)2
.

Moreover from (18) and (31) the probability generating function of Sw is given by

uSw(z) =
1− e−λu1(z)

u1(z)[1− e−λ]
e−λ(1−u1(z)). (36)

Thus from (7), (8) and (36) it follows that the expected value and variance of Sw are given by (see [8])

E[Sw] =
λ− 1 + e−λ

(1− µ)(1− e−λ)
,

V ar[Sw] =
(1 + µ)(1− e−λ)(λ− 1 + e−λ) + (1− e−λ)2 − λ2e−λ

(1− µ)(1− e−λ)2
.

From (4) we have that the Fisher index for this distribution is
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FI(Sw) =
V ar[Sw]

E[Sw]
=

1 + λ

1− µ
+

(1− e−λ)2 − λ2e−λ

(1− µ)(1− e−λ)(λ− 1 + e−λ)
.

.
Since the second term of the expression is positive, the distribution of Sw is over-dispersed with respect to
the Pólya�Aeppli distribution.

3.2 Results

3.2.1 Theoretical results

The summary of results given and discussed in Section 3.1 are given in Table 2 below.

w(n) P [Nw
λ = n] E[Sw] V ar[Sw] FI[Sw]

c
λne−λ

n!
λ

1−µ

λ(1+µ)
(1−µ)2

1+µ
1−µ

n
λn−1e−λ

(n−1)!
1+λ
1−µ

µ+λ(1+µ)
(1−µ)2

1+µ
1−µ − c1

c1 = 1
(1−µ)(1+λ)

1
n+1

eλ

1−e−λ
λn+1

(n+1)!
λ−1+e−λ

(1−µ)(1−e−λ)
(1+µ)(1−e−λ)(λ−1+e−λ)

(1−µ)(1−e−λ)2 + a1
1+λ
1−µ + c2

a1 = (1−e−λ)2−λ2e−λ

(1−µ)(1−e−λ)2 c2 = (1−e−λ)2−λ2e−λ

(1−µ)(1−e−λ)(λ−1+e−λ)

Table 2: Summary of results for the compound weighted Poisson distribution with geometric compounding
distribution for di�erent weight functions.

Consider the graphs below

Figure 1: Graphs of E[Sw] for the three cases (a) increasing µ and (b) increasing λ
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Figure 2: Graphs of V ar[Sw] for the three cases (a) increasing µ and (b) increasing λ

Figure 3: Graphs of FI[Sw] for the three cases (a) increasing µ and (b) increasing λ

Figures 1 to 3 give a graphical representation of the results summarized in Table 2. For each case E[Sw],V ar[Sw]
and FI[Sw]are respectively plotted against µ (keeping λ = 6 constant) and against λ (keeping µ = 0.1 ,con-
stant). Both E[Sw] and V ar[Sw] increase when the parameters µ and λ increase. In Section 3.1 it was
noted that for case 1 the Pólya�Aeppli distribution is over-dispersed with respect to the Poisson distribu-
tion. Evaluating the other cases with respect to the Pólya�Aeppli distribution shows that case 2 (w(n) = n)
is under-dispersed, that is FIcase2[S

w] < FIcase1[S
w] and case 3 (w(n) = 1

n+1 ) is over-dispersed, that is
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FIcase3[S
w] > FIcase1[S

w]. That is FIcase2[S
w] < FIcase1[S

w] < FIcase3[S
w]. In Figure 3 we observe that

the graph of case 2 plots below that of case one while that case 1, while that of case 3 plots above. This
agrees with our previous observation.

3.2.2 Empirical results

In this section empirical results simulated by using SAS are presented. For each of the three cases 100000

values of Sw =
Nwλ∑
i=1

Xi, were simulated where Xi is a geometric random variable with parameter (1-µ)=0.1

and Nw
λ has a weighted Poisson distribution with parameter λ = 6. E[Sw], V ar[Sw] and FI[Sw] for these

simulated values are summarized for each case in Table 3. The expected value, variance are given by the
proc means procedure in SAS (see program in appendix) and Fisher index of Sw is calculated using (4).

Empirical results
Case E[Sw] V ar[Sw] FI[Sw]

Case 1 59.56 1159.99 19.64
Case 2 70.07 1228.19 17.53
Case 3 50.33 1063.44 21.13

Theoretical results

Case E[Sw] V ar[Sw] FI[Sw]
Case 1 60 1140 19
Case 2 70 1247.06 17.82
Case 3 49.90 1073.7 21.52

Table 3: Summary of simulation results compared to theoretical results

As expected, from Table 3 we observe that the empirical values are close to the theoretical values. From the
empirical results we also note that for case 1 the Pólya�Aeppli distribution the Fisher index is 19.64. This
suggests that the distribution of Sw for this case is over-dispersed. Now with respect to the Pólya�Aeppli
distribution, it is noted that case 2 which records a Fisher index of 17.53 is under-dispersed, and case 3 with
Fisher index 21.13 is over-dispersed. Recall, discussed in Section 3.1 is the theory of the Fisher index of each
of the three cases. Given below is a graphical representation of the simulated data, in the form of a histogram
for each case.

Figure 4: Case 1 simulation bar chart
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Figure 5: Case 2 simulation bar chart

Figure 6: Case 3 simulation bar chart
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4 Conclusion

The objective of this study was to construct a more �exible distributions in terms of dispersion that can

be used for count data in the random sum S =
Nλ∑
i=1

Xi, Nλ ∼ POI(λ) and Xi, i = 1, 2, ...Nλ a sequence

of independently identically distributed random variable. The restriction of the Poisson which is frequently
used for count data is that it is equi-dispersed and when considering Xi ∼ GEO(1 − µ), the random sum

has the Pólya�Aeppli distribution, which is over-dispersed, that is FI(S) = V ar(S)
E(S) > 1. The compound

weighted Poisson distribution that was constructed in this essay by combining the compound Poisson and
the weighted Poisson distribution, has the �exibility that depending on the choice of weight function the
resulting distribution could be over-dispersed or under-dispersed in relation to the Pólya�Aeppli distribution.
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Appendix

********************* case 1 simulation*******************;

data simulation1;

do j=1 to 100000;

N_lamda=ranpoi(0,6);

Sw=0;

do i=1 to n_lamda;

x= RAND('geometric',0.1);

Sw= Sw+x;

end;

output;

end;

proc means n mean var data= simulation1 maxdec=4;

var Sw;

run;

Proc univariate plot noprint data=simulation1 ;

var sw;

histogram / midpoints = 0 to 300 by 10;

run;

********************* case 2 simulation*******************;

data simulation2;

do j=1 to 100000;

N_lamda=ranpoi(0,6)+1;

Sw=0;

do i=1 to n_lamda;

x= RAND('geometric',0.1);

Sw= Sw+x;

end;

output;

end;

proc means n mean var data= simulation2 maxdec=4;

var Sw;

run;

Proc univariate plot noprint data=simulation2 ;

var sw;

histogram / midpoints = 0 to 300 by 10;

run;

********************* case 3 simulation*******************;

data simulation3;

do j=1 to 100000;

u=ranuni(0); N_lamda=-1; psum=0; ind=0; lamda=6;

do until (ind=1);

N_lamda=N_lamda+1;

p=exp(-lamda)/(1-exp(-lamda))*(lamda**(N_lamda+1))/fact(N_lamda+1); psum1=psum;

psum=psum+p;

if psum1<u<=psum then ind=1;

end;

Sw=0;

do i=1 to n_lamda;

x= RAND('geometric',0.1);
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Sw= Sw+x;

end;

output;

end;

proc means n mean var data= simulation3 maxdec=4;

var Sw;

run;

Proc univariate plot noprint data=simulation3 ;

var sw;

histogram / midpoints = 0 to 300 by 10;

run;
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Abstract

The aim of this research report is to compare di�erent kernels with a speci�c focus on the Gaussian

kernel. Bandwidth selection will be explored as it determines the smoothness of the kernel and a�ects

whether data collapses or clusters. In particular, the Gaussian kernel will be explored using the method

of maximum likelihood for the bandwidth estimator and will be extended to other applications, such as

the Cauchy kernel.
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1 Introduction

Kernel density estimation (KDE) is a non-parametric data smoothing problem where a point of some dis-
tribution is estimated as a weighted average of its similarities with other points from that distribution. To
approximate the kernel, the use of mathematical descriptions of the models tested in the form of probability
density functions (pdfs) are used to aid in the generation of new observations based on previous observations
[2]. These observations are used to statistically analyze the �nite population so as to make statistical infer-
ences. The inferences are then used to construct the distribution that determines the type of kernel, such as
an Epanechnikov kernel or Quartic kernel, using the mathematical properties of the pdf since it acquires the
smoothness properties of the selected kernel [4].

The smoothness of the density function is determined by the bandwidth of the kernel, h2, illustrating
that the method of selecting an appropriate bandwidth is crucial for each point as it may a�ect the degree
of smoothness of the pdf, causing the data to cluster or collapse. There are several methods of selecting
a bandwidth, including the �Quick and Dirty� methods of selection that are based on AMISE (Asymptotic
Mean Integrated Squared Errors), the cross validation methods that minimize the integrated squared errors
by using the method of moments and other methods of selection that are available but do not form part of
this research report [3]. The resulting estimate of the kernel is in�uenced by the selected bandwidth as it is
a scaling parameter used to aid with variations in the given sample and should aim to mirror the behavior
of the pdf used.

The analysis of KDE is to test whether the estimation can be improved using other parametric kernels to
test whether better estimation densities can be found through extensions of the various processes of KDE.
The maximum likelihood bandwidth estimator that will be used in the estimation process.

2 Maximum likelihood bandwidth estimator

The use of non-parametric estimation in kernel density estimation is to avoid the assumption of a prior dis-
tribution on data and allows the data to be freed from any distributional assumptions. Since the distribution
of the data used is unknown, estimating the probability density function, p(x), from a set of observed data
samples X becomes essential to avoid the use of an unspeci�ed pdf which uses unknown parameters. The
dataset used to estimate the density function uses samples that are independently and identically distributed
from the unknown pdf, p(x), with

p̂(x) =
1

N

N∑
i=1

KH(x, xi) (1)

where H = bandwidth matrix ; KH(.) = kernel function ; x = data point where density is estimated and
xi= kernel centered at point i .

For the pdf to be recognized as the kernel function and inherit the smoothness properties of the kernel
function, the kernel function must satisfy the following conditions;

�

´∞
−∞KH(x, xi) = 1

� KH(.) ≥ 0

with the H matrix being �xed across all the kernels. Due to a �xed H matrix, the kernel estimators with
variable scale will not accurately achieve data modeling. This may cause data dense areas to be over smoothed
by the estimator and cause under smoothing in areas where there is little data. To address the varied
smoothness, variable kernel density estimation was introduced and uses Hi instead of a single H [4]. This
version of density estimation uses an adaptive bandwidth for an estimator to avoid over smoothing and under
smoothing of data dense areas and data sparse areas respectively. It is an e�ective technique when using a
multidimensional sample space, which does not form part of this report.

Since KDE is based on unknown distributions, the goodness-of-�t measures used for these distribution is
based on the maximum likelihood approach where the product of the likelihood of each data point belonging
to the estimated distribution is maximized. The likelihood function is de�ned as:
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LH(X) =

N∏
i=1

pH(xi) (2)

where pH(xi) = unknown pdf.
The likelihood function, using a log monotonic transformation, can be optimized by using the maximum

likelihood criterion and is then the objective function used for the maximum likelihood approach. The
monotonically transformed likelihood function is given by

ln(LH(X) =

n∑
i=1

ln[pH(xi)]. (3)

The use of the log-likelihood makes the maximization process simpler and it is similar to maximizing
the standard likelihood function since it is a monotonic transformation where the given order is preserved.
However, the maximum likelihood criterion's shortcoming is that there is a possibility of the likelihood
tending to an in�nity solution if the bandwidth tends to zero. This problem can be addressed by the use of
the �leave-one-out� likelihood estimation to avoid reaching a solution where the likelihood tends to in�nity.
The �leave-one-out� likelihood estimated pdf is given by

pH(−i)(xi) =
1

N − 1

n∑
j 6=i

KHj
(xi − xj |Hj).

The �leave-one-out� objective function is given by

ln(LH(−i)(X)) =

N∑
i=1

ln[pH(−i)(xi)], (4)

where optimizing the objective function above with respect to the bandwidth matrix removes the in�nity
solution that the maximum likelihood criterion would have giving when the bandwidth tends to zero.

The leave-one-out formulation can be used with kernel bandwidth estimation where the estimators are
derived from the leave-one-out maximum likelihood by either maximizing the log-likelihood objective function
shown in equation (4), which results in the use of the maximum leave-one-out likelihood, or minimizing some
sample entropy with respect to the kernel bandwidths, which results in a minimum leave-one-out entropy
estimator that uses di�erent kernel matrices since the estimate is dependent on the derivative of the kernel
function. Since this estimator uses partial derivatives for each bandwidth, it does not form part of this report.

The maximum leave-one-out likelihood uses the same maximum likelihood framework as the minimum
leave-one-out estimator but di�ers from the minimum leave-one-out estimator in that it does not use partial
derivatives when the maximum likelihood objective function is optimized with respect to the bandwidths,
which implies that it uses one bandwidth for kernels within the same neighborhood.

3 Application

3.1 Gaussian kernel

The Gaussian kernel can be expressed as the standard univariate normal density function, given by the pdf

p(x) =
1√
2πnh

n∑
i=1

exp−1

2

(
xi − x
h

)2

(5)

which can be used in formulating the likelihood function given by

L(X|h) =
∏n
i=1

1√
2πnh

∑n
i=1 exp−

1
2

(
xj−xi

h

)2
= 1

(2π)n/2(nh)n

∏n
i=1

∑n
i=1 exp−

1
2

(
xj−xi

h

)2 (6)
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and represents the joint density function of the random variable. Using a monotonic transformation, the
log-likelihood of the function can be shown as

l(X|h) = ln

 1

(2π)n/2(nh)n

n∏
j=1

n∑
i=1

exp−1

2

(
xj − xi
h

)2


= ln

(
1

(2π)n/2(nh)n

)
+ ln

 n∏
j=1

n∑
i=1

exp−1

2

(
xj − xi
h

)2


= −ln
(
(2π)n/2(nh)n

)
+

n∑
j=1

ln

(
n∑
i=1

exp−1

2

(
xj − xi
h

)2
)

= −n
(
ln(2π)

2
+ ln(n) + ln(h)

)
+

n∑
j=1

ln

(
n∑
i=1

exp−1

2

(
xj − xi
h

)2
)

(7)

where l(X|h) = ln[L(X|h)]. To determine the maximum likelihood estimator for h, equation (7) must be
partially di�erentiated with respect to h such that

δ
δh [l(X|h)] = δ

δh [−n
(
ln(2π)

2 + ln(n) + ln(h)
)
+
∑n
j=1 ln

(∑n
i=1 exp−

1
2

(
xj−xi

h

)2)
]

= −nh +
∑n
j=1

∑n
i=1

xj−xi

h2 exp− 1
2

(
xj−xi

h

)2

∑n
i=1 exp− 1

2

(
xj−xi

h

)2 .
(8)

From equation (8), h can be expressed as follows;

h =
1

n

n∑
j=1

∑n
i=1 (xj − xi) exp−

1
2

(
xj−xi

h

)2
∑n
i=1 exp−

1
2

(
xj−xi

h

)2 . (9)

Since h cannot be solved explicitly, a simple value search optimisation approach will be followed that
maximises the log-likelihood by way of the leave-one-out method. The value search results show that the
value of h converges:
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Table 1: Gaussian bandwidth value search results

Using the h from the value search in SAS®software 1, an estimated KDE function from the Gaussian
distribution is created in the Gaussian SAS®program and plots the following �gure:

Figure 1: Plot of X against the estimated Gaussian kernel (KDE)

The plot shows that the estimated KDE function has a similar shape to the standard Gaussian kernel

1The [output/code/data analysis] for this paper was generated using SAS software. Copyright, SAS Institute Inc. SAS and
all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC,
USA.
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with µ = 0 and σ2 = 1. To show the similarity, a plot of an overlay of the estimated Gaussian KDE and the
standard normal KDE is given:

Figure 2: Overlay of the estimated Gaussian kernel and the standard normal kernel

The plot in Figure 2 shows that the estimation method of the bandwidth (h ) helps in the generation of a
kernel density function that is close to being a standard normal KDE. The di�erence between the estimated
KDE function and the standard normal KDE function can be accounted for by the bandwidth since the
estimated bandwidth of the estimated KDE function is less than that of a standard normal KDE function.

3.2 Extension to the Cauchy kernel

The extension of the maximum likelihood estimator is used on the Cauchy kernel which is a standard Cauchy
distribution used for a random variable that is the ratio of two independent standard normal variables and
lacks de�ned moments [1], with the probability distribution given as

f (x|h) = 1

πnh

n∑
i=1

(
1

1 +
(
x−xi

h

)2
)

(10)

where h=scale parameter and x=location parameter. The likelihood function can thus be expressed as a
product of the probability density functions, expressed as

L(X|h) =
∏n
j=1

1
πnh

∑n
i=1

(
1

1+
(

xj−xi
h

)2

)

= 1
(πnh)n

∏n
j=1

∑n
i=1

(
1

1+
(

xj−xi
h

)2

)
.

(11)

Transforming the likelihood function into a log-likelihood function and using l(X|h) = ln[L(X|h)], equa-
tion (11) becomes

l(X|h) = −nln (πnh) +
n∑
j=1

ln

n∑
i=1

 1

1 +
(
xj−xi

h

)2
 . (12)

Similar to the Gaussian application, the bandwidth (h ) is estimated using a value search approach that
maximises the log-likelihood by way of the leave-one-out method. The following table shows the convergence
of h:
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Table 2: Cauchy bandwidth value search results

Using the h value from the value search, the estimated KDE function for the Cauchy distribution is
created in the SAS®software and plots the following:

Figure 3: Plot of X against the estimated Cauchy kernel (KDE)

An overlay of the estimated Cauchy KDE function and the theoretical Cauchy KDE function is given by
the following plot:
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Figure 4: Overlay of the estimated Cauchy KDE and the theoretical Cauchy KDE

which shows that the theoretical Cauchy KDE is heavily tailed compared to the estimated Cauchy KDE
function.

3.3 Comparing the Gaussian KDE function and the Cauchy KDE function

3.3.1 Gaussian KDE using Cauchy distributed data

Using a similar setup as in sections 3.1 and 3.2, the Gaussian kernel function is estimated using Cauchy
distributed data with the purpose of comparing the estimated Gaussian kernel function and the standard
normal kernel function to the theoretical Cauchy kernel function. The method used to generate the necessary
plots involved generating Cauchy distributed data and using the data to �nd the optimal bandwidth h
through a value search approach so that the h can be used in the respective estimated kernel functions.Using
the SAS®software, the following plot was generated:

Figure 5: Overlay of the estimated Gaussian kernel, standard normal kernel and the theoretical Cauchy
kernel

Figure 5 shows that the standard normal kernel would not be ideal for Cauchy distributed data as it is
heavily tailed compared to the theoretical Cauchy kernel, indicating that the Cauchy data is undersmoothed
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as compared to the Cauchy kernel. The estimated Gaussian kernel can be used to estimate Cauchy distributed
data as it is similar to the theoretical Cauchy kernel, even though it is not smooth on the tail.

3.3.2 Cauchy KDE using standard normal data

The Cauchy kernel function is estimated using standard normal data with the purpose of comparing the
estimated Cauchy kernel function and the theoretical Cauchy kernel function to the standard normal kernel
function. Using a similar method to the method described in section 3.3.1, the following plot was generated
in the SAS®software:

Figure 6: Overlay of the estimated Cauchy kernel, theoretical Cauchy kernel and the standard normal kernel

Figure 6 shows that the theoretical Cauchy kernel has �atter tails than the estimated Cauchy kernel and
the standard normal kernel, illustrating that the theoretical Cauchy places more weight on the data on the
tails of the kernel than the other kernels. It accomodates more data than the standard normal, which places
more weight to the center of the data distribution. Therefore, the Cauchy kernel seems to be a better choice
of kernel for a larger sample size.

4 Conclusion

The kernel choice in the application section yields di�erent results depending on the distribution of the data
used, given a speci�ed bandwidth. As noted, a Cauchy kernel illustrates more variability and accommodates
more data since the Cauchy kernel is not as heavily tail as the standard normal kernel. The Gaussian kernels
have heavier tails, indicating that the weight functions places more emphasis on the data centred around the
mean level than on data towards the tails. Data is clustered around the mean when using the Gaussian kernel.
As shown in section 3.3.1, the estimated Gaussian kernel has a similar shape to that of a Cauchy kernel, which
show a higher variability and accomodate more data than the standard normal kernel for Cauchy distributed
data. For the normally distributed data, the theoretical Cauchy kernel can be used as its variability allows
for the consideration of more data. In order to determine whether other kernels are better than the Gaussian
kernel in terms of estimation, more extensive tests need to be conducted using di�erent kernels and di�erent
data from other distributions.
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5 Appendix

Gaussian SAS®program:

proc iml ;
n=1000;
mu = rannor ( j (n , 1 , 1 ) ) ;
h=0.299758238207970; /* from Theo ' s code */

*Silverman = std (x )* (4/(3* nrow (x ) ) ) * * ( 1 / 5 ) ;

s t a r t kde_norm(x ) g l oba l (n , h ,mu) ;
norm_pdf=0;
do i =1 to n ;
norm_pdf=norm_pdf+

(1/( sq r t (2* constant ( ' pi ' ) ) * n*h)* exp (−(1/2)*((x−mu[ i ] ) / h)##2));
end ;
re turn (norm_pdf ) ;
f i n i s h kde_norm ;

s t a r t std_norm(x ) ;
y=(1/( sq r t (2* constant ( ' pi ' ) ) ) * exp (−(1/2)*(x)##2));
r e turn (y ) ;
f i n i s h std_norm ;

**Generate x ' s from −n to n ( g r id )** ;
do j=−5 to 5 by 0 . 0 1 ;
i f j=−5 then x=j ;
e l s e x=x// j ;
i f j=−5 then kde=kde_norm( j ) ;
e l s e kde=kde//kde_norm( j ) ;
i f j=−5 then y=std_norm( j ) ;
e l s e y=y//std_norm( j ) ;
end ;
*xrow=nrow (x ) ;
* f x ro=nrow ( kde ) ;
*yrow=nrow (y ) ;
x_kde_y=x | | kde | | y ;

* pr in t x_kde_y ;
c r e a t e gaus from x_kde_y [ colname={x kde y } ] ;
append from x_kde_y ;
qu i t ;

gopt ions r e s e t=a l l i=s t e p s j ;
ax i s 1 l a b e l=(ang le=90 ' kde ' ) ;
ax i s 2 l a b e l=(ang le=90 'y ' ) ;
ax i s 3 l a b e l =( 'X' ) ;
symbol1 c o l o r=blue width=2 ;
t i t l e 1 ' Plot o f Estimated ke rne l ( kde ) vs . x ' ;
proc gp lo t data=gaus ;
p l o t kde*x / vax i s=ax i s1 hax i s=ax i s3 ;
run ;
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gopt ions r e s e t=t i t l e symbol ;
symbol1 c o l o r=red width=2 ;
t i t l e 2 ' Plot o f Standard Normal ke rne l ( y ) vs . x ' ;
proc gp lo t data=gaus ;
p l o t y*x / vax i s=ax i s2 hax i s=ax i s3 ;
run ;

gopt ions r e s e t=a l l ;
ax i s 1 l a b e l=(ang le=90 ' kde y ' ) ;
t i t l e 3

' Plot o f Estimated ke rne l ( kde ) Overlayed with Standard Normal ke rne l ( y ) ' ;
proc s gp l o t data=gaus ;
s e r i e s x=x y=kde ;
s e r i e s x=x y=y ;
run ;

Cauchy SAS®program:

proc iml ;
n=1000;
mu = rancau ( j (n , 1 , 1 ) ) ;
h=0.324717588479980; /* from Theo ' s code */

*Silverman = std (x )* (4/(3* nrow (x ) ) ) * * ( 1 / 5 ) ;

s t a r t kde_cauchy (x ) g l oba l (n , h ,mu) ;
cauchy_pdf=0;
do i =1 to n ;
cauchy_pdf=cauchy_pdf+

( (1/ ( constant ( ' pi ' ) * n*h )* (1/(1+((( x−mu[ i ])##2)/h ) ) ) ) ) ;
end ;
re turn ( cauchy_pdf ) ;
f i n i s h kde_cauchy ;

s t a r t std_cauchy (x ) ;
y=(1/( constant ( ' pi ' ) )* ( 1/ (1+( ( x )##2))));
r e turn (y ) ;
f i n i s h std_cauchy ;

**Generate x ' s from −n to n ( g r id )** ;
do j=−5 to 5 by 0 . 0 1 ;
i f j=−5 then x=j ;
e l s e x=x// j ;
i f j=−5 then kde_cau=kde_cauchy ( j ) ;
e l s e kde_cau=kde_cau//kde_cauchy ( j ) ;
i f j=−5 then y_cau=std_cauchy ( j ) ;
e l s e y_cau=y_cau// std_cauchy ( j ) ;
end ;
*xrow=nrow (x ) ;
* f x ro=nrow ( kde ) ;
*yrow=nrow (y ) ;
x_kdecau_ycau=x | | kde_cau | | y_cau ;
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* pr in t x_kdecau_ycau ;
c r e a t e cauchy from x_kdecau_ycau [ colname={x kde_cau y_cau } ] ;
append from x_kdecau_ycau ;
qu i t ;

gopt ions r e s e t=a l l i=s t e p s j ;
ax i s 1 l a b e l=(ang le=90 ' kde_cauchy ' ) ;
ax i s 2 l a b e l=(ang le=90 ' y_cauchy ' ) ;
ax i s 3 l a b e l =( 'X' ) ;
symbol1 c o l o r=blue width=2 ;
t i t l e 1 ' Plot o f Estimated Cauchy ke rne l (Cauchy KDE) vs . x ' ;
proc gp lo t data=cauchy ;
p l o t kde_cau*x / vax i s=ax i s1 hax i s=ax i s3 ;
run ;

gopt ions r e s e t=t i t l e symbol ;
symbol1 c o l o r=red width=2 ;
t i t l e 2 ' Plot o f Theo r e t i c a l Cauchy ke rne l (Cauchy Y) vs . x ' ;
proc gp lo t data=cauchy ;
p l o t y_cau*x / vax i s=ax i s2 hax i s=ax i s3 ;
run ;

gopt ions r e s e t=a l l ;
ax i s 1 l a b e l=(ang le=90 ' kde y ' ) ;
t i t l e 3

' Plot o f Estimated Kernel (Cauchy KDE) Overlayed with Theo r e t i c a l Cauchy Kernel (Cauchy Y) ' ;
proc s gp l o t data=cauchy ;
s e r i e s x=x y=kde_cau ;
s e r i e s x=x y=y_cau ;
run ;

Cauchy on normal data SAS®program:

proc iml ;
**Kernel Est imation Of Cauchy Using Normally D i s t r i b tued Data ** ;

******Normally d i s t r i b u t e d Data ******* ;
n=1000;
r e s e t noautoname ;
x = rannor ( j ( 1 0 00 , 1 , 1 ) ) ;
Si lverman = std (x )* (4/(3* nrow (x ) ) ) * * ( 1 / 5 ) ;

********* Ca lcu l a t i on o f h f o r Normal ******** ;
s t a r t nLogLike l ihood (h) g l oba l ( x ) ;
n = nrow (x ) ;
l o g l i k e = −n* l og ( sq r t (2* constant ( ' PI ' ) ) * n*h ) ;
do j = 1 to n ;
l l temp = 0 ;
do i = 1 to n ;
i f i = j then l l temp = l l temp+0;
e l s e l l temp = l l temp+exp (−(1/2)*(( x [ j ]−x [ i ] ) / h )**2 ) ;
end ;
l o g l i k e = l o g l i k e+log ( l l temp ) ;
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end ;
re turn ( l o g l i k e ) ;
f i n i s h nLogLike l ihood ;

/*Find the maximum with a s imple search a lgor i thm */
r e s u l t = j ( 2 0 , 2 ) ;
y = j (10 , 2 ) ;
a = 0 ;
b = 0 . 5 ;

do j = 1 to nrow ( r e s u l t ) ;
do i = 1 to nrow (y ) ;
y [ i , 1 ] = a+(b−a )* ( i /nrow (y ) ) ;
y [ i , 2 ] = nLogLike l ihood (y [ i , 1 ] ) ;
end ;

i f y [ <: > ,2] = 1 then do ;
a = y [ y [ < : > ,2 ] , 1 ] ;
b = y [ y [ <: > ,2]+1 ,1 ] ;
end ;
e l s e i f y [ <: > ,2] = nrow (y ) then do ;
a = y [ y [ <: > ,2]−1 ,1] ;
b = y [ y [ < : > ,2 ] , 1 ] ;
end ;
e l s e do ;
a = y [ y [ <: > ,2]−1 ,1] ;
b = y [ y [ <: > ,2]+1 ,1 ] ;
end ;
r e s u l t [ j , ] = y [ y [ < : > ,2 ] , ] ;
end ;

c = {"Bandwidth" "Value o f Log−Like l ihood Function "} ;

p r i n t r e s u l t
[ l a b e l="Search Optimisat ion o f the Log−Like l ihood Function" colname=c format =19 .15 ] ;

h=r e s u l t [ 2 0 , 1 ] ; /* the value h converges to */
p r in t h ;

**Estimated Cauchy Kernel & Theo r e t i c a l Cauchy Kernel ** ;
mu = rannor ( j (n , 1 , 1 ) ) ;
s t a r t kde_cauchy (x ) g l oba l (n , h ,mu) ;
cauchy_pdf=0;
do i =1 to n ;
cauchy_pdf=cauchy_pdf+((1/( constant ( ' pi ' ) * n*h )* (1/(1+((( x−mu[ i ])##2)/h ) ) ) ) ) ;
end ;
re turn ( cauchy_pdf ) ;
f i n i s h kde_cauchy ;

s t a r t std_cauchy (x ) ;
y=(1/( constant ( ' pi ' ) )* ( 1/ (1+( ( x )##2))));
r e turn (y ) ;
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f i n i s h std_cauchy ;

**Standard Normal Kernel ** ;
s t a r t std_norm(x ) ;
y=(1/( sq r t (2* constant ( ' pi ' ) ) ) * exp (−(1/2)*(x)##2));
r e turn (y ) ;
f i n i s h std_norm ;

**Generate x ' s from −n to n ( g r id )** ;
do j=−5 to 5 by 0 . 0 1 ;
i f j=−5 then x=j ;
e l s e x=x// j ;
i f j=−5 then kde_cau=kde_cauchy ( j ) ;
e l s e kde_cau=kde_cau//kde_cauchy ( j ) ;
i f j=−5 then y_cau=std_cauchy ( j ) ;
e l s e y_cau=y_cau// std_cauchy ( j ) ;
i f j=−5 then y=std_norm( j ) ;
e l s e y=y//std_norm( j ) ;
end ;
*xrow=nrow (x ) ;
* f x ro=nrow ( kde ) ;
*yrow=nrow (y ) ;
x_kdecau_ycau_y=x | | kde_cau | | y_cau | | y ;

* pr in t x_kdecau_ycau_y ;
c r e a t e cauchy from x_kdecau_ycau_y [ colname={x kde_cau y_cau y } ] ;
append from x_kdecau_ycau_y ;
qu i t ;

gopt ions r e s e t=a l l i=s t e p s j ;
ax i s 1 l a b e l=(ang le=90 ' kde_cauchy ' ) ;
ax i s 2 l a b e l=(ang le=90 ' y_cauchy ' ) ;
ax i s 3 l a b e l =( 'X' ) ;
symbol1 c o l o r=blue width=2 ;
t i t l e 1

' Plot o f Estimated Cauchy ke rne l (Cauchy KDE) on normally d i s t r i b u t e d data ' ;

/* proc gp lo t data=cauchy ;
p l o t kde_cau*x / vax i s=ax i s1 hax i s=ax i s3 ;
run ;

gopt ions r e s e t=t i t l e symbol ;
symbol1 c o l o r=red width=2 ;
t i t l e 2 ' Plot o f Theo r e t i c a l Cauchy ke rne l (Cauchy Y) vs . x ' ;
proc gp lo t data=cauchy ;
p l o t y_cau*x / vax i s=ax i s2 hax i s=ax i s3 ;
run ;*/

gopt ions r e s e t=a l l ;
t i t l e 3

' Plot o f Estimated Kernel (Cauchy KDE) Overlayed with
Theo r e t i c a l Cauchy Kernel (Cauchy Y) and Standard Normal Kernel (Y) ' ;

proc s gp l o t data=cauchy ;
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s e r i e s x=x y=y ;
s e r i e s x=x y=kde_cau ;
s e r i e s x=x y=y_cau ;
run ;

Normal on data CauchySAS®program:

proc iml ;
**Kernel Est imation Of Normal Using Cauchy Di s t r ib tued Data ** ;

******Cauchy d i s t r i b u t e d Data ******* ;
n=1000;
r e s e t noautoname ;
x = rancau ( j ( 1 0 00 , 1 , 1 ) ) ;

**Ca lcu l a t i on o f h f o r Cauchy D i s t r i bu t i on ** ;
s t a r t cLogLike l ihood (h) g l oba l ( x ) ;
n = nrow (x ) ;
l o g l i k e = −n* l og ( constant ( ' PI ' ) * n*h ) ;
do j = 1 to n ;
l l temp = 0 ;
do i = 1 to n ;
i f i = j then l l temp = l l temp+0;
e l s e l l temp = l l temp+1/(1+((x [ j ]−x [ i ] ) / h )**2 ) ;
end ;
l o g l i k e = l o g l i k e+log ( l l temp ) ;
end ;
re turn ( l o g l i k e ) ;
f i n i s h cLogLike l ihood ;

/*Find the maximum with a s imple search a lgor i thm */
r e s u l t = j ( 2 0 , 2 ) ;
y = j (10 , 2 ) ;
a = 0 ;
b = 0 . 5 ;
do j = 1 to nrow ( r e s u l t ) ;
do i = 1 to nrow (y ) ;
y [ i , 1 ] = a+(b−a )* ( i /nrow (y ) ) ;
y [ i , 2 ] = cLogLike l ihood (y [ i , 1 ] ) ;
end ;

i f y [ <: > ,2] = 1 then do ;
a = y [ y [ < : > ,2 ] , 1 ] ;
b = y [ y [ <: > ,2]+1 ,1 ] ;
end ;
e l s e i f y [ <: > ,2] = nrow (y ) then do ;
a = y [ y [ <: > ,2]−1 ,1] ;
b = y [ y [ < : > ,2 ] , 1 ] ;
end ;
e l s e do ;
a = y [ y [ <: > ,2]−1 ,1] ;
b = y [ y [ <: > ,2]+1 ,1 ] ;
end ;
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r e s u l t [ j , ] = y [ y [ < : > ,2 ] , ] ;
end ;

c = {"Bandwidth" "Value o f Log−Like l ihood Function "} ;

p r i n t r e s u l t
[ l a b e l="Search Optimisat ion o f the Log−Like l ihood Function" colname=c format =19 .15 ] ;

h=r e s u l t [ 2 0 , 1 ] ; /* the value h converges to */
* pr in t h ;

**Estimated Gaussian Kernel & Standard Gaussian Kernel ** ;
mu = rancau ( j (n , 1 , 1 ) ) ;
s t a r t kde_norm(x ) g l oba l (n , h ,mu) ;
norm_pdf=0;
do i =1 to n ;
norm_pdf=norm_pdf+

(1/( sq r t (2* constant ( ' pi ' ) ) * n*h)* exp (−(1/2)*((x−mu[ i ] ) / h)##2));
end ;
re turn (norm_pdf ) ;
f i n i s h kde_norm ;

s t a r t std_norm(x ) ;
y=(1/( sq r t (2* constant ( ' pi ' ) ) ) * exp (−(1/2)*(x)##2));
r e turn (y ) ;
f i n i s h std_norm ;

**Theo r e t i c a l Cauchy Kernel ** ;
s t a r t std_cauchy (x ) ;
y=(1/( constant ( ' pi ' ) )* ( 1/ (1+( ( x )##2))));
r e turn (y ) ;
f i n i s h std_cauchy ;

**Generate x ' s from −n to n ( g r id )** ;
do j=−5 to 5 by 0 . 0 1 ;
i f j=−5 then x=j ;
e l s e x=x// j ;
i f j=−5 then kde=kde_norm( j ) ;
e l s e kde=kde//kde_norm( j ) ;
i f j=−5 then y=std_norm( j ) ;
e l s e y=y//std_norm( j ) ;
i f j=−5 then y_cau=std_cauchy ( j ) ;
e l s e y_cau=y_cau// std_cauchy ( j ) ;
end ;
*xrow=nrow (x ) ;
* f x ro=nrow ( kde ) ;
*yrow=nrow (y ) ;
x_kde_y_ycau=x | | kde | | y | | y_cau ;

* pr in t x_kde_y ;
c r e a t e gaus from x_kde_y_ycau [ colname={x kde y y_cau } ] ;
append from x_kde_y_ycau ;
qu i t ;
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gopt ions r e s e t=a l l i=s t e p s j ;
ax i s 1 l a b e l=(ang le=90 ' kde ' ) ;
ax i s 2 l a b e l=(ang le=90 'y ' ) ;
ax i s 3 l a b e l =( 'X' ) ;
symbol1 c o l o r=blue width=2 ;
t i t l e 1

' Plot o f Estimated ke rne l ( kde ) on Cauchy d i s t r i b u t e d data ' ;
/* proc gp lo t data=gaus ;
p l o t kde*x / vax i s=ax i s1 hax i s=ax i s3 ;
run ;

gopt ions r e s e t=t i t l e symbol ;
symbol1 c o l o r=red width=2 ;
t i t l e 2 ' Plot o f Standard Normal ke rne l ( y ) vs . x ' ;
proc gp lo t data=gaus ;
p l o t y*x / vax i s=ax i s2 hax i s=ax i s3 ;
run ;*/

gopt ions r e s e t=a l l ;
t i t l e 3

' Plot o f Gaussian Estimated ke rne l ( kde ) Overlayed with
Standard Normal ke rne l ( y ) and Theo r e t i c a l Cauchy Kernel ' ;

proc s gp l o t data=gaus ;
s e r i e s x=x y=kde ;
s e r i e s x=x y=y ;
s e r i e s x=x y=y_cau ;
run ;
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Abstract

The aim of the research is to investigate the factors that induce seismic activity in the Witwatersrand.
In particular we want to �nd out if the presence of acid mine drainage in underground mining voids has
an in�uence on seismic activity. Acid mine drainage is the �ow of acid contaminated water from old
mining areas and is notoriously known to pollute soil, dams and underground water. In DuPlessis' spatial
assessment of the conditions that induce seismic activity in the Witwatersrand [10], four features were
identi�ed which are assumed to trigger seismic activity in the area, these are: the size and distribution
of underground mining voids, the groundwater mobility, the rock type of the underground structure and
the proximity to fault lines. In this report we set up a Bayesian network to investigate whether there is a
relationship between the features assumed to trigger seismic activity and the actual occurrence of seismic
activity in the Witwatersrand.
In the application, we make use of the software package Hugin® to model the occurrence of seismic
activity in the Witwatersrand. This was done by constructing a Bayesian network of these features and
estimating their conditional distributions. We also used the EM learning wizard in Hugin® to estimate
the parameters in the Bayesian network.
The results show that only the underground mine voids and the rock type have a signi�cant impact on the
occurrence of seismic events. The other two features showed very little to no impact on seismic activity.
The �ndings are also compatible with the results obtained by DuPlessis [10].
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1 Introduction

In August 2014, South Africa experienced an earthquake with a magnitude as high as 5.5 on the Richter
scale, as registered by the Council for Geoscience (CGS) in South Africa, making it one of biggest mining
related seismic event in the country. Since its epicentre was near a gold mine this has led to increasing
interest on the e�ects of mining activity on seismic events. Consequently, this research report investigates
the environmental e�ects of mining in the Witwatersrand, in particular the impacts of Acid Mine Drainage
(AMD) on Seismic activity. Based on the work of DuPlessis [10], four features were identi�ed which are
assumed to trigger seismic activity in the Witwatersrand, these are: the size and distribution of underground
mining voids, the groundwater mobility, the rock type of the underground structure and the proximity to
fault lines. Although other features do exist, these four were chosen because they can be represented by
spatial data sets. A large portion of DuPlessis' work was devoted to �nding data that is relevant and of
good quality. His approach to the problem was to use the weighted overlay tool in ArcGIS to estimate the
spatial distribution of the underground mine voids and then compare the estimates to a kernel density model
of the locations of historic seismic events using the band statistics tool in ArcGIS (www.arcgis.com). He
also carried out spatial correlation statistics to measure the spatial correlation between the features. As a
recommendation for future work he suggested that an in-depth statistical analysis be carried out to determine
the impacts of each feature on seismic activity, as well as the correlation between the features themselves.
In this report a Bayesian network is used to investigate whether there is a relationship between the features
and the occurrence of seismic activity in the Witwatersrand. Speci�cally, we construct a Bayesian network
of these features, then estimate their parameters and conditional distributions. A Bayesian network is a
directed acyclic graph that represents the qualitative and quantitative relationships that exist between the
random variables in a problem [1, 8, 6]. Bayesian networks are commonly used to perform statistical inference
based on data, and are very useful in hypothesis testing and decision-making in cases of uncertainty. This
is because a Bayesian network assigns a conditional distribution to each variable. Bayesian networks have
the advantage that the modeller is able to incorporate prior assumptions and knowledge about the problem
into the model. Experts in various �elds have used Bayesian networks in fault diagnosis, software debugging,
manufacturing control [5, 12], etc. Because of its popularity, Bayesian network based software packages have
been developed to assist in decision-making where uncertainty is a factor. Hugin® (www.hugin.com) is such
a package and will be used in the application.

2 Background Theory

2.1 Modelling with Bayesian networks

A Bayesian network is a model that provides a graphical and probabilistic description of the relationships
between the most important variables in a system or problem of interest [4, 3]. In other words Bayesian
networks model causal dependencies from one variable to another. A causal dependency from A to B implies
that when A is in a certain state this has an in�uence on the state of B.
Each random variable in the model is depicted by a round node and the dependencies between the variables
are represented by arrows, as seen in �gure 1. A node consists of a set of states that the random variable
can assume, as well as an associated conditional probability distribution. The conditional probabilities
give the probability of the random variable being in a speci�c state given the state of the parent random
variables. Nodes that are not connected represent random variables that are conditionally independent.
Hence conditional independence implies that the model can be broken down into several sub-models, called
Markov blankets [3]. The Markov blanket of a node consists of its parents, its children and the parents
of its children [16]. It follows that each sub-model (Markov blanket) can be developed separately for each
conditional relationship, using information that is available about the process; for instance, historical data,
statistical correlations, or expert judgement [3]. A node has no parents when it is not connected to any
other nodes in the model except its children, and the variable corresponding to that node can be described
statistically by a marginal or unconditional probability distribution [3].
According to Borsuk et al [3] conditional dependence can be expressed as a function of the form:

Xi = f(Pi, εi)
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Figure 1: Model to illustrate conditional dependence (independence) between random variables

i = 1, 2, ..., n where Xi is any given node, Pi the parent of that node, and εi the error term. The error term
is an independent random variable with an arbitrary distribution, it represents information that was omitted
or unaccounted for in the model [3]. Nodes that are conditionally independent, will simply be functions of
the error term [3], i.e. for j = 1, 2, .., n

Xj = f(εj).

Usage

In general, Bayesian networks are used to form statistical inferences based on data. The inference can be
predictive (forward analysis) or diagnostic (backward analysis) [1, 8]. As a result, Bayesian networks can be
used to predict the occurrence of certain events by modelling their distributions, or to they can be used to
in�uence management decisions in cases of uncertainty as decision support [13, 8].
A Bayesian network explicitly represents the cause-and-e�ect assumptions about a problem [4]. It takes into
account the e�ects that di�erent interventions can have on the problem, thus it is useful in implementing
�what-if?� analysis [13]. Bayesian network development has a strong focus on stakeholder participation in
the development of the model, which can add credibility to the �nal model that is implemented [13]. This
provides a transparent system for exploring the relationships between the variables [1]. Hence, the model is
able to capture a common understanding of the problem and can help settle con�icts among the stakeholders,
which are the people who may be a�ected by the decisions being implied [13].

Data sources

Bayesian networks can make use of both discrete and continuous data in the de�nition of the model [13].
Instances of continuous (qualitative) data that may be considered include surveys, historical or time series
data while the discrete (qualitative) type may be expert opinion or stakeholder belief. Other data sources
include GIS data, empirical data and subject literature [14, 8].

Model development

Probabilistic networks are models that provide a convenient way of visualizing the probabilistic dependencies
between random variables, and hence can allow us to perform techniques such as learning, prediction and
diagnosis [5]. This is possible because Probabilistic networks specify the conditional distributions of the

7



random variables. They have been developed and applied quite extensively in di�erent �elds of research
including medical diagnosis, arti�cial intelligence, statistics and forensics. Learning the probabilities is a
complicated process since it involves learning the structure of the model and its parameters once the structure
is constructed. It is also plagued with the di�culty of dealing with missing values and latent variables.
Bayesian networks are a famous branch of Probabilistic networks. The Bayesian method is a growing area of
research which combines prior knowledge about the problem with the information derived from the data, and
helps us learn the parameters and structure of the Bayesian network. Learning the structure of the Bayesian
network helps us to assess the e�ect that the variables have on each other, while learning the parameters
allows us to determine the conditional probabilities of new instance rather than estimating them directly
[5]. The prior information is quanti�ed in terms of the initial conditional probabilities. The conditional
probabilities can be given either implicitly as a distribution function or explicitly as tables of values called
conditional probability tables, both specify the probability distribution [5]. The parameters of the conditional
distribution can be derived easily by using maximum likelihood when the data set is complete, i.e. with no
missing values. In the case where the data is incomplete statistical approximations are used instead to �nd
the parameters. A technique that is commonly used in such instances is the EM algorithm. The problem of
Bayesian networks reduces to �nding the Bayesian network that best represents the probability distribution
of the data. This end is the same as �nding the structure and the parameters that yield the maximum
posterior probability [7]. This process is implemented using a heuristic search technique that is based on a
scoring function that evaluates how each structure �ts the data [5]. The two common scoring metrics used
in Bayesian networks are the Bayesian scoring function and the minimum description length (MDL) function
[11].

2.2 Seismic activity in the Witwatersrand

The Witwatersrand basin is a large complex of interconnected mines which was developed as a result of the
nature of the gold deposits in the Witwatersrand. It is made up of the eastern basin, the western basin and the
central basin, and covers the city of Johannesburg and its surrounding areas. The location of these basins can
be seen in �gure 13 in the appendix. Although there is no mining taking place at present, seismic activity still
occurs in the Witwatersrand. The poor closure of mine infrastructure and the lack of mining land and water
rehabilitation has led to signi�cant negative impacts on the environment. When mining operations extended
deeper than the water table it was normal for mining voids to �ll up with water. Extracting the water to the
surface was necessary in order to mine deeper and access the mineral reserves. When most mines closed down
in the Witwatersrand the associated operations of extracting mine water from underground voids also ceased.
Additional water also came from neighbouring mine voids through underground interconnections, resulting
in the �ooding of the mine voids. Currently, the basin has linked into one with the water level estimated to
be less than 400m below the surface, across the basin [10]. The large volume of water creates underground
pressure, which can a�ect the stability of arti�cial and natural fractures, causing them to slip and trigger
seismic activity[10]. Over time this water also becomes contaminated by sulphur-rich mining wastes within
the underground voids. One main consequence of mine void �ooding is the formation of Acid Mine Drainage
(AMD). In addition, the mineral Pyrite found in rock material oxidises when exposed to oxygen and water,
and is known to produce acid in the underground voids. An earth tremor can be generated by the slippage
or failure of underground faults that are a�ected by acid mine drainage, this is referred to as acid water
induced seismic activity [10]. The trigger of seismic activity in the Witwatersrand is assumed to be high
levels of acid mine drainage in the underground voids, since acid water is known to be more corrosive than
uncontaminated water and can result in increased seismic activity. The occurrence of seismic activity in the
Witwatersrand is unique in the sense of the size of the Witwatersrand basin, the interconnectedness of the
mine voids and the a�ected basins being in close proximity to densely populated urban centres.
Based on the study by DuPlessis [10], the rock structure of the Witwatersrand basin is made up of three
types, namely: igneous, sedimentary and metamorphic rock. Igneous rock is rock that is formed by the
cooling and hardening of magma beneath the surface of the earth. The temperature at which the magma
cools determines the composition of the rock and the types of minerals that occur in the rock. The main
types of igneous rock covered in the study were dolerite, quartzite, basalt, granite, syenite and granodiorite.
Most rock structures across the Earth are made up of igneous rock that is covered by layers of sedimentary
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rock. Sedimentary rock is a secondary rock structure because it is formed by broken pieces of existing rocks
that are compacted together. Sedimentary rock is formed in one of three ways: when small pieces of other
rock types become compacted and cemented, or when dissolved minerals are left behind during evaporation,
or when debris created by organic processes accumulates. The main types of sedimentary rock covered in the
study by DuPlessis [10] were diamictite, shale, sandstone and dolomite. Metamorphic rock is rock that is
formed when existing rock is subjected to heat and pressure which alters the physical and chemical properties
of the rock. The main types of metamorphic rock considered were quartzite and migmatite.
Groundwater is water that accumulates beneath the earth's surface in the pores and crevices of rocks. The way
in which water can move underground is determined by the rocktype and the porosity of the underground
structure. Three types of rock porosity were investigated in the study by DuPlessis [10]: intergranular,
fractured and karst. An intergranular structures is made out of sedimentary rock, and allows water to move
between the grains of soil, sediment and rock. A fractured structure can form from metamorphic or igneous
rock. The only way that water passes through this structure is through the fractures that exist in the rock.
Karst structures on the other hand are characterised by cave-like features formed when rocks have been
chemically weathered by solution.

3 Application

3.1 Data

The seismic events data was extracted from the national seismicity dataset obtained from the Council of
Geoscience (www.geoscience.org.za). It contains a record of all seismic events that occurred between 2001
and 2013. This dataset was merged with a dataset obtained from the University of Pretoria Natural Hazard
Centre (http://www.up.ac.za/university-of-pretoria-natural-hazard-centre-africa), which contains records of
seismic activity from 1966 to 2010. The complete dataset has a total of 1008 cases, since we only included
data that coincided with the study area. In addition, the data excludes all seismic events that occurred
while the mines were still in operation. The rock type data was extracted from the geological distribution
data of the Witwatersrand, provided by Digby Wells Environmental (http://www.digbywells.com/en/). The
rocks were then classi�ed into the three main categories: igneous, sedimentary or metamorphic. The ground
water mobility data was also derived from the geological distribution data. It contains the three ways in
which groundwater moves through the underground rock structure, namely, karst, fractured or intergranular.
The size and location of underground mine voids were estimated using the locations of existing mine dumps
and shafts, since this information is not made available to the public and belongs to the associated mining
companies. A snapshot of the data can be seen from �gure 14 in the Appendix.

3.2 Approach

Bayesian methods are an alternative approach to statistical estimation. The Bayesian approach attempts to
estimate the parameters, θ, of a distribution F given a random sample from the distribution. It is assumed
that the parameters are random variables and will therefore have a distribution. Suppose that A is any event
in the sample space Ω and suppose B1, B2.., Bnis a partition of the sample space, this means that

Bi ∩Bj = �, i 6= j

and

∪Bi = Ω, ∀i.

The probability of Bi given A is then computed as:

P (Bi|A) =
P (A|Bi)P (B)i

P (A)
(1)

where
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P (A) =
n∑

i=1

P (A|Bi)P (Bi).

This result is known as Bayes' theorem. Let A be the occurrence of a seismic event in the Witwatersrand
basin. For this problem we de�ne the following features:

Feature Description

B1 The presence of mine voids in the area
B2 The presence of fault lines in the area
B3 Ground water mobility
B4 The rock type

Table 1: De�nition of events

Bayes' theorem allows us to calculate the probability of a seismic event being caused by one of the features
described in table 1. Equation 1 can be rewritten as:

P (Bi|A) ∝ P (A|Bi)P (Bi) (2)

In words, Equation 2 states that the posterior probability is proportional to the likelihood times the prior
probability. We note that the likelihood P (A|Bi) is the conditional probability of a seismic event given
the possible state of nature of the feature Bi. We use the data as described in the previous section to
derive a likelihood for the parameters. The EM (expectation-maximization) algorithm is a common iterative
method of �nding the maximum likelihood estimates of the parameter from the data when we have missing
or incomplete data or in the case where the maximum likelihood cannot be solved explicitly [9, 2]. The EM
algorithm is a two step procedure that is made up of the following: the E step which computes the expected
value of the complete-data log-likelihood in terms of the unknown data, given the current parameter estimates
and the observed data; the M step which maximizes the expectation computed in the E step to obtain the new
parameter estimates [2]. This procedure is repeated iteratively until we have convergence of the estimates.
The Bayesian network approach when used for prediction, forecasting, etc. can be considered as classi�cation,
since it involve assigning class labels to the features in a dataset [6]. A naive Bayes classi�er is a simple kind
of Bayesian network that has the classi�cation node as the parent node of all the other nodes, with no other
connections allowed. The naive Bayes classi�er is a very e�ective classi�er, especially when the features are
not strongly correlated [15]. It is based on the assumption that all the features are independent of each other
given the class value. Figure 2 depicts the naive Bayes classi�er for this model, represented as a Bayesian
network. The class node in this case is whether or not a seismic event occurred.

Figure 2: Naive Bayes Model

10



A naive Bayes classi�er learns the parameters of the structure from the training data [6, 11]. To estimate
the parameters of the naive Bayes structure in Figure 2, we made us of the built-in EM learning wizard in
Hugin®. The learning algorithm in this case comprised of 1008 observations, and performs a total of 100
000 iterations, with a tolerance of 0.0001, which is the default value in Hugin®. Experience tables were used
to formulate the prior probabilities of the parameters. They are based on expert judgement and past cases.
If it is believed that the present data gives an approximate conditional distribution for the parameters, we
initialize the count for the experience table to a higher value, otherwise we set the count to a small value. The
count gives the number of observations made so far for a given feature. The initial conditional probabilities
can be seen from tables 3, 4, 5, 6 and 7 below.

Figure 3: Mining CPT

Figure 4: faultlines CPT

Figure 5: groundwater CPT

Figure 6: rocktype CPT
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Figure 7: Event CPT

Based on the locations of historic seismic activity, we want to investigate the causal relationships between
the features identi�ed in table 1 and the actual occurrence of seismic activity in the Witwatersrand. Figure
8 gives the marginal probabilities (likelihood estimates) from the EM algorithm.

Figure 8: Initial probabilities without inference

4 Results

Figure 9: Posterior probabilities

Given that a seismic event occurred, the probability of fault lines in the area decreased from 0.1984 without
inference (�gure 8) to 0.1756 (�gure 9), when the probabilities for all the other features increased. This
clearly indicates that seismic activity occurs with little probability when fault lines are in close proximity to
a mining area. Furthermore we could infer that fault lines have a negative in�uence on the occurrence of
seismic activity. This also agrees with DuPlessis' �nding that locations of fault lines are negatively correlated
with the locations of historic seismic activity, which could possibly mean that the proximity to fault lines
does not induce seismic activity in the Witwatersrand. We delete fault lines from the model and carry out
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a what-if analysis to investigate whether the remaining three features have an e�ect on the occurrence of
seismic activity in the Witwatersrand.
Figure 10 gives a diagnostic form of the Bayesian network. It indicates that mining and rock type do have
an in�uence on seismic activity, and that the underground water mobility has very little in�uence, since
the probabilities remained fairly constant. Figure 11 is the prescriptive form of the Bayesian network. It
shows that igneous rock, closely followed by sedimentary rock will most likely in�uence seismic activity than
alluvium and metamorphic rock. Thus, from Figure 12, we can predict that if mining was present in an area,
the rock type of the area is Igneous and the groundwater mobility is fractured the probability of a seismic
event occurring would be 0.5602.

Figure 10: Diagnostic mode

Figure 11: Prescriptive mode
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Figure 12: Predictive mode

5 Conclusion

From the results, mining has the most signi�cant impact on seismic activity, and the rock type is the only
other feature that has an impact. The mining in this instance refers to the underground voids left behind
by mining. This means that underground mine voids do contribute to seismic activity. The �ndings are also
compatible with the results obtained by DuPlessis [10]. Hence we conclude that acid mine drainage could
possibly be the leading cause of seismic activity in the Witwatersrand.
In future, expert knowledge can be incorporated into the model to improve its accuracy. This could be done
by conducting a workshop with experts in mining and seismology. In addition, the Bayesian network can be
extended to include other features not considered in this study, and the assumption of independence can be
relaxed to see how the features relate to each other. In other words, the dependencies between the features
can be investigated, for example, how acid mine drainage reacts to the di�erent rock types. We can also set
up the Bayesian network to answer questions like, �what is the maximum earthquake magnitude that can be
expected and if there should be a cause for alarm?�
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Appendix

Figure 13: Witwatersrand basin

Figure 14: Snapshot of the data
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Abstract

When we use kernel density estimation to estimate the density function of a bounded data set, we
expect the underlying density function of the data set to also have a boundary condition, however a
problem arises where by the estimator sometimes gives values that are not within the bounds of the data
set [2]. Di�erent methods have been developed to correct the standard kernel density estimator in cases
where the data set of interest is bounded. This research report gives an outline of the di�erent methods
that are used to estimate the density function of data that is bounded using kernel density estimation.
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1 Introduction

Kernel density estimation (KDE) sometimes called the Parzen-Rosenblatt window method (name given after
creators Emanuel Parzen and Murray Rosenblatt) is a distribution-free approach of estimating the probability
density function of a random variable, where data is smoothed in order to make logical conclusions about a
population using a �nite sample [2]. Kernel density estimation makes use of di�erent non-negative functions
that integrate to 1 and are 0 mean called kernels and a parameter h > 0 called the smoothing parameter (also
known as the bandwidth), to estimate the shape of a density function f(x) of a sample that is independent
and identically distributed [5]. A problem with kernel density estimation is encountered when we want to
estimate the density function of data that comes from a distribution that is bounded, since most of the
kernels that are used are de�ned on the entire real line, therefore the estimator tend to give us values that
are meaningless [2]. If we want to estimate the density function of the weight of individuals, for example,
kernel density estimation will sometimes give us negative values for weight which is meaningless because an
individual can never have negative weight. In this research report we are going to explore some of the methods
that can be used to overcome this problem and also to improve the standard kernel density estimation in
cases where we have bounded distributions. There is no general correction method that has been found that
will always give the best estimator [2]. We are going to look at three di�erent methods, which are: method of
ignoring meaningless values, the transformation method and the re�ection method. Some methods are better
suited for estimating density functions of data sets that are semi-bounded and other methods are suited for
estimating density functions of data sets that are bounded on both sides.

2 Kernel density estimation

Kernel density estimation is a distribution-free technique of estimating the density function of a random

variable. The technique was �rst de�ned in Rosenblatt (1956) and Parzen (1962).

De�nition 1. Let x1 . . . xn be an independent and identically distributed sample of size n from an unknown
distribution f(x), an estimate of the density is given by the function

f̂h(x) =
1

nh

n∑
i=1

k(
x−Xi

h
)

Where the function k(.) is called the kernel function and the parameter h > 0 is called the smoothing
parameter (or the bandwidth).

2.1 Kernel functions

A kernel function satis�es the condition
b�
a

k(x)dx = 1,where a is the lower bound and b is the upper bound

of the selected kernel function, this implies that the kernel function is a density function. The kernel function
has mean 0, so that for a �xed Xi the kernel function has its center exactly at Xi [2]. There are a large
variety of kernel functions that can be used. These are some commonly used kernel functions: Uniform,
triangular, biweight, triweight, Epanechikov, normal and many others as shown in Table 1. The performance
of the kernel function is measured by the MISE (mean integrated squared error) or the AMISE (Asymptotic
MISE) [2]. The Epanechnikov kernel is optimal in a mean square error sense therefore it is widely used [2].
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Name of kernel function Equation

Quadratic or biweight K(t) = 15
16 (1− t

2)2 |t| ≤ 1

triangular K(t) = 35
32 (1− t

2)3|t| ≤ 1

Triangular K(t) = (1− |t|) |t| ≤ 1

Gaussian K(t) = 1√
2π

exp(− 1
2 t

2) tεR
Epanechnikov K(t) = 3

4 (1− t
2) |t| ≤ 1

Table 1: Some kernel functions in literature

2.2 Bandwidth

The parameter h > 0 is called the smoothing parameter (or the bandwidth). The bandwidth controls how
wide the probability mass is spread around a point. The selection of the bandwidth is the most crucial part
of kernel density estimation since we do not want to under-smooth or over-smooth our estimate, as illustrated
in Figures 1 with the relevant SAS code in Appendix 1. The bandwidth controls the roughness or smoothness
of the density estimate [5]. The most frequently used method for bandwidth selection is the Silverman's rule
of thumb, the bandwidth is calculated as follows

h = (
4σ5

3n
)

1
5

where σ = 1
n−1

n∑
i=1

(xi − x)2 is the standard deviation and n is the sample size [5]. Figures 1,2 and 3

below illustrate how choosing di�erent bandwidths has an e�ect on the smoothness of the density function,
Silverman's rule of thumb is the easiest method for calculating h when working with a univariate sample.

Figure 1: Kernel density function of a data set from a Beta(2,2) distribution using di�erent bandwidths [1]

For more information on bandwidth selection the reader is referred to [Wand and Jones 1994].

3 Boundary correction

The problem with kernel density estimation begins when we want to estimate the density function of data
that is bounded, we expect the underlying density to also be bounded. However since the kernels that are
used in kernel density estimation are generally unbounded they tend to give values that are meaningless
for some estimators, the estimator tends to assign mass to values that are not in the boundary interval, as
illustrated in Figure 4 [2]. There is no general correction method that has been found that will always give
the best estimator, since the performance of the estimator depends on some properties of the underlying
density, for example the shape at the bounds. Thus, for a given bandwidth, there is a �xed information
interval for each x and every observation taken from outside this interval has no in�uence on the estimate. If
for example we consider a density function which is continuous on the region [0,∞) and is zero for negative
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values, given a bandwidth h, the interval [0, h) is the boundary interval and the interval [h,∞) is the interior
interval. Since the interior interval is not bounded the primary interest lies in estimating the density function
in the boundary interval [2]. A problem arises when a given value for x is smaller than the chosen bandwidth
h, unless x ≥ h the estimator will not be asymptotically unbiased and will be inconsistent [2].

Figure 2: Information interval for bounded densities [2]

When working with a bounded data set the information interval does not follow the boundary condition,

hence the estimator will sometimes give values that are not within the bounds. The estimation is based on

a reduced amount of information leading to severe bias: the resulting estimate becomes more inaccurate [2].

Di�erent methods are used in achieving a boundary correction. In this research report we are speci�cally

focusing on three methods, which are: the method of ignoring meaningless estimates, the transformation

method and the re�ection method.

3.1 Ignoring meaningless estimators

If we are working with a bounded data set, we expect the underlying density function to also be bounded.
If we are only interested in the general shape of the density and we do not want to capture the exact shape
then we can choose to ignore meaningless values (values that are not within the bounds of the density). For
example if we want to get a density function of a variable that is bounded on one side i.e density is continuous
on the interval [0,∞), one way of ensuring that f̂(x) is zero for values that are less than zero, is to calculate

the estimate for positive values of x ignoring the boundary conditions, and then to set f̂(x) to zero for values
of x that are less than zero [3]. The problem with this method is that the estimate obtained will no longer

be a density function, meaning that it will no longer integrate to unity (
∞�
−∞

f̂(x) 6= 1), however a constant k

can be chosen that will make the density integrate to unity [4]. Another drawback with this method is that,

points that are near zero will contribute less to
∞�
0

f̂(x) than points that are far from zero. Even if we choose

a constant k that will make the estimate a density function, the weight of the distribution near zero will be
overpowered by the weight of points that are far away from zero [4]. The subsections that follow will look at
other approaches that will give better results compared to the method of ignoring meaningless values.

3.2 Transformation method

If we have random variables X1, . . . , Xn that are bounded either on one side or on both sides, we could
instead work with a set of transformed random variables Yj = g(Xi) for i = 1, ....., n that are not bounded
[3]. The estimator for the density of X can be recovered if the transformation g is invertible. The data can
�rst be transformed using g, then the kernel estimator for Y = g(X) can be calculated using standard kernel
density estimation and then inverting the transformation in order to recover the original random variable X
using the following formulas:

fy(y) =
fx(x)

| g′(x) |
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and

fx(x) =
fy(y)

| ddxg−1(y) |

For example, if we have a random variable X that is uniform on [0, 1] , we can use the logit function to map
the transformation from [0, 1] to R [3].

logit(x) = log(
x

1− x
)

The logit function maps [0,1] to R and it is invertible with inverse :

logit−1(x) = logistic(x)

=
ex

1 + ex

Then the random variable X will be recovered using the formula:

f̂x(x) =
f̂y(y)
d
dy g
−1(y)

=
f̂y(logit(x))

x(1− x)

We will then get a better estimate that is within the boundary [0,1]. When we work with a random variable
that is bounded on one side [0,∞), we use the transformation function g(x) = log(x), and we get:

f̂x(x) =
f̂y(log(x))

x

The transformation method can be used for both semi-bounded densities and for densities that are bounded
on both sides.

3.3 Re�ection method

Sometime we work with variables that represent physical measures such as time, weight, length and many
more, these variables have a natural lower boundary hence we also assume that the underlying true density
is also bounded. If we assume that we are working with a density that is bounded only on one side, then we
are working with a density that is continuous on [0,∞) and is 0 for x < 0 or a density that is continuous
on (−∞, 0] and is 0 for x > 0. We can re�ect the data pointsX1, . . . , Xn by the origin and then work with

the new random variables Yj =

{
−Xj jε {1, . . . , n}
X2n−j jε {n+ 1, . . . , 2n}

[2]. This approach does not only generate a

twice as large sample but it also yields a sample drawn from a density with unbounded support, therefore
the standard kernel density estimation can be applied to the data which is now of size 2n

f∗(x) =
1

2nh

2n∑
i=1

k(
x− Yi
h

) (1)

Equation (1) is the formula for the standard kernel estimator of size 2n, hence it integrates to 1 when
integrated over the whole real line and the estimate is symmetric around the origin [2]. The natural way to
get an estimate with support [0,∞) that will integrate to 1 is the following:

f̂refl(x) =

{
2f∗(x) x ≥ 0

0 x < 0
(2)
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Equation (2) is referred to as the re�ection estimator, and can also be formulated as:

f̂ref (x) =
1
nh

∑
k(x−Xi

h ) + k(x−Xi

h ) for x ≥ 0

In the interior, where x ≥ h the re�ection estimator becomes equal to the standard kernel density estimator,
since if an observationXi falls into the information interval of an interior point, surely no re�ected observations
−Xj will be contained in it [2]. The re�ection method is better suited for semi-bounded density functions,
since we can easily re�ect the data points along the origin. The advantage of the re�ection method is that
the estimator is a density function (hence it integrates to 1 over the whole real line without assigning any
mass to the negative axis) [2]. The following proof shows that the re�ection method integrates to unity [2].

∞�

−∞

f̂ref (x)dx = 0+

∞�

0

1

nh

n∑
i=1

(
k(
x−Xi

h
) + k(

x+Xi

h

)
dx

=
1

nh

n∑
i=1

∞�
0

k(
x−Xi

h
)dx+

∞�

0

k(
x+Xi

h
)dx



=
1

nh

n∑
i=1


1�

−Xi
h

k(t)hdt+

1�
Xi
h

k(t)hdt



=
1

nh

n∑
i=1


1�

−Xi
h

k(t)hdt+

−1�
Xi
h

k(t)hdt


=

1

nh

n∑
i=1

h

1�

−1

k(t)dt

= 1
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4 Application

Kernel density estimation has a wide variety of applications in practice, the examples includes applications
in economics, signal processing and many more �elds. Estimating the density function of a given data set
makes the data easier to interpret since the general trend of the data can be observed, and to describes the
relative likelihoodillustated of a random variable to take on a given value.

4.1 Application of the method of ignoring meaningless values

We want to estimate the probability density function of the marks in percentage of a sample of 100 students
for a given module. A random sample of 100 students have been selected, PROC KDE function in SAS can
be used to estimate the density function, however PROC KDE has a disadvantage of performing operations
in the background that we do not understand, therefore to understand the procedure a lot better we make use
of PROC IML as illustrated in the SAS code in Appendix 2. A random sample of 100 students was selected,
the Gaussian kernel was used and the bandwidth was calculated using the Silverman's rule of thumb. Figure
5 shows the density function of the sampled data set, the problem is that the estimated density function
assigns mass to values outside the boundary condition [0, 100], however we know that the percentage mark
that a student obtains may not go below 0 or above 100.

Figure 3: Estimated density function before boundary correction [1]

A better estimate of the density function can be calculated using the method of ignoring meaningless

estimates, the same parameters will be used but now we will be working with a re�ned data set that excludes

values that are not within the boundary of interest, Figure 6 shows a better density function with the

boundary correction.
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Figure 4: Estimated density function after ignoring the meaningless values [1]

The method of ignoring meaningless values gives a better density function that is easier to interpret and

makes more sense.
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4.2 Applications of the re�ection method

The re�ection method is used to estimate the density function of semi-bounded data sets, for example time,
weight, temperature and other variables with a natural bound. We are going to illustrate the re�ection
method by an example, in this example we want to estimate the density function of the eruption lengths (in
minutes) of 110 eruptions of Old Faithful geysers, we already know that eruption time cannot be negative
hence we expect our function to be bounded by 0. By making use of PROC IML as illustrated in the SAS
code in Appendix 3, we estimate the density function of the eruption lengths using kernel density estimation,
we again use the Gaussian kernel and Silverman's rule of thumb to calculate the bandwidth. Figure 7 shows
the density function of the eruption times before the re�ection method was implemented.

Figure 5: Estimated density function of eruption lengths before boundary correction [1]

A better and more accurate density function can be constructed using the re�ection method. The data
points are re�ected to work with a new sample of 220 observations, however the data points have to be
re�ected back only on the side where the data is de�ned to obtain a more accurate density function that is
easier to interpret as shown in Figure 8.

Figure 6: Estimated density function of eruption lengths after implementing the re�ection method [1]
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5 Conclusion

Kernel density estimation is an easy to use distribution-free approach of estimating the density function
of a given data set. The most crucial part of kernel density estimation is the selection of the bandwidth,
Silverman's rule of thumb is the widely used method for selecting the bandwidth [5]. A drawback with
Kernel density estimation arises when working with a bounded distribution, however boundary correction
can be obtained through di�erent approaches. The method of ignoring meaningless estimates can be used
if we are only interested in the general shape of the density function, the method entails ignoring all the
values outside the boundary condition [4]. The re�ection method is applicable only when working with a
semi bounded distribution, the re�ection method entails re�ecting the data �rst and then working with a
new sample of size 2n [2]. The transformation method can be used to estimate both semi bounded and
bounded distributions, and involves transforming the data set [3]. A disadvantage with some of the methods
is that the estimated function is not a true probability density function, however the re�ection method has
an advantage of generating an estimator that is a true probability density function. Softwares such as SAS
can be used to plot the probability density function. PROC IML and PROC KDE in SAS can be used to
implement kernel density estimation and for boundary correction.
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6 Appendix

6.1 Appendix 1

proc iml;

N=500;

call randseed(11119064);

x = j(N,1);

call randgen(x,"Beta",2,2);

/** create SAS data set from a vector **/

create Patience from x[colname={"random"}];

append from x;

close Patience;

proc print data=Patience;

run;

ods graphics on;

proc kde data=Patience;

univar random / bwm=0.9 plots=(density histogram histdensity);

run;

ods graphics off;

run;
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6.2 Appendix 2

proc iml;

use marks;

read all into x;

print x; /**Ignoring menaingless values**/

y=x[,1]#(x[,1]<100)#(x[,1]>0);

print y;

N=nrow(y);

min=min(y[,1]);

max=max(y[,1]);

print N min max;

Mean=y[:];

variance=var(y);

stdev=sqrt(variance);

print mean variance stdev;

h1=4*stdev**5;

h2=3*N;

h=(h1/h2)**(0.2);

print h;

do i=1 to N;

pi=3.1415926536;

diff=(y[i,1]-mean);

k=(1/sqrt(2*pi));

constant=(1/(2*(h)));

Wt=k*exp((-constant)*diff##2);

Weight=weight//Wt;

end;

print Weight;

p=nrow(Weight);

print p;

matrix1=y||Weight;

call sort(matrix1,{1});

matrix=matrix1[2:100,1:2];

print matrix;

/** Creating a dataset from a matrix**/

create dataset from matrix[colname={"x" ,"f"}];

append from matrix;

close dataset;

proc print data=dataset;

run;

/**Scatter plot**/

proc sgplot data=dataset;

scatter x=x y=f;

run;

/**Plooting **/

proc gplot data=dataset; plot (f)*x / overlay legend;

symbol interpol=join width=2 value=circle;

run; quit;
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6.3 Appendix 3

proc iml;

use geyser;

read all into x;

print x;

p=nrow(x);

print p;

/**reflection method**/

y=-x;

c=x//y;

print x y c;

/**reflecting the data back**/

new=c#(c>0);

print new;

j=nrow(new);

print new;

print j;

N=nrow(new);

min=min(new[,1]);

max=max(new[,1]);

print N min max;

Mean=new[:];

variance=var(new);

stdev=sqrt(variance);

print mean variance stdev;

h1=4*stdev**5;

h2=3*N;

h=(h1/h2)**(0.2);

print h;

do i=1 to N;

pi=3.1415926536;

diff=(new[i,1]-mean);

k=(1/sqrt(2*pi));

constant=(1/(2*h**2));

Wt1=k*exp((-constant)*diff##2);

Wt=(1/(N*h))*Wt1;

Weight=weight//Wt;

end;

print Weight;

matrix1=new||Weight;

call sort(matrix1,{1});

matrix=matrix1[111:220,1:2];

print matrix;

/** Creating a dataset from a matrix**/

create dataset from matrix[colname={"x" ,"f"}];

append from matrix;

close dataset;

proc print data=dataset;

run;

/**Scatter plot**/

proc sgplot data=dataset;

scatter x=x y=f; run;
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/**Plooting **/

proc gplot data=dataset; plot (f)*x / overlay legend;

symbol interpol=join width=2 value=circle;

run; quit;
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Abstract

The hedonic price model that results from Lancaster's consumer theory and Rosen theoretical model
has been applied in various aspects of the housing market. A house as a good can be sold in the market
like any other good or service. The price of a house (dependent variable) integrates structural, neighbour-
ing and locational variables (explanatory variables), while environmental factors can also be integrated.
Regression model has been used to de�ne the parameters, this will be done after collecting data. The data
collected is very large leading to some limitations that will be outlined in the paper. Certain assumptions
are made when dealing with the hedonic price model, it operates under the assumption of market equi-
librium: the good will be sold to buyers at the highest price they would be prepared to pay and price a
seller is prepared to consent with a house being displayed for sale for quite a rational period of time. This
research gives a description of the hedonic price model, provides an evaluation on the application of the
model, and supplies more literature on the topic. A brief discussion on major empirical issues, inherent
limitations and advantages of the hedonic price model is later applied to a practical example.

2



Declaration

I, Solly Matlakeng, declare that this essay, submitted in partial ful�llment of the degree BCom(Hons) Statis-
tics, at the University of Pretoria, is my own work and has not been previously submitted at this or any
other tertiary institution.

_____________________________
Solly Matlakeng

_____________________________
Dr L Fletcher and Dr E M Louw

_____________________________
Date

3



Acknowledgements

I would like to thank my supervisors Dr L Fletcher and Dr E M Louw for their signi�cant help in writing this
research, I am grateful to have you as my supervisors. Sincere gratitude to those who contributed directly
and indirectly.

4



Contents

1 Introduction 6

2 The hedonic price model 6

2.1 The regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The description of the hedonic price model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Empirical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Dependent variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Explanatory variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Advantages and limitations of the hedonic price model . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Area of application of the hedonic price model . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Basic application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Speci�cation of the hedonic price model . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Important issues in the application of the hedonic price model . . . . . . . . . . . . . 10

3 A practical application of the hedonic price model 11

3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Simple statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 The hedonic price model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Step 1: diagnostics for multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Step 2: step-wise selection of signi�cant predictors . . . . . . . . . . . . . . . . . . . . 11
3.3.3 Step 3: Hedonic regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Conclusion 12

Appendix 14

5



1 Introduction

The word hedonic is derived from the Greek term hedonikos which means pleasure, de�ned in economics as
the utility derived from buying and using certain goods and services [9]. Research has shown that there is a
link between housing sector and wealth of the nation, excessive demand for housing would lead to a major
growth in various economic areas. A look into various variables that in�uence the price of a house is vital
because buying a house is an investment decision as well as a consumption decision.

In the housing market two models are utilized to set the price of house, these models are: the monocentric
model and the hedonic price model. The monocentric model postulates that the price of a house is merely
a function of the workplace . The price of a house shows the relative saving in traveling costs linked with
various locations, unlike other consumable goods and services. Housing market is di�erent because it shows
the existence of variables of durability, spatial �xity and heterogeneity, thus the hedonic price model is
brought to the picture to model the di�erentiation e�ectively. The hedonic price model stipulates that goods
sold in the market incorporate inherent variables in their package [8], therefore price of one house di�ers
signi�cantly to the other, taking into account the additional units of di�erent variables inherited in one house
relative to the other. The process of adding all the implicit prices found after the regression analysis gives
the price of a house.

The hedonic price model was developed to get the relationship between variables that are preferred by a
consumer and the price of properties. This is due to the fact that the price of a house can be found through
an evaluation of the buyers of inherent variables (structural, locational and neighbourhood variables) [4]. The
hedonic methods were discovered and applied in price indices before the understanding of their theoretical
framework. The �rst contribution to the hedonic price model theory was made in court back in the year 1941
although there were other informal studies [2].

According to the journal; Haas came up with a hedonic study 15 years before the court and was the one
who �rst published the term hedonic [3].

There are two approaches that add signi�cant contribution to theoretical work on the hedonic price model.
These two approaches come from Lancaster's consumer theory and Rosen's model and show how the inherited
variables contribute towards the price. The hedonic price model does not postulate joint consumption of goods
within one basket, it is also in line with both approaches because Rosen's model is associated with long lasting
goods and Lancaster's approach is purposed and good for consumer goods [2].

Furthermore Lancaster's approach postulates a linear relationship between the good's price and the vari-
ables that a�ect it or that it consist of, while Rosen's approach states that unless the consumer can alter the
variables by repackaging them, then there exist a nonlinear relationship between the price of the good and
the variables [2].

2 The hedonic price model

Statistics is referred to as a science dealing with collection, analysis and interpretation of data. This can be
used in many areas to solve problems whereby many variables are being dealt with. In the case of a house
because of its nature: �xed location, di�erence in location and di�erent physical variables, statistics price
models have been invented to help in determining the price a house, including regression analysis and the
hedonic model [6].

2.1 The regression model

Simple linear regression and multiple regression analysis

Regression analysis is a statistical tool used to determine relationships between variables, normally deter-
mining the e�ect of one or more explanatory variables on the dependent variable, in this case the price of a
house. It also determines the statistical signi�cance of the relationships [13]. According to [9] the most basic
regression called simple linear model measures the correlation between one dependent variable (Y) and one
explanatory variable (X).
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To determine such relationships, su�cient current and historical data need to be available. Later in
the paper multiple regression will be used to explain whether the explanatory variables add any signi�cant
contribution to the price of the house [6].

There are many tangible and intangible explanatory variables to be considered, thus the price of a house
can be determined by separating it into di�erent parts. For example, determining the price of a house can
be broken down into: neighbourhood, structural and locational.[2].

Separating the variables will also help the investor or the developer that is interested in the variable that
mostly a�ect the price of a house. Previously stated, the price of a house is a�ected by various variables.
Multiple linear regression allows additional variables to be treated individually in the regression with the aim
of determining partial regression coe�cients. It is vital in quantifying the e�ect each variable has on a single
dependent variable. further, as stated before it can also assist when a developer is only interested in knowing
the e�ect of one of the contributing explanatory variables [10].

Multiple linear regression is capable of incorporating a large number of variables.

2.2 The description of the hedonic price model

2.2.1 Empirical issues

The choice of functional form is the biggest empirical issue concerning the hedonic price model. There exist
various basic functional forms that can be used when dealing with the hedonic price model such as linear,
semi-log and log-log forms. An inappropriate choice of a functional form may lead to inconsistent estimates.
The theory of the hedonic price model gives limited guidance on the matter of choosing a correct functional
form even though it has an extensive history [2].

The hedonic price model in theory does not need a division of housing market but in practice there exist
di�erent types of divisions due to the fact that the housing markets are not uniform, e.g. the structure of
the sub-markets has not been carefully observed when dealing with the hedonic price model even though it
is a vital empirical issue [2].

Another issue is the misspeci�cation of the variables, this occurs when irrelevant explanatory variables
are taken in account in the model or a case where relevant ones are left out. The problem of misspeci�cation
cannot be avoided completely because the model works with implicit prices of the quantities of the variables.

2.2.2 Dependent variable

The hedonic model is an idealistic method of predicting a price of a house (which is our dependent variables)
taking into account three main groups of explanatory variables: structural, neighbourhood and locational
variables.

2.2.3 Explanatory variables

Physical or structural variables

The price of a house links to the structure of the house. If one house has a desirable feature compared to
the next, it will have a higher price as compared to the other. The most important structural variable is the
�oor space [2]. Buyers are prepared to pay more for space, a house with more rooms and bedrooms will be
expensive as compared to the opposite.

In the case where other things stay the same, the price of old houses is less than the initial price due to
changes in designs, electrical and mechanical systems that decrease its usefulness. The owner of the house
incurs more maintenance and repair costs because the structure of the house deteriorates over the years,
leading to a negative relationship between a house age and a house price. According to Li and Brown (1980)
the age of a house has an opposite e�ect on the price of a house. The appreciation is subjected to historical
importance or vintage e�ect of a house [3].
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Neighbourhood variables

Neighbourhood variables could be estimated using the hedonic price model even though they cannot explicitly
be estimated in the market place. The exclusion of neighbourhood variables in the model will only lead to
errors. Studies have shown that higher income households prefer to live in high quality neighbourhoods that
are far from central business districts [2].

Neighbourhood variables can be classi�ed into the following categories:
1. Socio-economic variables e.g. social class.
2. Local government or municipal services e.g. schools.
3. Externalities e.g. crime rate.
In the case of the socio-economic variables, research has shown that variables have an e�ect on the price

of the house although there may be other existing elements [2]. Well-o� households will likely be sensitive to
stay in the neighbourhood that is dominated by working class household owners. They rather buy a house
in places that suit their social class.

For local government services the excellence of the public school is considered to have a great e�ect on a
house. School quality is vital to households that have children due to the fact that they want their children
to go the best school. This excellence is valued in terms of the pass rate and the school input variables like
expenditure per learner [3]. A distance from a house to the hospital also plays a vital role, but can also
impact the price of the house negatively depending on the norms of the people.

Externalities like crime negatively impact on the price of the house, people want to live in neighbour-
hoods that are safe and are not far from the police station. This is true for any individual that is concerned
about their safety and that of their family. Externalities are grouped into two groups: positive and negative
externalities. Positive externalities or external bene�ts a�ect the price of a house positively e.g. pleas-
ant landscape, serenity, quite atmosphere, unpolluted air and the existence of urban forests [3]. Negative
externalities could for example be high crime rate or high density housing developments in close proximity.

Locational variables

The location of a house can be viewed in terms of relative and �xed locational variables. The �xed variables
are quanti�ed in terms of urban area and relate to some properties from accessibility stand point [2]. These
variables are quanti�ed through proxy measures like: racial components, socio-economic economic, pollution
levels, etc.

According to the traditional view on location, access to central business districts gives a clear evaluation
of accessibility. Transport accessibility is often linked with how easy it is to commute from or to the house.
This is done by considering the traveling time, cost of travel, how convenient is it to travel and availability of
varies forms of transportation [2]. Properties that are for example close to Gautrain Station or bus station
will be considered more costly than those far away from the mentioned.

View is considered as one of the most important things when a consumer buys a house. The consumer
prefers locations with good views like lakes or a golf course and are more than prepared to pay more for these
views [2]. This variable may not be constant, it di�ers by types e.g. mountain view, valley view and water
view and also by quantity: full view, partial view and poor partial view. These di�erent views add di�erent
values to the price of a house; research has shown that there is a strong correlation between �oor level and
the view due to the fact that higher �oors depicts a great view as compared to lower �oors [3].

2.3 Advantages and limitations of the hedonic price model

2.3.1 Advantages

The hedonic price model has advantages, the leading one is that only certain information on the price of
a house, the components of housing variables and a correct description of the functional relationship are
needed [2]. To calculate dependent variable one must estimate the parameters of the hedonic price function.
The other advantage of the hedonic price model is versatility, the model can be adopted at ease to take
into consideration the numerous interaction between the marketed goods and environmental quality [2]. The
method is used to estimate the values of the properties taking into account the choices of consumers. The
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last one is that it is easy to gather data on house sales and characteristics of the house that will serve as the
explanatory variables for the regression analysis [2].

2.3.2 Limitations

The hedonic price model also has limitations. The amount of data that needs to be gathered is relatively
large compared to other models. Applying the model is in actual fact restricted to environmental bene�ts
associated to the price of a house only [1]. The amount of time and expense that will be undertaken to
generate an application of the model is a�ected by the availability and also the accessibility of data. There
are also other market limitations; the hedonic price model assumes that consumers have an opportunity to
choose the mixture of variables they like [2]. It fails to take into account that the real estate market can
be a�ected by things like taxation rates. Last but not least, the hedonic price model may be di�cult to
interpret, a high level of statistical knowledge and skills are required.

2.4 Area of application of the hedonic price model

2.4.1 Basic application

The model is mostly applied to the housing market under diverse assumptions made. The �rst assumption
is that the good dealt with is homogeneous . The second assumption is that the market we operating within
is under perfect competition, with many buyers and sellers and also buyers being the price takers. The last
assumption is that it operates under the assumption of market equilibrium [2]. It is also assumed that data
is cross-sectional and therefore excludes the use of time series. The steps taken in applying the hedonic price
model are:

Step 1

Collect the data on the house sale for a certain period of time, the preferred period is usually a year [2]. The
data comprises of the price of the houses and locations of the houses, house characteristics and neighbourhood
characteristics that impact on the price of the house.

Step 2

In this step a regression model is built to de�ne the relationship of the explanatory variables with the price of
the house. Each explanatory variable can then be measured to determine whether the predictor is signi�cant
or not. Consequently the hedonic price model can be built to determine the price of the house. The results
can then be properly interpreted from the regression output.[6].

2.4.2 Speci�cation of the hedonic price model

In section 2.2 dependent and explanatory variables were outlined. Explanatory variables include the structural
variables (S), neighbourhood variables (E) and the locational variables (L). Given the above information, the
function of the hedonic price model can be formulated as:

DEPV = B1 +BSXS +BEXE +BLXL + u
where:
DEPV is the price value of the house on the market,
XS is a set of predictor variables of the structural parts,
XE is a set of predictor variables of the neighbourhood parts,
XL is a set of predictor variables of the locational parts and
u is a stochastic disturbance term from a classical theoretical regression model.
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Other areas of application

Air pollution

We can use the hedonic price model to estimate the e�ect of air pollution on the value of the property. The
coe�cients found when building the regression model on air pollution can be used to predict the change in
the price of the property Ridker (1967). We can apply this in an area that is close to a dumping site. Based
on this alone application of the hedonic price model can be branded under the following categories:

1. Wage-amenity studies- takes into account both the real estate price and wage to determine people
inclination to pay for environmental attributes.

2. Housing price- takes into account information on real estate price to determine people inclination to
pay for environmental attributes.

3. Wage studies/ value of health risk- takes into account the information on risk premium to determine
people inclination to pay in order to avoid health hazards.

Water resources

The model can be used to estimate the value of water resources such as bays, lakes and reservoirs, building
of a new harbour, river views and restoration of urban stream. This method can be used to determine the
relation between ground water access and land price. An example can be a case of farms, if there is an good
abundance of ground water access the land will cost more as compared to that one without an abundance of
ground water access [5].

Restaurants

To gain customers and increase sales restaurant must have a proper pricing strategy, the price is a represen-
tation for a quality according to consumer's point of view [9]. Studies have shown that it is di�cult for a
restaurant manager to come up with an e�ective menu pricing. To eradicate the problem the manager can
adopt the hedonic price model to have a better grasp on the pricing factors [11] .

Hospitality industry

The hedonic price model has been adopted by hotels because of di�erent hotel products, services, location
and o�ers. These attributes must be taken into account when determining the correct pricing [1].

2.4.3 Important issues in the application of the hedonic price model

The model is very data rigorous. A large number of observations outlining both the selling price and attributes
of the property are required in order to estimate the function of the hedonic price model in a speci�c market.
One of the assumptions made outlined by the hedonic price model is that consumers have perfect information,
since it operates in a perfect competition market. If this was not the case the price that they were going to
pay for the property was going to vary from sale to sale. Transaction costs are varied and not small in the
property market.

Given the current state of the market prices, a household may want to move to a di�erent property with
better features and attributes, but if the transaction costs are too high, a household will de�nitely not move
from his or her current place of residence. Therefore the market will stay in the initial equilibrium. Change
in demand or supply condition in the housing market does not result in prompt adjustment in the hedonic
price model schedule. One problem with the estimation procedure is multicolinearity. Collecting data from
more than one market causes severe problems in the hedonic price model analysis e.g. eastern and western
suburbs.

All of the listed factors tend to infringe the assumption that we stated before that the property market
is in equilibrium [3].
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3 A practical application of the hedonic price model

3.1 Problem formulation

This essay investigates the use of Boston housing data in estimating the price of a house. This is done by
using 506 census observations [7]. The data shows many problems common to mass appraisal or the hedonic
price model despite including numerous vital economic variables.

This essay will allow the use of multiple linear regression analysis to resolve or to correct these issues.
The SAS® software will yield the output. Only twelve independent from the Boston housing data (listed in
appendix) will be used in estimating the price of a house (dependent variable).

3.2 Descriptive statistics

The Boston housing data were simpli�ed and summarized into a more manageable way, by means of simple
statistica and Perason correlation coe�cients.

3.2.1 Simple statistics

Simple statistics such as the mean, median and standard deviation of the dependent variable and the 12
independent were obtained using the means procedure in SAS software.Table1 of the appendix shows basic
statistics such as the and median means of all 13 variables accompanied by standard deviations, minimum
and maximum. The standard deviation in any regards gives a notion of the closeness of the data set to the
average value.

3.2.2 Correlation matrix

The correlation matrix is highly informative, as it describes the correlation of linear relationship between two
variables. Table2 of the appendix shows a high correlation of 0.9 between two of the independent variables
namely RAD and TAX. These two independent variables should be investigated for multicollinearity.

3.3 The hedonic price model

The model building process consisted of three steps.

3.3.1 Step 1: diagnostics for multicollinearity

In this Section the 12 independent variables were included into a regression model and the variance in�ation
factor (VIF) option was incorporated to help detect multicollinearity. Variance in�ation factors measure the
degree at which the variance in the dependent variable MEDV is in�ated [2]. Looking at the output in Table3
the variance in�ation factor of RAD and TAX are very high: 7.44530 and 9.00216 respectively. A variance
in�ation factor higher than 5 is an indication of serious multicollinearity. Thus milticollinearity was dectected
in both both RAD and TAX and it was decided to drop TAX.

3.3.2 Step 2: step-wise selection of signi�cant predictors

In a step-wise regression selection procedure of signi�cant predictors incorporated in a regression model, the
selection of signi�cant predictors is done automatically. The next step in this essay was to use a step-wise
selection procedure using 11 variables excluding TAX. Output was generated (Table4) showing only nine
signi�cant independent variable of predictors. The output is shown in Table5.

3.3.3 Step 3: Hedonic regression model

The �nal step in the analyses entailed building a regression model using the reg procedure of SAS software
on the nine signi�cant predictors identi�ed by the step-wise procedure.
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Signi�cance of the model

The regression model has a p-value <.0001 which implies that the model is highly signi�cant.

R-squared and Adjusted R-squared

R-squared= 0.7273 which implies that approximately 73% of the variation in MEDV is explained by the nine
explanatory variables. The Adjusted R-squared is 0.7223, which is almost identical to the R-squared.

Regression equation

MEDV = B1 +BSXS +BEXE +BLXL + u
= 39.9840 + (3.85RM + 0.04ZN) + (−0.11CRIM − 1.00PTRATIO − 21.38NOX) + (−1.45DIS −

0.55LSTAT + 0.10RAD + 3.14CHAS)
where
B1 = 39.984
BS = a compiled coe�cient of the structural variable XS

BE =a compiled coe�cient of the neighbourhood variable XE

BL =a compiled coe�cient of the locational variable XL

Relative importance of predictors

The relative importance of the predictors in the regression equation are evaluated by using standardized
coe�cients in Table5. The �ve most important predictors are LSTAT, DIS, NOX, PTRATIO and CRIM.

4 Conclusion

The hedonic price model gives a scienti�c way of determining the value of the property where other models
have failed in integrating the attributes that are pleasurable in determining the value of the property. Out-
lining the attributes that are important in analyzing can bring the value of the property up to pro�t the
seller. Certain problems will be encountered when building the model due to the fact that the data collected
is relatively high. The ultimate price of the property can be a�ected by negative externalities such as: its
closeness to central business district or a busy road [6].

The information provided by this model can be useful to investment fund managers and also real estate
owners. The hedonic price model has also been applied in the automobile industry, hospitality industry and
restaurants because it explains contributions of various factors to pricing, thus making it simple to tell which
attributes are valued more or less and to what degree [2].
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Appendix

1. Description of variables

Dependent variable

Variables Description Categorical Continuous

MEDV median value of
owner-occupied homes in

USD 1000's

X

Data outlay of explanatory variables

Structural variables

Variables Description Categorical Continuous

RM Average number of rooms
per dwelling

X

ZN Proportion of residential
land zoned for lots over

25,000 sq.ft.

X

AGE Proportion of structure
built before 1940

X

INDUS Proportion of non-retail
business acres per town

X

Neighbourhood variables

Variables Description Categorical Continuous

CRIM Per capita crime rate by
town

X

PTRATIO Pupil-teacher ratio by
town

X

TAX Full-value house-tax rate
per $10,000

X

NOX Nitric oxides
concentration (parts per

10 million)

X

Location variable

Variables Description Categorical Continuous

DIS Weighted distances to �ve
Boston employment

centres

X

LSTAT % lower status of the
population

X

RAD Index of accessibility to
radial highways

CHAS Charlies river dummy
variable

X
1= tract bounds river

0= otherwise

2. SAS Program

data houses ;
input MEDV RM ZN AGE INDUS CRIM PTRATIO TAX NOX DIS LSTAT RAD CHAS;

Data l ine s ;
. . .
;
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Proc means data=houses median std min max ;
var MEDV RM ZN AGE INDUS CRIM PTRATIO TAX NOX DIS LSTAT RAD CHAS;
run ;

Proc co r r data=houses ;
var MEDV RM ZN AGE INDUS CRIM PTRATIO TAX NOX DIS LSTAT RAD CHAS;
run ;

Proc reg data=houses ;
model MEDV=RM ZN AGE INDUS CRIM PTRATIO TAX NOX DIS LSTAT RAD CHAS /VIF ;
run ;

Proc reg data=houses ;
model MEDV=RM ZN AGE INDUS CRIM PTRATIO NOX DIS LSTAT RAD CHAS / s e l e c t i o n=stepwi s e ;
run ;

Proc reg data=houses ;
model MEDV=RM ZN CRIM PTRATIO NOX DIS LSTAT RAD CHAS / stb ;

run ;

3. SAS output

(a) Descriptive statistics (Table1)

(b) Correlation matrix (Table 2)

(c) The hedonic price model

Step 1: Diagnostics for multicollinearity (Table 3)

Step 2: Step-wise selection (Table 4)

Step 3: Hedonic regression model (Table 5)
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Table 1: Simple descriptive statistics
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Table 2: Correlation matrix
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Table 3: Diagnostics for multicollinearity
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Table 4: Step-wise selection of signi�cant predictors
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Table 5: Hedonic regression model
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Abstract

This paper gives an overview of optimal scaling which is a special case of correspondence analysis to
obtain scale values that can be used in subsequent analyses as a quantitative dependent variable [2, 3].
Two methods will be used to do the optimal scaling. The �rst method maximizes the variance of the total
scores between the groups by forming groups that consists of individuals that respond in the same way
within the group, but di�erently between the groups [2].The second method performs optimal scaling in
such a way that the total scores vary maximally over individuals [2].
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1 Introduction

Relevant information on a population group can be obtained by means of a questionnaire that is completed
by the respondents. In most cases the respondents' answers are of a categorical nature. This means that
the data obtained by means of a questionnaire can be represented in contingency table form or in a cross-
tabulation [3]. As questionnaires in real life research often contain di�erent themes that consists of many
items with category choices, the contingency table will have many rows and columns. Therefore, it will be
di�cult to analyse the contingency table with a simple graphical representation such as a scatter plot since
involving many categories would result in a confusion of points and symbols that it will not be easy to see
any patterns at all [2]. Therefore, it is important to introduce a statistical technique called correspondence
analysis which is suitable for the analysis of contingency tables with large data sets or for data matrices
which have non-negative values [2] .
The categorical data obtained by means of a questionnaire can be converted to continuous data by awarding
quantitative values to the diverse categories. The technique to obtain these quantitative values is known as
optimal scaling, which is equivalent to performing a correspondence analysis on the contingency table [5].
The following table shows the importance of optimal scaling for the analysis of multivariate categorical data.
For example, suppose that the variables region and job are coded as shown in the following table.

Table 1: Coding scheme for region and job variables

From the table we see that job value is an ordinal categorical variable. The categories of job variable
are ordered ( i.e. the original categories form a progression from intern to manager), which indeed gives
some justi�cation for using the integer codes 1 to 3. Region, on the other hand, is a nominal variable. The
categories of the region variable are not ordered. Integer codes 1 to 4 simply represent the four categories; not
the order of the categories. Failing any alternative, when categories are not ordered as in region variable, the
integer codes ( 1 to 4) are often used as default values in statistical calculations such as mean and variance
[3, 2]. Optimal scaling provides a way of obtaining quantitative values for a multivariate categorical variable
based on a speci�ed criterion of optimality [2]. Unlike the original labels ( i.e. region codes 1 to 4 and job
codes 1 to 3) of the nominal or ordinal variables in the statistical analysis, the scale values determined by an
optimal scaling technique de�ne a distance between each pair of categories of a multivariate categorical data
set [2].
The optimal scale values are used to calculate a total score which varies maximally between the groups and
between the respondents [2]. This total score is then used in subsequent analyses like ANOVA and regression
analysis [3]. Before we discuss optimal scaling in detail, it is very important to discuss a statistical technique
called correspondence analysis since optimal scaling is a special case of correspondence analysis [3].
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2 Correspondence analysis

Correspondence analysis is a technique appropriate for the analysis of contingency tables or for data matrices
with non-negative values. It is used to analyse a structure of two-way and higher way contingency tables
and it treats the rows and columns of contingency table symmetrically [3, 1]. Correspondence analysis allows
us to explore the nature of an association between two or more categorical variables. In fact it is assumed
in correspondence analysis that the rows and columns are dependent, and the analysis is concerned with
displaying this dependence. [2]

An example of a contingency table generated from the database of the Spanish National Health Survey
in 1997 is given in Table 2. A question in this survey is about the judgement that individuals have of their
own health, which they can judge to be �very bad�, �bad�, �regular�, �good� or �very good� [2]. Since the
respondents' answers to this question are of a categorical nature, it is possible for the data to be presented
in contingency table form. The contingency table tabulates these answers with the age groups of the respon-
dents. There are �ve health categories (columns of Table 2) and seven age groups (rows of Table 2). A total
number of 6371 respondents are tabulated and give a symbolic image of how the Spanish nation views its
own health at this point in time.

Table 2: Cross-tabulation of age group with self-perceived health category [2]

2.1 Matrix required for correspondence analysis

Suppose that the contingency table is described formally by the I × J matrix F = [fij ] ; this contingency
table is an (I × J) rank q matrix of nonnegative values with nonzero row and column sums [3]. We obtain

correspondence matrix S from F by dividing its entries by their grand total f1 =
∑I

i=1

∑J
j=1 fij [3]:

S = [sij ] =

[
fij
f

]
(1)

Note that all the matrices are denoted by bold uppercase letters, vectors are denoted by bold lowercase
letters, and their elements are denoted by italic lowercase letters. The transpose operation of any matrix is
denoted by the superscriptt or backtick punctuation mark ( ` ); the inverse operation of any matrix is denoted
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by −1. Let 1 be a column vector of ones of the appropriate order, let I represents an identity matrix, let
diag(.) be a function that creates a diagonal matrix from a vector [3].
Let

f1 =

I∑
i=1

J∑
j=1

fij

= 1t × F× 1

S =
F

f1

r = S× 1

c = St × 1

Dr = diag(r)

Dc = diag(c)

R1 = Dr
−1 × S

C1 = Dc
−1 × St

The scalarf1 is the sum of all elements in the contingency table F. The matrix S is the correspondence
matrix of relative frequencies. The vector r is the vector of row totals of S and vector c is the vector of
column totals of S. The matrices Dr and Dc indicate the diagonal matrices of vectors r and c respectively
[3].
The rows of matrix R1 provides the row pro�les and the elements of each row of R1 sum to one. The columns
of matrix C1 provides the column pro�les and the elements of each column of C1 sum to one.
In correspondence analysis, the column and row coordinates are based on the generalized singular value de-
composition of S [3, 1],

S = ADuB
t (2)

where matrix A is a I × q rectangular matrix of left generalized singular vectors, the matrix B is a J × q
rectangular matrix of right generalized singular vectors and the matrix Du is a q × q diagonal matrix of
singular values.
The generalized singular value decomposition of S�rct can be derived from the ordinary singular value de-

composition of D
− 1

2
r (S�rct)D

− 1
2

c [3, 1]:

D
− 1

2
r (S�rct)D

− 1
2

c = UDuV
t

= (D
− 1

2
r A)Du(D

− 1
2

c B)t

S�rct = D
1
2
r UDuV

tD
1
2
c

= (D
1
2
r U)Du(D

1
2
c V)t

= ADuB
t

Hence A = D
1
2
r U and B = D

1
2
c V

The matrices
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K = D−1
r ADu (3)

and

L = D−1
c BDu (4)

give the default coordinates of rows and columns respectively.
Correspondence analysis plots the �rst two columns of matrices K and L to display graphical associations
between the row and column categories.

3 Correspondence analysis application

In this section, we examine a data set from the issue of Amstat News published in October 2005 by Luo
and Keyes that would be used throughout this paper. The data set gives the results of a survey of ASA
members with 6 � 15 years of membership [4]. In this survey the questionnaire consisted of various questions
and the purpose of one of the questions was to obtain the opinion that respondents have on their primary
position. The participants were asked to state whether they agree that their primary position is professionally
challenging [4]. All the respondents were asked to rank their agreement with survey items on a scale that
includes strongly agree, agree, no opinion, disagree and strongly disagree [4].
Since the respondents' answers to this question are of a categorical nature, it is possible to tabulate the data
set in contingency table shown in Table 3. There are �ve likert scale categories (columns of Table 3) and �ve
employment sector groups (rows of Table 3).
The SAS program CORRESP procedure ( Appendix 1 ) is used to analyze the cross-tabulation in Table 3.

Table 3: Cross-tabulation of employment sector and opinion on primary position

3.1 Calculation of the matrices required for correspondence analysis

The correspondence matrix of the contingency table given in Table 4 is de�ned as the ratio of the elements
in the contingency table, F, to the sum of all elements in contingency table F [1].
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• Let f1 =
∑I

i=1

∑J
j=1 fij =

[
1 1 1 1 1

]
× F×


1
1
1
1
1

 be the sum of all elements in contingency

table F.

• Let S = F
f1

be the correspondence matrix of relative frequencies of the contingency table F.

• Let J(5, 1, 1) be a matrix function that creates 5× 1 column vector of ones, that is, 1 =


1
1
1
1
1

.
Table 4 shows a correspondence matrix of associated proportions i.e. relative frequencies of the contingency
table given in Table 3. This correspondence matrix is calculated using a SAS program (IML procedure) and
is given in the appendix.

Table 4: Correspondence matrix of relative frequencies [2]

3.1.1 Row and column operations

For the operations that follow, we make use of 5 × 5 correspondence matrix of relative frequencies de�ned
above. The formulas given in section 2.1 will now be applied.
Row and column sums of correspondence matrix S
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r = S× 1

= S×


1
1
1
1
1



=


0.4501779
0.3131673
0.1263345
0.0498221
0.0604982



c = St × 1

= St ×


1
1
1
1
1



=


0.5017794
0.4092527
0.044484
0.0373665
0.0071174


Where row vector r and column vector c are calculated by the program IML procedure (Appendix).
Row and column diagonals
From previous section we know that a matrix function diag(.) creates a diagonal matrix from a vector. Now
we use SAS program (IML procedure) given in the appendix to calculate the diagonal matrix of row vectorr
and column vectorc denoted by Dr and Dc respectively.

Dr = diag(r)

=


0.4501779 0 0 0 0

0 0.3131673 0 0 0
0 0 0.1263345 0 0
0 0 0 0.0498221 0
0 0 0 0 0.0604982



Dc = diag(c)

=


0.5017794 0 0 0 0

0 0.4092527 0 0 0
0 0 0.044484 0 0
0 0 0 0.0373665 0
0 0 0 0 0.0071174


Row and column pro�les

• Let R1 = D−1
r × S
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• Let C1 = D−1
c × St

where the matrix R1 provides the row pro�les in Table 5 and C1 provides the column pro�les in Table 6.
The last row in Table 5, labeled Average, is the pro�le of the last row [282 230 25 21 4] of Table 3, which
contains the sum of the columns of the contingency table without distinguishing between the employment
sector groups. We can clearly see from Table 5 that out of a total of 562 ASA members sampled in this
survey, 50.178% respondents strongly agreed that their primary position is professionally challenging,
40.925% respondents agreed, 4.448% respondents had no opinion, and so on [4]. Looking again at the
elements of Table 5 we can see that the values of all employment sector groups decrease as we go across the
table from left to right. This means that most of the respondents strongly agreed or agreed that their
primary position is professionally challenging [2]. But the percentage of their agreement di�ers. For example,
the Academic (nonstudent) group has a high percentage in the strongly agree category (64.032%) and
theOther (retired, students, unemployed) group has a lower percentage in the strongly agree category
(29.412%).
When comparing the pro�les we can compare each employment sector group's pro�le with the average pro�le,
or we can compare one employment sector group's pro�le with another. For example, when we look at the
values in Table 5, we see that the average Academic (nonstudent) group has a higher percentage in the
strongly agree category and is below average for all the remaining four categories. In addition, Table
5 shows that all elements of the row pro�les add up to 1, which corresponds with the theory of relative
frequencies since we know that all relative frequency values add up to 1.

Table 5: Row pro�les of employment sector groups across the likert scale categories, expressed as relative
frequencies

Table 6 shows column pro�les and the average column pro�le labeled Average_c. The Average_c is the
pro�le of the last column [ 253 176 71 28 34]` of Table 3, which contain the sum of each employment sector
group; in other words this is the pro�le of all the likert scale categories put together [2]. By eyeballing
the values in Table 6 we realize that out of a total of 562 ASA members sampled in this survey, 45.018%
are Academic (nonstudent) respondents, 31.317% are Business and industry respondents, 12.633%
are Federal, state and local government respondents, and so on. In addition, of the 282 respondents
who strongly agreed, 57.4% are Academic (nonstudent) respondents, 25.5% are Business and industry
respondents, 9.6% are Federal, state and local government respondents, and so on. Since the number
of respondents who strongly agreed is di�erent in each employment sector group, these values should be
compared to those of the average column pro�le to see if they are higher or lower than the average col-
umn pro�le [2]. For example, 57.4% of the respondents who strongly agreed that their primary position is
professionally challenging are Academic (nonstudent), whereas the number of respondents in Academic
(nonstudent) group is just 45.0% out of a total of 562 ASA members. This implies that there is a high
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number of individuals who strongly agreed that their primary position is professionally challenging compared
to the average.

Table 6: Column pro�les of likert scale categories across the employment sector groups, expressed as relative
frequencies

Please refer to the Appendix to see how row and column pro�les are computed using a SAS program
(IML procedure).
Row and column coordinates
As already discussed above, the row and column coordinates in correspondence analysis are based on the
generalized singular value decomposition of the correspondence matrix S [1]. If we refer to the output of the
CORRESP procedure program in Appendix, we see that only the �rst two columns of the column coordinates
and the row coordinates are displayed . This is because correspondence analysis displays graphical associations
between row and column categories by plotting the �rst two columns of the column coordinates and the row
coordinates [3, 1].
Formula 3 is used to calculate the row coordinates:

K = D−1
r ADu

=


−0.2647 0.1104 −0.0063 0.0014 0.0000
0.0810 −0.2431 −0.0363 0.0088 0.0000
0.3340 0.0632 0.0114 −0.0599 0.0000
0.1228 −0.0894 0.3162 0.0218 0.0000
0.7514 0.3785 −0.0494 0.0514 0.0000


and formula 4 is used to calculate the column coordinates:

L = D−1
c BD

=


−0.2364 0.0947 0.0163 −0.0011 0.0000
0.1657 −0.1494 −0.0409 −0.0098 0.0000
0.5512 0.3706 −0.1127 0.0871 0.0000
0.3434 −0.3056 0.3159 0.0492 0.0000
1.8884 1.2053 0.2546 −0.1657 0.0000
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3.1.2 Graphical representation of correspondence analysis

The plot in Figure 1 shows the association between the columns (likert scale categories) and the rows (em-
ployment sector groups) of the ASA members data set. The proximity of Academic(nonstudent) em-
ployment sector group and the strongly agree category indicates that the Academic(nonstudent) group
is highly associated with the strongly agree category which is clearly the case from the row pro�le pre-
sented in Table 5, i.e. 64.0% of the Academic(nonstudent) group strongly agree that their primary
position is professionally challenging [1]. Similarly, the proximity of the Other(retired, students, un-
employed) employment sector group to the no opinion category and employment sector groups Private
consultant/self-employment and Business & industry to the agree category indicates the higher fre-
quency of respondents of those employment sector groups in those likert scale categories [3, 2]. The fact
that the strongly disagree category is so far away from the employment sector group pro�les indicates
that no employment sector group is close to this extreme [3]. This is consistent with the contingency table
and pro�les of ASA members survey which shows that respondents agreed that their primary position is
professionally challenging [1].

Figure 1: Correspondence analysis of ASA members survey by Lou and Keyes

14



4 Optimal scalingis then

The categorical data obtained by means of a questionnaire may be converted to quantitative data by awarding
quantitative scale values to the various categories [2]. The technique used to obtain these quantitative values
is known as optimal scaling, which is equivalent to performing a correspondence analysis on the contingency
table [5]. The discussion of the optimal scaling approach will provide additional insight into the properties
of correspondence analysis.

4.1 Assigning quantitative variables to the set of categories

Consider again Table 2 where seven age groups and �ve self-perceived health categories are cross-tabulated.
We see that both the rows and columns variables are of a categorical nature. If we want to use self-perceived
health categories as a dependent variable in subsequent analyses such as ANOVA and regression analysis, it
would be important to have values for each health category [2]. Therefore, it may be true to assume that each
of the health categories is exactly one unit apart on such a scale if we use the numbers 1 to 5. Self-perceived
health is an ordinal categorical variable, which means it would be appropriate to use the values 1 to 5 [2].
For example, the numerical values may be assigned as follows to the health categories: 5 indicates a very
good health, 4 indicates a good health, and so on down to 1 indicating a very bad health.

4.2 Two methods of performing optimal scaling

A total score cab be computed as the sum of scale values obtained by optimal scaling. It is interpreted in
di�erent ways due to the two methods applied in doing the optimal scaling. The �rst method calculates the
scale values in such a way that they will have maximum variance between groups. This is done by forming
groups so that they consist of individuals that respond very homogenously within the group, but di�erently
between the groups [5]. The second method performs optimal scaling in such a way that the scale values
vary maximally over individuals [5]. The total score calculated using either of the two methods can be used
as a dependent variable in other statistical analyses like ANOVA and regression analysis.

5 Optimal scaling application

Quantifying a set of likert scale categories
The technique of optimal scaling will now be clari�ed by the use of examples based on the cross-tabulation
in Table 3. In order to use a likert scale category as a variable in a statistical analyses such as ANOVA or
regression analysis, or to calculate a statistic on the likert scale variable sush as variance or mean, it would
be required to assign quantitative values for each likert scale category [2]. For example, if we assign values 1
to 5 for each likert scale category, it may be true to assume that each of the likert scale category is exactly
one unit apart. The likert scale categories are ordered, which indeed make more sense to use the values 1 to
5 [2].
Calculation of overall mean using integer scale values
Firstly, let us reverse the coding of the likert scale categories so that 5 indicates strongly agree, 4 indicates
agree, down to 1 indicating strongly disagree. The data set in Table 5 has a total sample of 562 respon-
dents. There are 282 respondents under the strongly agree category (code 5), 230 respondents under the
agree category (code 4), 25 respondents under the no opinion category (code 3), 21 respondents under the
disagree category (code 2), and 4 respondents under the strongly disagree category (code 1). If we use
these integer codes as scale values, the overall average of likert scale category can be calculated as follows:

mean =
282× 5 + 230× 4 + 25× 3 + 21× 2 + 4× 1

562
= 4.36121

i.e.
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mean = 0.5017794× 5 + 0.4092527× 4 + 0.044484× 3 + 0.0373665× 2 + 0.0071174× 1

= 4.36121

where 282
562 = 0.501779, 230

562 = 0.4092527, 25
562 = 0.044484, etc. are the elements of the row pro�les, i.e. the

elements in the last row of Table 5. The SAS program (IML procedure) is provided in the appendix.
Calculation of group means using integer scale values
Now let us consider a particular employment sector, say Academic (nonstudent), we see from the �rst
row of the data set in Table 3 that out of a total of 253 participants in Academic (nonstudent) group,
there are 163 participants under strongly agree category, 78 participants under agree category, etc [2]. If
we use the integer codes as scale values again, the average likert scale category for Academic (nonstudent)
group can be calculated as:

mean =
162× 5 + 78× 4 + 8× 3 + 5× 2 + 0× 1

253
= 4.56917 (5)

i.e.

mean = 0.6403162× 5 + 0.3083004× 4 + 0.0316206× 3 + 0.0197628× 2 + 0× 1 = 4.56917 (6)

where 162
253 = 0.6403162, 78

253 = 0.3083004, 8
253 = 0.0316206, etc. are the elements of the row pro�les for

Academic (nonstudent) group [2]. We could repeat the above calculation for the other four employment
sector groups. The SAS program (IML procedure) is given in the appendix.
Table 7 shows the output of the averages for the �ve employment sector groups calculated using the integer
scale values. Note that the values of the group means are very close to each other and to the overall average
of 4.36121. This is because the integer scale values used to calculate the group means are exactly one unit
apart from each other. The integer codes 1 to 5 do not determine the exact distance between each pair
of likert scale categories [3]. That is why we need optimal scaling technique to determine numerical values
which de�ne a distance between each pair of categories [3].

is then

Table 7: Averages for each employment sector group

Calculating scores with unknown scale values
The above computations of the overall mean and group means were based on the use of the integer scale
values for the likert scale categories. The question is whether there are better scale values that can be used
to do the above calculations.
Let us assume that the scale values for the likert scale categories are indicated by the unknown quantities
I1, I2, I3, I4 and I5 [2]. The possible technique whereby these unknown quantities are determined is known
as optimal scaling, which is equivalent to performing a correspondence analysis on the contingency table [5].
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Therefore, if we use these unknown quantities as scale values for the likert scale categories, the average across
all the respondents would be:

mean = 0.5017794× I1 + 0.4092527× I2 + 0.044484× I3 + 0.0373665× I4 + 0.0071174× I5 (7)

while the average for Academic (nonstudent) group, for example, would be:

mean = 0.6403162× I1 + 0.3083004× I2 + 0.0316206× I3 + 0.0197628× I4 + 0× I5 = 4.56917 (8)

The averages calculated in this way, in terms of these unknown scale values i.e. unknown quantities to be
determined by optimal scaling, are known as scores [2]. This implies that (7) is the average score and (8)
is the score for the �rst employment sector group. The score can be formulated in terms of the unknown
scale values in the same way for each of the employment sector groups . This implies that we will have �ve
di�erent scores, denoted by s1, s2, s3, s4 and s5, for each of the employment sector groups [2].

5.1 Examples of the two methods applied in doing the optimal scaling

First method
As already discussed above, the �rst method of optimal scaling is concerned with forming groups in such a
way that they consist of individuals that respond in the same way within the group, but di�erently between
the groups [5]. Following this method, the scores (s1, s2, ..., s5) calculated by the obtained optimal scale val-
ues, will have maximum variance between employment sector groups. Now if one perfoms a correspondence
analysis on the contingency table in Table 3, the computer output of the CORRESP procedure in Appendix
will cotain the �rst two columns of the row and column coordintes as well as Inertia and Chi-squared De-
composition table. The table of Chi-squared Decomposition contains the values of principal inertia. The
speci�c part of the principal inertia that is referred to as the �rst axis is equal to 0.082559 [2]. Therefore,
it turns out that the positions of the likert scale categories along the best-�tting correspondence analysis
dimension solve this �rst method for optimal scaling because the maximum variance is equal to the principal
inertia (0.082559) on this optimal correspondence analysis dimension. The SAS program used to calculate
the optimal scale values is given in the Appendix.

Table 8: Optimal scale values for the likert scale categories

Table 8 shows the optimal scale values, I1, I2, I3, I4 and I5, for the likert scale categories which maximize the
variance of the employment sector groups. In the case of the integer scale values 5 to 1, the likert scale cate-
gories have equal interval of one unit between each pair of categories. The integer scale values (i.e. 5,4,3,2,1)
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indicates that no opinion (3) is at the middle of scale values [2]. By eyeballing the �gures in Table 8, we
see that no opinion (1.9180905) is not at the middle of the optimal scale values [2]. The proximity of no
opinion (1.9180905) to the disagree (1.1950482) indicates that no opinion scale value is much closer to
the disagree scale value. The scale value of strongly disagree (6.5710179) is much further away from all
of the other scale values, which is consistent with the results of the correspondence analysis. In addition,
these optimal scale values lead to scores for the employment sector groups with maximum variation between
the groups [2]. The SAS program is given in the Appendix.

Table 9: Scores of the employment sector groups

Table 9 provides the corresponding scores, s1, s2, ..., s5, of the employment sector groups. Note that
these values are the same as the values in the �rst column of row coordinates [1]. When we look clearly
at the �gures of Table 9, we see that there are large changes in likert scale categories between the employ-
ment sector groups academic(nonstudent) and business and industry, followed by small changes from
business and industry to private consultant/ self-employment employment sector group, and then
larger changes between private consultant/ self-employment and other(retired, students, unem-
ployed) employment sector groups [2]. Looking back to the row pro�les in Table 5, we can verify that from
business and industry to private consultant/ self-employment employment sector group there are
small changes of pro�les in the strongly agree and agree categories compared to changes between the
academic(nonstudent) and business and industry as well as private consultant/ self-employment
and other(retired, students, unemployed) employment sector groups [2].
Second method
According to second method, optimal scaling is performed over individuals in such a way that the scores of
likert scale categories will vary maximally over individuals [5]. This means that optimal scaling technique
can also be used to obtain scale values for the employment sector groups which maximize the variance of the
likert scale categories [2]. The SAS program (IML procedure) is given in the Appendix.
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Table 10: Optimal scale values for the employment sector groups

The �gures in Table 10 indicates the optimal scale values for the employment sector groups which lead
to scores with maximum variation over individuals [2]. As we can see, these scale values de�ne distance
between the employment sector groups. For example, we see that there is a small di�erence between busi-
ness and industry and private consultant/ self-employment and a very big di�erence between aca-
demic(nonstudent) and other(retired, students, unemployed) [2]. The SAS program is given in the
Appendix.

Table 11: Scores of the likert scale categories, i.e. individual scores

Table 11 provides the corresponding scores, s1, s2, ..., s5, of the likert scale categories. Note that this
values are the same as the values in the �rst column of column coordinates. From Table 11 it follows that
a high score indicates strongly disagree over the particular statements in the survey. Avery low score on
the other hand indicates that the respondents strongly agreed over the particular statements [3, 2].
Analysis of an optimally scaled dependent variable
In the case of multivariate categorical data, the categorical variables can be assigned numerical scale values
obtained by a technique known as optimal scaling [2, 3]. The score of the categorical variables is calculated
as the sum of optimal scale values and this score is then used as a dependent variable in subsequent analyses
like ANOVA, XAID and regression analysis[2].
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6 Conclusion

In this report optimal scaling was considered as a technique for transforming multivariate categorical data
into continuous variables. The optimal scale values assigned to the categories of multivariate categorical
data compute some criterion which lead to maximum variation over the individuals as well as between the
groups [2]. Unlike the integer scale values, these optimal scale values de�ne a distance between each pair of
categories of multivariate categorical data [2, 3]. The results of correspondence analysis provide more insight
in the distance, de�ned by optimal scale values, between each pair of categories [2].
In the case of multivariate categorical data, the category choices of attitude questions all related to the same
theme, can be assigned scaled values obtained by optimal scaling [2]. A total score can be calculated as the
sum of scaled values and this total score can be used as a dependent variable in subsequent analyses like
ANOVA, XAID and regression analysis [3, 2]. The interpretation of the analyses however is given in terms
of the original categorical variables.
All the relevent computer programs and outputs are included in the appendices.
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Appendix

1.CORRESP procedure

data lesedi;

input Employment_sector $1-37 Strongly_agree Agree No_opinion Disagree Strongly_disagree;

datalines;

Academic (nonstudent) 162 78 8 5 0

Business and industry 72 88 5 11 0

Federal,state and local government 27 34 5 3 2

Private consultant/self-employment 11 15 2 0 0

other(retired,students,unemployed) 10 15 5 2 2

;

proc print data=lesedi;

run;

ods graphics on;

proc corresp data=lesedi cellchi2 all deviation short plot GREENACRE;

var Strongly_agree Agree No_opinion Disagree Strongly_disagree;

id Employment_sector;

run; used as a dependent variable in existing techniques for the analysis of quantitative data such as ANOVA and regression analysis

ods graphics off;

CORRESP procedure output

22



23



24



2. IML procedure

data lesedi;

input Employment_sector $1-37 Strongly_agree Agree No_opinion Disagree Strongly_disagree;

datalines;

Academic (nonstudent) 162 78 8 5 0

Business and industry 72 88 5 11 0

Federal,state and local government 27 34 5 3 2

Private consultant/self-employment 11 15 2 0 0

other(retired,students,unemployed) 10 15 5 2 2

;

proc print data=lesedi;

run;

proc iml;

use lesedi;

read all into F;

read all var {Employment_sector} into Y;

25



one=J(5,1,1); /*vector of 1s*/

f1=one`*F*one; /*sum of all elements in contingency table*/

print f1; is then

S= F/f1;/*correspondence matrix*/

Correspondence_matrix=S;

Employment_sector_groups=Y;

print Employment_sector_groups Correspondence_matrix;

/*row and column totals of correspondence matrix*/

r=s*one;

c=s`*one;

print r;

print c;

/*diagonal matrix of r and c*/

Dr=diag(r);

Dc=diag(c);

print Dr;

print Dc;

Dr1=inv(dr);

dr2=sqrt(Dr1);

Dc1=inv(dc);

dc2=sqrt(Dc1);

print dr2;

print dc2;

/*Row and column profiles*/

R1=inv(Dr)*S;

CT=inv(Dc)*S`;/*transpose of column profiles*/

C1=CT`; /*column profiles*/

A={SUM};

Position2=Y//A;

Employment_sector_groups=position2;

print Employment_sector_groups;

/*Sum of elements in contingency table*/

Sumcc=F[+,];/*sum columns of contingency table*/

Crosstab=F//Sumcc;

Sumrc=Crosstab[,+];/*sum rows of contingency table*/

print Employment_sector_groups Crosstab Sumrc;

/*Sum of row and column profiles*/

Average_r=Sumcc[1,]/Sumrc[6,1];

Row_profile=R1//Average_r;

SUM=Row_profile[,+];/*sum rows of matrix R2*/

X={Average};

Position1=Y//X;

Employment_sector_groups=position1;

print Employment_sector_groups;

csum2=C1[,+];/*sum rows of matrix C1*/

sumc2=csum2[+,];/*sum of all values in column vector csum2*/

sum2=csum2/sumc2;

Totalc=sum2[+,];/*sum column of row vector sum2*/

Average_c=Sumrc[,1]/Sumrc[6,1];

Total2=C1[+,];/*sum columns of matrix C2*/

Column_profile=C1//Total2;

print Employment_sector_groups Row_profile SUM;

/*percentages of row profiles*/

26



Row_profile_percent=(R1//Average_r)*100;

SUM1=(Row_profile[,+])*100;

print Position1 Row_profile_percent SUM1;

Employment_sector_groups=position2;

print Employment_sector_groups Column_profile Average_c;

/*percentages of column profiles*/

Average_c=(Sumrc[,1]/Sumrc[6,1])*100;

Column_profile_percent=(C1//Total2)*100;

print Position2 Column_profile_percent Average_c;

/*deviation of S from its centre*/

Q=S - r*c`;

print Q; /*RANK s BASIC STRUCTURE*/

O=dr2*Q*dc2; print O;

/*norm of the scaled matric S*/

Norm=trace(inv(Dr)*S*inv(Dc)*S`);

print Norm;

Norm2=one`*((S##2)/(r*c`))*one;

print Norm2;

/*symmetric treatment of rows and columns*/

R1=(inv(Dr)*S)*100;/*percentage of row profile matrix R1*/

Average_r=Sumcc[1,]/Sumrc[6,1]*100;/*percentage of average of row profile matrix*/ Row_profile_ratios=(R1[,1]/Average_r[1,1])||(R1[,2]/Average_r[1,2])||(R1[,3]/Average_r[1,3])

||(R1[,4]/Average_r[1,4])||(R1[,5]/Average_r[1,5]);/*row profile ratios*/

print Row_profile_ratios;

C1=(CT`)*100;/*percentage of column profile matrix C1*/ Column_profile_ratios=(C1[1,]/Average_c[1,1])//(C1[2,]/Average_c[2,1])//(C1[3,]/Average_c[3,1])

//(C1[4,]/Average_c[4,1])//(C1[5,]/Average_c[5,1]);/*Column profile ratios*/

print Column_profile_ratios;

/*Association between rows and column*/

F_rc=(F-r*c`)##2;/*(fij-rc`)##2*/

print F_rc;

Ratio=F_rc/(r*c`); /* ((fij-rc`)^2)/(rc`) */

n=562; /* sample size*/

Sum=one`*Ratio*one; /* one is the row vector of 1s */

Chi_squared=n*Sum;

print Chi_squared;

determinant=det(F); /* determinant of contingency table F */

print determinant; /* it is not equal to zero, therefore we conclude that categorical variables are associated */

/*rank*/

rank = round(trace(ginv(O)*O));

print rank;

W=O*O`;

CALL EIGEN(eigenvalue1,eigenvector1,W); 2.SAS program of matrix required for correspondence analysis

print eigenvalue1;/*Singular value decomposition of S*/

U=eigenvector1;/*left singular vector*/

print U;

Du=diag(SQRT(eigenvalue1));/*diagonal matrix of singular values*/

print Du;

H=O`*O;

CALL EIGEN(eigenvalue2,eigenvector2,H);

print eigenvalue2;

V=eigenvector2;

Print V;

SVD=U*Du*V`;/*Singular value decomposition of S*/

print SVD;
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A=(Sqrt(Dr))*U;/*rectangular matrix of left generalized singular vector*/

B=(Sqrt(Dc))*V;/*rectangular matrix of right generalized singular vector*/

Column_labels={Strongly_agree, Agree, No_opinion, Disagree, Strongly_disagree};

print Column_labels;

Row_coordinate=(inv(Dr))*A*Du;/*row coordinates*/

Column_coordinate=(inv(Dc))*B*Du;/*column coordinates*/

print y Row_coordinate;

print Column_labels Column_coordinate;

/*calculating overall mean using integer scale values*/

Int_scale = {5,4,3,2,1}; /*integer scale values*/

Participants=crosstab[6,];

Total_sample=Sumrc[6,1]; /*total sample of 562 respondents*/

Overall_mean=(Participants*Int_scale)/Total_sample; /*overall mean of likert scale category*/

print Overall_mean;

RP_total=Row_profile[6,]; /*row profile average*/

Overall_mean2= (RP_total*Int_scale); /*overall mean of likert scale category using row profiles*/

print Overall_mean2;

/*calculating group means using integer scale values*/

Group=F*Int_scale; Group_mean=(Group[1,1]/sumrc[1,1])//(Group[2,1]/sumrc[2,1])//(Group[3,1]/sumrc[3,1])//(Group[4,1]/sumrc[4,1])

//(Group[5,1]/sumrc[5,1]);

Rprofile=R1/100;

Group_mean1=Rprofile*Int_scale;

print Employment_sector_groups Group_mean;

/*calculating column scale values*/ is then

Principal_inertia=SQRT(0.08259);/*Square root of principal inertia*/ Optimal_scaled_values=Column_coordinate[,1]*(1/Principal_inertia);/* calculates column vertex coordinates*/

print Column_labels Optimal_scaled_values;

/*calculating scores for the employment sector groups*/

Group_scores=Rprofile*Optimal_scaled_values;

Employment_sector_groups=y; print Employment_sector_groups Group_scores;

/*calculating row scale values*/

Optimal_scaled_values2=Row_coordinate[,1]*(1/Principal_inertia);/* calculates row vertex coordinates*/

print Employment_sector_groups Optimal_scaled_values2;

/*calculating total score for individuals*/

Individual_socores=(C1`/100)*Optimal_scaled_values2;

print Column_labels Individual_socores;

IML procedure output
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Abstract

Spatial statistics is one of the most up and coming areas in statistics which is easier now to consider

then years back due to the variety of methods for testing for randomness on some point pattern. In this

research report, we explain the main theory and background behind spatial point patterns and discuss the

di�erent tests that can be applied to test for spatial randomness. Furthermore, we apply these tests to

a certain point pattern obtained from the pulses of the Discrete Pulse Transform and reach a conclusion

that our point process is indeed a regular point pattern. Lastly, we will give some conclusion for spatial

point patterns in general.
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1 Introduction

Testing for complete spatial randomness means that for any point pattern, tests can be applied to con�rm
whether the points are randomly distributed or if there is some pattern between the points. To understand
this concept better, we will �rst de�ne what a point process is and the main types of point processes exist.

A point process is de�ned as a set of locations that are irregularly distributed within a designated region
(most often a quadrant) and it is presumed that the points have been generated by some form of a stochastic
mechanism [10].

The three main branches behind point processes consists of [10]:

• Geostatistic point process

• Lattice point processes

• Spatial point processes

In this report, we will focus on spatial point processes. Figure 2 serves as a demonstration of a point process
[10].

When testing for complete spatial randomness, three possibilities can occur. Either the data will be
regular, random or clustered; where regular implies there exist some pattern, clustered implies some of the
points are grouped together and random implies there there exist no pattern or grouping of the points. Figure
3 serves as a visual comparison between the three possibilities that can occur [2]. There are many tests that
can be applied to test for complete spatial randomness. We will consider the F ,G,K,L and J functions [2].

As with all tests, there usually exist some conditions that must hold or `problem areas' concerning the
test. Concerning point processes, this `problem area' is the `edge e�ect'. Edge e�ects arise when the quadrant
on which the pattern is observed is part of a larger region on which the underlying process operates but is
not observed. Luckily, there exist some basic methods to deal with edge e�ects which will be discussed in
the theoretical section of this report. The �rst method is using bu�er zones where bu�er zones consists of
carrying out all aspects of a statistical analysis after conditioning on the locations of all events which fall
within a bu�er zone consisting of all events less than some speci�ed distance from the edges of the domain,
i.e. using a subset of the domain so that uninformative edges do not occur[8]. Figure 1 illustrates this.

Figure 1: Bu�er zones

The second method is explicit adjustments on observed values to take the unobserved values into account.
The �nal method takes into consideration weather the quadrant is rectangular or not. If the quadrant is
rectangular, then the quadrant is wrapped onto a torus by identifying opposite edges [8].

Generally, a simple point process is de�ned for the univariate case, which means that a certain point
consists of two variables, say (X, Y ), where the variables refer to the position in R2. A point process can also
be de�ned for the multivariate case, which means it consists of variables (X, Y , f (X, Y )) for some discrete
function f . Most often the function f takes on two discrete values/event types. No �xed information is
included on the function as this function can be of any form. This function is usually known as a covariate,
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Figure 2: Locations of 65 Japanese black pine saplings in a square of side-length 5.7 meters

(a) Random (b) Regular (c) Clustered

Figure 3: The three possibilities that can occur for spatial point processes

and additional information about the events can be added through it. As an example of the multivariate
case, consider a quadrant with certain trees as the events. Just considering the trees will be su�cient as
an example of a univariate point process. Adding geographic information, such as height, changes it from a
univariate case to a multivariate case where the function f (x , y) is the height of the tree at position (x , y).

This report will introduce the theory of spatial point processes and the functions F ,G,K,L and J to
measure the nature of a spatial point process. We will focus on the application of this theory on objects
extracted from image data.

2 Literature Review

Diggle [8] was one of the �rst to give any information about spatial point processes through a formal de�nition
as well as a elementary example. From there onwards, articles have been written about spatial point processes
and their applications. One such application example is [18] in which Waller and Gotway explain how point
processes can be used to analyze everyday problems, such as in this case disease patterns.

In [3] Baddeley et al give a brief explanation of how spatial point processes are de�ned in the di�erent
dimensions as well as how a Poisson process can be applied to a speci�c spatial point process problem. The
Poisson process model can also be seen in [9] where Diggle explains in much detail about how the Poisson
process model is de�ned and all the functions used in this process such as the intensity function. Furthermore,
in this article Diggle discusses the maximum likelihood estimator for the function used under the Poisson
point process as well as the goodness-of-�t test to assess if the �tted model is a decent model.

In [10], Diggle states a formal hypothesis for testing Complete Spatial Randomness (abbreviated further
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in this report as CSR), how this hypothesis is tested using functions such as the F ,G,K,L and J functions.
In this speci�c article, Diggle also explains the edge-e�ects that can occur when testing this hypothesis.

Loh and Stein explain in [12] in great detail what is meant by `Bootstapping' and what the consequences
and results are when applying bootstrapping to a point process. One of the main consequences that follow
is how bootstrapping can be used to calculate con�dence intervals for the second moment function where as
in [15] Sarma et al give a brief explanation on how con�dence intervals are used when considering a point
process that has the brain as a main center point.

In [7] Vasudevan et al use an example of �xated locations captured by the eyes as a spatial point pattern
tested to see whether the locations are completely random or not, discussing each concept such as covariates,
intensity and estimations/approximations of the likelihood functions.

An article that gives a good example on how spatial point patterns are used is [17] where Vasudevan et
al explain in excellent detail the procedure used for spatial point processes, how the L function is applied to
the process, the results that occur and also how a conclusion is made from the observed results.

In [2], Baddeley gives a broad overview concerning point processes but focuses mainly on how the software
R c©1 can be used to calculate the F ,G,K,L and J functions in testing for CSR.

In [4] Baddeley et al give a insightful explanation on how in some point processes, decent models can be
�tted though most �tted models gives limited results, further models and tests can be applied to the residuals
which can then give more results/information concerning the given point process.

Concerning the G,K,L and J functions, there are three articles which are of most importance. In [13]
Ripley was the �rst to de�ne the K and L functions, hence the name `Ripley's K and L functions'. In [11]
Van Lieshout and Baddeley de�ne the J function and the construction of the function. The J function uses
the G function, where the G function was �rst de�ned in [3] by Baddeley.

3 Measures of Complete Spatial Randomness

Before we can discuss any measures of CSR, we need to formally de�ne a Poisson process with a constant
parameter – [6]. Consider some recurring event. Let N(t) be the number of such events in the interval [0, t]
and assume that the following properties hold (a more technical de�nition is given in the appendix):

• The probability that an event will occur in a given short interval [t, t+Δt] is proportional to the length
of the interval, ∆t, and does not depend on the position of the interval,

• The occurence of events in nonoverlapping intervals are independent,

• The probability of two or more events occuring in a short interval [t, t + Δt] can be considered as
negligible.

If the assumptions listed above hold as the length ∆t → 0, then N(t) will have a Poisson distribution
with parameter –t, that is Pn(t) = P [N(t) = n] = e−–t(–t)n=n!. This Poisson process de�nition is for the
homogeneous case and can be extended for the inhomogeneous case. For a completely spatially random
homogeneous point process de�ned on a study area W , usually a quadrant, the number of points,N(A), in a
region A ⊆ W is Poisson distributed with parameter –.

The Poisson process is of fundamental importance to the spatial statistics functions we wil shortly de�ne,
as throughout all the following measures, we use the Poisson process concept. To give a better explanation
of each measure, we will give a explanation as well as a example using the spatstat package in the statistical
software R c©. We consider a homogeneous point process at �rst. Homogeneous is also referred to as station-
arity across a point process domain, that is, invariance under translation. The estimation of the parameter
– is given by

1Adrian Baddeley, Rolf Turner, Jorge Mateu, Andrew Bevan (2013). Hybrids of Gibbs Point Process Models and Their
Implementation. Journal of Statistical Software, 55(11), 1-43. URL http://www.jstatsoft.org/v55/i11/
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–̂ =
card(X)

area(W )

=

mP
i=1

ni

area(W )

where X is the homogeneous point pattern and W is the study area (quadrant). The study area W is divided
into m equally sized quadrants and ni is the number of events in each of these quadrants [8].

To illustate how the functions are interpreted, we use three data sets from R c©, namely: japanesepines,
redwood and swedishpines. We run the speci�c function on each of these data sets, and we make a conlusion
based on the results. First we plot each data set to see is we can make some conclusion based on the plotted
data. We use the following coding in R c© to import and plot the data sets:

library(spatstat)

data(japanesepines)

plot(japanesepines)

data(redwood)

plot(redwood)

data(swedishpines)

plot(swedishpines)

Figure 4 provides the output of the code.

(a) Japanese Pines (b) Redwood (c) Swedish Pines

Figure 4: Plots of the data sets

From the images in Figure 4, we get the impression that the Japanese Pines is random, the Redwood is
clustered and the Swedish Pines is regular. We will test this using each of the functions F , G, J, K and L.

3.1 Edge E�ects

As discussed in the introduction, a `problem area' when running some tests on a point pattern is the edge
e�ects. We will brie�y discuss the two commonly used methods to deal with edge e�ects.

The �rst method discussed is known as the `border method' or `reduced sample method' (in the intro-
duction we introduced this concept as `bu�er zones').
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Border Method

The main theory behind the border method is that we restrict our observation window, W , so that we only
take into consideration the point pattern r and more units away from the border of W and the interior of W
[5]: Consider a point process, X (in R2), illustrated in Figure 5.

Figure 5: A point process

We observe a window, W , containing some points of X in W and some not (therefore unknown), as in
Figure 6.

Figure 6: Observed window W

From Figure 6, we observe the problem of edge e�ects. We do not know (have not observed) the entire
neighbouring point process further than the border of W . So what we do to help us deal with this problem,
is create a smaller window, W−, inside of W which is shown in Figure 7, which consists of the points we make
use of.

Figure 7: Smaller observation window in W , namely W−
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More detailed theoretical information can be found in [5] by Baddeley. Thise correction adjustment is
calculated exactly the same for the inhomogeneous point process. For more information on the inhomogeneous
point process and this calculation, see [16] by van Lieshout.

The second method for edge correction is known as Ripley's isotropic correction.

Ripley's Isotropic Correction

This correction is solely based on isotropy where isotropy can also be understood as stationarity under
rotations about a �xed point, with homogeneity about any point [14]. Consider some observed point process
X inside the window W . This is shown in Figure 8

Figure 8: Observed window W

If we then consider a ball centered at a point x (also seen as pair (x , y)) we notice that there might be
points outside of W but inside the ball which we do not have infomrtion about. This is shown in Figure 9

Figure 9: Observed pair (x , y)
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Because of this problem, some correction needs to be added. This is known as RIipley's Isotropic Correc-
tion.

3.2 The F -Function

Assume X is a stationary point process. Using the cumulative distribution function (also known as the Empty
Space Function), the F -function of the empty space distance, developed by Baddeley et al. [3] is de�ned in
[2] as:

F (r) = P [d(u,X)≤r ]

where d(u,X) = min {‖u − xi‖ : xi ∈ X} is the shortest distance from u to the point pattern X, where u
is some arbitrary location and r is some distance. Since we assume X is a stationary point process, this
de�nition is valid for all u.

The empirical empty space distance function on a grid of locations uj , j = 1, 2, ...,m can be estimated by

F ∗(r) =
1

m

X
j

1{d(uj ,X)≤r}.

This estimator for F (r) is negatively biased due to edge e�ects. A estimator where edge e�ects are taken into
account is given by

F̂ (r) =
X
j

e(uj , r)1{d(uj ,X)≤r}

where e(uj , r) is an edge correction weight designed so that F̂ (r) is approximately unbiased [13].
A di�ent formulation of this estimator where the edge correction is taken into account is as follows: Let

(xi , ei ) for i = 1, : : : ,m where xi denote the distance from each of the m sample points to the nearest event in
W and ei denote the distance to the nearest point on the boundary of W . Then this estimator can be de�ned
as

F̂ (r) =
#(xi ≤ r and ei > r)

#(ei > r)

where # can be read as `The number of points such that' [13].
Since we assume the point process is homogeneous (stationary), d(uj ,X) > r will be true if there are no

points of X in the disc b(u, r) of radius r centered on u where this statement is a if and only statement..
Consider a homogeneous Poisson process with intensity parameter –. The number of points that fall in b(u, r)
then follows a Poisson distributed with mean — where

— = –area(b(u, r))

= –ır2

such that P [0 points in the region ] = e−— = e−–ır
2

. For a homogeneous (stationary) Poisson process with
the intensity – , the empty space distance distribution function is de�ned as

FPoi (r) = 1− e−–̂ır
2

.

Since we now have a theoretical (null hypothesis) and empirical distribution function, we can compare the
two results for a speci�c point pattern and then make a conclusion on the spatial randomness of the given
point pattern. The conclusion is one of the following:

• If F̂ (r) > FPoi (r) then it suggests the point pattern is regular, or

• If F̂ (r) < FPoi (r) then it suggests the point pattern is a clustered pattern.
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Another formulation for the F -function with the border method taken into account, with the methodology
as in Section 3.1, is de�ned as:

F̂ bm(r) =
|W− ∩ X|2
|W−|2

where |.|2 is simply the area of the set.

Example 1. First consider the data set japanesepines. To run the F -function, we use the following code:

library(spatstat)

data(japanesepines)

plot(Fest(japanesepines,correction=c("border","none")))

which results in the following image:

Figure 10: F -function on japanesepines

On the x-axis is the parameter, r and on the y-axis is the value for the F -function. F̂bord(r) is the F -
function with the border method edge correction, Fpois(r) is a theoretical poisson point process and F̂raw (r)
is the uncorrected F -function of the data.

From Figure 10, we see that F̂ (r) ≈ FPoi (r) for both cases. We see that for a small r , the 3 di�erent
methods are very close to each other but as r increases (greater than 0.05) we see that Fpois(r) becomes
bigger. So as r increases the F -function becomes less informative. Thus we can make a conclusion that the
Japanese Pines data set is a random point process.

For our second data set, Redwood, we run the same code and the output is shown in Figure 11.
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Figure 11: F -function on redwood

From Figure 11, we see that for r between 0 and 0.02 all three methods are closely related, but for r
greater than 0.03 we see that F̂ (r) < FPoi (r) for both cases.Thus for a small r , the graph gives the impression
of a random point process but as r increases that conlusion is not valid. Thus we can make a conclusion that
the Redwood data set is a clustered point process.

For our third data set, Swedish Pines, we run the same code where the output is shown in Figure 12.

Figure 12: F -function on swedishpines

From Figure 12, we see that F̂ (r) > FPoi (r) from r = 3 onwards for both cases. We also observe the
uncorrected graph is the closer to the theoretical process than the border correction. Thus we can make a
conclusion that the Swedish Pines data set is a regular point process.

3.3 The G-Function

Assume X is a stationary point process. The G-function, developed by Baddeley [3], uses the cumulative
distribution function of the nearest-neighbour distance for a point process and is de�ned in [2] as:
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G(r) = P [d(u,X \ {u})≤r |u∈X]

where d(u,X\{u}) = min {‖u − xi‖ : xi ∈ X} is the shortest distance from u to the point pattern X excluding
u, where u is some arbitrary location and r is some distance. Since we assume X is a stationary point process,
this de�nition is valid for all u.

The empirical nearest-neighbour distance function can be estimated by

G∗(r) =
1

n(x)

X
i

1{ti≤r}.

This estimator for G(r) is negatively biased due to edge e�ects. A estimator where edge e�ects are taken
into account is given by

Ĝ(r) =
X
i

e(xi , r)1{ti≤r}

where e(xi , r) is an edge correction weight designed so that Ĝ(r) is approximately unbiased [2].
A di�erent formulation of this estimator where the edge correction is taken into account is as follows: Let

(yi , di ) for i = 1, : : : ,m where yi denote the distance from each of the m sample points to the nearest other
event in W and di denote the distance to the nearest point on the boundary of W . Then this estimator can
be de�ned as

Ĝ(r) =
#(yi ≤ r and di > r)

#(di > r)

where # can be read as `The number of points such that' [13].
For a homogeneous (stationary) Poisson process with the intensity –, the nearest-neighbour distance

distribution function is de�ned as

GPoi (r) = 1− e−–̂ır
2

.

As we can see, this is equivalent to the F -function, but the interpretation of the results are di�erent.This fact
is only valid for the homogeneous case. This will be made clearer when introducing the J-function.

Since we now have a theoretical (null hypothesis) and empirical distribution function, we can compare the
two results for a speci�c point pattern and then make a conclusion on the spatial randomness of the given
point pattern. The conclusion is one of the following:

• If Ĝ(r) > GPoi (r) then it suggests the point pattern is clustered, or

• If Ĝ(r) < GPoi (r) then it suggests the point pattern is a regular pattern.

What this means is that if the Ĝ(r) > GPoi (r) then it means that the inter-distances in the point pattern
is shorter than those of the Poisson process, where as Ĝ(r) < GPoi (r) suggests the opposite. When the
empirircal and theoretical are deemed equivalent then the point pattern is said to be completely spatially
random and thus further spatial analysis not justi�ed.

Another formulation for the G-function with the border method taken into account, with the methodology
as in Section 3.1, is de�ned as:

Ĝbm(r) =

P
x∈X∩W−

1{(x ,X\{x})≤r}

X(W−)

where (x ,W ) = inf{||x − a|| : a ∈ W}.
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Example 2. First consider the data set japanesepines. To run the G-function, we use the following code:

library(spatstat)

data(japanesepines)

plot(Gest(japanesepines,correction=c("border","none")))

This results in the following image:

Figure 13: G-function on japanesepines

On the x-axis is the parameter, r and on the y-axis is the value for the G-function. Ĝkm(r) is the G-
function with the Kaplan Meier correction, Ĝbord(r) is the G-function with the border method correction,
Ĝraw (r) is the uncorrected G-function and Gpois(r) is the theoretical poisson point process.

From Figure 13, we see that the three corrections are close to the theoretical process. Mostly on the
graph we notice that the corrections are below the theoretical, but still reseanobly close. Thus we can make
a conclusion that the Japanese Pines data set is a random point process.

For our second data set, Redwood, we run the same code and illustrate the results in Figure 14.
From this, we see that Ĝ(r) > GPoi (r) after r = 0.02. From 0.10 onwards, the corrections starts to tend

back to the theoretical. Thus we can make a conclusion that the Redwood data set is a clustered point
process.

For our third data set, Swedish Pines, we run the same code. We observe the results in Figure 15.
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Figure 14: G-function on redwood

Figure 15: G-function on swedishpines

From this, we see that Ĝ(r) < GPoi (r) for all the di�erent cases, thus we can make a conclusion that the
Swedish Pines data set is a regular point process.

3.4 The J-Function

The J-function is a combination of the G-function and the empty space function, F . The J-function, developed
by van Lieshout and Baddeley [11], is de�ned in [2] as:

J(r) =
1− G(r)

1− F (r)
∀r ≥ 0

such that F (r) 6= 1.
For a homogeneous Poisson process FPoi (r) ≡ GPoi (r), so this reduces to
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JPoi (r) = 1.

A estimator where edge e�ects are taken into account is given by

Ĵ(r) =
1− Ĝ(r)

1− F̂ (r)

where Ĝ(r) and F̂ (r) are as in Sections 3.1 and 3.2.
We can compare the two results for a speci�c point pattern and then make a conclusion on the spatial

randomness of the given point pattern. The conclusion is one of the following:

• If Ĵ(r) > JPoi (r)(= 1) then it suggest the point pattern is a regular pattern, or

• If Ĵ(r) < JPoi (r)(= 1) then it suggest the point pattern is clustered.

Another formulation for the J-function with the border method taken into account, with the methodology
as in Section 3.1, depends on the formulation for the F -function and G-function.

An appealing property of the J-function is that if you have a superposition of two point processes X� =
X1 ∪ X2, where X1 and X2 are two independent point processes, this superposition has J-function

J(r) =
–1

–1 + –2
J1(r) +

–2
–1 + –2

J2(r)

where J1(r) and J2(r) are the separate J-functions and –1 and –2 are the intensities for the separate point
processes.

Example 3. First consider the data set japanesepines. To run the J-function, we use the following code:

library(spatstat)

data(japanesepines)

plot(Jest(japanesepines,correction=c("border","none")))

This results in the following image:

Figure 16: J-function on japanesepines

19



On the x-axis is the parameter, r and on the y-axis is the value for the J-function. Ĵrs(r) is the J-function
with border method correction, Ĵun(r) is the uncorrected J-function and Jpois(r) is the theoretical poisson
point process.

From Figure 16, we see that Ĵ(r) ≈ JPoi (r) in the beginning for all the di�erent cases. As r increases,
the estimates move away from the theoretical process but returns back. After 0.10 all the corrections fall
far below the theoretical. Thus we make a conclusion that the Japanese Pines data set is a random point
process.

For our second data set, Redwood, we run the same code with output shown in Figure 17.

Figure 17: J-function on redwood

From this, we see that Ĵ(r) < JPoi (r) after r = 0.025 for all the di�erent corrections. We notice that the
estimates falls far below the theoretical process, thus we can make a conclusion that the Redwood data set
is a clustered point process.

For our third data set, Swedish Pines, we run the same code which results in Figure 18.

Figure 18: J-function on swedishpines
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From this, we see that Ĵ(r) > JPoi (r) for all the di�erent corrections from r = 4. We also observe that
the uncorrected graph stays reasonably close to the theoretical. Thus we can make a conclusion that the
Swedish Pines data set is a regular point process.

3.5 The K-Functon

Assume X is a stationary point process. The K-function is de�ned such that –K(r) is the expected number
of points of the process within a distance r of a typical point of the process. So the K-function, developed
by Ripley [13], is de�ned in [2]as:

K(r) =
1

–
E[N(X ∩ b(u, r) \ {u})|u ∈ X].

For a homogeneous Poisson process, it is unimportant if u is a point of X since this does not e�ect the
other points of the process. So the expected number of points falling in b(u, r) is –ır2. For a homogeneous
Poisson process, the K-function is thus de�ned as:

KPoi (r) = ır2

which is not dependent on the intensity.
The (renormalized) empirical distribution function of the pairwise distances is of the general form

K̂(r) =
1

–̂2area(W )

X
i

X
j 6=i

1{||xi−xj ||≤r}e(xi , xj , r)

where e(xi , xj , r) is an edge correction weight designed so that K̂(r) is approximately unbiased [2].
The edge correction formulation in this case depends on the shape of the study area W [8].

• If W is the rectangle (0, a)×(0, b), we write our observed event x as x = (x1,x2). Let d1 = min(x1, a−x2)
and d2 = min(x2, b− x2) where d1 and d2 are the distances to the nearest vertical and horizontal edges
of W . There are two cases we need to consider:

� if r2 ≤ d2
1 + d2

2 then e(x , r) = 1− ı−1[cos−1{min(d1,r)
r
}+ cos−1{min(d2,r)

r
}

� if if r2 > d2
1 + d2

2 then e(x , r) = 0.75− (2ı)−1[cos−1{ d1
r
}+ cos−1{ d2

r
}].

∗ if r2 ≤ d2
1 + d2

2 , note that e(x , r) = 1 when r ≤ min(d1, d2). These formulations only hold if
the values of r is in the range 0 ≤ r ≤ 0.5min(a, b).

• If W is a disc centered at the origin with radius a, let Rrad =
p
x21 + x22 be the distance from x to the

centre of the disc (in other words, to the origin). There are two cases we need to consider:

� if r2 ≤ a− Rrad then e(x , r) = 1

� if r2 > a− Rrad then e(x , r) = 1− ı−1[cos−1{ a
2−Rrad−r2
2rRrad

}]
∗ These formulas holds for the values of r between 0 and a.

Since we now have a theoretical (null hypothesis) and empirical distribution function, we can compare the
two results for a speci�c point pattern and then make a conclusion on the spatial randomness of the given
point pattern. The conclusion is one of the following:

• If K̂(r) > KPoi (r) then it suggests the point pattern is clustered, or

• If K̂(r) < KPoi (r) then it suggests the point pattern is a regular pattern.
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Another formulation for the K-function with the border method taken into account, with the methodology
as in Section 3.1, is de�ned as:

K̂bm(r) =

P
x∈X∩W−

X(b(x , r)\{x}
X(W )
|W |2 X(W−)

where b(x , r) is the ball centered at x with radius r and |.|2 is simply the area of the set.

Example 4. First consider the data set japanesepines. To run the K-function, we use the following code:

library(spatstat)

data(japanesepines)

plot(Kest(japanesepines,correction=c("border","iso","none")))

This results in the following image:

Figure 19: K-function on japanesepines

On the x-axis is the parameter, r and on the y-axis is the value for the K-function. K̂iso(r) is the K-
function with Ripley's Isotropic correction, K̂bord(r) is the K-function with the border method correction,
K̂un(r) is the uncorrected K-function and Kpois(r) is the theoretical poisson point process.

From Figure 19, we see that K̂(r) ≈ KPoi (r) for all the di�erent corrections. As r becomes larger we
observe that the corrections move away from the theoretical process, except for the isotropic correction.
Thus we can make a conclusion that the Japanese Pines data set is a random point process.

For our second data set, Redwood, we run the same code. This output is shown in Figure 20.
From this, we see that K̂(r) > KPoi (r) for r greater than 0.20 we observe that the estimates approach the

theoretical process. Thus we can make a conclusion that the Redwood data set is a clustered point process.
For our third data set, Swedish Pines, we run the same code which results in Figure 21.
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Figure 20: K-function on redwood

Figure 21: K-function on swedishpines

From this, we see that K̂(r) > KPoi (r), so the graph gives the impression that Swedish Pines is a random
point process.

3.6 The L-Function

A commonly used transformation of the K-function is known as the L-function where the L-function, devel-
oped by Ripley [13], is de�ned in [2] as:

L(r) =

r
K(r)

ı
.

The reason why this transformation is used is because the K-function is transformed into the straight line
LPoi (r) = r , where the interpretation of this new graph is more simple than interpreting other graphs. The
square root in this formula also helps to stabilize the variance of the estimator.
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A estimator where edge e�ects are taken into account is given by

L̂(r) =

s
K̂(r)

ı

where K̂(r) is as in Section 3.5.

Example 5. First consider the data set japanesepines. To run the L-function, we use the following code:

library(spatstat)

data(japanesepines)

plot(Lest(japanesepines,correction=c("border","iso","none")))

This results in the following image:

Figure 22: L-function on japanesepines

On the x-axis is the parameter, r and on the y-axis is the value for the L-function. The di�erent estimates
are the same as with the K-function, which is identi�ed by the subscripts.

From Figure 22, we see that L̂(r) ≈ LPoi (r) for all the di�erent estimates. As r becomes larger we observe
that the estimates move away from the theoretical process, except for the isotropic correction. Thus we can
make a conclusion that the Japanese Pines data set is a random point process.

For our second data set, Redwood, we run the same code which results in Figure 23.
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Figure 23: L-function on redwood

From this, we see that L̂(r) > LPoi (r). As r increases, the estimates approach the theoretical process.
Thus we can make a conclusion that the Redwood data set is a clustered point process.

For our third data set, Swedish Pines, we run the same code. This results in Figure 24.

Figure 24: L-function on swedishpines

From this, we see that L̂(r) < LPoi (r), but as r increases, the estimates approach the theoretical pro-
cess.This then gives the impression that Swedish Pines is a random point process.

3.7 Inhomogeneous Spatial Point Process

In a Poisson process, it is not always applicable to assume a constant intensity, as in some processes, the
intensity is dependent on some function of time, t. This is denoted by –(t). If we follow the same assumptions
as for the homogeneous Poisson process, but with an intensity dependent on time, we get the following results:

If X(t) denotes the number of occurrences is a speci�ed interval, [0, t], then it follows that
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X(t) ∼ POI(—(t))

where

—(t) =

ˆ t

0

–(s)ds.

To illustate how the functions are interpreted for a inhomogeneous data set, we use the data set redwoodfull
in R c©. We run the speci�c functions on the data set, and we make a conclusion based on the results. First
we plot the data set to see if we can make some conclusion based on the plotted data. We use the following
coding in R c© to import and plot the data set:

library(spatstat)

data(redwoodfull)

plot(redwoodfull)

Figure 25: Plot of the inhomogeneous data set

From Figure 25, it is di�cult to make a certain conclusion based on this plot since at certain places the
points looks clustered and other places it looks regular. So to make an informative conclusion, we run the
functions (inhomogeneous) on the data sets.

Example 6. For all the graphs, the parameter r is on the x-axis and the inhomogeneous functions are on
the y-axis.

To run the F -function, we use the following code:

library(spatstat)

data(redwoodfull)

plot(Finhom(redwoodfull))

The output is given in Figure 26.
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Figure 26: Inhomogeneous F -function

From this, we see that F̂ bordinhom(r) ≈ F poisinhom where F̂ bordinhom(r) is the inhomogeneous F -function with the

border method correction and F poisinhom is the theoretical inhomogeneous Poisson process. On the edges we see
that the border method correction and the theoretical process is roughly the same but in between we notice
that the theoretical is higher.

To run the G-function, we use the following code:

library(spatstat)

data(redwoodfull)

plot(Ginhom(redwoodfull))

The output is given in Figure 27.

Figure 27: Inhomogeneous G-function

From this, we see that Ĝbordinhom(r) > Gpoisinhom where Ĝbordinhom(r) is the inhomogeneous G-function with the

border method correction and Gpoisinhom is the theoretical inhomogeneous Poisson process. For r greater than
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0.12 we see that the border method tends to the theoretical process but for less than 0.12 the border correction
is higher than the theoretical.

To run the J-function, we use the following code:

library(spatstat)

data(redwoodfull)

plot(Jinhom(redwoodfull))

plot(density(redwoodfull))

The output is given in Figure 28.

Figure 28: Inhomogeneous J-function

From this, we see that Ĵbordinhom(r) > Jpoisinhom in the beginning and end of the graph and Ĵbordinhom(r) < Jpoisinhom

in the middle where Ĵbordinhom(r) is the inhomogeneous J-function with the border method correction and

Jpoisinhom is the theoretical inhomogeneous poisson process. For r less than 0.01 and greater than 0.11 the
border correction is above the theoretical process but inbetween the border correction falls far below the the
theoretical. We have also added a density mapping of redwoodfull.

To run the K-function, we use the following code:

library(spatstat)

data(redwoodfull)

plot(Kinhom(redwoodfull,correction=c("bord","iso","none")))

The output is given in Figure 29.
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Figure 29: Inhomogeneous K-function

From this we see that K̂inhom(r) ≈ Kpoisinhomwhere K̂inhom(r) is the K-function with the di�erent edge

corrections. K̂ isoinhom is the inhomogeneous K-function with Ripley's isotropic correction, K̂bordinhomis the inhomo-

geneous K-function with border method correction, K̂poisinhom is the theoretical inhomogeneous Poisson process

and K̂uninhom is the uncorrected inhomogeneousK-function. We observe that all corrections are reasonable close
to the theoretical inhomogeneous poisson process. We also notice that the isotropic correction is the closest
to the theoretical process.

To run the L-function, we use the following code:

library(spatstat)

data(redwoodfull)

plot(Linhom(redwoodfull,correction=c("bord","iso","none")))

The output is given in Figure 30.

Figure 30: Inhomogeneous L-function
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From this we see that L̂inhom(r) ≈ Lpoisinhomwhere L̂inhom(r) is the L-function with the di�erent edge correc-
tions. The di�erent corrections are identi�ed by the superscripts and is exactly the same as for the K-function.
From all the di�erent graphs except for the J-funnction, we get the same results which indicate to us that
the data set Redwoodfull is indeed a random inhomogenous poisson process.

4 LULU operators and the Discrete Pulse Transform

As we have explained most of the theory we are going to use, we can move over to our application. We �rst
de�ne the LULU operators as follows [1]. For f ∈ A(Z2), a vector lattice, and n ∈ N,

Ln(f )(x) = max
V ∈Nn(x)

min
y∈V

f (y), x ∈ Z2

Un(f )(x) = min
V ∈Nn(x)

max
y∈V

f (y), x ∈ Z2

where

Nn(x) = {V ∈ C : x ∈ V , card(V ) = n + 1}

and where C is a connection de�ned as follows. Let B be an arbitrary non-empty set. A family C of subsets
of B is called a connected class or a connection on B if

1. ∅ ∈ C

2. {x} ∈ C for all x ∈ B

3. for any family {Ci} ⊆ C we have ∩
i∈I
Ci 6= ∅ =⇒ ∪

i∈I
Ci ∈ C

If a set C belongs to a connection C then C is called connected. The LULU operators act only on certain
types of sets, namely local maximum and minimum sets. A connected subset V ∈ Zd is called a local

maximum set of f ∈ A(Zd) if

sup
y∈adj(V )

f (y) < inf
x∈V

f (x).

Similarly V is a local minimum set if

inf
y∈adj(V )

f (y) > sup
x∈V

f (x).
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Figure 31: Example of a local maximum and minimum set respectively [1]

Figure 31 illustrates this concept.
The LULU operators act on the local maximum and minimum sets as follows [1]:

• The application of Ln (Un) removes the local maximum (minimum) sets of size ≤ n.

• The operator Ln (Un) does not a�ect the local minimum (maximum) sets directly in the sense that such
sets may be a�ected only as a result of the removal of local maximum (minimum) sets.

� No new local maximum (minimum) sets are created if there were no local maximum (minimum)
sets.

� Consider the action of Ln (Un). This may enlarge existing local maximum (minimum) sets. Joining
two or more local maximum (minimum) sets of f into one local maximum (minimum) set of Ln(f )
(Un(f )) may also enlarge existing local maximum (minimum) sets.

• Ln(f ) = f (Un(f ) = f ) if f does not have local maximum (minimum) sets of size ≤ n. Again, this is a
if and only statement.

As a result of these actions by the LULU operator any f can be decomposed into a number of pulses ffins :

• The Discrete Pulse Transform (DPT) is obtained via iterative application of the operators Ln, Un with
n increasing from 1 to N.

� Pn = Ln ◦ Un or Pn = Un ◦ Ln
� Qn = Pn ◦ Pn−1 ◦ : : : ◦ P1

• At each iteration we retain the portions of the image which are �ltered out by the application of
Pn(f ), n = 1, 2, : : : ,N i.e. (I − Pn)(f ) = Dn(f ), until we obtain QN(f ), a constant function\image.

• The function f is then decomposed as:

f =
NX
n=1

Dn(f ) =
NX
n=1

‚(n)X
s=1

ffins .

4.1 Application

Now that we have discussed all the theoretical aspects, we can move over to the application of the theory to
a image. For our image, we use a water image2. This image can be seen in Figure 32.

2Image was obtained from http://www.ux.uis.no/~tranden/brodatz/D37.gif
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Figure 32: Water Image

Applying the Discrete Pulse Transformation for ten scales results in the Figures 33 to 42. Take note that
included in this output is also the density plot for each of the scales (from scale 1 up to 10). We also apply
each of the functions (homogeneous and inhomogeneous) discussed in Section 3.
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Scale 1

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 33: Scale 1
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Scale 2

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 34: Scale 2

34



Scale 3

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 35: Scale 3
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Scale 4

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 36: Scale 4
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Scale 5

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 37: Scale 5
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Scale 6

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 38: Scale 6
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Scale 7

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 39: Scale 7
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Scale 8

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 40: Scale 8
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Scale 9

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 41: Scale 9
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Scale 10

(a) F - Function (b) G - Function (c) J - Function (d) K - Function

(d) L - Function (e) Inh. F - Function (f) Inh. G - Function (g) Inh. J - Function

(g) Inh. K - Function (h) Inh. L - Function

Figure 42: Scale 10
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When looking at the images for each of the scales, we can make some conclusions:

• We notice that the inhomogeneous K and J - functions do not give explicit information. The same
follows for the homogeneous K and J - function. If one was only to consider these functions, we might
have made the conclusion that the points are indeed randomly distributed, but this is not the case.
Thus we would conclude that due to the high number of points (in each scale) these functions are not
the proper functions to look at.

• For the homogeneous J - function, we make the same conclusion but we observe something di�erent.
We notice that, from scale seven onwards, one of the methods for dealing with edge e�ects becomes
very robust and does something di�erent as compared to the other corrections. This speci�c correction
is known as the Hanisch-type correction. We also observe that this occurs always between r = 6 and
r = 8. For r > 8, this correction method follows then the same pattern as the other corrections. One
of the reasons that this correction becomes robust can be due to the fact that this correction is mostly
used for circular (disk) study regions.

• Looking at the homogeneous as well as the inhomogeneous F and G - functions, we observe (if infor-
mation is given) that the points have some form of a regular distribution. This can be seen by looking
at each scale's G - function explicitly.

• The inhomogeneous J - function's results are a bit harder to decifer than with the other function.
We observe that the vast majority results obtained indicates regularity (as obtained from the F and
G functions), but at some instances we also observe some clustering. One of the reasons for these
mixed results can be due to the fact that the J - function takes the empty space functions well as the
nearest-neighbour distance function into account. What we do observe is that, for r ≤ 10, the results
are mostly regular. In some way, we would expect some clustering to occur due to the fact that as r
increases, more points are included in the calculations. So we need to select a threshold for the value of
r and only consider values less than this threshold. If we choose our threshold to be r ≈ 10, we make
the conclusion of regularity.

Based on the results mentioned above, we would make a conclusion that at each scale, from one to ten, that
the points are regular. Thinking about this logically, this makes intuitive sense. The image we used is a water
image with waves. The waves move in a half oval shape, which in some manner is a certain pattern. The
results we pick up from our di�erent functions corresponds to this statement. Thus to make a conclusion, we
state that the points are indeed regularly distributed.

5 Conclusion

In this report, we have discussed the theory of a point process, using di�erent functions on a point prcess in
the manner of testing for Complete Spatial Randomness, and have applied this on a speci�c image. From this
we have observed, and made the conclusion, that our point process actually follows some regular pattern. One
of the shortcomings that we encountered (in some manner we wouldn't expect is to be a problem) is that there
were many points. Due to this fact, some of our functions applied to the point process were uninformative
in some manner. Dealing with this problem, can sometimes results in more problems, due to the fact that
is we remove some points or make our study region smaller might result in losing information. A second
shortcoming, which was only seen in our results of our application is a threshold value for r . Choosing the
correct threshold value can sometimes be di�cult due to the fact that there is always the possibility of loosing
information. Another shortcoming would be due to the fact that we have only looked at each scale separately,
whereas if we considered all the scales combined, we might have obtained di�erent results. A recommendation
would be to increasee the number of scales observed, and to consider all the scales combined.

Most images used to test for complete spatial randomness can be divided into di�erent scales by using
the DPT. From there onwards, the di�erent tests can then be applied which will then result in a conclusion
which might have not been as obvious as looking at the images itself. The reason we use the words 'most
images` is due to the fact that not all images can necessarily be divided into scales by using the DPT, but if
the DPT can be applied to the images, tests for Complete Spatial Randomness can be applied.
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Appendix

Poisson Point Process

We de�ne a Poisson process for the Homogeneous case as follows:
Let X(t) donate the number of occurrences in the interval [0, t] and let Pn[t] = P [n occurences in the interval [0, t]].

The following properties are important:

1. X(0) = 0

2. P [X(t + h)− X(t) = n|X(s) = m] = P [X(t + h)− X(t) = n] for all 0 ≤ s ≤ t and 0 < h

3. P [X(t + ∆t)− X(t) = 1] = –Δt + o(Δt) for some – > 0

4. P [X(t + ∆t)− X(t) ≥ 2] = o(Δt)
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Abstract

This research report focuses on the comparison of frequentist and Bayesian statistics when dealing
with categorical data, specifically contingency tables. Categorical data is defined to be data that can be
categorized or grouped into non-overlapping categories. There are many methods that can be used to
test for association in contingency tables, but in this research report we will discuss the χ2 and Fisher’s
exact test. The χ2 test of independence is the most commonly used method to test for association in
contingency tables, but this becomes a problem when many cells in the contingency table have zero or
small counts and thus leading to small expected frequencies (sparse data) or when the sample size is too
small. In this case Fisher’s exact test will be used. We will discuss a Bayesian method that can be used
to test for association in contingency table.
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1 Introduction

Categorical data is data that can be divided into non-overlapping groups or categories so that it can be
easily analysed. There are different ways to make categorical data easy to interpret, including frequency
tables and contingency tables. In the contingency tables we want to know if the rows and the columns relate,
which is to test if one variable can be estimated from another variable (test of independence). The χ2 test
of independence is the most commonly used method to test for association in contingency table, but this
becomes a problem when many cells in the contingency table have zero or small counts and thus leading to
small expected frequencies (sparse data) or when the sample size is too small. In this case Fisher’s exact
test will be used. The χ2 and Fishers exact test uses the p-value under the null hypothesis, in this case
the independence hypothesis, but if the test strongly rejects the null hypothesis we do not receive enough
information as to what distribution generated the data [2]. We will discuss the Bayesian approach that is not
affected by the sample size and small frequencies and compare it with the χ2 test and Fisher’s exact test.

2 Background Theory

2.1 Categorical Data and Categorical Distribution

2.1.1 Categorical Data

A set of data is said to be categorical if its values or observations can be divided into non-overlapping groups
or categories, which means that every value should belong to only one category. Analysis of categorical data
generally involves the use of data tables (e.g. contingency tables and frequency tables) and graphs (e.g. bar
charts and histograms). There are two types categorical of data namely nominal and ordinal, where nominal
data has unordered categories and ordinal data has ordered categories. There are various statistical software
packages that can be used to analyse categorical data e.g. SAS( Copyright, SAS Institute Inc. SAS and all
other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc., Cary, NC, USA.) and R [8]. When many cells in a contingency table have zero or small counts and
thus leading to small frequency, this type of data is called sparse data.

2.1.2 Categorical Distribution

A categorical distribution is a discrete distribution that can take on values 1 to k for a k-way categori-
cal distribution. It is denoted by Y ∼ cat(p1, p2, ...........pk) with the probability mass function given by
f(y = i) = pi. Since a Bernoulli random variable can take on values {0,1}, the Bernoulli distribution can be
used to model categorical data.

The binomial distribution is n independent Bernoulli trials with the same probability of success for each
trial, say, p. Therefore a binomial distribution can also be used to model categorical data. Since the multi-
nomial distribution is a generalization of the binomial distribution, it can also be used to model categorical
data. There are various distribution that can be used to model categorical data, but in this research report we
will focus only on the multinomial distribution (hence the binomial distribution). A categorical distribution
is simply a multinomial distribution with n = 1.

2.2 Frequentist Perspective

Consider a vector of counts y = [y11 y12....yij ........ynm] from an n×m contingency table, where yij represents a
count in row i and column j with i = 1, 2, 3, 4.......n and j = 1, 2, 3, 4.........m. Let c1, c2, .......cm be marginal
columns totals, r1, r2........rn be marginal row totals and N the grand total. The expected frequency of a cell
is given by Eij = ri×ci

N .
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Categories

Variables

1 2 . . . k

1 y11 y12 . . . y1k

2 y21 y22 . . . y2k

. . . . .

. . . . .

. . . . .
n yn1 yn2 . . . ynk

Table 1: n×m contingency table

2.2.1 χ2 Test

H0 (independence hypothesis) is tested using the following test statistics which was proposed by Professor
Karl Pearson,[7]

χ2 =
∑∑
∀i,j

(yij − Eij)2

Eij
, (1)

where χ2 is compared to χ2
d on a significance level α where d = (n− 1) (m− 1) is the degrees of freedom.

The null hypothesis is rejected at significant level α if χ2 > χ2
v , that is if the p-value≤ α.

2.2.2 Fisher’s Exact Test

Professor R.A. Fisher proposed an alternate method defined as follows [3]. Assume that the marginal totals
are fixed so that the distribution of the cell counts will be that of a hypergeometric distribution. The
probability of the observed table is given by

P (outcome) =
r1! r2!.........rn! c1 c2!.......cm!

N ! y11! y12!........ynm!
. (2)

We calculate the probability of each of the possible tables that have the same marginal totals as the observed
table using (1), so that the p-value equals the sum of all probabilities that are less than or equal to the
probability of the observed table. We then reject the null hypothesis if the p-value is less than the significance
level α.

2.3 Bayesian Perspective

2.3.1 Key Elements

Bayesian statistics is a wide field so we will only define the elements that are going to be used. We will not
go into much details. For instance there are various types of priors so we will only define a conjugate prior.

Prior distribution - A probability distribution of an unknown parameter, p, before some experiment
or test denoted by f(p). The parameters of a prior are called the hyperparameters.

Posterior distribution - The distribution of an parameter, p, given the data set X. The posterior distri-
bution is of the form

f(p | X) =
f(X, p)

f(X)

=
f(X | p)f(p)

f(X)

Where f(X | p) is the likelihood , f(p) the prior and f(X) =
�
f(X | p)f(p)dp for a continuous distribution

and f(X) =
∑
p

f(X | p)f(p)dp for a discrete distribution.
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Conjugate prior - A prior distribution that leads to a posterior distribution which falls in the same family of
distribution as the prior distribution. The reason for using conjugate priors is that they make the calculations
of the posterior distribution easier.

2.3.2 Bayes Factor

We will discuss the Bayesian approach that is not affected by the sample size and small frequencies, named
the Bayes factor and compare it with the χ2 test and Fisher’s exact test. We define the Bayes factor in favor
of the hypothesis, H, provided by some evidence, event or experimental result, E, as the ratio of the final

odds to the initial odds,O(H|E)
O(H) [4]. This is equal to P (E|H)

P (E|H̄)
, which is a likelihood ratio only when H and its

negation H̄ are simple statistical hypothesis [4]. In our context we define the Bayes factor as the ratio of
the marginal density of the vector of counts under the alternative hypothesis and marginal density of counts

under the null hypothesis
D(y|H̄)

D(y|H) where y is a vector of counts [1]. We denote it by BF. The full details are

given in Section 2.3.3.

2.3.3 Bayesian Method

Consider a vector of counts y
1

= [y11, y12, y13...y1k] from the first row of an n× k contingency table, where y1i

represent a count in row 1 and column i with i = 1, 2, 3, 4, 5.........k. Let N =
n∑
i=1

y1i be the total of row 1,

Categories

Variables
1 2 . . . k Total

1 y11 y12 . . . y1k N

Table 2: 1×m contingency table

and p
1

= [p11, p12, p13...p1k] a vector of probabilities of the cells in the first row of the contingency table. Define

the null hypothesis to be H0 : p11 = p12 = ........ = p1k = 1
k and the alternate hypothesis to be Ha :

at least one of the p1j are not equal, therefore,

BF =
D(y | Ha)

D(y | H0)
,

where D(y | Ha) and D(y | H0) are the marginal density of y under the alternative hypothesis and the
marginal density of y under the null hypothesis respectively [1]. The y′1is are modeled with a multinomial
distribution with parameters {p1i} defined to be the cell probabilities.

D(y | H0) =
N !
k∏
i=1

y1i!

(
1

k

)y11 (1

k

)y12
...

(
1

k

)y1k

=
N !
k∏
i=1

y1i!

(
1

k

)N

Under the alternative hypothesis that at least one of the p1i are not equal. To find the marginal density
in this case we need to choose a suitable prior for {p1i}, say g (p), since the {pi} are unknown under the
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alternative hypothesis. therefore,

D(y | Ha) =
N !
k∏
i=1

y1i!

�
(p1)y11(p2)y12 ......(pt)

y1kg(p)dp

=
N !
k∏
i=1

y1i!

� k∏
i=1

py1i1i g(p)dp

Therefore,

BF =
D(y | Ha)

D(y | H0)

=

N !
k∏
i=1

y1i!

�
k∏
i=1

py1i1i g(p)dp

N !
k∏
i=1

y1i!

(
1
k

)N
= kN

� k∏
i=1

py1i1i g(p)dp

Let us consider the problem of calculating the expected value of p1i (i = 1, 2.........k) given the observed data
y. This can be done using Johnson’s “sufficiency” postulate, which states that the prior for p is a linear
combination of priors indexed by a parameter κ such that if we knew values of k,N, y1i and κ, then the
knowledge of the other multinomial counts yj , j 6= i would have no effect on the posterior mean of p1i [1].
EquivalentlyE(p1i | y1i, k,N, κ) = E(p1i | y1, k,N, κ) [1].

This postulate leads to a posterior mean of p1i to be E(p1i | y1i, k,N, κ) = y1i+α
N+kα where α depends on

k and κ [1]. If we choose the prior distribution for p to be that of a symmetric Dirichlet distribution this
will lead to a posterior for p to be that of a Dirichlet distribution which has the expected value equivalent

to yi+α
N+kα . This means that assuming the prior distribution for p to be that of a symmetric Dirichlet distri-

bution, is equivalent to using the “sufficiency” postulate, and this also means that the Dirichlet distribution

is a conjugate prior for. That is the prior g(p) for p is given by g(p) = Γ (kα)
[Γ (α)]K

k∏
i=1

pα−1
1i , α > 0[1]. Therefore

BF = kN
� k∏

i=1

py1i1i g(p)dp

= kN
� k∏

i=1

py1i1i

Γ (kα)

[Γ (α)]k

k∏
i=1

pα−1
1i dp

= kN
Γ (kα)

[Γ (α)]k

� k∏
i=1

p
(y1i+α)−1
1i dp

multiply both side of the integral by

k∏
i=1

Γ (y1i+α)

Γ (N+kα) , we get

= kN
Γ (kα)

k∏
i=1

Γ (y1i + α)

[Γ (α)]kΓ (N + kα)

� k∏
i=1

Γ (y1i + α)

Γ (N + kα)
p

(y1i+α)−1
1i dp
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where

� k∏
i=1

Γ (y1i+α)

Γ (N+kα) p
(y1i+α)−1
1i dp = 1 since this is the integral of the density function of a symmetric Dirichlet

distribution with with parameters (y1i + α), therefore

= kN
Γ (kα)

k∏
i=1

Γ (y1i + α)

[Γ (α)]kΓ (N + kα)
, α > 0

This formula is equivalent to

k∏
i=1

y1i−1∏
j=1

(1+ j
α )

N−1∏
j=1

(1+ j
kα )

, where
y1i−1∏
j=1

(1 + j
α ) equals 1 when y1i is 0 or 1 [4]. From this

we can draw BF as a function of the hyperparameter α, and find a useful test statistic defined to be the
maximum of the Bayes factor over α [1] i.e.

BFmax = maxα(BF ).

Figure 1: Graphs of BF with sparse and non-sparse data

.
Figure 1 shows the graphs of BF against the hyperparameter α. The red line is the line BF = 1 In both
graphs BF approaches 1 as α gets larger. BF > 0 since yiand α are positive.
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Figure 2: Graphs of BF with sparse and non-sparse data on a log scale

.
Figure 2 shows the graphs of BF against the hyperparameter α on a log scale, i.e log10(BF ) against log(α).In
both graphs log10(BF ) approaches 0 as log(α) gets larger. The data set for sparse data was found in Dr I.J
Good’s 1967 paper[4], and for non-sparse in the book, Frontiers of Statistical Decision Making and Bayesian
Analysis [1]

3 Application

Jan Feb March April May June July Aug Sept Oct Nov Dec
Observed

count
44 24 35 39 22 25 24 33 30 41 37 46

Table 3: Example

Consider table 3, which record the number of famous writers born in each month. The data was found
from, http://isites.harvard.edu/fs/docs/icb.topic961602.files/notes12.pdf. We want to test if there is an equal
probability of the writers to be born in each month i.e.
H0 : Pi = 1

12 i = 1, 2, ...12
Ha : at least one of the probabilities are not equal.

3.1 Using χ2 Test

Using formula (1), the Chi-Square test statistic is found to be χ2 = 22.91. The critical value for the Chi-
square distribution with degrees of freedom equal to 12− 1 = 11 on a 5% level of significance is χ2

11(0.05) =
19.675138. Since the test statistic falls inside the rejection region i.e. χ2 = 22.91 > χ2

11(0.05) = 19.675138 we
reject the null hypothesis H0. The p-value under the null hypothesis is 0.0181988, therefore on a 5% level of
significance we reject the null hypothesis H0 since p-value=0.0181988 < α = 0.05.
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3.2 Using Bayes Factor

Figure 3: Left : BF against alpha, Right : BF against alpha on a log scale

.
The graph on the right of figure 3 represent the graph of BF as a function of the hyperparameter α on a
log scale. The graph start by increasing until it reaches a maximum point at log(α) = 3.4011974 (represent
by the red line) and then decreases until it converges to 0. If we assume that the prior probabilities for
H0 and Ha are equal, and the posterior probability of H0 is represented by the p-value, then the estimate
of the Bayes factor is given by log10(BF0) = −log10(0.0181988) = 1.739957. The maximum of BF is at
log10(BF ) = 0.85752. This means that log10(BF ) is less than 0.85752 for all α indicating a small but enough
evidence against H0 than as indicated by log10(BF0).

The [output and data analysis] for this paper was generated using [SAS] software, Version [9.3] of the SAS
System for [Unix]. Copyright © [year of copyright] SAS Institute Inc. SAS and all other SAS Institute Inc.
product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA

4 Conclusion

The problem of testing for association in contingency tables can be solved using the χ2 test, but this becomes
a problem when the contingency table has small counts thus leading to small expected frequencies or when
the sample size is too small. We introduced a Bayesian statistic that is not affected by small frequencies or
sample size. This Bayesian statistic is called the Bayes factor (BF). We tested the null hypothesis of equal
cell probabilities assuming the counts follow a multinomial distribution with the cell probabilities as the pa-
rameters, and this required us to find a suitable prior for the cell probabilities under the alternate hypothesis.

It was found that the Dirichlet distribution is conjugate prior for the multinomial distribution. The problem
is choosing the right hyperparameter the Dirichlet distribution, so we tabulated the values of BF with differ-
ent values for α. Of this values we used the maximum of the Bayes factor as our test statistic. We can always
improve the Bayes factor by finding a suitable prior, say, g(α) , for the hyperparameters α of the Dirichlet
distribution, and then calculate the new Bayes factor using the formula

�∞
0
g(α)BFdα.
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Appendix

The χ2 test program

proc iml ;
use month ;
read a l l i n to y1 ;
N1=y1 [ + , ] ;
t1=nrow ( y1 ) ;
x1=j ( t1 , 1 , 0 ) ;
do i=1 to t1 ;
x1 [ i , 1 ] = ( ( y1 [ i ,1 ]−(N1/ t1 ) ) * * 2 ) ;
end ;
ch i1 =(( t1 /N1)* ( x1 [+ , ] ))−( t1 /N1 ) ;
p=1−probchi ( chi1 , t1 −1);
c r i t=c inv ( 0 . 9 5 , t1 −1 ,0) ;
p r i n t ch i1 p c r i t ;
run ;

proc f r e q data=month ;
t a b l e s month / ch i sq ;
run ;

BF for Sparse Data program

proc iml ;
use days ;
read a l l i n to y ;
N=y [ + , ] ;
t=nrow ( y ) ;
x=j ( t , 1 , 1 ) ;

do k=10 to 500 ; *hyperparameter o f the symmetric d i r i c h l e t d i s t r i b u t i o n i . e alpha ;

*numerator c a l c u l a t i o n s ;

do i=1 to t ; * f o r outer product ;
i f y [ i , ]=0 then do ; * cond i t i on 1 ;
z1 =1;

end ;
i f y [ i , ]=1 then do ; * cond i t i on 2 ;
z1 =1;

end ;
i f ( y [ i , ]>1) then do ;

z=j ( ( y [ i , 1 ] −1 ) , 1 , 0 ) ;
do j=1 to ( y [ i , ] −1 ) ; * f o r inner product ;

z [ j ,1]=(1+( j /k ) ) ;
end ;

x [ i ,1 ]= z [ # , ] ;
end ;

end ;
n=nrow ( x ) ;
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E=x [ # , 1 ] ;

*denominator c a l c u l a t i o n ;

p=j ( (N−1) ,1 ,0 ) ;
do l=1 to (N−1);

p [ l ,1]=(1+( l /( t *k ) ) ) ;
end ;

d=p [ # , ] ;

*bayes ian f a c t o r and i t s logar i thm ;

BF1=(E)/( d ) ; * value o f the binomial f a c t o r ;
logBf=log10 (BF1 ) ; * l og o f the bayes ian f a c t o r ;
logk=log ( k ) ; * l og o f the hyperparameter ;
BF=BF//( k | | l ogk | |BF1 | | l ogBf | | 1 ) ; *matrix conta in ing va lue s o f k , logk , BF, l o g b f and 1 ;
end ;
cn={ ’ alpha ’ ’ logalpha ’ ’BF’ ’ logBF ’ ’ one ’ } ;
c r e a t e bfdata from BF[ colname=cn ] ;
append from BF;
qu i t ;

proc gp lo t data=bfdata ;
p l o t (BF one )* alpha / over l ay ;
run ;

BF for Non-Sparse Data program

proc iml ;
use month ;
read a l l i n to y ;
N=y [ + , ] ;
t=nrow ( y ) ;
x=j ( t , 1 , 0 ) ;
u=2000;
FK=j (u , 1 , 0 ) ;
kv=j (u , 1 , 0 ) ;
on=j (u , 1 , 1 ) ;
l o=j (u , 1 , 0 ) ;
k lo=j (u , 1 , 0 ) ;
do k=3 to u ;
do i=1 to t ;

z=j ( ( y [ i , 1 ] −1 ) , 1 , 0 ) ;
do j=1 to ( ( y [ i , 1 ] ) − ( 1 ) ) ;

z [ j ,1]=(1+( j /k ) ) ;
end ;
x [ i ,1 ]= z [ # , ] ;

end ;
q=nrow ( x ) ;
E=x [ # , ] ;

p=j ( (N−1) ,1 ,0 ) ;
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do l=1 to (N−1);
p [ l ,1]=(1+( l /( t *k ) ) ) ;

end ;
d=p [ # , ] ;
FK[ k ,1 ]=(E/d ) ;
l o [ k ,1 ]= log10 (E/d ) ;
kv [ k ,1 ]= k ;
k lo [ k ,1 ]= log ( k ) ;
FKc=kv | | on | |FK | | l o | | k lo ;
end ;
maxiBF=max(FK) ;
logmaxiBF=max( l o ) ;
maxi=30;
maxl=log ( 3 0 ) ;
maxBF=j (u , 1 ,max(FK) ) ;
maxlogBF=j (u , 1 ,max( l o ) ) ;
kmax=j (u , 1 , 3 0 ) ;
logkmax=j (u , 1 , l og ( 3 0 ) ) ;
FKM=kv | | on | |FK | | l o | | k lo | |maxBF | |maxlogBF | | kmax | | logkmax ;
cn={ ’ alpha ’ ’ one ’ ’BF’ ’ logBF ’ ’ logalpha ’ ’maxBF’ ’maxlogBF ’ ’kmax ’ ’ logkmax ’ } ;
p r i n t maxi maxl maxiBF logmaxiBF ;
c r e a t e fdata from FKM[ colname=cn ] ;
append from FKM;
run ;
qu i t ;

proc gp lo t data=fdata ;
p l o t (BF one )* ( alpha kmax)/ over l ay ;
p l o t ( logBF )* ( loga lpha logkmax )/ over l ay ;
run ;
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Abstract

The aim of this research is to study how income is distributed in South Africa. This is done by
considering various factors such as age, level of education, gender and ethnic group. The research is done
using the South African census data released by Statistics South Africa in 2011. Methods that can be
used to analyse income include the ANOVA, MANOVA and MANCOVA[12]. This is useful when we
want to evaluate the income over time. In this paper an odds model will be our main focus. An odds
model is used to predict the probability of an individual being in the higher income group compared to
the lower income group. The advantage that the odds model provides is that it considers several factors
simultaneously in an analysis. This is helpful when studying the e�ect of di�erent factors on a response
variable. The motivation for this topic is mainly to gain insight into how income is distributed according
to the variables mentioned. In addition a lot of studies have concentrated on descriptive statistics for
example, pie charts and bar graphs whilst inferential statistics are not being implemented. Therefore
building an odds model will allow us to see the e�ect of how various factors a�ect the level of income.
Consequently, this would be helpful to stakeholders such as government, private sector as well as academic
and research institutions. This will provide information which is critical for economic growth and assist
in the making of cognizant decisions [18].

A brief literature review of similar studies is discussed. Statistical techniques on how one can analyse
grouped income will also be given. Theoretical background will be discussed with regards to how we
can analyse the data. An application of what has been discussed in theory will then be applied and the
statistical inferences will then be drawn. An in-depth analysis of the data along with areas of concern
are also explained. A conclusion is then arrived at summarising what was done in the research report.
Shortfalls of what was being investigated are given. Areas for future research are suggested in our
conclusion.
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1 Introduction

According to the 2011 census conducted by Statistics South Africa, StatsSA, a census is de�ned as a procedure
where people are counted after a certain time period in a country. This allows for the collection of information
about their demographics, social and economic characteristics [18]. After the information is collected, the
process includes the administration, analysis and dissemination of the collected data [18]. The 2011 census
was done in order to disseminate statistics on the inhabitants of South Africa. Furthermore, information with
regards to social, economic, housing features and the selection of a new sampling frame were also required. In
addition to this, the census also wanted to provide a primary base that is essential for the mid-year projections
[18]. The research topic to be tackled is going to look at how certain factors a�ect income by considering the
marginal e�ect of di�erent variables and by considering the di�erent variables simultaneously via the odds
model.

2 Literature Review

We shall give an overview of the results concurred on the income distribution from the 2011 census data.
Literature that has been studied with regards to the distribution of the income in South Africa will also be
given.

2.1 An overview of results of income from the 2011 census

The 2011 census produced a widening income disparity among various ethnic groups [7]. General comments
widely emphasized the expansive aperture among those with consistent earnings and those without from a
�nancial perspective. This is despite a narrowing in the �ssure but at a slow pace [7].

There was a possibility that individuals did not answer income questions honestly. This was due to the
fear that census o�cials would collude with tax authorities. Thus there was a lack of con�dence in the
secrecy clause of the census [11]. A comparison of the 2011 census to the South African Revenue Authority
showed a 28% di�erence in incomes between the two when assessing those in the tax paying brackets [4].
Nonetheless this did not detract from the conjectures reached. Despite the irregularities and lack of accuracy,
the �gures have gone on to be adapted as a re�ection of reality, as they have been accepted by the public
and statisticians [7].

The person sample data was analysed by making use of a weight variable. This is de�ned as the product
of the person adjustment factor and the inverse of the sampling rate to the relevant population [18].

2.2 Analysis of grouped data

In their 2009 paper Cra�ord and Crowther presented the following problem where grouped data is common in
many disciplines and where continuous variables such as age or income are categorised into class intervals. As
a result the usual statistical techniques for continuous response variables can no longer be applied. More often
than not researchers are tempted to ignore the underlying continuous distribution of the grouped response
variable which results in valuable information being ignored [9]. What was then studied was the case where
response variable is only observed in the grouped format.

The main focus of the paper by Cra�ord and Crowther was to foster basic theoretical concepts and
methodology of how to model grouped data. Other distributions such as the Pareto, Weibull could be used
to model the continuous nature of the grouped response variable. In her PhD thesis Cra�ord did a statistical
analysis of grouped data with ML estimation procedure of Mathews and Crowther which was used in �tting
a continuous distribution to grouped data [10].
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2.3 Analysis of income distribution in South Africa

In her thesis of 2007 Malherbe [15] analysed the e�ect of the grouped income versus the continuous income
on income data. This debate was due to various complications that arose when analysing data. For example:

1. People might be reluctant to give their exact income.

2. Also individuals may not know their income to the nearest rand.

This will result in a loss of valuable information and biased results. In order to work with grouped data it
was �rst made to be continuous so that it could be analysed. The following methods were implemented so
that continuous data could be obtained from grouped income:

2.3.1 The midpoint method

This method assumes that a person who gives his/her income earns an interval midpoint. Thus traditional
methods to analyse the data in grouped format are no longer valid. An upper bound for the top income level
does not exist. It was therefore assumed that the midpoint exceeds the lower bound in the last category by
10% [15]. This provided an upper bound. The main downside of this method was the lack of theoretical
backing [22]. However it is attractive to use due to the limited knowledge of the statistics required when
implementing the midpoint method[21].

2.3.2 Interval Regression

This tries to �t a model to the grouped income dataset by using some well known chosen variables. The
model then predicts what income each individual will have based on the variables used to �t the model.
Usually dummy variables are required in order to use interval regression. Income can be modelled as follows:

lnYi = b0 + b1x1 + b2x2 + b3x
2
2 + ei (1)

where

Yi represents income

x1, x2 are various factors under consideration

b1, b2, b3 are the regression coe�cients

b0 is the y-intercept

ei is the standard error

When interval regression is being studied we also have a measure of how well the model �ts given by the R2

statistic [15]. This value is between zero and one where a value of 1 indicates a one hundred percent �t. The
formula is given by:

R2 = 1− (

∑
(Xi − Yi)2∑
(Xi − X̄)2

) (2)

where

Xi the midpoints for the income intervals

Yi the predicted income

X̄ is the mean of the midpoints of the income intervals [15].
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2.3.3 Random midpoint

This makes use of the midpoint of income category and then distributes the individuals falling within the
income category randomly. We assume the following:

fi represents the frequency of individuals falling within income category i

xi represents the midpoint of income category i.

Thus the model used to obtain the midpoint dataset is given by:

Yij = xi + signijUij (3)

where

Yij the random midpoint income value for income category i and individual j

signij the income category i for individual j with

signij =

{
+1 with probability 0.5

−1 with probability 0.5

where

Uij ∼ Uniform(lowerboundi, xi)

lowerboundi is the lowerbound of income level i.

What was then inferred by Malherbe was that from an analytical point of view is that income as grouped or
continuous data does not make that much of a di�erence in the results [15]. The same was also conferred by
Von Fintel earlier as he came to the conclusion that using either a continuous or grouped variable is equally
accurate[21]. Nonetheless two factors will have a big in�uence on income i.e

1. Size of the income

2. Method used to obtain continuous data set from the grouped income data set.

From a practical point of view the use of grouped income gave the advantage that individuals are more likely
to give their income in this form than in the exact amount. The optimal solution when wanting to get as
much accurate information with regards to income is to ask individuals to indicate either of the following:

1. Exact income value

2. Indicate which income category they fall in

3. Indicate both of the above

This way the information gathered can be used to obtain better results. Thus income data will be more
reliable as individuals are more likely to indicate their correct income bracket [15].

2.4 Inequality in income distribution in South Africa

By analysing income we can then deduce inequality within a population. Inequality looks at di�erences in
the standards of living across a population or region. It refers to any aspect of deprivation [15]. Two types
of inequality exist:

1. Relative inequality - this depends on the ratio of individual income to the overall mean. This is used
more widely in dealing with the analysis of inequality.

2. Absolute inequality - this refers to the absolute di�erences in the levels of income.
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Measures used to measure inequality include Decile Dispersion Ratio, Percentile Ratio and Gini Coe�cient,
for example. We discuss a few of them below in further detail.

1. Decile Dispersion Ratio - this is an inequality measure not commonly used. It represents the proportion
of average income of the wealthiest ten percent of the population over the average income of the bottom
ten percent of the population [8].

2. Percentile Ratio - Inequality can be measured in terms of the ratio between shares of di�erent per-
centiles, for example between a person at the 85th percentile and a person at the 60th percentile in
the distribution. Percentile ratios are useful in understanding the dynamics in di�erent parts of the
income distribution. Thus it is not a formal measure of inequality[20]. Percentile ratios are in general
not skewed. The drawback is that they do not reveal information about the distribution at points other
than the two speci�c percentiles used in a given ratio [20] .

3. The Gini Coe�cient - is the most common measure of income inequality used. It varies between
zero(where there is perfect inequality and all the individuals earn the same amount of income) and
one(this is when we have imperfect inequality) [20]. When we have a Gini Coe�cient of one this means
that one person earns all the income and the rest earn nothing. The Gini Coe�cient for a population
[5] is calculated as follows:

G =
1

2n2µ

∑
i

∑
j

|yi − yj | (4)

where

yi is the income for the i
th person in the population

yj is the income for the jth person in the population

n is the population size

µ = 1
n

∑
yi is the mean income

3 Background Theory

3.1 Tabulation of data

The frequency gives us an idea of the number of observations under the variable(s) being considered. The
frequency tables provide easy access to statistics for testing for association in a contingency or cross tabulation
table for example. Chi-square tests can be computed to determine if variables are associated [1]. The statistics
provided by the contingency tables include:
�Chi-square tests and measures
�Measures of association
�Odds ratio
A two-way table which indicates whether the row and column variables are dependent or independent

should be considered when choosing which measures of association to use [1]. It should however be noted
that care should be taken when interpreting measures that are appropriate for one's data [1].

Once the odds from the frequency tables are calculated these are then compared with the odds calculated
via the logistic regression or logit model (to be discussed later) and inferences are then made.

3.2 Logit Model and Logistic Regression

Logit model and logistic regression are used to forecast an outcome that is discrete from a grouped data
of variables that may be continuous, discrete, dichotomous [13]. The logit i.e the natural logarithm of the
odds ratio is the fundamental mathematical concept behind logistic regression [17] . Logistic regression is a
more �exible technique when compared to other methods such as discriminant analysis, because they are no
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assumptions made about the distributions of the predictor [13]. In addition logistic regression cannot produce
negative predicted probabilities. This form of regression is useful when we expect a nonlinear relationship
between distribution of the responses on the dependent variable with one or more independent variables.

A simple linear regression equation is given by

u = α+ βX (5)

The linear equation then results in the logit or log of the odds which is given by:

logit(Y ) = natural log(odds) = ln

(
π

1− π

)
= α+ βX (6)

� β regression coe�cient. This tells us of the relationship between X and the logit of Y

� α is the Y intercept

� u is the linear regression equation

� Y is the outcome of interest

� X is the predictor variable

�
π = Probability(Y = outcome of interest | X=x, a speci�c value of X )

= eα+βX

1+eα+βX

� e = 2.71828 is the base of the natural logarithm

We can thus extend the logit of a simple logistic regression to multiple predictors. This then gives the
following equation:

logit(Y ) = ln

(
π

1− π

)
= α+

∑
βjXj (7)

with

�
π = Probability(Y = outcome of interest | X1 = x1, ...., Xk = xk )

= eα+
∑
βjXj

1+eα+
∑
βjXj

� u = α+
∑
βjXj is the linear regression equation

� Xi are the predictors for i = 1, 2, ....k

The linear regression equation is the natural logarithm loge of the probability of being in one group divided
by the probability of being in another group. The process that is done for estimating coe�cients i.e α and
βj is the maximum likelihood [13].

Logistic regression can be used to �t and compare models. A model that can be �tted by making use
of a constant and no predictors typically results in a simple and worst �tting model. A model that has all
predictors, interactions and a constant related to the outcome will usually result in a complex and best �tting
model [13].

3.2.1 Types of logistic regression

We have the following types of logistic regression which are discussed brie�y:

1. Direct Logistic Regression- here all the variables enter the equation simultaneously. When there is no
speci�c hypothesis about the order of importance of the predictor variables, this is an ideal method to
utilize. Each predictor is evaluated as if it entered the equation last[13]. One fall back of this type of
regression is the interpretation di�culties that arise when the predictors are correlated.
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2. Sequential Logistic Regression- this is very similar to sequential multiple regression as order of predictors
is speci�ed in the model [13].

3. Statistical (Stepwise) Logistic Regression-here we have a situation where the inclusion and removal of
predictors from an equation is based on a statistical criteria. This technique is best seen as a hypothesis
or screening generating technique [13].

3.3 The odds model

The ratio that the probability of an event of interest occurs, to the probability that it does not, is called the
odds[6]. This is estimated by making use of a ratio which is given as a relationship of the number of times
that the event of interest occurs to the number of times that it does not.

We can calculate the odds of an event by making use of the formula

o =
p

1− p
(8)

� p is the probability that an event will occur

� 1− p is the probability that an event will not occur

One advantage of the odds model is the ability to cater for linear constraints, survey data and the computation
of estimated probabilities [16][23].

In order investigate the e�ect of the independent variables on the dichotomous dependent variable, logistic
regression can be implemented. The odds model indices can be used to explain the e�ect of the independent
variables on the dependent variable.

Most statistical analysis distinguish between a response variable or dependent variable i.e the variable we
are trying to explain and an explanatory variable(s). Once the odds have been calculated it is now possible
to calculate the odds ratio of di�erent categories.

3.3.1 Odds ratio

The odds ratio is de�ned as the change in the odds of being in one of the categories of outcome when the
value of a predictor increases by one unit [13].

Odds ratio can also be calculated by making use of di�erent categories within the response variable. Thus
the formula is:

odds ratio =
odds of particular category

odds of interest category
(9)

Odds ratio greater than one re�ect an increase in the odds of an outcome of one i.e the response category.
This is accompanied with a one unit increase in the predictor. Odds ratio less than one re�ect a decrease in
the odds of that outcome with a one unit change. Odds ratio are calculated to compare di�erent categories
with each other.

The use of odds ratio has increased as[6]:

1. An estimate is given along with a con�dence interval for the relationship between binary variables, for
example consider win or lose variables.

2. Allow for the assessment of e�ects of other variables on a relationship by making use of logistic regres-
sion.

3. Have a distinct and convenient understanding

Once the odds have been calculated, it is now possible to calculate the probabilities that we are interested
in by making use of the formula:

prob =
o

1 + o
(10)

where
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o is the odds of the category of interest

4 Application

We are going to make use of the statistical software package called SAS for our data analysis[2]. SAS codes
given shall also be explained where applicable. EXCEL shall be used to explain certain output of the data
where appropriate.

4.1 Describing the data an overview

The data that will be used in this analysis is the 10% person sample of the South African census 2011.
The metadata �le published with the 2011 census provides a description of the data, sampling design

and the variables contained in the data. The person data contains variables such as gender, age, race, work
status, income. Some of these variables shall be used in this analysis.

4.1.1 The 10% sample Census 2011

The SAS code to obtain initial 10% sample census data of South Africa is given below:

data census11;

infile ' C:\Data\Person_10pct_Sample_v1.txt';

input

@16 Age 3.

@19 Gender 1.

@33 PopGrp 1.

@83 Income 2.

@88 Highest_Level_of_Education 2.

@98 P23A_Employ_stat 1.

@99 P23B_Employ_stat 1.

@100 P23C_Employ_stat 1.

;

run;

A brief summary of the data that we work with:

� Person data: 4 418 594 observations

� Grouped response variable: Income

� Independent variables:

1. Age

2. Education level

3. Gender

4. Population group

4.2 One way analysis of data

The SAS code to obtain the focus group is given as:
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data person11;

set census11;

if Income = 1 then delete;

if Income = . then delete;

if Income = 99 then delete;

if age < 18 then delete;

if age > 65 then delete;

if popgrp = 5 then delete;

if 12<=Highest_Level_of_Education<=18 or 21<=Highest_Level_of_Education<=28;

run;

Our focus group is de�ned below. These factors are run simultaneously in SAS. The result is that there are
601 059 observations from an initial 4 418 594 observations.

Focus Group

1. Income: R1 or more

2. Age: 18-65

3. Education Level: Grade 12 and higher

4. Population group: Black, Coloured, Indian, White

A brief description of how we arrived at the various restrictions of the explanatory variables above is explained
below.

4.2.1 Income

Group Monthly Income
01 No income

02 1 - 400
03 401 - 800
04 801 - 1 600
05 1 601 - 3 200
06 3 201 - 6 400
07 6 401 - 12 800
08 12 801 - 25 600
09 25 601 - 51 200
10 51 201 - 102 400
11 102 401 - 204 800
12 204 801 - more
99 Unspeci�ed
. Not applicable

Table 1: Income categories as given by StatsSA

When income was recorded as either 1 (i.e no income), 99 (i.e unspeci�ed) or not applicable we decided
to delete these entries. This greatly reduced the sample size of our data. What was noted however was
that imputation methods could have been used in �lling in the unspeci�ed and not applicable parts of the
data. This method involves imputing a replacement value for the missing data. The replacement value is
typically taken from another observation that is identical to the nonrespondent on other variables. This is
then imputed for the missing value [14]. However, imputation was negated due to if for example, future data
analysts want to analyse the data, they would not be able to di�erentiate between original and the imputed
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values. Furthermore, the imputed values may provide good guesses, but they are not real data which could
be a real problem when analysing the data.

Income(R) Frequency Percent Cumulative Frequency

1 - 400 24 388 4.06 24 388
401 - 800 27 661 4.60 52 049
801 - 1 600 71 057 11.82 123 106
1 601 - 3 200 99 982 16.63 223 088
3 201 - 6 400 105 919 17.62 329 007
6 401 - 12 800 119 669 19.91 448 676
12 801 - 25 600 94 344 15.70 543 020
25 601 - 51 200 38 864 6.47 581 884
51 201 - 102 400 12 342 2.05 594 226
102 401 - 204 800 4 010 0.67 598 236
204 801 - more 2 823 0.47 601 059

Table 2: One way frequency table for the various income groups

Figure 1: The distribution of grouped income for the focus group

The one way frequency distributions for the various income groups are given in Table 2. A graphical
representation of the income groups is then shown in Figure 1.

Classifying income into low and high income
Income was classi�ed as being low if it was below or equal to 12 800 a month and as high if it was greater

than or equal to 12 801 a month. The reason behind this was that it was a personal judgment that would be
helpful in our analysis. Thus the frequency table is given as follows:

income group Frequency Percent Cumulative Frequency

low 448 676 74.65 448 676
high 152 383 25.35 601 059

Table 3: Frequency table for the classi�cation of income groups

From Table 3, the probability of an individual being in the low income group is about 0.75, whilst the
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probability of an individual being in the high income group is approximately 0.25. The odds of an individual
to be in the high income group is:

odds = percentage high income
percentage low income

= 25.35
74.65

' 1
3

That is, for every 1 person in the high income group, three are in the low income group.
From the odds we can calculate probabilities where:

probability =
odds

1 + odds
=

o

1 + o

Thus, the probability of being in the high income group is:

probability =
1
3

1 + 1
3

=
1

4

This agrees with the percentage given in Table 3 for the probability to be in the high income group.

4.2.2 Age

Age restrictions when looking at the upper bound were dealt with by considering the Employment Act which
does not prescribe an age at which employees must retire [3]. A lot of questions have been raised as to how
employers should determine when an employee should retire. One can retire at 55, 60 or 65. Since there
is no set retirement age in the labour legislation, the employer can decide the retirement age for his/her
employees [3]. In addition, one must also take Section 6 of the Employment Equity Act into consideration
when deciding when one should retire[3]. Ages 55 or 60, could have been considered as the cut o� points for
our sample. This though would have resulted in a smaller sample size as compared to if we considered age 65
as the cut o� point. Taking this into consideration it was decided that any persons over the age of 65 should
not be considered for our data analysis.

In terms of South African law, children under 18 are legal minors who are not yet fully capable of acting
independently without assistance from parents/legal guardians [19]. Consequently, people that were under
18 years of age were not part of the sample, as they were considered to be still minors by law.

Since age is a continuous variable. It was grouped into categorical form in the data so that individuals
would then fall into one of the following age-groups:

1. 18-25

2. 26-35

3. 36-45

4. 46-55

5. 56-65

4.2.3 Education level

The level of education one attains is likely to have a massive impact on their income. We considered
individuals that had studied from Grade 12 and beyond for our study.

4.2.4 Population group

Individuals were able to specify their population group and in the very rare situations where the subject was
not be able to specify their population group they were removed from the sample.

15



4.3 Cross classi�cation of income

The SAS code to obtain the cross classi�cation of income is given by:

proc freq data=finalmod;

tables incomegrp*(agegrp gender popgrp Highest_Level_of_Education ) / chisq expected;

format agegrp agegrp. gender gender. popgrp popgrp. income income. incomegrp incomegrp.

Highest_Level_of_Education Highest_Level_of_Education. ;

run;

To investigate the marginal e�ect of the independent variables on the dependent variable, two way classi�-
cations were considered. Our dependent variable is the income group classi�ed as low or high income.

In our analysis we can either look at the low or high income groups in relation to our variables. However,
results shall be based on analysis of the e�ect of various explanatory variables on the high income category.
Similar results can be obtained by looking at the low income category as well. Therefore, to obtain results
for the low income group you would interchange the resultant numbers in the PROC FORMAT procedure,
i.e

value incomegrp

1 = 'low'

2 = 'high'

Note that the results derived in this section have a marginal e�ect on income since we are considering one
factor at a time.

To investigate the marginal e�ect of the independent variables, the percentages of the respondents in the
high income group are tabulated:

4.3.1 Income vs age-group

age-group 18-25 26-35 36-45 46-55 56-65

% High Income 7.35 19.62 31.49 41.65 37.80
Frequency 7 019 42 172 50 304 36 670 16 218

Table 4: Table showing income vs age-group

Figure 2: The percentage of high income earners according to age
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From Table 4 and Figure 2 above, the percentage of high income earners increase over age. Nonetheless, an
anomaly is noted in the age-group 56-65 as the trend decreases from the 46-55 age-group. Therefore, age
does have an in�uence on income as seen by the upward trend in the percentages of high income earners.
Hence, we can expect that as people become older the probability of being in the high income group also
increases based on the age variable only.

4.3.2 Income vs education level

Education Level Grade 12 NTC Certi�cate Diploma Bachelors Honours Masters/PhD

% High Income 12.17 32.95 20.41 40.92 58.53 67.04 75.87
Frequency 44 451 8 303 5 506 40 279 30 076 13 463 10 305

Table 5: Table showing income vs education

Figure 3: The percentage of high income earners according to education

Table 5 indicates that about 12% of the people with Grade 12 are in the high income category compared
to 58% of the people with a Bachelor's degree. A decrease is noted between NTC and Certi�cate category
in Figure 3. This is due to the clustering that has been done where NTC was concerned. It follows that
there is a higher percentage of high income individuals in the NTC category than Certi�cate category. It
is interesting to note that 75% of people with a Masters/PhD are classi�ed in the high income group as
evidenced in both Table 5 and Figure 3 . An ordinal trend in income over the categories of education is
evident. It is clear that education in�uences the income category that a person is going to belong to.

4.3.3 Income vs gender

Income Male Female

% High Income 28.88 21.53
Frequency 90 226 62 157

Table 6: Table showing income vs gender
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Figure 4: The percentage of high income earners by gender

Our sample constitutes of 90 226 Males i.e 28.88% of the Males whom are high income earners, at the same
time, there are 62 157 Females where 21.53% of them are high income earners, as given in Table 6. A
signi�cant di�erence exists between the Male and Female high income earners as noted in the column chart
in Figure 4.

Hypothesis testing

Hypothesis testing was done to see if there was a di�erence in incomes between the Male and Female high
income earners.

H0: No signi�cant di�erence exists between the Male and Female high income earners
HA: A signi�cant di�erence exists between the Male and Female high income earners

Statistic Value Prob
Chi-Square 4 281.79 <0.0001

Table 7: Chi Square Results

By making use of the results from Table 7 and testing at a 5% level of signi�cance, we reject the null
hypothesis since we have p value < 0.0001 with a value of 4 281.79. Therefore we conclude that signi�cant
di�erence exists between the income of Males and Females. Thus, one can deduce that gender does have an
e�ect on income.

4.3.4 Income vs Population Group

Population Group Black Coloured Indian White

% High Income 15.42 23.92 35.31 50.02
Frequency 58 157 12 092 11 065 71 069

Table 8: Table showing income vs population group
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Figure 5: The percentage of high income earners by population group

Table 8 and the bar graph (i.e Figure 5) and show that only 15.42% of the Black people in the sample are
classi�ed as being high income earners. The Coloured people have 23.92% categorised as high income earners.
There is an 11.39 percentage increase in high income earners from the Coloured people to the Indian people.
Approximately 50% of the White people are in the high income category. Therefore, population group has
an impact on income as seen by the signi�cant di�erences in the high income categories of the di�erent
population groups.

4.4 Logit Model with one variable being considered

The SAS code which implements the logit model where education is being considered is given below:

proc catmod data=finalmod;

model incomegrp = highest_level_of_education / ml nogls oneway;

format incomegrp incomegrp. highest_level_of_education Highest_Level_of_Education.;

Contrast 'overall effect' intercept 1 / est = exp;

Contrast 'Grade 12' Highest_Level_of_Education 1 0 0 0 0 0 / est = exp;

Contrast 'NTC' Highest_Level_of_Education 0 1 0 0 0 0 / est = exp;

Contrast 'Certificate' Highest_Level_of_Education 0 0 1 0 0 0 / est = exp;

Contrast 'Diploma' Highest_Level_of_Education 0 0 0 1 0 0 / est = exp;

Contrast 'Bachelors Degree'Highest_Level_of_Education 0 0 0 0 1 0 / est = exp;

Contrast 'Honours Degree' Highest_Level_of_Education 0 0 0 0 0 1 / est = exp;

Contrast 'Masters / PhD' Highest_Level_of_Education -1 -1 -1 -1 -1 -1 / est = exp;

run;

The CATMOD procedure performs categorical data modelling on data. CATMOD is short for categorical
modelling in SAS. PROC CATMOD �ts linear models to functions of response frequencies and can be used
for linear modelling, log-linear modelling, logistic regression and repeated measurement analysis. PROC
CATMOD uses estimation methods like weighted least squares (WLS), estimation of parameters for a wide
range of general linear models. Maximum likelihood (ML) estimation of parameters for log-linear models and
the analysis of generalized logits are also used by the CATMOD procedure [1]. The CONTRAST statement
provides a mechanism for obtaining custom hypothesis tests[1]. Also, the CONTRAST statement provides
parameter estimates for indices. One of the objectives of the CONTRAST statement is hypothesis testing.
This is illustrated by considering the education variable. A similar approach can be applied to other variables.
Therefore
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H0 : c‘λ = 0

or
H0 : ec

‘λ = 1

where
c is a vector of constant values e.g c‘ = ( 0 0 0 1 0 0)
λ is a vector of parameters.
However, when modelling the last estimate, our vector c would be (-1 -1 -1 -1 -1 -1). This is because the

last estimate can be calculated by using the formula∑
λedu = 0

Di�erent combinations could be included in the CONTRAST statement. For example, suppose you want
to test if the e�ect of a person with Grade 12 is the same as the e�ect of a person with a Diploma.

H0 : λgr12 = λdipl

therefore
λgr12 − λdipl = 0

Our vector c in the contrast statement would then be c‘ = ( 1 0 0 -1 0 0).
To investigate the marginal e�ect of the independent variable on the dependent variable an odds model

is considered. Various models can be considered and the following model will be built when one variable is
considered. Education shall be considered in this case.

A simple logit model is formulated as:

log(o) = µ+ λedu (11)

where we consider education as the only e�ect on income with

� o is the odds to be in the high income group

� µ is the e�ect of the overall odds

� λedu is the e�ect of education

Note we apply a logit model here since we have a categorical independent variable and categorical dependent
variable.

Index Sample Size(n)
Overall E�ect 0.7287 601 059

Education
Grade 12 0.1900 365 399
NTC 0.6744 25 197

Certi�cate 0.3519 26 975
Diploma 0.9505 98 435

Bachelor's Degree 1.9365 51 388
Honour's Degree 2.7907 20 083
Masters/PhD 4.3154 13 582

Table 9: Indices value results

The indices given in Table 9 were obtained directly from SAS by specifying the EST = EXP in the SAS
code. These were then incorporated into the table above. An ordinal trend in the indices is evident. The
odds of being in the higher income group for an individual with a Grade 12 , NTC, Certi�cate and Diploma
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are 81%, 32.56%, 64.81% and 4.95% lower than the overall odds respectively. On the other hand, the odds
of being in the high income group for a person with a Bachelor's, Honours and Masters/PhD is 93.65%,
179.07% and 331.54% higher than the overall odds respectively. As a result, education has a huge e�ect on
income as the higher one progresses with regards to education, the higher the odds to be in a better income
group.

Calculation of the last estimate

If the EST = EXP is not speci�ed in the SAS code, SAS will only provide the parameter estimates for the
logit model. However, care must be taken as the last parameter estimate is not given for an independent
variable. Thus to calculate the estimate for Masters/PhD for education in the last category, the formula
below is used: ∑

λedu = 0 (12)

Alternatively

e
∑
λedu = 1 (13)

Estimates
Education
Grade 12 -1.6604
NTC -0.3939

Certi�cate -1.0443
Diploma -0.0508

Bachelor's Degree 0.6609
Honour's Degree 1.0263

Table 10: Estimated values

By using the estimated values in Table 10, it follows that the Masters/PhD estimate is:

−
∑
λedu

= (−1.6604− 0.3939− 1.0443− 0.0508 + 0.6609 + 1.0263)
= 1.4622

The estimated values are then used to calculate the indices given earlier by making use of the formula

eλ
edu

where λedu is the parameter estimate for the logit model.
Since there is some di�culty in interpreting the log(o) we take the anti-log to get the following:

o = eµ+λ
edu

= i ∗ iedu

with

� i the index of the overall odds

� iedu is the index for various education categories.

Therefore the logit model, models the expected log of the odds (or logit) for a speci�c category of education.
Strictly speaking, µ is the log of the geometric mean odds of various factors incorporated in the model.
The more the λedu parameter deviates from zero, the higher the variation in the odds with respect to the
particular factor.
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4.4.1 Interpretation of the estimates

Education Chi-Square Pr > ChiSq

Grade 12 64 960.90 <0.0001
NTC 1 017.58 <0.0001

Certi�cate 5 827.36 <0.0001
Diploma 47.70 <0.0001

Bachelor's Degree 5 365.67 <0.0001
Honours Degree 5 690.63 <0.0001
Masters/PhD 6 864.93 <0.0001

Table 11: Chi Square p values for education

According to the estimated values above, there is a strong positive estimate for Honours degree, λhons =
1.0263(from Table 10), with a probability < 0.0001(from Table 11). This indicates that the odds to be in the
higher income group is signi�cantly higher for people with an Honours degree than the overall odds. There
is a negative estimate for Grade 12, λgrade12 = −1.6604 with probability < 0.0001. This tells us that the
odds to be in the higher income group di�ers for people with a grade 12 than the overall odds.

Calculation and interpretation of the indices, odds and probabilities

Odds Probability
Overall E�ect 0.7287 0.4215

Education
Grade 12 0.1385 0.1216
NTC 0.4914 0.3296

Certi�cate 0.2565 0.2041
Diploma 0.6926 0.4092

Bachelor's Degree 1.4111 0.5852
Honour's Degree 2.0336 0.6704
Masters/PhD 3.1446 0.7587

Table 12: Estimated odds and probability results

The geometric mean odds is calculated as:

7
√

(oddsgr12 ∗ oddsNTC ∗ oddscert ∗ oddsdipl ∗ oddsbach ∗ oddshons ∗ odssMas/PHD)

= 7
√

(0.1385 ∗ 0.4915 ∗ 0.2565 ∗ 0.6926 ∗ 1.411 ∗ 2.0336 ∗ 3.1446)
' 0.7287

This is the same as the overall e�ect given in Table 12. This tells us that, for approximately every 7
people in the high income group, we have 10 in the low income group. This �gure is much higher than what
is given in the raw data for the observed two way frequency (from Table 3). The reason why we have such
a huge di�erence in the �gures is that the odds model places equal weightings for each di�erent category of
education.

We illustrate how the indices are calculated, via some examples, as an interpretation has been given
earlier. Recall that the indices reveal odds of someone being in a high income group. Consequently, the index
for a person with an Honours degree is about 2.7907. This is calculated as:

index = eestimate = e1.0263 = 2.7907 = iHons
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By making use of the indices it is possible to calculate the odds for the di�erent levels of education
category. As a result, the odds of being in the high income group for an individual with an Honours degree
is

odds = i ∗ ihons = 0.7287 ∗ 2.7907 = 2.0335

with i being the index for the overall odds.
We shall make use of equation 10 given in the Background Theory to calculate the probability of an

individual with an Honours degree to be in the high income category. Thus

prob =
o

1 + o
=

2.0335

3.0335
= 0.6704.

The probability of an individual with an Honours degree to be in a high income category is 0.6704. When
compared with the cross tabulation output from SAS under income vs education in Table 5, we see that these
two probabilities are equal. Thus, a perfect �t is obtained.

Similarly, the index for someone with a Diploma as their highest level of education is about 0.9504. This
is calculated as:

index = eestimate = e−0.0508 = 0.9504 = idipl

Therefore odds to be in the higher income group for a person with a Diploma is 5% lower than the overall
geometric mean odds, or alternatively you could say that the odds of being in the high income group decreases
by 5%. The odds for an individual being in the high income group with a Diploma is:

odds = i ∗ iDipl = 0.7287 ∗ 0.9504 = 0.6926

This will then give us an estimated probability of:

prob =
o

1 + o
=

0.6926

1.6926
= 0.4091

The probability of an individual with a Diploma being in the high income category is 0.4091. By evaluating
this result with the cross tabulation result given in Table 5 for the Diploma category, we see that these two
probabilities are equal. By looking at the odds column in Table 12, it is clear that as the level of education
becomes more intense, the odds for a person to be in the high income group increases.

Education Low income High Income Odds

Grade 12 87.83 12.17 0.1386
NTC 67.05 32.95 0.4914

Certi�cate 79.59 20.41 0.2564
Diploma 59.08 40.92 0.6926
Bachelor 41.47 58.53 1.4113
Honours 32.96 67.04 2.0349

Masters/PhD 24.13 75.87 3.1442

Table 13: Observed odds results

The estimated odds according to the logit model in Table 12 are equal to the observed odds given in Table
13, for all the categories of education level. Thus we have a saturated model. A saturated model is de�ned
as the case where the parameters estimated by logit model equals the number of cells. Therefore we have 7
parameter estimates calculated by SAS and 7 cells.
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4.4.2 The odds ratio

This section we look at various odds ratios of an individual to be in a high income category given their level
of education in relation to another level of education.

Education Odds Grade 12 NTC Certi�cate Diploma Bachelor Honours Masters/PhD
Grade 12 0.1385 1.0000 0.2818 0.5400 0.2000 0.0981 0.0681 0.0440
NTC 0.4914 3.5484 1.0000 1.9163 0.7096 0.3483 0.2417 0.1563

Certi�cate 0.2565 1.8517 0.5218 1.0000 0.3703 0.1817 0.1261 0.0816
Diploma 0.6926 5.0008 1.4093 2.7007 1.0000 0.4908 0.3406 0.2202
Bachelor 1.4111 10.1889 2.8714 5.5025 2.0375 1.0000 0.6939 0.4487
Honours 2.0336 14.6831 4.1379 7.9296 2.9362 1.4411 1.0000 0.6467

Masters/PhD 3.1446 22.7053 6.3993 12.2619 4.5403 2.2284 1.5464 1.0000

Table 14: Odds Ratios Results

The odds ratios for di�erent education categories are given above. The column odds are the numerators
whilst the row odds are the denominators. The odds ratio to be in the high income group for a person with
a Masters/PhD relative to a person with an NTC in Table 14, is calculated as:

odds ratio =
odds for Masters/PhD

odds for NTC
=

3.1446

0.4914
= 6.3993

This tells us that the odds for someone with a Masters/PhD to be in the high income group is 6.3993
times higher than a person with an NTC. Therefore the odds of an individual with a Masters/PhD to be in
the high income group have increased by 539.93%. It is noted that an inverse relationship exists between the
upper and lower triangle of the odds ratio table.

4.5 Logit and Logistic Regression Models

The logit and logistic regression models where age is considered are illustrated. The regression equation in
terms of coe�cients indicates the relative impact of each predictor. The following are shown:

1. Nominal model

2. Ordinal model

3. Linear logistic model

4. Quadratic logistic model

4.5.1 Age as a nominal variable

The SAS code where age-group is considered to be nominal:

proc catmod data=finalmod;

model incomegrp = agegrp / ml nogls oneway;

format incomegrp incomegrp. agegrp agegrp.;

run;

This model is de�ned as a saturated model, similar to when education was considered. Therefore,

log(o) = µ+ λage (14)

where we consider age-group as the only e�ect on income with

� o is the odds to be in the high income group

� µ is the e�ect of the overall odds
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� λage is the e�ect of age-group

The last parameter of the age group variable i.e 55-65 has been omitted from the SAS output. Thus in order
to calculate the last parameter the formula: ∑

λage = 0

is used. Alternatively use the formula:

e
∑
λage = 1

taking the anti log we get

o = eµ+λ
age

= i ∗ iage

with

� i the index of the overall odds

� iage is the index for various age-group categories.

Index Sample Size(n)
Overall E�ect 0.3291 601 059

Age
18-25 0.2411 95 464
26-35 0.7417 214 914
36-45 1.3965 159 739
46-55 2.1690 88 034
56-65 1.8460 42 908

Table 15: Indices value results

The results for the age-group treated as nominal are given in Table 15. An ordinal trend is noted in the
index values. Similar interpretations for estimates, indices, odds and probability can be derived for age-group
as illustrated when we considered education only.

4.5.2 Age as an ordinal variable

The SAS code for age-group considered as an ordinal variable:

data ageord;

set finalmod;

if agegrp =1 then ageordi =-2;

if agegrp =2 then ageordi =-1;

if agegrp =3 then ageordi =0;

if agegrp =4 then ageordi =1;

if agegrp =5 then ageordi =2;

run;

proc catmod data=ageord;

direct ageordi;

model incomegrp = ageordi / ml nogls oneway;

format incomegrp incomegrp.;

run;
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We would like to model the ordinal trend in the odds over the age categories. This type of modelling makes
use of the fact that we are not sure of the class width between each category. Hence we divide our age variable
into a speci�c number of class intervals that sum up to zero. In this case we want 5 class intervals. Therefore
we consider integers -2, -1, 0, 1, 2 as representative values. The DIRECT statement is used to model age as
an ordinal e�ect.

Our model is given as:

log(o) = α+ βx (15)

where

� x is the integer for each age category

� α is the intercept parameter

� β is the parameter estimate used to estimate the e�ect of age on income

The �tted probabilities have been calculated by making use of the formula:

probability =
o

1 + o

where o is calculated from

o = eα+βx

where the estimates were calculated in SAS.

Hypothesis testing

Hypothesis testing was done to see if the data exhibited an ordinal trend
H0: Data follows an ordinal trend
HA: Data does not follow an ordinal trend

Statistic Chi-Square Pr > ChiSq
Likelihood Ratio 7 066.92 <0.0001

Table 16: Likelihood Ratio Results

The results from Table 16 suggest there is a lack of evidence of �t in the model as we have a p-value of
< 0.0001 for the likelihood ratio statistic. Therefore, the null hypothesis is rejected. In addition the null
hypothesis is rejected due to the large sample size exhibited by the data.

H0: β = 0 HA:β 6= 0

Chi-Square Pr > ChiSq
Age 33 425.02 < 0.0001

Table 17: Chi-Square Results

The χ2 value of 33 425.02 with a p-value < 0.0001 in Table 17 suggest that β 6= 0, and so the null
hypothesis of β = 0 is rejected.

Estimate Index
Intercept -0.9615 0.3823
Beta 0.4937 1.6384

Table 18: Parameter Estimates
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Our parameter estimates are α̂ = −0.9615 and β̂ = 0.4937. This then results in a linear trend in the
log odds. The intercept parameter suggests that the overall odds to be in the higher income group for every
increase of one age category decreases by a factor of 61.77% i.e the log(odds) decreases by 0.9615. For every
increase of one age category the odds of being in the high income group increases by factor of 63.84%. In
other words, the log(odds) increase by 0.4937 per age category.

Observed Probabilities Fitted Probabilities Sample Size
Age Ordinal
18-25 -2 0.0735 0.1247 95 464
26-35 -1 0.1962 0.1892 214 914
36-45 0 0.3149 0.2766 159 739
46-55 1 0.4165 0.3851 88 034
56-65 2 0.3780 0.5065 42 908

Table 19: Observed and �tted probabilities

The observed probabilities in Table 19 are calculated by using the information from the cross classi�cation
of income vs age-group in Table 4. For example, consider the observed probability for the 46-55 age-group.
This is calculated as:

observed prob =
number in high income

total number in that speci�c age group
=

36670

88034
= 0.4165

The �tted probability for the 46-55 age group is then calculated as:

prob =
o

1 + o
=

e−0.9615+(0.4937∗1)

1 + (e−0.9615+(0.4937∗1))
= 0.3851

where o is the odds.
The observed and �tted probabilities for other age-groups are calculated in a similar way.

Figure 6: Graph when age is considered as ordinal

From Table 19 and Figure 6, the observed and �tted probabilities are quite close to each other. This
suggests that the probability to be in the high income group increases for every age increase of one. As a
result, age has an e�ect on income.
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4.5.3 Age with interval class midpoint values

The SAS code for age-group considered for the interval class midpoint method:

data agemidpt;

set finalmod;

if agegrp =1 then agemid = 21.5;

if agegrp =2 then agemid =30.5;

if agegrp =3 then agemid =40.5;

if agegrp =4 then agemid =50.5;

if agegrp =5 then agemid =60.5;

run;

proc catmod data=agemidpt;

direct agemid;

model incomegrp = agemid / ml nogls oneway;

format incomegrp incomegrp. ;

run;

A linear logistic model is �tted which is given as:

log(o) = α+ βx (16)

where

� x is the midpoint of the corresponding class interval of age

� α is the intercept parameter

� β is the parameter estimate used to estimate the e�ect of age on income

Hypothesis testing

Hypothesis testing was done to see if a linear logistic regression model is applicable on the data.
H0: Data follows a linear logistic regression model
HA: Data does not follow a linear logistic regression model

Statistic Chi-Square Prob
Likelihood Ratio 7 570.73 <0.0001

Table 20: Likelihood Ratio Results

Table 20 results suggest that there is a lack of �t in the model as we have a χ2 value of 7 570.73 with a
p-value of < 0.0001 for the likelihood ratio statistic. Therefore we reject the null hypothesis.

H0: β = 0 HA: β 6= 0

Chi-Square Pr > ChiSq
Age 33 140 < 0.0001

Table 21: Chi-Square Results

The χ2 value of 33 140 (in Table 21) suggests that β is not equal to zero since p < 0.0001(in Table 21) .
It follows that the null hypothesis of β = 0 is rejected.

Estimate Indices
Intercept -2.9790 0.0508
Beta 0.0497 1.0501

Table 22: Parameter Estimates
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Our parameter estimates from Table 22 are α̂ = −2.9790 and β̂ = 0.0497. This implies that for every
increase of one year, the log(odds) increase by 0.0497. Put di�erently, this tells us that the odds to be in the
high income group increases at a rate of 5.01% per year.

Observed Probabilities Fitted Probabilities
Age Midpoint
18-25 21.5 0.0735 0.1289
26-35 30.5 0.1962 0.1880
36-45 40.5 0.3149 0.2765
46-55 50.5 0.4165 0.3848
56-65 60.5 0.3780 0.5070

Table 23: Observed and �tted probabilities

The estimated (i.e �tted) probabilities in Table 23 have been calculated by using the linear logistic model
as given by Equation 16, with the estimates calculated in SAS, and by using the midpoints of each age
category. As a result, consider for example the �tted probability for the 26-35 age group. This is calculated
as:

prob =
o

1 + o
=

eα+βx

1 + eα+βx
=

e−2.979+(0.0497∗30.5)

1 + (e−2.979+(0.0497∗30.5))
= 0.1880

The �tted probabilities for other age-groups with an interval midpoint are calculated in a similar way.

Figure 7: Graph when age is considered as interval midpoints

Table 23 and Figure 7 show that probability to be in the high income group increases, as age increases for
both the observed and �tted probabilities. The observed and �tted probabilities are close to each for most
of the age categories, with the exception being noted in 56-65 age-group.

4.5.4 Age with a quadratic e�ect

SAS code for age with the quadratic e�ect included:

data agemidptqd;

set finalmod;

if agegrp =1 then agemid = 21.5;
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if agegrp =2 then agemid =30.5;

if agegrp =3 then agemid =40.5;

if agegrp =4 then agemid =50.5;

if agegrp =5 then agemid =60.5;

agemidsq=agemid*agemid;

run;

proc catmod data=agemidptqd;

direct agemid agemidsq;

model incomegrp = agemid agemidsq / ml nogls oneway;

format incomegrp incomegrp. ;

run;

The proposed model is given by:

log(o) = α+ β1x+ β2x
2 (17)

with

� x is the midpoint of the corresponding class interval of age

� α is the intercept parameter

� β1, β2 is the parameter estimate used to estimate the e�ect of age on income

Hypothesis testing

Hypothesis testing was done on the data to see if age followed a quadratic regression model.
H0: Data follows a quadratic logistic regression model
HA: Data does not follow a quadratic logistic regression model

Statistic Chi-Square Prob
Likelihood Ratio 285.43 <0.0001

Table 24: Likelihood Ratio Results

Table 24 results advocate for a lack of �t in the model as we have a p-value < 0.0001. Subsequently, the
null hypothesis is rejected.

Estimate Index
Intercept -6.2143 0.0020
Beta-1 0.2182 1.2438
Beta-2 -0.00204 0.9980

Table 25: Parameter Estimates

Our parameter estimates are α̂ = −6.2143, β̂1 = 0.2182 and β̂2 = −0.00204. From Table 25, we determine
that for every increase of one year, the log(odds) increase by 0.2182. This means that for every increase of
one year, the odds of being in the high income group increases by a factor of 24.38%.
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Observed Probabilities Fitted Probabilities
Age Midpoint
18-25 21.5 0.0735 0.07828
26-35 30.5 0.1962 0.1889
36-45 40.5 0.3149 0.3267
46-55 50.5 0.4165 0.4019
56-65 60.5 0.3780 0.3822

Table 26: Observed and �tted probabilities

The observed probabilities for each age group have been calculated in exactly the same way as we did
when age was considered as an ordinal variable. Hence we have the same results for the observed probabilities.

The estimated (i.e �tted) probabilities have been calculated by using the formula p = o
1+o = eα+β1x+β2x

2

1+eα+β1x+β2x
2 .

For example, the �tted probability for the 36-45 age-group is calculated as:

prob =
o

1 + o
=

eα+β1x+β2x
2

1 + eα+β1x+β2x2 =
e−6.2143+(0.2182∗40.5)−(0.00204∗40.5∗40.5)

1 + (e−6.2143+(0.2182∗40.5)−(0.00204∗40.5∗40.5))
= 0.3267

The �tted probabilities for other age-groups are calculated in a similar way. Successively, the results as
shown in Table 26.

Figure 8: Graph when age is considered with a quadratic e�ect included

A notable increase in the probability to be in the high income group is noted in Table 26 and Figure 8 as
age increases. Figure 8 suggests that age considered as a quadratic e�ect via the log odds model is a much
better model than age considered via the interval class midpoint method (in Figure 7), since the observed
and �tted probabilities are much closer to each other.

4.6 Age as a continuous variable

SAS code for when age considered as a continuous variable:

data agecont;

set agemod;

if 2 < = income & income <= 7 then incomegrp = 2;

else incomegrp = 1;

31



proc freq data = agecont;

tables incomegrp* age; format incomegrp incomegrp. ;

proc catmod data=agecont;

direct age;

model incomegrp = age / ml nogls oneway;

format incomegrp incomegrp. ;

run;

The frequency procedure was run as we needed to obtain the observed probabilities for plotting the graph
for the individual ages. Age was considered as a continuous variable from 18-65.

A suggested model is:

log(o) = α+ βx

where

� x is an integer value from 18-65

� α is the intercept parameter

� β is the parameter estimate used to estimate the e�ect of age on income

Estimate Indices
Intercept -3.0228 0.04867
Beta 0.0510 1.0523

Table 27: Parameter Estimates

Our parameter estimates are α̂ = −3.0228 and β̂ = 0.0510, as given in Table 27. This means that for
every increase of one year the log(odds) increases by 0.0510 i.e the odds to be in the high income group
increases by a factor of 5.23% every year.

Number high income Total in age Observed Probabilities Fitted Probabilities
Age
18 107 2 236 0.0479 0.1086
19 171 4 939 0.0346 0.1137
20 318 7 845 0.0405 0.1189
: : : : :
: : : : :
63 1 136 3 692 0.3077 0.5474
64 1 132 3 482 0.3251 0.5600
65 876 3 137 0.2792 0.5725

Table 28: Observed and �tted probabilities

The observed probabilities in Table 28 are calculated as:

observed probability =
number in high income

total number in a speci�c age-group

For example, the observed probabilities to be in the high income group for an individual aged 20 is:

observed probability =
number in high income

total number in a speci�c age-group
=

318

7845
= 0.0405

The �tted probability for a person aged 20 to be in the high income group is:
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prob =
o

1 + o
=

eα+βx

1 + eα+βx
=

e−3.0228+(0.0510∗20)

1 + (e−3.0228+(0.0510∗20))
= 0.1189

where o is the odds.
The observed and �tted probabilities for other age-groups are calculated in a similar way.

Figure 9: Graph when age is considered as a continuous variable

Erratic patterns in the observed probabilities and �tted probabilities can be inferred from Figure 9. The
observed and �tted probabilities are not close to each other in the 18-23 age region and 57-65 age region.
However the �tted and observed probabilities are close to each other in the 24-56 age region.

4.7 Logit model for the population group

The SAS code when implementing the logit model with the population group being considered is given below:

proc catmod data=finalmod;

model incomegrp = popgrp / ml nogls oneway;

format popgrp popgrp. income income. incomegrp incomegrp.;

Contrast 'Black' popgrp 1 0 0 / est = exp;

Contrast 'Coloured' popgrp 0 1 0 / est = exp;

Contrast 'Indian' popgrp 0 0 1 / est = exp;

Contrast 'White' popgrp -1 -1 -1 / est = exp;

run;

The logit model will also be explained by considering population group variable. The logit model is formulated
as:

log(o) = µ+ λpop (18)

with population as the only e�ect on income

� o is the odds to be in the high income group

� µ is the e�ect of the overall odds

� λpop is the marginal e�ect of population
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Index Sample Size(n)
Overall E�ect 0.4207 601 059

Population
Black 0.4335 377 080

Coloured 0.7473 50 556
Indian 1.2976 31 336
White 2.3789 142 087

Table 29: Indices value results

The indices above were obtained directly from SAS.
Calculation of the last estimate

Estimate
Overall E�ect -0.8659

Population
Black -0.8359

Coloured -0.2913
Indian 0.2605
White 0.8667

Table 30: Estimated values

It follows that, the estimate for the Whites is:

−
∑
λpop

= −(−0.8359− 0.2913− 0.2605)
= 0.8667

The estimated values are then used to calculate the indices given in Table 29 by making use of the formula:

eλ
pop

where λpop is the estimated value for each population categories
Taking the anti log we get:

o = eµ+λ
pop

= i ∗ ipop

with

� i the index of the overall odds

� ipop is the index for various population categories.

4.7.1 Interpretation of the estimates

Population Chi-Square Value Pr > Chisq
Black 24329.76 < .0001

Coloured 1163.63 < .0001
Indian 767.65 < .0001
White 23016.64 < .0001

Table 31: Chi Square p values for population
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The estimated values inform us that there is a strong positive estimate for the Indian and White people,
λindian = 0.2605 (from Table 30) and λwhite = 0.8667(from Table 30), both with a probability < 0.0001
(from Table 31). This indicates that the odds to be in the higher income group is signi�cantly higher for
Indian and White people than the overall odds. There is a negative estimate for Black and Coloured people,
λblack = −0.8359 and λcoloured = −0.2913, both with probability < 0.0001. This tells us that the odds of
being in the higher income group are quite low for both Black and Coloured people than the overall odds.

Calculation and interpretation of the indices, odds and probabilities

Odds Probability
Overall E�ect 0.4207 0.2961

Population
Black 0.1824 0.1542

Coloured 0.3144 0.2392
Indian 0.5459 0.3531
White 1.0008 0.5002

Table 32: Estimated odds and Probability results

The geometric mean odds is calculated as:

4
√

(oddsblack ∗ oddscoloured ∗ oddsindian ∗ oddswhite
' 4

√
(0.1824 ∗ 0.3144 ∗ 0.5459 ∗ 1.0008)

' 0.4207

This is the same as the overall e�ect given Table 32. This tells us that for approximately every 4 people
in the high income group, we have 10 in the low income group. This �gure is higher than what is given in the
raw data for the observed two way frequency for population variable (from Table 3) i.e for every 1 individual
in the high income group, 3 are in the low income group.

The index for a Black person to be in the high income category is 0.4335 (from Table 29) times higher
than the overall odds. This is calculated by:

index = eestimate = e−0.8359 == iblack

The the odds to be in the high income group for a Black person is:

odds = i ∗ iblack = 0.4207 ∗ 0.4335 = 0.1823

with i being the index for the overall odds.
The probability of a Black person to be in the high income category is:

prob =
o

1 + o
=

0.1835

1.1835
= 0.1550

When compared with the cross tabulation output from SAS under income vs population group from Table
8, we see that these two probabilities are approximately equal.

The odds for the other population groups are calculated in a similar way. From Table 32, the odds to be in
the high income group is 0.8176 times lower for a Black person. As we move between the various population
groups the odds of being in the high income group increase, as for the Coloured and Indian people it is 0.6856
and 0.4541 lower than the overall odds. The White people have odds of 0.0008 higher than the overall odds
of being in the high income group.

4.7.2 The odds ratio

This section looks at various ratios of an individual to be in a high income category given their ethnic group
in relation to another ethnic group.
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Population Odds Black Coloured Indian White
Black 0.1823 1.0000 0.5798 0.3339 0.1822

Coloured 0.3144 1.7246 1.0000 0.5759 0.3141
Indian 0.5459 2.9945 1.7363 1.0000 0.5455
White 1.0008 54899 3.1832 1.8333 1.0000

Table 33: Odds Ratios Results

The odds ratios for di�erent population groups are given above. Consider the odds for an Indian to be in
the high income group relative to a White person is:

odds ratio =
odds for Indian

odds for White
=

0.5459

1.0008
= 0.5455

Therefore, the odds for an Indian to be in the high income group have decreased by 45.45% when compared
to a White person. The other odds ratios in Table 33 are calculated in an analogous manner.

4.8 Logit model without interaction

The SAS code when implementing the logit model with the all the variables considered as independent is
given below:

proc catmod data=finalmod;

model incomegrp = gender popgrp highest_level_of_education agegrp / ml nogls oneway;

format agegrp agegrp. gender gender. popgrp popgrp. income income. incomegrp incomegrp.

Highest_Level_of_Education Highest_Level_of_Education.;

Contrast 'overall effect' intercept 1 / est = exp;

Contrast 'Male' gender 1 / est = exp;

Contrast 'Female' gender -1 / est = exp;

Contrast 'Black' popgrp 1 0 0 / est = exp;

Contrast 'Coloured' popgrp 0 1 0 / est = exp;

Contrast 'Indian' popgrp 0 0 1 / est = exp;

Contrast 'White' popgrp -1 -1 -1 / est = exp;

Contrast 'Grade 12' Highest_Level_of_Education 1 0 0 0 0 0 / est = exp;

Contrast 'NTC' Highest_Level_of_Education 0 1 0 0 0 0 / est = exp;

Contrast 'Certificate' Highest_Level_of_Education 0 0 1 0 0 0 / est = exp;

Contrast 'Diploma' Highest_Level_of_Education 0 0 0 1 0 0 / est = exp;

Contrast 'Bachelors Degree' Highest_Level_of_Education 0 0 0 0 1 0 / est = exp;

Contrast 'Honours Degree' Highest_Level_of_Education 0 0 0 0 0 1 / est = exp;

Contrast 'Masters / PhD' Highest_Level_of_Education -1 -1 -1 -1 -1 -1 / est = exp;

Contrast '18-25 ' agegrp 1 0 0 0 / est = exp;

Contrast '26-35 ' agegrp 0 1 0 0 / est = exp;

Contrast '36-45' agegrp 0 0 1 0 / est = exp;

Contrast '46-55' agegrp 0 0 0 1 / est = exp;

Contrast '56-65' agegrp -1 -1 -1 -1 / est = exp;

run;

The logit model is formulated as:

log(o) = µ+ λedu + λgen + λpop + λage (19)

where

� o is the odds to be in the high income group

� µ is the e�ect of the overall odds
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� λedu is the e�ect of education

� λgen is the e�ect of gender

� λpop is the e�ect of population group

� λage is the e�ect of the age group

4.8.1 Calculation and interpretation of the indices

Index Sample Size(n)

Overall E�ect 0.7359 601 059
Gender
Male 1.3447 312 396
Female 0.7436 288 663

Population Group
Black 0.4555 377 080

Coloured 0.9555 50 556
Indian 1.1966 31 336
White 1.9198 142 087

Education Level
Grade 12 0.2204 365 399
NTC 0.5303 25 197

Certi�cate 0.4271 26 975
Diploma 0.9957 98 435

Bachelor's Degree 2.0125 51 388
Honours Degree 2.9157 20 083
Masters/PhD 3.4295 13 582

Age
18-25 0.3071 95 464
26-35 0.9319 214 914
36-45 1.5689 159 739
46-55 1.9766 88 034
56-65 1.1265 42 908

Table 34: Indices value results

The indices reveal the partial e�ect of the independent variables on the dependent variable, as given in Table
34. A signi�cant di�erence exists between the 2 gender categories. Accordingly, the partial e�ect of gender
on income is noticeable. The odds to be in the high income group for Males increase by a factor of about
35%, whilst for the Females it is 25.64% as low than the overall odds.

Keeping the other variables constant, the population group indices di�er for each ethnic group, thereby
suggesting that as we move between di�erent ethnic groups, the partial e�ect on income is quite signi�cant.
As a result, the odds to be in the high income group for Black people decrease by a factor of 54.45%, whilst
for the Coloured people, the odds to be in the high income group is 4.45% lower than the overall odds. On
the other hand, the odds of being in the high income group for the Indians is about 19.66% higher, and for
the White people is almost double than the overall odds.

The indices for education have decreased greatly as compared to when we analysed education on its own(
Table 9). An individual with a Grade 12 has odds of 77.96% lower than the overall odds to be in the high
income group. The odds for a person with an NTC of being in the high income category is 46.97% lower than
the overall odds. A Certi�cate holder has odds of 57.29% as low than the overall odds of being in the high
income group. Whilst the odds for a person with a Diploma to be in the high income group is 0.43% as low
than the overall odds. People with either a Bachelor's, Honours or Masters/PhD have odds of 2.0125 times,
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2.9157 times and 3.4295 times as high to be in the high income group than the overall odds respectively. The
explanation accompanying the reduction in index values for education is that, the e�ect of other variables
in the model is also considered, and education now has a partial e�ect and not a marginal e�ect. Thus the
e�ect of education on income has reduced. Furthermore from the results it can be seen that education level
explained the most variation in income especially when you look at the Masters/PhD index. However, this
result is in�uenced by a wide range of factors, for example, population group, that is White people could be
investing more in their education than other population groups.

The indices in the age-group variable increase until the 46-55 age-group and then decrease in the 56-65
age-group. It can be deduced from the age-group category that the odds for an individual aged between 18-25
to be in the high income group is 3/10 times as high than the overall odds, whereas, the odds for a person
aged 26-35 is approximately 9/10 as high than the overall odds. The odds for a person to be in the high
income category in the 36-45 age-group is 56.89% higher than the overall odds, for a person aged 46-55 it is
97.66% higher than the overall odds and is 12.65% higher than the overall odds for a person aged between
56-65.

Example 1. Consider the following:

� Male

� Indian

� with a Bachelor's degree

� 26-35 age-group

The estimated odds is:

odds = i ∗ igen ∗ ipop ∗ iedu ∗ iagegrp

with

� i the index of the overall odds

� igen the index for gender

� ipop the index for population group

� iedu the index for the education category

� iagegrp the index for the age-group

It follows that

odds = 0.7359 ∗ 1.3447 ∗ 1.1966 ∗ 0.6994 ∗ 0.9319 = 2.2209

As a result, the estimated odds for an Indian Male with a Bachelor's degree in the 26-35 age-group to be
in the high income group is 2.2209 times higher than the overall odds.

The probability of an Indian Male with a Bachelor's degree in the 26-35 age-group of being in the high
income group category is:

prob =
o

1 + o
=

2.2209

3.2209
= 0.6895

38



Example 2. Consider the following:

� Female

� White

� with an Masters/PhD

The estimated odds is then

odds = i ∗ igen ∗ ipop ∗ iedu

Therefore

odds = 0.7359 ∗ 0.7436 ∗ 1.9198 ∗ 3.4295 = 3.6028

Therefore the estimated odds for a White Female with a Masters/PhD degree to be in the high income
group is 3.6028 times higher than the overall odds.

The probability of a White Female with a Masters/PhD of being in the high income category is:

prob =
o

1 + o
=

3.6028

4.6028
= 0.7827

From Example 2, it can be deduced that it is not necessary to include all the variables in a model when
deducing certain analytic results.

Figure 10: Odds when population and gender are considered
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Figure 11: Odds when education and population are considered

Figure 12: Odds when age-group and education are considered

Since we cannot visualize all the independent variables in one graph, three dimensional graphs of various
combinations of the variables are shown above. The graphs shown are for:

� Odds vs Population vs Gender - Figure 10

� Odss vs Education vs Population group - Figure 11

� Odds vs Age-group vs Education - Figure 12

4.8.2 Odds ratio

The odds ratio are calculated by using the formula:

odds ratio=
odds of a particular category

odds of interest category
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Variable

Gender Odds Male Female
Male 0.9896 1.0000 1.8085
Female 0.5472 0.5530 1.0000

Table 35: Odds ratios for gender

From Table 35, the odds ratio for Female to be in the high income group relative to a Male is:

odds ratio =
odds Female

odds Male
=

0.5472

0.9896
= 0.5530

Consequently, the odds of a Female to be in the high income group relative to a Male is 44.7% lower.
Odds ratio for Male to be in the high income group relative to a Female is:

odds ratio =
odds Male

odds Female
=

0.9896

0.5472
= 1.8085

The odds for a Male to be in the high income group relative to a Female is 80.85% times higher. An
inverse relationship exists between the odds of the Male being in the high income group relative to the Female
i.e

odds ratio =
odds Female

odds Male
=

0.5472

0.9896
=

1

odds ratio Male
=

1

1.8085
= 0.5530

and vice versa

odds ratio =
odds Female

odds Male
=

0.5472

0.9896
=

1

odds ratio Female
=

1

0.5530
= 1.8085

Variable Odds

Population group Black Coloured Indian White
Black 0.3352 1.0000 0.4768 0.3808 0.2373

Coloured 0.7031 2.0974 1.0000 0.7985 0.4978
Indian 0.8806 2.6266 1.2523 1.0000 0.6233
White 1.4127 4.2139 2.0091 1.6043 1.0000

Table 36: Odds ratios for population groups

Variable Odds

Education Level Grade 12 NTC Certi�cate Diploma Bachelor Honours Masters/PhD
Grade12 0.1622 1.0000 0.4156 0.5159 0.2213 0.10949 0.0756 0.0643
NTC 0.3902 2.4063 1.0000 1.2415 0.5325 0.2635 0.1819 0.1546

Certi�cate 0.3143 1.9383 0.8055 1.0000 0.4290 0.2122 0.1465 0.1245
Diploma 0.7327 4.5185 1.8778 2.3312 1.0000 0.4947 0.3415 0.2903
Bachelor 1.4810 9.1331 3.7954 4.7112 2.0213 1.0000 0.6903 0.5868
Honours 2.1456 13.2315 5.4986 6.8264 2.9283 1.4487 1.0000 0.8501

Masters/PhD 2.5237 15.5634 6.4678 8.0295 3.4444 1.7041 1.1762 1.000

Table 37: Odds ratios for education level

41



Variable Odds

Age 18-25 26-35 36-45 46-55 56-65
18-25 0.2260 1.0000 0.3296 0.1958 0.1554 0.2726
26-35 0.6858 3.0344 1.0000 0.5940 0.4715 0.8272
36-45 1.1545 5.1085 1.6835 1.0000 0.7937 1.3926
46-55 1.4546 6.4360 2.1210 1.2599 1.0000 1.7545
56-65 0.8290 3.6682 1.2089 0.7181 0.5700 1.0000

Table 38: Odds ratios for age-groups

The results for the odds ratios for population group, education level and age-group in Tables 36, 37 and
38 are calculated and interpreted similarly as illustrated by the gender variable.

4.9 Income via the random midpoint method

Since income was given as grouped variable, it will be looked at it from a continuous perspective. A midpoint
is considered as an upper bound for each income group. The result is that we end up with random income
values.

The SAS code used when considering all the independent variables via the random midpoint method is
as follows:

data incran;

set finalmod;

u =ranuni(0);

if income = 2 then inc = 200.5 + ((200.5-1)*u);

if income = 3 then inc = 600.5 + ((600.5-401)*u);

if income = 4 then inc = 1200.5 + ((1200.5-801)*u);

if income = 5 then inc = 2400.5 + ((2400.5-1601)*u);

if income = 6 then inc = 4800.5 + ((4800.5-3201)*u);

if income = 7 then inc = 9600.5 + ((9600.5-6401)*u);

if income = 8 then inc = 19200.5 + ((19200.5-12801)*u);

if income = 9 then inc = 38400.5 + ((38400.5-25601)*u);

if income = 10 then inc = 76800.5 + ((76800.5-51201)*u);

if income = 11 then inc = 153600.5 + ((153600.5-102401)*u);

if income = 12 then inc = 215041 + ((215041-204801)*u);

run;

proc glm data=incran plots(maxpoints = 1000000);

class agegrp highest_level_of_education popgrp gender;

model inc = agegrp highest_level_of_education popgrp gender / solution;

lsmeans agegrp highest_level_of_education popgrp gender/ pdiff;

format agegrp agegrp. gender gender. popgrp popgrp.

Highest_Level_of_Education Highest_Level_of_Education. ;

run;

The model to be implemented is:

Yi = α+ β1xedu + β2xgen + β3xpop + β4xage (20)

where

� xedu, xgen, xpop are categorical variables for education, gender and population

� xage is the midpoint of the various age-group categories

� α is the intercept parameter
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� β1 is the regression coe�cient for education

� β2 is the regression coe�cient for gender

� β3 is the regression coe�cient for population

� β4 is the regression coe�cient for age

� Yi is the income for individual i

The CLASS statement names the classi�cation variables to be used in the model. In this case age, education,
population group and gender are labelled in the class statement. The GLM(General Linear Modelling)
procedure will then display results that summarize the CLASS variables and their respective levels. The Least
Squares Means (LSMEANS) statement computes the e�ect of each of the listed variables vs the dependent
variable. LSMEANS will provide the predicted margins, that is, the partial means will be estimated by
applying equal weights to all categories for each explanatory variable, for a sample that is unbalanced. This
will enable us to compare the income of the di�erent categories for the various independent variables. PDIFF
statement requests the p-values for di�erences of the LSMEANS be produced. Thus hypothesis testing is
being performed to test if signi�cant di�erences exist between the categories of di�erent variables [1].

Figure 13: Graph for the LS Means for age group

A quadratic e�ect can be seen from Figure 13, when income is considered continuous against age. From
the graph it can be deduced that the average income for a people aged between 18-25 is about 20 000 a
month. The average income increases as age increases steadily with, age-groups 26-35 and 36-45 averaging
about 23 500 and 26 000 respectively per month, and with the age group 46-55 receiving the highest mean
monthly income, which is pegged at over 28 000 . Income then decreases slightly in the 56-65 age-group ,
where average income is about 25 000 monthly.
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Figure 14: Graph for the LS Means for education level

An upward trend, can be inferred from the di�erent levels of education from Figure 14. Drastic di�erences
in income exist between the di�erent education levels. This is most noticeable from the graph as a person
with a Grade 12 earns the least income, with a mean monthly income of just under 10 000. People with a
Certi�cate or NTC earn more less the same, as they earn on average 15 000 a month. Individuals with a
Diploma average just over 20 000 a month. A spike in income is then noticed as people with a Bachelor's
earn 3 times more than people with a Grade 12, whilst individuals an Honours earn on average 3.5 times
more than people with a Grade 12. Masters/PHd graduates earn approximately 3 times more than Diploma
or NTC holders.

Figure 15: Graph for the LS Means for population

Figure 15 proposes that, signi�cant di�erences exist between the di�erent population groups. Black people
earn the least as they earn a monthly income of 19 000. Coloured people earn on average 18.5% more than
their Black counterparts, while Indian people earn 11% more than Coloured people. A sharp rise in income
is noticed where White people are concerned, as they earn 24.08% more than Indian people.
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Figure 16: Graph for the LS Means for population

The gender of an individual has radical e�ects on income as Females average approximately 22 300
monthly. This �gure is much lower than that of their Male counterparts, who average about 27 000 a month
that is 21.076% more, as pointed out in Figure 16.

N.B - the results derived for this section are random, thus if the procedure is to be run again in SAS
di�erent results will be obtained. This is due to a speci�ed seed value of zero in the RANUNI function.

5 Conclusion

How income is distributed with regards to various factors is of critical interest to South Africa. It is crucial
for relevant stakeholders to know how certain factors in�uence income so that corrective action, where
appropriate, can be taken.

Practical Application was done on the 10% sample of the South African census of 2011. The argument
as to why income was given in a grouped format as opposed to exact �gures, was to lower the rate of
nonresponse. The analysis implored certain restrictions on the data. This then resulted in data that was
relevant and practical for analysing grouped income by considering certain factors. How and why these
restrictions were put into place was also explained. One-way frequency tables were given, so that we could
see how income is distributed by looking various income groups. Income was classi�ed as being low if a
person earned 12 000 and below a month, and high if a person earned 12 801 and above per month. This
resulted in approximately 75% of our sample being people that earn less than or equal to 12800 a month.

Cross-classi�cation of income against various independent variables was then studied. Notable trends
were noticeable in the cross classi�cations especially where age and education were of concern. The principles
underlying the logit and logistic regression model were then illustrated, via examples, with the marginal and
partial e�ect of the independent variable(s) on the dependent variable being studied. Models were built
that enabled the calculation of probabilities for individuals to be in a certain income group when certain
characteristics pertaining to the individuals were satis�ed. These probabilities were calculated via the odds
model. The odds model was derived from the index values. Interpretations and how to calculate the indices,
odds and probabilities were also explained and illustrated.

From the research it was noted that education has quite an e�ect on income. This was due to how the
odds for an individual to be in the high income group increases as one becomes more educated. Income was
then considered as a continuous variable against various independent factors.

Shortfalls of the research included deciding which variables have the largest in�uence in our model to
analyse income. A number of underlying assumptions have to go into the de�ning the focus group as
accurately as possible. A large sample is required for logistic regression. Thus the more explanatory variables
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we have, the larger our sample size should be. The disadvantage of attempting to analyse income as a
continuous variable is that, the data is not real data, since we made use of the random midpoint method so
that estimated values could be derived. This would make it very di�cult to predict the exact income that
one might earn as the estimates are continuously changing.

Possible areas of future studies could be analysing grouped data by making use of quantile regression
models. This is when functional relations between the variables are estimated. The advantage is that we can
estimate distribution of income at any quantile. Quantile regression overcomes the following problems which
might be problematic for ordinary least squares (OLS):

1. Error terms that are not constant across the distribution. However this violates the homoscedastic
property.

2. Not sensitive to extreme outliers, which could distort results signi�cantly in OLS.

Another area of research is to analyse grouped data by making use of discriminant analysis. For this to be
implemented would require that our dependent variable be categorical and that our independent variables be
continuous. However assumptions about the distribution of the predictor will need to be made. Consequently
results from discriminant analysis can then be compared with regression results. This is done to see which
methodology analyses grouped data better.
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6 Appendix

The PROC FORMAT was invoked into SAS so that the data could be easily read as the various categories
of the variables are given in numerical form.

proc format;

value gender

1='Male'

2='Female'

;

value popgrp

1='Black'

2='Coloured'

3='Indian'

4='White'

5= 'Other '

;

value income

01 = 'No income'

02 = 'R1 - R400'

03 = 'R401 - R800'

04 = 'R801 - R1 600'

05 = 'R1 601 - R3 200'

06 = 'R3 201 - R6 400'

07 = 'R6 401 - R12 800'

08 = 'R12 801 - R25 600'

09 = 'R25 601 - R51 200'

10 = 'R51 201 - R102 400'

11 = 'R102 401 - R204 800'

12 = 'R204 801 or more'

;

value incomegrp

1 = 'high'

2 = 'low'

;

value agegrp

1 = '18-25'

2 = '26-35'

3 = '36-45'

4 = '46-55'

5 = '56-65'

;

value Highest_Level_of_Education

00 = 'Grade 0'

01 = 'Grade 1 '

02 = 'Grade 2 '

03 = 'Grade 3 '

04 = 'Grade 4 '

05 = 'Grade 5 '

06 = 'Grade 6 '

07 = 'Grade 7 '

08 = 'Grade 8 '

09 = 'Grade 9 '

10 = 'Grade 10 '
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11 = 'Grade 11 '

12 = 'Grade 12 '

13 = 'NTC '

14 = 'NTC '

15 = 'NTC '

16 = 'NTC '

17 = 'NTC '

18 = 'NTC '

21 = 'Certificate'

22 = 'Diploma'

23 = 'Diploma'

24 = 'Diploma'

25 = 'Bach Degree'

26 = 'Bach Degree'

27 = 'Honours degree'

28 = 'Masters / PhD'

29 = 'Other'

98 = 'No schooling'

99 = 'Unspecified '

;
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Abstract

This research report is focused on how we can do inference on directional data. That is directional

statistics. We are particularly interested in how we can test for equality of sample means, or variance

on directional data. In this case we are interested in observations that are not on a straight line but

observations that are directional in nature. The purpose of the research is to allow us to be able to

compare means and variances of directional data by methods of hypothesis testing, say, given two samples

of data, we should be able to test for the equality of means or homogeneity of variance.
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1 Introduction

Inference is all about using statistical analysis for decision making purposes. In this research report we intend
to use distributions which apply to directional data in order to carry out the calculations for test statistics,
con�dence intervals, means and standard deviations. The idea behind all this is to be able use hypothesis
testing for equality of means or variances.
When dealing with directional data, we are dealing with data that is on angular propagations. This is data
of directional movements, angular orientations or displacements. Periodic data can also be transformed to
representative angles for example data that is recorded on an hour of the day. [2] [7]
This research considers observations that have a certain direction, rotated or that are axial in nature. Axial
data is closely related to circular data and can be converted to circular data by doubling the angles θ to
2θ. When we talk of axial data we talk of observations on the circle for which we consider each direction to
be equivalent to the opposite direction such that the angle θ is equivalent to the angle θ + 180o. In other
words, coordinates of opposite angles are identical and therefore θ and θ + 180o are identical. As such, the
measurement is usually in degrees and sometimes in radians. Observed data can therefore be seen as points
on a circle of unit radius or a unit vector. [7] [11] [3]
The examples of distributions applicable to directional data are: Von Mises-Fisher distributions, Uniform dis-
tribution, Brownian motion distributions, Kent distributions, Fisher-Watson distributions, Bingham-Mardia
distributions, Wood distribution and the projected distribution. These are distributions on spheres, that is,
on spherical data. Spherical data is observed in three dimensions. This data can be points on the sphere or
ordinary multivariate data. We need to have an understanding of spherical statistical techniques when dealing
with such data. Sometimes the observations are not directional in nature but axial,that is, observations are
axes and not directions. In such a case we use axial distributions namely; the Watson distribution, Bingham
distribution and angular central Gaussian distributions. When observations are axes and not directions, the
observed unit vectors ±X can not be distinguished and therefore it will not be appropriate to use spherical
probability density functions for X but to consider those on Sp−1 which are antipodically symmetric, that
is; f(−x) =f(x). Sp−1 denotes a (p − 1)-dimensional hypersphere. Directional data is also referred to as
circular data and is modeled by circular models namely Lattice distributions, uniform distributions, Von
Mises distributions, Cardioid distributions, Projected Normal distributions and Wrapped distributions. [7]

Applications of directional data

We consider the direction of waves in the ocean. In earth sciences the data arises from the spherical surface
of the earth. Topics of interest involve geology and palaeomagnetic �elds. For studies in biology directional
statistics involves the study of animal movement or navigation and also their preferred direction of migration
during a certain season. Another good example is meteorology where we look at the studies of wind direction,
wind speed, times of the day at which it will thunder and the times of the year when heavy rains pour. Also
in medicine it is such that circular data arises from the times of the year at which a disease would cause
deaths. In vector cardiology we have vectorial or spherical data, that is, information concerning the electrical
activity of the heart, as described in three dimensions. Furthermore, the compass and the clock are used as
principal measuring instruments when it comes to circular data.
The compass measures the directions of migrating birds when they vanish from a particular point and it
also measures wind direction. The clock can be used for observations on the arrival times of patients at an
emergency section of a given hospital. We also consider the spinning of a roulette wheel and observing its
position when it stops. This shows that circular observation can therefore be regarded as a direction in the
plane. These are just some but not all the examples of directional or circular data applications. [7] [8]

Why we should study this data

Directional data can be useful in observations that are unit vectors in two and three dimensions. This is
di�erent from observations on a straight line. Directional statistics can be of signi�cant importance in weather
studies or weather report for predictive statistics of wind movement and direction of ocean waves. We can
use this data in the study of animal direction to �nd out whether the directions of these animals follow a
particular type of distribution or not. It is also possible to �nd out if animals make use of clues like the
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earth's magnetic �elds or the direction of the sun when they tend to head towards these directions. When
studying astronomy, the distribution of objects like stars on the celestial sphere calls for the understanding
of directional data. These stars can be uniformly distributed around the celestial sphere. [7] [11]

2 Background Theory

In order to carry out tests on the equality of means and variance we need to have an understanding of the
summary statistics with respect to the measure of location and dispersion when directional data is given.
Summary statistics are important for the calculation of the test statistics to be used in the hypothesis testing.

Understanding of summary statistics given directional (or circular) data

The measure of location is the mean direction. The summary statistics can be constructed appropriately by
regarding points on the circle as unit vectors in a plane. We therefore take polar coordinates of the sample
mean of these vectors. We regard directions in the plane as points on the circle or unit vectors:
x=(cosθ, sinθ)′ where x is the unit vector that represents directions in the plane or points on the unit
circle and θ is the angle that speci�es each circular observation from the initial direction to the point on the
circle corresponding to the observation. Thus, the directions can be represented as angles and sometimes as
complex numbers but our focus is on angular measurements. [7] [2]

We can consider summary statistics in directional statistics as di�erent from that of observations on the
straight line since we are now dealing with directions. For example instead of looking at the mean weight in
observations on a straight line we are now taking a look at the mean direction of a certain species of birds,
say, in the equatorial forests of Africa.
Since we regard the observations as unit vectors on spheres and on planes, we can have vectorsX1,X2, ...,Xn

with their corresponding angles θ1, θ2, ..., θn. We then calculate the mean direction as:

θ̄ = tan−1

(
S̄

C̄

)
, if C̄ ≥ 0 (1.1)

and

θ̄ = tan−1

(
S̄

C̄

)
+ π, if C̄ < 0 (1.2)

where

C̄ =
1

n

n∑
j=1

cosθj

and

S̄ =
1

n

n∑
j=1

sinθj

with −π2 ≤ tan−1(S̄/C̄) ≤ π
2 .

We have that (C̄, S̄) are the cartesian coordinates of the centre of mass where the centre of mass is given by
x̄ = (x1 + x2 + ...+ xn)/n.
It should be noted that the mean direction θ̄ of θ1, θ2, ..., θn is not equal to (θ1 + θ2 + ... + θn)/n but is the
direction of the resultant observation vectorx1 + x2 + ...+ xn .
The other important measurement is the mean resultant length R̄ given by the formula:

R̄ =
(
C̄2 + S̄2

) 1
2

and we note that θ̄ is de�ned as mentioned in equations (1.1) and (1.2) above for R̄ > 0 and not de�ned for
R̄ = 0. The resultant length R = nR̄. [7]
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The measure of concentration of directional data is given by the mean resultant lengthR̄, that is, we can refer
to the spread of directional data as concentration therefore we will be considering the hypothesis testing of
the concentration parameter. We cannot regard this kind of data as evenly spread around the circle but we
will use the mean resultant length to discuss the concetration or level of clustering of circular data. We have
that the directions θ1, θ2, ..., θn are very much clustered for R̄ almost equal to 1 and widely dispersed for R̄
almost equal to 0. [7]
Circular sample variance V is de�ned as V = 1− R̄ where R̄ is the mean resultant length. V = 1− R̄ implies
that circular variance is a function of the mean resultant length R̄ and therefore a function of the resultant
length since R = nR̄. Thus, we can describe dispersion in terms of the resultant length of the unit vectors x.
We consider the von Mises distributions to be very useful and most convenient when doing inference on
directional data. The von Mises distribution M(µ, κ) is a continuous distribution and its density function is
given as:
g(θ;µ, κ) = 1

2πI0(κ)e
κcos(θ−µ) with I0 being the modi�ed bessel function of the �rst kind and order zero such

that I0(κ) = 1
2π

∫ 2π

0
eκcosθdθ which has got the power series expansion given by

I0(κ) =
∞∑
r=0

1

(r!)2

(κ
2

)2r

.

We have that µ is the parameter that denotes mean direction and κ denotes the concentration parameter.
[7]
The mean resultant length R̄ which can also be denoted ρ is A(κ) where A(κ) = I1(κ)/I0(κ) with

I1(κ) = 1
2π

∫ 2π

0
cosθeκcosθdθ. The larger the value of κ, the larger the clustering around the mean vector.

Two Sample test for the mean (von Mises)

Suppose that we have two independent random samples θ11, θ12, ..., θ1n1 and θ21, θ22, ..., θ2n2of sizes n1and n2

distributed like M(µ1, κ1) and M(µ2, κ2) respectively. Let θ̄1 and θ̄2 be the corresponding mean directions
in that order with R1 and R2 as the respective corresponding resultant lengths. Suppose we take θ̄ to be
the mean direction of the combined sample and R to be the corresponding resultant length. The hypothesis
testing for the mean direction will be as follows:
H0 : µ1 = µ2 vs H1 : µ1 6= µ2. The concentration parameters are such that κ1 = κ2 = κ for some κ unkown.
The algorithm for the calculation of the test statistic is as follows

C̄i =
1

ni

ni∑
j=1

cosθij

S̄i =
1

ni

ni∑
j=1

sinθij

θ̄i =

{
tan−1(S̄i/C̄i) C̄i ≥ 0

tan−1(S̄i/C̄i) + π C̄i < 0

R̄i =
(
C̄i

2
+ S̄i

2
) 1

2

Ri = niR̄i

We have that R2 = R2
1 +R2

2 + 2R1R2cos(θ̄2 − θ̄1).
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Decision criterion: For R1 + R2 ≥ R we reject H0 if R1 + R2 − R is large where R1 + R2 − R ∼ χ2
1, that

is, we reject H0 if R1 + R2 − R > χ2
1,α2

. Note that α is our level of signi�cance of the test. Since we are

dealing with a chi-square test, all values of R1 + R2 − R must be positive, otherwise the test does not hold
for R1 +R2 ≤ R since R1 +R2 −R becomes negative.
Conclusion: If we reject H0 the conclusion is that the mean direction of the 2 samples di�er otherwise the
mean direction is the same.

In general, these tests are similar to t tests on straight line observations which are commonly used in the
world. The only di�erence is that we are now dealing with directions, hence the shift in our methods of
computing the summary statistics even though the procedure is similar in a way. This is because we will
not be able to attain the required results relevant to this type of data if we are to implore the conventional
t-tests which are usually used in the real world.

Testing for the equality of concentration parameters (von Mises)

Using the same statistics as calculated above in testing for equality of mean directions, tests can also be
performed to compare the dispersion of the data by comparing the concentration of parameters.
The hypothesis is formulated as H0 : κ1 = κ2 vs H1 : κ1 6= κ2 and κ1,κ2are unknown parameters. [7]
To do this we have 3 cases that we have to deal with:

Case I : R̄ < 0.45

The test statistic is calculated as follows: Let z = 2√
3

g1(2R̄1)−g1(2R̄2)

{1/(n1−4)+1/(n2−4)}
1
2
∼ N(0, 1) under H0 and

g1(2R̄i) = sin−1
(

2
√

3
8 R̄i

)
.

Thus we reject H0 if z > zα
2
or if z < −zα

2
since its is a two-tailed test.

Case II :0.45 ≤ R̄ ≤ 0.7

The test statistic is calculated as follows: Let z = g2(R̄1)−g2(R̄2)

0.893{1/(n1−3)+1/(n2−3)}
1
2
∼ N(0, 1) under H0, and

g2(R̄i) = sinh−1 R̄i−c1
c2

where c1 = 1.089 and c2 = 0.258. [7]
Thus we reject H0 if z > zα

2
or if z < −zα

2
since its is a two-tailed test.

Case III :R̄ > 0.7

The test statistics will be calculated as follows: Let F = (n1−R1)/(n1−1)
(n2−R2)/(n2−1) ∼ Fn1−1,n2−1 [7]

Thus we reject H0 if F > Fn1−1,n2−1,
α
2 or F < Fn1−1,n2−1,1−α2

The restrictions for R̄ with 0.45 ≤ R̄ ≤ 0.7 and R̄ > 0.7 are chosen such that our tests are based on the
variance-stabilising transformations and high-concertration approximations.

By not rejecting the null hypothesis in all 3 cases above we conclude that the level of concentration in the
data is the same for both samples otherwise the level of concentration di�ers. In other words we are saying
the data of the two samples is either clustered in the same way or in di�erent ways, that is, both samples
can have data that is tightly clustered or widely spread.
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3 Application

For the application of the above background theory we are going to generate two random data sets from a
von Mises distribution and use our calculations from the background theory.
The null hypothesis is formulated as follows: H0 : µ1 = µ2 vs H1 : µ1 6= µ2

The output for the data and code in appendix is as follows:

Using the calculations in the background theory the results are as follows:
> S_bar1 [1] 0.02891771
> S_bar2 [1] -0.01616344
> C_bar1 [1] 0.8496654
> C_bar2 [1] -0.9136483
> theta_hat1 [1] 0.0340211
> theta_hat2 [1] 3.159282
> R_bar1 [1] 0.8501573
> R_bar2 [1] 0.9137913
> R_1 [1] 42.50787
> R_2 [1] 45.68956
> R [1] 3.262087
> Test_statistic [1] 84.93534
> critical_value [1] 5.023886

To obtain the results above we install the Circular package in R and generate two dtata sets of 50 random
numbers from a Von Mises distribution using the rvonmises function. The calculation of the test statistic
as illustrated above follows from the explanation given in background theory. We then compare this test
statistics to the critical value in order to make a decision on whether to reject or not to reject the null
hypothesis of the equality of mean direction. Applying the Watson-Williams test for homogeneity of means
on these generated data sets yields the results below. In these results we have the test statistic and the
p-value which we can use to make the decision on whether to reject the null hypothesis or not.

Using the Watson-Williams test for homogeneity of means
> #Watson-Williams' two sample test on equality of means
> #two sample test on von Mises generated random numbers
> watson.wheeler.test(list(data1,data2))
Watson-Wheeler test for homogeneity of angles
data: 1 and 2 W = 77.845, df = 2, p-value < 2.2e-16

Watson's Two-Sample Test of Homogeneity
The null hypothesis is formulated as follows: H0 : κ1 = κ2 vs H1 : κ1 6= κ2

> #Watson's two sample test for homogeneity
> #two sample test on von Mises generated random numbers
> watson.two.test(data1, data2, alpha=0.05)

Watson's Two-Sample Test of Homogeneity
Test Statistic: 2.0191 Level 0.05 Critical Value: 0.187
Reject Null Hypothesis

> watson.two.test(data1, data2)
Watson's Two-Sample Test of Homogeneity
Test Statistic: 2.0191 P-value < 0.001
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Watson's two-sample test of homogeneity of concentration parameters is an algorithm that directly carries
out the hypothesis testing in R using the generated data sets. This algorithm outputs the test statistic, the
critical value, the p-value and it speci�es whether the null hypothesis has been rejected or not. As in the
above output it can be seen that the null hypothesis of equality of concentration parameters was rejected. As
the concentration parameter is a measure of dispersion of data, we have that the null hypothesis of equality
of variance is rejected.

4 Conclusion

Since the test statistic of 84.93534 > 5.023886=critical value, we reject the hypothesis of equal mean directions
for the generated samples from a von Mises distribution and conclude that the mean directions are not the
same. The rejection of the hypothesis of equality of mean directions is also con�rmed using the Watson-
Williams test for homogeneity of means since p-value < 2.2e-16 which is less than 0.05, our level of signi�cance
of the test. We also we reject the hypothesis of equal concentration parameters for the two data sets since we
have a very small p-value of less than 0.001 and we conclude that the concentration parameters di�er. We
can also reject the hypothesis of homogeneity of concentration parameters using the test statistic since the
test statistic 2.0191>0.187=critical value.

We therefore conclude that to carry out hypothesis testing on the equality of mean direction given two
directional data samples, the approach should di�er from that of testing for equality of observations on a
straight line. It is important to �nd the sines and cosines of the given angular measurements in order to
compute the apropriate test statistic. The resultant length of the centre of mass of the observed unit vectors
will be used in the calculation of the test statistics and it is distributed like a chi-squared random variable
which is di�erent from the t-distributed random variable used as the test statistics for hypothesis on equality
of means of observations on a straight line. To test for the equality of variance given directional data, it
is su�cient to test for the equality of concentration parameters since they are measures of how the data is
dispersed.
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Appendix

R-code and data sets output

> #two sample test for equality of means

> #two sample test on von Mises generated random numbers

> data1<-rvonmises(n=50, mu=circular(0), kappa=5)

> data2<-rvonmises(n=50, mu=circular(pi),kappa=4)

> x11<-sin(data1)

> x12<-cos(data1)

> x21<-sin(data2)

> x22<-cos(data2)

> S_bar1<-sum(x11)/50

> S_bar2<-sum(x21)/50

> C_bar1<-sum(x12)/50

> C_bar2<-sum(x22)/50

> theta_hat1<-atan(S_bar1/C_bar1)

> theta_hat2<-atan(S_bar2/C_bar2)+(pi) #since C_bar2<0

> R_bar1<-sqrt(C_bar1**2+S_bar1**2)

> R_bar2<-sqrt(C_bar2**2+S_bar2**2)

> R_1<-50*R_bar1

> R_2<-50*R_bar2 > R<-sqrt(R_1**2+R_2**2+2*R_1*R_2*cos(theta_hat2-theta_hat1))

> Test_statistic<-R_1+R_2-R

> critical_value<-qchisq(0.975, df=1)
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> #Watson-Williams' two sample test on equality of means
> #two sample test on von Mises generated random numbers
> watson.wheeler.test(list(data1,data2))

R-Code
#Watson's two sample test on homogeneity
#two sample test on von Mises generated random numbers
data1<-rvonmises(n=50, mu=circular(0), kappa=5)
data2<-rvonmises(n=50, mu=circular(pi),kappa=4)
watson.two.test(data1, data2, alpha=0.05)
watson.two.test(data1, data2)

Note that the angular measurement in all these calculation is in radians since R gives radians by default.
The R- �circular� package was used. We installed it by downloading the zipped folder �circular_0.4-7� from
https://r-forge.r-project.org/R/?group_id=90 and loading it into R through the option �Load package
from a zipped folder� then we took the option �load package� and chose �circular.�

output

> data1

Circular Data:

Type = angles

Units = radians

Template = none

Modulo = asis

Zero = 0

Rotation = counter

[1] 6.08627261 6.16567649 5.58965229 6.23352539 0.23544852 0.39538369

[7] 5.67654933 0.74448218 5.94014495 0.84257076 0.60157636 6.26076991

[13] 0.21816610 0.03699071 5.55826696 5.84422309 4.62873570 0.62349536

[19] 6.21602372 0.44522361 0.51400588 6.28263554 0.40008706 0.54473692

[25] 0.50098541 0.83869459 6.15248302 0.77659543 0.08384130 5.78229906

[31] 6.14765961 0.11473173 5.60022970 0.48008201 0.19796098 0.51252250
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[37] 0.22194368 6.10867929 5.97833379 6.26817245 5.94254522 0.60035486

[43] 0.57045865 3.60414571 5.91832010 5.85621983 6.18785675 5.94938743

[49] 5.89257358 6.15922325

>

> data2

Circular Data:

Type = angles

Units = radians

Template = none

Modulo = asis

Zero = 0

Rotation = counter

[1] 3.160915 3.656959 3.774494 3.379005 2.357756 3.428432 2.945035 3.085984

[9] 2.619290 3.314650 3.834272 3.458254 2.614611 3.109216 3.300945 3.123586

[17] 2.866910 3.179637 3.527551 2.912405 2.581132 3.084231 3.313567 2.589255

[25] 3.212441 3.143919 2.937113 3.273662 2.972145 2.512002 2.764876 3.161843

[33] 3.097521 2.385885 3.437592 3.360655 3.342413 3.408725 3.066903 4.031711

[41] 2.961790 3.802059 3.612721 3.787726 3.985916 3.056892 3.082269 2.722512

[49] 2.097523 3.421538

> x11

Circular Data:
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Type = angles

Units = radians

Template = none

Modulo = asis

Zero = 0

Rotation = counter

[1] -0.195642630 -0.117238566 -0.639258031 -0.049639506 0.233279158

[6] 0.385162309 -0.570106907 0.677591073 -0.336351854 0.746356545

[11] 0.565942795 -0.022413520 0.216439562 0.036982271 -0.663074320

[16] -0.425000305 -0.996503105 0.583876406 -0.067111110 0.430659703

[21] 0.491669431 -0.000549768 0.389498528 0.518193106 0.480290086

[26] 0.743771176 -0.130330469 0.700854992 0.083743106 -0.480203109

[31] -0.135111208 0.114480183 -0.631088477 0.461851919 0.196670539

[36] 0.490377189 0.220126044 -0.173621679 -0.300151545 -0.015012297

[41] -0.334090471 0.564935320 0.540018129 -0.446234332 -0.356823382

[46] -0.414110611 -0.095184243 -0.327633636 -0.380754140 -0.123644825

> x12

Circular Data:

Type = angles

Units = radians

Template = none

Modulo = asis

Zero = 0
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Rotation = counter

[1] 0.98067526 0.99310378 0.76899231 0.99876720 0.97240981 0.92284885

[7] 0.82157052 0.73543887 0.94173639 0.66554632 0.82444451 0.99974879

[13] 0.97629602 0.99931592 0.74855357 0.90519321 -0.08355574 0.81184256

[19] 0.99774551 0.90251439 0.87078193 0.99999985 0.92102709 0.85526365

[25] 0.87710970 0.66843432 0.99147061 0.71330378 0.99648738 0.87715733

[31] 0.99083044 0.99342553 0.77571086 0.88695705 0.98046963 0.87151031

[37] 0.97547144 0.98481243 0.95389153 0.99988731 0.94254101 0.82513519

[43] 0.84165338 -0.89491615 0.93417187 0.91022657 0.99545967 0.94480485

[49] 0.92467631 0.99232654

> x21

Circular Data:

Type = angles

Units = radians

Template = none

Modulo = asis

Zero = 0

Rotation = counter

[1] -0.019321094 -0.492853952 -0.591486436 -0.235188603 0.706001647

[6] -0.282922238 0.195294837 0.055579542 0.498877116 -0.172195037

[11] -0.638601140 -0.311395180 0.502926752 0.032371465 -0.158678930

[16] 0.018006057 0.271241408 -0.038034919 -0.376447106 0.227186312

[21] 0.531576377 0.057330052 -0.171127780 0.524678469 -0.070789020
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[26] -0.002326351 0.203058132 -0.131686188 0.168637786 0.588813837

[31] 0.367869706 -0.020248932 0.044057281 0.685804009 -0.291696270

[36] -0.217314293 -0.199473029 -0.263966666 0.074620385 -0.777146366

[41] 0.178835474 -0.613485122 -0.453892376 -0.602103528 -0.747521748

[46] 0.084599732 0.059288585 0.406921157 0.864457208 -0.276302871

> x22

Circular Data:

Type = angles

Units = radians

Template = none

Modulo = asis

Zero = 0

Rotation = counter

[1] -0.9998133 -0.8701121 -0.8063149 -0.9719498 -0.7082102 -0.9591429

[7] -0.9807446 -0.9984543 -0.8666727 -0.9850629 -0.7695379 -0.9502805

[13] -0.8643290 -0.9994759 -0.9873302 -0.9998379 -0.9625113 -0.9992764

[19] -0.9264381 -0.9738513 -0.8470104 -0.9983553 -0.9852488 -0.8513005

[25] -0.9974913 -0.9999973 -0.9791667 -0.9912915 -0.9856781 -0.8082687

[31] -0.9298773 -0.9997950 -0.9990290 -0.7277863 -0.9565110 -0.9761017

[37] -0.9799033 -0.9645318 -0.9972120 -0.6293199 -0.9838790 -0.7897063

[43] -0.8910565 -0.7984180 -0.6642373 -0.9964150 -0.9982409 -0.9134633

[49] -0.5027064 -0.9610706
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Abstract

This paper described the audience response system (clickers) used by �rst-year undergraduate students
enrolled for Statistics (STK 110) in the �rst semester, at the university of Pretoria in a large group setting.
The de�nition of large group is more than 300 students in a lecture hall. The aim of the research project
is to evaluate the role that clickers play in improving the classroom environment (increase participation,
active engagement), learning (cooperative, interactive) and assessment (immediate feedback, formative).

How these roles impact the student performance in the course throughout the �rst semester. An
experiment is done to compare the exam scores for the STK 110 in 2014 (without clickers) and 2015
(with clickers). The �ndings are use to compare and to conclude the if there was an positive impact by
using the clickers. A survey questionnaire is used to discuss the student perception of the clicker. The
background theory of clicker discussion is o�ered in the paper. The students and lecturers (instructors)
face di�cult challenges when the clickers are used in the larger classrooms, these include technological
hiccups, the students have to adjust to a new way of learning. These and many of the challenges are
discussed fully in the paper. Do �ndings provide evidence that clickers have a positive impact on student's
learning as is measured by the exam scores and the questionnaire responses. This will be discussed in the
application chapter later using SAS®.

1

1The [output/code/data analysis] for this paper was generated using SAS software. Copyright, SAS Institute Inc. SAS and
all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC,
USA.
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1 Introduction

1.1 Overview

A student response system (also known as classroom response system, personal response system, or audience
response system) is a hardware and software that allows the instructor to pose question to his/her students via
computer or overhead projector [3]. The new system has improved over the past few years, instead of taking
only multiple choice or True/False questions, the system can be set to take answers that are sentences to but
the characters are limited to 120 characters. The students submit the answers using a hand-handled device
(a clicker) that beams a radio-frequency signal to the receiver in the instructor's computer. Then the results
are instantly summarized by the software and presented on the display screen, using a histogram showing
how many students chose each answer. The peers are unable to identify who chose what answer but the
instructors are able to identify each student's device number for testing purposes. With immediate feedback
the instructor is able to lead the students into a discussion (peer or classroom discussions) concerning the
merits of each answer chosen for the question [3].

Audience response system discourages the students' passiveness that is encouraged by the impersonal
classroom environment, auditorium seat setting. In the past student evaluation, students have mentioned
that they would like to be more actively involved in the large lecture groups. Audience response system
(ARSs) are used to improved the student interaction in the classroom, to get student engaged more in class
discussions and peer instruction. The use of ARSs provides immediate feedback to the students [10],[11].

The e�ectiveness of clicker use in the classroom is as good as the instruction question asked, hence the
feedback is also good for the instructor so that they can also improve the instruction questions too. On a
day-to-day basis instructors are provided with information on student's learning, this is called the formative
use of clickers, where instructor test the student's understanding of the course material. For example Svetlana
and Gillian recent review on statistics noted that active learning environment is a big part of integrating the
principle of learning, which include practice, feedback to name a few [11].

1.2 Terminology

For this paper it was decided that the terms �audience response system�and �clicker� which is the most
popular one amongst students and lecturers will be use interchangeably. The lecturers who present the course
material are called the instructors. The term teacher or lecturer is mostly associated with the traditional
way of presenting a classroom with the course material, were students are more passive. To adopt the term
instructor seemed in many studies to embrace the more active role students take when clickers are introduced
[4, 3].

1.3 Literature review

Audience response system technology exists back at least to the 1960s [7]. The early technology used was
not wireless infrared but instead radio frequency based, it used transmitter and receiver connected by wires.
Authors use di�erent terms for this system depending on the use of the system. In the classrooms the term
used is student or classroom response system. Other name include electronic voting system, group response
system and other names. There seems to be a general consensus regarding the impact ARSs have on the
on student learning [3, 4, 7]. The impact depends largely on the instruction method used. To enable active
participation and cooperative learning most instructors teaching methods such as small group discussion
(peer discussion) and big group discussion (class wide discussion). This typically improve the learning of
students over the methods that are more passive. Even though there is a relatively large number of positive
number of reviews some reviews have shown the challenges of ARSs: technical knowledge, less time to cover
the course material, etc [11].

The main aim of the study is to evaluate the e�ectiveness of using clicker in enabling an active learning
environment. The second one is describing the student's perceptive on using clicker in classrooms. The
questions that the research answers are the following:
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1. Is there a di�erence between the student performance of 2015 (with clickers) and 2014 (without clickers)
students.

2. What do students think of the use of clicker system in the classroom.

2 Methods

2.1 Design and statistical methodology

The design is an experiment of two-group comparison with one in 2015 using clickers and another in 2014
using the standard way of teaching but the same course material. This experiment allows us to see if there
is an impact in the �nal mark of students. The independent variable is teaching with clicker strategy. The
dependent variable is the student's �nal mark. The t-test is used to test if the average marks in 2015 are
higher (signi�cantly di�erent) than 2014 average marks. The logistic regression is used to build a model
to predict whether a student will pass or fail. The chi-squared is used to evaluate if there is a signi�acant
association betweeen student performance and the use of clickers ( by using year since in 2014 no clickers
were used and in 2015 clickers were introduced). Regarding the methodology the qualitative data is based on
the student questionnaire that is intended to get student perception of using clickers in the classroom. The
questionnaire survey data was collected amongst the students who used clickers is collected and analyzed be
excel and SAS.

Figure 1: TurningPoint® clicker system

2.2 Participants

The setting for this experiment is the University of Pretoria's �rst year STK110 students in South Africa.
The course is taught in a �xed auditorium seat seating lecture hall style. This style discourages small group
class discussions and makes student to sit passively and the lecturer be the presenter of the course material.
In each session, out of 5 the students enrolled are ±300. The course is mainly taught in English. The student
had English at secondary school prior to being accepted to university.
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2.3 Procedure

On the �rst day of class each students was instructed to buy a clicker. It was explained that they will not
need to buy a textbook. At the beginning of the course students had trial runs of the the clicker system
to familiarize themselves with how it works and its functions, this took two sessions for each group. Four
members of the statistics department facilitated the course. Each section is taught the same course material
content and all the students write the same clicker tests, tutorials, semester tests and �nal exam. During each
class all the sections answer the same clicker or exercise questions on content the instructor covered in class.
A variety of questions are presented on the overhead projector of power point projector and the students
use the clicker to answer the questions. A bar or histogram chart displays the responses and a discussion is
conducted and misunderstandings are clari�ed.

To complete the qualitative component of the experiment, the student were asked to complete the ques-
tionnaire. All the students who got exam entrance we asked to complete the questionnaire in the same venue
where they wrote the exam. They were given 10-15 minutes to complete the questionnaire. Through the
questionnaire we want to learn the following:

1. If the clicker made class more and exciting.

2. If the clicker questions in helped student learn.

3. If the student would recommend the instructors to continue using clickers.

The survey was administered at the end of the �rst semester to assess students responses to using clickers.
The questionnaire had three sections. The other sections were about MindTap, Excel and other learning
tools used during the semester. The question responses were coded as 0 = �Do not agree to 10 = � Agree
100%�.

2.3.1 Anonymity and interaction

Students can respond using their clickers without their peers or instructor knowing the answer they chose.
Anonymity gives students an opportunity to be engaged and interact in the classroom learning process
without feeling like they are being judged. Literature reports that this is the feature that students enjoy
more about the clickers. Participation is increased when clickers are used compared to classrooms that do
not use clickers, students that would not otherwise participated now do participate.

2.3.2 Assessment bene�ts

Feedback: In a tradition classroom an instructor can get feedback in a number of ways, including showing of
hands, a student volunteer to share his/her answer, use chalkboard, used stick-note or cards. But these ways
have disadvantages. In a large classroom when students show their hands it is di�cult to get their sense of
understanding and takes time to count the hands. Most of the time student do not think about their answers
but copy their peers responses.

Using clickers improves the feedback process, making it reliable by guaranteeing anonymity, quick and
summarizes students responses indicating a correct answer to the question. This prevents the students
from copying from their peers because the is no gain in doing so. When clickers are used students get the
opportunity to think about their responses and later defend them to their peers, and also students learn
better from their peers sometimes.

Formative assessment: Instructors use formative assessment to determine students' understanding without
grading them also understand the misconceptions and misunderstandings and be able to change the classroom
instructions next time. When clickers are used regularly, instructor and students are both o�ered quick, in
real time feedback on how the concepts are being understood. Authors agree that using clickers helps provide
meaningful and e�ective formative assessment [4, 6].
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2.3.3 Cooperative and active learning

Studies show that when clickers are used on a regular base, frequent and positive interaction occurs. Beatty
mentions that when clickers are used there is a great articulation in students' thinking, they ask more probing
questions, their focus is increased, more e�ective peer discussion and active learning [2, 4]. Research shows
that students are more interested and involved when clickers are used [8, 5, 3].

2.4 Challenges of using clickers

The challenges in clickers literature that dominates are: technology, instructor and student challenges (these
challenges will be taken from the questionnaire). These challenges encountered are discussed below.

2.4.1 Technology challenges

There are three limitations based on technology that were encountered when the clickers were used. Firstly,
the instructors got their clickers the same week that the lectures began, so they did not have enough time to
prepare and get use to the system on their own. Secondly, the students were responsible for purchasing their
own clicker, some of them did not purchase them and could not participate fully in the class. Students did
not bring the clickers consistently and clickers were reported lost. Lastly, the most frustrating technological
challenge occurred when the instructors computer did not pick up the signal of the clickers [3]. In some of
the sessions during clicker test, the instructor's computer shut down and the system was interrupted so this
led to the test being hand written. The old venues in the university like chancellor's building could not be
used for clicker sessions because the clicker sytem did not work there.

2.4.2 Instructor-based challenges

The main concern when clickers are introduced is the content coverage [3]. Literature suggest that instructors,
and students sometimes believe that less of the content is covered when using clickers however for this
experiement this was not a concern. Developing good clicker question is the responsible of the instructor,
the system is as good as the questions posed to students [11].The characteristics of good questions are: they
focus on a speci�c learning goal, make students aware of other student's opinions as well, expose confusions
and misconceptions and elicit a range of responses.

3 Application

3.1 Data analysis and results

3.1.1 Qualitative data

For the qualitative data, SAS and Excel, were used to assist with data capturing and analysis. A total of
2102 students participated in this experiment. Students from the experimental group were 1226, these are
the students who used clickers in 2015. There were 1361 students from the control group, these are students
who did not use clickers in 2014. The experimental group provided the qualitative data of this experiment:
only 950 questionnaires were used other were invalid because they were incomplete. Questions 1, 3,4 and
5 from the questionnaire were grouped together to analyze if the clicker system contributed in the student
learning. Students generally thought clickers were a positive addition combined with the traditional way of
lecturing. A few of the students thought clickers were fun and exciting, these students did not experienced
any problems with their clickers. Multiple comments centered on �clickers being a bad ideas for writing
tests�, as one student noted � it [using a clicker] adds extra pressure during the test. I'd prefer not to use
it.� The primary negative attitude toward clicker was as a result of malfunctioning of the system. This will
be discussed further under recommendation. Two topics emerged from the questionnaire data. These topics
were: being able to get immediate feedback, active involvement in the classroom and being able to respond
anonymously. A substantial number of students preferred using a clicker to answer questions in class rather
than raising up their hands. The students liked the fact that no one would know who picked the incorrect

9



answer saving them from being embarrassed. The students perceived the second topic of being able to get
immediate feedback as a great idea to con�rm their answers immediately. If more than a half of the students
got the question wrong the instructor would explain the course material again. The last topic was active
involvement, student perceived being involved in class helpful in their learning process. They said during the
use of clicker in classroom they were awake.

3.1.2 Final marks performance (Quantitative assessment)

T-test

Table 1: T-test output

The �nal marks were signi�cantly di�erent for the two years. In table 1, the p-value < .0001 therefore the
null hypothesis was rejected. Even though the were technological problems and limited time during lecture
times to use clickers, there was a signi�cant increase in the �nal mean marks of 2015 with clickers compared
with 2014 without clickers. In the literature there is con�ict results with respect to change on the �nal marks,
from positive change to no change. During the time students were introduced to the clicker system, they
were also introduced other learning systems such as the Mind Tap system. Therefore it can not be concluded
that that signi�cant di�erence was sole because of the clickers system. A separate e�ect of the clicker system
on the �nal exam performance was not done.

Logistic regression

In the logistic regression, explanatory variable year and math mark were both found to be signi�cant in the
model. In table 2, Both p-values are < .0001, therefore the null hypothesis is rejected. One unit increase in
the student's mathematics mark increased the odds of passing (versus failing) by a factor of 1.11, holding
term constant. The odds of passing in 2015 were 11% higher than in 2014 when mathematics mark increased
by one unit.

Table 2: The odds table
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In table 2 it shows that in 2014 the odds of passing were 0.504 compared to 2015 when clickers were not
used, holding math mark constant. In 2014, there is a 50% of students passing the course.

χ2 test

Table 3: The FREQ Procedure (Pass or Fail)

In table 3, χ2 = 29.2650 with 1 degrees of freedom, p-value < .0001. Therefore there is an association
between year and results. In 2015, 1098 students were expected to pass but only 1140 students passed and
128 students were expected to fail but only 86 students failed. In 2014, 1218 students were expected to pass
but 1176 students passed and only 142 students were expected to fail but 184 students failed.
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Table 4: The FREQ Procedure

The �nal marks were divided into 4 categories A (less than 50%), B (between 50 and 64), C (between 65
and 74) and D (75+). The χ2 = 40.7732, p-value < .0001 with 3 degrees of freedom therefore there is an
association between year and categorised �nal mark. The number of students who got distinctions increased
from 38% in 2014 to 43% in 2015. The number of students that obtain less than 50% �nal mark for STK110
dropped from 12% in 2014 to 5.6% in 2015. In 2015 the overall number of students who failed dropped from
13.05% in 2014 to 7.05% in 2015.

3.1.3 Active involvement

The data from this experiment is not enough to conclude that clickers were the reason for the positive e�ect
on the �nal performance of student because the instructor adopted also other systems. Also the data suggest
that the outcome variable may not be just the �nal marks. The qualitative data supports active involvement
and peer interaction in the classroom. The degree of active involvement and engagement was not measured
in this experiment. Literature has referred to clickers as entertainment toys. Previous studies have assessed
involvement to items that encourage class attendance, preparing before class, enjoying class and having fun.
Rhem (2007) notes that the department needs to get a sense of what constitutes as the best pedagogies to
stimulate students involvement in Stk110 comparing that with how often they participate. Given the fact this
experiment focused on a large classroom size and structure, the main goal was to increase interaction among
peers and instructor. The data from the focus group supported the increased involvement and anonymity
encouraged learning. Rhem (2007) suggests that assessing the department and student perceptions of active
engagement through surveys done at the beginning and end of the semester, he believes that this will provide
a compelling information for the department to draw pedagogical choices.

3.1.4 Shortfalls

A number of limitations existed that may have in�uenced the student perception of the clicker system and the
outcome of the �nal performance. Firstly, from the focus group data the comments were mainly stating that
the students do not want to use the clicker for the tests instead for class engagement and this might have been
the main contributor to the negative perception of clickers. Secondly, the clickers were not used for during
every class time. Increasing the frequency use of clickers during class times, as well �nding di�erent ways
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of using the clickers during the semester may have impacted the student's perception of clickers. Thirdly,
from the data of the focus group, a substantial number of student admitted to having problems with the
technology, such as clickers not being picked up by the TurningPoint® software. The students said that they
were frustrated by the malfunctioning of the clicker technology. By the end of the semester the department
instructors managed to resolve the majority of the technological problems. The other concern that students
raised was the cost they had to incur in order to obtain a clicker, they felt that the clicker was too expensive
hence not all could obtain one.

4 Conclusion

There was a signi�cant di�erence between the two group in exam performance but we can not conclude that
this improving was because of the introduction of the clicker technology, because the department had other
technologies introduced simultaneously with clicker technology. If the clicker technology did contribute to the
improvement of exam performance, the sole impact it had could not be tested. It can be concluded though
that the technology intervention employed by the department in Stk110 improve the exam results in year
2015. The students seemed to think that the clickers increased interaction in the classroom compared to their
other courses that they are enrolled in with no clickers. The bene�t of immediate feedback was also identi�ed
by the students as a instrument to understanding di�cult concepts. I recommend that the use of clickers be
continued. Technology based classrooms are becoming a norm at most intstitutions of higher learning, clicker
being the new advanced in the education environment. The department needs to make informative decisions
concerning the use of clicker. The students perspective on how clickers could used in class should be taken
into consideration. These considerations can include whether clickers should be used for tests, formative
or summative or all of them. The preferences of students changes and vary from student to student, the
department must be able to change their strategy after every test if the one employed before does not work
or give desirable results.
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Appendix

***********************************************************************************************************************
The Qua l i t a t i v e data SAS Program

***********************************************************************************************************************
PROC IMPORT OUT= SASUSER.STATS

DATAFILE= "e : \ ques t i on . x l sx "
DBMS=EXCEL REPLACE;

RANGE="ques t ion$ " ;
GETNAMES=YES;
MIXED=NO;
SCANTEXT=YES;
USEDATE=YES;
SCANTIME=YES;

RUN;
proc chart data=SASUSER.STATS;
*by l ea rn ;
vbar l e a rn e x c i t i n g t e c h i s s u e t e s t s / midpoints= 0 to 10 by 1 type=percent ;
run ;
*********************************************************************************************************************

The Quant i tat ive Data−exam performance
********************************************************************************************************************
PROC IMPORT OUT= SASUSER. marks

DATAFILE= "e : \ marks . x l sx "
DBMS=EXCEL REPLACE;

RANGE="marks$ " ;
GETNAMES=YES;
MIXED=NO;
SCANTEXT=YES;
USEDATE=YES;
SCANTIME=YES;

RUN;

PROC TTEST;
CLASS term ;
VAR mark ;
RUN;
/* proc un i va r i a t e ;
c l a s s term ;
run ;
***********************************************************************************************************************

The Output o f TTest
***********************************************************************************************************************
The program the Frequency o f groups marks 24

The UNIVARIATE Procedure
Var iab le : mark (mark )

Term = 2014

Moments

N 1361 Sum Weights 1361
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Mean 61.8912564 Sum Observat ions 84234
Std Deviat ion 15.9964588 Variance 255.886696
Skewness −0.0315535 Kurtos i s −0.4339345
Uncorrected SS 5561354 Corrected SS 348005.906
Coef f Var ia t ion 25.8460722 Std Error Mean 0.43360551

Basic S t a t i s t i c a l Measures

Locat ion Va r i a b i l i t y

Mean 61.89126 Std Deviat ion 15.99646
Median 61.00000 Variance 255.88670
Mode 50.00000 Range 81.00000

I n t e r q u a r t i l e Range 25.00000

Tests f o r Locat ion : Mu0=0

Test −S t a t i s t i c − −−−−−p Value−−−−−−

Student ' s t t 142.7363 Pr > | t | <.0001
Sign M 680.5 Pr >= |M| <.0001
Signed Rank S 463420.5 Pr >= | S | <.0001

Quant i l e s ( De f i n i t i o n 5)

Quant i le Estimate

100% Max 99
99% 95
95% 89
90% 83
75% Q3 75
50% Median 61
25% Q1 50
10% 38
5% 35
1% 27
0% Min 18

The program the Frequency o f groups marks
25

The UNIVARIATE Procedure
Var iab le : mark (mark )

Term = 2014

Extreme Observat ions

−−−−Lowest−−−− −−−−Highest−−−

Value Obs Value Obs

16



18 2209 98 1585
22 2379 98 1771
22 2095 98 2236
22 2061 99 2203
22 2032 99 2358

The program the Frequency o f groups marks
26

The UNIVARIATE Procedure
Var iab le : mark (mark )

Term = 2015

Moments

N 1226 Sum Weights 1226
Mean 65.2601958 Sum Observat ions 80009
Std Deviat ion 15.4011396 Variance 237.1951
Skewness −0.1475548 Kurtos i s −0.2179959
Uncorrected SS 5511967 Corrected SS 290563.998
Coef f Var ia t ion 23.5995914 Std Error Mean 0.43985306

Basic S t a t i s t i c a l Measures

Locat ion Va r i a b i l i t y

Mean 65.26020 Std Deviat ion 15.40114
Median 65.00000 Variance 237.19510
Mode 50.00000 Range 87.00000

I n t e r q u a r t i l e Range 22.00000

Tests f o r Locat ion : Mu0=0

Test −S t a t i s t i c − −−−−−p Value−−−−−−

Student ' s t t 148.3682 Pr > | t | <.0001
Sign M 613 Pr >= |M| <.0001
Signed Rank S 376075.5 Pr >= | S | <.0001

Quant i l e s ( De f i n i t i o n 5)

Quant i le Estimate

100% Max 99
99% 97
95% 91
90% 86
75% Q3 76
50% Median 65
25% Q1 54
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10% 50
5% 37
1% 28
0% Min 12

The program the Frequency o f groups marks
27

The UNIVARIATE Procedure
Var iab le : mark (mark )

Term = 2015

Extreme Observat ions

−−−−Lowest−−−− −−−−Highest−−−

Value Obs Value Obs

12 950 98 15
22 185 98 384
24 836 98 424
24 216 99 265
25 972 99 845

The program the Frequency o f groups marks
29

The TTEST Procedure

Var iab le : mark (mark )

Term N Mean Std Dev Std Err Minimum
Maximum

2014 1361 61.8913 15.9965 0 .4336 18.0000
99.0000

2015 1226 65.2602 15.4011 0 .4399 12.0000
99.0000

D i f f (1−2) −3.3689 15.7172 0 .6189

Term Method Mean 95% CL Mean Std Dev
95% CL Std Dev

2014 61.8913 61.0406 62.7419 15.9965 15.4173
16.6212
2015 65.2602 64.3972 66.1231 15.4011 14.8148

16.0362
D i f f (1−2) Pooled −3.3689 −4.5825 −2.1554 15.7172 15.3002

16.1576
D i f f (1−2) Sat t e r thwa i t e −3.3689 −4.5801 −2.1578

Method Var iances DF t Value Pr > | t |

Pooled Equal 2585 −5.44 <.0001
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Sat t e r thwa i t e Unequal 2573 .6 −5.45 <.0001

Equal i ty o f Var iances

Method Num DF Den DF F Value Pr > F

Folded F 1360 1225 1 .08 0 .1740
**********************************************************************************************************************

Chi−squared t e s t program
***********************************************************************************************************************
proc format ;

va lue RspFmt 1='Pass '
0=' Fai l ' ;

t i t l e 1 'The program the Frequency o f groups marks ' ;
PROC IMPORT OUT= SASUSER. marks

DATAFILE= "e : \ marks . x l sx "
DBMS=EXCEL REPLACE;

RANGE="marks$ " ;
GETNAMES=YES;
MIXED=NO;
SCANTEXT=YES;
USEDATE=YES;
SCANTIME=YES;RUN;

data b ;
s e t SASUSER. marks ;

run ;

proc f r e q data=a ;
format r e s u l t s RspFmt . ;

t ab l e term* r e s u l t s / c e l l c h i 2 ch i sq expected norow noco l ;
run ;

***********************************************************************************************************************
chi−squared output

***********************************************************************************************************************
The SAS System 12

The FREQ Procedure

Table o f Term by r e s u l t s

Term r e s u l t s

Frequency
Expected
Ce l l Chi−Square
Percent Fa i l Pass Total

2014 184 1176 1360
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142 1218
12 .426 1 .4486

7 .12 45 .48 52 .59

2015 86 1140 1226
128 1098

13 .784 1 .6069
3 .33 44 .08 47 .41

Total 270 2316 2586
10 .44 89 .56 100 .00

S t a t i s t i c s f o r Table o f Term by r e s u l t s

S t a t i s t i c DF Value Prob

Chi−Square 1 29 .2650 <.0001
L ike l i hood Ratio Chi−Square 1 30.0087 <.0001
Cont inuity Adj . Chi−Square 1 28.5724 <.0001
Mantel−Haensze l Chi−Square 1 29.2537 <.0001
Phi C o e f f i c i e n t 0 .1064
Contingency Co e f f i c i e n t 0 .1058
Cramer ' s V 0.1064

Fisher ' s Exact Test

Ce l l ( 1 , 1 ) Frequency (F) 184
Left−s ided Pr <= F 1.0000
Right−s ided Pr >= F <.0001

Table Probab i l i t y (P) <.0001
Two−s ided Pr <= P <.0001

Sample S i z e = 2586

***********************************************************************************************************************
Grouped Data−f r equenc t Tables

***********************************************************************************************************************
OPTION NODATE;
t i t l e 1 'The program the Frequency o f groups marks ' ;
PROC IMPORT OUT= SASUSER. marks

DATAFILE= "e : \ marks . x l sx "
DBMS=EXCEL REPLACE;

RANGE="marks$ " ;
GETNAMES=YES;
MIXED=NO;
SCANTEXT=YES;
USEDATE=YES;
SCANTIME=YES;RUN;

data b ;
s e t SASUSER. marks ;
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*DATA SASUSER. marks ;
i f mark<50 then mark1="LES THAN 50" ;
i f 50<=MARK>=64 then mark1="BTWEEN 50 AND 64" ;
i f mark>65 and mark<74 then mark1="BTWEEN 65 AND 74" ;
i f mark>75 then mark1="DISTINCTION" ;
run ;

proc f r e q data=b ;
tABLES TERM*MARK1/ c e l l c h i 2 ch i sq expected norow noco l ;
RUN;
***********************************************************************************************************************

The Output chi−squares t e s t
***********************************************************************************************************************

The SAS System 11

The FREQ Procedure

Table o f year by mark1

year mark1

Frequency
Expected
Ce l l Chi−Square
Percent A B C D Total

2014 184 613 207 356 1360
142 592 .7 230 .35 394 .96

12 .426 0 .6953 2 .3666 3 .8427
7 .12 23 .70 8 .00 13 .77 52 .59

2015 86 514 231 395 1226
128 534 .3 207 .65 356 .04

13 .784 0 .7713 2 .6252 4 .2626
3 .33 19 .88 8 .93 15 .27 47 .41

Total 270 1127 438 751 2586
10 .44 43 .58 16 .94 29 .04 100 .00

S t a t i s t i c s f o r Table o f year by mark1

S t a t i s t i c DF Value Prob

Chi−Square 3 40 .7732 <.0001
L ike l i hood Ratio Chi−Square 3 41.4988 <.0001
Mantel−Haensze l Chi−Square 1 31.2475 <.0001
Phi C o e f f i c i e n t 0 .1256
Contingency Co e f f i c i e n t 0 .1246
Cramer ' s V 0.1256

Sample S i z e = 2586
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***********************************************************************************************************************
Logos t i c r e g r e s s i o n SAS program

***********************************************************************************************************************
PROC IMPORT OUT= SASUSER.STATS

DATAFILE= "E:\ s t a t s . x l sx "
DBMS=EXCEL REPLACE;

RANGE="s t a t s $ " ;
GETNAMES=YES;
MIXED=NO;
SCANTEXT=YES;
USEDATE=YES;
SCANTIME=YES;

RUN;
proc l o g i s t i c data=SASUSER.STATS DESCENDING;
c l a s s term ;
model r e s u l t s =term mathematics / l a c k f i t ;

run ;
***********************************************************************************************************************

Log i s t i c Procedure Outputs
***********************************************************************************************************************

The program the Frequency o f groups marks
10

The LOGISTIC Procedure

Model In format ion

Data Set SASUSER.STATS
Response Var iab le r e s u l t s r e s u l t s
Number o f Response Leve l s 2
Model b inary l o g i t
Optimizat ion Technique Fisher ' s s c o r i ng

Number o f Observat ions Read 2587
Number o f Observat ions Used 2586

Response P r o f i l e

Ordered Total
Value r e s u l t s Frequency

1 1 2315
2 0 271

Probab i l i t y modeled i s r e s u l t s =1.

NOTE: 1 obse rvat i on was de l e t ed due to miss ing va lue s f o r the response or explanatory v a r i a b l e s .

Class Leve l In format ion
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Design
Class Value Var iab l e s

Term 2014 1
2015 −1

Model Convergence Status

Convergence c r i t e r i o n (GCONV=1E−8) s a t i s f i e d .

Model F i t S t a t i s t i c s

I n t e r c ep t
In t e r c ep t and

Cr i t e r i on Only Covar iates

AIC 1737.169 1531.778
SC 1743.027 1549.352
−2 Log L 1735.169 1525.778

The program the Frequency o f groups marks
11

The LOGISTIC Procedure

Test ing Global Nul l Hypothes is : BETA=0

Test Chi−Square DF Pr > ChiSq

L ike l i hood Ratio 209.3906 2 <.0001
Score 189.3936 2 <.0001
Wald 165.9567 2 <.0001

Type 3 Ana lys i s o f E f f e c t s

Wald
E f f e c t DF Chi−Square Pr > ChiSq

Term 1 23.3208 <.0001
Mathematics 1 142.8069 <.0001

Ana lys i s o f Maximum Like l ihood Est imates

Standard Wald
Parameter DF Estimate Error Chi−Square Pr > ChiSq

In t e r c ep t 1 −5.1772 0 .5987 74.7842
<.0001

Term 2014 1 −0.3428 0 .0710 23.3208
<.0001
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Mathematics 1 0 .1053 0.00881 142.8069
<.0001

Odds Ratio Est imates

Point 95% Wald
E f f e c t Estimate Conf idence Limits

Term 2014 vs 2015 0 .504 0 .381 0 .665
Mathematics 1 .111 1 .092 1 .130

Assoc i a t i on o f Pred ic ted P r o b a b i l i t i e s and Observed Responses

Percent Concordant 74 .7 Somers ' D 0.510
Percent Discordant 23 .8 Gamma 0.518
Percent Tied 1 .5 Tau−a 0 .096
Pa i r s 627365 c 0 .755

The program the Frequency o f groups marks
12

The LOGISTIC Procedure

Pa r t i t i on f o r the Hosmer and Lemeshow Test

r e s u l t s = 1 r e s u l t s = 0
Group Total Observed Expected Observed Expected

1 261 180 180 .77 81 80 .23
2 254 203 203 .15 51 50 .85
3 249 209 211 .51 40 37 .49
4 287 258 253 .96 29 33 .04
5 248 229 226 .34 19 21 .66
6 274 254 256 .08 20 17 .92
7 244 232 232 .15 12 11 .85
8 251 240 242 .19 11 8 .81
9 267 262 260 .89 5 6 .11

10 251 248 247 .97 3 3 .03

Hosmer and Lemeshow Goodness−of−Fit Test

Chi−Square DF Pr > ChiSq

2.1593 8 0 .9757
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Abstract

Different types of industries are faced with the problem of properly allocating input resources to
processes in order to get an optimal output that maximises or minimizes the expected return. SAS
(Statistical Analysis System) provides different kinds of tools that help in solving this problem. The
aim of this research is to provide a knowledge on how the Linear Programming (LP) Procedure in SAS
solves this problem using the simplex method. A theoretical background to linear programming will be
provided and the Linear Programming (LP) Procedure applied in an Allocation problem done in order
to understand the theory behind the procudure.
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1 Introduction
Linear programming is a division of optimization theory which deals with problems of minimization or
maximization of linear functions on sets defined by systems of linear equalities and/or inequalities. Linear
programming originated in the 30-40s of the twentieth century under the influence of technical and economic
problems. Thanks to the works of J. von Neumann, L.V Kantorovich, G. Dantzig, and many other well
known mathematicians linear programming became an independent branch of mathematics and continues its
development today.[19] The main aim of optimization is to minimize or maximize a specific function with
constrained variables.

Optimization problems are divided into various types depending on the sets of values that the variables
are restricted to (real, integer or binary or a combination) and the nature of the functional form of the
constraints and objectives (linear, quadratic or nonlinear). An algorithm determines the optimal values for
the decision variables so that the objective is either maximized or minimized. The optimal values that are
assigned to decision variables are on or between allowable bounds and the constraints are obeyed.

When the constraints in an optimization problem are linear and the objective is either linear or quadratic,
the optimisation problem can be encapsulated in SAS© data sets and then solved using an appropriate
SAS/OR (Operations Research) procedure, in this research namely LP Procedure. The LP Procedure solves
linear programming problems that are submitted in a SAS© data set that uses a mathematical programming
system (MPS) format.

1.1 Literature Review
Many literature publications discuss about what linear programming is and how to apply it to different situ-
ations. Taha [18] describes the differences in different types of programming namely linear programming and
integer programming (where variables take on integer variables). In [16], the following types of programming
are discussed: dynamic programming where the main model is split into more tractable sub problems, net-
work programming where the model is designed as a network and nonlinear programming where the model
has nonlinear functions.

The following is a list of some of the application areas in which optimization-based decision support
systems have been used: [2]

• Product-mix problems : finding a combination of products that generate the greatest return when a
number of products contend for limited resources. [21]

• Blending problems : allocating a mix of components for a product to minimize costs while achieving
minimum standards. [12, 20]

• Time-staged problems : models structured such that they iterate as a function of time. Typical exam-
ples include production and inventory models. In each period, a mathematical formula is as follows:
production add inventory less current demand equaling to inventor brought over to the next period.
[12, 6]

• Scheduling problems : assigning of people to tasks, places, or times so as to optimize the performance
and preferences of people while making sure the demands of the schedule are met [12]. In sport it
involves assigning teams to play each other and venues to the different games [14].

• Multiple objective problems : objectives are solved sequentially according to the priority order due to
multiple conflicting objectives. [17, 5, 10]

• Capital budgeting and project selection problems : finding the set of projects or project that produce
maximum return. [13]

• Location problems : seeking appropriate areas that meet distribution needs at minimum cost. [15, 3]
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• Cutting stock problems : finding the portion of raw material that minimizes waste and fulfills demand.
[8, 9]

Other applications have developed since the the increase of usage of computers and technology including the
use of computers to monitor and improve the physical strength of athletes through analysis of previous records
[4]. The major challenge in sport is mainly of finding dates and venues in which various games will be played.
Examples of sport where application of scheduling of tournaments is involved include: baseball, football,
hockey, cricket and basketball. These scheduling problems have been resolved by various approaches (includ-
ing approximate and exact approaches) namely integer, hybrid, metaheuristics and constraint programming
methods. [14]

In most literature an Excel Solver as well as AMPL(an algebraic modelling language also known as A
Mathematical Programming Language) are used to solve the allocation problem but in this report the use of
LP Procedure will be explored.

2 Background Theory

2.1 Basic components and Properties of the Linear Programming model
In an LP model, there are three basic elements that are crucial in the definition of the model namely:

1. Decision variables : x1, x2, ..., xn.

2. Objective function : the goal equation seeking to optimize, a function for example f(x1, x2, ..., xn) =
n∑

j=1

cjxj for some constants cj , j = 1, 2, ..., n.

3. Constraints : rules that the solution must meet in order for it to be valid for example
n∑

j=1

aijxj ≤ bi

for each i and some constants aij and bj

The above thus help in obtaining the optimum solution by breaking the problem in such a manner that is
managable to quantify.

Since the model is linear, it must satisfy the following three properties:

1. Proportionality : each decision variable should be directly proportional to the value of the variable in
the objective function and the constraints.

2. Additivity : the direct sum of the individual contributions of each variable should be equal to the total
contribution of all variables in the objective function and the constraints.

3. Certainty : the coefficients of the objective function and the constraints are either known or specified
by probabilistic distributions.

General models can be formally written as follows:

a) Parameters

The following is a list of the parameters used in the model :
n : number of input variables, indexed by j = 1, ..., n
m : number of constraints, indexed by i = 1, ...,m
cj : coefficients in the objective function.
bj : righthand limit of the constraint equations.
aij : coefficients in the constraints.
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b) Variables

xj : decision/input variables where j = 1, ..., n

c) Model

Either maximize or minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, ...,m

In order to understand the theory and formulation of the LP Procedure we start with a two variable
example taken from the book by Taha [18] and then a general formulation of a n-variable case with an
example.

2.2 A Two Variable Example
It must be stated that in real life situations a two-variable scenario is highly improbable hence this example
will used as a starting point for the building up of the theory. Below is an example of a company that
produces two types of paint (interior and exterior) using two raw materials named R1 and R2.

The problem
The Table 1 gives the data of the amounts produced and the profit made from each type of paint.

Tons of raw material needed per ton of paint
Exterior paint Interior paint Maximum daily

availability (tons)
Raw material R1 6 4 24
Raw material R2 1 2 6
Profit per ton (R1000) 5 4

Table 1: Basic data of the two variable example

A survey made shows that the interior paint’s daily demand cannot exceed that for exterior paint by more
than one and that the maximum daily demand for interior paint is two tons.

2.2.1 Definition of variables

Since we are dealing with a two-variable case we define two variables x1 and x2 namely:

x1: daily of exterior paint produced in tons
x2: daily of interior paint produced in tons
f(x1, x2) : total daily profit (in R‘000)

2.2.2 Constraints

• Usage of raw material R1 by both paints :

(6x1 + 4x2) tons/day

• Usage of raw material R2 by both paints :

( x1 + 2x2) tons/day

• Usage of a raw material by both paints must be lessthanorequalto the maximum raw material available
i.e.
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6x1 + 4x2 ≤ 24
x1 + 2x2 ≤ 6

• Interior paint produced cannot exceed that for exterior paint produced by more than one :

x2 − x1 ≤ 1

• Maximum daily demand for interior paint is two :

x2 ≤ 2

• The total tons must be non-negative :

x1, x2 ≥ 0

2.2.3 The Objective Function

The objective of this company is to determine the best product mix of exterior and interior paints that
maximizes the total daily profit. Written in mathematical form, we want to maximize:

f(x1, x2) = 5x1 + 4x2

2.2.4 Summary of problem

We want to maximize
f(x1, x2) = 5x1 + 4x2

subject to :
6x1 + 4x2 ≤ 24
x1 + 2x2 ≤ 6
x2 − x1 ≤ 1
x2 ≤ 2
x1, x2 ≥ 0

The next step is to use a software package to find the feasible solution, as we will show in the application
section.

2.3 A n-Variable example (Resource Allocation Problem)
The following example taken from [11] presents a real life situation with many variables which help to simplify
the understanding of the general formulation. We will look at a profit maximization problem that involves
allocating scarce resources among a few machines.

The problem
In this particular example the scarce resource is the time each machine is available for production. The
requirement for each machine (in hours per unit) are shown in Table 2 for each product produced. The letter
M represents the Machine of concern. The problem is to determine the weekly production with the aim of
maximizing profits.

Machine Product 1 Product 2 Product 3 Product 4 Product 5 Number of machines
M1 1.2 1.3 0.7 0.0 0.5 4
M2 0.7 2.2 1.6 0.5 1.0 5
M3 0.9 0.7 1.3 1.0 0.8 3
M4 1.4 2.8 0.5 1.2 0.6 7

Unit Profit 18 25 10 12 15

Table 2: Machine data and processing requirements
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2.3.1 Definition of variables

We define the following variables:
xj : quantity of product j produced j = 1, 2, ..., 5
f(x1, ..., x5) : weekly profit obtained

2.3.2 Constraints

The available number of hours on each machine is 40 times the number of machines and hence the total hours
available for the 4 machines is 160 hours. The constraints on each machine is given by:

M1 : 1.2x1 + 1.3x2 + 0.7x3 + 0.0x4 + 0.5x5 ≤ 160
M2 : 0.7x1 + 2.2x2 + 1.6x3 + 0.5x4 + 1.0x5 ≤ 160
M3 : 0.9x1 + 0.7x2 + 1.3x3 + 1.0x4 + 0.8x5 ≤ 160
M4 :1.4x1 + 2.8x2 + 0.5x3 + 1.2x4 + 0.6x5 ≤ 160
where xj ≥ 0 for j = 1, ..., 5

2.3.3 The Objective Function

The profit maximization criterion is given by:

f(x1, ..., x5) = 18x1 + 25x2 + 10x3 + 12x4 + 15x5

2.3.4 Summary of problem

We want to maximize

f(x1, ..., x5) = 18x1 + 25x2 + 10x3 + 12x4 + 15x5

subject to :

1.2x1 + 1.3x2 + 0.7x3 + 0.0x4 + 0.5x5 ≤ 160
0.7x1 + 2.2x2 + 1.6x3 + 0.5x4 + 1.0x5 ≤ 160
0.9x1 + 0.7x2 + 1.3x3 + 1.0x4 + 0.8x5 ≤ 160
1.4x1 + 2.8x2 + 0.5x3 + 1.2x4 + 0.6x5 ≤ 160
xj ≥ 0 for j = 1, ..., 5

Once again, the software package will be used to find the feasible solution as shown in the Proc LP section.

2.4 Methods of optimization
An optimization algorithm is used to determine the solution to a given problem whereby the algorithm is
executed repeatedly by comparing various solutions until an optimum solution is found. There are two types
of algorithms namely:

1. Deterministic algorithms : which uses specific rules for moving from one solution to another.

2. Stochastic algorithms : with probabilistic translation rules for moving from one solution to another.

We limit our scope of research to linear programming in SAS/OR software which provides a wide range of
procedures that can be used to solve various types of problems. Data describing the models are supplied in
a form appropriate for the particular type of problem, and a specific type of optimization algorithms is used
to make use of the special characteristics and structures of the problems that they solve. We will focus on
proc LP and the simplex method for solving linear programming problems.

The LP procedure, with the help of interactive features, provides various options and solution strategies
that enable the user to produce various kinds of intermediate and final solution. Iterations can be stoped
at any intermediate stage to view current results and if required, one can change the options or strategies
used then execution of procedure is resumed. The procedure makes use of a two-phase revised simplex
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method, which employs the Bartels-Golub update of the LU (Lower-Upper) decomposed basis matrix(basis
is decomposed into upper (U) and lower (L) triangular factors) to pivot between feasible solutions[1].

PROC LP goes through two phases in sloving an LP problem. In phase 1, it finds a basic feasible solution
using the Bartels-Golub update method while in phase 2 it finds an optimal solution using the simplex
method. The procedure handles unrestricted variables, lower-bounded variables, upper-bounded variables
and ranges on constraints and when no explicit lower bounds are specified, the procedure assumes that the
variables are bounded below by zero.

Integer programs are solved sequencially by the branch-and-bound technique. This sequence can be shown
using a tree. Each node of the tree is identified with a linear program derived from the problem, on the path
leading to the root of the tree. A problem with an active node is chosen then attempts to solve it using
the dual simplex algorithm. If a problem is infeasible, it is dropped but if it can be solved and does not
have an integer solution (i.e. a solution were all variables are considered as integers), it then defines two
new problems. The new problems each contain the parent problems, all of the constraints including the
appropriate additional one. Branching continues until either there are no active nodes or an integer solution
is found. [7]

2.4.1 The Simplex Method

In the development of the simplex method, two requirements are imposed on the constraints namely:

1. Constraints are equations with nonnegative right-hand side (except for nonnegativity variables).

2. All variables are nonnegative.

These requirements are put in order to standardize the simplex method calculations but various software
packages do accept nonnegative right-hand sides, inequality constraints and unrestricted variables.
There are two approaches used to explain and understand the iterative nature of the simplex method.
These include explanation using the graph method or the use of algebra to find the optimal solution.
We use an example taken and modified from [18] to illustrate these two approaches.

Suppose we want to maximize the objective function given by

f(x1, x2) = 2x1 + 3x2

subject to:
2x1 + x2 ≤ 4
x1 + 2x2 ≤ 5
x1, x2 ≥ 0

The solution space is then given by the following graph extracted and edited from[18]:
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Figure 1: Solution space of the example.

The method starts the investigation of the optimal solution at the origin where x1 = x2 = 0. The design
is such that the variable with the largest rate of improvement in f(x1, x2) is increased first followed by the
other variable. In this example the value of f(x1, x2) will increase first by two for each unit increase in x1

followed by three for each unit increase in x2, so that the rate of improvement in the value of f(x1, x2) is 2
for x1 and 3 for x2. We then choose to increase x2 first and move from point A (x1 = x2 = 0) to point B
as shown in the graph above. The simplex method will then increase the value of x1at point B to reach the
corner at point C, the optimum solution. The path of the simplex algorithm is therefore defined as from A
to B then to C with each corner along the path is associated with an iteration. The simplex method moves
alongside the edges of the solution space and cannot move directly from A to C cutting across the solution
space.

The algebraic approach requires defining variables s1 and s2 that transform the inequalities of the objective
function into equalities. The points A, B and C in Figure 1 are therefore represented by their basic and non-
basic variables as shown in Table 3 below:

Corner Point Basic variables Nonbasic (zero) variables
A s1, s2 x1, x2

B s1, x2 x1, s2
C x1, x2 s1, s2

Table 3: Algebraic solution table

From A to B, non-basic x2 at A becomes basic at B and basic s2 at A becomes non-basic at B. x2 is the
entering variable(because it enters the basic solution while s2 is the leaving variable because it leaves the
basic solution. In a similar way, at point B, x1 enters and s1 leaves, hence leading to the point C.

2.4.2 Computational details of the simplex method

We show through an example how the simplex iteration works. The rules for determining the entering and
leaving variables for stopping the computations when the optimum solution has been reached is discussed.
We refer back to our two-variable example (Section 2.2) of the company that produces paint (extracted and
modified from [18]). Recall that we want to maximize f(x1, x2) = 5x1 + 4x2 subject to:
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6x1 + 4x2 ≤ 24
x1 + 2x2 ≤ 6
x2 − x1 ≤ 1
x2 ≤ 2
x1, x2 ≥ 0

We define variables s1, ...,s4 (known as slack variables) that are used to transform the inequalities of the
objective function into equalities and then the above can be re-written as follows:

Maximize:

f(x1, x2, s1, ..., s4) = 5x1 + 4x2 + 0s1 + 0s2 + 0s3 + 0s4

subject to :

6x1 + 4x2 + s1 = 24
x1 + 2x2 + s2 = 6
x2 − x1 + s3 = 1
x2 + s4 = 2

x1, x2, s1, s2, s3, s4 ≥ 0 with the variables s1, ..., s4 taken as the slack or inactive variables associated with
the respective constraints. The starting simplex table can be summarised as follows in Table 4:

Basic f(.) x1 x2 s1 s2 s3 s4 Solution 1

f(.) 1 -5 -4 0 0 0 0 0 f(.)− row
s1 0 6 4 1 0 0 0 24 s1 − row
s2 0 1 2 0 1 0 0 6 s2 − row
s3 0 -1 1 0 0 1 0 1 s3 − row
s4 0 0 1 0 0 0 1 2 s4 − row

Table 4: Starting simplex table

The design of the table specifies the set of basic and non-basic variables as well as provides the solution
associated with the starting iteration. As we have shown earlier, the simplex iterations start at the origin,
i.e. (x1, x2) = (0, 0) , with the associated set of nonbasic and basic variables defined as:

• Nonbasic(zero) variables: (x1, x2)

• Basic variables: (s1, s2, s3, s4)

Substituting the nonbasic variables (x1, x2) = (0, 0), noting the special 0-1 arrangement of the coefficients
of f(.) and the basic variables (s1, s2, s3, s4) in the table, we obtain the following (that is, a corner point
solution when (x1, x2) = (0, 0)):

f(.) = 0
s1 = 24
s2 = 6
s3 = 1
s4 = 2

This information is shown in Table 4 by listing the basic variables in the left most ’Basic’ column and
their values (initial values) in the right most Solution column. The table therefore defines the current corner
by specifying its basic variables, their values as well as the corresponding value of the objective function, f(.)
and the nonbasic variables (those not listed in the Basic column) are always equal to zero. The objective

1Coefficients of the right hand side of the constraints.
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function f(.) = 5x1+4x2 shows that the solution can be improved by increasing x1 or x2. Using the argument
presented in Section 2.4.1, x1 is selected as the entering variable since it has the most positive coefficient.
Similarly, since the simplex table expresses the objective function as f(.) = −5x1 − 4x2 = 0, the entering
variable will correspond to the variable with the most negative coefficient in the objective equation. This is
referred to as the Optimality Condition.

In order to find the the leaving variable from the simplex table, determine the minimum non-negative
ratios of the right-hand side of the equations (Solution column) to the corresponding constraint coefficients
under the entering variable, x1, as shown in table 5 below.

Basic Entering x1 Solution Ratio (intercept)
s1 6 24 x1 = 24

6 = 4 (minimum)
s2 1 6 x1 = 6

1 = 6
s3 -1 1 x1 = 1

−1 = −1 (ignore)
s4 0 2 x1 = 2

0 =∞ (ignore)
Conclusion: x1 enters and s1leaves

Table 5: Ratios for determining entering and leaving variables

In summary, we conclude that x1 is the entering variable because it has the most positive coeffient in the
objective function and s1 is the leaving variable because it has the minimum non-negative ratio or intercept
as shown in Table 5 above.

Figure 2: Graphical interpretation of the simplex method ratios

The minimum nonnegative ratio automatically identifies the current basic variable s1 as the leaving
variable and assigns the entering variable x1 the new value of 4. The graph in Figure 2 shows that the
computed ratios are the intercepts of the constraints with the entering variable (x1) axis. It can be seen
that the value of x1 must be increased to 4 at point B, which is the smallest nonnegative intercept with the
x1-axis. An increase beyond B to x1 = 6 is infeasible. At this point, the current basic variable s1 associated
with constraint 1 assumes a zero value and becomes the leaving variable. This is refered to as the feasibility
condition because it guarantees the feasibility of the new solution. The new solution point B is determined by
exchanging the entering variable x1 and the leaving variable s1 in the simplex table to produce the following
sets of nonbasic and basic variables:
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• Nonbasic (zero) variables at B: (s1, x2)

• Basic variables at B: (x1, s2, s3, s4)

The exchanging process is based on the Gauss-Jordan row operations which identifies the entering variable
column as the Pivot Column and the leaving variable row as the Pivot Row with the intersection of the pivot
column and the pivot row is called the Pivot Element. In Table 4 above, the pivot column is then the one
labelled x1 and the pivot row is labelled s1.

The Gauss-Jordan computations needed to produce the new basic solution include two types.

1. Pivot row

a. Replace the leaving variable in the basic column with the entering variable.
b. New pivot row equal to Current pivot row divided by pivot element.

2. All other rows, including f(.)

New Row = (Current row) − (Its pivot column coefficient) × (New pivot row)

These computations are applied to the rest of Table 4 as follows:

1. Replace s1 in the Basic column with x1:

New x1-row = Current s1-row ÷6
= (0 6 4 1 0 0 0 24 )
=(0 1 2

3
1
6 0 0 0 4)

2. New f(.)-row = Current f(.)-row −(−5)× New x1-row

= (1 −5 −4 0 0 0 0 0 )− (−5)× (0 1 2
3

1
6 0 0 0 4 )

= (1 0 − 2
3

5
6 0 0 0 20 )

3. New s2-row = Current s2-row−(1)× New x1-row

= (0 1 2 0 1 0 0 6 )−(1)× (0 1 2
3

1
6 0 0 0 4 )

= (0 0 4
3 −

1
6 1 0 0 2 )

4. New s3-row = Current s3-row −(−1)× New x1-row

= (0 −1 1 0 0 1 0 1 )−(−1)× (0 1 2
3

1
6 0 0 0 4 )

= (0 0 5
3

1
6 0 1 0 5 )

5. New s4-row = Current s4-row −(0)× New x1-row

= (0 0 1 0 0 0 1 2 )−(0)× (0 1 2
3

1
6 0 0 0 4 )

= (0 0 1 0 0 0 1 2 )

The new basic solution is therefore given by (x1, s2, s3, s4, ) and the new table becomes:

⇓
Basic f(.) x1 x2 s1 s2 s3 s4 Solution
f(.) 1 0 − 2

3
5
6 0 0 0 20

x1 0 1 2
3

1
6 0 0 0 4

⇐ s2 0 0 4
3 − 1

6 1 0 0 2
s3 0 0 5

3
1
6 0 1 0 5

s4 0 0 1 0 0 0 1 2

Table 6: New simplex solution table
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The new table has the same properties as the starting table. Setting the new nonbasic variables x2 and
s2 to zero, the Solution column automatically yields the new basic solution (x1 = 4, s2 = 2, s3 = 5, s4 = 2).
The corresponding new objective value is f(.) = 20 , which is consistent with:

New f(.) = Old f(.) + New x1-value × its objective coefficient
= 0 + 4× 5 = 20

In Table 6 above, the optimality condition shows that x2 is the entering variable. The feasibility condition
produces the following table:

Basic Entering
x2

Solution Ratio

x1
2
3 4 x2 = 4÷ 2

3 = 6
s2

4
3 2 x2 = 2÷ 4

3 = 1.5 (minimum)
s3

5
3 5 x2 = 5÷ 5

3 = 3
s4 1 2 x2 = 2÷ 1 = 2

Table 7: Feasible solution table

Therefore, s2 leaves the basic solution and new value of x2 is 1.5. The corresponding increase in f(.) is
2
3x1 = 2

3 × 1.5 = 1, which yields new f(.) = 20 + 1 = 21.

Replacing s2 in the Basic column with entering x2, the following Gauss-Jordan row operations are applied:

1. New pivot x2-row = Current s2-row ÷ 4
3

2. New f(.)-row = Current f(.)-row −(− 2
3 )× New x2-row

3. New x1-row = Current x1-row −( 23 )× New x2-row

4. New s3-row = Current s3-row −( 53 )× New x2-row

5. New s4-row= Current s4-row −(1)× New x2-row

The computations above produce the following table:

Basic f(.) x1 x2 s1 s2 s3 s4 Solution
f(.) 1 0 0 3

4
1
2 0 0 21

x1 0 1 0 1
4 − 1

2 0 0 3
x2 0 0 1 − 1

8
3
4 0 1 3

2

s3 0 0 0 3
8 − 5

4 1 0 5
2

s4 0 0 0 1
8 − 3

4 0 1 1
2

Table 8: Optimal solution of simplex method

Based on the optimality condition, the f(.)-row coefficients associated with the nonbasic variables, s1 and
s2, are non-negative and thus Table 8 is optimal. The optimal values of the variables in the Basic column
are given in the right-hand-side Solution column and the optimum solution can be interpreted as follows:
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Decision variable Optimum value Recommendation
x1 3 Produce 3 tons of exterior paint daily
x2

3
2 Produce 1.5 tons of interior paint daily

f(x1, x2) 21 Daily profit is R21000

Table 9: Interpretation of the optimal solution

The solution also gives the status of the resources. If the model uses a resource completely then the
resource is defined as scarce otherwise the resource is abundant. This information is obtained from the
optimum table, Table 8, by checking the value of the slack/inactive variable (s1, ..., s4) associated with the
constraint representing the resource. A slack value of zero shows that the resource is used completely and
is classified as scarce otherwise a positive slack shows that the resource is abundant. Recall that when
determining the entering and leaving variables we made s1 and s2 to be equal to zero since they were leaving
variables. The values of s3 and s4 are found by reading from the right-hand-side solution column of Table 8.
The following table then summaries the classification of the constraints of the model:

Resource Slack Status
Raw Material, R1 s1 = 0 Scarce
Raw material, R2 s2 = 0 Scarce

Market limit s3 = 5
2 Abundant

Demand limit s3 = 1
2 Abundant

Table 10: Classification of resources

From the above we see how the derivation of the optimal solution is tedious for a 2-variable case. We
therefore introduce a more simplified way of finding an optimal solution. This is through the use of proc LP
in SAS©which solves LPs (using a general simplex algorithm) and mixed integer programming problems.

2.4.3 Other optimization procedures

Although we focus on proc LP, SAS/OR software has other optimization procedures namely [7]:

• PROC NETFLOW - which solves network optimization problems, which are LPs with a dominant
network (node and arc) structure. These are specialized simplex methods.

• PROC INTPOINT - an additional procedure focused on the use of the interior-point algorithm in
solving linear programs and network optimization problems.

• PROC NLP - which solves nonlinear programming problems, quadratic programming problems and
least-squares problems. There are different available techniques which include:

– Trust-region method
– Newton-Raphson method with line search
– Quadratic active set technique
– Quasi-Newton methods
– Double-dogleg method
– Conjugate gradient methods
– Newton-Raphson method with ridging
– Nelder-Mead simplex method
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– Hybrid quasi-Newton methods

– Levenberg-Marquardt method

• PROC TRANS - which solves transportation problems, were items must be moved from a set of “supply”
locations to a set of “demand” locations at lowest cost.

2.4.4 The Simplex algorithm

We summarize the simplex method in a general case and also give a summary of the computational details.
The following conditions must hold.

1. Optimality condition: The entering variable in a maximization (minimization) problem is the nonbasic
variable having the most negative (positive) coefficient in the f(x1, x2)-row. The optimum solution is
reached at the iteration where all the f(x1, x2)-row coefficients of the nonbasic variables are nonnegative
(nonpositive).

2. Feasibility condition: The leaving variable is the basic variable associated with the smallest nonnegative
ratio (with strictly positive denominator).

Gauss-Jordan row operations:

1. Pivot row:

a : Replace the leaving variable in the Basic column with the entering variable.

b : New pivot row = Current pivot row/Pivot element

2. All other rows, including f(x1, x2) New row = (Current row) − (pivot column coefficient) × (New pivot
row)

The steps of the simplex algorithm are:

Step 1: Determine a starting basic feasible solution.

Step 2: Select an entering variable using the optimality condition. Stop if there is no entering variable; the last
solution is optimal. Else, go to step 3.

Step 3: Select a leaving variable using the feasibility condition.

Step 4: Determine the new basic solution by using the appropriate Gauss-Jordan computations. Go to step 2.

The simplex table also gives additional information that includes:

• Post-optimal analysis, which deals with finding a new optimal solution when the data of the model are
changed.

• Sensitivity analysis, which deals with determining the conditions that will keep the current solution
unchanged.

2.5 Proc LP
2.5.1 SAS Code of Two examples and output

A Two Variable Example

We refer back to the two variable example in Section 2.2. As mentioned in the last paragraph of Section 2.2,
we are going to use PROC LP as our software package to find the feasible solution. The following is the code
for the example:
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data;
format _row_ $7. ;
input _row_ $ x1 x2 _type_ $ _rhs_;
datalines;
object 5 4 max .
c1 6 4 le 24
c2 1 2 le 6
c3 -1 1 le 1
c4 . 2 UPPERBD .
;
proc lp;
run;

The SAS program above is divided into two parts which are the data step and the PROC LP procedure
step. The data step is used for storing data in a data set that can be used by the LP procedure to solve the
problem. The linear program is built using the DATA step and the model is saved in SAS as sparse input
format for PROC LP. The _RHS_, _ROW_, and _TYPE_variables are special variables in PROC LP for
the right-hand-side, row variable, variable, and type variable [7]. Table 11 gives a description of the above
code in relation to the example given in Section 2.2.
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Code line Explanation Relation to the Example
data; This line specifies the name of the

data set. In this example the data set
name has not been specified therefore
proc lp will use the recent formulated
data set to carry out the analysis.

data paint;

format _row_ $7. ; The $ sign specifies that the variable is
made of characters. The line then

formats the variable to character type
variable and also specifies the length or
number of characters that the variable
i.e. the variable _row_ should have.

input _row_ $ x1 x2
_type_ $ _rhs_;

Defines the decision variables for the
objective function and the right hand
side of the constraints. The _row_

variable contains names of constraints
and objective function (names of

rows), the _type_ variable contains
the type of each observation and
_rhs_ contains right hand side
constants for the constraints.

The decision variables are x1

and x2.

datalines; Specifies the constraints for the
objective function and opens a

platform for entering data to the data
set.

object 5 4 max . This is the objective function of the
problem. The max specifies that we
are maximising the function and the

dot shows that it does not have a right
hand side value.

f(x1, x2) = 5x1 + 4x2

c1 6 4 le 24 Coeffients for the less than or equal to
inequality (le) constrained row.

6x1 + 4x2 ≤ 24

c2 1 2 le 6 Coeffients for the less than or equal to
inequality (le) constrained row.

x1 + 2x2 ≤ 6

c3 -1 1 le 1 Coeffients for the less than or equal to
inequality (le) constrained row.

x2 − x1 ≤ 1

c4 . 2 UPPERBD . Identifies the upper bound on the
decision variable corresponding to the
position in which the numeric value is.

x2 ≤ 2

; Closes the platform for entering data
to the data set

proc lp; Solves the problem using the LP
Procedure.

run; Submits the code so that the analysis
can be made.

Table 11: Description of code for Section 2.2

When running the above code in SAS, four summaries are displayed that include the problem summary,
the variable summary, the solution summary,and the constraint summary. The outputs of interest are the
variable summary and the solution summary (refer to appendix for the complete output and Section 2.5.2
for a complete description of the output).
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Table 12 displays the solution summary for the above SAS code which indicates whether or not an optimal
solution was found. In this example, the procedure executes successfully (with an optimal solution), with
21 as the value of the objective function. Also included in this section of output is the number of phase 1
(Bartels-Golub update method) and phase 2 iterations (simplex method), number of variables used in the
initial basic feasible solution and time used to solve the problem. The other details of the output will be
explained in Section 2.5.2.

The LP Procedure

Solution Summary
Terminated Successfully

Objective Value 21

Phase 1 Iterations 0
Phase 2 Iterations 2
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0

Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1.00E-08
Infinity 1.797693E308

Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100

Time Limit (seconds) 120

Table 12: Solution Summary for example in Section 2.2

The SAS System

The LP Procedure

Variable Summary
Col Variable Name Status Type Price Activity Reduced Cost
1 x1 BASIC NON-NEG 5 3 0
2 x2 BASIC UPPERBD 4 1.5 0
3 c1 SLACK 0 0 -0.75
4 c2 SLACK 0 0 -0.5
5 c3 BASIC SLACK 0 2.5 0

Table 13: Variable summary output for example in section 2.2

The Variable Summary in Table 13 gives the value of the structural variables at optimality and tells
how to produce the two types of paint in order to maximize the total daily profit. The activity column
gives the optimal values, which in this example are three units of interior paint and 1.5 units of exterior
paint to be produced. The reduced cost associated with each nonbasic variable (variables without the term
“Basic” under the status column) is the marginal value of that variable if it is brought into the basis. This
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is the same as the description provided in Section 2.4.2 in respect to entering and leaving variables. This
means that the objective function value would increase by the reduced cost of a nonbasic variable if the
variable’s value increases by one or decrease by the reduced cost of a nonbasic variable if that variable’s value
decreases by one. Basic variables have a zero reduced cost as also mentioned in Section 2.4.2. At optimality,
for a maximization problem as is in this example, nonbasic variables that are not at an upper bound have
nonpositive reduced costs. Nonbasic variables at upper bounds have nonnegative reduced costs, showing that
increasing the upper bound (if the reduced cost is not zero) does not decrease the objective.

A n-Variable example (Resource Allocation problem)

We also refer back to the resourse allocation example in Section 2.3. As mentioned in the last paragraph of
Section 2.3, we are going to use PROC LP as our software package to find the feasible solution. The following
is the SAS code for the example:

data;
format _row_ $7. ;
input _row_ $ p1 p2 p3 p4 p5 _type_ $ _rhs_;
datalines;
object 18 25 10 12 15 max .
m1 1.2 1.3 0.7 0 0.5 le 160
m2 0.7 2.2 1.6 0.5 1 le 200
m3 0.9 0.7 1.3 1 0.8 le 120
m4 1.4 2.8 0.5 1.2 0.6 le 280
;
proc lp;
run;

Table 14 gives a description of the above code in relation to the example given in Section 2.3. The
explanations are similar to those found in example given above. In Table 14, the decision variables x1, ..., x5

are the exact same the variables as p1, ..., p5 that are written in the code.

As in the previous section, the above code produces four summary tables that can be used to analyse and
conclude on the problem. We focus on the solution summary and the variable summary as these provide the
relevant information for our purpose. For this example, the process terminated successfully with an objective
value of 2988.73 with four phase 2 iterations as shown in Table 15 below.
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Code line Explanation Relation to the Example
data; This line specifies the name of the data

set. In this example the data set name
has not been specified therefore so proc lp
will use the recent formulated data set to

carry out the analysis.

data allocation;

format _row_ $7. ; The $ sign specifies that the variable is
made of characters. The line then formats
the variable to character type variable

and also specifies the length or number of
characters that the variable i.e. the

variable _row_ should have.
input _row_ $ p1 p2 p3 p4 p5

_type_ $ _rhs_;
Defines the decision variables for the

objective function and the right hand side
of the constraints. The _row_ variable

contains names of constraints and
objective function (names of rows), the

_type_ variable contains the type of each
observation and _rhs_ contains right
hand side constants for the constraints.

The decision variables are x1, ...,
x5.

datalines; Specifies the constraints for the objective
function and opens a platform for
entering data to the data set.

object 18 25 10 12 15 max . This is the objective function of the
problem. The max specifies that we are
maximising the function and the dot

shows that it does not have a right hand
side value.

f(x1, ..., x5) =
18x1 + 25x2 + 10x3 + 12x4 + 15x5

m1 1.2 1.3 0.7 0 0.5 le 160 Coeffients for the less than or equal to
inequality (le) constrained row.

1.2x1 + 1.3x2 + 0.7x3 + 0.0x4 +
0.5x5 ≤ 160

m2 0.7 2.2 1.6 0.5 1 le 200 Coeffients for the less than or equal to
inequality (le) constrained row.

0.7x1 + 2.2x2 + 1.6x3 + 0.5x4 +
1.0x5 ≤ 160

m3 0.9 0.7 1.3 1 0.8 le 120 Coeffients for the less than or equal to
inequality (le) constrained row.

0.9x1 + 0.7x2 + 1.3x3 + 1.0x4 +
0.8x5 ≤ 160

m4 1.4 2.8 0.5 1.2 0.6 le 280 Coeffients for the less than or equal to
inequality (le) constrained row.

1.4x1 + 2.8x2 + 0.5x3 + 1.2x4 +
0.6x5 ≤ 160

; Closes the platform for entering data to
the data set

proc lp; Solves the problem using the LP
Procedure.

run; Submits the code so that the analysis can
be made.

Table 14: Description of code for Section 2.3

23



The SAS System

The LP Procedure

Solution Summary
Terminated Successfully

Objective Value 2988.73

Phase 1 Iterations 0
Phase 2 Iterations 4
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0

Initial Basic Feasible Variables 6
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1.00E-08
Infinity 1.797693E308

Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 1E+08
Maximum Integer Iterations 100

Time Limit (seconds) 120

Table 15: Solution summary for example in Section 2.3

Table 16 below shows how much should be allocated to resourses given the available constraints. The
reduced cost of P3 indicates that if this variable were increased from 0 to 1 the objective value (or profit)
will decrease by 13.53. When a nonbasic variable changes, the basic variables change so that the equations
defining the solution remain satisfied. The reduced costs are derivatives that indicate the rate of change.
The activity column shows that in order to maximize the profit 59 units of product 1, 63 units of product 2,
zero units of product 3, 11 units of product 4 and 15 units of product 5 need to be produced. Jensen et al
[11] used the Math Programming add-in of Excel (solved the problem with the Jensen LP add-in) and got
the same results as the ones found with PROC LP.
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The SAS System

The LP Procedure

Variable Summary
Col Variable Name Status Type Price Activity Reduced Cost
1 p1 BASIC NON-NEG 18 58.9614 0
2 p2 BASIC NON-NEG 25 62.6346 0
3 p3 NON-NEG 10 0 -13.53
4 p4 BASIC NON-NEG 12 10.5763 0
5 p5 BASIC NON-NEG 15 15.6428 0
6 m1 SLACK 0 0 -4.8195
7 m2 SLACK 0 0 -5.2016
8 m3 SLACK 0 0 -8.9635
9 m4 SLACK 0 0 -0.3631

Table 16: Variable Summary for example in Section 2.3

2.5.2 General PROC LP SAS Code and Output

SAS code

As mentioned above, a data set needs to be created first for it to be used by PROC LP, usually using dense
format where the model is written in the way that its formulated. In the DATA step, the variable names are
the decision/input variables, the rows are the constraints, and the coefficients are given as the values for the
structural variables. The same model can be specified in the sparse format which enables to omit the zero
coefficients in the description of the linear program.

The LP procedure has some key words that are reserved for specific purposes. Table 17 explains the
function of each key variable and also gives the data format that it can be used in.

Variable name Description Data Format
_COEF_ Variables that contain coefficients sparse
_COL_ Variable that contains column names sparse
_ROW_ Variable that contains names of

constraints and objective functions
(names of rows) for the dense format

sparse

_ID_ Alternative for the ROW statement
_RANGE_ Variable (column) that contains the range

constant for the dense format for range
analysis

sparse

_RHS_ Variables (columns) that contains right
hand side constants for the dense format

sparse

_RHSSEN_ Variables (columns) that define right
hand side change vectors for the dense

format for sensitivity analysis

sparse

_TYPE_ Variable that contains the type of each
observation

_VAR_ Structural (decision) variables dense

Table 17: Variable Type List [7]

For the dense format, a model’s row names appear as character values in a SAS data set. For the sparse
format, both the row and the column names of the model appear as character values in the data set. When
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referring to these names in the problem definition statement or other LP statements, you must use single or
double quotes around them.

SAS Output

When the SAS code is run, i.e. submited, there are four summary tables that are produced. Tables 18
through to 21 describe what each of the four summary tables entail (taken from SAS help [7]):

Problem Summary
Item Description

Type of optimization and the name of the
objective row (as identified by the ID or

ROW variable)

Max OBJ

Name of the SAS variable that contains
the right-hand-side constants

_RHS_

Name of the SAS variable that contains
the type keywords

_TYPE_

Density of the coefficient matrix after the
slack and surplus variables have been

appended

Density - The ratio of the number of
nonzero elements to the number of total

elements
Number of each type of variable in the

mathematical program
Number of each type of constraint in the

mathematical program

Table 18: Problem Summary Output

The Solution Summary
Item Description

Termination status of the procedure Indicates if the procedure terminated succesfully
or not

Objective value of the current solution The optimal value of the objective function
Number of phase 1 iterations that were

completed
Number of Bartels-Golub update method

iterations
Number of phase 2 iterations that were

completed
Number of simplex method iterations

Number of phase 3 iterations that were
completed

Number of integer iterations that were
completed

Number of integer feasible solutions that were
found

Number of initial basic feasible variables
identified

Time used in solving the problem excluding
reading the data and displaying the solution
Number of inversions of the basis matrix
current value of several of the options

Table 19: Solution Summary Outout
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Variable Summary
Item Description
Col Column number associated with each structural

or logical variable in the problem
Variable Name Name of each structural or logical variable in

the problem i.e. the name of the constraint. If
no ID variable is specified, the procedure names
the logical variable _OBSn_, where is n the
observation that describes the constraint.

Status Variable’s status in the current solution. The
status can be BASIC, DEGEN, ALTER, blank,

LOWBD, or UPPBD.
BASIC if variable is basic
DEGEN basic variable whose activity

is at its input lower bound
ALTER a nonbasic variable that can

be brought into the basis to
define an alternate optimal

solution
blank a nonbasic variable at its

default lower bound 0
LOWBD a nonbasic variable at its

lower bound
UPPBD a nonbasic variable at its

upper bound.

Type Type of a variable ( non-negative, binary, slack
or other value restriction).

Price Value of the objective coefficient associated with
each variable

Activity Activity of the variable in the current solution
Reduced Cost Variable’s reduced cost in the current solution

Table 20: Variable Summary Output
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Constraint Summary
Item Description
Row Constraint row number and its ID

Constraint Name Kinds of constraints include:
OBJECTIVE defines the objective function

LE less than or equal to,
constrained row

EQ equality constrained row
GE greater than or equal to,

constrained row
RANGELE range constrained row that

has ’less than or equal to’
variables

RANGEEQ range constrained row that
has ’equal to’ variables

RANGEGE range constrained row that
has ’greater than or equal to’

variables
FREE row nonbinding constraint

Type number of the slack or surplus variable
associated with the constraint row

S/S Col RHS value of the right-hand-side constant associated
with the constraint row

Activity current activity of the row (excluding logical
variables)

Dual Activity current activity of the dual variable (shadow
price) associated with the constraint row

Table 21: Constraint Summary Output

3 Application - The Allocation Problem
To illustrate the use of the the LP procedure in an allocation set up, we focus on an assignment problem were
there are four machines that can produce any of six grades of cloth and there are five customers that demand
different amounts of each grade of cloth. The return from supplying a customer with a demanded grade
depends on the machine on which the cloth was made and also the machine capacity depends both upon the
specific machine used and the grade of cloth made. We want to maximize the objection function thereby
maximizing the return from selling the cloth. Futhermore, we illustrate the use of the sparse input format for
storing data in SAS. We apply the above theory to the example taken from SAS Help and Documentation.[7]

3.1 The Problem

Definition of variables
We define the following variables

i - customer.
j - grade of cloth.
k - machine.
xijk - amount of cloth of grade j made on machine k for customer i.
rijk - return from selling one unit of grade j cloth made on machine k to customer i.
dij- demand for grade j cloth by customer i.
cjk- number of units of machine k required to produce one unit of grade j cloth.
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ak - number of units of machine k available.

Objective function and Constraints
We want to maximize

∑
ijk

rijkxijk

subject to:
∑
k

xijk = dij for all i and j∑
ij

cjkxijk ≤ ak for all k

xijk ≥ 0 for all i, j and k

In the above functions, our objective is to msximize the return that we get from selling each grade of
cloth to different customers. The total amount of cloth of grade j made on each machine k for customer i
for all machines must be equal to the demand for grade j cloth by customer i. The number of machine units
produced by each machine should not exceed the number of units available for machine k and all amounts of
cloth produced is positive.

3.2 Data Formation
In order for Proc LP to formulate a solution, the data should be stored in a way that the procedure can
use and that is in the sparse format form. The data used is first stored in three data sets which will then
be converted to the sparse format. The following code shows how the objective function is built in a linear
program, with the other contraints built in a similar way found the appendix to form a complete model.

Algorithm 1 Generating the Objective function
/* generate the objective function */
_type_=’MAX’;
_row_=’OBJ’;
do k=1 to nmach;
do i=1 to ncust;
link readobj; /* read the objective coefficient data */
do j=1 to ngrade;
if grade{j}^=. then do;
_col_=’X’||put(i,1.)||put(j,1.)||put(k,1.); _coef_=grade{j};
output;

end;
end;

end;
end;

Table 22 below shows a preview of how the objective will look when the linear program has been formulated
and the rest of the data is stored in a similar way.
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_type_ _row_ _col_ _coef_

MAX OBJ X111 102
MAX OBJ X121 140
MAX OBJ X131 105
MAX OBJ X141 105
MAX OBJ X151 125
MAX OBJ X161 148
MAX OBJ X211 115
MAX OBJ X221 133
MAX OBJ X231 118
MAX OBJ X241 118
MAX OBJ X251 143
MAX OBJ X261 166
MAX OBJ X311 70

Table 22: Sparse format for the Objective function

3.3 Solution
Algorithm 2 provides the program for solving the model and saves the solution to a dataset called Primal.

Algorithm 2 Proc LP procedure
proc lp data=model sparsedata noprint primalout=primal;
run;

The program terminated successfully with an objective value of 871426. The solution summary and
problem summary in the appendix give the output produces by the LP procedure.

The solution is then tabulated so as to produce a comprehensive report on the allocation of the cloths to
different machines as per the demand of customers. Table 23 shows the solution of the allocation problem
using PROC TABULATE (code provided in the appendix). For example, customer 1 gets 100 units of grade
1 made from machine 4, 100 units of grade 2 from machine 1, 150 units of grade 3 from machine 1, 150 units
of grade 4 from machine 1, 175 units og grade 5 from machine 1 and 250 units of grade 6 from machine 1.
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An Assignment Problem

grade
1 2 3 4 5 6
amount amount amount amount amount amount
Sum Sum Sum Sum Sum Sum

machine customer
1 1 . 100 150 150 175 250

2 . . 300 . . .
3 . . 256.72 210.31 . .
4 . . 750 . . .
5 . 92.27 . . . .

2 3 . . 143.28 . 340 .
5 . . 300 . . .

3 2 . . . 275 310 325
3 . . . 289.69 . .
4 . . . 750 . .
5 . . . . 210 360

4 1 100 . . . . .
2 300 125 . . . .
3 400 . . . . .
4 250 . . . . .
5 . 507.73 . . . .

Table 23: Solution of the Allocation Problem

4 Conclusion
The LP procedure is a very useful tool in solving linear programs, integer programs, and mixed-integer
programs. It also performs parametric programming, range analysis, and reports on solution sensitivity to
changes in the right-hand-side constants and price coefficients. It has been shown that the procedure works
very well utilising the simplex method in solving the problem.

The short side of the LP procedure is that it can only solve linear problems. SAS also provides other
packages that can help solve both linear and non linear problems. These include the OPTMODEL procedure
and the procedures stated in section 2.4.3.

More research can still be done in exploring the limits of the LP procedure in SAS especially if there are
more constraints. Also the study of other procedures can help enhance solving problems of any kind easily
and faster.
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5 Appendix

5.1 Example Section 2.2

SAS code for example in section 2.2
data;

format _row_ $7. ;
input _row_ $ x1 x2 _type_ $ _rhs_;
datalines;
object 5 4 max .
c1 6 4 le 24
c2 1 2 le 6
c3 -1 1 le 1
c4 . 2 UPPERBD .
;
proc lp;
run;

SAS output for example in section 2.2

The SAS System

The LP Procedure

Problem Summary
Objective Function Max object

Rhs Variable _rhs_
Type Variable _type_

Problem Density (%) 60

Variables Number

Non-negative 1
Upper Bounded 1

Slack 3

Total 5

Constraints Number

LE 3
Objective 1

Total 4
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The SAS System

The LP Procedure

Solution Summary
Terminated Successfully

Objective Value 21

Phase 1 Iterations 0
Phase 2 Iterations 2
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0

Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1.00E-08
Infinity 1.797693E308

Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100

Time Limit (seconds) 120

The SAS System

The LP Procedure

Variable Summary
Col Variable Name Status Type Price Activity Reduced Cost
1 x1 BASIC NON-NEG 5 3 0
2 x2 BASIC UPPERBD 4 1.5 0
3 c1 SLACK 0 0 -0.75
4 c2 SLACK 0 0 -0.5
5 c3 BASIC SLACK 0 2.5 0

The SAS System

The LP Procedure

Constraint Summary
Row Constraint Name Type S/S Col Rhs Activity Dual Activity
1 object OBJECTVE . 0 21 .
2 c1 LE 3 24 24 0.75
3 c2 LE 4 6 6 0.5
4 c3 LE 5 1 -1.5 0
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5.2 Example Section 2.3

SAS code
data;

format _row_ $7. ;
input _row_ $ p1 p2 p3 p4 p5 _type_ $ _rhs_;
datalines;
object 18 25 10 12 15 max .
m1 1.2 1.3 0.7 0 0.5 le 160
m2 0.7 2.2 1.6 0.5 1 le 200
m3 0.9 0.7 1.3 1 0.8 le 120
m4 1.4 2.8 0.5 1.2 0.6 le 280
;
proc lp;
run;

SAS output

Table 24: Add caption
The SAS System

The LP Procedure

Problem Summary
Objective Function Max object

Rhs Variable _rhs_
Type Variable _type_

Problem Density (%) 63.89

Variables Number

Non-negative 5
Slack 4

Total 9

Constraints Number

LE 4
Objective 1

Total 5
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The SAS System

The LP Procedure

Solution Summary
Terminated Successfully

Objective Value 2988.73

Phase 1 Iterations 0
Phase 2 Iterations 4
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0

Initial Basic Feasible Variables 6
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1.00E-08
Infinity 1.797693E308

Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 1E+08
Maximum Integer Iterations 100

Time Limit (seconds) 120

The SAS System

The LP Procedure

Variable Summary
Col Variable Name Status Type Price Activity Reduced Cost
1 p1 BASIC NON-NEG 18 58.9614 0
2 p2 BASIC NON-NEG 25 62.6346 0
3 p3 NON-NEG 10 0 -13.53
4 p4 BASIC NON-NEG 12 10.5763 0
5 p5 BASIC NON-NEG 15 15.6428 0
6 m1 SLACK 0 0 -4.8195
7 m2 SLACK 0 0 -5.2016
8 m3 SLACK 0 0 -8.9635
9 m4 SLACK 0 0 -0.3631
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The SAS System

The LP Procedure

Constraint Summary
Row Constraint Name Type S/S Col Rhs Activity Dual Activity
1 object OBJECTVE . 0 2988.73 .
2 m1 LE 6 160 160 4.81951
3 m2 LE 7 200 200 5.2016
4 m3 LE 8 120 120 8.96348
5 m4 LE 9 280 280 0.3631
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5.3 Application Section 3

Data for Generating constraints

Algorithm 3 Datasets for the Constraints
title ’An Assignment Problem’;
data object;
input machine customer grade1 grade2 grade3 grade4 grade5 grade6;
datalines;
1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3 70 108 83 83 88 86
1 4 79 117 87 87 107 105
1 5 77 115 90 90 105 148
2 1 123 150 125 124 154 .
2 2 130 157 132 131 166 .
2 3 103 130 115 114 129 .
2 4 101 128 108 107 137 .
2 5 118 145 130 129 154 .
3 1 83 . . 97 122 147
3 2 119 . . 133 163 180
3 3 67 . . 91 101 101
3 4 85 . . 104 129 129
3 5 90 . . 114 134 179
4 1 108 121 79 . 112 132
4 2 121 132 92 . 130 150
4 3 78 91 59 . 77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145
;

data demand;
input customer grade1 grade2 grade3 grade4 grade5 grade6;
datalines;
1 100 100 150 150 175 250
2 300 125 300 275 310 325
3 400 0 400 500 340 0
4 250 0 750 750 0 0
5 0 600 300 0 210 360
;

data resource;
input machine grade1 grade2 grade3 grade4 grade5 grade6 avail;
datalines;
1 .250 .275 .300 .350 .310 .295 744
2 .300 .300 .305 .315 .320 . 244
3 .350 . . .320 .315 .300 790
4 .280 .275 .260 . .250 .295 672
;
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Linear Programming Model

Algorithm 4 Building Linear programming Constraints
/* build the linear programming model */
data model;
array grade{6} grade1-grade6;
length _type_ $ 8 _row_ $ 8 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
ncust=5; nmach=4; ngrade=6;
/* generate the objective function */
_type_=’MAX’; _row_=’OBJ’;
do k=1 to nmach; do i=1 to ncust;
link readobj; /* read the objective coefficient data */
do j=1 to ngrade;
if grade{j}^=. then do;
_col_=’X’||put(i,1.)||put(j,1.)||put(k,1.);
_coef_=grade{j};
output;
end;
end; end; end;
/* generate the demand constraints */
do i=1 to ncust;
link readdmd; /* read the demand data */
do j=1 to ngrade;
if grade{j}^=. then do;
_type_=’EQ’;
_row_=’DEMAND’||put(i,1.)||put(j,1.);
_col_=’_RHS_’;
_coef_=grade{j};
output;
_type_=’ ’;
do k=1 to nmach;
_col_=’X’||put(i,1.)||put(j,1.)||put(k,1.);
_coef_=1.0; output;
end; end; end; end;
/* generate the machine constraints */
do k=1 to nmach;
link readres; /* read the machine data */
_type_=’LE’;
_row_=’MACHINE’||put(k,1.);
_col_=’_RHS_’;
_coef_=avail;
output;
_type_=’ ’;
do i=1 to ncust;
do j=1 to ngrade;
if grade{j}^=. then do;
_col_=’X’||put(i,1.)||put(j,1.)||put(k,1.);
_coef_=grade{j};
output; end;
end; end; end;
readobj: set object;
return;
readdmd: set demand;
return;
readres: set resource;
return;
run;
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SAS Output - Application

An Assignment Problem

The LP Procedure

Problem Summary
Objective Function Max OBJ
Rhs Variable _RHS_
Type Variable _type_
Problem Density (%) 5.31

Variables Number

Non-negative 120
Slack 4

Total 124

Constraints Number

LE 4
EQ 30
Objective 1

Total 35

Table 25: Problem Summary
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An Assignment Problem

Solution Summary
Terminated Successfully
Objective Value 871426

Phase 1 Iterations 0
Phase 2 Iterations 40
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 36
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1.00E-08
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

Table 26: Solution Summary

Tabulating the Solution

Algorithm 5 Tabulating the Solution
data solution;
set primal;
keep customer grade machine amount;
if substr(_var_,1,1)=’X’ then do;
if _value_^=0 then do;
customer = substr(_var_,2,1);
grade = substr(_var_,3,1);
machine = substr(_var_,4,1);
amount = _value_;
output;
end; end;
run;
proc tabulate data=solution;
class customer grade machine;
var amount;
table (machine*customer), (grade*amount);
run;
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Abstract

The normal model is widely used in modern statistical modeling and hence the estimation of the param-

eters are very important. This study produces subjective Bayesian estimators under a normal-inverse

gamma prior and a normal-gamma prior and LINEX loss function. It is shown that the normal-gamma

prior results in estimators with less error than the well-known inverse gamma prior as well as the MLE's

with a simulation study. The analytical expressions of the estimators are used instead of the MCMC

sampling.
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1 Introduction

One of the most commonly used distributions in statistics is the normal distribution . Bayesian analysis is
frequently used to estimate the parameters of the normal distribution under the assumption of di�erent loss
functions as discussed in Murphy [6], Zellner [12], Samaniego [9] and Hoque et al [5].

Bayesian analysis can be subjective or objective depending on the choice of the prior. An objective prior is
when there is very little prior information available or when a distribution is chosen such that all possible
values of the parameter are equally likely. An advantage of an objective prior is that sometimes the results
acquired is the same as that of the frequentists methods. Comparisons between the Bayesian and frequentist
approaches to estimations are discussed by Samaniego [9] . A subjective prior is when previous information
is used to make a decision regarding which prior distribution should be used in a particular study. Subjective
priors are more bene�cial to objective priors in that they include additional information about the study into
the Bayesian analysis. Press [7] explores subjective and objective Bayesian statistics and its application. The
prior density function is usually obtained from previous sampling information. The posterior distribution
is the result of applying Bayes' theorem and is the conditional distribution of the given sample data. The
posterior distribution is proportional to the product of the prior distribution and the joint probability density
functions of the sample data. The joint probability density functions of the sample data can be replaced by
the likelihood function where the likelihood function is the joint probability density functions of the sample
data. From Bayes' theorem, the posterior and marginal distributions of the unknown parameters can be
found. Using the Bayesian approach, estimators for the unknown parameters can be derived by choosing an
appropriate loss function.

When a parameter θ̂ is used as an estimator for an unknown parameter θ, the loss incurred is measured by
a loss function. An estimator which minimizes the expected value of the loss function with respect to the
posterior distribution is obtained. The expected value of a loss function is de�ned as the risk function. The
most popular choice of loss functions is the quadratic loss function. This loss function is symmetric and is a
popular choice as the Bayes' estimator under the quadratic loss function is the expected value of the posterior
distribution which makes the computations simpler. The zero/one loss function is another symmetric function
used when testing if the unknown parameter is within a predetermined interval. The Bayes' estimator in this
case is the mode of the posterior distribution. Other symmetric loss functions include the linear loss function
and the absolute error loss function, where the Bayes' estimate is the median of the posterior distribution
under the absolute error loss. An asymmetric loss function is the Linear Exponential (LINEX) loss function
which was introduced by Varian [11]. The LINEX loss function di�erentiates between under-estimation and
over-estimation.This LINEX loss function is further discussed in section 2.

In this study, the Bayesian approach will be used with the assumption that we have a random sample from
a normal distribution with unknown mean and unknown variance. Bayesian estimators for these unknown
parameters will be derived using two di�erent joint priors under the LINEX loss function, namely, the
normal-inverse gamma prior and the normal-gamma prior. These estimators are then evaluated in section 5.

2 LINEX Loss Function

The simplicity of the squared-error loss function makes it a popular choice. The squared-error loss is symmet-
ric and does not di�erentiate between under-estimation and over-estimation. However, this is not appropriate
in cases when the e�ects of over-estimation or under-estimation is more severe. A more appropriate asymmet-
ric loss function was introduced by Varian (1975) [11] called the Linear Exponential loss function (LINEX).
The LINEX loss allows for over-estimation and under-estimation by assigning unequal weights through the
introduction of a shape parameter. In manufacturing, for example, the over-estimation of the average shelf
life of a product for consumer information would have more severe consequences than under-estimation. The
LINEX loss function used to estimate a parameter θ is de�ned as

L(∆) = b {exp(a∆)− a∆− 1} for a 6= 0 and b > 0
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The ∆ = (θ ∗ −θ) is called the estimation error. The parameter a is the shape parameter and b is the scale
parameter of L(∆). For a > 0, the e�ect of over-estimation is more severe than under-estimation and for
a < 0 the e�ect of under-estimation is more severe than over-estimation. The skewness of the loss function
is determined by the weight of a. It comprises of a linear and exponential part. The loss function increases
exponentially on one side of ∆ = 0 and increases linearly on the other side. If a > 0 then for ∆ > 0 the loss
function declines exponentially and for ∆ < 0 the loss function grows linearly.

Figure 1: LINEX loss function for constant b

From the above graph, it can be seen that the LINEX loss function decreases exponentially and increases
linearly for a < 0. The slope of the loss function becomes steeper as the value of alpha becomes smaller. For
a > 0 the loss function decreases linearly and increases exponentially. The slope of the loss function becomes
steeper as the value of alpha becomes larger. As a → 0, the exp(a∆) → 1 and therefore the loss function
L(∆)→ 0. Also for very small a the LINEX loss is approximately equal to the squared-error loss.

Figure 2: LINEX Loss function for constant a > 0 and a < 0

As b increases the loss function magni�es, i.e. the larger the b the greater the loss for a speci�c ∆. As b→ 0
the loss function L(∆)→ 0.
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3 Normal-inverse gamma prior

3.1 Likelihood

Let Xi ∼ N(µ, σ2) (A.1) for all i = 1, 2, 3,...,n. Therefor the density function of x|µ, σ2 is given by

f(x|µ, σ2) =
1√

2πσ2
exp

{
−1

2

(x− µ)2

σ2

}
, σ2 > 0 (1)

Thus, the likelihood function (A.8) is

L(f(x|µ, σ2)) =

n∏
i=1

f(xi|µ, σ2)

=

n∏
i=1

1√
2πσ2

exp

{
−1

2

(xi − µ)2

σ2

}

=

n∏
i=1

(2πσ2)−
1
2 exp

{
−1

2

(xi − µ)2

σ2

}

= (2πσ2)−
n
2 exp

{
−1

2

n∑
i=1

(xi − µ)2

σ2

}

= (2πσ2)−
n
2 exp

{
−1

2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2

σ2

)}

3.2 Priors

Assume that µ|σ2∼ N(µ0, σ
2) (A.1) then,

p(µ|σ2) =
1√

2πσ2
exp

{
−1

2

(µ− µ0)2

σ2

}
= (2πσ2)−

1
2 exp

{
−1

2

(µ− µ0)2

σ2

}
,−∞ < µ <∞

Assume that σ2 ∼ IG(α, β) (A.2) then,

p(σ2) =
βα

Γ(α)

(
σ2
)−α−1

exp

{
− β

σ2

}
, σ2 > 0

Joint priors

The joint probability density function (A.9) of µ and σ2 is

p(µ, σ2) = p(µ|σ2)p(σ2)

= (2πσ2)−
1
2 exp

{
−1

2

(µ− µ0)2

σ2

}
× βα

Γ(α)
(σ2)−α−1exp

{
− β

σ2

}

p(µ, σ2) = (2π)−
1
2 (σ2)−α−

3
2 × βα

Γ(α)
× exp

{
−1

2

(µ− µ0)2

σ2
− β

σ2

}
(2)
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3.3 Joint posterior distribution

By using (A.10) the posterior density function q(µ, σ2|x) is given by

q(µ, σ2|x) ∝ (2πσ2)−
n
2 exp

{
−1

2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2

σ2

)}
× (2π)−

1
2 (σ2)−α−

3
2

× βα

Γ(α)
× exp

{
−1

2

(µ− µ0)2

σ2
− β

σ2

}
Hence,

q(µ, σ2|x) = W ×
(
σ2
)−α−n2− 3

2 exp

{
−1

2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2 + (µ− µ0)2

σ2

)
− β

σ2

}
(3)

with W the normalizing constant such that
´∞
−∞
´∞
0
q(µ, σ2|x)dσ2dµ = 1

3.4 Marginal posterior distributions

Marginal posterior distribution of µ

The marginal distribution of µ is obtained from equation (3) as follows

q(µ|x) =

∞̂

0

q(µ, σ2|x)dσ2

∝
∞̂

0

(
σ2
)−α−n2− 3

2 exp

{
−1

2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2 + (µ− µ0)2

σ2

)
− β

σ2

}
dσ2

=

∞̂

0

(
σ2
)−α−n2− 3

2 exp

{
− 1

2σ2

[(
n∑
i=1

x2i − 2µ

n∑
i=1

xi + nµ2

)
+ (µ− µ0)2

]
− β

σ2

}
dσ2

=

∞̂

0

(
σ2
)−α−n2− 3

2 exp

{
− 1

2

[(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2

)
+ (µ− µ0)2

]
− β

σ2

}
dσ2

Since σ2 follows a an IG

(
α+

n− 1

2
,

1

2

[(
n∑
i=1

x2i − 2µ
n∑
i=1

xi + nµ2

)
+ (µ− µ0)2

]
+ β

)
(A.2),

q(µ|x) ∝
Γ(α+ n−1

2 )(
1
2 [(
∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2) + (µ− µ0)2] + β

)α+n−1
2

=
Γ(α+ n−1

2 )(
1
2 [(
∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2) + (µ− µ0)2] + β

)α+n−1
2

∝
Γ(α+ n−1

2 )[
n+1
2

{
µ−

(∑n
i=1 xi+µ0

n+1

)}2

− 1
2

(
∑n
i=1 xi+µ0)

2

n+1 +
∑n
i=1 x

2
i+µ

2
0

2 + β

]α+n−1
2

∝

[
n+ 1

2

{
µ−

(∑n
i=1 xi + µ0

n+ 1

)}2

− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1
+

∑n
i=1 x

2
i + µ2

0

2
+ β

]−α−n−1
2
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=

(2α+ n− 2)(n+ 1)
(
µ−

[∑n
i=1 xi+µ0

n+1

])2
2(2α+ n− 2)

+

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)
−α−n−1

2

=

{
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

}−α−n−1
2

 (2α+ n− 2)(n+ 1)
(
µ−

[∑n
i=1 xi+µ0

n+1

])2
2(2α+ n− 2)

{
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

} + 1


−α−n−1

2

=

{
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

}−α−n−1
2


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

∝


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

∼ t

2α+ n− 2,

∑n
i=1 xi + µ0

n+ 1
,

{
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

}
(
α+ n

2 − 1
)

(n+ 1)


Hence, the marginal distribution of µ follows a non-central t distribution (A.4) with (2α + n − 2) degrees

of freedom and non centrality parameter
(∑n

i=1 xi+µ0

n+1

)
and

{
β+

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

}
(α+n

2−1)(n+1)

. See theorem
(A.11) for the marginal distribution.
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Figure 3: Marginal distribution of µ for the inverse gamma prior with α = 4, β = 3, n = 20 and µ0 = x̄.

Marginal posterior distribution of σ2

The marginal distribution of σ2 is obtained from equation (3) as follows

q(σ2|x) =

∞̂

−∞

q(µ, σ2|x)dµ

∝
∞̂

−∞

(
σ2
)−α−n2− 3

2 exp

{
−1

2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2

σ2

)
− 1

2

(µ− µ0)2

σ2
− β

σ2

}
dµ

=

∞̂

−∞

(
σ2
)−α−n2− 3

2 exp

{
− β

σ2

}
exp

{
− 1

2σ2

(
n∑
i=1

x2i − 2µ

n∑
i=1

xi + nµ2 + µ2 − 2µµ0 + µ2
0

)}
dµ

=
(
σ2
)−α−n2− 3

2 exp

{
− β

σ2

} ∞̂

−∞

exp

{
− 1

2σ2

(
µ2(n+ 1)− 2µ

(
n∑
i=1

xi + µ0

)
+

n∑
i=1

x2i + µ2
0

)}
dµ

=
(
σ2
)−α−n2− 3

2 × exp
{
− β

σ2
−
∑n
i=1 x

2
i + µ2

0

2σ2

}
×

∞̂

−∞

exp

{
−n+ 1

2σ2

[(
µ−

∑n
i=1 xi + µ0

n+ 1

)2

−
(∑n

i=1 xi + µ0

n+ 1

)2
]}

dµ

=
(
σ2
)−α−n2− 3

2 × exp

{
− β

σ2
−
∑n
i=1 x

2
i + µ2

0

2σ2
+

(
∑n
i=1 xi + µ0)

2

2(n+ 1)σ2

}
×

∞̂

−∞

exp

−1

2


(
µ−

∑n
i=1 xi+µ0

n+1

)2
σ2

n+1


 dµ

Since µ follows a N

(∑n
i=1 xi + µ0

n+ 1
,
σ2

n+ 1

)
distribution (A.1),
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q(σ2|x) =
(
σ2
)−α−n2− 3

2 × exp

{
− β

σ2
−
∑n
i=1 x

2
i + µ2

0

2σ2
+

(
∑n
i=1 xi + µ0)

2

2(n+ 1)σ2

}
×
(

2πσ2

n+ 1

) 1
2

∝
(
σ2
)−α−n2−1 × exp{− β

σ2
−
∑n
i=1 x

2
i + µ2

0

2σ2
+

(
∑n
i=1 xi + µ0)

2

2(n+ 1)σ2

}

=
(
σ2
)−(α+n

2 )−1 × exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}

∼ IG

(
α+

n

2
,β +

∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)

Hence, the marginal distribution of σ2 follows a inverse gamma (A.2) distribution with parameters
(
α+ n

2

)
and

(
β +

∑n
i=1 x

2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

)
respectively. See theorem (A.11) for the marginal distribution.

Figure 4: Marginal distribution of σ2 for the inverse gamma prior with α = 4, β = 3, n = 20 and µ0 = x̄.

3.5 Risk function and estimators

3.5.1 Estimator of µ

Loss function

Using the LINEX loss function (A.12) where γ is the estimator for µ

L(µ, γ) = b [exp {a (γ − µ)} − a (γ − µ)− 1]

where b > 0 and a 6= 0.

Risk function

The risk function (A.13) is the expected value of the loss function with respect to the marginal distribution
of µ

R(µ, γ) = Eµ[L(µ, γ)]

12



=

∞̂

0

L(µ, γ)q(µ|x)dµ

=

∞̂

−∞

b [exp {a (γ − µ)} − a (γ − µ)− 1]×
Γ
(
2α+n−1

2

)
Γ
(
2α+n−2

2

)
× 1√√√√√

(2α+ n− 2)π

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(α+n

2−1)(n+1)




(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

dµ

Let R2 =
Γ
(
2α+n−1

2

)
Γ
(
2α+n−2

2

)
(2α+ n− 2)π


{
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

}
(
α+ n

2 − 1
)

(n+ 1)



− 1

2

then,

R(µ, γ) =

∞̂

−∞

R2b [exp {a (γ − µ)} − a (γ − µ)− 1]×


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

dµ

=

∞̂

−∞

R2bexp {a (γ − µ)} ×


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

dµ

−
∞̂

−∞

R2ba (γ − µ)×


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

dµ

−
∞̂

−∞

R2b×


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

dµ

= bexp {aγ}
∞̂

−∞

R2exp {−aµ} ×


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

dµ
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−baγ
∞̂

−∞

R2 ×


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

dµ

+ba

∞̂

−∞

µR2 ×


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

dµ

−b
∞̂

−∞

R2 ×


(
µ−

[∑n
i=1 xi+µ0

n+1

])2
(2α+ n− 2)

2

{
β+

∑n
i=1

x2
i
+µ20

2 − 1
2

(
∑n
i=1

xi+µ0)
2

n+1

}
(2α+n−2)(n+1)

+ 1


−α−n−1

2

dµ

= bexp {aγ}Mµ(−a)− baγ + baEµ[µ|x]− b

where Mµ(−a) is the moment generating function (A.7) of µ|x which follows a

t

2α+ n− 2,

∑n
i=1 xi + µ0

n+ 1
,

{
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

}
(
α+ n

2 − 1
)

(n+ 1)


distribution in the point (−a) and Eµ(µ|x) is the expected value (A.6) of µ .

Estimator

By di�erentiating R(µ, γ) and setting the derivative equal to zero, an estimator γ̂ for µ can be obtained such
that γ̂ minimizes R(µγ).

d

dγ
R(µ, γ) = baexp{aγ}Mµ(−a)− ba

Setting the d
dγR(µ, γ) = 0 and solving for γ.

d

dθ
R(µ, γ) = 0

ba = baexp {aγ̂}Mµ(−a)

1 = exp {aγ̂}Mµ(−a)

exp {aγ̂} =
1

Mµ(−a)

aγ̂ = ln

(
1

Mµ(−a)

)
aγ̂ = ln (Mµ(−a))

−1

γ̂ = −1

a
ln (Mµ(−a))

Therefore the estimator for µ is given by

µ̂ = ln [Mµ(−a)]
− 1
a (4)
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3.5.2 Estimator of σ2

Loss function

Using the LINEX loss function (A.12) where θ is the estimator for σ2

L(σ2, θ) = b
[
exp

{
a
(
θ − σ2

)}
− a

(
θ − σ2

)
− 1
]

where b > 0 and a 6= 0.

Risk function

The risk function (A.13) is the expected value (A.6) of the loss function with respect to the marginal distri-
bution of σ2

R(σ2, θ) = Eσ2 [L(σ2, θ)]

=

∞̂

0

L(σ2, θ)q(σ2|x)dσ2

=

∞̂

0

b
[
exp

{
a
(
θ − σ2

)}
− a

(
θ − σ2

)
− 1
]
×

(
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

)α+n
2

Γ
(
α+ n

2

)
(
σ2
)−(α+n

2 )−1 × exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

Let R1 =

(
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

)α+n
2

Γ
(
α+ n

2

) then,

=

∞̂

0

R1bexp
{
a
(
θ − σ2

)} (
σ2
)−(α+n

2 )−1
exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

−
∞̂

0

R1ba
(
θ − σ2

) (
σ2
)−(α+n

2 )−1
exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

−
∞̂

0

R1b
(
σ2
)−(α+n

2 )−1
exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

=

∞̂

0

R1bexp {aθ}
(
σ2
)−(α+n

2 )−1
exp

{
−aσ2 − 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

−
∞̂

0

R1baθ
(
σ2
)−(α+n

2 )−1 × exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

+

∞̂

0

R1ba
(
σ2
)−(α+n

2 ) × exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

−
∞̂

0

R1b
(
σ2
)−(α+n

2 )−1 × exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

15



= R1bexp {aθ}
∞̂

0

(
σ2
)−(α+n

2 )−1
exp

{
−aσ2 − 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

−baθ
∞̂

0

R1

(
σ2
)−(α+n

2 )−1 × exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

+R1ba

∞̂

0

(
σ2
)−(α+n

2 ) × exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

−b
∞̂

0

R1

(
σ2
)−(α+n

2 )−1 × exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2

Using the Bessel function of the third kind (A.5) with v0 = −
(
α+

n

2

)
, we get

R(σ2, θ) = R1bexp {aθ} × 2×


(
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

)
a


v0
2

Kv0

2

√√√√a

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)− baθ
+R1ba

∞̂

0

(
σ2
)−(α+n

2 )
exp

{
− 1

σ2

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)}
dσ2 − b

Since σ2 ∼ IG

(
α+

n

2
− 1,β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)
we get,

R(σ2, θ) = R1bexp {aθ} × 2×


(
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

)
a


v0
2

Kv0

2

√√√√a

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)− baθ
+R1ba×

Γ
(
α+ n

2 − 1
)(

β +
∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

)α+n
2−1
− b

.
By using the Bessel function of the third kind (A.5), certain conditions need to be placed on the parameters.

For this R(σ2, θ) to hold, a > 0, and

(
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

)
> 0.

Estimator

By di�erentiating R(σ2, θ) and setting the derivative equal to zero, an estimator θ̂ for σ2 can be obtained

such that θ̂ minimizes R(σ2, θ).
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d

dθ
R(σ2, θ) = baR1exp {aθ} × 2×


(
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

)
a


v0
2

Kv0

2

√√√√a

(
β +

∑n
i=1 x

2
i + µ2

0

2
− 1

2

(
∑n
i=1 xi + µ0)

2

n+ 1

)− ba
Setting the d

dθR(σ2, θ) = 0 and solving for θ.

Let δ = 2×

(
β+

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

)
a


v0
2

Kv0

(
2

√
a

(
β +

∑n
i=1 x

2
i+µ

2
0

2 − 1
2

(
∑n
i=1 xi+µ0)

2

n+1

))

d

dθ
R(σ2, θ) = 0

ba = baR1exp
{
aθ̂
}
× δ

1 = R1exp
{
aθ̂
}
× δ

exp
{
aθ̂
}

= [R1 × δ]−1

aθ̂ = ln [R1 × δ]−1

θ̂ = −1

a
ln [R1 × δ]

Therefore the estimator for σ2 is given by

σ̂2 = ln [R1 × δ]−
1
a (5)

4 Normal-gamma prior

4.1 Likelihood

Let Xi ∼ N(µ, σ2) (A.1) for all i = 1, 2, 3,...,n. Therefor the density function of x|µ, σ2 is given by

f(x|µ, σ2) =
1√

2πσ2
exp

{
−1

2

(x− µ)2

σ2

}
, σ2 > 0 (6)

Thus, the likelihood function (A.8) is

L(f(x|µ, σ2)) =

n∏
i=1

f(xi|µ, σ2)

=

n∏
i=1

1√
2πσ2

exp

{
−1

2

(xi − µ)2

σ2

}

=

n∏
i=1

(2πσ2)−
1
2 exp

{
−1

2

(xi − µ)2

σ2

}

= (2πσ2)−
n
2 exp

{
−1

2

n∑
i=1

(xi − µ)2

σ2

}

L(f(x|µ, σ2)) = (2πσ2)−
n
2 exp

{
−1

2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2

σ2

)}
(7)
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4.2 Priors

Assume that µ|σ2~ N(µ0, σ
2) (A.1) then,

p(µ|σ2) =
1√

2πσ2
exp

{
−1

2

(µ− µ0)2

σ2

}
= (2πσ2)−

1
2 exp

{
−1

2

(µ− µ0)2

σ2

}
,−∞ < µ <∞

Assume thatσ2~ G(θ, γ) (A.3) then,

p(σ2) =
γθ

Γ(θ)
(σ2)θ−1exp(−γσ2) , σ2 > 0

Joint priors

The joint probability density function (A.9) of µ and σ2 is

p(µ, σ2) = p(µ|σ2)p(σ2)

= (2πσ2)−
1
2 exp

{
−1

2

(µ− µ0)2

σ2

}
× γθ

Γ(θ)
(σ2)θ−1exp(−γσ2)

= (2π)−
1
2
γθ

Γ(θ)
× (σ2)θ−

3
2 × exp

{
−1

2

(µ− µ0)2

σ2
− γσ2

}

p(µ, σ2) = (2π)−
1
2
γθ

Γ(θ)
× (σ2)θ−

3
2 × exp

{
−1

2

(µ− µ0)2

σ2
− γσ2

}
(8)

4.3 Joint posterior distribution

By using (A.10) the posterior density function q(µ, σ2|x) is given by

q(µ, σ2|x) ∝ (2πσ2)−
n
2 exp

{
−1

2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2

σ2

)}
× (2π)−

1
2
γθ

Γ(θ)

×(σ2)θ−
3
2 × exp

{
−1

2

(µ− µ0)2

σ2
− γσ2

}
Hence,

q(µ, σ2|x) = J × (σ2)θ−
n
2−

3
2 exp

{
−1

2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2 + (µ− µ0)2

σ2

)
− γσ2

}
(9)

with J the normalizing constant such that
´∞
−∞
´∞
0
q(µ, σ2|x)dσ2dµ = 1

4.4 Marginal posterior distributions

Marginal posterior distribution of µ

The marginal distribution of µ is obtained from (9) as follows
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q(µ|x) =

∞̂

0

q(µ, σ2|x)dσ2

∝
∞̂

0

(σ2)θ−
n
2−

3
2 exp

{
−1

2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2 + (µ− µ0)2

σ2

)
− γσ2

}
dσ2

∝
∞̂

0

(σ2)θ−
n
2−

1
2−1exp

{
− 1

σ2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2 + (µ− µ0)2

2

)
− γσ2

}
dσ2

Using the Bessel function of the third kind (A.5) with v2 = θ − n

2
− 1

2
, we get

q(µ|x) ∝ 2×


(∑n

i=1 x
2
i−2µ

∑n
i=1 xi+nµ

2+(µ−µ0)
2

2

)
γ


v2
2

Kv2

(
2

√
γ

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2 + (µ− µ0)2

2

))

For q(µ|x) to be a valid density function,
´∞
−∞ q(µ|x)dµ = 1. Therefore,

1 =

∞̂

−∞

C1 ×


(∑n

i=1 x
2
i−2µ

∑n
i=1 xi+nµ

2+(µ−µ0)
2

2

)
γ


v2
2

Kv2

(
2

√
γ

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2 + (µ− µ0)2

2

))
dµ

∴ C−11 =

∞̂

−∞

∞̂

0

(σ2)θ−
n
2−

1
2−1exp

{
− 1

σ2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2 + (µ− µ0)2

2

)
− γσ2

}
dσ2dµ

C−11 =

∞̂

0

(σ2)θ−
n
2−

1
2−1exp

{
−γσ2

}
×

∞̂

−∞

exp

{
− 1

σ2

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2 + µ2 − 2µµ0 + µ2

0

2

)}
dσ2dµ

C−11 =

∞̂

0

(σ2)θ−
n
2−

1
2−1exp

{
−γσ2 − 1

σ2

(∑n
i=1 x

2
i + µ2

0

2

)}
×

∞̂

−∞

exp

{
−n+ 1

2σ2

(
µ−

∑n
i=1 xi + µ0

n+ 1

)2

+
(
∑n
i=1 xi + µ0)

2

2(n+ 1)σ2

}
dσ2dµ

C−11 =

∞̂

0

(σ2)θ−
n
2−

1
2−1exp

{
−γσ2 − 1

σ2

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
×

∞̂

−∞

exp

{
−n+ 1

2σ2

(
µ−
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Since µfollows a N

(∑n
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,
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)
(A.1). Hence,
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Now, using the Bessel function of the third kind (A.5) with v1 = θ − n

2
, we get,
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(
2π

n+ 1

) 1
2

× 2×


∑n
i=1 x

2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

γ


v1
2

Kv1

2

√√√√γ

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)

∴ C1 =

(
2π
n+1

)− 1
2

2×

( ∑n
i=1

x2
i
+µ20

2 − (
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Therefore, the marginal distribution of µ is

q(µ|x) = C1


(∑n

i=1 x
2
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∑n
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2
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)
γ


v2
2

Kv2

(
2

√
γ

(∑n
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(10)

By using the Bessel function of the third kind (A.5), certain conditions need to be placed on the parameters.

For this q(µ|x) to hold, γ > 0 ,

(∑n
i=1 x

2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

)
> 0 and

(∑n
i=1 x

2
i−2µ

∑n
i=1 xi+nµ

2+(µ−µ0)
2

2

)
> 0.

See theorem (A.11) for the marginal distribution.

Figure 5: Marginal distribution of µ for the gamma prior with θ = 2, γ = 2, n = 20 and µ0 = x̄.
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Marginal posterior distribution of σ2

The marginal distribution of σ2 is obtained from (9) as follows

q(σ2|x) =
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− 1
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+
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(A.1). Hence

q(σ2|x) ∝
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For q(σ2|x) to be a valid density function,
´∞
0
q(σ2|x)dσ2 = 1. Therefore,
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2
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Now, using the Bessel function of the third kind (A.5) with v1 = θ − n

2
, we get,
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Therefore, the marginal distribution of σ2 is
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q(σ2|x) = C2 × (σ2)θ−
n
2−1exp

{
γσ2 − 1

σ2

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
(11)

By using the Bessel function of the third kind (A.5), certain conditions need to be placed on the parameters.

For this q(σ2|x) to hold, γ > 0 and

(∑n
i=1 x

2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

)
> 0. See theorem (A.11) for the marginal

distribution.

Figure 6: Marginal distribution of σ2 for the gamma prior with θ = 2, γ = 2, n = 20 and µ0 = x̄.

4.5 Risk function and estimators

4.5.1 Estimator of µ

Loss function

Using the LINEX loss function (A.12) where β is the estimator for µ

L(µ, β) = b [exp {a (β − µ)} − a (β − µ)− 1]

where b > 0 and a 6= 0.

Risk function

The risk function (A.13) is the expected value (A.6) of the loss function with respect to the marginal distri-
bution of µ

Let K =
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2
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)
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))
, then

R(µ, β) = Eµ[L(µ, β)]

=

∞̂

−∞

L(µ, β)q(µ|x)dµ

=

∞̂

−∞

b [exp {a (β − µ)} − a (β − µ)− 1]× C1 ×K dµ
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Using the Bessel function of the third kind (A.5) with v1 = θ − n
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By using the Bessel function of the third kind (A.5), certain conditions need to be placed on the parameters.

For this R(µ, β) to hold, γ > 0,
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Estimator

By di�erentiating R(µ, β) and setting the derivative equal to zero a estimator β̂ of µ can be obtained such

that β̂ minimizes R(µ, β).
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Setting the d
dβR(µ, β) = 0 and solving for β.
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4.5.2 Estimator of σ2

Loss function

Using the LINEX loss function (A.12) where α is the estimator for σ2

L(σ2, α) = b
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exp
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− 1
]

where b > 0 and a 6= 0.

Risk function

The risk function (A.13) is the expected value (A.6) of the loss function with respect to the marginal distri-
bution of σ2
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(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
dσ2

−
∞̂

0

ba(α− σ2)× C2(σ2)θ−
n
2−1exp

{
γσ2− 1

σ2

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
dσ2

−
∞̂

0

b× C2 × (σ2)θ−
n
2−1exp

{
γσ2 − 1

σ2

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
dσ2

= bC2exp {aα}
∞̂

0

(σ2)θ−
n
2−1exp

{
−σ2(γ + a)− 1

σ2

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
dσ2

−
∞̂

0

baα× C2(σ2)θ−
n
2−1exp

{
γσ2 − 1

σ2

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
dσ2

+

∞̂

0

baσ2 × C2(σ2)θ−
n
2−1exp

{
γσ2 − 1

σ2

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
dσ2

−
∞̂

0

b× C2(σ2)θ−
n
2−1exp

{
γσ2 − 1

σ2

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
dσ2

Using the Bessel function of the third kind (A.5) with v1 = θ − n

2
, we get

R(σ2, α) = bC2exp {aα} × 2


(∑n

i=1 x
2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

)
γ + a


v1
2

Kv1

2

√√√√(γ + a)

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)
−baα+ baC2

∞̂

0

(σ2)θ−
n
2 exp

{
γσ2 − 1

σ2

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)}
dσ2 − b

Using the Bessel function of the third kind (A.5) with v3 = θ − n

2
+ 1, we get

R(σ2, α) = bC2exp {aα} × 2×


(∑n

i=1 x
2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

)
γ + a


v1
2

Kv1

2

√√√√(γ + a)

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)

−baα+ baC2 × 2×


(∑n

i=1 x
2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

)
γ


v3
2
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Kv3

2

√√√√γ

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)− b
By using the Bessel function of the third kind (A.5), certain conditions need to be placed on the parameters.
For this R(σ2, θ) to hold, γ + a > 0, γ > 0 and(∑n

i=1 x
2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

)
> 0.

Estimator

By di�erentiating R(σ2, α) and setting the derivative equal to zero a estimator α̂ of σ2 can be obtained such
that α̂ minimizes R(σ2, α).

d

dα
R(σ2, α) = baC2exp {aα} × 2×


(∑n

i=1 x
2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

)
γ + a


v1
2

Kv1

2

√√√√(γ + a)

(∑n
i=1 x

2
i + µ2

0

2
−

(
∑n
i=1 xi + µ0)

2

2(n+ 1)

)
−ba

Setting the d
dαR(σ2, α) = 0 and solving for α.

Let τ = 2×

(∑n
i=1 x

2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

)
γ+a


v1
2

Kv1

(
2

√
(γ + a)

(∑n
i=1 x

2
i+µ

2
0

2 − (
∑n
i=1 xi+µ0)

2

2(n+1)

))
then,

d

dα
R(σ2, α) = 0

ba = baC2exp {aα̂} × τ
1 = C2exp {aα̂} × τ

exp{aα̂} =
1

C2 × τ
exp{aα̂} = [C2 × τ ]

−1

aα̂ = ln [C2 × τ ]
−1

α̂ = −1

a
ln [C2 × τ ]

Therefore the estimator of σ2 is given by

σ̂2 = ln [C2 × τ ]
− 1
a (13)

5 Simulation study

A simulation study based on a random sample of size 20 from a normal distribution, with parameters µ = 0
and σ2 = 1, was performed. Estimates for the parameters µ and σ2 were then calculated for the two priors,
normal - inverse gamma ( µ|σ2 ∼ N(x̄, σ2) and σ2 ∼ IG(4, 3) ) and normal - gamma ( µ|σ2 ∼ N(x̄, σ2) and
σ2 ∼ G(2, 2) ) using the equations (4) and (5) in section 3 and (12) and (13) in section 4. Since the moment
generating function of the Student's t-distribution in the point −a is unknown in equation (4), an unbiased
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estimator [10] for the expression was used in the computations. Note that the prior parameters are chosen
such that the expected prior value is equal to the true parameter value. The following results were obtained:

Estimates True Value

µ̂ σ̂2 Mean Variance
Bayesian estimates using a normal-inverse gamma prior -0.53998594 0.81737401 0 1

Bayesian estimates using a normal-gamma prior 0.00567354 1.01012104 0 1
Frequentist Estimates 0.0253235 1.0340205 0 1

Table 1: Results for the estimates of µ and σ2 using the two priors with a LINEX loss function with parameters
a = 1 and b = 1.

From table 1, the estimates for σ2 for both priors yield results close to the true parameter value and are,
thus, good estimates. However, the gamma prior estimates for µ and σ2 provides better estimates than the
inverse gamma prior since the estimated values are closer to the true parameter values. Thus, the normal-
gamma-prior would be a more suitable choice of prior. The results of the frequentist approach yield estimates
close to that of the Bayesian approach.

6 Conclusion

This study focused on subjective Bayesian analysis using the univariate normal distribution as the underlying
distribution. It was assumed that both the mean and variance parameters of the normal distribution are
unknown. The normal-inverse gamma joint prior and the normal-gamma joint prior were considered and the
loss function was assumed to be a LINEX loss function. The posterior distributions, marginal distributions,
risk functions and estimators were derived. The superiority of the normal-gamma prior is evident from
simulation study.
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Glossary

A.1 [1] A random variable X follows a normal distribution with mean µ and variance σ2 if it has the
probability density function

f(x) = (2πσ2)−
1
2 exp

{
−1

2

(x− µ)2

σ2

}
for −∞ < x <∞, where −∞ < µ <∞ and σ2 > 0. This is denoted by X ∼N(µ, σ2).
The moment generating function of X ∼N(µ, σ2) is

Mx(t) = exp

{
µt+

σ2t2

2

}

A.2 [3] A random variable X follows a Inverse Gamma distribution with parameters α and β if it has the
probability density function

f(x) =
βα

Γ(α)
x−α−1exp

(
−β
x

)
where x > 0. This is denoted by X ∼IG(α, β).

A.3 [3] A random variable X follows a Gamma distribution with parameters α and λ if it has the probability
density function

f(x) =
λα

Γ(α)
xα−1exp (−λx)

where x > 0 , alpha > 0 and λ > 0. This is denoted by X ∼G(α, λ).

A.4 [1] A random variable X follows a non-central t distribution with v degrees of freedom and non-centrality
parameter δ if it has the probability density function

f(x) =
Γ
(
v+1
2

)
Γ(v2 )

1

σ
√
vπ

[
1 +

(x− δ)2

vσ2

]−(v+1)
2

where −∞ < x <∞, v > 0 ,−∞ < δ <∞ and σ2 > 0 .This is denoted by X ∼t (v, δ, σ2).
If X∼t (v, δ, σ2) distribution then the expected value of X is δ if v > 1.

A.5 [2] Let Kv(· ) be the Bessel Function of the third kind then for Re(β) > 0, Re(γ) > 0

∞̂

0

xv−1exp

(
−β
x
− γx

)
dx = 2

(
β

γ

) v
2

Kv

(
2
√
βγ
)

A.6 [1] If X is a continuous random variable with probability density function f(x) then the expected value
of X is de�ned by

E(x) =

∞̂

−∞

xf(x)dx
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A.7 [1] If X is a random variable then the expected value

Mx(t) = E(etX) =

∞̂

−∞

etxf(x)dx

is called the moment generating function of X.

A.8 [1] The joint density function of n random variables X1, ..., Xn evaluated at x1, ..., xn, say f(x1, ..., xn; θ)
is referred to as a likelihood function. For �xed x1, ..., xn the likelihood function is a function of θ and is
denoted by L(θ). If X1, ..., Xn represent a sample from f(x; θ), then

L(θ) = f(x1; θ)...f(xn; θ) =

n∏
i=1

f(xi; θ)

A.9 [1] If X1 and X2 are random variables with joint probability density function f(x1, x2), then the condi-
tional probability density function of X2 given X1 = x1 is de�ned to be

f(x2|x1) =
f(x1, x2)

f(x2)

for values of x1 such that f(x1) > 0.

A.10 [1] The conditional density of θ given the sample observations x = (x1, ..., xn) is called the posterior
density and is given by

fθ|x(θ) =
f(x1, ..., xn|θ)p(θ)´
f(x1, ..., xn|θ)p(θ)dθ

where p(θ) is the prior density for the parameter θ.

A.11 [1] If the pair (X1, X2) of continuous random variables has the joint probability density function
f(x1, x2), then the marginal probability density function of X1is

f1(x1) =

∞̂

−∞

f(x1, x2)dx2

A.12 [4] Let θ̂ be an estimator of a parameter θ. The LINEX loss function is de�ned by

L(θ, θ̂) = b
[
ea(θ̂−θ) − a(θ̂ − θ)− 1

]
where a 6= 0 and b > 0.

A.13 [1] The risk function is de�ned to be the expected loss,

R(θ, θ̂) = Eθ[L(θ, θ̂)]
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Appendix

The LINEX loss function graphs for this paper was generated using SAS software. Copyright, SAS Institute
Inc. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc., Cary, NC, USA

The SAS software code used for the LINEX loss function:

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
/∗ Ef f e c t o f a , constant b ∗/

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
data linex_b ;
b = 5 ;
a1 = −1.5;
a2 = 1 . 5 ;
a3 = −1.75;
a4 = 1 . 7 5 ;
a5 = 0 . 4 4 5 ;

do de l t a = −1 to 1 by 0 . 0 0 5 ;
L1 = b∗( exp ( a1∗ de l t a ) − a1∗ de l t a −1);
L2 = b∗( exp ( a2∗ de l t a ) − a2∗ de l t a −1);
L3 = b∗( exp ( a3∗ de l t a ) − a3∗ de l t a −1);
L4 = b∗( exp ( a4∗ de l t a ) − a4∗ de l t a −1);
L5 = b∗( exp ( a5∗ de l t a ) − a5∗ de l t a −1);
output ;

end ;
run ;

gopt ions r e s e t=a l l ;
ax i s 1 l a b e l = ( ang le=90 ' Loss ' ) ;
ax i s 2 l a b e l = ( ' Delta ' ) ;
l egend1 value =( 'a=−1.5 ' ' a=1.5 ' ' a=−1.75 ' ' a=1.75 ' ' a=0 .445 ' ) ;
symbol1 c o l o r=black i=j o i n w = 5 ;
symbol2 c o l o r=red i=j o i n w = 5 ;
symbol3 c o l o r=blue i=j o i n w = 5 ;
symbol4 c o l o r=green i=j o i n w = 5 ;
symbol5 c o l o r=orange i=j o i n w = 5 ;
t i t l e 1 ' Linex l o s s func t i on f o r constant b ' ;
proc gp lo t data=linex_b ;
p l o t (L1 L2 L3 L4 L5)∗ de l t a / over l ay legend=legend1 vax i s=ax i s1 hax i s=ax i s2 ;
run ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
/∗ Ef f e c t o f b , a > 0 ∗/

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
data l inex_a1 ;
a = 2 . 7 5 ;
b1 = 0 . 3 5 4 ;
b2 = 4 . 6665 ;
b3 = 28 ;
b4 = 64 . 0 5 ;
b5 = 140 ;
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do de l t a = −1 to 1 by 0 . 0 0 5 ;
L1 = b1 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
L2 = b2 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
L3 = b3 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
L4 = b4 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
L5 = b5 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
output ;

end ;
run ;

gopt ions r e s e t=a l l ;
ax i s 1 l a b e l = ( ang le=90 ' Loss ' ) ;
ax i s 2 l a b e l = ( ' Delta ' ) ;
l egend1 value =( 'b=0.354 ' 'b=4.6665 ' 'b=28' 'b=64.05 ' 'b=140 ') ;
symbol1 c o l o r=black i=j o i n w = 5 ;
symbol2 c o l o r=red i=j o i n w = 5 ;
symbol3 c o l o r=blue i=j o i n w = 5 ;
symbol4 c o l o r=green i=j o i n w = 5 ;
symbol5 c o l o r=orange i=j o i n w = 5 ;
t i t l e 1 ' Linex l o s s func t i on f o r a > 0 ' ;
proc gp lo t data=linex_a1 ;
p l o t (L1 L2 L3 L4 L5)∗ de l t a / over l ay legend=legend1 vax i s=ax i s1 hax i s=ax i s2 ;
run ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
/∗ Ef f e c t o f b , a < 0 ∗/

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
data l inex_a2 ;
a = −2.75;
b1 = 0 . 3 5 4 ;
b2 = 4 . 6665 ;
b3 = 28 ;
b4 = 64 . 0 5 ;
b5 = 140 ;

do de l t a = −1 to 1 by 0 . 0 0 5 ;
L1 = b1 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
L2 = b2 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
L3 = b3 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
L4 = b4 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
L5 = b5 ∗( exp ( a∗ de l t a ) − a∗ de l t a −1);
output ;

end ;
run ;

gopt ions r e s e t=a l l ;
ax i s 1 l a b e l = ( ang le=90 ' Loss ' ) ;
ax i s 2 l a b e l = ( ' Delta ' ) ;
l egend1 value =( 'b=0.354 ' 'b=4.6667 ' 'b=28' 'b=64.05 ' 'b=140 ') ;
symbol1 c o l o r=black i=j o i n w = 5 ;
symbol2 c o l o r=red i=j o i n w = 5 ;
symbol3 c o l o r=blue i=j o i n w = 5 ;
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symbol4 c o l o r=green i=j o i n w = 5 ;
symbol5 c o l o r=orange i=j o i n w = 5 ;
t i t l e 1 ' Linex l o s s func t i on f o r a < 0 ' ;
proc gp lo t data=linex_a2 ;
p l o t (L1 L2 L3 L4 L5)∗ de l t a / over l ay legend=legend1 vax i s=ax i s1 hax i s=ax i s2 ;
run ;

The Marginal distribution and application was performed in R [8].

Marginal density and application for parameter µ using the inverse gamma prior:

n = 20
mu = 0
sigma = 1
x = rnorm (n ,mean=mu, sd=sq r t ( sigma ) )
x2 = x^2
sum_x = sum(x )
sum_x2 = sum( x2 )
sample_var= var (x )
mu0 = mean(x )
x_bar = mean(x )
alpha = 4
beta = 3
b = 1
a = 1

b1 = beta + ( 0 . 5 ) ∗ ( sum_x2 + mu0^2) − 0 . 5∗ ( ( sum_x+mu0)^2/(n+1))
df = 2∗ alpha + n −2
de l t a = (sum_x + mu0)/( n+1)
par = b1 /( ( df /2)∗ ( n+1))

gam1 = gamma( ( df +1)/2)
gam2 = gamma( df /2)
pow = (−df−1)/2

Marg_IG_mu <− f unc t i on (mu1){( gam1/gam2 )∗ ( ( par∗df ∗ pi )^(−0.5))∗(1+((mu1−de l t a )^2)
/( df ∗par ))^pow}

p lo t (Marg_IG_mu, from=−2,to=2,add=FALSE, c o l="dark blue " , lwd=3, type=" l " ,
xlab="mu" , ylab=NULL, xlim=NULL)

#Estimate o f mu f o r i nv e r s e gamma pr i o r
n = 20
mu = 0
sigma = 1
x = rnorm (n ,mean=mu, sd=sq r t ( sigma ) )
x2 = x^2
sum_x = sum(x )
sum_x2 = sum( x2 )
sample_var= var (x )
mu0 = mean(x )
x_bar = mean(x )
alpha = 4
beta = 3
b = 1
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a = 1

u = alpha + (n/2) − (1/2)
w = alpha + (n/2) − 1
b1 = beta + ( 0 . 5 ) ∗ ( sum_x2 + mu0^2) − 0 . 5∗ ( ( sum_x+mu0)^2/(n+1))
gam1 = gamma(u)
gam2 = gamma(w)
R2 = (gam1/gam2)∗ (2∗w∗ pi ∗( b1 /(w∗(n+1))))^(−1/2)

mgf = (1/n)∗sum( exp ( ( x−x_bar/ sq r t ( ( sample_var ∗(n−1))/n))∗(−a ) ) )

mu_hat_IG = (−1/a )∗ l og (mgf , base = exp ( 1 ) )

Marginal density and application for parameter σ2 using the inverse gamma prior:

n = 20
mu = 0
sigma = 1
x = rnorm (n ,mean=mu, sd=sq r t ( sigma ) )
x2 = x^2
sum_x = sum(x )
sum_x2 = sum( x2 )
sample_var= var (x )
mu0 = mean(x )
x_bar = mean(x )
alpha = 4
beta = 3
b = 1
a = 1

par1 = alpha + (n/2)
par2 = beta + (sum_x2+mu0^2)/2 − ( ( sum_x+mu0)^2)/(2∗ ( n+1))

Marg_IG_sig <− f unc t i on ( sigma1 ){1/gamma( par1 )∗ ( par2^par1 )∗ sigma1^(−par1−1)
∗exp(−par2/ sigma1 )}

p l o t (Marg_IG_sig , from=0, to=3,add=FALSE, c o l ='dark blue ' , lwd=3, type=" l " ,
xlab="sigma " , ylab=NULL, xlim=NULL)

#Estimate o f sigma f o r i nv e r s e gamma p r i o r
n = 20
mu = 0
sigma = 1
x = rnorm (n ,mean=mu, sd=sq r t ( sigma ) )
x2 = x^2
sum_x = sum(x )
sum_x2 = sum( x2 )
sample_var= var (x )
mu0 = mean(x )
x_bar = mean(x )
alpha = 4
beta = 3
b = 1
a = 1
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v0 = −alpha − n/2
b1 = beta + (sum_x2+mu0^2)/2 − ( ( sum_x+mu0)^2)/(2∗ ( n+1))
d = alpha + n/2
R1 = ( ( b1)^d)/gamma(d)

bes1 = 2∗ s q r t ( a∗b1 )
Bessel_1=besse lK ( bes1 , v0 , expon . s c a l ed = FALSE)
de l t a = Bessel_1 ∗2∗( b1/a )^( v0 /2)

theta = R1∗ de l t a
sigma_hat_est = (−1/a )∗ l og ( theta , base = exp ( 1 ) )

Marginal density and application for parameter µ using the gamma prior:

mu <− seq (−1 ,1 ,by=0.05)
n = 20
sigma = 1
x = rnorm (n ,mean=mu, sd=sq r t ( sigma ) )
x2 = x^2
sum_x = sum(x )
sum_x2 = sum( x2 )
sample_var= var (x )
mu0 = mean(x )
x_bar = mean(x )
theta = 2
gam_par = 2
b = 1
a = 1

c0 = (2∗ pi /(n+1))^(−0.5)
v1 = theta − n/2
v2 = theta − (n/2) − (1/2)
b1 = ( ( sum_x2 + mu0^2)/2)−((sum_x+mu0)^2/(2∗(n+1)))
b2 = ( 0 . 5 ) ∗ ( sum_x2 − 2∗mu∗sum_x + n∗mu^2 + (mu − mu0)^2)
bes1 = 2∗ s q r t ( b1∗gam_par)
Bessel_1=besse lK ( bes1 , v1 , expon . s c a l ed = FALSE)
bes2 = 2∗ s q r t ( b2∗gam_par)
Bessel_2 = besse lK ( bes2 , v2 , expon . s c a l ed = FALSE)

C1 = c0 /(2∗ ( b1/gam_par)^( v1 /2)∗Bessel_1 )

Marg_G_Mu= C1∗( b2/gam_par)^( v2 /2)∗Bessel_2

p lo t (mu,Marg_G_Mu, c o l="red " , lwd=3, type=" l " , xlab="mu" , ylab=NULL, xlim=NULL)

#Estimate o f mu f o r gamma pr i o r
n = 20
mu = 0
sigma = 1
x = rnorm (n ,mean=mu, sd=sq r t ( sigma ) )
x2 = x^2
sum_x = sum(x )
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sum_x2 = sum( x2 )
sample_var= var (x )
mu0 = mean(x )
x_bar = mean(x )
theta = 2
gam_par = 2
b = 1
a = 1

c0p = (2∗ pi /(n+1))^(0 .5)
c0m = (2∗ pi /(n+1))^(−0.5)

v1 = theta − n/2
b1 = ( ( sum_x2 + mu0^2)/2)−((sum_x+mu0)^2/(2∗(n+1)))
b2 = gam_par − ( a^2/(2∗(n+1)))
bes1 = 2∗ s q r t ( b1∗gam_par)
Bessel_1=besse lK ( bes1 , v1 , expon . s c a l ed = FALSE)
bes2 = 2∗ s q r t ( b1∗b2 )
Bessel_2 = besse lK ( bes2 , v1 , expon . s c a l ed = FALSE)

C1 = c0m/(2∗ ( b1/gam_par)^( v1 /2)∗Bessel_1 )
e = exp(−a ∗ ( (sum_x+mu0)/( n+1)))
k = 2∗( b1/b2 )^( v1 /2)∗Bessel_2

beta = c0p∗C1∗e∗k

mu_hat_est = (−1/a )∗ l og ( beta , base = exp ( 1 ) )

Marginal density and application for parameter σ2 using the gamma prior:

n = 20
mu = 0
sigma = 1
x = rnorm (n ,mean=mu, sd=sq r t ( sigma ) )
x2 = x^2
sum_x = sum(x )
sum_x2 = sum( x2 )
sample_var= var (x )
mu0 = mean(x )
x_bar = mean(x )
theta = 2
gam_par = 2
b = 1
a = 1

v1 = theta − n/2
b1 = ( ( sum_x2 + mu0^2)/2)−((sum_x+mu0)^2/(2∗(n+1)))
b2 = gam_par + a
bes1 = 2∗ s q r t ( b1∗gam_par)
Bessel_1=besse lK ( bes1 , v1 , expon . s c a l ed = FALSE)
C2 = 1/(2∗ ( b1/gam_par)^( v1 /2)∗Bessel_1 )

Marg_G_sig <− f unc t i on ( sigma1 ){C2∗( sigma1^(v1+1))∗ exp ( ( gam_par∗ sigma1 )
− ( b1/ sigma1 ) )}
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p lo t (Marg_G_sig , from=0, to=3, c o l = " red " , lwd=3,add=FALSE, type=" l " ,
xlab="sigma " , ylab=NULL, xlim=NULL)

#Estimate o f sigma f o r gamma pr i o r
n = 20
mu = 0
sigma = 1
x = rnorm (n ,mean=mu, sd=sq r t ( sigma ) )
x2 = x^2
sum_x = sum(x )
sum_x2 = sum( x2 )
sample_var= var (x )
mu0 = mean(x )
x_bar = mean(x )
theta = 2
gam_par = 2
b = 1
a = 1

v1 = theta − n/2
b1 = ( ( sum_x2 + mu0^2)/2)−((sum_x+mu0)^2/(2∗(n+1)))
b2 = gam_par + a
bes1 = 2∗ s q r t ( b1∗gam_par)
Bessel_1=besse lK ( bes1 , v1 , expon . s c a l ed = FALSE)

C2 = 1/(2∗ ( b1/gam_par)^( v1 /2)∗Bessel_1 )

bes2 = 2∗ s q r t ( b1∗b2 )
Bessel_2 = besse lK ( bes2 , v1 , expon . s c a l ed = FALSE)

tau = 2∗( b1/b2 )^( v1 /2)∗Bessel_2

alpha =C2∗ tau
sigma_hat_est = (−1/a )∗ l og ( alpha , base = exp ( 1 ) )
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Abstract

This report discusses various developments and extensions of the smooth transition autoregressive
(STAR) time series model which is an extension of the threshold autoregressive (TAR) model. The focus
will be on the representation of the STAR model associated with its di�erent transition functions, as
well as methods for various hypothesis tests, especially on tests against nonlinearity. Note that this
report will assume only an AR(1) for simplicity in the theory discussion. Model speci�cation, estimation
and evaluation will be discussed accordingly, with the application aim to �t an LSTAR model to a
�nancial/economic time series.

Nonlinear time series models have become more popular over the past years, especially in the economic
and �nance environment. Many times in the economic environment a change from one regime to another
occurs which causes for a change in the economic behaviour. These regimes refer to the upswings and
downswings in the economy. The STAR model is a nonlinear time series model which allows for a smooth
transition between two regimes. For descriptive, evaluation and forecasting purposes, it is necessary
to model the relevant (nonlinear) time series to a STAR model with a speci�ed transition function.
The various transition functions (�rst-order logistic, second-order logistic and exponential function) are
discussed and mathematically illustrated in the theory discussion of this report.

This report will educate the reader exactly what the STAR model is and how it is used. It will explain
the modelling cycle in the STAR framework, guiding the reader step by step with an empirical example
on how to model data to a speci�ed STAR model and evaluate the resulting model. The STAR model
can then also be used for forecasting purposes (which will not be covered in this report).

It is important that research on STAR models is enhanced since we live in a world where everything
is in�uenced by the economy and vice versa. Changes in regimes happen on a regular basis and the
economic-behaviour adjusts accordingly. Thus, the demand for STAR modelling in the economic and
�nance environment is increasing steadily.

2



Declaration

I, Ané Neethling, declare that this essay, submitted in partial ful�llment of the degree BCom(Hons) Statistics,
at the University of Pretoria, is my own work and has not been previously submitted at this or any other
tertiary institution.

_____________________________
Ané Neethling

_____________________________
Dr. Paul J. van Staden

_____________________________
Date

3



Acknowledgements

This research was supported by a South African Research Chair Initiative (SARChI) bursary awarded to
the Department of Statistics at the University of Pretoria, as well as a Bureau for Statistical and Survey
Methodology (STATOMET) bursary.

The guidance, hospitality and enthusiasm provided by supervisor Dr. Paul J. van Staden, University of
Pretoria, Department of Statistics are greatly acknowledged and appreciated, as well as the support from a
number of special friends and family. It motivated me all the way through.

4



Contents

1 Introduction 6

2 Representation of the STAR model and its various transition functions 7

3 Hypothesis testing in the context of STAR models 8

3.1 Testing linearity against STAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.1 Testing linearity against LSTAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Testing linearity against ESTAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Misspeci�cation tests of STAR models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Modelling cycle in the STAR framework 10

5 Application: Modelling SA in�ation rate with LSTAR model 12

6 Conclusion 17

7 Appendix 19

List of Figures

1 Seasonally unadjusted monthly in�ation rate for South Africa, January 1969 to July 2015. . . 12
2 Sample autocorrelation function of the monthly in�ation rate. . . . . . . . . . . . . . . . . . . 13
3 Sample partial autocorrelation function of the monthly in�ation rate. . . . . . . . . . . . . . . 13
4 Residuals from �tted LSTAR accross time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Sample autocorrelation function of the residuals from �tted LSTAR model. . . . . . . . . . . 15
6 Sample partial autocorrelation function of the residuals from �tted LSTAR model. . . . . . . 16
7 Regimes, �tted and observed monthly in�ation rate against time. . . . . . . . . . . . . . . . . 16

List of Tables

1 P-values from tests done to test against nonlinearity using AR(2): Keenan's test [10], Tsay's
test [18] and Lagrange multiplier (LM)-type linearity test considered by Teräsvirta [16]. All
three p-values reject linearity con�dently at a 1% level of signi�cance. . . . . . . . . . . . . . 14

2 LSTAR model parameter estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5



1 Introduction

Interest in nonlinear time series models grew steadily since the past couple of years. Models which allow for
regime-switching behaviour have been used on a more regular basis, especially in the application of �nance or
economic time series. One of such regime-switching models is the smooth transition autoregressive (STAR)
time series model, which will be introduced and illustrated in this report. The aim of this report is to
illustrate and apply the modelling cycle for STAR models.

In summary, STAR models can be observed at t = 1 − p, 1 − (p− 1) , . . . ,−1, 0, 1, . . . , T − 1, T and are
de�ned as

yt = (φ1,0 + φ1,1yt−1 + · · ·+ φ1,pyt−p) (1−G (st; γ, c))

+ (φ2,0 + φ2,1yt−1 + · · ·+ φ2,pyt−p)G (st; γ, c) + εt for t = 1, . . . , T (1)

or alternatively
yt = φ

′

1xt [1−G (st, γ, c)] + φ
′

2xtG (st, γ, c) + εt (2)

where xt =
(

1, x̃
′

t

)′

with x̃t = (yt−1, . . . , yt−p)
′
and φi = (φi,0, φi,1, . . . , φi,p)

′
for i = 1, 2. It is assumed that

the εi's are a martingale di�erence sequence related to the past observations in the speci�c time series up
until t = t− 1, denoted as Ωt−1 =

{
yt−1, yt−2, . . . , y1−(p−1), y1−p

}
, thus E (εt|Ωt−1) = 0. It is also assumed

that εt has a constant variance of σ2.
What exactly is the STAR model and why are STAR models used? By looking at Eq. 1, one needs to

realize that the STAR model is an extension of the TAR model, which is an extension of the AR model -
thus, the STAR model can be de�ned as some type of autoregressive (AR) time series model. The AR model
is a linear time series model which describes certain time-varying processes in various environments such
as nature, economics, etc. The dependent Y t (output) variable depends on its own previous values, that is
Y t depends on Y t−i. The threshold autoregressive (TAR) model, discussed in [2], is used in nonlinear time
series, when two or more regimes occur. According to [8] economic theory often includes the idea that there
will be a change in economic behaviour if a speci�c variable changes/moves to another level. STAR models
will allow for a higher level of �exibility in the model parameters, which in turn allows for a smooth transition
between the two regimes. Teräsvirta [16] argues that the logistic STAR (LSTAR) model is a special case
of the single-threshold TAR model, whereas the exponential STAR (ESTAR) model is a special case of the
double-threshold TAR model.

Three di�erent choices of transition functions are associated with STAR models, namely the logistic
function, the exponential function and the second-order logistic function. These three transition functions
result in di�erent regime-switching behaviours. This report will give special attention to the logistic function
(resulting in the LSTAR model).

The objective of [4] was to de�ne and represent a speci�c extension of the TAR model, namely the STAR
model. After representing the general STAR model, extensions of the STAR model were discussed in detail,
namely LSTAR, ESTAR, etc. van Dijk [4] also explained the modelling cycle in the STAR framework and
then used an application to illustrate this modelling cycle (US unemployment with STAR models). Several
other applications on STAR models have proven the relevance of modelling certain transition functions in
some speci�c environment. For example, the LSTAR model is more appropriate for modelling business cycles,
where the regimes are associated with expansions and contractions in the business cycle. The ESTAR model,
on the other hand, has especially been used in the application of real exchange rates. It is however important
to use the correct transition function, thus the correct type of STAR model. In order to master this, one
needs to consider the hypothesis testing for linearity and misspeci�cation in smooth transition models, which
was another focus point in [4].
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2 Representation of the STAR model and its various transition

functions

In the following sections we will discuss the STAR model considering properties of the AR(1) time series
model. This will provide for simpli�cation in order to assist the reader gaining a much better understanding
of what exactly the STAR model is and how it is applied. Note that it is however straightforward to extend
the theory discussed below to higher order AR(p) models.

The basic smooth transition autoregressive model for a speci�c time series yt, where t = 1 − p, 1 −
(p− 1) , . . . ,−1, 0, 1, . . . , T − 1, T , can be de�ned by the mathematical Eq. 1 introduced in Section 1. If one
speci�cally considers the STAR model as an extension of the AR(1) model, Eq. 1 reduces to

yt = (φ1,0 + φ1,1yt−1) (1−G (st; γ, c)) + (φ2,0 + φ2,1yt−1)G (st; γ, c) + εt for t = 1, . . . , T. (3)

G (st; γ, c) is known as the transition function - a continuous function between the extreme values 0 and
1. When the transition function is equal to either one of the two extreme values, that is 0 and 1, it operates
to create a smooth transition between two regimes . In this case, the STAR model can be interpreted as
a regime-switching model. If the transition function is equal to di�erent values between 0 and 1 for each
regime respectively, the STAR model accepts for a �continuum� of regimes. In this report, however, we will
only consider the �rst case, where the STAR model operates as a regime-switching model. Several popular
choices exist for the STAR model's transition function, however, only three choices will be considered in this
report.

The transition variable st can embrace several characteristics:

• Teräsvirta [16] assumes that st is a lagged endogenous variable, hence st = yt−d, where d > 0.

• Other references [4] suggest that this assumption should not be made after all, hence st can also be
used as some exogenous variable or as some function of lagged endogenous variables.

• Also, st can be considered as some linear time trend, thus st = t, resulting in a model with smoothly
changing parameters (refer back to [12]).

One of the popular choices for the transition function would be the �rst-order logistic function

G (st; γ, c) = [1 + exp {−γ (st − c)}]−1
for γ > 0 (4)

where the obtained model is called the logistic STAR (LSTAR) model. In Eq. 4 c is the parameter that can be
interpreted as the point at which the change occurs from the one regime to the other. Parameter γ in�uence
the level of smoothness of the transition between the two regimes. As the parameter γ increases, the change
between the two regimes occurs more frequently. From Eq. 3 and 4, when γ = 0 ⇒ G (st; γ, c) = 1

2 , then the
LSTAR model transforms into a linear AR(1) model. The two regimes in the LSTAR model correspond to
small and large values of the transition variable st, relative to c. This is especially useful for modelling business
cycle asymmetry, where the regimes in the LSTAR model relate to various contractions and expansions in
the economy.

Another popular choice for the transition function would be the exponential function

G (st; γ, c) = 1− exp
{
−γ (st − c)2

}
for γ > 0. (5)

The use of the exponential function leads to the exponential STAR (ESTAR) model and owns the charac-
teristic that G (st; γ, c) → 1 as both st → −∞ and st → ∞, whereas G (st; γ, c) = 0 when st = c. As either
γ → 0 or γ →∞, the exponential function in Eq. 5 will transform into a linear model and the ESTAR model
does not hold a self-existing threshold autoregressive (SETAR) model as a special case. If this is unfavorable,
one can instead make use of the second-order logistic function

G (st; γ, c) = [1 + exp {−γ (st − c1) (st − c2)}]−1
where c1 ≤ c2, γ > 0. (6)

From Eq. 6, as γ → 0, the model will become linear. However, if γ →∞ and c1 6= c2, the transition function
will tend to 1 for st < c1 and st > c2, and 0 otherwise.
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Finally, the transition functions in Eq. 4 and 6 result from the n-order (general) logistic function

G (st; γ, c) =

[
1 + exp

{
−γ

n∏
i=1

(st − ci)

}]−1

where c1 ≤ c2 ≤ · · · ≤ cn, γ > 0. (7)

This general logistic function can be used to �nd several changes between only the two regimes.

3 Hypothesis testing in the context of STAR models

Before considering the modelling cycle for STAR models, one needs to be familiar with a number of hypothesis
tests, and be able to apply them, in order to select an appropriate and relevant STAR model for a speci�c
time series. Hypothesis tests in this section include tests of linearity against STAR, LSTAR and ESTAR
nonlinearity. Tests for misspeci�cation of STAR models include tests for the absence of error autocorrelation,
no remaining nonlinearity as well as tests for constancy of parameters which will be introduced in the following
section.

3.1 Testing linearity against STAR

The very �rst step in building STAR models, is to test linearity against STAR nonlinearity, that is to test
whether the �tted model is nonlinear. The null hypothesis of linearity is de�ned so that the two autoregressive
parameters in the two regimes of the model is equal to one another, that is H0 : φ1 = φ2, while the alternative
hypothesis can be de�ned as Ha : φ1,j 6= φ2,j for at least one j ∈ {0, 1}. Take note that we are discussing
the STAR model as an extension of an AR(1) time series model, hence j will take on values of only 0 and 1.
For a general STAR time series model as an extension from an AR(p) model, see detailed discussion in [4].

Another way to express the null hypothesis for linearity will be H
′

0 : γ = 0. If this alternative null
hypothesis (H

′

0) is accepted, it will result in a linear model for any one of the three transition functions
introduced previously. In the case ofH

′

0 being used, the unknown parameters will be c, the location parameter,
and the two autoregressive parameters in the two regimes, that is φ1 and φ2.

The presence of unknown parameters makes it problematic for testing linearity against STAR alternatives
under the null hypothesis. A possible solution suggested by [13] is to replace the transition function by a
proper Taylor series approximation. The resultant equation does not have the problem of unknown parameters
anymore. Consequently, linearity can be tested by using the Lagrange Multiplier (LM) statistic, with a χ2-
distribution. This approach contains two key advantages. Firstly, there is no need to estimate the model
under the alternative hypothesis, and secondly, one has usual asymptotic theory available which can be used
to obtain critical values for the test statistics.

3.1.1 Testing linearity against LSTAR

Note that the LSTAR model can be rewritten from Eq. 2 and 4 as

yt = φ
′

1xt + (φ2 − φ1)
′
xtG (st; γ, c) + εt (8)

and it can be assumed that {εt} ∼ n.i.d.
(
0, σ2

)
. In case it is wished to develop a linearity test against

LSTAR nonlinearity (using Eq. 8), it is advised to approximate the transition function in Eq. 4 with a
�rst-order Taylor approximation around γ = 0. The auxiliary regression equation follows as a result

yt = β
′

0xt + β
′

1xtst + et (9)

with βi = (βi,0, βi,1)
′
, i = 0, 1 and et = εt + (φ2 − φ1)

′
xtR1 (st, γ, c), where R1 (st, γ, c) is what is left of

the Taylor expansion. Under the null hypothesis R1 (st, γ, c) ≡ 0, thus et = εt. Making use of the auxiliary
regression Eq. 9, one can use a second alternative for a null hypothesis, such that H

′′

0 : β1 = 0, to test
for linearity against LSTAR nonlinearity. Notice when β1 = 0, Eq. 9 reduces to a linear model. The test
statistic is de�ned as LM1 ∼ χ2 (p+ 1) under the null hypothesis for linearity, where p = 1 (referring back
to the AR(1) model).
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Note that when st = yt−d for 1 ≤ d ≤ p, it is best to remove β1,0st from Eq. 9 in order to avoid
multi-collinearity. This should be done for all tests discussed below. When this is the case for the transition
variable (st), the test statistic LM1 is powerless when only the intercept changes across the two regimes,
that is when φ1,0 6= φ2,0 but φ1,1 = φ2,1. One can estimate the transition function by using a third-order
Taylor approximation in order to achieve a test which is powerless against this alternative. By doing this,
the resulting auxiliary regression equation follows

yt = β
′

0xt + β
′

1xtst + β
′

2xts
2
t + β

′

3xts
3
t + et (10)

with et = εt + (φ2 − φ1)
′
xtR3 (st, γ, c), and β0,0 and βi = 1, 2, 3 are functions of the parameters φ1, φ2, γ

and c. The consequent null hypothesis is H
′′

0 : β1 = β2 = β3 = 0 with test statistic LM3 ∼ χ2 (3 (p+ 1))
under the null hypothesis for linearity.

Testing algorithm for LSTAR

Note that when working with small samples, it will be best to use the F version of the LM test statistics,
since it has more accurate size properties than what the χ2 version has. Both these versions can be calculated
using two linear regressions as illustrated below.

Suppose the LM3 test statistic is to be calculated under the null hypothesis of linearity. Note that the
LM3 test statistic is based on the auxiliary regression Eq. 10. The following steps described below is needed
for calculations;

Step 1 Using the time series data at hand, �t the model under the null hypothesis of linearity by regressing
the dependent variable, yt, onto the independent variable, xt. Determine the residuals, ε̂t, as well as the sum
of the squared residuals, SSR0 =

∑T
t=1 ε̂

2
t .

Step 2 Fit the auxiliary regression Eq. 10 of yt on xt as well as xts
i
t, for i = 1, 2, 3. Calculate the residuals,

êt, as well as the sum of the squared residuals, SSR1 =
∑T
t=1 ê

2
t .

Step 3 Finally, using the results obtained from step 1 and 2, one can calculate the χ2 version of the LM3

test statistic using

LM3 =
T (SSR0 − SSR1)

SSR0
, (11)

while the F version can be calculated using

LM3 =
(SSR0 − SSR1) /3 (p+ 1)

SSR1/ [T − 4 (p+ 1)]
. (12)

From Eq. 12, it is clear that the F version of the test statistic follows a F -distribution with 3 (p+ 1) and
T − 4 (p+ 1) degrees of freedom. Since we are using an AR(1) time series model, Eq. 12 reduces to

LM3 =
(SSR0 − SSR1) /6

SSR1/ [T − 8]
. (13)

To determine the LM1 test statistic under the null hypothesis of linearity for the LSTAR model, one can
follow the same approach as for the LM3 test statistic discussed above.

3.1.2 Testing linearity against ESTAR

When testing linearity against an ESTAR alternative, it is suggested to use the auxiliary equation

yt = β
′

0xt + β
′

1xtst + β
′

2xts
2
t + et (14)

with et = εt+(φ2 − φ1)
′
xtR2 (st, γ, c), which results from Eq. 2 and 5/6. The corresponding null hypothesis

is de�ned as H0 : β1 = β2 = 0, with test statistic LM2 ∼ χ2 (2 (p+ 1)).
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Instead of using a �rst-order Taylor approximation, another test can be performed by using a second-order
Taylor approximation. The resultant auxiliary regression equation follows:

yt = β
′

0xt + β
′

1xtst + β
′

2xts
2
t + β

′

3xts
3
t + β

′

4xts
4
t + et. (15)

The null hypothesis that follows is de�ned as H
′

0 = β1 = β2 = β3 = β4 = 0, with the corresponding test
statistic LM4 ∼ χ2 (4 (p+ 1)). Again take note that p = 1, since we are working with an AR(1) time series
model. Note that there is a trade-o� between the additional auxiliary variables and the level of the null
hypothesis when deciding between the tests based on Eq. 14 and 15. Neither one of these tests are more
powerful than the other.

The calculation of LM -test statistics for ESTAR models (using the auxiliary regression Eq. 15) can be
done using the same algorithm as was done for LSTAR models in Section 3.1.2.

3.2 Misspeci�cation tests of STAR models

One should thoroughly evaluate a �tted STAR model, including performing a number of misspeci�cation
tests, before it can be accepted as a satisfactory model. Some of these misspeci�cation tests include testing
for no error autocorrelation, no remaining nonlinearity, as well as tests for the constancy of parameters. Some
of these tests, however, relate to extensions of the STAR model [4] which are not discussed in this report.

In the case of multiple regime STAR (MRSTAR) models, testing the hypothesis for no remaining non-
linearity is of concern. These models allow for more than two regimes, however, this report focuses only on
a two regime STAR model, thus the hypothesis tests for no remaining nonlinearity will not be discussed in
any further detail.

Testing for the constancy of parameters is relevant when working with time varying STAR (TVSTAR)
models. Again, this is not covered in this report. Note that a TVSTAR model is relevant when one of the
transition variables in a multiple regime STAR model is set to be equal to time. The reader is referred back
to [4] for a full discussion on this section.

There are several computational aspects which need to be considered when applying misspeci�cation
tests. For a full discussion the reader is referred to [5]. More speci�cally, one problem arises when γ̂1 is
very large so that the transition from the one regime to the other occurs rapidly under the null hypothesis.
Another problem considered by [4] is that the residuals ε̂t from the �tted two-regime STAR model are
seldom orthogonal to the slope matrix. This problem occurs as a consequence when the �tted model is not
appropriate for the observed time series.

4 Modelling cycle in the STAR framework

Teräsvirta [16] follows a �speci�c-to-general� approach (recommended by [7]) when modelling STAR models.
This approach suggests that one starts with a simple model, working towards more involved models only if
the analytical tests show that the maintained model is poor. The following steps are required for modelling
a STAR model:

Step 1 Use a suitable model selection criterion to specify a linear AR model of order p for the time series
at hand. To explain the theory in this section, we will be considering only an AR(1) model.

Step 2 Test the null hypothesis of linearity against the alternative of STAR nonlinearity, as discussed in
Section 3.1. If nonlinearity is concluded, specify the proper transition variable, st, as well as a proper form
of the transition function, G (st; γ, c).

The LM3 test statistic has power against both the LSTAR and ESTAR alternatives. This implies that
the transition variable, st, can be speci�ed before the form of the transition function is speci�ed. The LM3

test statistic can be calculated for a number of transition variables s1t, . . . , smt. The transition variable with
the smallest p-value is then chosen. The reason for choosing the one with the smallest p-value is that we
want the test to have greatest probability that the correct transition variable is applied. Teräsvirta [16] has
shown that this approach is very e�ective in practice.
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After specifying the appropriate transition variable, one needs to select the appropriate form of the
transition function. The choices may, however, be limited between the logistic function (Eq. 4), exponential
function (Eq. 5) or the second-order logistic function (Eq. 6). Di�erent methods for choosing the appropriate
transition function have been proposed in the past, however, recently it became easier to estimate numerous
LSTAR as well as ESTAR models, and then select the appropriate model only at the evaluation stage (step
4) of the modelling cycle.

Step 3 Estimate the parameters for the chosen STAR model. Note that in this report we consider only the
two-regime STAR model, however, the discussion on estimating the parameters can be applied to MRSTAR
and TVSTAR models as well.

The parameters for the STAR model (Eq. 2) are estimated using a fairly simple method of nonlinear least

squares (NLS). Thus, the parameters θ =
(
φ

′

1, φ
′

2, γ, c
)′

can be estimated by

θ̂ = arg min
θ
QT (θ) = arg min

θ

T∑
t=1

(yt −z (xt; θ))
2

(16)

with z (xt; θ) = φ
′

1xt (1−G (st; γ, c)) + φ
′

2xtG (st; γ, c). Since we have assumed that the εt's are normally
distributed, NLS can be considered as the maximum likelihood.

Another suggestion that makes the estimation problem a whole lot easier, known as concentrating the
sum of squares function, was made by [11]. When the parameters γ and c are known and constant, the STAR
model becomes linear in the autoregressive parameters φ1 and φ2. In this case ordinary least squares can be

used to estimate the parameters φ =
(
φ

′

1, φ
′

2

)′

, hence

φ̂ (γ, c) =

(
T∑
t=1

xt (γ, c)xt (γ, c)
′

)−1( T∑
t=1

xt (γ, c) yt

)
(17)

where xt (γ, c) =
[
x

′

t (1−G (st; γ, c)) , x
′

tG (st; γ, c)
]′

and φ (γ, c) implies that the estimate of the parameter

φ is conditional upon γ and c. In other words, the sum of squares function QT (θ) can be concentrated with
repect to φ1 and φ2 such that

QT (γ, c) =

T∑
t=1

(
yt − φ (γ, c)

′
xt (γ, c)

)2
. (18)

This result reduces the complexity of the NLS estimation problem signi�cantly.
Take note that it is very di�cult to get an accurate result when estimating the parameter γ, when this

parameter is in fact large. Large adjustments in γ actually has a very small impact on the transition function.
Consequently, the estimate of γ may appear insigni�cant when looking at its t-statistic (see [4] for a more
detailed discussion).

Step 4 By making use of analytical tests and impulse response analysis, one has to evaluate the resultant
model. When evaluating the STAR model, one should apply misspeci�cation tests such as those introduced
in Section 3.2. Should at least one of the null hypotheses be rejected, one has to reconsider the speci�cation
of the model.

Methods for evaluation of the STAR model include local/sliced spectra and impulse response analysis.
These two methods, however, will not be discussed in this report. The reader can follow a full discussion on
these methods in [4].

Step 5 If needed, improve the model.

Step 6 Finally, use the resultant model for future purposes, such as forecasting.
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5 Application: Modelling SA in�ation rate with LSTAR model

As introduced initially, STAR models are mainly used (and was shown to be successful) to describe and
analyse the behaviour of various macroeconomic time series. On macroeconomic level the main objectives
that serve as criterion to judge the state of the economy are price stability, economic growth, full employment,
balance of payments stability and equitable distribution of income. In this report the LSTAR model has been
mainly discussed, hence we will illustrate the modelling cycle for the LSTAR model speci�cally in the following
section. The LSTAR model was speci�cally shown to be more appropriate for the analysis of business cycles,
where the regimes refer to the downswings and upswings in the economy respectively.

The following application is based on a time series of the seasonally unadjusted in�ation rate for South
Africa from January 1969 to July 2015, on a monthly basis, which have been obtained from Statistics South
Africa1. In�ation is a yardstick of the general price level over time. By observing the in�ation rate, and
�tting the LSTAR model speci�cally to the time series, we can analyse the behaviour of the economy and
get some indication of the business cycles. The software RStudio [14], with packages tsDyn [3] and TSA
[1], has been used for the application of LSTAR modelling in this report (all relevant R-code is included in
Section 7). An LSTAR model will be �tted using speci�c built-in functions of the software used. Afterwards,
a comprehensive evaluation of the time series as well as the �tted model will be made. Finally, the regimes,
which refer to the various business cycles, will be illustrated and analysed using a graph.

When analysing Figure 1, one can clearly notice business cycle irregularity. One should also notice that an
increase in the in�ation rate occurs rapidly during recessions while a decrease in the in�ation rate occurs more
gradually during expansions. This irregularity can be explained by various external factors which in�uence
the in�ation rate, such as the price of oil, demand and supply, climate and many more. External factors such
as these all yield some contribution/impact on the general price level - some greater than others.

Since South Africa is a large importer of oil, any change in the oil price has a signi�cant impact on the
South African in�ation rate. As can be noticed from Figure 1, in 1979 the Irarian revolution led to a sudden
increase in the oil price2. Increases in the oil price usually have a negative impact on economic growth overall
since production costs increase, hence supply decreases. Also, the increase in the oil price, leads to an increase
in food as well. This caused the South African in�ation rate to increase dramatically and becoming very
volatile afterwards. The extremely high and unstable in�ation rate during the 1970's and 1980's can also be
explained by the unstable economic environment in South Africa as a result of the sanctions implemented
in the 1960's in protest of the South African apartheid system. This implementation reached its peak in the
mid-1980's [15]. There are various other explanations for the high volatility in the in�ation rate as well.

Figure 1: Seasonally unadjusted monthly in�ation rate for South Africa, January 1969 to July 2015.

1http://www.statssa.gov.za/publications/P0141/CPIHistory.pdf?
2http://www.nytimes.com/2008/03/03/business/worldbusiness/03cnd-oil.html?hp&_r=0
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Before testing for nonlinearity, the sample autocorrelation as well as sample partial autocorrelation func-
tion for the time series should be evaluated in order to de�ne a possible linear AR(p) model. So far in this
report we have assumed only an AR(1) model for simplicity purposes. However, after analysing Figure 2 and
Figure 3 (which illustrates the sample autocorrelation function and sample partial autocorrelation function
respectively), an AR(2) model should be considered since the sample partial autocorrelations at lag 1 and
2 in Figure 3 are not close to 0, thus they fall outside the control limits. When we evaluate the sample
autocorrelation coe�cients for the monthly in�ation rate time series in Figure 2, it is clear that we have
signi�cant autocorrelations for all lags up until lag 10, which makes sence since an AR(p) model is applicable
and the lagged time series observations have an in�uence on the current time seires value.

Note that in practice it is important to determine to most appropriate linear AR model (that is with the
appropriate order p) for the observed time series. This can be done by comparing the Akaike information
criterion (AIC) and the Bayesian infromation criterion (BIC) values for the various AR model. The model
which has the smallest AIC or BIC is the appropriate AR model to use.

Figure 2: Sample autocorrelation function of the monthly in�ation rate.

Figure 3: Sample partial autocorrelation function of the monthly in�ation rate.
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Once an appropriate linear AR model has been speci�ed, a test against nonlinearity should be done. In
order to �t some STAR model, the chosen AR(p) model should be nonlinear. To test for nonlinearity, the
Keenan test [10], Tsay test [18] as well as the Lagrange multiplier (LM)-type test proposed by [16] were done
in RStudio which all concluded nonlinearity when using an AR(2) model. Referring to Table 1, the p-values
for all three these LM-type tests show that we conclude nonlinearity at a 1% level of signi�cance for an AR(2)
model.

Method AR(2)

Keenan test 0.00940

Tsay test < 0.001

LM-type test < 0.001

Table 1: P-values from tests done to test against nonlinearity using AR(2): Keenan's test [10], Tsay's test
[18] and Lagrange multiplier (LM)-type linearity test considered by Teräsvirta [16]. All three p-values reject
linearity con�dently at a 1% level of signi�cance.

Since nonlinearity has been concluded using an AR(2) model, we can then estimate the parameters for
the chosen LSTAR model. Note that in practice the decision between LSTAR and ESTAR can be made in
the evaluation stage of the modelling cycle, since the two transition functions will estimate approximately
the same parameters. Using the function LSTAR [6] [17] [11] in RStudio, one can estimate both the linear
as well as the nonlinear parameters with their associated standard errors and p-values. These results are
summarised in Table 2. RStudio estimates the parameters using the method of concentrated least squares.
The nonlinear parameters γ and c were estimated using a grid search since they have not been speci�ed in
the function LSTAR. Note that almost all the parameters are highly signi�cant, except for the constants for
both regime 1 and 2, which is signi�cant at a 10% and 5% level of signi�cance respectively, whereas γ, the
smoothing parameter, is not signi�cant at all.

Coe�cient Estimate Standard error t value p-value

Regime 1: Linear parameters
φ1,0 0.15324 0.08432 1.81730 0.06917

φ1,1 1.38426 0.05379 25.73310 < 0.001

φ1,2 -0.40120 0.05277 -7.60230 <0.001

Regime 2: Linear parameters
φ2,0 1.21158 0.49222 2.46150 0.01384

φ2,1 -0.53519 0.08564 -6.24930 < 0.001

φ2,2 0.45888 0.08106 5.66110 < 0.001

Nonlinear parameters
γ 100.0001 168.34779 0.59400 0.55251

c 12.43943 0.08529 145.8520 < 0.001

Table 2: LSTAR model parameter estimates.

The estimated LSTAR model can be written as follows:

ŷt = (0.15 + 1.384y − 0.4yt−2) (1−G (st; 100, 12.44)) + (1.21− 0.54yt−1 + 0.46yt−2)G (st; 100, 12.44) .

Once the estimation stage has been completed, one need to evaluate the estimated model. Analysing the
residuals gives us an idea of the adequacy of the model as we want the residuals to have a constant variance
and indicating no pattern over the observed time period. The ideal is to have uncorrelated or independent
residuals - there should be no presence of signi�cant autocorrelation between the residuals. If we plot the
residuals against time, we want it to have a similar �pattern� than that of white noise, thus independent and
random. Observing Figure 4 one can argue that the residuals are in fact relatively independent and random,
thus no clear pattern can be observed in the time plot of the residuals. Although the residuals have a mean
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of 0, it appears however, that the residuals do not have a constant variance - the variance is quite large up
until 2010, where after the variance decreases quite drastically, suggesting that the model estimated more
accurately after 2010. This presence of heteroscedasticity, unfortunately, can be problematic and is not ideal.

Figure 4: Residuals from �tted LSTAR accross time.

The sample autocorrelation function for the residuals from the �tted LSTAR model is illustrated in Figure
5. Note that the blue dashed lines illustrate the con�dence intervals. The sample autocorrelations plot inside
the con�dence intervals for all lags - that is for lag 1 to 10 the sample autocorrelation coe�cients are all close
to 0, indicating that the residuals are uncorrelated. The sample partial autocorrelation function up to lag 10
in Figure 6 shows insigni�cant partial autocorrelation for the residuals as well.

Figure 5: Sample autocorrelation function of the residuals from �tted LSTAR model.
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Figure 6: Sample partial autocorrelation function of the residuals from �tted LSTAR model.

Finally, one can use the �tted LSTAR model to analyse the economic behaviour and business cycles
regarding the general price level. In Figure 7 the transition function (red line), predicted values (dotted
black line) as well as the observed seasonally unadjusted South African monthly in�ation rate (blue line) are
plotted over time. The low regime indicates an expansion in the economy, whereas the high regime indicates
a contraction. If one compares these two regimes to the in�ation troughs and peaks, it is noticable that
the regimes act as some lagging indicator of the business cycle the economy �nds itself into. For example,
(approximately) in 1975, 1987, 1992 and 2003, respectively, the South African in�ation rate reached a trough
(a turning point when the in�ation rate started improving). Shortly after, the low regime followed, indicating
an expansion in the economy. On the other hand, (approximately) in 1974, 1984 and 2002, respectively, the
in�ation rate reached a peak (a turning point when the in�ation rate started deteriorating). Shortly after,
the high regime followed, indicating a contraction in the economy.

Figure 7: Regimes, �tted and observed monthly in�ation rate against time.

It is clear that the LSTAR model is a relatively well �tted model and becomes very relevant in the analysis
of macroeconomic time series, as well as business cycles, and can eventually also be used for forecasting
purposes. It is especially useful since in real life one would seldom have access to linear time series.
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6 Conclusion

This report discussed the STAR model comprehensively, yet simple by building all theory onto an AR(1)
model. The reader will notice that the order of the linear AR model (which the STAR model is just an
extension of) can be increased in a relatively simple manner. The STAR model with its three well known
transition function was discussed and illustrated broadly. The various tests against nonlinearity have been
introduced and the testing algorithm was shown speci�cally for the LSTAR model (which is similar for the
ESTAR model) to guide the reader through the calculation process. Misspeci�cation test have also been
introduced, although this report did not discuss them in any detail. These misspeci�cation tests are applied
mainly to multiple regime STAR (MRSTAR) models as well as time varying STAR (TVSTAR) models. Thus,
the misspeci�cation tests as well as the MRSTAR and TVSTAR models can be investigated for future which
can possibly yieald in more accurate results for the analysis of STAR models and in the forecasting stages.

The reader has been guided through the entire modelling cycle in the STAR framework. The various
steps have been discussed in depth, however still as simple and straightforward as possible so that the reader
with little mathematics background would be able to understand and apply the modelling cycle.

To simplify the theory discussion even more, and to really explain the role of STAR models, �nally an
empirical example was done using an actual time series of the seasonally unadjusted monthly in�ation rate
for South Africa over a time period of almost 47 years. In this application we have also tried to keep the
modelling process as simple as possible. The software RStudio has been used with packages tsDyn [3] as
well as TSA [1]. There are several other software programs that can be used for STAR modelling such as
standard econometric packages, however some of these standard software do not cover all steps in the STAR
modelling cycle. A collection of general GAUSS programmes, written by Stefan Lundbergh3, covers the entire
modelling cycle for STAR models [4].

So far STAR models have been mainly used in the application and analysis of macroeconomic time series.
Therefore, other sectors such as the �nance and marketing sectors create a great opportunity for future
research. Future research in the properties of vector STAR models also need to be extended. Combining
smooth transitions in panel data models creates another exciting opportunity for future research. Johansen
[9] has been the �rst attempt in this area.

3http://ideas.uqam.ca/ideas/data/Softwares/bocbocodeG111201.html
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7 Appendix

The code for the application in Section 5, using RStudio [14], is as follows:

l i b r a r y (" tsDyn " , l i b . l o c="C:/ Program F i l e s /R/R−3.2.2/ l i b r a r y ")
l i b r a r y ("TSA" , l i b . l o c="C:/ Program F i l e s /R/R−3.2.2/ l i b r a r y ")

#Construct ing time s e i r e s f o r monthly data
data . minf = read . t ab l e ("C:\\ Users \\Ané\\Desktop\\STK795Data\\

month ly_inf lat ion . txt ")
minf . t s = t s ( data . minf , s t a r t = c (1969 ,1 ) , end = c (2015 ,7 ) , f requency=12)

#Test ing f o r n on l i n e a r i t y ( f o r both order=1 & order=2)
Keenan . t e s t ( minf . ts , order = 1)
Tsay . t e s t ( minf . ts , order = 1)
Keenan . t e s t ( minf . ts , order = 2)
Tsay . t e s t ( minf . ts , order = 2)
starmod = s t a r ( minf . ts , m=1)
starmod = s t a r ( minf . ts , m=2)

#Estimating parameters ( l i n e a r as we l l as non l in ea r )
summary( starmod )
lstarmod = l s t a r ( minf . ts , m=2)
summary( lstarmod )

#Evaluat ing the f i t t e d model
#Time s e r i e s
p l o t ( minf . ts , main='Monthly i n f l a t i o n ra t e f o r SA: 1969( Jan ) − 2015( Jul ) ' ,

y lab='Monthly i n f l a t i o n ra t e (%) ' , x lab='Time ' , type=' l ' , axes = FALSE)
ax i s ( s i d e = 1 , at = seq (0 , 2025 , by=2))
ax i s ( s i d e = 2)
#Res idua l s
p l o t ( r e s i d u a l s ( lstarmod ) , main='Res idua l s f o r LSTAR model o f monthly i n f l a t i o n

rate ' , y lab='Res iduals ' , x lab='Time ' , type=' l ' , axes = FALSE)
ax i s ( s i d e = 1 , at = seq (0 , 2025 , by=2))
ax i s ( s i d e = 2)
ab l i n e (h=0)
#Autoco r r e l a t i on s
ac f ( t s ( minf . ts , f r e q =1) , l ag .max = 10 , xaxp=c (0 , 10 , 10 ) , main='Sample ACF of

monthly i n f l a t i o n rate ' )
lstarmod2 = l s t a r ( t s ( minf . ts , f r e q =1) , m=2)
ac f ( r e s i d u a l s ( lstarmod2 ) , na . a c t i on = na . pass , main='Sample ACF of r e s i d u a l s

from f i t t e d LSTAR model ' , l ag .max = 10 , xaxp=c (0 , 10 , 10 ) )
#Pa r t i a l a u t o c o r r e l a t i o n s
pac f ( t s ( minf . ts , f r e q =1) , l ag .max = 10 , xaxp=c (0 , 10 , 10 ) , main='Sample p a r t i a l

ACF of monthly i n f l a t i o n rate ' )
pac f ( r e s i d u a l s ( lstarmod2 ) , na . a c t i on = na . pass , main='Sample p a r t i a l ACF o f

r e s i d u a l s from f i t t e d LSTAR model ' , l ag .max = 10 , xaxp=c (0 , 10 , 10 ) )

#Regimes
regime ( lstarmod )
p l o t ( regime ( lstarmod ) )
p l o t ( minf . ts , main='Monthly i n f l a t i o n ra t e f o r SA: 1969( Jan ) − 2015( Jul ) ' ,

y lab='Monthly i n f l a t i o n ra t e (%) ' , x lab='Time ' , type=' l ' , c o l ='blue ' ,
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axes = FALSE)
ax i s ( s i d e = 1 , at = seq (0 , 2025 , by=2))
ax i s ( s i d e = 2)
par (new=TRUE)
p lo t ( regime ( lstarmod ) , c o l ='red ' , axes = FALSE, ylab = ' ' , x lab = ' ')
par (new=TRUE)
p lo t ( f i t t e d ( lstarmod ) , axes = FALSE, l t y =3, ylab = ' ' , x lab = ' ')
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Abstract

This paper investigates the performance of one-class and two-class classification on the Australian and
German credit scoring data sets by extending one-class parametric Gaussian and non-parametric Parzen
classifiers to two-class classifiers with Bayes’ rule. Furthermore, the performance of Parzen classficiation
with Silverman and Minimum Leave-one-out Entropy (MLE) Gaussian kernel bandwidth estimation is
also investigated.
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1 Introduction

The 2007-2008 financial crisis is the perfect example to emphasize the vital importance of credit scoring. The
Federal Funds rate was lowered from 6.5% to 1% by the Federal Reserve during the period of May 2000 to
June 2003. This is the lowest it has been for 45 years. To make things even worse the Securities Exchange
Commission reduced the capital requirement for five banks (in October 2004) [17]. This made credit seem
extremely cheap, something it surely isn’t. Not only did bankers grant credit to those that wouldn’t be able
to repay it at higher interest rates, but they took on too many debtors and passed it on to other financial
institutions.

The first domino started to fall when the rates were increased during the period June 2004 to June 2006.
Suddenly the U.S Home Construction Index fell and borrowers could not repay their debt [17]. Although
many factors contributed to the financial crisis, it was poor credit scoring that essentially led to majour
lenders filing for bankruptcy.

It is clear that a fine balance needs to exist between the granting of too much or too little credit. As
demonstrated so elegantly by the 2007-2008 financial crisis, the granting of too much credit can lead to
borrowers defaulting on their debt and thus driving the lender to bankruptcy. However, granting too little
credit can lead to poor business performance and will ultimately also force the lender to default. This is
where credit scoring plays a vital role.

In previous years, the decision to grant credit was made by a specialist in the field on a case-by-case basis.
As the demand for credit increased, this process was computerized by means of credit scoring. Credit scoring
is a process used to determine the likelihood that borrowers would repay their debt. Credit scoring can be
subdivided into applicational scoring and behavioral scoring. Application scoring awards borrowers points
at the time of the application based on a few relevant characteristics such as income, age and profession.
Behavioral scoring on the other hand, scores current borrowers based on their recent transactions. Depending
on the type of scoring system, a credit score is typically a number between 300 and 850 or 501 and 990 [8].
The score divides borrowers into two classes. Borrowers that achieve a score above a predetermined level,
or so called ’cut-off level’, would be considered to have a low probability of default or to be credit worthy.
However, borrowers that do not achieve a score exceeding the ’cut-off level’ would be considered to have a
high probability of default.

Modeling credit risk could be complicated by the low default portfolio problem. The latter occurs when
an imbalance between the two classes exists. This imbalance may arise due to two possible reasons. The first
is that the proportion of the sample, as well as the population of the one class differs from the proportion of
the other class. The second is that the proportion of one class in the population differs from the proportion
in the sample. This typically occurs when modeling credit risk, due to a small proportion of defaulters. This
shortage of data (number of defaulters) results in the calculated probability of defaults producing a distorted
image of the behavior of defaults.

When modeling credit risk, there is a certain level of uncertainty with regard to whether to use non-
parametric or parametric distribution estimation. For this reason this paper will compare non-parametric
kernel density estimation and a parametric Gaussian density estimation on a predetermined data set.

One of the key elements to successful non-parametric kernel density estimation is the selection of the
bandwidth parameter. The bandwidth has a strong influence on the resulting estimate. The mean integrated
squared error (MISE) is often used to select the optimum bandwidth estimator. The MISE can not be used
directly since the formula for the MISE contains the density function we wish to estimate using kernel density
estimation (this can explicitly be seen in the univariate proof of Silverman’s Rule of Rhumb in the appendix).
This problem is solved by using cross validation and plug-in selectors. This paper will only consider plug-in
selectors; in particular it will make use of Silverman’s Rule of Thumb and the Minimum Leave-One-Out
Entropy (MLE) method.

The paper will also evaluate the performance of one-class compared to two-class classification on low
default portfolios. Although a paper by Kennedy compared one-class and two-class classifiers, it only utilised
the Gaussian and Parzen classifiers as one-class classifiers where the majority class was modeled [11]. It
concluded that one-class classification outperforms two-class classification when the proportion of defaulters
is very low, typically when defaulters are less then 1% of sample. This paper will therefore aim to use
Bayes’ rule to extend the Gaussian and Parzen classifiers to two class classification by modeling both class-
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conditional pdf’s and accounting for class imbalances with class priors, the negative effect of imbalanced data
on the performance of two class classification would be reduced. Note that one-class classification methods
only take into account the distribution of past borrowers that repayed their debt. Two-class classification
methods on the other hand take into account the distribution of borrowers that repayed their debt as well as
those that defaulted on their debt.

2 Literature Review

As mentioned above, the low default portfolio problem drastically complicates the modeling of credit risk.
Models addressing the low default probability problem can either be statistical models based on historical
data [7], or systems with parameters estimated by financial experts [23]. The statistical models can be
subdivided into two groups: Duration models and classification models. Duration models require large data
sets and focus on the time to default [15]. These models however do not directly provide an estimate of the
probability of default. Classification models use methods such as discriminant analysis and logic regression
[3], decision trees [19], non-parametric statistics and neural networks [22]. Other methods that have been
used include support vector machines [10], genetic algorithms [16] and ant colony optimization [14].

There are two main types of classification methods: Discriminative and generative (also known as model
based) classification. Discriminative classifiers model P (y|x), the posterior class probabilities. Note that
P (x) isn’t modeled and therefore assumptions with regard to unlabeled samples are required. Discriminative
classifiers fit a decision boundary between two classes in such a way that the error rate, or cost of error is
minimized. K-Nearest Neighbor, Auto Encoders, Neural Networks, Support Vector Machines, Decision Trees
and k-Means are a few examples of discriminative classification.

The k-Nearest Neighbor classifier receives multidimensional vectors each with a class label, as training
sets. A constant k is specified by the user. Unlabeled vectors are then classified by assigning the class that
occurs most often among the k nearest neighbors to the unlabeled vector. In general, the Euclidean distance
is used to measure the distance between the unlabeled vector and the training sets. Other methods such
as the Hamming distance may also be used. Henley and Hand investigated the optimal k and distance for
the evaluation of credit risk. They found that the k-Nearest Neighbor classifier is fairly insensitive to these
parameters [9].

A Neural Network model is essentially a set of mathematical functions that receive an input vector say x
and produces an output vector, say o. The relationship that exists between x and o depends on the set of
functions used in the model. Neural Networks should have a minimum of three layers: The input, output and
a hidden layer [3]. A network generally has three parameter types: The interconnection pattern that connects
different layers, the learning process that updates the weights of the interconnections, and the function that
transforms the weighted input into output.

Support Vector Machines aim to find an optimal hyperplane through the maximization of Lagrange
multipliers of the training vectors. An optimal hyperplane results in the minimum number of training errors.
The Support Vector Machine transforms the training sets into a higher dimensional space in order to generate
a flexible boundary. The classification is determined by the distance between the object that needs to be
classified and the boundary of the threshold.

Generative classifiers calculate the joint distribution of the underlying class. Based on this joint distri-
bution it can generate labeled instances. Decision theory is applied in the case of unlabeled instances. In
the case of classification, determining the full underlying distribution is unnecessary and might even result in
lower performance. If the cost of error is independent of the joint distribution, then generative classification
outperforms discriminative classification [4].

Generative classifiers can further be subdivided into non-parametric and parametric classifiers. Exam-
ples of non-parametric generative classifiers include Mixture of Gaussian and non-parametric kernel density
estimation, whereas Gaussian and Näıve Bayes are examples of parametric generative classifiers, since a
parametric function is imposed on the class-conditional density function.

The linear combination of k Gaussian distributions is known as the mixture of Gaussian model. The
training set is subdivided into k clusters. Each cluster is modeled by a single Gaussian distribution. The
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superposition is then given by:

f(z) =

k∑
i=1

αie
−(z−µi)TΣ−1

i (z−µi)

with Σ the covariance matrix, µ the mean and αi the mixture weight. The classification is determined by the
threshold on the density. It is important to take into account that this method will result in a large variance
if the amount of data is insufficient.

As the name suggests, non-parametric kernel density estimation (also known as Parzen density estimation)
uses a predetermined kernel to estimate the density function.

For the univariate case, let D = {x1, x2, ..., xn} be a sample of n independent identically distributed
random variables from an unknown distribution p(·). The non-parametric kernel density estimate is then
given by:

p̂(x) =
1

n

n∑
i=1

Kh(x− xi)

=
1

nh

n∑
i=1

K

(
x− xi
h

)

where h > 0 is the bandwidth (the smoothing parameter), K(·) is the kernel and Kh = 1
hK

(
x
h

)
. Note

that the kernel integrates to one, has a mean of zero and is non-negative. In this paper we will assume that
K is a Gaussian kernel function, thus:

K(x) =
1√
2π
e−

1
2x

2

Considering the multivariate case, let D = {x1,x2, ...,xn} be a sample of n, d-dimensional random vectors
from an unknown distribution p(·). Then the multivariate non-parametric kernel density estimate is given
by:

p̂(x) =
1

n

n∑
i=1

KH(x− xi)

=
1

n
|H|− 1

2

n∑
i=1

K
(

(H−
1
2 )(x− xi)

)

where H is a positive definite, symmetric d× d bandwidth matrix, K(·) is the kernel function and x and xi
are d dimensional vectors. Since we assume K to be a Gaussian kernel it follows that:

K(x) =
1

(2π)
d
2

e−
1
2x

Tx

This paper will use Silverman’s Rule of Thumb in both the univariate and multivariate case for the
approximation to the bandwidth. Silverman suggested using h ≈ 1.06σ̂n−

1
5 (see section 6.1 for the proof)

for the univariate case, where σ̂ is the standard deviation of the elements and n is the number of elements.

He also suggested using
√
Hii =

(
4
d+2

) 1
d+4

n
−1
d+4 σ̂i for the multivariate case, where n is the number of row

vectors and σ̂i is the standard deviation of the i − th row vector. A paper by Van der Walt and Barnard
compares traditional bandwidth estimators for kernel density estimation. One of the conclusions they draw
is that in general Silverman’s rule of thumb performs consistently well across numerous data sets investigated
[21].
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It is important to realize that when there are large variance in the density, this method will not be able
to adopt to such variations. This problem can be addressed through the use of variable kernel bandwidths.
Breiman investigated the use of bandwidth variation where the data is scattered [1]. This paper will only focus
on the difference between parametric (Gaussian) estimation and non-parametric kernel density estimation
with fixed bandwidths.

As mentioned in the introduction, over and above Silverman’s rule of thumb this paper will make use of the
Minimum Leave-One-Out Entropy (MLE) estimator. One of the key properties of the MLE estimator is that
it is feasible for higher-dimensional estimations unlike some conventional bandwidth estimators. This method
uses the principle that minimization of the sample entropy and maximization of the log-likelihood function
is equivalent. The MLE’s equation is similar to that of the Maximum Leave-One-Out Likelihood’s (MLL)
equation, only differing in the fact that both the numerator and the denominator of the MLE equation is
normalized. This leads to the reduction in the effect of data points that fall in dense regions and an increase
in the effect of data points that fall in the lower dense regions, on the estimated bandwidth. Therefore
although MLL and MLE estimators result in similar performance, the MLE estimator outperformed the
MLL estimator for all data sets investigated. Another advantage of the MLE estimator is that it can estimate
unique bandwidths for the outliers, which often require larger bandwidths[20]. The MLE bandwidth estimate
for a diagonal bandwidth matrix is given by:

Hk(d,d) =

∑N
i=1

KHk
(Xi−Xk|Hk)(xid−xkd)2

pH(−i)(Xi)
)∑N

i=1

KHk
(Xi−Xk|Hk)

pH(−i)(Xi)

where Hk(d,d) is the bandwidth for the kernel fitted over the kth data point in dimension d. See section
6.2 for the proof.

Gaussian estimation assumes that the data is normally distributed. However, if the data is not normally
distributed, the model may result in a large bias. In the multivariate case, the Mahalanobis distance for a
point z is given by:

f(z) = (z− µ)TΣ−1(z− µ)

where Σ is the covariance matrix and µ is the mean of the data. Finally the classification is made by
comparing the distance to the threshold.

Naive Bayes classifiers typically model the class-conditional density functions with a Gaussian distribution
with a diagonal covariance matrix. The features are thus assumed to be uncorrelated. Let x = (x1, ..., xn) be
a vector of n features. Then a Naive Bayes probability model assigns probabilities P (Ck|x1, ..., xn) to each
of the k possible classes (Ck denotes the k-th class). Using Bayes’ theorem it can be simplified to:

P (Ck|x) =
P (Ck)P (X|Ck)

P (X)

Assuming every feature is indipendent of the other features, this expression can simplify to:

P (Ck|x1, ..., xn) =
1

P (X)
P (Ck)

n∏
i=1

P (Xi|Ck)

A maximum a posteriori decision rule needs to be added to form a Naive Bayes classifier. The function
that labels the class ŷ = Ck for a k is then given by:

ŷ = arg max
k∈{1,...,K}

P (Ck)

n∏
i=1

P (Xi|Ck)

K-fold cross-validation is done by splitting the data set into k folds of equal size. The classes (in this
case defaulters and non-defaulters) in the data set are determined and an equal ratio, of class one to class
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two, is divided into each fold. A training set is set up such that it consists out of all the combinations of
k − 1 of the k folds. For each combination the remaining set is used as the testing set. Cross-validation
ensures that the data is independent. It also ensures that the error on the testing set represent the model
performance. In order to reduce variability each round of cross-validation must be repeated multiple times.
K-fold cross-validation is illustrated in Figure 1

Figure 1: k-fold cross-validation

It is important to understand the difference between one-class and two-class classification. Two-class
classification divides the training set (as described above) into a training set for class one and another for
class two. These training sets are used respectively to train the particular classifier for each class. Once the
classifier trained on each of the classes respectively it uses the testing set to calculate two sets of likelihoods,
one for each class. The way in which the likelihoods are calculated depends on the particular classification
method and have already been discussed for various methods. The likelihood scores for each entry in the
testing set is compared. The class label of the largest likelihood is assigned to the entry.

One class-classification on the other hand only uses one training set to train the particular classifier.
Likelihoods are calculated for each instance in the data set using the particular classification method. Based
on a threshold the class label is assigned to each instance; any instance with a likelihood larger than the
threshold is assigned one class label, while any instance with a likelihood smaller than the threshold is assigned
the other class label.

A paper by Desai concludes that neural networks outperforms traditional techniques such as logic regres-
sion and linear discriminant analysis. It also states that neural networks and genetic algorithms have the
ability to capture non-linear relationships as well as classifying borrowers into three groups instead of two [2].

11



Based on the specified data set Huang concludes that support vector machine based models, perform similar
to that of genetic programming, backpropagation neural networks and C4.5. He goes further to recommend a
hybrid version of support vector machines [10]. An interesting paper by Stiglitz and Weiss states that credit
risk is affected by the interest rate charged by banks [18].

Kennedy evaluates the effectiveness of using one class classification to address the low default probability
problem. This is done by comparing the performance of one class classification to that of two class classifi-
cation with regard to the low default probability problem. Gaussian, Mixture of Gaussian, Parzen Density
Estimation, Näıve Parzen, k-Nearest Neighbour, Support Vector Domain Description, k-Means and Auto-
encoders are all estimation methods used to compare one and two class classifiers. Nine different data sets
are used. The study evaluates the performance by means of the harmonic mean and the H measure. Kennedy
shows that as defaulters are gradually removed, the performance of the two class classifiers (measured using
H measure) deteriorates drastically. It also shows that since there aren’t any non-defaulters removed, the
performance of the one class classifiers remains fixed throughout. Kennedy recommends that with a propor-
tion of 1% or less, one class classification should be used. It is suggested that one class classification might
be a solution to the low default probability problem. Kennedy states that if a population drift occurs that
the performance of two class classifiers will deteriorate [11].

In 1963 Bayes published a paper entitled “An Essay Towards Solving a Problem in the Doctrine of
Chances”. The paper contains the theorem of elementary probability theory that led to “Bayes’ rule” as it is
known today. It was Laplace that suggested that the posterior distribution is proportional to the likelihood
[5]. Today Bayes’ rule is known and used as: The posterior distribution is proportional to the prior times
the likelihood. That, in mathematical terms is:

f(θ|X) ∝ f(X|θ)f(θ)

It is important to take into account the assumptions concerning Bayesian estimation: Data is viewed in
a probabilistic fashion and prior information exists and contributes to the estimation. Bayesian modeling is
done by implementing a probability model for the unknown parameter, updating the knowledge about this
parameter by conditioning the probability model and finally evaluating the appropriateness of the model.

It was Neyman and Pearson that helped to develop the techniques that are today known as frequentest
methods [5]. Take note that the frequentest approach assumes that a frequency exists, the parameters are
fixed and the study is repeatable. The class priors for Bayes’ rule can be estimated by simply counting the
frequencies of the two classes.

The German data set used in this paper is a multivariate data set. It contains a thousand instances with
twenty attributes. It was donated in 1994 by Professor Dr. Hans Hofmann of the University of Hamburg.
The original data set contains categorical as well as integer values. A short description of each attribute
follows in Table: 1 [12]:

Attribute number Feature Possible Values
1 Status of Checking Account In terms of Deutsche Mark(DM)

A11-... < 0DM
A12-0 ≤ ... < 200DM
A13-... ≥ 200 DM
A14-No Checking Account

2 Duration Integer Value (Months)
3 Credit History A30 - Credits paid back duly

A31 - Credits paid back duly at this bank
A32 - Existing credits paid back dully to date
A33 - Previous delay in payment
A34 - Other credits existing

4 Purpose A40 - New car
A41 - Used car
A42 - Furniture/ Equipment
A43 - Radio/ Television
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A44 - Domestic appliances
A45 - Repairs
A46 - Vacation
A47 - Education
A48 - Retraining
A49 - Business
A410 - Other

5 Credit Amount Numerical value rounded to the nearest hundred.
Given in hundreds.

6 Savings Account or Bonds A61 -< 100 DM
A62 - 100 ≤ ... < 500 DM
A63 - 500 ≤ ... < 1000 DM
A64 - ... ≥ 1000 DM
A65 - Unknown

7 Present Employment A71 - Unemployed
A72 -< 1 year
A73 - 1 ≤ ... < 4 years
A74 - 4 ≤ ... < 7 years
A75 - ≥ 7 years

8 Installment Rate Percentage of disposable income
9 Personal Status and Sex A91 - Male: divorced/ separated

A92 - Female: divorced/ separated/ married
A93 - Male: single
A94 - Male: married/widowed
A95 - Female: Single

10 Other Debtors A101 - None
A102 - Co-applicant
A103 - Guarantor

11 Present Residence since Numerical value
12 Property A121 - Real estate

A122 - Building society/ life insurance
A123 - Car or other not in attribute 6
A124 - No known property

13 Age Numerical value (years)
14 Other Installment plans A141 - Bank

A142 - Stores
A143 - None

15 Housing A151 - Rent
A152 - Own
A153 - For free

16 Existing Credits at this Bank Numerical value
17 Job A171 - Unemployed/ unskilled non-resident

A172 - Unskilled resident
A173 - Skilled employee
A174 - Management/ self-employed/ highly
qualified employee/ officer

18 Number of dependence Numerical value
19 Telephone A191 - None

A192 - Registered to debtor
20 Foreign Worker A201 - Yes

A202 - No
Table 1: German data set
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In order to do apply the necessary algorithms and calculations to the data, the data set must be free
of any categorical variables. Therefore we will use the modified version “german.data-numeric” of the data
set. The modifications were made by Strathclyde University. They replaced all categorical variables with
indicator functions and integer values. The modified data set has twenty-four attributes.

This paper will also use the Australian Credit Approval data set. The data set contains data relating to
credit card applications. The data set consists of six-hundred-and-ninety instances and fourteen attributes.
The data set also contains a few missing values. Even though the source of the data set is confidential it can
be obtained from UCI [12]. A description of the attributes are given in Table 2.

Attribute number Variable type Possible values

A1 Categorical 0,1
A2 Continues
A3 Continues
A4 Categorical 1,2,3
A5 Categorical 1,2,3,4,5,6,7,8,9,10,11,12,13,14
A6 Categorical 1,2,3,4,5,6,7,8,9
A7 Continues
A8 Categorical 0,1
A9 Categorical 0,1
A10 Continues
A11 Categorical 0,1
A12 Categorical 1,2,3
A13 Continues
A14 Continues
A15 Class attribute 1,2

Table 2: Australian data set

Since the classifying methods all need a complete set of data and the Australian data set have a few
missing values, imputation is implemented. Imputation is used to assign values to the missing entries. The
data set is divided into two classes based on the class variable. The averages of the values of the non-missing
entries in each class is calculated for each individual attribute. These values are substituted for each of
the missing continuous values in the corresponding class and attribute. This method is known as cell mean
imputation. The same is done for the missing categorical variables with the mode instead of the mean. An
additional categorical variable should be added to indicate whether any attribute for the entry has been
measured or imputed. It is assumed that the missing entries are missing completely at random [13].

3 Experimental Design

The aim of the study, as mentioned before, is to not only evaluate the performance of one-class versus
two-class classifiers at different default ratios, but also to evaluate the performance of parametric versus
non-parametric classifiers. In order to do this a series of experiments are conducted.

3.1 Preliminaries

Receiver operating characteristic (ROC) curves use confusions matrices to plot the true positive rate (TPR)
against the false positive rate (FPR) for various thresholds. In the case of a perfect classification or prediction
by the classifier a point would appear with the coordinate (0,1), indicating 100% sensitivity and 0% false
positives. A classification or prediction that is completely at random on the other hand would result in a
point appearing on the diagonal or line of no-discrimination.

The area under a ROC curve represents the accuracy of the particular classifier. For the following
experiments the areas under the curves are calculated using the trapezoidal rule. An area of 0.5 implies that
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the classifier is ineffective and has the same probability of making the correct classification as when a class
is chosen at random. On the other hand an area of 1 implies that every class is predicted correctly.

Over and above the use of the AUC, the harmonic mean is used to evaluate the performance of the
classifiers. The harmonic mean measures the performance of a classifier at a fixed threshold. The harmonic
mean uses the confusion matrices to calculate the sensitivity as well as the specificity. This measures the
quality of the classifiers. Specificity is given by

TN

TN + FP

and sensitivity is given by

TP

TP + FN

Finally

Harmonic Mean =
2× Sensitivity × Specificity
Sensitivity + Specificity

The hit rate of a classifier is simply the average of the number of classes correctly classified. In order to
determine whether a classifier is performing acceptable, the hit rate should be compared to a benchmark.
The proportional chance criterion can be calculated as CPRO = q2

1 + q2
2 , where q1 and q2 are the proportions

of the different classes respectively. In general the hit rate of a classifier should be a quarter greater than
the proportional chance criterion. It should be mentioned that this method only gives a rough indication of
performance and becomes redundant for larger class imbalances.

A confusion matrix or contingency table consists of columns that represent the instances of the predicted
classes, whereas the rows represent the instances of the actual classes. See Table 3.1 for an example of a
confusion matrix. From the confusion matrix the false positive rate (FPR) can be calculated as

FPR =
FP

FP + TN

and the true positive rate can be calculated as

TPR =
TP

TP + FN

C ′1 C ′2
C1 True Positive (TP) False Negative (FN)
C2 False Positive (FP) True Negative (TN)

Table 3: 2× 2 Confusion Matrix

For all experiments that follow the one-class and two-class classifiers that are used include: Naive Bayse,
Gaussian, Kernel Density Estimation using Silverman’s rule of Thumb and Kernel Density Estimation using
MLE classifiers. These classifiers are implemented on the German as well as the Australian data sets for all
of the following experiments.

3.2 One-class vs. two-class classification for a fixed default rate

The aim of this experiment is to compare the performance of one-class versus two-class classifiers for a fixed
ratio of defaulters. This is done by graphing the receiver operating characteristic (ROC) curves for the
one-class as well as the two-class classifiers on the same set of axis, for each of the classifying techniques.

Ten-fold cross-validation is implemented and the likelihoods for each classifier are calculated as described
in the Literature Review. These likelihoods of the two-class classifiers are multiplied by the corresponding
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frequentest priors to form new likelihood scores. These new likelihoods are then normalized. The normalized
likelihoods are used to determine the predicted classes and hence to set up the respective confusion matrices.
The confusion matrices are used to draw the required ROC curves for the corresponding two-class classifiers.

The likelihoods of the one-class classifiers are ordered from small to large. The respective thresholds are
set equal to the midpoints of the consecutive likelihoods. The final threshold is found by taking an arbitrary
number larger than the largest threshold. Any likelihood larger than the threshold is classified as class two,
while any likelihood less than the threshold is classified as class one. Once the classifications are made a
confusion matrix can be constructed for each of the thresholds.

Once the vectors relating to the ROC curves have been calculated the area under each curve can be
calculated. From the AUC values a comparison can be made between the performance of the different
classifying techniques as well as between the performance one-class and two-class classifiers.

3.3 One-class vs. two-class classification for varied class imbalances using the
areas under ROC curves

This experiment is designed to probe the effect of the class imbalance on the performance of both one and
two-class classifiers.

The same procedure is followed as set out in section 3.2 with one vital exception. Instead of only calculating
the areas under the ROC curves for a fixed ratio of defaulters to non-defaulters, the ratio is varied. The ratio
is varied by removing a fixed number of defaulters from the data set. Once the first set of defaulters have
been removed the areas under the ROC curves are calculated and the next set of defaulters are removed.
This process is repeated until the desired class imbalance is reached. The process can be viewed in Figure 2.
The AUC values is used to compare the performance of the different one-class classifiers, as well as that of
the two-class classifiers.

It is important to notice that as the ratio is varied the size of the data set is also varied.

3.4 One-class vs. two-class classification for varied class imbalances using har-
monic means

Since the AUC method of evaluating performance depends on the probability function of the likelihoods of
the costs, which in turn depends on the distributions of the actual scores of the classifier, the AUC method
isn’t considered to be robust [11]. Therefore this experiment investigates the performance of both one and
two-class classifiers for various class imbalances using the harmonic mean.

Once ten-fold cross-validation is implemented the likelihood scores for the one-class and two-class classifiers
can be calculated as described in the Literature review.

For the two-class classifiers the likelihood scores are multiplied by the corresponding frequentest priors.
The predicted classes are determined and a confusion matrix is set up using the predicted and actual classes.
The confusion matrices are used to determine the harmonic mean values.

For the one-class classifiers the likelihood scores are determined. Classification is done for various thresh-
olds as described in section 3.2. The optimum thresholds are determined by determining the thresholds that
leads to the maximum accuracy for each individual classifier. The relevant confusion matrices are used to
determine the harmonic mean.

This process is repeated for multiple class imbalances. The different ratios of defaulters to non-defaulters
are obtained as described in section 3.3. This process is set out in Figure 2.The harmonic means of the
different classes for the different class imbalances are compared. It is once again important to note that the
size of the data set is varied as the class imbalance is varied.
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Figure 2: Process used for classification done with varied class imbalances

3.5 One-class vs. two-class classification for varied class imbalances with equal
priors

In theory the exact frequentest priors for the two-class classifiers and the exact optimum thresholds for the
one-class classifiers can be calculated. In practice it may be required that these values be deduced from
historical data or be recommended by an expert in the particular field. This experiment therefore aims
to evaluate the effect of frequentest priors that aren’t optimal, but realistic in a real world setting, on the
performance of the classifiers.

This is done by using equal priors in the calculations to determine the AUC, hit rate and the harmonic
mean of the classifiers. These results are then compared to the results where the true priors are known. In
other words the procedure set out in section 3.4 is repeated with the changed component of equal priors.

4 Results

4.1 One-class vs. two-class classification for a fixed default rate

4.1.1 Australian data set

For the fixed class imbalance it is clear that the two-class classifiers outperform the one-class classifiers, as seen
in Figures 3, 4 and 5. These figures also emphasize the importance PCA plays in the classification performance
of the MLE classifier. If the data is only z-scored the one-class MLE classifier’s ROC curve is close to the
line of no discrimination. This is confirmed by considering the areas for the one-class classifiers summarized
in Table 4. The table also indicates that the two-class Silverman classifier performs best regardless whether
PCA with all features, PCA with only features explaining 95% of the variance is kept, or only z-scoring is
applied to the data. The two-class MLE classifier performs second best for the fixed default ratio.
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Figure 3: Australian data: ROC Curves (PCA 95%)

Figure 4: Australian data: ROC Curves (PCA)
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Figure 5: Australian data: ROC Curves (Z-Score)

PCA 95% PCA Z-Score

One-Class Two-Class One-Class Two-Class One-Class Two-Class
Silverman 0.9283 0.9943 0.9269 0.9945 0.9270 0.9942

MLE 0.8742 0.9882 0.8769 0.9891 0.5825 0.9694
Naive Bayes 0.6366 0.9174 0.6337 0.9157 0.8297 0.9023

Gaussian 0.8170 0.9112 0.8365 0.9167 0.8365 0.9167

Table 4: Australian data: Area Under Curves (55.51% Defaulters)

4.1.2 German data set

Figures 4, 6 and 8 indicate that the two-class classifiers outperform the one-class classifiers. The Naive Bayes
and Gaussian one-class classifiers have ROC curves that are close to the line of no discrimination. Table
5 confirms this, indicating that the areas under the one-class ROC curves exceeds that of the line of no
discrimination by a small margin in each case. It is interesting to note that the area under the ROC curve of
the two-class Silverman classifier with PCA applied is the same as that of the two-class MLE classifier with
the data only z-scored. These two classifiers perform the best at this particular default ratio.
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Figure 6: German data: ROC Curves (PCA 95%)

Figure 7: German data: ROC Curves (PCA)
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Figure 8: German data: ROC Curves (Z-Score)

PCA 95% PCA Z-Score

One-Class Two-Class One-Class Two-Class One-Class Two-Class
Silverman 0.9530 0.9896 0.9568 0.9900 0.9527 0.9893

MLE 0.9061 0.9849 0.9045 0.9847 0.9003 0.9900
Naive Bayes 0.5822 0.8005 0.5837 0.7968 0.5969 0.7813

Gaussian 0.6150 0.8219 0.6248 0.8405 0.6248 0.8405

Table 5: German data: Area Under Curves (30% Defaulters)

4.2 One-class vs. two-class classification for varied class imbalances using areas
under the ROC curves

4.2.1 Australian data set

Evaluating the performance of the classifiers using the areas under the ROC curves for the data set with
PCA applied to it, as seen in Figure 9, a few observations can be made. First of all, the AUC’s for the
non-parametric two-class classifiers are the largest for all tested class imbalances. These classifiers have areas
above 0.95 regardless of the class imbalance.

The AUC’s for the two-class parametric classifiers are similar, with the two-class Naive Bayes and Gaussian
classifiers increasing in performance as the class imbalance is increased. For the larger class imbalances the
two-class Naive Bayes classifier performs better than the two-class Gaussian classifier. At an imbalance of
6.97% the performance of the two-class Gaussian classifier increase to such an extend that it surpasses that of
the two-class Naive Bayes classifier. The logistic regression classifier performs similar to the two-class Naive
Bayes classifier, slightly outperforming it for lower levels of defaulters.

All of the one-class classifiers have a noticeable spike in performance occurring between default ratios
11.43% and 6.97%. The one-class Naive Bayes classifier has a significant upwards trend. The non-parametric
one-class classifiers performs better than the parametric one-class classifiers, with Silverman’s one-class clas-
sifier performing similar to the parametric two-class classifiers.

Comparing Figures 9 and 10 it is quite clear that the removal of features, that do not contribute to 95% of
the variance, have very little to no effect on the calculated AUC’s for various class imbalances. The one-class
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Gaussian classifier does perform better with a small margin, when all features are kept.
By considering Figure 11 the effect of the lack of PCA can be observed on the AUC’s of both the one-class

and two-class MLE classifiers. Applying PCA to the data results in the features, in the transformed feature
space, being orthogonal. The data is thus uncorrelated; explaining the higher performance of the one-class,
as well as of the two-class MLE classifiers for the PCA data.

By applying PCA on the data the AUC’s for the one-class Naive Bayes classifier are reduced in comparison
to when the data is only z-scored.

Figure 9: Australian data: Area Under the Curve (PCA 95%)
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Figure 10: Australian data: Area Under the Curve (PCA)

Figure 11: Australian data: Area Under the Curve (Z-Score)
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4.2.2 German data set

First and foremost it is clear that the two-class non-parametric classifiers outperform all other classifiers
over all class imbalances. All of the two-class classifiers outperform the one-class classifiers. The one-class
Silverman classifier outperforms not only all of the other one-class classifiers, but also the two-class parametric
classifiers. The AUC’s for this classifier remain fairly constant at 0.95 over all class imbalances. The one-class
MLE classifier outperforms the parametric two-class classifiers up to a point of 10.26% defaulters, at which
point the two-class Gaussian classifier starts to exceed it in performance.

The two-class Gaussian classifier increases in performance as the percentage of defaulters is decreased. It
outperforms the logistic regression, as well as the two-class Naive Bayes classifiers as expected. The Naive
Bayes classifier assumes independence and only takes into account the variances of each feature, whereas the
Gaussian classifier not only takes the variances, but also the covariances of the features into account.

The AUC’s of the two-class Naive Bayes classifier increase slightly but remains fairly unchanged at 0.8.
The performance of the logistic regression classifier is similar to that of the two-class Naive Bayes classifier.
Up to a point of 20.45% defaulters the logistic regression classifier performs slightly better, after which the
two-class Naive Bayes classifier performs slightly better.

Both the one-class Naive Bayes and Gaussian classifiers decrease in performance as the class imbalance
increase. As expected the one-class Gaussian classifier still outperforms the one-class Naive Bayes classifier.
The AUC’s remain between 0.65 and 0.55 for all class imbalances. This can be observed in Figure 12.

The performance of the classifiers when PCA is applied to the data, with all features kept, is similar to
that when only the features explaining 95% of the variance is kept. However in the case where all features
are kept the performance of the one and two-class Gaussian as well as the one-class Naive Bayes classifier
is slightly better. See Figure 13. Since the Gaussian classifier use a covariance matrix, by not using all the
features and hence not all the variance and covariance components its classification accuracy is reduced. A
similar argument can be made for the one-class Naive Bayes classifier.

By comparing Figures 12 and 14 a few differences can be observed. The two-class MLE classifier has a
smaller AUC for a ratio of 5.41% defaulters if PCA isn’t applied to the data. The two-class Naive Bayes
classifier performs somewhat worse up to the point of 10.26% defaulters, after which the classifier performs
similarly for both cases.

Figure 12: German data: Area under Curve (PCA 95%)
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Figure 13: German data: Area under Curve (PCA)

Figure 14: German data: Area under Curve (Z-Score)
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4.3 One-class vs. two-class classification for varied class imbalances using hit
rates

The series indicated as “Chance Criterion” in the following figures serves as a benchmark and is based on
the proportional chance criterion. The series “Chance Criterion” indicates one and a quarter times the
proportional chance criterion.

4.3.1 Australian data set

Figure 15 shows that for the data on which PCA is performed with the features explaining 95% of the
variance kept, the hit rates of the non-parametric two-class classifiers are the highest. The two-class MLE
classifier exceeds the two-class Silverman classifier for greater class imbalances. The two-class Naive Bayes
and Gaussian classifiers have upward trends, with the Naive Bayes classifier exceeding the Gaussian classifier
in performance. All of the two-class classifiers have higher hit rates than the one-class classifiers up to a class
imbalance of 6.97% defaulters. The one-class classifiers all fall below the benchmark. The hit rate of the
one-class classifiers is an increasing function of the class imbalance, with values similar to the proportion of
the class containing the most instances.

Fairly similar conclusions can be made for the case where all the features are kept and not just those
explaining 95% of the variance. See Figure 16.

Figure 17 once again emphasize the importance of PCA for the two-class MLE classifier. In comparison to
the PCA data the hit rate of the two-class MLE classifier is much lower for the z-scored data. The two-class
Silverman classifier has a lower hit rate for smaller class imbalances, however it increases as the as the class
imbalance increase. For a default ratio of 6.97% the two-class Silverman classifier performs better for the
z-scored data compared to the PCA data.

The overall performance of the two-class Naive Bayes classifier is adversely affected by only z-scoring the
data. This contradicts the observation made in section 4.2. The contradiction can be explained by the fact
that the hit rate only incorporates the instances correctly classified, whereas the AUC takes into account all
instances.

Figure 15: Australian data: Hit Ratio (PCA 95%)
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Figure 16: Australian data: Hit Ratio (PCA)

Figure 17: Australian data: Hit Ratio (Z-score)
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4.3.2 German data set

The one-class classifiers never exceed the benchmark and can be considered to under perform, regardless of
the class imbalance. The hit rate of the one-class classifiers are similar to the percentage of non-defaulters.

The logistic regression classifier only performs acceptable for default ratios of 30% and 28.57% of defaulters.
It follows a similar upward trend as that of the one-class classifiers. The parametric two-class classifiers have
an acceptable hit rate up to a class imbalance of 23.91% of defaulters after which it falls below the benchmark.

The hit rate of the one-class classifiers at any given default ratio is the ratio of the non-defaulting class.
Therefore as the class imbalance is increased and the proportion of the non-defaulters increase, the hit ratio
of the one-class classifiers increase.

The two-class Silverman classifier slightly outperforms the two-class MLE classifier for most of the class
imbalances. The hit ratio of the two-class MLE classifier increases for 7.89% and 5.41% defaulters such that
it exceeds that of Silverman. From a ratio of 12.5% defaulters both non-parametric two-class classifiers fall
below the benchmark.

Comparing Figures 18 and 19 it can be seen that by only maintaining the features explaining 95% of
the variance have a very small impact on the hit rate of the classifiers. In fact the hit rate of the two-class
Gaussian classifier is slightly higher if all the features are kept.

Figure 20 indicates that by not performing principal component analysis and only z-scoring the data that
the hit rate of the two-class MLE is higher. On the other hand, the hit rate of the two-class Naive Bayes
classifier is drastically lower. From a default ratio of 22.22% it is lower than the hit ratio of the one-class
classifiers.

Figure 18: German data: Hit Ratio (PCA 95%)
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Figure 19: German data: Hit Ratio (PCA)

Figure 20: German data: Hit Ratio (Z-Score)
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4.4 One-class vs. two-class classification for varied class imbalances using har-
monic means

4.4.1 Australian data set

For the data with PCA applied to it and only the most significant features kept, the harmonic mean of
the two-class non-parametric classifiers are the highest for small class imbalances. As the class imbalance is
increased the harmonic mean of the non-parametric two-class classifiers start to decrease. The rate at which
the harmonic mean of the two-class MLE decrease is much lower than that of the two-class Silverman classifier.
This is due to the change in the sensitivities and specificities of the classifiers. Although the sensitivity of the
two-class MLE classifier increase from 0.9055 at a ratio of 55.51% defaulters to 0.9934 at 6.97% defaulters,
the specificity decrease from 0.9791 to 0.7391. The sensitivity of the two-class Silverman classifier increases
from 0.9088 at 55.51% defaulters to 1 at 6.97% defaulters, whereas the specificity decreases from 0.9869 to
0.5217. The larger drop in the specificity of the Silverman classifier results in the MLE outperforming the
Siverman classifier for larger class imbalances.

The harmonic mean two-class Gaussian and Naive Bayes classifiers increase as the class imbalance is
increased, to such an extent that they outperform the non-parametric classifiers for a class imbalance of
6.97% defaulters. The increase in the harmonic mean of the Gaussian classifier is caused by a drastic increase
in the sensitivity and a slight increase in the specificity. The sensitivity of the two-class Naive Bayes classifier
also increases, but the specificity decreases slightly. Therefore the two-class Gaussian classifier outperforms
the one-class Naive Bayes classifier for large class imbalances.

The harmonic mean of the logistic regression classifier deteriorates very quickly as the class imbalance is
increased. This is caused by the deterioration of the specificity, as the ratio of defaulters is decreased.

All of the one-class classifiers, except the one-class Naive Bayes classifier, have harmonic means of zero
over all the default ratios. Up to a class imbalance of about 50% the sensitivities of the classifiers are high.
Once this class imbalance is exceeded, the sensitivities of the one-class classifiers decrease to a value close to
zero and the specificities increase to a value close to one or one itself. The higher harmonic mean values of the
one-class Naive Bayes classifier compared to the other one-class classifiers, for the first five class imbalances,
is caused by a higher specificity.

The harmonic mean of the parametric two-class classifiers remain similar regardless whether all features
are kept or only those features explaining 95% of the variance. The harmonic means of the non-parametric
classifiers are slightly lower in comparison for the PCA data. The rate at which the logistic regression classifier
deteriorates is also higher for the PCA data. See Figure 22.

If the data is only z-scored, as in Figure 23, then the harmonic means of the two-class MLE classifier are
lower compared to when PCA is applied to the data. The harmonic mean of the two-class MLE classifier
drastically decrease over the interval 17.03% to 6.97% defaulters. This is caused by a much lower specificity
for the z-scored data in comparison to the PCA data. The harmonic mean of the two-class Silverman
classifier doesn’t decrease for the large class imbalances if the data is only z-scored. Overall the specificity
and sensitivity of the classifier increase as the class imbalance increase.

Over the interval 49.67% to 37.35% defaulters a peak in the one-class MLE classifier can be observed in
Figure 23. This peak can be explained by a spike in the specificity.

30



Figure 21: Australian data: Harmonic Mean (PCA 95%)

Figure 22: Australian data: Harmonic Mean (PCA)
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Figure 23: Australian data: Harmonic Mean (Z-Score)

Sensitivity Specificity

55.51% Defaulters 6.97% Defaulters 55.51% Defaulters 6.97% Defaulters
Two-class Silverman 0.9088 1 0.9869 0.5217

Two-class MLE 0.9055 0.9934 0.9791 0.7391
Two-class Gaussian 0.6906 0.9479 0.9269 0.9565

Two-class Naive Bayes 0.8208 0.9544 0.8956 0.8261
Logistic Regression 0.8046 1 0.9034 0.0870
One-class Silverman 1 0.00326 0 1

One-class MLE 1 0.00326 0 1
One-class Gaussian 0.9837 0.00326 0.0052 1

One-class Naive Bayes 0.9218 0.00326 0.0366 1

Table 6: Australian data: Sensitivity and Specificity (PCA 95%)

4.4.2 German data set

The harmonic mean of the two-class MLE classifier deteriorates slightly at a consistent rate. However, it
seems to stabilize and remain constant for a class imbalance of 7.89% and 5.41% defaulters. The deterioration
is caused by a significant drop in the specificity of the classifier. The sensitivity on the other hand is higher
for greater class imbalances as seen in Table 7.

The two-class Silverman classifier acts in a similar fashion but instead of stabilizing, like the MLE, at
an imbalance of 7.89% its rate of deterioration increases. This results in it having a lower harmonic mean
than the two-class Gaussian classifier for a ratio of 5.41% defaulters. This is due to a large decrease in the
specificity of the two-class Silverman classifier. Although the sensitivity increases, it doesn’t increase as much
as that of the two-class MLE classifier.

The two-class Gaussian classifier remains fairly constant with a sudden upward spike occurring at 5.41%
defaulters. This spike is explained by an increase, from the previous default ratio, of 0.1833 in the specificity
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of the classifier.
The two-class Naive Bayes classifier shows an overall deterioration in the harmonic mean as the class im-

balance is increased, with slight fluctuations occurring at larger class imbalances. Even though the sensitivity
of the classifier is higher than that of the Gaussian classifier, its specificity is considerably lower than that of
the Gaussian classifier.

The harmonic mean of the logistic regression classifier is much lower than all of the two-class classifiers.
It deteriorates quite quickly, resulting in a harmonic mean of zero before a class imbalance 15% defaulters is
reached. The sensitivity of the logistic regression classifier is very high, but its specificity is very low.

All of the one-class classifiers have an harmonic mean of zero for all the class imbalances investigated. This
is due to a very low level of sensitivity in comparison to the level of specificity, indicating the proportion of
positive instances correctly classified is very small. In other words the proportion of non-defaulters correctly
classified as non-defaulting is very low. See Table 7.

Maintaining all the features results in lower harmonic means at greater class imbalances for the non-
parametric classifiers, as seen by comparing Figures 21 and 22. It results in more consistency for the two-class
Gaussian classifier and a lower overall rate of deterioration of the harmonic mean for the logistic regression
classifier. It can also be observed that the removal of features results in an overall greater deterioration in
the harmonic mean for the two-class Naive Bayes classifier.

Figure 23 shows by only z-scoring the data, the overall performance, in terms of the harmonic mean,
of the two-class Naive Bayes classifier is better, whereas that of the two-class non-parametric classifiers are
considerably worse for greater class imbalances.

Figure 24: German data: Harmonic Mean (PCA 95%)
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Figure 25: German data: Harmonic Mean (PCA)

Figure 26: German data: Harmonic Mean (Z-Score)
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Sensitivity Specificity

30% Defaulters 5.41% Defaulters 30% Defaulters 5.41% Defaulters
Two-class Silverman 0.9843 0.9971 0.9233 0.5000

Two-class MLE 0.9771 0.9986 0.8833 0.7000
Two-class Gaussian 0.7857 0.9657 0.6833 0.7000

Two-class Naive Bayes 0.8914 0.9686 0.4633 0.1750
Logistic Regression 0.9700 1 0.1933 0.0000
One-class Silverman 0.0014 0.0014 1.0000 1

One-class MLE 0.0014 0.0014 0.9933 1
One-class Gaussian 0.0014 0.0014 1 1

One-class Naive Bayes 0.0014 0.0014 1 1

Table 7: German data: Sensitivity and Specificity (PCA 95%)

4.5 One-class vs. two-class classification for varied class imbalances with equal
priors

4.5.1 Australian data

By comparing Figures 9 and 27 the conclusion can be made that the frequentest priors have no effect on the
areas under the ROC curves for any of the classifiers. This is confirmed by comparing the actual AUC values
of all the classifiers with varied priors to those with equal priors.

The frequentest priors do however affect the hit rate of the classifiers. This can be observed in the
comparison of Figures 15 and 28. It has a stabilizing effect on the hit rate of the two-class Gaussian classifier.
The priors also result in a higher hit rate for the two-class Naive Bayes classifier. The frequentest priors have
a small adverse effect on the hit rate of the two-class non-parametric classifiers.

The harmonic means of the classifiers are also affected by the priors. Comparing Figure 21 with 29 the
most striking difference is the harmonic mean of the logistic regression classifier. The use of frequentest
priors have a large adverse effect on the harmonic mean of the logistic regression classifier. Even though its
harmonic mean decreases it doesn’t decrease as rapidly, or as much as in the case where frequentest priors
are used. The harmonic mean of the two-class MLE classifier increase instead of decrease for the interval
17.03% to 6.97% defaulters. The harmonic mean of the last seven class imbalances is also larger if equal,
instead of frequentest priors are used. The frequentest priors results in a higher sensitivity for the classifiers
at class imbalances with less than 50% defaulters.
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Figure 27: Australian data: Area Under the Curve (PCA 95%)

Figure 28: Australian data: Hit Rate (PCA 95%)
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Figure 29: Australian data: Harmonic Mean (PCA 95%)

4.5.2 German data

As in the case of the Australian data set the AUC is unaffected by the frequentest priors. Figure 12 and 30
are thus identical.

The hit rates of the two-class Gaussian and Naive Bayes classifiers are increased by the use of frequentest
priors. The hit rates of these classifiers fall below that of the one-class classifiers if equal instead of frequentest
priors are used. The hit rate of the Gaussian classifier is below the benchmark regardless of the class
imbalance. These observations are made from Figure 31. The comparison of Figures 18 and 31 indicates that
the frequentest priors have an adverse effect on the hit rate of the logistic regression classifier. It also shows
that effect of the frequentest priors on the two-class Silverman and MLE classifiers are very small.

The harmonic means of all the classifiers are adversely affected by the frequentest priors. The frequentest
priors result in a larger sensitivity value for each of the classifiers for every class imbalance. However, the
specificity of the classifiers decrease when frequentest, instead of equal priors, are used. It is important to
notice that even when equal priors are used, the harmonic means of the non-parametric classifiers decrease
as the class imbalance increase. The rate at which the harmonic mean of the two-class Silverman classifier
decrease, for large class imbalances, is higher than that of the two-class MLE classifier. See Figure 32.
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Figure 30: German data: Area Under Curve (PCA 95%)

Figure 31: German data: Hit Rate (PCA 95%)
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Figure 32: German data: Harmonic Mean (PCA 95%)

5 Conclusion

The aim of this paper is to evaluate the performance of both parametric and non-parametric classifiers on
credit scoring data. It furthermore investigats the effect of frequentest priors, used in both parametric and
non-parametric two-class classifiers, on the performance of these classifiers.

The non-parametric two-class classifiers outperforms all of the one-class classifiers, regardless of the class
imbalance and method used to measure performance. The performance, measured in terms of the harmonic
mean, of the two-class MLE classifier is more robust than that of the two-class Silverman classifier, given
that PCA is applied to the data.

Even though the non-parametric one-class classifiers show promising results in terms of the AUC, the
harmonic means of these classifiers contradict this. Depending on the class imbalance, either the sensitivity,
or the specificity of these classifiers are very low. This goes to show that at any given default ratio, either the
proportion of instances correctly classified as non-defaulting, or the proportion of instances correctly classified
as defaulting is very low. This is also true for the parametric one-class classifiers. The weak performance of
the one-class classifiers is confirmed by the hit ratios of these classifiers. Regardless of the class imbalance,
the hit ratios of these classifiers fall below the benchmark. The optimal hit ratio that the one-class classifiers
can achieve, is the proportion of instances in the largest class.

The priors have no effect on the AUC of the two-class classifiers. It does, however, affect the sensitivity
and specificity and thus the harmonic mean of the classifiers. For any tested default ratio less than 50% the
sensitivity is larger and specificity smaller when frequentest, instead of equal priors are used. If correctly
classifying non-defaulters are of more importance than correctly classifying defaulters, the use of frequentest
priors might be worth considering.

In this study multivariate techniques were used to estimate the bandwidths of the non-parametric kernel
density estimators, and therefore the minimum default ratio is limited. The performance of these classifiers
should be evaluated at smaller default ratios. In order to do this data sets with a larger proportion of
observations compared to features are needed.

During all experiments the cost of misclassification was ignored. In practice the cost of wrongfully clas-
sifying an instance might be of more importance than the performance of the classifier. A paper by Hand
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suggest the use of H-measures instead of the AUC to measure the performance of classifiers, since the H-
measure unlike the AUC takes the cost of misclassification into account [6]. Future work should therefore
also incorporate the cost of misclassification.
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6 Appendix

6.1 Proof: Silverman’s univariate rule of thumb

Consider the AMISE of an unknow function f̂k:

AMISE(f̂k) =
1

nh
‖K‖22 +

h4

4
{µ2(K)}2‖f ′′‖22

By differentiating AMISE(f̂k) towards h we obtain:

d

dh
AMISE(f̂k) = − 1

nh2
‖K‖22 + h3{µ2(K)}2‖f ′′‖22

Setting this equal to 0 and solving h we get:

h =

(
‖K‖22

n{µ2(K)}2‖f̂k‖22

) 1
5

(1)

where K is the kernel being used, f is an unknown density function and µ2(K) =
∫
x2K(x)dx.

Assume that f belongs to the family of normal distributions with mean µ and variance σ2. Then

‖f ′′‖22 =

[{∫ ∞
−∞
|f ′′(x)|2dx

} 1
2

]2

Since ‖j‖2 =

{∫ b

a

|j(x)|2dg(x)

} 1
2

with g(x) = x

=

∫ ∞
−∞
|f ′′(x)|2dx (2)

The pdf of f is given by

f(x) =
1√
2πσ

e−
1
2 ( x−µσ )

2

So

f ′(x) = − 1√
2πσ

e−
1
2 ( x−µσ )

2
(

1

σ

)(
x− µ
σ

)
= − 1√

2πσ2
e−

1
2 ( x−µσ )

2
(
x− µ
σ

)
and

f ′′(x) =
1√

2πσ3
e−

1
2 ( x−µσ )

2
(
x− µ
σ

)2

− 1√
2πσ3

e−
1
2 ( x−µσ )

2

=
1√

2πσ3
e−

1
2 ( x−µσ )

2

[(
x− µ
σ

)2

− 1

]
(3)
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Now note that the standard normal pdf p(z) is given by

p(z) =
1√
2π
e−

1
2 z

2

so

p′(z) = − 1√
2π
e−

1
2 z

2

z

and

p′′(z) =
1√
2π
e−

1
2 z

2

(z2 − 1) (4)

Consider the transformation z = x−µ
σ . Equation (3) becomes

f ′′(z) =
1√

2πσ3
e−

1
2 z

2 [
z2 − 1

]
taking equation (4) into account we see that

f ′′(z) =
1

σ3
p′′(z) (5)

Substituting equation (5) back into equation (2)

‖f ′′‖22 =

∫ ∞
−∞
|f ′′(x)|2dx

=

∫ ∞
−∞
| 1

σ3
p′′(z)|2σdz since dx = σdz

= σ−5

∫ ∞
−∞
{p′′(z)}2dz

=
σ−5

2π

∫ ∞
−∞

e−z
2

(z2 − 1)2dz

=
σ−5

2π

[∫ ∞
−∞

e−z
2

z4dz − 2

∫ ∞
−∞

e−z
2

z2dz +

∫ ∞
−∞

e−z
2

dz

]
(6)

Consider
∫∞
−∞ e−ax

2

dx:
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Let I =
∫∞
−∞ e−ax

2

dx and let I =
∫∞
−∞ e−ay

2

dy then

I2 =

∫ ∞
−∞

e−ax
2

dx

∫ ∞
−∞

e−ay
2

dy

=

∫ ∞
−∞

∫ ∞
−∞

e−a(x2+y2)dxdy

=

∫ 2π

0

∫ ∞
0

e−ar
2

rdrdθ since x = r cos(θ) and y = r sin(θ)

=

[
−1

2
e−ar

2

]∞
0

[θ]2π0

= (
1

2a
)(2π)

=
π

a
so

I =

√
π√
a

(7)

Letting a = 1 in equation (7) we see that ∫ ∞
−∞

e−z
2

dz =
√
π (8)

∫∞
−∞ e−z

2

z2dz is solved by applying Feynman’s trick.∫ ∞
−∞

e−z
2

z2dz = − d

da

√
π

a
|a=1

=

√
π

2
a−

3
2 |a=1

=

√
π

2
(9)

Applying the same techique to solve
∫∞
−∞ e−z

2

z4dz∫ ∞
−∞

e−z
2

z4dz =
d2

da2

√
π

a
|a=1

= − d

da

√
π

2
a−

3
2 |a=1

=
3
√
π

4
a−

5
2 |a=1

=
3
√
π

4
(10)

Substituting equations (8),(9) and (10) back into equation (6) we get:

‖f ′′‖ =
σ−5

2

[∫ ∞
−∞

e−z
2

z4dz − 2

∫ ∞
−∞

e−z
2

z2dz +

∫ ∞
−∞

e−z
2

dz

]
=
σ−5

2

[
3
√
π

4
− 2

(√
π

2

)
+
√
π

]
= σ−5 3

8
√
π

(11)
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However since σ is unknown it is estimated by σ̂ =
√

1
n−1

∑n
i=1(xi − x̄)2

Assumeing the kernel is the Gaussian kernel function: p(z) = 1√
2π
e−

1
2 z

2

.

Then

µ2(K) = µ2(p(z))

=

∫ ∞
−∞

1√
2π
e−

1
2 z

2

z2dz

= E(Z2)

= V ar(Z) + E[Z]2

= 1 + 02 Since Z ∼ N(0,1)

= 1 (12)

and

‖p‖22 =

[{∫ ∞
−∞
|p(z)|2dz

} 1
2

]2

=

∫ ∞
−∞

1

2π
e−z

2

dz

=
1

2π

∫ ∞
−∞

e−z
2

dz

=

(
1

2π

)(√
π
)

from equation (8)

=
1

2
√
π

(13)

Finally we can calculate ĥ:

ĥ =

(
‖p‖22

‖f̂ ′′‖22µ2
2(p)n

) 1
5

from equation (1)

=

 1
2
√
π(

σ̂−5 3
8
√
π

)
(1)2n

 1
5

from equation (11), (12), and (13)

=

(
4

3n
σ̂5

) 1
5

≈ 1.06σ̂n−
1
5

This concludes the proof for the univariate case of silverman’s rule of thumb.

6.2 Proof: MLE of multivariate Gaussian kernel with a diagonal bandwidth
matrix

The MLE estimator is derived using the LOUT ML, which is given by lH(−i)(X) =
∑N
i=1 ln[pH(−i)(Xi)].

Therefore the derivation is as follows:

46



lH(−i)(X) =

N∑
i=1

ln[pH(−i)(Xi)]

=

N∑
i=1

ln

 1

N − 1

N∑
j 6=i

KHj (Xi −Xj |Hj)


=

N∑
i=1

ln

 1

N − 1

N∑
j 6=i

N∏
p=1

Khjp

(
xip − xjp
hjp

)Since H is a diagonal matrix Hj(p,p) = h2
jp

=

N∑
i=1

ln

 1

N − 1

N∑
j 6=i

Khjd

(
xid − xjd
hjd

) N∏
p 6=d

Khjp

(
xip − xjp
hjp

)
=

N∑
i=1

ln

 1

N − 1

N∑
j 6=i

(
1√

2πhjd
e
− 1

2

(
xid−xjd
hjd

)2
)

N∏
p 6=d

Khjp

(
xip − xjp
hjp

) (14)

Equation (14) follows from the fact that Khjd

(
xid−xjd
hjd

)
= 1√

2πhjd
e
− 1

2

(
xid−xjd
hjd

)2

By taking the partial derivative of equation (14) we obtain:

∂

∂hjd
lH(−i)(X) =

∂

∂hjd

N∑
i=1

ln

 1

N − 1

N∑
j 6=i

(
1√

2πhjd
e
− 1

2

(
xid−xjd
hjd

)2
)

N∏
p 6=d

Khjp

(
xip − xjp
hjp

)
=

N∑
i=1

1

1
N−1

∑N
j 6=i

(
1√

2πhjd
e
− 1

2

(
xid−xjd
hjd

)2)∏N
p 6=dKhjp

(
xip−xjp
hjp

)
×

N∑
i=1

 1

N − 1

(
∂

∂hjd

(
1√

2πhjd
e
− 1

2

(
xid−xjd
hjd

)2
))

N∏
p 6=d

Khjp

(
xip − xjp
hjp

) (15)

This is true since if the derivative of the function is convergent, the derivative can be taken into the
sumation.

Now consider ∂
∂hjd

(
1√

2πhjd
e
− 1

2

(
xid−xjd
hjd

)2)

∂

∂hjd

(
1√

2πhjd
e
− 1

2

(
xid−xjd
hjd

)2
)

= −

(
1

h2
jd

)(
1√
2π
e
− 1

2

(
xid−xjd
hjd

)2)

+

(
1

hjd

)(
1√
2π
e
− 1

2

(
xid−xjd
hjd

)2)(
xid − xjd
hjd

)(
xid − xjd
h2
jd

)

=

(
1

hjd

)Khjd

(
xid−xjd
hjd

)
(xid − xjd)2

h2
jd

−Khjd

(
xid − xjd
hjd

) (16)
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Substituting equation (16) into equation (15) we obtain:

∂

∂hjd
lH(−i)(X)

=

N∑
i=1

1

1
N−1

∑N
j 6=iKhjd

(
xid−xjd
hjd

)∏N
p 6=dKhjp

(
xip−xjp
hjp

)
×

N∑
i=1

 1

N − 1

( 1

hjd

)Khjd

(
xid−xjd
hjd

)
(xid − xjd)2

h2
jd

−Khjd

(
xid − xjd
hjd

) N∏
p 6=d

Khjp

(
xip − xjp
hjp

)
=

N∑
i=1

1
1

N−1

∑N
j 6=iKHj (Xi −Xj |Hj)

×
N∑
i=1

 1

N − 1

( 1

hjd

)Khjd

(
xid−xjd
hjd

)
(xid − xjd)2

h2
jd

−Khjd

(
xid − xjd
hjd

) N∏
p 6=d

Khjp

(
xip − xjp
hjp

)
=

N∑
i=1

1

pH(−i)(Xi)

×
N∑
i=1

 1

N − 1

( 1

hjd

)Khjd

(
xid−xjd
hjd

)
(xid − xjd)2

h2
jd

−Khjd

(
xid − xjd
hjd

) N∏
p 6=d

Khjp

(
xip − xjp
hjp

)
=

1

(N − 1)hjd

N∑
i=1

Khjd

(
xid−xjd
hjd

)
(xid − xjd)2

h2
jdpH(−i)(Xi)

−
Khjd

(
xid−xjd
hjd

)
pH(−i)(Xi)

 N∏
p 6=d

Khjp

(
xip − xjp
hjp

) (17)

Setting the derivative in equation (17) equal to zero and solving for hjd we get:

h2
jd =

∑N
i=1

K
(
xid−xjd
hjd

)
(xid−xjd)2

pH(−i)(Xi)

∏N
p 6=dKhjp

(
xip−xjp
hjp

)
∑N
i=1

K
(
xid−xjd
hjd

)
pH(−i)(Xi)

∏N
p 6=dKhjp

(
xip−xjp
hjp

)
Therefore

Hj(d,d) =

∑N
i=1

KHj
(xi−xk|Hj)(xid−xjd)2

pH(−i)(Xi)∑N
i=1

KHj
(xi−xk|Hj)(xid−xjd)2

pH(−i)(Xi)

6.3 Python code

Listing 1: Australian data module

import numpy as np
import matp lo t l i b . pyplot as p l t
from f ixed module import FIXEDRATIO
from fo ld module import FOLDS
from s k l e a rn import metr i c s

de f TF pos ( Confusion ) :
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T pos = np . d i v id e ( Confusion [ 0 , 0 , : ] , Confusion [ 0 , 0 , : ] + Confusion [ 0 , 1 , : ] , dtype=f l o a t )
F pos = np . d i v id e ( Confusion [ 1 , 0 , : ] , Confusion [ 1 , 0 , : ] + Confusion [ 1 , 1 , : ] , dtype=f l o a t )
auc = metr i c s . auc ( F pos , T pos , r eo rde r=True )
re turn [ T pos , F pos ] , auc

de f de c r ea s e c2 ( data , remove , co l , c2 ) :
count =0
i = 0
whi le ( count < remove ) and ( i−count < l en ( data ) ) :

i f f l o a t ( data [ i−count , c o l ] ) == f l o a t ( c2 ) :
data = np . d e l e t e ( data , ( i−count ) , a x i s = 0)
count = count +1

i = i+1
return data

de f graph (x , y , t i t l e , x labe l , y labe l , h i t ) :
p l t . t i t l e ( t i t l e )
p l t . x l a b e l ( x l a b e l )
p l t . y l a b e l ( y l a b e l )
p l t . gca ( ) . i n v e r t x a x i s ( )
p l t . p l o t (x , y [ : ,0 ] , ’−− rs ’ , l a b e l =”TC MLE”)
p l t . p l o t (x , y [ : ,1 ] , ’−−bx ’ , l a b e l =”TC Silverman ”)
p l t . p l o t (x , y [ : ,2 ] , ’−− g ˆ ’ , l a b e l =”TC Gaussian ”)
p l t . p l o t (x , y [ : ,3 ] , ’−− cv ’ , l a b e l =”TC Naive Bayes ”)
p l t . p l o t (x , y [ : ,4 ] , ’−−m∗ ’ , l a b e l =”L o g i s t i c Regres s ion ”)
p l t . p l o t (x , y [ : , 5 ] , ’− rs ’ , l a b e l =”OC MLE”)
p l t . p l o t (x , y [ : , 6 ] , ’ − bx ’ , l a b e l =”OC Silverman ”)
p l t . p l o t (x , y [ : , 7 ] , ’ − g ˆ ’ , l a b e l =”OC Gaussian ”)
p l t . p l o t (x , y [ : , 8 ] , ’ − cv ’ , l a b e l =”OC Naive Bayes ”)
i f h i t == True :

p l t . p l o t (x , y [ : , 9 ] , ’ : k+ ’ , l a b e l =”Chance C r i t e r i o n ”)
p l t . l egend ( bbox to anchor =(1 .05 ,1 ) , l o c =2, borderaxespad =0.)
re turn None

de f graph roc ( c1 TF , c2 TF , ra t i o , l egend ) :
p l t . t i t l e ( ’ROC Curves ( Percentage D e f a u l t e r s ’ + s t r ( round ( r a t i o ∗100 ,2) ) + ’%) ’)
p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
l 1 = ”OC ” + legend
l 2 = ”TC ” + legend
p l t . p l o t ( c1 TF [ 1 ] , c1 TF[0] , ’−−+b ’ , l a b e l=l 1 )
p l t . p l o t ( c2 TF [ 1 ] , c2 TF [0 ] , ’ −∗ r ’ , l a b e l = l 2 )
p l t . l egend ( bbox to anchor =(1 .05 ,1 ) , l o c =2, borderaxespad =0.)
re turn None

aus = np . genfromtxt ( ’ Aust ra l i an Credit Data . txt ’ , dtype = f l o a t , d e l i m i t e r = ’ ’ )
#aus = aus [ : 1 5 0 , : ]
c l a s s c o l = 14
N = len ( aus )
n f o l d s = 10
c2 = 0 #Credi tcard Rejected
c1 = 1
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d = aus . shape [ 1 ]
remove = 20
i n t e r v a l = 19
pca = 0.95

obj = FIXEDRATIO( c l a s s c o l , c1 , c2 , n f o l d s )
f o l d o b j = FOLDS( c l a s s c o l , c1 , d , n f o l d s )
c s i z e = f o l d o b j . C l a s s s i z e ( aus )

#I n i t i a l i s e a r rays
accuracy = np . z e ro s ( ( i n t e r v a l , 1 0 ) )
harmonics = np . z e ro s ( ( i n t e r v a l , 9 ) )
H measures = np . z e ro s ( ( i n t e r v a l , 9 ) )
auc 1s = np . z e ro s ( i n t e r v a l )
auc 2s = np . z e ro s ( i n t e r v a l )
auc 1g = np . z e ro s ( i n t e r v a l )
auc 2g = np . z e ro s ( i n t e r v a l )
auc 2MLE = np . z e ro s ( i n t e r v a l )
auc 1MLE = np . z e ro s ( i n t e r v a l )
auc 2NB = np . z e ro s ( i n t e r v a l )
auc 1NB = np . z e ro s ( i n t e r v a l )
auc log = np . z e ro s ( i n t e r v a l )
r a t i o = np . z e ro s ( i n t e r v a l )
p l o t = 0
f o r j in range (0 , i n t e r v a l ) :

p r i n t j
r a t i o [ j ] = c s i z e [ 1 ] / f l o a t ( c s i z e [1 ]+ c s i z e [ 0 ] )
accuracy [ j , : ] , harmonics [ j , : ] , H measures [ j , : ] , S 1c , Gaus 1c , Gaus 2c ,\
MLE 1c , l o g i t , MLE 2c , S 2c , NB 2c , NB 1c = obj . s i n g l e r ( aus , pca )
aus = dec r ea s e c2 ( aus , remove , c l a s s c o l , c2 )
c s i z e [ 1 ] = c s i z e [ 1 ] − remove

#Calcu la te t rue and f a l s e p o s i t i v e s and area under the curves
S1 , auc 1s [ j ] = TF pos ( S 1c )
S2 , auc 2s [ j ] = TF pos ( S 2c )
G1, auc 1g [ j ] = TF pos ( Gaus 1c )
G2, auc 2g [ j ] = TF pos ( Gaus 2c )
MLE1, auc 1MLE [ j ] = TF pos (MLE 1c)
MLE2, auc 2MLE [ j ] = TF pos (MLE 2c)
NB2, auc 2NB [ j ] = TF pos (NB 2c )
NB1, auc 1NB [ j ] = TF pos (NB 1c )
Log2 , auc log [ j ] = TF pos ( l o g i t )
p l t . f i g u r e ( p l o t )
graph roc ( S1 , S2 , r a t i o [ j ] , ’ Si lverman ’ )
p l o t = p lo t+1
p l t . f i g u r e ( p l o t )
graph roc (G1, G2, r a t i o [ j ] , ’ Gaussian ’ )
p l o t = p lo t+1
p l t . f i g u r e ( p l o t )
graph roc (MLE1,MLE2, r a t i o [ j ] , ’MLE’ )
p l o t = p lo t+1
p l t . f i g u r e ( p l o t )
graph roc (NB1,NB2, r a t i o [ j ] , ’ Naive Bayes ’ )
p l o t = p lo t+1
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r a t i o = r a t i o ∗100
i f pca == 0 :

t i t l e = ’ C l a s s i f i c a t i o n Performance (Z−Score ) ’
e l s e :

i f pca > 1 :
t i t l e = ’ C l a s s i f i c a t i o n Performance (PCA) ’

e l s e :
t i t l e = ’ C l a s s i f i c a t i o n Performance (PCA ’ + s t r ( i n t ( pca ∗100)) + ’%) ’

#p lo t r e s u l t s
p l t . f i g u r e ( p l o t )
p l t . t i t l e ( t i t l e )
p l t . x l a b e l ( ’ Percentage De fau l t e r s ’ )
p l t . y l a b e l ( ’ Area Under the Curve ’ )
p l t . gca ( ) . i n v e r t x a x i s ( )
p l t . p l o t ( ra t i o , auc 1s , ’−bx ’ , l a b e l = ”OC Silverman ”)
p l t . p l o t ( ra t i o , auc 1g , ’−g ˆ ’ , l a b e l = ”OC Gaussian ”)
p l t . p l o t ( ra t i o , auc 2g ,’−−g ˆ ’ , l a b e l = ”TC Gaussian ”)
p l t . p l o t ( ra t i o , auc 2MLE,’−− rs ’ , l a b e l = ”TC MLE”)
p l t . p l o t ( ra t i o , auc 1MLE, ’− rs ’ , l a b e l = ”OC MLE”)
p l t . p l o t ( ra t i o , auc 2s ,’−−bx ’ , l a b e l = ”TC Silverman ”)
p l t . p l o t ( ra t i o , auc 2NB,’−−cv ’ , l a b e l = ”TC Naive Bayes ”)
p l t . p l o t ( ra t i o , auc 1NB , ’− cv ’ , l a b e l = ”OC Naive Bayes ”)
p l t . p l o t ( ra t i o , auc log ,’−−m∗ ’ , l a b e l = ” L o g i s t i c Regres s ion ”)
p l t . l egend ( bbox to anchor =(1 .05 ,1 ) , l o c =2, borderaxespad =0.)

p l t . f i g u r e ( p l o t +1)
graph ( ra t i o , accuracy , t i t l e , ’ Percentage De fau l t e r s ’ , ’ Hit Ratio ’ , True )
p l t . f i g u r e ( p l o t +2)
graph ( ra t i o , harmonics , t i t l e , ’ Percentage De fau l t e r s ’ , ’ Harmonic Mean ’ , Fa l se )
p l t . f i g u r e ( p l o t +3)
graph ( ra t i o , H measures , t i t l e , ’ Percentage De fau l t e r s ’ , ’H−Measure ’ , Fa l se )
p l t . show ( )
np . savetxt ( ’ auc Gaus ’+ t i t l e + ’. txt ’ , np . t ranspose ( [ auc 1g , auc 2g ] ) , d e l i m i t e r = ’ ’ )
np . savetxt ( ’ auc Si lverman ’+ t i t l e + ’. txt ’ , np . t ranspose ( [ auc 1s , auc 2s ] ) , d e l i m i t e r = ’ ’ )
np . savetxt ( ’ auc Naive ’+ t i t l e + ’. txt ’ , np . t ranspose ( [ auc 1NB , auc 2NB ] ) , d e l i m i t e r = ’ ’ )
np . savetxt ( ’ auc MLE’+ t i t l e + ’. txt ’ , np . t ranspose ( [ auc 1MLE , auc 2MLE ] ) , d e l i m i t e r = ’ ’ )

de l obj
de l f o l d o b j

Listing 2: German data module

# −∗− coding : utf−8 −∗−
”””
Created on Sat Jun 27 18 : 5 0 : 43 2015

@author : Est ian
”””

import numpy as np
import matp lo t l i b . pyplot as p l t
from f ixed module import FIXEDRATIO
from fo ld module import FOLDS
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from s k l e a rn import metr i c s

de f TF pos ( Confusion ) :
T pos = np . d i v id e ( Confusion [ 0 , 0 , : ] , Confusion [ 0 , 0 , : ] + Confusion [ 0 , 1 , : ] , dtype=f l o a t )
F pos = np . d i v id e ( Confusion [ 1 , 0 , : ] , Confusion [ 1 , 0 , : ] + Confusion [ 1 , 1 , : ] , dtype=f l o a t )
auc = metr i c s . auc ( F pos , T pos , r eo rde r=True )
re turn [ T pos , F pos ] , auc

de f de c r ea s e c2 ( data , remove , co l , c2 ) :
count =0
i = 0
whi le ( count < remove ) and ( i−count < l en ( data ) ) :

i f f l o a t ( data [ i−count , c o l ] ) == f l o a t ( c2 ) :
data = np . d e l e t e ( data , ( i−count ) , a x i s = 0)
count = count +1

i = i+1
return data

de f graph (x , y , t i t l e , x labe l , y labe l , h i t ) :
p l t . t i t l e ( t i t l e )
p l t . x l a b e l ( x l a b e l )
p l t . y l a b e l ( y l a b e l )
p l t . gca ( ) . i n v e r t x a x i s ( )
p l t . p l o t (x , y [ : ,0 ] , ’−− rs ’ , l a b e l =”TC MLE”)
p l t . p l o t (x , y [ : ,1 ] , ’−−bx ’ , l a b e l =”TC Silverman ”)
p l t . p l o t (x , y [ : ,2 ] , ’−− g ˆ ’ , l a b e l =”TC Gaussian ”)
p l t . p l o t (x , y [ : ,3 ] , ’−− cv ’ , l a b e l =”TC Naive Bayes ”)
p l t . p l o t (x , y [ : ,4 ] , ’−−m∗ ’ , l a b e l =”L o g i s t i c Regres s ion ”)
p l t . p l o t (x , y [ : , 5 ] , ’− rs ’ , l a b e l =”OC MLE”)
p l t . p l o t (x , y [ : , 6 ] , ’ − bx ’ , l a b e l =”OC Silverman ”)
p l t . p l o t (x , y [ : , 7 ] , ’ − g ˆ ’ , l a b e l =”OC Gaussian ”)
p l t . p l o t (x , y [ : , 8 ] , ’ − cv ’ , l a b e l =”OC Naive Bayes ”)
i f h i t == True :

p l t . p l o t (x , y [ : , 9 ] , ’ : k+ ’ , l a b e l =”Chance C r i t e r i o n ”)
p l t . l egend ( bbox to anchor =(1 .05 ,1 ) , l o c =2, borderaxespad =0.)
re turn None

de f graph roc ( c1 TF , c2 TF , ra t i o , l egend ) :
p l t . t i t l e ( ’ROC Curves ( Percentage D e f a u l t e r s ’ + s t r ( round ( r a t i o ∗100 ,2) ) + ’%) ’)
p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
l 1 = ”OC ” + legend
l 2 = ”TC ” + legend
p l t . p l o t ( c1 TF [ 1 ] , c1 TF[0] , ’−−+b ’ , l a b e l=l 1 )
p l t . p l o t ( c2 TF [ 1 ] , c2 TF [0 ] , ’ −∗ r ’ , l a b e l = l 2 )
p l t . l egend ( bbox to anchor =(1 .05 ,1 ) , l o c =2, borderaxespad =0.)
re turn None

german = np . genfromtxt ( ’ German Credit Data . txt ’ , dtype = f l o a t , d e l i m i t e r = ’ ’ )
#german = german [ : 1 5 0 , : ]
c l a s s c o l = 24
N = len ( german )

52



n f o l d s = 10
c2 = 2 #Defau l t c l a s s
c1 = 1
d = german . shape [ 1 ]
remove = 20
i n t e r v a l = 14
pca = 0.95

obj = FIXEDRATIO( c l a s s c o l , c1 , c2 , n f o l d s )
f o l d o b j = FOLDS( c l a s s c o l , c1 , d , n f o l d s )
c s i z e = f o l d o b j . C l a s s s i z e ( german )

#I n i t i a l i s e a r rays
accuracy = np . z e ro s ( ( i n t e r v a l , 1 0 ) )
harmonics = np . z e ro s ( ( i n t e r v a l , 9 ) )
H measures = np . z e ro s ( ( i n t e r v a l , 9 ) )
auc 1s = np . z e ro s ( i n t e r v a l )
auc 2s = np . z e ro s ( i n t e r v a l )
auc 1g = np . z e ro s ( i n t e r v a l )
auc 2g = np . z e ro s ( i n t e r v a l )
auc 2MLE = np . z e ro s ( i n t e r v a l )
auc 1MLE = np . z e ro s ( i n t e r v a l )
auc 2NB = np . z e ro s ( i n t e r v a l )
auc 1NB = np . z e ro s ( i n t e r v a l )
auc log = np . z e ro s ( i n t e r v a l )
r a t i o = np . z e ro s ( i n t e r v a l )
p l o t = 0
f o r j in range (0 , i n t e r v a l ) :

p r i n t j
r a t i o [ j ] = c s i z e [ 1 ] / f l o a t ( c s i z e [1 ]+ c s i z e [ 0 ] )
accuracy [ j , : ] , harmonics [ j , : ] , H measures [ j , : ] , S 1c , Gaus 1c , Gaus 2c ,\
MLE 1c , l o g i t , MLE 2c , S 2c , NB 2c , NB 1c = obj . s i n g l e r ( german , pca )
german = dec r ea s e c2 ( german , remove , c l a s s c o l , c2 )
c s i z e [ 1 ] = c s i z e [ 1 ] − remove

#Calcu la te t rue and f a l s e p o s i t i v e s and area under the curves
S1 , auc 1s [ j ] = TF pos ( S 1c )
S2 , auc 2s [ j ] = TF pos ( S 2c )
G1, auc 1g [ j ] = TF pos ( Gaus 1c )
G2, auc 2g [ j ] = TF pos ( Gaus 2c )
MLE1, auc 1MLE [ j ] = TF pos (MLE 1c)
MLE2, auc 2MLE [ j ] = TF pos (MLE 2c)
NB2, auc 2NB [ j ] = TF pos (NB 2c )
NB1, auc 1NB [ j ] = TF pos (NB 1c )
Log2 , auc log [ j ] = TF pos ( l o g i t )
p l t . f i g u r e ( p l o t )
graph roc ( S1 , S2 , r a t i o [ j ] , ’ Si lverman ’ )
p l o t = p lo t+1
p l t . f i g u r e ( p l o t )
graph roc (G1, G2, r a t i o [ j ] , ’ Gaus ’ )
p l o t = p lo t+1
p l t . f i g u r e ( p l o t )
graph roc (MLE1,MLE2, r a t i o [ j ] , ’MLE’ )
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p lo t = p lo t+1
p l t . f i g u r e ( p l o t )
graph roc (NB1,NB2, r a t i o [ j ] , ’ Naive Bayes ’ )
p l o t = p lo t+1

r a t i o = r a t i o ∗100
i f pca == 0 :

t i t l e = ’ C l a s s i f i c a t i o n Performance (Z−Score ) ’
e l s e :

i f pca > 1 :
t i t l e = ’ C l a s s i f i c a t i o n Performance (PCA) ’

e l s e :
t i t l e = ’ C l a s s i f i c a t i o n Performance (PCA ’ + s t r ( i n t ( pca ∗100)) + ’%) ’

#p lo t r e s u l t s
p l t . f i g u r e ( p l o t )
p l t . t i t l e ( t i t l e )
p l t . x l a b e l ( ’ Percentage De fau l t e r s ’ )
p l t . y l a b e l ( ’ Area Under the Curve ’ )
p l t . gca ( ) . i n v e r t x a x i s ( )
p l t . p l o t ( ra t i o , auc 1s , ’−bx ’ , l a b e l = ”OC Silverman ”)
p l t . p l o t ( ra t i o , auc 1g , ’−g ˆ ’ , l a b e l = ”OC Gaussian ”)
p l t . p l o t ( ra t i o , auc 2g ,’−−g ˆ ’ , l a b e l = ”TC Gaussian ”)
p l t . p l o t ( ra t i o , auc 2MLE,’−− rs ’ , l a b e l = ”TC MLE”)
p l t . p l o t ( ra t i o , auc 1MLE, ’− rs ’ , l a b e l = ”OC MLE”)
p l t . p l o t ( ra t i o , auc 2s ,’−−bx ’ , l a b e l = ”TC Silverman ”)
p l t . p l o t ( ra t i o , auc 2NB,’−−cv ’ , l a b e l = ”TC Naive Bayes ”)
p l t . p l o t ( ra t i o , auc 1NB , ’− cv ’ , l a b e l = ”OC Naive Bayes ”)
p l t . p l o t ( ra t i o , auc log ,’−−m∗ ’ , l a b e l = ” L o g i s t i c Regres s ion ”)
p l t . l egend ( bbox to anchor =(1 .05 ,1 ) , l o c =2, borderaxespad =0.)

p l t . f i g u r e ( p l o t +1)
graph ( ra t i o , accuracy , t i t l e , ’ Percentage De fau l t e r s ’ , ’ Hit Ratio ’ , True )
p l t . f i g u r e ( p l o t +2)
graph ( ra t i o , harmonics , t i t l e , ’ Percentage De fau l t e r s ’ , ’ Harmonic Mean ’ , Fa l se )
p l t . f i g u r e ( p l o t +3)
graph ( ra t i o , H measures , t i t l e , ’ Percentage De fau l t e r s ’ , ’H−Measure ’ , Fa l se )
p l t . show ( )
np . savetxt ( ’ auc Gaus ’+ t i t l e + ’. txt ’ , np . t ranspose ( [ auc 1g , auc 2g ] ) , d e l i m i t e r = ’ ’ )
np . savetxt ( ’ auc Si lverman ’+ t i t l e + ’. txt ’ , np . t ranspose ( [ auc 1s , auc 2s ] ) , d e l i m i t e r = ’ ’ )
np . savetxt ( ’ auc Naive ’+ t i t l e + ’. txt ’ , np . t ranspose ( [ auc 1NB , auc 2NB ] ) , d e l i m i t e r = ’ ’ )
np . savetxt ( ’ auc MLE’+ t i t l e + ’. txt ’ , np . t ranspose ( [ auc 1MLE , auc 2MLE ] ) , d e l i m i t e r = ’ ’ )
de l obj
de l f o l d o b j

Listing 3: Prior module

# −∗− coding : utf−8 −∗−
”””
Created on Thu Jun 25 12 : 0 2 : 43 2015

@author : Est ian
”””
from fo ld module import FOLDS
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c l a s s PRIOR:
de f i n i t ( s e l f , c co l , c1 bool , d , n f o ld s ,N) :

s e l f . c c o l = c c o l
s e l f . c 1 boo l = c1 boo l
s e l f . d = d
s e l f . n f o l d s = n f o l d s
s e l f . N = N
s e l f . i n f o l d = 0

#Calcu la te f r e q u e n t i s t p r i o r
de f f p r i o r ( s e l f , x ) :

obj = FOLDS( s e l f . c c o l , s e l f . c1 boo l , s e l f . d , s e l f . n f o l d s )
n c1 , n c2 = obj . C l a s s s i z e ( x )
t o t a l = n c1 + n c2
p r i o r c 1 = f l o a t ( n c1 )/ ( t o t a l )
p r i o r c 2 = f l o a t ( n c2 )/ ( t o t a l )
de l obj
re turn pr i o r c1 , p r i o r c 2

Listing 4: Single default ratio module

# −∗− coding : utf−8 −∗−
”””
Created on Wed Jun 24 1 3 : 37 : 1 7 2015

@author : Est ian
”””
import numpy as np
from fo ld module import FOLDS
from c l a s s i f y m o d u l e import CLASSIFIERS
from pr ior s module import PRIOR
from s k l e a rn . decompos it ion import PCA

c l a s s FIXEDRATIO:
de f i n i t ( s e l f , c co l , c1 bool , c2 bool , n f o l d s ) :

s e l f . n f o l d s = n f o l d s
s e l f . c c o l = c c o l
s e l f . c 1 boo l = c1 boo l
s e l f . c 2 boo l = c2 boo l

#a p p l i e s p r i n c i p a l component a n a l y s i s
de f P C A( s e l f , x , pe r s ent ) :

pca = PCA( n components= per sent )
x r = pca . f i t ( x ) . trans form ( x )
d = pca . n components
re turn x r , d

#Normalize data
de f z s c o r e ( s e l f , x ) :

sigma = np . std (x , a x i s =0)
mean = np . mean(x , a x i s =0)
z = (x−mean)/ sigma
return z
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de f con fus i on ( s e l f , confus ion , t i t l e , f p c 1 ) :
s e n s i t i v i t y = con fus i on [ 0 , 0 ] / ( con fus i on [0 ,0 ]+ con fus i on [ 0 , 1 ] )
s p e c i f i c i t y = con fus i on [ 1 , 1 ] / ( con fus i on [1 ,1 ]+ con fus i on [ 1 , 0 ] )
f hand l e = f i l e ( t i t l e , ’ a ’ )
np . savetxt ( f handle , [ s e n s i t i v i t y , s p e c i f i c i t y ] , d e l i m i t e r = ’ , ’ ,\
header=’Matrix ’+ s t r ( f p c 1 ) , fmt=’%.6e ’ )
f hand l e . c l o s e
re turn None

de f s i n g l e r ( s e l f , data , pca p ) :
d = data . shape [ 1 ]
c l a s s e s = data [ : , s e l f . c c o l ]
c l a s s e s = np . matrix ( c l a s s e s )
data = data [ : , : s e l f . c c o l ]
data = s e l f . z s c o r e ( data )
i f pca p <> 0 :

data , new d = s e l f . P C A( data , pca p )
n pca = d−new d−1

e l s e :
n pca = 0

data = np . concatenate ( ( data , np . t ranspose ( c l a s s e s ) ) , a x i s =1)
N = data . shape [ 0 ]
d = data . shape [ 1 ]
P = np . z e ro s ( (N/ s e l f . n f o l d s , 2 , s e l f . n f o l d s ) )
K = np . z e ro s ( (N/ s e l f . n f o l d s , 3 , s e l f . n f o l d s ) )
One c K = np . z e ro s ( (N/ s e l f . n f o l d s , 2 , s e l f . n f o l d s ) )
One c MLE = np . z e r o s ( (N/ s e l f . n f o l d s , 2 , s e l f . n f o l d s ) )
G 1c prob = np . z e r o s ( (N/ s e l f . n f o l d s , 2 , s e l f . n f o l d s ) )
G prob = np . z e ro s ( (N/ s e l f . n f o l d s , 2 , s e l f . n f o l d s ) )
NB 2c prob = np . z e ro s ( (N/ s e l f . n f o l d s , 2 , s e l f . n f o l d s ) )
NB 1c prob = np . z e ro s ( (N/ s e l f . n f o l d s , 2 , s e l f . n f o l d s ) )
l og = np . z e r o s ( (N/ s e l f . n f o l d s , 2 , s e l f . n f o l d s ) )
f o l d o b j = FOLDS( s e l f . c c o l−n pca , s e l f . c1 boo l , d , s e l f . n f o l d s )
c l a s s o b j = CLASSIFIERS( s e l f . c1 boo l , s e l f . c 2 boo l )
X F = f o l d o b j . Fold ( data ,N)
p r i o r o b j = PRIOR( s e l f . c c o l−n pca , s e l f . c1 boo l , d , s e l f . n f o l d s ,N)
f p c1 , f p c 2 = p r i o r o b j . f p r i o r ( data)# c a l c u l a t e the
#f r e q u e n t i s t p r i o r va lue s
prop = f p c 1 ∗∗2 + f p c 2 ∗∗2
prop = prop + 0.25∗ prop
i f prop > 1 :

prop = 1
f o r j in range (0 , s e l f . n f o l d s ) :

X tr c1 , X tr c2 , X te c1 , X te c2 = f o l d o b j . Train ( j , X F)
# Remove c l a s s dimension
Y tr c1 = X tr c1 [ : , : s e l f . c c o l−n pca ]
Y tr c2 = X tr c2 [ : , : s e l f . c c o l−n pca ]
Y te c1 = X te c1 [ : , : s e l f . c c o l−n pca ]
Y te c2 = X te c2 [ : , : s e l f . c c o l−n pca ]
X te = np . concatenate ( ( X te c1 , X te c2 ) , a x i s =0)
X tr = np . concatenate ( ( X tr c1 , X tr c2 ) , a x i s =0)
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Y te = np . concatenate ( ( Y te c1 , Y te c2 ) , a x i s =0)
Y tr = np . concatenate ( ( Y tr c1 , Y tr c2 ) , a x i s =0)
#Calcu la te standard d e v i a t i o n s
Sigma c1 = np . std ( Y tr c1 , a x i s =0, ddof=Y tr c1 . shape [ 1 ] )
Sigma c2 = np . std ( Y tr c2 , a x i s =0, ddof=Y tr c1 . shape [ 1 ] )
#Calcu lata Si lverman bandwidths
N c1 = Y tr c1 . shape [ 0 ]
N c2 = Y tr c2 . shape [ 0 ]
N var = Y tr c1 . shape [ 1 ]
H c1 = c l a s s o b j . Si lverman ( Sigma c1 , N c1 , N var )
H c2 = c l a s s o b j . Si lverman ( Sigma c2 , N c2 , N var )
#Calcu la te p( x | H silverman )∗ p r i o r f o r two c l a s s
K[ : , 0 , j ] = c l a s s o b j .Sum( H c1 , Y tr c1 , Y te)#∗ f p c 1
K[ : , 1 , j ] = c l a s s o b j .Sum( H c2 , Y tr c2 , Y te)#∗ f p c 2
K[ : , 2 , j ] = X te [ : , s e l f . c c o l−n pca ]
#Calcu la te bandwidth us ing MLE
H mle c1= c l a s s o b j .MLE2( Sigma c1 , Y tr c1 )
H mle c2 = c l a s s o b j .MLE2( Sigma c2 , Y tr c2 )
P [ : , 0 , j ] = c l a s s o b j .Sum MLE( H mle c1 , Y tr c1 , Y te)#∗ f p c 1
P [ : , 1 , j ] = c l a s s o b j .Sum MLE( H mle c2 , Y tr c2 , Y te)#∗ f p c 2
############ two c l a s s Gaussian ###################################
G prob [ : , 0 , j ] , G prob [ : , 1 , j ] = \
c l a s s o b j . Gauss ian 2c ( Y tr c1 , Y tr c2 , Y te )
G prob [ : , 0 , j ] = G prob [ : , 0 , j ]#∗ f p c 1
G prob [ : , 1 , j ] = G prob [ : , 1 , j ]#∗ f p c 2
############# two c l a s s Naive Bayes ###############################
NB 2c prob [ : , 0 , j ] , NB 2c prob [ : , 1 , j ] = \
c l a s s o b j . Naive Bayes 2c ( Y tr c1 , Y tr c2 , Y te )
NB 2c prob [ : , 0 , j ] = NB 2c prob [ : , 0 , j ]#∗ f p c 1
NB 2c prob [ : , 1 , j ] = NB 2c prob [ : , 1 , j ]#∗ f p c 2

########### one c l a s s Si lverman####################################
Sigma one = np . std ( Y tr , a x i s =0, ddof=N var )
One c H = c l a s s o b j . Si lverman ( Sigma one ,N, Y tr . shape [ 1 ] )
One c K [ : , 0 , j ] = c l a s s o b j .Sum( One c H , Y tr c1 , Y te )
One c K [ : , 1 , j ] = X te [ : , N var ]
############ One c l a s s MLE#########################################
One MLE H = c l a s s o b j .MLE2( Sigma one , Y tr c1 )
One c MLE [ : , 0 , j ] = c l a s s o b j .Sum MLE(One MLE H, Y tr c1 , Y te )
One c MLE [ : , 1 , j ] = X te [ : , N var ]
############ one c l a s s Gaussian ###################################
G 1c prob [ : , 0 , j ] = c l a s s o b j . Gauss ian 1c ( Y tr c1 , Y te )
G 1c prob [ : , 1 , j ] = X te [ : , N var ]

############ One c l a s s Naive Bayes ################################
NB 1c prob [ : , 0 , j ] = c l a s s o b j . Naive Bayes 1c ( Y tr c1 , Y te )
NB 1c prob [ : , 1 , j ] = X te [ : , N var ]

############ L o g i s t i c r e g r e s s i o n ##################################
log [ : , 0 , j ] , l og [ : , 1 , j ] = c l a s s o b j . l o g i t ( Y tr ,\
X tr [ : , s e l f . c c o l−n pca ] , Y te , X te [ : , s e l f . c c o l−n pca ] )
l og [ : , 0 , j ] = log [ : , 0 , j ]#∗ f p c 1
log [ : , 1 , j ] = log [ : , 1 , j ]#∗ f p c 2
i f j == 0 :

K s = K[ : , : , 0 ]
P mle = P [ : , : , 0 ]
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P mle 1c = One c MLE [ : , : , 0 ]
P s 1c = One c K [ : , : , 0 ]
P gaus = G prob [ : , : , 0 ]
P gaus 1c = G 1c prob [ : , : , 0 ]
P NB 2c = NB 2c prob [ : , : , 0 ]
P NB 1c = NB 1c prob [ : , : , 0 ]
P log = log [ : , : , 0 ]

e l s e :
K s = np . concatenate ( ( K s ,K[ : , : , j ] ) , a x i s =0)
P mle = np . concatenate ( ( P mle ,P [ : , : , j ] ) , a x i s =0)
P mle 1c = np . concatenate ( ( P mle 1c , One c MLE [ : , : , j ] ) , a x i s =0)
P s 1c = np . concatenate ( ( P s 1c , One c K [ : , : , j ] ) , a x i s =0)
P gaus = np . concatenate ( ( P gaus , G prob [ : , : , j ] ) , a x i s =0)
P gaus 1c = np . concatenate ( ( P gaus 1c , G 1c prob [ : , : , j ] ) , a x i s =0)
P NB 2c = np . concatenate ( ( P NB 2c , NB 2c prob [ : , : , j ] ) , a x i s =0)
P NB 1c = np . concatenate ( ( P NB 1c , NB 1c prob [ : , : , j ] ) , a x i s =0)
P log = np . concatenate ( ( P log , l og [ : , : , j ] ) , a x i s =0)

t r u e c = K s [ : , 2 ]
#Ca lcu la te va lue s f o r MLE
MLE class , MLE accuracy = c l a s s o b j . c l a s s i f y ( t rue c , P mle )
Confusion mle = c l a s s o b j . con fus i on ( t rue c , MLE class )
harmonic mle = c l a s s o b j . harmonic ( Confusion mle )
H measure mle = c l a s s o b j . H measure ( MLE accuracy )
P MLE ROC = np . z e ro s ( (N, 2 ) )
P MLE ROC [ : , 0 ] = np . d i v id e ( P mle [ : , 0 ] , P mle [ : , 0 ] + P mle [ : , 1 ] )
P MLE ROC [ : , 1 ] = t r u e c
MLE result 2 , MLE 2 class , t rue mle 2 = c l a s s o b j . One Class (P MLE ROC)
#Calcu la te va lue s f o r Si lverman
KDE class , KDE accuracy = c l a s s o b j . c l a s s i f y ( t rue c , K s )
Confus ion s = c l a s s o b j . con fus i on ( t rue c , KDE class )
harmonic s = c l a s s o b j . harmonic ( Confus ion s )
H measure s = c l a s s o b j . H measure ( KDE accuracy )
P S ROC = np . z e ro s ( (N, 2 ) )
P S ROC [ : , 0 ] = np . d i v id e ( K s [ : , 0 ] , K s [ : , 0 ] + K s [ : , 1 ] )
P S ROC [ : , 1 ] = t r u e c
S r e s u l t 2 , S 2 c l a s s , t r u e 2 s = c l a s s o b j . One Class (P S ROC)
#C l a s s i f y us ing 2 c l a s s gauss ian
G class , G accuracy = c l a s s o b j . c l a s s i f y ( t rue c , P gaus )
Confus ion g = c l a s s o b j . con fus i on ( t rue c , G c las s )
harmonic g = c l a s s o b j . harmonic ( Confus ion g )
H measure g = c l a s s o b j . H measure ( G accuracy )
P g ROC = np . z e ro s ( (N, 2 ) )
P g ROC [ : , 0 ] = np . d i v id e ( P gaus [ : , 0 ] , P gaus [ : , 0 ] + P gaus [ : , 1 ] )
P g ROC [ : , 1 ] = t r u e c
Gaus 2c resu l t , Gaus 2c c lass , t rue 2g = c l a s s o b j . One Class (P g ROC)
#c a l c u l a t e va lue s f o r two c l a s s Naive Bayes
NB2 class , NB accuracy = c l a s s o b j . c l a s s i f y ( t rue c , P NB 2c )
Confusion NB = c l a s s o b j . con fus i on ( t rue c , NB2 class )
harmonic NB = c l a s s o b j . harmonic ( Confusion NB )
H measure NB = c l a s s o b j . H measure ( NB accuracy )
P NB ROC = np . z e ro s ( (N, 2 ) )
P NB ROC [ : , 0 ] = np . d i v id e ( P NB 2c [ : , 0 ] , P NB 2c [ : , 0 ] + P NB 2c [ : , 1 ] )
P NB ROC [ : , 1 ] = t r u e c
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NB 2c result , NB 2c class , true NB = c l a s s o b j . One Class (P NB ROC)
#Calcu la te va lue s f o r l o g i s t i c r e g r e s s i o n
Log c las s , l og accuracy = c l a s s o b j . c l a s s i f y ( t rue c , P log )
Confus ion log = c l a s s o b j . con fus i on ( t rue c , Log c l a s s )
harmonic log = c l a s s o b j . harmonic ( Confus ion log )
H measure log = c l a s s o b j . H measure ( l og accuracy )
P log ROC = np . z e ro s ( (N, 2 ) )
P log ROC [ : , 0 ] = np . d i v id e ( P log [ : , 0 ] , P log [ : , 0 ] + P log [ : , 1 ] )
P log ROC [ : , 1 ] = t r u e c
Log res , Log 2c , t r u e l o g = c l a s s o b j . One Class ( P log ROC )
#C l a s s i f y us ing one c l a s s s i lverman
S 1 c r e s u l t , S 1 c c l a s s , t r u e 1 s = c l a s s o b j . One Class ( P s 1c )
#C l a s s i f y us ing one c l a s s gauss ian
Gaus 1c resu l t , Gaus 1c c lass , t rue g = c l a s s o b j . One Class ( P gaus 1c )
#C l a s s i f y us ing one c l a s s Naive Bayes
NB 1c result , NB 1c class , true NB1 = c l a s s o b j . One Class ( P NB 1c )
#C l a s s i f y us ing one c l a s s MLE
MLE 1c result , MLE 1c class , true MLE = c l a s s o b j . One Class ( P mle 1c )
n thresh = P s 1c . shape [ 0 ]
Confus ion s 1c = np . z e ro s ( ( 2 , 2 , n thresh ) )
Confus ion gaus 1c = np . z e ro s ( ( 2 , 2 , n thresh ) )
Confus ion gaus 2c = np . z e ro s ( ( 2 , 2 , n thresh ) )
Confusion MLE 2c = np . z e ro s ( ( 2 , 2 , n thresh ) )
Confus ion S 2c = np . z e ro s ( ( 2 , 2 , n thresh ) )
Confusion NB 2c = np . z e ro s ( ( 2 , 2 , n thresh ) )
Confusion NB 1c = np . z e ro s ( ( 2 , 2 , n thresh ) )
Confusion MLE 1c = np . z e ro s ( ( 2 , 2 , n thresh ) )
Confus ion Log 2c = np . z e r o s ( ( 2 , 2 , n thresh ) )
#Set up ROC curve ve c to r s
f o r j in range (0 , n thresh ) :

Confus ion s 1c [ : , : , j ] = \
c l a s s o b j . con fus i on ( t rue 1s , S 1 c c l a s s [ j , : ] )
Confus ion gaus 1c [ : , : , j ] = \
c l a s s o b j . con fus i on ( true g , Gaus 1c c la s s [ j , : ] )
Confus ion gaus 2c [ : , : , j ] = \
c l a s s o b j . con fus i on ( true 2g , Gaus 2c c la s s [ j , : ] )
Confusion MLE 2c [ : , : , j ] = \
c l a s s o b j . con fus i on ( true mle 2 , MLE 2 class [ j , : ] )
Confus ion S 2c [ : , : , j ] = \
c l a s s o b j . con fus i on ( t rue 2s , S 2 c l a s s [ j , : ] )
Confusion NB 2c [ : , : , j ] = \
c l a s s o b j . con fus i on ( true NB , NB 2c c lass [ j , : ] )
Confusion NB 1c [ : , : , j ] = \
c l a s s o b j . con fus i on ( true NB1 , NB 1c c lass [ j , : ] )
Confusion MLE 1c [ : , : , j ] = \
c l a s s o b j . con fus i on ( true MLE , MLE 1c class [ j , : ] )
Confus ion Log 2c [ : , : , j ] = \
c l a s s o b j . con fus i on ( t rue l og , Log 2c [ j , : ] )

#Find the optimal th r e sho ld
S opt = max( S 1 c r e s u l t , key=lambda x : x [ 0 ] )
S index = np . where ( S 1 c r e s u l t==S opt ) [ 0 ] [ 0 ]
Gaus opt = max( Gaus 1c resu l t , key=lambda x : x [ 0 ] )
G index = np . where ( Gaus 1c r e su l t == Gaus opt ) [ 0 ] [ 0 ]
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NB opt = max( NB 1c result , key=lambda x : x [ 0 ] )
NB index = np . where ( NB 1c resu l t==NB opt ) [ 0 ] [ 0 ]
MLE opt = max( MLE 1c result , key=lambda x : x [ 0 ] )
MLE index = np . where ( MLE 1c result==MLE opt ) [ 0 ] [ 0 ]
#Ca lcu la te the harmonic means
harmonic S1 = c l a s s o b j . harmonic ( Confus ion s 1c [ : , : , S index ] )
harmonic g1 = c l a s s o b j . harmonic ( Confus ion gaus 1c [ : , : , G index ] )
harmonic NB1 = c l a s s o b j . harmonic ( Confusion NB 1c [ : , : , NB index ] )
harmonic MLE1 = c l a s s o b j . harmonic ( Confusion MLE 1c [ : , : , MLE index ] )
#Calcu la te the H−measures
H measure s1 = c l a s s o b j . H measure ( S opt [ 0 ] )
H measure g1 = c l a s s o b j . H measure ( Gaus opt [ 0 ] )
H measure NB1 = c l a s s o b j . H measure ( NB opt [ 0 ] )
H measure MLE1 = c l a s s o b j . H measure (MLE opt [ 0 ] )

s e l f . c on fu s i on ( Confus ion s , ’ S i l v 2 . txt ’ , f p c 1 )
s e l f . con fu s i on ( Confusion mle , ’MLE2. txt ’ , f p c 1 )
s e l f . con fu s i on ( Confusion g , ’ Gauss2 . txt ’ , f p c 1 )
s e l f . con fu s i on ( Confusion NB , ’NB2. txt ’ , f p c 1 )
s e l f . con fu s i on ( Confusion MLE 1c [ : , : , MLE index ] , ’MLE1. txt ’ , f p c 1 )
s e l f . con fu s i on ( Confusion NB 1c [ : , : , NB index ] , ’NB1. txt ’ , f p c 1 )
s e l f . con fu s i on ( Confus ion gaus 1c [ : , : , G index ] , ’ Gauss1 . txt ’ , f p c 1 )
s e l f . con fu s i on ( Confus ion log , ’ Log . txt ’ , f p c 1 )
s e l f . con fu s i on ( Confus ion s 1c [ : , : , S index ] , ’ S i l v 1 . txt ’ , f p c 1 )

de l f o l d o b j
de l c l a s s o b j
de l p r i o r o b j
re turn ( [ MLE accuracy , KDE accuracy , G accuracy , NB accuracy ,

log accuracy ,
MLE opt [ 0 ] , S opt [ 0 ] , Gaus opt [ 0 ] , NB opt [ 0 ] , prop ] ,

[ harmonic mle , harmonic s , harmonic g , harmonic NB , harmonic log ,
harmonic MLE1 , harmonic S1 , harmonic g1 , harmonic NB1 ] ,
[ H measure mle , H measure s , H measure g , H measure NB , H measure log ,
H measure MLE1 , H measure s1 , H measure g1 , H measure NB1 ] ,

Confus ion s 1c , Confus ion gaus 1c , Confus ion gaus 2c , Confusion MLE 1c ,
Confusion Log 2c ,
Confusion MLE 2c , Confus ion S 2c , Confusion NB 2c , Confusion NB 1c )

Listing 5: Classifiers module

# −∗− coding : utf−8 −∗−
”””
Created on Tue Jun 23 21 : 18 : 2 9 2015

@author : Est ian
”””
import numpy as np
from sc ipy . s t a t s import beta
from sc ipy . s t a t s import mul t iva r i a t e norma l
#from sk l ea r n import svm
from s k l e a rn . l i n ea r mode l import Log is t i cRegress ionCV

c l a s s CLASSIFIERS :
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de f i n i t ( s e l f , c1 bool , c2 boo l ) :
s e l f . c 1 boo l = c1 boo l
s e l f . c 2 boo l = c2 boo l

# Calcu la te Silverman ’ s bandwidth
de f Si lverman ( s e l f , Sigma , N, d ) :

H = np . z e ro s ( ( d , d ) )
H = np . mat(H)
a = (4/( f l o a t (d )+2))∗∗(1/( f l o a t (d)+4))
f o r i in range (0 , d ) :

H[ i , i ] = a∗Sigma [ i ]∗N∗∗(−1/( f l o a t (d)+4))
a s s e r t ( Sigma [ i ] != 0)

re turn H

# # Calcu la te MLE bandwidth
# def MLE( s e l f , Sigma , x , d i s t ) :
# d = x . shape [ 1 ]
# N = len ( x )
# Hk = np . z e ro s ( ( d , d ,N))# i n i t i a l i s e bandwidth
# num = np . z e ro s ( (N, d ) )
# den = np . z e ro s ( (N, d ) )
# ke rne l = 0
# H= s e l f . Si lverman ( Sigma ,N, d)# i n i t i a l bandwidth
# H = H∗∗2
# p lout = s e l f .pH(H, x)# c a l c u l a t e LOUT
# f o r dim in range (0 , d ) :
# f o r k in range (0 ,N) :
# f o r i in range (0 ,N) :
# i f i != k :
# ke rne l = mul t iva r i a t e norma l . pdf ( x [ i , : ] , x [ k , : ] , H)
# d i f f = ( x [ i , dim]−x [ k , dim ] )∗∗2
# num[ k , dim ] = ( ke rne l ∗ d i f f )/ f l o a t ( p lout [ i ] ) + num[ k , dim ]
# den [ k , dim ] = ke rne l / f l o a t ( p lout [ i ] ) + den [ k , dim ]
# Hk [ dim , dim , k ] = num[ k , dim ] / den [ k , dim ]
# #i n d i s t = s e l f . reg ( x [ k , dim ] , np . t ranspose ( x [ : , dim ] ) )
# i f (Hk [ dim , dim , k ] < d i s t [ k , dim ] ) :
# Hk [ dim , dim , k ] = d i s t [ k , dim ]
# return np . s q r t (Hk)

de f MLE2( s e l f , Sigma , x ) :
d = x . shape [ 1 ]
N = len ( x )
Hk = np . z e ro s ( ( d , d ,N))# i n i t i a l i s e bandwidth
num = np . z e ro s ( (N, d ) )
den = np . z e ro s ( (N, d ) )
ke rne l = 0
H= s e l f . Si lverman ( Sigma ,N, d)# i n i t i a l bandwidth
H = H∗∗2
p lout = s e l f .pH(H, x)# c a l c u l a t e LOUT
x1 = np . t i l e (x , (N, 1 ) )
x2 = np . repeat (x ,N, a x i s =0)
d i f f = x1−x2
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p lout = np . t i l e ( p lout ,N)
p lout = np . t ranspose (np . matrix ( p lout ) )
f o r i in range (0 ,N) :

d i f f = np . d e l e t e ( d i f f , ( i ∗N) , a x i s =0)
p lout = np . d e l e t e ( p lout , ( i ∗N) , a x i s =0)

power = np . z e r o s ( l en ( d i f f ) )
f = d i f f ∗np . l i n a l g . inv (H)
f o r i in range (0 , l en ( d i f f ) ) :

power [ i ] = np . dot ( f [ i , : ] , np . t ranspose ( d i f f ) [ : , i ] )
de l f
a = 1/(np . s q r t ( (2∗np . p i )∗∗d∗np . l i n a l g . det (H) ) )
ke rne l = a∗np . power (np . e ,−0.5∗power )
de l power #f r e e memory
ke rne l = np . matrix ( ke rne l )
k e rne l = np . t ranspose ( ke rne l )
d i f f 2 = d i f f ∗∗2
de l d i f f
mult = np . mult ip ly ( kerne l , d i f f 2 )
num = np . d iv id e ( mult , p l out )
de l mult
den = np . d i v id e ( kerne l , p l out )
de l k e rne l
f o r i in range (0 ,N) :

s l = s l i c e ( i ∗(N−1) ,( i +1)∗(N−1))
temp d = np . sum( den [ s l ] )
temp d = np . t i l e ( temp d , d)
temp n = np . sum(num[ s l , : ] , a x i s =0)
div = np . d i v id e ( temp n , temp d )
Min = np . min (np .ma. masked equal ( d i f f 2 [ s l , : ] , 0 . 0 , copy=False ) , a x i s =0)
Max = np . maximum( div , Min)
Hk [ : , : , i ] = np . d i a g f l a t (Max)

de l d i f f 2
de l den
de l num
return np . s q r t (Hk)

#LOUT expre s s i on
de f pH( s e l f ,H, x ) :

H = np . asmatr ix (H)
N = len ( x )
p lout = np . z e ro s (N)
f o r i in range (0 ,N) :

f o r j in range (0 ,N) :
i f j != i :

h k = mul t iva r i a t e norma l . pdf ( x [ i , : ] , x [ j , : ] , H) #Hj?
p lout [ i ] = p lout [ i ] + h k

p lout [ i ] = p lout [ i ] / f l o a t (N−1)
a s s e r t ( p lout [ i ] != 0)

re turn p lout

# #R e g u l i r a s a t i o n
# def reg ( s e l f , point , vec to r ) :
# d i s t = ( vector−po int )∗∗2
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# i f np . a r ray equa l ( d i s t , np . z e r o s ( l en ( vec to r ) ) ) :
# Min = 0
# e l s e :
# Min = np . min ( d i s t [ np . nonzero ( d i s t ) ])# Ca lcu la te s m a l l e s t d i s t anc e not 0
# return Min #e r r o r at dim 14 i=1 k=0

#Calcu la te the sum of k e r n e l s f o r Si lverman
de f Sum( s e l f ,H, X tr , X te ) :

N tr = X tr . shape [ 0 ]
i n t e = X te . shape [ 0 ]
k e rne l = np . z e ro s ( i n t e )
f o r j in range (0 , i n t e ) :

f o r i in range (0 , N tr ) :
k e rne l [ j ] = mul t iva r i a t e norma l . pdf ( X tr [ i , : ] , X te [ j , : ] , H) + ke rne l [ j ]

r e turn ke rne l / N tr

#Calcu la te the sum of k e r n e l s f o r MLE
def Sum MLE( s e l f ,H, X tr , X te ) :

N tr = X tr . shape [ 0 ]
i n t e = X te . shape [ 0 ]
k e rne l = np . z e ro s ( i n t e )
f o r j in range (0 , i n t e ) :

f o r i in range (0 , N tr ) :
k e rne l [ j ] = mul t iva r i a t e norma l . pdf ( X tr [ i , : ] , X te [ j , : ] , H [ : , : , i ] ) +\
ke rne l [ j ]

r e turn ke rne l / f l o a t ( N tr )

#C l a s s i f y us ing a support vetor machine
# def SVM( s e l f , x ) :
# d = x . shape [1]−1
# #10ˆ−1 − 10ˆ5 gamma=1/d
# c l f = svm .SVC(C=0.5 , gamma=0, ke rne l =’ l i n e a r ’ , p r o b a b i l i t y=True )
# a , b = x [ : , : d ] , x [ : , d ]
# c l f . f i t ( a , b )
# prob = c l f . p r ed i c t p roba ( x [ : , : d ] )
# return prob

#Calcu la te the one c l a s s c l a s s i f i c a t i o n s
de f One Class ( s e l f , l i k e l i h o o d ) :

n = l i k e l i h o o d . shape [ 0 ]
s o r t = sor t ed ( l i k e l i h o o d , key=lambda x : x [ 0 ] , r e v e r s e=False )
s o r t = np . asar ray ( s o r t )
Class = np . z e r o s ( ( n , n ) )
th r e sho ld = np . z e ro s (n)
r e s u l t = np . z e ro s ( ( n , 2 ) )
f o r j in range (0 , n ) :

i f j != n−1:
th r e sho ld [ j ] = ( s o r t [ j ,0 ]+ s o r t [ j +1 ,0])/2

e l s e :
th r e sho ld [ j ] = s o r t [ j , 0 ]+0 . 1

count = 0
f o r i in range (0 , n ) :

i f s o r t [ i , 0 ] > th r e sho ld [ j ] :
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Class [ i , j ] = s e l f . c 2 boo l
e l s e :

Class [ i , j ] = s e l f . c 1 boo l
i f Class [ i , j ] == s o r t [ i , 1 ] :

count = count+1
accuracy = f l o a t ( count )/n
r e s u l t [ j , 0 ] = accuracy
r e s u l t [ j , 1 ] = thre sho ld [ j ]
t rue = s o r t [ : , 1 ]

r e turn r e s u l t , Class , t rue

#Calcu la te two c l a s s gauss ian c l a s s e s
de f Gauss ian 2c ( s e l f , c1 t r , c2 t r , Y te ) :

n = Y te . shape [ 0 ]
prob c1 = np . z e r o s (n)
prob c2 = np . z e r o s (n)
m1 = np . mean( c1 t r , a x i s =0)
cov1 = np . cov ( c1 t r , rowvar=0)
m2 = np . mean( c2 t r , a x i s =0)
cov2 = np . cov ( c2 t r , rowvar=0)
f o r j in range (0 , n ) :

prob c1 [ j ] = mul t ivar ia t e norma l . pdf ( Y te [ j , : ] , m1, cov1 )
prob c2 [ j ] = mul t ivar ia t e norma l . pdf ( Y te [ j , : ] , m2, cov2 )

re turn prob c1 , prob c2

#Calcu la te one c l a s s gauss ian c l a s s e s
de f Gauss ian 1c ( s e l f , Y tr , Y te ) :

n = Y te . shape [ 0 ]
prob = np . z e ro s (n)
m = np . mean( Y tr , a x i s =0)
cov = np . cov ( Y tr , rowvar=0)
f o r j in range (0 , n ) :

prob [ j ] = mul t ivar ia t e norma l . pdf ( Y te [ j , : ] ,m, cov )
re turn prob

de f Naive Bayes 2c ( s e l f , c1 t r , c2 t r , Y te ) :
n = Y te . shape [ 0 ]
prob c1 = np . z e r o s (n)
prob c2 = np . z e r o s (n)
m1 = np . mean( c1 t r , a x i s =0)
m2 = np . mean( c2 t r , a x i s =0)
cov1 = np . diag (np . var ( c1 t r , a x i s =0))
cov2 = np . diag (np . var ( c2 t r , a x i s =0))
f o r j in range (0 , n ) :

prob c1 [ j ] = mul t ivar ia t e norma l . pdf ( Y te [ j , : ] , m1, cov1 )
prob c2 [ j ] = mul t ivar ia t e norma l . pdf ( Y te [ j , : ] , m2, cov2 )

re turn prob c1 , prob c2

#Calcu la te one c l a s s Naive Bayes c l a s s e s
de f Naive Bayes 1c ( s e l f , Y tr , Y te ) :

n = Y te . shape [ 0 ]
prob = np . z e ro s (n)
m = np . mean( Y tr , a x i s =0)
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cov = np . diag (np . var ( Y tr , a x i s =0))
f o r j in range (0 , n ) :

prob [ j ] = mul t ivar ia t e norma l . pdf ( Y te [ j , : ] ,m, cov )
re turn prob

#L o g i s t i c r e g r e s s i o n
de f l o g i t ( s e l f , Y tr , Y t r c l a s s , Y te , Y t e c l a s s ) :

model = Logist i cRegress ionCV ( r e f i t=True )
model = model . f i t ( Y tr , Y t r c l a s s )
prob = model . p r ed i c t p roba ( Y te )
re turn prob [ : , 1 ] , prob [ : , 0 ]

#C l a s s i f y the obs e rva t i on s
de f c l a s s i f y ( s e l f , true , est imated ) :

N = true . shape [ 0 ]
count =0
r e s u l t = np . z e ro s (N)
f o r i in range (0 ,N) :

i f e s t imated [ i , 0 ] > est imated [ i , 1 ] :
r e s u l t [ i ] = s e l f . c 1 boo l

e l s e :
r e s u l t [ i ] = s e l f . c 2 boo l

i f f l o a t ( r e s u l t [ i ] ) == f l o a t ( t rue [ i ] ) :
count = count+1

accuracy = f l o a t ( count )/N
return r e s u l t , accuracy

#Ca l cu l a t e s the con fus i on matrix ( cont ingency ta b l e )
de f con fus i on ( s e l f , true , p r ed i c t ed ) :

N = true . shape [ 0 ]
matrix = np . z e ro s ( ( 2 , 2 ) )
f o r i in range (0 ,N) :

i f t rue [ i ] == 1 :
i f p r ed i c t ed [ i ] == true [ i ] :

matrix [ 0 , 0 ] = matrix [ 0 , 0 ] +1#true p o s i t i v e
e l s e :

matrix [ 0 , 1 ] = matrix [ 0 , 1 ] +1#f a l s e p o s i t i v e
e l s e :

i f p r ed i c t ed [ i ] == true [ i ] :
matrix [ 1 , 1 ] = matrix [ 1 , 1 ] +1

e l s e :
matrix [ 1 , 0 ] = matrix [ 1 , 0 ] +1

return matrix

#Ca l cu l a t e s Harmonic mean
de f harmonic ( s e l f , con fu s i on ) :

s e n s i t i v i t y = con fus i on [ 0 , 0 ] / ( con fus i on [0 ,0 ]+ con fus i on [ 0 , 1 ] )
s p e c i f i c i t y = con fus i on [ 1 , 1 ] / ( con fus i on [1 ,1 ]+ con fus i on [ 1 , 0 ] )
h mean = f l o a t (2∗ s e n s i t i v i t y ∗ s p e c i f i c i t y )/ ( s e n s i t i v i t y+s p e c i f i c i t y )
re turn h mean

#Ca l cu l a t e s the H−measure
de f H measure ( s e l f , x ) :
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a=2
b=2
value = beta . cd f (x , a , b )
re turn value

Listing 6: Cross-validation module

# −∗− coding : utf−8 −∗−
”””
Created on Mon Jun 22 16 : 0 3 : 23 2015

@author : Est ian
”””
import numpy as np
import math

c l a s s FOLDS:
de f i n i t ( s e l f , c co l , c1 bool , d , n f o l d s ) :

s e l f . c c o l = c c o l
s e l f . c 1 boo l = c1 boo l
s e l f . d = d
s e l f . n f o l d s = n f o l d s
s e l f . i n f o l d = 0

#Determine the s i z e o f each c l a s s
de f C l a s s s i z e ( s e l f , x ) :

count1 = 0
count2 = 0
N = x . shape [ 0 ]
f o r i in range (0 ,N) :

i f x [ i , s e l f . c c o l ] == s e l f . c 1 boo l :
count1 = count1+1

e l s e : count2 = count2 +1
return [ count1 , count2 ]

# d iv id e data in to c l a s s e s
de f Class ( s e l f , s i z e c , x ) :

count1 =0 #counter f o r c l a s s 1
count2 =0 #counter f o r c l a s s 2
x c1 = np . z e ro s ( ( s i z e c [ 0 ] , s e l f . d ) )
x c2 = np . z e ro s ( ( s i z e c [ 1 ] , s e l f . d ) )
f o r i in range (0 , x . shape [ 0 ] ) :

i f x [ i , s e l f . c c o l ] == s e l f . c 1 boo l :
x c1 [ count1 ] = x [ i , : ]
count1 = count1 +1

e l s e :
x c2 [ count2 ] = x [ i , : ]
count2 = count2 +1

return x c1 , x c2

#Set up the f o l d s
de f Fold ( s e l f , x ,N) :

#Set up the c l a s s e s
s e l f . i n f o l d = math . c e i l (N/ s e l f . n f o l d s )
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s i z e c = FOLDS. C l a s s s i z e ( s e l f , x )
x c1 , x c2 = FOLDS. Class ( s e l f , s i z e c , x )
x c = np . concatenate ( ( x c1 , x c2 ) )
x F = np . z e r o s ( ( s e l f . i n f o l d , s e l f . d , s e l f . n f o l d s ) )
f o r i in range (0 , s e l f . n f o l d s ) :

count = 0
f o r j in range ( i ,N, s e l f . n f o l d s ) :

x F [ count , : , i ] = x c [ j , : ] #order i s : row , co l , f o l d s
count = count +1

return x F

#Train the data
de f Train ( s e l f , f num , x F ) :

X te = np . z e ro s ( ( s e l f . i n f o l d , s e l f . d ) )
temp = np . z e ro s ( ( s e l f . i n f o l d ∗( s e l f . n f o l d s −1) , s e l f . d , s e l f . n f o l d s ) )
X te = x F [ : , : , f num ]
i f f num != 0 :

temp = np . concatenate ( ( x F [ : , : , : ( f num−1) ] , x F [ : , : , f num : ] ) , a x i s =2)
e l s e :

temp = x F [ : , : , ( f num +1) : ]
f o r j in range (0 , s e l f . n f o l d s −1):

i f j == 0 :
X tr = temp [ : , : , j ]

e l s e :
X tr = np . concatenate ( ( X tr , temp [ : , : , j ] ) , a x i s =0)

s i z e t e = s e l f . C l a s s s i z e ( X te )
s i z e t r = s e l f . C l a s s s i z e ( X tr )
X te c1 , X te c2 = s e l f . Class ( s i z e t e , X te )
X tr c1 , X tr c2 = s e l f . Class ( s i z e t r , X tr )
re turn X tr c1 , X tr c2 , X te c1 , X te c2
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Abstract

Spatial statistics involves data whose location plays a signi�cant role in the characteristics of the observa-
tions. These observations, which are subject to random in�uence, have an additional variable, location,
which tells the reader exactly where the observation occurred. Geostatistics is most well-known for its
application of spatial interpolation in geosciences; predicting values at speci�c locations for which no
observations have been recorded. Emphasis is placed speci�cally on the spatial interpolation method
known as Kriging which calculates estimates and develops graphs to provide more insight into what
can be expected at a location based on the values of neighbouring observations. Peak ground accelera-
tion (PGA) is de�ned as the maximum acceleration amplitude measure of ground motion vibrations of
an earthquake. This report uses spatial interpolation to generate a continuous spatial seismic hazard
map for South Africa. Following the steps of the Kriging process resulted in a smooth contour plot of
point measurements of estimated PGA. From these plots, PGA is expected to be high in the Western
Cape, KwaZulu-Natal and the area known as the Witwatersrand Basin. Further research can be done to
determine why this is so.
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1 Introduction

Waldo Tobler, a professor of Geography and Statistics at the University of California, suggested the �rst law
of geography: �Everything is related to everything else, but near things are more related to each other� [37].
This is the driving force behind spatial statistics.

Geostatistics uses adapted methods of regression in an e�ort to describe the spatial continuity of natural
phenomena [17]. Georges Matheron's estimation techniques (established in the Theory of Regionalised Vari-

ables) [27] are also utilised in geostatistics by being applied to observations which are in�uenced by position
as well as by observations made nearby [7] i.e. spatial statistics.
Data used in geostatistics is measured in a space where the domain D is restricted and is most likely to be
dependent. To be speci�c, spatial dependence implies that points found nearer to one another will have more
attributes in common than points found further apart. The data will then be modelled and used to predict
possible values at locations for which no data have been recorded. Other characteristics of the data which
are also important are stationarity, ergodicity and isotrophy.
Modelling spatial independence involves �tting what is known as a semi-variogram γ(h), where h is the
distance between two observations. A semi-variogram is a graphical representation of the expected di�erences
between pairs of samples with a related location [7]. It explains variation between observations. A semi-
variogram is �tted to the data set by assigning weights to each observation i.e. a weighted non-linear least
squares �t. The semi-variogram will be �tted using the SAS/GRAPH® software's capabilities; speci�cally
the procedure PROC VARIOGRAM. The data will be analysed and the most e�cient model will be used to
�t the semi-variogram. In fact, an integration of multiple models is generally used in practice [7], which are
known as nested models. The model is used to estimate values at locations for which no observations have
been recorded. This process of spatial interpolation [35] aims to �nd a linear, unbiased, best predictor [14].
Danie Krige, a mining engineer from South Africa [1], described a method whereby optimum weights are
assigned to data based on their relevance to what is being estimated as a way to �nd the best linear unbiased
predictor [21]. Krige's contribution to spatial statistics smooths the data and improves the accuracy of
estimation and prediction [40] and, for this reason, his procedure for spatial interpolation is known as Kriging
[26]. Kriging will be executed through the SAS® procedure PROC KRIGE2D. As there are multiple types
of Kriging, such as Ordinary Kriging, Co-Kriging and Log Normal Kriging, deciding which method to use is
dependent on the characteristics of the data.
To summarise; given spatial data, the accuracy of an estimator can be assessed provided there is a su�cient
model for the semi-variogram. From this semi-variogram a minimum variance, linear, unbiased estimator can
be produced through Kriging [7].
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2 Theory

The theory, concepts and notation of spatial statistics are developed extensively in the Handbook of Spatial
Statistics, Isobel Clark's Practical Geostatistics as well as Ansie Smit's Masters dissertation entitled Inter-

polation in stationary spatial and spatial-temporal data sets. The theory and processes involved in building
a semi-variogram model and spatial interpolation will be discussed further.

2.1 Geostatistics

Geostatistics is the statistical study of natural phenomena [18] which are spatially correlated [17] and in
geostatistical studies the main aim is to interpolate the spatial distribution of a particular event [34]. The
notion of geostatistics came about after D.G. Krige had established methods for processing true ore-grade
distribution from samples [20] and then Georges Matheron went on to publish Theory of Regionalised Variables
[27]. Spatial statistics has since been applied to many di�erent �elds such as meteorology and agronomy
[38, 2].
It was soon found that these estimation techniques can be applied to any observations made nearby [7].
Spatial statistics was then developed under three branches; continuous spatial variation (the focus of this
report), discrete spatial variation and spatial point patterns [14].
The easiest way to describe geostatistics is through a graph. Suppose the point A in Figure 1 is to be
estimated, given samples 1 to 5. It seems logical that more importance would be placed on sample 1, by
assigning it a higher weight, than on sample 5, due to the proximity of sample 1 to the point A. Therefore,
it can be said that the relationship between the point being estimated and any sample is dependent on the
geometric placing of the samples [7].

Figure 1: A hypothetical spatial statistical sample.

2.2 General Linear Model

A spatial co-ordinate will be de�ned here as the y (latitude) and x (longitude) co-ordinates of the ith spatial
location ui = (xi, yi). This makes sense if the world map is placed onto an y−x axis. Put more simply, there
is a set of observations which are made up of a latitude variable and a longitude variable describing where
the observations took place.
The set of locations for spatial analysis is:

{ui : ui ∈ D; i = 1, ..., n} . (1)

For the univariate spatial case, let Z(ui) represent a single measurement of a characteristic at location ui.
Then Z(u1)Z(u2)...Z(un) is the set of dependent, stochastic variables, measured at n locations.
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The general linear spatial model for prediction [29] can be expressed as:
Z(u) = µ(u) + S(u) + e(u), (2)

where:

� µ(u) = the deterministic trend,

� S(u) = spatially dependent term E[S(u)] = 0,

� e(u) = spatially independent term E[S(u)] = 0.

Listed below are a few properties of the data which are crucial in determining best linear unbiased estimators:

Stationarity

Stationarity is a set of assumptions regarding data distribution which allows for parameter estimation based
on a standard set of properties [34]. Three types of stationarity are important for the Kriging procedure;
strict, second-order and intrinsic stationarity, as this allows for a unique set of Kriging parameters to be
determined.
Strict stationarity is the strongest form of stationarity and is de�ned as:

F (Z (u1) , ..., Z (un)) = F (Z(u1 + h), ..., Z (un + h))∀h. (3)

The joint probability of n variables is una�ected by a shift h, where h has been de�ned as the distance
between two observations.
Second-order stationarity has two assumptions:

E[Z(u)] = µ, (4)

cov(Z(ui), Z(ui + h)) = C(h). (5)

This implies that the data satis�es the assumptions that the mean is constant regardless of position (equation
(4)) and the covariance between two observations depends on the size of the distance between them and not
the positioning (equation (5)).
Intrinsic stationarity has two requirements for all shifts, h:

E[Z(u)− Z(u + h)] = 0,

var(Z(u + h)− Z(u)) = 2γ(h).

γ(h) is the notation used for a semi-variogram, explained in detail in Section 2.3.
Intrinsic stationarity allows for analysis of data whose variance increases as the spatial lag (distance between
observations) increases. It is also important to note that strict stationarity implies second-order stationarity
[9] which, in turn, implies intrinsic stationarity.

Ergodicity

Ergodicity and stationarity are closely related [40]. If Z̄ is the constant sample mean and Z(u) a random
variable, then Z̄ = E[Z(u)]. This property allows spatial averages to be used for the entire space of data [9].

Isotropy

In an isotropic �eld, the variation of Z(u) is the same in every direction. In other words, the covariance
function C(h) depends only on the length of the distance vector h [1]. If the variation of Z(u) does not exhibit
the same behaviour in every direction, then the �eld is anisotropic [18]. There are two types of anisotropy,
namely geometric and zonal. Anisotropy is discussed in more detail in Margaret Armstrong's Basic Linear

Geostatistics [1] and its interpretation in complex cases was investigated in Interpolation of concentration

measurements by Kriging using �ow coordinates [31].
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2.3 Spatial Modelling

Spatial statistical dependence models are built from semi-variograms [10] and a semi-variogram is described
as a graphical representation of the expected di�erence between pairs of observations at given locations [7].
Another way of de�ning a semi-variogram is to say it provides a description of the pattern and scale of spatial
variability [11].
Before going into the details of the semi-variogram, it is necessary to de�ne the covariance and correlation
function for univariate spatial data.

Covariance

The population covariance is de�ned as:
C(h) = cov(Z(ui), Z(ui + h))

= E[(Z(ui)− E[Z(ui)])(Z(ui + h)− E[Z(ui + h)])].
(6)

If A = {(ui,uj)|ui − uj = h} and NA is the number of elements in the set A, then the sample covariance is
de�ned as:

C(h) =
1

NA

∑
[Z(ui)−

1

NA

∑
Z(ui)][Z(ui + h)− 1

NA

∑
Z(ui + h)]. (7)

This makes sense, since as the observations get further and further apart, the relationships will decrease and
if the observations have a lag distance of zero, then the covariance will simply be the variance.
The semi-variogram and covariance functions standardise the local mean of the data and give the relationship:

γ(h) = C(0)− C(h), (8)

which is graphically depicted in Figure 2.
This is based on intrinsic stationarity and is derived as follows [3]:

2γ(h) = var[Z(ui + h)− Z(ui)]

= var[Z(ui + h)] + var[Z(ui)]− 2cov[Z(ui + h), Z(ui)]

= C(0) + C(0)− 2C(h)

γ(h) = C(0)− C(h).

(9)

Figure 2: Graphical representation of the relationship between the covariance function and a semi-variogram.
[34]

Some properties of the covariance function are [32]:

� C(h)
h−→
∞

0,

� C(0) ≥ 0,

� C(h) = C(−h) i.e. even function; unchanged after rotation about y axis.
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Similarly, some properties of the semi-variance function [32]:

� γ(0) = 0,

� γ(h) = γ(−h) ≥ 0,

� γ(h)
h−→
∞

C(0).

Correlation

The population correlation is:

ρ(h) =
cov(Z(ui), Z(ui + h)√

var(Z(ui)) · var(Z(ui + h))
. (10)

While the experimental correlation is:

r(h) =
C(h)√

1
NA

∑
[Z(ui)− 1

NA

∑
Z(ui)]2 · 1

NA

∑
[Z(ui + h)− 1

NA

∑
Z(ui + h)]2

. (11)

The semi-variogram represents spatial dependence [25] and the experimental semi-variogram can be estimated
as:

γ̂(h) =
1

2n

n∑
i=1

[Z(ui)− Z(ui + h)]2. (12)

There are many speci�c models which can be used to develop the semi-variogram more e�ciently, it is
generally a combination of a few di�erent models which produces the best semi-variogram. McBratney and
Webster [28] provide a review of some of the most widely used models for semi-variograms of which the most
prevalent will be discussed here.

2.3.1 Spherical Model

Consider two observations made at one location (h = 0), it is expected that there will be no di�erence
in value for the two observations (since they have occurred at the exact same position), implying that the
graph will cut through the origin. Now, if there is a small shift away from one observation to another, then
it is expected that there will be a small di�erence in values. Ideally, as the distance between observations
increases, so the value of the observations will become independent [7] and the semi-variogram will �level
out� with the value of γ becoming somewhat constant. This shape is considered to be the ideal depiction
of a semi-variogram and is more commonly known as the Spherical model. It is seen to be, to geostatistics
what the normal distribution is, to statistics [7].
As can be seen in Figure 3, the Spherical model reaches a point where it stops increasing and remains
constant. The distance h at which this is achieved is known as the range [17] and is denoted by a, while the
semi-variance value at which the range is obtained is known as the sill [40] and will be denoted in this report
by s.
The form of the Spherical model is:

γ(h) =

s
[
3
2

(
JhK
a

)
− 1

2

(
JhK
a

)3]
JhK ≤ a

s JhK > a
(13)
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Figure 3: Graphical representation of the Spherical model. [7]

2.3.2 Exponential Model

The Exponential model is also used quite often when developing the semi-variogram and is described by:

γ(h) = s[1− e−
JhK
a ]. (14)

The e�ective range (rε) of the Exponential model is approximately 5% of the covariance at h = 0 [6].

2.3.3 Gaussian Model

The Gaussian model of semi-variance is also frequently used. Much like the Exponential model, it approaches
the sill asymptotically.
The Gaussian model is de�ned as:

γ(h) = s[1− e−(
JhK
a )2 ]. (15)

A comparison of these three models is shown in Figure 4. It is clear that the Exponential model rises at a
slower rate than the Spherical model and the Gaussian model rises the slowest of all three models, implying
that as the distance between observations increases, the di�erence in variation of observations increases at a
lower rate. While the Spherical model reaches its sill value, the Exponential and Gaussian models approach
their sills asymptotically.

Figure 4: Graphical representation of the comparison of the Spherical, Exponential, Gaussian semi-variogram
models.
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2.3.4 Nested Models

It is often found that none of the aforementioned models �t the data e�ciently on their own. In these
situations, it is permissible to use what is known as a nested model. This is used when sources of variability
occur simultaneously and for all h [18]. For example, if there exists a spatial process Z(u) which contains
correlation structures of both the Spherical and the Exponential models, then the nested model will be a
combination of Equations 13 and 14, with the appropriate equation coming into play over the applicable
range. The graphical representation of the nested semi-variogram is depicted in Figure 5.

Figure 5: Example of a nested semi-variogram comprised of the Exponential and Spherical models (SAS®).

2.4 Spatial Interpolation

As was previously said, the main aim of geostatistical studies is to perform spatial interpolation in the most
e�ective way. There are typically two forms of interpolation: point and areal (space). Point interpolation
is generally applied to contour mapping which is why it will be used in this report. Furthermore, point
interpolation consists of exact and approximate methods [22], as presented in Table 1 below.

Point Interpolation Methods

Exact Approximate

Kriging Power series trend models
Distance-weighting Fourier models
Spline interpolation Distance-weighted least squares

Interpolating polynomials Least-squares �tting with splines

Table 1: Examples of exact and approximate point interpolation methods.

Kriging is essentially a case of optimal linear prediction applied to a random �eld [36], whereby an attempt
is made to estimate the value at a location for which no observations have been recorded. Speci�cally, points
found closer to the location where the estimate is being made will be given a larger weighting than points
found further away, which is similar to the Inverse Distance Weighting (IDW) function [33]. The biggest
di�erence is that IDW uses Euclidean distances to determine weights while Kriging uses spatial dependent
weights [34].
Originally, Kriging produced a linear predictor which implies that the estimated weights are linear combina-
tions of the sample values. However, in recent developments, methods of optimal nonlinear spatial prediction
have been developed and introduced into geostatistics [8]. This report will focus on linear Kriging.
There are many di�erent types of Kriging; the choice of which method to use depends on the characteristics
of the data as well as the desired spatial model [23]. Table 2 gives a few types of linear Kriging, their relative
characteristics and a brief description of when the application of each model is appropriate [34, 23, 5, 4, 12].
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Some advantages of Kriging [5]:

� Helps compensate for data clustering by treating a cluster as a single point.

� Gives error estimation as well as point estimation; allows for stochastic simulation of possible Z(u).

Type Characteristics Application

Simple Strict model assumptions Data with a constant mean
across entire domain

Ordinary Known local mean Data with a local stationary
semi-variogram (covariance

model)
Universal Variable mean Data with a strong trend which

can be modelled with simple
functions

Indicator Estimating distribution
as opposed to mean

Data with a categorical variable

Factorial Several scales of variation Multivariate data with
co-regionalised variables

Log normal Conservation of Log
Normality

Log Normally distributed data

Co-Kriging More than one attribute De�ned correlation between
attributes

Table 2: Types of linear Kriging.

Ordinary Kriging

Ordinary Kriging is the most robust method of Kriging and is used most often [40]. It incorporates the
semi-variogram model to generate a set of weighting factors which provide a minimum error.
The spatial ordinary Kriging estimator is:

Ẑ(u0) =

n∑
i=1

λiZ(ui). (16)

That is, the estimator is the linear weighted average of the available measurements. Figure 6 shows the basics
behind estimating the sample used in Figure 1. The shaded block is the area to be estimated. This will be
done by giving each sample value a weighting (sample 1 getting the highest weight since it is in the block and
sample 4 the next highest weight as it is second closest to the point A) and then calculating the estimator
using equation (16).

Figure 6: Kriging estimation area.
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The method of ordinary Kriging has the following assumptions [34]:

1. The mean is a known constant µ,

2. the variogram and covariance are known,

3.
∑n

i=1 λi = 1,

4. the data is intrinsic stationary.

The third assumption ensures that the estimate is unbiased.
Suppose the data is second-order stationary (see Section 2.2), then the estimation error is:

Ẑ(u0)− Z(u0), (17)

with:

σ2(u0) = var
(
Ẑ(u0)− Z(u0)

)
= var(Ẑ(u0))− 2cov(Ẑ(u0), Z(u0)) + var(Z(u0))

=

n∑
i=1

n∑
j=1

λiλjC(ui − uj)− 2

j∑
i=1

λiC(ui − u0) + C(u0 − u0)

(18)

minimised subject to
∑n

i=1 λi = 1 [15].
To represent the estimation variance in equation (18) in terms of the semi-variogram, the relationship in
equation 8 will be used to get [34]:

σ2(u0) =

n∑
i=1

n∑
j=1

λiλj [C(u0 − u0)− γ(ui − uj)]− 2

n∑
i=1

λi [C(u0 − u0)− γ(ui − u0)] + C(u0 − u0)

= −
n∑

i=1

n∑
j=1

λiλjγ(ui − uj) + 2

n∑
i=1

λiγ(ui − u0).

(19)

In order to minimise equation (19) for equation (16), the weights will be subject to assumption 3, which will
hold true for the variogram in equation (12) and the Lagrange multipliers will be used since a maximum or
minimum of a function is required [34].
At the point u0, the variance to be minimised is:

E

[
n∑

i=1

λiZ(ui)− Z(u0)

]2
− 2ϕ

[
n∑

i=1

λi − 1

]
, (20)

where ϕ is the Lagrange multiplier (which ensures assumption 3 is met) resulting in:

−
n∑

i=1

n∑
j=1

λiλjγ(ui − uj) + 2

n∑
i=1

λiγ(u0 − ui)− 2ϕ

(
n∑

i=1

λi − 1

)
. (21)

After di�erentiation of equation (21) with respect to λi and setting the derivative equal to zero:

−
n∑

j=1

λjγ(ui − uj) + γ(u0 − ui)− ϕ = 0. (22)

The spatial ordinary Kriging system can then be expressed in terms of the semi-variogram [16] :{∑n
j=1 λjγ(ui − uj)− ϕ = γ(ui − u0) i = 1, 2, ..., n∑n
j=1 λj = 1

(23)

The λj 's are then substituted into equation (17) and the spatial ordinary Kriging estimate for location u0 is
determined.
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Matrix Notation

Equation (23) can be rewritten as:
γ11 . . . γ1n 1
...

...
...

...
γn1 · · · γnn 1
1 1 1 0



λ1
...
λn
ϕ

 =


γ01
...
γ0n
1

 , (24)

where γij is the semi-variogram between the ithand jth locations, or:
Γλ = γ0. (25)

If equation (25) is partitioned as follows: [
Γ 1
1‘ 0

] [
λ
ϕ

]
=

[
γ0
1

]
, (26)

then:
λ = Γ−1γ0

=

(
γ0+1

1−1Γ−1γ0

1Γ−1γ0

)‘

Γ−1
(27)

and:

ϕ = − (1− 1Γ−1γ0

1Γ−11‘
. (28)

Equation (8) can then be used to express the ordinary Kriging system in terms of the covariance:{∑n
j=1 λjC(ui − uj) + ϕ = C(ui − u0) i = 1, 2, ..., n∑n
j=1 λj = 1

(29)

Deciding whether to use the system represented by the semi-variogram or the covariance depends entirely on
what the reader's preference is and which tools will best describe the data.

3 Application

Peak ground acceleration (PGA) is a seismic hazard, since seismic hazard is de�ned as a natural phenomenon
as a result of an earthquake, such as ground movement or a fault rupture [39]. In seismology there is also
seismic risk estimation, which is the calculation of the possible e�ects future earthquakes can have on a
community as well as the probability of such an event taking place [19].
In this research report, the data used is the estimated PGA for South Africa with a 10% probability of being
exceeded at least once in a 50 year period. For the remainder of the report it will simply be referred to as
PGA. The estimates are of a spatial nature [10] since they contain predictions with longitude and latitude
co-ordinates describing their location. In order to calculate seismic risk for South Africa, it is necessary to
have seismic hazard and therefore as much information as possible about PGA in the country. The spatial
interpolation method of Kriging is optimal because a smooth contour plot can be created from the PGA
estimates, which is the easiest to interpret in this case.
It is important to note that the data that is available for estimated PGA is very well-populated, which is not
generally the case. It is therefore necessary to perform Kriging on all the data as well as on a much smaller
portion to obtain results of a more realistic event. This will demonstrate the e�ectiveness of the Kriging
procedure if both outcomes are very similar.
It can be seen in Figure 7 that the Witwatersrand Basin has more seismic events of a greater magnitude
than the rest of the country, therefore this area will also be of greater interest and will be investigated more
closely.
The SAS code used throughout the application can be found in Appendix A and the output in Appendix B.
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Figure 7: Plot of the recorded seismic events for the Witwatersrand Basin from 2000 to 2014.

3.1 Spatial Modelling

A large data set with 4161 estimated observations was used with variables: longitude (x), latitude (y) and
PGA which is measured in terms of gravitational acceleration (g = 9.8m/s) . The co-ordinates have an
incremental value of 0.25◦, i.e. there is an estimated PGA values every 0.25◦ on the map.
Figure 8 shows how the PGA estimates are distributed. A circle represents an estimate and the shading of
the circle indicates the magnitude of the PGA. It is evident from the scale on the right hand side that there
are 3 prominent areas with a higher PGA than the rest of the data.

Figure 8: The spatial distribution of the peak ground acceleration for South Africa.

As has been discussed, it is necessary to �rst build a semi-variogram model. This can be done through the
SAS®procedure, PROC VARIOGRAM.
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3.1.1 Spatial Data Analysis

Before a model can be built, it is necessary to do some investigation into the nature of the data. The data
is �rst examined to see if any surface trend exists, that is to say the data is being inspected for stationarity.
It was discovered that the data used has no surface trend, therefore the process continues. Had there been
a surface trend, certain calculations would have been performed to extract the trend. For more information
regarding surface trend analysis see [24].
Next, it is necessary to select an appropriate lag distance and maximum lag. That is selecting the maximum
distance an observation can be away from a location, in order to have an in�uence on the value observed at
the location (max lag) and the lag distance classes (lag distance/lagd). With the PGA data set, it was found
that a maximum lag distance of 0.76◦ and a lag distance of 15◦ was ideal for the model.

3.1.2 Autocorrelation Analysis

Autocorrelation analysis is then performed. This is to assess whether or not the observations are in fact
related to one another. The Moran scatterplot seen in Figure 9, provides a visual representation of the
spatial associations in the neighbourhood around each observation. It is evident that, due to the clustering of
the observations around the line y = x, the observations of PGA exhibit a strong positive spatial association.
This means observations found within 0.76◦ of one another will have similar values of PGA.

Figure 9: Analysis of autocorrelation between observations of peak ground acceleration.

3.1.3 Theoretical Semi-variogram Model Fitting

As was previously mentioned, there are multiple possibilities for the underlying structure of the semi-
variogram model. It is therefore necessary to evaluate which model will be the best �t. Through analysis,
it was found that the best models for the data set are the Gaussian and Exponential model. Each model
was then �tted to see which one would produce the optimum result. As is clear from Figures 10 and 11, the
Gaussian model �ts the data in the best way, following the empirical curve quite closely.
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Figure 10: A Gaussian weighted least squares (WLS) �t of the peak ground acceleration observations.

Figure 11: An Exponential weighted least squares (WLS) �t of the peak ground acceleration observations.

The information obtained for the Gaussian model is then exported to a �le in SAS®to be used in the Kriging
procedure.

19



3.2 Spatial Interpolation

A contour plot is used to identify overall trends in two dimensional univariate data [17] where an attribute, in
this case the PGA, is plotted against the location (x, y) by using a pattern of coloured lines [34]. The PROC
KRIGE2D procedure in SAS® produces contour plots of the Kriging estimates which will be developed from
the model built in the previous step.
Local analysis is performed, i.e. the estimated value at a location is a function of the existing values around
the same location [13]. This is because the local spatial behaviour di�ers over the space. To explain this
more logically - an event occurring in the Northern Province may be very di�erent to an event occurring in
the Western Cape, due to the distance between the provinces.
A grid is chosen (in this case with increments of 0.1◦) for the interpolation to give a smooth contour plot of
estimations. 25 521 points were estimated by using neighbours within a 3◦ radius, with a maximum number
of 20 neighbours used in the Kriging calculations. For easier interpretation, 1◦ is roughly 111 kilometres.
Figure 12 is the contour plot of the Kriging estimates established by PROC KRIGE 2D. The interpretation
of a contour map involves viewing di�erent levels on the map. A measurement found on either side of
the contour line is either higher or lower than the value expressed on the line. For example, in Figure 12,
considering the red area almost in the centre of the plot; the outermost contour line has a value of 0.08,
implying that on that line it is estimated that the PGA will be 0.08. Anything outside of that line will be
less than 0.08. This is evident by the change in colour (from red, being high PGA, to blue, lower PGA)
and because the next contour line outside of the 0.08 line is 0.06. Similarly, a point found within the circle
created by the contour line with the value 0.08, will have an estimated value higher than 0.08. The contour
plot is essentially a plot of the Kriging estimates over a map of South Africa. The overlaying of the map of
South Africa onto the contour plot was executed through QGIS® [30], and can be seen in Figure 13.

Figure 12: Contour plot of peak ground acceleration Kriging estimates.
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Figure 13: Estimated peak ground acceleration for South Africa.

Since the amount of PGA estimates used in the Kriging procedure is extensive, an investigation is done into
what would happen to the semi-variogram model and Kriging estimates should the amount of available data
reduce to a more realistic 40% of the original data.
All the steps involved in spatial modelling are repeated on the new data set and it is found that the lag
distance, max lag and the model used remain the same. Figures 14, 15, 16 and 17 show the results of this
application on 40% of the data. It is clear that these results are very similar to the results obtained from
using the entire data set (if not the same). This shows the e�ciency of the procedure even when the amount
of data available is limited.
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Figure 14: Spatial distribution of estimated peak ground acceleration based on 40% of the data.

Figure 15: Gaussian weighted least squares �tted semi-variogram for peak ground acceleration based on 40%
of the data.
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Figure 16: Contour plot of peak ground acceleration Kriging estimates based on 40% of the data.

Figure 17: Estimated peak ground acceleration based on 40% of the data for South Africa.
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It was decided to investigate speci�cally the Witwatersrand Basin's PGA, as it is an area in South Africa
with a large amount of seismic activity relative to the rest of the country and, as can be seen by the map
in Figure 13, has a high estimated PGA. The process for spatial modelling and spatial interpolation remains
the same as before, except the lag distance changes to 0.33◦. Figures 18, 19, 20 and 21 show, once again, the
results of the spatial modelling and spatial prediction of PGA over the Witwatersrand basin, based on 40%
of the data.
In Figure 19, it is evident that the semi-variogram doesn't seem to have an optimum �t. Although the
SAS®procedure found the Gaussian �t to be the best, it will most probably be seen upon further investigation,
that a nested model would be a better �t. However, it is evident in Figures 20 and 21, that the chosen semi-
variogram still produces an e�cient contour plot, very similar to the one produced when using all the available
PGA estimates.

Figure 18: Spatial distribution of estimated peak ground acceleration for the Witwatersrand Basin.
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Figure 19: Gaussian weighted least squares �tted semi-variogram for estimated peak ground acceleration for
the Witwatersrand Basin.

Figure 20: Contour plot of peak ground acceleration Kriging estimates for the Witwatersrand Basin.
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Figure 21: Estimated peak ground acceleration for the Witwatersrand Basin.
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4 Conclusion

This research report investigated spatial statistics and its application in estimating the peak ground accel-
eration for South Africa. What was found, was that spatial statistics is a very broad �eld with multiple
applications in many di�erent domains. While the preparation and many processes involved in the Kriging
procedure may be tedious and time-consuming, they are not done in vain. This is due to the e�ciency of
the kriging procedure, which produces adequate results, even when working with a limited amount of data.
A contour plot of the estimated PGA for South Africa with a 10% probability of being exceeded at least
once in a 50 year period, was established with an e�cient Gaussian model. These estimations can be used
in calculations of seismic risk, which is an interaction of seismic hazard and vulnerability.

It is noted that a more accurate model may have been obtained had the possibility of a nested semi-variogram
model, comprised of the Gaussian and Exponential models, been investigated. An even more accurate result
may be obtained if the time at which an event occurs is considered i.e. spatial-temporal data.
It was obvious that the estimated PGA in the Witwatersrand Basin was high, which would logically be due
to an increased occurrence of seismic events; which could be attributed to the vast mining history of the
area. Possible future research could include investigating the correlation between the seismic activity in the
area and the mining in�uence such as rock type, acid water, and underground voids. This would require
multivariate spatial analysis and co-kriging since this report dealt only in the univariate domain. All of these
prospects have created opportunity for more research into spatial statistics.
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Appendix A

t i t l e 1 ' Spa t i a l Pr ed i c t i on o f Peak Ground Acce l e ra t ion ' ;

ods g raph i c s on ;

**** Theo r e t i c a l Semivariogram F i t t i n g **** ;
****Exponent ia l **** ;
proc variogram data=sa su s e r .PGA;

s t o r e out=SemivarStoreExponent ia l / l a b e l ='PGA Exponent ia l WLS Fit ' ;
compute lagd=0.76 maxlag=15;
coo rd ina t e s xc=Longitude yc=Lat i tude ;
model form=exp c l / covb ;
var PGA;

run ;
t i t l e 2 " F i t t i n g Gaussian Model " ;
proc variogram data=sa su s e r .PGA;

s t o r e out=SemivarStoreGaussian / l a b e l ='PGA Exponent ia l WLS Fit ' ;
compute lagd=0.76 maxlag=15;
coo rd ina t e s xc=Longitude yc=Lat i tude ;
model form=gau c l / covb ;
var PGA;

run ;

****Krig ing **** ;
t i t l e 3 ' Kr ig ing based on the Gaussian Semi−variogram ' ;
proc kr ige2d data=Sasuser .PGA p l o t s ( only)=

( pred ( f i l l =pred l i n e=pred obs=l i n e g r ad ) ) ;
r e s t o r e in=SemivarStoreGaussian ;
coo rd ina t e s xc=Longitude yc=Lat i tude ;
p r ed i c t var=PGA rad iu s = 3 ; *Radius makes i t l o c a l ;
SelModel : model s t o r e s e l e c t ;
g r i d x= 15 to 33 by 0 .1 y=−35 to −21 by 0 . 1 ;

run ;

****40%**** ;
proc s u r v e y s e l e c t data=Sasuser .PGA

method=s r s n=1664 /*Roughly 40% of 4161*/ out=Sasuser .PGA_40;
run ;
t i t l e 1 "Variogram f o r 40% of the data " ;
proc variogram data=sa su s e r .PGA_40 p lo t=pa i r s (mid ) ;

compute novariogram nhc=30;
coo rd ina t e s xc=Longitude yc=Lat i tude ;
var PGA;

run ;

****Gaussian Model **** ;
proc variogram data=sa su s e r .PGA_40;

s t o r e out=SemivarStoreGaussian_40 /
l a b e l ='40% of Data − PGA Exponent ia l WLS Fit ' ;

compute lagd=0.76 maxlag=15;
coo rd ina t e s xc=Longitude yc=Lat i tude ;

model form=gau c l / covb ;
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var PGA;
run ;
t i t l e 1 "Krig ing 40% of the data " ;
proc kr ige2d data=Sasuser .PGA_40 p l o t s ( only)=

( pred ( f i l l =pred l i n e=pred ) ) ; /* Pred i c t i on s */
r e s t o r e in=SemivarStoreGaussian_40 ;
coo rd ina t e s xc=Longitude yc=Lat i tude ;
p r ed i c t var=PGA rad iu s = 3 ; *Radius makes i t l o c a l ;
SelModel : model s t o r e s e l e c t ;
g r i d x= 15 to 33 by 0 .1 y=−35 to −21 by 0 . 1 ;

run ;
t i t l e 1 "Developing the variogram based on a l l the data " ;
data Sasuser . PGA_Basin ;

s e t Sasuser .PGA;
i f Lat i tude > −24 | Lat i tude < −30 then d e l e t e ;
i f Longitude > 32 | Longitude < 24 then d e l e t e ;

run ;
****Checking l a g s **** ;

proc variogram data=sa su s e r . PGA_Basin p l o t=pa i r s (mid ) ;
compute novariogram nhc=30;
coo rd ina t e s xc=Longitude yc=Lat i tude ;
var PGA;

run ;

proc variogram data=sa su s e r . PGA_Basin p l o t s ( only)=semivar ;
compute lagd=0.33 maxlag=15 ;
coo rd ina t e s xc=Longitude yc=Lat i tude ;
var PGA;

run ;

****Computing emp i r i c a l semivariogram with
95% con f idence l im i t s f o r c l a s s i c a l s emivar iance ;
proc variogram data=sa su s e r . PGA_Basin outv=sa su s e r . SCM_Basin ;

compute lagd=0.33 maxlag=15 c l robust ;
c oo rd ina t e s xc=Longitude yc=Lat i tude ;
var PGA;

run ;

proc variogram data=sa su s e r . PGA_Basin ;
s t o r e out=SemivarStoreGaussian_Basin /

l a b e l ='PGA_Basin Exponent ia l WLS Fit ' ;
compute lagd=0.33 maxlag=15;
coo rd ina t e s xc=Longitude yc=Lat i tude ;

model form=auto ( m l i s t=(exp , gau ,mat) nes t=1 to 2 ) ;
var PGA;

run ;

t i t l e 1 "Krig ing based on a l l the data " ;

proc kr ige2d data=Sasuser . PGA_Basin p l o t s ( only)=
( pred ( f i l l =pred l i n e=pred ) ) ;

r e s t o r e in=SemivarStoreGaussian_Basin ;
c oo rd ina t e s xc=Longitude yc=Lat i tude ;
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p r ed i c t var=PGA;
SelModel : model s t o r e s e l e c t ;
g r i d x= 24 to 32 by 0 .1 y=−30 to −24 by 0 . 1 ;

run ;

**** S e l e c t i n g 40% of the data **** ;
* t i t l e 1 "Randomly s e l e c t i n g 40% of the data " ;
proc s u r v e y s e l e c t data=Sasuser . PGA_Basin

method=s r s n=143 /*Roughly 40% of 357*/
out=Sasuser .PGA__Basin_40 ;

run ;

t i t l e 1 "Developing Variogram based on f o r 40% of the data " ;
proc variogram data=Sasuser .PGA__Basin_40 p lo t=pa i r s (mid ) ;

compute novariogram nhc=30;
coo rd ina t e s xc=Longitude yc=Lat i tude ;
var PGA;

run ;

****Gaussian Model **** ;
proc variogram data=Sasuser .PGA__Basin_40 ;

s t o r e out=SemivarStoreGaussian_Basin_40 /
l a b e l ='40% of Data − PGA Exponent ia l WLS Fit ' ;

compute lagd=0.33 maxlag=15;
coo rd ina t e s xc=Longitude yc=Lat i tude ;

model form=auto ( m l i s t=(exp , gau ,mat) nes t=1 to 2 ) ;
var PGA;

run ;
t i t l e 1 "Krig ing based on 40% of the data " ;
proc kr ige2d data=Sasuser .PGA__Basin_40 p l o t s ( only)=

( pred ( f i l l =pred l i n e=pred )
pred ( f i l l =se l i n e=se obs=l i n e g r ad ) ) ; /* Pred i c t i on s */

r e s t o r e in=SemivarStoreGaussian_Basin_40 ;
coo rd ina t e s xc=Longitude yc=Lat i tude ;
p r ed i c t var=PGA ;
SelModel : model s t o r e s e l e c t ;
g r i d x= 24 to 32 by 0 .1 y=−30 to −24 by 0 . 1 ;

run ;

ods g raph i c s o f f ;
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Abstract

In the current digital realm, modeling digital communication and wireless channels and investigating the
performance thereof is of high importance. A variety of models are available to model wireless channels and
some key characteristics thereof, however, some of the characteristics and performance measures associated with
these models have clumsy analytical expressions and are cumbersome to compute. In this study, the mixture
gamma (MG) distribution is considered as a approximating model for the signal-to-noise (SNR) ratio of some
speci�c composite wireless channels. A numerical simulation and performance analysis is carried out to identify
the accuracy and suitability of the proposed MG models as an approximation of the SNR distributions of the
Nakagami-lognormal (NL) and Generalised K (KG) channels, and the advantages of the use of the MG distri-
bution is highlighted.

Keywords: composite fading, gamma shadowing, Gaussian-Quadrature approximation, KG channel, lognormal
shadowing, moment matching method, multipath fading, Nakagami-lognormal channel, Nakagami-m channel,
Rayleigh channel, Rician channel, shadowing
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1 Introduction

1.1 Background

In wireless channels, a transmitted signal interacts in a complicated way as it propagates through the medium
between the transmitter and the receiver [2]. Fading, an important component of wireless communication, is de�ned
as deviation in the gradual loss in intensity of signal passing through certain propagation media. The propagation
media may include air, water, foliage and concrete, and describes all mediums through which the electromagnetic
wave travels [19].

Two main types of fading exist; multipath fading and shadowing. Multipath fading is used to describe the rapid
�uctuations around the mean level of the radio signal over short periods of time or short distances, and is the
collective e�ect of re�ection, di�raction, scattering and absorption of a radiated electromagnetic wave as illustrated
in Figure 1 [2, 5, 20]. Signal components may therefore follow multiple paths from the transmitter and arrive
at the receiver at varying times. The resulting signal may vary signi�cantly in amplitude and phase [5]. Waves
arriving in-phase reinforce each other and produce a stronger signal. Conversely, waves arriving out-of-phase cause
destructive interference and result in a fading signal [2]. Shadowing is caused by the general terrain, large buildings
and vegetation, and refers to the slow variations in the local mean of the received signal strength [2, 5].

Modelling composite fading channels, where multipath fading and shadowing are modelled jointly, is essential
for the performance analysis of wireless systems [2]. Multipath fading is usually modelled using either the Rayleigh,
Rician or Nakagami-m distribution, whereas shadowing is generally modelled using a lognormal distribution which
is supported by empirical measurements [21]. Consequently, a composite fading environment classically consists of
multipath fading superimposed on lognormal shadowing [5]. The Nakagami-lognormal (NL) channel is an example
of a composite fading channel which superimposes Nakagami-m multipath fading on lognormal shadowing [21]. In
statistical terms; this constitutes a type of compound probability density function (PDF) involving the Nakagami-m
and lognormal distribution used to model the multipath fading and shadowing jointly. However, lognormal-based
composite fading models do not lead to closed form expressions and are therefore not suitable to further analytical
derivations of performance metrics [2, 3]. To somewhat overcome these di�culties we use the result in [7] that the
gamma PDF can be used as an alternative to lognormal PDF, and so the gamma PDF is used to describe large scale
shadowing [21]. This leads to simpler composite models i.e. the K and Generalised-K (KG) distributions, where
the gamma distribution replaces the lognormal distribution in the Rayleigh-lognormal and NL channels respectively
[20].

In essence, a composite channel has a multipath component and a shadowing component, each of which have
speci�ed distribution that when modelled jointly result in a compound distribution which inherits characteristics
from its component distributions.

Table 1 summarises these common composite fading models in use and highlights the multipath and shadowing
components of each.

Composite Channel Multipath Component Shadowing Component

Suzuki Rayleigh Lognormal
NL Nakagami-m Lognormal
K Rayleigh Gamma
KG Nakagami-m Gamma

Table 1: Common models in use for composite fading in wireless channels [3]

Representations of the signal-to-noise ratio (SNR) distributions, in particular the SNR distributions of the NL
and KG channels, as a mixture gamma distribution gives an analytical and computational advantage due to the
availability and ease-of-use of the gamma distribution.
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Figure 1: Wireless signals re�ecting o� smooth surfaces, scattering on rough surfaces, di�racting around sharp
edges and transmitting through some objects [19]

1.2 Literature Review

1.2.1 Previous use of Mixture Gamma (MG) distribution

This section brie�y describes the broad use of MG in various �elds.

Target Recognition

High-resolution radar range pro�les are used for classi�cation of a target ships. The uncertainty of orientation to
the target along with the varying strength of the radar signal transmitted can be taken into account in the mixture
model environment. The adoption of this model has resulted in a marked improvement in long-range statistical
pro�ling of categories of ships [25].

Probabilistic Drought Classi�cation

The Standard Precipitation Index (SPI), is a mathematical tool developed to monitor and classify drought events.
A MG model allows a suitable distribution for the SPI to be determined whilst allowing for modeling uncertainties
in probabilistic drought classi�cation [13].

Site Rate Heterogeneity

The relative probability of substitution rates between nucleotide and amino acid sites is characteristic of molecular
sequence evolution and helps reveal the evolutionary dynamics of a particular gene [26]. Among-site variation
refers to the phenomenon that some sites within a sequence of a gene may be more likely to undergo substitutions
than other sites. The MG model can better describe among-site variation especially where there is a multimodal
distribution of rates [14].

Estimating Income Distributions

TheMG model with two and three components can be used to estimate income distributions. Usually, a parametric
approach is preferred to model the data as it allows certain inferences concerning inequality and poverty to be made.
However, this approach usually su�ers from a lack of �exibility. This shortcoming is mitigated by the use of the
MG model which capitalises on both its �exibility and the advantages of parametric estimation [8].

Introvascular Ultrasound Imaging

Medical ultrasound imaging uses the propagation of a pulse as a mechanism to form images of internal organs. The
pulse undergoes scattering which can cause delays and interference in the signal. The signal is thus a�ected by a
granular pattern of noise. Distributions have been proposed to model the characterisation of the noise and the MG
parameters and coe�cients are useful in describing the granular noise. A MG model can provide the probability
of each pixel belonging to a particular tissue class allowing the most probable edges between tissues to be detected
[22, 23].
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1.2.2 Multipath fading channels

Theory, simulation and measurement of wireless multipath fading channels [15]

The study aims to quantify the multipath propagation e�ects of both �xed and mobile wireless channels. Theory
focuses on the multipath e�ects on signal transmission and touches on the relevant metrics used to assess and describe
the fading of multipath channels. The objective was to, using MATLAB, practically demonstrate and measure the
e�ects multipath fading. The Matlab simulations were successfully implemented and illustrate a method of how a
signal fading e�ect can be measured.

1.2.3 Shadowing channels

Why is Shadow Fading Lognormal? [18]

In this article, an additive cluster-based model for shadowing is proposed. The article o�ers a more plausible
explanation for the choice of the lognormal distribution as a shadowing distribution when compared to traditional
approaches. It is demonstrated that under certain assumptions and conditions (i.e. the central limit theorem), that
shadowing will be approximately lognormally distributed. This conclusion is supported with measurement results.

1.2.4 Composite channels

Mobile Communication Systems in the Presence of Fading/Shadowing, Noise and Interference [6]

This article investigates the e�ects of composite fading. Important statistical metrics for the SNR ratio are studied
whilst the theory provides background used to analyse outage probability of composite fading channels. The
analysis is presented with numerically evaluated results which clearly show the value of the study in the framework
of composite fading networks.

Human body shadowing in cellular device-to-device channels [9]

Cellular devices are exposed to an increased risk of shadowing from the immediate surroundings and the device users
themselves. In this article, the shadowed κ − µ model is proposed, which can characterise a shadowed multipath
fading environment. The κ−µ model is shown to provide a good �t to empirical data, whilst highlighting interesting
characteristics of the received signal.

1.3 Objective and aims

1. Identify multipath fading and shadowing channels;

2. Explore the MG as an alternative representation of composite fading channels;

3. Consider the outage probability of investigated models in theoretically and with the MG representation;

4. Implement moment matching and Gaussian-Quadrature approximation to approximate composite fading chan-
nels with a MG representation;

5. Investigate Kullback-Leibler divergence and Mean Square Error as a measure of accuracy of an approximation.

1.4 Outline of study

The rest of this project is organised as follows: Section 2.1 and Section 2.2 brie�y describe the SNR distributions of
common multipath fading channels and shadowing distributions respectively. In Section 2.3, two composite fading
models are investigated. Section 3 introduces the MG wireless channel and provides a detailed description of how
the MG approximates the channels given in Section 2.3. The moment matching method used to approximate the
SNR distribution of the KG channel with a MG is implemented Section 4. In Section 5, a MG distribution is �tted
to the SNR PDFs of the two composite channels de�ned in Section 2.3 using Gaussian-Quadrature approximation.
In Section 6, outage probability is de�ned as a performance metric, and the outage probabilities of the theoreti-
cal and approximating MG channels are plotted. Thereafter, outage probabilities are plotted against the fading
and shadowing parameters of the composite channels. Finally some conlcusions are reached and future prospects
discussed in Section 7 and Section 8 respectively.
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2 Characteristics and Modelling of Channels

A fading channel is a statistical characterisation of the variation of the envelope of the received signal over time. The
statistical modelling of fading channels will depend on the environment in which the signal is being propagated [21].
In this section three common multipath fading channels, each of which are useful in particular environments, and
the related SNR distribution of each, will be reviewed. Shadowing channels will then be introduced and thereafter
two composite fading models will be investigated.

A good measure of the quality of a signal is the signal-to-noise ratio (SNR). This is the ratio of true signal
amplitude (average amplitude or peak height) to standard deviation of noise. The instantaneous SNR is denoted
γ where average SNR is denoted γ which is given by γ = E [γ] =

´∞
0
xfγ(x)dx where fγ(x) is the distribution of

the SNR of the channel under review [21]. We note that each channel possesses an expression for SNR, denoted γ,
which is a random variable with PDF fγ(x). We note that the severity of multipath fading or shadowing is directly
proportional to the spread of the SNR distribution of the channel under investigation.

2.1 Multipath Fading Channels

In this section three well-known models of multipath fading will be reviewed.

Rayleigh Channel

The Rayleigh channel is used to model worst-case scenario multipath fading with no dominant signal component [19,
21]. This means that there no direct signal path from transmitter to receiver or no dominant re�ected component.
This will occur when all the multipath components have approximately the same amplitude and hence why γ is
of interest. The Rayleigh channel is useful for modelling radio performance of a signal in built-up areas where the
signal is re�ected many times and may follow many non-dominant paths from transmitter to receiver [19]. The
SNR PDF of the Rayleigh channel is an exponential distribution with PDF given in [21] by

fγ(x) =
1

γ
exp

(
−x
γ

)
, x > 0 (1)

where γ > 0 is as de�ned above and is denoted γ ∼ EXP ( 1
γ ).
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Figure 2: The SNR PDF of the Rayleigh channel (1) with varying γ

Figure 2 shows that as γ increases, the PDF shifts to the right. This illustrates that as the average SNR of the
channel increases, the probability of attaining a larger instantaneous SNR over the channel increases, which is an
indication of an improvement in the instantaneous SNR. The Rayleigh channel does not have a fading parameter
as this channel's SNR distribution depends only on the average SNR of the channel.
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Rician (Nakagami-n) Channel

This model is relevant in an environment which has a dominant line-of-sight signal and may have many weaker
components, as in the case of indoor propagation or satellite channels [21]. The SNR distribution of the Rician
channel is known as the Nakagami-n distribution with PDF

fγ(x) =
(1 + n2)e−n

2

γ
exp

[
− (1 + n2)x

γ

]
I0

(
2n

√
(1 + n2)x

γ

)
, x > 0 (2)

for γ > 0 and where I0(.) is the zero order modi�ed Bessel function of the �rst kind as de�ned in Section 10.3 and
the Nakagami-n fading parameter is n ∈ [0,∞) which is inversely proportional to multipath fading severity [20]. n2

is the ratio between the power in the direct path to the power in other scattered paths [16]. The Rician channel
is a generalisation of the Rayleigh channel. Therefore, the Rayleigh channel can be used to describe environments
where there may or may not be a dominant line-of-sight signal.

Special Cases:

1. For n = 0, we have I0(0) = 1 (see Section 10.3) and so the the Nakagami-n SNR PDF (2) collapses to the
Rayleigh SNR PDF (1); and

2. For n =∞, the channel experiences no fading.
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Figure 3: The SNR PDF of the Rician channel (2) with arbitrary γ = 1 and varying n

Figure 3 shows that as n increases; the spread of the PDF (2) decreases and thus; fading decreases.
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Nakagami-m Channel

This model �ts indoor mobile and land mobile propagation well [19]. The SNR distribution of the Nakagami-m
channel is a gamma distribution with PDF given by

fγ(x) =
mmxm−1

γmΓ(m)
exp(−mx

γ
), x > 0 (3)

for γ > 0 and where Γ(.) is the gamma function as de�ned in Section 10.1 and Nakagami-m fading parameter is
m ∈ [ 1

2 ,∞) which is inversely proportional to multipath fading severity [20] and is denoted γ ∼ GAM(m, mγ ). The
Nakagami-m model is also a generalisation of the Rayleigh model in the case when the dominant component is zero
i.e. when m = 1.

The PDF of the SNR distribution of a Nakagami-m channel is sometimes used to approximate the PDF of the
SNR distribution of a Rician channel. Matching the �rst and second moments of the Rician and Nakagami PDFs
gives the relationship between m in the Nakagami-m channel and n in the Rician channel and is given in [16] as:

m = (1+n2)2

1+2n2 , n ≥ 0.

Special Cases:

1. For m = 1, Nakagami-m channel reduces to the Rayleigh channel; and

2. For m < 0.5, Nakagami-m channel experiences fading worse than that of the Rayleigh channel; and

3. For m =∞, the channel experiences no fading.
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Figure 4: The SNR PDF of the Nakagami-m channel (3) with arbitrary γ = 1 and varying m

Figure 4 shows that as m increases; the spread of the PDF (3) decreases and thus; fading decreases.
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2.2 Shadowing Channels

In this section two well known models of shadowing will be reviewed.

Lognormal Shadowing

There is empirical evidence supporting the statement that the lognormal channel is suitable in modelling large scale
shadowing [21]. The SNR distribution of the lognormal-shadowed channel is a lognormal distribution with PDF
given by

gγ(x) =
1√

2πλx
exp(− (lnx− u)2

2λ2
), x > 0 (4)

where µ ∈ R and λ > 0 are the mean and standard deviation of the lognormal distribution respectively. In this case
λ is the shadowing parameter, which is directly proportional to the spread of the SNR distribution of the lognormal
channel, which is directly proportional to shadowing severity.
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Figure 5: The SNR PDF of a lognormal-shadowed channel (4) with arbitrary µ = 1 and varying λ

Figure 5 shows that as λ increases; the spread of the PDF (4) increases and thus; shadowing increases.
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Gamma Shadowing

The use of the gamma distribution for the large scale shadowing leads to closed-form results in the composite fading
models. The SNR distribution of the gamma-shadowed channel is gamma distributed with PDF given by (3) for
γ > 0 and the shadowing parameter m > 0 which is inversely proportional to the the spread of the SNR distribution
of the gamma channel, which is directly proportional to shadowing fading severity and is denoted γ ∼ GAM(m, mγ ).
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Figure 6: The SNR PDF of a gamma-shadowed channel (3) with arbitrary γ = 1 and varying m

Figure 6 shows that as m increases; the spread of the PDF (3) decreases and thus; shadowing decreases.
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2.3 Composite Fading Models

A composite fading environment consists of multipath fading superimposed on a shadowing distribution [21]. This
environment necessitates the use of an instantaneous composite signal as it does not average out multipath fading
over a given distance [21]. Congested urban environments and slow moving pedestrians are good examples of such
an environment [21].

Nakagami-lognormal Channel

The SNR distribution of the NL channel follows a composite gamma-lognormal distribution with the following PDF:

hγ(x) =

∞̂

0

xm−1 exp[−mxρy ]

Γ(m)

(
m

ρy

)m exp[− (ln y−µ)2

2λ2 ]
√

2πλy
dy, x > 0 (5)

where ρ is the unfaded SNR (also known as SNR at the transmitter), µ ∈ R and λ > 0 are the mean and standard
deviation of the lognormal distribution respectively and m ∈ [ 1

2 ,∞) is the Nakagami-m fading parameter [4, 21].
We can write γ ∼ X|Y where X ∼ GAM(m, ρym ) and Y ∼ LN(µ, λ).

The severity of multipath-fading is inversely proportional to m and the severity of shadowing is directly propor-
tional to λ [4].
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Figure 7: The SNR PDF of the NL channel (5) with arbitrary λ = 1, ρ = 1 and varying m

Figure 7 shows that as m increases; the spread of the PDF (5) decreases and thus; multipath fading component
decreases implying that composite fading decreases.
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Figure 8: The SNR PDF of the NL channel (5) with arbitrary m = 2.7, ρ = 1 and varying λ

Figure 8 shows that as λ increases; the spread of the PDF (5) increases and thus; shadowing component increases
implying that composite fading increases.
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KG Channel

The SNR distribution of the KG channel follows a composite gamma-gamma distribution with the following PDF:

hγ(x) =
λmxm−1

Γ(m)Γ(k)

∞̂

0

e−tg(t)dt, x > 0 (6)

for γ > 0 where g(t) = tα−1e
−λx
t , λ = km

γ and α = k − m. In this model, k ∈ [ 1
2 ,∞) and m > 0 are the

fading parameters, representing multipath fading and shadowing e�ects respectively. We can write γ ∼ X|Y where
X ∼ GAM(m, mγ ) and Y ∼ GAM(k, kγ ). The severity of multipath-fading and shadowing is inversely proportional

to k and m respectively [4] which is illustrated in Figure 9 and Figure 10 respectively.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

h γ
(x

)

k=0.5

k=1

k=5

k=10

k=20

Figure 9: The SNR PDF of the KG Channel (6) with arbitrary γ = 1, m = 6 and varying k
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Figure 10: The SNR PDF of the KG Channel (6) with arbitrary γ = 1, k = 1.5 and varying m
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3 The MG Wireless Channel

Note that instantaneous SNR is denoted γ as in Section 2. The following result from [10] is crucial for developing
MG wireless channel representations, and is stated here without proof.

Result 1

Any function f(x) where x ∈ (0,∞) and lim
x→∞

f(x)→ 0 can be written as f(x) = lim
u→∞

Su(x),

where Su(x) = e−ux
∞∑
k=0

(uk)k

k! f( ku ) for u > 0.

Su(x) is then a linear combination of gamma PDFs.

Therefore the following MG distribution is proposed as an improvement to model the SNR of any wireless channel:

fγ(x) =

N∑
i=1

wifi(x) =

N∑
i=1

αix
βi−1 exp(−ζix), x > 0 (7)

where fi(x) =
ζ
βi
i xβi−1e−ζix

Γ(βi)
and wi = αiΓ(βi)

ζ
βi
i

, N is the number of components in the MG distribution, and αi, βi,

and ζi are the parameters of the i
th gamma component.

This result provides the rationale for using the MG distribution to represent any wireless SNR model [4]. MG
models can be used to generalise the models in Table 1 into a form with mathematically tractable expressions of
the PDF, cumulative density function (CDF), moment generating function (MGF) and moments and are therefore
also lead to convenient expressions of performance metrics [4]. MG models are useful in approximating composite
fading channels and can also be used to model most small scale fading channels whilst ensuring high accuracy by
adjusting the parameters of each component of the MG distribution [4]. Although the K and KG models have
closed form probability density functions, they include special functions which lead to mathematical and numerical
complications when deriving performance metrics [4], however, as will be investigated in Section 6, the MG can be
used to approximate these fading channels and thereafter, facilitate rapid calculation of performance metrics.

3.1 Statistical properties of the MG distribution

In this section important statistical properties of the MG distribution are derived.

Cumulative Distribution Function

Suppose γ is a random variable that follows a MG distribution with PDF (7). Then the CDF of γ is given by

Fγ(x) =

xˆ

0

fγ(s)ds =
N∑
i=1

αiζ
−βi
i γ(βi, ζix), x > 0 (8)

where αi > 0, βi > 0, ζi>0 and γ(βi, ζix) is the lower incomplete gamma function as de�ned in Section 10.2.

Proof. Consider, from (7)

Fγ(x) =

xˆ

0

fγ(s)ds

=

xˆ

0

N∑
i=1

αis
βi−1e−ζisds

=

N∑
i=1

αi

xˆ

0

sβi−1e−ζisds
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Now let ζis = t which has Jacobian ds
dt = ζ−1

i , therefore

Fγ(x) =

N∑
i=1

αi

xζiˆ

0

(
t

ζi

)
βi−1e−tζ−1

i dt

=

N∑
i=1

αi

xζiˆ

0

tβi−1e−tζ
−(βi−1)−1
i dt

=

N∑
i=1

αi

xζiˆ

0

tβi−1e−tζ−βii dt

=

N∑
i=1

αiζ
−βi
i

xζiˆ

0

tβi−1e−tdt

=

N∑
i=1

αiζ
−βi
i γ(βi, ζix)

by using Result 10.2 in Appendix, where αi > 0, βi > 0, ζi>0 and γ(βi, ζix) is the lower incomplete gamma function.
�

Moment Generating Function

Suppose γ is a random variable that follows a MG distribution with PDF (7). Then the MGF of γ is given by

Mγ(s) =

N∑
i=1

αiΓ(βi)

(s+ ζi)βi
(9)

where βi > 0, ζi>0 and s an integer.

Proof. Consider, from (7)

Mγ(s) = E[esx]

=

∞̂

0

esxfγ(x)dx

=

∞̂

0

esx
N∑
i=1

αix
βi−1e−ζixdx

=

N∑
i=1

αi

∞̂

0

esxxβi−1e−ζixdx

=

N∑
i=1

αi

∞̂

0

xβi−1e−x(ζi+s)dx

=

N∑
i=1

αi
Γ(βi)

(ζi + s)βi

where βi > 0, ζi>0 and s an integer, by using Result 10.1 in Appendix.
�
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Moments

Suppose γ is a random variable that follows a MG distribution with PDF (7). Then the moments of γ are

mγ(r) =

N∑
i=1

αiΓ(βi + r)ζ
−(βi+r)
i (10)

where βi > 0, ζi>0 and r an integer.

Proof. Consider, from (7)

mγ(r) = E[xr]

=

∞̂

0

xrfγ(x)dx

=

∞̂

0

xr
N∑
i=1

αix
βi−1e−ζixdx

=

N∑
i=1

αi

∞̂

0

xr+βi−1e−ζixdx

=

N∑
i=1

αiΓ(βi + r)ζ
−(βi+r)
i

where βi > 0, ζi>0 and r an integer, by using Result 10.1 in Appendix.
�

3.2 MG used to approximate the SNR distributions of composite channels

Gaussian-Quadrature sums will be used to approximate the integrals in the PDF of the SNR distribution of the NL
(5) and KG (6) channel and thereafter manipulated into the form of a MG channel. Speci�cally Gaussian-Hermite
and Gaussian-Laguerre quadrature sums will be used to approximate the NL and KG channels respectively. Once
the NL and KG channels are in the form of a MG channel, the original PDF and the accuracy of the approximation
can be investigated.

MG used to approximate the SNR distribution of the Nakagami-lognormal channel (5)

Using a substitution, (5) can be written as:

hγ(x) =
xm−1

√
πΓ(m)

(
m

p

)m ∞̂

−∞

e−t
2

g(t)dt, x > 0 (11)

where g(t) = e−m(
√

2λt+µ)e−
m
p e
−(
√

2λt+µ)x [4].
In this section it is shown how (11) can be written in the form of (7) using Gaussian-Quadrature approximation.
Equation (11) can be approximated by using a Gaussian-Hermite quadrature sum where wi and ti are the respective
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Gaussian-Hermite weights and nodes associated with the ith gamma component which can be found in the Appendix.

hγ(x) ≈
xm−1

√
πΓ(m)

(
m

p

)m n∑
i=1

wig (ti)

=

n∑
i=1

xm−1

√
πΓ(m)

(
m

p

)m
wig (ti)

=

n∑
i=1

xm−1

√
πΓ(m)

(
m

p

)m
wie
−m(

√
2λti+µ)e−

m
p e
−(
√

2λti+µ)x

=

n∑
i=1

xm−1

√
πΓ(m)

(
m

p

)m
wie
−m(

√
2λti+µ)e−ξix where ξi =

m

p
e−(
√

2λti+µ)

=

n∑
i=1

(
m

p

)m
wie
−m(

√
2λti+µ)

√
πΓ(m)

xm−1e−ξix

=

n∑
i=1

θix
m−1e−ξix ,where θi =

(
m

p

)m
wie
−m(

√
2λti+µ)

√
πΓ(m)

=

n∑
i=1

θix
βi−1e−ξix ,where βi = m .

To ensure fγ is a valid PDF, we �nd the normalising constant k:

hγ(x) = k

n∑
i=1

θix
m−1e−ξix;

and thus

1 =

∞̂

0

fγ(x)dx

= k

∞̂

0

n∑
i=1

θix
m−1e−ξixdx

= k
n∑
i=1

θi

∞̂

0

xm−1e−ξixdx

= k

n∑
i=1

θiΓ(m)ξ−mi .

Therefore

k =
1∑n

i=1 θiΓ(m)ξ−mi

which results in

hγ(x) =

N∑
i=1

αix
βi−1e−ξix (12)

where αi = θi∑N
j=1 θiΓ(m)ξ−mi

, θi =
(
m
p

)m
wie
−m(

√
2λti+µ)√

πΓ(m)
, ξi = −mp e

−(
√

2λti+µ) and βi = m.
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MG used to approximate the SNR distribution of the KG channel

In this section it is shown how Equation (6) can be written in the form of (7) using Gaussian-Quadrature approxi-
mation.

Equation (6) can be approximated by using a Gaussian-Laguerre quadrature sum where wi and ti are respective
the Gaussian-Laguerre weights and nodes associated with the ith gamma component which can be found in the
Appendix.

hγ(x) ≈
λmxm−1

Γ(m)Γ(k)

n∑
i=1

wig (ti)

=

n∑
i=1

λmxm−1

Γ(m)Γ(k)
wig (ti)

=

n∑
i=1

λmxm−1

Γ(m)Γ(k)
wit

α−1
i e

−λx
ti

=

n∑
i=1

λmwit
α−1
i

Γ(m)Γ(k)
xm−1e−ξix where ξi =

λ

ti

=

n∑
i=1

θix
m−1e−ξi where θi =

λmwit
α−1
i

Γ(m)Γ(k)

=

n∑
i=1

θix
βi−1e−ξi where βi = m .

To ensure fγ is a valid PDF, we �nd the normalising constant k which is derived as before:

hγ(x) = k

n∑
i=1

θix
m−1e−ξix;

and thus

1 =

∞̂

0

fγ(x)dx

= k

∞̂

0

n∑
i=1

θix
m−1e−ξixdx

= k

n∑
i=1

θi

∞̂

0

xm−1e−ξixdx

= k

n∑
i=1

θiΓ(m)ξ−mi

and thus

k =
1∑n

i=1 θiΓ(m)ξ−mi

which results in

hγ(x) =

N∑
i=1

αix
βi−1e−ξix (13)

where αi = θi∑N
j=1 θiΓ(m)ξ−mi

, θi =
λmwit

α−1
i

Γ(m)Γ(k) , ξi = λ
ti
and βi = m.
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3.3 Determining N in the MG distribution

N, the number of the components in the MG distribution, can be selected as the minimum value such that:

1. The �rst r moments of the two distributions match to the nearest integer value. This method is referred to
as moment-matching and is discussed and implemented in Section 4 [4]; or

2. Mean Square Error (MSE) = E
[
(fExt(x)− fApp(x))2

]
is minimum where fExt is the theoretical PDF and

fApp is the approximating PDF; or

3. Kullback-Leibler Divergence (DKL) =
´∞
−∞ fExt(x)log fExt(x)

fApp(x)dx is a minimum (See Section 10.5).

Note: In order to calculate the MSE and DKL we use the PDF values calculated in small increments to evaluate
the expressions for MSE and DKL.
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4 Moment Matching Method

The moment matching method described in Section 3.3 is implemented in this section. In this project we only
consider the KG channel.

The parameters in the MG distribution in (7) can be determined by matching the �rst r moments of the the
standard gamma distribution and SNR distribution of the KG channel of to the nearest integer value. The SNR
distribution of the NL and the KG channels will be approximated by a mixture gamma where N = 1 to demonstrate
the method.

4.1 KG Channel

The nth raw moment of the SNR distribution of the KG channel (6) is given in [2] as

m1
γ(n) =

Γ(k + n)Γ(m+ n)

Γ(k)Γ(m)

(
Ω0

km

)n
(14)

where Ω0 denotes the average local mean power [2].

If X ∼ GAM(k, θ) with PDF as in Appendix (10.4) then the nth raw moment of X is given by

m2
γ(n) =

Γ(k + n)θn

Γ(k)
. (15)

A gamma distribution can be generally be used e�ectively when matching the lower order moments [24]. The
SNR distribution of the KG channel will be dominated by one of the two gamma distributions that make up (6),
for large values of m or k [11].

It is therefore appropriate to use a single gamma distribution to approximate the KG channel in this case.
Matching di�erent pairs of moments generated by equation (14) and (15) yield di�erent shape and scale parameters,
denoted k and θ respectively, of the approximating gamma distribution.

 

1
• We have the original SNR distribution of the KG

channel

2
• For large values of m or k, this distribution will have a 

dominant gamma component 

3
• Thus we can approximate the original SNR distribution  

of the KG channel with a single gamma distribution 

4
• We use moment matching to estimate the parameters 

of the dominant gamma distribution 

Figure 11: The rationale behind the moment matching method
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We match the nth moments of (6) and (28) by using expressions (14) and (15).

For the 1st positive moments we equate:

m1
γ(1) = m2

γ(1)

Γ(k + 1)Γ(m+ 1)

Γ(m)Γ(k)

(
Ω0

mk

)
=

Γ(k + 1)θ

Γ(k)

kθ = Ω0.

For the 2nd positive moments we equate:

m1
γ(2) = m2

γ(2)

Γ(k + 2)Γ(m+ 2)

Γ(m)Γ(k)

(
Ω0

mk

)2

=
Γ(k + 2)θ2

Γ(k)

(k + 1)(m+ 1)

mk
Ω2

0 = k(k + 1)θ2.

For the 3rd positive moments we equate:

m1
γ(3) = m2

γ(3)

Γ(k + 3)Γ(m+ 3)

Γ(m)Γ(k)

(
Ω0

mk

)3

=
Γ(k + 2)θ3

Γ(k)

(k + 2)(m+ 2)

mk

(k + 1)(m+ 1)

mk
Ω3

0 = k(k + 1)(k + 2)θ3.

For the 1st negative moments we equate:

m1
γ(−1) = m2

γ(−1)

Γ(k − 1)Γ(m− 1)

Γ(m)Γ(k)

(
Ω0

mk

)−1

=
Γ(k − 1)θ−1

Γ(k)

mk

(m− 1)(k − 1)

(
mk

Ω0

)
=

1

(k − 1)θ

(k − 1)θ =
(m− 1)(k − 1)

mk
Ω0.

For the 2nd negative moments we equate:

m1
γ(−2) = m2

γ(−2)

Γ(k − 1)Γ(m− 1)

Γ(m)Γ(k)

(
Ω0

mk

)−2

=
Γ(k − 1)θ−2

Γ(k)

mk

(m− 2)(k − 2)

mk

(m− 1)(k − 1)

(
mk

Ω0

)−2

=
1

(k − 2)(k − 1)θ2

(k − 2)(k − 1)θ2 =
(m− 2)(k − 2)

mk

(m− 1)(k − 1)

mk
Ω2

0.

We then have for the positive moments:

kθ = Ω0 (16)

k(k + 1)θ2 = K1Ω2
0 (17)

k(k + 1)(k + 2)θ3 = K2K1Ω3
0 (18)
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and for the negative moments:

(k − 1)θ = K−1Ω0 (19)

k(k − 2)(k − 1)θ2 = K−1K−2Ω2
0 (20)

where Ks = (m−s)(k−s)
mk for s = 1, 2, 3... and Ω0 denotes the average local mean power.

The notation ki,j and θi,j refers to the shape and scale parameters of the approximating gamma distribution
that are obtained by matching the ith and jth moments generated by equation (14) and (15) respectively.

Matching the 1st and 2nd positive moments of (6) and (28):
We use (16) and (17) and solve

k1,2θ1,2 = Ω0 (21)

k(k + 1)(k + 2)θ3 = K2K1Ω3
0 (22)

simultaneously for k1,2 and θ1,2 and we obtain

k1,2 =
1

1−K1

θ1,2 = Ω0(K1 − 1).

Matching the 1st and 3rd positive moments of (6) and (28):
We use (16) and (18) and we solve

k1,3θ1,3 = Ω0 (23)

k1,3(k1,3 + 1)(k1,3 + 2)θ3
1,3 = K2K1Ω3

0 (24)

simultaneously for k1,3 and θ1,3 and we obtain

k1,3 =
4

(−3 +
√

9 + 8(K1K2 − 1)

θ1,3 =
(−3 +

√
9 + 8(K1K2 − 1)Ω0

4

Matching the 1st positive and 2nd negative moments of (6) and (28):
We use (16) and (20) and we solve

k1,−2θ1,−2 = Ω0 (25)

k1,−2(k1,−2 − 2)(k1,−2 − 1)θ2
1,−2 = K−1K−2Ω2

0 (26)

simultaneously for k1,−2 and θ1,−2 and we obtain

k1,−2 =
4

(3−
√

9 + 8(K−1K−2 − 1)

θ1,−2 =
(3−

√
9 + 8(K−1K−2 − 1)Ω0

4
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Thus, by matching these moments, expressions for parameters of a gamma distribution can be obtained which
accurately approximates the SNR PDF of the KG channel. To determine which speci�c combination of moments
to match, this project suggests that one �rst considers all possible combinations of moments and chooses the
combination resulting in the lowest MSE or DKL as de�ned in Section (3.3).
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Figure 12: SNR PDF of the KG channel (6) and approximating gamma distribution using the moment matching
method with positive moments

In Figure 12 the PDF of the SNR distribution of the KG channel with arbitrary parameters m = 40, k = 4
and Ω = 1 is plotted. Matching the 1st and 2nd positive moments of (6) and (28), results in k1,2 = 3.5556 and
θ1,2 = 0.28125. Matching the 1st and 3rd positive moments of (6) and (28) respectively, results in k1,3 = 3.50723
and θ1,3 = 0.28513. Matching the 2nd and 3rd positive moments of (6) and (28), results in k2,3 = 3.018883 and
θ2,3 = 0.3249684.
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Figure 13: SNR PDF of the KG channel (6) and approximating gamma distribution using the moment matching
method with positive and negative moments

In Figure 13 the KG channel with arbitrary parameters m = 40, k = 4 and Ω = 1 is plotted. Matching the 1st

positive and 1st negative moment of (6) and (28), results in k1,−1 = 3.787523 and θ1,−1 = 0.26875. Matching the
1st positive and 2nd negative moment of (6) and (28), results in k1,−2 = 3.787523 and θ1,−2 = 0.2640248. Matching
the 1st negative and 2nd negative moment of (6) and (28), results in k−1,−2 = 3.853659 and θ−1,−2 = 0.25625.
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5 Fitting a Mixture Gamma (MG) distribution to Composite Fading
Channels

In this section, theMG distribution is used to approximate the SNR distribution of the NL channel and KG channel
using Gaussian-Quadrature approximation. To determined the accuracy of this approximation, theMSE and DKL
is calculated for the varying number of components of the MG distribution (N).

5.1 Nakagami-lognormal Channel

A simulation was performed in R with arbitrary m = 2.7, µ = 2, λ = 1 and ρ = 1 to approximate (5) by (12) using
Gaussian-Hermite weights, wi, and nodes, ti, as tabulated in Appendix.
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Figure 14: SNR PDF for the NL channel (5) and approximating MG distributions with varying components (N)

Mean Square Error (MSE)
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3 4.542910e-05
4 1.584063e-05
5 5.875951e-06
6 2.301013e-06
7 9.421266e-07
8 4.000819e-07
9 7.899671e-08
10 7.899671e-08

MSE calculated between the SNR PDF of the NL channel (5) and the approximating MG distributions with
varying components (N).
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Kullback-Leibler divergence (DKL)
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3 2.788494e-02
4 9.022269e-03
5 3.935075e-03
6 1.744588e-03
7 7.820785e-04
8 3.644176e-04
9 7.744053e-05
10 7.744053e-05

DKL calculated between the SNR PDF of the NL channel (5) and the approximating MG distributions with
varying components (N).

Observation

The most noticeable improvement in the MG approximation occurs as the number of components goes from N = 3
to N = 4. Thereafter, a marginally smaller improvement in the approximation is noted as N increases. To decide on
the number of components necessary in the approximating MG distribution, N can be chosen such that the MSE
or DKL is below a speci�ed value.
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5.2 The KG Channel

A simulation was performed in R with arbitrary m = 2.5, k = 3, λ = km
γ ,γ = 7.5, α = k−m, β = m to approximate

(11) by (13) using wi and ti as tabulated in Appendix.
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Figure 15: SNR PDF of the KG channel (6) and approximating MG distributions with varying components (N)

Mean Square Error (MSE)
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8 3.827075e-07
10 1.434362e-07
12 6.321724e-08
14 3.128635e-08

MSE calculated between the SNR PDF of the KG channel (6) and the approximating MG distributions with
varying components (N).
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Kullback-Leibler divergence (DKL)
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3 6.073781e-03
5 7.054555e-04
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10 3.715264e-05
12 1.736801e-05
14 9.187473e-06

DKL calculated between the SNR PDF of the KG channel (6) and the approximating MG distributions with
varying components (N).

Observation

The most noticeable improvement in the MG approximation occurs, again, as the number of components goes from
N = 3 to N = 4. Thereafter, a marginally smaller improvement in the approximation is noted as N increases. To
decide on the number of components necessary in the approximating MG distribution, N can be chosen such that
the MSE or DKL is below a speci�ed value.
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6 Outage Probability of Composite Fading Channels and Approximat-
ing MG distribution

This section is concerned with calculating the outage probability of the theoretical and the approximating MG
SNR distributions. Firstly, the concept of outage probability is de�ned. Secondly, theoretical outage probabilities
are plotted against unfaded SNR (which is the SNR achieved in an fading-free environment) for varying threshold
SNRs where threshold SNR refers to the minimum SNR such that a signal can still be transmitted. Thirdly,
theoretical outage probabilities are plotted with the approximating MG representation outage probabilities for
varying threshold SNR values to illustrate the use of the MG channel for performance analysis.

Outage Probability

The outage probability is a performance metric of a wireless channel and is de�ned as the probability Pout, that is,
the probability that γ, the instantaneous SNR, falls below a speci�ed threshold, γth, resulting in a signal 'dropping'
[4].

Pout =

ˆ γth

0

fγ(s)ds = Fγ(γth) (27)

For the purposes of this project, we consider only the outage probability for the NL channel.

6.1 Nakagami-lognormal Channel

Theoretical outage probabilities

For varying threshold SNRs, the CDF of the SNR distribution of the NL channel is calculated with a given unfaded
SNR. This value is then plotted against the unfaded SNR.
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Figure 16: Outage probability of the SNR distribution of the NL channel with m = 2, µ = 1, λ = 2 for di�erent
threshold SNRs

Observations:

� As the unfaded SNR increases, the outage probability decreases since the quality of the signal is improving

� Given an unfaded SNR, if the threshold SNR increases, the outage probability of the channel increases since
it is more likely the SNR drops below a higher threshold SNR

� As the unfaded SNR becomes relatively large in comparison to the parameters chosen, the outage probabilities
of the channels with di�erent thresholds converge.
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Comparison of theoretical outage probability and MG representation, N = 5
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Figure 17: Outage probability of SNR distribution of the NL channel (m = 2, µ = 1, λ = 2) andMG approximation
with N = 5
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Figure 18: Outage probability of SNR distribution of the NL channel (m = 2, µ = 1, λ = 2) andMG approximation
with N = 8

Observations:

� The above two �gures compares the outage probability of the theoretical NL channel and the approximating
MG with N = 5 and N = 8 respectively;

� Accuracy of the approximation of outage probability of the NL channel increases as N increases; and

� The approximation performs badly at lower levels of unfaded SNR.
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Outage probability given a change in fading parameter (m)
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Figure 19: Outage probability of the SNR distribution of the NL channel against multipath-fading parameter m
(ρ = 5, µ = 2, λ = 0.25) for varying threshold SNRs

Observations:

� The multipath fading severity (i.e. to what degree the channel experiences fading) is inversely proportional
to the parameter m;

� The outage probabilities are higher the smaller m is and decreases the larger m becomes;

� Given multipath fading parameter m , if the threshold SNR increases, the outage probability of the channel
increases since it is more likely the SNR drops below a higher threshold SNR; and

� The outage probabilities begin to converge at larger values ofm, where multipath fading becomes insigni�cant.
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Outage probability given a change in shadowing parameter (λ)

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

λ

O
ut

ag
e 

P
ro

ba
bi

lit
y

Threshold SNR = 1

Threshold SNR = 3

Threshold SNR = 5

Threshold SNR = 7

Threshold SNR = 9

Figure 20: Outage probability of the SNR distribution of the NL channel against shadowing parameter λ (ρ =
1, µ = 20, m = 0.5) for varying threshold SNRs

Observations:

� When the shadowing parameter, λ, is less than the mean of the shadowing distribution , µ, the outage
probability increases with λ;

� The shadowing fading severity is directly proportional to the parameter λ;

� The outage probabilities are lower the smaller λ is; and increase the larger λ becomes;

� Given shadowing parameter λ, if the threshold SNR increases, the outage probability of the channel increases
since it is more likely the SNR drops below a higher threshold SNR; and

� The outage probabilities begin to converge at smaller values of λ, where shadowing becomes insigni�cant.
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7 Conclusion

In this study we investigated multipath and shadowing channels and provided the SNR PDFs of di�erent channels.
We then considered composite channels, where multipath fading and shadowing were modelled jointly.

The MG distribution to model the SNR of wireless was then introduced. It was shown that the SNR PDFs of
the NL and KG channels can be approximated as a MG, where parameters of the MG are obtained using Gaussian-
Quadrature approximation or by the matching of moments. As has been demonstrated, the MG representation
o�ers high accuracy, as measured by MSE and DKL, and o�ers a closed form expression which facilitates the
calculation of channel performance metrics.

The outage probability of the NL channel was studied and it was shown that the MG representation of this
channel can be used to approximate outage probabilities to any degree of accuracy by increasing the number of
components in the MG distribution.

8 Future work

Possible future areas of study may include the representation of other composite fading channels in the form of MG
and other performance metrics such as average channel capacity (ACC), average bit error rate (ABER) andsSymbol
error rate (SER) in MG representation. A possible extension would be to consider the representation of wireless
channels as mixtures of non-central gamma distributions. Multivariate fading extensions, including multivariate
Nakagami models, can also be explored.
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9 Appendix: Gaussian-Quadrature Approximation Weights and Nodes

9.1 Gaussian-Hermite weights (wi) and nodes (ti) for varying number of MG compo-
nents (N) [1]

Table 2: Gaussian-Hermite weights (wi) and nodes (ti) for N = 3 MG components
i ti wi

1 -1.224744871391589049099 0.295408975150919337883
2 0 1.181635900603677351532
3 1.224744871391589049099 0.295408975150919337883

Table 3: Gaussian-Hermite weights (wi) and nodes (ti) for N = 4 MG components
i ti wi

1 -1.650680123885784555883 0.08131283544724517714303
2 -0.5246476232752903178841 0.804914090005512836506
3 0.5246476232752903178841 0.804914090005512836506
4 1.650680123885784555883 0.081312835447245177143

Table 4: Gaussian-Hermite weights (wi) and nodes (ti) for N = 5 MG components
i ti wi

1 -2.020182870456085632929 0.01995324205904591320774
2 -0.9585724646138185071128 0.393619323152241159828
3 0 0.945308720482941881226
4 0.9585724646138185071128 0.3936193231522411598285
5 2.020182870456085632929 0.01995324205904591320774

Table 5: Gaussian-Hermite weights (wi) and nodes (ti) for N = 6 MG components
i ti wi

1 -2.350604973674492222834 0.0045300099055088456409
2 -1.335849074013696949715 0.1570673203228566439163
3 -0.4360774119276165086792 0.724629595224392524092
4 0.436077411927616508679 0.724629595224392524092
5 1.335849074013696949715 0.1570673203228566439163
6 2.350604973674492222834 0.00453000990550884564086

Table 6: Gaussian-Hermite weights (wi) and nodes (ti) for N = 7 MG components
i ti wi

1 -2.651961356835233492447 9.7178124509951915415E-4
2 -1.673551628767471445032 0.0545155828191270305922
3 -0.816287882858964663039 0.4256072526101278005203
4 0 0.810264617556807326765
5 0.8162878828589646630387 0.4256072526101278005203
6 1.673551628767471445032 0.0545155828191270305922
7 2.651961356835233492447 9.7178124509951915415E-4
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Table 7: Gaussian-Hermite weights (wi) and nodes (ti) for N = 8 MG components
i ti wi

1 -2.930637420257244019224 1.99604072211367619206E-4
2 -1.981656756695842925855 0.0170779830074134754562
3 -1.157193712446780194721 0.2078023258148918795433
4 -0.3811869902073221168547 0.66114701255824129103
5 0.3811869902073221168547 0.6611470125582412910304
6 1.157193712446780194721 0.207802325814891879543
7 1.981656756695842925855 0.0170779830074134754562
8 2.930637420257244019224 1.99604072211367619206E-4

Table 8: Gaussian-Hermite weights (wi) and nodes (ti) for N = 9 MG components
i ti wi

1 -3.19099320178152760723 3.96069772632643819046E-5
2 -2.266580584531843111802 0.00494362427553694721722
3 -1.468553289216667931667 0.088474527394376573288
4 -0.723551018752837573323 0.4326515590025557501998
5 0 0.720235215606050957124
6 0.7235510187528375733226 0.4326515590025557501998
7 1.468553289216667931667 0.088474527394376573288
8 2.266580584531843111802 0.00494362427553694721722
9 3.19099320178152760723 3.96069772632643819046E-5

Table 9: Gaussian-Hermite weights (wi) and nodes (ti) for N = 10 MG components
i ti wi

1 -3.436159118837737603327 7.6404328552326206292E-6
2 -2.532731674232789796409 0.001343645746781232692201
3 -1.756683649299881773451 0.0338743944554810631362
4 -1.036610829789513654177 0.2401386110823146864165
5 -0.342901327223704608789 0.610862633735325798784
6 0.3429013272237046087892 0.610862633735325798784
7 1.036610829789513654177 0.240138611082314686417
8 1.756683649299881773451 0.0338743944554810631362
9 2.532731674232789796409 0.001343645746781232692201
10 3.436159118837737603327 7.6404328552326206292E-6
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9.2 Gaussian-Laguerre weights (wi) and nodes (ti) for varying number of MG com-
ponents (N) [1]

Table 10: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 3 MG components
i ti wi

1 0.4157745567834790833115 0.71109300992917301545
2 2.294280360279041719822 0.278517733569240848801
3 6.289945082937479196866 0.010389256501586135749

Table 11: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 4 MG components
i ti wi

1 0.3225476896193923118 0.603154104341633601636
2 1.745761101158346575687 0.357418692437799686641
3 4.536620296921127983279 0.03888790851500538427244
4 9.395070912301133129234 5.39294705561327450104E-4

Table 12: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 5 MG components
i ti wi

1 0.2635603197181409102031 0.5217556105828086524759
2 1.413403059106516792218 0.39866681108317592745
3 3.596425771040722081223 0.07594244968170759539
4 7.085810005858837556922 0.0036117586799220484545
5 12.64080084427578265943 2.3369972385776227891E-5

Table 13: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 6 MG components
i ti wi

1 0.222846604179260689464 0.458964673949963593568
2 1.188932101672623030743 0.417000830772120994113
3 2.992736326059314077691 0.1133733820740449757387
4 5.77514356910451050184 0.01039919745314907489891
5 9.837467418382589917716 2.61017202814932059479E-4
6 15.98287398060170178255 8.98547906429621238825E-7

Table 14: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 7 MG components
i ti wi

1 0.1930436765603624138382 0.40931895170127390213
2 1.026664895339191950345 0.4218312778617197799293
3 2.567876744950746206908 0.1471263486575052783954
4 4.900353084526484568102 0.02063351446871693986571
5 8.182153444562860791082 0.00107401014328074552213
6 12.73418029179781375801 1.58654643485642012687E-5
7 19.39572786226254031171 3.17031547899558056227E-8
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Table 15: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 8 MG components
i ti wi

1 0.1702796323051009997889 0.3691885893416375299206
2 0.903701776799379912186 0.418786780814342956077
3 2.251086629866130689307 0.1757949866371718056997
4 4.266700170287658793649 0.0333434922612156515221
5 7.04590540239346569728 0.00279453623522567252494
6 10.75851601018099522406 9.07650877335821310424E-5
7 15.74067864127800457803 8.4857467162725315449E-7
8 22.8631317368892641057 1.048001174871510381615E-9

Table 16: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 9 MG components
i ti wi

1 0.152322227731808247428 0.336126421797962519673
2 0.807220022742255847741 0.4112139804239843873091
3 2.005135155619347122983 0.1992875253708855808606
4 3.783473973331232991675 0.0474605627656515992621
5 6.204956777876612606974 0.005599626610794583177
6 9.37298525168757620181 3.05249767093210566305E-4
7 13.4662369110920935711 6.59212302607535239226E-6
8 18.83359778899169661415 4.1107693303495484429E-8
9 26.37407189092737679614 3.29087403035070757647E-11

Table 17: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 10 MG components
i ti wi

1 0.1377934705404924308308 0.30844111576502014155
2 0.72945454950317049816 0.401119929155273551516
3 1.808342901740316048233 0.21806828761180942159
4 3.401433697854899514483 0.0620874560986777473929
5 5.552496140063803632418 0.009501516975181100554
6 8.330152746764496700239 7.5300838858753877546E-4
7 11.84378583790006556492 2.8259233495995655674E-5
8 16.27925783137810209953 4.24931398496268637259E-7
9 21.99658581198076195128 1.839564823979630780922E-9
10 29.92069701227389155991 9.91182721960900855838E-13

Table 18: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 11 MG components
i ti wi

1 0.125796442187967522676 0.284933212894200605056
2 0.665418255839227841678 0.389720889527849377938
3 1.647150545872169309587 0.23278183184899133394
4 3.091138143035254953302 0.0765644535461966864009
5 5.02928440157983321237 0.0143932827673506950919
6 7.509887863806616819411 0.00151888084648487306985
7 10.60595099954696778056 8.5131224354719225972E-5
8 14.43161375806418553532 2.29240387957450407858E-6
9 19.17885740321467864782 2.48635370276779587373E-8
10 25.21770933967756110409 7.71262693369132047028E-11
11 33.49719284717553727319 2.8837758683236238616E-14
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Table 19: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 12 MG components
i ti wi

1 0.115722117358020675267 0.26473137105544319035
2 0.611757484515130665392 0.377759275873137982024
3 1.512610269776418786782 0.2440820113198775642549
4 2.833751337743507228627 0.090449222211680930728
5 4.59922763941834848461 0.0201023811546340965227
6 6.844525453115177347754 0.00266397354186531588105
7 9.621316842456867043912 2.03231592662999392121E-4
8 13.00605499330634772035 8.3650558568197987453E-6
9 17.11685518746225572818 1.66849387654091026117E-7
10 22.15109037939700566992 1.34239103051500414552E-9
11 28.48796725098400031257 3.06160163503502078142E-12
12 37.09912104446692033664 8.1480774674262416825E-16

Table 20: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 13 MG components
i ti wi

1 0.1071423884722523106485 0.2471887084299626213462
2 0.566131899040401853406 0.3656888229005219453067
3 1.398564336451019717928 0.2525624200576585023568
4 2.61659710840641129808 0.103470758024183705114
5 4.23884592901703327937 0.0264327544155616157782
6 6.292256271140073780394 0.00422039604025475276555
7 8.81500194118697804733 4.11881770472734774892E-4
8 11.86140358881124257622 2.35154739815532386883E-5
9 15.51076203770375278185 7.317311620249099104E-7
10 19.8846356638802283332 1.10884162570398067979E-8
11 25.1852638646777580843 6.7708266922058988406E-11
12 31.80038630194726837137 1.15997995990507606095E-13
13 40.7230086692655795659 2.24509320389275841599E-17

Table 21: Gaussian-Laguerre weights (wi) and nodes (ti) for N = 14 MG components
i ti wi

1 0.099747507032597574574 0.23181557714486497784
2 0.526857648851902896405 0.3537846915975431518
3 1.300629121251496481708 0.25873461024542808599
4 2.43080107873084463617 0.115482893556923210087
5 3.932102822293218882131 0.033192092159337360039
6 5.825536218301708419339 0.0061928694370066102168
7 8.14024014156514503006 7.398903778673859424E-4
8 10.91649950736601884081 5.4907194668416983786E-5
9 14.21080501116128868311 2.40958576408537749676E-6
10 18.10489222021809841255 5.8015439816764951809E-8
11 22.72338162826962482323 6.81931469248497411962E-10
12 28.27298172324820569542 3.22120775189484793981E-12
13 35.14944366059242658286 4.2213524405165873516E-15
14 44.36608171111742304163 6.0523750222891888084E-19
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10 Results

10.1 Gamma function

The gamma function given by Equation 6.1.1 in [1] is

xˆ

0

xt−1e−xsdx =
Γ(t)

st
∀s, t such that R(t) > 0

where R(t) denotes the real part of t.

10.2 Lower incomplete gamma function

The lower incomplete gamma function given by Equation 6.5.2 in [1] is

γ(a, x) ≡
xˆ

0

tα−1e−tdt ∀a such that R(a) > 0

where R(t) denotes the real part of t.

10.3 Zero-order modi�ed Bessel function of the �rst kind

The zero-order modi�ed Bessel function of the 1st kind is given by

I0(x) ≡
∞∑
m=0

1

m!Γ(m+ 1)

(x
2

)2m

whereΓ(.) is the gamma function.

as given by Equation 9.6.10 in [1].
Note that I0(0) ≡ 1.

10.4 Gamma distribution

If X ∼ GAM(k, θ) then the PDF is de�ned in [17] as

f(x) =
1

Γ(α)θk
xk−1e−

x
θ for x > 0 (28)

where k > 0 and θ > 0 are the shape and scale parameters respectively.

10.5 Kullback-Leibler divergence (DKL)

DKL(fExt ‖ fApp)=
´∞
−∞ fExt(x)log fExt(x)

fApp(x)dx is also known as relative entropy. It is a non-symmetric measure

of the di�erence between the two probability distributions, fExt and fApp, which denotes the exact density and
approximate density respectively. It measures the information lost when fApp is used to approximate fExt [12].

Properties:

1. DKL(fExt ‖ fApp) ≥ 0 with equality ⇐⇒ fExt = fApp almost everywhere [12].

2. DKL(fExt ‖ fApp) 6= DKL(fApp ‖ fExt) (not symmetric) [12].
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11 Code

11.1 Moment matching (only positive moments)

a = 0.05

b = 3

i = 0

omega = 1

#change

m =40#can be any number >= 0.5

k= 4

lambda = k*m

alpha_const = k-m

#SNR Distribution of the Kg Channel

matrix1 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

integrand <- function(t){((x^(m-1)*lambda**(m))/(gamma(m)*gamma(k))*

(exp(-t))*(t**(alpha_const-1))*exp(-(lambda*x)/t))}

It <- (integrate(integrand, lower = 0, upper = Inf))

f_x <- It$value

matrix1[i,1] <- x

matrix1[i,2]<-f_x

}

vec = matrix1[,2]

df = data.frame(matrix1)

#Gamma approximation if 1st positive and 3rd positive moments matched

K1 = ((m+1)*(k+1))/(m*k)

K2 = ((m+2)*(k+2))/(m*k)

gamma_k = 4/(-3+sqrt(9+8*(K1*K2-1)))

gamma_theta = ((-3+sqrt(9+8*(K2*K1-1)))*omega)/4

matrix2 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1 matrix2[i,1] <- x

matrix2[i,2]<- dgamma(x, shape=gamma_k, scale = gamma_theta, log = FALSE)

}

#Gamma approximation if 1st positive and 2nd positive moments matched

K1 = ((m+1)*(k+1))/(m*k)

K2 = ((m+2)*(k+2))/(m*k)

gamma_k = 1/(K1-1)

gamma_theta = omega*(K1-1)
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matrix3 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix3[i,1] <- x

matrix3[i,2]<- dgamma(x, shape=gamma_k, scale = gamma_theta, log = FALSE)

}

#Gamma Approximation if 2nd positive and 3rd positive moments matched

K1 = ((m+1)*(k+1))/(m*k)

K2 = ((m+2)*(k+2))/(m*k)

gamma_k = ((-((K2**2)/K1)+4)+sqrt(((K2**2)/K1)**2+(8*((K2**2)/K1))))/2*(K2**2/K1-1)

gamma_theta = omega*sqrt(K1/(gamma_k**2+gamma_k))

matrix4 <- matrix(data=NA, nrow = 799, ncol=2)

for

(x in seq(from=a, to=b, by=0.05))

{ i = i+1 matrix4[i,1] <- x

matrix4[i,2]<- dgamma(x, shape=gamma_k, scale = gamma_theta, log = FALSE)

}

#Plot Graph

plot(data.frame(matrix1),type="l", xlab="x", ylab="f(x)", ylim=c(0,1), lwd=2.5)

lines(data.frame(matrix2),lty=5,col="red",lwd=1.5)

lines(data.frame(matrix3),lty=5,col="green",lwd=1.5)

lines(data.frame(matrix4),lty=5,col="blue",lwd=1.5)

legend(

1.5,0.8,

c(expression(

'K'[G]*" Model "),

expression(1^{st}~ 'and'~ 2^{nd}~'Moments Matched'),

expression(1^{st}~ 'and'~ 3^{rd}~'Moments Matched'),

expression(2^{nd}~ 'and'~ 3^{rd}~'Moments Matched')),

lty=c(1,2,3,4), lwd=c(2.5,2.5,2.5,2.5),

col=c("black","red","green", "blue"),bty="n")
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11.2 Moment matching (positive and negative moments)

a = 0.05

b = 3

i = 0

omega = 1

#change

m =40#can be any number >= 0.5

k= 4

lambda = k*m

alpha_const = k-m

matrix1 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

integrand <- function(t){((x^(m-1)*lambda**(m))/(gamma(m)*gamma(k))*

(exp(-t))*(t**(alpha_const-1))*exp(-(lambda*x)/t))}

It <- (integrate(integrand, lower = 0, upper = Inf))

f_x <- It$value

matrix1[i,1] <- x

matrix1[i,2]<-f_x

}

vec = matrix1[,2]

df = data.frame(matrix1)

#Gamma approximation if 1st positive and 1st negative moments matched

K_1 = ((m-1)*(k-1))/(m*k)

gamma_k = 1/(1-K_1)

gamma_theta = (1-K_1)*omega print(gamma_k)

matrix2 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1 matrix2[i,1] <- x

matrix2[i,2]<- dgamma(x, shape=gamma_k, scale = gamma_theta, log = FALSE)

}
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#Gamma approximation if 1st positive and 2nd negative moments matched

K_1 = ((m-1)*(k-1))/(m*k)

K_2 = ((m-2)*(k-2))/(m*k)

gamma_k = 4/(3-sqrt(9+8*(K_1*K_2-1)))

gamma_theta =((3-sqrt(9+8*(K_1*K_2-1)))*omega)/4

matrix3 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix3[i,1] <- x

matrix3[i,2]<- dgamma(x, shape=gamma_k, scale = gamma_theta, log = FALSE)

}

#Gamma approximation if 1st negative and 2nd negative moments matched

K_1 = ((m-1)*(k-1))/(m*k)

K_2 = ((m-2)*(k-2))/(m*k)

gamma_theta =(1/m+1/k-3/(m*k))*omega

gamma_k = (K_1*omega/gamma_theta)+1

matrix4 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{ i = i+1 matrix4[i,1] <- x

matrix4[i,2]<- dgamma(x, shape=gamma_k, scale = gamma_theta, log = FALSE)

}

#Plot Graph

plot(data.frame(matrix1),type="l", xlab="x", ylab="f(x)", ylim=c(0,1), lwd=2.5)

lines(data.frame(matrix2),lty=5,col="red",lwd=1.5)

lines(data.frame(matrix3),lty=5,col="green",lwd=1.5)

lines(data.frame(matrix4),lty=5,col="blue",lwd=1.5)

legend( 1.5,0.8,

c(expression('K'[G]*" Model "),

expression(1^{st}~ 'Positive and'~ 1^{st}~'Negative Moments Matched'),

expression(1^{st}~ 'Positive and'~ 2^{nd}~'Negative Moments Matched'),

expression(1^{st}~ 'Negative and'~ 2^{nd}~'Negative Moments Matched')),

lty=c(1,2,3,4), lwd=c(2.5,2.5,2.5,2.5),

col=c("black","red","green", "blue"),bty="n")
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11.3 Nakagami-lognormal channel SNR distribution withMG �t for N = 3 and N = 10

a = 0.05

b = 39.95

i = 0

#change m = 2.7 #can be any number >= 0.5

mu= 2

lambda = 1

rho = 1

beta=m

matrix1 <- matrix(data=NA, nrow = 799, ncol=3)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

integrand <- function(y){((x^(m-1)*exp(-(m*x)/(rho*y)))/gamma(m))*(m/(rho*y))^m*

(exp(-((log(y, base = exp(1)))-mu)^2/(2*lambda^2)))/(sqrt(2*pi)*lambda*y)}

It <- (integrate(integrand, lower = 0, upper = Inf))

f_x <- It$value

matrix1[i,1] <- x

matrix1[i,2]<-f_x

matrix1[i,3]<-0.05*matrix1[i,2]

}

matrix1cdf <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b = 39.95

i = 0

matrix1cdf[1,2]<-matrix1[1,3]

for(x in seq(from=a, to=b, by=0.05))

{

i=i+1

matrix1cdf[i,1]<- x

matrix1cdf[i+1,2]<- matrix1cdf[i,2]+matrix1[i+1,3]

}

matrix1 <- matrix1[,-3] matrix1 <- matrix1[,-3]

library(zipfR)

##############################################

N=3

t1 = -1.22474487139

t2= 0

t3= 1.22474487139

t = c(t1,t2,t3)

w1 = 0.295408975151

w2 = 1.1816359006

w3 = 0.295408975151

w = c(w1,w2,w3)
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theta <- matrix(data=NA, nrow = N, ncol=1)

xi <- matrix(data=NA, nrow = N, ncol=1)

alpha <- matrix(data=NA, nrow = N, ncol=1)

for(i in seq(from=1, to=N))

{

theta[i,1] <- ((m/rho)**(m))*(w[i]*exp(-m*(sqrt(2)*lambda*t[i]+mu)))/(sqrt(pi)*gamma(m))

}

for(i in seq(from=1, to=N))

{

xi[i,1] = (m/rho)*exp(-(sqrt(2)*lambda*t[i]+mu))

}

for(i in seq(from=1, to=N))

{

alpha[i,1] = theta[i]/((theta[1]*gamma(beta)*xi[1]**(-beta))+

(theta[2]*gamma(beta)*xi[2]**(-beta))+

(theta[3]*gamma(beta)*xi[3]**(-beta)))

}

matrix3 <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b = 39.95

i = 0

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix3[i,1] <- x

matrix3[i,2]<- alpha[1]*(x**(beta-1))*exp(-xi[1]*x)+

alpha[2]*(x**(beta-1))*exp(-xi[2]*x)+

alpha[3]*(x**(beta-1))*exp(-xi[3]*x)

}

matrix3 <- na.omit(matrix3)

matrix3cdf <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b = 39.95

i = 0

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix3cdf[i,1] <- x

matrix3cdf[i,2] <- alpha[1]*xi[1]**(-beta)*

Igamma(beta, xi[1]*x, lower=TRUE, log=FALSE)+

alpha[2]*xi[2]**(-beta)*Igamma(beta, xi[2]*x, lower=TRUE, log=FALSE)+

alpha[3]*xi[3]**(-beta)*Igamma(beta, xi[3]*x, lower=TRUE, log=FALSE)

}
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##############################################

N=10

t1 = -3.43615911884

t2= -2.53273167423

t3= -1.7566836493

t4 = -1.03661082979

t5 = -0.342901327224

t6= 0.342901327224

t7= 1.03661082979

t8= 1.7566836493

t9= 2.53273167423

t10= 3.43615911884

t = c(t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)

w1 = 7.64043285523E-006

w2 = 0.00134364574678

w3 = 0.0338743944555

w4 = 0.240138611082

w5= 0.610862633735

w6= 0.610862633735

w7 = 0.240138611082

w8 = 0.0338743944555

w9= 0.00134364574678

w10= 7.64043285523E-006

w = c(w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)

theta <- matrix(data=NA, nrow = N, ncol=1)

xi <- matrix(data=NA, nrow = N, ncol=1)

alpha <- matrix(data=NA, nrow = N, ncol=1)

for(i in seq(from=1, to=N))

{

theta[i,1] <- ((m/rho)**(m))*(w[i]*exp(-m*(sqrt(2)*lambda*t[i]+mu)))/(sqrt(pi)*gamma(m))

}

for(i in seq(from=1, to=N))

{

xi[i,1] = (m/rho)*exp(-(sqrt(2)*lambda*t[i]+mu))

}

for(i in seq(from=1, to=N))

{

alpha[i,1] = theta[i]/((theta[1]*gamma(beta)*xi[1]**(-beta))+

(theta[2]*gamma(beta)*xi[2]**(-beta))+

(theta[3]*gamma(beta)*xi[3]**(-beta))+

(theta[4]*gamma(beta)*xi[4]**(-beta))+

(theta[5]*gamma(beta)*xi[5]**(-beta))+

(theta[6]*gamma(beta)*xi[6]**(-beta))+

(theta[7]*gamma(beta)*xi[7]**(-beta))+

(theta[8]*gamma(beta)*xi[8]**(-beta))+

(theta[9]*gamma(beta)*xi[9]**(-beta))+

(theta[10]*gamma(beta)*xi[10]**(-beta)))

}

a = 0.05

b = 39.95
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i = 0

matrix10 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix10[i,1] <- x

matrix10[i,2]<- alpha[1]*(x**(beta-1))*exp(-xi[1]*x)+

alpha[2]*(x**(beta-1))*exp(-xi[2]*x) +

alpha[3]*(x**(beta-1))*exp(-xi[3]*x) +

alpha[4]*(x**(beta-1))*exp(-xi[4]*x) +

alpha[5]*(x**(beta-1))*exp(-xi[5]*x) +

alpha[6]*(x**(beta-1))*exp(-xi[6]*x) +

alpha[7]*(x**(beta-1))*exp(-xi[7]*x) +

alpha[8]*(x**(beta-1))*exp(-xi[8]*x) +

alpha[9]*(x**(beta-1))*exp(-xi[9]*x)+

alpha[10]*(x**(beta-1))*exp(-xi[10]*x)

}

matrix10 <- na.omit(matrix10)

matrix10cdf <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b = 39.95

i = 0

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix10cdf[i,1] <- x

matrix10cdf[i,2] <- alpha[1]*xi[1]**(-beta)*Igamma(beta, xi[1]*x, lower=TRUE, log=FALSE)+

alpha[2]*xi[2]**(-beta)*Igamma(beta, xi[2]*x, lower=TRUE, log=FALSE)+

alpha[3]*xi[3]**(-beta)*Igamma(beta, xi[3]*x, lower=TRUE, log=FALSE)+

alpha[4]*xi[4]**(-beta)*Igamma(beta, xi[4]*x, lower=TRUE, log=FALSE)+

alpha[5]*xi[5]**(-beta)*Igamma(beta, xi[5]*x, lower=TRUE, log=FALSE)+

alpha[6]*xi[6]**(-beta)*Igamma(beta, xi[6]*x, lower=TRUE, log=FALSE)+

alpha[7]*xi[7]**(-beta)*Igamma(beta, xi[7]*x, lower=TRUE, log=FALSE)+

alpha[8]*xi[8]**(-beta)*Igamma(beta, xi[8]*x, lower=TRUE, log=FALSE)+

alpha[9]*xi[9]**(-beta)*Igamma(beta, xi[9]*x, lower=TRUE, log=FALSE)+

alpha[10]*xi[10]**(-beta)*Igamma(beta, xi[10]*x, lower=TRUE, log=FALSE)

}
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#Plot Graph (Approximation and Fit PDF)

par(mar=c(4,4.5,2,1))

plot(data.frame(matrix1), type="l", xlab="x", ylab=expression('h'[gamma]*"(x)"),

ylim=c(0,0.13),lwd=2.5)

lines(data.frame(matrix3),lty=2,col="purple",lwd=1.5)

lines(data.frame(matrix4),lty=2,col="blue",lwd=1.5)

lines(data.frame(matrix6),lty=4,col="green",lwd=1.5)

lines(data.frame(matrix10),lty=3,col="red",lwd=3.5)

legend(8.5,0.125,

c("SNR Distribution of the NL Channel",

"MG Distribution with N=3",

"MG Distribution with N=4",

"MG Distribution with N=6",

"MG Distribution with N=10"),lty=c(1,5,2,4,3),lwd=c(1.5,1.5,1.5,1.5,2.5),

col=c("black","purple","blue","green", "red"),

bty="n")

#Plot Graph (Approximation and Fit CDF)

par(mar=c(4,4.5,2,1))

plot(data.frame(matrix1cdf),type="l", xlab="x", ylab=expression('H'[gamma]*"(x)"),

ylim=c(0,1),lwd=2.5 )

lines(data.frame(matrix3cdf),lty=2,col="purple",lwd=1.5)

lines(data.frame(matrix4cdf),lty=2,col="blue",lwd=1.5)

lines(data.frame(matrix6cdf),lty=4,col="green",lwd=1.5)

lines(data.frame(matrix10cdf),lty=3,col="red",lwd=3.5)

legend(20,0.6,

c("SNR CDF of the NL Channel",

"MG CDF with N=3",

"MG CDF with N=4",

"MG CDF with N=6",

"MG CDF with N=10"),

lty=c(1,5,2,4,3), lwd=c(1.5,1.5,1.5,1.5,2.5),

col=c("black","purple","blue","green", "red"),

bty="n")
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11.4 KG channel SNR distribution with MG �t for N = 3 and N = 14

a = 0.05

b = 39.95

i = 0

#change

m = 2.5 #can be any number >= 0.5

k= 3

averageSNR = 7.5

lambda = k*m/averageSNR

alpha_const = k-m beta = m

matrix1 <- matrix(data=NA, nrow = 799, ncol=3)

for(x in seq(from=a, to=b, by=0.05)) shape

{

i = i+1

integrand <- function(t){((x^(m-1)*lambda**(m))/(gamma(m)*gamma(k))*

(exp(-t))*(t**(alpha_const-1))*exp(-(lambda*x)/t))}

It <- (integrate(integrand, lower = 0, upper = Inf))

f_x <- It$value

matrix1[i,1] <- x

matrix1[i,2]<-f_x

matrix1[i,3]<-0.05*matrix1[i,2]

}

vec = matrix1[,2]

df = data.frame(matrix1)

matrix1 <- na.omit(matrix1)

matrix1cdf <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b = 39.95

i = 0

matrix1cdf[1,2]<-matrix1[1,3]

for(x in seq(from=a, to=b, by=0.05))

{

i=i+1

matrix1cdf[i,1]<- x

matrix1cdf[i+1,2]<- matrix1cdf[i,2]+matrix1[i+1,3]

}

library(zipfR)

##############################################

N=3

t1 = 0.4157745567834790833115

t2= 2.294280360279041719822

t3= 6.289945082937479196866

t = c(t1,t2,t3)

w1 = 0.71109300992917301545

w2 = 0.278517733569240848801

w3 = 0.010389256501586135749

w = c(w1,w2,w3)

theta <- matrix(data=NA, nrow = N, ncol=1)

xi <- matrix(data=NA, nrow = N, ncol=1)

alpha <- matrix(data=NA, nrow = N, ncol=1)
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for(i in seq(from=1, to=N))

{

theta[i,1] <- ((lambda)**(m))*(w[i]*t[i]**(alpha_const-1))/(gamma(m)*gamma(k))

}

for(i in seq(from=1, to=N))

{

xi[i,1] = lambda/t[i]

}

for(i in seq(from=1, to=N))

{

alpha[i,1] = theta[i]/((theta[1]*gamma(beta)*xi[1]**(-beta))+

(theta[2]*gamma(beta)*xi[2]**(-beta))+

(theta[3]*gamma(beta)*xi[3]**(-beta)))

}

a = 0.05

b = 39.95

i = 0

matrix3 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{ i = i+1

matrix3[i,1] <- x

matrix3[i,2]<- alpha[1]*(x**(beta-1))*exp(-xi[1]*x)+

alpha[2]*(x**(beta-1))*exp(-xi[2]*x) +

alpha[3]*(x**(beta-1))*exp(-xi[3]*x)

}

matrix3 <- na.omit(matrix3)

matrix3cdf <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b = 39.95

i = 0

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix3cdf[i,1] <- x

matrix3cdf[i,2] <- alpha[1]*xi[1]**(-beta)*Igamma(beta, xi[1]*x, lower=TRUE, log=FALSE)+

alpha[2]*xi[2]**(-beta)*Igamma(beta, xi[2]*x, lower=TRUE, log=FALSE)+

alpha[3]*xi[3]**(-beta)*Igamma(beta, xi[3]*x, lower=TRUE, log=FALSE)

}
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##############################################

N= 14

t1 = 0.099747507032597574574

t2= 0.526857648851902896405

t3= 1.300629121251496481708

t4= 2.43080107873084463617

t5= 3.932102822293218882131

t6= 5.825536218301708419339

t7= 8.14024014156514503006

t8= 10.91649950736601884081

t9= 14.21080501116128868311

t10= 18.10489222021809841255

t11= 22.72338162826962482323

t12= 28.27298172324820569542

t13= 35.14944366059242658286

t14= 44.36608171111742304163

t = c(t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14)

w1 = 0.23181557714486497784

w2 = 0.3537846915975431518

w3 = 0.25873461024542808599

w4= 0.115482893556923210087

w5= 0.033192092159337360039

w6= 0.0061928694370066102168

w7= 7.398903778673859424E-4

w8= 5.4907194668416983786E-5

w9= 2.40958576408537749676E-6

w10= 5.8015439816764951809E-8

w11= 6.81931469248497411962E-10

w12= 3.22120775189484793981E-12

w13= 4.2213524405165873516E-15

w14= 6.0523750222891888084E-19

w = c(w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14)

theta <- matrix(data=NA, nrow = N, ncol=1)

xi <- matrix(data=NA, nrow = N, ncol=1)

alpha <- matrix(data=NA, nrow = N, ncol=1)

for(i in seq(from=1, to=N))

{

theta[i,1] <- ((lambda)**(m))*(w[i]*t[i]**(alpha_const-1))/(gamma(m)*gamma(k))

}

for(i in seq(from=1, to=N))

{

xi[i,1] = lambda/t[i]

}
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for(i in seq(from=1, to=N))

{

alpha[i,1] = theta[i]/((theta[1]*gamma(beta)*xi[1]**(-beta))+

(theta[2]*gamma(beta)*xi[2]**(-beta))+

(theta[3]*gamma(beta)*xi[3]**(-beta))+

(theta[4]*gamma(beta)*xi[4]**(-beta))+

(theta[5]*gamma(beta)*xi[5]**(-beta))+

(theta[6]*gamma(beta)*xi[6]**(-beta))+

(theta[7]*gamma(beta)*xi[7]**(-beta))+

(theta[8]*gamma(beta)*xi[8]**(-beta))+

(theta[9]*gamma(beta)*xi[9]**(-beta))+

(theta[10]*gamma(beta)*xi[10]**(-beta))+

(theta[11]*gamma(beta)*xi[11]**(-beta))+

(theta[12]*gamma(beta)*xi[12]**(-beta))+

(theta[13]*gamma(beta)*xi[13]**(-beta))+

(theta[14]*gamma(beta)*xi[14]**(-beta)))

}

a = 0.05

b = 39.95

i = 0

matrix14 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix14[i,1] <- x

matrix14[i,2]<- alpha[1]*(x**(beta-1))*exp(-xi[1]*x)+

alpha[2]*(x**(beta-1))*exp(-xi[2]*x) +

alpha[3]*(x**(beta-1))*exp(-xi[3]*x) +

alpha[4]*(x**(beta-1))*exp(-xi[4]*x) +

alpha[5]*(x**(beta-1))*exp(-xi[5]*x)+

alpha[6]*(x**(beta-1))*exp(-xi[6]*x)+

alpha[7]*(x**(beta-1))*exp(-xi[7]*x)+

alpha[8]*(x**(beta-1))*exp(-xi[8]*x)+

alpha[9]*(x**(beta-1))*exp(-xi[9]*x)+

alpha[10]*(x**(beta-1))*exp(-xi[10]*x)+

alpha[11]*(x**(beta-1))*exp(-xi[11]*x)+

alpha[12]*(x**(beta-1))*exp(-xi[12]*x)+

alpha[13]*(x**(beta-1))*exp(-xi[13]*x)+

alpha[14]*(x**(beta-1))*exp(-xi[14]*x)

}

matrix14 <- na.omit(matrix14)

matrix14cdf <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b = 39.95

i = 0
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for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix14cdf[i,1] <- x

matrix14cdf[i,2] <- alpha[1]*xi[1]**(-beta)*Igamma(beta, xi[1]*x, lower=TRUE, log=FALSE)+

alpha[2]*xi[2]**(-beta)*Igamma(beta, xi[2]*x, lower=TRUE, log=FALSE)+

alpha[3]*xi[3]**(-beta)*Igamma(beta, xi[3]*x, lower=TRUE, log=FALSE)+

alpha[4]*xi[4]**(-beta)*Igamma(beta, xi[4]*x, lower=TRUE, log=FALSE)+

alpha[5]*xi[5]**(-beta)*Igamma(beta, xi[5]*x, lower=TRUE, log=FALSE)+

alpha[6]*xi[6]**(-beta)*Igamma(beta, xi[6]*x, lower=TRUE, log=FALSE)+

alpha[7]*xi[7]**(-beta)*Igamma(beta, xi[7]*x, lower=TRUE, log=FALSE)+

alpha[8]*xi[8]**(-beta)*Igamma(beta, xi[8]*x, lower=TRUE, log=FALSE)+

alpha[9]*xi[9]**(-beta)*Igamma(beta, xi[9]*x, lower=TRUE, log=FALSE)+

alpha[10]*xi[10]**(-beta)*Igamma(beta, xi[10]*x, lower=TRUE, log=FALSE)+

alpha[11]*xi[11]**(-beta)*Igamma(beta, xi[11]*x, lower=TRUE, log=FALSE)+

alpha[12]*xi[12]**(-beta)*Igamma(beta, xi[12]*x, lower=TRUE, log=FALSE)+

alpha[13]*xi[13]**(-beta)*Igamma(beta, xi[13]*x, lower=TRUE, log=FALSE)+

alpha[14]*xi[14]**(-beta)*Igamma(beta, xi[14]*x, lower=TRUE, log=FALSE)

}

#Plot Graph (Approximation and Fit PDF)

par(mar=c(4,4.5,2,1))

plot(data.frame(matrix1), type="l", xlab="x", ylab=expression('h'[gamma]*"(x)"),

ylim=c(0,0.13),lwd=2.5)

lines(data.frame(matrix3),lty=5, lwd = 2.5,col="green")

lines(data.frame(matrix5),lty=2,lwd = 2.5, col="orange")

lines(data.frame(matrix10),lty=4, lwd = 2.5, col="purple")

lines(data.frame(matrix14),lty=3, lwd = 3.5, col="red")

legend(8.5,0.125,

c("SNR Distribution of the Kg Channel",

"MG Distribution with N=3",

"MG Distribution with N=5",

"MG Distribution with N=10",

"MG Distribution with N=14"),

lty=c(1,5,2,4,3), lwd=c(2.5,2.5,2.5,2.5,3.5),

col=c("black","green","orange", "purple", "red"),bty="n")

#Plot Graph (Approximation and Fit CDF)

par(mar=c(4,4.5,2,1))

plot(data.frame(matrix1cdf),type="l", xlab="x", ylab=expression('H'[gamma]*"(x)"),

ylim=c(0,1),lwd=2.5 )

lines(data.frame(matrix3cdf),lty=2,col="purple",lwd=1.5)

lines(data.frame(matrix5cdf),lty=2,col="blue",lwd=1.5)

lines(data.frame(matrix10cdf),lty=4,col="green",lwd=1.5)

lines(data.frame(matrix14cdf),lty=3,col="red",lwd=3.5)

legend(20,0.6,

c("SNR CDF of the NL Channel","MG CDF with N=3",

"MG CDF with N=4",

"MG CDF with N=6",

"MG CDF with N=10"),

lty=c(1,5,2,4,3), lwd=c(1.5,1.5,1.5,1.5,2.5),

col=c("black","purple","blue","green", "red"),

bty="n")
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11.5 MSE and DKL calculations

#MSE Calculations MSE.plugin = function(pdf1, pdf2)

{

SSE <- matrix(data=NA, nrow = 799, ncol=1)

for(i in seq(from=1, to=799))

{

SSE[i,1] <- (pdf1[i,2]-pdf2[i,2])**2

}

MSE = mean(SSE,na.rm = TRUE)

return(MSE)

}

MSE3 <- MSE.plugin(matrix1, matrix3)

MSE4 <- MSE.plugin(matrix1, matrix4)

MSE5 <- MSE.plugin(matrix1, matrix5)

MSE6 <- MSE.plugin(matrix1, matrix6)

MSE7 <- MSE.plugin(matrix1, matrix7)

MSE8 <- MSE.plugin(matrix1, matrix8)

MSE9 <- MSE.plugin(matrix1, matrix9)

MSE10 <- MSE.plugin(matrix1, matrix10)

N <- c(3, 4, 5, 6, 7, 8, 9, 10)

MSE <- c(MSE3, MSE4, MSE5, MSE6, MSE7, MSE8, MSE9, MSE10)

plot(N, MSE, xlab="N", ylab="MSE");

lines(N, MSE, type="o")

#KL Calculations

KL.plugin = function(pdf1, pdf2)

{

pdf1 = pdf1/sum(pdf1) # ensure that that 'PDF' sums

pdf2 = pdf2/sum(pdf2)

LR = ifelse(pdf1 > 0, log(pdf1/pdf2), 0)

KL = sum(pdf1*LR)

return(KL)

}

KL3 <- KL.plugin(matrix1[,2], matrix3[,2])

KL4 <-KL.plugin(matrix1[,2], matrix4[,2])

KL5 <- KL.plugin(matrix1[,2], matrix5[,2])

KL6 <-KL.plugin(matrix1[,2], matrix6[,2])

KL7<- KL.plugin(matrix1[,2], matrix7[,2])

KL8 <-KL.plugin(matrix1[,2], matrix8[,2])

KL9 <- KL.plugin(matrix1[,2], matrix9[,2])

KL10 <-KL.plugin(matrix1[,2], matrix10[,2])

N <- c(3, 4, 5, 6, 7, 8, 9, 10)

KL <- c(KL3, KL4, KL5, KL6, KL7, KL8, KL9, KL10)

plot(N, KL, , xlab="N", ylab="KL Divergence");

lines(N, KL, type="o")
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11.6 Outage probabilities of the Nakagami-lognormal channel andMG representation
## Nakagami-lognormal Channel Outage Probability

library(zipfR)

#Theoretical outage probability

matrix.plugin=function(threshold, rho)

{

a = 0.05

b = 39.95

i = 0

#change

m = 2 #can be any number >= 0.5

mu= 1

lambda =2

matrix1 <- matrix(data=NA, nrow = 799, ncol=3)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

integrand <- function(y){((x^(m-1)*exp(-(m*x)/(rho*y)))/gamma(m))*(m/(rho*y))^m* exp(-((log(y, base = exp(1)))-mu)^2/(2*lambda^2)))/(sqrt(2*pi)*lambda*y)}

It <- (integrate(integrand, lower = 0, upper = Inf))

f_x <- It$value

matrix1[i,1] <- x

matrix1[i,2]<-f_x

matrix1[i,3]<-0.05*matrix1[i,2]

}

matrix1cdf <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b= 39.95

i = 0

matrix1cdf[1,2]<-matrix1[1,3]

x=a

for(i in seq(from=1, to=798, by=1))

{

matrix1cdf[i,1]<- x

matrix1cdf[i+1,2]<- matrix1cdf[i,2]+matrix1[i+1,3]

x <- x+0.05

}

return(matrix1cdf[threshold,1:2])

}

rows=100

rho_increment=0.2

rho=0

outageprob1 <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob1[i,1]<- rho

outageprob1[i,2]<- matrix.plugin(20,rho)[2] #threshold SNR = 1

}
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rho=0

outageprob2 <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob2[i,1]<- rho

outageprob2[i,2]<- matrix.plugin(60,rho)[2] #threshold SNR = 3

}

rho=0

outageprob3 <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob3[i,1]<- rho

outageprob3[i,2]<- matrix.plugin(100,rho)[2] #threshold SNR = 5

}

rho=0

outageprob4 <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob4[i,1]<- rho

outageprob4[i,2]<- matrix.plugin(140,rho)[2] #threshold SNR = 7

}

rho=0

outageprob5 <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob5[i,1]<- rho

outageprob5[i,2]<- matrix.plugin(200,rho)[2] #threshold SNR = 9

}

#################################################

#Plot Theoretical

plot(outageprob1[,1], outageprob1[,2],

xlab=expression("Average SNR, "~bar(gamma)), ylab="Outage Probability", ylim=c(0,1), xlim=c(0,15));

lines(outageprob1[,1], outageprob1[,2], type="o", col="purple")

lines(outageprob2[,1], outageprob2[,2], type="o", col = "blue")

lines(outageprob3[,1], outageprob3[,2], type="o", col="green")

lines(outageprob4[,1], outageprob4[,2], type="o", col="red")

lines(outageprob5[,1], outageprob5[,2], type="o", col="black")

legend(7,0.9,c("Threshold SNR = 1", "Threshold SNR = 3", "Threshold SNR = 5",

"Threshold SNR = 7", "Threshold SNR = 10"),

lty=c(1,1,1,1,1),

lwd=c(1.5,1.5,1.5,1.5,1.5),

col=c("purple","blue","green","red", "black"), bty="n")
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##############################################

#MG Approximation for N=5

matrix.plugin5=function(threshold, rho)

{

a = 0.05

i = 0

#change

m = 2 #can be any number >= 0.5

mu= 1

lambda = 2

N=5

t1 = -2.02018287046

t2= -0.958572464614

t3= 0

t4 = 0.958572464614

t5 = 2.02018287046

t = c(t1,t2,t3,t4,t5)

w1 = 0.019953242059

w2 = 0.393619323152

w3 = 0.945308720483

w4 = 0.393619323152

w5= 0.019953242059

w = c(w1,w2,w3,w4,w5)

theta <- matrix(data=NA, nrow = N, ncol=1)

xi <- matrix(data=NA, nrow = N, ncol=1)

alpha <- matrix(data=NA, nrow = N, ncol=1)

for(i in seq(from=1, to=N))

{

theta[i,1] <- ((m/rho)**(m))*(w[i]*exp(-m*(sqrt(2)*lambda*t[i]+mu)))/(sqrt(pi)*gamma(m))

}

for(i in seq(from=1, to=N))

{

xi[i,1] = (m/rho)*exp(-(sqrt(2)*lambda*t[i]+mu))

}

for(i in seq(from=1, to=N))

{

alpha[i,1]=theta[i]/((theta[1]*gamma(beta)*xi[1]**(-beta))+(theta[2]*gamma(beta)*xi[2]**(-beta))+

(theta[3]*gamma(beta)*xi[3]**(-beta))+(theta[4]*gamma(beta)*xi[4]**(-beta))+

(theta[5]*gamma(beta)*xi[5]**(-beta)))

}

a = 0.05

b = 39.95

i = 0
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matrix5 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix5[i,1] <- x

matrix5[i,2]<- alpha[1]*(x**(beta-1))*exp(-xi[1]*x)+ alpha[2]*(x**(beta-1))*exp(-xi[2]*x)+

alpha[3]*(x**(beta-1))*exp(-xi[3]*x) + alpha[4]*(x**(beta-1))*exp(-xi[4]*x)+

alpha[5]*(x**(beta-1))*exp(-xi[5]*x)

}

matrix5cdf <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b = 39.95

i = 0

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix5cdf[i,1] <- x

matrix5cdf[i,2] <- alpha[1]*xi[1]**(-beta)*Igamma(beta, xi[1]*x, lower=TRUE, log=FALSE)+

alpha[2]*xi[2]**(-beta)*Igamma(beta, xi[2]*x, lower=TRUE, log=FALSE)+

alpha[3]*xi[3]**(-beta)*Igamma(beta, xi[3]*x, lower=TRUE, log=FALSE)+

alpha[4]*xi[4]**(-beta)*Igamma(beta, xi[4]*x, lower=TRUE, log=FALSE)+

alpha[5]*xi[5]**(-beta)*Igamma(beta, xi[5]*x, lower=TRUE, log=FALSE)

}

return(matrix5cdf[threshold,1:2])

}

rho=0

outageprob1mg <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob1mg[i,1]<- rho

outageprob1mg[i,2]<- matrix.plugin5(20,rho)[2]

}

rho=0 outageprob2mg <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob2mg[i,1]<- rho

outageprob2mg[i,2]<- matrix.plugin5(60,rho)[2]

}

rho=0 outageprob3mg <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob3mg[i,1]<- rho

outageprob3mg[i,2]<- matrix.plugin5(100,rho)[2]

}
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rho=0

outageprob4mg <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob4mg[i,1]<- rho

outageprob4mg[i,2]<- matrix.plugin5(140,rho)[2]

}

rho=0

outageprob5mg <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob5mg[i,1]<- rho

outageprob5mg[i,2]<- matrix.plugin5(200,rho)[2]

}

#########################

#MG Approximation for N=8

matrix.plugin8=function(threshold, rho)

{

a = 0.05

b = 39.95

i = 0

#change

m = 2 #can be any number >= 0.5

mu= 1

lambda = 2

beta=m

N=8

t1 = -2.93063742026

t2= -1.9816567567

t3= -1.15719371245

t4 = - 0.381186990207

t5 = 0.381186990207

t6= 1.15719371245

t7= 1.9816567567

t8=2.93063742026

t = c(t1,t2,t3,t4,t5,t6,t7,t8)

w1 = 0.000199604072211

w2 = 0.0170779830074

w3 = 0.207802325815

w4 = 0.661147012558

w5= 0.661147012558

w6= 0.207802325815

w7 = 0.0170779830074

w8 = 0.000199604072211

w = c(w1,w2,w3,w4,w5,w6,w7,w8)

theta <- matrix(data=NA, nrow = N, ncol=1)

xi <- matrix(data=NA, nrow = N, ncol=1)
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alpha <- matrix(data=NA, nrow = N, ncol=1)

for(i in seq(from=1, to=N))

{

theta[i,1] <- ((m/rho)**(m))*(w[i]*exp(-m*(sqrt(2)*lambda*t[i]+mu)))/(sqrt(pi)*gamma(m))

}

for(i in seq(from=1, to=N))

{

xi[i,1] = (m/rho)*exp(-(sqrt(2)*lambda*t[i]+mu))

}

for(i in seq(from=1, to=N))

{

alpha[i,1] = theta[i]/

((theta[1]*gamma(beta)*xi[1]**(-beta))+ (theta[2]*gamma(beta)*xi[2]**(-beta))+

(theta[3]*gamma(beta)*xi[3]**(-beta)) + (theta[4]*gamma(beta)*xi[4]**(-beta))+

(theta[5]*gamma(beta)*xi[5]**(-beta))+(theta[6]*gamma(beta)*xi[6]**(-beta))+

(theta[7]*gamma(beta)*xi[7]**(-beta))+(theta[8]*gamma(beta)*xi[8]**(-beta)))

}

a = 0.05

b = 39.95

i = 0

matrix8 <- matrix(data=NA, nrow = 799, ncol=2)

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix8[i,1] <- x

matrix8[i,2]<- alpha[1]*(x**(beta-1))*exp(-xi[1]*x)+ alpha[2]*(x**(beta-1))*exp(-xi[2]*x)

+ alpha[3]*(x**(beta-1))*exp(-xi[3]*x) +

alpha[4]*(x**(beta-1))*exp(-xi[4]*x) +

alpha[5]*(x**(beta-1))*exp(-xi[5]*x) +

alpha[6]*(x**(beta-1))*exp(-xi[6]*x) +

alpha[7]*(x**(beta-1))*exp(-xi[7]*x) +

alpha[8]*(x**(beta-1))*exp(-xi[8]*x)

} matrix8 <- na.omit(matrix8)

matrix8cdf <- matrix(data=NA, nrow = 799, ncol=2)

a = 0.05

b = 39.95

i = 0

for(x in seq(from=a, to=b, by=0.05))

{

i = i+1

matrix8cdf[i,1] <- x

matrix8cdf[i,2] <-

alpha[1]*xi[1]**(-beta)*Igamma(beta, xi[1]*x, lower=TRUE, log=FALSE)+

alpha[2]*xi[2]**(-beta)*Igamma(beta, xi[2]*x, lower=TRUE, log=FALSE)+

alpha[3]*xi[3]**(-beta)*Igamma(beta, xi[3]*x, lower=TRUE, log=FALSE)+

alpha[4]*xi[4]**(-beta)*Igamma(beta, xi[4]*x, lower=TRUE, log=FALSE)+

alpha[5]*xi[5]**(-beta)*Igamma(beta, xi[5]*x, lower=TRUE, log=FALSE)+

alpha[6]*xi[6]**(-beta)*Igamma(beta, xi[6]*x, lower=TRUE, log=FALSE)+

alpha[7]*xi[7]**(-beta)*Igamma(beta, xi[7]*x, lower=TRUE, log=FALSE)+

alpha[8]*xi[8]**(-beta)*Igamma(beta, xi[8]*x, lower=TRUE, log=FALSE)

}

return(matrix8cdf[threshold,1:2])

}
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rows=100

rho_increment=0.2

rho=0

outageprob1mg <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob1mg[i,1]<- rho

outageprob1mg[i,2]<- matrix.plugin8(20,rho)[2]

}

rho=0

outageprob5mg <- matrix(data=NA, nrow = rows, ncol=2)

for(i in seq(from=1, to=100, by=1))

{

rho=rho+rho_increment

outageprob5mg[i,1]<- rho

outageprob5mg[i,2]<- matrix.plugin8(200,rho)[2]

}

#Plot Theoretical Outage Probabilities

plot(outageprob1[,1], outageprob1[,2], xlab="Average SNR", ylab="Outage Probability",

ylim=c(0,1), xlim=c(0,20));

lines(outageprob1[,1], outageprob1[,2], type="o", col="purple")

lines(outageprob2[,1], outageprob2[,2], type="o", col = "blue")

lines(outageprob3[,1], outageprob3[,2], type="o", col="green")

lines(outageprob4[,1], outageprob4[,2], type="o", col="red")

lines(outageprob5[,1], outageprob5[,2], type="o", col="black")

legend(8,0.8,

c("Threshold SNR = 1",

"Threshold SNR = 3",

"Threshold SNR = 5",

"Threshold SNR = 7",

"Threshold SNR = 10"),lty=c(1,1,1,1,1), lwd=c(1.5,1.5,1.5,1.5,1.5),

col=c("purple","blue","green","red", "black"), bty="n")

#Plot Theoretical and MG Channel Outage Probablities

plot(outageprob1[,1], outageprob1[,2], xlab="Unfaded SNR", ylab="Outage Probability",

ylim=c(0,1), xlim=c(0,20));

lines(outageprob1[,1], outageprob1[,2], type="o", col="purple")

lines(outageprob1mg[,1], outageprob1mg[,2], type="o", col="blue", lty=2)

lines(outageprob5[,1], outageprob5[,2], type="o", col = "green")

lines(outageprob5mg[,1], outageprob5mg[,2], type="o", col="red", lty=2)

legend(10,0.8

c("Threshold SNR = 1",

"Threshold SNR = 1 (approximated)",

"Threshold SNR = 10",

"Threshold SNR = 10 (approximated)"),lty=c(1,2,1,2), lwd=c(1.5,1.5,1.5,1.5),

col=c("purple","blue","green","red"), bty="n")
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Abstract

This report outlines the key concepts in robotics with respect to statistical theory. It focuses on the

importance of stochastic and statistical methods in robot programing, processing and perception. The

premise is that integrating statistical methods into robotics programming results in robots which have

a higher degree of intelligence. There are various di�erent opinions on what constitutes intelligence in

robotics. The Florida Institute for Human and Machine Cognition de�ne arti�cial intelligence as "the

ability of a system to act appropriately in an uncertain environmentl". It will be with a similar criteria for

intelligence that this paper assesses the role of statistical programming in robotics. This will be done with

speci�c reference to state estimation techniques, using information �lters and the localization problem.

The aim is to set out the basic terminology and theory behind programming a robot statistically, while

also programming a robot to track a moving object. Then �nally to grab data from the completion of this

task and analyse it with the tools and theory previously examined in an attempt to practically illustrate

the theory by improving the initial task.
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1 Introduction

The use and application of robotics within numerous industries and manufacturing is one of the main driving
forces behind further invention and improvement within the �eld of robotics. This implies that, although we
can program robots to do very simple repetitive tasks inside a controlled environment, the ideal to which all
robotics should be moving towards is that of robots capable of navigating dynamic and complex environments.
While also completing tasks in these ambiguous environments and learning from their own experience.

While it is theoretically possible to deterministically program every possible decision which the program-
mer can imagine into the robot's programming, it is impossible to account for every conceivable eventuality.
Furthermore, all programs share a common set of constraints around which every programmer must work.
One of the most important constraints is presented not by the complexity of code that the programmer can
conceive but rather by the computational strain which that code presents to the machine processing it. It
becomes clear that deterministic programs face a trade-o� between being �exible and adaptable, and trying
to keep the complexity of their code as low as possible to comply with the constraints imposed by the available
technology.

Additionally, a robot operated in any real world environment will have to deal with the large amounts of
inherent uncertainty due to changing conditions, moving objects and its own interactions with objects in that
environment. A deterministically programmed robot will not be able to cope with this kind of uncertainty. It
wouldn't recognize that it is making a mistake if it does. On the other hand a robot programmed stochastically
will have the ability to deal with the inherent uncertainty and account for each eventuality. This ability to
adapt to uncertain environments will also allow the robot to learn from its environment and correct its own
mistakes.

Furthermore, a robot cannot directly perceive its environment whether it is due to not having enough
sensors, inadequate sensors or just the latent noise present in all sensors. Hence, it will need to possess the
ability to estimate its environment from whatever sensor data which it is able to gather whilst also accounting
for the noise present. A deterministic robot is incapable of this kind of estimation since by default it must
assume that its information is perfect. Stochastic programming will enable the robot to �lter out the noise
and estimate its true environment much more reliably than its deterministic counterparts.

This sets the stage for robots which use stochastic and statistical methods in their programming. By
de�nition, no statistical program can be theoretically 100% accurate due to them being based on statistical
theory pertaining to state evolution. This being said, statistical programming in general will be less complex
than an equivalent deterministic program. Robots programmed in this way are able to inherently deal with
the uncertainty that characterizes real life environments. That is; the uncertainty in its position, uncertainty
from its sensors, surrounding noise and that resulting from dynamic environments. This gives the robot the
ability to make inferences on and learn about its environment through interaction with that environment.

The Bayes Filter Algorithm provides an e�ective and e�cient way to compute the state of a robot,
however, due to its complexity in all but very strict conditions it must be estimated to avoid unnecessary
complexity. Two methods of approximation are to use Gaussian �lters or nonparametric �lters. In this paper
we aim to focus on a speci�c type of Gaussian �lter, called the Kalman �lter, which is a technique for �ltering
and prediction in linear Gaussian systems. It works on the assumption of continuous states and represents
the robot's beliefs through moment parametrization.

A robot's perception of its environment is an important part of robotics. In particular, it is useful to be
able to di�erentiate between di�erent colours in an environment. This is useful for detection of objects in
that environment. Colours are digitally represented in the red, green, blue (RGB) format [16] or the alpha,
red, green, blue (ARGB) format [22]. In the RGB format colours are stored in memory using three 8-bit
numbers. This gives us a range from 0 to 255 for each number. These numbers represent the amount each
of the primary red, green or blue components present in the speci�c colour being de�ned. For example,
black would be represented by red, green and blue components all zero. The second format (the 32-bit
ARGB format) is one of the most common formats for storing this colour. In the 32-bit ARGB format each
component of the vector has 8 bits allocated to it. Alpha can range from 0 to 1 and the colour components
range from 0 to 255. Using these two methods the colour of any given pixel in an image is then de�ned by
a vector of three or four values respectively. Both contain red, green and blue components in the vector to
de�ne colour. The ARGB format has an alpha channel as well. This alpha channel de�nes the transparency
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of the pixel to its background. If we were to look for a speci�c colour then we could easily �lter the image
by only showing pixels with colour vectors where each vector component is de�ned to be within a speci�ed
range. Furthermore, all colours within a more constrained range can then be rede�ned to have the colour
represented by the mean vector of that constrained range.

a) b)

c) d)

Figure 1: a) Gives the original picture. b) Picture after colours have been averaged. c) Same as b) with
di�erent blobs separated by borders d) Colour �lter for just blue

This makes it easy to de�ne what are called blobs. A blob is a region in an image of pixels with a similar
colour [11]. These blobs can be de�ned by identifying regions which have colours that all fall into some
prede�ned range. All pixels within that region become blob. The wider the acceptable region of colour for
each group, the less accurate the detection of smaller regions becomes. The more narrow the regions, the
higher accuracy with respect to identifying small, speci�c regions and the higher the risk of identifying one
singular region as being composed of more than one blob. The blobs can then be further constrained by
specifying the maximum or minimum size which a blob can be de�ned to. This will result in a number of
objects which can be identi�ed from the original image and can then be processed to feed into the robot's data
about its environment and for example, any obstacles that are in its proximity. This process is represented
in Figure 1. In a live feed a blob can be de�ned and then tracked as it moves through the frames.

Closely related to the idea of identifying objects in the environment, is the need to identify motion
and track where and how objects move. There are various di�erent ways to accomplish this. Some of
these methods are background subtraction, Gaussian background subtraction and applying the Kalman �lter
either to data from some kind of background subtraction or from a sensor which is capable of measuring the
coordinates of the moving object [14][25]. The Kalman �lter uses a mixture normal distribution to estimate
the distribution of some characteristic of the data. The advantage of using the Kalman �lter is that it allows
the robot to estimate the location of the moving object even if it cannot be observed for some period of time.
This fact very nicely illustrates the advantages of using statistical programming [9].
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Integrate theory into the 

programming. Interpretation 

and manipulation of data 

Create own script to run 

within what is generated 

by the platform and 

attempt to perform more 

complex tasks 

Figure 2: Method of approach

This research essay will have a general focus on the basics of probabilistic robotics with two parallel
streams of investigation as illustrated in Figure 2. The �rst stream deals with the basic terminology and
concepts of statistical robotics; leading towards the theory and importance of statistics in robotics and
illustrating this mathematically. The second stream focuses on the practical implementation of the theory,
working in the EZ-Builder platform1 and using an EZ robot (with help from the online community forum2)
to practically demonstrate the theory. It will focus on the practical programming as well as downloading and
analysing real time data. The aim thereafter is to merge the two streams and try to implement the theory
into the practical coding and script supplied by the EZ-Builder in order to get the robot to track a moving
object using the Kalman �lter. The addition of more complex tasks and algorithms will be contingent on
succeeding in these preliminary goals as well as on time constraints.

1More information about this at http://www.ez-robot.com
2http://www.ez-robot.com/Community/Forum/
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2 Literature Review

2.1 Basic Terminology and Bayesian Filters

Thrun, in [27], deals with the programming methodology for probabilistic robots. It contends that stochastic
algorithms scale-up better than others in dealing with real world situations. This notion is defended by the
fact that most interesting environments and most environments with real applications for advanced robotics
inherently contain some uncertainty. This uncertainty is compounded by robot sensors being imperfect and
so picking up large amounts of noise or just simply not being able to perceive the environment in the way
required (even in a certain environment). This means that the robot must rely instead on inferring the
information it needs from what data it can gather. This uncertainty is dealt with by programming the
robot to interact with and perceive its environment in terms of probability densities. This a�ords the robot
the ability to react to changes and uncertainty, even recovering from a failure. This makes the program
quite robust. However, there are drawbacks to this robustness and impressive capability. Firstly, the fact
that computing entire probability densities makes the robots less e�cient and slower because the integrals
involved are very expensive to compute. Secondly, some degree of approximation is necessary since the
robots need to work in a continuous environment and computing an in�nite probability distribution is not
feasible computationally. That being said, research is continually leading to more e�cient algorithms and
new technology increases in computing power at a steady pace.

In [2], Baum et al. set out the mathematical basis for the estimation of states and measurements under
the assumption of �nite Markov chains. This assumption serves to simplify the models so as to reduce the
amount of memory required and the computational times involved. Practical situations rarely conform to
the constraints of Markov chains completely however it is reasonable to suggest that the assumption is valid
enough for the model to be useful. This is one of the key assumptions which underpins the theory behind
the Bayesian �lter at the heart statistical robotics.

Cassandra et al. in [4] explore the use of the Bayesian framework for modelling a robots belief about its
environment in addition to sub-optimal control strategies given the Bayesian belief state. It contends that
in certain cases (moving through a door for example) the full pose of the robot is not always a necessity and
the robot would be able to move through the door simply if it knew that it was in the area of a door-like
structure. Essentially, we need only consider the relevant information for a particular decision and not all
available information. This results in a more coarse-grained probability model, saving time and resources on
computation. They then attempt to present an optimal control strategy for a robot using discrete models.
The models presented however have a high degree of dependence on the world being static and can cope only
with transitions to transient states, not absorbent ones.

Bayesian �lters, due to their complexity, have to be approximated. One method for accomplishing this
is to use a Gaussian �lter. One speci�c type of Gaussian �lter that has been used widely in the �eld is the
Kalman �lter. A very good explanation of this model is provided by Faragher in [9] by way of a derivation.

2.1.1 Bayesian networks

Bayesian networks are explained by Ghahramani in [12]. They graphically represent conditional independence
relations between a number of random variables. These graphical representations consist of nodes which
represent variables and the nodes are connected by arcs. A node which receives and arc from another node is
conditionally dependent on that node. The node which the arc comes from is called the parent and the node
receiving the arc is the child. The descendants of a node are its children and all of their children and so on.
Each node is then conditionally independent of nodes which are not descendent from it given its parents.

Dynamic Bayesian networks are used in statistical robotics for computing what is called the robot's
state. The state of a robot is a vector containing all the information which the robot has stored about its
environment and itself. The initial state is represented by a particular probability distribution and is then
updated as new information becomes available and the new distribution of the state is given by a mixture
model. A dynamic Bayesian network is a Bayesian network applied to time series data. Dynamic Bayesian
networks are a class of Bayesian networks which hidden Markov models are part of.

Hidden Markov models are used widely for analysing time series data. They are also notably used in most
speech recognition technology as well as computer vision. Essentially, they represent probability distributions
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over a number of observations. Hidden Markov models can be adjusted to also allow for an input variable.
In this case the conditional distribution of a sequence of outputs variables given some sequence of inputs
[13]. The Kalman �lter (also known as the linear-Gaussian state-space model falls into the same subset of
dynamic Bayesian models as the hidden Markov model. The Kalman �lter is essentially a hidden Markov
model with a continuous state variable.

2.2 Colour recognition

The human visual system is thought to use three di�erent colour components to produce the sensation of
colour. Digital graphics take after this idea and create very large ranges of colours using just three primaries
- red, green and blue. The various �versions� of the three primaries used in�uence what is called the colour
space (the collection of all possible colours which can be created from the three primaries used). A similar
space is created using cyan, magenta and yellow as primaries. This is explained by Joblove in [16].

Most commonly, colours are de�ned in terms of their RGB (red, green and blue) components. However,
when working with digital images, it is useful to add a matte element to these three dimensional colour
vectors. In their paper, [22], Porter and Du� show the importance of using the RGBA (red, green, blue
and alpha) scheme in synthetic pictures. They call this matte element the alpha channel. It controls the
extent to which each pixel in an object mixes (the mixing factor) with the colour of the background behind
it. An alpha channel value of 1 corresponds to full coverage by the pixel of its background and a value of 0
corresponds to no coverage. This method was pioneered by Edwin Catmull in his 1978 paper [5].

In [29] Voorhees deals with a method for grouping small compact and elongated linear images into objects
called blobs or bars in a greyscale environment. Blobs are generally de�ned to be areas which are lighter or
darker than their backgrounds. Blobs are fairly insensitive to shadows and other large scale changes in illu-
minations. Positive values indicate regions in the image which are relatively darker than their surroundings.

Blobs can also be used with colour. In [11] Gavilan et al. de�ne blobs as 4D objects in the scale space
and colour blobs as 3+n degree objects where n corresponds to the degree of the colour space. So for RGBA
objects the colour blob will be 7D. They then use the amount of relation between objects in the environment
to de�ne blobs within the picture.

2.3 Image recognition

One of the big goals of robotics is, essentially, to endow robots with �senses�. One such sense is sight. Lowe,
in [19], describes a computer vision system which recognizes a three-dimensional object from a viewpoint
which is unknown to the computer system in single greyscale images. It accomplishes this without trying
to reconstruct the depth information in the image. Three other mechanisms are used to move from the 2D
image to 3D object detection: perceptual organization forms groups of pixels in the image which will likely
remain unchanged over a number of di�erent perspectives of the image, the items in the image are ranked
probabilistically to decrease the number of items that must be searched through when matching models and
lastly a process of spatial correspondence solves for viewpoints which are unknown and also �nds model
parameters. This method is quite robust when dealing with missing data and occlusion (when, due to set up
or sensor properties, some property which you want to observe is rendered unobservable).

[26] deals with object recognition using colour instead of the more widely used shape algorithms with the
aim of faster processing. He demonstrates that colour histograms of objects with many colours can be used
to form an e�cient cue for indexing into database of models. It also shows that they are able to di�erentiate
amongst a large number of objects. Histogram Intersection is used to match histograms of the images and the
models to deal with identi�cation of an object in a known location. Furthermore histogram backprojection
is utilized to locate a known object in �crowded� images. In a similar manner, Lee et al. in their 1994 paper
[17] present an automatic recognition method for car license plate using colour detection.

One of the biggest problems to overcome when giving a robot any kind of sensors is how to get the robot
to focus on relevant information from the sensors and ignore the background noise which will be picked up
as well.. Astola et al. [1] explain that one way of �ltering image noise out is through the use of the median
�lter. This �lter is nonlinear and works by moving a window over an area which contains some signal or
property and then �nding the median of the values inside this window and returns that value as the output.
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In [18] Lee presents an algorithm for digital image noise �ltering. Extending Lee's local statistics method by
using local gradient information, is used to do this. Most other noise �ltering techniques require extensive
modelling and result in images which have a signi�cant loss in contrast. Using this method noise along the
edges is reduced, thereby maintaining contrast.

2.4 Motion-based recognition

Motion tracking or motion-based recognition uses a series of images and from these, attempts to identify an
object or the movement of that object based on the changes in the images. This is a very important part of
computer vision since, just as it is with human perception, objects in the �eld of vision which are moving
are more interesting than those which are not. They are more interesting in the sense that a moving object
contains more information about the object itself and the environment which it is in than a static object
would. Furthermore, static objects can always be examined at a later point in time whereas a moving object
may require an immediate response. This is the same reason for which human vision also focuses more on
moving objects [6].

Generally information about the object or its motion can be used to build models which can be used in
the process of identifying the motion or the object. The idea is that if one is able to track a moving object
then this implies that they have been able to achieve recognition of the object. Motion-based recognition
can be thought of as consisting of two parts. In the �rst part the images must be used to determine what
kind of representation will be used for the objects or motion. This forms part of the creation of a model for
the motion or for the object which we want to track. Once this is done we then, in the second step, need to
match an input from the images with this model. Objects with input which doesn't match the model will
then not be recognized [6].

Various methods for tracking motion are available. There is usually some kind of background subtraction
used [20]. Some notable methods are gray level background subtraction [15], modelling colour variations in
pixels [30], Gaussian mixture background subtraction [25] and the Kalman �lter.

2.5 Localization and Mapping

In [21] Olson focuses on one of the main problems in robotics, namely, localization. The robot must be able to
determine where it is in the environment accurately, if it is to operate e�ectively in that environment. Using
maximum likelihood, a map generated by the robot in its current position (its local map) is compared to
one generated beforehand (the global map) in an attempt to maximize the degree of agreement between the
two. This method of using maximum likelihood results in a likelihood surface over the possible positions of
the robot which can be used to derive a probability distribution for use in Markov localization. Roumeliotis,
in [23], deals with the problem of localization where Bayesian hypothesis testing and Kalman �ltering are
combined so that both Markov localization and pose tracking can be used in one localization algorithm. The
robot tracks its pose continuously through di�erent areas while also monitoring landmarks on the map. This
approach overcomes the problem of the Kalman �lter not being able to represent multi-modal distributions.

The problem of simultaneous localization of a robot in its environment and building of a map of that envi-
ronment (SLAM) is well known. It deals with a robot which can start in an unknown position, in an unknown
environment and construct a map of the unknown environment as it moves through that environment, while
simultaneously �nding its own location on the map. In [8], Dissanayake et al. prove that this problem can
be solved and that the estimated map will converge monotonically to a relative map. The uncertainties also
converge to zero. It shows that the lower bound to the absolute accuracy of the map and robot location is the
initial uncertainty of the robots position. The problem is that as the number of objects in the environment
increases, the computational complexity becomes very large. Two ways of dealing with this complexity are
presented in [7] and [? ] by using a transformation and bounded approximation respectively.

In [10] Thrun deals with the problem of localization by making use of the robots own actuators (tools
that the robot has with which to manipulate its environment) instead of passively determining the robots
position. That is, assuming that the robot cannot move or e�ect its environment during localization. Markov
localization provides a criteria for setting the robot's direction of motion as well as determining which direction
its sensors are pointing for e�cient localization. This is especially e�ective when the environment contains a
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relatively low number or landmarks which would unambiguously determine the robots position. Actions are
chosen so that they maximize the expected decrease in uncertainty (contribute the least amount of entropy).
This entropy calculation however is computationally complex and so presents a problem when the localization
is scaled up to larger environments.

Another interesting addition to solving the problem of localization is presented by Roy et al. in [24]. In
this paper a method which generates trajectories for the robot to move along takes into account information
about the environment and the density of people in the environment. Even the smallest errors in dead
reckoning could lead to very large errors over time. It is clear then, for a robot to localize itself it must
incorporate information from its environment. Dynamic obstacles also pose a problem for a robot trying to
determine where it is.

The approach used here is based on the concept that when there is a lack of ability to accurately position
themselves, ships sail close to the coast, allowing them to determine their position more accurately. Here
coastal lines are generated so that they contain just enough information about the environment along their
path to allow for accurate localization. The probability of getting lost is minimized by traveling along the
path with the highest information density in the environment. This requires a map of information to be
generated and then later a path trajectory to be planned.

3 Background Theory

3.1 Basic terminology

A robot consists of a processing unit which acts as the robot's brain and carries out all computations. In
addition to this, a memory chip is added to allow it to store information. Built around this processor will be
several di�erent kinds of sensors to gather information from its environment which are then processed by the
processor. If necessary, data gathered from the sensors can be stored in the memory. Examples of sensors
would be: cameras, laser or ultrasonic measurement tools and sound recognition devices. There will also be
a variety of actuators which the robot can use to interact with and change the environment around it or to
move the robot itself, for example, arms, legs and gripping devices. Most robots will also have some means
of mobility, be it legs or wheels. Figure 3 is an example of a robot with legs, which we used3.

Figure 3: Robot with legs

The state (denote by xt the state at time t) of a robot is a collection of all aspects of the robot and the
environment it is in which could impact its future state. Variables in the state generally include:

3Image from: http://www.ez-robot.com/Shop/AccessoriesDetails.aspx?prevCat=101&productNumber=31
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• The pose. This is the robot's location and orientation relative to a global map of the environment,
this could include three dimensional coordinates as well as angular orientation, velocity and direction
of movement.

• Landmarks which are distinct, stationary features of the environment.

Robots interact with their environments in two distinct ways:

1. Getting information about the state from measurements (sensor data)

2. In�uencing its environment through its actuators (commands given to the robot to carry out).

The �rst interaction speci�es information about the momentary state of the environment and the second
about the change of state in the environment. Generally measurements increase the robots knowledge of
its environment. While motion and control inputs decrease its knowledge due to the stochastic manner in
which the robot necessarily perceives its environment. Now, xt is called a complete state if it is the best
predictor of the future. This implies knowledge of past states, measures (of the environment though sensors,
denoted by zt) and controls (commands given to the robot at time t, denoted by ut) so that no additional
information would be needed to predict the future state of the robot. It therefore follows that theoretically,
the state of the robot at time t is represented by a Markov Chain. However since it is impossible to specify
a complete state in practice we must instead deal with a subset of all state variables, called an incomplete
state. Theoretically however, we still assume that the properties of a Markov chain are satis�ed in some
simpler applications.

3.2 State-space models

This section serves to from the foundations for the next section about state estimation. As mentioned
above, a dynamic Bayesian network is a Bayesian network which is applied to time series data. One such
dynamic Bayesian network is called the hidden Markov model. In these models it is assumed that a past
event may a�ect a future event but that future events do not a�ect the past. Hence all arks in the graphical
representation of this type of Bayesian model always �ow forwards in time. Now if we assumed that the
sequence of variables {Z1, Z2, ..., ZT } form a �rst order Markov process (where a variable at time t is a�ected
only by the variable at time t− 1) then, P (Z1:T ) = P (Z1)P (Z2|Z1)...P (ZT |ZT−1). This frame work may be
adjusted to allow for observations (Zt) to be dependent on some true state variable (Xt) which is hidden and
the sequence of which forms a Markov process. This adjustment creates what is called the hidden Markov
model.

Hence, we assume that we have a sequence of observation vectors {Z1, Z2, ..., ZT } and that these observa-
tions are generated by a hidden variable Xt which denotes the true state of the system. If these state vectors
are assumed to form a Markov jump process then we have the following [13].

P (X1:T , Z1:T ) = P (X1)P (Y1|X1)

T∏
t=2

P (Xt|Xt−1)P (Zt|Xt)

This is a speci�c factorization of the joint probability and so can be represented by a Bayesian network.
This speci�c factorization is identical to that of the hidden Markov model. Here P (Xt|Xt−1) is called
the state-space transition probability and P (Zt|Xt) is called the observation probability. These imply that
the Xt and Zt can both be broken down into stochastic and non-stochastic parts: Xt = f(Xt−1) + vt and
Zt = g(Xt)+ut. This is an important property to note for later sections on the Kalman �lter. It is important
because if both Xt and Zt are linear and time-invariant and if we assume that the relevant noise terms (vt
and ut) are normally distributed then, the model becomes a linear-Gaussian state-space model. So the model
becomes:

Xt = f(Xt−1) + vt = AXt−1 + vt

Zt = g(Zt−1) + ut = CXt + ut
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for some matrices A and C. Where, using the appropriate terminology, A is the state transition matrix
and C is the transformation matrix. If we allow for inputs (Ut) into the system then we have Xt = AXt−1BUt
(if we again assume linearity and Gaussian errors) where B is the input matrix. The assumptions made are
not trivial and we will return to them at a later point.

A very big drawback of hidden Markov models is that, in some cases they are required to model all
possible states of a number of objects of interest. All these objects will also have state vectors which may be
large. This results in a large amount of computational strain [28][13].

3.2.1 Bayesian inference

The a priori information required for inference in the framework described above will be in the form of a prior
probability distribution of the models structure and parameters (all arcs in the model prior to the current
time). New data coming in is then used to update the model via the likelihood function of the new data to
form a posterior distribution.

3.3 State estimation

State estimation is a fundamental and important problem at the core of stochastic robots. It only possible
for the robot to know its initial state with certainty (even then this is not always the case) due to noise in the
the data as well as the inherent uncertainty within any real world environment. It is, therefore, imperative
that a robot be able to stochastically estimate its state and revise this estimation as more data becomes
available. If the robot deterministically evaluated its state based on its previous assumed state then it would
be extremely vulnerable to any kind of remodeled uncertainty within the environment and after making an
error would be unable to correct itself, something which a stochastic robot is capable of. It is also very hard
for a deterministic program to react to a situation where the sequence of events that it expects to happen
don't occur as it assumes they do.

Recursive state estimation is the act of estimating the state of a robot from a sequence of observations
from its sensor data. However, due to technological and economic constrains a robot's sensors will generally
only be able to obtain parts of the information needed and this information will inherently contain a degree
of background noise.

The state xtis generated stochastically from the previous state xt−1. It follows that xt−1 must specify the
probability distribution from which xt is generated. There are two important probabilities which need to be
de�ned:

• The state transition probabilities (how environmental states change over time as a function of controls)
given by: p(xt|x0:t−1, z1,t−1, u1:t) and

• The measurement probabilities (probabilistic law used to generate measurements from the environment)
given by p(zt|x0:t, z1,t−1, u1:t)

where the subscript a : b represents the collection of all variables to which the subscript is attached from
time a to time b.

In this case we will assume that the robot's state forms a Markov process. Since we assume a Markov
process, xt−1will be a complete and su�cient statistic for all that happens up to time t − 1 (including all
previous controls and measurements). Hence xt−1will contain the information from x0:t−1, z1,t−1 and u1:t−1

but not from ut since the state at time t exists independently of any control given to the robot at that same
time. Similarly, xtwill contain the information from x0:t, z1,tand u1:tUsing this information, the probabilities
above can be simpli�ed to:

p(xt|x0:t−1, z1,t−1, u1:t) = p(xt|xt−1, ut)

and
p(zt|x0:t, z1,t−1, u1:t) = p(zt|xt).
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This setup, where the state at time t is determined in part by the control at time t and the measurement
at time t depends on the state, is an example of a dynamic Bayesian network. Speci�cally, it is a hidden
Markov model. This dynamic Bayes network is illustrated graphically in Figure 4.

Figure 4: Dynamic Bayes network where xt, ut and zt are the state, control and measurement at time t

This leads onto the concept of belief distributions. A belief is de�ned as the internal knowledge the
robot has of the state of its environment. A robot's belief can never re�ect the true reality since its beliefs
are inferred from its sensors (the true state can never be measured directly). Belief distributions give the
probability distributions of each of its possible beliefs about its state with respect to the state which it is
actually in. The belief is given by bel(xt) = p(xt| z1:t,u1:t), the probability distribution of the state given
all past control and measurements. Note that this works on the assumption that the measurement at time
t, zt, is known. However, and after control ut but before we have measured zt, the probability distribution
represents a prediction. This predicted belief is given by: bel∗(xt) = p(xt|z1:t−1,u1:t). The idea is for the
robot to start with a prediction it generates of what it thinks the outcome of its control will be on the
environment and once the control is carried out and the new measurement taken, this prediction is updated
in what is called the measurement update step to become the belief distribution at time t [27][28].

3.3.1 Bayes Filter Algorithm

All of the ground work thus far brings us to a cornerstone of probabilistic programming; Bayes Filters. It is
a recursive algorithm for the calculation of beliefs. As such some form or approximation of a Bayesian Filter
is generally present in a probabilistic robot. The general skeleton of the algorithm is given as follows:

Bayes_�lter_algorithm(bel(xt−1, ut, zt)):

for all xt do

bel∗(xt) =

ˆ
P (xt|ut, xt−1)bel(xt−1)dxt−1

bel(xt) = η P (zt|xt) bel∗(xt)
end for

return bel(xt)

where η = 1
P (zt|z1:t−1,u1:t)

.
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This is as a result of Bayes rule which states that: P (x|y, z) = P (y|x,y)P (x|z)
P (y|z) . Applying this to our

problem, it is clear that

bel(xt) = P (xt|z1:t, u1:t) =
P (zt|xt)P (xt|z1:t−1, u1:t)

P (zt|z1:t−1, u1:t)

bel(xt) = η.P (zt|xt).bel∗(xt).

It follows from this that what this algorithm e�ectively does is �rst, to predict the distribution of the
state (bel∗(xt)) at time t, before any measurement is taken. This is done using conditional probabilities. The
second step is to include the measurement, zt, at time t once it has bee taken to �nd a distribution for the
actual belief, bel(xt). This is done by treating bel(xt) as the posterior distribution of the prior distribution,
P (zt|z1:t−1, u1:t) = P (zt|xt) and the likelihood function, bel∗(xt) = p(xt|z1:t−1,u1:t). Bayes rule is then used
to �nd this posterior, giving the distribution of the robots state at time t. This is then repeated for all states.

For this algorithm to be used an initial state x0 is required:

• If this initial state is known with probability 1 then bel(x0) is initialized with a distribution assigning
a probability of 1 to the value of x0and assigning a probability of 0 elsewhere.

• If the initial state is unknown then a uniform distribution over the domain of x0, is assumed.

While this algorithm is a good starting point, in practice, due to the complexity of computing the integral
to obtain a posterior distribution it generally has to be approximated. The Bayes �lter has been found
to be quite robust to approximation, however the a�ects of approximation are not well understood as is
the case with the e�ects of violating the Markov assumption and using incomplete states [27]. A few such
approximations of the Bayes Filter are the Kalman Filter and it variants.

3.4 The Kalman Filter Algorithm

This topic has already been touched on in the preceding sections. We now de�ne this concept directly and in
full detail since it forms the basis for much of the rest of this paper. The Kalman �lter is a linear Gaussian
�lter, meaning that the posterior created is in the form of a Gaussian distribution. Beliefs are represented
by multivariate normal distributions and so results in a uni-modal distribution with a single maximum at
the true state and, for a good approximation, a small spread. Gaussian �lters however are bad for global
estimation problems since these problems comprise many distinct hypotheses and each of these forms its
own mode in the posterior distribution making computation and interpretation quite di�cult. These can
be parametrized via moments parametrization using the standard µ (mean) and Σ (covariance matrix) or
via conical parametrization. The Kalman �lter is numerically e�cient, minimizes mean square error in
parameters when noise can be assumed to be normally distributed. In the cases where normality can't be
assumed it gives the best linear estimate, if the mean and variance of the noise are known. A Bayes �lter
posterior is Gaussian if, in addition to ful�lling the Markov assumption [28]:

1. The state transition probability must be a linear function of its arguments with added Gaussian noise.
A linear Gaussian system is given by: xt = Atxt−1 + Btut + εt where εt ∼ N(0, Rt) is an error term
(or noise term), Bt and At are n × n and n ×m constant matrices respectively. The matrix At is the
transition matrix , it applies the e�ect of each state parameter at time t − 1 to the state at time t.
The matrix Bt is the control input matrix, it applies the e�ect of each control input on the state at
time t[? ]. So when this xt is considered as a multivariate normal distribution the result is a posterior
distribution with a mean Atxt−1 +Btut and variance Rt

2. The measurement probability also needs to be a linear with Gaussian noise; zt = Ctxt + δt where
δt ∼ N(0, Qt) is the parameter for measurement noise. Where Ct is a transformation matrix. It
transforms the state vector into the domain of the measurements. So the measurement probability
becomes:

p(zt|xt) = |2πQt|−
1
2 e−

1
2 (zt−Ctxt)

′Q−1
t (zt−Ctxt)
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3. The internal belief must be such that bel(x0) ∼ N(µ0,Σ0), where

bel(x0) = p(x0) = |2πΣ0|−
1
2 exp(−1

2
(x0 − µ0)′Σ−1

0 (x0 − µ0)).

These three conditions imply that the belief at time t, bel(xt) is Gaussian at any point in time, t.
The Kalman �lter operates by updating assumptions using new data. This relies on Bayes' Rule: f(θ) ∝

π(θ)L(θ;x). This says that the posterior distribution of the state of the robot will be proportional to the
product of the prior distribution of the state and the likelihood of observing the measurements which were
observed, given the current state.

The Kalman �lter (named after Rudolf E. Kálmán)[9] is used speci�cally for �ltering and prediction in
linear Gaussian systems with continuous states. Moments parametrization is used here; at time t the state is
represented by the state mean µt and the state covariance Σt. It is an algorithm that allows exact inference
in a linear dynamical system where all latent variables are continuous and all observed variables have a
Gaussian distribution[9]. For the one-dimensional case with Gaussian noise it has been shown to be the
optimal estimator of the true state vector of the robot. The standard form has two steps; prediction and a
measurement update step.

The Kalman �lter algorithm is given by:

Algorithm Kalman �lter(µt−1,Σt−1, ut, zt) :

µ∗t = Atµt−1 +Btut

Σ∗t = AtΣt−1A
T
t +Rt

µt = µ∗t +Kt(zt − Ctµ∗t )
Σt = (I −KtCt)Σ

∗
t

return µt,Σt

where Kt =
Σ∗tCt

CtΣ∗tC
′
t+Qt

is the Kalman gain and is the degree to which measurements are incorporated

into the new state estimates, it is chosen such that the covariance matrix (Σt) is minimised, and Ctµt is the
expected value of the measurement at time t. zt = Ctxt + δtand δt ∼ N(0, Qt). The Kalman �lter is also
computationally e�cient.

One of the largest bene�ts of the Kalman �lter is that it it very robust to uncertainty because of the
fact the it can operate in the absence of a measurement and just perform the prediction step to estimate the
new state using the most recent information available to it. So the prediction and measurement update can
function independently of one another. This is demonstrated by the example in the following section.

The disadvantages of the Kalman �lter are a result of the assumptions that it makes. It assumes both
linearity in its model as well as normally distributed error terms. When the error terms are not normally
distributed and especially in the case where the error increases over time, the Kalman �lter begins to stray
from the true model. Since linearity is assumed, it means that the Kalman �lter can only accurately estimate
systems which develop linearly. It is possible to combat this second drawback, to some extent, if measurements
can be made at regular intervals where the intervals are very small. This will give a type of local linear
approximation to the function.

3.4.1 Kalman �lter example

To illustrate the workings of the Kalman �lter in one-dimension consider estimating the distance of an object
where the object can accelerate or move at a constant velocity. First the transition and input control matrices
need to be de�ned. In order to do this we consider the manner in which position, velocity and acceleration
are related.

pt = p0 + v0t+ 1
2at

2

vt = v0 + at
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where pt is displacement at time t, vt is the velocity and at is acceleration at time t. In this example,
however, we consider a constant rate of acceleration to preserve linearity and so at = a. Here t is the amount
of time past since the �rst observations but we assume a Markov chain and so need only estimate these values
using the ones preceding them directly. Modifying the equations above:

pt = pt−1 + vt−1dt+ 1
2adt

2

vt = vt−1 + adt

Here dt represents the amount of time past between the values at time t and those at the previous time
step, t− 1. Here we assume uniform intervals of measurement, half a second apart each time for 200 seconds
so dt = 0.5. So if the state consists of position and velocity then they will be updated as follows:[

pt
vt

]
=

[
1 dt
0 1

] [
pt−1

vt−1

]
+

[
1
2dt

2

t

]
a[

pt
vt

]
= At

[
pt−1

vt−1

]
+Bta.

This gives us the process:xt = Atxt−1 + Btut + εt with an added error term εt. As an initial guess here
we will assume that the object being tracked will have started at a distance of 0 and have velocity 0 too,

hence

[
x0

v0

]
=

[
0
0

]
. We, furthermore, assume that process noise is 0.092, Qt = 36 and a = ut = 2.

So we then if we assume that all variability in the process is attributed to its acceleration, we have that:

Rt = 0.092

[
dt4

4
dt3

2
dt3

2 dt2

]
, since:

var(pt) = var(pt−1 + vt−1dt+ dt2

2 at) = dt4

4 var(at) = 0.092 t4

4

var(vt) = var(vt−1 + atdt) = dt2var(at) = dt20.092

cov(pt−1 + vt−1dt+ dt2

2 at, vt−1 + atdt) = dt3

2 0.092

Now applying the Kalman �lter to this problem:
Prediction step:

µ∗t = Atµt−1 +Btut

Σ∗t = AtΣt−1A
T
t +Rt

So for the �rst time step:

µ∗1 = A1µ0 +B1u1

Σ∗1 = A1Σ0A
T
1 +R1

µ∗1 =

[
1 0.5
0 1

] [
0
0

]
+

[
1
2
1

]
2 =

[
1
2

]
Σ∗1 =

[
1 0.5
0 1

] [
0
0

] [
1 0

0.5 1

]
+ 0.092

[
0.015625 0.0625
0.0625 0.25

]
=

[
0.001265625 0.00050625
0.00050625 0.002025

]
Now, the measurement update step:
Assume that the �rst measurement the robot takes tells it that z1 = 11.9565 is the position of the object

being tracked and that the robot can only measure distance, not velocity or acceleration. Since this is the
case, it also follows that, the transformation matrix is given by Ct =

[
1 0

]
because only the position

component of the state vector will be a�ected by the measurements and the same units of measurement are
assumed to have been used in both cases. Then we have:
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K1 =
Σ∗1C

T
1

C1Σ∗1C
T
1 +Q1

=

[
0.001265625 0.00050625
0.00050625 0.002025

] [
1
0

]
(
[

1 0
] [ 0.001265625 0.00050625

0.00050625 0.002025

] [
1
0

]
+ 36)−1

=

[
0.001265625
0.00050625

]
0.0277768

=

[
0.000035155
0.000014062

]

µt = µ∗1 +Kt(zt − Ctµ∗1)

Σt = (I −KtCt)Σ
∗
t

µ1 = µ∗1 +K1(z1 − C1µ
∗
1)

Σ1 = (I −K1C1)Σ∗1

µ1 =

[
1
2

]
+

[
0.000035155
0.000014062

]
(11.9565−

[
1 0

] [ 1
2

]
) =

[
1.000385176
2.00015407

]
Σ1 = (

[
1 0
0 1

]
−
[

0.000035155
0.000014062

] [
1 0

]
)

[
0.001265625 0.00050625
0.00050625 0.002025

]
=

[
0.0012656 0.0005062
0.0005062 0.002025

]
This process is then repeated continually and although the �lter starts fairly far from the correct position,

it corrects itself very quickly as shown by the graph of a simulation of this example in Figure 5.

Figure 5: Graph of the one dimensional Kalman �lter from MATLAB for the illustration example discussed

Here the actual displacement of the object is represented by the red line, the black line connects the noise
observations of distance that the robot receives and the green represents the Kalman �lter estimates. The
code for generating this graph can be found in the appendix.

To demonstrate how Bayes' Rule is used here refer to Figure 6, where the normal distributions of the
observed and predicted values are combined to form a posterior distribution for the objects position. In Figure
6 a graphical representation of the update step is given. The predicted distribution of the state xt is �rst
found at time t. After that an observation is obtained at time t. This observation has a distribution given by
its likelihood function of occurring. The posterior distribution for the state is then found by applying Bayes
rule. Here the posterior distribution is seen to have much more variability than the predicted distribution.
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Figure 6: Bayes' rule illustrated in Kalman �lter

This is usually the case since, there is generally a larger error in measurement than error in the process.
In the amount by which the prediction is weighted against the likelihood when the posterior is formed is
determined by the Kalman gain (Kt). It is a function of both the process and measurement covariances
since these determine the amount of trust which can be placed in the predicted distribution and likelihood
respectively. This code is found in Appendix 5. It was edited and adapted from Student Dave's Tutorials4.

3.4.2 How the updated distribution is found

The statistics behind these normal plots are as follows.

• Prediction:

bel∗(xt) =
´
p(xt|xt−1, ut).bel(xt−1)dxt−1where p(xt|xt−1, ut) ∼ N(xt;Atxt−1 + Btut, Rt) and bel(xt−1) ∼

N(xt−1;µt−1,Σt−1)

bel∗(xt) = η

ˆ
e−

1
2 (xt−Atxt−1−Btut)

′R−1
t (xt−Atxt−1−Btut)e−

1
2 (xt−1−µt−1)′R−1

t (xt−1−µt−1)dxt−1

Let Lt =
1

2
(xt −Atxt−1 −Btut)′R−1

t (xt −Atxt−1 −Btut) +
1

2
(xt−1 − µt−1)′R−1

t (xt−1 − µt−1)

Then bel∗(xt) = η

ˆ
e−Ltdxt−1

Now setting the �rst derivative of Lt = 0 gives us the mean:

xt−1 = Ψt( A′tR
−1
t At(xt−1 −Btut) + Σ−1

t−1µt−1)

Now det(2πΨ)−
1
2 e−Lt(xt−1,xt) is a valid PDF and that we must then therefore have that:

ˆ ∞
−∞

det(2πΨ)−
1
2 e−Lt(xt−1,xt)dxt−1 = 1

ˆ ∞
−∞

e−Lt(xt−1,xt)dxt−1 = det(2πΨ)
1
2

4http://studentdavestutorials.weebly.com/kalman-�lter-with-matlab-code.html
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Hence the value of the integral is independent of the value of xt. This implies that the integral is constant
and so can be absorbed into the constant η to create a new constant function η∗. Then we get that:

bel∗(xt) = η∗e−Lt(xt)

Now:

Lt(xt) =
1

2
(xt −Btut)′R−1

t (xt −Btut) +
1

2
µ′t−1Σ−1

t−1µt−1 −
1

2
[A′tR

−1
t (xt −Btut)

+Σ−1
t−1µt−1]′(A′tR

−1
t At + Σ−1

t−1)−1[A′tR
−1
t (xt −Btut) + Σ−1

t−1µt−1]

From this we also see that Lt(xt) is quadratic in xt. This implies that bel∗(xt) is normally distributed.

Setting ∂Lt(xt)
∂xt

= 0 to obtain the minimum and solve for the mean:

xt = Btut +Atµt−1 is the mean of bel∗(xt)

Now:
∂2Lt(xt)
∂x2

t
= (AtΣ

−1
t−1A

′
t + Rt)

−1gives the curvature of Lt(xt) and so the inverse of this must give us the

covariance of bel∗(xt). We now have the mean and covariance of the normal distribution obtained from the
prediction step:

µ∗t = Btut +Atµt−1

Σ∗t = AtΣ
−1
t−1A

′
t +Rt

• Measurement update:

bel(xt) = ηp(zt|xt)bel∗(xt)

where p(zt|xt) ∼ N(zt;Ctxt, Qt) and bel
∗(xt) ∼ N(xt;µ

∗
t , Σ

∗
t ). Then: bel(xt) = ηe

1
2 (zt−Ctxt)

′Q−1
t (zt−Ctxt)+

1
2 (xt−µ∗t )′Σ∗−1

t (xt−µ∗t ).
The exponent is a function which is quadratic in xt, say Jt. This implies that bel(xt) is a Gaussian function.
To get the parameters of this new normal distribution we now follow the same steps as above.

∂J
∂xt

= −C ′tQ−1
t (zt − Ctxt) +Σ∗−1

t (xt − µ∗t ), minimising this function will result in the mean of bel(xt) :

Let Kt = CtQ
−1
t (C ′tQ

−1
t Ct +Σ∗−1

t )−1

Henceµt = µ∗t +Kt(zt − Ctµ∗t )

Σt = (C ′tQ
−1
t Ct +Σ∗−1

t )−1

Furthermore Kt = ΣtC
′
tQ
−1
t

= ΣtC
′
tQ
−1
t (CtΣ

∗
t C
′
t +Qt)(CtΣ

∗
t C
′
t +Qt)

−1

= Σ∗t C
′
t(CtΣ

∗
t C
′
t +Qt)

−1

From this de�nition: Σt = (C ′tQ
−1
t Ct +Σ∗−1

t )−1

= [I −KtCt]Σ
∗
t
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3.4.3 Additional notes on the Kalman �lter

It must be noted that because the Kalman �lter relies on the assumption of a Markov process, it is susceptible
to small localized variations in the process as it is observed. For example, suppose at present we observe an
extreme measurement which should come from the one of the tails of the true distribution of the process.
This extreme observation will still cause the Kalman �lter to momentarily shift in its own direction away from
the true process. However, provided that the following observations are not also too extreme, the Kalman
�lter will correct itself just as quickly.

It is also important to note that in the case where the processes assumed variance is much larger than the

variance of the observations that this causes the Kalman gain to be very close to 1 since Kt =
Σ∗tCt

CtΣ∗tC
′
t+Qt

.

This is especially the case where the process variance increases over time. The consequence in a situation
such as this is that the Kalman �lter will tend to follow the variance in the observable process and give less
weight to initial internal model that it is given about how to process should progress. In some cases this is
desirable as that large amounts of variation from the initial idea could be indicative of have made the wrong
assumptions initially.

3.5 Gaussian Mixture Model Background Subtraction

Another method for tracking moving objects is to use Gaussian mixture model [25]. This done by using
a �xed number, K, of Gaussian distributions. Each uniform object or surface is represented by one of
k = {1, 2, ...K}states where K is an assumed constant number of surfaces. Some states are part of the
background of the image and others the foreground. Here the background is made up of all static objects
in the image frames of the video and the foreground will be made up of objects which are moving. In some
motorway surveillance systems three Gaussian distributions are used; one to model the cars, one for their
shadows and one for the road [3].This model has two parameters α and T . α is a learning constant and
T is the fraction of the data which should be explained by the background. The rate of adaption of the
model is controlled by a global parameter α ∈ (0, 1). Small values of α result in a model which takes too
long to converge and large values result in the model being too sensitive. As each new frame arrives the
parameters of the Gaussian distributions are updated and are then evaluated to determine which are part of
the background. It works as follows.

Each pixel is characterized using the RGB colour space and then the probability of observing those particu-
lar values is calculated as: P (Xt) =

∑K
i=1 ωi,tη(Xt, µi,t,Σi,t) whereXt is the pixel value and η(Xt, µi,t,Σi,t) =

1

(2π)
n
2 |Σ|

1
2
e−

1
2 (Xt−µi,t)

′Σ−1
i,t (Xt−µi,t) is a Gaussian probability density function with mean µi,t and standard

deviation Σi,t. It is assumed that the colour components are independent and have equal variances. So
Σi,t = σ2

i,tI. K is the number of distributions, ωi,t is the weight of the i
th Gaussian at time t with mean µi,t

and standard deviation Σi,t. Hence the probability of each pixel value is made up of the mixture of K Gaus-
sian distributions.K is determined by computational restrictions as well as the modality required to model
the background. The weights, means and covariances can be initialized using expectation-maximization
algorithms [3].

When initialization is done, the �rst foreground detection is carried out. The parameters of the K
Gaussian distributions are then updated. In [25], the ratio rj =

ωj

σj
is used as a criterion for ordering the K

Gaussians. The idea being that a background pixel will have a higher weight but lower variance than a moving
object since it should be more persistent in the image. The �rst B Gaussians exceeding a certain threshold
value, T , are then taken to be part of the background distribution where: B = argminb(

∑b
i=1 ωi,t < T ). The

remaining distributions are assumed to be part of the foreground.
The next frame is received at time t+1 and a match test is conducted on each pixel. A pixel is assumed to

match a certain Gaussian distribution if the Mahalanobis distance:
√

(Xt+1 − µi,t)TΣ−1
i,t (Xt+1 − µi,t) < kσi,t

where k is a constant threshold which is generally taken to be 2.5.
Now either a match will be found with one the K Gaussians or there will not be a match. If the pixel

matches with one of the K Gaussians which happens to be a background Gaussian then, the pixel is classi�ed
as being in the background otherwise, it is in the foreground. If no match is found the pixel is also classi�ed
as part of the foreground. We now have what is called a binary mask. The parameters then need to be
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updated before the next foreground detection is performed. For components that match the update is done
as follows.

ωi,t+1 = (1− α)ωi,t + α

µi,t+1 = (1− ρ)µi,t + ρXt+1

σ2
i,t+1 = (1− ρ)σ2

i,t + ρ(Xt+1 − µi,t+1)(Xt+1 − µi,t+1)T

ρ = αη(Xt+1, µi,Σi)

For unmatched components the updates of mean and variance are the same but the weights are updated
by ωj,t+1 = (1− α)ωj,t.

If no components match with any of the K Gaussian distributions then the least probable distribution k
is replaced by a new one with parameters:

ωi,t+1 = some low prior weight

µi,t+1 = Xt+1

σ2
i,t = some large initial variance

This process is then repeated. This process is good at tracking, however it is not robust to occlusion or
missing values and so is out performed by the Kalman �lter in such situations.

3.6 The Location Problem

Another fundamental problem in the world of robotics is the location problem: locating the robot relative
to a map of the area it which it is operating. This may be regarded as a coordinate transformation problem.
One where the global coordinate system must be translated to the internal coordinate system of the robot
[28]. However the catch is that the robots pose can't be sensed directly and so must be inferred from noisy
sensor data. There are various levels to this problem and they can be broken up into the following categories:

Local versus global localization: The type of information available initially and at run time de�ne the
type of localization problem. The availability and type of information distinguishes three di�erent localization
problems. These in order of increasing di�culty are :

1. Position tracking : The initial pose is assumed to be known. Localization is accomplished through
accounting for the noise created by the motion of the robot. The e�ect of this noise is usually very
small. This is classi�ed as a local problem since the uncertainty which needs to be dealt with is �local�
in that it is con�ned to a relatively small region near the robot's pose.

2. Global localization: Here the initial pose of the robot is unknown. So the robot may be placed in a
familiar environment but not be told where in that environment it is. Here the amount of error cannot
be assumed to be small since it is, in-fact, unbounded if the robot has no idea where it is at all. The
robot does however know that it doesn't know where in the environment it is (it knows that there is a
very large amount of uncertainty in its estimation of its position).

3. Kidnapped robot problem: Here a robot is assumed to be �kidnapped� while operating and replaced in
a di�erent location in the same environment. One of the main di�culties here is that the robot may
in-fact think that it knows where it is when it actually doesn't.

Static versus dynamic environments: In a dynamic environment, objects other that the robot have the
ability to change their location or con�guration over time. In a static environment the only variable quantity
is the robot's pose. So the only object that can move is the robot itself.
Passive versus active approaches: In a passive approach the localization module in the robot only
observes the environment and the robot's motion is not aimed at helping the robot localize itself. Active
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algorithms control the robot and its motion to minimize localization error.

In localization a map is de�ned as a list of objects, m = {m1, ...,mN}, in the environment and their corre-
sponding properties. These objects are points of interest in the map (landmarks) such as obstacles, walls and
people. Two important ways to go about mapping an environment are:
Location-based maps: This is a volumetric approach, it gives a label to any location in the environment.
Hence they contain information about objects in the environment as well as about the absence of objects in
the environment.
Feature-based maps: These only specify the shape of the environment at speci�c locations (where objects
are located).

3.6.1 Markov Localization Algorithm

This algorithm is a variant of the basic Bayes �lter where the map (m) is incorporated into the state
transition (motion) model as well as the measurement model. These become p(xt|xt−1, ut,m) and p(zt|xt,m)
respectively. It is capable of addressing the global localization problem as well as the kidnapped robot
problem in a static environment.

4 Application

4.1 Colour Identi�cation with EZ - Robot

Using the EZ-Robot interface and one of the robots, the Revolution JD, colour identi�cation was explored.
The built-in Multi-Color Tracking algorithm is activated and used to make the robot point in the direction
of a speci�ed colour when it is seen. This can be done using the graphical user interface supplied by the
EZ-Builder platform or by using the code in Appendix 5. The colour tracking algorithm in the platform
works by looping through all the pixels in the image and searching for pixels in the colour range speci�ed in
the code5. In the EZ-Builder platform the ARGB32 platform is used. Once all the speci�c coloured pixels
are identi�ed they are extracted from the image and the AForge Blob function6 is used to identify groups of
the speci�c coloured pixels of a certain size or within a speci�ed range of size. The result is a list of locations
of where there are chunks of the speci�c colour in the image. The code used to do this can be found in the
appendix.

4.2 Two Dimensional Kalman Filter on Video Frames

4.2.1 Introductory example

As an introduction to this section we �rst apply the Kalman �lter to a very simple scenario in order to
demonstrate the underlying principal of the more complex example which follows, involving analysis on video
frames. This code is in Appendix 5.

In this model we model the position of an object in two dimensional space. We assume that the object
has a constant velocity in both the x and y directions. Only the x and y positions at each time are observed
not the corresponding velocities. Hence we have both linearity and the data are generated to have Gaussian
error terms.

The model is therefore given by:

5http://www.ez-robot.com/Community/Forum/Thread?threadId=7505
6http://www.aforgenet.com/framework/features/blobs_processing.html
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Xt = AtXt−1 + εt

=


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

Xt−1 + εt

and

Zt = CtXt + δt

=

(
1 0 0 0
0 1 0 0

)
Xt + δt

where Xt =


xt
yt
ẋt
ẏt

 =


x displacement
y displacement
x velocity
y velocity

 and δt and εt and Gaussian error terms. There are no control

inputs here since we assume a constant velocity and no external forces acting on the object. The exact
distribution of the measurement and process error is not important. This is because when the model is
implemented, we assume that this information is unknown and that the magnitude of the error must be
inferred or found by trail and error to give the best results. However, it is assumed that the covariance matrices

for the process and measurements have the following form: Rt ∝


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and Qt ∝
(

1 0
0 1

)
.

That is, we assume that the displacements and velocities in each direction are independent processes.
In Figure 7 the theoretical, observed and real-world values are plotted on the same axes.

Figure 7: Graph and theoretical, observed and real values of the model in the simple SAS IML example

Applying the Kalman �lter to this data, we obtain the graph in Figure 8.
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Figure 8: Kalman �lter applied to the SAS IML example data

4.2.2 Missing data points

Next we set some of the observed data points to be missing values. Here the 10th to the 15th observations
are set to be missing values. Now we applying the Kalman �lter again in Figure 9.

Figure 9: Kalman �lter for SAS IML example with missing observations

Here we see that even though there are no longer any observations, the Kalman �lter is still able to
use its knowledge of the last known observation to keep predicting what will happen until it receives a new
observation. Most deterministic programming would simply take the position on the graph as x progresses as
being estimated by the previous observed position. This becomes a problem when there is no last observed
position or when the last observed position was very long ago.
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It is evident here that the large amount of variation in the observable process causes the Kalman �lter
to adjust when there are a number of observations which seem to display some sort of trend due to random
variations in the same direction consecutively. This is the second idea which was discussed in the section
titled additional notes on the Kalman �lter above.

4.2.3 Application to video frames

Figure 10: Screen shot of video used

In this section a 2D Kalman �lter is applied to a video of a ball being rolled across the screen. The ball passes
under a box in the process. Both the Kalman �lter and tracking using Gaussian mixture model background
subtraction are used to graphically illustrate to the di�erence in performance. This video was obtained from
a MathWorks tutorial7.

The Gaussian background subtraction �rst applied to the original video frames. This isolates the move-
ment of the ball since it is the only mobile object in the video. It does this (as explained above) by comparing
the pixels in successive frames by assigning each of the a Gaussian probability distribution and then checking
if the change in the colour of the pixel between the frames is signi�cant with respect to the distribution
assigned to it. The result is that only the pixels in each frame which change signi�cantly are highlighted.
When these frames are put back together the result is that we observe the ball move across the screen and
vanish when it moves under the box and then reappear again when it rolls out from the other side. These
frames are then used to obtain the coordinates of the ball on the screen at certain intervals.

The Kalman �lter then takes those coordinates as measurement values and predicts the position of the
ball over its whole trajectory. Since it doesn't require measurements to form a prediction however, it is
capable of predicting the position of the ball even while it is under the box and �lls in the gap left by the
background subtraction model.

A screen shot of the video setup is given in Figure 10. The two methods were implemented using Python.
The code used here can be found in the appendix. The results are shown in Figure 11. Where the blue dots
represent the state with the Kalman �lter output and the red crosses are the state measurements outputted
by the Gaussian mixture background subtraction method. From this it is apparent that while the background
subtraction method only makes use of the immediate information with in the current frame, the Kalman �lter
is capable of using all information from previous frames too. The Kalman �lter uses this previous information
to predict the location of the ball when no measurements are found within the data because the ball moves
under the box and so cannot be seen by the camera. The code for this example is found in Appendix 5.

This clearly illustrates the utility of the Kalman �lter (and indeed Bayesian state estimation methods
in general) when applied to situations where there is uncertainty or missing information. They have the
ability to draw on past information to make inferences about the future state of a system. However, because
this inference is done in a stochastic manner, it means that the system doesn't just estimate a single future

7MathWorks tutorial:http://www.mathworks.com/help/vision/examples/using-kalman-�lter-for-object-tracking.html
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Figure 11: Kalman �lter vs. Gaussian mixture background subtraction tacking

outcome but a number of future outcomes. All of these outcomes have a likelihood attached to them and these
outcomes and their likelihoods change according to what is actually observed. In this way, all possibilities are
accounted for and considered instead of only considering the most likely outcome at each step and discarding
the rest. This also allows for more versatility in cases where an unexpected event (the object disappearing
under a box) occur.

5 Conclusion

The primary aim of this research was to investigate the world of robotics from a statistical point of view.
To that end, some of the main challenges in robotics were examined to supplement the idea that more
"intelligent" robotics are made possible using a stochastic approach to how a robot perceives and interacts
with its environment. Intelligent, in this case, implying that a robot which is programmed probabilistically
is more capable of making adjustments, working in the presence of uncertainty or missing data and to some
extent, capable of learning from it experience as compared to a robot which has been programmed with a set
of deterministic rules. It was found that Bayesian �lters can successfully implemented to process the kind
of data and information needed to implement this kind of stochastic approach to robotics. The basic idea
is that the robot will have a vector stored in its memory with information about its environment which is
pertinent for it to perform its desired function. The bigger this vector, the more accurate the robot will be.
However, the obvious problems with lack of memory and computational power which constrain the size of
this so-called state vector. The state of the robot is populated with whatever information is available and as
the robot operates over time it will gather more data about its environment. A Bayesian �lter operates in
the background, it assigns a speci�c probability distribution to the robot's current state and a likelihood to
the new incoming data. The probability distribution of the state is treated as a prior distribution and Bayes'
rule is applied to this and the likelihood to give a resulting prior distribution for the robot's new state. The
idea is that the use of a probability distribution which is continually updated by new information will allow
for uncertainty, adaptability and a certain degree of learning from the environment which a robot which is
deterministically programmed cannot be capable of.

The focus then shifted speci�cally to the Kalman �lter, one of the most popular and widely used Bayesian
�lters. The Kalman �lter is applied widely for use in the �ltering noise in digital images, object tracking and
image retrieval [18]. Here its capability was demonstrated by applying the methodology to object tracking
in the �eld of computer vision. It was demonstrated that while a normal Gaussian background subtraction
could be used ot track the motion of a ball, when the ball in no longer visible the robot will stop tracking it.
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However, when applying a Kalman �lter to the data from the background subtraction, the �lter is capable
of predicting the balls motion even when it cannot be seen. Although this method will be computationally
more taxing, the idea was to demonstrate the adaptability and "intelligence" of this approach in that while
the ball cannot be seen, the robot will still "know" where the ball is.

The drawbacks of this methodology which have been touched on in the preceding paragraphs are twofold.
Firstly, the calculation of the posterior distribution is computationally taxing and in many cases the integrals
which need to be solved are prohibitively complicated. This has always been a problem with regards to the
implementation of Bayes' rule. The second issue is that of memory; for a robot to run all of its systems using
this kind of approach (not just its camera as demonstrated here) will require the robot to store large amounts
of information. If the goal of this kind of probabilistic programming is some form of "intelligent" robot then,
while robots programmed in this way can certainly be shown to be more intelligent in some ways, for the
robot to become increasingly intelligent and aware (of its own state and its surroundings) will require ever
increasing amounts of information and processing power. On a more positive note however, memory capacity
and computational power limits remain on an upwards trend and only years ago some of the applications
discussed here would have been impossible.

In the future it would be interesting to investigate the rate of technological advancement required for an
increases level of ability. Closely related to this is the question of exactly what information is relevant to
what kind of tasks and if it is possible to determine a base number of variables required to perform these
speci�c tasks to a reasonable degree of accuracy.
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Appendix

SAS IML code for simple Kalman �lter example:

*Kalman filter in IML; *data generation;

proc iml;

n=20;

y=J(n,1,.); yproc=J(n,1,.); yobs=J(n,1,.);

y[1,]=0; yproc[1,]=0; yobs[1,]=0;

x=J(n,1,.); xproc=J(n,1,.); xobs=J(n,1,.);

x[1,]=0; xproc[1,]=0; xobs[1,]=0;

Vx=J(n,1,.); Vxproc=J(n,1,.);

Vx[1,]=2; Vxproc[1,]=2;

Vy=J(n,1,.); Vyproc=J(n,1,.);

Vy[1,]=2; Vyproc[1,]=2;

e1=0; e11=0;

e2=0; e22=0;

do t=2 to n;

call rannor(1,e1);

e1=e1*.09;

call rannor(2,e11);

e11=e11*.09;

call rannor(6748,e2);

e2=e2*1.05;

call rannor(3,e22);

e22=e22*1.05;

*true process;

x[t,]=x[t-1,]+Vx[t-1,];

y[t,]=y[t-1,]+Vy[t-1,];

Vx[t,]=Vx[t-1,];

Vy[t,]=Vy[t-1,];

*Obeservable process;

xproc[t,]=xproc[t-1,]+Vxproc[t-1,];

yproc[t,]=yproc[t-1,]+Vyproc[t-1,];

Vxproc[t,]=Vxproc[t-1,]+e1;

Vyproc[t,]=Vyproc[t-1,]+e11;

*observed;

xobs[t,]=xproc[t,]+e2;

yobs[t,]=yproc[t,]+e22;

end;

*xobs[10:15,]=.;

*yobs[10:15,]=.;

dat=x||y||Vx||Vy||xproc||yproc||Vxproc||Vyproc||xobs||yobs;

create kalman_data var{x y Vx Vy xproc yproc Vxproc Vyproc xobs yobs};

append from dat;
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quit;

goptions reset=all;

title1 "True values vs. values with operational and observational error";

symbol1 interpol=join

value=none

color=green;

symbol2 interpol=join

value=none

color=maroon ;

symbol3 interpol=join

value=none

color=darkblue ;

axis1 label=("X");

axis2 label=("Y");

legend1 label=none

value=('Real process' 'Observations' 'Theoretical process')

position=(top left inside)

mode=share;

run;

proc gplot data=kalman_data;

plot yproc*xproc yobs*xobs y*x / overlay legend=legend1 haxis=axis1 vaxis=axis2;

run;

*Kalman filter;

proc iml;

use Kalman_data;

read all var {x y Vx Vy xproc yproc Vxproc Vyproc xobs yobs};

n=20;

Rt=I(4)*15;

Qt=7*I(2);

At={1 0 1 0, 0 1 0 1, 0 0 1 0, 0 0 0 1};

Bt=0;

ut=0;

zt=xobs||yobs||Vxproc||Vyproc;

ct={1 0 0 0, 0 1 0 0};

mustar=J(4,n,.);

mustar[,1]={0,0,2,2};

mut=J(4,n,.);

mut[,1]={0,0,2,2};

sigmat=I(4);

do i=2 to n;

*prediction step;

mustar[,i]=At*mut[,i-1]+Bt*ut;

sigmastar=At*sigmat*At`+Rt;

*update step;

Kt=(sigmastar*ct`)*inv(ct*sigmastar*ct`+Qt);

if zt[i,1:2]=. then do;
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mut[,i]=mustar[,i];

end;

else do;

mut[,i]=mustar[,i]+Kt*(ct*t(zt[i,])-ct*mustar[,i]);

end;

sigmat=(1-Kt*ct)*sigmastar;

end;

xk=T(mut[1,]);

yk=T(mut[2,]);

dat2=xk||yk||xobs||yobs||xproc||yproc;

create plot var{xk yk xobs yobs xproc yproc};

append from dat2;

quit;

goptions reset=all;

title1 "Kalman filter";

symbol1 interpol=join

value=dot

color=black;

symbol2 interpol=join

value=circle

color=maroon ; symbol3

interpol=none

value=star

color=darkblue ;

axis1 label=("X");

axis2 label=("Y");

legend1 label=none

value=('Obsevered' 'Kalman filter' 'true')

position=(top left inside)

mode=share;

run;

proc gplot data=plot; plot yobs*xobs yk*xk yproc*xproc/ overlay legend=legend1 haxis=axis1 vaxis=axis2 ;

run;

quit;

Matlab code for 1D Kalman �lter:

duration = 200;

dt = .5;

At = [1 dt; 0 1] ;

Bt = [dt^2/2; dt];

Ct = [1 0];

ut = 2;

mu= [0; 0];

mu_star = mu;

Rt = 0.09^2;

Qt = 36;
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Sigmat = Rt * [dt^4/4 dt^3/2; dt^3/2 dt^2];

sigma_star = Sigmat;

x = [];

Vx = [];

measured_position = [];

figure(2);clf

figure(1);clf

for t = 0 : dt: duration

error1 = Rt^0.5 * [(dt^2/2)*randn; dt*randn];

mu= At * mu+ Bt * ut + error1;

Obs_error = Qt * randn;

z = Ct * mu+ Obs_error;

x = [x; mu(1)];

measured_position = [measured_position; z];

Vx = [Vx; mu(2)];

plot(0:dt:t, x, '-r.')

plot(0:dt:t, measured_position, '-k.')

axis([0 15 -30 300])

hold on

end plot(0:dt:t, smooth(measured_position), '-g.')

x_estimate = [];

Vx_estimate = [];

mu= [0; 0];

sigma_estimate = sigma_star;

sigma_mag_estimate = [];

Pred_state = [];

Pred_cov = [];

for t = 1:length(x)

% Prediction step

mu_star = At * mu_star + Bt * ut;

Pred_state = [Pred_state; mu_star(1)] ;

sigma_star = At * sigma_star * At' + Sigmat;

Pred_cov = [Pred_cov; sigma_star] ;

% Kalman Gain

K = sigma_star*Ct'*inv(Ct*sigma_star*Ct'+Qt);

% Update step

mu_star = mu_star + K * (measured_position(t) - Ct * mu_star);

sigma_star = (eye(2)-K*Ct)*sigma_star;

x_estimate = [x_estimate; mu_star(1)];

Vx_estimate = [Vx_estimate; mu_star(2)];

sigma_mag_estimate = [sigma_mag_estimate; sigma_star(1)];

end

title('One dimensional Kalman filter')

xlabel('Time')

ylabel('Displacement')

figure(2);

tt = 0 : dt : duration;

plot(tt,x,'-r.',tt,measured_position,'-k.', tt,x_estimate,'-g.');

axis([0 15 -30 300])
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Code for EZ-Robot colour tracking:

#Identify colour and point at that colour

:loop

#reset servo positions

ControlCommand("Auto Position", AutoPositionFrameJump, "Calibrate")

sleep(100)

ControlCommand("RGB Animator", AutoPositionAction, "spin")

servospeed(d0, 4)

servospeed(d1, 4)

#Define colour variable and start the camera

$CameraObjectColor = ("Blue")

ControlCommand("Camera", CameraStart)

SayWait("let me see")

#Enable colour tacking on the camera

ControlCommand("Camera", CameraMultiColorTrackingEnable)

#Define reaction to seeing or not seeing the colour

IF ($CameraObjectColor != "Blue")

SayWait(" No I do not see the color")

ENDIF

IF ($CameraObjectColor = "Blue")

SayWait("I see an object colored" + $CameraObjectColor)

#Say the camera coordinates of the object

SayWait("It is in" +$CameraVerticalQuadrant +"and" +

$CameraHorizontalQuadrant)

ENDIF

#Move arms to react to the position of the object

#Object is on the left side

IF ($CameraHorizontalQuadrant = "Left")

Servo(D4, 5)

IF ($CameraVerticalQuadrant = "Bottom")

Servo(D3, 85)

ENDIF

IF ($CameraVerticalQuadrant ="Top")

Servo(D3, 114)

ENDIF

IF ($CameraVerticalQuadrant = "Middle")

Servo(D3, 90)

ENDIF

ENDIF

#Object is on the right side

IF ($CameraHorizontalQuadrant = "Right")

Servo(D7, 5)

IF ($CameraVerticalQuadrant = "Bottom")

Servo(D2, 85)
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ENDIF

IF ($CameraVerticalQuadrant = "Top")

Servo(D2, 114)

ENDIF

#Object is in the middle of the horizontal plane

#Move both arms instead of just the left or right

one when object is in the middle

IF ($CameraVerticalQuadrant = "Middle")

Servo(D2, 90)

ENDIF

ENDIF

IF ($CameraHorizontalQuadrant = "Middle")

Servo(D4, 5)

Servo(D7, 5)

IF ($CameraVerticalQuadrant = "Bottom")

Servo(D2, 85)

Servo(D3, 85)

ENDIF

IF ($CameraVerticalQuadrant = "Top")

Servo(D2, 114)

Servo(D3, 114)

ENDIF

IF ($CameraVerticalQuadrant = "Middle")

Servo(D2, 90)

Servo(D3, 90)

ENDIF

ENDIF

#Stop camera

ControlCommand("Camera", CameraStop)

goto (loop)

Code Python Kalman �lter and Gaussian mixture background subtraction:

# -*-Attempt 2-*-

"""

Created on Wed Jul 01 09:27:22 2015

@author: Prenil Sewmohan

"""

import cv2

import numpy as np

import matplotlib.pyplot as plt

file="singleball.avi"

capture=cv2.VideoCapture(file)

print "\t Width: ",capture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)

print "\t Height: ",capture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)

print "\t FourCC: ",capture.get(cv2.cv.CV_CAP_PROP_FOURCC)

print "\t Framerate: ",capture.get(cv2.cv.CV_CAP_PROP_FPS)
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numframes=capture.get(7)

print "\t Number of Frames: ",numframes

count=0

history = 10

nGauss = 3

bgThresh = 0.6

noise = 20

bgs = cv2.BackgroundSubtractorMOG(history,nGauss,bgThresh,noise)

plt.figure()

plt.hold(True)

plt.axis([0,480,360,0])

measuredTrack=np.zeros((numframes,2))-1

while count<numframes:

count+=1

img2 = capture.read()[1]

cv2.imshow("Video",img2)

foremat=bgs.apply(img2)

cv2.waitKey(100)

foremat=bgs.apply(img2)

ret,thresh = cv2.threshold(foremat,127,255,0)

contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

if len(contours) > 0:

m= np.mean(contours[0],axis=0)

measuredTrack[count-1,:]=m[0]

plt.plot(m[0,0],m[0,1],'ob')

cv2.imshow('Foreground',foremat)

cv2.waitKey(80)

capture.release()

print measuredTrack np.save("ballTrajectory", measuredTrack)

plt.show()

# -*- coding: utf-8 -*-

"""

Created on Wed Jul 01 12:14:50 2015

@author: Prenil Sewmohan

"""

import cv2

import numpy as np

from pykalman import KalmanFilter

from matplotlib import pyplot as plt

Measured=np.load("ballTrajectory.npy")

while True:

if Measured[0,0]==-1.:

Measured=np.delete(Measured,0,0)

else:

break

if cv2.waitKey(1) == 27:

break
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numMeas=Measured.shape[0]

MarkedMeasure=np.ma.masked_less(Measured,0)

Transition_Matrix=[[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]]

Observation_Matrix=[[1,0,0,0],[0,1,0,0]]

xinit=MarkedMeasure[0,0]

yinit=MarkedMeasure[0,1]

vxinit=MarkedMeasure[1,0]-MarkedMeasure[0,0]

vyinit=MarkedMeasure[1,1]-MarkedMeasure[0,1]

initstate=[xinit,yinit,vxinit,vyinit]

initcovariance=1.0e-3*np.eye(4)

transistionCov=1.0e-4*np.eye(4)

observationCov=1.0e-1*np.eye(2)

kf=KalmanFilter(transition_matrices=Transition_Matrix,

observation_matrices =Observation_Matrix,

initial_state_mean=initstate,

initial_state_covariance=initcovariance,

transition_covariance=transistionCov,

observation_covariance=observationCov)

filtered_state_means,filtered_state_covariances)=kf.filter(MarkedMeasure)

plt.plot(MarkedMeasure[:,0],MarkedMeasure[:,1],'xr',

label='Gaussian mixture model background subtraction')

plt.axis([0,520,360,0])

plt.hold(True)

plt.plot(filtered_state_means[:,0],filtered_state_means[:,1],'ob',

label='kalman output')

plt.legend(loc=2)

plt.title("Constant Velocity Kalman Filter")

plt.show()
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Abstract

In this report we look at various generalizations of the logistic distribution proposed in the literature.
These include the density based skew-logistic, the quantile based skew-logistic, a reparametrization of
the log-logistic distribution and four generalized logistic distributions (GLOs) labelled Type I to Type
IV. We present the basic properties of these distributions, in particular, the mean and variance, and the
skewness and kurtosis moment-ratios. Their �exibility in terms of distributional shape is compared via
moment-ratio diagrams.
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1 Introduction

The logistic distribution is a continuous symmetric distribution with a unimodel bell-shaped density curve
which resembles that of the normal distribution (see Figure 1) but with much heavier tails and higher kurtosis.
The value of the kurtosis moment-ratio of the normal distribution is 3, while this value is 4.2 for the logistic
distribution due to its relatively longer tails.

For a detailed discussion on the logistic distribution's theoretical properties and its applications, see
Johnson et al. [11] and Balakrishnan [3]. This distribution is used in various growth models, see for example
Pearl and Reed [13], for the reason that the hazard function is proportional to the cumulative distribution
function (cdf), F (x). Also, the logistic distribution is used with logistic regression which estimates the
outcome of a dichotomous response variable [10]. It is a highly versatile distribution in the sense that it can
be generalized in various ways. The idea behind generalization is to create more �exible distributions with
respect to distributional shape, through the inclusion of some parameters.

In this report di�erent generalizations of the logistic distribution will be studied. These include:

• a reparametrization of the log-logistic distribution

• the quantile-based skew logistic

• the density-based skew logistic

• four univariate types of generalizations: Type I, Type II, Type III and Type IV.

Closed form expressions (if they exist) for either the probability density function (pdf), f(x), or the quantile
(inverse cumulative distribution) function, Q(p), can be used to obtain moments (raw and central) as well
as moment-ratios. In particular, the skewness and kurtosis moment-ratios can be used to compare the shape
properties of these generalized distributions. The moment-ratio diagram, which is a plot of the kurtosis
against the skewness, is a graphical tool we will use for the comparison among these generalizations.

A detailed description of the various above-mentioned generalizations of the logistic distribution is given
in this report. Section 2 gives an overview on the background of the di�erent generalizations. We de�ne these
generalizations in full throughout Section 3 and describe their distributional properties. Section 4 presents
the moment-ratio diagrams� the graphical tool used for comparing the di�erent generalizations in terms of
skewness and kurtosis. A conclusion is given in Section 5.

2 Background Theory

Di�erent generalizations of the logistic distribution have been proposed in the literature. There are four types
of univariate logistic generalizations namely, Type I, Type II, Type III and Type IV which are presented by
Johnson et al. [11]. The properties of these distributions were summarized by Balakrishnan and Nevzorov
[4], and they can be regarded as special cases of a general family proposed by Perks [14]. The aforementioned
distributions have a shape parameter(s) incorporated, resulting in a positively skewed, negatively skewed or
symmetric distribution depending on the value of the shape parameter(s). In all four cases the distributions
coincide with the logistic distribution when the shape parameter(s) is set equal to one. From these four
generalizations, only the Type III GLO is symmetrically distributed about zero, which can be used as an
approximation to other symmetric distributions such as the Student's t distribution.

The density-based skew logistic distribution proposed by Wahed and Ali [17], is based on the skewness
methodology by Azzalini [2]. The skewness parameter, λ, allows for a greater degree of �exibility in terms
of its shape. The quantile-based skew logistic distribution, originally presented by Gilchrist [5] and analyzed
by Van Staden and King [16], is de�ned through its quantile function, since closed form expressions for the
cdf and pdf do not exist. Hosking [8] introduced another generalization of the logistic distribution. This
generalization, as indicated by Hosking and Wallis [9], is a reparametrization of the log-logistic distribution
by Ahmad et al. [1].
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Figure 1: Probability density curves of the logistic distribution for di�erent values of the location parameter
α and scale parameter β

3 De�nitions and properties

The generalizations are de�ned in this section. The mean and variance will be denoted as µ and σ2 respec-
tively, whereas the skewness and kurtosis moment-ratios will be indicated by α3 and α4 respectively. For
application purposes the location parameter α is set equal to 0 and the scale parameter β is set equal to 1,
without loss of generality.

3.1 Logistic Distribution

Before considering the di�erent generalizations of the logistic distribution, the logistic distribution and its
properties are brie�y presented.

De�nition 1. The random variable X has the logistic distribution, denoted X ∼ Lo(α, β2), if its cdf is given
by

F (x) =
1

1 + e−
(x−α)
β

, −∞ < x <∞, −∞ < α <∞, β > 0

and pdf (see Figure 1 for di�erent combinations of α and β) is

f(x) =
e−

(x−α)
β

β(1 + e−
(x−α)
β )2

and quantile function given by Q(p) = α+ β log( p
1−p ) , 0 < p < 1 .
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Theorem 2. The mean, variance, skewness moment-ratio and kurtosis moment-ratio of a random variable
X ∼ Lo(α, β2) is

µ = α

σ2 =
π2β2

3

α3 = 0

α4 =
21

5

p

From the expressions given above (see Balakrishnan and Nevzorov [4]), α is the location parameter while
β controls the spread of the distribution which is clear in Figure 1.

3.2 Skew Logistic Distribution

We distinguish between two types of skew logistic distributions: the density-based skew logistic (SLDB) and
the quantile-based skew logistic (SLQB), with shape parameters λ and δ respectively.

Density-based skew logistic distribution (SLDB)

Wahed and Ali [17] proposed the density-based skew logistic distribution by introducing a new parameter to
control the skewness. This is based on the skewness methodology by Azzalini [2].

It is said that a random variable X has Azzalini's skew distribution if its pdf is of the form

fX(x) = 2g(x)G(λx); −∞ < x <∞, λ ∈ R (1)

where g(x) and G(x) are the pdf and cdf of the symmetric distribution respectively.
The SLDB was further studied in detail by Gupta et al. [6] and Nadarajah [12].

De�nition 3. Let X be a real-valued random variable. X is said to have a density-based skew logistic
distribution if its pdf is given by

f(x) =
2e−

x−α
β

β(1 + e−
x−α
β )2(1 + e−

λx−α
β )

, −∞ < x <∞, λ ∈ R .

(a) (b)

Figure 2: Probability density curves of the density-based skew logistic distribution for di�erent values of the
shape parameter λ
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Referring to Figure 2, (a) shows that the SLDB is negatively skewed when λ < 0, and (b) shows that it
is positively skewed when λ > 0.

No closed form expressions are available for the moments of the SLDB. Gupta et al. [6] presented formulae
for calculating the �rst four moments,

E[X] = α+ 2βA1 ,

E[X2] =
1

3
(πβ)2 ,

E[X3] = 2β3A3 ,

E[X4] =
7

15
(πβ)4 ,

where Aj =
´∞

0
(log(z))j

(1+z)2(1+z−λ)
dz , j = 1, 3 .

Theorem 4. The mean and variance of a random variable X having a density-based skew logistic distribution
are given by

µ = α+ 2βA1

and

σ2 = β2

(
π2

3
− 4A2

1

)
,

and the �rst two moment-ratios are

α3 =
2β3

σ3

(
A3 − 3π2A1 + 8A3

1

)
and

α4 =
β4

σ4

(
7

15
π4 − 16A1A3 + 8π2A2

1 − 48A4
1

)
.

Proof. Using the raw moments by Gupta et al. [6] , the central moments are calculated. The second
central moment is the variance, the third central moment multiplied by 1

σ3 is the skewness moment-ratio and

the fourth central moment multiplied by 1
σ4 is the kurtosis moment-ratio. p

Figure 3: The skewness and kurtosis moment-ratios against the shape parameter for the density-based skew
logistic distribution
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Table 1 presents values for α3 and α4 for selected values of λ ≥ 0. For λ = 0, in e�ect, for the logistic
distribution, α3 = 0 and α4 = 4.2 . For λ < 0, the skewness values are the same as those for λ > 0 with a
change in sign. The kurtosis values for λ < 0 are the same as those for λ > 0.

Using the expressions in Theorem 4, values for α3 and α4 in Table 1 could be obtained for only certain
values of λ by numerical integration with Mathematica 10.0 [15]. For all other values of λ, the values of α3

and α4 were estimated as the averages of the sample skewness and kurtosis moment-ratios of 20 simulated
samples of size 50 000 each. These samples were simulated using the methodology proposed by Gupta and
Kundu [7].

λ α3 α4 Method

0 0.0000 4.2000 logistic distribution
0.1 0.0994 4.1832 estimated
0.2 0.1898 4.1432 estimated
0.3 0.2617 4.1029 estimated
0.4 0.3160 4.0821 estimated
0.5 0.3636 4.0820 estimated
0.6 0.4078 4.1036 estimated
0.7 0.4500 4.1429 estimated
0.8 0.4947 4.1935 estimated
0.9 0.5360 4.2593 estimated
1 0.5772 4.3327 numerical integration

1.25 0.6820 4.5325 estimated
1.5 0.7803 4.7370 estimated
1.75 0.8713 4.9324 estimated
2 0.9502 5.1116 numerical integration
2.5 1.0847 5.4163 estimated
3 1.1791 5.6506 numerical integration
4 1.3057 5.9653 numerical integration
5 1.3808 6.1481 estimated
6 1.4229 6.2681 numerical integration
7 1.4539 6.3391 estimated
8 1.4731 6.3904 estimated
9 1.4871 6.4277 estimated
10 1.4951 6.4606 numerical integration
100 1.5419 6.5762 estimated
1000 1.5423 6.5775 estimated

Table 1: The skewness and the kurtosis values of the density-based skew logistic for di�erent values of the
shape parameter λ

Quantile-based skew logistic distribution (SLQB)

The quantile-based skew logistic distribution introduced by Gilchrist [5] is de�ned through its quantile func-
tion since no closed form expressions for the pdf and cdf exist.
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De�nition 5. The random variable X has the quantile-based skew logistic distribution, denoted X ∼
SLQB(α, β, δ), if its quantile function is de�ned as

Q(p) = α+ β[(1− δ) log(p)− δ log(1− p)] , 0 < δ < 1, 0 < p < 1 , (2)

the quantile density function given as

q(p) = β

(
1− δ
p

+
δ

1− p

)
, 0 < p < 1 (3)

and the density quantile function as

fp(p) =
p(1− p)

β(δp+ (1− δ)(1− p))
, 0 < p < 1 . (4)

Remark 6. The equation in (3) is obtained through dQ(p)
dp and equation (4) is simply 1

q(p) .

(a) (b)

Figure 4: Probability density curves of the quantile-based skew logistic distribution for di�erent values of the
shape parameter δ

In Figure 4, (a) shows that this distribution is negatively skewed for 0 < δ < 0.5 , (b) shows that it is
positively skewed for 0.5 < δ < 1 and reduces to the logistic distribution when δ = 0.5.

Theorem 7. The mean, variance, the skewness moment-ratio and the kurtosis moment-ratio for X ∼
SLQB(α, β, δ) are given respectively by

µ = α+ β(2δ − 1) ,

σ2 = β2[(2δ − 1)2 +
π2

3
ω] ,

α3 =
β3

σ3
[2(2δ − 1)(1− ω(4− 3ζ(3)))] ,

and

α4 =
β4

σ4
[9 + ω(2((2δ − 1)2π2 − 4) + (9ω − 4)(16− π4

15
))] ,

where ω = δ(1− δ) and ζ(a) =

∞∑
j=1

1

ja
the Riemann zeta function.
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Proof. The results given above were derived by Van Staden and King [16]. p

Figure 5: The skewness and kurtosis moment-ratios against the shape parameter for the quantile-based skew
logistic distribution

As can be seen from Figure 5, symmetry is obtained when δ = 0.5. The quantile-based skew logistic
distribution has a kurtosis moment-ratio equal to 4.2 at the point of symmetry (same as the standard logistic
distribution). This distribution is positively skewed for δ > 0.5 and negatively skewed for δ < 0.5 .

3.3 Hosking's GLO

Hosking [8] proposed another generalization of the logistic distribution, henceforth referred to as Hosking's
GLO, denoted by GLOH . The logistic distribution is the special case where k = 0.

De�nition 8. The random variable X has Hosking's GLO distribution, with shape parameter k, if the cdf
is given by

F (x) =
1

(1 + e−y)
,

where y =

{
− 1
k log

[
1− k(x−α)

β

]
x−α
β

k 6= 0

k = 0
and pdf f(x) = e−(1−k)y

β(1+e−y)2

and quantile function is de�ned as

Q(p) =

 α+ β
k

[
1−

{
1−p
p

}k]
α− β log

{
1−p
p

} k 6= 0

k = 0
, 0 < p < 1 .

13



(a) (b)

Figure 6: Probability density curves of Hosking's generalized logistic distribution for di�erent values of the
shape parameter k

As can be seen in Figure 6 (a) and (b), the pdf of Hosking's GLO is J-shaped when |k| ≥ 1.

Theorem 9. The conventional moments (see Hosking [8]) of X ∼ GLOH(α, β, k) are

µ = α+ β
(1− g1)

k
,

σ2 =
β2(g2 − g2

1)

k2
,

α3 =
(−signk)(g3 − 3g2g1 + 2g3

1)

(g2 − g2
1)

3
2

and

α4 =
(g4 − 4g3g1 + 6g2g

2
1 − 3g4

1)

(g2 − g2
1)2

,

where gr = Γ(1− rk)Γ(1 + rk) . p

Remark 10. The rth order moment exists if |k| < 1
r .

Figure 7: The skewness and kurtosis moment-ratios against the shape parameter for Hosking's generalized
logistic distribution
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Figure 7 shows that Hosking's GLO has point of symmetry equivalent to the logistic distribution when
k = 0. It is clear that this distribution is negatively skewed for positive values of k and positively skewed for
negative values of k.

3.4 Type I GLO

The �rst of the four univariate generalizations studied by Balakrishnan and Nevzorov [4], and Johnson et
al. [11] is the Type I GLO, denoted GLOI . The Type I distribution is negatively skewed when the shape
parameter θ ∈ (0, 1) and positively skewed when θ > 1. If θ = 1 , the Type I GLO reduces to the logistic
distribution (see Figure 8) .

De�nition 11. Let X be a random variable with a Type I generalized logistic distribution. The pdf of X
is given by

f(x) =
θβe−

(x−α)
β

(1 + e−
(x−α)
β )θ+1

, −∞ < x <∞, −∞ < α <∞, β > 0, θ > 0 ,

the corresponding cdf is

F (x) =
1

(1 + e−
(x−α)
β )θ

and quantile function is expressed as Q(p) = − log(−1 + p−
1
θ ) , 0 < p < 1.

(a) (b)

Figure 8: Probability density curves of the Type I generalized logistic distribution for di�erent values of the
shape parameter θ

Theorem 12. The mean and variance of X ∼ GLOI(α, β, θ) are given by

µ = ψ(θ)− ψ(1) and σ2 = ψ′(θ) + ψ′(1)

respectively, where ψ(x) = d
dx ln Γ(x) is the digamma function and ψr(x) = dr

dxrψ(x) the rthderivative of the
digamma function.

The skewness moment-ratio is given by α3 = ψ′′(θ)−ψ′′(1)

(ψ′(θ)+ψ′(1))3/2
and the kurtosis moment-ratio by α4 = 3 +

ψ′′′(θ)+ψ′′′(1)
(ψ′(θ)+ψ′(1))2 . p
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Figure 9: The skewness and kurtosis moment-ratios against the shape parameter for the Type I generalized
logistic distribution

The point of symmetry for the Type I GLO is where the shape parameter is equal to 1 i.e. when θ = 1.
This is the point where this distribution reduces to the logistic distribution and therefore has a kurtosis
of 4.2.(see Figure 9). The kurtosis tends to 5.4 as θ increases. Also evident from Figure 9 is the positive
skewness when θ > 1 which reaches a maximum of 1.13955 as the shape parameter increases. These limiting
values were calculated by using the function limit in Mathematica 10.0 [15].

3.5 Type II GLO

The Type II GLO is related to Type I given above. If the random variable X has a Type I distribution then
−X has a Type II distribution. The latter has a positively skewed distribution when the shape parameter
h ∈ (0, 1) and is negatively skewed when h > 1.

De�nition 13. If the random variable X has a Type II generalized logistic distribution, then its pdf must
be given by

f(x) =
hβe−h

(x−α)
β

(1 + e−
(x−α)
β )h+1

, −∞ < x <∞, −∞ < α <∞, β > 0, h > 0 ,

the cdf given by

F (x) = 1− βe−h
(x−α)
β

(1 + e−
(x−α)
β )h

,

and the quantile function Q(p) = log
[
−1 + 1

(1−p)1/h

]
, 0 < p < 1.
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(a) (b)

Figure 10: Probability density curves of the Type II generalized logistic distribution for di�erent values of
the shape parameter h

Remark 14. From the fact that the Type II GLO is the negative of the Type I GLO, the conventional
moments follow accordingly.

Figure 11: The skewness and kurtosis moment-ratios against the shape parameter for the Type II generalized
logistic distribution

By comparing the skewness moment-ratio diagram illustrated in Figure 11 to that in Figure 9, Remark
14 is justi�ed.

3.6 Type III GLO

The Type III GLO is the only distribution of the four univariate generalizations which is symmetric about
zero, which is evident from the skewness moment-ratio curve in Figure 12. Therefore, the mean is zero and
this applies to all the moments of odd order. The variance is 2ψ′(κ) and the kurtosis moment-ratio is given

by α4 = 3 + ψ′′′(κ)
2(ψ′(κ))2 indicating that the Type III GLO has heavier tails (and therefore longer tails) than

the normal distribution. For large values of the shape parameter κ,
√

2/κX will approximately be standard
normal.

17



Figure 12: The skewness and kurtosis moment-ratios against the shape parameter for the Type III generalized
logistic distribution

The kurtosis moment-ratio reaches a minimum of 3 as κ tends to in�nity and a maximum of 6 as κ
decreases to zero (see Figure 12) . These limiting values were calculated by using the function limit in
Mathematica 10.0 [15]

De�nition 15. The pdf of a Type III GLO random variable is

f(x) =
1

B(κ, κ)

βe−κ
(x−α)
β

(1 + e−
(x−α)
β )2κ

, −∞ < x <∞, −∞ < α <∞, β > 0, κ > 0 ,

where B(κ, κ) = (Γ(κ))2

Γ(2κ) .

Figure 13: Probability density curves of the Type III generalized logistic distribution for di�erent values of
the shape parameter κ

3.7 Type IV GLO

All the above-mentioned types of generalizations are special cases of the Type IV GLO, denoted GLOIV ,
which has two shape parameters, p and q . Type I is obtained by setting p = θ and q = 1 .The same follows
for the Type II which can also be regarded as the negative of the Type I. Type III is obtained by setting
p = q = κ . The Type IV reduces to the logistic whenever p = q = 1 (Figure 14) .
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De�nition 16. For a random variable X to have the Type IV generalized logistic distribution its pdf must
be given as

f(x) =
1

B(p, q)

βe−q
(x−α)
β

(1 + e−
(x−α)
β )p+q

, −∞ < x <∞, −∞ < α <∞, β > 0, p > 0, q > 0 ,

where B(p, q) = Γ(p)Γ(q)
Γ(p+q) .

(a) (b)

Figure 14: Probability density curves of the Type IV generalized logistic distribution for di�erent values of
the shape parameters p and q

Theorem 17. If X ∼ GLOIV (α, β, p, q), then

µ = ψ(p)− ψ(q) ,

σ2 = ψ′(p) + ψ′(q) ,

α3 =
ψ′′(p)− ψ′′(q)

(ψ′(p) + ψ′(q))3/2

and

α4 = 3 +
ψ′′′(p) + ψ′′′(q)

(ψ′(p) + ψ′(q))2
.

p
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Figure 15: The skewness and kurtosis moment-ratios against the shape parameters for the Type IV generalized
logistic distribution.

Fixing the value of q = 1, while increasing the value of p , we see that symmetry is obtained when p = 1
(see Figure 15). If p > 1, the Type IV GLO is positively skewed. A kurtosis of 4.2 is obtained when both
parameters are equal to 1, since the Type IV GLO then reduces to the logistic distribution.

4 Moment-ratio diagrams

The generalizations are distinct in terms of their shape parameters and how these parameters a�ect the
�exibility of the generalizations. Due to this fact, comparison of the di�erent generalizations via their
probability distributions is insu�cient. A graphical tool used to compare these distributions in terms of their
skewness moment-ratios and kurtosis moment-ratios is called a moment-ratio diagram.
Generalizations which consist of one shape parameter is a curve in the plotting region (Figure 16 (a), (b),
(c), (d), (e) and (f)), while those with two shape parameters cover a region of possible combinations of α3

and α4 values (Figure 16 (g)).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 16: Moment-ratio diagrams of the di�erent generalized logistic distributions

21



5 Conclusion

The aim of the report was to compare the �exibility and shape properties of various generalizations of the
logistic distribution using the skewness and kurtosis moment-ratios for each of the generalizations. The
moment-ratio diagram which is a plot of the kurtosis moment-ratio against the skewness moment-ratio,
illustrated in Figure 17 below, is used for the comparison. It is evident that the Type IV GLO which covers
the region shaded green is highly �exible with respect to shape as compared to the other generalizations.
This is as a result of the two shape parameters that are included in this generalization. The boundaries for
this region is the exponential and re�ected exponential as indicated on the diagram.

Table 2 below summarizes the distributional shape of the various generalizations of the logistic distribution
with regards to their shape parameters.

Distribution Negatively skewed Symmetric Positively skewed

Density-based skew logistic λ < 0 λ = 0 λ > 0
Quantile-based skew logistic δ < 0.5 δ = 0.5 δ > 0.5
Hosking's GLO k > 0 k = 0 k < 0
Type I GLO θ < 1 θ = 1 θ > 1
Type II GLO h > 1 h = 1 h < 1
Type III GLO Always symmetric
Type IV GLO p < q p = q p > q

Table 2: The distributional shape as a result of di�erent values of the shape parameter(s)

It is evident from Table 2 that since the Type I and Type II GLO are re�ective distributions of each other,
the distributional shape of the pdfs are re�ective when their shape parameters are equal to 1. The density-
based skew logistic and Hosking's GLO is symmetric when the corresponding shape parameter is equal to
zero. Hosking's GLO behaves opposite to the value of the shape parameter i.e. negatively skewed for positive
values of the shape parameter and positively skewed for negative values of the shape parameter. The Type
I and Type II GLOs is symmetrically distributed when the respective shape parameter is equal to 1. The
quantile-based GLO is symmetric for the shape parameter equal to 0.5. For the Type IV GLO, symmetry
is obtained when the shape parameters are equal and in particular reduces to the logistic distribution when
both shape parameters are equal to 1.

For a selected level of skewness, Hosking's GLO obtain a higher level of kurtosis compared to the other
generalizations (Figure 17). Figure 18 zoomed in on Figure 17 for more clarity.

Figure 17: Moment-ratio diagram of all the generalizations: the exponential, re�ected exponential and the
logistic distributions are indicated by E, RE and L respectively.
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(a) (b)

Figure 18: Moment-ratio diagram (zoomed in)

In this report six of the seven generalizations possessed one shape parameter whereas only one, the Type
IV, possessed two shape parameters. Future research could compare other generalizations with more than
one shape parameter and/or other families of distributions with the logistic as a special or limiting case.
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Abstract

In this paper a model of predicting trend that incorporates information delay is investigated as opposed
to a Markov chain approach of trend prediction (which does not take information delay into account).
This paper will also explain why and how the new model can give us more insight to the problem and
possible applications of the model will also be discussed.
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1 Introduction

Consider the following three factors: �rst, we live in a world where, if examined carefully, many things are
explained with binary (two) states: wins and losses; likes and dislikes; purchasing or not purchasing [1], etc.
Second, as human beings our choices (and therefore our outcome) are in�uenced by our own thoughts and
thoughts of those who are around us - our family, friends and the broader society in which we live. And third,
one person may have a nature that is very susceptible to suggestions and follow those who are around while
another person may always choose to simply do what no one else does. By bringing these three ideas together,
we are able to explain how a person will make binary choices that will lead to binary outcomes - initially
based on his/her own preferences but later on by taking others' opinion into consideration. This behavior can
be described by a statistical process, which is a �mathematical model that evolves over time in a probabilistic
manner� [6]. We will then add another factor, a delay, and examine how this changes the behavior of the
individuals. By combining choices, in�uence and delay, we can describe this process as the �Hipster E�ect,�
where we �nd �synchronization in random systems�1. The topic of this paper is in the realm of Statistical
Physics, which explains the phenomena of physics by making use of statistical techniques. Within the �eld
of physics there are numerous worlds that vary in size, from subatomic to astronomic. As such, describing a
bigger world by using components from the smaller world could sometimes provide a good approximation. In
the book written by Huang, it is said that statistical methods �provide a bridge between the microscopic and
the macroscopic world� and the work done in this paper is to see how individuals (microscopic) behave due
to the majority (macroscopic) behaviors [5]. However, despite the origin of the topic, it is not only limited to
application in natural science but can also be used in neuroscience as well as �nance [8]. In the application
section, we will take a look at real data from the U.S. stock market and compare it with the simulated data,
an empirical study that is not yet been explored. We will also brie�y look at the extension of the model,
when 3 or more choices are available.

2 Background Theory - Model

The basic setup of the problem is as follows: we have individuals who are either de�ned as �hipsters� (who
deviate from the overall consensus) and �mainstream� (who follow the overall consensus). These individuals
will have two choices available, where for this explanation we use iPhones and Samsung. Thus if a hipster
individual, who possesses an iPhone, notices that most people own Samsung, he will be happy and keep his
iPhone whereas if he possessed a Samsung phone, he will immediately go and get an iPhone. The opposite
will apply for a Mainstream individual so a Mainstream with an iPhone and a consensus of Samsung will
induce the individual to switch to Samsung and vice versa. For some people, family may have a big in�uence
on making a decision while for others, friends may have a bigger in�uence. Therefore each individual assigns
a di�erent weight onto the choices of those who surround the individual and when it is added up, this will
be the consensus that the individual will consider.

2.1 Mathematical setup

What has been explained above verbally can be rewritten mathematically in order to solve the problem. The
variables have been de�ned in line with Touboul's work [8]. We have n number of individuals across t time
periods, giving us an n × t matrix to work with. Each cell in the matrix will contain the state (or choice)
or the individual at time t (discrete). Therefore numbers in a row tell us how an individual's choices have
changed over time whereas numbers in a column tell us what the choices of all individuals at time t was,
namely:

Nature of individual (ε)

{
Hipster : −1
Mainstream : 1

1Personal correspondence with the author of [8], Jonathan Touboul
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State at t(s(t)):

{
iPhone : −1
Samsung : 1

We assume that ε and s(1) are determined prior to the simulation and �xed throughout the simulation. ε is
a column vector of dimension n × 1 and s(t) is also a n × 1 column vector, since it only looks at the states
of all individuals at time t. Both variables can be randomly generated from a symmetric distribution with a
mean of 0 and classi�ed to 1 if the number is positive and -1 if the number is negative. Next we de�ne the
in�uence matrixJij , an n × n matrix with positive values which is also determined prior to the simulation.
It is not symmetric since two people do not necessarily in�uence each other with the same magnitude. The
main diagonals are 0, since a person's decision does not in�uence himself/herself.
With Jij and s(t), we can calculate the consensus, or the mean-�eld trend, that individual i perceives at time
t according to the following formula:

mi(t) =
1

n

∑
j

Jijsj(t)

This results in mi(t) being a n× 1 column vector, where every element will either be a positive or a negative
number. This represents whether the individual views the the aggregate phones in use to be either Samsung
or iPhone. Therefore the mean-�eld trend is simply the weighted average of all the choices that are seen
around the individual i.
By multiplying εi, mi(t) and si(t) elementwise, we can determine x, a new variable which we will use to
de�ne the new state:

xi = εimi(t) |si(t)|

Bringing this equation back to our story, if a hipster individual feels that the general consensus is Samsung
and he owns an iPhone at the time,

xi = (−1)(+) |(−1)| = −1

and he will continue to own his iPhone. Conversely, a Mainstream individual feeling the general consensus
of Samsung and owning an iPhone will take on the following values:

xi = (1)(+) |(−1)| = 1

and we can see that the Mainstream individual will now switch to Samsung. What matters is the sign of the
answers and not the magnitude of the answer value. Here, 1 was used only to keep the illustration simple.
This is similar to the calculations performed using Markov chains since the next state of any individual
depends on the current state of all individuals [6]. Table 1 summarizes the possible outcomes for di�erent
values of ε,m and s.

xi = εimi(t) |si(t)| MFT
Samsung(+) iPhone (-)

Hipster (-1) Mainstream (1) Hipster (-1) Mainstream (1)
iPhone (-1) -1 1 1 -1
Samsung (1) -1 1 1 -1

Table 1: Di�erent outcomes of xi depending on di�erent values of ε,m and s

2.2 Sigmoid function and Poisson process

Thus far in our discussion there has been no randomness in determining the new state, xi, everything was
deterministic with predetermined values for ε, s(t), Jij . Thus the convergence of consensus, if it were to
happen, would mature immediately and show a clear cyclical pattern. This is no di�erent from saying that
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everyone has access to perfect information, which is a rather unrealistic assumption. In order to bring it
closer to our world, we add what is referred to as the noise [8]. The idea is that if the noise level was too
high and prevented the information from getting through to the individual, he will keep his current state.
However, if an individual was able to perceive the information beyond the level of noise from the environment,
he will adjust his new state accordingly. This is achieved by making use of a sigmoid function, where we
insert the newly obtained xi and compare it to a random level of noise from the uniform distribution. For

now, we let the sigmoid function take the form of ϕ(x) = 1+tanh(βx)
2 where ϕ (x) is a rate parameter (typically

denoted as λ) in an inhomogeneous Poisson process. Here, the Poisson process would translate to whether
the individual will either continue to use one type of phone or switch to the other type of phone in the next
state [8]. If a Mainstream individual's choice di�ers from the perceived consensus, he is more likely to change
his state in the next time period and this is synonymous with having a higher rate of switch in a Poisson
process. The β is used to change the �sharpness of the rate function� [8] and this means only a su�ciently
high value of β ensures that an individual is aware of the surroundings beyond the noise level and will make
informed decisions. Gladwell calls this �The tipping point� and attributes the sudden rise in sale of Hush
Puppies products in the mid 90s to such phenomenon [4]- the β had reached a point high enough that would
start a trend. We will later try the logistic and Cauchy distributions as the sigmoid functions and see how
they di�er from the plain tanh(βx).

2.3 Adding Delay

Although the very simple model that was explained above can do a fairly good job in laying the foundation
of how this idea of hipster e�ect works, it can be made more realistic by adding just one more factor. The
assumption until now is that essentially, everyone in this system has perfect information at any given time,t.
Therefore an individual can exactly calculate the consensus and determine whether he/she should keep or
change the state for the next time period, t+1. In reality, this is highly unlikely as there will be many factors,
such as distance and communication medium, that will hinder information from being transferred e�ectively
and instantaneously [2]. Therefore, in order to make the assumption slightly more practical, we now assume
that individuals perceive information after a bit of delay, which we will label as τ . This will only change our
mean-�eld trend to:

mi(t) =
1

n

∑
j

Jijsj(t− τij)

where the value τij is a is randomly generated positive integer. Generating it from a Poisson distribution is
the easiest way, since the numbers will be discrete. Hence it will most likely be di�erent for each individual, so
that individual i will see the consensus after some slight variation of time τ has passed. Empirical estimation
of τij for large n will not be deal with in this paper, as the scope can be very broad and complex.

3 Application

3.1 Pseudo code

The following pseudo code explains the necessary steps needed to simulate the results needed for this exper-
iment and [9] served as the foundation. Algorithm 1 deals with creating spaces and inserting values into the
spaces to perform the calculations needed in Algorithm 2.
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Algorithm 1 Initialization/Input

Require: Specify number of individuals (n): scalar
Require: Specify number of time period (t): scalar
Require: Specify hipster fraction and initial fraction of iPhone owners (0 < fraction < 1): scalar
Require: Specify nature of individuals (ε) and initial state (S1): n by 1 column vector
for each vectors i=1 to n do

Use Uniform distribution to generate n random numbers and insert each value into the ith row of ε
and (S1)

Positive numbers are changed into 1 and negative numbers are changed into -1
end for

Require: Specify in�uence matrix (J) and delay matrix (D): n by n matrix
Ji,j=in�uence of j on i, Di,j=time taken for i to be aware of j's decision
for i= 1 to n do

for j=1 to n do

Use Normal distribution for J and Poisson distribution for D to generate n2 random numbers and
insert each value into the ith row and jth column of J and D

Remove main diagonals since in�uence comes from other individuals and there is no delay in knowing
what the individual himself/herself has chosen

end for

end for

Algorithm 2 uses the values from the initialization part to create column vector of new choices.

Algorithm 2 Loop/Process

Require: Construct the delayed state vector (sdelay): n by 1 vector
Determine whether enough time has passed for individual i to be aware of individual j's state at time t
for i=1 to n do

If t ≤ Di,j then sdelay(i)=s1(i)
Else sdelay(i)=st−D(i)

end for

Require: Calculate mi(t) using J, sdelay
Require: Construct the new state vector (snew)
for i=1 to n do

Require: Determine snew(i) using ε,mi(t) and sdelay
Substitute values of ε,mi(t) and sdelay into a sigmoid function. This will generate a number,

Switchprob, between 0 and 1.
Use a standard normal distribution to generate noise, numbers between 0 and 1. This represents the

amount of noise that are present between the individuals. If it is signi�cantly high, individuals will not be
aware of others' states and will not change states

Therefore, if Switchprob > noise then snew(i) = 1
Else snew(i) = -1

end for

Repeat the above t times and horizontally concatenate snew every time to the previous states to create the
resultant matrix

Algorithm 3 is very simple, thanks to the heatmap function of SAS/IML
r

software, University Edition for
Windows.2

2The output for this paper was generated using SAS software. Copyright, SAS Institute Inc. SAS and all other SAS Institute
Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.
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Algorithm 3 Output

Display results in a grid where vertical axis is n, horizontal axis is t and the value at every n, t indicates
the state, either -1 (brown) or 1 (white)

3.2 Graphical output and interpretation

In all the following �gures the vertical axis represents the ith individual and the horizontal axis represents the
time periods. The di�erent colours at a given x, y coordinate represents either one of the two decisions made
by ith individual at time t. Firstly we take a look at the instance where there are a few hipsters and many
Mainstream. In Figure 1, it is clear that Mainstream will soon �nd their consensus and have no incentive to
deviate from it. Likewise, if the majority of the population continuously tends to a particular option, hipsters
will always want to choose the less selected option. Once a consensus is formed, everyone is happy with the
decision made and it barely changes over time.

Figure 1: Hipster fraction=10%

Secondly, in we look at the situation where there are more or less equal number of hipsters and Mainstream
in �gure 2. Under such a circumstance, it will be di�cult to form a solid consensus since whatever the
Mainstream want to stick with, hipsters will abandon. This will result in no clear consensus throughout the
whole time period and choices look rather random.
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Figure 2: Hipster fraction=50%

Lastly, we look at the interesting case, where the majority of the population comprises of hipsters in
�gure 3. Until the information regarding others' decisions is obtained, the choices made by individuals are
random. However, once they start becoming aware of what the others are doing, they behave accordingly.
Since this population is mostly made up of hipsters, they end up walking away from their prior decision after
realising that they have been doing the same thing as those around them (the duration is determined by the
delay parameter). Since there are only two choices available in this scenario, the hipsters end up cyclically
switching their decisions from one state to another. For a practical example of such behavior, think of share
trading at a stock exchange - once a particular share's market price starts rising many traders will want to
sell that share which they own in order to make a pro�t. When a substantial amount of shares are available
on the market, with excess supply the share price will fall and some individuals will start purchasing this
share, hoping that its market price will once again rise. With many such buyers the demand for the share
will rise and so will the price, taking us to the stage where they will be sold again.
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Figure 3: Hipster fraction=80%, β = 1

3.3 Changing the sigmoid function

The results in Section 3.2 were produced using the hyperbolic tangent function as the sigmoid. It is, however,
not the only sigmoid function that exists. The logistic distribution is a prime example of modeling qualitative
variables and it is also de�ned for all real values of x with y values between 0 and 1. Since any CDF of a
continuous probability distribution de�ned for all x values will do, the Cauchy distribution has also been
chosen. Because of the way the CDF is de�ned, logistic and Cauchy needed a higher value of β in order to
show the synchronization than for tanh(βx) but it is clear that tanh(βx) is not the only function that can
serve as the sigmoid. This allows us a number of ways to compare the simulated model with a real data set.

Figure 4 was generated using the R software [7]. As we can see in �gure 4, the CDF of logistic distribution
and the tanh(βx) function are quite similar to each other, where the only di�erence being the steepness
between the two functions - logistic function slightly takes longer to reach the asymptote.
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Figure 4: Comparison of di�erent sigmoid functions

Figure 5: Logistic distribution, β=8

Hence in �gure 4, the graph looks almost identical to �gure 3.
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Figure 6: Cauchy distribution, β=8

Cauchy distribution, on the other hand, takes noticeably longer to reach the asymptote compared to
the other two functions. The e�ect is that it has more people who are having trouble to adjust themselves
correctly to the consensus in the beginning, which can be seen in �gure 6. In the limit as t tends to in�nity,
however, it will closely resemble �gures 3 and 5.

3.4 Comparison with real data

Figures 7 and 8 have been generated using data from Google Finance. 3 The share price of 100 companies with
large market capitalization were taken from June 17 2007 and 255 weekly and daily values were extracted.
The second di�erence from one day to another was calculated for a smoother change and the value 1 indicates
a rise in share price compared to the previous time period whereas -1 indicates a fall from the previous time
period. Although there is no way of telling whether the shares are owned by hipsters or Mainstream, the
assumption is that the shareholders want to make pro�t from trading shares and would want to act against
the market, hence they would need to behave in a hipster-like manner.

3Accessed on 21 June 2015. https://docs.google.com/spreadsheets/d/1rWodknu-TYlySFvb5p0HwrwMasewZOuGC67VdBE
F6oc/edit#gid=0
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Figure 7: Large cap daily price movements

Figures 7 and 8 appears to have characteristics from both �gure 2 and �gure 3. Overall, there is a frequent
switch between a rise and fall in price which closely resembles �gure 2, but upon closer inspection we can
see that when there is a rise or a fall in price from the previous day, it tends to happen for most �rms on a
given day. This is similar to �gure 3, only with a much shorter delay of, for example, 2 or one. It could be
that modern communication technologies make information exchange almost instantaneous on a daily basis.
Figures 7 and 8 could possibly look di�erent if the unit of time were to be smaller, say an interval of minute
or seconds.
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Figure 8: Large cap weekly price movements

With the simulated model, which had a delay value of 15, the duration of choices could clearly be seen. In
the real data it is di�cult to observe continuous rise or fall in share prices for more than 5 periods. However,
if we look at Figure 8, between the time period of 150 and 200 there are less brown blocks than the time
just after 200. Although we cannot see a clear cut synchronization as with the simulated model, there are
some patterns that can be seen that are comparable to the simulated model, albeit with much more noise
than the simulation. An important note to make here is that selecting companies based on other criteria,
such as sectors and pro�tability, could lead to a more similar sample and thus a better output. Also, just
as the economic cycles di�er in length from time to time, adjusting the delay value could give an output
that better resembles the real data. In order to see how closely the simulated data can resemble the real
data, an attempt has been made in �nding the minimum sum of squared di�erences between the real data
and simulated data with di�erent value of β. Every simulated data matrix, consisting of either -1 or 1, was
compared with the real data matrix, which also contains -1 or 1 by counting the number of 1 for every time
period and the sum of squared di�erences were measured. This simple approach did not yield a clear cut
answer, as the minimum sum of squares seemed to be a local minimum instead of a global minimum. This
indicated that parametrization is much more involved than simple heuristics.

3.5 L di�erent states

So far we have only looked at the problem when there are only 2 outcomes available. In this case the
computation and classi�cation is relatively simple, since the principle is to classify all values above a certain
level of threshold to one group and the rest into another group. It would be interesting to see what would
happen if the individuals can choose from more than 2 outcomes (iPhone, Samsung and now Windows phone)
but a new question arises: where do we place the second threshold? As a matter of fact, if the categories
cannot be ranked, threshold will not be of any use. A simple way of overcoming this problem is through
clustering algorithms. We let L denote the number of di�erent states that are available. By following the
k nearest-neighbour approach [3], where k = n (we assume that every individual in�uences everyone else),
we can model the behaviours of our hipsters and Mainstream when there are, say, 3 options available to
them. For simplicity we will not consider in�uence and delay to play a role. The idea is that at every time
period, every individual will count the frequency of each choice and hipsters will choose the least frequent
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state, whereas Mainstream will choose the most frequent state. In the following miniature simulations with
n = 20 and t = 50, we once again vary the hipster fraction to see what happens.

Figure 9: L = 3, Hipster fraction=15%

In �gure 9 a tie occurred between groups 2 and 3, and group 2 was randomly selected as the majority
group. As expected, Mainstream all chose group 2 (the most frequent state) and hipsters chose group 1 (the
least frequent state) at t = 2. In the next time period where t = 3, Mainstream will be content with their
choice of group 2, since it remains the majority. Now an interesting event takes place - since no individual
chose group 3, it becomes the least selected group which is then the hipsters' preferred choice at the next
time period and this pattern repeats itself inde�nitely. Basically, hipsters take Mainstream decision as a
given, eliminate it from their available options and choose to alternate between the remaining 2 groups.

Figure 10: L = 3, Hipster fraction=50%
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Even when the hipster fraction increases to 50% in Figure 10, it does not di�er too much from Figure 9.
It is possible that with a much larger n and delay, we can see a more random pattern in the behaviours of
hipsters and Mainstream.

Figure 11: L = 3, Hipster fraction=90%

The 3 di�erent states case presents us with yet another interesting result. In �gure 11, the majority of
the population comprises of hipsters. They see that group 3 was the least frequent state at t = 1 and choose
group 3 at t = 2. The Mainstream decided that the majority is group 1 and chose group 1 at t = 2. Now
the hipsters, seeing as their choices created the majority, turn to the least frequent group, which happened
to be no one's choice, group 2. The Mainstream will then follow the majority, which is group 3, but they are
falling behind the hipsters. Again this pattern is repeated inde�nitely and with hipsters choosing the least
frequent and Mainstream choosing the most frequent states.

Figure 12: L = 6, Hipster fraction=15%
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At this stage one may wonder what would happen for L > 3. Figures 12 and 13 have been produced
to answer that question, where L = 6. The initial state contains all 6 categories and in Figures 12 and 13
the hipsters and Mainstream once again behave in their usual manner. We can see that in the long run
they only choose among 3 di�erent states as time changes and they behave similarly to their counterparts,
Figure 9 and �gure 11 respectively. It is unclear whether the other 3 groups are not resurfacing due to the
crudeness of the model or because they are actually forgotten by the population. The reasons attributable
to the disappearance of the remaining 3 groups is a topic for further study.

Figure 13: L = 6, Hipster fraction=90%

4 Conclusion

In this paper we looked at how this theoretical �Hipster E�ect� is developed and used it to see the di�erent
outcomes under di�erent parameters of hipster fraction and delay. The sigmoid functions have also been
changed and we saw that with a large enough β value, they all show a cyclical pattern when the majority
of the population consists of hipsters. A heuristic approach was taken in investigating the e�ect of the
hipster fraction and β values. A comparison of theory with real data was done and saw that there are still
more factors that need to be considered for the simulation to adequately model the real data. Finally, an
extension of the binary model to L number of states using clustering approach have been discussed. A more
detailed study of dynamic delay as a function of time, changing the in�uence matrix realistically so that few
individuals (such as politicians and celebrities) in�uence people more than others as well as a mathematical
technique to estimate the beta value that results in the optimal model are but few things that can further
be investigated in this new and interesting �eld.
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